RADIO BOOKS

Tape and Wire Recording. A selection of articles reprinted from the pages of The Radio Constructor, covering both the theory and practical applications. A really useful book on this latest development of the hobby. 2/6 post 2d.

Receivers, Preselectors and Converters. Practical articles, again reprinted from past issues of The Radio Constructor, which will prove of interest to many radio enthusiasts. 2/6 post 2d.

TV Fault Finding. Profusely illustrated with photographs taken from a television screen depicting the faults under discussion, and containing a wealth of technical information, with circuits, enabling those faults to be eradicated. 5/- post 3d.

Inexpensive Television. Build yourself a televisor from surplus. Latest edition includes all the data necessary for any area. 2/6 post 2d.

F. M. Tuner Units for Fringe and Local Area Reception. Including optional Tuning Indicator and circuit of Osram 912 Amplifier. 2/- post 2d.

Report Pads. If you need that QSL card, send a comprehensive report. A convenient and accurate form for reporting. 3/6 post 3d.

Radio Amateur Operator's Handbook. An indispensable aid to the amateur transmitter and listener, containing all details of information which are constantly required. Prefix Lists, Zone Boundaries, Call Areas, Codes, and Mileage Tables, together with Maps and much other useful operating data. Revised edition. 3/- post 2d.

Inexpensive Car Radio. In which two versions, one constructed from surplus and one from new components, are described. 1/6 post 2d.

Radio Control for Model Ships, Boats and Aircraft, by F. C. Judd, G2BCX. A comprehensive work on this fascinating subject.

All available from your local bookseller, or from

DATA PUBLICATIONS LTD

57 MAIDA VALE LONDON W9

Telegrams Databux London Telephone CUNningham 6141 (2 lines)
THE MODERN BOOK CO

Radio Servicing Pocket Book. By E. Molloy and J. P. Hawker. 10s. 6d. Postage 4d.

Probes. By Bruno Zucconi and Martin Clifford. 20s. 6d. Postage 6d.

Public Address Guide. By Guy S. Cornish. 6s. 0d. Postage 3d.

Mullard Maintenance Manual. 10s. 6d. Postage 6d.

TV Fault Finding. A Data Publication. 5s. 0d. Postage 3d.

Radio Control for Model Ships, Boats and Aircraft. 8s. 6d. Postage 3d.

The A.R.R.L. Antenna Book. 18s. 0d. Postage 1s.

Telecommunications Principles and Practice. By W. T. Perkins. 21s. 0d. Postage 6d.

High Quality Sound Reproduction. Compiled by Mullard Engineers. 3s. 6d. Postage 3d.

Elementary Telecommunications Examination Guide. 17s. 6d. Postage 6d.

Tape and Wire Recording. A Data Publication. 2s. 6d. Postage 3d.

Transistors and Crystal Diodes. By B. R. Bettridge. 5s. 0d. Postage 3d.

Practical TV Aerial Manual for Bands I and III. By R. Laidlaw. 4s. 6d. Postage 3d.

Frequency Modulation Tuner Units. A Data Publication. 2s. 0d. Postage 2d.

Electronic Musical Instruments. By R. H. Dorf. 55s. 0d. Postage 1s.

Radio Valve Data. Compiled by Wireless World. 3s. 6d. Postage 3d.

We have the Finest Selection of British and American Radio Books in the country.

Complete list on application.

19-23 PRAED STREET (Dept RC) LONDON W2

Telephone PDdington 4185

BAND III CONVERTER COIL KITS

Mk. 1, a two-valve converter for use with TRF or Superhet TV receivers. Complete set of coils, with wiring diagram and alignment instructions, 15.

Mk. 2, a two-valve cascode converter (see October issue). Set of coils, complete with diagram and alignment instructions, 17.6.

SUPER INDUCTOR COILS - MINIATURE DUST CORE TYPES

Type FIAV selective crystal diode coil, as specified for the “Paragon” Tape Recorder, 3/-; FAX L (LW), 3/6. Dual wave TRF coils type A/1F with adjustable iron dust cores, matched pairs, 7/- (as illustrated). Type WAX 4/ and WA9 4/6 for AM-FM Signal Generator, “Skymaster” L.F. Transformers, type N/R, N/S, 7/6 each. All types available from leading stockists.

TELETRON FERRITE ROD AERIALS

Wound on high permeability Ferroxide rod. No external aerial required. Full sensitivity. Reduces static and whistles. Extremely selective. Simply fitted as replacement for Aec coil or frame aerial. Ideal for battery portable receivers.

THE TELETRON COMPANY LIMITED

266 Nightingale Road · London N9

HOW 2527

Trade enquiries to sole distributor. S. Mozer, 95 Kendal Ave N18 Telephone EDMonton 7707

Mullard

MULLARD LTD., CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C.2

MVM 308

265

Build this HIGH QUALITY LOW COST AMPLIFIER

★ Circuit designed by Mullard research engineers.

★ Specified components available from most radio dealers.

Here's an entirely new amplifier circuit which brings high quality sound reproduction within the reach of thousands more enthusiasts. It has been designed by Mullard research engineers with special regard for ease of construction and low cost.

Full details of the circuit are included in the 2s. 6d. book which is obtainable from radio dealers or direct from Mullard Ltd. Valve Sales Department—2s. 10d. post free. Get your copy now.

EASY TO BUILD AT LOW COST

GOOD TRANSIENT RESPONSE

LOW OUTPUT RESISTANCE

LOW HUM AND NOISE

NEGLIGIBLE DISTORTION AT ALL OUTPUT LEVELS

DESIGNED AROUND FIVE MULLARD MASTER VALVES EF86 ECC83 2 × EL84 GZ30 or EZ80

UNIFORM FREQUENCY RESPONSE IN AUDIBLE RANGE
SCOTTISH INSURANCE CORPORATION LTD.

TELEVISION SETS AND SHORT WAVE TRANSMITTERS

Television Sets and Short Wave Transmitters/Receivers are expensive to acquire and you no doubt highly prize your installation. Apart from the value of your Set, you might be held responsible should injury be caused by a fault in the Set, or injury or damage by your Aerial collapsing. A "Scottish" special policy for Television Sets and Short Wave Transmitters/Receivers provides the following cover:

(a) Loss or damage to installation (including in the case of Television Sets the Cathode Ray Tubes) by Fire, Explosion, Lightning, Theft or Accidental External Means at any private dwelling-house.

(b) (i) Liability for bodily injury to Third Parties or damage to their property arising out of the breakdown or collapse of the Aerial Fittings or Mast, or through any defect in the Set. Indemnity £10,000 any one accident.

(ii) Damage to your property or that of your landlord arising out of the breakdown or collapse of the Aerial Fittings or Mast, but not exceeding £500.

The cost of Cover (a) is 5/- a year for Sets worth £50 or less, and for Sets valued at more than £50 the cost is in proportion. Cover (b) (i) and (ii) costs only 2/6 a year if taken with Cover (a), or 5/- if taken alone.

Why not BE PRUDENT AND INSURE your installation—it is well worth while AT THE VERY LOW COST INVOLVED. If you will complete and return this form to the Corporation’s Office at the above address, a proposal will be submitted for completion.

NAME (Block Letters)
If Lady, state Mrs. or Miss
ADDRESS (Block Letters)

LANES (RADIO) LTD The Amateur’s ... Paradise...

11 GARDNER ST. BRIGHTON

The BAXENDALL NEGATIVE FEEDBACK TONE CONTROL AND PRE-AMP

Size 6" x 4¾. Two valves, 6BQ7, EFP1. Power requirements 250V HT, 6.3V LT, ±200h bass and treble controls. Completely wired and tested.

CRYSTAL DIODES
1,6 each

FILTRANS
5/-

-001 if MICA COND.
4d. each

BIB WIRE STRIPPERS
3/6 each

ERSIN SOLDER Multicore 5/- & 2/6 Pkts

Radio Screwdrivers 4" & 6" 1/- each

Screwdriver Mains Tester 5/6

Universal Tool Sets with 3 screwdrivers, Philips tools, etc. 12/–

Box Spanner Tool Sets 2, 4, 6, 8A & 3 sizes Screwdrivers 25/-

Wire stripping Fully adjustible

87/6

Standard Telephones and Cables Limited

FOOTSCRAY SIDCUP KENT
ARThURS HAVE IT!
Large Stocks of Valves and C.R.T.s
Full Range of Meters available
Avo, Taylor, Cosier, Advance, etc.
Particulars on Request
PM Kit of Parts £5, less valves
(Ref. Radio Constructor July, 1954)
Amplifier Tape Recorders and
Loudspeakers
Jason PM Tuner Unit £17 0 0
Jason Power Pack £10 0 0
Radios and Television always in stock
VALVE MANUALS
Mullard, Brimar No. 6, Osram, Part I, 577;
Osram Part II, 10/6; Planta, 2/6;
Postage 6d. each extra
Publications: "Listener" Tape Recorder, 3/6
Goods offered subject to price alteration and being unsafe

Arthur's first
Peeprietors: ARTHUR GRAY LTD.
OUR ONLY ADDRESS Gray House
150-52 Charing Cross Road
London WC2
TEMPLE Bar 5033/34 and 4765

OSMOR's Unique Service
TO THE RADIO CONSTRUCTOR
Whoever published circuit you decide to construct, ask Osmor for a practical wiring diagram with full lists of components required. We cannot provide diagrams for all circuits, but in due course we will. We built the latest circuits published in Practical Wireless, Wireless World and Radio Constructor and store the components specified. Send 7/6 in stamps for circuits, fully descriptive literature, together with coil and capacitor values, component lists, chassis drawings and templates.

OSMOR MINIATURE 'Q' COILS
A complete range is available for all wavebands and purposes ideally suitable for all circuit positions. All high 'Q' values are d.c. corrected. Easy connection tags. Simple "press home" fixing. 'Q' of "poled" types up to 300.

Ultra small Ceramic Core, Tan Co-axial, Capacitors for V.M.F., etc., from 1pF = 0.5pF to 10,000pF = 100µ to 20µ, 10µ each. Small 'quad' Resistors 10Ω ± 10% to 10M ±10% 6d. each.

Full list of types, co-axial, and values on application

OSMOR RADIO PRODUCTS LTD.
416 BRIGHTON ROAD, SOUTH CROYDON
Telephone CRcydon 3148-9

BUILDING A BAND III CONVERTER?
HERE IS YOUR "FINE TUNER"
Ideal for the TELETRON and all types of converters. 7pF max. air-spaced with plated vanes, high-grade ceramic insulation and single hole fixing. Turn the picture and sound "spot-on."
LIMITED NUMBER ONLY 2/6 each (plus 3d. p.d.)

"METEOR"
This fine little set will bring the world to your fireside. We can supply all parts including genuine EDDYSTONE components. S.A.E. for list.

PM TUNERS. Full Time, Mullard 5-10, G.E.C. 912 Plus. All components in stock.

HOME RADIO of MITCHAM
187 LONDON ROAD MITCHAM SURREY
Telephone MIT 3269

NEW!
EXPERIMENTAL KITS
in Radio, T.V. etc.

LEARN THE PRACTICAL WAY
Specially prepared sets of radio parts which you receive upon enrolment with which we teach you, in your own home, the working of fundamental electronic circuits and bring you easily to the point when you can construct and service radio sets. Whether you are a student for an examination; starting a new hobby; intent upon a career in this industry; or running your own business — these practical Courses are intended for YOU — and may be yours at Very Moderate Cost.

EASY TERMS FROM 15/- A MONTH

POST THIS COUPON TODAY
To E.M.I. INSTITUTES, Dept. 179X,
Grove Park Road, London, W.4.
SUBJECT(S) ________________________________
NAME ________________________________
ADDRESS __________________________________
December

SPECIALISTS IN THE
FINEST POSSIBLE KITS

WORLD-WIDE COVERAGE
with

Full Testimonial and Technical
Details available on request.

DENCO (Clacton) LTD
357/9 Old Road Clacton-on-Sea Essex
Stop Press; "OSRAM" 912 PLUS AMPLIFIER
Gold finished front panel with brown control markings
Chassis, aluminium, completely polished
Pre-amplifier Chassis, completely polished
"MULLARD" FIVE-TEEN AMPLIFIER
Gold finished Front Panel, with control markings
Main Chassis, completely polished
Type A pre-ampl Chassis and panel (unprinted in bright aluminium)
Type B pre-ampl Chassis and panel (unprinted in bright aluminium)
"OSRAM" F.M. TUNER Chassis, front panel, printed scale and drive mechanism, 37½. Aerial coil, O/T, 2/9. R.F. Coil, O/L, 2/6. Oscillator Coil, O/L2, 1/6. 1st, 2nd and 3rd IF's, 0/2/7, 6/- each. Ratio Discriminator Transformer O/T2 (T3), complete with crystals, 6/6. Variable 3 gang Condenser 6/12.5pF. 17/6.
WORLD-WIDE DX IS CERTAIN
with the
Labgear 150 Watt TRANSMITTER
MODEL 1 G300 MK II

G2ACC offers you ...

DENGO
Discriminator Transformers 10.7 Mc/s: ratio RDTI
2:1, phase RDTI 90°. I.F. Transformers: IFT11/10.7
Maxi-Q Plug-in, Chasis type and Miniature Dual
purpose coils available.

EDDYSTONE
Ceramic Micro giving tuning condensers: 508 12.5 pF
7/8, 588 27.5 pF 8/9, 559 34.5 pF 9/9, 582 60 pF 9/9,
2/2, 1371 2.5 mH 3/3, 1032 1.5 mH 3/3, 776 2.5 mH 4/3,
1066 13 mH 4/3. All other Eddystone components in
stock. Eddystone illustrated catalogue 1/-.

SORAD
Large range of Ceramic and Paxolin wafer rotary
switches to individual requirements. See our catalogue.

CATALOGUE No. 9
60 pages illustrated on fine art paper with over 2,000
new lines by the leading makers. Free on request.

Minimum postage and packing on orders under £5 is 6d.

Southern Radio
and Electrical Supplies
SORAD WORKS
REDDLYNCH — SALISBURY — WILTS
Telephone DOWNTON 207

Frequency
Modulation Tuner
described in the July and Sept. 1954
issues

JACKSON Bros. dial and condenser
£1 5 3
Completely drilled chassis 8/-
All coils with S.M. Condensers and
cans £1 2 6
Reprint of articles including Fringe
model details, power pack, tuning
indicator, 912 amplifier, point-to-
point diagram 2/-
Complete Tuner, assembled and
aligned, with dial calibrated in
M/m 15£ 17 0
(Including P.T.)

JASON MOTOR COMPANY
328 CRICKLEWOOD LANE
LONDON NW2

HOME CONSTRUCTOR'S
HANDBOOK
Published by RODING LABORATORIES
This famous handbook is now available
in the NEW 1955 Edition. It
contains 22 tested circuits, complete with
descriptions, constructional details, full
parts lists, etc., etc. Also contains hints,
formulce, data. Circuits include super-
hets, communications receiver, oscillo-
scope, signal tracer, tape recorder,
amplifiers, beginner's receiver, and many
more items of gear. And the book is
backed by Roding Laboratories, who are
so well known for their quality home
constructor products. This 70-page
book represents unbeatable value at
2s. 6d. (plus 3d. postage and packing).
Order now and take immediate advan-
tage of the wealth of information it
affords.

The latest editions of all Data Pub-
lcations are available. Standard Prices.
Mail Order Only — No C.O.D.

R. DAVIES
54 Newton Road, Mumbles, Swansea

F.M.
TUNER
POWER PACK
AUDIO STAGE

TUNER (KIT OF PARTS)
Chassis 6 44 x 4 4 7 4 9 4 7
Coils and Choke 4 4 4 7
Tuning Condenser 4 4 1 4 7
Resistor Kit 4 4 7
Condenser Kit 4 4 7
Tag Strips 2 4 (with caps)
5 Valves——2 LM6, 1 LA6, 1 EF86, 1 GAI5, 31/3
Complete Kit £2 1 2

POWER PACK KIT
Chassis 6 x 4 4 7
Transformer 2 8 4
Choke 4 4 1
(2) 4-pin Plugs and
Sockets 2 4
Complete Kit £3 1 2

AUDIO STAGE KIT
Chassis 6 x 4 4 7
Resistor Kit 3 6 4
(1) Valves 686W
Valve 6X4 3 6 4
Output Transformer 7 6 4
Complete Kit £1 8 9

DON'T MISS THIS HANDBOOK!
INDISPENSABLE TO THE AMATEUR
TRANSMITTER AND LISTENER

Second Edition
It contains all those details of informa-
tion which the transmitter and SWL
constantly require.
Right up-to-the-minute Amateur Band
Prefix lists, both alphabetically and by
Country, Zone Boundaries, Call Areas,
Mileage Tables, QSL Bureaux, "Q" and
"Z" Codes, WWVSked, and
much other information, as well as a
selection of maps of DX areas.

Price 3/-, post age 2d.

DATA PUBLICATIONS LTD 57 MAIDA VALE LONDON W9

PRICE 55 Gns. (With all valves except 813)
Companion Power Unit/Modulator now available
Send S.A.E. lo John RC5035

Labgear (Cambridge) Ltd
WILLLOW PLACE • CAMBRIDGE • Telephone 2494

VALRADIO
13 CHANNEL
TUNERS
NOW AVAILABLE TO THE
HOME TV CONSTRUCTOR
Adapt your set to receive the Commercial TV
programmes. Valradio tuners are suitable for
home constructed receivers including "The
Wireless World", "Marazion", etc.
I.F. outputs, 914 mc/s 16-20 mc/s
19-24 mc/s and 34-40 mc/s.
Complete with fitting instructions ... £6
Brackets for fixing tuner to cabinet ... 2/6

Valradio Limited, New Chapel Rd, High Street,
Feltham, Middx. Telephone Feltham 4242 & 4837

270
Building the "SKYMASTER"?

Once again one of our famous range of R.L. Packs is specified by a discriminating designer! As a home constructor YOU cannot do better than follow this lead. SEND STAMP-TODAY FOR PRICED PARTS LIST of this fine receiver, or, better still, send 2/6 (plus 3d. post, etc.) when we will send you by return the latest edition of the ROADING 22-circuit HOME CONSTRUCTORS HANDBOOK.

This is beautifully printed on glossy art paper with a full colour cover and packed with technical data, set building and servicing hints, facts and formulam, resistance colour code, soldering hints, etc., together with descriptions, full parts lists and circuits of world-famous outfits as listed below:

- Coronet AC4 Superhet
- Coronet A.C.D.C. 4 Superhet
- Coronet Battery 4 Superhet
- Tape Recorder
- 5-ftree Communications Receiver
- Signal Tracer
- 5-watt quality Amplifier
- 10-watt High-fidelity push-pull amplifier
- Signal Generator
- Crystal Set
- Local station high-fidelity T.R.F. feeder unit

Our "Easy-as-A.B.C." FULL SIZE Construction Sheets are available for most of the above enabling even the beginner to get first-class results first time!

NEVER BEFORE HAS THERE BEEN A BOOK SO VALUABLE TO NOVICE AND EXPERT ALIKE!

RODING LABORATORIES (Dept. SK) Beurnemuth Airport Christchurch Hants

The Radio Constructor

incorporating THE RADIO AMATEUR

CONTENTS FOR DECEMBER

- Vol. 9 No. 5
- December 1955
- Annual Subscription 18/-
- Editorial and Advertising Offices
- 57 Maid Vale London W9
- Telephone
- Cunningham 6141
- (2 lines)
- Telegrams
- Databux, London
- Editor
- C. W. C. Overland, G2ATV
- Advertising Manager
- F. A. Baldwin, A.M.I.P.R.E.
- 277 In Your Workshop, by J.R.D.
- 281 Premiums for Technical Writing
- 282 Band III Television for the Home Constructor, Part 6, by S. Weburn
- 287 Build-Your-Own A.M.—F.M. Signal Generator, Part 2, by W. Pickering
- 293 Query Corner
- 295 Portable Amateur Radio Equipment Contest Results
- 296 The High-Q Pre-Set Push-Pull Two, by J. W. Bagnall
- 300 Can Anyone Help?
- 301 High Quality 10 Watt Ultra-Linear Amplifier, Further Notes, by L. F. Sinfield
- 302 Radio Miscellaneous, by Centre Tap
- 304 Radio—and Control, Part 2, by Raymond F. Stock
- 310 The Skymaster, by Frank A. Baldwin, A.M.I.P.R.E.
- 315 Club News
- 316 Garden Masts, by Simeon Edmunds, A.M.T.S.
- 318 Design Charts for Constructors. No. 1: Power, Voltage, Current, and Resistance Chart, by Hugh Gay

THE CONTENTS of this magazine are strictly copyright and may not be reproduced without obtaining prior permission from the Editor.

Opinions expressed by contributors are not necessarily those of the Editor or proprietors

NOTICES

THE EDITOR invites original contributions on construction of radio subjects. All material used will be paid for. Articles should preferably be typewritten, and photographs should be clear and sharp. Diagrams need not be large or perfectly drawn, as our draughtsmen will redraw in most cases, but all relevant information should be included.

All MSS must be accompanied by a stamped addressed envelope for reply or return. Each item must bear the sender's name and address.

TRADE NEWS. Manufacturers, publishers, etc., are invited to submit samples or information of new products for review in this section.

ALL CORRESPONDENCE should be addressed to THE RADIO CONSTRUCTOR 57 Maid Vale London W9
The circuits presented in this series have been designed by
G. A. FRENCH, specially for the enthusiast who needs only
the circuit and essential relevant data

No. 61. A 60-SECOND KILLER FOR COMMERCIAL TV

The public has, in the past month or
two, had the opportunity of judging the
quality of the entertainment made available by the new commercial television
transmissions on Channel 9. At the time of
writing, the average viewer's opinion appears to be that the new programmes are well produced and compare very favourably with
those transmitted by the B.B.C. On the other
hand, whilst the advertisements introduced by the Independent Television Authority were, at the time, something of a novelty, the
viewers' minds and the theme of the performance.
It is because of these points that the present
Suggested Circuit is now introduced. The
purpose of the device described in this month's
article is to effectively switch out the television
during the time that an advertisement is being broadcast. After the completion of the
advertisement, the television then returns to
normal operation.

The Circuit
The device is, in effect, nothing more than
a very simple electronic timer. It takes
advantage of the fact that I.T.A. advertise-
ments always have a duration of a minute, or
of multiples of one minute. To operate the
device, a button is pressed at the commence-
ment of an advertisement period, whereupon
the television becomes inoperative until a
minute has passed. Should further advertis-
ing material appear when the television resumes
operation, the button is pressed once more,
resulting in another sixty seconds free from
plugs.

The circuit employed is illustrated in the
accompanying diagram. The components in
this diagram which affect the duration of the
timing cycle are C1, R1, R2, and R3. C1 is
discharged by pressing the push-button at the
commencement of a timing cycle. It then
charges up to a predetermined voltage by
means of the current flowing through R2 and
R3. The rate of charge and, hence, the
length of the timing period, is controllable by
means of the variable resistor R3. The
resistor R3 is included to prevent the voltage
across C1 from rising to too high a level.

The voltage across C1 is applied to the grid
of V2 via the 10MΩ resistor R4. Assuming a
200 volt r.m.s. rail, the cathode of V2 is held
positive at approximately 55 volts, with
respect to chassis, by means of the potential
divider R6, R7 and R8. When C1 is discharged
V2 does not, therefore, conduct. However,
when, during a timing cycle, the voltage
across C1 becomes sufficiently high to over-
come the delay voltage on the cathode of V2,
this valve conducts; thereby energising the
relay connected in its anode circuit.

Since the voltage across C1 rises to a higher
level than that existing between V2 cathode
and chassis, a limiting arrangement is
provided by R4 and the diode-connected
triode V1. The cathode of V1 has a positive
potential 5 volts lower than that at the
cathode of V2. In consequence, the effective
diode given by V1 conducts whenever the
voltage at the grid of V2 becomes less than
5 volts negative with respect to that at its
cathode. V2 cannot, therefore, pass an
excessive anode current.

The circuit is intended to obtain its h.t.
power from that available in the television
with which it is to be used. Any available rail
voltage between 160 and 240 should give
satisfactory results. Current drain at 200
volts will lie between 10mA when the relay is
de-energised, and some 13 to 15mA when the
relay is energised. The heater supply for the
double-triode V1, V2 may be obtained from the
televison, or from a separate heater
transformer.

To HT+ rail of television

To television chassis

Remote push-button

E226

Choice of Components
The cycle of operations in the circuit is
initiated by pressing the remote push-button.
This discharges C1 via R3; the purpose of the
latter component being to limit the initial
discharge current. V2 ceases to conduct and
the relay de-energises, thereby switching out
the television. As soon as the push-button is
released, C1 commences to recharge, causing
V2 to conduct after a period of time. The
relay then becomes energised, and the television once more comes into operation.

It will be seen that the success of the timing
operation depends upon the delay circuit
provided by C1, R1, R2 and R3. Also, as the
timing cycle has to occupy a minute, rela-
tively large values of capacity and resistance
are required. For an inexpensive design an
electrolytic condenser is obviously called for;
even though this is liable to raise complica-
tions of its own. Such complications are due
to the fact that the capacity of an electro-
ytic condenser varies according to the voltage
across its terminals, and that a condenser of
this type has an inherent leakage current.
The question of the effective capacity of C1 is
dealt with in greater detail later.

Further complications are introduced by
the fact that the relay becomes energised only
after V2 passes sufficient current. However,
the anode current passed by V2 is liable to
increase somewhat gradually as soon as the
negative potential on its grid, with respect to
it can be seen that, although the relay is expected to energise when a certain current passes through its windings, this current may be attained during a gradual increase (after C1 has a sufficient charge) and not by means of an abrupt increase. The final accuracy of the timing period, therefore, relies upon the ability of the relay to energise at a given current for each operation.

Since it would be bad practice to expect too high a degree of accuracy from the relay in this respect, steps are taken elsewhere to cause the current flowing through its windings to increase as abruptly as possible near the end of the timing cycle. Thus, R1, R2, and R3 are chosen such that the final, charged, voltage across C1 is less than some 75 to 100 volts (assuming a 200 volt h.t. rail). In consequence of this, when the potential across C1 approaches the 40 to 45 volts needed to make V2 initially conduct, this potential is rising at a relatively high rate. To reduce the derogatory effect of the rise in current through R4 and R5 as V2 commences to conduct, the potentiometer R6, R7 and R8 passes a steady current considerably heavier than that to which the motor would be needed to operate the relay. These small, but very important points of design should be sufficient to make the device largely independent of the possibly varying current needed to energise the relay.

Finally, to overcome the difficulties of calculating the values of components needed for the timing circuit when the charging condenser is an electrolytic component, the writer decided that his best plan would consist of checking commercial electrolytic condensers empirically in a functional circuit. This was done with several different condensers, and in each case it was found possible to control the charging time comfortably by means of the circuit shown. It should be emphasised, however, that if the condenser employed at the C1 position possesses a low leakage resistance it may be necessary to increase the value of R1, or even to remove it from circuit altogether.

Such a course was not found necessary with the condensers checked by the writer.

Switching Circuits
Space does not allow a detailed description of the circuits which are switched by the relay. Normally, they should be quite straightforward and capable of application by the home constructor.

To provide an example, one set of contacts, preferably changeover, could be employed for muting the loudspeaker. These would disconnect the speaker from the output transformer, connecting a low-value resistor in its place.

The vision circuits could be rendered inoperative by biasing back the c.r.t. when the relay contacts are in the de-energised position. The circuit required would depend upon the type of modulation employed and could most conveniently be applied to the brilliance network. It would probably be inadvisable for an inexperienced constructor to experiment here.

Alternatively, the whole television could be rendered inoperative by a single set of contacts. These could function, say, by switching out the h.t. to the oscillator or, even, just by shorting the aerial coaxial input connections.

Final Points
Before concluding, it should be stated that the relay employed should, of course, be of a type having a high resistance winding which is capable of being energised by a current of a few milliamperes. Such relays are quite easily obtainable at the present time, either as new components or in the form of "surplus" stock.

Finally, it has to be emphasised that thelead to the remote push-button has the same potential as the television chassis. In consequence, this lead may be connected to one side of the circuit, and the necessary safety precautions must be observed.

REDEARS MAY RECALL THAT IN LAST month's article we spent some time discussing the basic action of the blocking oscillator, as employed in conventional television timebases. We reviewed the action of the oscillator when used with a modern iron-cored blocking transformer, and paid some attention to the question of a suitable discharge circuit designed to provide the sawtooth waveform required for scanning. We stated also that we would carry on this month with the question of synchronisation.

Synchronisation.
Fig.1 illustrates a basic blocking oscillator of the type described in the last article. However, we have modified last month's circuit slightly by making two changes. The first of these is that the grid leak, R1, is now a variable component. The second is that a low-value resistor, R2, is connected between L2 and chassis. (We shall ignore the synchronising input for the time being).

It will be recalled that, in the last article, it was pointed out that the length in time of the retrace part of the scanning cycle was controlled (so far as the oscillator was concerned) by the constants (mainly induc-
frequency setting would be critical and unreliable.

Fig. 2 (d) illustrates the effect when the scan period is too long (i.e. oscillator sawtooth frequency is too low). In this case, even though the synchronising pulse is

In Fig. 2 (e) the scan period is too short (oscillator sawtooth frequency too high). As the flyback period is already initiated by the time the synchronising pulse arrives, the latter has no effect. It is impossible to synchronise a television timebase whose

large, it still cannot carry the grid sufficiently positive to cross the cut-off point, and the oscillator cannot be locked.

THE RADIO CONSTRUCTOR

DECEMBER 1955
synchronising pulse which is sufficiently large and which has a sufficiently sharp leading edge and, secondly, an oscillator whose free-running sawtooth frequency is such that it allows itself to be reliably synchronised. It is possible for the free-running sawtooth frequency of a blocking oscillator to alter because of variations in the circuit parameters (eg. temperature). It follows, therefore, that the synchronising pulse has to be large enough to lock the oscillator during periods where its frequency may change in its free-running sawtooth frequency.

The synchronising (or "hold") control of a blocking oscillator is, of course, that which controls its free-running speed, and, in Fig. 1, is R2. The synchronising pulse brought down from the top end of its track, the self-running sawtooth frequency of the oscillator becomes lower and approaches that of the synchronising pulse. As soon as the synchronising pulse frequency is no longer than the oscillator goes back to normal. The low frequency of the oscillator is thus maintained by a consideration of it the frequency equals that of the synchronising pulse, the oscillator "locks in" very noticeably. This particular setting is not reliable, however, because the self-running sawtooth frequency has only to become slightly reduced for the oscillator to become unsynchronised again and so the slider has to be set somewhat further advanced to prevent this eventuality.

An alternative method of applying positive synchronising pulses to the blocking oscillator is shown in Fig. 2. Here, really, is only a rearrangement of Fig. 1, but it has the advantage of applying the pulses direct to the grid instead of through the transformer winding onto a plate attendant reactances and capacitances to chassis.

The blocking oscillator may also be synchronised by means of negative pulses, these being applied direct to the anode, as shown in Fig. 3 (a). This method is not so good as that of Fig. 3 (b), or Fig. 1, because the synchronising pulses have to initiate the build-up of the magnetic field in the transformer and to maintain it at a value sufficient to alter the grid voltage of the oscillator. Consequently, these negative pulses must be provided from a relatively low impedance source and must be capable of allowing a proportionately higher current flow.

Looking Back
In order to prevent any muddles occurring, it is my practice to number these contributions before I send them off to The Radio Constructor. Somewhat to my surprise, I have found that I am not able to keep this rule and now is entitled "In Your Workshop No. 6." I state "to my surprise" because the figure 60 means that I have now been writing this column for five years — and I just hadn’t realised that so much time had flown by!

I have been fortunate enough to obtain a great deal of pleasure and instruction from my association with The Radio Constructor, and it is this which has made the last five years so short. In particular, the articles I have contributed have enabled me to receive many interesting letters from readers and it has been a pleasure to me to task for things I have written (or which I have not written!), every one has been welcome and all have been studied. Recently, however, I have had to confess to myself that I just could not answer each letter until some considerable time had passed; but things are now almost back to normal again.

One thing that has happened over the last five years has been the considerable solidarify which characterises the amateur constructor movement in this country. The spirit of mutual assistance that has always been prevalent in radio circles, but I think that the common centre of interest has shifted slightly, nowadays, from that which existed before the war. In the pre-war period greater emphasis was placed upon amateur transmission and reception; this being possibly due to the fact that, apart from sound radio, there were fewer alternative outlets for the inventiveness and energy of the home-constructor. (Just think of a time in which the expression "hi-fi" had not been coined! I mean even been coined! I mean there are so many other branches to the hobby that a considerable number of enthusiasts have never touched a key, or even experienced the thrill we used to get when we picked up Schenectady on our very first single-2-volt triode receiver!

CAREERS
The letters I have received in the past have contained a sizeable proportion of requests from young readers who are beginners in the field of radio and who are anxious to know what steps they should take before considering this as a career. Most of these have been National Servicemen who have been posted to a radio trade during their period of conscription. To speak frankly, I am not really competent to give a great deal of advice on the question of careers because my own experience has led me to a hacking way of making a change from Hong Kong to Southern Rhodesia! It is only in the last few years that I have settled down in Great Britain to a more comfortable routine.

What I would like to suggest to National Servicemen who are keen on radio is that they try and obtain as much practical experience as they can whilst they are in the Services. One of the reasons for this is that high-grade test gear and electronic equipment is normally used quite extensively in the radio branches of the Services; probably far more so, indeed, than occurs in some of the smaller civilian businesses. And practical experience of such radio equipment is one of the most valuable assets a technician can obtain. I don’t know if National Servicemen feel like taking advantage of such opportunities available to them in the Services, but no harm could presumably result. (I understand that Guardsmen are being taught to count the numbers of sausages in a row. Happy days!) If anybody should get away with it from such readers with a view to publishing their letters in this column. I do feel that, at a period when electronic engineers are in such short supply, any reliable information which may assist young technicians would also be of assistance to the state of the country itself.

A Short Head
These paragraphs were prompted by the fact that I had suddenly realised that I had been writing "In Your Workshop" for five years. However, I am still a young ‘un yet. My colleague Centre-Tap, who started Radio Miscellany in 1947 (Vol. 1, No. 2), has a far earlier connection with the radio press. Indeed, I can remember G. A. French has also been in my life, if only by a very short head. His popular feature is headed this month: "Suggested Circuits No. 61".

PREMIUMS FOR TECHNICAL WRITING
Re-statement of Radio Industry Council’s Scheme
Non-professional writers of technical articles dealing with radio and electronics, including specialised applications to industrial problems, and the editors responsible, are reminded in a leaflet issued by the Radio Industry Council of its premium award scheme, now in its fourth year and nearing the end of the term.

Up to six premiums of 25 guineas each are offered yearly in respect of articles which, in the opinion of the Council's scientific judges, are likely to enhance the reputation of Great Britain in radio, television and electronics.

The 19 awards so far made have been to mostly young members of the journals, but it is pointed out in the leaflet that many industries are increasingly using electronic methods of production and that the journals serving a wide variety of industries are eligible provided they can be bought by the public on bookstalls or by subscription. Industries specifically concerned are the motor, aircraft, metalworking, woodworking and food industries, with wide uses also in hospitals, clinics and research establishments.

An innovation now announced is that of the six premiums will be open for articles published in manufacturers' own journals with an overseas circulation, provided that they also can be bought by the public.

Dec. 1955

Articles in privately published journals of professional bodies are not eligible.

Object of the scheme is to encourage a greater flow of articles from within industry, but any writer is eligible provided he is not paid wholly or mainly for writing and is not earning more than 25 per cent of his income from fees for articles or book royalties.

The judges, headed by Professor H. E. M. Barlow, Professor of Electronic Engineering, University College, London, believe that an article, to have maximum impact, should have a technical introduction setting out the aims and applications of the techniques described and, if possible, economic advantages; the object being to assist executives and administrators as well as scientists and engineers. Value of the article in making known British achievement, originality of subject, accuracy of information and presentation and clarity are the criteria.

To enter, copies of the journal or pages have to be sent before the end of the year to the Secretary, Radio Industry Council, 59 Russell Square, London, W.C.1., with a written declaration that the writer is eligible. Copies of this leaflet should be addressed to us as this issue, as we are forwarding the necessary number each month to the Radio Industry Council. Should any writer whose article has appeared during the last twelve months, wish to submit an application, we shall be pleased to supply gratis the necessary copies, subject to these being in stock.—Ed.)
BAND III TELEVISION
for the
HOME CONSTRUCTOR

PART 6.

by S. WELBURN

This month S. Welburn passes some comments on upper-sideband Channel I receivers. He also deals with the problem of setting fine tuning controls correctly, and of inserting i.f. into a Band I Television receiver without additional coils.

NOW THAT THE FIRST MONTH OR SO of Band III transmissions has passed, we can settle down to seeing how our converters and aerial gear are coping with the new transmissions.

An Achievement

First of all, however, the writer feels that it would be more than fitting at this stage to pass on the warmest congratulations to the technicians and engineers of the I.T.A. who got Channel 9 on the air so promptly and successfully last 22nd September. It was a notable achievement which deserves every compliment. Commercial television is an experiment in this country which, to judge from its performance up to the time of writing, can be assured of considerable success in the future.

In passing, the writer cannot help but comment on the fact that the very first commercial advertisement ever transmitted in a programme in this country was faded in too soon! Those who saw it on 22nd September may remember that we also saw the last few figures (4 and 3) of the film "leader" before we were introduced to the toothpaste which formed the subject of the ad.

Upper Sideband Receivers

Some difficulties have been experienced with the conversion to Band III of one or two vintage televisions (so far as the writer is aware, all t.r.f.) owing to the fact that their r.f. strips are intended for upper vision sideband working. There are probably not very many such receivers in use these days, fortunately. As they stand, these receivers cannot be fitted with a converter for Channel 9 reception owing to the fact that this signal uses the lower sideband for vision. Double sideband receivers should be satisfactory, however.

Upper sideband receivers will also be inoperative when the B.B.C. moves to Crystal Palace, as the new B.B.C. transmissions on Channel I will be on the lower sideband only as well.

It would seem that, if an upper sideband receiver is in use at the time, it might be worth while making an attempt to convert it to lower sideband working at the present time as, apart from Band III considerations, this will enable it to cope also with the proposed new B.B.C. Channel I programme.

The conversion might not be simple, unfortunately, and it might be inadvisable for anyone who has not had some experience of television alignment to try to carry it out. A signal generator would be necessary. A Channel 9 converter would also be useful, as it would enable a final check of the band-width and transient response of the converted receiver to be obtained with the aid of the I.T.A. signal.

The conversion, of course, consists of redesigning the vision strip of the t.r.f. receiver to the lower sideband. This would bring the video strip very close in frequency to the sound carrier; with a very strong possibility, in consequence, of sound breakthrough on vision. It seems possible that, with some receivers, the consequent sound on vision would be practically impossible to clear. With other receivers the trouble could perhaps be cleared by fitting additional sound traps.

Whilst adding sound traps can help to clear sound on vision troubles, they can also raise some difficulties of their own. This is due to the distortion that they are liable to introduce to the total response curve.

Probably the best type of "add-on" sound rejector is that shown in Fig. 1. This is a simple acceptor circuit and can be connected to any anode in the r.f. strip. Provided that the coil has a reasonably high Q, such a trap can often give surprisingly good results. The value of the series condenser is experimental, although a capacity around 20pf should be satisfactory in most cases. The coil should be screened; and very short leads are essential. Two such rejectors "added-on" to the anodes of two successive valves in the r.f. strip would probably give surprisingly useful results in many instances.

An alternative form of "add-on" sound rejector is shown in Fig. 2. This consists of a tuned circuit in series with the cathode of one of the video strip valves. It functions by reason of the fact that the tuned circuit has a high impedance at its resonant frequency and, in consequence, causes considerable degeneration of gain in the valve at that frequency. The writer's own experience of the circuit of Fig. 2 is that it does not reject as sharp a band of frequencies as does that of Fig. 1, and that it is more liable to upset the response curve of the strip. Nevertheless, the circuit is of use to those wishing to experiment.

Before concluding on this subject it must once again be pointed out that converting an upper sideband receiver to lower sideband working is not necessarily a simple task to carry out, and that it might not always be successful.

The Fine Tuner

Many converters, and all turrett tuners, are fitted with fine tuning controls. Occasionally, one finds that these controls are not always quite as easy to operate as one would expect, if really superior picture quality is required.

The reason for this is that many commercial televisions having differing responses in their i.f. strips. With some receivers, for instance, the sound rejection circuits are quite sharply tuned and, unless the fine tuner is adjusted such that the sound carrier rests centrally in the sound rejection trough of the video i.f. response curve, some risk of sound on vision is liable to result. In other cases, the fine tuner position for maximum sound rejection may not correspond exactly to the position for maximum volume from the loudspeaker. Again, some video i.f. strips are liable to "ring" slightly at certain frequencies. When the fine tuner is adjusted correctly, this slight ringing sharpens up the image quite appreciably and is not a derogatory factor.

Because of these points, the viewer who is interested in getting the very best picture from his television might not be ill-advised to primarily get the "feel" of the fine tuning control with the aid of the transmitted test card. He may then find that he obtains optimum results when he adjusts this control for an easily-repeatable set of circumstances.

These could consist of, say, a small diminu-
tion in sound, the control being turned slightly away from the "maximum sound" position towards that which gives maximum picture brightness. The optimum setting found with the aid of the test card can then quite easily be repeated when viewing a normal transmission.

3 Mc/s bars of a normal test card. They may usually be detected by reducing brilliance and, sometimes, advancing the contrast control. Adjusting the fine tuner for maximum attenuation of the pattern will correspond to the setting which gives optimum sound rejection.

![Fig. 3](image)

Fig. 3. The basic essentials of a cathode injection arrangement. The impedance of the 0.001µF condenser in series with the input can be considered as being negligible at i.f.

![Fig. 4](image)

Fig. 4. The oscillator and mixer circuits of the Magna-View receiver

In the case of a receiver with sharply tuned sound rejector circuits, the best position of the fine tuner will be that which gives minimum 3.5 Mc/s pattern on the screen. The 3.5 Mc/s pattern (given by the sound carrier) shows up as a continual gradation of the individual lines of the picture, these gradations being slightly closer together than the

In the case of an i.f. strip with a slight "ring," the fine tuner position for optimum sound rejection should correspond to that needed for optimum picture; assuming that the i.f. strip has not drifted or been tampered with since it was originally aligned. If there is only a slight discrepancy between these two positions, a compromise may be

![Fig. 5](image)

Fig. 5. Showing how a converter with an output at i.f. may be connected into the cathode circuit of the mixer of Fig. 4. Complete Band I—Band III switching is also shown. S1, S2, S3 may be provided by a normal wave-change switch

Such a course is frequently possible by means of cathode injection, and a circuit illustrating the basic idea is shown in Fig. 3. In this diagram the input signal is fed, via 750 cables, to the cathode of the first i.f. amplifying valve in the television. It is assumed that this valve is operating as a grounded-grid stage, in which event the input impedance at its cathode is approximately equal to the reciprocal of its mutual conductance. The mutual conductance of it would be necessary to short-circuit the grid to chassis for Band III reception.

Rather an elegant solution to this problem may be obtained when the grid of the valve is connected to chassis via a Band I coil. A typical instance is given by the Magna-View circuit.

Fig. 4 shows the frequency-changer circuits in this receiver. As may be seen, the grid of the left-hand triode of V2 is connected to chassis via L2O. For i.f. frequencies, coil L2O can be considered as a short-circuit, in which case it is possible to inject i.f. into the cathode without any switching at all. A suitable circuit arrangement is shown in Fig. 5. This differs slightly from Fig. 4, in so far that the original 600Ω cathode bias resistor is replaced by an
additional 5000 Ω resistor inserted in series with the 1500 Ω impedance-reducing resistor. This is done to maintain approximately the same cathode bias as existed before.

Fig. 5 also shows suitable Band I-Band III switching. Part of this is concerned with h.t. switching and is supplied by S1 and S2. The (5 MΩ resistors shown across the switch contacts merely to supply a small amount of h.t. current to the appropriate valves when they are switched out). In this diagram S1 switches the h.t. supply to the oscillator, if desired only. For receivers which, unlike the Magna-View, employ the same h.t. supply for the r.f. stage as well as the oscillator, S1 could switch out this stage as well as the oscillator. Switch S2 short-circuits the coaxial lead to the receiver when Band 1 is selected. This short-circuit effectively short-circuits across the 1500 Ω resistor, and brings the cathode circuit back to practically the same condition as that which existed in Fig. 4.

The circuit of Fig. 5 is a very workable proposition, and it is capable of being applied to any commercial receiver having a frequency-changer circuit similar to that used in Fig. 4. It should be noted that the gain of the mixer is added to that of the i.f. strip when the combination is switched to Band III; this representing an incidental advantage of the scheme.

There is one further small point about the circuits of Figs. 3 and 5 which should be mentioned, and that is the subject of this section. This concerns the coaxial lead between the converter and the receiver. This lead should not be greater than some 2½ feet or so in length. The reason for this is that, if it were made longer, it could act as a tuned circuit resonant at Band I frequencies, and would upset the Band I performance of the television.

"Converter Type 3"

Before concluding this month, the writer would like to devote some time to a review of two Band III converters.

The first of these is the "Converter Type 3" which is retailed by R. & T.V. Components Ltd. This converter employs an EF80 r.f. amplifier feeding into an ECC81 double-triode frequency-changer. No circuit was available to the writer, but it would appear that conventional circuitry is employed.

The Converter Type 3 is fitted in a small chassis fitted with a tag-strip for connection to Band I and Band III, together with tags for the Band III aerial input. No Band I-Band III switch is fitted. The h.t. required is 180 to 200 volts, and the l.t. required is 6.3 volts at 0.6 amps. An adjustable Band I rejector circuit is fitted to reduce break-in via the Band III aerial.

The "Univeter"

Also under review is the "Univeter." This is an ambitious and extremely well-designed converter which gives an output at any channel in Band I. The unit is quite complete and self-contained, and it has its own power pack. In consequence it may be fitted to the existing Band I television without the necessity of altering any internal wiring. An interesting feature is given by the fact that the a.c. supply to the receiver may be taken through the on-off switch of the converter. Once connected up, the receiver is then switched on and off by the converter switch.

The "Univeter" valve line-up consists of a ZS7 8.f. amplifier, a 6Z8 double-triode oscillator-driver, and a 6G6 power amplifier. The U78 is employed as h.t. rectifier. The converter chassis is isolated from the mains by its own transformer. Two of the advantages of the i.f. amplifier stage are that this adds its own gain to that of the converter at Band III, and that the consequent high output available at i.f. reduces Band I break-in in poorly screened televisions to a negligible quantity. The i.f. is, of course, the frequency of the Band I channel employed by the receiver with which the converter is used.

The "Univeter" is available complete in a wooden cabinet. A single control knob on the front switches the converter and television on and off, and also selects Band 1 or Band III.

TWO RADIO SHOWS ANOUNCED

The Radio Industry Council announces that the 23rd annual National Radio and Television Exhibition ("Shos")," will be held at Earl's Court, London, from 22nd August to 1st September, 1956, with a preview for overseas and other special guests on 21st August.

The Radio and Electronic Component Manufacturers' Federation announces that its annual private exhibition will be at Grosvenor House, London, W.1, from 10th to 12th April, with—for the first time—a preview for overseas and other specially invited guests on the afternoon of 9th April. Application for admission has to be made in advance to the Radio and Electronic Component Manufacturers' Federation, 21 Tothill Street, London, S.W.1.
The chassis itself comes next. The depths of the front and back aprons of the chassis as used here should be equal, at 1 1/8 in. It is possible that the rear apron of the chassis, as supplied by R.C.S. Products, may be deeper than the front apron by some 1/16-in.

The position of pin No. 1 of each valveholder is shown in Fig. 4 by a small circle.

The 1/8-in hole shown in the diagram corresponds to the central hole of the WA5 coil, which is later mounted under the chassis. No part of the coil former, itself, locates with this hole, as its main purpose is that of allowing the passage of a trimming tool to the iron-dust core. The two 6-BA clearance mounting holes spaced symmetrically on either side of the 1/8-in hole are for mounting the coil former.

The two 4-BA clearance holes along the rear of the chassis are intended for mounting two of the four five-way tag-strips specified; whilst the remaining two 6-BA clearance holes are employed for the Radiospares transformer. The other three holes, labelled "A", "B", and "C", should be drilled out to take 1/16-in grommets. (The letter references are discussed later in the article). The third and fourth tag-strips, incidentally, are mounted under the outer 6-BA nut and bolt securing V1 valveholder, and under the forward nut and bolt securing the Radiospares transformer.

Fig. 5 shows the back apron of the chassis. There is little which requires comment here.

The 1/8-in hole and two 6-BA clearance holes will be used for the mounting of the chassis. The letter references are explained in the text. Fig. 5. The rear apron of the chassis, showing the holes drilled for the WA5 coil and power lead grommet.
WA9 coil inside the chassis, whilst the remaining hole should be drilled out for the power-lead grommet.

It is finally necessary to drill the rear of the cabinet for the two Belling-Lee coaxial sockets. Their centres are shown in Fig. 6. This diagram also designates the function of each socket.

Wiring

The main components may now be mounted. The tags of the two potentiometers should project upwards. As it is desirable to obtain the maximum possible capacitive swing of the tuning condenser, the trimmer on the front section (that which is used here) should be set to a minimum value or, better still, removed.

Wiring may now be commenced. This part of the process of construction is extremely simple, as there is ample degree of space on the chassis. However, the normal commonsense rules of wiring apply, and no component lead should be made longer than is comfortably required. To act as a guide, Fig. 7 shows the positions of the larger components below the chassis. A study of this photograph will also prove of assistance with respect to the positioning of the smaller components.

Above the chassis a little further explanation is required. The wiring runs passing through the chassis to the individual above-chassis components should pass through the grommets specifically positioned for them. Thus, the wiring to VR1 should pass through hole "A", that to VR2 through hole "B", and that to the transformer through hole "C". The letter references are those given in Fig. 4.

Fig. 8 illustrates the method of fitting the components which connect to the Belling-Lee coaxial sockets. The soldered connections required at these sockets are made when the chassis is fitted into the cabinet, the requisite joints being readily available by removing the lid of the cabinet. No earth connection to these coaxial sockets is required, as this is provided automatically via the metal of the cabinet itself.

The Scale

All that now remains is the fitting of the tuning condenser scale, and the various Panel-Signs transfers to the front panel. The scale itself is also a transfer, being calibrated after fitting to the front panel. The use of transfers enables an extremely neat finish to be obtained, as may be judged from the photograph of the completed equipment.

A very attractive appearance can be given by covering the tuning scale with a thin sheet of Perspex. The dimensions required for this sheet are given in Fig. 9. The five holes around the edge of the Perspex are intended for mounting screws (preferably self-tapping). After these holes have been drilled, the Perspex may be used as a template for drilling out the front panel itself. It is possible that the extension of the three top screws behind the panel may foul the top flange of the cabinet. If this occurs, the sections of the flange concerned should be cut away, or large "accommodation" holes drilled to take the screws.

A cursor for the tuning condenser is also required. Here again, Perspex provides an attractive solution, and the arrangement employed in the prototype is clearly visible from the photograph of the complete unit. A fine line is scored along the under side of the piece of Perspex employed here, and is later filled with a colouring material. The Perspex is, of course, fixed to the back of the control knob.

It will finally be necessary to calibrate the tuning scale. One way of carrying out this process would consist of checking the unit against a normal signal generator. However, some constructors will not be able to avail themselves of this facility, and so the prototype calibration has been reproduced to assist them (see Part 1). For ease of presentation, the semi-circular scale has been presented in linear form. The top graduations in this diagram, i.e. from 0 to 100, correspond to the similar graduations on the actual scale itself. (These readers are recommended to refer to Parts 2 and 3 of The Design, Construction, Calibration and Use of Signal Generators, by R. J. Stephenson, October and November, 1954 issues of this magazine—Ed.).

Operation

There is little which needs to be explained so far as operation of the signal generator is concerned, this being extremely simple. Nevertheless, there are one or two small points which merit discussion before this article is finally concluded.

The first of these is concerned with the frequency deviation of the signal generator on Range 2. On this range the tuning capacity provided by C4 is shunted by the fixed condenser. In consequence, the variable tuning reactance offered by V2 gives less frequency deviation, for a given input sweep voltage, than occurs on Range 1. Normally, this reduced deviation may be made good by simply increasing the sweep drive to V2 (i.e. by advancing VR2). If, however, the oscilloscope timebase cannot provide the sweep amplitude required it may be necessary to align at 465 kc/s by
using a harmonic of Range 3. In practice, this procedure should only be necessary in one or two isolated instances and with certain oscilloscopes.

all that is necessary is to provide additional attenuation by connecting a small-value condenser between the centre conductor of the screened output lead and the input point

Query Corner

Battery Charging

I wish to construct a battery charger that will be suitable for charging both standard 2 volt radio accumulators and also my 12 volt car battery. I find that particularly during the winter months an occasional re-charge to the latter serves towards quicker engine starting on cold mornings. Can you recommend the design of a suitable charger?

L. Nathan, Basingstoke

In the past we have not published very much information on battery charging, in spite of the fact that there are still a very large number of accumulators in use. These are to be found particularly in country districts, where they not only supply radio receivers but also main and emergency lighting circuits. Some of our more advanced readers are also using accumulators to feed experimental transistor equipments where the low impedance of this source of power is often an advantage. The charger described is designed to feed 2 to 12 volt accumulators at charging rates up to 1.5 amperes. The basic design is readily adaptable, however, to other voltages and currents if it is so desired.

Having in mind the need to provide a variable output voltage, there are two methods of adjustment normally employed. One is to simply include a variable resistance in the battery circuit, and the other involves the use of tapping points on the secondary of the mains transformer. For a relatively wide range of output voltages the first method is wasteful of power and for this reason the second has been used in our circuit. The tapping point serves as a coarse adjustment of charging current whilst the small variable resistor acts as a fine adjustment. The rectifier is connected in the standard full-wave bridge fashion, the actual method of making connection to the unit being shown in the inset diagram of Fig. 1. Three tapping points are provided for charging 2, 6 and 12V accumulators. The actual a.c. voltage required into the rectifier for any given d.c. output voltage is given by the approximate formula:

\[A.C. \text{ voltage} = D.C. \text{ voltage} \times 1.125 + 2 \]

It should be noted that this formula applies only to the type of rectifier under consideration; the a.c. is stated as the r.m.s. value whilst the d.c. is given as a mean value. The tapping points on the transformer must therefore be made at 4.25V, 8.75V, and 15.5V r.m.s.

Query Corner

We regret that in future, owing to other staff commitments, we shall be unable to undertake the answering of queries except those arising as a result of articles published in this magazine

DECEMBER 1955

292

THE RADIO CONSTRUCTOR

293
The variable resistor should be of the wire-wound type capable of carrying a current of at least 1.4 times the maximum mean d.c. current. This means that a resistance able to carry at least 3 amps must be employed.

Construction

Ideally a charger should be constructed on a steel chassis and housed in a steel cabinet, but whatever method is employed it is essential to provide adequate ventilation for the metal rectifier. The makers of these rectifiers state that the air temperature immediately below the unit should not normally exceed 25°C or 77°F; occasional short-duration overloads up to 35°C are, however, permitted. Some careful ventilation is necessary in order to comply with these instructions. Also provision must be made for the free circulation of air in a vertical direction over the rectifier. This is best achieved by cutting a slot in the chassis immediately below the rectifier and drilling corresponding ventilating holes in the bottom of the cabinet. Holes are also required in the top of the cabinet immediately above the rectifier. Then, to ensure an unimpeded circulation of air, the cabinet must be raised off the bench by at least an inch to allow air to reach the lower ventilating holes. Lack of cooling is perhaps the main factor in reducing rectifier life, so a little thought in this direction is well rewarded.

It is unlikely that a transformer having the required secondary voltages will be readily available, but it is an easy matter to rewind an existing component to meet the requirements. In selecting a suitable transformer for rewinding it is important that it should be satisfactory in the following ways:

1. The stack size must be adequate. Allowing for losses and a reasonable safety margin, the transformer must be capable of supplying 35 watts. This means that the products of the various secondary winding voltages and currents of the selected transformer must at least equal this value.

2. The secondary windings should be on the outside of the bobbin where they can be easily removed without disturbing the primary. This may be ascertained by noting the relative position of the various lead-in wires.

3. The transformer should preferably have been vacuum impregnated, as this type is often very difficult to dismantle, the impregnating varnish serving as an excellent glue.

Having selected a suitable component, a test winding of 4 turns should be wound around the bobbin over the secondary. The voltage obtained on this test coil will indicate the number of turns per volt to which the original design was made. Care is required to ensure that the mains supply is fed to the correct tap when making this test. From the results it will be a simple matter to calculate the total number of new secondary turns required and the position of the taps. The core is then removed from the transformer and the secondaries unwound. Before winding on the new secondary, two layers of Empire cloth are placed over the outside of the primary. The whole secondary is then wound on, using 16 s.w.g. enamelled copper wire. It is convenient to make each section finish at the sides of the IV. At the this enables the taps to be brought out as loops of wire. One layer of Empire cloth is laid beneath each layer of wire. The appropriate tap may either be selected by means of a heavy duty rotary switch or by three heavy duty terminals and a flying lead terminated in a spade grip. An indicating lamp is connected across the low voltage tap to show when the charger is in operation, and an ammeter is included in the battery circuit to indicate output current.

Charging

Finally, a few notes on the care and maintenance of accumulators may be of some assistance.

The electrolyte should be topped up with distilled water to a level just above the plate separator. Acid should only be added if the electrolyte has been spilled from the accumulator. With the accumulator connected and the suitable transformer tap selected, the series resistor is adjusted to give the required charging current. Using the specified rectifier this must not be allowed to exceed 1.5 amps. The charging time in hours for a wet lead-acid cell which is completely discharged, but otherwise in good condition, is:

- 1.2 times Amp-hour capacity for charging current (Amps)

When the cell is fully charged the specific gravity of the acid will have risen to 1.24-1.3, the exact value for any particular cell being specified on the maker's label. In this condition the on-charge voltage will have reached 2.65-2.75V. At the commencement of a charge the plates should be gassing freely, and the positive one will appear deep purple in colour, whilst the negative plate should be a light grey. Before returning the accumulator to service, smear a little oil on the terminals after wiping them with a dry cloth.

PORTABLE AMATEUR RADIO EQUIPMENT CONTEST RESULTS

The QRP Society's P.A.R.E.C. was organised in the hope of bringing to light some of the interesting or useful pieces of equipment which often lie hidden in the shack of over-modest amateurs. It may not have been a conspicuous success in this laudable direction, but it did produce evidence of a different but no less estimable character. It showed very plainly that the section of the radio trade which caters specifically for the amateur has an honest concern for the welfare and advancement of the amateur.

It is the special desire of the QRP Society that most sincere thanks should be tendered to the firms who have proved the point by so kindly providing the prizes for this contest—to Messrs. Southern Radio of Salisbury, Ltd., to The Telecom Co. Ltd., and to Data Publications, Ltd. To the latter concern, as publishers of The Radio Constructor, a further debt of thanks is due for their much appreciated efforts in the capacity of unbiased adjudicators of the contest, an onerous task which they accepted willingly despite the very considerable amount of extra work involved.

The First Prize comprised: (1) a credit note to the value of £2, donated by Messrs. Southern Radio of Salisbury; (2) a 12 months' subscription to The Radio Constructor, presented by Data Publications, Ltd.; and (3) a set of Panel-Sign transfers, also given by Data Publications, Ltd.

This prize was won by Mr. John J. Yeend, G3CD, of 30 St. Luke's Road, Cheltenham, for his portable transmitter and receiver. This most excellent piece of equipment is (continued on page 309)
INNUMERABLE DESIGNS FOR SIMPLE RECEIVERS have been published in recent years. The introduction of miniature valves after the war permitted a considerable reduction in the size of these portable designs. With a few exceptions, however, the circuits have been conventional, either straight or superhet, and often with considerable ingenuity exercised in their layout.

The subject of this article is to suggest a line of experiment which in the opinion of the writer might lead to some fruitful results in respect of simple receivers. First thoughts on the problem led to the conclusion that little has been done about improving tuning coils. Most published designs use commercially available coils which, although efficient enough for general purposes, often do not fit a specific need.

Higher Q

But can we improve even further? Some thought was devoted to increasing the efficiency of tuning coils, and it was decided to concentrate on dust iron “pot-core.” The use of these relatively neglected components enables a coil to be wound combining the twin virtues of high Q and small physical size. A

Most of the selectivity in a superhet receiver is provided by the i.f. amplifier. In a t.r.f. receiver the ability to pick out signals of one frequency from all others is determined by the Q of the tuned stages alone. In the early days of radio, coils were rightly considered the heart of the receiver, and were wound on large formers several inches in diameter which resulted in reasonably high Q’s. In present-day circuits coils are used which may be only an inch in height and half as much in diameter. They often make use of iron dust slugs and litz wire.

Fig. 1. An experimental coil wound on a Neoid pot core

“Neoid” type core as used in this receiver is shown in Fig. 1. This core was obtained on the surplus market for the sum of sixpence
and measures 1 in. in diameter and 3 in. high. The advantage of this type is that the coil is provided with a complete magnetic circuit, which, due to the material used in its construction, introduces a very small iron loss. The next step was to wind a coil in one of the cores, using enamelled wire and then using litz wire. A series of tests were carried having a centre-tapped tuned winding as specified by the author of this article.— Ed.)

Practical Application

Having obtained a highly efficient coil, the next problem is how to use it. The circuit that is given is simple in the extreme, having a single L/C circuit for tuning which is followed reaction is automatically applied to obtain full sensitivity.

The Output Stage

The writer must confess that at first this combination rather a problem. The space available in the case to be used was limited and a series heater chain seemed to be desirable. This ruled out miniatures output valves, and although a SOLE valve which has a 0.15A heater was tried it still left something to be desired.

Then the thought occurred, why not a 12AT7 valve strapped in parallel? The two sections were paralleled, having their grids joined and anodes connected together while the two cathodes shared a common bias resistor. The anode current flowing in the output transformer is now double that of a single valve, so therefore the power output is also doubled. Now the set really began to work, and the next obvious step was to use them in a push-pull circuit. This mode of operation has several advantages over the more obvious parallel arrangement. The anode currents, since they pass in opposite directions through their respective half-primaries, cancel one another so far as saturation of the core is concerned.

Second harmonic distortion produced by either valve is cancelled by equal and opposite distortion from the other. Two triodes therefore give a greater undistorted output than if connected in parallel. Also, most important, hum on the h.t. line cancels out in the two valves enabling a minimum of smoothing to be used.

The results were now most encouraging, and the design was finalised using a plane-section match to feed the grids of the output valve. To avoid any possibility of the transformer primary being saturated by direct current flow, it is shunt connected to the anode of V1b via a condenser.

The Power Supply

The h.t. current drain of the receiver is extremely small, being in the region of 10mA, this being supplied by a metal rectifier. Heater current is provided by the condenser C6. This method of series dropping does not appear to be as widely used as it might. The snap with a dropping resistor is the heat that is produced; in this case it would be around 30 watts. By using a condenser, the reactance of which at 50 c/s is 1,500 ohms, a current flow of approximately 0.15A is produced without the disadvantage of heat inside the small receiver case. The voltage rating must, of course, be adequate to withstand the peak mains voltage, a 600 volt unit being recommended.

Fortunately, there are a large number of these condensers available at very reasonable prices. The resistor R7 has no connection with the heater current, but ensures that the condenser is discharged when the receiver is switched off. A 500mA fuse is included to guard against condenser breakdown. The used a.c./d.c. precautions should be observed, as one side of the mains is connected to the chassis.

Components List

- C1 100pF
- C2 68pF
- C3 2,200pF
- C4 0.1μF 350V wkg.
- C5 8μF 350V wkg., electrolytic.
- C6 0.01μF 350V wkg.
- C7 8μF 300V wkg., electrolytic.
- C8 2μF 400V wkg. paper
- R1 470kΩ 1W
- R2 330Ω 1W
- R3 220Ω 1W
- R4 68Ω 1W
- R5 47Ω 1W
- R6 470Ω 1W
- R7 1MΩ 1W

- R8 1KΩ 1W
- V1 12AT7
- V2 12AT7
- TC1 500pF preset
- TC2 500pF preset
- TC3 200pF preset
- TC4 500pF preset
- VR1 100kΩ 1W, carbon pot
- T1 Weimate 230 or similar push-pull input transformer
- T2 Push-pull output transformer
- MR1 30mA metal rectifier
- F1 500mA fuse
- 3-way 4-pole miniature wafer switch

Construction

The coil former, which is made from bakelite, should be subdivided into four sections, using thin card or celluloid, and 14 turns of wire are wound into each section. The aerial tap should be made at the centre, while the reaction winding is two turns of 28 s.w.g. enamelled wire wound over the earthy end of the coil. Should litz wire be used, some trouble may be experienced in tinning the ends. The best method is to heat the end of the wire for a minute until it just turns cherry red, then quickly plunge it into methylated spirit. As the "mets" invariably catch fire, only use a small quantity in a bottle cap or similar container, and be sure to move the main supply well out of danger.

Fig. 2. Front view of the prototype chassis. Note how the coil and preset condensers are mounted on a Paxolin panel.

out with the aid of a "Q" meter, the results of which are given below. All tests were carried out at a frequency of 900kc/s with a tuning capacitance of 200pF.

<table>
<thead>
<tr>
<th>Coil type</th>
<th>Q obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miniature coil with iron dust slug</td>
<td>60</td>
</tr>
<tr>
<td>Standard size air cored coil</td>
<td>70</td>
</tr>
<tr>
<td>Pot-core using 32 s.w.g. wire</td>
<td>150</td>
</tr>
<tr>
<td>Pot-core using 7/45 litz wire</td>
<td>280</td>
</tr>
<tr>
<td>Pot-core using 36/47 litz wire</td>
<td>420</td>
</tr>
</tbody>
</table>

A study of the above shows that while there is a worthwhile gain in Q when using enamelled wire, the real increase results from the use of litz wire. For further information on the subject of Q and its importance the reader is referred to an authoritative article by A. Blackburn in the May 1954 issue of this magazine, also to "In Your Workshop," October, 1954.

(Readers who do not wish to undertake winding their own coils will be interested to know that a direct equivalent, necessitating no alteration to the circuit, is available from Osmor Radio Products Ltd. The type number is QA81T, which is similar to the better known QA81 half-cupped coil, but by a detector, a.f. amplifier and a push-pull output stage. The result is a stable circuit which has proved its repeatability, and although only two valves are used there is plenty of "punch"; also, most important, a very reasonable quality output.

The Circuit

It will be seen from the circuit diagram that a tapped aerial coil is used, the coil being shunted and tuned by the three switched trimmers which give reception of the Home, Light and Third programmes. These, of course, could be replaced by a single-gang 500pF tuning condenser if desired. The aerial is not taken directly to the grid end of the coil but is tapped down to reduce the loading on the tuned circuit. The triode section V1a is used as a leaky-grid detector, reaction being applied to the coil via TC4. As only two controls were wanted on the front panel the reaction condenser is preset, the gain of the whole stage being varied by altering the h.t. voltage applied. Although there are disadvantages with this method, in practice it works quite well, giving a smooth control of volume, while in the maximum position...
Be sure that the winding of the reaction coil is connected in the correct phase, or the reaction will have the effect of cancelling the signal. It should be noted that the station selector switch is also the mains on/off switch, and as it switches both sides of the mains supplies the set is "safe" when switched off. No layout diagram is given as the reader will no doubt wish to make use as far as possible of components which he already has to hand. The only points that need to be watched are that the pot-core is mounted at least an inch away from the chassis, otherwise the Q will fall badly; also that the leads from C2 and R1 to the grid are kept as short as possible. In the prototype the pot-core and station selection trimmers were mounted on a piece of pinakol, as can be seen from the photograph.

Summing Up

While it cannot be claimed that this receiver will equal the performance of a superhet, given a reasonable aerial very good results will be obtained.

The author feels that the use of pot-cores opens up a wide field for the keen amateur to explore, and hopes that the results obtained with the "Push-Pull Two" will spur him on to investigate for himself its full possibility.

Can Anyone Help?

G. P. Langton, 55 Engadine Street, Southfields, London, S.W.18, wishes to buy or borrow the circuit of the Regettone Eliminator model W.5 200/250 A.C.

R. Richards, 5 Ridge Road, Hornsey, London, N.8, needs assistance with a model ESPEY 104-TC type SC, which is part of the Test Set 1-Sf-H, and is a combination tester. The resistance ranges are satisfactory, but voltage readings are some 25% high. A valve check included has scale marked "Bad Tube" and "Good Tube," and this may also be inaccurate. The capacitance bridge (up to 10 pf) is not functioning. Any assistance at all would be welcomed, especially in obtaining the Manual (it is ex-U.S.A. Services Equipment).

P. R. Clarke, "The Walnuts," Collington Lane, Bexhill-on-Sea, Sussex, wishes to buy or borrow the circuit of the Charles Concerto Amplifier.

S. A. Wheeler, 3 River Road, Buckhurst Hill, Essex, needs information on and the circuit of the National N.C.156.1 receiver. The circuit of the N.C.101X receiver would do, as this is the same except that in the N.C.156.1 the 28 Mc/s band has been replaced by the shipping band.

A. Vesty, 10 Mavin Street, Durham City, Co. Durham, would like to buy or borrow the circuit and data of the ZC/1312 Identification Unit R.D.F. No. 1. The unit is complete with power pack ('high cycle').

S. D. Hoff, G3AWM, 51 Gwencole Crescent, Braunstone, Leicester, appeals for the circuit and/or alignment data for the RME69 Receiver.
Radio Miscellany

The violent gales in early October, following some summer, brought down aerials galore both in exposed areas and in the towns. On the outskirts of South London I noticed many t.v. aerials with missing members on my daily journeys, and not a few of them were of comparatively recent erection. The present-day thin wall dural tube seems to snap off with alarming ease, especially at any point where it has been drilled or weakened. Yet my own ex-W.D. non-anodised dural which has been up since 1946 seems to withstand the roughest weather and still looks good for years. That also applies to a 15ft length of in dural mast which supports it. Recently, when I added the Band III aerial, I had a careful scrutiny and, apart from a roughening of the surface, it looked as good as ever. I polished a part of it and was surprised to find how little rubbing was required to produce a perfect surface. Yet much of the stuff which goes into many proprietary t.v. aerials scarcely seems to stand up to a couple of reasons. With no signs of deterioration after 9 years of exposure to coal fumes and other chemical impurities (the surfaces were hardly pitted) I am beginning to wonder if it’s going to see my time out.

It would be interesting to know how other users of ex-W.D. dural find theirs for longevity, and whether those who, early after the war, bought it up at give-away prices.

Cash and Carry

I remember I bought mine at a dump at Kingston. Anyone with greater business acumen would have marked it down, even if they actually had a quarter of later prices. They appeared to have so much of the staff that, at first at least, they were glad to get off their hands at any price. Apparenly nobody wanted to buy it, and when it first came to my knowledge the price was fixed at ten bob for as much as one could carry away. A big advantage for local chaps and those used to hunking bulky loads around!

It was mostly in 15ft lengths, so naturally there was a limit to what you could carry through the gate. Chaps determined to get their money’s worth struggled out looking something like ants carrying loads of matchsticks.

If only I had had a little black market petrol my bank balance might look a little more respectable nowadays. There was no basic petrol ration at that time (nor indeed, for some years after) and for me Kingston was rather beyond walking distance; or, should I say, beyond dural carrying distance. Ideas of buying “on spec” for re-sale at an uncertain date did not seem so promising when one remembered anyone else could pick it up just as cheaply if they went to the trouble.

Eventually I went on a borrowed bicycle and consequently contented myself with one load. I well remember the journey, getting there after three stops—twice to recover my breath and once to pump up the back tyre. I lost count of the stops on the homeward journey, and even that was with a comparatively light load; compared with the other people were taking away for their ten bobs, that is.

No Trick Cyclist

True I had started out with the idea of bearing off a magnificent lot, but I put most of if back before I got to the gate. At first it seemed the smart thing to do was to push the narrower gauge inside the fatter lengths. It isn’t so clever really. The inside pieces slide out and either trip you up, or if they make their exit from the back end cause you to drop more pieces as you try to recover them.

When a small boy I was once “borrowed” by a conjuror. On the stage he kept producing eggs out of thin air and passing them to me to hold. I recall him pushing them into my arms, and the more I tried to save them from falling the more I dropped.

Naturally the audience loved it, and laughed their heads off. I felt that carrying too much dural was likely to produce the same sort of sensation. I certainly didn’t want to make myself ridiculous by dropping and picking up lengths of dural all the way home. Dural tubing when dropped clutters noisily and would be certain to attract the attention of everybody within earshot—especially small boys with a penchant for cheap wit!

After a little practice up and down the yard I eventually settled on what I thought to be a “reasonable” load. This was a mere three hundred feet or so, rather less than half a mile, and by able-bodied pedestrians. This struck me as most unfair. I protested to the gatemen that I ought to be let off with five bob, or even less. But not likely, hit instructions were ten bob a load, either for as little or as much as you chose to carry.

Despite the nightmare journey home it was a wonderful bargain—and quite an experience. The price seems almost incredible nowadays when, if you are very lucky, you might get six feet of that quality for the price.

CENTRE TAP talks about

The Printed Word

An odd item of news catches my eye. It is published without comment. Council house tenants are being asked to pay £12 16s, to share a communal t.v. aerial. Frankly I don’t think I can make any comment either, but I wonder how much they paid for their dural and how much more they will be expected to pay if a gale happens to blow it down.

The tenants might, of course, have found cause for hope by a report in another newspaper which tells of a Tottenham man who has “designed” a new t.v. aerial. It consists of a yard and half of twin wires cooled in a peppermint tin. Then he made a hole for the “inlet” (to let the waves in, I shouldn’t wonder) and stuck it on the wall with adhesive tape. He followed with an improved model using a stronger tin (query—hotter peppermints or to take a bigger inlet hole?)—and put in other inexpensive bits and pieces to eliminate interference. Total cost, four shillings, although it is not reported whether this included the cost of the peppermints.

For several readers drew my attention to this report, and told me it makes squirm to see people who don’t know any better swallowing this sort of nonsense.

The council house tenants of Cressing must have found it wonderfully consoling to read of such an innovation which offers them a saving of about £12 6s., or perhaps a shilling or two more—if they don’t happen to like peppermints this.

Christmas Gift

Recently I had occasion to refer to a wireless diary twelve years old, and found it surprising to note how little it differed in the information contents from the 1956 edition. By a coincidence, the following day I acquired a copy of a diary by another publisher (Quinn’s Electrical Engineering, Radio and T.V. Diary) of pleasing freshness, came in for recent events.

This is the first copy I have seen of this particular diary, although it is published by a firm of many years standing. It contains pages of technical information as well as a page coloured map section, general information, a colour map of the British Isles, and the London Underground system. To the radio amateur it is the useful

AERIAL MATERIALS

A POST-WAR BARGAIN

A USEFUL DIARY

section which is of primary interest, and nearly 30 pages (including seven art paper pictures) are given over to t.v., covering up-to-the-minute events.

Nor has the practical side been neglected, and essential items such as drill sizes, tapping and clearance, wire gauges and turn-on inches, etc., are fully covered. Indeed, it is almost impossible to fault the comprehensiveness of this technical section. Apart from the text, it seems to combine all the information one would collect together if one undertook the task of compiling one’s own reference book. The diary section is somewhat cramped, carrying a week to a page, although from personal experience I imagine this to be adequate for most users. I use mine only for telephone numbers and “dates.” After all, nobody wants a pocket diary for their life story!

This diary is excellent value at 4s. 3d. in leather cloth, leather 1s. 3d. extra, both prices including postage. It is published by H. O. Quinn, Ltd., 151 Fleet Street, London, E.C.4.

By the way, the publishers invite suggestions for additions to future issues. This will prove a bit of a puzzle, except for the highly specialised topics.

DECEMBER 1955
RADIO—AND CONTROL

PART 2.

by RAYMOND F. STOCK

The Simple Mark Space

LAST MONTH WE SAW THAT A MOTOR-driven rudder, spring-loaded to one side, would respond to a signal of varying mark-space ratio although in a rather crude (oscillatory) fashion. If the mark-space ratio is determined by the movement of a steering wheel, a complete (if rudimentary) proportional system results.

Most readers will know a common method of generating a variable mark-space ratio signal by mechanical means, but Fig. 6 has been included for completeness.

The drum D is divided diagonally into a conducting and an insulating portion, and is rotated at a constant speed by motor M.

The transmitter is keyed by two brushes, one in permanent contact with the conductor of the drum, the other, A, capable of an axial movement when a steering wheel is turned. A mark results once per revolution of the drum, its length depending upon the position of the wheel (and therefore the moving brush) Any mark-space ratio between 0 and 100% may be generated, and the ratio at any time is always a function of the wheel position. We can thus convey a continuous index of steering information.

At the receiving end our spring-loaded rudder is torn between two forces: one, the spring, tends to keep it hard a'port (see Fig. 7) and the other, imparted via the motor and gear train, tries to drive it to starboard—what can the rudder do but oscillate in some intermediate position? Obviously if the pulse rate is too slow the rudder will go hard-over alternate ways; but if we increase the rate (revolutions of the drum in Fig. 6) the inertia of the motor and gearing smooths this action out to a degree. The inertia of any practical model also helps here, so that the course might not be as curvilinear as expected. However, Fig. 7 is not intended as a practical circuit, but it does illustrate the very important point in true mark-space control systems, the concept of balance.

In this case we balance a spring tension—varying roughly pro rata to extension—against a mean electrical force (averaged out on a time base).

All useful mark-space systems with any pretensions to proportionality must employ this idea, though the balancing is often done electronically.

Fig. 8 shows what happens when a moving coil meter is connected to the output of a mark-space generator. As the wheel is turned between its limits the pulses vary from 0% to 100% in length and the meter reads between 0 and full battery voltage. If the pulses are too slow the needle will read off an inaccurate square wave, but as we increase the pulse rate the damping of the meter comes into effect and the needle begins to oscillate (decaying exponential).

ally, of course) about a mean value. In practice a fast enough pulse rate—say 30 per second—would maintain it apparently quite stationary in any set position.

If the needle could operate a rudder, proportional control would be another problem disposed of!

Unfortunately, it can't; we can, of course, build something like a large size meter movement accepting more watts and therefore giving more mechanical power, but such devices are most inefficient at converting energy. Nevertheless, when the utmost simplicity is required, as sometimes in air-practicable, but rather outside the scope of this publication) it is necessary ultimately to control an electric steering motor.

Follow-up Gear

One line of approach is to use the unit in Fig. 9 and to replace its output lever by a contact arm. The latter has a slight free movement between two other contacts; these are mounted on an insulated arm pivoted concentrically with the movement pivot. Fig. 10 illustrates this. The insulated arm A is geared to a motor driven in either direction from the conventional centre-
tapped battery, and the two contacts CS and CP. Whichever of these is "made" by the contact arm will energise the motor, and in such a direction as to keep these contacts apart.

Thus the whole device consists of a balancing unit operating a true servo or follow-up mechanism. Output, and hence the rudder, is taken from the insulated arm. Although this steering unit has also been used by modelers and can give results, its chief purpose here is to carry the story a stage further. Its chief disadvantage, apart from the practical one of poor contact pressure (sometimes solved by use of magnetic pots for CS and CP), is its lack of resolution, i.e. inability to follow small changes in mark-space ratio accurately, if at all. Some resolution is lost by friction and play at the pivots of the movement; more, by the necessity for a practical gap between contact surfaces. Since the arc over which the movement works is restricted to about 45°, any lost movement here is at least as great at the rudder. If someone would produce a meter movement giving two turns full-scale, we might get somewhere with this idea!

Fig. 10 is next on the list, and it looks nothing like Fig. 10. Yet it employs the electrical equivalent of our balance-plus-servo mechanism. Being more "electrical" and less "mechanical" it is an improvement.

The receiver relay contacts C are in series with a battery, a relay RI and a variable resistor. The contacts of RI control a motor, which deriving its power from the centre-tapped battery will run in either direction according to the position of RI armature. The motor drives the variable resistor via a reduction gear train.

Let us assume that a signal is being received with a certain mark-space ratio; current pulses are passing through RI and since their repetition rate is high we can imagine them having a mean or average value in their effect on its armature. We can suppose that owing to the setting of the variable resistor, their result on RI is just to keep its armature "hovering" between forward and back contacts.

If the mark-space ratio is increased, the average value of the current through RI is also increased; the armature will be attracted, close the forward contact, and the motor will rotate. Its direction of rotation is such as to drive the variable resistor to a higher value, and at a certain point the increased resistance balances the altered mark-space ratio. Obviously the reverse happens should the mark-space ratio be reduced, and it can be seen that the variable resistor shaft always seeks the point of balance; it is of course connected to the rudder, and thus produces a steering angle proportional to the mark-space ratio.

Once again balance is involved, and examination of Figs. 10 and 11 will show the essential similarity between the principles involved, though the method is different.

This variable resistor circuit can be used as a practical design and is, in fact, often employed.

The receiver relay contacts C connect a voltage to the potential divider R1 and R2; across R2 is a variable across R2 is C1 which charges up whenever C is closed and discharges through R2 when C is open. Thus it will be seen that a smoothed voltage appears at X, its value depending upon the length of time for which C is open and closed—i.e. the mark-space ratio.

Voltage X is applied to the grid of a triode, but is in series with the voltage appearing on the slider of a potentiometer R3. This is connected across a suitable battery.

The motor control relay is now in the anode circuit of the triode, and is connected to the steering motor as before with a mechanical link to the slider of R3.

The functioning is fairly obvious; when the mark-space ratio is altered the voltage applied to the grid is temporarily changed. This produces an amplified effect on the relay in the anode line which, as before, starts the motor turning in such a direction as to move R3 to a new position of equilibrium.

This circuit is not new though it does not seem to be widely used; nevertheless it is capable of giving very good results.

If any readers wish to experiment with it, a simple test rig combining Fig. 6 and Fig. 12 is simply constructed and will give interesting qualitative data regarding resolution, speed of follow-up, etc. Such a rig can be simply made, as it is immaterial whether a radio-link is used and a mark-space pulsing unit can be directly connected to the "receiver" relay.

The more electronically minded reader will have observed that the conventional pulsing drum (of Fig. 6) can be replaced by a multi-vibrator circuit in which the mark-
space ratio is controllable by rotation of ganged potentiometers. If this is done, the gear at both transmitter and receiver becomes virtually non-mechanical and is then almost resistance (2,000-3,400Ω) Siemen's high-speed relays are recommended in both positions. A mark-space ratio signal was chosen as an example of a "continuous" system for interpreted at the model. One could, for example, transmit a train of equal-length pulses having a variable repetition rate; also one could modulate the transmitter with an audio signal whose frequency is tied to steering wheel position, and in this case a type of discriminator circuit is used in the receiver to produce the error signal required. Considerable scope is offered here to those who like experimenting with novel radio circuits.

General Points
Before disposing of the subject of continuous information systems, three points should be noted. Any such equipment can never "lose" information, as sometimes happens in equipment where the number of pulses sent is a vital factor. Any temporary loss of radio contact or other malfunctioning is made good when contact is re-established; the importance of this will be more evident when we consider non-continuous systems.

A second point is that these systems are a little wasteful of power (this may not matter in practice) since the same expenditure of energy is necessary to hold the rudder in a given position as to move it. In a practical installation it will be found that the balance mechanism is likely to oscillate or "hunt" about the null point; this is not necessarily a bad thing, since a fast rate of hunting over a limited arc keeps the system sensitive and lively. It is difficult to ensure this type of action, however, as the hunting rate depends chiefly upon the inertia of the moving parts—and the motor armature alone, running at a high speed, stores considerable energy.

The only way out of this difficulty is to use a permanently running motor, and to pick off rotary power by a friction or other clutch having the minimum inertia. Fig. 13 illustrates a piece of gear which can easily be made to produce this effect, while surplus computing equipment often provides this very item.

D are two discs continuously rotating. C is a rubber or plastic rimmed wheel which is carried by its shaft within bearing B. B is pivoted below the flexible coupling A, and is integral with the common armature of two electromagnets. As shown the armature is attracted to one side (circuit S energised) so that wheel C picks up rotation in one direction from D. The spring centres the armature (and C) when neither circuit is energised. Thus, output shaft O can be held stationary or rotated in either direction.

The final point regarding continuous systems is that they require only one radio channel per control. It is necessary, of course, to use a pulse repetition rate of, say, 15-50 p.p.s. to ensure fair resolution, and this precludes the use of multi-channel reed-type radio whose individual channels are unlikely to be able to handle better than 4 or 5 p.p.s. These considerations obviously do not lead one to examine the possibilities of retaining a single channel radio and varying two characteristics of the signal to control two proportional controls.

In our next article we shall have something to say on the possibilities of this idea. (To be continued)

Portable Amateur Radio Equipment Contest

(already widely known among QRP amateurs following its publication in the R.S.G.B. Bulletin of September, 1954. The full description of this entry will appear in due course in the newly inaugurated "QRP Handbook" sheets which the QRP Society are issuing each month to their members and which will enable them, month by month, to build up a complete manual on QRP technique. It will be of special interest at this time of year, as it is known that at least one QRP section is proposing to construct facsimile equipments during the winter with a view to field-day operations next summer.

The Second Prize consisted of: (1) a credit note to the value of £1, presented by The Teletron Co. Ltd., whose excellent coils and transformers are becoming increasingly coveted items in amateur construction programmes; (2) a copy of Data Publications, Ltd. Data Book No. 6; and (3) a set of Panel-Sign transfers, both presented by Data Publications, Ltd. This prize was won by Mr. Vic Brand, G3GNR, of 137 Surbiton Hill Park, Surbiton, Surrey, for his entry of a one-valve transmitter using a 6C4. The Third Prize, a 12 months' subscription to The Radio Constructor and a set of Panel-Sign transfers, both presented by Data Publications, Ltd., was won by Mr. Guy Moser, G3HMR, for his entry of a crystal check oscillator.

Each winner will also be presented with a certificate by the QRP Society, these being now in course of preparation.

DECEMBER 1955
THE SKYMASTER

by FRANK A. BALDWIN, A.M.I.P.R.E.

Among readers of this magazine there has always been a demand for receiver designs, some requiring the normal domestic type, i.e., Medium and Long Wave sets, some the communications variety, and others the unusual type of circuit. From the wide range of types that have been published in the past, a.c. to d.c., t.r.f. to superhet, the unusual—a better term would be unorthodox—design has been the minority, and understandably so since certain constructional practices have tended to become standardised over a period of time. An example of this is the employment of a double diode triode as the second detector in a superhet, one diode as the signal detector, the other as a.v.c. rectifier, with the triode portion as first I.F. stage. This has, for several reasons, become a commercial practice and has been largely followed by the home constructor.

In the circuit about to be described, we set out to design the unusual or unorthodox receiver and chose, as the basis, the communication type of receiver—although there is no reason why the circuit as such should not be used in a domestic type set. The main reason for the choice of type presented herewith was that the design lent itself to many economies not normally required in the domestic receiver. Of these economies, the absence of a b.f.o. stage, with the saving that this implies, together with the ability to receive c.w. signals at voltages probably the greatest. However, before the unorthodox can be accomplished, it is necessary in these days of standardisation to obtain certain components to a specified design not normally obtainable on the component market. This prerequisite is not, however, normally available to the constructor, and it therefore falls upon designers catering for this field to obtain such components and cause them to be generally available. The particular components in question here are the i.f. transformers, both of which have tertiary windings and are now available to the home constructor. These have been specially produced for us by The Teletron Co. Ltd., see advertisement. For the remainder of the circuit, standard components have been incorporated and these, together with the type of valves used—some of which may be already to hand—tend to make the design fairly simple, reasonably inexpensive and of excellent performance.

In the “Skymaster” we have tried to keep the design within what may be termed the simple class of receiver and yet, at the same time, include many features normally only available to the more advanced types. The necessity of achieving this is yet another reason for the unorthodoxy of the design.

The Design

The basic design is fairly straightforward, it being the normal 6K8 Mixer Oscillator, 6K7 I.F., 6B8 Detector and 1st Audio, 6V6 Output and 5Y3 Rectifier. The EM34 is not regarded as part of the basic design. A glance at Fig. 1, however, will show that several departures have been made from the normal practice.

In the first stage, the tertiary winding of the i.f. transformer is utilised as a selectivity control, while that of the second I.F. transformer is used as a reaction control. The use of the latter effectively enables the operator to read c.w. signals and, in addition, allows the receiver to be advanced to its most sensitive state at will. This control therefore acts as both b.f.o. and selectivity control.

The 6B8 has been arranged as a pentode detector, signal detection taking place at the control grid with cathode feedback as reaction. One diode is used for a.v.c. rectification, the signal source being obtained from the 6K7 anode, via C17. The EM34 has been added to the basic design in order to provide some means of assessing signal strengths and correct tuning of the receiver.

Circuit

The first stage is constructed around the 6K8M mixer oscillator valve, the metal type being chosen for preference, although one of the normal glass types would suffice should the metal type be locally unobtainable. The coil pack chosen as being the most suitable is the Rodin Laboratories type 30C. This pack covers the frequencies 1.5Mc/s to 28Mc/s in three bands. The numbers shown within the circles on Fig. 1 refer to the coil pack connections; these also being colour coded and shown in Table 1 under.

Table 1

<table>
<thead>
<tr>
<th>Coil Pack Colour Code</th>
<th>(5) Black</th>
<th>(6) Yellow</th>
<th>(7) Blue</th>
<th>(8) Green</th>
<th>(9) Red</th>
<th>(10) Brown</th>
</tr>
</thead>
</table>

DECEMBER 1955
The variable condensers C4 and C7 are the ganged bandset components, while C3 and C6 are used as handspread. C2 is a small 15pF variable condenser incorporated as the r.f. trimmer control, this being very useful in peaking those weak signals most desired by the DX'er. The numbers shown around the valves are the actual base pin connections, TC of the mixer being, of course, the top cap.

The i.f. transformer shown in the mixer anode circuit is that supplied by The Teletron Co., Ltd., this being a specially designed transformer having a tertiary winding. This third winding is placed between the normal primary and secondary windings and, by the variation of R3, the coupling between the latter two windings is variable at will. The less resistance across the tertiary winding, the greater will be the selectivity. The selectivity control is therefore R3, a 5kΩ potentiometer, although many readers may prefer switched positions in preference to the potentiometer.

In this case, a six-way Yaxley type switch would be suitable. The connections to the switch should be as follows—to the input from the top of the winding; first position of the switch output should be left blank; second, 2.5kΩ; third, 1kΩ; fourth, 500Ω; fifth, 150Ω; sixth, direct to chassis. The other end of the resistors should, of course, be connected to chassis. Thus, in position six, the maximum selectivity will be obtainable.

The oscillator section of the first stage is purely conventional and therefore beginner constructors should find no difficulty in building this stage, the colour coded coil pack greatly assisting in this respect. The selectivity control just discussed could, if desired, be left unwired until the receiver is otherwise completed and functioning; R5 then being soldered in circuit.

I.F. Stage

This is built around the 6K7G variable-mu r.f. pentode. The lead to the grid of this valve, the top cap, should be of screened cable—the metal sheath being bonded to the chassis. The valve itself should be enclosed within an octal screening can. The screen grid h.t. supply is via R9 which, together with R8, forms a potential divider network, C11 being the by-pass component. The specified values of these two components should be adhered to if maximum results are to be achieved in this stage. The condenser C9 should be a 0.01μF disc type arranged in parallel with the grid and anode of variable capacitance between the grid and anode is merely a positive feedback device consisting of a small length of PVC covered wire soldered to the anode and also to a wire from the screen grid so that reaction occurs. Having achieved this, the wire should then be moved slightly away from the grid until oscillation ceases.

In this condition, once correctly adjusted, the i.f. stage is at its most selective state. A hole must, of course, be drilled through the chassis and suitably fitted with a rubber grommet in order that the feedback wire may be placed near the grid. All this should be carried out after the receiver has been completed and initially tuned up. An i.f. gain control has not been incorporated into the cathode line, as this would make the receiver rather difficult to handle in conjunction with the reaction circuit about to be described.

The value of R11 has been carefully chosen to give optimum results with the valve employed.

In the anode circuit a similar i.f. transformer to that in the mixer-oscillator stage is used. The secondary winding is connected between chassis and the grid of the following stage via C18 and R15, these latter two components being the grid leak and condenser across which rectification of the applied i.f. signal takes place. The tertiary, or third, winding is used as the reaction feedback coil, R12 being the actual reaction control.

Detector/1st I.F. Stage

The 6BQ5 performs several functions in this receiver; it not only acts as the detector and first I.F. stage, but also as the b.c.o. and a.v.c. rectifier; thus, from a single valve we obtain our greatest saving in both cash and space.

Reaction is obtained, as previously mentioned, by the variation of R12, and judicious use of this ensures that the receiver is in its most sensitive state when operating just below oscillation level. By varying R12 so that the receiver goes into oscillation, we are able to read c.w. signals with ease, and therefore we have the advantages of a beat frequency oscillator stage. One of the diodes is connected to the i.f. stage via C17 and acts as the a.v.c. rectifier, the resulting voltage being taken via R13 to the a.v.c. line.

The remaining portion of the valve is used as first I.F. amplifier, the signal being fed into the following stage via C16. The anode h.t. supply is via R16 and the lead R17, C16 being the by-pass component. C20 has been inserted to filter out any residual r.f. that may still be present.

Output Stage

The well-known 6V6 output beam tetrode was chosen for this stage. The audio gain control is R19, the lead from this to the grid of the 6V6 being screened cable, the metal outer of which should be earthed to the chassis in order to avoid hum troubles. Cathode bias is obtained from R20 and C22. The speaker transformer should be mounted under the chassis in order that the speaker output leads may be terminated on the chassis wall to a paxolin strip fitted with the usual plugs and sockets. In this way the speaker may be mounted outboard, thereby avoiding possible vibration trouble from the speaker cone. Some three watts of audio is available from the output stage—more than adequate for the average "den."

The speaker transformer itself may either be of the multi-ratio type as specified or one of the standard types marketed as 6V6 matching transformers.
TABLE 2

Voltage Readings (Meter 1,000 Ω/V)
No signal conditions—R5, R12 and R19 at minimum setting.

H.T. line—205V
V1 Anode, Mixer 200V
V1 Anode, Oscillator ... 75V
Cathode ... 8.5V
V2 Anode ... 200V
Screen ... 95V
Cathode ... Nil
V3 Anode ... 40V
Screen ... 50V
Cathode ... Nil
V4 Anode ... 190V
Screen ... 205V
Cathode ... 9.5V

Power Pack
The on-off switch shown in the a.c. power input is ganged to the audio gain control R15. The mains transformer is a standard type 250-0-250V at 90mA, 5V at 2A, 6.3V at 4A, or similar. The power rectifier is the 5Y3GT. The i.f. choke, together with the two associated condensers, ensures that a ripple-free h.t. supply is delivered to the h.t. line of the receiver.

Constructional Notes
The front panel drilling guide is shown in Fig. 2, and the controls are mounted as follows: left to right at bottom, Bandswitch, Selectivity, Reaction and A.F. Gain; centre, Aerial "trimmer. Top right-hand corner, "magic eye" aperture. The two remaining controls are: left, Bandset, and right, Bandspread.

Both the Bandspread and Bandset controls are directly driven and no slow motion devices are included. The two dials associated with these controls are the Panel-Signs 4½ in 2½ in full vision transfer type available in the N.2 set. Both cursors are made from Perspex sheet, cut to size and scribed down the centre, the mark thus made being filled in with Indian ink. The remainder of the controls are also used in conjunction with suitable Panel-Sign transfer as the finger plates.

Constructors of the "Skymaster" will find that it performs very well over the entire wave range and, for its price, is a good investment for those requiring a general purpose short wave receiver. In any event, many home constructors and commercial receivers will have doubt interested in the i.f. transformers, these may be purchased and incorporated into these sets as a modification with a view to greater selectivity. An additional i.f. stage could be inserted, using an i.f. transformer similar to I.F.T.1, the secondaries being taken to earth through a common 3kΩ potentiometer, and greatly increased selectivity would result. Care would, however, have to be taken to avoid instability. It must be pointed out that only receivers having a 465 kc/s (plus or minus the usual variation) i.f. may be modified in this manner, as the only components available are wound to that frequency.

Component List

Resistors
R1 22kΩ ± 1/2 watt ±10%
R2 100Ω ± 1/2 watt ±10%
R3 1kΩ ± 1/2 watt ±10%
R4 47kΩ ± 1/2 watt ±10%
R5 5kΩ Potentiometer
R6 100kΩ ± 1/2 watt ±10%
R7 22kΩ ± 1/2 watt ±10%
R8 100kΩ ± 1/2 watt ±10%
R9 470Ω ± 1/2 watt ±10%
R10 1kΩ ± 1/2 watt ±10%
R11 100Ω ± 1/2 watt ±10%
R12 1kΩ Potentiometer
R13 100kΩ ± 1/2 watt ±10%
R14 1MΩ ± 1/2 watt ±10%
R15 15Ω ± 1/2 watt ±10%
R16 33kΩ ± 1/2 watt ±10%
R17 100kΩ ± 1/2 watt ±10%
R18 500kΩ Potentiometer
R19 270Ω ± 1/2 watt ±10%
R21 2.2MΩ ± 1/2 watt ±10%
R22 2.2MΩ ± 1/2 watt ±10%
R23 1MΩ ± 1/2 watt ±10%
R24 270Ω ± 1/2 watt ±10%

Capacitors
C1 0.05μF, 350V wkg, TCC type CP35N
C2 0.01μF, 630V wkg, TCC type CP63N
C3 25pF variable, H. L. Smith & Co.
C4 50pF variable, H. L. Smith & Co.
C5 0.01μF, 350V wkg, TCC type CP35N
C6 0.05μF, 350V wkg, TCC type CP35N
C7 300pF variable (ganged with C4)
C8 25pF variable (ganged with C3)
C9 10pF Ceramic
C10 0.1F, 350V wkg, TCC type CP37N
C11 0.01F, 350V wkg, TCC type CP45N
C12 0.05μF, 350V wkg, TCC type CP45N
C13 0.05μF, 175V wkg, TCC type CP31N
C14 0.01μF, 350V wkg, TCC type CP35N
C15 0.01μF, 35kV wkg, TCC type CP35N
C16 0.01μF, 350V wkg, TCC type CP45N

CLUB NEWS

EAST KENT RADIO SOCIETY
The East Kent Radio Society still meets fortnightly at 7.30 p.m. in the NatWest House, Canterbury. Films, lectures, sales, swap nights, etc. New members always welcome. Hon. Secretary: Mr. D. Williams, Llandogo, Bridge, nr. Canterbury, Kent.

THE SLADE RADIO SOCIETY

Club Station Programme
The Club Station at the Church House is open every day of the week for the use of the members. The following programme of instructional classes has been arranged:
Monday evening at 8 p.m. - "Station operation and procedure.
Every Thursday evening at 8 p.m. - "D.F. receiver design and operation.
Every Wednesday evening at 8 p.m. - "Morse practice and equipment design."
December 16th. A Course of Instruction for Members intending to sit for the Radio Amateurs' Examination.
Full particulars of the Society and its activities may be obtained from the Honorary Secretary: Mr. C. N. Smart, 110 Woosele Road, Erdington, Birmingham 23.
Visitors to the Society's meetings, which commence at 7.45 p.m. prompt, and to the Club Station, are cordially welcome.

SOUTH MANCHESTER RADIO CLUB
Ladybarn House, Maudsley Road, Fallowfield, Manchester.
The majority of the members who took the R.A.E. course at the end of the past winter were successful in passing the examination, and already there are several new calls signing up with local transmitters. Any person wishing to take part in a similar course at the above headquarters should apply immediately either in person on meeting nights or by post to my address. Hon. Secretary, Mr. B. Cartwright, GJ2ZM, 17 Score Street, Bradford, Manchester 11.

Panel, Chassis and Cabinet
L. J. Philpot, G4BI

Valvebases
McMurdo

Dials, etc.
Panel-Signs Sets 1 and 2

Perspex
H. L. Smith & Co. Ltd.

Miscellaneous
Stand-off insulators, wire, nuts, bolts, screened cable, tag panels, etc., H. L. Smith & Co. Ltd.

Valve Screening Cans
H. L. Smith & Co. Ltd.

Control Knobs
H. L. Smith & Co. Ltd.

Output Transformer
Multi-ratio type, H. L. Smith & Co. Ltd.

Details for insertion in this section should reach us not later than 7th of the month before publication.

BRITISH AMATEUR TELEVISION CLUB

BIRMINGHAM
A limited number of interested amateurs interested in television transmission were held at Burlington Hall on 16th Oct. A representative of the I.T.T. discussed the field and with the aid of tape recordings and cine film gave a talk on the progress of the amateur movement in this field. It was decided to form a group in Birmingham and anyone interested in joining should get in touch with Mr. D. W. Plummer, 194 Aston Brook Street, Birmingham 6.

STORE-O-TENT AMATEUR RADIO SOCIETY
The club meets at the Cambridge House, Little The club is now ready to go on the air and members are looking forward to the first QSO. A Morse oscillator has been constructed and Morse sessions are given at each meeting. Three society members are taking the Morse test in January.

Forthcoming lectures include oscilloscopes, amplifiers, communication receivers and an electronic key. A. Rowley, G3JNW (Sec.), 37 Levens Road, Hanford, Stoke-on-Trent.

BERKSHIRE ESSEX CARROLL RADIO SOC.
Royal Albert Institute, Sheet Street, Windsor, Berks. The monthly programme includes various topics, cine shows, technical visits, junk sales, etc. Further details of these arrangements will be made in the monthly news sheet.

A course of lectures and Morse instruction will also be given for those members wishing to sit for the R.A.E. of the City and Guilds.

SWINDELOAMATEUR RADIO SOCIETY
At our first meeting, Mr. R. Reynolds, G31DW, was elected Chairman and Mr. G. R. Pearce, G3JAYL/ ZL1AKL, was elected Hon. Secretary.

Weekly classes of instruction for the amateur radio licence examination are being held at the College, Swindon, with Mr. G. R. Pearce, G3JAYL/ZL1AKL, as instructor. Ho. Secretary, Mr. R. Pearce, G3JAYL, i22 Kingshill Road, Swindon, Wilts.

THE BRADFORD AMATEUR RADIO SOCIETY
All meetings are held at Cambridge House, Little Horton Lane, Bradford, and full details may be obtained from the Secretary, Mr. F. J. Davies, 39 Pollen Avenue, Bradford 2.
GARDEN MASTS

by SIMEON EDMUNDS, A.M.T.S.

IT IS SOMETIMES IMPOSSIBLE, OWING TO technical or structural difficulties, or perhaps the unreasonable attitude of the landlord, to erect a television aerial in its usual position on the chimney stack, and as a rule the only alternative is a tall garden mast, suitably guyed and fitted on a baseplate.

Masts and Couplers

The most commonly used material for such a mast is light alloy tubing of the type used for scaffolding (not steel scaffolding tubes, which are too heavy and unwieldy). This is normally obtainable from builders' merchants and is usually sold in 15ft or 20ft lengths. 20ft is seldom high enough for an aerial, and it is therefore necessary to join two or more lengths together, various kinds of coupling devices being available for this purpose. The type favoured by the writer is an internal sleeve which fits tightly into the mast sections and is secured by bolts passing right through mast and sleeve. A connection thus formed is quite as strong as, and much neater looking than, any of the couplers commonly employed in scaffolding work.

Where they provide sufficient height, two 15ft lengths coupled together are recommended, as rearing from the ground is in this case a fairly simple matter. A 20ft and a 15ft length together are the maximum that an amateur is advised to use, while two 20ft lengths are the most that it is normally possible even for experts to rear from the horizontal without special tackle.

Bases

A substantial base or footing is absolutely essential, and wherever possible this should be of concrete with a short stud cast into it over which the bottom of the mast will fit. Alternatively a metal cup may be let in, and the mast dropped into this. If cementing is not possible, an iron base plate with a projection bolted to the centre may be used; in this case resting on a foundation of stones or rubble rammed well down.

Guy Wires

For masts consisting of more than one section, two sets of guy wires are essential, and four wires per set should always be used where possible. The upper set should be fitted as near to the top as possible (just below the tips of the lower aerial elements), and the bottom set just above the coupling between the mast sections. Proper mast bands should be used, and prevented from sliding down by bolts through the mast upon which they may rest. The lower mast band can rest upon the upper fixing bolt of the mast coupling. A spot of grease on each bearing surface makes the turning of the mast to the correct bearing much easier.

Good quality clothes line is suitable for guys, and these should be spliced to the eyes in the mast bands. The lower ends cannot be spliced until the mast is in position.

The guy wires are best anchored by eye bolts, either let into concrete blocks or screwed into any convenient solid objects of sufficient strength. Stakes driven into the ground are not sufficient and are certain to work loose in a very short time.

Each eye bolt should be as far from the foot of the mast as is practicable, and preferably not less distant than half the mast height. A separate rigging screw is required for each guy wire. The type with the hook at one end and an eye at the other is most suitable.

Rearing

When the aerial and its feeder have been fitted and ample lengths of guy wire spliced to each mast band, the assembly is ready to be reared into position. First see that the feeder cable is tightly secured to the outside of the mast with either good insulating tape or rubber cable clips spaced not more than 18in apart. Do not run the feeder down inside the mast as the "slapping" thus caused makes an unbearable noise and may also damage the cable.

For the actual rearing operation, muster as many helpers as you can (at least 4 are desirable) and see that they understand clearly what you intend to do before commencing.

When it is nearly vertical, the mast is steadied by the man at the foot, and the two "lifters" are then free to be ha' in on the other two sets of guy wires. With the mast in steadily as the mast rises.

One man is required at the foot of the mast to stop it from kicking out, and one at each pair of guy wires on the "pulling" side. The fourth man lifts the head of the mast and pushes it up to arm's length, while another, armed with a short ladder or a forked pole, stands beside him ready to continue the pushing when the mast head begins to rise. As this happens, the fourth man, still pushing, walks towards the foot. The men at the guy wires, of course, pull as nearly upright as it can thus be made, the guy wires are hitched temporarily to their respective eye bolts, and the mast then rotated until the direction of the aerial is correct.

The rigging screws may then be spliced, one at a time, to the guy wires and hooked into the eye bolts. Final adjustments of tension will now ensure that the mast is secure and upright.

A word of caution: Take things steadily, and do not attempt the job on a windy day.

The Editor and Staff wish all our Readers a very Merry Christmas and a Happy and Prosperous New Year.

DECEMBER 1955
DESIGN CHARTS FOR CONSTRUCTORS

No. 1—Power, Voltage, Current and Resistance Chart

by HUGH GUY

This is the first of a series of design charts to be published every month to enable the amateur to avoid too much of the tedious calculation associated with almost any circuit construction. Some of the charts are already well known, and are included so that a complete series is ready at hand, while others have been especially devised for Radio Constructor readers.

It is therefore recommended that they be carefully assembled or filed to form an ever-ready and invaluable aid to radio servicing and assembly.

This month's chart gives on one graph the four basic Ohm's Law relations between power, voltage, current and resistance. These are:

\[W = \frac{1}{2} R = \frac{1}{2} V = I \]
\[V = IR = \sqrt{WR} = W/I \]
\[I = \frac{V}{R} = \sqrt{W/R} = W/V \]
\[R = \frac{V}{I} = \sqrt{W/I} = W \]

These relations show that it is possible to determine any one property by knowing two of the other properties. This is the way in which the chart works also. One vertical scale, for example, is calibrated in values of current in milliamperes, and its associated horizontal scale is calibrated in standard 10\% values of resistance, ranging from 100Ω to 1MΩ. These two scales are linked by the slanting power or voltage lines which give values of power ranging from 1/16 watt up to 100W. These values conform, at least for carbon resistors, to the normal range of wattages in which the standard resistors are available.

Turning the chart round, we see that the other vertical scale is calibrated in values of voltage ranging from 4V to 4,000V, while its associated horizontal scale is calibrated, as before, in standard 10\% resistance values.

The chart finds its principal use in enabling the estimation of the wattage at which a particular resistor should be rated, given either the current flowing through it, or the voltage across it. This is a case frequently met with in practice, and is illustrated below.

Example 1

The anode load of a triode is 22kΩ, and the valve is drawing 3mA. What is the minimum permissible wattage of the load resistor? The chart shows that the intersection of 3mA on a horizontal line and 22kΩ on a projected vertical line occurs between 8W and 1W. Therefore the higher value of 1W would be used, allowing a slight safety margin.

Example 2

A 330kΩ, 1/2W resistor is one of several resistors forming a bleeder network across an e.h.t. supply. What is the maximum voltage which may be dropped across it?

Turning the chart round in relation to the previous example, and locating the 1/2W power line, we see that it crosses the 330kΩ line at just above 400V and therefore 400V could be dropped, as a safe maximum.

Notice that the voltage scale reads downwards for increasing voltage, the 4000V value being at the bottom of the vertical scale.

To solve voltage and current relationships requires an additional step, Suppose, for example, we wanted to know what current flowed through a 5.6kΩ resistor when 200V was applied across it.

The voltage/resistance part of the chart shows that the wattage lies between 5 and 10 watts. A pencil dot is made at the exact intersection and through this dot a rule or straight edge is laid parallel to the other power lines. The intersection of this line and the 5.6kΩ vertical line from the other resistance scale will give the current on its appropriate scale.

This current is seen to lie midway between 30 and 40mA and, bearing in mind that the scale is logarithmic, the current is interpreted, accurately, as being 34.7mA.

Verifying the precision of this result from the formula \(I = \frac{V}{R} \) shows that \(I = 200 \) or 35.7mA. The error introduced by the graph is therefore less than 3\%, and since the components themselves have a 10\% tolerance, this result is more than reliable.

However, the graph is intended primarily for the wattage part of resistance calculations, since such calculations are inclined to be a trifle more involved than straightforward voltage and current problems; involving, as they do, squares and square roots.

To this end, therefore, the provision of a chart calibrated in standard values of resistors is a very useful aid to the constructor.

Next month: Parallel Resistance Combinations.
Get better value for your money

COMMUNICATION RECEIVER P.C.R.2.
7 valves (including rectifier), 3 wavebands: 13-50, 190-570 and 900-2,000 metres, complete with built-in A.C. power supply, brand new and ready for use. Cash £12, 12, 0, or on H.P. terms, deposit £4, 4, 0 and 8 monthly payments of £1, 3, 6. Plus packing and postage 10/6. Send for leaflet

BAND III CONVERTER
Two models, Midland or London. Suitable for any television complete with own A.C. power supply, tested and ready for use. Switch operated for Band I or Band III. Price £7. 7. 0. Plus packing and postage 3/6

Build these NEW

3-BAND SUPERHET RECEIVER
may be built for £7, 19, 6, plus 2/6 packing and postage. 2 BAND TRF RECEIVER may be built for £5, 15, 0 plus 2/6 packing and postage. These two receivers use the latest type circuitry and are fitted into attractive cabinets 12"x6½"x5½" in either walnut or ivory bakelite or wood. Individual instruction books 1/- each, post free

All Dry BATTERY PORTABLE RADIO RECEIVER
May be built for £7, 8, 0 plus 2/6 packing and postage. 4 miniature valves in a superhet circuit covering medium and long waves. Resin covered cabinet 11½"x7"x5½" in either wine or grey with blue or grey with grey. Instruction book 1/6 post free

PREMIER WIDE ANGLE TELEVISORS
DESIGN 1. 13 channels, may be built for £34, 9, 7 (plus cost of C.R.T.), packing and carriage extra.
DESIGN 2. 5 channels, may be built for £30, 0, 0 (plus cost of C.R.T.), packing and carriage extra.
The Televisors may be constructed in 5 easy stages. Send for the Instruction Book at 3/6 post free, which includes full details of both designs.

by dealing with PREMIER

F.M. TUNER UNIT
Complete with built-in power supply, ready for use. 5-valve permeability tuned circuit, switched output for gram. or P.F. Cash £13, 15, 0 or on H.P. terms, deposit £4, 11, 8 and 10 monthly payments of £2 1/2. Magic eye ready to plug in. Plus postage and packing 5/-

These units have been "weak tested" for 24 hours before calibration to eliminate frequency drift.

PRE-AMPLIFIER & TONE CONTROL UNIT
Suitable for use with the "Williamson" or any other quality amplifier. Two switched inputs with preset volume controls, bass and treble tone control, output volume control, fitted into a steel box 10"x3"x3", silver hammered finish with black perspex panel engraved in silver. Power requirements 6,3V 0.9A and 250V 5mA. Completely wired and tested. £5, 5, 0, packing & postage 2/6

4-WATT AMPLIFIER
may be built for £4, 10, 0 plus 2/6 packing and postage. A steel case is now available, complete with engraved panel, for 21/- extra. The amplifier may be supplied complete for £5, 5, 0 plus 3/6 packing and postage, or fitted in case at £6, 6, 0 plus 3/6 packing and postage

WILLIAMSON AMPLIFIER
may be built for £15, 15, 0 plus 7/6 packing and carriage, or on H.P. terms, deposit £3, 18, 9 and 12 monthly payments of £1, 1, 8. Absolutely complete and all components are guaranteed to author's specification. May be supplied completely wired and tested for cash £30, 0, 0 or on H.P. terms, deposit £5, 0, 0 and 12 monthly payments of £1, 7, 6. Packing and carriage 10/-

Send 2½d. Stamp for our latest catalogue

PREMIER RADIO CO.
B. H. MORRIS & CO. (RADIO) LTD. EST. 40 YRS.
(Dept. R.C.) 207 EDGWARE ROAD
LONDON W2
Telephone AMBassador 4033 and PADDINGTON 3271

Terms of Business: Cash with order or C.O.D. over £1. Please add 1½ for Post Orders under 10/-, 1/6 under 40/-, unless otherwise stated.
CIRCUITS for 2/6 only

- 49 Circuits - Full construction details.
- Amplifiers - Full construction and assembly details.
- Superheterodynes, Test equipment.
- Special Features - Full construction and assembly details.

For building your own, high-quality radio and TV equipment...full precision, full-size, high-fidelity details.

HARTLEY CHARGERS - Full construction and assembly details.

BAND III CONVERSION

Complete kit of parts to make this very successful convertor includes:

- valves, prepared chassis, cables, etc.

THE CLEVELAND FM TUNER

This tuner is based upon the very successful circuit published by Data Publications. We have made up models at all branches and will gladly demonstrate. Stability is extremely good and making and aligning is very simple. Cost of all parts including valves, prepared metal chassis, wood case and sm. enamelled scale, slow-motion drive, tuning condenser, in fact everything needed, is £6 12. 6. Data is included from which five parts are available separately, price £1. Extra for fringe area model 20.

RECORD PLAYER £6 10 0

3-speed Induction Motor

3-speed motor with metal turntable and 20,000 c.p.s., very suitable for use with the Acos 'Hi-G' and other good pick-ups. Completely made up and ready to work is £12 10 0

MULLARD AMPLIFIER "510"

A high-quality Amplifier designed by Mullard engineers. Power output exceeds 10 watts, harmonic distortion less than 0.4%. Frequency response almost flat from 10 to 10,000 cycles. It has a particular fine deal with an extra long-life target. The latest type M-II valves are used and the chassis is complete and ready for operation. Chassis size 15" x 6" x 3". Price £6 19 0 complete with 80 Watts power, carriage and insurance 10% P.M. terms if required.
CONSTRUCTORS build these at low cost!

PERSONAL PORTABLE RADIO

"METEOR" MINI-RECEIVER COMPONENTS

This little set was designed to give you a real portable receiver that you can enjoy anywhere without disturbing others. Ideal for the holiday, hiking, fishing, camping, cycling, etc. Use it at home, at the office, in bed, or just anywhere.

Cabinet

50K Potentiometer

Phone Plug and Jack

3 Knobs

PVC Wire, eagle and Bolts

Soldier Tags, Soldier, Rubber

Grommes, Aerial/Earth and

3 way Tag Strip

Power Pack Type PUL

Fully Assembled

AM/FM Signal Generator

Cabinet, Chassis and Panel

Power Pack Type PUL Kit

30/-

Post Free

Ideal for the beginner or for those requiring a simple standby receiver.

ALL-WAVE RADIO

30/-

This 1 valve S.W. receiver can be built for 30/- from our list of components, which can be purchased separately. It includes valve and 1 coil covering 20-40 metres. Provision is made to increase to 2 or 3 valves if required, and all components are colour-coded so that the beginner can build this set quite easily. Send 2/- for specification, wiring diagram, layout and price list.

R.C.S. PRODUCTS (RADIO) LTD

II OLIVER ROAD (Mail order only)

LONDON E17

YOU CAN RELY ON US

We specialise ONLY in radio and electronic components, a comprehensive stock of which are held by us, to supply Government, educational and commercial laboratories. Can we be of some help to you, the experimenter and constructor?

Here are a few of our many stock lines:

- Tapped Volume Controls, ±1mg, ±mg, 1mg, 7/6 each; Linear, ±mg, ±mg, 1mg, 6/6; Surplus Stock Potentiometers, less switch, 2/3; with, 4/3; D/P, 5/-; midget
- All J.B. Scales and Gages. Full vision, 13/9; SLB, 27/6; SL5, 26/-; 3 ganges in .0003 and .0005, 18/3; Single gange .0003, 9/-; Twin midget gage, covered, 11/-.
- Bulgin Plugs, Sockets, Panel Lights, etc. Belling-Lee Co-ax. Plugs, 13/,
- 127, 10/; 1/2; 1/2; Sockets, etc. Resistors, 10 ohms to 15 mgs in 4W, 3W, 4d.; 1W, 8d.; 2W, 1/4; midget 4W P type, 6d.; High stability 2W; 100-2 mgs, 1/6 each; wire-wound (green vitreous), 33 ohms to 10K, 10 watts Max., 2/- each.
- Over 200 T.C.C. types of Condenser. 189 types of Hunts. Electrolytics new and surplus. 10,000 surplus Valves plus large stock BVA Valves.
- 1½, Silver Micas, 1.5p to 100p, 1½; 100p to 280p, 1/2; 300p to 500p, 1/4; 515p to 915p, 1/6; 1,000p to 5,000p, 2/6.
- QSL-COMPLETE RANGE OF DENTCO, WEMYTH, WEARE, OSBORNE, R.P.A., TELETRON, DENTCO F.M. UNIT PARTS, 912 PARTS, MULLARD '516' PARTS-ALL TAYLOR, AVO INSTRUMENTS IN STOCK, CELESTION, ROLA, ELAC, W.B., WHAREFAD, GOODMAN SPEAKERS.

Send now for our Supplementary Winter List with H.P. Terms—Quotes S.A.E. Please, Postage extra

Next to South Ealing Tube Station 65 Bus