Also featured

- 5-Band Preselector
- I.C. Ratemeter
- Simple Remote On/Off Switch
Television Sets, Receivers and Short Wave Transmitters are expensive to acquire and you no doubt highly prize your installation. Apart from the value of your Set, you might be held responsible should injury be caused by a fault in the Set, or injury or damage by your Aerial collapsing.

A “Scottish” special policy for Television Sets, Receivers and Short Wave Transmitters provides the following cover:

(a) Loss or damage to installation (including in the case of Television Sets the Cathode Ray Tube) by Fire, Explosion, Lightning, Theft or Accidental External Means at any private dwelling-house.

(b) (i) Legal Liability for bodily injury to Third Parties or damage to their property arising out of the breakage or collapse of the Aerial Fittings or Mast, or through any defect in the Set. Indemnity £10,000 any one accident.

(ii) Damage to your property or that of your landlord arising out of the breakage or collapse of the Aerial Fittings or Mast, but not exceeding £500.

Why not BE PRUDENT AND INSURE your installation—it is well worthwhile AT THE VERY LOW COST INVOLVED. If you write to the Corporation’s Office a proposal will be submitted for completion.

Write for full details, quoting reference 5304, to:—

THE MANAGER

SCOTTISH INSURANCE CORPORATION LTD.,

66-67 CORNHILL, LONDON E.C.3
FOLLOW THE LEADERS

KING SIZE
QUALITY-TESTED PAKS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Watt Trans.</td>
<td>ENK1023A</td>
</tr>
<tr>
<td>250 Watt Trans.</td>
<td>ENK1023B</td>
</tr>
<tr>
<td>500 Watt Trans.</td>
<td>ENK1023C</td>
</tr>
<tr>
<td>1000 Watt Trans.</td>
<td>ENK1023D</td>
</tr>
</tbody>
</table>

ALL FULLY TESTED AND GUARANTEED SATISFACTION

PAK No. Qty. | Description | Price |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>2 Power Transformers</td>
<td>AD1012</td>
</tr>
<tr>
<td>S2</td>
<td>2 Dial Transformers</td>
<td>M-5705</td>
</tr>
<tr>
<td>S3</td>
<td>3 Sil. Trans.</td>
<td>S1024</td>
</tr>
<tr>
<td>S4</td>
<td>1 Photo Drive Trans.</td>
<td>ENK1023</td>
</tr>
<tr>
<td>S5</td>
<td>1 Photo Drive Trans.</td>
<td>ENK1023</td>
</tr>
<tr>
<td>S6</td>
<td>1 Photo Drive Trans.</td>
<td>ENK1023</td>
</tr>
<tr>
<td>S7</td>
<td>1 Photo Drive Trans.</td>
<td>ENK1023</td>
</tr>
<tr>
<td>S8</td>
<td>1 Photo Drive Trans.</td>
<td>ENK1023</td>
</tr>
<tr>
<td>S9</td>
<td>1 Photo Drive Trans.</td>
<td>ENK1023</td>
</tr>
</tbody>
</table>

Each month for one year only, we offer special bargains on our line of PSU10000 Transistors. For more information, please contact your local distributor.

KING OF THE PAKS
UNQUALIFIED VALUE AND QUALITY
SUPER PAKS
BRAND NEW—UNTESTED SEMICONDUCTORS

SATISFACTION GUARANTEED TO Every Pak, or money back.

S1 | 100 NPN Transistors, General Purpose
| 10.00 |
S2 | 200 Transistors, Matched Pairs
| 10.00 |
S3 | 500 NPN Transistors
| 10.00 |
S4 | 1000 NPN Transistors
| 10.00 |
S5 | 10000 NPN Transistors
| 10.00 |

S6 | 100 NPN Transistors, General Purpose
| 10.00 |
S7 | 200 Transistors, Matched Pairs
| 10.00 |
S8 | 500 NPN Transistors
| 10.00 |
S9 | 1000 NPN Transistors
| 10.00 |
S10 | 10000 NPN Transistors
| 10.00 |

VALUE ALL THE WAY

FREE
One 100 J of your own choice free with orders over 50.

S1 | Assorted NPN Transistors
| 10.00 |
S2 | Assorted PNP Transistors
| 10.00 |
S3 | Assorted JFETs
| 10.00 |
S4 | Assorted Diodes
| 10.00 |
S5 | Assorted Thyristors
| 10.00 |
S6 | Assorted relays
| 10.00 |
S7 | Assorted Resistors
| 10.00 |
S8 | Assorted Capacitors
| 10.00 |

S1 | Assorted NPN Transistors
| 10.00 |
S2 | Assorted PNP Transistors
| 10.00 |
S3 | Assorted JFETs
| 10.00 |
S4 | Assorted Diodes
| 10.00 |
S5 | Assorted Thyristors
| 10.00 |
S6 | Assorted relays
| 10.00 |
S7 | Assorted Resistors
| 10.00 |
S8 | Assorted Capacitors
| 10.00 |

BI-PAK GUARANTEE SATISFACTION TO MONEY BACK

FEBRUARY 1969

409
All new, first grade, guaranteed to specification. Mail order only. Prompt service. Orders over 10/- U.K. post paid.

NEW 4W AMPLIFIER PACKAGE

Component Kit AX4 for medium-fi 4W t.r.m. (8W peak) audio power amplifier for 15 ohm load. Advanced circuit uses AD181/AD162 output pair, silicon front end, a.c. and d.c. negative feedback. Requires 24V, 200mA supply, but can be operated from 18V at reduced output with low standby current (1.2mA). The AX4 kit contains all resistors, capacitors and semiconductors—top grade components of course! Includes high sensitivity—100mV in 40K for full output. Includes full treble response. Includes low distortion.

PRICE ONLY 30/- (Circuit available separately—Price 1/-)

GEN SHEETS—
Design Data & Parts Lists
AX2 Miniature Amplifier: 9V (either polarity), 300mW in 10–20 ohms. 6d.
AX3 Miniature 300 MW Amplifier, 9V (either pol.) 8 ohm load, 6d.
AX4 4W Medium-Fidelity Amp., 1— Price £20.0.0.
N.B. All the above amplifiers are transformerless class B

AMATRONIX LTD.
396 Sideldon Road, South Croydon, Surrey, CR2 0DE

A NEW NOMBREX INSTRUMENT
TO THE SPECIFICATION YOU REQUIRE AT A PRICE YOU CAN AFFORD

STANDARD MODEL 29-S

150 KHz to 220 MHz—all on fundamentals
Eight clear bands and space, Total length 40" Smooth vernier tuning control—ratio 7:1.
Magnifier cursor for clarity and accuracy.
Scale accuracy and discrimination ±1.5% or better.
Unique electronic scale calibration control.
 Rapid spin wheel tuning as optional extra.
Modulation—variable depth and frequency.
Variable A.F. signal available externally.
 Provision for external A.F. modulation.
Stabilized supply for long-term accuracy.

XTAL CHECK MODEL 29-X

Includes all the versatile advanced features of the Standard Model 29-S.

AND
Integral Crystal Oscillator providing calibration check points throughout all ranges, for adjustment of scale accuracy to ±0.02%.
The crystal marker signal is available at R.F. socket for use externally.

PRODUCTION RELEASE—FEBRUARY 1969

We are now booking sample and quantity orders; Delivery in strict rotation.

TRADE AND EXPORT ENQUIRIES INVITED

Our current Model 31 will continue to be available.

410 THE RADIO CONSTRUCTOR
Looking for a Hobby that's Fun and Fascinating?

Building Heathkit models is so easy. THE CONSTRUCTION MANUAL SHOWS YOU HOW! Easy to understand instructions and large, clear pictorials illustrate clearly the step-by-step procedure for enjoying a fascinating hobby that takes you away from the 'workaday' routine. There's also the thrill when you switch on and experience that exhilarating sense of self accomplishment, knowing that you've done something you doubted you could ever do.

FOR EXAMPLE

This STEREO RECORD PLAYER IS SO-EASY-TO-BUILD
- Completely assembled and finished cabinet—no gluing or covering required.
- Completely assembled Record Changer deck. Simply drop in and connect a few wires
- Only a few components to mount on one printed-circuit board.
- Two 6" x 5" speakers, easily mounted.
- Takes only a few hours to build.
- Suitcase portability.

All for only £28.6 Kit SRP-1 pp 10/6
Choice of blue/grey or red/grey colour scheme.
(please state preference)

Send for the FREE CATALOGUE

AND MAKE YOUR SELECTION FROM A WIDE RANGE

The latest Heathkit 36 page full colour catalogue contains details of models for the Hi-Fi and Audio Enthusiast, the Music Lover, the Tape Recordist and the Hobbyist. Models for Communication, Test and Servicing, Amateur Radio and Short Wave Listening. Models for Educational Establishments and Industry. No matter what your vocation, there is something for you in this catalogue.

FREE FACTORY CONSULTATION SERVICE

Heathkit maintain a staff of skilled technical correspondents to advise, help, and answer any questions about selection, construction and use of your model. This service is free. A speedy factory repair service is also at your command should you ever need it.

SHOWROOMS!

LONDON 233 Tottenham Court Rd.
BIRMINGHAM St. Martins Hse.
GLOUCESTER Factory

FEBRUARY 1969
ELECTROVALUE

EVERYTHING BRAND NEW . NO SURPLUS . PROMPT DEPENDABLE SERVICE . VERY LARGE STOCKS

RESISTORS

<table>
<thead>
<tr>
<th>Metal Oxide Value</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Ω 2%</td>
<td>10Ω 2%</td>
<td>1Ω 2%</td>
</tr>
<tr>
<td>100Ω 5%</td>
<td>100Ω 5%</td>
<td>100Ω 5%</td>
</tr>
<tr>
<td>1KΩ 5%</td>
<td>1KΩ 5%</td>
<td>1KΩ 5%</td>
</tr>
<tr>
<td>10KΩ 10%</td>
<td>10KΩ 10%</td>
<td>10KΩ 10%</td>
</tr>
<tr>
<td>100KΩ 20%</td>
<td>100KΩ 20%</td>
<td>100KΩ 20%</td>
</tr>
</tbody>
</table>

CARBON FILM

- 1% 1Ω to 1MΩ, 1/16Ω to 1MΩ
- 10Ω to 1MΩ, 10Ω to 1MΩ
- 100Ω to 1MΩ, 100Ω to 1MΩ
- 1KΩ to 1MΩ, 1KΩ to 1MΩ

CARBON SKELETON

- 1% 1Ω to 1MΩ, 1/16Ω to 1MΩ
- 10Ω to 1MΩ, 10Ω to 1MΩ
- 100Ω to 1MΩ, 100Ω to 1MΩ
- 1KΩ to 1MΩ, 1KΩ to 1MΩ

Prices may vary. Contact for details.

MINI TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N2205</td>
<td>2N2205</td>
<td>2N2205</td>
</tr>
<tr>
<td>2N2206</td>
<td>2N2206</td>
<td>2N2206</td>
</tr>
<tr>
<td>2N2207</td>
<td>2N2207</td>
<td>2N2207</td>
</tr>
<tr>
<td>2N2208</td>
<td>2N2208</td>
<td>2N2208</td>
</tr>
<tr>
<td>2N2209</td>
<td>2N2209</td>
<td>2N2209</td>
</tr>
</tbody>
</table>

MINI TRANSISTORS

- 2N2205: 2N2205
- 2N2206: 2N2206
- 2N2207: 2N2207
- 2N2208: 2N2208
- 2N2209: 2N2209

ELECTROLYTIC CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1µF</td>
<td>1µF</td>
<td>1µF</td>
</tr>
<tr>
<td>10µF</td>
<td>10µF</td>
<td>10µF</td>
</tr>
<tr>
<td>100µF</td>
<td>100µF</td>
<td>100µF</td>
</tr>
<tr>
<td>1nF</td>
<td>1nF</td>
<td>1nF</td>
</tr>
</tbody>
</table>

CAPACITORS

- Ceramic: 20µF, 0.1µF, 0.01µF, 0.001µF, 0.0001µF
- Polypropylene: 22µF, 0.1µF, 0.01µF, 0.001µF

Discounts

10% on orders for components £1 or more;
15% on orders for £5 or more;
20% on orders for £10 or more.

POSTAGE

- Free on orders for £5 or over.
- Overseas orders welcome — Carriage charged at cost.

Catalogue

Send 1/6d. for our comprehensive 1969 Catalogue, invaluable to every serious experimenter, designer and constructor.

ELECTROVALUE

EVERYTHING BRAND NEW . NO SURPLUS . PROMPT DEPENDABLE SERVICE . VERY LARGE STOCKS

DEPT. RC.19, 32a, ST. JUDES ROAD, ENGELFIELD GREEN, EGHAM, SURREY.

Telephone: Egham 5533 (STD 0784-3)
THE MODERN BOOK CO
RADIO COMMUNICATION HANDBOOK
The Radio Society of Great Britain
63/- Postage 4/6

Hi Fi Yearbook 1968/69. Edited by Miles Henslow.
15s. Postage 1s.

TV Fault Finding 405 and 625 Lines. Edited by J. R. Davies.
8s. 6d. Postage 9d.

25s. Postage 1s.

Inter G.E.C. Transistor Manual. 7th edn. 21s.
Postage 2s.

Hi Fi in the Home. By J. Crabbe. 40s.
Postage 1s. 6d.

Audio Amplifiers. Edited by J. R. Davies.
10s. 6d. Postage 9d.

RSGB Amateur Radio Call Book 1969. 6s. 6d.
Postage 9d.

Transistor Substitution Handbook No. 8. 16s.
Postage 1s.

25s. Postage 1s.

8s. 6d. Postage 6d.

40s. Postage 1s.

Transistor Electronic Organs for the Amateur.
By A. Douglas & S. Astley. 18s. Postage 1s.

15s. Postage 1s.

Practical Wireless Circuits. 17s. 6d. Postage 1s.

Practical Television Circuits. Revised by R. E. F. Street.
30s. Postage 1s.

New Catalogue 2s. 0d.

We have the Finest Selection of English and American Radio Books in the Country

19-21 PRAED STREET (Dept RC) LONDON W2

Telephone PADdington 4185
Happy Families

These are the times when Simon and Clare know that it has all been worthwhile. But they know too that such moments of happiness are only complete when there is also a feeling of security for the future. And Simon's "Family Unit" Policy with the "Yorkshire" guarantees them all a future - if the worst should happen.

Happiness in your family too - but for how long? If you or your wife should die, how would the rest of the family fare? A Yorkshire "Family Unit" policy provides for both these eventualities in a comprehensive way at a sensible premium. Just ask for a leaflet at your local "Yorkshire" branch and then see the manager. He'll be glad to tell you why...

it's YORKSHIRE for INSURANCE
THE YORKSHIRE INSURANCE COMPANY LIMITED
Chief Offices: Rougier Street, YORK
and Becket House, 30-37 Old Jewry, LONDON, E.C.2.
Branches and Agencies throughout the world

Please send me details of the Family Unit Policy, without obligation.

Name.

Address.
SPECIAL OFFER!!

Exclusive to Radio Constructor readers

ELECTRONIC DIGITAL CLOCK

PAK CL.1

This pack is approved by the author of the project in this issue. This pack consists of all the Semiconductors needed to build the Digital Clock.

Contents:

110 Silicon Transistors
1 OC36 Power Transistor
132 Silicon Diodes
2 Zener Diode

All the Components are tested and fully guaranteed

PAK CL.1 - All this for only £6

FREE! PLEASE add 1/- post and packing with order. We very much regret that the "Free Choice" offer is suspended with this pack.

TRANSISTORS ONLY 1/- EACH

SILICON • PLANAR • N.P.N. • P.N.P.

All these types available

2N929 2N706 2S131 2S103 2N689 2N1613 2S733 B7810
2S501 2N706A 2S512 2S104 2N687 2N1711 2N726 2S731
BC108 2N3011 2S102 2N2220 2N1507 2N1893 2N2484 2S732

All tested and guaranteed for gain and leakage—unmarked.

Manufacturers' fall outs from the new PRE-PAK range.

PRE-PAKS

Selection from our lists

No. Price
B1 50 Unmarked Trans. Untested 10/-
B2 4 Photo Cells Inc. Book of Instructions 10/-
B6 17 Red Spot AF Transistors 10/-
B64 17 White Spot RF Transistors 10/-
B9 1 ORP 12 Light Sensitive Cell 9/-
B93 25 Silicon Trans. 400/10c 1/2 Brand New 10/-
B54 40 1/2 NPN-09 2G329 Trans Valves 10/-
B56 ... NPN-09 2B Gain Fallouts 10/-
B56 ... NPN/PNP All Tested 10/-
B68 10 Top Hat Reqs. 750 M/A 100-500 PIV 10/-
B69 20 Diodes. Gld-Bnd. Germ Sil Planar 10/-
B74 5 Gld-Bnd. Diodes 2-0A8, 3-0A5 10/-
B75 5 Comp. Set. 2G371, 2G381, 2G39A 10/-
C2 1 Unjunction Transistor 2N1640 15/-
C32 6 Top Hat Reqs. IS100 Type 15/-
C33 6 1/2 Unjunction Trans. IS 2N160 15/-
A1 7 Silicon Rectifiers BY100 Type 20/-
A3 25 Mixed Marked and Tested Transistors 20/-
A21 5 Power Transistors 1AD149/1 OC264 and 3 others 20/-

AND MANY MORE

JUST INTRODUCED

PAK B78 2 BRAND NEW ITEMS!!!

PAK B78 12 10/-
Integrated Circuits, Mixed Untested. Types include: 2IC 930, 932, 916, 944, 945, 904, 950, 951 & 962. These are I.C Type Numbers. Data & Circuits supplied with orders.

PAK B79 4 10/-
Genuine I.T.T. Fully Tested and Marked Diodes IN4001 1 Amp. 1000 Volts.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any 0-3mA meter into a perfectly linear and accurate rev. counter for any car. State 4 or 6 cylinder. 20/-

FREE CATALOGUE AND LISTS for—

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS & SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD

BEWARE OF IMITATIONS
THE ELECTRONIC COMPONENTS CATALOGUE THAT SETS THE STANDARD

Used and acclaimed by:-

SCIENTISTS
ENGINEERS
TECHNICIANS
TEACHERS & STUDENTS

The latest edition of the famous Home Radio Catalogue is the result of eleven years of most careful selecting, compiling and indexing.

Of course, no catalogue is ever really finalised. As soon as we have one edition off the press, our researchers get busy finding out what is the latest and best in the world of Radio and Electronics—ready for the next printing.

This edition is without doubt the finest, most comprehensive we have ever produced—it has 300 pages, over 8,000 items listed, over 1,500 illustrations. It really is a must for anyone interested in radio and electronics.

With each catalogue we supply a Book Mark giving Electronic Abbreviations, an Order Form and an addressed envelope. All this for only 8/6 plus 3/6 post, packing and insurance. By the way, every catalogue contains 6 vouchers, each worth 1/- when used as directed. Send the attached coupon today, with your cheque or P.O. for 12/-—You'll be glad you did!

Please write your Name and Address in block capitals

NAME

ADDRESS

416
Vol. 22 No. 7

Published Monthly (1st of Month)
First Published 1947

Editorial and Advertising Offices
57 MAIDA VALE LONDON W9

Telephone CUNningham 6141
Telegrams Databux, London

© Data Publications Ltd., 1969. Contents may only be reproduced after obtaining prior permission from the Editor. Short abstracts or references are allowable provided acknowledgement of source is given.

Annual Subscription 42s. (U.S.A. and Canada $5) including postage. Remittances should be made payable to "Data Publications Ltd". Overseas readers please pay by cheque or International Money Order.

Queries. We regret that we are unable to answer queries other than those arising from articles appearing in this magazine nor can we advise on modifications to equipment described. Queries should be submitted in writing and accompanied by a stamped addressed envelope for reply.

Correspondence should be addressed to the Editor, Advertising Manager, Subscription Manager or the Publishers as appropriate.

Opinions expressed by contributors are not necessarily those of the Editor or proprietors.

Production.—Lithography.

5-Band Preselector 418
Can Anyone Help? 422
Simple Remote On/Off Switch 423
(Suggested Circuit No. 219)
Pressure Sensitive Transistors 425
by G. A. French
News and Comment 426
I.C. Ratemeter 428
by P. Williams
A.C./D.C. Bridge 432
by G. W. Short
Radio Constructor Data Sheet No. 21 433
(ER Dissipation Table—Voltages Below 50)
Recent Publications 434
Additional Ranges for the “Bandspread H.F. Bands Superhet” 438
by F. G. Rayer, G3OGR
Trade Review—New Truvox Integrated Circuit 441
Stereo Tuner 442
by G. A. Stanton, G3SCV
Solid-State Audio Generator, Part 1 447
Ready Reckoner for Parallel-R and Series-C 448
by R. M. Blackall
Understanding Radio 449
(A.G.C. Voltage)
by W. G. Morley
Radio Constructor Data Sheet No. 22 451
(ER Dissipation Table—(50 Volts and Above))
Solid-State Digital Clock, Part 3 454
by A. J. Ewins
Trade Review—Nombrex Wide Range 460
Transisterised R.F. Generator Models 29-S
and 29-X
In Your Workshop 461
Recent Publications 466
Radio Topics 468
by Recorder 417
5-BAND PRESELECTOR
by
D. W. EASTERING

Covering long waves, medium waves and short waves up to 30 Mc/s, this 2-transistor preselector is primarily intended to improve the r.f. performance of the more inexpensive class of communications receiver. Constructional and wiring problems are eased by the fact that only one coil is switched into circuit for each band, or range, covered. A list of suitable coils is suggested, but the simplicity of the tuning arrangements will allow many constructors to use coils that are already on hand.

The preselector described here was built to overcome this problem. A preselector is, simply, a tuned r.f. stage which is connected between the aerial and the main receiver. It has, of course, to cover the same frequency range as the receiver, and so the operator has to contend with an additional wavechange switch and tuning control. In practice, however, operation is simple; the preselector is set roughly to the required frequency, the main receiver tuned in the normal way, and the preselector finally adjusted for best results. The added r.f. selectivity provided by the preselector then ensures that second channel interference is very considerably reduced. It also improves signal strength as well.

The author's unit is cheap and simple to build. It may be used with any set and will, in particular, enhance the...
performance given by short wave receivers without an r.f. stage. It has other applications as well. Two typical examples are its use with a transistor portable in a car or caravan, or to improve the reception of Radio 1 or Radio 2 in localities where either of these signals is difficult to receive.

COMPONENTS

<table>
<thead>
<tr>
<th>Resistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(All fixed values 1/2 watt 10%)</td>
</tr>
<tr>
<td>R<sub>1</sub> 100kΩ</td>
</tr>
<tr>
<td>R<sub>2</sub> 10kΩ</td>
</tr>
<tr>
<td>R<sub>3</sub> 1kΩ</td>
</tr>
<tr>
<td>R<sub>4</sub> 100kΩ</td>
</tr>
<tr>
<td>R<sub>5</sub> 470kΩ</td>
</tr>
<tr>
<td>VR<sub>1</sub> 1kΩ, potentiometer, linear</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>1</sub> 0-61µF, paper or plastic foil</td>
</tr>
<tr>
<td>C<sub>2</sub> 1,000pF, silver-mica</td>
</tr>
<tr>
<td>C<sub>3</sub> 10pF, silver-mica</td>
</tr>
<tr>
<td>C<sub>4</sub> 6-1µF, paper or plastic foil</td>
</tr>
<tr>
<td>C<sub>5</sub> 1,000pF, silver-mica</td>
</tr>
<tr>
<td>VC<sub>1</sub> 500pF variable, air-spaced</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>L<sub>1</sub>-L<sub>5</sub> See text</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR<sub>1</sub> 2N706</td>
</tr>
<tr>
<td>TR<sub>2</sub> 2N706</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>S<sub>1(a)(b)</sub> 2-pole 6-way rotary (see text)</td>
</tr>
<tr>
<td>S<sub>2</sub> S.p.s.t., on-off, toggle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>B<sub>1</sub> 4-5 volt battery type 126 (Ever Ready) or as required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 slow motion drive and scale</td>
</tr>
<tr>
<td>2 pointer knobs</td>
</tr>
<tr>
<td>Coaxial cable and connectors</td>
</tr>
<tr>
<td>Tagboard, 2 x 10-way</td>
</tr>
<tr>
<td>Wire, material for case, etc.</td>
</tr>
</tbody>
</table>

Fig. 2(a). This alternative method of connecting L₃ into the S_{1(b)} switching circuit may be of assistance with some coils

Fig. 2(b). In the prototype a wave trap was switched into circuit on Range 3 to combat local interference
THE CIRCUIT

Reference to Fig. 1 will show that two 2N706 silicon transistors are used. Although these are designed mainly for high speed switching, they were found to work well in this application, and have the advantage of being extremely cheap on the surplus market. The aerial is fed via C2 to the emitter of TR1, which operates in the grounded base mode; its base being biased by R1 and bypassed to chassis by C1. The input is low impedance and untuned, and is consequently suited to most simple aerals including the wire dipole favoured by many Dx listeners. The only tuned circuit is in the collector of TR1, and from here the output is taken to the base of TR2 which operates in grounded collector. TR2 provides a low output impedance for connection to the receiver via a short length of coaxial cable.

The tuned circuit in the collector of TR1 is the appropriate coil selected by S1(10) in parallel with the tuning capacitor VC1. For ease of operating, it was decided to arrange matters so that the preselector ranges had approximately the same coverage as those of the receiver, but since a spare 2-pole 6-way switch and long/medium wave coil were to hand, it was decided to provide long wave coverage as well. The sixth position of the range switch enables the transistors and tuned circuit to be bypassed. For convenience in wiring L1 (the highest frequency coil) is in series with the wiper of S1(10) so that it is in circuit on all other ranges as well. No ganging is involved, and so the small extra inductance is unimportant.

Since only one coil is switched in for each range and there are no complications due to taps or coupling windings, the provision of coils L1 to L5 is a simple matter. In the prototype the writer employed short wave coils that were already on hand, removing turns where necessary to cover the required frequency range. A grid dip oscillator facilitates this task, although it is, of course, possible to find the coverage of an individual coil after the rest of the preselector has been completed by working with the receiver. The ranges provided are shown in the Table. It is not necessary for the constructor to obtain exactly the same coverage for each range as was chosen by the writer and he can employ whatever coils he wishes. In some cases it may be found more convenient in this respect to use the alternative coil switching circuit shown in Fig. 2(a), in which coil L1 is switched in only on Range 1 and is not in circuit all the time. However, the Fig. 1 circuit has the important advantage of enabling L1 to be wired into circuit with short leads.

If the constructor has no suitable short wave coils on hand, the frequency ranges can be provided by the following Teletron coils: Range 1, Teletron HFA4; Range 2, Teletron HFA3; Range 3, Teletron HFA7. A suitable dual range coil for L4 and L5 is the Repanco coil type DRR2. Note that it is the medium wave winding of this coil which is connected in the L4 position, with both windings in series for long waves. In all cases, no connections are made to any coupling or reaction windings on the coils employed. (The Teletron coils are available from Home Radio (Components) Ltd.—Editor.)

On position 6, switch section S1(10) bypasses the main circuit and allows the aerial to be fed direct to the receiver. At the same time, S1(10) renders TR1 inoperative. The writer found that the direct connection offered by S1(10) was not of great practical use and the facility can be omitted, if desired, whereupon it becomes possible to employ a single pole, instead of a double pole, switch for range

<table>
<thead>
<tr>
<th>S1 position</th>
<th>Range number</th>
<th>Range (meters)</th>
<th>Range (frequency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>30-10</td>
<td>10-30 Mc/s</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>60-25</td>
<td>5-12 Mc/s</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>200-50</td>
<td>1.5-6 Mc/s</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>540-190</td>
<td>550-1,600 kc/s</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2,000-700</td>
<td>150-430 kc/s</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Preselector bypassed</td>
</tr>
</tbody>
</table>

The 4.5 volt supply is provided by a bell battery.

Top view of the unit.
selection. In the writer’s case, local conditions made it desirable to retain S_1 for another reason and it performed the secondary function of switching in a wave-trap on position 3, as shown in Fig. 2(b). The writer lives near a powerful radio beacon which produced interference on Range 3 and this was cleared by the added wave-trap. It is doubtful if many readers will have the same problem, but the writer mentions the approach adopted in his own case as it will be of general interest. In the accompanying photograph, the wave-trap can be seen in the form of a screened coil with a trimmer mounted above it. The wave-trap is tuned to the fundamental frequency of the beacon (which is considerably higher than the band of frequencies in Range 3) and it is possible that the interference it causes on Range 3 is due to shortcircuiting in the main receiver.

The input and output circuits of TR_1 are in phase, and leads in these circuits should be spaced from each other to prevent excessive regeneration. The writer found that there was a tendency towards oscillation on Range 2, and this was cleared by connecting a $10k\Omega$ resistor across L_2. (This $10k\Omega$ resistor is not included in the components list.)

It was found impractical to apply A.G.C. to the preselector, but manual r.f. gain is an advantage. Several methods were tried, and finally it was a choice between a potentiometer in the emitter of either TR_1 or TR_2. As there is no tendency for strong signals to overload the preselector under normal conditions, the control was inserted at the output end in the emitter circuit of TR_2, where a marginal improvement of signal/noise ratio could be obtained.

Optimum performance is given when the unit is running at about 3.5 volts, when the total current drain is just under 2 mA, and so it was convenient to use a 4.5 volt battery.
battery with its voltage dropped by the \(R_4C_4 \) network. Higher voltages can be used provided the value of \(R_4 \) is adjusted to produce a supply potential between 3 and 3·5 volts. A separate on-off switch is employed, but it could alternatively be ganged with VR1.

Capacitors \(C_2 \) and \(C_3 \) provide d.c. isolation between the preselector and its external connections, and resistor \(R_2 \) prevents any static build-up on the aerial. The preselector output may be coupled to the aerial and earth terminals of the mains receiver. If the latter is of the a.c./d.c. type having its chassis connected to one side of the mains, adequate isolating capacitors must be connected in series with its aerial and earth input terminals, and the preselector chassis must be connected to a reliable earth.

CONSTRUCTION AND OPERATION

The preselector is housed in a metal case which also acts as a chassis. The case used for the prototype is shown in Fig. 3, and consists of two U-shaped sections. The main section has a \(\frac{1}{2} \) in flange on all edges and is drilled to take the panel components; the other section is a cover plate and is secured to the flanges of the main section by small self-tapping screws. This case is larger than necessary because the height and depth dimensions were chosen to match those of the receiver. It was possible therefore to use standard components and a large 4·5 volt bell battery.

\(\frac{1}{2} \) in plywood baseboard is recessed within the lower flanges and helps to give the unit weight and prevent it moving about when being tuned. It also provides a convenient means of mounting the components. Other constructors may well prefer to build a smaller and lighter case, but a description of the method adopted by the writer for his own version may still be of assistance.

Aluminium sheet was used, this being drilled and bent to shape before receiving two coats of grey paint. A twotone effect was produced by covering the front and back panels with self-adhesive vinyl film (Contact or Fablon). Red mattle was chosen by the writer, but other shades are available. The material is laid uncult over holes in the metal and, whilst held firmly fixed, holes are pierced in it with a sharp point and the unwanted material removed with a medium file.

With the case painted and panels covered, the components may be fitted. Thin washers were inserted below the control fixing nuts to prevent damage to the vinyl film. The coils were screwed direct to the wooden baseboard, as was the tagboard which is used for mounting the smaller components including the transistors. The battery is secured by a length of plastic-covered curtain wire which loops from two eyes in the baseboard over the battery, and passes in and out of two holes drilled in the back panel.

The writer used an ex-R.A.F. slow motion drive for VC1. A suitable alternative could be the Eagle Products T502 drive.

The layout was not found to be critical, but care must be taken to keep the r.f. connections—and particularly those in the tuned circuit switched by \(S_{10} \)—as short as possible. The two high frequency coils (\(L_1 \) and \(L_2 \)) were mounted nearest the range switch. The transistors were the last to be wired in, and precautions were taken to ensure that they were not subjected to prolonged heat.

The battery was not connected until the unit was completed and carefully checked. Because no non-reversible plug was used with the particular battery employed, coloured leads connect to the battery: red for positive and black for negative. Input and output are taken by coaxial cables passing through holes in the back of the case.

The operation of the preselector has already been described, and it will be appreciated that a simple tuning calibration chart is of assistance. This was placed on the front panel of the prototype. The chart enables the tuning to be positioned somewhere near the optimum point; the final tuning being carried out by ear or by reference to the receiver signal strength meter. A little practice soon teaches the operator how to avoid the second channel.

Chart calibration is obtained direct from that of the receiver, and it will be found that a signal generator is more convenient than broadcast signals as a signal source.

CAN ANYONE HELP?

Requests for information are inserted in this feature free of charge, subject to space being available. Users of this service undertake to acknowledge all letters, etc., received and to reimburse all reasonable expenses incurred by correspondents. Circuits, manuals, service sheets, etc., lent by readers must be returned in good condition within a reasonable period of time.

R3645 Unit.—W. Inches, 18 Moulin Place, Glasgow, S.W.2—requires any information on this unit (later version of R1355).

Ferranti RP1008 Record Player.—N. I. Hookwars, 42A Marpool Hill, Exmouth, Devon—nomenclature of valve types used in this player.

Amplifier for WS No. 19 Mk III.—G. R. Morse, Christowe, Sandford Road, Cheltenham, Glos.—circuit required of any home made design, either valve or transistor.

22 Set.—J. Walwycz, 321 Parkside Avenue, Barnhurst, Bexleyheath, Kent—loan or purchase of circuit or manual.

Magnaphon Tape Recorder.—R. J. Burr, 64 York Avenue, Sidcup, Kent—circuit or manual, loan or purchase, this recorder fitted with Motek tape deck and twin speakers.

Cossor Oscilloscope 1045K.—T. Bogg, 37 Toronto Road, Ilford, Essex—loan or purchase of manual.

THE RADIO CONSTRUCTOR
SIMPLE REMOTE ON-OFF SWITCH
by G. A. FRENCH

The writer was agreeably surprised, when reading "Radio Topics" in the last October issue of The Radio Constructor, to see a detailed reference to a remote on-off switching circuit which had originally appeared in a very early article in the "Suggested Circuit" series. Briefly, this circuit employed a relay which was initially energised by a remote battery and which then became "held-on" by the h.t. supply in the controlled equipment. The relay was de-energised by short-circuiting it from the remote point.

The circuit was popular with constructors when it first appeared and, after reading the piece by "Recorder", it occurred to the writer that it could be readily brought up to date by taking advantage of one simple component—a silicon rectifier. The writer hastens to add that the original circuit appeared many years before silicon rectifiers became available!

CIRCUIT APPLICATION

So far as application of the control circuit is concerned, it is intended for switching on and off an item of mains operated equipment from a remote point, the equipment being, say, a transmitter, receiver or amplifier. If the equipment and the remote control point are in separate buildings or, even, separate rooms in a single building, the wiring between them should not, for a number of reasons including safety requirements, be at mains potential. A simple solution to this switching problem consists of fitting a relay at the equipment end, this being controlled via a low voltage circuit from the remote point. Unfortunately, a relay consumes current continually when it is energised whereupon it becomes necessary to either devise some means of obtaining a low voltage supply from the mains or to use a battery. However, neither of these approaches is very attractive. The provision of a low voltage supply from the mains introduces unwanted complications, whilst the second alternative is expensive due to the necessity of making frequent battery replacements.

The revised remote on-off switching control circuit which will now be described suffers from none of these disadvantages. It employs a battery (sited at the remote position) but this battery is required to provide relay energising current for very short periods only and its life should not be much shorter than its shelf life. The only limitation with the circuit is that the controlled equipment must have an isolating mains transformer in its power supply section.

The circuit appears in Fig. 1 and it will be seen that it is basically very simple. Let us assume for the moment that the controlled equipment employs valves and that it has the conventional h.t. positive supply rail which appears in such equipment, the chassis being at h.t. negative potential. This chassis is isolated from the mains and one of the remote leads is connected to it.

We may start a description of circuit operation with the switch at the remote point in the "off" position. Under this condition the relay is de-energised and its contacts, RLA1, are open. The equipment is, in consequence, switched off. When the remote switch is set to "On" the battery couples to the relay coil via silicon diode D1, the switch and the remote lines. The relay energises, causing its contacts RLA1 to close and the mains supply to be applied to the equipment. An h.t. voltage appears almost immediately if the equipment has a solid-state rectifier (e.g. silicon or selenium). If it has a valve rectifier, there is a short delay before an h.t. voltage becomes available. In either case as soon as the h.t. voltage appears a current flows through R1 to the relay coil, R2 having a value which causes the voltage across the coil to be slightly higher than that provided by the battery. In...
consequence, the upper terminal of the relay coil goes positive of the battery positive terminal, and diode D₁ becomes reverse-biased. Thus, the relay now remains energised by way of current from the equipment h.t. supply, and the only current drawn from the battery at the remote point is the negligibly low leakage current in the reverse-biased silicon diode.

To switch off the equipment the remote switch is set to "Off". This causes the relay coil to be short-circuited by way of the remote lines and it becomes de-energised. Its contacts RLA₁ now open and the controlled equipment is switched off. It then remains in this condition until the remote switch is set to "On" again.

As will be gathered from this description, the battery is only required to provide energising current for a short period after the remote switch is thrown to "On". If the controlled equipment has a solid-state h.t. rectifier and the period during which it provides current will be very short indeed. With a valve rectifier the period is extended, its length depending on whether the rectifier is directly or indirectly heated, but it will still be quite short.

PRACTICAL EXAMPLE

To give an idea of the currents and voltages involved, the writer checked out the circuit with a P.O.3000 relay having a 50Ω coil which was on hand. This had a single set of make contacts, as is required here. It was found experimentally that the relay energised at 6 volts and, so, to allow for battery ageing and the fact that some 0.5 volts is dropped across the forward-conducting silicon diode, it was arbitrarily decided to use a 9 volt battery at the remote position. In practice, this could be a PP9 battery, or similar. At the same time, a suitable choice for the silicon rectifier, D₁, would be the Lucas DD000.

It is next necessary to find the required value for R₁ and this depends, amongst other things, on the h.t. voltage available in the controlled equipment. In the writer's case an amplifier having a nominal h.t. voltage of 200 volts was used. When current flows from the h.t. supply into the relay coil via R₁, it should cause a slightly higher voltage to be dropped across the coil than is provided by the battery. A voltage of the order of 10 would be adequate in the present instance, this corresponding to 20mA flowing through the 50Ω coil of the relay. Thus, R₁ should, from Ohm's law, have a value of

\[
\frac{200 - 10}{20}\text{m} \Omega,
\]

equal to 9.5Ω. A 5% 9.5Ω resistor could be used here or, alternatively, a 10kΩ resistor whose measured value was slightly less than its nominal value.

Maximum dissipation occurs in R₁ when the relay coil is short-circuited and, therefore, it is a good idea to choose a minimum value. However, the choice of the value of R₁ is governed by the choice of the silicon rectifier and the supply rail voltage, the latter being important as the rectifier cannot be relied upon to provide the full voltage of the supply rail. Where a choice of rectifiers is available, it is wise to select one designed for a higher voltage supply rail. Thus, the relay energising current, which is limited by the silicon rectifier, will be of sufficient value to enable the relay to work.

It should be remembered that relays with coils having higher resistances are capable of energising at lower currents, and that an equivalent 2,000Ω relay could be expected to energise reliably at 10mA or less. A lower relay current will also result in a lower wattage rating for R₁. On the other hand, higher coil resistances will require higher battery voltages at the remote point. Most experimenters will attempt to employ relays which are already on hand. The writer suggests that a good choice would be a P.O.3000 relay with 2,000Ω coil and high voltage twin platinum 1 amp contacts. (P.O.3000 relays made up to specification are available from L. Wilkinson (Croydon) Ltd., Longley House, Longley Road, West Croydon, Surrey—Editor.)

Normally, it will be preferable to connect the upper end of R₁ to the h.t. reservoir capacitor in the controlled equipment rather than to the h.t. positive line after the smoothing choke or resistor. Should the equipment h.t. supply be incapable of providing the added relay current the circuit cannot, of course, be used.

The constructor, when using the switching circuit, should first ascertain experimentally the minimum energising voltage for the particular relay he will employ. He then decides upon the remote battery voltage to be employed, remembering that about 0.5 volts will be dropped across the silicon diode. The next stage is to calculate the resistance and wattage required in R₁ following the example just given. The circuit should then be assembled and finally checked by measuring the voltage across the relay coil after it has energised and when its energising current is provided via R₁ from the equipment h.t. supply. If this voltage is a volt or more in excess of that provided by the battery, the circuit is complete and ready to use. If, due to such things as low regulation in the h.t. supply, the battery voltage is not high enough to provide the necessary energising current, then the relay will not work. In such a case, another relay with a lower coil resistance should be used. The writer has found that relays with standard ratings will work very satisfactorily, and that by careful selection of the relay and the silicon diode, batteries down to 9 volt, or even lower, could be employed.

Fig. 2. If a reliable mains earth is available at the remote position only one remote line is needed.

Fig. 3. With equipment having a supply rail which is negative with respect to chassis, both D₁ and the remote battery have to be reversed in polarity.
EARTHING

It is important to ensure that the relay insulation is adequate for mains voltages, and it is recommended that the chassis of the controlled equipment be connected to a reliable mains earth. If a mains earth is available at the remote position, only one interconnecting wire is needed between this position and the controlled equipment, as illustrated in Fig. 2. The circuit must never be used if the controlled equipment has its chassis connected to one side of the mains. When using a P.O. 3000 relay (or any other relay whose insulation is that normally associated with lower voltage operation) the chassis of the controlled equipment must be connected to a reliable mains earth.

TRANSISTOR EQUIPMENT

The basic circuit of Fig. 1 is also suitable for mains operated transistor equipment, but the low direct supply voltages used in such equipment may raise problems. It is desirable here to use a relay whose energising voltage is, at most, half the direct supply voltage in the equipment. Also, it should be remembered that the additional current drawn momentarily through the series resistor when the remote switch is set to "Off" will increase proportionally by a greater amount than occurs with the higher h.t. voltages encountered in valve equipment. If the transistor equipment has its chassis common to the positive supply rail, the polarities of the remote battery and the diode have to be reversed, as shown in Fig. 3. Again, the same safety requirements as for valve equipment must be observed. The equipment chassis has to be isolated and it should be connected to a reliable mains earth.

In both Figs. 1 and 3 it is necessary to ensure that the battery is connected into circuit with correct polarity and that there is no possibility of accidentally transposing the remote lines.

PRESSURE SENSITIVE TRANSISTORS

by

J. B. DANCE, M.Sc.

These new devices give high amplitude output signals when subjected to pressures of several grams only.

The operation of Pressure Sensitive Transistors (also known as PITRANS) depends on a phenomenon known as the "Anisotropic Stress Effect". This effect, which was discovered about 1961[1], comprises a large change in the current passing through a diode when a stress is applied to the junction. Both the forward and reverse currents of the diode can be reversibly increased by several orders of magnitude when a force of a few grams weight is suitably applied.

In the PITRAN the sensitive emitter-base junction forms part of an n-p-n silicon planar transistor. The sensitive junction is mechanically coupled to a diaphragm at the top of its TO-46 case.

In operation a suitable bias current is fed to the base and an output of at least 20% of the supply voltage can be taken from across the collector load for supply voltages in the range of 1–30 volts. The output is linearly related to the applied pressure.

APPLICATIONS

The device can be used in industry[2] in flow meters, weighing equipment, accelerometers, level gauges, high intensity microphones, etc. It also has applications in fluidic logic circuits, aerodynamics and can be used as a pressure sensitive switch to route electrical signals.

The PITRAN is produced at Stow Laboratories Inc. (U.S.A.) and is available in this country through Guest Electronics Ltd., Briggstock Road, Thornton Heath, Surrey.

REFERENCES

NEW G. W. SMITH CATALOGUE

Now available from G. W. Smith and Co. (Radio) Ltd. is the Second Edition of this company's catalogue. Comprising 193 pages, this list a very wide and comprehensive range of individual components as well as complete equipments, including receivers and high fidelity amplifiers. Also listed are kits for receivers and amplifiers. The amateur transmitting enthusiast is catered for, and items ranging from an s.w.t. bridge to a complete transmitter are included.

Two new Temperature Controlled Soldering Instruments

Light Soldering Developments Ltd. of 28 Sydenham Road, Croydon, have introduced two entirely new thermostatically controlled models. Known as the Litestat 50 and Litestat 70, they are of 50 and 70 watts loading respectively, and are available for all voltages.

These new tools are of unusually advanced design. Temperature control (within plus or minus 2\(^\circ\)C. during idling) is achieved by a simple and robust mechanical system in which a micro-switch mounted inside the handle is operated, through an adjustable lever, by a pull-rod, in response to thermal expansion of the copper element core unit. Since this core unit is closely coupled thermally both to the bit and the element winding, rapid response without temperature overshoot is obtained. The ample thermal capacity of the system reduces initial bit temperature drop and contributes to good thermal stability.

Operating temperature is infinitely adjustable, on load and without any dismantling, between approximately 200 and 420\(^\circ\)C.

Unbreakable handles are moulded from translucent Nylon, to allow the internal indicator lamps fitted to show clearly when the elements are energised. This gives a useful indication that the instruments are on and that the control is operating, and is an aid to setting.

The screw-on copper bits are available in four sizes for each model, and their life is considerably longer than is the case with un-controlled tools. Philips iron coated bits are also available, giving a life of at least 10 to 20 times that of copper bits.

Making the most of those long journeys to school

School journeys have been very much in the news this winter, and we wonder whether children who have long journeys will be provided with "audiobuses", as are some children in the U.S.A.

Isolated schools in the United States have many students who spend up to 40 hours a month riding in a bus to and from classes. Now some rural schools in two states, Pennsylvania and Colorado, are experimenting with "audiobuses" to put to profitable use the lost time of long bus trips.

What they have done is to make each bus a classroom on wheels by installing stereo sound systems, with earphones for each student which are fitted with volume and channel selector controls.

The programmes available in the Pennsylvania experiment are primarily concerned with fine arts and social studies. One channel usually carries a tape, "Great Moments in History," a series of dramatisations of important events in America's past. Others carry "Great Moments in Music," etc.

The audiobus used in Colorado is more elaborate. Programmes, both group and individualised, are classified under five topics—English, social studies, science, recreation, and fine art. Students may choose materials on these topics prepared for their own age level.

The last word shall be with an "audiobus" driver who commented—"It is just great, no more bedlam on the bus, it is just a dream".

"Bleeptest" Audible Test Unit

Following many requests by customers using their "Bleeptone", A. P. Besson & Partner Ltd. have incorporated the d.c. version of this device into a circuit test unit.

To be marketed under the name of "Bleeptest" the unit is a simple hand held continuity tester for use by electronic and electrical engineers, automobile writers, inspectors, circuit checkers or household electricians, for any purpose where the continuity of a circuit has to be confirmed and will stand a nominal load of 12mA.

When energised the incorporated "Bleeptone" emits an audible signal and employs a built in oscillator circuit to drive a rocking armature motor unit also of Besson manufacture which is available as a separate item.

The complete tester is housed in a coloured moulded case of high impact A.B.S. the use of this material ensuring long life, freedom from breakage under normal conditions and an attractive appearance.

A feature of the tester is the provision of a stainless steel dress clip allowing the unit to be attached to the user, thereby leaving both hands free for the handling of the test leads or equipment under test.

Output sockets for the 4mm plugs supplied are provided in the bottom of the case, and access to the battery compartment is by removal of three screws and the case lid.

The battery used may be an Ever-Ready PP3 or equivalent 9V dry cell for which a special connector is supplied.

The address of A. P. Besson Ltd. is St. Joseph's Close, Hove, Sussex.
World Club Radio Club Award

For nearly half a century listeners have been reporting to broadcasters on transmission reception. In return, the BBC and other broadcasters have sent cards to verify correct reporting. The card issued by BBC External Services has been well known throughout the world as the "Big Ben" card.

Now, for the first time, the BBC is offering an Award to listeners who correctly report on a number of BBC transmissions received from different transmitting sites. The reports will be analysed by the engineering staff and the certificates will be issued by the programme, World Radio Club. This Award scheme applies to the one frequency schedule period only—March 2nd to 3rd May, though there's a possibility that the scheme will be repeated.

To qualify for the Award, listeners must give evidence of reception of three BBC transmissions from each of the following: Great Britain and the Atlantic, East Mediterranean and Far Eastern relay stations. These twelve reports (which must be received in one envelope before the end of May) should contain the following information: location, date, time frequency and a few words about programme content. In return, the Award will contain the four verifications required by the serious DXer.

To be eligible for the Award, a DXer must be a Member of World Radio Club, the programme for DXers and short-wave enthusiasts which is broadcast in BBC World Service on Sundays at 0930 GMT, Thursdays 1245 GMT, Fridays 2345 GMT and on the North American Service on Mondays at 1515 GMT. To become a Member you need simply write to World Radio Club, BBC, Bush House, London, W.C.2.

Probe Clip made from ICI Plastic

A new, long-necked insulated probe clip designed and manufactured by Futters (London) Ltd. of Harlesden in conjunction with Radiospares, makes use of the toughness and resilience of "Kematal", ICI's acetal copolymer, as well as its good insulation properties.

The new Probe Clip designed and manufactured by Futters (London) Ltd. in conjunction with Radiospares. Radiospares components are available through retailers only.

The probe body is moulded in two parts entirely from "Kematal", in either red or black, and gives full insulation to the gold plated 0.032in wire which is threaded through the neck. This insulation ensures that the probe clip will not cause a short circuit if it touches any adjacent wiring when in use. The length of the neck enables components and connections to be reached deep down in the workings of the apparatus without the need to dismantle the circuitry. The collar part of the moulding snap-fits on to a grip on the neck and completely insulates the test leads, which can be attached by means of a screw fitting or by soldering.

The neck is spring loaded and a sliding action between finger and thumb on the grip retracts the neck so that the hook end can be fastened to the component to be tested to give a positive connection. The probe clip is marketed exclusively by Radiospares, 4/8 Maple Street, London, W.1.
I.C. RATEMETER

by

P. WILLIAMS

A low-cost integrated circuit may be made to function as an accurate rate-meter for counting positive-going pulses. In the design described in this article nearly all the circuitry is inside the i.c. itself, and few external components are required.

This article discusses a simple circuit which gives a meter reading directly proportional to the rate at which positive pulses appear. The circuit rejects pulses with amplitude less than about half a volt, making it useful for detecting pulses in the presence of noise. Pulse width is uncritical provided that it is appreciably less than the period between pulses. The pulse repetition frequency that can be measured may be as low as a few pulses per second (or even lower with a very large cross-coupling capacitor, as will become clear later) to as high as 1 Mc/s.

RTL UNIT

The unit used was the µL914, the diagram for which is shown in Fig. 1. Fig. 1 also shows the pin layout, pin 8 being identified by a “flat” on the body of the i.c. It should be noted that the pin layout in Fig. 1 is that given when the leads point towards the reader. (Most published information on this i.c. shows the layout from the top view, where the leads point away from the reader.) The transistors in the µL914 are equivalent to 2N708.

The µL914 is a dual two-input gate from a range of RTL (Resistor-Transistor Logic) units. If this sounds too complicated, then treat it as two pairs of transistors, each pair sharing a common collector load, and with all four emitters commoned. It is less flexible than four separate transistors, but the discipline of a fixed configuration is good for the designer’s soul—the circuits that can be designed are limited but with the number of variables reduced, those which are possible can be neat and effective.

First let us look at one simple application, that of a monostable circuit, as illustrated in Fig. 2. The base resistors are effectively part of the transistors and can be thought of as merely increasing their input resistance. In the stable state, R_2 biases T_{R_1} into conduction causing it to saturate, with its collector voltage close to zero. T_{R_2} is not used in this circuit although it could be employed to “inhibit” the monostable by biasing it on when input pulses are not to be detected. Because of the almost zero potential on the collector of T_{R_2}, T_{R_2} cannot conduct since its base is connected to that collector via its internal resistor. Hence the collectors of T_{R_1} and T_{R_2} are at the same potential as the positive supply. The potential difference across C_1 is thus $(V_S - V_{B2})$ or $(V_S - 0.6V)$ approximately. The V_{B2} term is generally ignored with large supply voltages, but in this case makes a small difference to the theoretical result. If, now, a large enough positive is applied briefly to the base of T_{R_1} it conducts heavily, pulling the collector temporarily to zero. In such a short time the capacitor C_1 can neither gain nor lose any appreciable charge and hence the voltage across its

Fig. 1. The circuit diagram and lead layout of the µL914

428
plates remains unaltered. With one plate suddenly taken to zero, the other plate will be at a potential of \((V_{se} - V_s)\) since the change must be the same on both plates of the capacitor.

With \(\text{TR}_3\) cut off by this sudden reversal of bias on its base, the current in its collector resistor is diverted into the base of \(\text{TR}_2\). This transistor comes heavily into conduction and holds the collector potential at zero for the duration of the monostable's period. Thus the input pulse need only last long enough to ensure that \(\text{TR}_2\) does come into conduction (as short as 0.1μS proved sufficient in practice) but must not exceed the natural period of the monostable. If it does the circuit acts only as an amplifier/limiter providing an output pulse at the first collector (where we shall require to use it) equalling the input pulse in duration. Assuming that the input pulse has disappeared

Fig. 2. Practical circuit for a multivibrator based on the \(\mu\)C114. This is a monostable circuit but astable and bistable versions are readily constructed by duplicating the left or right half of the circuit respectively.

Fig. 3. Typical waveforms following a narrow triggering pulse at the base of \(\text{TR}_1\).
rapidly, the collector potential of TR₁ and TR₂ must remain at zero until TR₃ once more begins to conduct. This will happen when the base of TR₃ reaches a potential of about 0.5V again. The time taken for this to happen depends on the time constant R₂C₁, whose product when R₂ is expressed in ohms and C₁ in farads gives the time in seconds for the voltage across the capacitor to reach a specified fraction of the charging voltage.

Because the base-emitter voltages cannot be ignored, the exact instant at which the circuit reverts to its stable state depends on the supply voltage, but a very wide range of periods can be obtained by varying C₁ and, to a lesser extent, R₂. This latter must always be low enough to ensure saturation of TR₃, i.e. it should not be greater than, say, 10 to 20 times R₂. No such limits are imposed on C₁ and values between several tens of picofarads and hundreds of microfarads have been successfully used. The periods that result are from a microsecond or so up to many seconds. The waveforms that occur are shown in Fig. 3.

For each incoming pulse we are now able to provide an output of specified amplitude and duration. A specified total charge flows, for example, in R₁. If this charge can be arranged to flow into a capacitor the build-up of voltage on that capacitor would be proportional to the number of pulses received. If we desire to know the rate at which pulses are arriving this capacitor can then be shunted by a resistor, as will be shown.

Having used an i.c. with fixed configuration we cannot break into the circuit to measure current in R₁. But we can very easily use a second resistor in parallel with it and find the mean current in this. Using a moving-coil meter in series, the averaging effect would automatically be achieved apart from some limitations. For instance, at low pulse rates a corresponding flicker would be observed in the needle; at high pulse rates the inductive properties of the meter coil would reduce the current passed. Equally, it is sometimes desirable to have an appreciable direct voltage available for monitoring purposes. Hence we place a large capacitance in parallel with the meter, and the final circuit is shown in Fig. 4(a).

SUPPLY POTENTIALS

With the nominal supply voltage of the original logic range—3-6V—the current in R₄ will be about 3.5mA when TR₃ is conducting, and zero at all other times. Thus a mean current of 1mA is easily obtained if the period between pulses is not more than three times the monostable

[Diagram and waveform illustrations are provided here, but not transcribed as they depict specific circuit configurations and waveforms.]
“on” period. This allows a low-cost 1mA meter to be used. By adjusting R4, meters with higher sensitivity may be accommodated, though if R4 is too high shunt capacitance may increase the pulse output at high frequencies. Higher current meters may also be used, perhaps up to 5mA or so, but care should be taken to ensure that TR2 remains in saturation.

Equally, a wide range of supply voltage may be used. The prototype circuit still functioned and gave a reliable performance at surprisingly low voltages. Thus, it functioned at less than 1.5V with reduced output, and gave some output even at 0.6V supply. It is more difficult to specify an upper limit since this will be linked to the voltage ratings of the transistors as well as their maximum dissipation. In particular the base of TR1 is subjected to a sudden reverse voltage when TR2 switches on, and this should be less than 6V, which represents a typical value for reverse base-emitter breakdown. Some sample circuits performed well at supply voltages up to 6V. It should be noted that, at the lower supply voltages, the period begins to vary strongly with voltage while the peak current remains proportional to supply voltage. (Using the µL914-3 at supply potentials higher than 3-6V could incur the risk of damage to the I.C. due to the correspondingly high reverse voltage at the base of TR1. Whilst this risk is apparently negligible in practice up to 6V, it needs to be mentioned here and should be borne in mind by constructors employing the µL914 in this manner.—EDITOR.)

A word of warning is in order against using meters with high terminal p.d.’s in this circuit. Most meters of 1MA full-scale deflection need a voltage of between, say, 50mV and a quarter of a volt. Those that need more will increasingly produce non-linearity of meter current against pulse rate. This is because the large mean direct voltage across the meter and capacitor reduces the current provided by each pulse, i.e. the sensitivity falls off with increasing output.

Fig. 4(b) shows a differentiating circuit which may be added at the input if the pulse being counted is of wrong duration or has an unknown d.c. content.

Finally, the reader may wish to use the circuit for measuring the frequency of waveforms which are not pulses, e.g. sine waves. In systems such as this, such waveforms must be converted into sharp pulses and this is normally done by passing the incoming signal through a Schmitt trigger to produce square waves and then differentiating the output to give narrow pulses. The present circuit may also be used for measuring the rate of irregular pulses such as those generated by Geiger-Muller tubes, provided these are suitably amplified first.

To measure over a desired frequency range, the value of C1 should be such that the monostable “on” period meets the requirements given earlier. The length of the monostable “on” period may be calculated approximately from

\[T = 0.69C_1R_2 \]

where T is in seconds, C1 is in farads and R2 is in ohms (or C1 is in microfarads and R2 in megohms). This calculation ignores the effect of VBE. Final calibration may be against two or more known input frequencies.

As an indication of the results given with the circuit, Fig. 5 gives a typical curve showing meter current against frequency with the supply voltage reduced to 1.5V to exaggerate non-linearity. Good linearity may be expected with meters having a p.d. less than 0.2V, and with a supply voltage greater than 3V.

MODERN BOOK CATALOGUE

The Modern Book Company is justly renowned for the extremely wide range of titles held in stock, and this fact is amply borne out in their latest Catalogue of Radio, Television and Electronics Books, now available. The catalogue has 68 pages, and lists some 2,000 books, all of which deal with electronic or allied subjects (such as lasers). American publications are distinguished by being marked with an asterisk, and any book listed can be obtained on seven day’s approval against a full cash remittance plus postage.

FEBRUARY 1969
A.C./D.C. BRIDGE
by
G. W. SHORT

The bridge described here measures resistance from 1 Ω to 1MΩ, with rough indications beyond these values, and capacitance (including that of electrolytic components) from 0.001µF to 100µF, with rough indications to 100pF and 1,000µF. Some aspects of the design may require selection of components on an experimental basis or may necessitate slight changes in circuit wiring. This article is, in consequence, intended primarily for the more experienced constructor who fully understands the principles of bridge operation.

A N ORDINARY D.C. WHEATSTONE BRIDGE IS CAPABLE OF measuring resistance with great accuracy. But it can be rather tedious to balance, because the user has to look very carefully at the pointer of the centre-zero balance indicating meter, and this can be a tiring process.

A simple a.c. bridge presents no such problem, since balance may be obtained by adjusting for zero sound in earphones, and this is much easier. However, after making a long series of measurements with the phones on, one begins to feel rather like a dog on a leash. It is also easy to forget that the phones are on and, when moving away from the bench, to bring the bridge crashing to the floor. Again, background noise can be a nuisance, masking the bridge signal.

What is needed is some visual indication of balance which is easy to read. Experiments with a 100-0-100µA meter energised from a v.i.f. source so that the pointer swung to and fro showed that, at the frequency of pointer resonance (about 2.5 c/s) it was possible, with close observation, to detect 0.1µA, while the pointer movement produced by 0.3µA was easily visible from a yard away. The to-and-fro movement was much easier to "set to zero" than a steady deflection. Here, then, was a potential visual a.c. balance indicator, which required no floating output transformers, amplifiers or rectifiers.

PRACTICAL BRIDGE

This indicator principle leads to a simple bridge which operates at a frequency of a few cycles per second on a.c. and also as a d.c. Wheatstone bridge. All that is needed is a means of energising the bridge at a suitable low frequency for the a.c. measurements. In principle this could be done by connecting the battery via a Morse key and tapping at the right rate. In practice, it is more convenient to have the "tapping" done automatically. After considering various alternatives, such as flasher bulbs and relays, a non-mechanical chopper was selected. This is shown in Fig. 1 and it consists of a transistor (TR3) in series with the bridge supply, the transistor being switched on and off by a v.i.f. multivibrator. By putting an unbypassed resistor in the emitter of the series transistor, it is turned into a "constant current" device which limits the current to a safe value (5mA in the present case). The bridge measures C and R at a.c. but the resistance of iron-cored inductors must be measured at d.c., because, even at a few cycles per second, the reactance is not negligible. In this case, the series transistor in association with a few silicon diodes (D1 to D3) acts as a source of d.c. limited to a few milliamps, and so minimises the risk of damage to components under test.

(continued on page 435)

THE RADIO CONSTRUCTOR
E. R. DISSIPATION TABLE
(Voltages Below 50)

The Table gives dissipation in watts, from \(W = \frac{E^2}{R} \), for resistance at commonly encountered voltages below 50. For resistances above 4.7k\(\Omega \) divide down from the value shown for 1k\(\Omega \). Thus, 10k\(\Omega \) at 40V is \(1.6 \div 10 \), or 0.16 watts. (See Data Sheet No. 22 for further details.)

<table>
<thead>
<tr>
<th>Resistance</th>
<th>1V</th>
<th>2V</th>
<th>3V</th>
<th>4V</th>
<th>5V</th>
<th>6V</th>
<th>7V</th>
<th>8V</th>
<th>9V</th>
<th>10V</th>
<th>15V</th>
<th>20V</th>
<th>30V</th>
<th>40V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(\Omega)</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2(\Omega)</td>
<td>0.45</td>
<td>1.8</td>
<td>4.1</td>
<td>7.3</td>
<td>7.7</td>
<td>14</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7(\Omega)</td>
<td>0.21</td>
<td>0.85</td>
<td>1.9</td>
<td>3.4</td>
<td>5.3</td>
<td>9.4</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.8(\Omega)</td>
<td>0.15</td>
<td>0.59</td>
<td>1.3</td>
<td>2.4</td>
<td>3.6</td>
<td>6.4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10(\Omega)</td>
<td>0.1</td>
<td>0.4</td>
<td>0.9</td>
<td>1.6</td>
<td>3.6</td>
<td>6.4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22(\Omega)</td>
<td>0.045</td>
<td>0.18</td>
<td>0.41</td>
<td>0.73</td>
<td>1.6</td>
<td>2.9</td>
<td>4.5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47(\Omega)</td>
<td>0.021</td>
<td>0.085</td>
<td>0.19</td>
<td>0.34</td>
<td>0.77</td>
<td>1.4</td>
<td>2.1</td>
<td>4.8</td>
<td>8.5</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85(\Omega)</td>
<td>0.015</td>
<td>0.059</td>
<td>0.13</td>
<td>0.24</td>
<td>0.53</td>
<td>0.94</td>
<td>1.5</td>
<td>3.3</td>
<td>5.9</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100(\Omega)</td>
<td>0.01</td>
<td>0.04</td>
<td>0.09</td>
<td>0.16</td>
<td>0.36</td>
<td>0.64</td>
<td>1.0</td>
<td>2.3</td>
<td>4.0</td>
<td>9.0</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220(\Omega)</td>
<td>0.001</td>
<td>0.018</td>
<td>0.041</td>
<td>0.073</td>
<td>0.16</td>
<td>0.29</td>
<td>0.45</td>
<td>1.0</td>
<td>1.8</td>
<td>4.1</td>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>470(\Omega)</td>
<td>0.016</td>
<td>0.034</td>
<td>0.077</td>
<td>0.14</td>
<td>0.21</td>
<td>0.48</td>
<td>0.85</td>
<td>1.9</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>680(\Omega)</td>
<td>0.013</td>
<td>0.024</td>
<td>0.053</td>
<td>0.094</td>
<td>0.15</td>
<td>0.33</td>
<td>0.59</td>
<td>1.3</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(k\Omega)</td>
<td>0.016</td>
<td>0.029</td>
<td>0.036</td>
<td>0.064</td>
<td>0.1</td>
<td>0.23</td>
<td>0.4</td>
<td>0.9</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2(k\Omega)</td>
<td>0.014</td>
<td>0.021</td>
<td>0.045</td>
<td>0.1</td>
<td>0.18</td>
<td>0.41</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7(k\Omega)</td>
<td>0.016</td>
<td>0.021</td>
<td>0.045</td>
<td>0.1</td>
<td>0.18</td>
<td>0.41</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RECENT PUBLICATIONS

HI-FI IN THE HOME. By John Crabbe. 327 pages, 5½ x 8½in. Published by Blandford Press Ltd. Price 40s.
As editor of Hi-Fi News, Tape Recorder and Audio Annual, John Crabbe is in an excellent position to evaluate the outlook and requirements of the non-technical music lover, and to equate these with the engineering know-how that is essential for the design, manufacture and installation of high fidelity reproduction equipment. The book under review is, indeed, intended primarily for the home music lover, although there is much that will be of value also to the younger engineer without too much experience in the hi-fi sphere.
"Hi-Fi in the Home" starts off by defining and explaining the nature of musical sounds, then carries on to the basic components required for music reproduction, these ranging from pickups and tape recorder heads to loudspeakers. Further chapters give advice on choosing and installing equipment, and on its use and operation. It is refreshing to note that when dealing with technical equipment Mr. Crabbe never loses sight of the aesthetic values that the equipment is intended to satisfy.
This is a well-written and comprehensive book, and can be confidently recommended to the music lover who seeks a greater understanding of the modern high fidelity equipment available in the latter part of this decade.

RADIO. By David Gibson. 88 pages, 6 x 8½in. Published by Brockhampton Press Limited. Price 12s. 6d.
This book appears in the Brockhampton Press "Illustrated Teach Yourself" series, and is aimed at the complete newcomer to radio. The presentation is a little unusual in that the left hand margin of the text on each page is displaced from the page edge by some 12in. subheadings and small diagrams illustrating points in the accompanying text being inserted into this space. These pictorial aids should help in illustrating unfamiliar concepts to the reader. The right hand margin of the text is irregular, as in a typescript.
Dealing at elementary level, the book first describes the various components encountered in radio together with their operation in simple circuits, then carries on to semiconductor diodes and transistors. The next chapters are devoted to constructional projects, these being a crystal receiver, a 2-transistor a.f. amplifier, a 2-transistor reflex receiver and a 4-transistor superhet. The remaining two chapters cover aerials and short wave listening, and are followed by an appendix which details component availability and suggests books and magazines for further reading.
There is considerable use of colour, including attractive colour photographs of the complete constructional items. The book offers a useful introduction to the rudiments of radio and should enable many would-be enthusiasts, in particular youngsters of 10 years' age or more, to make their first jump into what they may previously have considered to be an incomprehensible technical world.

TELEVISION ENGINEERS’ POCKET BOOK. Edited by J. P. Hawker and J. A. Reddihough. 303 pages, 4½ x 7½in. Published by Newnes Books. Price 21s.
This is the 5th edition of "Television Engineers' Pocket Book," the last edition being published in 1962. Many changes have been made in producing this new edition, these including the provision of two completely new chapters on hybrid receivers (i.e. transistor and valve) and on colour television. The latter chapter is based on the PAL system. Two new chapters devoted to fault finding have also been incorporated, one dealing with faults in the receiver circuits and the other with faults in the timebases. Considerable revision has also been undertaken in the remaining sections of the book to bring it up to date. Specialist contributors are D. E. A. Harvey, C. Eng., M.I.E.E., Gordon J. King and G. R. Wilding.
As in its previous editions, the present book offers a handy pocket-sized reference work for the television service engineer. It includes current data on cathode ray tubes and valves, as well as on valve equivalents.

The main function of this book is to introduce to the reader the basic operation of many of the electronic devices which are in use today. The treatment is mainly non-mathematical, and the aim is to give sufficient information to provide the essential background for further specialised reading.

The book commences with a chapter on fundamental concepts and d.c. circuits, this being followed by chapters on alternating current, thermionic valves, power supplies, semiconductors, radio transmission and radio reception. The next two chapters cover magnetic amplifiers and devices, and an introduction to some of the techniques employed in computers. The following two chapters deal first with a.c. and d.c. measurements, and then with frequency measurement; whilst the final three chapters are devoted to v.h.f. equipment, light (including rays and radiation), and miscellaneous electronic equipment. This last chapter covers subjects ranging from electronic organs to varicap diodes. The book is well illustrated by clear diagrams, these including circuit diagrams where applicable.
A.C./D.C. BRIDGE

The v.f.f. multivibrator is given by TR1 and TR2. The electrolytic capacitors employed here (C4 and C5) should be components having a low leakage current.

PERFORMANCE

The bridge uses a single wirewound potentiometer, R1, to provide variable ratio arms. Its value is not critical and may lie between 500Ω and 5kΩ. The "standard" is a fixed resistance or capacitance, switched into circuit by S1. The

Fig. 1. The circuit of the a.c.-d.c. bridge

Resistors

R1	500Ω to 5kΩ, wirewound linear, "instrument" type (see text)
R2	1MΩ 1%
R3	10kΩ
R4	10kΩ 1%
R5	1kΩ 1%
R6	100Ω 1%
R7	10Ω 1%
R8	18Ω 5% 1/4 watt
R9	18kΩ 5% 1/4 watt
R10	33kΩ 5% 1/4 watt (see text)
R11	1kΩ 5% 1/4 watt
R12	3.2kΩ 5% 1/4 watt
R13	4.7kΩ 5% 1/4 watt
R14	33kΩ 5% 1/4 watt (see text)

Capacitors

C1	1,000pF 1%
C2	0.1μF 1%
C3	10μF electrolytic (see text)
C4	10μF electrolytic, 10V wkg.
C5	10μF electrolytic, 10V wkg.

Semiconductors

TR1	BC168B
TR2	BC168B
TR3	2SB187
TR4, TR5	See text
D1, D2	Any silicon diodes (e.g. DD000)

Switches

S1	Single pole, 10 way rotary
S2	s.p.d.t., toggle or rotary
S3	s.p.s.t., on-off, toggle

Meter

| M1 | 100-0-100μA (see text) |

Battery

| B1 | 9-volt battery |

Jack

| J1 | Closed-circuit phone jack |

Miscellaneous

| 4 test terminals |
resolution varies with the setting of the ratio arms and the size of the "unknown", but over most of the measuring range it is better than 1%, so 1% tolerance standards can be utilised. Electrolytic capacitors can be tested, because the upper X test terminal is always positive. If the electrolytic capacitors have not been in use for some time it is advisable to form them before measurement by connecting them to a d.c. supply of the correct polarity at approximately the working voltage. Gross leaks can be detected by the bridge switched to "d.c. resistance".

Maximum sensitivity on "a.c." is only obtained if the frequency of the multivibrator can be set to produce the maximum excursion of the meter pointer. The less damped the meter movement, the more worthwhile it is to make this adjustment. The improvement with normal movements is only about twofold, however, and constructors without facilities for varying the frequency (using, say, a 2-gang potentiometer of about 100kΩ linear or up to 1MΩ log in place of R₁₋₄ and R₁₋₄) will find the design as it stands quite good enough for most purposes. One word of warning: meter movements which show the slightest sign of sticking are useless as balance indicators in this design. In the prototype, incidentally, the author used a conventional 3in 100–0–100µA movement obtained through "surplus" channels.

EXTENDING THE COVERAGE

Using the meter as balance indicator, the bridge measures the commonly encountered range of capacitance, but it is not sensitive enough to cover the whole range of capacitance. It is possible to measure down to about 100pF by using sensitive high resistance earphones (the writer employed war surplus type CHR with earpieces in series) instead of the meter, and adjusting RV₁ so that the capacitor-charging clicks disappear. One could improve matters by increasing the frequency to a few thousand cycles, and this can be done, if desired, by switching capacitors of 0.01µF in place of the 10µF ones at C₄ and C₅. The switching circuit required is shown in Fig. 2. With the help of earphones, transformer turns ratio can be measured more accurately, as is described later.

METER PROTECTION

Some form of meter protection should be incorporated. The basic method employed here is to connect a germanium (not silicon) transistor, with its base open, in series with the meter. This limits the meter current to the leakage current of the transistor. With some transistors, the leakage current is about the same in either direction, but with most types the collector-emitter leakage is greater than the emitter-collector leakage. To make limiting symmetrical, two similar transistors can be connected back to back, as are TR₁ and TR₂ in Fig. 1. This is rather a luxury, however, and provided that the transistor fitted allows a reasonable meter deflection in both directions a single transistor in series with the meter will do. Old germanium audio transistors are usually suitable for a function of this nature, and so long as both the junctions are intact it hardly matters how bad the transistor is as an amplifying device. If no suitable transistors are available, simply connect a limiting resistor of a few thousand ohms in series with the meter.

The exact f.s.d. of the meter is not very important, and almost any centre-zero microammeter, calibrated or not, will do. Ex-R.A.F. flying instruments, some of which have quite sensitive centre-zero movements, are possible candidates.

RANGE-SETTING AND CALIBRATION

If the ratio-arm potentiometer, R₁, is a large wirewound "instrument" type, fitted with a long pointer, adequate resolution should be obtained when the "unknown" is 0.1 to 10 times the standard, with rough indications down to 0.01 and up to 100 times the standard. Resistance standards with 1% tolerance of 10,100, 1,000Ω and so on are used (R₇ to R₂) but, for economy, the capacitance standards increase in multiples of 100 stead of 10. An electrolytic capacitor, C₃, is used as a standard on the highest capacitance range, but components of this type are available only in wide tolerances. A suitable electrolytic capacitor must therefore be selected or assembled from a number of lower values. If a good non-electrolytic capacitor is used for the 0.1µF standard, a capacitance of 10µF can just be measured and used in turn as a 10µF.
standard. High measuring accuracy is not called for on this range (after all, the tolerance on electrolytics is usually at least 50%) but a low-leakage component is needed. Tantalum electrolytic capacitors are excellent, but expensive: they can sometimes by salvaged from surplus computer modules. Otherwise, use a newly manufactured aluminum electrolytic with a working voltage of 10V or more.

Range-setting and calibration is carried out in the usual manner required with a bridge where a single potentiometer provides two balance arms. Initial calibration may be made for resistance and consists of marking up the scale of R1, with the ratios which exist between the standard and the unknown. These ratios will apply for all resistor standards switched in by S2. The procedure to be described may be followed before R2 to R5 and C1 to C3 are wired into circuit, and it takes advantage of external uncalibrated variable resistors to determine many of the ratio points. Thus, there is no necessity to employ a wide range of close-tolerance test resistors to obtain calibration points.

From the point of view of accuracy and sensitivity, the most important calibration mark on potentiometer R1 is the “half-way mark” i.e. the point of balance where the standard and unknown are equal. This point can be found very easily because the bridge is provided with a spare switch position which couples to External Standard terminals. (An external standard facility is very useful for matching components and measuring transformer turns ratios, and should always be provided in a general-purpose bridge). Connect two nominally equal close-tolerance resistors of about 1,000Ω to the X and External Standard terminals, balance the bridge, and mark the setting of the potentiometer temporarily but accurately. Swap round the resistors and re-balance. Mark the balance point as before. There should now be two temporary calibration marks, close together. These are, in fact, either side of the true half-way mark, the latter can now be estimated by eye and marked in. With care, the error should be much less than 1%. (If the two resistors happen to be exactly equal, balance is of course obtained exactly at the half-way mark on both trials.)

If the two temporary calibration marks were quite close together (say within 3° on a circular scale) the two temporary standard resistors can now be used, in conjunction with an uncalibrated variable resistor, to fix the “0-5” and “2” ratio points on the ratio scale. For these, the resistors are connected in parallel to the External Standard terminals, the ratio arm potentiometer is set to “1” (which is the half-way mark), and the uncalibrated variable resistor is connected to the X terminals and adjusted until the bridge is balanced. It is now equal to half the nominal value of one of the two resistors. If one of the two resistors is disconnected and the bridge re-balanced by means of the ratio potentiometer, leaving the uncalibrated variable resistor alone, balance now occurs at the “0-5” points. By swapping the external standard and the uncalibrated variable resistor, the “2” point is found. Clearly, the process is only worth carrying out if the two original standards are really close to one another.

It is possible to fill in other points by extending the technique, but since actual standards have to be obtained sooner or later there is not much point in pressing on in this way. A few major ratios, like “0-5”, “1” and “2” do, however, provide an excellent check on later calibrations, and increase confidence in calibration made with actual standards.

Further calibration is carried out as follows, before R2 to R5 are finally connected to the switch, and using the X or External Standard terminals as appropriate.

The 100Ω standard is first balanced against the 10Ω to provide the “0-1” and “10” points. The 1,000Ω against the 10Ω next provides “100” and “9001” points. If the reader has any 1% or better resistors in assorted values these will provide valuable calibration check points, but a complete calibration can be done with the help of some auxiliary variable resistors only. Suppose, for example, a 10kΩ variable resistor is available. This can be set to 20kΩ against the 10kΩ standard, with the ratio arm potentiometer at “2”. This temporary “20kΩ standard” can now be compared with the 100kΩ standard to obtain the “0-2” point and against the 1kΩ standard to obtain the “20” point. By connecting 20kΩ in series with 10kΩ, the “0-3” and “30” points are obtained, and the variable resistor can now be set to 30kΩ against “0-3”, which in turn produces points at “0-4” and “40”. Errors accumulate with this system, so great care is needed, but the checks previously provided at “0-5” and “1” now become very useful. To be on the safe side, go from “0-1” to “1” in steps of 0-1, then back again. If the “forward” points coincide with the “return” points, and the “0-5” and “1” ratios check accurately, all is well.

The bridge is now calibrated in 0-1 steps from “0-1” to “1”, and these points can easily be used, in conjunction with the uncalibrated variable resistor and a different standard, to provide points “2”, “3”, “4” and so on up to “10”. To subdivide these markings, use a series combination of a coarse standard (e.g. 20kΩ) and a fine standard set in turn to 1kΩ, 2kΩ, 3kΩ etc.

It sounds rather complicated, but in fact the process is quite easy. All one needs is time, patience, and a selection of variable resistors. A good job for a wet weekend.

The capacitance ratio scale is the reciprocal of the resistance ratio scale. That is, the “0-25Ω” of resistance is the “4” of capacitance, etc., so the calibration points of one give the markings of the other. However, if the reader happens to possess a stock of eleven 1% tolerance resistors of the same value (preferably in the range 100Ω to 10kΩ) these can be used to calibrate the capacitance scale directly.

One is used as an external standard; two in parallel at the X terminals then give the “2” point, three the “3” point, and so on.

Turns Ratio

To measure turns ratio in iron-cored transformers, connect one winding to the X terminals, the other to the External Standard terminals, and use earphones. These may be plugged into the closed-circuit jack in series with the meter. If balance is unobtainable, reverse the connections to one winding. Complete balance is not likely to be obtained, but adjusting for minimum sound gives fair accuracy. To find the ratio of tapped windings, connect the tap to the live (upper) X terminal and the ends to the “dead” X and External Standard terminals. The reason why phones are better than the meter is that they actuate the higher-frequency harmonics of the signal. The balance point is less blurred by the resistance of the windings at the harmonic frequencies than at the fundamental. (This is because the reactance/resistance ratio is higher.). It may also be helpful to switch the multifrequency to the higher frequency when checking turns ratio.
ADDITIONAL RANGES FOR THE
"BANDSPREAD H.F. BANDS SUPERHET"

by

F. G. RAYER, G30GR

The usefulness of the popular "Bandspread H.F. Bands Superhet" can be enhanced by adding further coils, as is described here. Since some of the new coils are mounted above the chassis, additional chassis holes are needed to allow the connecting leads to pass through. New 6BA clearance holes are also required for mounting the coils.

The original receiver, described in The Radio Constructor for October, 1968, covers approximately 32 to 7 Mc/s in two switched bands. By adding coils for the low frequency bands, the scope of the receiver is greatly increased, and the modification should be of interest to many constructors.

The original ranges are obtained with PA4 and PA3 aerial coils, and PO4 and PO3 oscillator coils. Additional PA aerial coils and PO oscillator coils will allow coverage from about 32 Mc/s through to about 600 kc/s, in five switch-selected bands.

The accompanying Table shows the ranges which can be obtained with the additional coils. The two ranges at the top, utilising the PA4 and PA3 coils are those already existing and cover 32 to 7 Mc/s. The three ranges below are new: PA5 and PO5 give 8 to 3.3 Mc/s, PA6 and PO6 give 3 to 1.4 Mc/s, and PA2 and PO2 give the medium wave range of 1.5 Mc/s to 600 kc/s.

The existing wavechange switch is replaced by a new 4-pole 5-way switch. This is a "Maka-Switch" assembly made up by the constructor from a "shaft assembly" and two 2-pole 6-way wafers (Home Radio Cat. Nos. WS27 and WS29 respectively). The switch mechanism has an adjustable stop, thereby allowing five positions only to be available. One wafer is used for the aerial coils, and one for the oscillator coils.

MODIFIED CIRCUIT

The modified circuit appears in the accompanying diagram, in which the four poles of the new wavechange switch are numbered 1, 2, 3 and 4. Pole 1 switches the aerial to the required aerial winding; Pole 2 switches the signal frequency section of the two-gang capacitor, VC1 (that nearer the front of the receiver) to the required aerial tuned winding; Pole 3 switches the oscillator grid capacitor, C2, to the required oscillator coil feedback winding; and Pole 4 switches the oscillator section of the two-gang capacitor, VC2, to the required oscillator tuned winding. Components which are numbered (e.g. L1, TC1, etc.) are those already fitted. Components without circuit reference numbers are new.

Apart from the fact that they now couple to the remainder of the receiver via a new switch, the PA4, PA3, PO4 and PO3 coils remain in an unaltered circuit. The new aerial coils, PA5, PA6 and PA2 couple into the receiver in obvious manner and need no further comment so far as the circuit is concerned. The three new oscillator coils, however, require some further words of explanation because each of these needs a variable padding capacitor.

For the prototype receiver, variable padding capacitances were obtained by utilising a 450pF (max.) mica trimmer, and a multiple unit incorporating a 300pF (max.) trimmer and a 1,000pF (max.) trimmer on a single mounting. These were employed in the following manner. The PO5 coil requires an adjusted padding capacitance in the range of 2,400pF, and this was given by the single 450pF trimmer with a fixed 2,000pF silver-mica capacitor connected across it. The PO6 requires about 900pF and this was provided by the 1,000pF section of the multiple trimmer.

TABLE

Frequency Ranges and Padding Capacitances
(as applicable to modified "H.F. Bands Superhet"

<table>
<thead>
<tr>
<th>Coils</th>
<th>Frequency Range</th>
<th>Approx. Padding Capacitance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA4, PO4</td>
<td>32 Mc/s-10-5 Mc/s</td>
<td>None</td>
</tr>
<tr>
<td>PA3, PO3</td>
<td>14 Mc/s-7 Mc/s</td>
<td>5,000pF</td>
</tr>
<tr>
<td>PA5, PO5</td>
<td>8 Mc/s-3-3 Mc/s</td>
<td>2,400pF</td>
</tr>
<tr>
<td>PA6, PO6</td>
<td>3 Mc/s-1-4 Mc/s</td>
<td>900pF</td>
</tr>
<tr>
<td>PA2, PO2</td>
<td>1.5 Mc/s-600 kc/s</td>
<td>450pF</td>
</tr>
</tbody>
</table>
The PO2 coil requires about 450pF, and this was given by the remaining 300pF section of the multiple trimmer with a fixed 150pF silver-mica capacitor connected across it. Other methods of making up the desired padding capacitance will be suitable provided that the final capacitance can be varied over a reasonable range about the nominal figure shown in the Table.

Three additional 60pF mica trimmers also are needed for the new oscillator coils. These are soldered directly across tags 1 and 2 of each coil.

PRACTICAL WORK

When the new switch has been fitted, it is best to wire in the PA and PO coils for one band only, and test the receiver. Any wiring fault can then be located before proceeding further. Assuming all is in order, add the PA and PO coils for other bands, testing each time if preferred.

The original coils are left as fitted. As there is not a great deal of space, and extremely short leads are not important for the l.f. bands, the PO2 oscillator coil and the additional aerial coils are placed above the chassis, and the PO5 and PO6 oscillator coils under the chassis.

ADJUSTMENT

Treat each band individually. Tune in a transmission with the ganged capacitor nearly open, and adjust the oscillator trimmer so that the panel aerial trimmer peaks for best results, and is not fully open or fully closed. Then tune towards the low frequency end of the band, and adjust the oscillator coil padder as necessary, so that the panel aerial trimmer can still be peaked for best results. Repeat these adjustments a few times. Full efficiency is obtained when the aerial trimmer allows signals to be peaked up, throughout all bands, and is not at its full minimum or maximum capacitance. If the aerial is fairly long, it is worth trying a 50pF or 100pF variable capacitor between its lead-in and the receiver.
THE FIRST BRITISH FM STEREO TUNER USING INTEGRATED CIRCUITS AND FIELD-EFFECT TRANSISTORS HAS BEEN INTRODUCED BY TRUVOX LTD. (OF HYTHE, SOUTHAMPTON), A MEMBER OF THE CONTROLS AND COMMUNICATIONS GROUP. IN TECHNICAL TERMS IT REPRESENTS AN IMPORTANT DEVELOPMENT IN HI-FI EQUIPMENT DESIGN. IN USER TERMS IT MEANS MUCH BETTER PERFORMANCE, GREATER RELIABILITY AND MORE VALUE FOR MONEY.

DESIGNED FROM THE OUTSET SPECIFICALLY FOR STEREO RECEPTION (MONO RECEPTION IS OF COURSE AUTOMATIC WHEN STEREO IS NOT BEING RECEIVED), THE NEW MODEL IS DESIGNATED THE TRUVOX SERIES 200 IC STEREO TUNER. AS THE NAME SUGGESTS, IT JOINS THE RECENTLY INTRODUCED TRUVOX SERIES 200 RANGE: HI-FI AMPLIFIER, TUNER, LOUD-SPEAKERS, MONO AND STEREO TAPE RECORDER.

EXCEPT FOR THE LEGEND "INTEGRATED CIRCUIT STEREO" ON THE TUNING SCALE AND A PEAK PROGRAMME METER IN PLACE OF THE FLAG-TYPE INDICATOR, THE NEW MODEL IS EXTERNALLY IDENTICAL WITH THE CURRENT FM200 TUNER, WHICH IS BASICALLY A MONO UNIT WITH OPTIONAL PLUG-IN STEREO MULTIPLEX DECODER. BALANCED AND UNBALANCED AERIAL INPUTS, OUTPUTS VARIABLE FROM 0 TO 0.7V, FLYWHEEL TUNING, STEREO BEACON AND FRONT PANEL SWITCHES (POWER ON/OFF, A.F.C. ON/OFF, STEREO/MONO AND MUTING ON/OFF) ARE AS ON THE FM200, BUT INTERNAL DESIGN AND PERFORMANCE ARE ENTIRELY NEW.

IN PLACE OF THE PREVIOUS MONO CIRCUIT AND ITS OPTIONAL PLUG-IN DECODER, BOTH OF WHICH USED ONLY DISCRETE COMPONENTS, THERE IS NOW A SINGLE CIRCUIT USING INTEGRATED CIRCUITS (I.C.'S) AND FIELD-EFFECT TRANSISTORS (F.E.T.'S). TECHNICALLY THE "FRONT" (AERIAL INPUT) END OF THE CIRCUIT IS A DUAL-GATE F.E.T., WHICH IS COUPLED TO AN I.F. (INTERMEDIATE FREQUENCY) "STRIP" COMPRISING TWO LINEAR I.C. AMPLIFIERS AND A FEW ASSOCIATED COMPONENTS.

THE FIRST I.C. IN THE CIRCUIT EFFECTIVELY COMPRISSES 7 DIODES, 10 TRANSISTORS, 11 RESISTORS AND ALL CONNECTIONS NEEDED TO FORM A COMPLETE I.F. AMPLIFYING SECTION, ALL DIFFUSED ON A SINGLE CHIP OF SILICON. THE SECOND I.C. IS EVEN MORE COMPLEX, WITH 12 DIODES, 12 TRANSISTORS AND 14 RESISTORS. BOTH ARE MOUNTED ON MINIATURE TEN-LEAD BASES SEALED IN STANDARD SIZE (TO5) TRANSISTOR CANS, WHICH ONLY REQUIRE COUPLING CAPACITORS AND TRANSFORMERS TO COMPLETE THE I.F. STRIP.

DECODER, A.F.C., OUTPUT STAGES AND SIMILAR SECTIONS ARE ALL MOUNTED ON THE SAME BOARD, SO THE OVERALL CIRCUIT SIZE AND NUMBER OF DISCRETE COMPONENTS ARE SUBSTANTIALLY REDUCED.

PROPERLY DESIGNED INTO A CIRCUIT, THE LIFE OF AN I.C. IS INDEFINITE, AND THE RELIABILITY OF THE WHOLE CIRCUIT IS VASTLY IMPROVED. BETTER STEREO RECEPTION (FREQUENCY RESPONSE 20 C/S TO 15 KC/S ±1.5DB, BEFORE DE-EMPHASIS) AND NOTCH FILTERS, CHANNEL SEPARATION BETTER THAN 30DB AT 1 KC/S, DISTORTION LESS THAN 0.5%, HIGHER SENSITIVITY (2µV FOR 30DB QUIETING, 3µV FOR -3DB LIMITING), LOWER NOISE (A.M. REJECTION BETTER THAN -50DB) AND LESS DRIFT (2µV SIGNAL HELD AGAINST 2V AT 0.5 MC/S DIFFERENCE) ARE AMONG THE TECHNICAL BENEFITS.

PRIOR TO THE INTRODUCTION OF STEREO BROADCASTS, MONO TUNERS WERE DESERVEDLY POPULAR, AND THE OPTIONAL PLUG-IN...
Stereo decoder was a logical extension. For the many present owners of Truvox mono tuners, this decoder will continue to be available. But with stereo broadcasting spreading, and already covering much of the country, an integral stereo tuner is a technically simpler and more satisfactory solution for anyone buying a hi-fi tuner today. The Truvox IC stereo tuner is ahead of the market in terms of technology, with performance, facilities, styling and price to satisfy the most demanding user.

SPECIFICATION

- **Sensitivity:**
 - 2-0µV for 30dB quieting IHFM
 - 1-5µV for 30dB quieting IHFM
 - 5-0µV for 200 kHz bandwidth

- **Rejection (with receiver tuned to):**
 - IF (10-7 Mc/s) – 85dB
 - ½ IF (103-35 Mc/s) – 70dB
 - Image (119-4 Mc/s) – 55dB
 - Double-½ i.f. (206-7 Mc/s) – 70dB
 - AM – 50dB

- **Frequency response:**
 - 20 c/s to 15 kHz ±1dB before de-emphasis and steep notch filters

- **Pilot tone suppression:**
 - 40dB

- **Stereo separation:**
 - 30dB at 1 kHz
 - 22dB at 10 kHz

- **Distortion:**
 - 0-5% (40 kHz deviation)

- **Tuning range:**
 - 87-5–108-5 Mc/s

- **Tuning indication:**
 - Flywheel cursor, centre-zero meter
 - Will hold 2µV signal against 2V at 0-5 Mc/s separation

- **AFC:**
 - Switched, ±200 kHz pull-in, temperature-compensated

- **Stereo beacon:**
 - Lights automatically on reception of stereo programme

- **Switched controls:**
 - Power on/off, AFC on/off, stereo/mono override, interstation muting on/off

- **Aerial inputs:**
 - Balanced 300Ω
 - Unbalanced 75Ω

- **Outputs:**
 - 0-0-7V r.m.s. for each channel

- **Circuit:**
 - Silicon solid-state, with RCA dual-gate f.e.t. front end and i.f. strip comprising two R.C.A. i.c.'s on single printed board with multiplex and output stages, fed by 12V zener-stabilised supply

- **Voltage:**
 - 100–120V or 200–250V a.c., 50–60 c/s

- **Finish:**
 - Teak, grey panel, white/silver trim

- **Dimensions:**
 - 16 x 6in (41 x 17-5 x 13 cm)

- **Weight:**
 - 10 lb (4-5 kg)

- **Panel mounting cut-out:**
 - 14 15/16 x 3-1/8 in (38 x 95 cm)

EMI SOLID-STATE RADIATION DETECTORS

The Valve Division of EMI Electronics Ltd., recently announced the introduction of two new solid-state radiation detectors.

The SB2 is a silicon surface barrier diode detector with very good energy resolution, primarily designed for the detection of charged particles of proton mass and greater and is available in a range of active surface areas and depletion depths.

The SB3 silicon probe is suitable for Alpha or Alpha plus Beta monitoring. The detector head is mounted on a six-inch angled handle, terminating in a coaxial socket. It is intended for use with charge sensitive input ratemeters, with a counting threshold of approximately 1MeV equivalent for Alpha counting, and approximately 100KeV equivalent for Beta counting.

February 1969
SOLID-STATE AUDIO GENERATOR
PART 1
by
G. A. STANTON, G3SCV

By taking advantage of simple basic principles, this carefully engineered design offers a sine wave output having an amplitude continuously variable up to 1.5 volts r.m.s., and a response ranging from 10 c/s to 20 kc/s within ± 2dB. Two frequency controls are provided, one offering a "bandspread" from zero to 500 c/s. Inexpensive high performance silicon transistors are used throughout and total consumption is only 14mA from a 9 volt supply. It should be pointed out that an oscilloscope is required for final setting up, as is described in the concluding part to be published next month. The concluding article will also give constructional details.

Prior to the second world war, almost all audio frequency signal generators worked on the beat frequency principle. In these the audio output was obtained by "beating" together two radio frequency oscillations. Since the War this type of generator has been superseded by types based upon the Wein Bridge oscillator, in which the output is generated directly by resistance-capacitance networks. While the Wein Bridge generator has the advantage of simplicity over the earlier types, nevertheless the Beat Frequency Generator still offers a number of useful features. By careful design, for example, the Beat Frequency Generator can cover the whole audio spectrum in one range, and yet at the same time, by having "bandspreading" facilities, be accurately set to any specific frequency within that range. An in-built calibration check can also be provided quite easily. The instrument to be described is of the Beat Frequency type and does, in fact, bring an old idea fully up to date.

PRINCIPLE OF OPERATION
The principle of operation can be understood from a study of Fig. 1. In this blocks A and B are two oscillators producing frequencies f1 and f2. If these are fed into a suitable mixing network (M) four frequencies will be

Fig. 1. The output frequencies produced when two oscillators are applied to a mixing network
FEBRUARY 1969

made variable of superhet by difference plus the present receiver. If, in receiving c.w. oscillator 1, as shown in Fig. 1, the oscillator A is set at 100 kc/s and oscillator B at 110 kc/s, the output will include a frequency of 9.5 kc/s (110 kc/s minus 100.5 kc/s). If a frequency of 14.9 kc/s is required, oscillator A can be set at 100.1 kc/s and oscillator B at 115 kc/s. (115 minus 100.1 = 14.9.) The control dials tuning the oscillators should, of course, be calibrated in terms of the audio range, whereupon any specific frequency within that range can be easily selected.

While the principle of operation just outlined is relatively simple, a number of problems are involved in producing a satisfactory practical design. In the first place, it will be obvious that both the stability and the waveform purity of the output of the generator will depend upon the stability and waveform purity of the basic oscillators. These must be as stable and as free from harmonic production as possible. In earlier designs it was a standard practice to make both the oscillators identical in the hope that any frequency drift occurring in one would be neutralised by a similar drift in the other. It was also standard practice to filter the output of at least one oscillator to ensure freedom from harmonics. As will be seen, both these practices have been followed in the present design.

A second problem arises from the fact that two oscillators working in close proximity have a tendency to "pull" each other. If the oscillators happen to be working on frequencies that are but a few cycles per second apart, then the tendency is for them to synchronise.

Rear view behind the front panel. Printed circuit panel A is at the left with VC₁ alongside, whilst printed circuit panel B, with VC₂/VC₃, is to the right. Printed circuit panel C is in the centre, with vertical screens on either side.
Fig. 2. Full circuit diagram of the Beat Frequency Audio Signal Generator.

Supply A

Supply B

Supply C

Supply D

2N697, 2N706

Lead-outs
As already mentioned, several unwanted frequencies will be present at the output of the mixer circuit. Careful filtering is therefore necessary at this point to ensure that only the required audio signals are passed on to the

In the type of instrument being described “pulling” must be prevented at all costs. This means careful screening and adequate “buffer” stages to prevent the output of one oscillator coupling back into the other.

FEBRUARY 1969
output stages of the instrument. The problem here is to design a filter that will completely remove the unwanted radio frequencies without at the same time attenuating the higher audio frequencies. This is best achieved by a combination of tuned circuits and suitable chokes.

PRACTICAL DESIGN

The circuit of the Audio Frequency Signal Generator which forms the subject of this article is given in Fig. 2. The instrument meets the following specification:

Range: 0 to 20 kc/s in one range with a bandspread of 0 to 500 c/s over entire range.

Output: Sine wave 1:5 volts r.m.s.

Response: +2dB from 10 c/s to 20 kc/s.

It will be seen in Fig. 2 that eight silicon transistors are utilised, and at first sight this may appear to be rather extravagant. Further study will, however, show that only two types are used, and both are readily available on the market at very low prices.

To simplify construction, the instrument is built in four units, the components in each unit being mounted on small panels of printed circuit board. In Fig. 2, panel A comprises the "fixed" oscillator, TR2, operating in a Tesla circuit at approximately 100 kc/s. This particular circuit was adopted because of its inherent stability. The tuned circuit is made up of L1, C1, and C2, with VC1 and VC2 in parallel with C2, the former of the two variable capacitors being the "bandspread" control and the latter the zero re-set. The "bandspread" control is capable of increasing the frequency of oscillation by approximately 550 c/s. TR4 is a buffer stage and output from the oscillator is fed to it via the small pre-set capacitor, VC2. The collector load of TR2 is a parallel tuned circuit adjusted to 100 kc/s. The high C/L ratio of this combination is chosen in order to attenuate any harmonics that may be generated by the oscillator.

Panel B contains the variable oscillator, TR3, together with its associated buffer stage TR4. This oscillator is basically similar to the one already described except that it is designed to tune from 100 kc/s to 120 kc/s by means of a standard two-gang 500 pF capacitor, VC4 and VC5. The buffer stage on this panel is untuned.

Output from the two oscillators is fed via screened leads to the mixer mounted on Panel C, where the mixing process is carried out by TR5. This is biased to operate as a product detector, output from the fixed oscillator being injected into the emitter circuit and from the variable oscillator into the base. The resulting action is very similar to that of a frequency changer in a superhet, and output is taken from the collector circuit. At this point the unwanted radio frequencies are separated from the audio by means of a filter circuit. This follows standard practice but has been "tailored" to match the input of the following stage. The filter itself contains a parallel tuned circuit (L4, C19 and VC7) adjusted to resonate at 100 kc/s. This presents a high impedance to the fundamental radio frequencies which are consequently bypassed to earth by the capacitors C18 and C20. Any residual radio frequencies are prevented from reaching the audio stages by L4, which is a standard 2.5 mH r.f. choke.

It should be mentioned that in the prototype the filter circuit was found to be the most critical part of the whole instrument. Any wide divergence from the values given can seriously affect the higher end of the audio range. The components used are standard and are readily available.

A home-wound pot core assembly whose construction is described next month is employed for L4, but early checks with the prototype indicated that a Repanco 5 mH choke type CH2 would function equally well. If, however, the reader uses such a choke instead of the pot core coil it should be on an experimental basis only, and it may be necessary to alter the value of C19 to obtain the requisite filter frequency. Also, the choke must be mounted at right angles to L4 to prevent interaction. With the pot core assembly and the values shown in Fig. 2, L4 resonates at the correct frequency, and this fact has been carefully checked in practice.*

Panel D contains a three stage audio amplifier of conventional design in which generous use of negative feedback keeps distortion to a low level and also allows for differences in the individual transistors used. The feedback is provided over the two first stages by R24 and in the final stage by R32. A sinewave of 1-5 volts r.m.s. is available from the collector of TR5 but this can be reduced as required by the gain control (VR1) in the collector circuit of TR7. The gain control is ganged to the on-off switch of the instrument for convenience.

In order to make the instrument more versatile two additional refinements are included in the design. A 3-step attenuator given by R33 to R36 and S2 provides for the output to be reduced by 20 dB stages, the output impedance being kept reasonably constant at around 2 kΩ. A meter is also included to monitor the output, which can then be adjusted as required.

It will be noted that besides indicating the output voltage, the meter can also be switched to read the collector current of the mixer stage. This is to enable the instrument to be accurately "zeroed" for, as the zero frequency position is approached, the mixer collector current fluctuates slowly enough for the meter needle to follow. The zero is adjusted until the needle oscillates at a low rate as possible. The instrument is then set to within a few cycles of zero frequency. This process, in itself, provides a check upon the calibration of the unit.

For economy reasons, the meter used in the prototype is a 50mA "level indicator" as used on some tape recorders. R37 is adjusted so that the level mark on the meter indicates 1 volt r.m.s. and, in fact, an 18kΩ resistor in parallel with a 56kΩ resistor. If a standard 50mA is used, R37 should be adjusted for the meter to read 2 volts full scale deflection. The exact value will depend upon the internal resistance of the meter used and upon the diodes used in the meter bridge. It should be around 18kΩ. The value of R41 will also depend upon the internal resistance of the meter, and should be such that the meter reads half-scale when switched to the "mixer" position. In the original, R41 is 82kΩ.

It should be noted that, if a Xaxley switch is employed for S3, it must have break-before-make contacts.

Power requirements for the instrument are extremely modest, the total current consumption from a 9 volt source being 14mA. The zener diode used by the author in the Z1 position was a Texas 187062A, but any 5% 6-2 volt zener diode stabilising at around 5mA will be satisfactory. (A type 187062, which meets these requirements, is available from Henry's Radio, Ltd.) By using a

*The author states, in answer to a query from ourselves, that varying values in C19 and C20 ranging from 0.001 to 0.1 mF have little effect on the tuning of L4.--- Editor.
PP9 type of battery the instrument can be made self-contained. Alternatively an external power supply could be used, preferably a type of supply with some form of stabiliser included.

(To be continued)

Ready Reckoner for Parallel-R and Series-C

by

R. M. BLACKALL

An ingenious diagram which enables parallel resistor and series capacitor problems to be solved without recourse to calculation

THE ACCOMPANYING DIAGRAM HAS BEEN DESIGNED TO give scales that are as free from convergence as possible. The horizontal scale is logarithmic, so that the preferred values are well spaced and cover a wide range. The vertical scale gives the resultant value and this is linear.

The diagram gives parallel resistance or series capacitance from the equations

\[R_{\text{total}} = \frac{R_1 \times R_2}{R_1 + R_2} \]

\[C_{\text{total}} = \frac{C_1 \times C_2}{C_1 + C_2} \]

where \(R_{\text{total}} \) or \(C_{\text{total}} \) is the resultant value and \(R_1 \) and \(R_2 \), or \(C_1 \) and \(C_2 \), are the individual values.

As an example of how the diagram may be used, consider the resultant values given by 68 (ohms, kilohms or megohms) in parallel with 180, 82 in parallel with 120, 100 in parallel with 100 and 470 in parallel with 56. In each case the resultant value is equal to (or very nearly equal to) 50, as shown by the dashed line.
In last month’s contribution to this series we examined a.g.c. diode circuits as are employed in valve a.m. sound radio receivers, dealing first with circuits in which an a.g.c. voltage is produced for all input signal amplitudes and then carrying on to circuits in which an a.g.c. voltage is produced only with signals whose amplitude exceeds a predetermined level. The second class of circuit provides what is described as “delayed a.g.c.”, the word “delay” applying to voltage and not to time. We saw that both classes of a.g.c. are employed in valve a.m. receivers, despite the advantages in performance conferred by the delayed a.g.c. system. The delayed a.g.c. circuit also has the minor disadvantage that it can introduce distortion with low strength a.m. signals whose amplitude at the a.g.c. diode is close to the delay voltage. However, this distortion can be reduced to an acceptable level if the delay voltage is of the order of 2 to 3 volts and if the i.f. signal for the a.g.c. diode is taken from the anode of the last i.f. amplifier valve.

We shall now examine the manner in which the a.g.c. voltage is applied to the controlled valves.

Applying A.G.C. Voltage

The a.g.c. system in a receiver functions by applying the negative voltage produced by the a.g.c. diode back, as a bias voltage, to the control grids of the valves which precede the diode, and it will be recalled that these valves are the r.f. amplifier valve (if fitted), the frequency changer, and the i.f. amplifier valve or valves. All the controlled valves have variable-mu characteristics, whereupon their mutual conductance varies “smoothly” as their grid bias voltage alters. As is required of an a.g.c. system in a valve receiver, the a.g.c. voltage goes negative as the signal amplitude passed to the a.g.c. diode increases.

Fig. 1(a) illustrates one method of applying the a.g.c. voltage to a controlled valve. In this case the a.g.c. voltage is applied to the grid of an r.f. amplifier valve. Capacitor C1 is a d.c. blocking capacitor and has a fairly low reactance at the frequency applied to the control grid. A typical value, for frequencies in the long, medium and short wave bands, would be of the order of 100 to 200pF. Resistor R1 should have a value which does not cause any excessive damping (i.e. reduction in effective Q factor) of the tuned circuit and could, typically, be 1MΩ. The valve has cathode bias components, these allowing it to have its normal bias voltage when the a.g.c. voltage is zero.

An alternative method of applying a.g.c. voltage is shown in Fig. 1(b) and, here again, an r.f. amplifier stage can occur on the short wave bands of conventional superhets.

The method of a.g.c. voltage application shown in Fig. 1(a) is frequently referred to as “parallel feed” and that in Fig. 1(b) as “series feed”. As we have noted, with parallel feed it is necessary for the feed resistor (R1) to have a value which does not cause objectionable damping of the tuned circuit. Also, with series feed it is necessary for the capacitor inserted at the chassis end of the coil (C2) to have a very low reactance (i.e. high capacitance) and to choose a value of oscillator padding capacitance which allows for its presence.

Both the circuits of Figs. 1(a) and (b) are suitable for use in an r.f. amplifier stage. They may also be employed at a frequency changer stage, in which case the a.g.c. voltage is applied to the signal frequency grid of the valve.

With an i.f. amplifier, the series feed method is preferable, and the appropriate circuit is shown in Fig. 1(c). This differs slightly from Fig. 1(b) because the added capacitor employed in the a.g.c. system, C3, does not enter the i.f. transformer tuned circuit. The tuning capacitor for the latter is a fixed component and it is not required that one of its terminals be at chassis potential. There is no necessity for C3 to have quite as large a capacitance as does C2, of Fig. 1(b), although a value of about 0.01μF or more is still desirable. The parallel feed

448

The Radio Constructor
type of a.g.c. voltage application is not attractive for i.f. amplifier grid circuits, because the effective Q factor of a tuned i.f. transformer secondary, which is of course expressly designed to operate at a single frequency, is higher than is that of an r.f. tuned circuit, and the added grid resistor would cause significant damping.

TIME CONSTANT

Fig. 2 illustrates the components used in a simple a.g.c. circuit, as is encountered in domestic a.m. valve superhet having no r.f. stage and a single i.f. amplifier valve. Resistor R_3 is the a.g.c. diode load, whilst R_2 and C_2 are the low-pass filter components which ensure that no i.f. signal is present on the a.g.c. voltage. C_3 also carries out the same function as did C_2 in Fig. 1(c). Thus, the a.g.c. voltage is applied to the i.f. amplifier control grid via a series feed arrangement. At the same time, the a.g.c. voltage is passed to the frequency changer signal grid via the parallel feed method of Fig. 1(a). The circuit of Fig. 2 is typical of the a.g.c. systems incorporated in many domestic long, medium and short wave a.m. receivers, and the component values are representative of standard practice. We shall now refer to this circuit as an example for the explanation of a.g.c. time constant.

Let us imagine that a signal is suddenly applied to a receiver employing the a.g.c. circuit of Fig. 2. As soon as the signal appears, the a.g.c. diode immediately applies a negative-going voltage to the right hand end of R_2. It will be apparent that the speed at which this negative voltage is fed back to the controlled valves, and thereby reduces their gain, depends upon the values of R_2 and C_2. Both these components have relatively large values, and an appreciable time will elapse before C_2 becomes charged such that the full a.g.c. voltage appears across its plates. There will also be a time delay due to the presence of C_1 in the parallel feed circuit to the signal grid of the frequency changer but, since C_1 has a very much lower value than C_3, this secondary time delay will be negligible and can be ignored. Another point is that the internal impedance in the a.g.c. diode when it produces the a.g.c. voltage is low, and this may be similarly ignored. Thus, as already stated, the two components which control the speed at which the negative a.g.c. voltage is applied to the controlled valves are C_2 and R_2.

Let us next assume that the signal is suddenly removed. At once the a.g.c. diode will cease to conduct, whereupon C_3 will commence to discharge and the negative a.g.c. voltage on the grids of the controlled valves will fall to its previous value, the speed at which it falls being that at which C_2 discharges. Since the a.g.c. diode does not now conduct, the discharge path for C_3 is given via R_3 and the diode load R_3. Thus, C_3 has to discharge through a higher resistance (R_2 plus R_3) than that through which it charges, and it follows that the speed at which the a.g.c. voltage falls is slower than that at which it rises. In consequence, an a.g.c. circuit of the type shown in Fig. 2 operates more quickly with signals that are increasing in amplitude than it does with signals which are decreasing in amplitude. This effect is unavoidable. In practice, it is not particularly troublesome provided that R_3 is lower in value than R_2.

An a.g.c. system has to be fast-acting if it is to be effective with signals which are subject to rapid fluctuations in strength due to fading. At the same time, however, it must not be so fast-acting that the a.g.c. voltage responds to the lower audio frequencies modulating the signal being received. If this were to occur the a.g.c. system would, as a first effect, cause these frequencies to be attenuated. As a second effect, the alternating audio frequencies in the a.g.c. voltages applied to the controlled valves could, due to waveform distortion introduced by the filter components in the a.g.c. circuit, amplitude modulate other audio frequencies as well.

The normal approach in domestic a.m. receivers is to make the speed of a.g.c. operation with increasing signal

Fig. 1 (a). Applying an a.g.c. voltage to an i.f. amplifier by the parallel feed method

(b). The series feed method of applying the a.g.c. voltage

(c). The series feed circuit as used with an i.f. transformer
strength (i.e. when C_2 of Fig. 2 charges) several times slower than that at which feedback of the lowest audio frequencies to be reproduced can occur. The speed of operation when signal strength decreases will then be automatically slower and the a.g.c. system as a whole will not respond to a.f. modulating signals.

The operating speed of an a.g.c. system is expressed in terms of the charging time constant of its filter components as signal strength increases. In the circuit of Fig. 2, this time constant is that offered by C_2 and R_2. Now, the time constant of a resistor and capacitor is defined as the time taken for the voltage across the capacitor, when initially discharged, to rise to 63% of an e.m.f. suddenly applied via the resistor,* and it is equal to the capacitance multiplied by the resistance where time constant is in seconds, capacitance is in farads and resistance is in ohms. The farad is a very large capacitance, and it is usually more convenient to calculate time constant, in seconds, from microfaryads and megohms. (Since one quantity is divided by a million and the other is multiplied by a million their product remains the same).

In Fig. 2 the time constant for the a.g.c. system is given by $C_2 (0.05µF)$ multiplied by $R_2 (2MΩ)$ and works out as 0·1 second. This is a typical a.g.c. time constant for a domestic a.m. receiver and, because it corresponds to one half-cycle at 5c/s, can be expected to afford good protection against unwanted a.g.c. operation by modulating audio frequencies. The same time constant would be given if, say, C_2 were 0·1µF and R_2 were 1MΩ, since the product once more works out as 0·1 second. In general, the a.g.c. time constants in domestic receivers intended for long, medium and short wave a.m. operation lie between 0·05 and 0·2 seconds, these offering sufficient speed of a.g.c. operation to counteract most types of fading likely to be met. If the receiver is intended for high fidelity reproduction, where the lower audio frequencies are reproduced at greater level than in more inexpensive domestic equipment, it is preferable to use a slightly longer a.g.c. time constant, from around 0·2 to 0·4 second. Such receivers will normally be used for listening to transmissions offering good signal strength and which are not subject to high speed fading, whereupon a fast-acting a.g.c. system is not so necessary. Incidentally, the last type of receiver will normally be made in the form of an "a.m. tuner unit", this comprising all the stages of a superhet up to and including the signal detector and a.g.c. diode. Its a.f. output is then coupled to a separate high fidelity a.f. amplifier.

Specialised a.m. receivers, as are used for communications reception and the like, have different a.g.c. requirements, and it is a common practice to fit a switch which can select one of two a.g.c. time constants. Typical time constants are of the order of 0·2 seconds for telephony (speech) and 0·5 seconds for telegraphy (morse transmission). A communications receiver will also have a switch to cut the a.g.c. system out altogether, this being accomplished by short-circuiting the a.g.c. feed, after the filter resistor immediately following the a.g.c. diode, to chassis. Manual controls are then employed to control the gain of the r.f. and i.f. stages.

A.G.C. COMPONENT VALUES

As we have seen from the simple a.g.c. circuit of Fig. 2, an important requirement of the filter components C_2 and R_2 is that they should provide the time constant desired for the particular receiver in which they are fitted. There are other requirements which also affect component values in the a.g.c. circuit. If, for instance, the a.g.c. voltage is taken from the detector diode load instead of from a separate diode, R_2 requires a high value in order to reduce a.c. loading on the detector circuit. A further point, which we have already mentioned, is that whilst C_2 functions as a low-pass filter component it also acts as a bypass capacitor at intermediate frequencies for the i.f. transformer secondary, with the result that it requires a reasonably large value in order to provide a low reactance at such frequencies. Another reason for giving C_2 a large value is that it also decouples the a.g.c. feeds to both the i.f. and frequency changer grid circuits,

(continued on page 453)
E.R. DISSIPATION TABLE
(50 Volts and above)

The Table gives dissipation in watts, from \(W = \frac{E^2}{R} \), for resistance at commonly encountered voltages from 50V to 500V. For resistances above 1MΩ divide down from the value shown for this resistance, using the method detailed in Data Sheet No. 21. For reliable working, carbon resistors require ratings at least 1.5 times the wattage figure given here or in Data Sheet No. 21.

<table>
<thead>
<tr>
<th>Resistance</th>
<th>50V</th>
<th>60V</th>
<th>80V</th>
<th>100V</th>
<th>120V</th>
<th>140V</th>
<th>160V</th>
<th>200V</th>
<th>300V</th>
<th>400V</th>
<th>500V</th>
</tr>
</thead>
<tbody>
<tr>
<td>470Ω</td>
<td>5.3</td>
<td>7.7</td>
<td>14</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>680Ω</td>
<td>3.7</td>
<td>5.3</td>
<td>9.4</td>
<td>15</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1kΩ</td>
<td>2.5</td>
<td>3.6</td>
<td>6.4</td>
<td>10</td>
<td>14</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2kΩ</td>
<td>1.1</td>
<td>1.6</td>
<td>2.9</td>
<td>4.5</td>
<td>6.6</td>
<td>8.9</td>
<td>12</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7kΩ</td>
<td>0.53</td>
<td>0.77</td>
<td>1.4</td>
<td>2.1</td>
<td>3.1</td>
<td>4.2</td>
<td>5.4</td>
<td>8.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.8kΩ</td>
<td>0.37</td>
<td>0.53</td>
<td>0.94</td>
<td>1.5</td>
<td>2.1</td>
<td>2.9</td>
<td>3.8</td>
<td>5.9</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10kΩ</td>
<td>0.25</td>
<td>0.36</td>
<td>0.64</td>
<td>1.0</td>
<td>1.4</td>
<td>2.0</td>
<td>2.6</td>
<td>4.0</td>
<td>9</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>22kΩ</td>
<td>0.11</td>
<td>0.16</td>
<td>0.29</td>
<td>0.45</td>
<td>0.66</td>
<td>0.89</td>
<td>1.2</td>
<td>1.8</td>
<td>4.1</td>
<td>7.3</td>
<td>11</td>
</tr>
<tr>
<td>47kΩ</td>
<td>0.053</td>
<td>0.077</td>
<td>0.14</td>
<td>0.21</td>
<td>0.31</td>
<td>0.42</td>
<td>0.54</td>
<td>0.85</td>
<td>1.9</td>
<td>3.4</td>
<td>5.3</td>
</tr>
<tr>
<td>68kΩ</td>
<td>0.037</td>
<td>0.053</td>
<td>0.094</td>
<td>0.15</td>
<td>0.21</td>
<td>0.29</td>
<td>0.38</td>
<td>0.59</td>
<td>1.3</td>
<td>2.4</td>
<td>3.7</td>
</tr>
<tr>
<td>100kΩ</td>
<td>0.025</td>
<td>0.036</td>
<td>0.064</td>
<td>0.1</td>
<td>0.14</td>
<td>0.2</td>
<td>0.26</td>
<td>0.4</td>
<td>0.9</td>
<td>1.6</td>
<td>2.5</td>
</tr>
<tr>
<td>220kΩ</td>
<td>0.011</td>
<td>0.016</td>
<td>0.029</td>
<td>0.045</td>
<td>0.066</td>
<td>0.089</td>
<td>0.12</td>
<td>0.18</td>
<td>0.41</td>
<td>0.73</td>
<td>1.1</td>
</tr>
<tr>
<td>470kΩ</td>
<td>0.014</td>
<td>0.021</td>
<td>0.031</td>
<td>0.042</td>
<td>0.054</td>
<td>0.085</td>
<td>0.19</td>
<td>0.34</td>
<td>0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>680kΩ</td>
<td>0.015</td>
<td>0.021</td>
<td>0.029</td>
<td>0.038</td>
<td>0.059</td>
<td>0.13</td>
<td>0.24</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1MΩ</td>
<td>0.01</td>
<td>0.014</td>
<td>0.02</td>
<td>0.026</td>
<td>0.04</td>
<td>0.09</td>
<td>0.16</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MARCH—ONCE AGAIN A FEATURE PACKED ISSUE!

100 kc/s – 10 kc/s
FREQUENCY
SUB-STANDARD

PLURS
DATA SHEET 23 AND
YOUR ‘EASY-VIEW’
CALENDAR
(2nd Quarter 1969)

RADIO CONSTRUCTOR

★ High Value Ohmmeter
★ Oil Change Indicator
★ Light Sensitive Oscillator

YOUR FINISHED ASSEMBLY
DESERVES A REALLY
PROFESSIONAL FINISH
-USE ‘CONSTRUCTOR’

PANEL SIGNS
PERMANENT PAINT
TRANSFERS

Send to:
DATA PUBLICATIONS LTD., 57 MAIDA VALE, LONDON, W.9

★ Set 3 Wording—WHITE
★ Set 4 Wording—BLACK
★ 6 Sheets, over 1,000 words etc.
★ Set 5 DIALS—clear background
★ Set 6 DIALS—black background

4/6 per set (postage 3d)
SOLID-STATE DIGITAL CLOCK

Part 3

by

A. J. EWINS

In the third section of this 4-part series, the technical description is completed by examining the AM/PM light switching circuit and the chime oscillator. Details of construction are then commenced.

AM/PM LIGHT CIRCUIT

The AM/PM LIGHT CIRCUIT, SHOWN IN FIG. 11, LOOKS very much like a Schmitt trigger, but its operation is essentially different in that each transistor is either "hard-on" or "hard-off". It might, in fact, be termed a "saturated Schmitt trigger".

The input to the circuit is obtained from the output of binary B25 (see Fig. 1). When the output from B25 is "up", TR1 will be fully conducting. The values of R3, R4 and R5 are chosen so that TR3 is also fully conducting with the result that the base of TR2 is below its emitter voltage, hence TR2 is "off". Thus the lamp PL2 is lit.

The lamps are 6V 0.04A types. R4 is chosen to be 150Ω so that when either TR2 or TR3 is fully conducting the voltage supply needs to be (150 x 0.04) + 6 = 12V. (This is the unsmoothed 12V supply obtained from the power supply in Fig. 5.)

When the output of B25 is "down", TR1 is non-conducting with the result that the base of TR1 is fed from the supply rail via R2. Thus TR1 becomes fully conducting, PL1 is lit and, due to the values chosen for R4 and R5, TR3 becomes non-conducting as its base voltage falls below its emitter voltage.

Lamps PL1 and PL2 are 6V 0.04A rear lamps, as used in bicycle dynamo lighting systems. If any difficulty is experienced in obtaining these, they are usually available at Woolworth's stores.

The transistors specified for TR1, TR2 and TR3 are BC168. However, any n.p.n. transistors with hfe greater than 100 may be employed instead.

CHIME OSCILLATOR

The chime oscillator circuit is given in Fig. 12. Except for the addition of TR3 with its associated base resistors and C2, the circuit is a conventional free-running multivibrator. C2 was added experimentally and found to produce a more "pure" tone with a slight reduction in frequency. The input to the base of TR3 is fed, via R5, from the output of the NAND gate (see Fig. 2). When TR3 is non-conducting the oscillator is allowed to run freely, but when TR3 is fully conducting the base of TR2 is held down at near earth potential with the result that the oscillator is held with TR2 "on" and TR3 "off", i.e. not

![Image of the circuit diagram]

COMPONENTS

(Fig. 11)

<table>
<thead>
<tr>
<th>Resistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
</tr>
<tr>
<td>R2</td>
</tr>
<tr>
<td>R3</td>
</tr>
<tr>
<td>R4</td>
</tr>
<tr>
<td>R5</td>
</tr>
<tr>
<td>R6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1, TR2, TR3 BC168 (or suitable alternative—see text)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lamps</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL1, PL2 6V 0.04A (see text)</td>
</tr>
</tbody>
</table>

Fig. 11. The AM/PM light switching circuit. The input is obtained from bistable B25 of Fig. 1 (published in Part 1 of this series)

THE RADIO CONSTRUCTOR
free-running. The collector resistor of TR₁, R₁, is chosen to be as high as is practically possible so that the current consumption of the oscillator, when it is in its non-operative state, is at a minimum. The sound is provided by a moving coil microphone insert connected in series with the collector resistor of TR₂, R₄. Further details on this insert, which functions here as a reproducer, were given under “Notes on Components” published in Part I of this series.

Transistors TR₁ and TR₂ are specified as BC168, but any n.p.n. transistor with hᵢₑ greater than 60 could be employed instead.

CONSTRUCTIONAL DETAILS

The various electronic circuits of the clock are wired up on three 01-in pitch Veroboards and one 015-in pitch Veroboard.

Board 1 consists of binaries B₁ to B₂₀ and the monostable, M₁, of the basic circuit of the clock (see Fig. 1). Board 2 consists of the remaining binaries of the basic circuit, B₂₁ to B₂₅, the AM/PM light circuit (see Fig. 11) and the read-out circuit (see Fig. 4). Board 3 takes the

COMPONENTS

(Fig. 12)

Resistors

- R₁ 4.3kΩ
- R₂, R₃ 33kΩ
- R₄ 1kΩ
- R₅ 100kΩ
- R₆ 820kΩ

Capacitors

- C₁-C₃ 0.02µF disc ceramic (as small as possible)

Transistors

- TR₁, TR₂ BC168 (or suitable alternative—see text)
- TR₃ silicon planar transistor

Reproducer

- Moving coil mic. insert (see text)
chime circuit in its entirety. Finally, Board 4 is the combined power supply and Schmitt trigger (see Fig. 5).

Because of the obvious complexity of the construction of the four boards and the great number of words that would be necessary to describe it in detail it is proposed to give only an outline of the layout of the individual building blocks, leaving it to the constructor, with careful study of the photographs, drawings and circuits, to work out for himself the interconnections between the building blocks and the four boards. This, after all, is part of the fun of construction.

BOARD 1

A photograph of Board 1 was given in Part 1 of this series. This photograph should be studied in conjunction with Fig. 13, which illustrates the positions taken up by the bistables B1 to B20 and monostable M1. It should be noted that only the actual bistable and monostable components appear in the space allotted for them in Fig. 13. The additional components—shown outside the blocks in the basic circuit of Fig. 1—are similarly positioned outside the "allotted spaces" of Fig. 13.

Figs. 14 and 15 show the basic layouts of the components of a bistable and a monostable respectively. The view is looking down on the component side, with the copper side underneath. In Fig. 14 all components are mounted vertically except the diodes and the 100kΩ resistors from collectors to diodes. In Fig. 15 all the components are vertical apart from the 100kΩ and 10kΩ resistors which connect to the d.c. output. The transistor identification in Fig. 15 corresponds to that in the circuit diagram of Fig. 7. Both the bistables and the monostable take up a matrix of 11 x 9 holes. This layout is suitable for transistors with small TO-18 cans. If the constructor uses transistors with larger TO-5 cans the binary layout may be altered to that given for the chime binaries in Fig. 19. This altered layout occupies the same 11 x 9 holes. Both layouts appear in the author's prototype as he had both types of transistor on hand.

The size of the board is 11 x 3½in, which is 110 x 34 holes. Referring to Fig. 13, the building blocks are arranged so that 3 columns of holes are left free between the columns of building blocks, 2 columns of holes are left free on the left-hand side of the board and 13 columns are left free on the right-hand side of the board. A space of 3 rows of holes is left between the top and middle rows of building blocks, 2 rows of holes are left between the middle and bottom rows of building blocks leaving 2 rows of holes below the bottom row of building blocks. Laying out the building blocks of Board 1 as described leaves plenty of space for the additional components of Fig. 1 interconnecting the binaries B1 to B20 and the monostable. At the far right-hand side of the board can be seen 14 "connection loops". Board 1 is used as a master board,
connections to all the other boards being taken from it. The "connection loops" are simply loops of tinned copper wire soldered to the Veroboard strips as shown in the inset. External connections are made to these rather than to the Veroboard strips since it is easier to add and remove the external connecting wires. Also, the Veroboard copper strips might become damaged or lift from the board if repeated connections and disconnections were made to them directly.

The 14 "connection loops" provide the following services:

1. Positive stabilised rail from power supply (Board 4)
2. 0 volts or earth rail from power supply (Board 4)
3. Negative rail from power supply (Board 4)
4. 50 c/s square wave input from Schmitt trigger (Board 4)
5. Positive supply rail to chime circuit (Board 3)
6. Positive going second pulse to chime circuit (Board 3)
7. 0 volts or earth rail to chime circuit (Board 3)
8. Negative supply rail to chime circuit (Board 3)
9. Negative going second pulse to push-buttons, S2-S5
10. Positive supply rail to Board 2
11. Hour pulse to chime circuit (Board 3)
12. 0 volts or earth rail to Board 2
13. Negative supply rail to Board 2
14. Hour pulse to Board 2

Visible in the photograph of Board 1 (but not shown in Fig. 13) are 14 connecting leads from the component side of the board. These provide the connections between the outputs, 1 to 14, from the binaries B7 to B20 and the inputs, 1 to 14, of the meter read-out circuit (Board 2). Just visible in the photograph are vertically mounted diodes and resistors associated with binaries B1 to B6 (near the top right hand corner of each binary). These should be ignored. They were originally designed to reset the binaries B1 to B6 but were later omitted from the circuit.

After assembling the binaries and monostable it should be a fairly easy matter for the constructor to work out the positioning and connection of the remaining components of Fig. 1 associated with Board 1. As may be seen from the photograph, "jumper" wires are used where convenient to connect spaced copper strips together. Probably the trickiest thing to work out is the positioning of the holes that need to be cleared of copper (i.e. where the rows of copper conductors must be "broken") so it
is advisable to double check everything before applying any electrical tests. Further general advice is given at the end of the constructional details.

BOARD 2

A photograph of Board 2 also appeared in Part 1 of this series, and it should be examined in company with the layout diagram of Fig. 16.

The top half of the board contains, from left to right, the binaries B21 to B25 of Fig. 1 and the AM/PM light circuit. The component layout of the binaries is as shown in Fig. 14. The lower half of the board contains the readout circuit of Fig. 4. It will be seen that there are 19 transistors in the photograph instead of 18 as shown in the circuit diagram and Fig. 16. The extreme right-hand one should be ignored. (The author had thoughts of the seconds pulse operating a magnetic counter or some similar item.) The layout of the first two transistors (from the left) and their associated resistors is shown in Fig. 17, the layout of the others following the same pattern. All resistors are mounted horizontally. It must be noted that the order of the transistors, from left to right, is *not* TR1 to TR16, but TR17 to TR18, TR19 down to TR12, TR8 to TR11 and TR5 down to TR4. The repositioning of the transistors and their associated resistors was carried out in order that the interconnections between the various binaries and the readout circuit should be as short as possible when Boards 1, 2 and 3 were mounted in their final positions. The size of Board 2 is approx. 7\(\frac{3}{4}\) x 3\(\frac{1}{4}\)in (78 x 34 holes). The binaries were again mounted with a space of 3 columns of holes between them and a space of 2 columns of holes on the left of the board. It is left to the constructor to design a suitable layout for the AM/PM light circuit at the top right of the board.

The lonely-looking diode, centre right on the board, is one half of the full-wave rectifier for the unsmoothed supply to the AM/PM light circuit. This diode connects to one half of the 12-0-12 volt winding of the mains
transformer on Board 4 via a "connecting loop" at the extreme left. It was originally intended to use a half-wave rectified unsuomothed supply for the circuit but as it was found to be unsatisfactory (the light bulbs were not bright enough) the second diode, to give a full-wave rectified supply, was added. It is suggested that the constructor mounts a second diode on the row above the one occupied by the present diode, the right-hand side of it being connected to the right-hand side of the existing one and the left-hand side of it being connected to the other half of the 12-0-12v winding on the transformer.

At the top left-hand side of the board are four connecting loops. These are, from top to bottom:
(1) Positive supply rail from Board 1
(2) 0 volts or earth rail from Board 1
(3) Negative supply rail from Board 1
(4) Hour pulse from Board 1

Indicated in Fig. 16 are the approximate positions of connecting loops for the meters, the top loop in each case being the positive supply rail. Returning to Fig. 17, which shows the view from the component side of the board, it will be seen that each of the read-out transistors has a small "connecting loop" also, this allowing an external connection to be made to its input 100kΩ resistor. (Actually, there is no need for this loop with TR15 to TR18, since these are coupled to binaries on the same board.) Finally, it will be noted that the read-out transistors proceed along the board on a "4-hole matrix", as indicated by Fig. 17.

The layout and connections of the remaining components (those associated with B21 to B24) and the various jumper wires are left to the constructor's judgement.

BOARD 3

The photograph appearing in this issue is of Board 3, and stage layout is given in Fig. 18. On this board is constructed the entire chime circuit of Fig. 2. The layout of the 18 building blocks on the board is the same as on the circuit diagram, that is, BCI at the top left-hand side of the board then BH1 to BH4 and the monostable at the top right-hand side of the board, and so on. The layout of the binaries is a little different from those on Boards 1 and 2 because, as was mentioned when discussing Board 1, the transistors used were of TO-5 construction instead of TO-18; the larger can requiring a slight reshuffling of components. The interconnections between an hour binary, a comparator and a seconds binary and the basic layout of the components are shown in Fig. 19, with the components side of the board towards the reader. All resistors can be mounted horizontally except for the cross-coupling 100kΩ and collector 10kΩ resistors in the bistable. All the diodes are horizontal. Note that an input diode and 100kΩ resistor of the OR gate (Fig. 9) appears in the layout of Fig. 19. The layouts of the monostable, the oscillator, the remaining components of the OR gate, and the NAND gate, are left to the constructor to design and will be found to fit easily into the remaining spaces. The board is approx. 10x3 3/4 in. (101x34 holes). The two connection loops at the right of the board are for connection of the oscillator output to the moving coil microphone insert. The five connection loops at the left of the board are, from top to bottom:

(1) Hour pulse from Board 1
(2) Positive supply rail from Board 1
(3) 0 voltage or earth rail from Board 1
(4) Negative supply rail from Board 1
(5) Positive going second pulses from Board 1
Again, great care must be exercised that the copper conducting strips are “broken” in the correct places and these should be double checked before testing.

NEXT MONTH
Next month’s concluding article will commence with a description of Board 4, after which general constructional and setting-up details will be given.

(To be concluded)

TRADE REVIEW

NOMBREX WIDE RANGE TRANSISTORISED R.F. GENERATOR MODEL 29S.

This instrument is the latest addition to that range of test equipment currently marketed by Nombrex Ltd., of Exmouth, Devon. This standard model has the general specification shown below and is the result of many years of design, development and manufacturing experience of solid-state signal generators. Of completely new design, it incorporates every function and facility at a reasonable price, and forms a versatile all purpose portable instrument ideal for the service engineer, technical training colleges and for the amateur radio technician.

The instrument has a wide frequency coverage, 150 kc/s to 220 Mc/s in 8 overlapping bands, each band having a separate scale—see illustration herewith. The 8 bandscale scales have a total length of 40 in, the rectangular tuning scale being 6 x 2 3/8 in, the scale discrimination being 0.6% to 1.5% of the indicated frequency. A smooth vernier tuning control having a ratio of 7:1 with a magnifier tuning cursor, for easy and accurate adjustment, is fitted. An optional extra is that of a rapid spin wheel tuning device.

The r.f. output has an average maximum of 100mV on all ranges, the modulator-buffer output stage eliminating load-frequency variations. The output has a 800Ω resistance, constant at all attenuator settings.

For calibration purposes, an electronic calibrator panel control, providing scale accuracy adjustment within 0.05% against an external standard frequency signal, is fitted.

The variable modulation depth is from 0 to 100%, the modulation frequency being adjustable from 400 to 1,000 c/s. An a.f. jack is provided for external modulation.

The stability of the r.f. circuits is stabilised against variations in battery voltage. Easy access to the battery is provided by the removal of a small rear cover and the instrument employs a standard transistor 9V battery—Ever-Ready PP4 or Drydex DT4.

The attenuator is continuously variable being nominally calibrated from 0 to 10.

A jack socket provision for operation from an external 9V battery or mains supply unit is provided. Insertion of the jack automatically disconnects the internal battery.

A printed circuit assembly is used throughout, this ensuring long-term stability and reliability.

The case dimensions are 7 3/8 in. wide, 5 3/4 in high and 3 3/8 in deep, being of steel and stove enamelled in a medium grey colour, the panel being anodised medium blue. The scales and characters are in satin-silver, the control knobs being black and having a fluted grip with spin disc styling inserts.

The accessories are supplied with the instrument, these being a coaxial r.f. test lead 36 in long terminated by 2 clips, an audio jack plug, circuit diagram, full components list and operating information.

Model 29-X incorporates all the features of the Standard Model 29-S plus an integral crystal oscillator module providing harmonic calibration check points on all ranges, employing a unique electronic calibrator panel control, to a check-point accuracy of ±0.02%. The marker signal, level adjustable by the attenuator, is available separately at the r.f. output socket for use with external equipment.

The spin wheel tuning is available as an optional extra on both models to special order. It provides rapid traverse of scale combined with smooth vernier adjustment. Add suffix -/SPIN when ordering.

THE RADIO CONSTRUCTOR
Smithy’s last incursion into the field of binary numbers (in the March 1967 issue) resulted in a number of appreciative comments from readers. This month Smithy returns to the subject and demonstrates to his able assistant, Dick, some of the many neat mathematical tricks that can be carried out with the aid of this simple notation. (Newcomers to binary may find that the information given in Data Sheet No. 16—published in the last November issue—will be helpful here)

Fig. 1. A simple multiplication problem calculated in normal manner

Table 1

<table>
<thead>
<tr>
<th>44</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>34</td>
</tr>
<tr>
<td>11</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>136</td>
</tr>
<tr>
<td>2</td>
<td>272</td>
</tr>
<tr>
<td>1</td>
<td>544</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>17</td>
</tr>
<tr>
<td>22</td>
<td>34</td>
</tr>
<tr>
<td>11</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>136</td>
</tr>
<tr>
<td>2</td>
<td>272</td>
</tr>
<tr>
<td>1</td>
<td>544</td>
</tr>
</tbody>
</table>

Fig. 2. An alternative method of finding the product of two numbers. In (a) one number is continually halved (ignoring remainders) and the other continually doubled. In (b) the right hand numbers alongside odd left hand numbers are added together to give the product
“Good,” replied Smithy. “Our next step is to do that multiplication in an entirely different way. Start a new sheet in your note-pad and write the numbers 44 and 17 side by side at the top. Then continually divide the 44 by 2 until you get down to 1. Write each number in a column going downwards.” (Fig. 2(a)).

“Okey doke,” said Dick obliquely. “Well, the first number is 22 and the second is 11. Hang on a minute, though. The third number is 5 with a remainder of 1. What do I do about the remainder?”

“Forget it,” replied Smithy. “Just put down the 5. The same applies for the following division by 2. 5 divided by 2 is 2 with a remainder of 1. Simply ignore the remainder and put down the 2.”

“Righty-ho,” said Dick cheerfully. “Well, that brings me down to 1 at the bottom of the column.”

“Excellent,” approved Smithy. “You next need a matching column of numbers underneath the 17. Only, this time, you multiply by 2 each time, with the result that the number immediately under the 17 is 34, then the next one down is 68, and so on.”

“Sure,” replied Dick. “I’ll get this little lot done in no time.”

Dick soon had his second column of figures written out.

“Now,” said Smithy, “go down the column under the 44 looking for odd numbers. Whenever you encounter an odd number, put down the corresponding figure from the column under the 17 into a third column on the right.”

“As you like,” said Dick in a puzzled tone. “Well now, the first odd number on the left is 11.”

“What’s the corresponding number under the 17?”

“68.”

“Then put 68 in the new third column you’re making up.”

“I don’t understand this at all,” complained Dick. “However, I’ll do it just to see what happens! The number under 11 is 5, and that’s odd, too, so I’ll put the corresponding 352 in the third column. The only other odd number on the left is the 1 at the bottom and this corresponds to 544. So that goes over, too.” (Fig. 2(b)).

“What?” asked Smithy, “have you now got in the third column?”

“68,” replied Dick, “136 and 544.”

“Add them up.”

There was silence for a few seconds as Dick totted up the figures.

“Blimy, Smithy,” he gasped, “it’s 748! That’s the same answer that I got when I multiplied 17 by 44 directly.”

“Exactly,” grinned Smithy. “And you can use that system of multiplication for any two decimal numbers. Make up two columns under the numbers, dividing each time by 2 as you go down the left hand column and multiplying each time by 2 as you go down the right hand column. Then, add together all the right hand numbers corresponding to odd numbers on the left and you get the product of the two original numbers.”

“Gosh,” exclaimed Dick, “this is something entirely new to me. What would happen if I repeated the process with the 17 on the left and the 44 on the right?”

“Try it.”

Eagerly, Dick carried out the procedure once more, this time with the 17 on the left and the 44 on the right. (Fig. 3).

“There’s only two odd numbers on the left,” he announced, “and they’re the 17 at the top and the 1 on the bottom. Which means that I add up the corresponding 44 and 704. Corluvudak—that’s 748 again!”

BASE OF 2

Dick gazed at the Serviceman with a new respect.

“How on earth,” he asked, “does this multiplication system work?”

“I can’t answer that one yet,” replied Smithy, “except by saying that you’re multiplying decimal numbers with the aid of a binary technique. You’ll understand it soon enough, though, after I’ve gone through the remainder of the stuff on binary I’m going to talk about today.”

“I call that a bit of a dirty trick,” said Dick, indignantly. “You’ve got me well and truly hooked now. I’ve got to stay with you to the end, if only to satisfy my curiosity over that multiplication process!”

“I’m glad,” said Smithy equably, “that I’ve got your undivided attention. Well, we’ve had a session in the past about binary numbers, and I hardly need to remind you that, whereas the base is 10 with decimal notation, with binary notation the base is 2.”

“Yes, I know all that,” replied Dick, a little impatiently. “The numbers in binary going up from zero are 0, 1, 10, 11, and so on. Since you can’t go higher than a 1 in binary, the next number above 1 is 10, this being followed by 11 which, in turn, is followed by 100.”

“You’ve got it,” commented Smithy. “If you work from the right and check the 1’s, you can easily change a binary number into decimal because each 1 stands for a decimal number in the series 1, 2, 4, 8, 16 and so on. Thus, 110101 in binary is equal, in decimal, to 1, no 2, a 4, no 8, a 16 and a 32 which adds up to 53.”

“I understand that, too,” said Dick, the edge of impatience in his voice sharpening.

“Then,” commented Smithy, “you will be in a position to make up a little table having decimal numbers on the left and binary equivalents on the right. Just from 0 to 10 will be adequate.”

Irritably, Dick carried out Smithy’s bidding. (Fig. 4).

“Now,” continued Smithy as Dick’s pen came to rest after completing the table, “what do you do if, in decimal, you multiply a number by 10?”

“Well,” said Dick, a little confused by Smithy’s sudden change from binary to decimal, “you bung on a nought on the end of it.”

“Could you,” asked Smithy, “be a wee bit more precise? Say you had the original number displayed on one of those little electro-magnetic counters which register any number from 0000 to 9999. Rather like the millimeter in a car. How would you multiply by 10 then?”

“You’d still,” said Dick frowning, “bung in a nought at the right hand end. I wait a minute, though, I’m beginning to see what you’re driving at. You couldn’t bung in a nought at the right hand end just like that because there wouldn’t be room for it. You’d have to move the original number over to the left and then put the nought in.”

“That’s the idea,” said Smithy approvingly. “That’s exactly what you would do. In other words, you shift the number one place over to the left, and then insert the nought. Now, take any number, say 234, and multiply it by 10 in the way they first taught you to do it at school.”

Obligingly, Dick carried out the simple calculation on his note-pad. (Fig. 3(a)).

Do you see what I mean?” queried Smithy, rising and looking over Dick’s
shoulder. "What you've really done is
to shift the original number one place to
the left and then inserted a nought at the
right hand end."

"I can see that now," admitted Dick,
"but I'm not at all certain what the
outcome of all this is going to be."

"Think about that electro-magnetic
counter," replied Smithy. "Now, when
you multiply any number it displays by
10, you have to shift it one place to the
left in order to obtain the mechanical
space needed for the insertion of the
nought. This is a limitation imposed by
mechanical space in the counter. With
numbers written down on paper there
is no mechanical space limitation, but
there is still a limitation which makes it
necessary to shift the number one place
to the left. And that limitation is the
decimal point."

"Decimal point?" queried Dick.
"What decimal point? Blimey, Smithy,
I haven't as much as even written a
decimal point yet!"

"Nevertheless," persisted Smithy,
"the presence of a decimal point was
understood in all the decimal numbers
you've written down up to now and it
exists after the last right hand digit.
There was no need to actually put in a
decimal point with the numbers we've
been dealing with so far but it's still
automatically assumed to be there. When
you multiply a decimal number by 10
you shift the number one place to the
left away from the decimal point, and
you then insert the nought."

"Fair enough," said Dick carelessly,
"but what's all this got to do with
binary numbers?"

"You'll find out in a moment," Smithy
promised him. "Now, as you've just
gathered, when you multiply a decimal
number by 10 you shift the number one
place to the left and insert a nought at
the right hand end. Now, that's because
the base in decimal is 10. The base in
binary is 2, which means that when you
multiply a binary number by 2 you
similarly shift it one place to the left
and insert a nought at the right hand end.
Blow me, that's a rough old set of
fillings you've got in those bottom teeth
of yours!"

Dick slowly closed the sagging jaw
which had fallen open during Smithy's
reference to multiplication by 2 in
binary.

"Gosh, Smithy," he gasped. "You
don't half spring these things on me!
I'd never even realised before that you
didn't do quite some simple problem, which you can do quite easily yourself.

"We live and learn," chuckled Smithy.
"Anyway, let's get back to decimal
again. What happens if, next, we divide
a decimal number by 10? Say, for in-
stance, that the number is the 2430 you
wrote down just now."

"We lop off the right hand nought,"
replied Dick promptly, "and shift what's
left over to the right, wherein the
number becomes 243."

"And," added Smithy gently, "if we
divide that number by 10?"

"Well," said Dick thoughtfully.
"There's no nought at the end to lop
off, but we should still shift it one
place to the right."

"And how do we do that?"

"By inserting the decimal point."

"Precisely," said Smithy triumphantly.
"That all-important decimal point! If
we'd divided the particular number I
chose, it would become 24.3. In binary
there's exactly the same sort of point
as well, the only difference being that it's
called the binary point instead of the
decimal point."

"It's already established that if we
multiply a binary number by 2 we
shift it one place over to the left,
just as we do, with 10, in decimal. If,
conversely, we divide a binary number
by 2 we shift it one place to the right.
Again, just as in decimal. Also, and once
more following what happens in decimal,
if the number we're dividing doesn't end
in a nought, we have to shift the digit at
the right hand end past the point."

"This sounds intriguing," said Dick.
"Go on, Smithy!"

"Let's see," continued Smithy, "that
we are going to continually divide binary
10 by 2 (Fig. 5(c)). Our first division
shifts the 1 one place to the right, giving
us binary 1. The next division by 2 must
then take it past the binary point, giving
us 0.1. The next division by 2 makes it
0.01, the next again makes it 0.001, and
so on."

"Why, you cunning old devil," ex-
plained Dick inelegantly. "You've done
it again! Without my even realising that
you were leading up to it you've just
explained these binary equivalents for
decimal fractions which I said at the
beginning were puzzling me so much.
Why, it's as clear as anything now! The
binary equivalent of 1/2 must be 0.1 and
the binary equivalent of 1/4 must be 0.01,
and so on.

MULTIPLICATION

"I'm so glad," grinned Smithy, "that
I've sorted out that little matter for you."

"There's still," replied Dick quickly,"something else outstanding. You
haven't yet explained the mystery of that
peculiar method of multiplication using
two columns."

"I'll get round to it before we finish,"
said Smithy. "But, before that, we must
tackle a spot of binary multiplication as
it could be done by a computer. We'll
start off with a nice simple problem.

MULTIPLICATION to be continued.

Fig. 5(a). Multiplying a decimal number by 10

(b). Continuously dividing a decimal number by 10

(c). Continuously dividing a binary number by 2

"Anyway, let's get back to
decimal again. What happens if, next, we divide
a decimal number by 10? Say, for in-

first step it examines the right hand end
digit in the multiplier, in the second step
it examines the next digit to the left and
so on. If the right hand end digit in the
multiplier is a 1, the computer copies the
multiplicand after which it shifts it one
place to the left. If the end digit in the
multiplier is a nought, it does not copy
but merely shifts. In your calculation the
end right hand digit in the multiplier is a
1, so the computer copies then shifts. The
next digit in your multiplier is also a 1, so
the computer again copies, then shifts.
The next digit along is a nought, so the
computer does not copy before it shifts.
After that the next digit is a 1, so the
computer copies and then shifts. And so
the process goes on. I’ve written the
sequence of events for each line, along-
side the partial products.” (Fig. 6(b)).

“The partial what-s-its?”
The partial products,” repeated
Smithy. “This is the name given to the
lines of digits between the multiplier and
the answer.”

“The process you’ve just described,”
stated Dick critically, “is pretty well the
the same that I did myself. It’s just that
the individual steps are described differ-
ently.”

“True enough,” agreed Smithy. “Ano-
ther point is that I was giving you a sim-
plified idea of computer operation. In
practice it is not very convenient for the
computer to get all the partial products
together and then add them all up in one
go. It’s more convenient, instead, for
each partial product to be added as it
appears. I’ll give you an example to show
what I mean. I’ll use slightly smaller
numbers this time, so that the example
won’t take up too much space.”

Smithy wrote out the multiplication
with individual addition of partial
products. (Fig. 6(c)).

“There you are,” he said. “That’s an
easier procedure for a computer to use.
There is another version of this process
which can be even more convenient for
the computer and that consists of keep-
ing the multiplicand still and shifting
the multiplier and sum to the right after each
copy or ‘non-copy’ operation. The right
hand end digit of the multiplier are then
presented in turn to the computer for
examination, which is what would have
been needed, incidentally, in the previous
instance. At the same time, though, the
right hand end digit in each individual
sum can be taken off after each shift.
Once the right hand end digit of each
sum has been produced it does not alter
later, and so it can be extracted after each
addition and used in making up the final
answer.”

“I see,” said Dick thoughtfully. “Of
course, shifting the sums over to the right
is really the same as shifting the multipli-
cand over to the left, isn’t it?”

“Oh yes,” confirmed Smithy. “The
basic idea of shift and copy or ‘non-copy’
remains unaltered.”

“I must say,” remarked Dick, “that
this computer method of multiplication
seems to be jolly long-winded.”

“It is rather,” admitted Smithy. “But
the practically all digital computer
operations are long-winded when you
break them down into their basic form.
What you have to remember is that the
computer scores because of the speed in
which it carries these operations out. I
should mention, incidentally, that the
methods of multiplication I’ve just des-
dcribed aren’t the only ones which can be
used by computers. Nevertheless, they
give you a useful insight into how com-
puters tackle jobs of this nature. They
also enable you to see the considerable
advantages bestowed by carrying out the
calculations in binary.”

Smithy turned to his bench and scrib-
bled a few calculations on a corner of the
top sheet in Dick’s note-pad, then tore it
off.

“To finish off with,” he said, “I’ve just
arranged a little multiplication exercise
for you to carry out. Using what I had
best describe as the ‘human method’ of
multiplication, in which all the partial
products are added together at the end
in one operation, multiply binary 10001
by binary 101100.”

“Right you are,” said Dick obligingly.
There was silence for a few moments as
Dick concentrated on the problem.

“All finished,” he called out.

“Good,” said Smithy. “Next work out
the decimal equivalents for the multipli-
cand, the multiplier, the partial products
and the answer, using the progression
1, 2, 4, 8, and so on in the usual manner.
This will take you a bit of time because
some of the decimal figures are pretty
large, so I’ll get myself a spot of tea
while you’re working at it.”

Smithy refilled his mug from the
Workshop teapot then slowly sauntered
back to his stool.

“I’ve got a feeling,” said Dick sudden-
ly, as he struggled with his figures, “that
you’re pulling another one on me here.”

“You finish those calculations,” re-
plied Smithy firmly, as he sipped his tea,
“before you start to make any wild
accusations.”

“Dash it,” said Dick, putting his pen
down after writing in his last figure. “It’s
time! You have pulled another one!”

MYSTERY SOLVED
Dick pointed with a trembling finger
to the multiplication with decimal equiva-
Ients he had just completed. (Fig. 7).

“All those decimal numbers,” he ex-
claimed accusingly, “are exactly the same
as the numbers in that 44 by 17 multipli-
cation you started this session off with!”

THE RADIO CONSTRUCTOR
"Of course they are," laughed Smithy.

"That was the whole object of the exercise. What is more, we've now proved what I said at the time. Which was that we were multiplying two decimal numbers with the aid of binary techniques."

"We may have proved it to your satisfaction," retorted Dick. "But I'm damned if I can see it myself!"

"Don't worry about it," replied Smithy. "Because I shall now explain the whole procedure. I must warn you that you'll need to concentrate a bit, though, because the steps are a little difficult to understand at first. It's helpful, also, to have the binary and decimal versions of the calculation side by side if you're to follow what happens. You also want to bear in mind that, in both versions, the 44 is the multiplier and the 17 is the multiplicand. Now, the first thing to remember is that all even numbers in decimal end in nought in binary, and that all odd numbers in decimal end in 1 in binary. You only need to look at the table you made up earlier to confirm that point."

Smithy settled himself more comfortably on his stool.

"At the top of the decimal version," he resumed, "we have the even number 44. This corresponds to all the multiplier in binary version, and it ends in nought. So, to use computer parlance, we do not copy the corresponding 17 in the right-hand column. We now divide the 44 by 2, getting 22, and this is the same as shifting the binary equivalent one place to the right, for inspection of the next right-hand end number. The binary equivalent thus becomes 10110. It still ends in nought so again we do not copy. If we had copied, we would have copied the multiplicand moved one place to the left; that is, multiplied by 2. We next arrive at 11 in the decimal version, or 1011 in the binary version, whereupon the decimal is odd and the binary ends in 1. So we copy the multiplicand shifted two places to the left or multiplied by 4. Which is exactly what happens in both the binary and decimal versions."

"I'm beginning to see what goes on now," exclaimed Dick suddenly. "The next decimal number down is 5, corresponding to the multiplier shifted again to the right. The binary equivalent is 101 and it again ends in 1. So we copy the multiplicand multiplied a further time by 2 in decimal or shifted a further place to the left in binary."

"Exactly," confirmed Smithy. "As I said, the process is a bit difficult to grasp at first but, once you have done so, you can feel you've got a really good understanding of the relationship between decimal and binary. Returning to the decimal version of the 17 times 44 business, the continued division by 2 of the multiplier carries on till you get down to the 1 in the left hand decimal column, this corresponding to the initial left hand 1 in the binary equivalent."

"There's still one little point that's puzzling me."

"What's that?"

"When we originally did the decimal version," said Dick, "you told me to ignore any remainders when I was dividing by 2 in the left hand column. What happens to those remainders?"

"Ah," replied Smithy, "Now that can be explained with the aid of your newly acquired knowledge concerning the binary equivalents of decimal fractions. If you look at the left hand column of the decimal version you'll see, for instance, that we divide 5 by 2, whereupon we get 2 with a remainder of 1 left over. Another way of putting this is to say that when we divide 5 by 2 the answer is 2\frac{1}{2}. Now, the binary equivalent of \frac{1}{2} is 0.1, and so our division by 2 has not really caused the appearance of a remainder. Anyway, let me sum it all up. By continually dividing by 2 in the left hand decimal column and seeing whether the result is even or odd, we're actually sampling the last digit before the binary point of the binary equivalent to see whether it's a nought or a 1. Any remainders that appear in the process merely hop over to the other side of the binary point to become 0.1!"

"Phew," said Dick, musingly. "Well, you've certainly given me plenty to think about today. Wait a minute, Smithy, I think I can dream up something which should end this session very nicely."

Smithy looked up sharply, to see that his assistant, who occasionally conceived some of the most amusing verse ever to appear in italics, had assumed the vast scowl that betokened the process of composition. Recognising the symptoms, Smithy prepared for the worst. Suddenly Dick's face cleared.

"Here we are, Smithy," he said exultantly. "Just listen to this!

"If ten fingers, not two, were the primary Cause for counting to ten, please advise me Why an infinitesimal Number in decimal Needs so many more digits in binary?"

Dick beamed proudly at Smithy as he brought his latest excursion into doggerel to an end. And, to his credit, the shuddering Serviceman did at least manage to bestow a thin, albeit waverer, smile of encouragement on the youthful composer.

Whereupon we must now, after having dutifully recorded Dick's closing comments on the vagaries of decimal and binary notation, make our own quick departure. A situation which might well be described as copy and shift.

AERIAL MAST FOR HEATHFIELD (SUSSEX) BBC-2

The BBC recently placed an order with Techwork (Structures) Limited, of Southampton, for the design, supply and erection of the 480 ft. aerial mast for the Heathfield BBC-2 transmitting station. This new station is now being built half a mile east of Cross in Hand, near Heathfield.

It is expected that Heathfield will be brought into service towards the end of 1969, on its BBC-2 channel, B2, with horizontal polarization. Later it will also transmit BBC-1 and ITV programmes on 625 lines. It will serve some quarter of a million people in East Sussex and parts of Kent.

FEBRUARY 1969
ELECTRONIC COUNTING CIRCUITS. By J. B. Dance, M.Sc., B.Sc. 390 pages, 7¼ x 9½. Published by Iliffe Books, Ltd. Price 85s.

This book is intended to cover all the electronic counting circuitry encountered in modern electronic equipment and it thereby fills a gap in "the literature" which has been evident for many years. It is written, in particular, for engineers working in nucleonics, for designers and users of industrial counting equipment, and for senior service engineers. A valuable feature is that each chapter after the first, which introduces the basic principles employed in counting circuitry, is complete in itself. Thus, information on any specific type of counting circuit may be obtained without the necessity of reading preceding chapters. So far as technical ability is concerned, all that is required of the reader is that he should have a basic knowledge of simple physics and electronics. No previous experience with pulse techniques is needed.

The main chapters of the book deal with all types of counting circuit, ranging from electro-magnetic counter circuits through gas-filled, EIT and beam switching tube circuits, and valve and solid state scaling circuits, to ratemeter circuits. Further chapters give details on readout, together with counting circuit applications not dealt with under the previous chapter headings.

There are, throughout the book, 281 clear and detailed diagrams, those which give circuits providing complete values. There are, also, 8 pages of art plates. Numerous references, an appendix listing valve equivalents and a comprehensive index complete the volume, which exhibits the care and attention to detail which is always evident in work from Mr. Dance's pen.

AMATEUR RADIO TECHNIQUES. By J. Pat Hawker, G3VA. 160 pages, 7¼ x 9½. Published by the Radio Society of Great Britain. Price 12s. 6d.

Readers of the R.S.G.B. Bulletin and (under its more recent name) Radio Communication will be familiar with the lively "Technical Topics" feature which appears in each issue. This presents interesting new ideas, techniques and circuits culled from journals and manufacturers' publications throughout the world, and is accompanied by an easy-going commentary by Pat Hawker which both maintains continuity and highlights the salient points of each item.

"Amateur Radio Techniques" provides a selection, from the ten years during which "Technical Topics" has been running, of those which are considered to be the items of most lasting value in the series. As in the journal, the reader is carried easily through the items by G3VA’s lucid and eminently readable style. This is a second edition, incidentally, the first (published under the title "Technical Topics for the Radio Amateur") having appeared in 1965.

Apart from presenting individual items of interest to the amateur receiving and transmitting enthusiast, the book also gives sound basic advice and information on components, including virtually all the semiconductor devices which the amateur is likely to encounter and use. There are over 350 diagrams and the subjects covered range from cleaning the panels of old receivers to the use of P-I-N diodes.

If desired, the book may be obtained direct from R.S.G.B. Headquarters, 35 Doughty Street, London, W.C.1, for 13s. 3d. post paid.

This book is full of descriptions of simple experiments which may be carried out by the newcomer to radio, each experiment being accompanied by explanatory text which describes, at elementary level, its purpose and functioning. A noteworthy feature of the book, and one which is to be commended, is that the risk of injury by shock is in all cases negligible as there are no experiments which require that connection be made to the mains supply for power. The author gives quite a few experiments incorporating valves, but the valves he employs are 1-4 volt battery types with h.t. voltage obtained from a dry battery.

The experiments range from simple electronic circuits up to t.r.f. receivers and small a.f. amplifiers. The book contains a great deal of practical common-sense information which will be of especial value to the complete beginner, and all points are delivered in a simple economic style with the very minimum of mathematics.

This annual publication has by now become a virtual necessity for all those engaged in the reception of worldwide short wave stations. Additionally, it is of equal interest to those who range over the medium and long waves or who are interested in TV Dx. This latest edition has been fully revised and is presented in a new format of handy and compact size.

The Contents are many and varied but some of the more interesting are listed here—Broadcasts in English, List of Dx Programmes, Dx Clubs of the World, List of Long and Medium Stations of the World, List of Stations broadcasting News in English, Predicted Reception Conditions for 1969, List of Recorded Music Libraries, Short Wave Stations of the World (20 page list), Solar Activity 1969, Standard Frequency and Time Signal Stations, World TV, and 9 World Charts which are extremely useful to the Dx enthusiast.

This Handbook is eagerly awaited, year by year, by many enthusiasts throughout the world. It has earned a well-deserved reputation for accuracy and reliability and is fully up to date when published (December 1968). The station lists are complete and accurate and form a reliable guide for those tuning over the various bands from Long to Short and TV frequencies.

For those interested in short wave reception, this book supplies all the information that could possibly be required. Each country is listed separately and under such headings, station powers, call signs, locations are all listed. Where applicable, the musical annotation of the interval signal is shown. Information on station schedules and if verification is by letter or QSL card are all included.

The present edition is an absolute mine of information and should undoubtedly be on the operating desk of all those interested in radio and TV reception. The Handbook is available in this country from the Modern Book Co., 19 Praed Street, London, W.2, packing and postage charge is 2s.

VACATION SCHOOL—AERIALS

The IEE Electronics Division is organising a vacation school on aerials. This will be held at the University of Birmingham from the 7th to 19th July, 1969.

It is expected that the school will prove attractive to the younger graduate entering the field of aerials whether in research, development or application. The course has also been designed as a refresher course for the more experienced person and as an introductory course for those transferring to aerial work from other disciplines.

The course will commence with a survey of basic concepts and theoretical methods. This will be followed by accounts of recent work: wideband dipoles and frequency-independent aerials; linear, circular and planar arrays and beam-scanning; microwave aperture aerials and feeds; travelling wave tubes.

Also, lectures will be arranged on the following topics: synthetic aperture techniques; self focusing arrays; within-pulse scanning; holography; satellite-communication earth-station aerials.

BBC CONVERTER TO BE MARKETED ABROAD

Television audiences throughout the world can now look forward to high quality colour transmissions from America thanks to new British electronic equipment developed by the BBC. It was announced recently that the BBC has agreed with Rank Precision Industries Limited for the British firm to manufacture under licence and market abroad the BBC's new Advanced Field-store Television Standards Converter.

The BBC used this equipment for the first time during the Mexico Olympics for a total of 170 hours of transmission via satellite relay across the Atlantic. The high quality pictures were seen in nine other European countries in colour and nineteen more in black-and-white. Audiences were estimated at 200 million for black-and-white and 1 million for colour.

FEBRUARY 1969
O ne way of getting over the balance of payments crises which continually bedevil us these days is to get back to first principles and apply an adaptation of Kirchhoff's First Law.

As you all know, Kirchhoff's First Law states that when a number of current-carrying conductors meet at a single point the algebraic sum of the currents at that point is zero. Thus, if we have five conductors meeting at the point, and two of these carry currents I_1 and I_2 towards the point whilst the remaining three carry currents I_3, I_4 and I_5 away from the point, then $I_1 - I_2$ must be equal to $I_3 - I_4 - I_5$. By giving the currents going towards the point plus signs and those going away from the point minus signs, we can say:

$$I_1 + I_2 - I_3 - I_4 - I_5 = 0$$

or,

$$I_1 + I_2 - (I_3 + I_4 + I_5) = 0$$

Which is just the same as saying $I_1 + I_2$ is equal to $I_1 - I_2$. Actually the whole thing is really self-evident because all the current flowing to the point via one or more conductors must inevitably flow away from the point via the remaining conductor or conductors because there's nowhere else for it to go.

MONEY IN MEGACOULOMBS

Let's now turn to affairs of international lolly and assume that the entire world changes over to a unit of money known as the Coulomb. Since all international monetary calculations nowadays seem to be in the staggering dimensions of millions of units, the practical unit of money we shall use will be the Megacoulomb.

So far so good, Now, every country in the world capable of producing anything trades with other countries, thereby forming a vast complicated network of trade where there are linkages between almost every two individual countries. Goods and services travel along these linkages in either direction; and in the opposite direction flow the Megacoulombs which pay for those goods and services. The rate of flow of Megacoulombs (which can be expressed in Megamps) into any one country will never, at any single instant, be equal to the rate of flow of Megacoulombs out of that country. If we refer to the rate of flow of Megacoulombs into a country as a quantity of positive Megamps and the rate of flow of Megacoulombs out of a country as a quantity of negative Megamps, then every country will exhibit a monetary condition which, at any time, can be expressed in terms of positive or negative Megamps.

I propose that, at any instant in a stable system, the algebraic sum of all the negative and positive Megamps throughout the world is zero.

If any country exhibits a positive Megamp over a lengthy period it accumulates Megacoulombs whilst, if it continually exhibits a negative Megamp figure it suffers a deficit of Megacoulombs. Whilst a country can amass any quantity of Megacoulombs, the system goes into local instability if a country has a marked deficiency of Megacoulombs. A quantity of Megacoulombs are then artificially induced to pass from the country with the excess to the country with the deficit in order to return to stability.

In practice we don't of course, use Megacoulombs as units of money. But we do use monetary units which are closely tied to each other by very nearly constant rates of exchange, whereupon they are not too far removed from the Megacoulomb concept. It follows that some countries must inevitably exhibit what are effectively negative Megamp figures at some time or another. And we all know that local instability does...
result if the negative Megamp is maintained for too long a period.

For long-term stability of the monetary system it is necessary, of course, to avoid showing a negative Megamp figure for an excessively long time. And I really must apologise for stating the obvious fact that a positive Megamp figure indicating monetary devaluation is, in fact, directly proportional to the goods and services going out.

Readers requiring further information on world-wide monetary matters, as developed from the First Law of the good Gustav Kirchhoff, may contact me via Poste Restante, Hotel Splendide, Zurich.

THE MINI-KLUDGE

Electronic engineers working for Boeing in the American space programme have introduced a delightful new term for some of the more sophisticated one-off items of electronic equipment they use for such purposes as resolving detail in the video tapes produced by satellites after lunar orbits. The term is "kludge" (pronounced klooge) and it is defined as "a device which is much too complicated to explain, and you wouldn't believe it anyway."

Smaller kludies are referred to as "mini-kludies."

LAX LOGGING

As one of the self-employed of this country, it is my dubious pleasure every week to buy my own National Insurance stamp from the Post Office, stick it on to my own National Insurance card and then cancel the darned thing by writing the date across it.

After 52 weeks the card is full, whereupon I visit the local Social Security Office, get another one and copies my name, address and National Insurance number from it on to a new empty card, and then hands the latter over to me. After which I collect and cancel another 52 stamps and, one year later, repeat the process.

The simple procedure involved in transferring the information from the old card to the new one rather fascinates me, and I sometimes have a wild desire to alter the figures in my National Insurance number (1's to 7's, 3's to 8's and so on) just to see how many new cards with the incorrect number I could get through before the error was spotted.

I mention this because it reminds me of the astounding performance of a war-time transmitter I heard about when I was doing my little bit in the R.A.F.

Many of the larger R.A.F. camps positioned their more powerful R/T and W/T transmitters a mile or two outside the camp boundary so that they were well spaced from the associated receivers. The transmitters were very powerful (even including the old T1087 that had so many relays and solenoids clattering around inside it that it was known as the "animated meat safe") with the result that the airman who found himself posted to "Transmitters" was on a very jolly number indeed.

But some people are never satisfied. One of the few duties required at the transmitter site in question was that a record be kept of all meter readings on each transmitter, these to be entered every morning in a log book which had vertical columns ruled out for them. That log may well have been properly kept at the beginning, but on days when he was feeling particularly lazy the airman on duty had fallen into the habit of simply copying the previous day's readings. Unless checked, bad habits tend to worsen, and the eventual outcome was that all the log books were hastily entered up once a week, with all the entries merely copied down the column. What made it worse was that even these were copied inaccurately and such things as losing or acquiring a nought tended to occur when the log went over to a fresh page.

Suffic to say that, when an inspecting officer did eventually check the log, he was amazed to find, amongst other discrepancies, that one perfectly serviceable transmitter had, apparently, been running for months with an R.T. voltage of 18, an m.o. anode current of 1mA, a p.a. grid current of no less than 550mA and a p.a. anode current of 14mA.

I can conclude by saying that the subsequent 252 (the Form Number of an R.A.F. Charge Sheet) was not inaccurate!

DENTAL ELECTRONICS

Every trade has its own terminology and, quite often, a single word has quite different meanings in different crafts. Thus, a "tap" as conceived by the radio engineer, is by no means the same thing so far as the metal-worker or, for that matter, the plumber, is concerned. As a further instance, other words take on quite different connotations for the bookmaker and illicit still operator respectively.

This was brought home to me very forcibly one morning a few weeks ago when I had occasion to visit the dentist for the extraction of four upper teeth which had ceased to be allies of mine. After the initial local anaesthetic jab had taken effect, the dentist picked up one of the most fearsome of his pliers and asked his assistant: "Have you got the receiver ready?"

I had visions of her switching on a little transistor radio so that I would be soothed for the next few moments by the Jimmy Young Show, but this was not to be. The "receiver" turned out to be nothing other than a little enamelled dish in which the dentist delicately deposited, in turn, each of those four old choppers of mine.

See you next month!

FEBRUARY 1969

Electronic Component Specialists
357, WHITHEORSE ROAD, WEST GROYDON, SURREY.
Phone 01-684-1660
FULL LIST 1-
THE RADIO AMATEUR OPERATOR’S HANDBOOK

NEW REVISED EDITION

★ AMATEUR PREFIXES
★ AMATEUR CODES
★ LOCAL TIME CONVERSIONS
★ OPERATING TECHNIQUE
★ FREQUENCY/WAVELENGTH CONVERSION TABLES
★ POST OFFICE REGULATIONS
MANY OTHER ESSENTIAL ITEMS

64 PAGES ONLY 6/-

Post this coupon, together with P. O. for 6s. 6d. (to include postage) to DATA PUBLICATIONS, 57 MAIDA VALE, LONDON. W. 9

Please send me the New Edition of "THE RADIO AMATEUR OPERATOR’S HANDBOOK" DATA BOOK No. 6

1 enclose cheque/crossed postal order for __

NAME __

ADDRESS __

BLOCK LETTERS PLEASE

THE RADIO CONSTRUCTOR
MARCONI INSTRUMENTS LIMITED

TEST TECHNICIANS

required to carry out electrical tests and fault-finding procedures on a variety of printed circuit boards of fairly high complexity. These printed circuits form part of our wide range of high quality r.f. measuring equipment.

Technical comprehension to the standard of third year City & Guilds Telecommunications is desirable although appropriate experience may compensate for the lack of formal technical educational qualifications.

Prospects of advancement and conditions of work are good and salaries are attractive. Working hours are 38½ per week, reducing in 1969 to 37½.

Some assistance with costs of relocation may be given in appropriate cases.

Please apply in writing, giving brief details including age, experience, qualifications and salary to:

The Recruitment Manager,
Marconi Instruments Limited,
Langacres, ST. ALBANS, Herts.

TRAINEE RADIO TECHNICIANS
A PROGRESSIVE CAREER IN THE FIELD OF RADIO AND ELECTRONICS

Applications are now invited for an intensive training course of 3 years, leading to appointment as a fully qualified RADIO TECHNICIAN, with further prospects of progress to the Telecommunication Technical Officer Class.

Generous Pay and Contributions while under training.

Candidates must be over 16 and under 21 years of age as at 8th September, 1969, on which date training commences.

Minimum educational qualifications required are passes at G.C.E. 'O' Level in English Language, Mathematics and Physics (already held or expected to be obtained in the Summer 1969), Equivalent passes in Scottish or Northern Ireland Certificates and C.S.E. Grade I passes are also acceptable.

Closing date for applications 31st March, 1969. Interviews will be commenced about end of April.

Apply for full details and application form to:-

The Recruitment Officer (TRT/63),
Government Communications Headquarters,
Oakley, Priors Road, Cheltenham, Glos., GL52 5AJ

TECHNICAL TRAINING by
ICS
IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the ICS trained man. Let ICS train YOU for a well-paid post in this expanding field.

ICS courses offer the keen, ambitious man the opportunity to acquire quickly and easily, the special training and experience necessary to get on the top. Diplomas awarded by the Radio and Television Recognition Board and the Institute of Electrical Engineers. Opportunities available in research, design, production, training and sales in the Electronics Industry, with the chance of promotion.

NEW SELF-BUILD RADIO COURSES

Build your own 5-valve receiver, transistor portable, signal generator, multi-meter and professional-type valve voltmeter—all under expert guidance.

POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by return mail.

MEMBER OF ASSOC. OF BRITISH CORRESPONDENCE COLLEGES.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 249, Intercom House, Parkgate Road, London, S.W.11.

NAME ..
ADDRESS

Block Capitals Please

2-69
SMALL ADVERTISEMENTS

Use this form for your small advertisement

Please insert the following advertisement in the issue of THE RADIO CONSTRUCTOR

16 words at 9d.

= 12/-

ALL WORDING
IN
BLOCK LETTERS
PLEASE

I enclose remittance of _________ being payment at 9d. a word. MINIMUM 12/-. Box Number, if required, 2/- extra.

NAME

ADDRESS

Copy to be received four weeks prior to publication. Published on the 1st of every month

DENCO (CLACTON) LIMITED.

355-7-9 OLD ROAD, CLACTON-ON-SEA, ESSEX

Our components are chosen by Technical Authors and Constructors throughout the World for their performance and reliability, every coil being inspected twice, plus a final test and near spot-on alignment as a final check.

Our General Catalogue showing full product range

DTB4 Transistor & Valve circuitry for D.P. Coils

DTB9 Valve Type Coil Pack Application circuitry

MD.1 Decoder Circuitry for Stereo Reception

2s. 6d.

2s. 6d.

2s. 6d.

4s. 0d.

All post paid, but please enclose S.A.E. with all other requests in the interests of retaining lowest possible prices to actual consumers.
SMALL ADVERTISEMENTS

Rate: 9d. per word. Minimum charge 12/-. Box No. 2/- extra.

Advertisements must be prepaid and all copy must be received by the 4th of the month for insertion in the following month's issue. The Publishers cannot be held liable in any way for printing errors or omissions, nor can they accept responsibility for the bona fides of advertisers. (Reply to Box numbers should be addressed to: Box No.—The Radio Constructor, 57 Maida Vale, London, W.9.)

ILLUSTRATED CATALOGUE No. 17. Manufacturers of Surplus and New Electronic Components including Semiconductors. 3/- Post Free. Arthur Sallis Ltd., 28 Gardner Street, Brighton.

BUILD IT in a DEWBOX robust quality plastic cabinet. 2 in. x 2½ in. x any length. S.A.E. for details. D.E.W. Ltd., 254 Ringwood Road, Ferndown, Dorset. Write now – right now.

RESISTORS. Low noise (0-3 micro V. per V.), 1% 10 carbon film. 2d. each. 1½/- per 100. Transistor mounting pads 4d. each. Post and packing plus 5% Stuart Fyfe (Components). 11 Rosedene Avenue. Croydon. Surrey. CRO. 3DN.

BRIGHTEN UP YOUR ADVERTISING! Break the ice with a cartoon, "tailor made" for your product. Reasonable charges.—Box No. F294.

UFO DETECTOR CIRCUITS. Data, 10s. (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilt.

WHY PAY MORE!! PM Loudspeakers, all shapes & sizes. Ideal for room to room extensions, car radios, etc. equipment. Tested & Guaranteed. 10/6d., 15/6d. or 23/- Well packed. 4/6d. postage. L. & J. Wild (Loudspeakers), Square Street, Rambottom, Lanes.

BOOKS FOR SALE. Alfred Nobel E. Berggren £1, Radioisotope Laboratory Techniques R. A. Fair, £10. Atomic Medicine Behrens £1, Medical Radiation Biology 30s., Physics in Medical Radiology Russ, Clark & Piel, 7s. 6d. Disease & its Conquest Hollis, 7s. 6d. Earth's Envelope T. Lobsack, 15s. The Atomic Submarine C. Blair, 7s. 6d. Astro and Exploration D. R. Bates, £1. Once round the Sun Story of the I.G.Y., Fraser, 10s. Earth Satellite P. Moore, 7s. 6d. Frontier to Space E. Burgess, 5s.—Box No. F316.

WILL ANYBODY DESIGN and make me a telephone answering machine for cash? H. Selman. 75 Cranley Drive, Ilford. Essex. Telephone VAL 9587.

“MEDIUM WAVE NEWS” Monthly during DX season—Details from: K. Brownless, 7 The Avenue, Clifton, York.

FOR SALE: 1 cwt. electronic components, chassis, (resistors, capacitors, pots, etc.) View London W.2. £3. Buyer collects. Telephone: Mr. Fowler, 01-723-9584. 9 a.m. to 6 p.m.

FREE TO AMBITIOUS ENGINEERS

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 132 page guide to the best paid engineering posts. It tells you how you can quickly prepare for a home at recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio & Electronic Courses, administered by our Specialist Electronics Training Division—explains the benefits of our Associated Dept. and shows you how to qualify for five years promotion in one year.

"Satisfaction or refund of fee" terms. Whatever your age or experience you cannot afford to miss reading this famous book. If you are earning less than £30 a week send for your copy of "ENGINEERING OPPORTUNITIES" today —FREE.

Practical Equipment including Tools
The specialist Electronics Division of B.I.E.T. NOW offers you a real laboratory training at home with practical equipment. Basic Practice and Theoretical Courses for beginners in Radio. T.V. Electronics, etc. Ask for details.

Which is your pet subject
- A.M.I.E.E. City & Guilds
- Radio Amateur's Exam.
- R.T.E.B. Certificate
- P.M.G. Certificate
- Practical Radio
- Radio & Television Servicing
- Practical Electronics
- Electronics Engineering
- Automation

The B.I.E.T. is the leading institute of its kind in the world.

BENTLEY ACOUSTIC CORPORATION LTD.

38 Charlton Road, Chalk Farm, London, N.W.1.

FEBRUARY 1969
NEW STYLE SELF-BINDER for “The Radio Constructor”

The “CORDEX” Patent Self-Binding Case will keep your issues in mint condition. Copies can be inserted or removed with the greatest of ease. Rich maroon finish, gold lettering on spine.

Specially constructed Binding Cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for, and the Cords will always remain taut and strong. It is impossible to overstretch the springs, as a safety check-device is fitted to each.

PRICE 14/- Postage 1/6

Available only from:-
Data Publications Ltd.
57 Maida Vale London W9

SMALL ADVERTISEMENTS
continued from page 473

FOR SALE: Several sets of Ex. Gov. moving iron headphones, brand new, 10/- inc. post. Quantities of miniature printed circuit electrolytics, 5, 10, 30, 50, 100µF at 3 to 15 volt, 10d. each. Miniature L.F. & ose. coils, transistor, 2/- each. 3 in. 8Ω speakers 6/6d. All post extra. Other items for disposal. Enquiries: Felton, 32 Bragg Road, Perry Barr, Birmingham.

ARE YOU A MOTORING ENTHUSIAST? The Seven Fifty Motor Club caters for all types of motor sport—racing, rallies, hill climbs, etc. Monthly Bulletin free to members. For full details write to: The General Secretary, Colin Peck, “Dancer’s End,” St. Winifred’s Road, Biggin Hill, Kent.

COILS WOUND TO YOUR SPECIFICATION. Also transformers, toroids, etc. Reasonable cost. For full details please send s.a.e. to: Green Electronics, “Templecombe”, Cleveland Road, Worcester Park, Surrey.

JOIN THE INTERNATIONAL S.W. LEAGUE. Free Services to members including Q.S.L. Bureau, Amateur and Broadcast Translation. Technical and Identification Dept.—both Broadcast and Fixed Stations, DX Certificates, contests and activities for the SWL and transmitting members. Monthly magazine, Monitor, containing articles of general interest to Broadcast and Amateur SWLs, Transmitter Section and League affairs, etc. League supplies such as badges, beaded notepaper and envelopes. QSL cards, etc., are available at reasonable cost. Send for League particulars. Membership including monthly magazine, etc. 35s. per annum.—Secretary, ISWL, 60 White Street, Derby.

FOR SALE: MORSE OSCILLATOR SET. Transistorised, type D, key, on base 8½ in. x 9½ in., with headphones. £3. Box No. F347.

POSTAL ADVERTISING? This is the Holborn Service. Mailing lists, addressing, enclosing, wrapping, facsimile letters, automatic typing, copy service campaign planning, design and artwork, printing and stationery. Please ask for price list.—The Holborn Direct Mail Company, Capacity House, 2-6 Rothesay Street, Tower Bridge Road, London, S.E.1. Telephone: 01-407-1495.

WORLD DX CLUB covers all aspects of SWLing on Amateur and Broadcast Bands through its monthly bulletin “Contact”. Membership costs 25s. a year. Enquiries to Secretary, WDXC, 17 Taunton Road, Bridgwater. Somerset.

TECHNICAL DRAWINGS, Artwork, etc. Electronic and Radio Circuits a speciality. Moderate charges.—B. P. Meaney, 43 Forest Road, Worthing, Sussex.

(Continued on page 475)
SMALL ADVERTISEMENTS
continued from page 474

TO CLEAR. 3000V d.c. 0.5µF capacitors. 2½in. x 1½in. x 6in. with porcelain insulators, 3/6d. each. 88µH toroid coils, new, wax covered, 5/- each. Heathkit Bahn Coil set, B-1/U, assembled, £5. "Ful-Fi" pick-up, mono crystal cartridge, assembled, £5. Box No. F352.

ESSEX GARDENERS. Buy your bedding and rock plants, shrubs, etc., also cacti from May's Nurseries, 608 Rayleigh Road, Hutton, Brentwood, Essex. Callers only. Monday to Saturday.

RECITALS OF RECORDED MUSIC. The second Saturday evening of each winter month. Next recital: February 8th. 1969, 8 p.m. Woodford Green United Free Church, Woodford Green, Essex. Bus routes 20, 20A, 38A and 179—alight at "The Castle" stop.

FOR SALE: 88mH toroid coils. 5/- each. Cover for Siemens Teleprinter, 50/-., Ink rollers for Creed type 3 teleprinter, 5/- per bottle. EMI Fisk Solarscope, 7/6d. Prices include p & p. Box No. F356.

FOR SALE: 100 transistors. £2 10/- Details from Box No. F359.

INNOCATION IN DX CLUBS ANNOUNCED! Formed in October, 1965, the Radio New York Worldwide Listeners Club now has 3,600 members in 86 countries! A unique club offering shortwave listeners monthly magazines containing listening tips and technical features, numbered wallet-sized membership cards and gold 8/-m. by 11m. membership certificate. Multi-lingual report forms available for cost of postage. "We must be doing something right!" Find out ... join now!" Send 7s. 2d. (crossed domestic money order) for one year's membership to: The Radio New York Worldwide Listeners Club, 485 Madison Avenue, New York 10022, U.S.A.

SITUATIONS VACANT

We have Vacancies for Four Experienced Test Engineers in our Production Test Department. Applicants are preferred who have Experience of Fault Finding and Testing of Mobile VHF and UHF Mobile Equipment. Excellent Opportunities for promotion due to Expansion Programme.

Please apply to Personnel Manager,
Pye Telecommunications Ltd.,
Cambridge Works, Haig Road, Cambridge. Tel. Cambridge 51351, Ext. 327.

FEBRUARY 1969

PLAIN-BACKED NEW STYLE SELF-BINDERS
for your other magazines
(max. format 7½" x 9½")

The "CORDEX" Patent Self-Binding Case will keep your copies in mint condition. Issues can be inserted or removed with the greatest of ease. Specially constructed Binding cords are made from Super Linen of great strength, very hard twisted and twice double. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for, and the Cords will always remain taut and strong. It is impossible to overstitch the springs, as a safety check-device is fitted to each.

COLOURS: MAROON OR GREEN
(Please state choice)

PRICE 13/6 Postage 1/6

Available only from:—

Data Publications Ltd.
57 Maida Vale London W9
THE RADIO CONSTRUCTOR

Price 3/- each, postage 6d.

Annual Subscription 42/-, post free.

Bound Volumes

Cordex Self-Binders
- With title “The Radio Constructor” on spine, maroon, 14/-, postage 1/6.
- With no title on spine, maroon or green, 13/6, postage 1/6.

DATA BOOK SERIES

DB5 TV FAULT FINDING
124 pages. Price 8/6, postage 8d.

DB6 THE RADIO AMATEUR OPERATOR’S HANDBOOK
64 pages. Price 6/-, postage 6d.

DB15 TWENTY SUGGESTED CIRCUITS
48 pages. Price 3/6, postage 5d.

DB16 RADIO CONTROL FOR MODELS
192 pages. Price 15/-, postage 1/-.

DB17 UNDERSTANDING TELEVISION
512 pages. Price 37/6, postage 3/-

DB18 AUDIO AMPLIFIERS
128 pages. Price 10/6, postage 8d.

PANEL-SIGNS TRANSFERS

Six sheets in each set

Set 3: WORDING—White
Set 4: WORDING—Black
Set 5: DIALS—Control Panels have a clear background
Set 6: DIALS—Control Panels have a black background

Price per set 4/6, postage 4d.

I enclose Postal Order/Cheque for .. in payment for ...

NAME ..

ADDRESS ..

(Please use Block Capitals for both name and address)

Postal Orders should be crossed and made payable to Data Publications Ltd.
Overseas customers please pay by International Money Order
All publications are obtainable from your local bookseller

Data Publications Ltd., 57 Maida Vale, London W.9
CHOOSE A

INCLANDS

HI-FI system

MONO or STEREO Audio. Equipment develop-
d from Dinsdale Mk.II—each unit or system will compare favourably with other professional equipment selling at much higher prices.

COMPLETE SYSTEMS FROM

£15.5.0

THE FINEST VALUE IN HIGH FIDELITY—

CHOICE A SYSTEM TO SUIT YOUR

NEEDS AND SAVE POUNDS

SEND FOR FREE BROCHURE (No. 21) TODAY!

DEMONSTRATIONS DAILY AT 303 EDGWARE ROAD

INTEGRATED SOLID STATE TRANSISTOR POWER AMPLIFIERS

Compare with half basic Franks, Volume and Selectolouders.

MADE 12 WATTS EIERED

We are pleased to offer this new design with the choice of either mono or stereo systems. These INTEGRATED DESIGNS together with their unique solid state transistor past push-pull circuit. Read 5-inch speaker, large ferrite solid and Mutated transformers. Easy to build with the facility for new models at any time.

TOTAL COST £6.19.6.

To build: Send for 'Brochure 1'.

DO IT YOURSELF

MV/LW PORTABLE

New printed circuit design with full power output. Fully portable. Fully tunable on both mono and bands. 7 transistors plus push-pull circuit. Read 5-inch speaker, large ferrite solid and Mutated transformers. Easy to build with the facility for new models at any time.

TOTAL COST £6.19.6.

To build: Send for 'Brochure 1'.

BUILD A QUALITY TAPE RECORDER

Get the benefit of your Hi-Fi equipment, you need a MARIN RECORDER. This company specialises in hi-fi tape, R-amp and pre-amp service and repair. To purchase an excellent model and have it assembled at a cost, you will need a Marin Recorder at your nearest service centre. Our recorder models are available in a wide range of prices, from £29.19.0.

QUALITY CAR RADIOs

A complete and comprehensive kit, with ten plastic enclosures for your tape recorder. Each kit includes all parts needed to build the tape recorder, plus a complete manual.即使是 hi-fi enthusiasts, will find it an interesting and rewarding project. Our complete range of options is £29.19.0.

NEW—MALLORY LONG LIFE MERCURY BATTERIES

'60 OFF LIST PRICE

as of our 3000 long life mercury battery, now £6.95.0.

MANUFACTURERS DISTRIBUTORS

We sell a COMPLETE SELECTION OF SEMICONDUCTOR BOLT ONs and complete semiconductors.

A modest hi-fi FM Tuner new model throughout the UK. This unit will reproduce sound in a way that is comparable with the best in the world. Any of our fully transistorised equipment can be fitted with this unit.

Transistor 20 ft cable, 150 ft cable (19). We have a complete range of transistors, semiconductors and transistors.

Hi-Fi equipment to suit EVERY POCKET

VISIT OUR NEW Hi-Fi CENTRE at 303 EDGWARE RD.

for all leading makers

AMPLIFIERS

TUNERS

DECKS

SPEAKERS

MICROPHONES

TEST EQUIPMENT

SYSTEMS

ALL NEW DISCOUNTS

Ask for Hi-Fi Stock List (leaflet 16.17. It will pay you to pay us a visit!

FULLY ILLUSTRATED CATALOGUE

C/W 75% Send today. 70% off

FROM 300 EDGWARE RD.