RADIO BOOKS

Tape and Wire Recording. A selection of articles reprinted from the pages of The Radio Constructor, covering both the theory and practical applications. A really useful book on this latest development of the hobby. 2/6 post 3d

Receivers, Preselectors and Converters. Practical articles, again reprinted from past issues of The Radio Constructor, which will prove of interest to many radio enthusiasts. 2/6 post 3d.

TV Fault Finding. Profusely illustrated with photographs taken from a television screen depicting the faults under discussion, and containing a wealth of technical information, with circuits, enabling those faults to be eradicated. 5/- post 4d.

Inexpensive Television. Build yourself a televi...
The AVO Valve Characteristic Meter Mark III offers the Radio Engineer far more than is generally implied by the words “a valve tester”.

This compact and most comprehensive Meter sets a new high standard for instruments of its type. It will quickly test any standard receiving or small transmitting valve on any of its normal characteristics under conditions corresponding to a wide range of D.C. electrode voltages.

A new method of measuring mutual conductance ensures that the instrument can deal adequately with modern valves of high slope and short grid-base such as are commonly used in T.V. receivers.

List Price £75

A comprehensive Instruction Book and detailed Valve Data Manual are provided.

The instrument is fitted with a hinged fold-over lid which protects the valve holders when not in use.

TELETRON Mk2 BAND III CONVERTER COIL KIT

The Teletron Mk2 Converter uses a high gain cascode-connected twin-triode in a fully neutralised circuit, which is provided with a high frequency compensating inductor and is coupled via a special network to a triode/pentode mixer, whose output can be adjusted to any channel in Band I.

COMPLETE PRECISION COIL KIT (CHANNELS 7, 8, 9) 17/6
Available from all leading stockists

Circuit and wiring diagram 3d.

THE TELETRON COMPANY LIMITED
266 NIGHTINGALE ROAD · LONDON N9 · Telephone HOW 2527

Radio Servicing Pocket Book. By E. Molloy and J. P. Hawker. 10s. 6d. Postage 4d.
Probes. By Bruno Zuccoli and Martin Clifford. 20s. 0d. Postage 6d.
Public Address Guide. By Guy S. Cornish. 6s. 0d. Postage 3d.
Mullard Maintenance Manual. 10s. 6d. Postage 6d.
TV Fault Finding. A Data Publication. 5s. 0d. Postage 3d.
Radio Control for Model Ships, Boats and Aircraft. 8s. 6d. Postage 3d.
The A.R.R.L. Antenna Book. 18s. 0d. Postage 1s.
Telecommunications Principles and Practice. By W. T. Perkins. 21s. 0d. Postage 6d.

High Quality Sound Reproduction. Compiled by Mullard Engineers. 3s. 6d. Postage 3d.
Elementary Telecommunications Examination Guide. 17s. 6d. Postage 6d.
Tape and Wire Recording. A Data Publication. 2s. 6d. Postage 3d.
Transistors and Crystal Diodes. By B. R. Bettridge. 5s. 0d. Postage 3d.
Practical TV Aerial Manual for Bands I and III. By R. Laidlaw. 4s. 6d. Postage 3d.
Frequency Modulation Tuner Units. A Data Publication. 2s. 0d. Postage 2d.
Electronic Musical Instruments. By R. H. Dorf. 55s. 0d. Postage 1s.
Radio Valve Data. Compiled by Wireless World. 3s. 6d. Postage 3d.

We have the Finest Selection of British and American Radio Books in the country

Complete list on application

19-23 PRAED STREET (Dept RC) LONDON W2
Telephone PADdington 4185

www.americanradiohistory.com
The LANE 4 WATT
QUALITY AMPLIFIERS

Modern miniature valves. Independent treble, middle and bass controls allow for correct handling of input from 78-45-331/3 records. Valves 6BR7, 6B6W, 6X4. Output 4 watts matched to 2-3 ohms. Mains input tapped 200-250V a.c. Quality mains transformer supplies adequate additional current for feeder unit if required.

£6.12.6

| CRYSTAL DIODES | 32 x 32µF 450V | 6/-
FIL. TRANS	5/-	Radio Screwdrivers 4" & 6" 1/- each
.001µF MICA COND.	4d. each	
BIB WIRE STRIPPERS	3/6 each	Screwdriver Mains Tester 5/6 each
	Universal Tool Sets with three screwdrivers, Phillips tools, etc. 12/-	
	Polished Soundboard	
	5" £1.19.6	
	6½" £2.5.6	

The BAXENDALL NEGATIVE FEEDBACK TONE CONTROL AND PRE-AMP

Size 6" x 4". Two valves, 6BR7, EF91. Power requirements 250V h.t., 6.3V l.t. ±20dB bass and treble controls. Input sensitivity 100 mV, output 4V R.M.S. Completely wired and tested.

87/6

MODERN MINIATURE VALVE PRODUCTION...an Osram series

All glass construction

With the introduction of the miniature valve came the age of the all glass valve. To make their production possible it is essential that the utmost control is exercised over both the quality of the glass and the alloys used in making the bases. This is because the valve pins pass through the base of the valve envelope, necessitating the production of a vacuum-tight glass-to-metal join under favourable conditions of mechanical strain.

In the production of Osram miniature valves great attention is paid to these points to produce a valve which can be relied upon for a long life.

characteristically good

THE GENERAL ELECTRIC CO. LTD., MAGNET HOUSE, KINGSWAY, W.C.2.
G2ACC offers you . . .

DENCO
Dissipator Transformers 10.7 Mc/s; ratio RDT1 12/4; phase P271 9-2; L.R. Transformers; IFT1/107 Mc/s 6-1; IFT1/107 Mc/s 6-1 - IFT1 465 kcs 6-1 - Maxi-Q Plug-in, Chassis type and Minature Dual-purpose coils available.

EDDYSTONE
Ceramic Microdenser tuning condensers; 500 12.5pF 7-1, 500 27.5pF 8-1, 582 46pF 9-1, 582 66pF 9-1, 582 100pF 11-1, 586 140pF 11-1, R.F. Chokes; 1010 1.25mH 2-1, 171 2.5mH 3-1, 1023 1.5mH 3-1, 776 2.5mH 4-1, 1066 12mH 4-1. All other Eddystone components in stock.

SORAD
Large range of Ceramic and Pexolin wafer rotary switches to individual requirements. See our catalogue.

CATALOGUE No. 9
60 pages illustrated on fine art paper with over 2,000 now lines by the leading makers. Free on request.

Minimum postage and packing on orders under £3 is 6d.

Southern Radio and Electrical Supplies
Sorad Works
Redlynch - Salisbury - Wilts
Telephone Downton 207

CABINETS HI-FI EQUIPMENT . . .
We can supply any cabinet to your own specification

The cabinet illustrated can be supplied in any shade of walnut, oak or mahogany for 19 gns.

We can supply and fit into any cabinet all the latest hi-fi amplifiers, tuners, transcription units, record changers and speakers.

Send for free illustrated catalogue of cabinets, chassis, autochangers and speakers etc. H.P. Can be arranged.

LEWIS RADIO COMPANY
120 Green Lanes, Palmers Green, London N13
Telephone BOWes Park 6061

WORLD-WIDE DX IS CERTAIN
with the
Labgear 150 Watt TRANSMITTER
MODEL LG300 MK II

PRICE 55 Gns.
(With all valves except 813)
Companion Power Unit (Modulator now available)
Send S.A.E. Inset RC5035
Labgear (Cambridge) Ltd
Willow Place, Cambridge
Telephone 2494

NEW!
EXPERIMENTAL KITS
in Radio, T.V. etc.

LEARN THE PRACTICAL WAY
Specially prepared sets of radio parts from which we teach you, in your own home, the working of fundamental electronic circuits and bring you easily to the point when you can construct and service radio sets. Whether you are a student for an examination; starting a new hobby; intent upon a career in industry; or running your own business — these Practical Courses are intended for YOU — and may be yours at very moderate cost.

EASY TERMS FROM 15/ A MONTH
With these outfits, which you receive upon enrolment, you are instructed how to build basic Electronic Circuits (Amplifiers, Oscillators, Power Units, etc.) leading to complete Radio and Television Receiver Testing and Servicing.

BEGINNER'S RADIO OUTFIT
— For carrying out basic practical work in Radio and Electronics, from first principles and leading to the design and building of simple Receivers.

ADVANCED RADIO OUTFIT — With this equipment, you are instructed in the design, construction, servicing and testing of a modern high quality Television Receiver.

TELEVISION — With this equipment you are instructed in the design, construction, servicing and testing of a modern high quality Television Receiver.

OTHER COURSES WITH EQUIPMENT
INCLUDE:
MECHANICS - ELECTRICITY
CHEMISTRY - PHOTOGRAPHY
CARPENTRY
ALSO
DRAUGHTSMANSHIP - COMMERCIAL ART
AMATEUR S.W. RADIO - LANGUAGES - ETC.

E.M.I. INSTITUTES
334

POST THIS COUPON TODAY.

NAME
ADDRESS

The only Postal College which is part of a world-wide Industrial Organ & 100

1.1.56

www.americanradiohistory.com
What's all this about Hi-g?

"g" is the symbol for acceleration which, to the technical, is defined as the differential of velocity with respect to time. More simply this means the rate of change of speed.

When "g" is too great, damage will be done. A locomotive leaves the rails when it takes a curve too fast; at only 6 "g" a pilot blacks out when he pulls out of a dive; at 20 "g", which is very much more than any plane can possibly encounter, the plane will disintegrate.

The stylus tip of a pick-up is subjected to the same acceleration but to an infinitely greater extent. The undulations of a record groove cause the stylus to vibrate as much as 10,000 times per second or more. It moves to one side of the groove, stops, moves to the other, stops again and so on throughout the record. The accelerations acting upon the stylus tip are measured in "g" and with modern recordings may be well over 1000 "g".

Obviously a light freely suspended stylus will follow rapid changes of direction in record grooves more easily than a heavy, stiffly mounted one. On a heavilv recorded record a "stiff" pick-up will tear through record grooves or even jump right out of them. Result: rapid record and stylus wear and poor reproduction.

Correct tracking of modern electrical recordings with their great musical and dynamic range calls for pick-ups specially designed to cope with very high "g". They are available, after much patient research and development, under the name "Hi-g". ACOS "Hi-g" pick-ups perform perfectly at any multiple of "g" they are called upon to meet, representing a truly revolutionary advance in pick-up design. If you want your valuable records to reproduce as well as the manufacturers intended—and to go on doing so for a long time—use an "ACOS Hi-g" pick-up.

(Write for a free copy of the new Cosmocord booklet "The ABC of Hi-g").

...always well ahead

ACOS devices are protected by patents, patent specifications and registered designs in Great Britain and abroad.

COSMOCORD LTD · ENFIELD · MIDDX · Tel: ENField 4022

The Radio Constructor

incorporating THE RADIO AMATEUR

CONTENTS FOR JANUARY

<table>
<thead>
<tr>
<th>VOL. 9 NO. 6</th>
<th>JANUARY 1956</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANNUAL SUBSCRIPTION 20/-</td>
<td></td>
</tr>
</tbody>
</table>

Editorial and Advertising Offices
57 MAIDA VALE LONDON W9

Telephone
CUNNINGHAM 6141 (2 lines)

Telegrams
DATABUS, LONDON

Editor
C. W. C. OVERLAND, G2ATV

Advertising Manager
F. A. BALDWIN, A M I P R E

342 In Your Workshop, by J.R.D.
346 Band III Television for the Home Constructor, Part 7, by S. Welburn
351 A Power Unit for the A.M.-F.M. Signal Generator, by W. Pickering
359 A Ferrite Rod Mains Transportable, by S. E. Addis
364 Radio—And Control, Part 3, by Raymond F. Stock
368 Radio Miscellany, by Centre Tap
370 Right—from the Start, Part 1: Symbols, by A. P. Blackburn
375 Constructural Exhibits at the Ninth Annual R.S.G.B. Amateur Radio Exhibition
376 Can Anyone Help?
377 More Transistory, by B. H. Jay
380 Technical Forum
382 Design Charts for Constructors. No. 2: Parallel Resistance Combinations, by Hugh Guy

THE CONTENTS of this magazine are strictly copyright and may not be reproduced without obtaining prior permission from the Editor.

Opinions expressed by contributors are not necessarily those of the Editor or proprietors.

NOTICES

THE EDITOR invites original contributions on construction of radio subjects. All material used will be paid for. Articles should preferably be typewritten, and photographs should be clear and sharp. Diagrams need not be large or perfectly drawn, as our draughtsmen will redraw in most cases, but all relevant information should be included.

All MSS must be accompanied by a stamped addressed envelope for reply or return. Each item must bear the sender's name and address.

TRADE NEWS. Manufacturers, publishers, etc., are invited to submit samples or information of new products for review in this section.

ALL CORRESPONDENCE should be addressed to The Radio Constructor, 57 Maida Vale London W9

www.americanradiohistory.com
The circuits presented in this series have been designed by G. A. French, specially for the enthusiast who needs only the circuit and essential relevant data

No. 62. A MINIATURE A.C./D.C. SUPERHET

One of the most fascinating aspects of radio construction is the making of miniature equipment. An especially attractive circuit, and one that is eminently suitable for miniaturisation, is given by the conventional "4 plus 1" sound radio superhet. This particular circuit has considerable advantages, the most highly developed, its inherent stability, and its ready adaptability to "midget" receiver technique.

Unfortunately, the conventional 4 plus 1 mains receiver requires, by definition, five valves, or four valves plus a metal rectifier. This is rather a large number of valves to encompass in a small space. The problem of reducing the number of valves needed has been overcome to some extent in the past by omitting the a.f. amplifying stage which follows the second detector, relying instead upon an output valve with a very high mutual conductance to make up for the loss of gain thereby sustained. Such an arrangement can give quite satisfactory results, but it suffers from the fact that every circuit in the receiver has to function at its most efficient, there being little latitude allowable in the way of loss of gain. Furthermore, the three-valve circuit is not attractive for portable work, owing to its reduced sensitivity.

A New Valve

The situation at the present time has been considerably alleviated due to the recent introduction by Mullard of a new valve. This valve is the PCL83, and it consists of a low-mu triode and an output pentode in the one envelope. The pentode is capable of supplying an output power of 2.5 watts at 215 volts h.f. (maximum anode dissipation equals 5.4 watts). Apart from its usefulness in television circuits, the PCL83 represents a perfect choice for miniature sound superhet, since it enables a four-valve circuit (excluding rectifier) to be made around three actual valves. A PCL83 is used in the a.f. and detector stages of the receiver to be described in this article.

This Month's Circuit

The circuit of the receiver is shown in the diagram. It consists of a miniature medium-wave superhet portable, using a ferrite frame. All valves, including the PCL83, are miniature types, using B7G or B9A bases. The sensitivity will be at least as good as any conventional superhet, and it should be possible to build the set into a very small space indeed. The circuit is suitable both for a.c. or d.c. mains. In common with normal miniaturisation technique, a certain amount of "pruning" has been undertaken in order to simplify the circuit and limit the number of components required.

Signal pick-up is achieved by means of the ferrite frame, L1. This is, of course, a normal tuned coil mounted on a rod of ferrite material, such as Ferroxcube, and it is tuned by condenser C3. The signal input is applied to g2 of V1. The oscillator circuit is conventional, a tuned-grid arrangement being employed. The oscillator feedback coil, L3, connects directly between the triode anode and the h.t. rail, no decoupling being employed. The padding condenser, C9, is shown as a preset component in the diagram, although it may, in practice, be replaced by a thimble variable. This is because, as the coil of the ferrite frame on its core unless it is checked that such adjustment does not reduce the tuning coverage of the receiver below the normal 200 to 550 metres minimum medium-wave range.

Long-wave coils could also be fitted, if desired, the necessary switching points in the circuit being shown by circled crosses.

The i.f. stage is quite conventional, and it feeds into the second detector circuit in normal fashion. As a thermionic diode is not now available for rectification, a germanium diode is used instead. The diode is connected such that the upper end of its load, R7 and R6, becomes negative with respect to chassis. An i.f. filter is provided by C15, C16, C17 and C18, and R7 is also, the volume control of the receiver.

An economy in components is effected at the triode V30 by dispensing with cathode biasing resistor R22. The bias is now developed instead by the leaky-grid bias developed by C17 and R8. This is a technique frequently employed in commercial receivers, and the component values shown should prove quite adequate for the volume range to be anticipated in the receiver. In the occasional possible instance of complete absence of a.f. signal from the volume control, there is usually sufficient bias by reason of its own contact potential. In such a case, the anode current is also limited to a maximum of 2mA by the anode load R5. A 200PF condenser, C18, is connected between the anode of C30 and chassis. This condenser bypasses any i.f. voltages which may appear on the triode anode and, in addition, helps to reduce any high frequency instability which may be present in the V30-V30(2) circuit due to stray capacities between this point and ground.

The output stage is conventional. A small amount of negative feedback is provided by R11, and this helps to improve the tona replication and reduce distortion in the receiver at full volume. It also increases stability. A tone-correction condenser, C20, is connected across the speaker transformer primary.

The rectifier circuit follows normal practice, employing a half-wave rectifier feeding into the filter C23, R13, C22. A limiting resistor, R14, is provided to safeguard the rectifier against surges and to reduce the ripple current passing through the valve. V4 may be commercially available and may be replaced by a metal rectifier, if desired.

A resistive dropper, R15, is specified in the diagram for the series heater supply, but an O.L. lamp and stabiliser would be far more effective, if space permits. In its place this should be considered more attractive. If the line cord is used, on-off switching would best be accomplished by a single-pole switch in the line lead to the chassis only. (This form of connection has the disadvantage that the chassis is always live, whether the set is switched on or off.) An optional anti-mains-modulation condenser, C24, is included in the diagram. This condenser may only prove to be necessary in some districts. If the receiver is intended to be used as a portable in several localities, it would be advisable to include C24 in order to provide against the differing conditions which may be encountered.

Miniaturisation

As was mentioned earlier, one or two "pruning" operations have been undertaken in the circuit in order to reduce the number of components required. An instance is given by the fact that no h.t. decoupling is used in this receiver. Such an arrangement, of course, somewhat common in larger receivers as well; but the fact is pointed out here in order also to stress the necessity of ensuring that the smoothing condenser C1 is of good quality modern component with low internal resistance. The slight saving of bias components for V30(a) has already been discussed.

Another economy is effected by using a single decoupling resistor and condenser for the screen grids of V1 and V2. This arrangement, perfectly practicable so long as the lead connecting the two screen grids is kept short, and C4 is mounted close to V1. R3 should be mounted close to V2 or to V1.

A common a.c./d.c. decoupling condenser is also employed, this being a frequent practice in larger receivers as well. Due to the fact that L1 will be connected into the circuit by means of fly-leads it might be advisable to mount C1 close to IFT1, and to take the appropriate fly-lead from the i.f. transformer itself. This fly-lead should not approach too closely the other components of the receiver.

Conclusion

In conclusion it must be stated that this little receiver will give excellent results if built with reasonable care. It must be emphasised that it employs a live chassis, and that the normal precautions are, in consequence, applicable.

JANUARY 1956
COMPONENT VALUES

<table>
<thead>
<tr>
<th>Condensers</th>
<th>Value</th>
<th>Resistors (all 1 watt unless otherwise specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>0.1\mu F</td>
<td>R_1 470kΩ</td>
</tr>
<tr>
<td>C_2</td>
<td>Trimmer</td>
<td>R_2 47kΩ</td>
</tr>
<tr>
<td>C_3, C_6</td>
<td>500pF, 2-gang</td>
<td>R_3 22kΩ</td>
</tr>
<tr>
<td>C_4</td>
<td>0.1\mu F</td>
<td>R_4 5MΩ</td>
</tr>
<tr>
<td>C_5</td>
<td>0.1\mu F</td>
<td>R_5 100kΩ</td>
</tr>
<tr>
<td>C_7</td>
<td>Trimmer</td>
<td>R_6 250kΩ, log.</td>
</tr>
<tr>
<td>C_8</td>
<td>50pF</td>
<td>R_7 5MΩ</td>
</tr>
<tr>
<td>C_9</td>
<td>Pad (see text)</td>
<td>R_8 100kΩ</td>
</tr>
<tr>
<td>C_{10}, C_{11}</td>
<td>I.F. parallel condensers</td>
<td>R_9 250kΩ</td>
</tr>
<tr>
<td>C_{12}</td>
<td>0.1\mu F</td>
<td>R_{10} 1MΩ</td>
</tr>
<tr>
<td>C_{13}, C_{14}</td>
<td>I.F. parallel condensers</td>
<td>R_{11} 470kΩ</td>
</tr>
<tr>
<td>C_{15}</td>
<td>200pF</td>
<td>R_{12} 1kΩ, 1 watt</td>
</tr>
<tr>
<td>C_{16}</td>
<td>200pF</td>
<td>R_{13} 200Ω, 1 watt</td>
</tr>
<tr>
<td>C_{17}</td>
<td>0.003\mu F</td>
<td>R_{14} 620Ω, dropper</td>
</tr>
<tr>
<td>C_{18}</td>
<td>200pF</td>
<td></td>
</tr>
<tr>
<td>C_{19}</td>
<td>0.01\mu F</td>
<td></td>
</tr>
<tr>
<td>C_{20}</td>
<td>0.01\mu F</td>
<td></td>
</tr>
<tr>
<td>C_{21}</td>
<td>25uF, 25WV</td>
<td></td>
</tr>
<tr>
<td>C_{22}, C_{23}</td>
<td>6+16uF, 350WV</td>
<td></td>
</tr>
<tr>
<td>C_{24}</td>
<td>0.01\mu F, 250 VACW (optional)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valves</th>
<th>Value</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>ECH81, Mullard</td>
<td></td>
</tr>
<tr>
<td>V_2</td>
<td>EF93, Mullard</td>
<td></td>
</tr>
<tr>
<td>V_3</td>
<td>PCL83, Mullard</td>
<td></td>
</tr>
<tr>
<td>V_4</td>
<td>PY82, Mullard</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inductors</th>
<th>Value</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_1</td>
<td>M.W. ferrite frame</td>
<td></td>
</tr>
<tr>
<td>L_2, L_3</td>
<td>M.W. osc. coil</td>
<td></td>
</tr>
<tr>
<td>I_{FT}</td>
<td>Miniature i.f. transformers</td>
<td></td>
</tr>
<tr>
<td>I_{FT1}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Value</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>OA61, Mullard</td>
<td></td>
</tr>
</tbody>
</table>

New Philips A.M./F.M. Signal Generator

Philips type GM.2889/01 is an a.m./f.m. generator with an unusually wide frequency range which makes it ideal for aligning i.f. amplifiers, discriminators and filters in either the development laboratory or service department. Frequencies from 5 to 225 Mc/s can be covered without switching, thus enabling work to be carried out on either Bands I, II or III.

An extremely stable marker oscillator with a range of 15–50 Mc/s and an accuracy of ±50 kc/s is incorporated. There is also a built-in crystal oscillator to provide reference points against which the carrier and marker oscillators can be checked, and this accommodates crystals (not provided) in the range 0.2–15.0 Mc/s.

Three continuously adjustable sweeps are available: ±7.5 Mc/s, ±1.75 Mc/s and ±3.25 kc/s, with 50 c/s, 30 c/s and 400 c/s modulation respectively. In each case there is ample voltage for horizontal deflection on the c.r.o.

The r.f. output voltage can be internally amplitude- or frequency-modulated and is arranged to cover a variety of possibilities; for example, the marker oscillator can be amplitude modulated internally or the carrier frequency modulated up to 10 Mc/s.

Both main dials of the instrument are individually calibrated. It is housed in a robust steel case finished in grey hammered enamel and measuring 17\frac{1}{2} in long by 13\frac{1}{2} in high by 9 in wide. Weighing 38 lb it is fitted with a carrying handle. The generator operates from 110–240V a.c. mains.

Full technical specification, etc., may be obtained from the Instrument Department of Philips Electrical Limited, Century House, Shaftesbury Avenue, London, W.C.2.
I N Y O U R W O R K S H O P

In which J. R. D. discusses Problems and Points of Interest based on Letters from Readers and his own experience

GREAT BRITAIN WAS THE FIRST COUNTRY in the world ever to have a high-definition television service, according to the present day editors. Suppose that the fact of being just a little proud of this achievement it immediately brands me as a Chauvinist. Nevertheless, I am not ashamed of the fact that we did, at one time, lead the world in television. I only wish one or two of our present politicians could remember this fact.

High-Pressure Advertising

The reason why I introduce this month's contribution in such a manner is because I have just been reading in my newspaper of another attack on the I.T.A. A certain quarter criticises the I.T.A. because, at a time when credit restrictions are being applied, the public is being exhorted to spend far too much money by "high-pressure" advertising on television.

One would presume from all this that the continual advertisements in the daily and magazine press have no effect on the public whatsoever. However, if thirty seconds of television time is devoted to advertising Blegg's Dentifrice, then millions of housewives will sally forth and start filling their attics with cartons of Blegg's Dentifrice. The whole idea is, of course, so absurd that one wonders how people find the time to voice such opinions. In actual fact, practically all advertisements, whether in print or on the air, have one result. Their main effect is that a few people who used to buy Blegg's Dentifrice may try a tube of Blegg's Tooth Paste for a change next time, just to see what it is like. The money spent by the public still remains the same—it just goes to a different firm.

We've had the I.T.A. on the air for some time now and so we can get a fair idea of what it provides. The entertainment is quite good, it compares fairly well with what the B.B.C. provides. The advertisements are innocuous enough; sometimes, indeed, they are plain boring. They certainly could not be described as "high-pressure."

Perhaps the real reason behind the attacks on the I.T.A. is because it is the opinion of some people that the public are lot of gentle idiots who must be kept continually blinkered from the blandishments of wicked salesmen, and who cannot be trusted to switch a television set off when a programme they dislike is being transmitted. The fact that many people obtain a great deal of pleasure from I.T.A. programmes, is, of course, ignored. Pleasure and politics don't mix.

The Engineer's View

At the start of this article I pointed out that we were the first country in the world to have a high-definition television service. We are also one of the last to have a secondary programme in Band III. I have recently been given to understand that, in Germany, it is anticipated that Bands I and II will be entirely devoted to television by 1957; and that plans are now in progress for Band IV. Indeed, some German sets are at this minute being manufactured with provision and space for their future Band IV converters. No further comment seems to be needed.

I think it is fairly safe to say, at the time being, that one of Great Britain's most urgent requirements is the need to export her engineering products. At present a very large percentage of these products consists of electronic equipment. It is therefore natural to increase the quantity of electronic equipment exported and, also, its range. One of the more obvious types of equipment which can be added to the electronic range is television receivers.

An export television receiver must, naturally, reproduce pictures on the standards employed in the country to which it is sent. It must also receive the transmitted frequencies used in such a country. There is no export customer country in the world to-day which, if it is about to have, a proliferation of transmissions in Band III. Band III receivers are, therefore, essential.

Unfortunately, the managing director of a radio company in this country cannot turn round to his back-room boys and say: "Starting from scratch, please design me an export television set which is at least as good as any other's, and which will work on Band III. Let me have your design in three months' time, and we'll run 10,000 off!"

The director cannot say that for the simple reason that he will never be able to sell 10,000 sets in the export market; or even 100, for that matter. The very high cost of development, of tooling, and of design, cannot be spread on an unpredictable export sale; a sale, moreover, which may be killed completely by such things as the sudden imposition of a "non-consumer duty."

Instead, the cost of introducing a new design has to be spread over both the home market, where sales can be foretold fairly accurately, and the export market, where sales are anybody's guess.

This is where the inception of the I.T.A. has conferred an excellent service on the country. In the time it has taken to get Band III "front ends," confident in the fact that home sales would help to cover the consequent development and tooling costs. This is, in fact, just exactly what has happened over the last two years.

There is another point which is of equal importance. This concerns what I could best describe as "manufacturing experience" or—preferably—"field experience."

After the design and tooling on a new project has been completed, it is still necessary to find the quickest and cheapest method of manufacturing it, and, even then, there is no better way of finding that method than by actually doing the job. It must surely be true that the manufacturing experience British companies have obtained since they first commenced making Band III television equipment will stand them in excellent stead for future export markets.

So, in view of all this, even if the I.T.A. does interrupt its programmes with advertising every now and again, it has still proved to be of considerable assistance to the country as a whole. Indeed, so far as I can see, all we are waiting for now are the transmissions (I.T.A. or B.B.C.) in Band IV!

Colour Television

It might seem from the above that I am praising the I.T.A. at the expense of the B.B.C. This is very far from the truth. The I.T.A. is carrying out its job very successfully. So also is the B.B.C., but it has to be remembered that the B.B.C. has a function which covers a much wider compass than does that of the I.T.A.

Since it first came into being the B.B.C. has always been an ambitious body, the only limitation on its advancement being the facts that its funds are obtainable only from licence fees and that it is responsible for its actions to the P.M.G. and to Parliament, and by its own self-imposed rules of good taste.

To give a typical example of the aspirations of the B.B.C. Colour Corporation is at present carrying out experimental transmission in colour from Alexandra Palace. If these transmissions are to tune in, eventually, will these be transmitted on most evenings from 11 o'clock onwards. By the time this article appears in print the present series of tests may be reaching completion, but there is every possibility of their continuation in a further series. The standards employed in the tests are similar to those used in the American system, in which the colour sub-carrier lies inside the video bandwidth of the luminance signal. It would be interesting to see if telecorporate the colour patterns which are reported to occur when monochrome receivers are used with colour transmissions in the U.S.A. (The "luminance signal," by the way, corresponds roughly to what would be given by a black-and-white camera viewing the same scene.)

The B.B.C. has carried out a considerable amount of work with colour television, and it would seem from the nature of the tests that when colour television arrives in this country it will employ the best system possible in the light of experience. The I.T.A. is to be congratulated on the way in which it has forged ahead in this matter.

It seems possible that one or two readers may have thought that the "luminance signal" i.e. is apparently so near at hand. Nevertheless, this is quite true. Indeed, with one provision, I would go so far as to say that

JANUARY 1956

THE RADIO CONSTRUCTOR
there is nothing whatsoever to stop us from having colour television transmissions in two years time. This would include regular transmissions from the B.B.C. on a compatible colour system together with something approaching full-scale production of colour receivers for the domestic market. We have the drive, and we have the engineering ability to carry this out.

However, there is the single provision I have just mentioned. This is that to get colour transmissions going we would probably have to sneak them out when the politicians weren’t looking!

A Book for Beginners

As I said last month, there is a lack of suitable guidance for those beginners who are taking their first steps in electronics. Readers may recall that, in the last article, I invited those whose experience in the radio industry might be of help to novices to write to me; the intention being that their letters would be published in these columns. It is too early yet to predict the result of such an appeal (each of these articles has to be written quite some time before it appears in print), but I am very optimistic.

In the meantime I have been examining some of the books on the market to-day which are intended mainly for the novice. Amongst these I have yet to find one which really explains the basic concepts of radio. There are plenty of books which state bold facts and expect the reader to accept them as such, but I don’t think that is good enough.

I had a long chat with the Editor of The Radio Constructor about this. As a result I have just commenced writing a book myself which will, I hope, take the novice over the first very difficult steps of understanding the real fundamentals of radio. This book represents something of a mammoth task, especially in so far that all the material in it will be new. I hope to have it finished in about six months from the present date, by which time it should have run to some 150,000 words! If all goes well, it will be published next summer.

Microphonc Oscillator

I ran into a very first Band III “private” service job a week or two ago. By “private” service job I mean that it was carried out for a friend I happened to be visiting at the time, and did not involve an official workshop routine. The fault, incidentally, was quite interesting and its description may be of value to readers who find themselves tackling a similar problem.

The trouble occurred when the television (a turret job, not a converted receiver) was set to Channel 9. After the set had warmed up a little it was liable to break into continual and very loud audible oscillation (frequency somewhere around 200 c/s), this being accompanied by horizontal bars running down the picture.

My first guess was that the frequency-changer oscillator circuits were microphonic, and this proved to be correct. It was, in fact, quite simple to check this point because, in this particular case, the oscillation ceased when the turret fine-tuner was carefully set to its correct position. What was happening was that the sound waves from the speaker were being picked up by one or more microphonc oscillator components in the turret, amplified incorrectly these frequency deviations were applied to one of the skirts of the sound i.f. response curve, this resulting in amplitude modulation capable of detection by the sound detector. Adjusting the fine-tuner brought the frequency deviations to the flat top of the sound i.f. response curve; whereupon only negligible amplitude modulation could result, and the feedback loop was broken. Figs. 1 and 2 may help to make this clear. The horizontal bars on the screen were merely the sound on vision to be anticipated when the oscillator frequency was varying as much as occurred in this instance.

by the i.f. strip and a.f. stages, and fed back to the speaker again. The reason why the oscillation disappeared when the fine-tuner was correctly set was because the microphonc oscillator components caused the sound waves from the speaker to be converted to frequency deviations. When the fine-tuner was set

I did not have any spares with me at the time but I advised my friend, as a temporary measure, to adjust the fine-tuner such that the oscillation did not occur when receiving Channel 9. A few days later I was able to replace the frequency-changer valve in the turret and the trouble cleared completely.

Radio Miscellany

(continued from page 369)

equipment, so no doubt the ease with which professional-looking cabinet work can be undertaken will stimulate a revival in high-class work of this sort. There is something very satisfying in getting a silky finish on nicely grained wood simply by drawing an electric sander across it. Doubtless many readers have already discovered this, and built sleek, artistic cabinets as table models or radiograms to hold the receivers and hi-fi amplifiers described in this magazine. Perhaps, then, a few photographs with brief descriptions would be more widely appreciated than one might at first suppose. (How about ir?—Ed.)

JANUARY 1956

345
BAND III TELEVISION for the HOME CONSTRUCTOR

PART 7.

by S. WELBURN

Another article in this very popular series written by S. Welburn. This month our contributor discusses, amongst other things, various aspects of Band III aerials, together with devices suitable for mixing Band I and Band III signals.

Just after the L.T.A. had commenced transmitting a regular programme schedule, a report appeared in a London evening newspaper describing a home-made Band III aerial assembled by a non-technical television enthusiast. This aerial, which was apparently made to work more by luck than by anything else, consisted of an unconventional arrangement of wire and metalwork and it was stated to give excellent results on Band III. The newspaper report was somewhat spoilt by including a statement from an "expert" who said that the use of unconventional aerials could shorten the life, not only of the valves in the associated television, but also that of the picture tube itself. A correspondent later wrote to the newspaper challenging this statement; whereupon the "expert" kept very quiet.

Aerials

The non-technical gentleman who knocked up his peculiar aerial is, of course, to be congratulated for his initiative. If he lives in an area of good signal strength he may possibly get quite a reasonable picture from his arrangement, which could even be fairly reasonably tuned. (Quite a few people who live near Alexandra Palace have been receiving good pictures for a long time with "bits of wire" hanging down the backs of their sets.)

Nevertheless, even in areas of high signal strength a reasonable aerial is still worth while if only for the obvious reason that the desired signal is, in consequence, sufficiently strong to override interference.

Splitting Aerial Inputs

Most viewers in the London area now have, or intend to have, conventional aerial arrangements, these consisting of two separate aerials, or a combined Band I-Band III aerial with a single coaxial down-lead. Unfortunately, such arrangements do not always fit in too happily with the televisions to which they are to be connected. The greatest difficulty is the fact that modern 12-channel receivers have a single aerial input socket, whilst converted receivers nearly always have two sockets, one for Band I and one for Band III. The situation then arises that it becomes necessary to split the output of a combined aerial so that it may feed two input sockets, or to combine two aerial outputs so that they may feed one single socket.

It is fairly easy, however, to overcome these problems, this being done by fitting devices capable of splitting one 75 ohm circuit into two. This splitting may be provided by a resistive pad or by tuned circuits. The resistive pad is extremely simple to make, but it involves a slight loss in gain. The tuned circuit splitter, frequently called a "deplexer," is somewhat more difficult, but it has the advantage of causing only a very slight loss in gain.

We may commence by considering the resistive type of splitter first. It might be of value at this stage to deal in some detail also with the method of calculating the values of resistance used in the splitter, as such devices can be used for many other jobs. A typical application consists of feeding two or more receivers from a single aerial or source of signal.

The circuit of a two-way splitter is shown in Fig. 1 (a). This is a symmetrical arrangement, the resistors all having the same value. The input source is intended to have an impedance of 75 ohms and the outputs feed into loads whose impedances are also 75 ohms.

Let us now re-draw the circuit to resemble that shown in Fig. 1 (b). This diagram shows more clearly the impedance we obtain when we "look into" the input terminals. The 75 ohm loads are represented here as 75 ohm...
resistors. The impedance at the input terminals then consists of the left-hand resistor, R, in series with the parallel combination on the right of the top R, plus 75 ohms; and the bottom R, plus 75 ohms. In other words, the impedance presented at the input terminals is equal to:

\[R + \frac{1}{2} (R + 75) \text{ohms} \]

Now, to achieve a satisfactory match we want the impedance presented to the input to be 75 ohms also. We can, therefore, evolve the following formula:

\[75 = R + \frac{1}{2} (R + 75) \]

This gives:

\[75 = 1 \frac{1}{2} R + 37.5 \]
\[37.5 = 14 R \]
\[R = 25 \text{ohms} \]

As is to be expected, each outlet in the circuit of Fig. 1 (a) receives half the voltage applied to the input. In Fig. 1 (d) only half the voltage from each aerial appears across the output terminals. Presented in dB, the insertion loss given by the splitter is 6 dB, which, in areas of reasonable signal strength, is not a great deal to worry about. (It will be remembered that interference picked up by the aerial will be reduced in strength by the same amount as is the signal, so that the all-important signal interference strength ratio is still maintained.)

The circuit of Fig. 1 (a) is of interest because, as was mentioned above, it may be adapted for feeding any reasonable number of receivers from a single aerial (or for feeding any number of aerials into a single receiver). Fig. 2 shows the idea with \(n \) pairs of terminals. To find the value of \(R \) in Fig. 2 all that is necessary is to use the formula:

\[75 = R + \frac{1}{2} (R + 75) \]

Each receiver will then obtain \(\frac{1}{n} \) of the input voltage. Two of the arms of Fig. 2 could, of course, take the inputs from separate Band I and Band III aerials.

Practical Points

The circuit of Fig. 1 (a) can be made up most conveniently by using the arrangement shown in Fig. 3 (a) or Fig. 3 (b). In Fig. 3 (a) a small metal case is employed to house the resistors, whilst in Fig. 3 (b) a panel is used instead. Coaxial sockets are employed, as these provide very convenient terminations, and the common earth connections to these sockets are made through the metal of the case or panel.

Whatever method of assembly is employed, the coaxial sockets should be mounted close together. The resistors themselves should be quarter or half-watt carbon components. Wire-wound resistors would be inadvisable for this application, even if they were "non-inductively" wound. All connections should be kept short.

If the value of each resistor in Fig. 1 (a) is made equal to 25 ohms the device may be used either to enable a single aerial to feed into two input sockets, or two aerials to feed into one socket. See Figs. 1 (c) and (d) which show practical examples.

Each receiver will then obtain \(\frac{1}{n} \) of the input voltage. Two of the arms of Fig. 2 could, of course, take the inputs from separate Band I and Band III aerials.

Practical Points

The circuit of Fig. 1 (a) can be made up most conveniently by using the arrangement shown in Fig. 3 (a) or Fig. 3 (b). In Fig. 3 (a) a small metal case is employed to house the resistors, whilst in Fig. 3 (b) a panel is used instead. Coaxial sockets are employed, as these provide very convenient terminations, and the common earth connections to these sockets are made through the metal of the case or panel.

Whatever method of assembly is employed, the coaxial sockets should be mounted close together. The resistors themselves should be quarter or half-watt carbon components. Wire-wound resistors would be inadvisable for this application, even if they were "non-inductively" wound. All connections should be kept short.

If the value of each resistor in Fig. 1 (a) is made equal to 25 ohms the device may be used either to enable a single aerial to feed into two input sockets, or two aerials to feed into one socket. See Figs. 1 (c) and (d) which show practical examples.

An important point to remember is that resistors having a tolerance of at least 10% should be employed if accurate matching is to be given. This applies to both the circuits of Figs. 1(a) and 2. 5% resistors would offer the best choice, but 10% should be adequate for most practical requirements.

The alternative type of Band I-Band III mixer is shown in Fig. 4. In this case two tuned filters are employed; and the device should cause negligible insertion loss.

The coil \(L_1 \) in Fig. 4 consists of 5 turns of 18 to 22 s.w.g. enamelled wire close wound on a \(3/4 \) in. former. \(L_2 \) is wound on a similar former with similar wire, and has 6 turns close wound. The two coils should be mounted at right angles to each other to prevent interaction. No slugs should be used. Owing to their small size the coils could in practice be made self-supporting, if desired. The two trimmers \(C_1 \) and \(C_2 \) should be ceramic types and their correct setting will lie between 10 and 20pF. These trimmers should be used for tuning Band I and Band III signals respectively. Tuning should be fairly flat, but it is possible that the process of adjusting one trimmer will slightly upset the setting of the other. In consequence, several adjustments may be required.

The splitter shown in Fig. 4 can be used to feed a Band I and a Band III aerial into a common receiver input socket; or, connected the other way round, to feed a combined Band I-Band III aerial into the two separate sockets of a converted television.

In the case when separate Band I and Band III aerials are installed close to each other, the arrangement of Fig. 1 or Fig. 4 could be mounted at the aerials themselves.
Several queries have been received from people living in such blocks of flats concerning the future possibility of Band III reception. The writer would like to give something of a word of warning here to others similarly placed, including especially those in the Midlands where the second I.T.A. transmitter will shortly be built.

The warning is that it would be inadvisable for any viewer in such a situation to buy a 12-channel receiver expressly for I.T.A., or even to have his existing set converted, until he has satisfied himself on the policy of his landlord or the company supplying the piped signals. This is due to the fact that, because of the higher attenuation provided by the coaxial cable to Band III signals, such frequencies may not be used at all. In London, it seems that a solution to the cable attenuation difficulty is being provided by picking up the Band III signal and converting it to Land I at a convenient channel before feeding it around the flats. The Band I frequencies used at present for this purpose are Channel 3 or Channel 4.

There is, therefore, no need to buy a 12-channel receiver as an existing 5-channel set may cope instead. (If the receiver is a single-channel job, converters for a different Band I channel may be available. It is probable that viewers who rent their receivers will score here, because the rental firms will probably supply suitable converters. Home constructors will also not be unduly worried as they will, in most cases, be able to make their own converters or modify commercial units.)

Attenuators

The writer mentioned recently that it is possible to overcome differing strengths between Band I and Band III signals by inserting an attenuator between the receiver and the aerial giving the greater signal strength. Receivers without a.g.c. circuits do not then require to have their gain or sensitivity controls adjusted when switching from one band to the other. Quite a number of readers have asked for details of suitable attenuators. Details on attenuator component values do not appear to be readily available, and so it has been decided to give such information in this article.

A suitable basic attenuator circuit is illustrated in Fig. 5. This arrangement consists of a symmetrical circuit whose impedance is 75 ohms at either pair of terminals. It is suitable for coaxial cable of similar impedance. The outer conductors of the input and output coaxial cables should be connected to the bottom terminals in Fig. 5. The two resistors R_1 have equal values. A table showing the values required for R_1 and R_2 to provide different levels of attenuation is given in Fig. 6. (The dB figures given here are accurate to the nearest whole number only). For reasonable accuracy of matching.

![Diagram of Attenuator Circuit](image)

Fig. 5. A basic attenuator for coaxial inputs.

<table>
<thead>
<tr>
<th>Attenuation (dB)</th>
<th>R_1 (ohms)</th>
<th>R_2 (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>15</td>
<td>52</td>
<td>23</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>65</td>
<td>10</td>
</tr>
</tbody>
</table>

Fig. 6. A table giving details of resistor values for Fig. 5, to provide varying degrees of attenuation.

I n the last two articles, the writer gave full constructional details of an a.m.-f.m. signal generator which could be built at home at low expense, and which was capable of providing extremely useful facilities to the amateur or professional serviceman. The signal generator described required an external power supply, and a particularly neat and serviceable unit for this purpose is now to be described.

This power unit provides outputs at h.t. and heater potentials. To provide full isolation from the mains it includes a transformer, and h.t. is obtained by means of a voltage-doubler rectifier circuit. Metal rectifiers are used, and the voltage doubling arrangement has the advantage of enabling a relatively high h.t. potential to be obtained without the use of a bulky mains transformer. The whole power unit is enclosed in a neat grey-enameled cabinet which, as may be seen from the photographs accompanying this article, matches the cabinet employed for the signal generator both in colour and style.

The output connections of the power unit are brought out to a four-way socket on the front panel, this socket employing the standard British four-pin valveholder contact layout. The output available for a mains input of 230 volts a.c. is 6.3 volts at 1.5 amps and 220 volts h.t. at any current up to 25mA.

As will at once be realised, the unit is capable as it stands of supplying power to items of equipment other than the a.m.-f.m. signal generator for which it was originally designed. Typical examples of such equipment are given by a.f. pre-amplifiers, Band III converters, and similar units.

It will be recalled that in Fig. 1 of the a.m.-f.m. signal generator articles an input h.t. potential of 150 volts was specified. The h.t. output available from the power unit is in excess of this figure, but this causes no difficulty in practice; the signal generator functioning perfectly at the slightly higher voltage.

The chassis, cabinet and component parts needed for the unit are available from an advertiser in this issue.

The Circuit

The circuit of the power unit is given in Fig. 1. As may be seen, it is extremely simple in design.

The mains input is applied, via the on-off switch, to the primary of the mains transformer. The h.t. secondary of the transformer then provides 125 volts a.c., which is passed to the voltage-doubling network formed by rectifiers W_1, W_2, and condensers C_1 and C_2. Due to the voltage-doubling action given by these components a rectified potential of approximately 240 volts (on load) appears.
between the negative plate of C_2 and the positive plate of C_1. This voltage is smoothed by the low-pass filter R_1, C_3, whereupon it becomes immediately available as an h.t. voltage for whatever equipment is to be connected to the power unit.

It should be remarked at this point that, although C_3 is shown in Fig. 1 as a single 16F condenser, it consists in practice of two 8F condensers in parallel. In the wiring diagrams which follow, these two separate 8F condensers are referred to as $C_{3(0)}$ and $C_{3(0)}$.

It will be noted also from Fig. 1 that the mains transformer provides a heater potential of 6.3 volts at 1.5 amps from a separate heater winding.

In Fig. 2 (b) a similar arrangement is shown, this time using C_2 and W_2. Once more a rectified voltage appears across C_2. It will be noted that, on this occasion, the rectifier is connected the opposite way round to that of Fig. 2 (a).

The rectified voltages appearing across C_1 in Fig. 2 (a) and across C_2 in Fig. 2 (b) will be approximately equal (assuming a load of normal resistance) to the r.m.s. value of the a.c. voltage provided by the transformer winding. Thus, C_1 and C_2 both have approximately 120 volts d.c. built up across them.

In Fig. 2 (c) we connect C_1 and C_2 in series. In consequence of this we now obtain a rectified voltage which is equal to twice the

![Diagram](image)

Fig. 1. The circuit of the power unit.

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mains transformer (R.C.S. Products)</td>
</tr>
<tr>
<td>1</td>
<td>British 4-pin valveholder</td>
</tr>
<tr>
<td>1</td>
<td>Cabinet, chassis and panel (R.C.S. Products)</td>
</tr>
<tr>
<td>1</td>
<td>On-off toggle switch, panel-mounting</td>
</tr>
</tbody>
</table>

Voltage-Doubler Theory

It is possible that one or two readers may not be quite at home with the theory of voltage-doubling circuits. For this reason, a brief explanation of their operation would be of advantage at this stage, before proceeding to details of the practical layout and wiring of the power unit.

Fig. 2 (a) shows part of the circuit of Fig. 1. In this diagram the h.t. secondary of the mains transformer connects to condenser C_1 and rectifier W_1. The arrangement shown is a simple half-wave rectifier circuit, and a rectified d.c. voltage of the polarity shown in the diagram appears across C_1.

Individual voltage across each condenser. Fig. 2 (c) is, of course, the combination of the two circuits of Fig. 2 (a) and Fig. 2 (b). The fact that we now obtain twice the d.c. voltage is the reason for calling the arrangement a "voltage-doubling" circuit.

An interesting point in Fig. 2 (c) is the fact that each condenser charges only during alternate half-cycles. Thus, whilst C_1 is being charged via W_1, C_2 receives no charging current at all. During the next half-cycle the reverse holds true: C_2 is charged, but C_1 receives no charging current. When the circuit is connected to an external load we get the case that C_1 discharges into the load whilst C_2 charges from the transformer secondary, and vice versa. Because of this fact, it is always important to ensure that the reservoir condensers in a voltage-doubling circuit (in this case C_1 and C_2) have sufficient capacity to provide good regulation.

For the purposes for which this particular power unit has been designed, more than adequate capacity is available in C_1 and C_2, and the power unit provides good h.t. regulation.

It will be obvious that all that is required to make the circuit of Fig. 2 (c) suitable for practical use is to provide a smoothing circuit. This will then remove the ripple from the d.c. voltage appearing between the positive plate of C_1 and the negative plate of C_2. The filter circuit is provided in Fig. 1 by the addition of the smoothing components, R_1 and C_3.

Constructional Details

We may now pass on to practical details. Owing to the fact that the chassis and cabinet are available already cut to size, the process of construction is reasonably simple. The first thing that is required is to fit the on-off mains switch and the output socket. The position of these two components on the front panel is illustrated in Fig. 3. It will be noted that there are two 6-BA clearance holes in the lower half of the front panel. These are used later for bolting the panel to the chassis. The soldering lugs of the on-off switch behind the panel should project downwards.

The chassis itself comes next. The front apron of this requires two 6-BA clearance holes in the positions shown in Fig. 4. These two holes correspond to those drilled in the front panel in Fig. 3. A further hole, illustrated in Fig. 5, is next required in the folded apron at the rear. This hole should be sufficiently large to take the mains lead grommet, and it passes through both sections of the rear fold.

All that now remains, apart from wiring, is to fit a grommet, the mains transformer, and two three-way tag strips to the top of the chassis. The positioning of these various components is illustrated in Fig. 6, this diagram showing also the layout of the various holes required. It is important to ensure that the mains transformer is mounted in the correct way round. The lead-out wires are clearly shown in Fig. 6. It will be noted also that the two three-way tag-strips mounted on the chassis are of the type in which the centre tag is used for mounting purposes, and is consequently at chassis potential.

Wiring up may now be started. It would be advisable not to fit the front panel at this stage, as this will allow easier access to the electrolytic condensers. These condensers are relatively small components, and they are capable of being supported in the wiring.
from the tag-strips. If they are supplied or obtained with metal cases, it is most important to ensure that these cases are insulated. Otherwise short-circuits may occur, with consequent damage to the components of the power unit. This precaution is necessary owing to the fact that the metal cases may not be isolated from the appropriate condenser terminals. Suitable insulation would be given by fitting an insulating sleeve over each condenser or by wrapping around it a good insulating or p.v.c. tape. It will be remembered from what has been mentioned earlier that C3 consists of two 8uf condensers in parallel. Thus, four 8uf electrolytic condensers are employed altogether.

The first step in the wiring consists of connecting the electrolytic condensers at the front end of the unit, and the wiring required is shown in Fig. 7. This diagram should be quite self-explanatory. The red fly-lead shown connected to the tag-strip will later connect to the output socket on the front panel, when this is fitted. The lead connecting to the negative tag of C1 is from lug 3 of the transformer. This wire should be adequately covered with sleeving.

It is extremely important to ensure that correct polarity is observed when connecting up the electrolytic condensers. Polarity is

Fig. 3. The layout of the front panel. Fig. 4. The two 6-BA clearance holes in the front apron of the chassis.

Fig. 5. The grommet hole in the rear apron. Fig. 6. Showing how the components on the top of the chassis are mounted.
indicated in the wiring diagrams by marking the appropriate tag with a positive or negative sign.

The wiring at the rear end of the chassis is shown in Fig. 8. This, again, is self-explanatory. It will be seen that a black fly-lead is fitted in this diagram, this being intended for later connection to the input socket on the front panel. The resistor R_1 should be mounted such that it lies across the tops of C_1 and C_{3A}. Its leads should be covered with sleeving.

The next step in wiring is illustrated in Fig. 9. This diagram shows the top wiring layout. It should be noted that the rectifiers are mounted by soldering their "common" tags to lug 4 on the transformer tag-board. The two rectifiers are coded with red paint at their positive terminals, and this fact is indicated clearly in Fig. 9. The two wires

Fig. 7. The first steps in wiring. **Fig. 8.** The wiring at the rear of the chassis.

Fig. 9. Illustrating the rectifier circuit. **Fig. 10.** The mains input wiring.
going from the outer ends of the rectifiers to C_1 and C_2 should be of heavy gauge wire, well insulated, to support the rectifiers clear of contact with any of the tags.

The front panel is next prepared for fitting to the chassis. This is done by connecting the various power leads to the output socket. Fig. 3 illustrated the voltages carried by each contact in the socket, looking at the front of the panel, and this contact layout should be adhered to. The red fly-lead of Fig. 7 connects to the h.t. positive contact, and the black fly-lead of Fig. 8 to the h.t. negative contact. The heater leads may also be connected to the output socket at this stage. Care should be taken to ensure that these leads are adequately insulated with sleeving.

Testing

After completion, the power unit can be tested. Before this is done, however, it would be advisable to make a final check for correct wiring and polarity of the various components. After the check has been carried out, the unit can be connected to the mains and switched on, whereupon its output voltages may be tested.

The power unit is then available and ready for use.

NEW 5/- BIB GIFT PACK RELEASED BY MULTICORE SOLDERS

Multicore Solders Ltd. announce that they have supplemented their bib lines with a new 5s, gift pack containing a bib wire stripper, electrician's insulated screwdriver and a card of Ervin multicore match melting tape solder.

The three items are mounted attractively on a gift card and finally packed in a cellulose envelope.

AMATEUR RADIO CALL BOOK

The 1956 edition of the R.S.G.B. Amateur Radio Call Book has now been published, and is available from the Radio Society of Great Britain, New Ruskin House, Little Russell Street, London, W.C.1, at 2s. 6d., postage 3d.

This edition has been completely revised and brought up to date, and contains 48 pages of call signs, names and addresses of amateur transmitting stations in the United Kingdom and Eire.

THE RADIO CONSTRUCTOR

A FERRITE ROD MAINS TRANSPORTABLE

by S. E. ADDIS

This receiver is designed for use with the new "Ferrite" Rod Aerials which are now available to the home constructor, and uses 6 miniature valves with B7G bases.

For those not familiar with this new type of aerial, it should be said that it consists of a rod of "Ferrocube" 8 inches long by about 1 in diameter on which are wound the Medium and Long Wave aerial coils. The coils are made to slide along the rod, and so vary the inductance of the aerial circuits, which makes for better alignment and improved performance over the more usual type of frame aerial.

The receiver about to be described was designed for use in a poor signal area, and results have been very pleasing.

input to the frequency changer is a little unusual, but in practice works very well. The normal selectivity of the superhet receiver is maintained with the advantage of a much improved signal-to-noise ratio being obtained.

In addition, no instability was experienced and therefore no special screening between stages is required. The output from the frequency changer is fed via the first i.f. transformer to a second Brimar 6BA6 r.f. pentode which acts as the i.f. amplifier.

V_4 is a Brimar 6AT6 which provides the signal diode detector, a.v.c. rectifier and first i.f. amplifier. The second diode in this valve is not used and is connected to chassis.

V_5 is a Brimar 6AM5 power pentode, which will deliver an output of about 1.4 watts when used with an output transformer with a ratio of 80:1.

The cathode resistor is connected to chassis via the secondary of the output transformer, which gives a proportion of feedback to improve the quality of reproduction.

The h.t. rectifier valve is a Mullard EY91 used in a half-wave circuit, smoothing being carried out by R_{17}, C_{15}, and C_{16}.

Circuit Description

As will be seen from the circuit diagram, the aerial coils on the "Ferrite" rod are tuned by one section of the twin-gang condenser, and are connected to the grid of the first valve, which is a Brimar 6BA6 r.f. pentode. This forms a complete h.f. stage which is coupled via a 20pF condenser to the input grid of an Osram X78 frequency changer. This untuned

This diagram shows the odd drive arrangement.
Care should be taken when handling the receiver as the chassis can be "live."

Construction

The receiver was constructed on an aluminium chassis size 9in × 3⅜in × 1⅛in, and the layout can be seen in the photographs. A panel 3⅛in high was fixed to the front of the chassis by means of the control fixing nuts, the panel being used to carry a Perspex tuning scale. A slide rule pointer arrangement was made with the aid of a drum drive and two pulleys, and a dial lamp was secured to the pointer carriage. In this way the dial lamp will travel with the pointer and provide maximum illumination at the tuning point.

Cabinet

The cabinet shown in the photograph was made from plywood covered with a piece of veneer which was on hand, and the handle is as used for small cupboard doors and obtainable from most ironmongers. The loudspeaker aperture was made from the lid of a plastic sandwich box; the centre being sawn out, leaving a moulded frame, and then a piece of plastic grille fixed in the opening. In this receiver the loudspeaker was fixed in the bottom half of the cabinet with the chassis at the top, but the arrangement could quite well be reversed; in fact, almost any type of layout could be used, but constructors should avoid trying to mount the "Ferrite" rod too close to the chassis, as this will only lead to a poor signal-to-noise ratio. The "Ferrite" rod should be mounted behind the speaker and as far away from metal parts as possible. If fixing brackets are supplied these should be used, but if a fixing device has to be made it should be of paxolin or similar material, and on no account should metal be used as the use of this material as a fixing bracket for the rod will decrease the Q and spoil performance.

Alignment

The i.f. transformers should be aligned to 465 kc/s, care being taken to keep the "Ferrite" rod away from the underside of the chassis as this will cause instability. As the coils on the "Ferrite" rod are in series for Long Wave operation, it is essential that the Medium waveband should be aligned first.
The trimmers across the coils should be used at the high frequency end of the band and the oscillator cores at the low frequency end.

After this part of the alignment has been carried out, the receiver should be tuned to a station on the Medium waveband as near as possible to 490 metres, and the Medium Wave coil on the "Ferrite" rod gently moved first towards the end of the rod and then back towards the centre of the rod until the station is peaked to maximum volume. Slight readjustment of the trimmer at the high frequency end of the band can now be made.

The same procedure can now be carried out on the Long waveband, but in some areas it may be found an advantage to peak the Long Wave coil on the Light programme station on 1,500 metres. Constructors will find that the receiver is sharply directional, and the best results from any given station can be obtained by slowly turning the receiver until maximum volume is obtained. The directional properties of the set need not be used on local stations, where ample volume will be obtained. A word of warning would not be out of place at this point: the "Ferrite" rod is as brittle as glass, and on no account should it be dropped, as it is certain to break.

Any good make of components may be used, and alternative valves have been tried with success in some positions in the set. As an example it is possible to use Mullard EF92 valves for the h.f. and i.f. stages in the set. The valveholder must be rewired for the new valve, and the cathode bias resistor must be changed to one of 220 ohms.

For those constructors requiring a greater output, a Brimar 6A5 valve may be used in the output stage. In this case the valveholder must be wired to suit the valve, and the cathode bias resistor should be changed to one of 270 ohms 1 watt, and the output transformer ratio should be 45 : 1. An output of about 2.5 watts will then be obtained.

The EY91 half-wave rectifier valve may be changed for a Brimar 6X4 if the valveholder is wired to suit the valve and the anodes are strapped together.

When substituting valves the total heater current should be noted, as with some combinations of valves the current will exceed 2 amps and a large heater transformer may be needed.

With the Osram X78 frequency changer valve the cathode is joined internally to heater at pin 3, and therefore this pin must be connected to chassis, the valve obtaining bias from the A.V.C. line.

All the valves so far mentioned are of the B7G base type, but there is no reason why the constructor should not adapt other types which he may have on hand. For instance, the Osram 68W6, which has a B9A base, could quite well be used in the output stage. In this receiver a 7in x 4in elliptical loudspeaker was used mainly because of the good tonal quality with minimum height, but any size of loudspeaker may be used provided allowance is made for it when making the cabinet.

Finally, it should be mentioned that if any change of valves or components is made after the receiver has been working, it should be realigned for maximum performance.

For those constructors who may be interested it has been found that the receiver works very well in conjunction with a magnetic tape recorder. A 2-way socket strip was mounted on the back of the chassis, one socket being connected to chassis via a 0.05 µF 1000V condenser; the other socket was connected to the signal diode through a 0.01 µF 350V condenser. The output was taken through a screened cable to the pick-up input sockets on the recorder. Before recording, it should be ascertained that the mains connection to the receiver is connected in the right sense; otherwise modulation hum may be experienced. Should this happen the mains plug must be reversed.

"FM TUNER UNITS for FRINGE & LOCAL AREA RECEPTION"

This booklet, now in its Second Edition, includes a description of a Suitable Tuning Indicator and of The Osram 912 High Fid.lity Amplifier. 32 pages with art board cover, price 2s. 6d., post paid.

DATA PUBLICATIONS LTD
57 MAIDA VALE - LONDON W9 Telephone CUNingham 6141 (2 lines)
RADIO—AND CONTROL

PART 3

by RAYMOND E. STOCK

Independent Controls

In the previous article we discussed fixed mark/space systems. Attempts have been made, however, to vary mark/space ratio and pulse repetition rate inde-

pendently. This can easily be achieved by controlling the speed of the pulse-drum driving motor at the transmitter end—but separating the two effects at the receiver is a different matter! Generally, complete independence of channels is impossible, though one system was devised by the author to give proportional control over both steering and speed in a model only 9in long.

The dogged reader who is still with me may conclude that if the problem can be solved in such a small model no difficulties should arise in normal cases, and the foregoing examples have been a waste of space. Not so! This particular system is permissible in a model built for a special purpose (to exploit absolute minimum size) but seems unethical for more orthodox purposes.

The secret is in steering by engines; in this way only one function in the model need be controlled, i.e. motor speed, both collectively or differentially. In fact, if a twin screw model (beamy and therefore with widely spaced thrust lines) is steered by engines it should be more manoeuvrable than with the orthodox rudder.

Fig. 14 gives the circuit. A very simple hard valve receiver terminates in the usual sensitive relay; the latter can follow accurately pulses of any speed used. The forward contact A and back contact B energise relays P and S, and these in turn energise driving motors MP and MS connected to twin screws.

When the mark/space ratio is 50%, both relays and motors are energised for equal periods and the thrusts on both sides of the model are equal. Consequently, the course is a straight line. At 0% or 100% one motor is running continuously and the model turns hard a’port or hard a’starboard (actually with a turning circle of 2ft 3in in the 9in model). At intermediate mark/space ratios a proportionate effect results and steering is remarkably accurate. The pulse rate of
about 4 per second is too fast for the motors ever to stop entirely in central steering positions, and the inertia of the model prevents it "wagging its tail."

If the pulse rate is progressively increased (irrespective of the mark/space ratio), relays P and S are unable to follow cleanly, since they are designed to be slow-to-close, and the amount of power passed to the motors per cycle is reduced proportionally.

At about 25 p.p.s. these relays never actually close and the motors stop. It is thus possible to get a full proportional control of the model from Stop to Full Ahead.

As an example of the impossibility of completely separating the two effects of pulse rate and mark/space ratio, however, it will be seen that as the pulse rate is increased towards the stop position it is necessary to centralise the wheel, and complete "stop" can be obtained only with the wheel within 10 degrees of amidships.

Pulse Systems

There is an entirely different method of approaching proportional control which can give as good, or even better, results. This requires the transmission of two types of information and therefore, in general, two radio channels per control. With certain reservations, noted later, it is possible to use the vibrator method on a single channel (as shown earlier in Fig. 3), but whichever radio link is employed the essential feature must be the provision of two relays in the model, either of which can be instantly operated quite independently of the other.

Fig. 15 depicts the principle. RP and RS are the two relays, and each operates a steering unit (UP and US). These units are identical, and each rotates its output shaft through a specified angle whenever a single pulse arrives on its own channel.

The two mechanical outputs (rotating in opposite directions) are suitably combined and fed to the rudder.

Nevertheless, this is no disadvantage in practice, and the complete system results in an interesting development of mark/space for a specific purpose. Undoubtedly the idea can be employed for much larger models if one has no scruples about ignoring the rudder completely. Given more space, one could add reversing and other facilities. In this case the steering would employ from 90% to 10% ratio and other relays could be added, which by delay circuits could respond only to a full mark or a full space. One of these might operate a two-pole reversing switch, the other being available for additional facilities.

As a matter of interest the accompanying photographs show the 9½ foot model tug, which weighs, complete, just under 1 lb.

The number of pulses transmitted obviously determines the angle through which the rudder rotates, while the channel selected determines the direction of movement.

It will be evident that the smallest movement of the rudder possible is that due to one pulse, and this represents the limit of resolution. Should the steps in which the rudder moves be large, it would be more correct to refer to the system as "Positional."

In this context, however, we are assuming that the steps are small, so we are justified in calling the system proportional; it has already been stated that no system can have an infinitely close degree of resolution, and in practice a limiting factor would ultimately be backlash in gearing.

(To be continued)
Radio Miscellany

WHEREVER I HAVE BEEN IN RECENT weeks, whether at club meetings or more gatherings of two or three enthusiasts, the subject of home drills has come up for discussion. Much gratuitous advice is given on which of the three popular makes is best suited for general use, or perhaps I should say, the more specialised uses. There is, of course, little to choose between them for the simpler uses such as drilling, sanding and grinding. It is when one requires the attachments for more complicated uses such as bench planing, circular sawing or wood-turning, that doubts begin to arise whether one really chose the "best" make. Nor are the differences small enough to enable the average user readily modify a piece of additional equipment of one make to be serviceable with another. Even the circular saw blades are of different diameter and have different size centre fixing holes. Thus they are not only non-interchangeable but, as far as I can discover, each make has only one tooth size.

Not only have I felt unable to join in these arguments, but I am still undecided whether I bought the "best" one myself. I bought mine when one firm was way ahead of the others in the matter of extra tools—which largely influenced my choice—but it is not as easy as that to decide nowadays. For the new customer it has become a question of which equipment kits are most likely to be available in future needs, and although similar types of equipment may be available there may be quite a difference in the range of work to which they can be put.

The position has been made somewhat easier by the availability of a small range of "universal" tools, and now that a new (but rather expensive) multiple tool is likely to be available in future years, in the early future it should be easier for the potential purchaser to make up his mind.

Thinking of electric drills reminds me that a recent advertisement in an I.T.A. advertisement was so effective that a neighbour of mine went out and bought one the next day! He is a non-radio man, and it was the circular saw that got him.

I wondered if even this could bring a blush of shame to the faces of our programme planners. It should be bitter irony to know that their efforts fail to relieve the dragging monotony of prison life!

As Others See Us

My comments in our centenary number, giving a brief history of The Radio Constructor and an outline of policy, brought a surprisingly heavy response from readers. Many of them have not written to us too many times, and they have all been passed to the editorial staff concerned. It is very pleasant to know that so many readers regard our organ as a circle of friends rather than just another magazine, and that they feel as much interest in its contents and policy as do the editorial staff. In a sort of self-conscious fashion I wrote that R.C. should be a Magazine; something more than a text-book in monthly instalments, or a serialised collection of circuits no sooner built than forgotten about.

A very high proportion of new readers said they had bought high quality amplifiers and that their interests were a.m. and t.m. tuner units—preferably an a.m. unit to which the latter could later be added.

CENTRE TAP talks about DRILL KITS THE MAGAZINE CABINETS

CENTRE TAP talks about DRILL KITS THE MAGAZINE CABINETS

Mr. P. W. Grundy (Sheffield, 11) not only supported this idea but asks for a spring-back binder to keep his library of circuits, etc., in order. I understand the Kingswood Enveloper No. 4297 just fits the bill. The price is 6s. (1s. 1d. postage) and it is made by J. C. King Ltd., 42/62 Goswell Road, London, E.C.1.

The grouping of constructional features in the centre pages is not quite so easy as it sounds, but it is the normal policy to use them for the front cover feature and usually the main constructional item of the month.

E.F.D. of Windsborn, S.W.18, puts forward an idea he has a fairly wide appeal. He says: "I should like to see a couple of pages, say alternate months, on cabinet making with simple tools. Many readers must want designs for t.v., portable, corner and extension speakers, especially with methods of making dial and c.r.t. cut-outs or speaker frets. Rarely is one lucky enough to find cabinets which will fit a modern set decently, and any set worth making is worthy of a presentable case; Even if one finds a cabinet "near-enough" no little carpentry skill is required to adapt it to take the dial.

"Points which should also be fully covered are the various processes for amateur french polishing and the results to be expected, and even more important, cabinet acoustics. Also it would be nice to see a separate chapter on the construction of cabinets of their own design and making? Nor should work-benches and tool chests be neglected."

I have seen a lot of home-made cabinets at various times and while many of them were very good, the chief fault which marred the others was clumsy internal strengthening. It seems to be the basic difference between the handyman-carpenter and the man who follows professional methods. Butt joints and awkward inside reinforcement invariably spoil the general outline and make for a clumsy, patchwork appearance.

Where We Came In

I started off this month's Miscellany on electric drills and their ancillary tools. Now I find myself led around to them again. Quite a proportion of constructors have added an electric drill to their workshop (Continued on page 345)
RIGHT—From the Start

PART I: SYMBOLS

by A. P. BLACKBURN

This is a new science. Lots of people will laugh at that, but nevertheless, it is a comparatively new science. And if you are a beginner to radio, you are a new conquest. During the last twenty-five years, the number of radio amateurs has increased to such an extent that no other branch of art or science can boast of so many followers. Having become interested because of the educational efforts of school or service, perhaps, the average beginner starts, with the help of a kit of parts and a blueprinted layout, by making his first receiver or amplifier.

Now that, of course, is a very satisfactory achievement. Indeed, many people stop there and decide that an ability to follow a diagram is all they need to set them up in the “expert” class. However, when friends and relations have admired, and fingered, and questioned, and the finished product is no longer the sole topic of conversation, the true beginner wants to follow up his advantage and firmly establish himself as an expert. The only way to do that is to find out and learn why the instruments work; why did it go wrong? Could I design one?

No reason in the world why you couldn't, once you’ve learned the theory, and done some practical work. Those mysterious circuit diagrams will then no longer be mysterious, and the mumbling discontent of having only “put the thing together” will give way to a very satisfactory pride.

This series has been designed to help that transition.

Circuit Diagrams

Many articles are published which contain no point-to-point wiring diagram, and undoubtedly reading a circuit diagram is the first difficulty to be met by the newcomer. The ability to interpret a circuit diagram is therefore essential, before one can hope to know more about the subject of radio.

Circuit diagrams are a form of symbolic representation, which saves everyone a great deal of time. They are used to reduce the tedium of ploughing through mazes of intricate wiring diagrams. So instead of drawing a component as it actually appears, a symbol is used to represent it. The first component to consider is the resistor.

Resistors

The symbol for the resistor is shown in Fig. 1. It is a component which can take many forms; probably the most common is...
the carbon type. It consists of a carbon compound cylinder with a lead attached to both ends. Some types have a ceramic insulating tube surrounding the carbon rod, as shown in Fig. 2.

Another common type is the wire-wound resistor. Here the resistance material is wire instead of carbon. The wire is normally wound on a former, and in some types a layer of glazed ceramic is coated on the outside, as shown in Fig. 3.

Carbon resistors are normally used when the power to be dissipated in them is low—of the order of one or two watts—whereas wire-wound types may be used up to hundreds of watts.

The same symbol (Fig. 1) is used whatever type of resistor is specified.

The unit of resistance is the ohm. Once again the symbol is used to avoid writing the whole word; the symbol is Ω (capital omega). Often many thousands of ohms are required, sometimes many millions. A thousand ohms is designated by kΩ, meaning kilohms, and a million ohms by MΩ, meaning megohms. The resistor shown in Fig. 4 therefore has a value of twenty-two thousand ohms.

Capacitors

Capacitors (otherwise known as condensers), have a circuit symbol which represents perfectly their actual construction.

![Tubular Paper Condensers of various values](image)

Potentiometers are really variable-tapped resistors. The symbol is shown in Fig. 5a. The same component connected differently, as a variable resistor, is shown in Fig. 5b. (This is achieved by connecting the wiper and one outer contact together.)

![A group of Iron Cored (Mains) Transformers. See Fig. 11](image)

A potentiometer may be carbon or wire-wound, in the same way as an ordinary resistor. It consists of a carbon or wire track type, and make to make. The material used for insulation between sets of plates also varies considerably.
The unit of capacity is the farad. Normally capacitors have values far smaller than this, and the microfarad (one-millionth of a farad) and the microfarad (one-millionth of a farad) are used. The microfarad is designated by μF and the microfarad by μF or μF. If μF is used, it is often called the picofarad (or just "pF").

Source: The Radio Constructor

Transformers
These, like inductors, fall into many classes and have many uses. The symbols used for transformers are shown in Fig. 11. As may be seen from this figure, a transformer consists of two coils, with the exception of (d).

(a) is an air cored transformer, merely consisting of two windings wound close together; (b) is similar to (a) but an iron core has been introduced. (c) has a "duct iron" core. This is a material made up of minute iron fragments moulded into the required shape. It has only one coil, which is "tapped," that is, a connection is made at a point between the ends of the winding. This type is called iron cored and may be air cored, iron cored or duct iron cored.

Valves
There are many types of valves, and there are a corresponding number of symbols. We will not involve ourselves with the operation of valves at the moment, but merely draw up a table (Fig. 12) of the commoner types and their symbols.

All the valves in Fig. 12 are "indirectly heated." However, every one of them may be "directly heated," and methods of doing so are shown in Fig. 13. The only difference is that the电商 called the cathode is "missing" in directly heated types; that is, the heater (or filament as it is more commonly called in battery types) is coated to act as a cathode.

You will probably have noticed that the valve names indicate numbers; for example, triode (three) and diode (two). These names indicate the number of electrodes in the valve, not counting the heater. As an example, an extra grid added to a triode makes it a tetrode, but if the valve was indirectly heated and a cathode were added, the valve is still a tetrode and does not become a pentode.

Once again, the valve symbol is a very logical one. It represents the construction of a valve in a remarkably accurate and simple manner. Fig. 14 shows a simple, directly heated triode. At the centre is the filament or heater. Wound around it, but not in contact with it, is the grid, consisting of a helix of fine wire. Surrounding the whole is the metal tube, rigidly supported. The electrodes are connected to the base by the supporting rods.

Miscellaneous Symbols
A few symbols which are frequently found in every day circuits are shown in Fig. 15. With the exception of the rectifier, they are self-explanatory.

Next month we shall examine a simple circuit and consider how it may be translated into a piece of working apparatus.

A printed re
variable condenser

Coils
The symbol for a coil is shown in Fig. 10. This is pretty well self-explanatory, merely representing a coil of wire. If the wire is wound on an iron core, parallel lines are added as shown in Fig. 10b. If a solenoid is used, a resistor may be added, indicating that the wire is wound on a hollow core, the resistance of which is to be taken into account in calculations.

Inductors (coils) vary considerably in their physical shape. Those of low inductance value may consist of one or two turns of heavy gauge wire, self-supporting, whilst iron cored types have thousands of turns on an insulated former, and have a value of tens of henrys.

The practical method of aerial matching within the means of the average ham was demonstrated, showing how an aerial could be matched using an open-wire two-stub tuner and small pea lamps, comparing this method with the very expensive equipment of high accuracy standard. Another interesting exhibit on this stand was the ZC3A crystal controlled high power tripler for 25cm, with an input of 25 watts, together with its rotatable beam, displayed by S. C. Tucker, G5DT. Other exhibits were two 24cm crystal controlled converters by D. W. Furby, G3EHN, and two 24m two metre transmitters by C. J. McClelland, G6AG, a very compact and businesslike effort, and over 50 contacts were made in and around London.

VHF/UHF Stand
The SSB stand again stressed the no t.v.i. theme and some very excellent items of equipment were shown. A 2-band mixer and amplifier exhibit by H. F. Knott, G3CU; a filter modulator unit by G. N. M. Myatt, G3FRN; a single side band receiver with a built-in U.G. Hay, G3FH1; a pulsed two-tone oscillator.
by B. J. Rogers, G3ILL, and a phase shift exciter by J. Mortimer, G2MF. Much interest was again shown on this specialised subject, and the stand personnel were kept busy demonstrating and answering questions.

H.F. and Test Equipment Stand

This was, as usual, well patronised, as it carries all miscellaneous equipment from 1.7 Me/second down to 28 Mc/s, as well as the ancillary equipment. Obviously the apparatus which drew most attention was the miniature Transceiver by L. Descom which had won the silver trophy. A useful instrument was the GDO 6-range switched turret made by Mr. J. Davie, G2XG. A phone and signal generator by C. H. Edwards, G5TGL, was a necessary and easily constructed unit. Mr. E. Yeomanson, G3IRK, who is well known for his neat workmanship, displayed his latest harmonic checking unit for 45cm. and also an excellently built 150 watt 5-band transmitter to G3BTM's design. Also on this stand was a linear PA by S. H. Feldman, G3GBN; a very neat countryman's mobile transmitter/receiver for the 1.8-3.5 Mc/s bands made by W. C. Crabtree, G3BK; a signal amplifier by E. G. Styles, G3JSE, and a well-constructed 150 watt handheld transmitter by G. G. Gibbs, G3AAZ. All of these items were taken at random from a large collection of gizmos which were being little to choose in workmanship and ingenuity.

Can Anyone Help?

Requests for information are inserted in this column, subject to space being available.

- R. T. McNiven, Calderstones Hospital, Whalley, Blackburn, Lancs., would appreciate any information on valve types and line-up, type of battery, etc., for the ex-Admiralty 4-valve battery receiver Marine 361.
- J. Graeby, "Ivy Gabriel," Longhill Lane, Marple Bridge, Cheshire, would be very glad to learn the valve line-up, and any other information such as working frequencies, etc., of the type CRP 46 ACA Radar Receiver, a unit of the Model 5D13 Radar Equipment manufactured by the Raytheon Mfg. Co. *
- Garth Collerton, 190 Town Lane, Denton, Manchester, requires the circuit of the RDO No. 1 either on load or purchase.
- M. J. Montgomery, 13 Lea House (F.), Arlingdon College, near Haywards Heath, Sussex, wishes to obtain the circuit of the American BC092A Indicator Unit.
- R. S. Haslam, 3 Wadele Grove, Teneriffe, Dublin, Eire, would be grateful for any information regarding the Bender TA.14G or TA.12A to T433 Emitter. He is willing to purchase or borrow the circuit diagram, manual and any conversion data.
- G. C. Deal, 8 Tuke Road, Leach, Fife, Scotland, wishes to know if you can assist him in supplying the circuit of the MCR1 Miniature Receiver and the a.e./d.e. MAIN POWER Unit for same.

Headquarters Stand

Always the centre of activity, Headquarters Stand again lived up to its reputation this year. The usual R.S.G.B. publications were on sale, and a new 1956 Winter Call Book was published. A display of equipment on show by the Technical Committee were: the antenna match by F. Hicks-Arnold, G6MB; the new Britannia Communications Receiver by A. D. O'dell, BRS2065; a simple bridge for measuring the separate resistive and reactive components of aerial impedance, frequency ranges up to 30 Mc/s, by R. H. Hammans, G2IG, and a 2-valve F. M. Tuner with crystal or vacuum diodes by A. H. Koster, G3ECA. Mr. J. Rouse, G2NXA, the Assistant Editor, who was available most of the time, was kept busy answering many questions. Particularly on the Saturday, the staff and voluntary members had a hectic time.

The exhibition was visited on the opening day by the I.T.A. newsreader staff, and part of the film taken was reproduced in the late night news. The B.B.C., not to be outdone, attended on the Saturday morning and a sound broadcast on discs was recorded. Included in this was a QSO between 2 metre stations at the exhibition, G2BR, and a mobile station with which Mr. Rouse, the Assistant Editor, and the B.B.C. commentator, circled around.

Altogether a good time was had by all, and well over 2,000 members visited the show.

MORE TRANSISTORY

by B. H. Jay

The small transistor receiver described in our February, 1955, issue served as a simple example of the possibilities of "transistorised" reception. However, the point type of transistor used as a detector does not represent the optimum use of a single transistor. There are of course several possibilities, including such things as the reflexing type of circuit (described in a Telefun leaflet supplied with their transistor coils). But for simplicity, and for volume of output, it is difficult to beat a "crystal detector/junction transistor" combination.

Readers may be interested, therefore, in experiments made using the little chasis previously described as a basis for a "Detector l.f." combination—transistorwise. While present types of junction transistor on sale in this country have a very limited h.f. performance—a matter being speedily remedied—they make excellent l.f. amplifiers. In fact, the output from a crystal set followed by a junction transistor will provide loud headphone, and even loudspeaker, results from a strong signal.

The transistor used was the Mullard OC71, which does not need a holder, as it is provided with long wire leads enabling it to be wired directly into a circuit. The usual precautions against overheating the transistor when soldering are thus easily obeyed, providing one does not solder on the leads closer than an inch to the body of the transistor. Moreover, if the wires are gripped by a pair of pliers when soldering, effective "thermal shorting" is achieved, and no fear of damage to the transistor need be felt. Warnings are in order not so much because of the fragility of transistors, which are physically very robust little creatures, but because familiarity breeding contempt may cause a valuable transistor to be damaged!

There are many ways of using a junction transistor as an l.f. amplifier. The most useful method for our purpose is the "earthed emitter" connection, which is the "dual" of the usual earthed cathode valve amplifier (Fig. 1). To connect a crystal detector audio output to the transistor input the obvious method is to use conventional audio r.c. coupling circuits (Fig. 2). However, there is a snag in this. Due to the low input impedance of the transistor, a sizeable coupling capacity is needed if excessive bass loss is to be avoided. The usual types of 0.5μF coupling condenser are large, and defeat the purpose of making a compact transistor receiver. The super-miniature tantalum electrolytics developed for transistor circuit use are expensive. However, tests showed
that even a 0.01 μF coupling capacitor was too small, although a 0.5 μF condenser was adequate for good headphone quality. It should be noted, by the way, that transistors of the junction type have exceptionally linear characteristics, and give very pleasant crisp clean audio that sounds remarkably "hi-fi" even on a pair of phones. Distortion is noticed with valves. Hence, unless overloads, the transistor gives remarkably pure reproduction.

For a slight compromise we can eliminate the large coupling capacity and two resistors in the transistor circuit, by employing direct d.c. coupling to the base of the transistor. It is essential to connect the crystal detector and clipping them. Actually this arrangement falls down at 100% modulation of the received carrier. However, broadcast signals are lightly modulated on the average and seldom if ever reach the 100% modulation level. In any case conventional broadcast receiver detector stages usually introduce distortion at modulation levels well below 100%.

The correct polarity of the detector is obtained by wiring the end which is coloured red away from the transistor. A surplus germanium glass-bodied crystal was used and behaved perfectly. Besides saving the cost and bulk of three components, the direct coupling method has a further advantage in that the current taken by the transistor depends on the strength of the received carrier. Thus when the station goes off the air, the battery drain virtually ceases—a useful feature! Moreover, this could be used to operate a sensitive relay for top hand addicts to call up another, or (happy thought) to switch on a mains broadcast receiver! It does mean that a battery could be connected permanently without much loss of life, as a good phone signal is obtained at a gas main as aerial can be dangerous—Ed.) plus body capacity as "earth." For initial setting up it is advised that a limiting resistor of 3.3 kΩ bypassed to audio and a milliammeter be used in series with the h.t. negative line (don't forget the transistor h.t. potentials are the reverse of a valve's) and a low range milliammeter to show that the maker's rating is not being exceeded. A single miniature cell giving 1½ volts is adequate, but h.t. can be increased to three volts if desired. There is only a slight increase on going to three volts on a given signal, but on loud signals overload will occur unless there is ample h.t. The milliammeter gives a graphic indication of signal strength and of correct tuning, the audio output on fractions of a milliamper at 1½ volts being surprisingly "beefy." A series aerial condenser to reduce input is a useful measure to prevent overload on strong signals when setting up. It is possible to overload and harm the transistor by excess current, so some may prefer to include a series resistor of from 1 kΩ to 3.3 kΩ permanently. Otherwise, when once set up, the resistor

\[E245 \]

Fig. 2. A crystal detector may be followed by a junction transistor R/C coupled to the crystal output to make a practical "Det-L.F." receiver. However, to obtain a good bass response the coupling condenser C must be of fair size, around 1 μF, which is difficult to accommodate in a limited space unless special condensers are used.

\[E246 \]

Fig. 3. Provided the crystal diode detector is connected in the correct polarity as shown, a practical direct-coupled transistor circuit is achieved. Two resistors are eliminated as compared with the Fig. 2 circuit, and the large size coupling condenser disappears, to be replaced by a low capacity r.f. bypass-cum-tank condenser. With standard components a modest receiver is now possible.

noticeable only on a very loud signal that overloads the transistor, a condition noted because quality abruptly changes from clean to distorted at a sharply defined signal level. There is in other words a sudden onset of distortion due to limiting with a transistor, rather than the gradual increase of distortion the right way round. The correct way (Fig. 3) is the one giving a negative output. If a small capacity is shunted across the detector as shown, this builds up a suitable negative d.c. bias due to the r.f. carrier level so that the transistor is correctly biased, and can carry the audio signals without cutting or a fraction of a milliamper. Anything in the milliamper region is a very loud sound, and will give moderate loudspeaker volume.

Accordingly the direct coupled circuit was used, by wiring a crystal detector into the transistor chassis previously described, and coupling this directly into a Midland OC71. The original Teletron Hi-Q transistor coil was used, and this incidentally gave excellent results also with crystal detectors. The "standard" aerial used was the gas main

\[E249 \]

Fig. 4. When initially setting up the Fig. 3 circuit, a safety resistor limiting transistor current (R), a bypass condenser (C), and a low range milliammeter (M) are added. The bypass condenser may be omitted, and the meter, although useful for tuning, is also not essential, though it does indicate whether or not transistor current is in a safe region. The resistor R may be reduced to 1 kΩ finally, if it is desired to retain it as a limiting device. Variable aerial coupling when setting up is also helpful in preventing excessive transistor current; a series aerial variable condenser is suitable.

and meter may be removed when satisfied that no overload can occur.

The simplicity and "punch" of this simple arrangement, plus its microscopic demands upon battery power, make it a useful "personal" and emergency receiver; provided that caution is exercised in first "firing up," it should be trouble free and capable of almost indefinite life. Battery life should be virtually shelf life—if not tuned to a QRO local!
Technical Forum

Dry Accumulators

A CONSIDERABLE AMOUNT OF INTEREST has been shown in our recent description of a battery charger, and one reader has asked if the charging procedure is the same for the jelly acid type of accumulator. The dry and jelly acid cells operate on the same principle as standard free acid types, but instead of the electrolyte being in liquid form it is contained in the pores of the separators, the plates, and the jelly if this is employed. It is normally never necessary to add acid to these cells, but distilled water should be added before the charging is started. Enough water is used in the jelly type to keep the jelly moist, and in the case of the dry accumulator enough is used to ensure that there is always moisture present in the vent during the charging period.

The time and rate at which to charge dry cells is specified on the maker's label. If a lower charging rate has to be employed, a correspondingly longer time should be allowed. A charging rate in excess of that specified should never be used. It is not, of course, possible with dry accumulators to test the specific gravity of the electrolyte, and the state of the charge must be determined by reading the terminal voltage with a good quality moving coil meter. On a cell which is in good condition the following readings should be obtained:

- Discharged: 1.9 volts off load
- Fully charged: 2.15 volts off load
- Fully charged: 2.5V—2.6V on charger.

The final voltage should remain substantially steady during the last three hours of the charging time.

On the completion of the charge the accumulator should be allowed to stand for an hour to enable as much moisture as possible to percolate back into the cell; the surplus should then be drained off.

Idle accumulators should never be allowed to stand in an uncharged condition, but must be kept charged to prevent the plates in good condition. As with the free acid type, it is advisable to keep the terminals of the dry cells covered with vaseline to avoid corrosion.

Vision A.G.C. Fault

Until recently, the use of automatic gain control on the vision channel of a television receiver was regarded solely as a method of preventing picture fading and reducing the effects of certain types of aircraft flutter. As such, few designers considered the added complication and cost of the circuit worthwhile. However, with the introduction of a second television programme and the possibility of a third in the not too distant future, vision A.G.C. has come into its own. It is very unlikely that a T.V. set will receive both signals at the same strength, so that the viewer will have to reset the contrast control, and probably also the brightness control, when turning from one channel to another—if his set is not fitted with A.G.C. When one considers the difficulty which many viewers encounter in resetting these controls, to say nothing of the annoyance, the necessity of using a gain compensating circuit will be apparent. In this short article we propose to examine some of the defects which can occur in the gain control circuits, showing how they can be diagnosed by observing the results on the screen.

The various types of vision A.G.C. have already been described in a previous issue, so it is sufficient here merely to list them:

(a) Mean level system, in which the A.G.C. control voltage is normally obtained from the grid circuit of the sync separator valves and is dependent upon the mean amplitude of the video signal.

(b) Frame pulse gated system, in which the A.G.C. voltage is dependent upon the black level radiated during the frame blanking period.

(c) Line pulse gated system; functions as (b) but the black level taken is that which exists during part of the line blanking period.

From the functional point of view the latter two systems have much to recommend them, but the first arrangement has the big advantage of simplicity. When checking an automatic gain control system, the first thing is obviously to find if it is functioning as such. This is usually quite easily done by advancing the preset R.F. control and noting the change in picture contrast. If all is well the gain control (not contrast control) should have very little effect upon the picture level for quite large changes in setting. If this is found to be so, it means that as the signal level is raised by advancing the gain control, the A.G.C. voltage also increases, and this in turn reduces the gain of the vision channel, so that a more or less steady condition is maintained.

If a fault in the A.G.C. circuit causes a defect to appear on the picture even when all controls are adjusted for optimum, it invariably indicates the presence of an a.c. component on the gain control line. Where the control circuit falls within the first two categories (a) or (c) listed above, this a.c. component is most likely to consist largely of a 50c/s wave. The effect of this on the picture is to produce a tendency towards a shading bar to appear across the top of the image. In the more severe cases the line timebase may fall out of synchronism only at the top of the picture. The fault is usually traced to an open circuit filter capacitor across the A.G.C. line. Referring to the circuit diagram Fig. 1, the capacitors to be suspected are either C₂ or C₃; should the effect be particularly severe, the component having the greater capacitance is the most likely culprit.

A filtering defect in the line gated circuits (c) in our list will permit line pulses to reach the vision channel. This will generally result in a dark band appearing down the extreme left hand side of the picture. In the less severe case the trouble may simply appear as slight shading on the extreme left of the image. The filtering capacitors C₂ or C₃ must again be suspected if this type of fault appears.

Referring back to the circuit diagram, it will be seen that there is a further R-C combination associated with the A.G.C. line, namely C₁R₁. The purpose of this combination is two-fold. Primarily the capacitor is there to provide a short earth return path for the r.f. current in the tuned grid circuit of the valve. Should this capacitor become defective it may either reduce the gain of the associated stage or cause instability. The secondary use of C₁ and R₁ is to remove any line pulses which may be radiated by the line timebase and picked up on the A.G.C. line. Unwanted pick-up of this nature will cause a shading bar, similar to that already described, to appear down the extreme left of the picture. In this case, however, the bar may be either darker or lighter than the remainder of the picture, depending upon the polarity of the pulses on the control line.

In general, if one of the faults described is encountered it at once suggests an open circuit capacitor, and it is a relatively simple matter to shunt the suspected components in turn with a known good capacitor to determine at which point the trouble is located. This is a standard quick method of locating a defective capacitor which can well be applied to trouble-shooting in this particular part of a television receiver circuit.

JANUARY 1956
THE NECESSITY FOR CALCULATING THE combined resistance of two resistors in parallel frequently occurs during the course of circuit design and construction, and the formulae involved are rather unwieldy, involving as they do "reciprocals of the sum of reciprocal resistances."

Speaking in general terms, if we have two resistors R_1 and R_2 in parallel, as shown in the inset on the accompanying chart, their combined resistance R_P is given by:

$$ R_P = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} $$

which simplifies to

$$ R_P = \frac{R_1 \cdot R_2}{R_1 + R_2} $$

Thus if the resistors are, say, 100Ω and 68kΩ respectively, their parallel combination will be

$$ R_P = \frac{100 \times 68kΩ}{100 + 68} = 40.48kΩ $$

This is not easy to calculate without the aid of logarithms or a slide rule, but fortunately it lends itself to easy calculation in the form of a design chart.

To use the chart for finding R_P as shown above, the value of R_1 is read horizontally, and the value of R_2 read slant-wise. Now a rule or straight-edge is placed with one end passing through "0" (in the bottom left-hand corner of the chart and the other end through the point where R_1 and R_2 intersect.

The required parallel value or R_P is now given by the level, read on the R_1 scale, where the straight-edge cuts the "R_P" vertical line.

For the example given above, the chart gives a parallel value of 40kΩ, which is an error of less than 2.5%.

A case which occurs far more frequently is that of finding the value of resistance required to make up a known parallel value. Once again, the basic formula for calculating the value of an unknown resistor, R_2, which with a known resistor, R_1, will give a desired parallel combination R_P, is given by

$$ R_2 = \frac{R_1 \cdot R_P}{R_1 - R_P} $$

and this simplifies to

$$ R_2 = \frac{R_1 \times R_P}{R_1 - R_P} $$

This is also shown in the inset on the chart.

To use this chart for this purpose, the straight-edge or rule is lined up with the "0" or the chart origin at one end as before and with the required parallel value on the vertical R_P scale at the other.

Scanning along the straight-edge to the right, a value of R_2 is sought which coincides with the chosen value of R_1 at the straight-edge.

The general case, of course, is that no exact value of R_2 is obtained on the graph so the nearest value is selected, and using the procedure outlined earlier, the parallel combination that this compromise value of R_2 gives with R_1 is found.

If no specific value for R_1 is considered at the outset, and it is merely a question of determining two resistors that will give a required parallel combination, then the task is simplified. In this case it merely remains to seek any intersection of R_1 and R_2 values at the straight-edge.

Example 1
The required screen resistor in a pentode circuit is 68kΩ. What resistor will give this value when wired in parallel with 100Ω?

The straight-edge is laid through "0" and through "68" on the R_2 scale and is seen to pass through $R_1 = 100$ when $R_2 = 220$. Thus a 220Ω resistor would be used. Notice how common sense prevails in allocating the correct number of noughts to the value that is solved.

Example 2
A 330Ω resistor is required for a tone control. What two resistors will give this value?

Proceeding as in example 1, we find that "56" and "82" for R_1 and R_2 respectively, lie on the straight edge. Hence, a 56kΩ and 82kΩ resistance combination would be used. In lieu of these, the chart shows that $R_1 = 39$ and $R_2 = 220$ also satisfy the combination, in which case a 390Ω and 2.2MΩ combination would be used, with better results; although the tolerance, in either case, is far less than that which the 10% components, for which the chart was designed, would themselves introduce.

One final note; the values of R_1 and R_2 are, of course, interchangeable, and for practical purposes, the smaller value of resistor should preferably be referred to as R_1 since this scale on the chart is more restricted than that of R_2.

The range of values provided is, however, adequate for most purposes; and to have included more would have detracted from the chart's accuracy.
G2AK THIS MONTH'S BARGAINS G2AK

THERE IS NO EXCUSE NOW for not being on phone or for not having a nice clean CRYSTAL HAND MICROPHONES

As illustrated, in silver hammer-case with polished grille, handle and 4 feet screened lead. Only 21/- p. p.

Other lengths at rates.

DROP-THROUGH MAINS TRANSFORMER with voltage-rising strip. Primary 200/250V. Output 25/271V, 100mA, 6.5V, 3A, 5V.
2A, 18/- only, post and packing 1/6.

For the NEW MOBILE 12V miniature rotary transformers.
Outputs 360/310V, 30mA c.a. or 20mA, 1C.A.S. Only 4/- x 21/- overall. ONLY 17/- each, or 30/- for 3, post and packing 1/6.

Carriage paid on all orders over £1 except where stated.

CHAS. H. YOUNG, G2AK

MAIL ORDERS TO Dept. 'R', 102 HOLLOWAY HEAD, BIRMINGHAM

Midlands 3254 Central 1635

The Bennett College can make you an expert TV technician

IN YOUR OWN HOME!

Here's your big chance! The Bennett College, famous the world over for its first-class postal tuition, now offers you a course in Television Servicing. Right away you can start adding to your knowledge of television repairs and maintenance, increasing your technical ability—and making a sound investment for your future. Studying with The Bennett College is a pleasure. You work in your own home, as quickly—or as slowly—as you like. Your personal teacher at the College sends you your lessons—and gives you his friendly help based on years of teaching experience. The College guarantees to continue teaching you until you reach the standard you wish—and all your text-books are provided free of charge.

Send for a free prospectus to-day! Just fill in the coupon opposite and post it off. The Bennett College will send you a prospectus free of charge and without obligation.

EXCELLENT COURSES in the following subjects are also offered by The Bennett College. Write on your coupon the course that interests you:

- ELECTRICAL ENGINEERING
- RADIO ENGINEERING
- ELECTRICAL WIRING
- TELECOMMUNICATIONS
- POWER STATION ENGINEERING

To: THE BENNETT COLLEGE
(Dept. A162), SHEFFIELD
Please send me free of charge and without obligation, a copy of your prospectus on

SUBJECT:
NAME:
ADDRESS:

Age (if under 21).... Please write in black letters

SC50 Signal Generator

covers 100 kc/s to 80 Mc/s on fundamental frequencies (not on harmonics) in six continuous bands, having a total scale length of over 60°. The r.f. oscillator is a type EPF1 and a 6C4 operates at 400cps for internal modulation when required. The output is controlled by coarse and fine attenuators. Operates from 200/250 volts 50 cycles using double wound mains transformer, with RM1 rectifier. Housed in a specially designed olive green wrinkle metal case with carrying handle, size 9" x 13" by only 4" deep. Weight 12lbs. The de luxe scale is of green perspex engraved white, size 8" x 12".

ONLY £8.10.0 plus 6/- carriage & packing.

H.P.~£3 deposit & 6 monthly payments of 22/-.

CR50

Bridge measures capacitance from 10pf to 1000pf and resistance from 1 ohm to 10 megs in fourteen ranges, using internal standard of 1% (German "Konstante"). Indication of balance is by a magic eye fed from a high gain pentode amplifier. Leakage test is incorporated for condensers. Specially designed for bench use with sloping front panel. Case and panel of steel, finished black crackle with anodised aluminium scale. Complete with valves, instructions, etc., ready for operation from 200/250 volts 50 cycles. We have sold over 700 of these instruments—have you had yours yet?

ONLY £7.18.0 plus 4/6 carriage & packing.

H.P.—£3 deposit & 5 monthly payments of 23/-

GRAYSHAW INSTRUMENTS

PARK STABLE YARD LEYTON ROAD HARPENDEN HERTS

VY50 VALVE VOMETER (not illustrated). Measures up to 250 volts a.c., r.f. and d.c. with input resistance of 11 megohms. ONLY £7.19.6 plus 4/6 carriage and packing.

For further details please send stamped and self-addressed envelope and we will send information per return.

Callers only—Messrs. Charles Britain (Radio) Ltd., 11 Upper St. Martin's Lane WC2
BAND III CONVERTER KITS
for MIDLAND LITCHFIELD
TRANSMITTER

Complete Kit of Parts including ready wound coils, 2 EF80 valves, drilled chassis and wiring diagram. For m/c mains 200-250V.$3.10, 0. p. and p. 1./-

As above less Power Pack components. Power required, 200V 20mA, 6.3V 0.6A. £2. 5, 0, p. and p. 1/.

TELETRON AND OSMOR BAND III
COIL SETS with circuit, 15./- p. and p. 6d.

COAXIAL CABLE, 75 ohm, semi-air spaced, 9d. yd. Coaxial Plugs, 1/-. Sockets, 1/-.

TRANSFORMER SNIP

Transformer Snip

10/6
Post 2/-
Fully shrouded—standard 200-250V
280-0-280
at 80mA, 6.3V at 3A, 5V at 2A.

THE TWIN 20

This is a complete, high-quality, lighting fitting, it has built-in ballast and starters-stove enamelled white and ready to work. It uses two 20-watt lamps. Price, with two tubes, 39/6. Post and insurance 5/-.

TELETRON AND OSMOR BAND III
COIL SETS with circuit, 15./- p. and p. 6d.

COAXIAL CABLE, 75 ohm, semi-air spaced, 9d. yd. Coaxial Plugs, 1/-. Sockets, 1/-.

R. Cooper G8BX
32 South End Croydon Surrey
Croydon 916

Low-High Adaptor. Changes low resistance headphones to high resistance. Ref. No. Mic. 385-C. As used by "Johnnie" on "Park Lane"." Price 4/6 each.

Push Pull Output Transformer. Posted midget type. Ref. No. 866, Size 1" x 1" x 2 1/2". Price 8/- post free.

Radio Control
For Model Ships, Boats and Aircraft

by F. C. Judd, G2BCX

To operate a model ship or aircraft is a most interesting hobby. But how much more fascinating it would be if one could emulate the skipper or pilot and remain in control after the model has been set on its course. This, thanks to radio control, can now be done, and enthusiasm for it is steadily mounting. With the publication of this book, we really believe that we have produced what will become a recognised handbook in this field.

144 pages 135 diagrams and illustrations

Standard Edition, art board cover, 8s. 6d. post 5d.
Cloth bound, with gold lettering, 11s. 6d. post 7d.

DATA PUBLICATIONS LTD
57 MAIDA VALE LONDON W9

R. Cooper G8BX
32 SOUTH END CROYDON SURREY
CROYDON 916

TRANSFORMER SNIP

Transformer Snip

10/6
Post 2/-
Fully shrouded—standard 200-250V
280-0-280
at 80mA, 6.3V at 3A, 5V at 2A.

THE TWIN 20

This is a complete, high-quality, lighting fitting, it has built-in ballast and starters—stove enamelled white and ready to work. It uses two 20-watt lamps. Price, with two tubes, 39/6. Post and insurance 5/-.

TELETRON AND OSMOR BAND III
COIL SETS with circuit, 15./- p. and p. 6d.

COAXIAL CABLE, 75 ohm, semi-air spaced, 9d. yd. Coaxial Plugs, 1/-. Sockets, 1/-.

TRANSFORMER SNIP

Transformer Snip

10/6
Post 2/-
Fully shrouded—standard 200-250V
280-0-280
at 80mA, 6.3V at 3A, 5V at 2A.

THE TWIN 20

This is a complete, high-quality, lighting fitting, it has built-in ballast and starters—stove enamelled white and ready to work. It uses two 20-watt lamps. Price, with two tubes, 39/6. Post and insurance 5/-.

TELETRON AND OSMOR BAND III
COIL SETS with circuit, 15./- p. and p. 6d.

COAXIAL CABLE, 75 ohm, semi-air spaced, 9d. yd. Coaxial Plugs, 1/-. Sockets, 1/-.

R. Cooper G8BX
32 SOUTH END CROYDON SURREY
CROYDON 916

NEW AMERICAN MICROPHONE. Insert Microphone, ref. No. Mic. 253-A. A really beautifully made magnetic, fine of little over 1" in Diameter. Price 8/- post free.

Low-High Adaptor. Changes low resistance headphones to high resistance. Ref. No. Mic. 385-C. As used by "Johnnie" on "Park Lane"." Price 4/6 each.

Push Pull Output Transformer. Posted midget type. Ref. No. 866, Size 1" x 1" x 2 1/2". Price 8/- post free.

R1155 YOURS FOR £1
CONSTRUCTORS build these at low cost!

PERSONAL PORTABLE RADIO

Post Free

This little set was designed to give you a real personal portable radio that you can enjoy anywhere without disturbing others. Ideal for the holiday, hiking, fishing, camping, cycling, etc. Use it at home, at the office, in bed, or just anywhere.

POWER PACK TYPE PU2

Suitable for Teletron Band III, Converter, small receivers, test gear, etc., and specified for the AM/FM Signal Generator.

Complete kit of parts (as illustrated) 49/-.
Cabinet, panel and chassis, complete 10.6
(For AM/FM Signal Generator, etc.)

Send 2/- for layout, Wiring diagram and Components Price List.

ALL-WAVE RADIO 30/-
Ideal for the beginner or for those requiring a simple standby receiver.

R.C.S. PRODUCTS (RADIO) LTD
11 OLIVER ROAD
(Mail order only)
LONDON E17

HOME CONSTRUCTOR’S HANDBOOK

Published by RODING LABORATORIES

This famous handbook is now available for the NEW Edition. It contains 22 tested circuits, complete with descriptions, construction details, full parts lists, etc., etc. Also contains hints, formulae, data. Circuits include superhet, communications receiver, oscilloscope, signal tracer, tape recorder, amplifiers, biner's receiver, and many more items of gear. And the book is backed by Roding Laboritories, who are so well known for their quality home constructor products. This 70-page book represents unbelievable value at 2s. 6d. (plus 3d. postage and packing). Order now and take immediate advantage of the wealth of information it affords.

The latest editions of all Data Publications are available. Standard Prices.

Mail Order Only—No C.O.D.

R. DAVIES
54 Newton Road, Mumbles, Swansea

CONSTRUCTORS

YOU CAN RELY ON US

We specialise ONLY in radio and electronic components, a comprehensive stock of which are held by us, to supply Government, educational and commercial laboratories. Can we be of some help to you, the experimenter and constructor? Here are a few of our many stock lines—

Tapped Volume Controls, 2mg, 1mg, 1mg, 7/6 each; Linear, 1mg, 1mg, 1mg, 6/6; Surplus Stock Potentiometers, less switch, 2/3; with, 4/3; D/P, 5/-; midget wirewound, preset, etc., in stock.

All J.B. Scales and Gangs. Full vision, 13/9; SL8, 27/6; SL5, 26/-; 3-gangs in .0003 and .0005, 18/3; Single gang .0005, 9/-. Twin midget gang, covered, 11/-.

Bulgin Plugs, Sockets, Panel Lights, etc. Belling-Lee Co-ax. Plugs, 1/3, Sockets, 1/2. Plugs, Sockets, etc. Resistors, 10 ohms to 15 mgs in 1W, 5W, 4d.; 1W, 8d.; 2W, 1/4; midget 1W 'T' type, 6d.; High stability 2%/100-2 mgs, 1/6 each; wirewound (green vitreous), 33 ohms to 10K, 10 watts max., 2/- each.

Over 200 T.C.C. types of Condensers. 189 types of Hunts. Electrolytics new and surplus. 10,000 surplus Valves plus large stock BCA Valves. For 1/2 Silver Micas, 1.5p to 100pF, 1/4; 100pF to 280pF; 1/2; 300pF to 500pF, 1/4; 515pF to 815pF, 1/6; 1,000pF to 5,000pF, 2/6.

COILS—COMPLETE RANGE OF DENO, WEYMOUTH, WEARITE, OSRAM, ROR, TELETRON DENO F.M. UNIT PARTS, '912' PARTS, MULLARD 'S10' PARTS—ALL TAYLOR, AVO INSTRUMENTS IN STOCK, CELESTION, KOLA, ELAC, W.B, WHARFEDALE, GOODMANS SPEAKERS.

Send now for our Supplementary Winter List with H.P. Terms—Quotes S.A.E. Please, Postage extra.

Next to South Ealing Tube Station 65 Bus

RADIO SERVICING CO
