There is a variety of AMTRON Electronic Test Equipment

Included in the vast range of over 200 AMTRON ELECTRONIC KITS are a number of various TEST EQUIPMENT units. In common with all AMTRON KITS they come complete with comprehensive assembly instructions and even the solder required inside an attractive blister pack. Shown here are a few examples.

- **AUDIO FREQUENCY GENERATOR**
  Frequency ranges:
  15 to 200 Hz; 200 to 2000 Hz; 2 to 22 KHz.

- **REGULATED POWER SUPPLY**
  Professional power supply for use with telecommunications apparatus. Supply voltage (mains) 117/125–222/240 V (AC).
  Rec. Retail Price £56.82.

- **AUTOMATIC BATTERY CHARGER**
  Voltage 12 or 6 V (commutable on the panel). Max. charging current 2A.

- **TRANSISTOR ANALYSER**
  For accurate measuring of static parameters of transistors.
  Rec. Retail Price £29.70.

**THE BIG NAME IN ELECTRONIC KITS**

AMTRON UK, 4&7 CASTLE STREET, HASTINGS, SUSSEX TN34 3DY TEL: HASTINGS 2875
DENCO (CLACTON) LIMITED
355-7-9 OLD ROAD, CLACTON-ON-SEA, ESSEX

Our components are chosen by Technical Authors and Constructors throughout the World for their performance and reliability, every coil being inspected twice plus a final test and near spot-on alignment as a final check.

Our General Catalogue showing full product range
DTB4 Transistor & Valve circuitry for D.P. Coils
DTB9 Valve Type Coil Pack Application circuitry
MD 1 Decoder Circuitry for Stereo Reception

All post paid, but please enclose S.A.E. with all other requests in the interests of retaining lowest possible prices to actual consumers.

B. H. COMPONENT FACTORS LTD.

MARCH 1974
MARCH 1974
COMPONENTS

MAINS POWER SUPPLY UNIT. 400m/A, 6-7.5-9-12 VOLT MADE TO SELL AT £5.25 OUR PRICE £3.60

VALVE BASES
Printed circuit B9A – B7G .3p
Chassis UX7 – UX9 – B9G – B7G .3p
Shrouded chassis B7G – B9A .4p
B9A-B9A chassis .5p

TAG STRIP
6 way 2p Single 1p

WIST COMPASS
20p with Needle Lock

1½ glass fuses—250 m/a or 3 amp (box of 12)
3" tape spools
FX2236 Ferrox Cores
PVC or metal clip on M.E.S. bulb holder
All metal equipment Phono plug
Bulgin, 5mm Jack plug and switched socket (pair)
12 volt solenoid and plunger
250 RPM 50 c/s locked frequency miniature mains motor
200 OHM coil, 2½" long, hollow centre
Relay, P.O. 3000 type, 1,000 OHM coil, 4 pole c/o
R.S. 12 way standard plug and shell

TO3 Mica Washer 2p
3" Standard Tape - Boxed 15p
GP91-1 Cartridge ..65p
turnover stylus
GC10/48 Gold Cathode £5.00
Brand New Boxed 6K7G 25p

SWITCHES

Pole Way Type
4 2 Sub. Min. Slide 10p
6 2 Slide 15p
4 2 Lever Slide 10p
6 4 Wafer Rotary 15p each
3 3 + off Sub. min. edge 10p
1 1 13 amp small relay 12p
2 2 Locking with 2 to 3 keys £1.60

RESISTORS

± watt 1p
1 watt 2p
Up to 10 watt wire 10p
15 watt wire 12p
wound

SKELETON PRESETS

5K or 500K 4p
K wirewound 5p

SAFETY PINS

Standard size, 10 for 4p

WIREWOUND POT

250, 300 OHM, 1K, 4 watt, 5K, 10K, 11K, 20K, 50K, all at 12p each

5K switched volume control 15p
5K Log Pot 15p
1meg Tandem Pot 15p

THERMISTORS

VA1040 10p each
VA1055
VA1066
VA1100

STEEL BOX WITH LID

10 x 5½ x 3" grey hammer finish £1

RELAYS

6 volt, 2 pole c/o heavy duty contacts 50p
Mains 3 pole c/o heavy duty contacts ex equipment 35p

ELECTROLYTICS

Mullard C425, TCC, CCL,
CCL, Collins, Hunts, STC Subminiature, etc
MFD/VOLT
100/6, 6/3, 6/8, 200/3,
3/4, 3p 25/6, 4/6, 250/6.
20/12, 100/25,
100/12, 25/12,
100/15, 64/125/10,
50/50, 50/10, 100/18,
6/25, 25/300
9p 800/500, 100/250,
400/400, 100/250-275,
14/16 reversible.
6p 8/50, 8/20, 8/40,

INDICATORS

Arcoclic green, takes M.E.S. bulb
Bulgin D676 red, takes M.E.S. bulb
12 volt red, small pushfit
Mains neon, amber, pushfit

CAPACITORS

Mixed type PFDS. 2p, 3.3, 4.7, 10, 16, 18, 22,
24, 25, 27, 30, 33, 37, 39, 47, 50, 56, 68, 88, 100,
110, 150, 200, 220, 250, 270, 300, 350, 450, 500,
600, 680, 800, 1000, 2200, 3000, 3300, 5000.
Poly, met., film, paper, etc. MFD/Volt. 3p.
.001/1250, .005/250, .03/350, .022/70, .03/12,
.03/200 .033/100, .068/70, .066/350, .061/350,
.069/350, .075/350, .05/350, .08/350, 1/350, 1/500,
.13/350, 25/150.
4p. 1500, 1800, 2200, 3000, 3300, 6800,
8200 PF D. .01/350, .013/350, .02/250, .05/125,
.06/250, .25/350.
5p. .033/100, .1/250, .25/500, .5/350.
6p. 1/600, 1/1500, .22/250, .5/250.
10p. .01/1000, 1/350, 2/150, 2/200, 2/250,
.1/900, .22/300.
40p. 5/150, 9/275AC, 10/150, 15/300, 40/150

TRIMMERS, 15p each
100PF Ceramic, 30PF Beehive, 12PF PTFE,
2500PF 750 volt, 33PF MIN. AIR SPACED,
5PF, MIN. AIR SPACED, 50PF CERAMIC.

CONNECTOR STRIP
Belling Lee L146S, 4 way polythene. 3p each
CAN CLIPS
1" or 1 ½" or 2" 2p
LABGAE MAINS DROPPER
36 ohm 25 watt + 79 ohm 9 watt 15p

TUNING CONDENSERS 33 or 50PF, 25p

2 Amp Suppression Choke 5p

PAXOLINE

3 x 2½ x 7 2p
5 x 2½ x 7 2.5 for 1p
200K 3 watt resistors 2p

OUTPUT TRANSFORMERS

WIREWOUND TRANSFORMER
Sub-miniature Transistor Type 20p
Valve type, centre tapped or straight 40p

3 pin din to open end, 1 ½yd twin screened lead 35p

THE RADIO SHACK
161 ST. JOHNS HILL, BATTERSEA, LONDON S.W.11
Open 10 a.m. till 7 p.m. Monday to Saturday
Phone 01-223 5016

If payment by cheque allow time for clearance, otherwise by return.

RADIO & ELECTRONICS CONSTRUCTOR
MARCH 1974

SEMIC conductors
Full spec. marked by Mullard, etc. Many other types in stock

AC127 12p BC158C
AC187/8 12p BC178
AC307 30p BC186/7
AC161/2 26p BC40
AC116/7 12p BC170
AC247/4 20p BC171
AC131 35p BC172
AC178 35p BC99
AC180 40p BC131
AC239 37p BC32
AC107A or B 10p BC135
BC107/8/9 7p BC203
BC108A/8 10p BC232
BC147/9/8 6p BC234/5
BC148/9/8/9 15p BF15
BC167/8/9 11p BF167
BC158A 13p BF173

BRIDGE RECTIFIERS
Plastic types

1 AMP RECTIFIERS
IN4002 100 volts
IN4003 400 volts
IN4006 600 volts
IN4008 800 volts
IN4007 1,000 volts

HIGH POWER RECTIFIERS
SR100 1.5 100 volt
SR400 1.5 400 volt
L02 30 100 volt
BYX38-60 2.5 600 volt
BYX38-90 2.5 900 volt
BYX38-900 2.5 2,000 volt
BYX49-60 2.5 600 volt
BYX49-90 2.5 900 volt
BYX98-1200 35p 1,200 volt
BYX98-300 6p 300 volt
BYX49-300 6p 300 volt
BYX49-600 6p 600 volt
BYX98-600 6p 600 volt
BYX49-800 9p 800 volt
BYX98-800 9p 900 volt
BYX98-1200 7p 1,200 volt
BYX98-300 16 300 volt
BYX49-300 16 300 volt
BYX49-600 16 600 volt
BYX98-600 16 600 volt
BYX98-1200 16 1,200 volt

PNPN PROGRAMMABLE UNJUNCTION
BRY39 30p

OPTO ELECTRONICS
ORP12 48p Photo transistors
BPX40 26p BPX29 80p
BPX42 1p OCP71 1p
BPY68 7p RED L.E.D.
BPY69 1p 2v 50mA max.
BPY77 7p 42 mm diam.

ALL ORDERS OVER £3 POST FREE
OVER £6 VAT FREE

PHOTO SILENCE CONTROLLED SWITCH
BPA66 PNPN 10 amp

THERMISTORS
Amp Volt
1 300 BTX18-200
2 240 BTX30-200
6.5 300 BT102-300R
6.5 500 BT102-500R
700 700 BT102-1000R
15 500 BT107
6.5 500 BT109-500R
20 600 BTW92-600RM
15 800 BTX95-800R Pulse Modulated £12

OTHER DIODES
Centercals
IN916 6p
BA145 1p
BA149 2p

TRIACS
DlAC BR100 3p

WESTINGHOUSE 2810 30
AMP1000 VOLTHYSTER
 WITHOUT NUT £5

PHOTO SILICON CONTROLLED SWITCH
BPA66 PNPN 10 amp

PBPA300 T0-741 Watt
A.F. AMPLIFIER I.C.
4-5 to 9v £1.63

WIREWOUND SLIDER
150 Ohm, 250 Ohm 5k
4 each

HANDBLES
Rigid light blue nylon 6½" with secret fitting screws
5p

DEE PLUG
McMurdo DA15P 5
way chassis plug 20p

CINCH 150
12 way edge socket 10p

1lb Mixed nuts, bolts, washers etc... 25p
The latest B.S.R. 8 Track Cartridge Replay Deck.
Ready to install in your Hi-Fi Stereo System.
This unit comes complete with Hi Gain Stereo Pre-Amplifier, 4-Programme Indicator Lamps, Track Selector Switch, all leads and plugs, etc. for 230 volt A.C. mains operation.

**3 W R.M.S. I.C. AMP**

*only* £1.65 incl. P. & P. and VAT.

On P.C. Board with all components or 2 on one board for £2.85. Order Code I.C.A. 1/5.

These amps are supplied with a free booklet on connecting up, specifications and easy to build projects using the I.C.A. 1.

**5W & 10W AMPS**

**5W** only £1.98

**10W** only £2.49

incl. P. & P. and VAT.

These matchbox size amplifiers have an exceptionally good tone and quality for the price. They are only 2½" x 1½". The 5W amp, will run from a 12V car battery making it very suitable for portable voice reinforcement such as public functions. Two amplifiers are ideal for stereo. Complete connection details and treble, bass, volume and balance control circuit diagrams are supplied with each unit. Discounts are available for quantity orders. More details on request. Cheapest in the U.K. Built and tested.

Now available for 5 & 10W AMPS

Pre-assembled printed circuit boards 2" x 3" available in stereo only, will fit '15 edge connectors.

Stereo Pre-Amp 1 (Pre 1). This unit is for use with low gain crystal or ceramic pick up cartridges. £1.21

Stereo Pre-Amp 2 (Pre 2) This unit is for use with magnetic pick-up cartridges. £1.69

Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and treble boost and cut. £1.21

Instruction leaflet supplied with all units. Post and Packing and VAT included in prices.

---

**Now! A Fast Easy Way to Learn Basic Radio & Electronics**

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering—you learn the practical way.

Learn basic Radio and Electronics at home—the fast, modern way. Give yourself essential technical 'know-how'—like reading circuits, assembling standard components, experimenting, building—quickly and without effort, and enjoy every moment. B.I.E.T.'s simplified study method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting.

Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!

and what's more, you will understand exactly what you are doing. The TECHNATRON Outfit contains everything you need, from tools to transistors—even a versatile Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipment remains yours, so you can use it again and again.

You LEARN—but it's as fascinating as a hobby.

Among many other interesting experiments, the Radio set you build—and it's a good one—is really a bonus. This is first and last teaching course, but the training is not necessarily restricted, and could be the springboard for a career in Radio and Electronics.

A 14-year-old could understand and benefit from this course—but it teaches the real thing. The easy to understand, practical projects—from a burglar-alarm to a sophisticated Radio set—help you master basic Radio and Electronics—even if you are a 'non-technical' type. And, if you want to make it a career, B.I.E.T. has a fine range of courses up to City and Guilds standards.

**Specialist Booklet**

If you wish to make a career in Electronics, send for your FREE copy of "NEW OPPORTUNITIES". This brand new booklet—just out—tells you all about TECHNATRON and B.I.E.T.'s full range of courses.

---

**FREE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY**

Dept. B.E. 23 ALDERMASTON COURT, READING RG7 4PF

Accredited by C.A. C.C.
Member of A.B.C.C.

**POST THIS COUPON FOR FREE BOOKLET**

---

**NAME**

(Block capitals)

**ADDRESS**

**SUBJECT OF INTEREST**

---

---
The Sinclair Cambridge... no other calculator is so powerful and so compact.

Complete kit—£24.95! (PLUS VAT)

The Cambridge — new from Sinclair
The Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle the most complex calculations, in a compact, reliable package. No other calculator can approach the specification below at anything like the price — and by building it yourself you can save a further £5.50!

Truly pocket-sized
With all its calculating capability, the Cambridge still measures just 4½" x 2" x ¾". That means you can carry the Cambridge wherever you go without inconvenience — it fits in your pocket with barely a bulge. It runs on ordinary U16-type batteries which give weeks of life before replacement.

Easy to assemble
All parts are supplied — all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

The cost? Just £27.45!
The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs £32.95 — so you're saving £5.50! Of course we'll be happy to supply you with one ready-assembled if you prefer — it's still far and away the best calculator value on the market.

Features of the Sinclair Cambridge
* Uniquely handy package. 4½" x 2" x ¾", weight 3½ oz.
* Standard keyboard. All you need for complex calculations.
* Clear-last-entry feature.
* Fully-floating decimal point.
* Algebraic logic.
* Four operators (+, −, x, ÷), with constant on all four.
* Constant acts as last entry in a calculation.
* Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than £30.
* Calculates to 8 significant digits, with exponent range from 10⁻²⁹ to 10⁷⁹.
* Clear, bright 8-digit display.
* Operates for weeks on four U16-type batteries. (MN 2400 recommended.)
A complete kit!

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge. Assembly time is about 3 hours.

Contents:
1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.

This valuable book – free!
If you just use your Sinclair Cambridge for routine arithmetic – for shopping, conversions, percentages, accounting, tallying, and so on – then you'll get more than your money's worth.

But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.

Why only Sinclair can make you this offer
The reason's simple: only Sinclair – Europe's largest electronic calculator manufacturer – have the necessary combination of skills and scale.

Sinclair Radionics are the makers of the Executive – the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price.

But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them – the Sinclair Project 60 stereo modules.

It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.

And you benefit!

Take advantage of this money-back, no-risks offer today
The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch – and we guarantee a correctly-assembled calculator for one year.

Simply fill in the preferential order form below and slip it in the post today.

Price in kit form: £24.95 + £2.50 VAT. (Total: £27.45)
Price fully built: £29.95 + £3.00 VAT. (Total: £32.95)

To: Sinclair Radionics Ltd, London Road, St Ives, Huntingdonshire, PE1 7HZ

Please send me
☐ a Sinclair Cambridge calculator kit at
  £24.95 + £2.50 VAT (Total: £27.45)
☐ a Sinclair Cambridge calculator ready
  built at £29.95 + £3.00 VAT
  (Total: £32.95)

* I enclose a cheque for £ . made
  out to Sinclair Radionics Ltd, and
crossed.

* Please debit my * Barclays/Access
  account. Account number

* Please print

Sinclair Radionics Ltd, London Road,
St Ives, Huntingdonshire

Reg. no: 893863 England

VAT Reg. no: 213 8170 88

MARCH 1974
FREE WITH SPEAKERS:

With speaker orders over £7 “Hi-Fi Loudspeaker Enclosures” book.
All units guaranteed new and perfect. Prompt despatch.
Carriage and insurance 35p per speaker (tweeters and crossovers 20p).
ALL PRICES QUOTED INCLUDE V.A.T.

WILMSLOW AUDIO Department P.E.
LOUDSPEAKERS: SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE. SK9 1HF
RADIOS ETC: 10 SWAN ST. WILMSLOW, CHESHIRE. SK9 1HF
TELEPHONE WILMSLOW 29599

WILMSLOW AUDIO
THE Firm for speakers!

SPEAKERS
Goodmans 8" 8 ohm £9.75
Goodmans 10" 8 ohm £12.50
Goodmans Twinaxiom 8, 8 or 15 ohm £12.00
Goodmans Twinaxiom 10, 8 or 15 ohm £17.00
Kef T2 £7.00
Kef T4 £12.50
Kef B110 £5.00
Kef B200 £6.16
Kef B139 £12.00
Kef D9B £15.00
Kef D12 £13.00
Kef D13 £15.00
Richard Allan 12" d/c 3 or 15 ohm £12.15
Richard Allan CBQ8 8" 4/6 ohm £10.15
WMT1 speaker match £25.00
Wharfedale Super 10 RS/DD £8.25
" 8 x 3, 8 or 15 ohm £7.65
" 8 x 5 " £7.50
" 10 x 6 " £7.80
STC4001G Super Tweeter £12.30

PRICES QUOTED INCLUDE V.A.T.

PA/DISCO AMPLIFIERS
Grundig Solo Boy £16.00
Grundig Top Boy £17.75
Grundig Party Boy 500 £22.95
Grundig Melody Boy 500 £26.75
Grundig Elite Boy 500 £26.75
Grundig Signal 500 £36.50
Grundig Yacht Boy 210 £34.00
Grundig Melody Boy 1000 £38.50
Grundig Satelit 2000 £42.00
Grundig C410 Cassette £28.50
Grundig RF430 mains radio £47.75
Grundig RF310 mains radio £47.75
Tandberg TP4 £43.00
Whendoor £52.00
ITT Golf £80.00

FREE with each radio - World radio stations book.

Audio Amplifiers
Edited by J. R. Davies

16 Transistor and Valve Designs for the Home Constructor

Amplifiers for Tuner Units, Record Players, Tape Recorders, Public Address, etc., etc.

Includes contributions by such well-known authors as

A. S. Carpenter, A. Kinloch, E. Govier,
G. A. French, F. G. Rayner,
P. F. Bretherick, K. Jones, D. Aldous,
R. Murray-Shelley, C. Swires,
G. A. Stevens and V. E. Holley.

PRICE

53p

Postage 6p
Telephone Corner
COMPLETE TELEPHONES EX. G.P.O. NORMAL HOUSEHOLD TYPE
Only £1.05p
POST & PACKING 45p EACH TELEPHONE DIALS
Standard Post Office type. Guaranteed in working order.
Only 27½d POST & PACKING 16p

Tested and Guaranteed Paks
TESTED AND GUARANTEED PAKS
B79 4 N4007 S8, Rec. diodes, 3.000 PW lamp plastic
B81 10 Reed Switches, '1' long, '1' dlk. High speed P.O. type
B90 200 Sili. Diodes with min. quantity counted by weight P or T 15p
H44 250 Mixed Resistors, Approx. quantity counted by weight P or T 75p
H35 103 Mixed Diodes, Germ. Gold bonded, etc. Marked and Unmarked
H39 55 Transistors, Short lead Transistors, NPN Silicon Planar type.
H44 6 Integrated Circuits, 4 Gters, BHC 162, 2 Flip Flops BHC 945
H44 2 Sili. Power transistors, comp pair SD131/132

Unmarked Untested Paks
UNMARKED UNTESTED PAKS
B1 5 Germanium Transistors PNP, AF and RF
B36 150 Germanium Diodes Min. glass type
B4 100 Silicon Diodes DO7 glass equiv. to OAI20, OA101
B94 100 Sili. Diodes with min. IN5194 and IN914 types
H4 15 Experiments' Pak of Integrated Circuits. Data supplied
H20 20 871367 Type Sili. Rectifiers 1 amp plastic. Mixed volts.
H34 15 Power Transistors, PNP, Germ. NPN Silicon TO3 case.

Ex GPO Push Button Intercom Telephones
Exactly as internal telephone systems still in everyday use where automatic internal exchanges have not yet taken over. Available in 5, 10 or 15 ways. Complete with circuits and instructions. Necessary 24 pair cable 30p per yard. Price of each instrument is independent of the number of ways.
£2.75 P.P. 38½p
Per instrument
Cable can be seen by Parcel Post. Post and Packing per 50 pairs 70p.
These phones are extensions and do not contain bells.

A Cross Hatch Generator £3.85 post paid
YES, a complete kit of parts including Printed Circuit Board. A four position switch gives X-hatch, Dots, Vertical or Horizontal lines. Integrated Circuit design for easy construction and reliability. This was a project in the September 1972 edition of Television.

New Paks
Tested & Guaranteed
H63 4 2N3055 Type NPN Silicon power transistors. Below spec devices 1819 N Channel F.E.T.'s ZT2889 in plastic case
H64 4 2N3053 Type NPN Sil. transistors TO5 can comp. to H66
H65 4 2N3051 Type NPN Sil. transistors TO5 can comp. to H65
H66 4 2N3052 Type PNP Sil. transistors TO5 can comp. to H65
Untested, Unmarked
H67 10 1819 N Channel F.E.T.'s plastic case

Over 1,000,000 Transistors in stock
We hold a very large range of fully marked, tested and guaranteed transistors, power transistors, diodes and rectifiers at very competitive prices. Please send for free catalogue.

Our very popular 4p Transistors
TYPE "A" PNP Silicon alloy, TO3 can.
TYPE "B" PNP Silicon, plastic encapsulation.
TYPE "C" PNP Germanium AF or RF.
TYPE "D" PNP Silicon plastic encapsulation.
TYPE "E" NPN Silicon similar ZTX 200 TO3.
TYPE "F" PNP Silicon similar ZTX 200 TO3.

8 RELAYS FOR £1.10 S. P. 27½p.

High Speed Magnetic Counter
4 digit (inc. reset) 2¾w or 4½w (case which) 4 x 1 x 1 in. 30p s.p. 1½p.

Make a rev counter for your car
The "TACHO BLOCK". This encapsulated block will turn any 0.5mA meter into a linear and accurate rev. counter for any car with normal ignition system.
£1.10p each

Plastic Power Transistors

NOW IN TWO RANGES
There are 40W and 50W Silicon Plastic Power Transistors of the very latest design, available in NPN or PNP at the most breathtakingly low prices of all time. We have been selling these successfully in quantity to all parts of the world and we are proud to offer them under our Tested and Guaranteed terms.

Range 1: VCE Min. 15, HFE Min. 20
40 Watt £1.25 34p 34p 26p
10 Watt £1.75 26p 26p 22p

Range 2: VCE Min. 45, HFE Min. 45
10 Watt £1.50 34p 34p 26p

40 Watt £2.00 34p 34p 26p
10 Watt £2.25 34p 36p 36p

Complementary pairs matched for pairs of 3 ampl. Yip extra per pair. Please state NPN or PNP on order.

INTEGRATED CIRCUITS
We stock a large range of I.C.s at very competitive prices (from 1½p each). These are all listed in our FREE Catalogue, see coupon below.

METRICATION CHARTS now available
This fantastically detailed conversion calculator carries thousands of classified references between metric and British (and U.S.A.) measurements of length, area, volume, liquid measure, weights etc. Pocket Size 15p.

LOW COST DIAL IN LINE I.C. SOCKETS 14 pin type at 5½p each
16 pin type at 12½p each. Now new low profile type.

BOOKS
We have a large selection of Reference and Technical Books in stock.

Our famous P1 Pak is still leading in value
Full of Short Lead Semiconductors and Electronic Components, approx. 190. We guarantee at least 30 really high quality factory marked Transistors PNP & NPN, and a host of Diodes & Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors. Please ask for Pak P1. only 55p

Please send me the FREE Bi-Pre-Pak Catalogue
NAME
ADDRESS

All prices include 10%, V.A.T.
MINIMUM ORDER 55p, CASH WITH ORDER. PLEASE ADD THE MOST AND PACKING PER ORDER.
OVERSEAS ADD EXTRA FOR POSTAGE.

BUY THESE GOODS WITH ACCESS
A SELECTION of the more unusual items from the famous HOME RADIO (Components) CATALOGUE...

LIGHT SENSITIVE DEVICES

SILICON PHOTO-VOLTAIC CELL

Maker: FERRANTI

These cells were developed for the space programme. They may be used to power transistorised radios, small electric motors or operate light meters. For example, they will generate enough current to operate our SD104, 5 and SD106 motors when exposed to 100 watt lamp. Although we give an output current and voltage these are nominal and taken in strong sunlight. The voltage will vary with the amount of current being consumed.

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Maker's No.</th>
<th>Maker</th>
<th>Volts</th>
<th>mA</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD103</td>
<td>FRB150</td>
<td>Ferranti</td>
<td>1.1v</td>
<td>100</td>
<td>1 x 1 x 0.12 in. (19 x 19 x 3 mm.)</td>
</tr>
</tbody>
</table>

PRICE (Including VAT and Postage) £1.89

SMALL ELECTRIC MOTORS

Cat. No. | Maker's No. | Size | Voltage |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SD106</td>
<td>M5</td>
<td>33 x 28 mm.</td>
<td>6 V</td>
</tr>
</tbody>
</table>

Note: The SD106 will run off 2 of our SD103 Photo Voltaic silicon cells connected in series if illuminated by sunshine or 100-watt lamp at 1 ft.

PRICE (Including VAT and Postage) £2.84

SILICON GLASS TUBING

This tubing will withstand temperatures up to 250 C.

Cat. No. | Maker's No. | Length | Outside Dia. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>82274</td>
<td>LTG54</td>
<td>6 in. (152 mm.)</td>
<td>2 in. (51 mm.)</td>
</tr>
</tbody>
</table>

PRICE (Including VAT and Postage) £2.54

It goes without saying that our catalogue lists in profusion run-of-the-mill goods like Resistors, Capacitors, Pots and Coils, so we would like to bring to your notice one or two of the more exotic items. Take the first one... the SD103 cell. Apart from its rarity, it's very useful. Recently we built a little 3-transistor radio with loudspeakers, and we found that three of these cells would operate it. Regarding the mini motor and the silicon glass tubing, your ingenuity will immediately suggest ways in which you can make good use of them. These are but 3 of millions (all right then - thousands) of exciting components in our catalogue. By now you are reaching for your pen and cheque book, but don't just buy the items shown here; get the catalogue and feast your eyes on all 240 pages. At 77 pence it's almost a gift - especially as by using the vouchers as directed you can reclaim 50p.

* Send now for catalogue

POST THIS COUPON with cheque or P.O. for 77p.

Please write your Name and Address in block capitals

NAME

ADDRESS

HOME RADIO (Components) LTD.
Dept. RC, 234-240 London Road, Mitcham, CR4 3HD

Reg. No. 912966
London

RADIO & ELECTRONICS CONSTRUCTOR
MARCH 1974
Vol. 27 No. 8
Published Monthly (1st of Month)
First Published 1947

Incorporating The Radio Amateur

Editorial and Advertising Offices
57 MAIDA VALE LONDON W9 1SN

Telephone 01-286 6141
Telegrams Databux, London

@ Data Publications Ltd., 1974. Contents may only be reproduced after obtaining prior permission from the Editor. Short abstracts or references are allowable provided acknowledgement of source is given.

Annual Subscription: £2.70 (U.S.A. and Canada $7.00) including postage. Remittances should be made payable to "Data Publications Ltd". Overseas readers please pay by cheque or International Money Order.

Technical Queries. We regret that we are unable to answer queries other than those arising from articles appearing in this magazine nor can we advise on modifications to equipment described. We regret that such queries cannot be answered over the telephone; they must be submitted in writing and accompanied by a stamped addressed envelope for reply.

Correspondence should be addressed to the Editor, Advertising Manager, Subscription Manager or the Publishers as appropriate.

Opinions expressed by contributors are not necessarily those of the Editor or proprietors.

Production.—Web Offset.

CONTENTS

CRYSTAL CALIBRATOR
by K. J. Dorrell

466

TRADE NEWS

471

NEWS AND COMMENT

472

DUAL-TONE OSCILLATOR
(Suggested Circuit 280) by G. A. French

474

TR3 REFLEX RADIO
by A. Sapciyan

476

THE 'WYVERN' LOW VOLTAGE POWER SUPPLY by John R. Green

479

AUDIO FREQUENCY METER
by A. P. Roberts

484

RECENT PUBLICATIONS

489

LISTENING TO OSCAR
by Arthur C. Gee

490

SWITCH-OFF REMINDER
by S. Jeffrey

492

SHORT WAVE NEWS — For Dx Listeners
by Frank A. Baldwin

494

ELECTRONIC CANDLE
by K. H. Fordham

496

IN YOUR WORKSHOP
Monochrome TV Receivers

498

THE FETRON
by J. B. Dance

505

NEW PRODUCT

506

RADIO TOPICS
by Recorder

507

CONSTRUCTOR'S DATA SHEET No. 84
(Audio Output Powers)

iii

Published in Great Britain by the Proprietors and Publishers, Data Publications Ltd, 57 Maids Vale, London, W9 1SN

The Radio & Electronics Constructor is printed by Carlisle Web Offset.

APRIL ISSUE WILL BE
PUBLISHED ON 1st APRIL

MARCH 1974
CRYSTAL CALIBRATOR

by

K. J. Dorrell, G4 AZO

This neat unit employs a single 1MHz crystal and can be switched to produce frequency markers at intervals of 1MHz, 100kHz or 10kHz.

One of the pieces of equipment which is regarded as essential for any amateur radio station, and which can also be a very useful addition to any short wave listener's 'shack', is a crystal marker with which to check the calibration of a communications receiver.

CRYSTAL CONTROLLED OSCILLATOR

The block diagram of a simple crystal calibrator is shown in Fig. 1. This comprises a crystal controlled oscillator, running typically at 1MHz, followed by a waveform clipper which gives an output at the fundamental frequency of 1MHz together with its harmonics. When the output of the unit is connected to the aerial socket of a receiver, the signal can be used to mark the positions on the tuning scale which correspond to 1MHz, 2MHz, 3MHz and so on. If the b.f.o. of the receiver is switched on and set to zero beat with incoming signals, the receiver can be tuned to the crystal calibrator output, and thus be accurately set to any multiple of 1MHz.

A calibrator of the type shown in Fig. 1 can be very useful, but it does have its limitations. For example, the 80 metre amateur band extends from 3.5 to 3.8MHz, with the result that neither edge of the band can be marked by the calibrator. Amateur transmitting licensing conditions state that the operator must be able to prove that any signals radiated are within the band in use. It is possible, of course, to use a 100kHz crystal instead of the 1MHz unit, and this would give signals at 100kHz, 200kHz, 300kHz, and so on up to 3.5MHz, 3.6MHz, 3.7MHz and 3.8MHz, etc. It has, however, been the writer's experience that 100kHz crystals tend to be less stable in terms of frequency than 1 MHz crystals, and are rather more difficult to bring reliably into oscillation. Also, many receivers do not have accurately calibrated bandspread on the higher frequencies, and difficulty could be experienced in deciding to which harmonic of 100kHz the receiver is tuned. Clearly it would be advantageous to have markers available at 1MHz, 100kHz and, for accurate 'spotting', 10kHz intervals. However, crystals tend to be expensive, and 10kHz crystals are not generally available. For some time the author used a surplus twin crystal (1MHz and 100kHz) in a calibrator offering outputs at 1MHz and 100kHz and their harmonics, but the arrangement was never very satisfactory due to the fact that the crystal was quite a few cycles off frequency and no trimming would persuade it to oscillate at the correct frequency.

The unit described in this article uses a single and reliable HC6U 1MHz crystal and by use of frequency dividers, gives marker points at 100kHz and 10kHz intervals in addition to the 1MHz intervals. It is accurate to a sufficiently close tolerance for most amateur work. The crystal is readily available, and may, for instance, be obtained from Henry's Radio, Ltd.
THE CIRCUIT

The block diagram of the calibrator is shown in Fig. 2. When marker points at 1MHz are required, an output is taken, via the buffer stage, from the crystal oscillator. A 100kHz multivibrator, synchronised with the 1MHz crystal oscillator, is used to give 100kHz marker points. To achieve this synchronisation, the multivibrator is set up to approximately 100kHz and a small amount of 1MHz signal is fed to the collector of one of the multivibrator transistors.

The 10kHz signal is obtained from a 10kHz multivibrator, this being locked onto the signal from the 100kHz multivibrator which, in turn, is locked onto the highly stable 1MHz oscillator. Whichever signal is selected is passed to the clipper and output stage and thence to the output socket. The two diodes in the positive supply line ensure that only the 1MHz oscillator and buffer stage are operating when the 1MHz output is selected, that the 100kHz multivibrator is brought into use when the 100kHz output is required, and that both multivibrations are running for the 10kHz output. In the practical circuit the two diodes are silicon types, with the result that the supply voltage to the crystal oscillator drops slightly when switching from 1MHz to 100kHz, and drops again when switching from 100kHz to 10kHz. These supply voltage changes cause no measurable change in crystal oscillator frequency.

The complete circuit diagram of the calibrator unit is shown in Fig. 3. C2 allows the frequency of the crystal oscillator to be 'trimmed' over a few cycles so that it can be brought 'dead on'. The crystal controlled oscillator, TR1, is the heart of the calibrator, and it is connected in a Colpitts circuit with feedback given by C4 and C5. TR1 is followed by the buffer stage incorporating TR2. TR3 and TR4 form the 100kHz multivibrator, the frequency of which is adjustable over a small range by means of VR1. The 10kHz multivibrator is given by the circuit incorporating TR5 and TR6, with VR2 providing frequency control. The 10kHz multivibrator is a little asymmetric, since R11 and R12 have slightly different values. It was found that if both these resistors were made 39kΩ VR2 slider had to be set near one end of its track, and if they were both made 47kΩ VR2 slider had to be set near the other end of its track. Thus, to allow the final setting in VR2 to be approximately central, and to avoid delving into the E24 range of resistor values, it was decided to make R11 39kΩ and R12 47kΩ. All the multivibrator frequency-determining component values are those which have been found to give the correct frequencies in practice.

A view inside the unit with the front panel removed. The battery, covered with black insulating tape, is partly visible alongside the trimmer.
Fig. 3. Complete circuit of the calibrator unit. This offers outputs at 1 MHz, 100 kHz and 10 kHz.
The power switching diodes, D1 and D2, have already been mentioned. When S1(a) is switched to the 1MHz position, power from the battery is supplied to TR1 and TR2, the supply to the multivibrators being blocked by D1. When S1(a) is in the 100kHz position, power is supplied to TR1, TR2, TR3 and TR4, the supply to TR5 and TR6 being blocked by D2. Switching S1(a) to the 10kHz position causes power to be fed to all the transistors TR1 to TR6. The battery is switched on by push-button S2, and the clipper and output transistor, TR7, is powered for all positions of S1(a)(b). S1(b) selects the output of the crystal oscillator after the buffer stage, the 100kHz multivibrator or the 10kHz multivibrator as appropriate.

CONSTRUCTION

All the components apart from the switches and output socket are mounted on a piece of 0.15 in. Veroboard having 37 holes by 12 holes and with the copper strips running along the short direction. The strips are cut at the points indicated in Fig. 4, which also shows the component layout. The view is from the component side. The board is mounted, with two countersunk 6BA bolts and using insulated spacing pillars, in a chassis measuring 6\(\frac{1}{2}\) by 2\(\frac{1}{2}\) by 2 in. The chassis is a ‘K’ type, available from H. L. Smith & Co. Ltd., 287/289 Edgware Road, London, W.2, and is provided with a detachable base having flanges on its long sides which pass inside the chassis. The base is secured by four self-tapping screws. In the present application, the chassis is turned upside-down so that the base forms the front panel. The switches are mounted on this front panel, and flexible leads connect them up to the circuit board, the leads being just sufficiently long to enable the panel to be removed and set alongside the chassis. Holes for the coaxial output socket are required at the end of the chassis which is adjacent to TR7.

It is best to drill the mounting holes in the Veroboard first, these being used as guides for the drilling of the corresponding holes in the chassis. If the Veroboard is positioned such that the lower long end in Fig. 4 is against the side of the chassis, there should be sufficient room for the battery between the other long side of the Veroboard and the opposite chassis side. The two mounting holes for the screws which secure the Veroboard are countersunk on the outside.

The crystal is soldered to the circuit board along with the associated trimmer capacitor, the latter being a mica compression type in the prototype. However, these tend to be a little unstable over wide temperature ranges, causing typical errors in the oscillator frequency of about 2 parts per million (i.e. 2Hz at 1MHz). The author finds this sort of error tolerable, but it is

<table>
<thead>
<tr>
<th>Resistors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(All fixed values (\frac{1}{2}) watt 10%)</td>
<td></td>
</tr>
<tr>
<td>R1 220kΩ</td>
<td></td>
</tr>
<tr>
<td>R2 1kΩ</td>
<td></td>
</tr>
<tr>
<td>R3 1kΩ</td>
<td></td>
</tr>
<tr>
<td>R4 330kΩ</td>
<td></td>
</tr>
<tr>
<td>R5 4.7kΩ</td>
<td></td>
</tr>
<tr>
<td>R6 5.6kΩ</td>
<td></td>
</tr>
<tr>
<td>R7 82kΩ</td>
<td></td>
</tr>
<tr>
<td>R8 82kΩ</td>
<td></td>
</tr>
<tr>
<td>R9 5.6kΩ</td>
<td></td>
</tr>
<tr>
<td>R10 4.7kΩ</td>
<td></td>
</tr>
<tr>
<td>R11 39kΩ</td>
<td></td>
</tr>
<tr>
<td>R12 47kΩ</td>
<td></td>
</tr>
<tr>
<td>R13 4.7kΩ</td>
<td></td>
</tr>
<tr>
<td>R14 330kΩ</td>
<td></td>
</tr>
<tr>
<td>R15 5.6kΩ</td>
<td></td>
</tr>
<tr>
<td>R16 47Ω</td>
<td></td>
</tr>
<tr>
<td>VR1 25kΩ miniature skeleton, vertical mounting</td>
<td></td>
</tr>
<tr>
<td>VR2 25kΩ miniature skeleton, vertical mounting</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 0.01µF plastic foil</td>
<td></td>
</tr>
<tr>
<td>C2 30pF mica trimmer (see text)</td>
<td></td>
</tr>
<tr>
<td>C3 30pF silvered mica (see text)</td>
<td></td>
</tr>
<tr>
<td>C4 100pF silvered mica</td>
<td></td>
</tr>
<tr>
<td>C5 1000pF silvered mica</td>
<td></td>
</tr>
<tr>
<td>C6 33pF silvered mica or ceramic</td>
<td></td>
</tr>
<tr>
<td>C7 0.022µF plastic foil</td>
<td></td>
</tr>
<tr>
<td>C8 10pF silvered mica or ceramic</td>
<td></td>
</tr>
<tr>
<td>C9 100pF silvered mica or ceramic</td>
<td></td>
</tr>
<tr>
<td>C10 0.1µF plastic foil</td>
<td></td>
</tr>
<tr>
<td>C11 100pF silvered mica</td>
<td></td>
</tr>
<tr>
<td>C12 100pF silvered mica</td>
<td></td>
</tr>
<tr>
<td>C13 15pF silvered mica or ceramic</td>
<td></td>
</tr>
<tr>
<td>C14 120pF silvered mica or ceramic</td>
<td></td>
</tr>
<tr>
<td>C15 10µF electrolytic, 12 V.Wkg.</td>
<td></td>
</tr>
<tr>
<td>C16 1,000pF silvered mica</td>
<td></td>
</tr>
<tr>
<td>C17 1,000pF silvered mica</td>
<td></td>
</tr>
<tr>
<td>C18 470pF silvered mica or ceramic</td>
<td></td>
</tr>
<tr>
<td>C19 12µF electrolytic, 12 V.Wkg.</td>
<td></td>
</tr>
<tr>
<td>C20 100pF silvered mica or ceramic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1 TIS48 or 2N2926(0)</td>
<td></td>
</tr>
<tr>
<td>TR2 TIS48 or 2N2926(0)</td>
<td></td>
</tr>
<tr>
<td>TR3 2N2926(0)</td>
<td></td>
</tr>
<tr>
<td>TR4 2N2926(0)</td>
<td></td>
</tr>
<tr>
<td>TR5 2N2926(0)</td>
<td></td>
</tr>
<tr>
<td>TR6 2N2926(0)</td>
<td></td>
</tr>
<tr>
<td>TR7 TIS48 or 2N2926(B)</td>
<td></td>
</tr>
<tr>
<td>D1 1N4002</td>
<td></td>
</tr>
<tr>
<td>D2 1N4002</td>
<td></td>
</tr>
<tr>
<td>D3 OA70</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crystal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X1 1MHz crystal type HC6U</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switches</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S1(a)(b) 2-pole 3-way rotary</td>
<td></td>
</tr>
<tr>
<td>S2 Press-button</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Socket</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SK1 Coaxial socket</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BY1 9-volt battery type PP3 (Ever Ready)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis, with base, 6(\frac{1}{2}) x 2(\frac{1}{2}) x 2 in. (see text)</td>
<td></td>
</tr>
<tr>
<td>Veroboard panel, 0.15 in. matrix (see text)</td>
<td></td>
</tr>
<tr>
<td>Battery connectors</td>
<td></td>
</tr>
<tr>
<td>Pointer knob</td>
<td></td>
</tr>
</tbody>
</table>

MARCH 1974
probable that an improvement would result if a Mullard concentric trimmer were employed instead.

Most of the capacitors are not critical with regard to type. The main exceptions are C3, C4 and C5, which should be silvered mica. Also C11, C12, C16 and C17 should have a reasonably close tolerance and it would be preferable to use silvered mica components here as well. The preset variable resistors, VR1 and VR2, are miniature skeleton, vertical mounting.

A 22 s.w.g. tinned copper wire runs the length of the board and provides earthing at the strips indicated in Fig. 4. It connects to the chassis by way of the adjacent mounting bolt between R13 and C20.

If the Veroboard is mounted in the manner just described, the battery should fit tightly between the Veroboard and the side of the case. It is best to leave clearance for it and to increase its size by winding insulating tape round it until it is a tight fit. The insulation tape also prevents accidental short-circuits between the metal case of the battery and other components if, for any reason, it should become dislodged. Despite its small size the battery should last a long time as the unit will not be running continually. At the time of writing the prototype has been in use for six months and has not yet required a new battery.

**SETTING UP**

The setting up of the calibrator should not be complicated if the following procedure is used. All that is needed is the communications receiver with which the calibrator is to be used, the receiver being coupled to a reasonable aerial. The b.f.o. of the receiver is switched on and S1 of the calibrator is set to the 1MHz position. The output of the calibrator is connected to the input of the receiver and is turned on by pressing S2. On tuning the receiver, marker points should be heard at 1MHz intervals. These markers will be very strong, so it is advisable to set the receiver r.f. gain at minimum.

The receiver is next tuned to zero beat with the marker point at 5MHz and the calibrator is turned off and disconnected from the receiver. The aerial is now connected to the receiver and the r.f. gain turned up. The 5MHz transmissions of the National Physical Laboratory station MSF, at Rugby, should be heard anywhere in the U.K., but some patience may be necessary as the station only transmits during alternate periods of approximately 5 minutes each. For the first 5 minutes of each hour, MSF transmits carrier and seconds pulses, after which there is no transmission until 9 1/2 minutes after the hour. Between 9 1/2 minutes and 10 minutes after the hour, the station transmits its call-sign and frequency offset (which can be neglected as it is so small) three times in slow Morse, then sends carrier and seconds pulses from 10 to 15 minutes after the hour. The cycle then repeats throughout the hour.

The MSF carrier should be tuned in and, if possible, the b.f.o. switched off. The calibrator is next loosely coupled to the aerial by placing a short wire from the centre connector of the output coaxial socket close to the aerial input terminals of the receiver. When S2 is pressed, the signal from the calibrator should be heard simultaneously with the signal from MSF. Trimmer C2 is then adjusted until the two signals are at zero beat. As this point is approached the beat note becomes subsonic but can be detected as a fading and strengthening of the background hiss. C2 is adjusted to make the length of the fading and strengthening cycle as long as is possible. If the correct adjustment cannot be found it may be necessary to reduce the value of C3 slightly, for
example to 27pF.

The oscillator has now been accurately set to 1MHz.

The multivibrators have next to be adjusted to their correct operating frequency. The calibrator is coupled to the receiver and two consecutive 1MHz marker points, such as 4MHz and 5MHz, are tuned in and their positions noted on the tuning scale. S1 on the calibrator is then switched to the 100kHz position. More marker points should be heard now. VR1 should be adjusted until there are nine of these new marker points between the 1MHz markers, i.e. between and not including the tuning scale positions noted. The new marker points should be very stable.

A similar procedure is used to adjust the 10kHz multivibrator, except that nine new markers are required between a pair of 100kHz points. It is as well to check that the 100kHz multivibrator is still on frequency when S1 is in the 10kHz position. This is done by ensuring that there are ninety-nine of the 10kHz markers between any pair of 1MHz markers. If there are not, the 100kHz multivibrator should be checked and readjusted.

**Trade News . . .**

**CONTACTLESS CAR IGNITION SYSTEM**

Jermy Distribution of Vestry Estate, Sevenoaks, Kent, are putting on to the market, a new contactless car ignition system which provides greatly increased performance when fitted to cars with 4, 6 or 8 cylinders.

The system totally eliminates the contact breaker, the most frequent cause of trouble in conventional ignition systems. Not only is the contact breaker likely to lead to a deterioration in performance due to build up of dirt and pitting and to gradual changes in timing as well as dwell angle but, more important, the contact breaker is incapable of giving good engine performance at high engine speeds due to such factors as contact bounce.

The new Jermy electronic ignition system - known as System E - employs a proximity sensor in place of the contact breaker which monitors the precise position of the lobes on the distributor control cam and supplies this information to the electronic control unit. At precisely the correct moment, at all engine speeds, the control unit supplies a uniform spark of 30 kV via the existing ignition coil.

As a result, it is claimed, plugs last up to approximately three times longer, fuel consumption is reduced, more power is available due to better fuel combustion and cold starting is easier. Even when on a cold morning the oil is like treacle and the battery voltage is down, the Jermy System E supplies a fast rise-time high voltage pulse to the sparking plugs to make cold starting child's play.

The chance of a flat battery through repeated attempts to start the engine is very much reduced.

System E is easy to fit and normally takes under an hour. It costs £22.00 including VAT, and comes complete with comprehensive instructions. Jermy need to know the make, model and year of the car.

**LIGHT INTENSITY CONTROLS**

A range of One, Two and Three Gang dimmer switches have been introduced by Lab-Craft.

Designed to replace the standard pattern light switches fitted in virtually every modern house, these attractively produced and packaged units fit straight into a metal light switch box.

The design features on/off switching by depressing the control knob, and progressive intensity control by rotating the same knob. Control is from the minimum of 6 watts (a faint glimmer) at the lowest phase, through to the maximum light output of the bulbs fitted.

Radio interference suppression is built-in, and the unit is moulded in Noryl flame retarded plastic. All three work from normal 220–250 volts input. One Gang Unit: Rec. Retail price £5.50 inc. VAT. Two Gang Unit: Rec. Retail price £10.95 inc. VAT. Three Gang Unit: Rec. Retail price £16.45 inc. VAT. These controls are available from electrical factors and wholesalers throughout the country, or for further information contact the manufacturer: Lab-Craft Ltd., Church Road, Harold Wood, Essex.
In any public address system where the microphones and loudspeakers are in the same vicinity acoustic feedback occurs if the amplification exceeds a critical value. By shifting the audio spectrum fed to the speakers by a few Hertz the tendency at room resonance frequencies is destroyed and an increase in gain of 6–8dB is possible before the onset of feedback. The 5Hz shift used is imperceptible on both speech and music.

Surrey Electronics of 24 High Street, Merstham, Redhill, Surrey supply complete shifter units for both balanced and unbalanced systems having a signal overload LED, a shift-bypass switch, a PS4491 mains connector, jack or Cannon XLR audio connectors and are housed in strong weatherproof diecast boxes with an attractive durable blue acrylic finish.

A royalty is paid to the University of Manchester Institute of Science and Technology where the original development work was done.

Also available are mains-powered fibreglass shifter circuit boards at £29 for building into public address and discotheque equipment.

The new Heathkit AD-1013 Audio Scope is a sophisticated solid-state instrument especially designed for use with any 2-channel or 4-channel stereo system to provide visual checking and monitoring of such parameters as channel separation, phasing, relative signal strengths, multipath reception, centre-tuning of receivers and tuners – all this at kit-form savings.

A built-in four-channel decoder gives independent or simultaneous visual indication of all four channels. Triggered sweep assures a stable, jitter-free signal trace. An automatic base line generator displays a straight line across the CRT screen when no signal is present. Inputs are provided on the rear panel for Left-Front, Left-Back, Right-Front, Right-Back and Multipath. Any of these inputs can be switched and observed on the screen, independently or in combination. Lighted function indicators at the edge of the CRT screen on the front panel show at a glance what function is being displayed.

A front panel input is provided for observing any external signal, permitting use of the AD-1013 as a conventional oscilloscope for checking out equipment malfunctions. A built-in independent 20 Hz to 20 kHz low distortion audio oscillator provides a convenient means of adjusting and checking any stereo system. Front panel controls are provided for frequency selection of the audio oscillator as well as controlling the amplitude of the generated signal.

The Heathkit AD-1013 Audio Scope is a valuable piece of audio gear – and a satisfying kit to build. Most of the solid-state components mount on a single circuit board in a wide-open arrangement. Point-to-point wiring is held to a minimum for easier kit assembly and self-service.

Price of the AD-1013 is £99.55, mail order, Carriage extra. For more information, contact Heath (Gloucester) Ltd., Bristol Road, Gloucester GL2 6EE.
KA 1026 UNIT STEREO SYSTEM

Introduced by ITT at the Audio Fair, the new KA 1026 Unit Stereo System seen here represents very good value, offering as it does a 5 watts per channel Stereo Amplifier serving a BSR record deck which can be operated either 'single play' or automatically, and with cueing control, at the attractive price of £49 complete with speakers. Modern slider controls and stereo headphones facility still further heighten the value-for-money of this well-styled slimline HiFi outfit.

IRISH OPEN "OPEN BROADCASTING AREA"

Sir John Eden, Minister of Posts and Telecommunications, recently met Dr. Conor Cruise O'Brien, the Minister of Posts and Telegraphs of the Republic of Ireland, following a number of meetings between British and Irish officials after Dr. O'Brien's call last May for an Irish "Open Broadcasting Area".

Dr. O'Brien told Sir John that his Government wished to explore further the possibility of a BBC television service being transmitted in the Republic of Ireland and he asked Sir John if the BBC could estimate the cost of providing BBC 1 in its entirety to the Republic. Sir John agreed to ask the BBC to do this.

Sir John explained that if the Irish Government found the arrangements acceptable and decided to take a BBC service for the Republic this could not be construed as binding Her Majesty's Government to any reciprocal arrangement to broadcast Radio Telifis Eireann in Northern Ireland. Sir John also explained that the Government had not yet decided whether the Fourth Television Channel should be brought into use and any decision about its use in Northern Ireland would have to take into account the Government's general broadcasting policies at the time and the views of the Northern Ireland Executive.

We noticed recently that a BBC TV weather forecaster placed a rain spot on Eire - is this an augury?

IN BRIEF

- The Radio Amateur Invalid & Bedfast Club recently issued their annual membership lists. It shows a total of 455 members, including 28 ladies, in 14 countries. 189 of the members have transmitting licences.
- Marconi Marine, at the beginning of the year, had received orders for more than 90 of their dual standard colour TVs especially designed for shipboard use. These TVs are capable of receiving programmes from nearly 100 countries when within range of their transmissions.
- This month sees the worldwide introduction by 3M of Scotch chromium dioxide cassettes. The 3M Company has announced that a licensing agreement has been signed with DuPont enabling 3M to manufacture magnetic tape utilising chromium dioxide pigment, and a range of chrome cassettes is planned for launching in the UK this spring.
- A second advanced data transmission system, designed and manufactured in Britain by AP Electronics Ltd., has been ordered by the Northern Ireland Ministry of Development to operate the roadside telephones on the new Craigavon motorway.
- Mr. Huw Wheldon, Managing Director of BBC Television, took office as a Vice-President of the Royal Television Society on 1st January, for a two-year term.

DID YOU KNOW that solder was known to the ancient Romans and is believed to be derived from the Latin word Solidare, meaning to join?

MARCH 1974

PRICE INCREASE

We regret that with the next issue we must increase our cover price by 2p, to 22p. The increase is the absolute minimum necessary to enable us to meet the substantial rises in costs of production already incurred.

"Is that a mobile radio, Dad?"
DUAL TONE OSCILLATOR

by G. A. FRENCH

As is widely appreciated, audible or visible signals which are intended to catch attention are much more effective when they are cyclic in character rather than steady. A typical instance in the audible field is given by the two-tone horns fitted to ambulances and fire engines. A visible example occurs in the fog-warning lights on motorways, in which two yellow lamps switch on and off alternately.

The device described in this month's 'Suggested Circuit' article falls into the same category, and it consists of an oscillator unit driving a small speaker at a frequency which changes alternately from one level to another, at around 1Hz. Operation is similar to that of a two-tone ambulance warning device, but the audio frequencies are somewhat lower. The unit can be used for any application where it is required to give audible warning of a fault condition, and it could also be employed as a novel door alarm in a house or flat.

CIRCUIT DIAGRAM

The circuit of the dual-tone oscillator appears in Fig. 1. In this diagram transistor TR1 is employed in a simple unijunction oscillator circuit in which C2 charges by way of R1 and R2 until the voltage across it reaches triggering level, whereupon it discharges via the emitter and base 1 of TR1 into the base 1 load. After discharge, C2 charges again, and the cycle repeats. There are, in consequence, a series of current pulses in the base 1 circuit of the unijunction transistor, and they

Fig. 1. Complete circuit of the dual-tone oscillator.

RADIO & ELECTRONICS CONSTRUCTOR
appear at a frequency which is governed by the rate of charge of C2. These pulses flow into the base of TR2, which turns hard on in the presence of each pulse to drive loudspeaker LS1. The circuitry around TR1 and TR2 represents a conventional unijunction transistor oscillator and following amplifier.

TR3 and TR4 appear in a conventional oscillator circuit as well, the oscillator in this case being a multivibrator. This is set up to produce a 50:50 square wave at a frequency of approximately 1Hz, with the result that each transistor is alternately turned on and off for an equal period during the successive half-cycles.

Transistor TR3 controls the frequency of the unijunction transistor oscillator. When TR3 is turned off, its collector is at the same potential as the lower negative supply rail, whereas diode D1 is reverse-biased and the frequency at which TR1 oscillates is governed solely by the speed at which C2 charges via R1 and R2. When, on the other hand, TR3 is turned on, its collector potential is very close to that of the upper positive supply rail. Diode D1 now conducts, causing R6 to be effectively connected in parallel with R1. The rate of charge in C2 now increases as there is a lower resistance between its upper plate and the positive supply rail, and the frequency of the unijunction transistor oscillator becomes higher. Since TR3 turns on and off abruptly during the multivibrator cycle, the transition to the higher frequency as TR3 turns on and the fall to the lower frequency as TR3 turns off are both quick and sharp. With the prototype the lower frequency was approximately 600Hz and the higher frequency approximately 1kHz. There will be slight variations from these figures in units made up to the circuit due to tolerances in the charging resistor and capacitor values and to differences in triggering levels in individual unijunction transistors.

Diode D1 is essential because, without it, the junction of R1 and R2 would be drawn down to too low a potential, during the periods when TR3 is off, for the unijunction transistor to oscillate reliably.

MULTIVIBRATOR WAVEFORM

Capacitors C3 and C4 are electrolytic components and have, in consequence, a very wide tolerance on capacitance. Typical figures here can be as wide as -10 to +100% on nominal value. Because of this it is necessary to provide an adjustment for one side of the multivibrator to enable a true 50:50 square wave to be provided. When the unit is completed it is switched on with VR1 set to a central position. VR1 is then adjusted to give equal time periods for each of the two half-cycles. If it is then felt that the frequency of change of tone is too swift, it may be reduced by experimentally finding a suitable higher value in R8 and then re-adjusting VR1 accordingly. Alternatively, the rate of change of tone may be increased by experimentally finding the necessary lower value required in R8 and again re-adjusting VR1. In practice, however, it should be found that the value of 47kΩ specified in Fig. 1 for R8 should be satisfactory in most cases.

A considerably greater control of multivibrator frequency and wave-shape can be obtained by replacing R8 with a second 22kΩ resistor and 100kΩ pre-set potentiometer, as in Fig. 2. This added potentiometer controls the period in the multivibrator cycle during which TR3 is turned off, whilst the existing VR1 controls the period over which TR3 is turned on.

It is possible to drive any speaker impedance down to 3Ω by replacing TR2 with a power transistor type BD124 and adding a series 3Ω limiting resistor, as in Fig. 3. The BD124 does not need to be mounted on a heat sink. The audible volume of the output tones increases as speaker impedance reduces, as also does the current drawn from the battery. Battery current is of the order of 8 to 10mA when the circuit of Fig. 1 is used, and it fluctuates in level with alternate half-cycles of the multivibrator. Current consumption increases to 20 to 23mA when the output circuit of Fig. 3 is used with a 3Ω speaker.

If the dual-tone oscillator is used as a door signal, SI is replaced by the push-button at the door. The push-button can be connected to the rest of the circuit by leads of any reasonable length.

All the components are readily available, and it is possible to employ alternative transistors for TR2, TR3 and TR4 should these be already to hand. Alternatives for TR2 in Fig. 1 are BC108 and BC109. Alternatives for TR3 and TR4 are ACY17, ACY19 to ACY21 inclusive, ACY39 and ACY41. All these alternatives have the same lead-out layout as that of the BC107 and ACY18.

Bypass capacitor C1 is employed to prevent interaction between the unijunction and multivibrator oscillators when the latter has a high internal resistance or impedance, or when there are long leads to S1. The relatively low value of 32µF is quite adequate for the present circuit.

In Fig. 1 the transistor which drives the speaker is a small silicon component having a maximum collector current rating of 200mA only. It is capable of driving the loudspeaker and offering a readily audible tone, but it is important that the speaker impedance should be no lower than 70Ω or the transistor may be damaged.

Fig. 2. A very wide control over multivibrator frequency and wave-shape is given if R8 is replaced by a second 22kΩ resistor and 100kΩ pre-set potentiometer.

Fig. 3. Speakers with impedances lower than 70Ω may be employed if the speaker drive circuit shown here is fitted. Lower impedance speakers will provide a higher audio output level.

MARCH 1974
476

This simple medium wave reflex receiver gives good results with three transistors. The output is sufficiently high for personal listening in a room where background noise is at average level. The receiver is intended for reception of local stations only, although in practice it should be possible to pick up a number of foreign transmissions after dark. With a circuit employing as few components as does this set, performance cannot of course be compared with that given by a superhet.

REFLEX OPERATION

The input stage uses an AF127, TR1, connected in the reflex mode. In common with other reflex amplifiers, TR1 provides amplification both at radio frequencies and then at audio frequencies. Initially, r.f. signals picked up on the ferrite aerial coil, L1, are applied to the base of TR1 and they next appear, in amplified form, at the collector of this transistor. The r.f. choke L2, offers a high impedance at r.f., and the r.f. signals are passed via C4 to the voltage doubling detector given by D1 and D2. The demodulated signal, which is now at a.f., is applied to the base of TR1 and this again provides amplification. Choke L2 offers only a low impedance to a.f. signals and these are in consequence built up across R3. C5 ensures that any r.f. signal still present after the choke is bypassed to chassis and does not enter the following a.f. stages.

R1, in series with R2, controls the base current of TR1 and, hence, the amplification it gives. When R1 is set to insert a low resistance into circuit the resultant high gain in TR1 produces oscillation. R1 can therefore be employed as a reaction control, it being adjusted to the point which is just below that at which oscillation occurs. Under this condition the receiver exhibits optimum selectivity and sensitivity.

The tendency towards oscillation is increased by C1. This is a home-made trimmer and the manner in which it is assembled and set up is described later. The value for R2 given in the Components List should be satisfactory with most transistors and diodes in the TR1, D1 and D2 positions. In some occasional instances, however, it may be necessary to alter the value of R2 and this point is also discussed later. No connection is made to the shield of TR1 and, this factor improves regeneration.

The a.f. signal at the junction of L2 and R3 is passed via C7 to the base of transistor TR2. This functions as an audio amplifier, its collector connecting directly to the base of the output transistor, TR3. The collector of TR3 feeds the primary of output transformer T1, whilst R7 and C8 provide emitter bias.

TR2 and TR3 appear in a d.c. negative feedback loop. If, for any reason, the emitter of TR3 were made to go more negative this would cause TR2 to be biased harder on. The collector voltage of TR2 would then go positive as also would the base of TR3, thereby counteracting the original change in voltage at TR3 emitter. There is no corresponding feedback at audio frequencies due to the presence of C8.

Output transformer T1 should present a primary impedance of around 600Ω and, to drive a 3Ω speaker, it requires a step-down ratio of 14:1. The Eagle LT700 output transformer, which has a centre-tapped primary and a ratio of slightly higher than 15:1, may be used here. No connection is made to the primary centre tap. It is desirable to use a fairly large and sensitive speaker.

The total current drawn by the receiver from the 6 volt battery is approximately 10mA.

The AF127 and AC128 specified for TR1 and TR3 are readily available. The transistor type AC151 needed for TR2 can be obtained from a number of suppliers, including Electrovalue, Ltd.

HOME-MADE COMPONENTS

The ferrite aerial coil, L1, consists of 70 turns of 30 s.w.g. enamelled wire wound side-by-side on a ferrite slab measuring 6 by 1 by 5/32in., as illustrated in Fig. 2. The chassis tap is made 10 turns from one end. Due

RADIO & ELECTRONICS CONSTRUCTOR
**Fig. 1. The circuit of the reflex receiver.**

**COMPONENTS**

**Semiconductors**
- TR1 AF127
- TR2 AC151
- TR3 AC128
- D1 0A91
- D2 0A91

**Switch**
- S1 s.p.s.t., toggle

**Speaker**
- LS1 3Ω speaker

**Battery**
- B1 6 volt battery

**Miscellaneous**
- Ferrite slab, 6 by ½ by 5/32in. (Henry’s Radio)
- 2 knobs
- Battery connectors

**Resistors**
(All fixed values ⅛ watt 10%)  
- R1 100kΩ potentiometer, linear  
- R2 330kΩ (see text)  
- R3 1kΩ  
- R4 1kΩ  
- R5 5.6kΩ  
- R6 15kΩ  
- R7 47Ω

**Capacitors**
- C1 Trimmer (see text)  
- C2 300pF variable, solid dielectric  
- C3 0.001µF, plastic foil or ceramic  
- C4 100pF, ceramic or silvered mica  
- C5 0.01µF, plastic foil  
- C6 100µF electrolytic, 6 V.Wkg.  
- C7 4µF electrolytic, 6 V.Wkg.  
- C8 100µF electrolytic, 6 V.Wkg.

**Inductors**
- L1 Ferrite aerial (see text)  
- L2 R. F. choke (see text)  
- T1 Output transformer (see text)

to differences in slab permeability, it is desirable to initially wind on a few too many turns at the end which connects to C1 and the fixed vanes of C2. These turns can then later be removed, as required, to give more precise coverage of the medium wave band after the set has been completed. Some control of inductance is also given by sliding the winding along the ferrite slab.

The r.f. choke, L2, is also home-made and consists of 200 turns of 36 s.w.g. enamelled wire pile-wound on a ¼in. former.

MARCH 1974
An unconventional but quite satisfactory method of assembly is employed for trimmer capacitor C1. This is shown in Fig. 3, and it consists of one enamelled wire twisted around a second. A straight piece of 16 s.w.g. enamelled wire 1 in. long has one end cleaned of enamel. This end is tinned and connected to the fixed vanes of C2. It can be soldered direct to the tuning capacitor tag. One end of a length of 36 s.w.g. enamelled wire is also cleaned and tinned, and this is connected to the junction of L2 and the collector of TR1. The 36 s.w.g. wire is then close-wound over the 16 s.w.g. wire, the two ends of the wires being left open-circuit. Only the enamelled surfaces of the two wires are in contact with each other and so they do not short-

![Diagrams](image_url)

**Fig. 2. The ferrite aerial winding. Further details are given in the text.**

**Fig. 3. This unconventional but quite practicable assembly forms the trimmer C1.**

circuit together. The trimmer capacitance is adjusted later by untwisting the 36 s.w.g. wire as necessary.

Construction and layout are not particularly critical provided that lead lengths are kept reasonably short. A good plan consists of mounting the components, apart from C2, R1, S1 and the ferrite aerial, on a perforated piece of plain Veroboard (i.e. without copper strips) measuring about 4½ by 2½ in., the component leads passing through the holes and being soldered into the circuit underneath. The components should be positioned along the board in roughly the same order as they appear in the circuit diagram of Fig. 1. This ensures that the output stage is positioned well away from TR1 input circuit. C2, R1 and S1 may then be mounted on a small front panel at right angles to the board. However, any other method of assembly favoured by the constructor may be used provided that the general approach to layout which has just been described is observed. L2 and T1 should not be mounted close to L1. Also, R1 should be wired such that the resistance it inserts into circuit reduces as its spindle is turned clockwise.

**ADJUSTMENTS**

When the receiver has been completed, a new 6 volt battery should be connected and the set switched on by means of S1. There should be a noticeable hiss from the speaker, this increasing in intensity as R1 spindle is turned clockwise. It should be possible to take the set into oscillation by means of R1 over all the tuning range offered by C2. The setting of R1 at which oscillation occurs varies with the capacitance given by C2.

If oscillation is too fierce and cannot be reliably controlled by R1 the capacitance inserted by C1 should be reduced by removing some of the turns of 36 s.w.g. wire. It is in order for oscillation to occur when R1 is only partly advanced, because this allows the receiver to continue operating after battery voltage falls with use, in which case R1 can be advanced further to provide regeneration. Initial setting up should be carried out, nevertheless, with a new battery.

In some instances it may be found that C1 does not provide sufficient control. If regeneration is weak and can only be obtained when R1 is at, or very near, its maximum position, the value of R2 should be reduced. Values of 220kΩ and 150kΩ, etc., should be tried until the desired operation is obtained. If, on the other hand, regeneration is too fierce, the value of R2 may be increased, and performance checked with values here of 470kΩ and 560kΩ, etc.

As was stated at the start of this article, the receiver is intended mainly for reception of local stations only. R1 should be adjusted for optimum sensitivity with each station tuned in.
The 'Wyvern' 
Low Voltage Power Supply

By John R. Green, B.Sc., G3WVR.

In his latest 'Wyvern' design, our contributor describes a stabilized power supply offering a continuously variable output voltage ranging from 2.5 to 20 volts. Current capability is 2 amps and the unit incorporates a current limiting circuit.

Whatever the constructor's interest in radio and electronics may be, a versatile regulated low voltage power supply is a must in every workshop. For many applications where power requirements exceed a couple of watts the usual string of used transistor radio batteries can give rise to poor circuit performance simply because of the internal resistance of the batteries. This leads us to the first advantage of a regulated power supply: its low output impedance. Once the constructor accepts that semiconductors are to be used in the power supply it becomes comparatively simple to include short-circuit protection for any predetermined current limit and to make the output voltage variable over a wide and useful range.

The uses of the power supply in the test field are endless, but it is also a good money saver on transistor radio batteries and for those 'current thirsty' cassette tape recorders.

Circuit Operation

The circuit diagram of the complete unit is shown in Fig. 1, and it will be seen that the design is quite simple and straightforward.

The mains transformer is a Douglas type MT20AT, and has a tapped 3 amp secondary offering voltages of 12, 15, 20, 24 and 30 volts. The 24 volt tapping is employed in the present design. The transformer may be obtained direct from the manufacturer, Douglas Electronic Industries, Ltd., Thames Street, Louth, Lincs., LN11 7AD. The bridge rectifier given by D1 to D4 causes reservoir capacitor C1 to charge up to approximately 33 volts off load, this falling to about 24 volts at the full secondary current rating. The diodes may be any silicon types rated at 3 amps or more and with a peak inverse voltage rating of 100 volts. A suitable type would be the PL7002, which is available from Henry's Radio, Ltd.

The zener diodes, D5 and D6, are fed via R1 and provide a 22 volt reference level. These diodes may be rated at 250mW to 400mW and could consist, for instance, of type BZY88C6V8 for D5 and BZY88C15 for D6. The emitter followers TR3, TR4 and TR5 provide current gain and a low output impedance. Since the simple form of regulator shown in Fig. 1 is employed and there is no voltage feedback to improve it, the regulation is only as good as the voltage reference level provided by the zener diodes. The overall output
**Fig. 1. The circuit of the low voltage power supply unit. Output voltage is controlled by VR1, and TR1 and TR2 provide short-circuit protection.**

**COMPONENTS**

**Resistors** (All fixed values 1/4 watt 10% unless otherwise stated.)
- R1 2.2kΩ
- R2 10kΩ
- R3 0.25Ω 2 watts
- R4 220Ω
- R5 1kΩ
- R6 6.2kΩ
- R7 1kΩ 1 watt
- VR1 5kΩ potentiometer, linear (see text)

**Capacitors**
- C1 2,500μF electrolytic, 40 V.Wkg.
- C2 8μF electrolytic, 25 V.Wkg.
- C3 100μF electrolytic, 25 V.Wkg.

**Transformer**
- T1 Mains transformer, secondary 12, 15, 20, 24, 30 volts at 3 amps. Douglas type MT20AT.

**Semiconductors**
- TR1 BFY50 or 2N3053
- TR2 BFX88
- TR3 BFY50 or 2N3053
- TR4 BFY50 or 2N3053
- TR5 2N3055
- D1–D4 Silicon rectifiers, 3 amp, 100p.i.v.
- D5 Zener diode 250–400mW, 6.8 volt 5%
- D6 Zener diode 250–400mW, 15 volt 5%
- FS1 Cartridge fuse, 1 amp.

**Switches**
- S1 s.p.s.t., toggle
- S2 s.p.s.t., toggle

**Meters**
- M1 Voltmeter, 0–20 volts (see text)
- M2 Ammeter, 0–5 amps (see text)

**Miscellaneous**
- TO-5 heat sink (for TR4)
- Mica washer and insulated bushes (for TR5)
- Insulated output terminal, red
- Insulated output terminal, black
- Fuse holder, chassis mounting
- Knob, if required
- Printed circuit board
- Capacitor clamp (for C1)
- Aluminium sheet, 16 s.w.g.
- Materials for cabinet
The impedance of the power supply should be in the region of 0.5Ω, which is high compared with a 'feedback' power supply, but very much better than an unregulated supply and quite adequate for amateur work.

The wiper of VR1, the output voltage control, provides a voltage at the base of TR4 of approximately 3.5 to 21 volts, and a voltage range of approximately 2.5 to 20 volts at the output terminals.

The current limiting section of the circuit functions in the following manner. The current flowing in the 0.25Ω resistor, R3, produces a voltage across the base-emitter junction of TR2. When this voltage reaches approximately 0.6 volt TR2 starts to conduct, its collector current passing through the base-emitter junction of TR1. TR1 then turns on and effectively short-circuits the zener diodes D5 and D6, lowering the output voltage such that the current flowing in R3 (which is slightly greater than the output current) cannot exceed 0.6 amps. The value of R3 used in the prototype was 0.25Ω, and this gave a current limit of just over 2 amps.

The 2N3055 in the TR5 position dissipates a large amount of unwanted power when the output voltage is low and the output current is high. For instance, a dissipation of 40 to 50 watts is typical when the output voltage is 2.5 volts and the output current is 2 amps, since some 20 to 25 volts is present across the transistor at this current. The 2N3055 is adequately rated at 115 watts dissipation (for 25°C case temperature), and whilst it does get hot under maximum power dissipation conditions, the derated dissipation is still adequate.

Constructors may be concerned over the situation which could exist when the power supply, whilst feeding a load having a large parallel capacitance, is switched off. There is then a possibility of reverse biasing the base-emitter junction of TR5 if the load voltage falls more slowly then the power supply output voltage. However, it has been checked, both in theory and in practice, that the unit will perform quite happily with an external parallel load capacitance as high as 5,000μF. In the extremely unlikely event that the power supply unit is used with higher values of external parallel load capacitance, then the unit may be given additional protection by wiring a silicon rectifier rated at 3 amps or more in series with the positive output lead, i.e. between the positive output terminal and the junction of meter M2 and C3. The rectifier is wired so that it is forward biased by the normal output current. This point is mentioned mainly for the sake of completeness and it is very doubtful whether the 'diode' will be needed in practice. Its inclusion in the circuit will cause a worsening of the regulation.

Any ripple voltage across C1 is reduced by C2 at the voltage reference point, and the output ripple is related to this reduced level. Larger values than 8μF should not be fitted in the C2 position, as such values would slow down the current limiting and might cause the power supply to fail on a total short-circuit, otherwise known as ‘the screwdriver test’!

A switch, S2, is provided to bypass the current limiting circuit when current limiting is not required.

The prototype power supply was fitted with both voltage and current metering, the meters employed being Sew type MR-38P. Henelec type 38 meters (available from Henry's Radio Ltd.) have the same dimensions and could alternatively be used.

CONSTRUCTION

The simple printed circuit layout is shown in Fig. 2, this being reproduced full-size for tracing purposes. The board is viewed in this diagram from the component side. No copper areas should approach the corner mounting holes as it is required to produce a ‘floating’ output with both output terminals disconnected from the power supply chassis. This enables the unit to supply equipment having either a positive or a negative earth. The printed board is secured at the four mounting holes with 6BA countersunk screws, suitable spacers being fitted between the board underside and the chassis surface.

It should be noted that TR4 is provided with a small TO-5 heat sink. A suitable heat sink is the type H2 retail by Henry's Radio Ltd.

Circles are shown at the cathode ends of rectifiers D1 to D4 and these may be drilled out to take rectifier studs if D1 to D4 are of the cathode stud variety. Alternatively, small holes may be drilled for rectifier lead-outs. In the photograph showing the inside of the author’s unit, there are two ‘odd’ rectifiers. These were used as temporary replacements for two stud rectifiers which were destroyed when the current limit circuit was mistakenly switched out under short-circuit conditions.

If any doubt exists as to rectifier polarity this may be checked by temporarily connecting each rectifier in series with a voltmeter across the 24 volt secondary of the transformer. The voltmeter will give a forward reading when its positive lead connects to the rectifier cathode. A further check of the output polarity from the bridge rectifier after it has been wired up on the board and before connecting up to C1 may also be carried out with the aid of a voltmeter. The voltage readings given in these tests will, of course, be lower than is given when the diode or diodes are coupled to a reservoir capacitor.
The chassis dimensions are shown in Fig. 3, and 16 s.w.g. aluminium sheet is recommended. The chassis and cabinet follow the author's usual 'Low Boy Hi-Fi' styling, as employed in previous Wyvern designs, and they offer an attractive method of construction with good accessibility to the components.

The layout diagram of Fig. 4 shows all the major parts and their positions on the chassis. Exact dimensions are left to the constructor to decide as these may vary with different components. The output capacitor C3 (not shown in Fig. 4) is wired across the output terminals on the front panel. The can of this capacitor and that of C1 must not be allowed to come into contact with the chassis. C1 is secured by a clamp and it will be necessary to fit an insulating medium such as tape or plastic sheet between the clamp and the body of the capacitor if the latter is not already fitted with an adequate insulating sleeve.

Leads are taken from the printed circuit board to the mains transformer secondary (24 volt tap), to C1, to potentiometer VR1, to the current limit bypass switch S2, to TR5, and to the output terminals and metering circuit. TR5 is mounted on an insulating mica washer and is secured with the usual insulating bushes. It is necessary for an efficient thermal coupling to exist between TR5 and the chassis. The chassis

---

**Fig. 2.** The printed circuit board, which is reproduced full-size for tracing. The connections to VR1 should be made following Fig. 1, with R5 connecting to the anti-clockwise end of the track. This view is of the component side of the board.

**Fig. 3.** The chassis is very simple and requires two bends only.
surface should be flat over the area at which the transistor is mounted and the holes drilled for its lead-outs and mounting bolts should be clean and free of burrs.

In the prototype VR1 is a panel-mounting preset potentiometer with a screwdriver slot on the spindle for adjustment. Alternatively, a standard panel-mounting potentiometer may be used, this being fitted with a small knob.

The cabinet construction is shown in Fig. 5, and this employs ½in. plywood sheets with ⅛in. square hardwood battens as corner reinforcements. There are, also, two lower ⅛in. square battens, and the chassis is secured to these by woodscrews passed through holes at the edges of the chassis base. All the battens are screwed and glued in position.

The dimension marked 'See Text' in Fig. 5 is such that, when the chassis is screwed in position, the upper ends of the front and rear panels just meet the underside of the top plywood panel. To take up any small errors in bending, etc., it is preferable to work out this dimension from the chassis itself. The dimension will be of the order of 3½in.

The completed cabinet may be veneered, using a contact adhesive such as Bostik or EvoStik, and then varnished. This will give a very pleasing finish to the equipment.

**TESTING**

A relatively simple piece of equipment such as a power supply unit should usually work perfectly as soon as it has been completed, provided that no component or wiring errors have been made. In the event of malfunction, however, the following procedure may be adopted.

1. Remove TR1 and TR2.
2. Check the d.c. voltage across C1. This should be some 30 to 35 volts under no-load conditions.

3. Check the voltage at the emitter of TR3 with respect to the negative supply rail. This should be approximately 21 volts if D5 and D6 are stabilizing correctly. It will be remembered, here, that a zener diode connected the wrong way round functions as a normal silicon diode and gives a voltage drop of about 0.6 volt only.
4. Check the voltages on the emitters of TR4 and TR5 with respect to the negative supply rail. These voltages should vary from about 3 to 20 volts as VR1 is adjusted.

5. Replace TR1 and TR2 and check the current limiting section by gradually reducing the load resistance (i.e. increasing the load current) until the output current reaches the calculated limit level. Further reduction of the load resistance should simply reduce the output voltage without significantly increasing the output current. A high wattage rheostat will be needed for this last test.

As a final point regarding the use of the power supply unit, the current limit may be bypassed by closing S2 for applications where the average output current is within the power supply unit rating but occasional peaks are somewhat higher. This set of circumstances could arise, for example, in the testing of Class B audio amplifiers.

---

**Fig. 4.** The general layout of the parts fitted on the chassis.

**Fig. 5.** The cabinet is made up from three pieces of plywood, with hardwood battens.
Except for those who are lucky enough to possess a digital frequency meter, or an accurate signal generator plus an oscilloscope, most home constructors have no means of measuring audio frequency. The piece of equipment described here is relatively inexpensive when compared with the other two types of equipment, and is operated by merely feeding the signal of unknown frequency to its input. The frequency can then be read directly from the scale of a moving-coil meter.

Three ranges are covered, these being 0-500Hz, 0-5kHz and 0-50kHz. The instrument is reasonably compact, the outside dimensions of the case being 6 x 4 x 2 in. Power is obtained from an internal 9 volt battery type PP3. This has a very long life as the unit only draws some 4 to 5mA of current.

THE CIRCUIT

A circuit diagram of the frequency meter is given in Fig. 1. The circuit consists basically of four sections. The first of these is provided by the input stages around TR1 and TR2, which ensure adequate input impedance and sensitivity, whilst the second is a Schmitt trigger squaring and emitter follower circuit incorporating TR3, TR4 and TR5. The third section is the frequency discriminator, and includes TR6 and D4. The supply voltage stabilizer employing D3 and TR7 represents the fourth section. A series stabilizing circuit is employed here in the interests of battery economy.

Dealing in more detail with these sections, the input stages may next be considered. Any piece of test equipment which is drawing current from the circuit under test should have a high input impedance, so as to have as little loading effect on the circuit as possible. In the present design, the high input impedance is given by using an f.e.t. in the TR1 position. The f.e.t. is employed in the common source mode and the input circuit has an impedance of 1.5MΩ. The f.e.t. gives a voltage gain of about 5 times.

D1 and D2 are protective diodes. Being silicon types they become fully conductive at a forward voltage of about 0.6 volt, whereupon they limit the input to the f.e.t. to approximately 1.2 volts peak-to-peak. The

An inexpensive frequency meter for those who are interested in a wide variety of input waveform. Frequency ranges are zero to 50Hz, 50-5kHz, 0-50kHz.

Fig. 1. The circuit of the audio frequency meter.
An inexpensive frequency meter capable of accommodating a wide variety of input waveforms both at low and high impedance. Frequency ranges are zero to 500Hz, zero to 5kHz and zero to 50kHz.
frequency

TER

For capable of accommodating a both at low and high impedance. 0Hz, zero to 5kHz and zero to 5Hz. This measures frequencies up to 50kHz.

The frequency discriminator stage to function correctly, it must be fed a signal of constant amplitude and waveshape. The Schmitt trigger in the second section of the overall circuit produces a square wave output regardless of whether the input waveform is sinusoidal, square or triangular, and the stabilized supply which constitutes the fourth section ensures a constant amplitude.

TR3 and TR4 form the trigger circuit. Normally, the output at TR4 collector is at a low potential. If an input signal of sufficient amplitude is applied to TR3 base, the trigger changes to the alternate state, with TR4 collector going nearly to the full positive supply potential on positive half-cycles at TR3 base. At negative half-cycles, the collector of TR4 is at its normal low potential. The changes at TR4 collector from one state to the other are very rapid, with the result that a square wave is produced having the same frequency as the input signal.

TR5 is an emitter follower. It has a voltage gain of slightly less than unity, but it allows the square wave from TR4 to be applied to the following stage at a suitably low impedance.

The purpose of the frequency discriminator is to produce a current which rises with the frequency of the applied signal, this current being indicated by a meter. There must, of course, be a linear relationship between the frequency and the resultant current. There are a number of ways in which the current can be produced, but all conventional methods are based on the charge and discharge of a capacitor. In this case the capacitor is either C7, C8 or C9, as selected by S1(a). During positive pulses from TR5 emitter diode D4 will conduct, allowing the capacitor selected by S1(a) to charge to the same voltage as that at TR5 emitter, less about 0.2 volt dropped across D4 and another 0.6 volt across the base-emitter junction of TR5. During these pulses, TR6 is turned off.

However, during the periods when TR4 collector is at a low potential the capacitor will have its left-hand
plate connected to chassis via R15. This will cause TR6 emitter to go negative and the capacitor to discharge via R15 and the base-emitter junction of TR6, resulting in a pulse of current in the collector circuit of TR6, in which the meter is connected. Provided that the discharge circuit has a short time constant, so that the capacitor can become virtually fully discharged during negative half-cycles at the highest frequency to be measured, the average current in the meter will be proportional to the frequency of the applied signal.

The point that this must obviously be the case can be demonstrated by considering input frequencies of, say, 50Hz and 1kHz. With an input frequency of 50Hz there will be 500 pulses of current passing through the meter each second; when the frequency is changed to 1kHz there will be 1,000 of these pulses each second. The pulses of current are identical in both cases, with the result that doubling the frequency has caused double the current to flow in the meter. Mechanical inertia in the meter causes it to read average current.

A pre-set variable resistor is switched to shunt the meter on each range, thereby enabling the ranges to be individually calibrated. The variable resistors concerned are VR1, VR2 and VR3.

There is one main control on the unit, this being S1 (a) (b) (c). This switch has four settings, the first being the ‘Off’ position whilst the other three select the desired range. The unit is very sensitive and requires only a few millivolts input. If the input signal has insufficient amplitude the Schmitt trigger will fail to operate, and the meter will read zero.

S2 can be used to connect the meter across the stabilized supply via the series resistor R17. This gives a check on battery voltage, and the facility will be discussed in more detail later.

The meter employed in the prototype is a T.T.C. type C2202 and has a full-scale deflection of 50µA. It is listed by Home Radio under Cat. No. TG75. The three pre-set potentiometers are type PN5. These fit into the Veroboard layout comfortably. Other pre-set skeleton potentiometers may be employed, of course, but it may be necessary to add wire extensions to their tags to enable connection to be made at the appropriate Veroboard holes.

THE CASE

The case used to house the prototype consists of a 6 x 4 x 2½in. aluminium chassis with strengthening brackets at the bottom corners, as illustrated in the photographs of the rear. The deck of the chassis becomes the front panel and a 6 x 4in. base plate serves as a rear panel. This is secured to the chassis by four self-tapping screws, which require four clearance size holes in the plate and four tapping size holes in the strengthening brackets. Four rubber feet are secured to one long side of the chassis, and the completed instrument stands on these feet.

Details of the holes which have to be drilled and cut out in the front panel are given in Fig. 2. Dimensions for the meter cut-out and mounting holes are not shown in this diagram as these are supplied with the meter, and are given on the back of the box in which it is supplied.

There are two sets of input sockets, one of which is a phono socket which accepts a plug coupled to a screened lead. This input socket is used when the input signal is derived from a high impedance source.

---

**COMPONENTS**

<table>
<thead>
<tr>
<th>Resistors</th>
<th>(All fixed values 1/4 watt 10% miniature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.22µF plastic foil, side wires</td>
</tr>
<tr>
<td>C2</td>
<td>12.5µF electrolytic, 25 V.Wkg., miniature</td>
</tr>
<tr>
<td>C3</td>
<td>12.5µF electrolytic, 25 V.Wkg., miniature</td>
</tr>
<tr>
<td>C4</td>
<td>12.5µF electrolytic, 25 V.Wkg., miniature</td>
</tr>
<tr>
<td>C5</td>
<td>470pF polystyrene or silvered mica</td>
</tr>
<tr>
<td>C6</td>
<td>125µF electrolytic, 25 V.Wkg., miniature</td>
</tr>
<tr>
<td>C7</td>
<td>0.1µF plastic foil</td>
</tr>
<tr>
<td>C8</td>
<td>0.01µF plastic foil</td>
</tr>
<tr>
<td>C9</td>
<td>1,000pF polystyrene or silvered mica</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1</td>
<td>PN3819 or 2N3819</td>
</tr>
<tr>
<td>TR2</td>
<td>BC109</td>
</tr>
<tr>
<td>TR3</td>
<td>BC109</td>
</tr>
<tr>
<td>TR4</td>
<td>BC109</td>
</tr>
<tr>
<td>TR5</td>
<td>2N706A</td>
</tr>
<tr>
<td>TR6</td>
<td>BC107</td>
</tr>
<tr>
<td>TR7</td>
<td>AC127</td>
</tr>
<tr>
<td>D1</td>
<td>BAY31</td>
</tr>
<tr>
<td>D2</td>
<td>BAY31</td>
</tr>
<tr>
<td>D3</td>
<td>BZY88C7V5</td>
</tr>
<tr>
<td>D4</td>
<td>OA91</td>
</tr>
<tr>
<td>M1</td>
<td>0–50µA meter (see text)</td>
</tr>
<tr>
<td>S1(a)(b)(c)</td>
<td>3-pole 4-way, rotary miniature</td>
</tr>
<tr>
<td>S2</td>
<td>Push-button, push to close</td>
</tr>
</tbody>
</table>

**Miscellaneous**

- Phono socket
- 2 wander plug sockets
- Knob
- Veroboard, 0.15in. matrix (see text)
- 4 rubber feet
- Battery connectors
- Aluminium chassis, 6 x 4 x 2½in. with baseplate
- 4 self-tapping screws
Connected in parallel with the phono socket are two wander plug sockets, and these may be employed for signals from low impedance circuits. The phono socket is mounted by means of two 3/16in. 6BA bolts and nuts. There is no need for the input leads to be screened inside the case, as this itself provides overall screening. Switch S2 is fitted to the side of the case, as indicated in the photographs of the rear.

The majority of the components are mounted on a piece of 0.15in. Veroboard having 16 strips by 25 holes and measuring approximately 31/8 x 21/4in. This is a standard size of Veroboard. A diagram illustrating this board from the component side is given in Fig. 3. Before any components are mounted the copper strips should be cut at the holes listed in the diagram. Also, the two holes at 2-L and 9-L are enlarged, using a No. 31 twist drill.

The links between holes 1-Q and 14-W, and between holes 7-I and 16-G, should be made with insulated wire. Note the connections from holes 8-Y and 14-Y to the meter tags. The wire from hole 16-Q connects to the outside connector of the phono socket, and thus completes the chassis connection. A further wire from the outside connector of the phono socket then passes to the negative battery clip. When the board is com-

![Fig. 2. Drilling dimensions for the front panel. Meter hole sizes and their positioning are given in the data provided with the instrument. Switch S2 is mounted at the centre of the left hand side of the case.](image)

![Fig. 3. Most of the components are fitted to a Veroboard panel. This is shown here as seen from the components side.](image)
completed it is mounted by the two screws which make connection to the meter movement at holes 2-L and 9-L. The pre-set variable resistors are then readily accessible from the rear of the case. Wiring to switch S1 (a) (b) (c) is shown in Fig. 4.

The battery lies on the bottom of the case between the board and the phono input socket. Small pieces of foam rubber are glued to the rear of the front panel and to the back of the case to hold it tightly in position when the back is fitted.

CALIBRATION

To calibrate the unit it is merely necessary to couple it to a signal of known frequency and to adjust the appropriate pre-set variable resistor so as to obtain the correct reading in the meter. This process must be repeated on each range. VR1 controls the meter reading on the 0-500Hz range, VR2 the reading on the 0-5kHz range and VR3 the reading on the 0-50kHz range. For greatest accuracy the test signals should be at frequencies which give nearly full-scale deflection in the meter.

Suitable signals for calibration purposes are provided by the audio tones transmitted by the B.B.C. before the start of programmes, and details of these are given in the accompanying table. If an audio tone is taken from a mains-driven television receiver it must be remembered that the television chassis will be connected to one side of the mains supply and that all consequent precautions against shock must be observed. It would probably be best to couple a microphone to the input of the frequency meter and use this to pick up the sound from the television receiver's loudspeaker.

A microphone could also be used with a musical instrument and in this respect it is useful to remember that the A below Middle C is 220Hz, and that the A below that is 110Hz. The A above Middle C is 440Hz, and the next A is 880Hz and so on. A table giving piano scale frequencies was given in the Data Sheet in the October 1973 issue of this journal.

**TABLE**

**B.B.C. Standard Frequency Audio Tones.**

<table>
<thead>
<tr>
<th>Radio 1 and 2</th>
<th>4 minutes of 440Hz prior to the signature tune</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio 3</td>
<td>250Hz at 30 second intervals then 4 minutes of continuous 250Hz tone and 1 minute pulsed tone at 10 second intervals</td>
</tr>
<tr>
<td>Radio 4</td>
<td>900Hz tone pulsed at 15 second intervals and 4 minutes of 900Hz tone prior to the bells</td>
</tr>
<tr>
<td>BBC-1</td>
<td>During trade test periods 1kHz tone is transmitted for 5 minute periods</td>
</tr>
<tr>
<td>BBC-2</td>
<td>During trade test periods 440Hz tone is transmitted for 5 minute periods</td>
</tr>
</tbody>
</table>

**BATTERY TEST**

With a good battery installed and the unit set to the 0-500Hz range, S2 should be pressed and the meter reading noted. This should be around half-scale deflection, the actual reading depending upon the setting given to VR1 during calibration. A note should be made of this reading. Each time in the future that the unit is used, S2 should be closed with the 0-500Hz range selected, to check that the same reading is given. If a lower indication is given then the battery voltage is excessively low and it must be replaced. If, when S2 is pressed with a good battery connected, the meter gives a reading in excess of f.s.d., the value of R17 should be increased.
The 1974 Edition of this well established book contains even more information than has appeared in previous issues. Aimed primarily at the hi-fi enthusiast and retailer it gives a directory of all currently produced high fidelity equipment and accessories available in the U.K., giving descriptions and specifications, manufacturers’ addresses, recommended retail prices and, in many instances, photographs of the items listed.

The book commences with four articles covering f.m. fringe reception, developments in tuner/amplifiers, record buying for beginners and a review of the present quadraphonic scene. These are followed by a newly introduced feature: a list of magazines and books of interest to audio enthusiasts and music lovers. Then follows the directory, which forms the bulk of the volume. This is presented in 29 sections ranging from constructional kits to amplifiers, control units and hi-fi cabinets. The section in the directory on quadraphonic equipment takes up some 10 pages and lists the products of 26 manufacturers in this field. Further included in the book are directories of manufacturers and hi-fi dealers. There is also a list of v.h.f. radio transmitting stations and a table giving tape playing times.

The publishers report a sale of over half the total print order in the first week of publication and, at the time of writing this review, are contemplating a further reprinting. This represents a practical acclaim which this comprehensive and well presented book deservedly warrants.

"Hi-Fi Year Book - 1974" should be available at leading booksellers at the cover price quoted above. In instances of difficulty it may be obtained direct, for £1.75, from the publishers at IPC Electrical-Electronic Press Ltd., Room 11, General Sales Department, Dorset House, Stamford Street, London, SE1 9LU. Cheques should be made payable to IPC Business Press, Ltd.

**FET APPLICATIONS HANDBOOK.** Edited by Jerome Embinder.

358 pages, 130 x 215mm. (5 x 8½in.) Published by Foulsham-Tab Ltd. Price £1.85.

This book is compiled from articles appearing in the American electronics journal *EEE Magazine* over a period between 1966 and 1970. Nearly all the chapters are written by engineers employed by such firms as Union Carbide, Texas Instruments and Amelco Semiconductor, and the material is, in consequence, accurate and based on manufacturing design experience. Mathematics are employed where necessary, but may be skipped by the reader who requires a more general understanding of the devices and circuits dealt with.

The book commences with an introduction to the f.e.t. and a consideration of its characteristics, and then proceeds to f.e.t. applications, complementary f.e.t.’s, the biasing of f.e.t.’s, and the f.e.t. as a constant current source. Following chapters deal with f.e.t. noise, f.e.t. audio and v.h.f. amplifiers, source followers and phase splitters, f.e.t. chopper circuits, f.e.t. switches, f.e.t.’s in integrated circuits, f.e.t. logic circuits, photo-f.e.t.’s, an f.e.t. electrometer amplifier, the f.e.t. as a voltage controlled resistor, and oscillator design nomograms. The final four chapters discuss an improved op-amp design using f.e.t.’s, gate current, j.f.e.t. biasing and m.o.s.f.e.t. biasing. There are also two appendices devoted to mathematical derivations and design data.

This book will be of interest to the engineer and the more advanced home constructor and amateur. Of particular value are its competent authorship and exceptionally wide range.

**VHF PROJECTS FOR AMATEUR AND EXPERIMENTER.** Edited by Wayne Green.

230 pages, 130 x 215mm. (5 x 8½in.) Published by Foulsham-Tab Ltd. Price £1.40.

This book consists of articles previously published in the American 73 Magazine over a period of several years up to 1972, each being written by an American or Canadian amateur. There are 61 of these reprinted articles in all and, as may be expected, they present as wide a range in approach as is evident in the number of contributors.

All the projects are, of course, devoted to v.h.f. transmission or reception, but the English reader has to be reminded that the American amateur has a 6 metre (50MHz) band and a 220MHz band in addition to the common 2 metre (144MHz) band. As a consequence, some of the design approaches for 50 and 220MHz would need to be modified to be applicable to conditions in the U.K.

To most U.K. readers this point will be of relatively minor importance, as main interest usually lies in discovering how other amateurs tackle general design problems at these higher frequencies. The subjects dealt with cover all aspects of v.h.f. operation including transmitters, receivers, station control units and antenna design.

"V.H.F. Projects for Amateur and Experimenter" will be found particularly helpful by the amateur transmitter or listener whose hobby is based on transmission and reception at these frequencies.
LISTENING TO OSCAR

By Arthur C. Gee, G2UK.

By the time this appears in print, OSCAR 6 may well have completed its planned life and ceased to function, though at the time of writing there is every indication that it will continue to be operative for some considerable time ahead. OSCAR 7 is scheduled for launching in March and as there will be a similar communications link in it to that in OSCAR 6 in the 'two-metre up - ten metre down' range, which will no doubt be as popular as it has been in OSCAR 6, readers who are interested in the amateur satellite field may care to hear of the steps taken at the writer's station to bring his receiving facilities for this mode up to an acceptable standard. The experience gained with OSCAR 6, will stand one in good stead with OSCAR 7 and may help guide those who have more recently attempted to receive signals from amateur satellites along lines which will lead to success.

'TURNSTILE' AERIAL

The author started listening for OSCAR 6 with a rather old, but much beloved Hammarlund HQ 110 amateur bands communication receiver, which could be considered fairly typical of the receivers used by many amateurs. The ten metre band was not a popular one with the author as propagation conditions have not been too good during recent years and much trouble has been experienced with TVI. Consequently nothing special was available in the antenna line, such for instance as a ten metre beam. The only aerial available for use on ten metres was a multiband trapped dipole, which was around 100 feet long and ran north to south. It was about 30 feet high and has 100 feet or so of coaxial feeder from its centre to the shack.

With this, reasonably good signals were received from OSCAR 6, the author in fact picking up its signals on its second orbit. However, after a visit to the shack of Pat Gowen, G3IOR, the writer realised just how far short his receiving equipment was falling, and this was further demonstrated by G3IOR when he visited the writer and effectively proved to him what little gain was being obtained from the long wire aerial on ten metres! So the next step was to put up a ten metre aerial specifically intended for receiving OSCAR on 29.5 MHz.

Current amateur radio literature dealing with OSCAR indicated that the 'turnstile', crossed dipoles, type of antenna, gave results on ten metre OSCAR reception which were more than adequate for most purposes. Two half-wave dipoles are rigged up at right angles to one another and by means of a quarter wavelength stub connecting the two, a 90 degree phase relationship is obtained between them. The polarisation of such an arrangement becomes circular, which is ideal for the changing polarisation of signals from OSCAR caused by its 'tumbling' around in space. Erected horizontally, this antenna is also particularly useful for overhead orbits, which are the ones which give the best signals and which are often almost inaudible if a highly directional beam directed at the horizon is used. This latter type of aerial is obviously best for Dx reception, but falls down badly on signals from above. Another disadvantage of the ten metre beam antenna when used for the reception of OSCAR is that it has to be tracked on to the satellite, and there is already plenty for the single operator to do with tuning the receiver and operating the transmitter, etc., without trying to rotate the beam to keep it tracking the satellite as well. So the writer decided that the next step would be to put up a 'turnstile' antenna instead of going for a rotary ten metre beam and see what improvement resulted from its use.

Pat Gowen kindly provided the coaxial matching section and details of it are shown in the diagram and photograph. Some mechanical ingenuity is needed to sort out suitable insulating arrangements at the centre, where the dipoles cross, to support the coaxial cables and anchor the inside ends of the dipole arms. The writer solved this by cutting a circle of quarter-inch thick insulating material, which can be fibreglass or Paxolin, or whatever the junk box will produce, drilling a hole large enough in the centre to accommodate the bunch of coaxial cables, then drilling four holes equally spaced around the edge of the circle to take the inside ends of the dipole arms. The connections can then be soldered and the ends of the coaxial cables protected with Araldite.

Ideally, the antenna should be rigged up from four poles eight to ten feet high or so, but this arrangement is likely to be an unobtainable ideal.
Such was the case at the writer’s QTH, where the only really suitable place for locating it was above the garage roof at one side of the house. It was possible to rig one dipole from the end of the pitch of the roof of the house down to one corner of the garage roof, and to stretch the other dipole down to opposite corners of the garage roof. The coaxial feeder then hung down conveniently and could be brought into the shack in a reasonably short run. Whilst the dipoles were not truly at right angles to each other nor horizontal, which would have been the ideal, this compromise arrangement worked excellently. There was a very great improvement indeed in signal strength over the long wire antenna and furthermore, in spite of the crossed dipoles being screened to the west side of the house, little difference was noted between orbits to the west of the author’s QTH from those to the east, where the dipoles are clear and unscreened.

**PRE-AMPLIFIER**

So this, then, advanced the reception of OSCAR very markedly indeed.

However, it was felt that there was still room for further improvement, particularly after reading an article in the *AMSAT Newsletter*, which drew attention to the advantages to be gained by putting a ten metre pre-amplifier ahead of most typical amateur bands receivers.

At this point, the writer must confess to taking a short cut and, instead of making up such a pre-amplifier from the circuit suggested in the *AMSAT Newsletter* article, he had it built for him by one of the firms who specialise in this type of equipment. (Telford Communications, 78b High Street, Bridgnorth, Shropshire, W.V.16 4DS.) It was a neat little unit, solid state, with its own battery contained within, an on/off switch, and coaxial cable sockets each end for the aerial input and the output to the receiver aerial socket. The pre-amplifier was simply plugged into the aerial lead from the crossed dipoles, between the end of the aerial lead-in and the receiver. The improvement in the signal strength and the signal to noise ratio was absolutely dramatic! OSCAR 6 reception is now as good as can be desired at the author’s QTH, it being quite commonplace to have S8 SSB and S9 CW signals on overhead passes.

**CONSTRUCTIONAL DETAILS**

The arms of the dipoles can be made up from any suitable aerial wire; each arm is 8ft. long. The phasing sections are of 50Ω or thereabouts – coaxial cable and are 4ft. long. (This dimension takes in an assumed velocity factor of 0.55 in the cable.) They should be coiled up and fixed with tape as shown in the photo. The general arrangement is clearly shown in the accompanying diagram and photo.

For the benefit of those readers who would like to build their own pre-amplifier, we reproduce below extracts from the article by Jack Colson, W3TMZ in the *AMSAT Newsletter* referred to above, together with the circuit given and some constructional details. This is from *AMSAT Newsletter* Volume V, Number 1, March 1973. This Newsletter is obtainable on subscription from AMSAT, P.O. Box 27, Washington, D.D. 20044.

**Details of a 29.5 MHz pre-amplifier designed by W3TMZ and published in AMSAT Newsletter.**

1. A number of preamps of the following design have been built. These have had measured noise figures ranging from 2.5 to 4.5 dB and power gains ranging from 15 to 22 dB. An absolute best design has not been attempted, but what has been built performs quite well.

   L1 – 2T No. 24E close wound over cold end of L2.

   L2 – 10T No. 24E spaced wire diameter; 1⁄16 in. dia. slug tuned.

   L3 – 10T No. 24 close wound; 1⁄16 in. dia. slug tuned.

   L4 – same as L1.

The layout of the components is not critical, but a shield across the device (dual-gate MOSFET) is desirable. Almost any dual gate MOSFET will work in this circuit. The devices that have protective diodes will have slightly poorer noise figures but they do offer good transient protection and are easy to use. These devices are: 3N187, 3N200, 40673, 40819, 40820, etc.
SWITCH-OFF REMINDER

By S. Jeffrey

A sensitive circuit which indicates even the lightest of loads on an a.c. mains circuit.

The circuit described in this article was originally designed for use in a busy repair workshop, and it indicates whether any equipment powered by the 240 volt a.c. mains is switched on. It is inserted at the supply input and causes a neon bulb to glow when any load, from as little as 15mW up to several kilowatts, is switched on. It provides a useful reminder to prevent equipment being left switched on at the end of the working day. It can also be used for any other applications where it is desirable to know if electrical equipment is turned on.

CIRCUIT OPERATION

The circuit of the reminder appears in the accompanying diagram. Transistor TR1 is a Motorola MJE340, this being a power transistor having a maximum collector rating of 300 volts. This high voltage rating, and not the power capability, is the reason for its choice here, and the transistor does not need to be mounted on a heat sink. The MJE340 may be obtained from Henrys Radio Ltd. The neon bulb is a small wire-ended component listed by Home Radio (Components) Ltd. under Cat. No. PL32A. All the diodes are silicon rectifiers, and these are discussed in more detail later. Resistors R1 and R3 are 1/2 watt whilst R2 is 1 watt. All three resistors are 10% or 5%.

The a.c. supply couples into the circuit at the right, and the two arrowed points at the left couple to the circuit which is to be monitored. The centre-tapped transformer winding, T1, causes half the supply voltage to be applied to the junction of R2 and R3. The full mains voltage cannot be applied here as the collector voltage rating of the transistor could then be exceeded.

To start an explanation of circuit operation, let us assume that a load is connected across the monitored supply points. The neon bulb lights up when any load of 15mW or more is connected across the monitored supply points.

The switch-off reminder circuit. The neon bulb lights up when any load of 15mW or more is connected across the monitored supply points.
circuit. During the half-cycles when the upper line is negative, current flows to the supplied circuit via rectifier D3 and all that happens is that a forward voltage of about 0.6 volt is dropped across this rectifier.

When the half-cycles on the upper line are positive the alternating current flows through D1 and D2 in series, causing a forward voltage of about 1.2 volts to appear across the pair. This voltage is sufficiently high to allow a current to flow via R1 into the base-emitter junction of TR1, whereupon this transistor turns on. Current then flows from the transformer centre-tap through R3, the neon and D4 to the collector of the transistor, and the neon bulb lights up. If the load is removed from the monitored circuit so that no current is drawn through D1 and D2, there is no voltage drop across these rectifiers and no base current for the transistor, which remains turned off. Thus, the neon bulb only lights up when current is drawn through D1 and D2.

The purpose of D4 is to prevent the neon lighting up during the half-cycles when the upper line is negative. If this rectifier were omitted, current could then flow through R3, the neon, the collector-base junction of the transistor and R1, causing the neon to glow regardless of whether or not current was being drawn by the monitored circuit.

SENSITIVITY

Resistor R2 is included to reduce sensitivity and to keep neon operating currents well above leakage current values in the semiconductors. Assuming a neon striking voltage of 70 volts, about 7mA collector current has to be provided by the transistor to turn the neon on. With the author's circuit the sensitivity was such that the neon was just illuminated when a 4MΩ load was connected across the arrowed points at the left of the diagram. Supply wiring insulation should be much higher than 4MΩ, and so the sensitivity given with R2 at 10kΩ is a realistic figure. A sensitivity at this level also provides an automatic check on supply line leakage, since the neon glows if leakage resistance falls below 4MΩ. The sensitivity can be reduced, if desired, by selecting a smaller value for R2. If this is made considerably lower than 10kΩ, the transistor will need to be fitted with a heat sink.

The reactance of an 800pF capacitor at 50Hz is about 4MΩ, and a capacitance of around this value, if connected across the arrowed points, should also turn on the neon bulb. In practice it was found that 1,500pF was the minimum capacitance needed to do this. In consequence, if there is a long run of cable in the circuit being monitored, its self-capacitance may be high enough to turn the neon on. In this event the value of R2 should be reduced accordingly.

Diodes D1, D2 and D3 require a maximum forward current rating which is in excess of the total current which will be drawn from the 240 volt supply. Their p.i.v. figure can be very low as the inverse voltages across them are limited by the cross-connected diode or diodes. D4 is any small silicon rectifier with a p.i.v. of 200 volts, and a 1N4003 would be suitable here.

The centre-tapped mains transformer winding shown as T1 can be given by any centre-tapped transformer winding suitable for mains voltage. The author used the 250–0–250 volt h.t. secondary of a discarded valve receiver mains transformer, no connection being made to the primary or heater windings on this transformer. Similar results will be given by using 200–0–200, 300–0–300 or 350–0–350 volt h.t. secondaries.
SHORT WAVE NEWS
FOR DX LISTENERS

By Frank A. Baldwin

Times = GMT

Frequencies = kHz

One of the compelling features of short wave listening, perhaps, is the logging of the unexpected or the unusual transmission and this can occur on almost any channel at any time. It may be a station radiating experimentally on several channels (see under Riyadh in the January issue) or a station reappearing on an old frequency (as with Saigon on 4877) or a transmission differing markedly from the published schedule and generally accepted facts, such as Singapore in parallel and in English on 5010 and 5052 (see under Singapore in the February issue). The truth is, of course, that the short waves are subject to constant changes by those operating over them and by influences from without this terrestrial sphere; combining these results in a never ending changing scene in which nothing should be taken for granted and everything subject to question.

The reappearance, after a long absence, of the Chinese station (listed Kunming) on 4759.5 at 2340 was an example of the unexpected. The frequency is subject to some slight variation, being heard at times on the listed 4760. The unusual however is represented by the logging of YVWJ Radio Cristal on the regular 4820 at 2325 when the transmission consisted of a speech in Spanish by the President of the Republic until 2351 with all the (receivable at that time) Venezuelan 60m band stations in parallel, as confirmed by tuning to 4800 YVMO Radio Lara; 4860 YQVE Radio Maracaibo; 4880 YVMS Radio Universo; 4890 YVKB Nueva R. Difusora; 4900 YVKK Radio Juventud; 4960 YQVA Radio Sucre; 4970 YVKK Radio Rumbos and 4980 YVOC Ecos del Torres. At 2352, all stations reverted to their own programmes.

CURRENT SCHEDULES

• SOUTH AFRICA
  “Radio RSA – the Voice of South Africa”, Johannesburg, has the following schedule, in English, to the U.K. From 1000 to 1050 on 21490; from 1800 to 1850 on 15175 and on 17885. A Worldwide Service in English is radiated from 1030 to 1046 on 11970, 15220 and on 21535. An English Service to Canada and the U.S.A. is broadcast from 2230 to 0242 on 9585, 9695, 11900 and on 11970.

• PAKISTAN
  “Radio Pakistan”, Karachi, operates an External Service in English, Urdu and Sylheti to the U.K. from 1915 to 2115 on 7095 and on 9465, the newscast in English being from 2000 to 2005. A newscast at slow speed, in English to W. Europe, is radiated from 1100 to 1115 on 17910 and on 21625.

• EAST GERMANY
  “Radio Berlin International – the Voice of the GDR”, Berlin, schedules the following service, in English to Europe, as follows – from 1730 to 1815 on 6115; from 1830 to 1915 on 6080, 6125, 7185, 7300 and on 9730; from 2115 to 2200 on 6115.

• CHINA – 1
  “Radio Peking”, Peking, radiates an External Service, in English to Europe, from 2030 to 2130 on 6270, 6825, 6860, 7590 and on 9030; from 2130 to 2230 on 6270, 6825, 6860, 7590 and 9030.

  Of interest to Dxers would be the following – in Mongolian from Hailar on 3900, 4815 and on 4880 from 1400 to 1500; in Mongolian from Huhehot on 4070 and on 6974 from 1400 to 1500; in Hindi from Lhasa on 4035, 5935 and on 9490 from 1600 to 1700 and a repeat of this latter programme from Lhasa, on the same channels, from 1700 to 1800.

  The P.L.A. Fukien Front station has an External Service to Taiwan and offshore islands, in various Chinese dialects, signing-on at 2005 in Standard Chinese and Amoy, on 2600, 2800, 3200, 3400, 3535, 3900, 4380, 4840 (and on 4140 to 2200). The Service continues until 0530 sign-off with various additions and deletions of channels. Probably the best chance of logging this station here in the U.K. would be the transmission in Standard Chinese from 2320 to 2400 on 3200, 3400, 4380, 4840, 5170, 5240, 5900, 6400, 6765 and on 7025. Signing-on again at 1000, the transmissions, again in various Chinese dialects, continue through to 2000 sign-off.

• U.S.S.R.
  “Radio Kiev”, Kiev, operates a schedule in English for Europe on Mondays, Thursdays and Saturdays, from 1930 to 2000 on 5920, 6020 and on 6170.

  “Radio Vilnius”, Vilnius, has a Saturdays and Sundays English Service to North America and Europe from 2230 to 0730 on 7120, 7290 and on 9685.

  “Radio Moscow”, Moscow, offers an External Service, in English to the U.K., from 1130 to 1230 on 9450, 11705, 11745, 11830 and on 15175; from 1900 to 1930 on 5920, 5970, 6010, 6020, 6175 and on 7280; from 2000 to 2030 on 5920, 5950, 5970, 5980, 6010, 6020, 6055, 6175 and on 7280; from 2100 to 2200 on 5920, 5970, 6010, 6055, 6175, 7280 and on 9625 and from 2200 to 2330 on 5920, 5970, 6010, 6055, 6175 and on 7280.
ISRAEL
“Kol Yisrael”, Tel Aviv, currently operates a service in English to Europe and the U.K. from 2000 on 6205, 7095, 7170, 9495, 9785 and on 10250.

GREECE
Athens has an External Service, entirely in Greek, to Europe, from 1900 to 1950 on 5960.

KUWAIT
“Radio Kuwait” presents an English Service from 1430 to 0700 on 15345 and from 1630 to 1900 on 9715 and on 15415.

LEBANON
“Radio Beirut” features broadcasts to Africa and Europe in English, French and Arabic from 1830 to 2030 on 11730.

CLANDESTINE
The “Voice of the Middle East Nations” operates in Arabic, Kurdish and Farsi daily from 1430 to 1530 on 7200.

CHINA – 2
Of interest to Dxers would be the following – in Mongolian, Huhehot on 4068 and on 6974 from 2200 to 0055, from 0330 to 0545; Hailar on 3900 and on 6080 from 2200 to 2250 and from 0430 to 0520; Urumchi on 4220 and on 5055 from 0430 to 0520 and Chifeng on 3930 from 0430 to 0520. In Uigher, Urumchi on 4500 and on 7050 from 0030 to 0115 and also from 1300 to 1345. In Kazakh, Urumchi on 5800 and on 5440 from 1400 to 1445 and from 0130 to 0215.

In Standard Chinese, Foochow on 4975 and on 5040 from 2100 to 2130 and from 0001 and 0030 for Quemoy and Matsu.

BULGARIA
“Radio Sofia”, Sofia, maintains an External Service in English to the U.K. from 1930 to 2000 and from 2130 to 2200 on 6070 and 9700.

POLAND
“Radio Warsaw”, Warsaw, radiates a service in English to Europe from 0630 to 0700 on 7285, 9540 and on 9675; from 1200 to 1230 on 7285 and 9540; from 1600 to 1630 and from 1830 to 1900 on 6095, 7125, 7285 and on 9540; from 2030 to 2100 on 6155 and 7285; from 2230 to 2300 on 5995, 6135, 6155 and on 7285.

ROMANIA
“Radio Bucharest”, Bucharest, projects an English programme to Europe from 1300 to 1330 on 9690, 11940 and on 15250; from 1930 to 2030 on 6150 and on 7225 and from 2100 to 2130 on 5990 and on 7195.

AROUND THE DIAL
NIGERIA
Lagos can be heard, in English, from 0715 with a newscast which includes local affairs and events, on 15180. Sign-off with the National Anthem is at 0735.

INDIA
All India Radio, Delhi, may be logged from 2000 on 7215 when they present a programme in English which includes the news and a talk about Indian affairs currently engaging public attention in that country.

PAKISTAN
Radio Pakistan can be tuned on 21590 at 1145, when we heard a programme of local music. Identification was at 1200 after which the station closes.

BANGLADESH
Dacca can be heard on 17935 at 1135, at which time a programme of local music and songs were being radiated.

CANADA
Sackville is to be heard with a newscast of local events in English at 1200 on 17820.

AUSTRALIA
VLQ9 Brisbane, a 10kW transmitter, is sometimes capable of being logged from 1300 on 9660 when they radiate a newscast in English, the signal however being ‘wiped-out’ by the BBC tuning signal at 1307.

QSX
This section being intended for the Dxer, we offer the following –

CHINA
Kunming on 4759.5 on several occasions, from around 2320 onwards, with YL in Chinese. The Channel is a difficult one, CW QRM abounding.

CAPE VERDE ISLANDS
Another very difficult channel is that of 3883 where, on occasions, one can hear CR4AA R.C. Cabo Verde from around 2230 onwards, being logged recently from 2250 when transmitting songs in Portuguese, guitar music etc. Sign-off was at 2302 with “A Portuguesa”. Severe CW QRM just HF.

CR4AC R. Barlavento on 3930 can often be heard around 2230 and last noted here with songs in Portuguese at 2250.

INDONESIA
Loggings of Indonesian stations have not been all that plentiful during the last ‘season’ for them here in the U.K. YDK5 Jambi was heard at 2326 on the regular 4927 channel when featuring songs in Indonesian and a local orchestral item, several chimes at 2330 and announcements by YL. RRI Palembang at 2346 on 4855 with YL in Indonesian, local ‘pops’ at 2355 then OM announcer at midnight; both stations being received rather late in the ‘season’ – but better late than never.

CAMEROON
Have you ever heard Garoua sign-off? If not, it is well worth logging. Try on 5010 at 2155 when the news in Arabic is radiated, after which there is the National Anthem followed by the interval signal of flute and tam-tam repeated.

ANGOLA
Another sign-off recently observed was that of CR6RS R.C. do Lobito on 4937 where, after some light music and announcements in Portuguese by OM, the National Anthem ‘A Portuguesa’ was heard at 2259.

MARCH 1974
ELECTRONIC CANDLE

By K. H. Fordham

A simple circuit which offers an amusing and unusual effect.

The device to be described here can be made up in the form of a box having an m.e.s. pilot lamp on its top surface and two switches on one side. When the switches are operated in the correct manner the bulb lights up brightly.

What happens next is that if someone blows strongly on the bulb, in a manner reminiscent of blowing out a candle, the bulb dims! If the bulb is left alone, it slowly returns to full brilliance. Repeated blowing makes the bulb dimmer and dimmer until it eventually extinguishes. After some moments, however, the filament commences to glow once more and it gradually builds up to the full brightness level it had originally.

The novelty of the device can both mystify and amuse friends and acquaintances, and it can prove to be particularly popular at parties. An appreciable amount of ‘puff’ is required to completely extinguish the bulb, and a contest can be held to discover who can achieve this with the least number of blows.

THERMISTOR

The secret of the device is a small inconspicuous thermistor positioned alongside the bulb, and it is this which is affected by the blowing and not, of course, the bulb itself. The thermistor employed is the S.T.C. ‘Brimistor’ type CZ10. This component has a resistance of 11kΩ at 20°C and 4kΩ at 50°C. The resistance drops to approximately 150Ω at the maximum operating current of 75mA, this occurring at a body temperature in excess of 50°C.

The thermistor can be seen in Fig. 1, in which diagram it appears as TH1. Transistor TR1 functions as a constant current source, limiting the current flowing in its collector circuit to approximately 60mA. Thus, it becomes impossible to exceed the 75mA maximum rating of the thermistor. The other components in the constant current section of the circuit are R1, D1 and D2, which ensure that a stabilized voltage of about 1.2 volts relative to the upper supply line is present at the base of TR1, and resistor R2, which limits the emitter current and hence the collector current to the 60mA figure.

The current available from TR1 passes through resistor R3, the pilot lamp, which is a 6 volt 60mA type, and the thermistor. The rather unusual supply voltage of 31.5 volts is provided by three 9 volt batteries and a 4.5 volt battery in series. The supply voltage is not particularly critical, but it was found that this combination gave best results. Since a current of 60mA is drawn when the bulb is at full brightness, fairly large batteries are required.

Fig. 1. The circuit of the electronic ‘candle’. The bulb can be extinguished by blowing on the thermistor.

RADIO & ELECTRONICS CONSTRUCTOR
The thermistor has to be in a state where it is just on the hot side of thermal equilibrium with the ambient temperature, and this necessitates an initial warm-up time. Warm-up is achieved by initially closing the 'Start' switch S2, and then opening it after a short period. If the bulb lights up when S2 is opened, the circuit is ready for use. Blowing on the thermistor then cools it and increases its resistance.

The CZ10 is a very small thermistor, having a length of around 0.3 in. and a body diameter of about 0.1 in. The body is black with metallised ends, and the latter can be painted matt black to make the component even less conspicuous. It should be mounted near the bulb and can be largely camouflaged by the wiring. The best plan is to use a panel-mounting m.e.s. bulb holder and to employ wire covered with wide diameter sleeving to connect to this. If the sleeving extends to the body of the thermistor, without covering it, the desired effect can be achieved. A suitable approach is shown in Fig. 2.

To use the device, S1 is closed to switch on the battery, after which S2 is closed to allow the thermistor to warm up. After a period S2 is opened whereupon, if the lamp lights up, the circuit is ready for use. A vigorous puff on the thermistor will cause the bulb to dim, and continual blowing will cause it to extinguish completely for a short period. The time needed for the thermistor to warm up will vary slightly for different components. In the author's circuit it is necessary to keep S2 closed for 11 minutes after switching on.

The BD124 is a power transistor and is employed because the voltage and power requirements placed on it are a little in excess of the ratings for smaller transistors. Maximum power dissipation in the transistor is given when S2 is closed and the thermistor is fully warmed up, and is of the order of 1.3 watts. The transistor does not need to be mounted on a heat sink.

**THERMAL EQUILIBRIUM**

Use the NEW Strip-fix Plastic PANEL SIGNS

- **SET 3** - Wording - WHITE
- **SET 4** - Wording - BLACK

Over 1,000 words and symbols, covering more than 300 terms, in each set

Illustration of actual size = RADIO

SET 5 Dials, 6 sheets containing one large and two medium scales, Large Horizontal Tuning scale, Frequencies 12 Control Panels

- Easy to fix - Just cut out words required remove backing and press down
- Stapled in booklet form
- Designed to hang above workbench
- Pocket for loose cuttings
- Professional finish

38p per set

including V.A.T.
(postage 3p)

The Perfect Transfer for the Home Constructor

Available from
Data Publications Ltd.
57 Maida Vale, London W9 1SN

MARCH 1974
This month, Smithy indulges in a wager concerning the location of a fault in a monochrome television receiver. In the process he is also able to enlighten his assistant on some of the basic modes of operation of transistor video amplifiers and intercarrier sound channels.

April 1971

"Ah now, this should be a nice one to start the day with!"

Cheerfully, Dick picked up a single standard monochrome television receiver and carried it over to his bench. He inserted its mains plug into one of the several mains sockets at the rear of his bench and connected a coaxial lead from the Workshop u.h.f. aerial to its aerial socket. He switched on and waited patiently.

After a period the sound channel from the local transmitter became audible from the loudspeaker. Dick waited for a short further time, whereupon a faint blank raster appeared on the screen. Dick experimentally adjusted the contrast control, but this had no effect on the raster. He looked uncertainly at the screen then scratched his head.

"I would suggest," came Smithy's voice from the other side of the Workshop, "that the fault in that set lies somewhere between the video emitter follower and the sync separator."

Dick turned round irritably, to see the Serviceman surveying him calmly from his own bench.

"Dash it all, Smithy," complained Dick, "I know that you're pretty good at this servicing lark, but I'm not going to start believing that you are now able to trace faults from a distance of ten feet!"

**VIDEO AMPLIFIER**

"In this instance I should think I am pretty definitely able to do so," replied Smithy. "To start off with, you're getting sound, and the line and frame timebases are obviously running or you wouldn't be getting that blank raster. I would take a guess that there's no sync getting to the line and frame timebases because the raster has the characteristic appearance which you get without sync. Since the sync separator and the picture tube modulating electrode are both driven by the video amplifier, and since there's no picture as well as no sync, everything points to a fault between the video emitter follower and the sync separator."

"You must be having me on," protested Dick defensively, "nobody could possibly diagnose the location of a fault from those few symptoms."

"Well, I wouldn't say I'm a hundred per cent certain about the location of the fault," responded Smithy cautiously, "but that's only because it just doesn't pay to be too dogmatic about things in servicing. Nevertheless, there's a pretty good chance that what I said is true. In fact, just to show you that I'm a sporting man I'll go as far as to have a twenty pence bet with you that the fault is between the video emitter follower and the sync separator."

"Blimey, big deal," commented Dick scornfully. "O.K. Smithy, you're on. All of twenty pence on the fact that you've diagnosed the correct position of the fault."

"Fair enough," said Smithy, walking over to Dick's bench, "I had a slight advantage here because I'm fairly familiar with the set you've got there, which is a valve and transistor hybrid job with transistors in the i.f. and video stages. However, the symptoms would point to the same fault location in most other TV's whether they were hybrid or used transistors throughout. Now, let's check for certain that that raster really is unsynchronised."

Smithy turned the vertical and then the horizontal hold controls experimentally, returning each to its previous setting after he had finished with it. The adjustments caused no significant change in the raster.

"Well," he remarked in a satisfied tone, "there certainly is no sync getting to the timebases."

"How can you be so certain that the..."
fault is after the video emitter follower?"

"Because," stated Smithy, "you're getting a sound signal. To start off with, this is a single standard 625 line TV with the usual intercarrier sound circuits, which means that both the vision and the sound i.f. must be getting through to the vision detector. I hardly need to tell you that the vision and sound intermediate frequencies pass through the i.f. amplifier to the vision detector, where they beat together to produce the 6MHz frequency modulated sound signal." (Fig. 1).

"I know all about that," said Dick impatiently. "Also, the vision carrier i.f. is usually 39.5MHz and the sound carrier i.f. is usually 33.5MHz."

"That's right," confirmed Smithy. "Now the output from the vision detector consists of the detected vision i.f. signal, plus the frequency modulated 6MHz sound signal, which is given by the 33.5 MHz frequency modulated sound i.f. beating in the vision detector with the 39.5MHz vision carrier i.f. The beating effect is the same as you get when you apply two different frequencies to any detector. Now, since we're obviously getting a sound signal, it follows that the 39.5MHz vision carrier i.f. must be getting to the vision detector so that the 33.5MHz sound carrier i.f. can beat with it."

**EMITTER FOLLOWER**

"Well," conceded Dick, "that does at least mean that the vision signal is present after the vision detector. But you said that the fault in this set was after the video emitter follower."

"True," agreed Smithy. "And that was because the set we have here has the fairly common stage line-up in which there is an emitter follower after the vision detector, this feeding a current amplified video signal to the video output transistor and also providing partial amplification of the 6MHz sound signal. If the emitter follower is working O.K. as a sound signal amplifier, it should be equally O.K. in its capacity as video emitter follower." (Fig. 2)

"Perhaps you're right," said Dick reluctantly. "I think the best thing I can do is get out the service manual for this set, so that I can see more closely what you're talking about."

He walked over to the filing cabinet and quickly found the requisite service manual. Returning to his bench he opened it at the circuit diagram for the receiver, whereupon Smithy pointed his finger at the vision detector and video amplifier stages. (Fig. 3.)

"Here we are," he pronounced. "As you can see, the detected signal

---

**Fig. 2.** It is usual to have an emitter follower between the vision detector and the video output transistor. In some instances the emitter follower stage also gives amplification of the 6MHz intercarrier sound signal.

**Fig. 3.** Vision detector, emitter follower and video output stages of a single standard monochrome hybrid receiver. This is a simplified version of the video stages employed in the Thorn Consumer Electronics 1500 Series receivers. The provision of a number of positive supply voltages is common in receivers of this type.
The contrast control varies the amplitude of the video signal which is eventually fed to the picture tube, of course, and in the present circuit it takes up the extremely simple form we have here. The emitter follower output and the video output transistor base circuit are both at low impedance and a series variable resistor works fine as a contrast control with no worry about loss of the higher video frequencies. Incidentally, this contrast control doesn't need a very wide range because the signal amplitude fed to the vision detector will be at a fairly constant level in any case, due to the a.g.c. circuits in the tuner and in the i.f. stages.

**A.C. COUPLING**

"Won't that 64µF electrolytic capacitor," remarked Dick, frowning, "give you an a.c. coupling between the emitter follower and the video output transistor?"

"It will," confirmed Smithy. "Purely a.c. video signal couplings are quite common in these single standard transistor 625 line sets. The video output transistor next amplifies the video signal, and this transistor is a device having a very high collector voltage rating which can, typically, be of the order of 115 volts. The collector couples to the cathode of the picture tube via an 0.47µF capacitor which, incidentally, gives another a.c. coupling. In this receiver there is a brightness control circuit which also couples to the cathode of the tube."

"I see that there's a capacitive coupling to the sync separator," commented Dick. "The video output collector couples to the sync separator grid via a 10kΩ resistor and a 0.015µF capacitor."

"Ah yes," said Smithy carelessly. "As I mentioned earlier this set is a hybrid, and it has a valve sync separator. This clips out the positive-going sync pulses in the output of the video output transistor."

An exasperated grimmace spread across Dick's face. "That," he remarked bitterly, "is typical of the throw-away lines you come out with every now and again. For a start, how do you know that the sync pulses are positive-going?"

"They're bound to be," replied Smithy. "If you like, we'll trace the video signal 'all' the way from the vision detector. Will that satisfy you?"

"Yes, it will," stated Dick. "This I want to see."

"Right," said Smithy briskly. "Now this TV set is a single standard job for 625 lines, and the 625 line television signal uses negative modulation. This means that sync pulse tips correspond to maximum transmitted amplitude and that peak white corresponds to minimum amplitude." (Fig. 4.)

"Fair enough, Smithy. Go on!"

"Now," said Smithy, "the vision detector is connected so that its anode couples to the load. If we applied a sine wave to it we would get negative half-sine out of it. We are, however, applying the vision i.f. to it, which means that the voltage at the vision detector cathode will go more negative as signal amplitude increases. Maximum signal amplitude corresponds to sync pulse tips, and so the signal at the detector anode will have negative-going sync pulses." (Fig. 5.)

"Humph," grunted Dick. "I must say that that seems reasonable enough. What happens next, Smithy?"

"The signal with negative-going sync pulses is fed to the emitter follower. The output of an emitter follower is in phase with its input, and so the signal at the emitter of the emitter follower also has negative-going sync pulses. This is then fed to the video output transistor, which functions in the common emitter mode. The video output transistor inverts the signal so that, at its collector, the video waveform has positive-going sync pulses."

"Blimey, I can see it all now. It's dead easy when you trace the waveforms through the sync like that!"

"Exactly," said Smithy. "Now, to complete the story, the waveform is passed to the sync separator which, in this receiver, means that it's passed to the grid of the sync separator valve. This method of connection causes the 0.015µF grid-coupling capacitor to charge in the same way as you get with a leaky grid detector, and the positive-going sync pulse tips take the grid of the valve just slightly positive of its cathode. The picture information below the sync pulse tips falls beyond the grid cut-off voltage of the valve,
The vision waveform after the vision detector and emitter follower has negative-going sync pulses. The video output transistor inverts the signal to produce a waveform with positive-going sync pulses.

and so the valve merely amplifies the sync pulses. In other words, it separates the sync pulses from the video signal, just as it is supposed to do. (Fig. 6)

"What happens?" asked Dick. "If the sync separator is a transistor?"

"Pretty well the same thing," replied Smithy. "Look, I'll show you.

Taking up a pencil, the Serviceman quickly sketched out a circuit in the margin of the manual. (Fig. 7)

"Here's an example of a transistor sync separator," he went on. "This can be an n.p.n. transistor and we feed it with a video signal having positive-going sync pulses, just as we did with the valve. The series capacitor takes up a charge which makes the transistor base-emitter junction fully conducive on sync pulse tips, with the result that the transistor is turned hard on for sync pulse tips and is cut off for most of the waveform below these tips. Like the sync separator valve, it then works as a switch and is fully conducive only in the presence of sync pulses. Amplified negative-going sync pulses appear both at the anode of a
Your Local Supplier

SURREY

WITWORTH TRANSFORMERS
TV Line out-put transformers
Manufacturers of the largest range in the country. All makes supplied.

Modern
BAIRD, BUSH, GEC, PHILIPS
Replacement types ex-stock.
For "By-return" service, contact
London 01-948 3702
Tidman Mail Order Ltd., Dept. R.C.
236 Sandycombe Road.
Richmond, Surrey TW9 2EQ.

Calls welcome.

E. JEFFRIES
For your new television set
tape recorder, transistor radio
and hi-fi equipment
PHILIPS, ULTRA, INVICTA
DANSETTE, MASTERADIO, PERDIO,
MARCONI, PHILCO, FIDELITY
6A Albert Parade
Victoria Drive,
EASTBOURNE

SUSSEX

WARWICKSHIRE

Norman H. Field
HI-FIDELITY
Large demonstration room, Sony, Trio, KEF, B & O,
Sanyo, BSR, Toshiba, Goldring, National etc.

TAPE RECORDERS
Sony, Revox, Tandberg, B & O
specialists. Cassette and 8-track

ELECTRONICS
All component parts, cartridges,
styli, radiot, Self Build Kits, Disco-
Group and P.A. Equipment.

Norman H. Field
ALBANY HOUSE,HURST STREET.
B HAM BS4 8BJ. Tel.0272-622 2323
Specialist Repair Service

FRS

PEATS for PARTS
ELECTRONIC COMPONENTS
RADIO & TELEVISION
For the convenience of Irish enthusiasts we supply
Radio & Electronics
Constructor
Data Books and
Panel-Signs Transfers
Also a postal service

Wm. B. PEAT & Co. Ltd.
28 PARNELL STREET
DUBLIN 1

sync separator valve and at the collector of an n.p.n. sync separator transistor.

“Well, that clears up that bit of the circuit very nicely,” remarked Dick. “Wait a minute, though! You put a diode in the emitter circuit of that transistor, sync separator. What’s that for?”

“It’s to prevent the reverse base-emitter voltage rating of the transistor being exceeded,” said Smithy. “The picture information in the signal passed to the sync separator base will take it negative of chassis by quite a large amount, and this will almost certainly be greater than the reverse base-emitter voltage rating for the transistor, particularly if, as is usual, this is a silicon type. The diode prevents the flow of reverse base-emitter current under these circumstances.”

“I’m a wee bit out of my depth here,” said Dick, frowning. “Won’t the negative signal on the transistor base have to at least go up to the base-emitter breakdown voltage of the transistor to take the diode non-conductive?”

“Quite possibly,” said Smithy. “At the reverse base-emitter breakdown voltage, the base-emitter junction of the transistor acts like a zener diode. At high reverse voltages the junction and the diode will stabilize at a point where the base-emitter junction reverse current will be the same as the leakage current in the diode, and this could well be near the point where the transistor junction starts to act as a zener diode. Incidentally, the transistor won’t suffer damage if its base-emitter junction is taken to the zener level provided that only a low zener current is allowed to flow.”

PICTURE TUBE FEED

Smithy suddenly stopped and glared at his assistant.

“How you do it I just don’t know,” he stated irritably.

“What?”

“Get me side-tracked like this. It was only a few minutes ago that I started showing you the signal polarities in the video stages of this receiver. Now you’ve got me mattering on about zener effect in silicon transistors!”

“Sorry, Smithy,” said Dick contritely. “I think we must have got overtaken by events in some way. Where were we, anyway?”

“We were at the point where I showed you that the video signal fed to the sync separator had positive-going sync pulse tips. Or, at any rate,” pronounced Smithy resolutely, “that’s the point where I’m going to resume the discussion. Now, this same signal is fed, via the 0.47µF coupling capacitor, to the cathode of the picture tube. Once again the signal has correct polarity because the positive-going sync pulses cause the picture tube to cut off, whilst the negative-going video signal causes the tube beam to increase in intensity as the video amplitude level increases.”

“That bit’s easy,” stated Dick confidently. “All you have to remember is that taking the tube cathode negative with respect to the grid is the same as taking the grid positive with respect to the cathode. Both cause the brightness of the spot on the tube screen to increase. What about the 6MHz sound amplifier, Smithy?”

“There’s nothing very complicated in that part of the circuit,” replied

---

**Diagram**

Fig. 8. Inter-carrier 6MHz amplifier and ratio discriminator. This is, again, a slightly simplified version of the appropriate circuit employed in the Thorn Consumer Electronics 1500 Series.
SMITHY. "I've already shown you that a 6MHz frequency modulated signal is available at the collector of the video output transistor. This is tuned by the 6MHz parallel tuned circuit in the collector circuit of the emitter follower, and the series tuned circuit in the emitter circuit will also provide effective 6MHz tuning. In this receiver the 6MHz signal is fed via the 82pF capacitor to the base of a common emitter transistor, in the collector of which is a standard ratio discriminator circuit."

Smithy indicated the circuit in the service manual. (Fig. 8.)

"That's quite a straightforward circuit," commented Dick. "I suppose you set up the 4.7kΩ potentiometer for minimum buzz.""

"You do," confirmed Smithy. "The 6MHz intercarrier signal is heavily amplitude modulated by the vision signal, and if this amplitude modulation is not caused by a 50MHz field buzz to be fed into the a.f. amplifier. That 4.7kΩ pot is adjusted for minimum buzz on a transmission during periods when there's no modulation on the sound signal."

Smithy stopped and proceeded to walk on the bench. A thought suddenly struck him and he returned to the receiver.

"Dear oh dear me," he said sheepishly. "I'd clean forgot what I came over here for in the first place! I've just remembered that I've got all of twenty pence in my pocket."

"Twenty pence," intoned Smithy heavily, "would have been no less than two florins in the days when money was money. Anyway, get the back off that set, Dick, and let's have a look at the works."

Dick quickly removed the back of the receiver, then reconnected the mains supply and the aerial. He unclipped the chassis and swung it out on its hinges. Smithy settled himself comfortably at the bench, pulled Dick's testmeter towards him, selected a high value fouler and clipped it negative lead to the chassis. He switched the receiver on and waited for the unsynchronised raster to appear. The sound channel became audible from the speaker.

"Right," said Smithy, as the tube screen glowed into life. "I'll do a few voltage checks now. Let's first check the h.t. supply to the video output transistor."

"H.T. supply?" queried Dick. "I thought h.t. was only for valves. Shouldn't it be Vcc with transistors?"

"It should be, rightly," conceded Smithy. "Still, tell me what the meter's reading."

"Blimey," said Dick, "you've got no less than 160 volts there. Where have you got your positive meter probe?"

At the positive end of the video output collector load, said Smithy. "I can see what you mean by h.t. supply now," grinned Dick. "Ah, the meter reading's changed. It's showing 80 volts."

"Is it?" remarked Smithy, in a slightly disappointed tone. "Well, that's the voltage on the collector of the video output transistor."

"Isn't 80 volts high for a transistor?"

"Not for these video output types," said Smithy. "Also, 80 is the correct voltage for the video output collector in this set. Since the transistor is presumably drawing the correct collector current I don't think I'll bother to check its base and emitter voltages for the time being, as they're pretty certain to be all right. Let's have a dig at the coupling components from the emitter follower."

Smithy experimentally adjusted the contrast control, then returned it to its original setting. With the testmeter positive prod he applied gentle pressure to its tags. He next put the prod on the body of the 640F electrolytic capacitor and gently pushed it sideways.

"Hey, do that again," called out Dick excitedly. "There was a short flash on the screen then."

Encouraged, Smithy once more exerted slight pressure on the capacitor.

"There is something there," exclaimed Dick. "There was another flash on the screen."

"I thought I saw something too," said Smithy. "Let's have a closer look at that capacitor."

He switched off the receiver and examined the capacitor.

"It looks all right," he grunted, "let's make sure it's soldered in all right."

He picked up Dick's soldering iron and carefully resoldered the capacitor lead-outs to the printed circuit pattern. He switched on again, but there was still no picture.

"This is going to be one of those annoying snags," snorted Smithy.

"It's highly improbable that the capacitor is shorted because this would then upset the biasing for the video output transistor, and the capacitor would then, in any case, let some video signal through. So there's a chance that it may be open-circuit. I don't want to go to all the trouble of removing the capacitor in case it turns out to be O.K., so I'll try the effect of bridging it with another electrolytic."

"What capacitance do you want?"

"Oh, 50μF or so will do for a quick check," replied Smithy. "And any working voltage above 8 volts or so."

Dick soon found a suitable capacitor, whereupon Smithy temporarily soldered it, on the cap r side of the board, across the existing 640F capacitor. (Fig. 9.)

The Serviceman switched on and...
Fig. 9. Adding a bridging capacitor across an existing capacitor to check whether the latter is open-circuit.

waited expectantly. First, the loudspeaker came to life then, after a further period, the tube screen lit up. But this time there was not an unsynchronised raster, but a well-defined, clear and excellently contrasted picture.

MATTERS OF FINANCE

"That's it," said Dick exultantly.

"You've cleared the snag!"

"Thank goodness for that," replied Smithy. "That darned capacitor was beginning to niggle me. Anyway, I'll leave you to clear up this set now. Whip out the temporary capacitor I added and the duffy 64 µF one that's in the set. It's definitely open-circuit and this has probably occurred at the connection point between its aluminium foil and one of its lead-out wires. This connection must have momentarily become good again when I applied physical pressure on the capacitor body. Then fit a new capacitor of the correct value, and give the set a final checkover. But before you do all that, pay me twenty pence!"

"Twenty pence? Blimey, Smithy, I thought you were joking about that before.

"Of course I wasn't. I would have paid you twenty pence if that fault hadn't been where I said it was."

"Then," replied Dick airily, "I wouldn't have accepted it. I don't think that the payment of money from one person to another is conducive to the working harmony of an establishment such as this."

"It's a darned sight more conducive to working harmony than the non-payment of money," retorted Smithy heatedly. "Now come on, hand over!"

"Oh, all right then."

And thus it was that Smithy, after indignantly rejecting a half pfennig, an Irish two pence piece and a 12-sided threepenny bit, became richer by a ten pence piece, a five pence piece, a single penny and no fewer than eight tiny half-penny pieces.

"Can I rent a T.V. Engineer, please?"

CATALOGUE RECEIVED

The latest edition of their catalogue has now been issued by Home Radio (Components) Ltd., Dept. RC, 234–240 London Road, Mitcham, Surrey, CR4 3HD. With 240 large pages, this has the same format as the last Home Radio catalogue, and it also has the same effective illustration on the front cover which depicts 'Theme on Electronics' by Barbara Hepworth.

This up-dated edition reflects the careful attention to detail which has always been a feature of Home Radio catalogues. All items are given a Cat. No., a factor which assists in ordering and avoids ambiguities. There is a helpful section at the beginning of the catalogue which advises on the various methods of ordering and making payment, this including an application form for the opening of a Credit Account.

The catalogue lists 6,785 items, all of which are clearly described and, in many cases, illustrated. The items available cover virtually every aspect of home-constructer electronics, and there is also useful advice on the choice and employment of components for particular applications. Dimensions have been changed to metric, with the Imperial sizes being retained in cases where there may be difficulty. A metric-Imperial conversion chart is printed on the bookmark.

The catalogue may be obtained direct from Home Radio (Components) Ltd., at 55p plus 22p post, and it contains ten vouchers, each worth 5p each when used as directed.
Transistors employed that replace noise is TS12AT7; replaces voltage ECC81. The TS6AK5 was developed shortly after the TS12AT7; it is used to replace the 6AK5, the EF95 and similar low noise, high frequency pentodes. The device is employed mainly in radio frequency amplifiers at frequencies up to 500MHz, but is also an excellent low noise audio amplifier.

The TS6AK5 consists of two junction field effect transistors connected in the cascode circuit of Fig. 1(a). A similar valve circuit is shown in Fig. 1(b). It is impossible to manufacture a single junction field effect device which will withstand high voltages and which also has a high mutual conductance. However, the TS6AK5 employs a small-signal device with a high mutual conductance at the input and a high voltage device in the output stage. The cascode arrangement brings various advantages, such as an output impedance which is much higher than that of a thermionic valve.

Fetrons will soon be available which can replace valves such as the 6AM6 (EF91) and the E180F. Other types with the very high mutual conductance of 25mA/V and 'anode' currents of about 40mA have been developed to replace valves of similarly high mutual conductance.

Work is being carried out to develop types suitable for power output stages to replace valves such as the 6V6, 6BW6 and 6AQ5. Other types will eventually be available to replace remote cut off ('variable-mu') pentodes such as the 6BA6.

Almost any type of general purpose triode and pentode (and also many special types of valve) can be simulated with two suitable field effect transistors.

**CHARACTERISTICS**

Although the characteristics of the TS6AK5 shown in Fig. 2(a) are very similar to those of the 6AK5 valve shown in Fig. 2(b), they follow the square law more closely and give a much cleaner on-off action owing to the sharp cut-off.

**ADVANTAGES**

When compared with valves, Fetrons have the advantages of zero warm-up time, no microphony and built-in shielding. Their dissipation is considerably less than that of valves, since they contain no heater.

A further advantage is the extremely long life of the Fetron. This has been estimated as over 30 million hours (or over three thousands years of continuous operation), whereas the thermionic valve tends to change its characteristics after about 10,000 hours of operation (rather over a year). Unlike valve characteristics, the characteristics of Fetrons do not change throughout the useful life of the devices and periodic replacement is quite unnecessary.

Fetrons are strong and rugged devices, being mounted in a welded steel case which is filled with dry nitrogen. They satisfy military specifications and are being used as valve replacements in U.S. telephone systems. In this
application they offer the considerable advantage of converting existing valve equipment to solid state operation at very low capital expenditure.

Fetrons often provide a lower noise performance than similar thermionic valves and the resulting absence of noise may lead to the erroneous conclusion that the circuit is not functioning. This effect is enhanced by the absence of hum from the heater.

The inter-electrode capacitances of a Fetron are normally lower than those of the corresponding valve; the device can therefore operate at higher frequencies.

Fetrons are handled by G.D.S. Sales Ltd., Michaelmas House, Salt Hill, Bath Road, Slough, Buckinghamshire. Orders for small quantities may be sent to Best Electronics (Slough) Ltd., at the same address.

---

**Fig. 2 (a). The characteristics of the TS6AK5 Fetron**

(b). The Fetron characteristics are similar to those of the 6AK5 valve, shown here

Developing a new speaker system is a long process as Eagle International discovered while researching the new AA.42. The listing of objectives is the first step and Eagle had several in mind. Flat response, good stereo image, power handling and good looks to name just a few.

The AA.42 is a 3-way speaker system utilising two tweeters, two midrange and two 8" bass drivers. The placement of these units proved critical in gaining the desired stereo image. Due to the mirror placement of the drive units the AA.42's are sold in matched pairs.

Many months in and out of anechoic chambers have resulted in a speaker with exceptional characteristics.

As appearance was also high on Eagle's list of priorities, speaker grills were researched for both good looks and audio transparency. The AA.42 dispels the theory that a speaker has to be a black box hidden in the corner. The photograph also shows the matching speaker stand. AA.44. A heavy chrome plated unit developed to further improve both performance and appearance. However, the AA.44 is suitable for use with any other floor standing speaker system.

**Specification**

Type: Sealed infinite baffle
Frequency range: 25–20,000 Hz
Dimensions: 660 x 394 x 295 mm
Power rating: 30 watts RMS
Impedance: 8 ohms
Finish: Oiled teak
Drive units: 2 x 204 mm cone (Bass)
Voice coil diameter: 25 mm
Midrange: 2 x 86 mm cone
Tweeter: 2 x 86 mm cone
Crossover network: L & C
Price (excluding VAT) £54.00 each
AA.44 Speaker stands: £14.00 per pair
Radio Topics
By Recorder

IT'S NICE TO HAVE A LITTLE GOOD fortune every now and again.

Quite aside, out of luck came my way a week or two ago when there was an urgent call for help from a relative whose television receiver had fallen into the habit of blowing the fuse in the mains socket every time it was switched on. My usual answer to calls of this nature is to say that I'll have a look at the set but that I cannot promise I will be able to fix it, particularly if it is necessary to obtain spare parts which are normally only available to retailers.

This is, I feel, a reasonable approach. When you're servicing for a livelihood you tend to get a 'feel' for the job, acquiring what is almost an instinct for tracing down faulty components and connections. When you only do the occasional service job you cannot approach it with the same speed and experience as does the professional engineer.

Those, at any rate, are my own views on this perennial problem.

DEAD SHORT-CIRCUIT

The television receiver in question didn't, however, look at all difficult. Nor was it.

On applying my test meter to the mains input leads I found that these exhibited a dead short-circuit whenever the receiver on-off switch was closed. A dead short could hardly be closer than an obvious fault and so I removed the back of the set, swung down its hinged printed circuit board and had a quick look at the mains wiring following the on-off switch. There were no signs of leads chafing against the chassis or any obvious things like that.

Connected across the on-off switch tags was a fat little capacitor. I decided to take a risk and I snipped one of its leads. And that was it - one TV temporarily repaired!

The capacitor in question was an 0.1µF component which connected directly across the mains input immediately after the on-off switch. This had broken down and was exhibiting a steady resistance of zero ohms. With the capacitor out of circuit the set ceased its fuse-blowing proclivities and worked exactly as it had done previously.

I told my relative that I had only effected a temporary repair and that a new capacitor would have to be fitted when I was able to obtain one, or if the set had to undergo any major servicing.

MAINS MODULATION

I was lucky there, on two counts. To begin with, I had been able to locate the faulty component first go. And, secondly, the set still functioned satisfactorily with the 0.1µF capacitor out of circuit.

You will find these capacitors in mains-driven TV receivers, and they nearly always have a value of 0.1µF or thereabouts. One of their jobs is to act as an r.f. bypass and attenuate any r.f. interference which might be present on the mains supply. Another of their functions is to ensure that the mains input has a low r.f. impedance, thereby overcoming the possibility of what we used to refer to as 'mains modulation'.

In earlier mains-driven a.m. sound radios, in which the chassis was common with one side of the mains, a similar capacitor used to be connected across the mains supply after the on-off switch in order to overcome this mains modulation. Without the capacitor it was quite possible for input signals to be modulated at 50Hz if the receiver was connected to the mains such that its chassis coupled to the live side. The modulation produced a curious gurgling effect, as though people who were singing or speaking needed to clear their throats. Normally, it would reduce in level or clear altogether if the mains connections were changed over so that the receiver chassis is connected to the neutral line.

With a mains modulation capacitor fitted, the receiver could be connected to the mains either way round without the trouble appearing.

Sound receivers at that time used external aerials, relying on the mains supply to provide an effective earth or counterpoise. When the receiver chassis was coupled to the live side of the mains, that 'earth' was swinging on either side of true earth by the mains voltage at 50Hz, and so it was not surprising that, in some instances, the input signal become modulated at mains frequency.

A modern TV receiver is a far cry from those older a.m. sound radios, but under some conditions it can still suffer mains modulation effects, and these could affect either the sound, the picture or both. And so it was fortunate for me that I was able to clip out the 0.1µF capacitor in that particular set without any of these shortcomings in performance showing up.

THE GADFLY

Changing the subject and coming over all literary, a recent release in the paperback market is a book entitled 'The Gadfly' which is written by E. L. Voyich. This paperback edition is published by Mayflower Books Ltd. and retails at 40p.

'The Gadfly' originally appeared in 1897 and has been a periodic bestseller ever since. Five million copies are reputed to have been sold and it has been translated into more than thirty languages. Its story was dramatised by George Bernard Shaw and it has been made into an award-winning colour film with a score by Shostakovich.

The book caused a great stir at the time of its publication because of its
attack on the Church of that time, and its deep-moving plot renders it very readable even in our present more cynical days. It is a book with a spectacular history.

Why do I mention it? Because its author, E. L. Voynich, was born Ethel Lilian Boole. She was the daughter of George Boole whose logical Algebra has provided the foundation for all our current computer logic operations. A talented father and daughter, indeed.

THICK FILM RESISTORS

Recent reports from EMI Electronics give details of new items resulting from their experience in high ohmic value, high voltage, low drift, thick film technology.

The range of thick film circuits produced by EMI has been expanded to include resistor networks up to 1,000MΩ. These meet the requirements of a.t. power supply voltage dividers, high voltage probes, photomultiplier tube, dynode chains and high power radar systems.

Also available is the new thick film focus control module shown in the accompanying photograph. The module is specifically intended for colour TV receiver applications, is suitable for operation at potentials up to 10kV and has been tested and approved by the British Standards Institution.

Research and development for these thick film devices has been carried out by Microelectronics Division, EMI Electronics Ltd., Blyth Road, Hayes, Middlesex.

CURRENT LIMITING

Some years ago, whilst playing around with a commercially made valve communications receiver, I encountered what appeared to be an unexplained 150Ω resistor in the a.g.c. circuit. The a.g.c. circuit was, otherwise, quite a standard one: a negative a.g.c. voltage was developed by the detector diode and, after a 2MΩ series resistor, appeared across a 0.05 µF capacitor, one terminal of which was grounded to chassis. A rotary switch, which also controlled the b.f.o., then switched the a.g.c. in or out as desired. When a.g.c. was switched out, two contacts of the switch short-circuited the 0.05 µF a.g.c. capacitor by way of this mysterious 150Ω resistor. In other words, one of the switch contacts was connected to chassis and the other was connected to the non-earthly side of the 0.05 µF capacitor via the 150Ω resistor.

After a while the penny dropped. I suddenly realised that the 150Ω resistor was a current limiting component. Quite high voltages, up to 25 volts or more, can appear on the a.g.c. lines of valve communications receivers, and a voltage at this level could be present across the a.g.c. capacitor at the instant when the rotary switch contacts closed. The instantaneous short-circuit current without a series resistor would be virtually limited by the internal impedance of the capacitor only, and could be of the order of several amps. Such a current would inevitably cause a tiny, but significant, spark to occur at the moment of contact closure, with the result that, after a large number of operations, the contact surfaces in the switch would become oxidised and the life of the switch would be reduced. The far-seeing design engineer who fitted the 150Ω resistor ensured that instantaneous short-circuit current could not exceed some 170mA or so, which is well within the capabilities of a standard rotary switch.

It is, in most instances, a wise precaution to fit a series current limiting resistor in any circuit which requires a capacitor of around 0.02µF or more to be short-circuited by a pair of contacts, particularly if the latter are of the low current variety or are given by a relay contact set. We are most of us familiar with the firework display which occurs when a high voltage electrolytic capacitor is accidently short-circuited. A miniature version of such a display is still given at lower capacitors and voltages.

The same applies if a capacitor is directly short-circuited by the sudden turning on of a transistor. Again, instantaneous currents of an amp or more are feasible, and these can be completely eradicated by a suitable series resistor. Assume, for instance, that a circuit calls for an electrolytic capacitor of any value which is charged up to 10 volts to be discharged by the sudden turn-on of a transistor having a maximum collector current rating of 500mA. That maximum collector current rating is almost certain to be exceeded at the instant of turn-on unless a series resistor is fitted. In this case a series current limiting resistor of 27Ω or more would do the trick and would keep the circuit within safe bounds.

LAMP RESISTANCE

Whilst on the subject of current flow, an item which is frequently ignored is the instantaneous initial current drawn by the humble filament lamp when it is switched on. We all know that the cold resistance of a filament electric lamp is lower than its hot resistance but I think that quite a few of us would be surprised if we realised the actual ratio which exists between the cold and hot resistances.

A 100 watt mains bulb consumes about 0.4 amp at 240 volts and has a hot resistance of 600Ω. Its cold resistance can be, typically, no more than 40Ω. This means that, at the instant of switching the lamp on, the current drawn from the 240 volt mains supply is 6 amps!

Small flash lamp bulbs aren't much better. An m.e.s. bulb with a nominal rating of 0.3 amp at 2.5 volts may have a cold resistance of less than 1Ω. So the initial switch-on current at 2.5 volts is at least 2.5 amps. Small bulbs in the lower current category are rather better in this respect. I've just checked the cold resistance of a 6 volt 60mA bulb, and found it to be 30Ω. In consequence, the current it draws at the instant of switch-on is 200mA.

These cold resistances should always be borne in mind when making up circuits in which filament bulbs are turned on and off by transistors. Fortunately, the situation is not so bad if the bulbs are controlled by thyristors or triacs, as these devices normally have surge current ratings which are well in excess of their average current ratings.

Still, it makes one pause when one thinks that the instantaneous current drawn from the mains at the instant of switching on a 100 watt lamp is greater than that consumed by a 1 kilowatt electric fire!
Each £3 unit of Home Unit Insurance gives you protection up to the limit shown

This is the simplified insurance you have been waiting for. Not just cover on the contents of your home but a package of personal protection you and your family need. And it’s how we save you so much money: just ONE policy to issue instead of nine!

You can build up to the cover you need by additional units (or 1 units after the first) up to a maximum of five. So simple. So easy. Apply to your Broker, Agent or local office of a General Accident company.

The Home Unit Policy can replace your existing insurances. And remember – as you buy more possessions just add more Home Units at any time. Quote Ref. 20/9468

THE GENERAL ACCIDENT FIRE & LIFE ASSURANCE CORPORATION LTD

Metropolitan House, 35 Victoria Avenue, Southend-on-Sea, Essex, SS2 6BT

It pays to be protected by a General Accident company

Please send me further particulars of the Home Unit Insurance.

Name...........................................

Address...........................................

20/9468

MARCH 1974
A JOB IN COMPUTERS

A JOB FOR LIFE

IN 6 WEEKS FROM NOW YOU COULD BE IN

In these uncertain times one thing is certain: Wherever else redundancy strikes, your future in the computer industry is secure. With pay prospects of over £70 a week as a computer operator. Unlike computer programming no special educational qualifications are needed. Just a 6 week course with L.C.O.T.C. Impossible? No. We are the only commercial computer school offering a revolutionary new course in computer operating. Direct from the U.S.A.

A sensational new teaching technique that uses the latest audio-visual aids plus actual “hands on” experience to familiarise you with the world’s leading computers. In the next five years alone, 144,000 new data preparation personnel will be needed. You could be one of them—because the vast majority of people can become successful computer operators—trained the new L.C.O.T.C. way.

Telephone: (01) 734 2874 NOW! Or post the coupon today for full details FREE and without obligation.

London Computer Operators Training Centre,
Telephone: (01) 734 2874

Please send me your free illustrated brochure on exclusive Eduputer "hands on" training for computer operating.

Name
Address
Tel.

M. DZIUBAS
158 Bradshawgate, Bolton, BL2 1BA, Lancs.

All above prices include 10% V.A.T.

No further details.

Maxi-Super HT 1810 and
Maxi-Mini HT 1800

Solder Sippers

Designed for use when working or re-working P.C. Boards. Permits removal of molten solder from multi-leg components, enabling easy extraction. The solder is 'sipped' through the nozzle, and automatically ejected when the instrument is next used. A Swiss precision instrument manufactured to a high degree of accuracy.

The anti-corrosive outside casing has a knurled finish for more positive grip, and encases plated internal parts.

The Maxi-Super has been designed with a 3.5 kg. spring action recoilless plunger, whilst the Maxi-Mini with its conveniently shaped operating button, has a 2.5 kg. spring action plunger, protected by a channel guard. Both models have been designed with an easy-to-replace 'dupont' teflon screw-in nozzle.

Prices include VAT

RADIO & ELECTRONICS CONSTRUCTOR
SMALL ADVERTISEMENTS

Rate: 4p (9d) per word. Minimum charge 60p (12/-). Box No. 10p (2/-) extra.

Advertisements must be prepaid and all copy must be received by the 4th of the month for insertion in the following month's issue. The Publishers cannot be held liable in any way for printing errors or omissions, nor can they accept responsibility for the bona fides of advertisers. (Replies to Box Numbers should be addressed to: Box No. — Radio and Electronics Constructors' E7 Maida Vale, London, W9 1SN)


BUILD THE MULLARD C.C. TV CAMERA. Complete kits now available from Crofton Electronics. Send large s.a.e. for details to: 15-17 Cambridge Road, Kingston-Upon-Thames, Surrey. Reply by post. No callers please.

BURGLAR AND FIRE ALARMS. Professional Control, Detection, and Warning equipment supplied - or advice. 1974 Catalogue 25p. CASTLE ALARMS, P.O. Box W06, Windsor, Berks.

CHROMOGENIC ELECTRONICS. New list 10p. post free. Data Dept., 56 Fortis Green Road, London, N10 3HN.

"FROM SEMAPHORE TO SATELLITE", 300-page hard-covered history with 1,000 illustrations, is sent to readers who send £1.99 from their Post Office to David McGarva (Giro account 17 412 0001).


BUILD IT in a DEBOX robust quality plastic cabinet 2 in. x 21 in. x any length. S.A.E. for details. D.E.W. Ltd., 254 Ringwood Road, Ferndown, Dorset. Write now - right now.

UNIQUE VHF KITS, 80 - 180 MHz. Receiver, tuner, converter. World wide sales. £4.50p. S.W. Kits also available. S.A.E. for literature. Johnsons (Radio C), Worcester, WR1 3QO.

MINI MAINS TRANSFORMERS. 30 x 30 x 37mm. Cool, quiet, British. Pri: 220/250V. Type MT3, 3-0-3 RMS, 300mA, £1. MT7, 7-0-7V, 120mA, £1. VAT included. Use MT3 for 3V or 6V rectified d.c., MT7 for 9V or 18V. Circuits supplied. Mail order only. U.K. post 5p per order Amatronics Ltd., 396 Selsdon Road, South Croydon Surrey, CR2 0DE.


(Continued on page 513)
VERSATILE POWER UNIT
Contains double-insulated mains transformer, 2 amp thermal cut-out and bridge rectifier. Will give 1.7V-10.5V output with two extra capacitors. Ideal for Nickel Cadmium battery charger, 5V TTL stabilized supply, cassette or radio etc. These are brand new units, British made to BS4435, complete with informative instruction sheet. ONLY 83p (20p).

3 WATT TAPE AMPLIFIERS
2xECC83, EL84, EZ80 valves on 12 x 5 x 3" chassis with tone and volume controls, giving 3 watts output to the 7 x 4" 3 ohm speaker. All contained in 14 x 13 x 9" polished wooden cabinet with non-standard tape deck. Tested, in good used condition, standard mains operation. ONLY £3.30 (£1).

7lb BARGAIN PARCELS
Contain hundreds of resistors, capacitors, pots & switches (all new) plus crystals, transistor panels and loads of odds and ends. Hundreds already sold at the basic price of £1.82 (40p).

COMPUTER PANELS
Pack of boards containing at least 500 components, including at least 50 transistors. 66p (20p). 12 top quality panels containing power transistors, trimpots, IC's etc £2.20 (30p). 500 assorted resistors £1.10 (20p), 150 poly, mica, ceramic capacitors 66p (10p), 741C 35p, 400mW zeners, 3.9V-13V 8p; OC171 16p; OC71 9p. Ferric Chloride 1lb 55p (20p). Carr. in brackets, small parts 5p. VAT included. SAE list.


Why go hunting for components when there's CATALOGUE 7

ELECTROVALUE Catalogue No.7

- 112 pages
- Transistors, I.C.s, Thyristors, etc.
- Rs and Cs of all kinds
- Pots

GENUINE DISCOUNTS
COMPUTERISED
HIGH-SPEED SERVICE

25p
Post free including 25p refund voucher

25p refund voucher

Look it up in Catalogue 7 first. Packed with components, attractively priced, brand new and guaranteed to spec. You are more likely to get the things you want from ELECTROVALUE and there are excellent discounts too.

Anything over £2 (except Baxandall speaker) send carriage paid—In U.K. And with Catalogue 7 you get a 25p Refund Voucher usable on orders for £5 or more list value. Catalogue 7 also includes useful diagrams and data.

ELECTROVALUE LTD.
(Dept. R.C3) 28 St. Jude's Road, Englefield Green, Egham, Surrey TW20 OHB (Telephone: Egham 3603)
Northern Branch, (Personal callers) 680 Burnage Lane, Manchester (Telephone: 061-432 4945)

NEW STYLE SELF-BINDER

for "The Radio Constructor"

The "CORDEX" Patent Self-Binding Case will keep your issues in mint condition. Copies can be inserted or removed with the greatest of ease. Rich maroon finish, gold lettering on spine.

Specially constructed Binding Cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for and the Cords will always remain taut and strong. It is impossible to overstretch the springs, as a safety check device is fitted to each.

PRICE 90p P. & P. 14p including V.A.T.

Available only from:

Data Publications Ltd.
57 Maida Vale London W9 ISN
MARCH 1974

SMALL ADVERTISEMENTS
(Continued from page 511)

FIBRE OPTICS OPTIKIT 103 contains 2 m. Crofon 1610, 64 strand light conduit plus 5 metres each FP20, FP40, FP60 Plastic: Monofibre (diameter 0.5, 1.0, 1.5 mm), price £4.84 inc. P.T.O. Fibre Optic Suppliers. 2N577 SILICON PHOTODARLINGTON AMPLIFIER sensitive light detector, supercedes CdS cells. Price 1 off 55p, 5 off £2.53 inc. data, VAT. Fibre Optic Suppliers. RED LIGHT EMITTING DIODES MLE500 in TO92 case, MV54 miniature (2 mm). Price (both types) £1.75 for 5. Fibre Optic Suppliers. 40kHz ULTRASONIC TRANSDUCERS £3.85 per 7/R pair from Fibre Optic Suppliers. FIBRE OPTIC SUPPLIERS are to be found at Dept. R.C., P.O. Box 702, London W10 6SL.

WIDESCREEN CINE OUTFIT, comprising Zenoscope anamorphic lens; reconditioned Prince 9.5mm cine camera, with fitting for lens; widescreen viewfinder, rectangular lens hood; 5 cassettes of Kodachrome II unexposed film; widescreen lens holder for projector and 60 x 30 inch widescreen projection screen. 9.5mm cine camera, reconditioned in leather case. Four super-8, 100 ft. cine film reels in plastic case. For sale or exchange. W.H.Y? Box No. G223.

JOIN THE INTERNATIONAL S.W. LEAGUE. Free services to members including Q.S.L. Bureau, Amateur and Broadcast Translation, Technical and Identification Dept. - both Broadcast and Fixed Stations, DX Certificates, contests and activities for the SWL and transmitting members. Monthly magazine, containing articles of general interest to Broadcast and Amateur SWLs, Transmitter Section and League affairs, etc. League supplies such as badges, headed notepaper and envelopes, QSL cards, etc., are available at reasonable cost. Send for League particulars. Membership including monthly magazines, etc., £2.00 per annum. (U.K. and British Commonwealth), overseas 6 Dollars or £2.50. Secretary ISWL, 1 Grove Road, Lynden, Glos., GL5 5JE.

LOUD 6V SIRENS for Burglar alarms, etc. (New and boxed), £1.25p. P.P. P. 10p. Counters, reeds, relays, motors, transistors, etc. 1974 list 5p. Grimsby Electronics, 64 Tennyson Road, Cleethorpes, Lincs.

OPENSHAW TECHNICAL COLLEGE, Whitworth Street, Manchester, M11 2WH. Evening courses for radio experimenters, including radio, electronics and model control. All facilities available including professional instruction. For further details telephone 061-223-8282.

DRAUGHTING AIDS for producing 1:1 masters. Trial kits 92p. S.A.E. for price list. Adela, (RC1), 54 Dickens Avenue, Hillingdon, Middlesex, UB8 3DL.

POSTAL ADVERTISING? This is the Holborn Service. Mailing lists, addressing, enclosing, wrapping, facsimile letters, automatic typing, copy service, campaign planning, design and artwork, printing and stationery. Please ask for price list. - The Holborn Direct Mail Company, Capacity House, 2-6 Rothsay Street, Tower Bridge Road, London, S.E.1. Telephone: 01-407 1495.

GOOD PRICE PAID for partly built panels and components of Television colour receiver, also non-working battery portable television, also 'Crofton' television camera, parts or uncompleted. Give good description and state price required. Box No. G224.

ANTIQUE WIRELESS MARK III crystal tuner (World War I vintage) wanted. Have for trade U.S. Army World War I BC-14A crystal set, National SW-3 and other equipment. L.W. Elias, W4DBT, 3919 Pointedexter Drive, RDF8, Winston-Salem, N.C. 27106, U.S.A. (Continued on page 515)
NOW! A FAST EASY WAY TO LEARN BASIC RADIO & ELECTRONICS

Free book shows you how to learn basic Radio and Electronics at home—the fast, modern way. Give yourself essential technical "know-how"—like reading circuits, assembling standard components, experimenting, building—quickly and without effort, and enjoy every moment. B.I.E.T.'s simplified home study method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting.

General Radio and Television Main- Radio servicing, □
T.V. Engineering □ Tenancy & Servicing □ Maintenance & repairs □
Colour T.V. □ Practical T.V. □ Electronic □
Radar Technology □ Applied Electronics □ Engineering □
Practical Radio and Television □ Radio Amateurs □
Electronics □ Electronics Course for Elementary Physics □
(TECHNATRON) □ Course for Radio □
City and Guilds Radio and T.V. Electrical Mech.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
Dept BRE 01, Aldermaston Court, Reading RG7 4PF

POST THIS COUPON FOR FREE BOOK

Accredited by C.A.C.C Member of A.B.C.C

NAME

AGE

ADDRESS

SUBJECT OF INTEREST

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

MASSIVE CLEARANCE BARGAINS

Bargain component parcels contain Resistors, Capacitors, Potentiometers, Knobs, Rotary, Slide, Key Switches, I.F., Tag Strips, Drive Drums, Springs, Helices, Coil Formers, Wire, Grommets, Relays, Pulley Wheels, Magnets, Transformer Panels etc., etc. Save yourself £1 on these well selected parcels 6lbs net weight £1-00, p. p. 40p.


Assorted Computer Panels. These panels are exceptionally good value and contain a minimum of 75 transistors, stacks of diodes plus Trim Pads, Polyester Capacitors, and include a few I.C.s. 10 panels for £1-00, p. p. 25p.


Assorted Electrolytic Capacitors. 6lbs net weight £1-00, p. p. 40p.


Please include 10% V.A.T. to total cost of goods.

MAIL ORDER ONLY

XEROZA RADIO
1, EAST STREET
BISHOPS TAWTON
DEVON

RING BOARD with I.C. Add-On

RING BOARD a new concept in standard P.C. boards. No cutting very little looping and no messy chemicals. Full details of method with each board purchased. Two types of I.C. Add-On available.

S.A.E. with enquiries please

FULL BOARD 55p
HALF BOARD 33p
QUARTER BOARD 22pi.C. Add-On 25p
RING BOARD (REC 3) 259 Chesterfield Road, Sheffield S9 ORT. Tel. 0742 52178

The "CORDEX" Patent Self-Binding Case will keep your copies in mint condition. Issues can be inserted or removed with the greatest of ease. Specially constructed Binding cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for, and the Cords will always remain taut and strong. It is impossible to overstretch the Springs, as a safety check device is fitted to each.

COLOURS: MAROON OR GREEN

(If choice not stated, colour available will be sent)

PRICE 85p P. & P. 14p

including V.A.T.

Available only from:

Data Publications Ltd.
57 Maida Vale London W9 1SN

RADIO & ELECTRONICS CONSTRUCTOR

"RADIO CONSTRUCTOR"; Unbound volumes Nos. 15 to 24. Offers invited. S.A.E. to: 3 Laxton Road, Taunton, Somerset.

WORLD DX CLUB covers all aspects of SWLing on Amateur and Broadcast Bands through its monthly bulletin "Contact". Membership costs £1.60 a year. Enquiries to John Rush, 12 Northfield Road, Thatcham, Berks.

RECORDALS OF RECORDED MUSIC. The second Saturday evening of each winter month. Next recital: March 9th, 1974, 8 p.m. at Woodford Green United Free Church, Woodford Green, Essex. Bus routes 20, 20A, 179 and 275 - all at the "Castle" stop. Programme includes Symphony No. 9 in D Minor ("Choral") by Beethoven.

FREQUENCY LIST TRANSFERS. We have a limited supply of sheets of Dial Frequency Transfers in black. Short Wave frequencies 1.8Mc/s to 32Mc/s and 144Mc/s and 146Mc/s. Includes amateur band marker frequencies at 100kc/s points and other short wave frequencies from 2 to 32Mc/s at every 500kc/s points. Each frequency is repeated. Two sheets for 5p. five sheets for 10p postage 3p. Data Publications Ltd., 57 Maid Vale, London W9 1SN.

WANTED DEAD OR ALIVE! Cheap SW receiver. Contact: Electronics Club, Monks Dyke High School, Louth, Lincs.


PERSONAL

JANE SCOTT FOR GENUINE FRIENDS. Introduction to opposite sex with sincerity and thoughtfulness. Details free. 3p stamp to: Jane Scott, 50/CON Maddox Street, London W1R 0LY.

SPONSORS required for exciting scientific project. Norwich Astronomical Society are building a 30' telescope to be housed in a 20' dome of novel design. All labour being given by volunteers. Already supported by Industry and Commerce in Norfolk. Recreational. Educational. You can be involved. Write to: NAS Secretary. The Mans, Back Lane, Wymondham, Norfolk.

IF YOU HAVE ENJOYED A HOLIDAY on the Norfolk Broads, why not help to preserve these beautiful waterways. Join the Broads Society and play your part in determining Broadlands future. Further details from:- The Hon. Membership Secretary, The Broads Society, "icknield", Hilly Plantation, Thorpe St. Andrew, Norwich, NOR 8SS.

ESSEX GARDENERS. Buy your bedding and rock plants, shrubs, etc., also cacti from May's Nurseries, 608 Rayleigh Road, Hutton, Brentwood, Essex. Callers only. Monday to Saturday.

MARCH 1974

ESSENTIAL BOOKS

HANDBOOK OF INTEGRATED CIRCUITS (ICs). EQUIVALENTS AND SUBSTITUTES. This new book includes all available types of ICs made throughout the world at the present time which have some possible equivalent, substitute or alternative. Published Jan. 1974. 75p. post free.


MOBILE RADIO-TELEPHONE EQUIPMENT HANDBOOK. Gives circuits, data and illustrations plus some valuable modifications for commercial radio telephone equipment including PYE and other popular makes. Includes modifications for amateur use. £4 including postage.


COIL DESIGN AND CONSTRUCTION MANUAL. How to make your own RF and AF coils, chokes and transformers. 30p. p.p. 5p.

Hi-Fi P.A. GUITAR AND DISCOTHEQUE AMPLIFIER DESIGN HANDBOOK. Includes circuits up to 1100 watts output, treble, midrange, and HF equalisers. Latest edition £2.50.

THE GOVERNMENT SURPLUS WIRELESS EQUIPMENT HANDBOOK. Gives circuits, data and illustrations plus valuable information for British/USA receivers, transmitters, trans/receivers. With modifications to kits and test equipment. Latest impression £2.25 including postage.

DIRECTORY OF GOVERNMENT SURPLUS WIRELESS EQUIPMENT DEALERS. Gives details of surplus wireless equipment dealers and dealers including addresses, plus equipment and spare parts that are likely to become available. A valuable book only 40p. p.p. 10p.

CONSTRUCTORS MANUAL OF ELECTRONIC CIRCUITS FOR THE HOME. Full details and instructions. 50p. post 10p.


HOW TO RECEIVE FOREIGN TV PROGRAMMES ON YOUR TV SET BY SIMPLE MODIFICATIONS. 40p including postage.


SYNTHESISER MODULES


TECHNICAL TRAINING

Get the qualifications you need to succeed. Home study courses in Electronics and Electrical Engineering, Maintenance, Radio, TV, Audio, Computer Engineering & Programming. Also self build radio kits. Free details from:- International Correspondence Schools, Dept. 733E, Intertext House, London, SW8 4UJ. Tel: 01-622 9911

MORSE MADE EASY!!!

FACT NOT FICTION. If you start RIGHT you will be reading amateur and commercial Morse within a month. (Normal progress to be expected.) Using scientifically prepared 3-speed records you automatically learn to recognise the code RHYTHM without translating. You can't help it, it's as easy as learning a tune. 38-W.P.M. in 4 weeks guaranteed. Complete course, 3 Records and Books, £2.50. P.P.I. etc. plus 60%. (Overseas £1 extra). Or details only, 4p stamp. Or phone S. Bennett, G3HSC. 01-669 2836.

Box 38, 45 GREEN LANE, PURLEY, SURREY.
SMALL ADVERTISEMENTS

Use this form for your small advertisement

To: The Advertisement Manager, Data Publications Ltd., 57 Maida Vale, London W9 1SN

Please insert the following advertisement in the ............ issue of RADIO & ELECTRONICS CONSTRUCTOR

<table>
<thead>
<tr>
<th>15 words at 4p = 60p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL WORDING IN BLOCK LETTERS PLEASE</td>
</tr>
</tbody>
</table>

I enclose remittance of ............ being payment at 4p a word. MINIMUM 60p.

Box Number, if required, 10p extra.

NAME ..................................................................................................................
ADDRESS ...........................................................................................................

Copy to be received four weeks prior to publication. Published on the 1st of every month.

DATA BOOK SERIES

DB5  TV FAULT FINDING
     New edition in course of preparation.
DB6  RADIO AMATEUR OPERATOR'S HANDBOOK
DB16 RADIO CONTROL FOR MODELS
DB17 UNDERSTANDING TELEVISION
DB18 AUDIO AMPLIFIERS
DB19 SIMPLE SHORT WAVE RECEIVERS

I enclose Postal Order/Cheque for ............ in payment for ..................................................

NAME ..................................................................................................................
ADDRESS ...........................................................................................................

Postal Orders should be crossed and made payable to Data Publications Ltd.
Overseas customers please pay by International Money Order.
All publications are obtainable from your local bookseller.
Data Publications Ltd., 57 Maida Vale, London W9 1SN

PLEASE MENTION THIS MAGAZINE WHEN WRITING TO ADVERTISERS
The Table lists r.m.s. output powers in speakers of 3Ω to 75Ω for transformerless transistor Class B output stages. \( V(Pk) \) is the maximum output voltage swing negative or positive, whichever is the lower. If negative and positive swings are equal then \( V(Pk-Pk) \) will normally be the supply voltage less voltage drop in the output transistors. As an example, an output stage offering a \( V(Pk) \) of 7 volts into an 8Ω speaker can produce an r.m.s. output power of 3.1 watts.

<table>
<thead>
<tr>
<th>( V(Pk-Pk) )</th>
<th>( V(Pk) )</th>
<th>( V(r.m.s.) )</th>
<th>3Ω</th>
<th>8Ω</th>
<th>15Ω</th>
<th>25Ω</th>
<th>35Ω</th>
<th>75Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>2.12</td>
<td>1.5</td>
<td>0.56</td>
<td>0.30</td>
<td>0.18</td>
<td>0.13</td>
<td>0.060</td>
</tr>
<tr>
<td>7</td>
<td>3.5</td>
<td>2.47</td>
<td>2.0</td>
<td>0.76</td>
<td>0.41</td>
<td>0.24</td>
<td>0.17</td>
<td>0.081</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>2.83</td>
<td>2.7</td>
<td>1.0</td>
<td>0.53</td>
<td>0.32</td>
<td>0.23</td>
<td>0.11</td>
</tr>
<tr>
<td>9</td>
<td>4.5</td>
<td>3.18</td>
<td>3.4</td>
<td>1.3</td>
<td>0.67</td>
<td>0.40</td>
<td>0.29</td>
<td>0.13</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3.54</td>
<td>4.2</td>
<td>1.6</td>
<td>0.84</td>
<td>0.50</td>
<td>0.36</td>
<td>0.17</td>
</tr>
<tr>
<td>11</td>
<td>5.5</td>
<td>3.89</td>
<td>5.0</td>
<td>1.9</td>
<td>1.0</td>
<td>0.61</td>
<td>0.43</td>
<td>0.21</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>4.24</td>
<td>6.0</td>
<td>2.2</td>
<td>1.2</td>
<td>0.72</td>
<td>0.51</td>
<td>0.24</td>
</tr>
<tr>
<td>13</td>
<td>6.5</td>
<td>4.60</td>
<td>7.1</td>
<td>2.6</td>
<td>1.4</td>
<td>0.84</td>
<td>0.60</td>
<td>0.28</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>4.95</td>
<td>8.2</td>
<td>3.1</td>
<td>1.6</td>
<td>0.98</td>
<td>0.70</td>
<td>0.33</td>
</tr>
<tr>
<td>15</td>
<td>7.5</td>
<td>5.30</td>
<td>9.4</td>
<td>3.5</td>
<td>1.9</td>
<td>1.1</td>
<td>0.80</td>
<td>0.37</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>6.36</td>
<td>13</td>
<td>5.1</td>
<td>2.7</td>
<td>1.6</td>
<td>1.2</td>
<td>0.54</td>
</tr>
<tr>
<td>21</td>
<td>10.5</td>
<td>7.42</td>
<td>18</td>
<td>6.9</td>
<td>3.7</td>
<td>2.2</td>
<td>1.6</td>
<td>0.73</td>
</tr>
<tr>
<td>24</td>
<td>12</td>
<td>8.48</td>
<td>24</td>
<td>9.0</td>
<td>4.8</td>
<td>2.9</td>
<td>2.1</td>
<td>0.96</td>
</tr>
<tr>
<td>27</td>
<td>13.5</td>
<td>9.54</td>
<td>30</td>
<td>11</td>
<td>6.1</td>
<td>3.6</td>
<td>2.6</td>
<td>1.2</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>10.6</td>
<td>37</td>
<td>14</td>
<td>7.5</td>
<td>4.5</td>
<td>3.2</td>
<td>1.5</td>
</tr>
<tr>
<td>33</td>
<td>16.5</td>
<td>11.7</td>
<td>46</td>
<td>17</td>
<td>9.1</td>
<td>5.5</td>
<td>3.9</td>
<td>1.8</td>
</tr>
</tbody>
</table>
HENRY’S

EARN YOURSELF EASY MONEY, WITH PORTABLE DISCO EQUIPMENT

**DISCO MINI** A complete portable disco, fitted mixer/processor, 2 decks all facilities.
- **Price:** £95.00
  - As above but with Sliders Controls: £198.00
  - 110 watt power amplifier for above: £49.00
  - SDL5 100 watt mixer/amplifier with slider controls: £68.00
  - R50 50 watt mixer/amplifier: £49.00
  - R100 100 watt mixer/amplifier: £125.00
  - DISCO AMP 100 watt amplifier: £125.00
  - Northcourt: £35.00
  - D20 40 watt mixer amp: £37.00
  - D10 10 watt mixer: £25.00
  - DISCO MIXER PREAMPLIFIERS (OP for up to 6 x 100 watt amplifier): £68.50
  - DCLI (mini controls): £38.50
  - DISCO VOX (slider controls) the complete £88.50
  - DJ100 100 watt power amplifier for above: £90.00
  - DJ30L MKI 3 channel 3kw sound to light: £81.25
  - DJ30L MK1 Slider Controls: £65.00
  - DI DISCLITE A X LLX: variable speed flash £65.00
  - DIMMATIC 1 W adjustable speed auto dispenser: £25.00
  - Caribo Reverberation Unit: £44.00
  - Disc anti-feedback microphone: £11.95
  - Colt 150 watt liquid wheel projector: £50.00
  - 150 watt QL liquid wheel projector: £50.00
  - Spare Effects accessories large range of patterns: £60.00
  - 6’ Liquid wheels £50.00 Various cassettes £6.00
  - Mini spin back fried 3 lamps: £13.50
  - Auto Triller (mini witches): £17.00
  - Reflectors: spot circular cone or LED £12.50

**TRANSLATOR/OPI** Literate in every language for all applications. Small quantity discounts. Also Trade and Industrial enquires invited. Latest stock list (Ref. No. 36) including volumes on request.

**ELECTRONICS**

Specialists in electronics for more than 30 years. Trade and industry supplies—every type of component and equipment.

**BUILD THE HENELEC STEREO FM TUNER**

A completely new high stability stereo FM tuner. Designed for top-of-the-line performance and designed to give high quality, high performance results. Suitable for home audio, stereo or hi-fi systems.

**BUILD YOURSELF A POCKET CALCULATOR**

A complete kit, packed in a polypropylene container and talking about 3 hours to assemble—then the SLC60 calculator is ready. One of the many features include interface chip, clock-monitor, keyboard, computer, electronic, etc. Kit contains complete building kit and complete instructions explaining how to calculate logs, tangents, sines, etc.

**BUILD THE TEXAN 20 + 20 WATT IC STEREO AMPLIFIER**

A practical Wireless 1972

**FREE LISTS**

36 TRANSISTORS IC’s
14 100 KITS TO BUILD
17 HI FI TAPE GEAR
2 TRANSPORTER RADIO TO BUILD

**SUPER TESTER 680R**

The complete testing system

Price: £18.50

**ACCESSORIES**

<table>
<thead>
<tr>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>£11.00</td>
<td>Transistor tester</td>
</tr>
<tr>
<td>£18.00</td>
<td>Electronic Voltmeter</td>
</tr>
<tr>
<td>£11.95</td>
<td>Amplifier</td>
</tr>
<tr>
<td>£11.95</td>
<td>Temperature probe</td>
</tr>
<tr>
<td>£9.15</td>
<td>Guss meter</td>
</tr>
<tr>
<td>£4.95</td>
<td>Signal Investigator</td>
</tr>
<tr>
<td>£9.50</td>
<td>Phase Sequence</td>
</tr>
<tr>
<td>£6.95</td>
<td>FET Probe</td>
</tr>
<tr>
<td>£16.50</td>
<td>Transistors (per pair)</td>
</tr>
</tbody>
</table>

**DON'T RELY ON YOUR MEMORY—BUY NOW AT BARGAIN PRICES**

Hi Fi and Transistor—Up to date Brochures on request

**HENRY'S CATALOGUE**

Due to rapid price changes, descriptions of larger and raw materials, all prices in the existing catalogues to be withdrawn. A new catalogue will be available for Aug/Sept 1974.

**HENRY’S CATALOGUE**

Due to rapid price changes, descriptions of larger and raw materials, all prices in the existing catalogues to be withdrawn. A new catalogue will be available for Aug/Sept 1974.

**LIVING SOUND LOW NOISE TOP QUALITY CASSETTES MADE BY FM TAPES LTD. TO INTERNATIONAL STANDARDS, ESPECIALLY FOR HENRY’S ALL POST PAID LESS THAN 1 REC. PRICES, COMPLETE WITH LIBRARY CASES**

<table>
<thead>
<tr>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>£3.80</td>
<td>Cio 78000 3 hours (20% spin) each:</td>
</tr>
<tr>
<td>£15.00</td>
<td>Cio 50000 3 hours (80% spin) each:</td>
</tr>
<tr>
<td>£8.00</td>
<td>Cio 70000 4 hours (20% spin) each:</td>
</tr>
<tr>
<td>£3.00</td>
<td>Cio 50000 4 hours (80% spin) each:</td>
</tr>
<tr>
<td>£9.00</td>
<td>Cio 00000 4 hours (20% spin) each:</td>
</tr>
</tbody>
</table>

**FREE LISTS**

All prices carry paid (UK) VAT EXTRA)

Barclaycard/Access, call or phone your order 01-723 0669—easy terms for callers.

10% VAT to be added to all orders. Export supplied. Prices and descriptions correct at time of proof. E.O.E.