Each £3 unit of Home Unit Insurance gives you protection up to the limit shown

This is the simplified insurance you have been waiting for. Not just cover on the contents of your home but a package of personal protection you and your family need. And it’s how we save you so much money: just ONE policy to issue instead of nine! You can build up to the cover you need by additional units (or + units after the first) up to a maximum of five. So simple. So easy. Apply to your Broker, Agent or local office of a General Accident company. The Home Unit Policy can replace your existing insurances and remember – as you buy more possessions just add more Home Units at any time. Quote Ref. 20/9468

Please send me further particulars of the Home Unit Insurance.

Name
Address

Metropolitan House, 35 Victoria Avenue, Southend-on-Sea, Essex, SS2 6BT

It pays to be protected by a General Accident company
Cassettes

<table>
<thead>
<tr>
<th>Cassette Type</th>
<th>Best Buy</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agfa Low Noise</td>
<td>C60 37p</td>
<td>£1.80</td>
</tr>
<tr>
<td>AT £1.50</td>
<td>C90 50p</td>
<td>£2.48</td>
</tr>
<tr>
<td>£9.95</td>
<td>C120 63p</td>
<td>£3.10</td>
</tr>
<tr>
<td>£6.20</td>
<td>£1.65</td>
<td>£2.50</td>
</tr>
<tr>
<td>£1.42</td>
<td>£1.20</td>
<td>£2.00</td>
</tr>
<tr>
<td>£1.05</td>
<td>£1.10</td>
<td>£2.10</td>
</tr>
<tr>
<td>£0.75</td>
<td>£0.60</td>
<td>£1.50</td>
</tr>
<tr>
<td>£0.30</td>
<td>£0.50</td>
<td>£1.20</td>
</tr>
<tr>
<td>£0.10</td>
<td>£0.20</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

AGFA HIGHDYNAMIC SUPER

<table>
<thead>
<tr>
<th>Cassette Type</th>
<th>Best Buy</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>C60 £1.20</td>
<td>£3.40</td>
<td>£6.70</td>
</tr>
<tr>
<td>£1.00</td>
<td>£6.20</td>
<td>£12.40</td>
</tr>
<tr>
<td>£1.00</td>
<td>£1.30</td>
<td>£2.60</td>
</tr>
<tr>
<td>£0.90</td>
<td>£1.30</td>
<td>£2.60</td>
</tr>
<tr>
<td>£0.90</td>
<td>£1.30</td>
<td>£2.60</td>
</tr>
<tr>
<td>£0.90</td>
<td>£1.30</td>
<td>£2.60</td>
</tr>
</tbody>
</table>

AGFA STEREO-CHROM CHROMIUM DIOXIDE

<table>
<thead>
<tr>
<th>Cassette Type</th>
<th>Best Buy</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>C60 £1.50</td>
<td>£4.20</td>
<td>£8.30</td>
</tr>
<tr>
<td>£1.00</td>
<td>£5.20</td>
<td>£10.40</td>
</tr>
</tbody>
</table>

Same Day Despatch

WILMSLOW AUDIO Dept. RC

LOUDSPEAKERS: SWAN WORKS BANK SQUARE, WILMSLOW, CHESHIRE

AMPLIFIERS, RADIO ETC.

10 SWAN ST., WILMSLOW, CHESHIRE

WILMSLOW AUDIO

THE Firm for speakers!

SPEAKERS

- £7.75 Fane Pop 100 watt 18"
- £5.00 Fane Crescendo 12A 8 or 15 ohm
- £5.00 Goodmans 8P 8 or 15 ohm
- £6.40 Goodmans Axiom 401, 8 or 15 ohm
- £7.35 Goodmans D1P 8 or 15 ohm
- £8.25 Goodman Successor 100 watt 8 or 15 ohm
- £8.25 Goodmans 8X 15 ohm
- £8.25 Goodmans 10P 8 or 15 ohm
- £9.50 Goodmans Midax 800 ohm
- £10.75 Goodmans Axent 100 tweeter & crossover
- £10.75 Goodmans Audiom 100, 8 or 15 ohm
- £11.95 Goodmans Axiom 100, 8 or 15 ohm

SPEAKER KITS (Carr. 75p each, £1.50 pair)

- £24.50 Fane Mode One each
- £29.00 Fane Major Module 3, 8 or 15 ohm each
- £30.00 Goodmans DIN 20 4 ohm pair
- £36.00 Helme XLK25 pair
- £51.95 Helme XLK30 pair
- £74.95 Helme XLK50 pair
- £16.00 Kefkit 1 each
- £21.00 Kefkit 3 each
- £44.00 Peerless 3-15 (3 sp. system) each
- £70.00 Richard Allan Twinkit each
- £85.00 Richard Allan Triple 8 each
- £100.00 Richard Allan Super Triple each

PA/DISCO AMPLIFIERS (Carr. and ins. £1)

- £49.75 Baker Maxon 100 watt
- £30.00 Linear 30/40
- £35.00 Linear 80/100
- £38.95 Linear 100 watt slave

MICROPHONES (p. & p. 50p)

- £14.95 Shure 515 SB
- £15.75 Shure 515 SA
- £29.95 Shure 545

FREE with loudspeaker orders over £7 - "HI-FI Loudspeaker Enclosures" book

- All items guaranteed new and perfect

Prompt despatch

ALL PRICES QUOTED INCLUDE VAT.

Send stamp for free booklet 'Choosing a speaker'

Big discounts on Grundig, ITT, Koyo, etc.

Send stamp for list
"I MADE IT MYSELF"
Imagine the thrill you'll feel! Imagine how impressed people will be when they're hearing a programme on a modern radio you made yourself.

Now! Learn the secrets of radio and electronics by building your own modern transistor radio!

Practical lessons teach you sooner than you would dream possible.

What a wonderful way to learn — and pave the way to a new, better-paid career! No dreary ploughing through page after page of dull facts and figures. With this fascinating Technatron Course, you learn by building!

You build a modern Transistor Radio — a Burglar Alarm. You learn Radio and Electronics by doing actual projects you enjoy — making things with your own hands that you'll be proud to own! No wonder it's so fast and easy to learn this way. Because learning becomes a hobby! And what a profitable hobby. Because opportunities in the field of Radio and Electronics are growing faster than they can find people to fill the jobs!

No soldering — you learn faster than you ever dreamed possible.
Yes! Faster than you can imagine, you pick up the technical know how you need. Specially prepared step-by-step lessons show you how to read circuits — assemble components — build things — experiment. You enjoy every minute of it!

You get everything you need. Tools. Components. Even a versatile Multimeter that we teach you how to use. All included in the course. AT NO EXTRA CHARGE! And this is a course anyone can afford. (You can even pay for it by easy instalments).

So fast, so easy, this personalised course will teach you even if you don't know a thing today!
No matter how little you know now, no matter what your background or education, we'll teach you. Step by step, in simple easy-to-understand language, you pick up the secrets of radio and electronics.

You become a man who makes things, not just another of the millions who don't understand. And you could pave the way to a great new career, to add to the thrill and pride you receive when you look at what you have achieved. Within weeks you could hold in your hand your own transistor radio. And after the course you can go on to acquire high-powered technical qualifications, because our famous courses go right up to City & Guilds level.

Send now for FREE 76 page book — see how easy it is — read what others say!
Find out more now! This is the gateway to a thrilling new career, or a wonderful hobby you'll enjoy for years. Send the coupon now. There's no obligation.

POST TODAY FOR FREE BOOK
To: ALDERMaston COLLEGE DEPT. CRE 01 READING RG7 4PF
Yes, I'd like to know more about your course. Please send me free details—plus your big, 76-page book that tells about all your courses.

NAME
ADDRESS
POSTCODE

HOME OF BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

NEW STYLE SELF-BINDER
for "Radio & Electronics Constructor"

The "CORDEX" Patent Self-Binding Case will keep your issues in mint condition. Copies can be inserted or removed with the greatest of ease. Rich maroon finish, gold lettering on spine.

Specially constructed Binding Cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for and the Cords will always remain taut and strong. It is impossible to overstretch the springs, as a safety check device is fitted to each.

PRICE £1.00
including V.A.T.
Available only from:

Data Publications Ltd.
57 Maida Vale London W9 1SN
With the Doram catalogue, even the guarantee is guaranteed.

Doram is an entirely new way of buying electronic components.

So, to succeed, it's got to have something going for it, right?

We agree with you.

What Doram scores is in the security it gives the amateur buyer.

We'll give you peace of mind three ways.

No-quibble guarantee.

Firstly, we guarantee to replace any component which arrives faulty. Absolutely free of charge.

And secondly, our guarantee is backed by the biggest electronics distribution Group in Britain.

7-day service.

Thirdly, we guarantee you'll have your components within 7 days from our receipt of your orders.

We're so confident of our service that if we can't supply the part you want within 7 days we'll give you an immediate refund.

So you'll never get a tedious wait.

You know just where you stand with Doram.

All branded goods.

All goods supplied by Doram are made by big-name manufacturers. And they're all to manufacturer’s specifications. They're the best money can buy.

In fact, Doram gives the amateur the sort of service only professionals have enjoyed before.

Millions of components.

All in all, we're big enough to offer you stocks of millions of components, on over 4,000 product lines.

All you do is buy the Doram catalogue for 25p (that's a yearly reference book for the price of a pint of lager) and then take your pick from it.

Use the coupon now.

Send today for the first-ever Doram catalogue. It can take a lot of worry out of amateur components buying.

And for 25p that's not bad, is it?

I ENCLOSE 25p: PLEASE SEND ME THE NEW DORAM CATALOGUE.

Name: ____________________________

Address: __________________________

Doram Electronics Limited,
PO Box TR8,
Wellington Road Industrial Estate,
Wellington Bridge, Leeds LS12 2UF.

*This will be refunded on orders of £5 (less VAT) or more received by us before March 31st, 1975.
Components

Valve Bases

Printed circuit B9A - B7G 4p
Chassis B7 - B9G - B7G 4p
Shrouded chassis B7G - B9A 6p
B8A - B9A chassis - B12A tube 6p

Tag Strip - 6 way 3p Wrist Compass 9 way 5p Single 1p 30p with Needle Lock

1 1/2 glass fuses - 250 m/a or 3 amp (box of 12) 18p
3 taper spoons 8p
Brand new boxed 6KG 25p
PVC or metal clip on M.E.S. bulb holder 5p
All metal equipment Phono plug 2p
Bulgin, 5mm Jack plug and switched socket (pair) 30p
12 volt solenoid and plunger 40p
250 RPM, 12/20, 50/15, 100/30 locked frequency miniature mains motor 50p
200 OHM coil, 2 1/2" long, hollow centre 10p
Belling Lee white plastic surface coax outlet Box 30p
R.S. 12 way standard plug and shell 3p

Switches

<table>
<thead>
<tr>
<th>Pole</th>
<th>Way</th>
<th>Type</th>
<th>Watt</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2Amp 250V A.C. rotary</td>
<td>20p</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Toggle</td>
<td>10p</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Wafer Rotary, all types</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Speaker, 6" x 4", 5 ohm, ideal for car radio etc. 1p

Computer and Audio Boards

Varying panels with Zener, Gold Bond, Tokey, SSCE, low and high power transistors and diodes, HI STAB resistors, CAPACITORS, ELECTROLYTICS, TRIMPOTS, POT CORES, CHOKES, ETC.

Skeleton Presets

<table>
<thead>
<tr>
<th>Clear Plastic Boxes</th>
<th>5p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slider, horizontal or vertical standard or submin.</td>
<td></td>
</tr>
</tbody>
</table>

Knobs

Silver metal push on with pointer, or white plastic, grub screw, with pointer and silver centre 6p each.

ZM1162A Indicator Tube

0-9 Inline End View. Rectangular Envelope 170V 2.5M/A £2.00

RESISTORS

<table>
<thead>
<tr>
<th>Watt</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1p</td>
</tr>
<tr>
<td>2</td>
<td>2p</td>
</tr>
</tbody>
</table>

Potentiometers to 1000pf £3.00

Philips transformer, safety fused. In 200-220-240v. Out 240v 50/60m.£1.50

Ganged Knobs

Inner to Outer Ratio 8:1 £60p

THERMISTORS

PARMEKO P480 6000/55, 20 Henry -12A, potted choke 60p

Electrolytics MFD/VOLT. Many others in stock

Up to 10V 25V 50V 75V 100V 250V 350V 500V

Wood 10 4p 5p 6p 8p 8p 12p 16p 20p
25 4p 5p 6p 8p 8p 15p 18p 20p
50 4p 5p 6p 8p 13p 18p 21p 20p
100 5p 6p 10p 12p 19p 20p 25p 20p
250 5p 8p 10p 11p 17p 28p 30p 30p
500 10p 11p 17p 24p 45p 50p 60p 60p
1000 13p 17p 40p 60p 70p 80p 100p 100p
2000 23p 37p 45p 60p 70p 80p 100p 100p

As total number of values are too numerous to list, use this price guide to work out cost of your actual value requirements, i.e. 2MFD, 30V would be 5p, or 330MFD, 50V would be 1p, etc. etc.

8/20, 10/20, 12/20 Solid tantalum 15p each

6-12/25, 8-12/25, 100-100/200, 150-200, 250-300, 50-500/300 20p each

12,000/12, 32-32/50-50/300, 700/200, 100-100-150/150 50p each

Inductors

Arcoloelectric green, takes M.E.S. bulb
Bulgin 676 red, takes M.E.S. bulb
12 volt red, small pushfit
Mains neon, red, pushfit

Capacitor Guide - maximum 500V

Up to .01 ceramic 2p. Up to .01 poly 3p.
Up to 1000pF silver mica 6p, 1.200PF up to .01
Silver mica 10p, .01 up to .25 poly etc. 4p.
27 up to .68 poly etc. 6p
Over 500 volt order from above guide and few others listed below.

6p, 1/600, 10p, .01/1000, 1/350, 8/20, 1/900, 22/900, 4/16, .25/250 AC (600vDC) .1/1500 40p, 5/150, 9/275AC, 10/150, 15/150, 40/150,

Trimmers, 20p each

100PF Ceramic, 30PF Beehive, 12PF PTFE
2500PF 750 volt, 33PF MIN. AIR SPACED
5PF, MIN. AIR SPACED, 50PF CERAMIC.

Connector Strip

Belling Lee L1469, 4 way polythene, 3p each

Can Clips

1" or 1 1/4" or 2" 2p

Labgear Mains Dropper

36 ohm 25 watt + 79 ohm 9 watt 20p

Tuning Condensers

50PF, 50p

2 Amp Suppression Choke 5p

Paxoline

3 x 2 1/2 x 1/4" 2p
4 x 1/4 x 1/4" 2 for 1p
220K 3 watt resistors 2p
100 ohm 3 watt resistor 4p

Valve Retainer Clip, adjustable 2p

Output Transformers

Sub-miniature Transistor Type 25p
Valve type, centre tapped or straight 40p

3 pin din to open end, 1 yd twin screened lead 35p

Whiteley Stentorian 3 ohm constant impedance volume control way below trade at £1

The Radio Shack

161 St. Johns Hill, Battersea. London S.W. 11
Open 10 a.m. till 7 p.m., Monday to Saturday
also most Sundays.

Phone 01-223 5016

RADIO & ELECTRONICS CONSTRUCTOR
SEMI CONDUCTORS

AC107 15p BC174A/B
AC127/8 12p BC179
AC28 16p BC186/7
AD19 40p BC213L
AD33 33p BC337/8
AD116/7 13p BC547/56A
AF124/6/7 20p BY50
AF139/178 30p BY70/1/2
AF180/1 30p BY111/2/3/6
AF239 30p BY121/2/3
ASY27/3 25p BD201/2/3/4
BYX20-200 12p BSX2
BYX46-600 12p BSX4/8
BYX46-300 12p BYX20/200
BYX42-900 12p BYX49/600
BYX42-1200 12p BYX49/600
BYX48-1200 12p BYX49/600
BYX49-1200 12p BYX49/600
BYX38-300R 11p AF239
BYX38-300R 11p AF239
BYX46-300 12p AF239
BYX46-600 12p AF239
BYX46-900 12p AF239
BYX46-1200 12p AF239
BYX46-1500 12p AF239
BYX46-2000 12p AF239
BYX52-300 40 12p BY52-300
BYX52-1200 40 12p BY52-300
BC170A or 11p BY164
BC170B or 11p BY164
BC170C or 11A 19A 12p BY194/2A

BRIDGE RECTIFIERS

<table>
<thead>
<tr>
<th>Amp Vol</th>
<th>RMS</th>
<th>BYX10</th>
<th>30p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>140</td>
<td>OS01-200</td>
<td>38p</td>
</tr>
<tr>
<td>1.4</td>
<td>47</td>
<td>BY164</td>
<td>45p</td>
</tr>
</tbody>
</table>

HIGH POWER RECTIFIERS

<table>
<thead>
<tr>
<th>Amp Vol</th>
<th>5p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>2p</td>
</tr>
</tbody>
</table>

OPTO ELECTRONICS

<table>
<thead>
<tr>
<th>ORP12</th>
<th>44p</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYX40</td>
<td>650</td>
</tr>
<tr>
<td>BYX42</td>
<td>1.50</td>
</tr>
</tbody>
</table>

F.E.T's

<table>
<thead>
<tr>
<th>BFW10</th>
<th>45p</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSV79</td>
<td>1.00</td>
</tr>
<tr>
<td>BSV80</td>
<td>90p</td>
</tr>
</tbody>
</table>

Metal Chassis Sockets

| Coax | 5 or 6 pin 240° pins |

Philips Iron Thermostat

8 way Cinch standard 0.15 pitch edge connector 20p

BELLING LEE L1364 TV Aerial diplexor 10p

Ceiling switch 0.15 pitch edge connector 20p

ONE OF TRADE

TONE CLIPS

Nylon screw 7" 3p

CINCH 150

12 way edge socket 10p

1lb Mixed nuts, bolts, washers etc. 35p
Essential data for over 1500 popular models

With this vast 6-volume library at your fingertips you have all the necessary servicing data you need covering almost every popular model from 1968 to the very latest on the market today. And not only radio and TV but stereograms, record players and tape recorders too. Much of the earlier information on this equipment is quite unobtainable elsewhere and Radio & TV Servicing is now the only available source of technical data. The 1974 edition, now ready, brings the library right up-to-date with abstracts from manufacturers' service bulletins issued during the past year. Radio & TV Servicing is the only work of its kind—a money-spinner that no service engineer should be without.
Speedier, more efficient servicing means increased turnover...

This library is a gold-mine of technical information. Six hard-bound volumes giving vital data on more than 1500 models of Television (colour and mono), Radios, Car Radios, Stereograms, Record Players and Tape Recorders. More than 4000 pages clearly display thousands of circuits, printed panel diagrams, component layout diagrams, waveform graphs, block diagrams, etc. Over 800 pages, devoted entirely to Colour TV, include installation instructions, new term explanations, purity adjustments, colour balance, static convergence and a wealth of invaluable information. Here, in fact, is all the data you need for efficient and speedy repair work.

Your Guarantee

Sending for these valuable books, even though you also enclose your remittance, commits you to nothing. Unless you are absolutely satisfied you are perfectly free to return the set and if you do so within 10 days of receipt your money will be refunded in full and without question.

Make of Colour TV include:

All these makes of Mono TV, Radios, Car Radios, Stereograms, Record Players, Tape Recorders:

Plus such developments as:

To: Purnell Book Services, P.O. Box 20, Abingdon, Oxon OX14 4HE

Please send me the 6-volume set of RADIO & TV SERVICING for which I enclose cheque/P.O. No. _______ crossed and made payable to Purnell Book Services Ltd.

for the full cash price of £29.00 _______ tick

for £6.40 deposit to be followed by 6 successive monthly payments of £4.00 (total £30.40) _______ box

I understand that unless I am entirely satisfied I may return the volumes in good condition within 10 days and my money will be refunded in full.

BLOCK LETTERS PLEASE

Name

Address

TRADE APPLICATION (To be accompanied by Trade Order)

Please supply _______ 6-volume set(s) of RADIO & TV SERVICING at £29.00 per set. (Credit 30 days)

BLOCK LETTERS PLEASE

Name

Company

Signature

IMPORTANT: Individual volumes are available on application.

050.
UNDERSTANDING IC OPERATIONAL AMPLIFIERS

By R. Melen & H. Garland Price £2.15

COLOUR T.V. WITH PARTICULAR REF. TO THE PAL SYSTEM
by G. N. Patchett PRICE £5.10
TRANSISTOR RADIO SERVICING MADE EASY by W. Lemons PRICE £1.70
BEGINNER'S GUIDE TO COLOUR T.V.
By G. J. King PRICE £2.70
BEGINNER'S GUIDE TO ELECTRONICS
By T. L. Squires PRICE £2.10
SIMPLE TRANSISTOR PROJECTS FOR HOBBYISTS AND STUDENTS
By L. Steckler PRICE £1.40
MULLARD DATA BOOK 1974/5 PRICE 50p
TRANSISTOR MANUAL By G.E. PRICE £1.30
BASIC THEORY AND APPLICATION OF TRANSISTORS
By U.S. Dept. of the Army PRICE £1.60
ESSENTIAL FORMULAE FOR ELECTRONIC AND ELECTRICAL ENGINEERS
By N. M. Morris PRICE £1.00
SIMPLE SINGLE CHANNEL RADIO

CONTROL by R. H. Warring PRICE £1.65
TROUBLESHOOTING WITH THE OSCILLOSCOPE
By R. G. Middleton PRICE £1.95
INTEGRATED CIRCUITS (IC'S) AND TRANSISTOR GADGETS CONSTRUCTION HANDBOOK By B. Babani PRICE 70p
ELECTRONIC HOBBYIST'S IC PROJECTS HANDBOOK By B. Brown PRICE £1.55
T.V. SERVICING HANDBOOK
By G. J. King PRICE £4.05
ELECTRONICS AN ELEMENTARY INTRO.
FOR BEGINNERS By L. W. Owers PRICE £1.60
FOUNDATIONS OF WIRELESS AND ELECTRONICS By M. G. Scroggie PRICE £2.00
TEST EQUIPMENT FOR THE RADIO
AMATEUR By H. L. Gibson PRICE £2.00
JAPANESE RADIO, RECORD AND TAPE PLAYER SCHEMATIC/SERVICING MANUAL
By H. Davidson PRICE £2.10

ALL PRICES INCLUDE POSTAGE

We have the Finest Selection of English and American Radio Books in the Country

19-21 PRAED STREET (Dept RC) LONDON W2 INP
Telephone 01-723 4185

DENCO (CLACTON) LIMITED
355-7-9 OLD ROAD, CLACTON-ON-SEA, ESSEX

Our components are chosen by Technical Authors and Constructors throughout the World for their performance and reliability, every coil being inspected twice plus a final test and near spot-on alignment as a final check.

Our General Catalogue showing full product range
DTB4 Transistor & Valve circuitry for D.P. Coils
DTB9 Valve Type Coil Pack Application circuity
MD 1 Decoder Circuitry for Stereo Reception

.. 24p
.. 24p
.. 24p
.. 24p

All post paid, but please enclose S.A.E. with all other requests in the interests of retaining lowest possible prices to actual consumers
12 Watt stereo amp

Only £10 45p SPECIAL OFFER P. & P. LIMITED QUANTITY

This excellent little amplifier is of the latest integrated circuit design and will work into 4, 8, or 16 ohm speakers. The reproduction is excellent for an amplifier of this size only 8" x 3½ " x 2". The case is made of moulded metal.

12 Watt stereo amp

Tested and Guaranteed Paks

B79 4 4N4307 Sil. Rec. diodes, 1,000 PIV lamp plastic.

B81 10 Rectifier diode, 5, 10 amp. 6.3 volt. 3-State type.

B35 100 Mixed Diodes, Gold, Gold bonded, etc. Marked and Unmarked.

B38 30 Short Lead Transistors, NPN Silicon PNP types.

B41 2 Sil Power transistors, comp. pair 2N3152/1512.

B63 4 2N2222/2222 type PNP npn, power transistors. Radiotron spec. Devices.

B64 4 3819 N Channel F.E.T., ZTX100 in plastic case.

B65 4 3851 type NPN Sil. transistor TO-5 can comp. to 2N3906.

B66 4 40342 type PNP Sil. transistor TO-5 can comp. to 2N5460.

B69 8 Integrated Circuits DTL data supplied. Mixed Types, Flip Flaps, Gates, Hex Inverters etc.

Unmarked Untested Paks

B1 50 Germanium Transistors PNP, AF and RF.

B66 150 Germanium Diodes Min. glass type.

B83 200 Transistors, manufacturers reports, AF, RF, Silicon and Germanium.

B86 100 Sil. Diodes sub. mini. IN544 and IN546 types.

B94 15 Power Transistors, PNP, Germ. Silicon TO-3 Can.

B67 10 3819 N Channel F.E.T. , plastic case.

B68 10 Experimenters Pak of Integrated Circuits. Data supplied DTL, TTL, some marked.

Make a rev counter for your car

The TACHO BLOCK. This encapsulated block will turn any 90mm meter into a linear and accurate rev. counter for any car with normal idling system.

£1.00 each

Telephone dials

Standard Post Office type. Guaranteed in working order: only 25p P. & P.

Electronic Transistor Ignition £6.00

New in kit form, we offer this "up to the minute" electronic ignition system. Simple to make, full instructions supplied with these outstanding features: Transistor and conventional switchability, positive break lock-up and automatic alarm, negative and positive compatibility.

New X-Hatch

Our new vastly improved Mark Two Cross Hatch Generator is now available

Essential for alignment of colour guns on all colour T.V. receivers. Featuring plug-in IC's and a unique, sensitive sync. pickup system. The case is virtually unbreakable. Ideal for the engineer's tool box and only measures 3½" x 3½". Ready built £9.95 Complete upto Kit £7.95 (and plug but no batteries)

Plastic Power Transistors

WATT SILICON

Type No. Gain VCE Polarity Price
4577 15 15 PNP 30p
4572 40 40 PNP 30p
4507 15 15 PNP 30p
4502 40 40 PNP 30p

WATT SILICON

5612 15 15 PNP 35p
5611 40 40 PNP 35p
5601 15 15 PNP 35p
5602 40 40 PNP 35p

L.E.D.'s Complete with mounting grommet
Red 35p Green 40p

INTEG RATED CIRCUITS

We stock a large range of I.C.'s at very competitive prices. These are all listed in our FREE Catalogue, see coupon below.

METRICATION CHARTS now available

This fantastically detailed conversion calculator carries thousands of classified references between metric and British units (and U.S.A.) measurements of length, area, volume, liquid measure, weights etc.

Pocket Size 5p.

LOW COST DUAL IN LINE L.C. SOCKETS

14 pin type at 15p each 16 pin type at 15p each

NEW LOW PROFILE TYPE

BOOKS

Our famous P1 Pak is still leading in value

Full of Short Lead Semiconductors and Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP & NPN, and a host of Diodes & Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. only 50p

Please send me the FREE Bi-Pre-Pak Catalogue

Enclose large 5/- SAE with 5p stamp

NAME

ADDRESS

Please add V.A.T. at current rate

MINIMUM ORDER 5/- CASH WITH ORDER PLEASE. Add 15p post and packing per order. OVERSEAS ADD EXTRA FOR POSTAGE

BUY THESE GOODS WITH ACCESS

Phone 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX.

TELEPHONE SOUTHEND (070) 46344.

331
I've been dealing with Home Radio Components for a number of years and I've never felt I was a customer; rather that I'd joined a bunch of enthusiasts who were out to help me every way they could. This shows itself in many ways. Take their catalogue for instance. Several pages are taken up with information such as useful formulae, how to choose a microphone, the meaning of conventional signs, resistor and capacitor codes. Every page in that catalogue must cost them a great deal of money, and these things can't show them a direct return. On the other hand it does show that they care! There is a whole page telling you the best way to order, plus carefully worked out order forms, and two pages showing how you can open a credit account. Then there is their philosophy with the catalogue. They are anxious that the good customer will get it for the minimum price, so they include 14 coupons each worth 5p if used as directed. Don't take my word for it, try it for yourself, join the merry band! Membership is automatic, once you buy a catalogue. Send off for it today. It costs 65p plus 33p postage and packing but with the coupons you can get back 70p - the whole cost of the catalogue plus 5p towards the postage. Complete the coupon below and send it to the address shown, with your cheque or p.o. for 98p.
CONTENTS

RADIO 2 CONVERTER 334
by P. R. Arthur

RECENT PUBLICATIONS 339

NEWS AND COMMENT 340

TOUCH BUTTON CIRCUITS 342
(Suggested Circuit 290) by G. A. French

TRADE NEWS 345

SHORT WAVE NEWS – For DX Listeners 346
by Frank A. Baldwin

CONSTRUCTOR’S CROSSWORD 348
by J. R. Davies

TWO MORE USES FOR THE 555 349
by J. Lewis

2.5 – 25 VOLT POWER SUPPLY UNIT 352
by R. A. Penfold

THREE WAVEBAND TRANSISTOR PORTABLE 359
– Part 2 by Sir Douglas Hall, K.C.M.G.

PULSE COUNTING F.M. TUNER 361
– Part 2 by R. A. Penfold

MIDLAND NATIONAL AMATEUR RADIO 366
AND ELECTRONICS EXHIBITION

ALTERNATIVE SPEAKER FEED CIRCUIT 367
by N. R. Wilson

LIGHT-EMITTING DIODES 368
by R. J. Caborn

IN YOUR WORKSHOP 371
– Constructing an Electronic Voltmeter

RADIO TOPICS 377
– by Recorder

CONSTRUCTOR’S DATA SHEET No. 94 378
(D.S.C. Wire Coil Lengths)

FEBRUARY ISSUE WILL BE
PUBLISHED ON 3rd FEBRUARY

Published in Great Britain by the Proprietors and
Publishers, Data Publications Ltd., 57 Maida Vale,
London, W9 1SN

The Radio & Electronics Constructor is printed by
Carlisle Web Offset.
Many of the less expensive commercially made broadcast band receivers, together with the simpler designs for the home constructor, are not equipped to receive long wave transmissions and hence are unable to pick up B.B.C. Radio 2. The inexpensive device which forms the subject of this article can, when placed near any medium wave portable having a ferrite aerial, enable that set to receive Radio 2. This it does by converting the long wave Radio 2 transmission to a medium wave signal.

The unit is self-contained, having its own internal battery and ferrite aerial. No direct connection is made between the converter and the receiver with which it is used.

OPERATING PRINCIPLE

A block diagram showing the various stages of the unit is given in Fig. 1. This is extremely simple and, as can be seen, the circuit consists of a ferrite aerial tuned to the Radio 2 frequency of 200kHz feeding one input of a mixer, and an oscillator having a nominal frequency of 900kHz feeding a second input. The input signals are heterodyned by the mixer to form two additional frequencies at the output. These are 700kHz (900kHz minus 200kHz) and 1,100kHz (900kHz plus 200kHz).

Both these frequencies lie, of course, within the medium wave band, and can be received by a medium wave radio tuned to either. The signal is fed to the receiver by way of a wide band coupling inductor consisting of a ferrite rod with a coil having a small number of turns. When the ferrite rod is placed near the ferrite aerial coil of the receiver the signal is induced from one coil to the other. This method of coupling is very simple but works extremely well.

CIRCUIT FUNCTIONING

The circuit of the converter is shown in Fig. 2. Only one active device is required, this being the dual gate m.o.s.f.e.t. TR1. If the G2 terminal is ignored for the moment, the device can be considered as being very much like a single gate m.o.s.f.e.t., whereupon source bias and decoupling are provided by R1 and C4, and the gate is tied to the negative supply rail via the ferrite coil L1. This coil is tuned to resonate at 200kHz by C1 and C2.
This novel converter unit allows medium wave transistor portables to receive the long wave Radio 2 signal. The converter output couples inductively to the medium wave receiver ferrite aerial and no interconnections are needed.

Fig. 2. The circuit of the converter. The dual gate f.e.t., TR1, functions both as oscillator and as mixer.
The positive supply is fed to the circuit by way of R2, C5 and the on-off switch, S1. L4 is the wide band coupling coil.

The gain at the G1 terminal of the f.e.t. is dependent upon the voltage at the G2 terminal. When G2 is biased a couple of volts or so positive of G1, the G1 gain will be high. If, on the other hand, the G2 potential is taken down to, or is even made negative of, the voltage on G1, the G1 gain will be greatly diminished. G2 is held about 1 volt positive by being connected to the source via the oscillator tuned winding, L2. Positive feedback from the drain to G2 to produce oscillation is then given by way of L3. C3 tunes L2 to give oscillation at approximately 900kHz.

Since the voltage at G2 is modulated by the 900kHz oscillation so also is the G1 gain. Thus the 200kHz input signal from L1 is modulated by the 900kHz signal to produce the required additional signals at the output.

It might at first sight be considered that R2 is unnecessary and that the junction of C5 and L4 could connect directly to S1. However, it was found in practice that, without R2, the circuit oscillated rather violently and did not give proper operation.

TR1 can be either a 3N140 or a 40673, both of which are available from Arrow Electronics Ltd., 7 Coftfold Road, Brentwood, Essex, CM14 4BN. The 40673 has integral back-to-back diodes connected to the source to protect the gate insulation from breakdown due to excessive gate voltage. The component employed for L2, L3 is a Denco Miniature Dual-Purpose coil which is normally used as an r.f. interstage coil. It has a base coupling winding which is not employed in the present circuit and which is not shown in Fig. 2.

COMPONENT PANEL

Apart from the battery and S1, all the components are mounted on a piece of plain Veroboard (i.e. without copper strips) of 0.15 in. matrix measuring 3\(\frac{1}{2}\) by 2\(\frac{1}{2}\) in. This is a standard size. A diagram showing component layout on this board is given in Fig. 3.

Two lengths of \(\frac{1}{4}\) in. ferrite rod are required for L1 and L4. That for L1 is 2 in. long and that for L4 is 4 in. long. Both of these will need to be broken from a longer rod. Ferrite is a very hard and brittle material, and a ferrite rod is most easily broken at a desired point by first cutting a deep V-shaped groove with a triangular file around its entire circumference at the appropriate place. The rod can then easily be broken cleanly in two at this point.

L1 is wound on the 2 in. rod, and consists of two pies, each with 100 turns to give 200 turns overall, of 30 to 34 s.w.g. enamelled or d.c.c. wire. The ends of the winding are taped to the rod to hold them securely in place. L4 has 40 turns of the same type of wire, these being wound in a single pie about \(\frac{3}{8}\) in. wide.

It is wound on the \(\frac{3}{4}\) in. rod and, again, the winding ends are taped to the rod.

When L1 and L4 have been completed, they and the other components are mounted in position on the board. If a 3N140 is employed for TR1, do not remove the lead-out short-circuiting clip with which this is supplied. It will probably be necessary to enlarge the two holes for the tags of trimmer C2, and it may be necessary, with some trimmers, to out the tags so that they are a little narrower. L1 and L4 are both tied tightly to the board, each by means of two lengths of twine or similar. They should not be secured with lengths of bare wire as these would constitute short-circuited turns and would prevent correct circuit functioning. The coil L2, L3 is mounted on a small bracket made of 18 s.w.g. aluminium. This is illustrated in Fig. 4, and it is necessary for two of the Veroboard holes to be drilled out 6BA clear to accommodate it. The section of the bracket which secures directly to the Veroboard is below the latter, as indicated in Fig. 3. The two 6BA bracket mounting bolts have their heads below the Veroboard and the nuts on the component side. The aluminium bracket also serves, later, to secure the component board inside the case.

The components are next wired up, as illustrated by the broken lines in Fig. 3. The lead-outs are bent over flat against the underside of the panel and are then taken to the appropriate connection points. Also connected at this stage are the negative battery lead and a lead about 5 in. long which will eventually connect to S1. These last two leads are flexible and insulated.

If TR1 is a 3N140 it is possible for its gate insulation to be broken down by any voltage which may be present on the soldering iron tip when this is applied to the gate circuits. To prevent breakdown, the short-circuiting clip must not be removed until all soldered connections have been completed and the converter is ready for testing. The soldering iron should be earthed, regardless of whether a 3N140 or a 40673 is used.
Fig. 3. Nearly all the components are mounted on a plain Veroboard panel. The connections at the coil tags need to be made quickly, as excessive heat here will cause deformation of the plastic insulation.

THE CASE

An inexpensive home-made wooden case is used to house the unit, and constructional details for the front, top, base and two sides are shown in Fig. 5. This diagram also indicates how these parts are assembled together. The material is 3mm. plywood, although a slightly different thickness could be used if some of the dimensions are suitably altered. The threaded section of coil L2, L3 will later pass through the central 6mm. (approximately 1 in.) hole shown in one of the sides. Alongside this is the hole for switch S1, which can be any miniature s.p.s.t. type. In the prototype the author employed a press-button switch which turns on and then off with successive pushes on the button. After cutting out these two holes, the five parts of Fig. 5 may be glued together using a good general-purpose adhesive.

When the adhesive has set, the case is covered with a self-adhesive plastic such as Fablon. Switch S1, and then the component board may be fitted. The threaded section of L2, L3 passes first through the 6 mm. hole in the aluminium bracket and then through the 6 mm. hole in the case side, as indicated in Fig. 3 and the
Fig. 5 The dimensions of the parts which make up the case. The material is 3mm. plywood. The top has the same dimensions as the base.

A current indicating meter should be inserted in series with the positive battery lead before the unit is first switched on, and this should give a reading roughly in the region of 1.2mA if the converter is functioning correctly. If a reading greatly different from this figure is obtained switch off immediately and check for wiring errors.

When a correct current reading is obtained, disconnect the meter and complete the normal positive connection to the battery. Place the unit so that L4 is close (within 2 to 3 in.) to the ferrite aerial coil of a medium wave receiver. The required coupling can frequently be achieved by merely placing the converter on top of the receiver. Tune the receiver to around 700kHz (429 metres) or 1,100kHz (273 metres) and search the dial for the Radio 2 signal. If it cannot be received, slightly adjust C2 and try again. Repeat if necessary until the signal is located.

Should the Radio 2 signal coincide with a medium wave signal, adjust the core of L2, L3 slightly to move the Radio 2 signal away from the medium wave transmission. Alternatively, tune the receiver to the other frequency on which Radio 2 can be picked up. If possible, have the core of L2, L3 adjusted so that none, or only a small part, of the metal thread attached to the core protrudes through the top of the coil. When a clear signal has been obtained C2 is adjusted to peak it.

Although the converter was designed only for reception of Radio 2, the bandwidth of L1 and C2 is quite wide, and it is possible that several other long wave stations may be received as well. These will be tuned in by adjusting the tuning of the medium wave receiver.

The converter has merely to be placed on, or close to, the medium wave receiver with which it is to be used. It is shown here with a small home-constructed receiver.

As a final point, it should be mentioned that the coil employed for L2, L3 is not normally intended for use in an oscillator circuit, and there is a very slight risk that one of the windings on a particular coil may be incorrectly phased. If it is found that oscillation does not take place and that no fault can be located, the connections to pins 8 and 9 of the coil should be temporarily transposed to check whether there is an incorrectly phased winding.
RECEIVING PAL COLOUR TELEVISION. By A. G. Priestley, B.Sc.(Eng.)
269 pages, 215 x 135 mm. (8½ x 5½ in.) Published by Fountain Press. Price £5.00.

This book is intended mainly for engineers and enthusiasts who are beginning to study colour television, and it explains the principles of PAL reception in terms which apply to the domestic colour television receiver. Also given are details of colour aligning and servicing procedures.

The book commences with a chapter dealing with fundamentals, including some notes on the original NTSC colour system, and introducing brightness, hue and saturation. The second chapter then describes the transmission of a PAL signal, to be followed by a third chapter devoted to colour tubes and beam deflection arrangements. Subsequent chapters cover the decoding of the PAL signal, colour display adjustments, the complete colour receiver, and further aspects of the PAL system which were not dealt with earlier. The final chapter is concerned with servicing. There is an appendix on vectors and phasors, and included also are four pages of colour reproductions showing the chromaticity diagram together with twelve views of the image presented by the colour tube under correct and fault conditions.

This is a hard cover book, and will be of especial value to the student and the service engineer. The reader who is conversant with monochrome television operation may well find that this work provides the vital stepping stone he needs to enter the area of colour television.

MARINE ELECTRONICS HANDBOOK. By Leo G. Sands.
198 pages, 215 x 135 mm. (8½ x 5½ in.) Published by Foulsham-Tab Ltd. Price £1.35.

Another book in the Foulsham-Tab list of American texts with an introductory chapter for English readers, 'Marine Electronics Handbook' deals extensively with the marine communication services that are available in the U.S. for small sea-going craft. The book gives details of v.h.f., a.m. and s.s.b. radiotelephones and, also, of radio direction finding equipment.

Further sections of the book cover aerial systems, additional uses for radiotelephone equipment, power supplies, maintenance and servicing. A final chapter is devoted to rules and courtesy in the operation of radiotelephones.

The book is aimed at the marine enthusiast who has a smattering of electrical and electronic knowledge and it gives a comprehensive listing of services and equipment. Operating references in the book are with respect to F.C.C. regulations whereas, in the U.K., the radio licensing authority is the Home Office.

The following titles are similarly American texts published by Foulsham-Tab Ltd., and they have the same page size.

PICTORIAL GUIDE TO TAPE RECORDER REPAIRS. By Forest H. Belt.

Illustrated entirely by photographs, this book covers the servicing of tape recorders and ancillary items. The equipments dealt with range from cassette portables to 8-track players installed in cars.

KWIK-FIX TV SERVICE MANUAL. By Forest H. Belt.
390 pages. Price £1.95.

A book, well illustrated with oscillograms and picture tube displays, describing the trouble shooting of 525 line monochrome and colour television receivers. The latter use NTSC circuits.

BASIC ELECTRICITY AND BEGINNING ELECTRONICS. By Martin Clifford.

This book starts right from scratch with static electricity and takes the reader up to the elements of the triode valve and the transistor. It caters for the real beginner, and offers a helpful introduction to electrical basics.

HOW TO BUILD SOLID-STATE AUDIO CIRCUITS. By Mannie Horowitz.
326 pages. Price £1.75.

Basic design procedures for a.f. amplifying circuits incorporating bipolar transistors, f.e.t.'s and i.g.f.e.t.'s. A very meaty treatment of the subject with plenty of detail, fairly simple mathematics where necessary, and a considerable number of practical design examples to demonstrate the theory. The book is based on material published by the author in Radio-Electronics magazine.

HOW TO TEST . . . ALMOST EVERYTHING ELECTRONIC. By Jack Darr.

A large number of tests on domestic electronic equipment are described, each test being dealt with as an individual item. The test equipment employed includes voltmeters, milliammeters, multimeters, electronic voltmeters and oscilloscopes; and the equipment being tested ranges from dry batteries to CB transmitters and colour television receivers.

JANUARY 1975
LARGE INSTRUMENT ORDER

Photograph shows the British Gas multi-meter complete with accessories, in its carrying case. The instrument is manufactured by SEI at its Eccles factory.

Salford Electrical Instruments Limited has recently been awarded a large instrument order, by British Gas, worth more than £300,000, over two years.

The contract is for up to 10,000 multi-range test meters designed to a unique performance specification drawn up by British Gas. The meters will meet the special requirements for servicing the electrical circuitry in gas appliances.

The need for a special instrument has resulted from the increasing and more sophisticated use of electricity of both high and low voltages in gas appliances.

R.S.G.B. ANNUAL REPORT AND ANNUAL REVIEW

The Annual Report of the Council of the Radio Society of Great Britain to its members, presented at the Forty-eighth Annual General Meeting of the Society in December, was an encouraging one.

The financial aspect continues to be better and the surplus for the year ended 30th June 1974 exceeded £3,700 and brings the Accumulated Fund to more than £21,000. It is also pleasing to note that H.M. Customs and Excise have agreed that 60% of the subscription from UK members should be zero-rated. An amount of £4,802 is due back, and the Council hope that members will be prepared to leave their individual share of this substantial sum with the Society.

Following upon our remarks last month regarding the extent of voluntary work undertaken by many in our hobby, we noted that there were no less than 13 Committees of Council. The amount of voluntary work given under the auspices of the Society must indeed be enormous, when one also takes into account the work done by the officers of affiliated clubs and societies, and individual members.

There is much else of interest mentioned in the Annual Review and it reveals the great importance of the R.S.G.B. to amateur radio. This part of our hobby would be infinitely poorer without the R.S.G.B., and we hope that those of our readers who are interested in amateur radio, and not already members, will consider joining – the address is: 35 Doughty Street, London, WC1N 2AE, from whom details can be obtained.

- World Radio Club transmission times as from 4th January, 1975, will be:
 1330 – 1345 GMT
 2315 – 2330 GMT
 2030 – 2045 GMT
 0815 – 0830 GMT

BBC MINICAM AT CRYSTAL PALACE SPORTS ARENA

The multi-purpose triaxial cable connecting to the portable outside-broadcast BBC Minicam has to provide a screen, a good earth, d.c. power, digital-on-carrier signals for electronic camera function control, v.f.-on-carrier two-way voice circuits and carry fully colour-coded vision signals back from the camera. The triaxial connector on the left of the back-pack had to be self-latching, sealed, noise-free and robust: an unusual combination of requirements that were met by Lemo (UK) Ltd., of 6 South Street, Worthing, Sussex.
COMMENT

BRIAN RIX AT MIDLAND AMATEUR RADIO EXHIBITION

Mr. Rix visited Leicester on Thursday 31st October 1974, as a guest of Doram Electronics on their stand at the Amateur Radio & Electronics Exhibition held in the Granby Halls.

After a brief address, in which Brian Rix (G2DQU) admitted that he first went on the air using his elder brother’s equipment at the tender age of 13, he selected a cordless soldering iron from the Doram catalogue. The photograph shows Frank Chable, General Manager of Doram Electronics, making the presentation.

Having drawn the 50 winners of a competition sponsored by Doram, Mr. Rix talked to electronic enthusiasts about their hobby and demonstrated his own mobile radio station – his car, having been brought into the exhibition and parked adjacent to the Stand.

Doram Electronics was recently established in Leeds to provide a ‘by-return-of-post’ mail order distribution service for components, kits and accessories specifically for the amateur radio, electronics and hi-fi enthusiast.

Catalogues, priced at 25p and containing full details of more than 4,000 product lines are available from them at PO Box TR8, Wellington Road Industrial Estate, Leeds LS12 2UF.

THE SIR HENRY WHEATSTONE PREMIUM

Mr. J. Elliot, a project manager at the EMI Electronics Limited laboratory at Wells, Somerset, has been awarded the Sir Henry Wheatstone Premium by the Institution of Electronics and Radio Engineers for his paper on a device developed to aid yachtsmen.

His paper describes the device, which consists of a small analogue computer taking account of the apparent wind parameters, together with the yacht’s speed. The output indicator is an electrical meter which shows when the optimum course is being steered.

RISING PRICES?

Last month in our report of the Amsterdam Radio Exhibition we quoted the organisers’ comments that radio and TV equipment are less sensitive to inflation than other consumer goods.

The large discounts offered by firms in the hi-fi field are some evidence of this, and one can now see something of the same trend in the component field, as keen readers of advertisement pages will have noticed.

However, we do not expect component prices to follow the trend of share prices!

IN BRIEF

- A course of lectures on Modern Colour TV Receivers is to be given at South London College. Topics include: Recent circuit techniques and development of 110° colour television receivers, by Specialists from Bush, Murphy, Ferguson, HMV, Ultra, Marconi, Decca, Philips and Pye. 9 weeks, from 6.30 to 8.30 p.m. each Thursday evening, commencing 23rd January, 1975.

 Applications to: Senior Administrative Officer, South London College (formerly Norwood Technical College), Knight’s Hill, London SE27, OTX.

- For the second successive year, Amphenol Limited, the Whitstable based manufacturer of electronic components, has won the British Safety Council’s top award. Amphenol has now been awarded a safety performance Citation in each of the three years that the Council’s scheme has been running.

With apologies to the author of the Pulse Counting F.M. Tuner article.

JANUARY 1975

www.americanradiohistory.com
THE FACT THAT THE COLLECTOR OF A bottomed silicon transistor assumes a potential approximately 0.2 volt above its emitter, and that under these conditions the base is about 0.6 volt above the emitter, enables a number of simple and interesting switching circuits to be evolved. A selection of typical switching circuits is given in this article. The principles to be presented are of a general nature and the experienced experimenter will be able to take advantage of one or more of the configurations to meet any specific applications which he may have in mind. From an electrical point of view the circuits can be looked upon as being very 'robust', in so far that reliable operation can be obtained with a wide variation in resistor values. Obviously, semiconductor maximum current and power dissipation figures must not be exceeded.

BASIC CONFIGURATION

A basic switching configuration is shown in Fig. 1. Here, there are two silicon transistors cross-connected in such a manner that one transistor must always be turned on and the other must always be turned off. Let us say that it is TR1 which is turned on. Under these conditions, TR1 collector is about 0.2 volt positive of the negative supply rail, whereupon the base of TR2 is below the 0.6 volt level needed to cause this transistor to conduct. In consequence, TR2 is cut off. The base bias current required to maintain TR1 in the bottomed condition flows through R4 and R3. The collector of TR2 is at the same potential as the junction of these transistors, and with the component values shown in the diagram this potential is of the order of 6 volts. If we should happen to press push-button S2, nothing will happen. The push-button will merely take TR2 base a little further negative and TR2 will stay in the non-conductive condition.

If, however, we press S1, the circuit immediately changes over. This is because S1 takes the base of TR1 down to the negative supply rail, thereby cutting this transistor off. TR1 collector current ceases and bias current can now flow through R1 and R2 to the base of TR2, which turns

![Fig. 1. A basic switching circuit. One transistor is always conductive and the other cut off](image-url)
hard on. The circuit will remain in this condition when S1 is released because the collector of TR2 will now be at about 0.2 volt positive of the negative rail, and will prevent the flow of bias current to the base of TR1. The circuit will continue with TR2 on and TR1 off until we press S2, whereupon it will at once revert to the original condition.

When the 9 volt supply is applied either of the two transistors will turn on. Checks with a practical circuit showed a nearly completely random pattern here, although the transistor with the higher gain tends to be the one which turns on more frequently at supply switch-on. If a capacitor of suitable value is connected between one transistor collector and the negative supply rail that transistor will always be the one which turns on when the supply is applied. In Fig. 1 the capacitor is connected, as shown in broken line, to the collector of TR2, and it causes a slight delay in the rise of base current in TR1 at supply switch-on, thereby favouring the turning on of TR2. A value of 0.01µF was found to be satisfactory and this did not have any noticeable effect on circuit control by the push-buttons. It is probable that a lower value than 0.01µF could be used in conjunction with the resistor values shown, although this point would have to be checked by experiment with the particular transistors employed.

The collector voltages of TR1 and TR2 may be employed to control external circuits, and the arrangement has the advantage that control is exerted even though the short-circuiting of either base to the negative supply rail is of a momentary nature only.

LIGHT-EMITTING DIODE

In Fig. 2 the collector resistor for TR1 is replaced by a light-emitting diode type TIL209 and a 330Ω current limiting series resistor. Despite its asymmetry this circuit functions just as reliably as that of Fig. 1. A current of about 20mA flows through the i.e.d. when TR1 is on, causing it to glow brightly. The bias current for TR2 flows through the i.e.d. when TR1 is off. This current is a little less than 1mA, and it results in a just perceptible glow in the light-emitting diode. Due to the much higher current requirement of TR1 collector load, TR1 is always off after supply switch-on. If a 0.01µF capacitor is connected between TR1 collector and the negative supply rail, TR1 is always on after switch-on. The value of 0.01µF proves to be satisfactory in practice despite the higher collector current loading for TR1.

Fig. 2 provides the same facilities as Fig. 1, with the added feature that the circuit state is indicated by the light-emitting diode.

In Fig. 3(a) a second i.e.d. is added, this becoming fully illuminated when TR2 is turned on. Circuit operation is
the same as before, and a 0.01µF capacitor can be employed with either of the two transistors to ensure that that is the one which turns on at supply switch-on. If S1 and S2 are omitted the circuit can be used as a gambling toy, in so far that either l.e.d. may light when the 9 volt supply is applied. However, it will be impossible to obtain a true 50:50 random distribution between the two l.e.d.'s and there will be a bias towards one or the other depending on the relative gains of the two transistors.

In Fig. 3(b) the press-buttons are replaced by two switches which are normally closed. In consequence, both transistors are turned off. If, say, S1 is now opened TR1 will at once become conductive and it will be impossible for TR2 to turn on even if S2 is opened only fractionally later. The fact that S1 has opened first will be indicated by full illumination in LED1. Had S2 opened before S1, then this fact would be registered by full illumination in LED2.

The circuit may be used as a preceden detector to indicate which of two pairs of contacts has opened first. S1 and S2 may, for instance, be physical switches operated by two contestants in a quiz game.

TOUCH BUTTONS

Touch buttons appear to be all the rage these days, and the basic circuit adapted for operation by two touch buttons is shown in Fig. 4. Two transistors, TR3 and TR4, have been added and the bases of these couple to the touch buttons via current limiting resistors R5 and R6. A supply of 18 volts is provided for the touch button circuit.

If a finger is applied to one of the touch buttons, it bridges the two contacts of the button and allows a small current to flow to the base of the corresponding transistor. Thus, if TR1 is on and Touch Button 1 is touched by the finger, a current flows into the base of TR3 via R5. This current causes TR3 to conduct sufficiently to reduce the bias current for TR1. TR1 turns off and TR2 turns on. TR1 can be turned on again by applying a finger to Touch Button 2.

The prototype version of Fig. 4 functioned quite reliably, but the author puts this circuit rather in the experimental category because it relies extensively on the resistance presented to the touch button by the finger and this factor cannot be controlled. It is interesting to note that a hard calloused skin can, when dry, offer a very high resistance to the touch buttons and may need to be pressed down somewhat firmly to actuate the circuit rather than merely touched against the surface. The electrical sensitivity of the touch button circuit is high; with the prototype, operation was obtained by connecting a 2MΩ resistor across either button.

The touch buttons themselves have to be home-made, and each consists of two small adjacent metal areas which can be bridged by the finger and which are mounted on an insulating base. The metal employed should be one which presents a shiny surface that will not oxidise. For his experiments the author employed two adjacent strips on a small piece of Veroboard which had the flux removed by a little light sandpapering. These could, however, oxidise too readily in time to function as the basis of a permanent touch button.

In all the circuits given in this article, the resistors may be ½ watt 5 or 10%.

BACK NUMBERS

For the benefit of new readers we would draw attention to our back number service.

We retain past issues for a period of two years and we can, occasionally, supply copies more than two years old. The cost is the cover price stated on the issue, plus 6p postage.

Before undertaking any constructional project described in a back issue, it must be borne in mind that components readily available at the time of publication may no longer be so.

We regret that we are unable to supply photo copies of articles where an issue is not available. Libraries and members of local radio clubs can often be very helpful where an issue is not available for sale.
DUAL-DIGIT DISPLAYS

Litronix announce two new dual-digit red-lit numeric displays, believed to be the only displays of their type currently available. Designated DL-721 and DL-727, they have been created for a broad range of commercial and domestic applications, from digital clocks and TV tuner indicators to digital instrumentation and point-of-sale systems. DL-721 contains a polarity indicator, and can register from 00 to 119; DL-727 incorporates two 7-segment digits, and can register from 00 to 99.

In both cases, the digits measure 0.5in. in height and have a right-hand decimal point. They are end-stackable on 0.5in. digit centres.

Typical electrical characteristics of these common-anode units include a forward voltage of 2V at 0.5 to 50mA, dynamic resistance of 6-ohm at 10mA, and luminous intensity of 3mcd at 20mA.

Both the -721 and the -727 are priced at £2.44 in quantities of 1,000.

MINIATURE ROTARY SWITCHES

The FEME 5922 series of miniature rotary switch from FR Electronics are available up to 6 poles 12 way. The professional version of the switch has gold contacts, either hermetically sealed or with adjustable stop, whilst the economic version has silver contacts, unsealed, with or without adjustable stop.

The switch is moulded in diallylphthalate and is rated at 0.3A at 220 V.AC, or 1A at 30 V.DC.

High quality standards of manufacture are maintained and good deliveries available.

Further details are obtainable from FR Electronics, Switching Components Group, Wimborne, Dorset.

CIRCUIT TESTER FROM JPI

A low-priced, combined 6/12 volt circuit tester and electrical screwdriver has been introduced by J. P. Isaacs Ltd., of Mark House, Harrow, Middlesex.

The tester, made in West Germany, consists of a 4jln. screwdriver with a hollow, insulated handle containing a festoon bulb, and a 30 in. lead terminating in a crocodile clip. By clipping the lead to any convenient earth point the tester can be used to check virtually any automobile circuit or component except the starter solenoid. It is also suitable for low-voltage radio circuit testing, but not for mains voltages.

At a recommended retail price of 63p plus VAT, the tester which is skin-packed with full instructions will shortly be available through garages and motor accessory shops. Trade inquiries should be addressed to local motor factors.
I am sometimes asked the questions "Is it possible to hear Dx stations on the higher frequency bands?" and "Do you log any Dx on the HF bands?" or "Can you give me any information of HF bands Dx stations?". Yes it is, yes I do and yes I can.

HF BANDS DX

The hunting grounds of the avid Dxer are the 60 and 90 metre bands but it is perfectly possible to go Dx chasing on the HF bands especially at this time of the year. Try the following:

- **MALAYSIA**
 Kota Kinabula on 15275 at 1517, series of chimes repeated till 1530 when YL announcer with "Inilah Suara Malaysia, Kuala Lumpur", announcements and Arabic-type music.

- **SRI LANKA**
 Colombo on 11800 at 1540, the All Asia Service in Hindi, Indian-type music, some QRM from Moscow.

- **INDONESIA**
 RRI Jajapura on 7190 at 1348, OM in Indonesian, Arabic-type music, chants.

- **CLANDESTINE**
 How about some of these stations? R. Pathet Lao on 6211.5 at 1405, YL with harangue in Laotian; Voice of the United Front of Cambodia on 9988.5 at 1413, OM and YL alternate in Cambodian, local music, off suddenly 1431; Voice of the Thai People on 9422.5 at 1543, OM & YL in Thai, music, off 1610 after slogans.

CURRENT SCHEDULES

- **SOUTH AFRICA**
 Radio RSA, "The Voice of South Africa", Johannesburg, operates an External Service in English to West Africa and Europe from 2100 to 2150 on 7270, 9525, 11900 and on 15155. Radio RSA also presents programmes in English as follows – to East and Central Africa and the Middle East from 0300 to 0430 on 3995, 5980, 7270 and on 9525; to West Africa from 0615 to 0705 on 11900, 15220 and on 17780; to South and North East Africa (Sundays only) from 1000 to 1050 on 11970 and on 15220; to Central and East Africa from 1100 to 1200 on 11900, 15220 and on 21535; to Central and East Africa from 1300 to 1550 on 11900 (to 1456), 15220 and on 21535; to East Africa and the Middle East from 1600 to 1650 on 7270, 11900 and on 15155 and to North America from 2230 to 2320 on 9525, 9695, 11900 and on 15155.

- **NEW ZEALAND**
 Radio New Zealand, Wellington, has an External Service mostly in English to the Pacific islands from 0600 to 0845 on 6080 and on 9540; from 1700 to 1945 on 6080 and on 9755 and from 2000 to 0545 on 15110. Programmes not in English are from 0645 to 0710 in Samoan (Saturdays); 0730 to 0730 in Samoan; 0820 to 0845 in Rarotongan (Wednesdays).

- **TAIWAN**
 The Voice of Free China, Taiphe, presents an External Service in English to Africa and Europe from 1900 to 2000 on 9685, 11825, 11860, 15125, 15370, 17720 and on 17890; to North America, Far East and Pacific from 0200 to 0350 on 5980, 7130, 9685, 11825, 11860, 15125, 15370, 17720 and on 17890.

- **BRAZIL**
 Radio Nacional, Brasilia, radiates a programme in English directed to the Americas and Europe from 2100 to 2200 on 11780.

- **VENEZUELA**
 Radio Nacional de Venezuela, Caracas, has an External Service in English to Europe, North and South America, from 2200 to 2300 and from 0001 to 0100 on 11750 and on 15390.

- **CHINA - 2**
 Radio Peking has introduced broadcasts in Quechua beamed to Peru, Ecuador and Bolivia from 2230 to 2300 on 11685 and on 15520.

- **PORTUGAL**
 Radio Portugal, Lisbon, now radiates in English to Europe from 2230 to 2300 on 6025 and on 9740.

- **BANGLADESH**
 Radio Bangladesh, Dacca, in the External Service, radiates in English as follows – from 0415 to 1515 to the Middle East, India and Pakistan on 17745 and on 21685; from 1120 to 1150 to Nepal on 7250 and on 9550; from 1230 to 1300 to Europe on 15525; from 1515 to 1900 (and from 1900 to 1915 with newscast at slow-speed) to Europe on 7250 and on 9488.
 Radio Bangladesh operates a Home Service mostly in Bengali but a few newscasts in English are included, these being from 0145 to 0155 on 4890 and on 5985; from 0605 to 0615 on 9580, 9605 and on 17690; from 1205 to 1210 on 4890, 5985, 7250 and on 17690.

Frequencies - kHz

Times = GMT
MOROCCO

Moroccan Radio, Rabat, has an External Service in Arabic to Africa ("Voice of Moroccan Sahara") from 2100 to 2200 on 6170, 6190 and on 9615; in Spanish to Europe and Africa from 2205 to 2235 ("Voice of the Sahara") on 7225.

CLANDESTINE

Radio Independent Spain ("Radio Espana Independiente") radiates mostly in Spanish throughout the day but the evening schedule can be heard from 1800 to 2130 on 7690, 10110, 12140 and on 14485; also from 2005 to 2025 on 15185. This one is pro-communist, anti-Franco and the transmissions probably emanate from Bucharest.

Radio Euzkadi ("Voice of the Basque Resistance") in both Spanish and Basque from 1930 to 2100 and from 2130 to 2200 on a frequency between 13200 - 13300 and between 12000 - 12100 (frequencies vary daily). Previously radiated from a station located near Bordeaux, France (till August 1954), they are now thought to be transmitted from the northern part of the South American continent.

"Radio Iran Courier" (Radyo-ye Peyk-e Iran) broadcasts in Kurdish, Azerbaijani and Persian from 1430 to 1620 on 9560, 11415 and on 11695; from 1620 to 1810 on 11415 and on 11695. Programme content is pro-Soviet, Anti-Shah, Iranian Government, Western interests in Iran, CENTO etc.

NORTH KOREA

Radio Pyongyang operates a Home Service which may interest Dxers. The broadcasts are from 2000 to 0830 on 6290 and on 6600; from 2330 to 0420 and from 0530 to 0848 on 11350.

CHINA—2

Radio Peking has a First and Second National Programme which may also interest Dxers when logged on the following channels. First National Programme, from 2000 to 2340 and from 1053 to 1735 on 3220; from 2000 to 0100 and from 0948 to 1735 on 4460; from 2000 to 0100 and from 1100 to 1735 on 3450 and on 4800; from 2000 to 0100 and from 1033 to 1735 on 4905; from 2000 to 0140 and from 0923 to 1735 on 5320; from 2000 to 0100 and from 1100 to 1735 on 6225, 6750, 7095 and on 7516. Second National Programme, from 2100 to 2330 and from 1133 to 1645 on 3290; from 2100 to 2400 and from 1023 to 1645 on 4250; from 2100 to 2400 and from 1118 to 1600 on 4850; from 2100 to 0245 and from 0823 to 1645 on 5075; from 2100 to 2400 and from 1023 to 1600 on 5163; from 2100 to 2400 and from 0918 to 1645 on 6345.

Other transmissions from Radio Peking of interest to Dxers would be the minority-language broadcasts in the Home Service. In Kazakh from 0130 to 0225 and from 1400 to 1455 relayed by Urumchi on 4400 and on 5800; in Tibetan from 2330 to 0025 and from 1100 to 1155 relayed by Lhasa on 4035, 9490 and on 9652; in Uighur from 0030 to 0125 and from 1300 to 1355 relayed by Urumchi on 4110 and on 7050; in Mongolian from 2200 to 2250 relayed by Huhehot on 4068 and on 4905; in Mongolian from 0430 to 0520 relayed by Huhehot and Hailar on 6620, 7202 and on 8320 and by Urumchi on 4220 and on 5440; in Mongolian from 1200 to 1250 relayed by Hailar, Huhebot and Urumchi on 5915, 6620 and on 7202.

AROUND THE DIAL

POLAND

Warsaw on 7125 at 1835 with a talk in English about the fruit growing industry in Poland, in parallel on 7285.

FINLAND

Helsinki on 11755 with a feature on the Finnish Post Office in English, also in parallel on 15185.

AFGHANISTAN

Kabul on 15195 at 1130 with commencement of English programme to Europe, station identification repeated several times.

IRAQ

Baghdad on 9745 at 1930, news and comment in English until 2010 when YL with identification followed by National Anthem.

QSX

For the Dxr we offer the following –

INDONESIA

RRI Banda Aceh on 4955 at 1548, OM in Indonesia followed by Moslem chants.

RRI Padang on 3960 at 1608, OM in Indonesian with readings from the Quran.

RRI Yogyakarta on 5045.5 at 1546, gamelan music with OM announcer.

RRI Bukittinggi on 4884 at 1550, local music, YL with songs, OM announcer.

RRI Medan on 4764 at 1555, local music, OM announcer, sign-off without the traditional "Love Ambon" at 1600.

RRI Jakarta on 4804.5 at 2203, OM with opening announcements, newscast in Indonesian till 2212 then local 'pops' on records, YL announcer, through to 2245.

NEPAL

Radio Nepal on 3425 at 1501, newscast in English by YL after identification, at 1506 local music and song records with English announcements.

PAKISTAN

R. Pakistan on 3400 at 1600 with identification and newscast in English.

R. Pakistan on 3870 at 1615, OM in Asian dialect, local music and songs.

INDIA

AIR Delhi on 4800 at 1747, local music and song programme; on 3205 at 1516, OM with talk in vernacular and on 3295 at 1523, OM in Hindi.

AIR Kerseong on 3355 at 1525, OM with talk in vernacular.

AIR Gahauti on 3375 at 1526, local music, YL with songs.

MALAYSIA

Kuching, Sarawak on 4950 at 1532, OM with song in English, Euro-style dance music records.

Sibu, Sarawak on 5005 at 2212, OM with song in dialect, local music with YL announcer.

KASHMIR

Srinigar on 3277 at 1521, OM with talk in vernacular, difficult channel with surrounding commercial QRM.
CONSTRUCTOR'S CROSSWORD

By J. R. Davies

Clues Across
1. How Mrs. Samuel F. B. let herself in? (5, 3)
5. Coil units – and where to buy them! (6)
9. Drawing office transparencies. (8)
10. Sharpness and penetration. (6)
12. A.C. peaks play their parts. (6)
13. What capacitors used to do? (8)
15. Static, although confusedly free in centre. (12)
18. These were classed as ethereal distributors before relativity. (12)
23. Pole given tea despite procedural no. (8)
24. Give the diode another anode to make it this. (6)
26. B.B.C., relatively speaking. (6)
27. Crest of the wave. (8)
28. R and D produce this. (6)
29. When assessing resistance it’s them or me! (8)

Clues Down
1. Common, as with inductance. (6)
2. Traces, how the regenerative detector responds? (6)
3. Early TV camera tube. (7)
4. Field distorting effect in air-spaced capacitors. (4)
6. Device which converts decimal to BCD. (7)
7. Descriptive of the magnetic flux that’s left. (8)
8. Ceramic magnets are this in manufacture. (8)
11. Abbreviated devices with high input resistance. (7)
14. Have faith in the decibel I eventually evaluate. (7)
16. Wire gauge flying in the wind? (8)
17. Cots turned upside down. (8)
19. Making an adjustment and its result. (7)
20. Metal with atomic number 45. (7)
21. C.G.S. unit for e.m.f. (6)
22. Popular final cabinet finish. (6)
25. 25.40 mm. (4)

(Solution on page 360)
TWO MORE USES FOR THE 555

by J. Lewis, B.Sc.

New applications for the versatile 555 timer continue to be found. This article shows how it may be employed as a voltage comparator actuated by light or temperature level changes.

ONE OF THE MORE INTERESTING INTEGRATED CIRCUITS to come on to the market recently is the 555 timer. Originally made by Signetics, this is now second sourced by many other manufacturers.

The 555 has formed the basis of a number of projects both in this magazine and others, and usually in the mode for which it was designed, i.e. as a timer. In this application it can function as either a monostable or a free running astable.

BLOCK DIAGRAM

For readers who may not be completely familiar with 555 operation it may be as well to look at a simplified block diagram of the device, as in Fig. 1. It will be seen that there are two voltage comparators, a flip-flop and an output stage. The comparator which is connected to pin 6 only triggers when the voltage on it reaches two-thirds Vcc. The voltage needed to trip the comparator on pin 2 is one-third Vcc and has to be the negative edge of a low going pulse.

When the pin 2 comparator is triggered the flip-flop changes state and drives the output on pin 3 high; at the same time it takes off the short-circuit to earth which has been applied via pin 7. This means that an external timing capacitor connected to pins 6 and 7 and to earth can charge up to Vcc via a resistor. As soon as the voltage across the capacitor reaches two-thirds Vcc the flip-flop is changed back to its previous state, the output is driven low and the short-circuit on pin 7 reapplied. The cycle will repeat itself when next pin 2 falls to one-third Vcc.

The interesting thing about this device is that one can use the comparators themselves just as comparators and forget the timing applications. It has been found that if the comparator connected to pin 6 is held at Vcc and the applied potential to pin 2 is varied about one-third Vcc, the flip-flop will change state driving the output high or low. We can thus use the i.c. as a very sensitive voltage switch which has distinct advantages over other methods in that it can be used to drive a load directly and is not very particular regarding supply voltages. Any transducer which produces a voltage change, either directly or as a result of Ohm's Law, may be used as the sensing element.

Fig. 1. Block diagram showing, in simplified form, the internal sections of the 555 integrated circuit.
PROTOTYPE CIRCUITS

Two prototype circuits were made up, one being light sensitive and the other heat sensitive. The circuits are shown in Figs. 2 and 3 respectively. In both of these a relay coil connects between pin 3 and Vcc, a protective diode being connected across the coil to prevent the formation of a high back e.m.f. when the output goes high and the relay de-energises. The circuit polarities are such that when pin 2 of the 555 is below one-third Vcc the output at pin 3 is high and the relay does not energise, and when pin 2 is above one-third Vcc the output at pin 3 is low and the relay energises.

The theory of operation is simple. In Fig. 2 the transducer can be a light dependent resistor such as the ORP12. If this is illuminated it exhibits a low resistance, holding down the voltage at pin 2 and keeping the relay de-energised. Should the illumination of the l.d.r. drop in intensity its resistance increases, the voltage on pin 2 of the 555 rises and the relay energises. A typical application is as a burglar alarm, in which the relay energises when a light beam illuminating the l.d.r. is interrupted by an intruder. Another application is the switching on of a lamp at sunset. In this case the l.d.r. is normally illuminated by sunlight during the day and the relay is then de-energised. The resistance of the l.d.r. increases as the sunlight intensity decreases, allowing the lamp to be turned on at a pre-determined low level of illumination.

In the heat sensitive circuit of Fig. 3 the thermistor exhibits decreased resistance as its temperature rises. Any small glass bead type thermistor, such as the R.S. Components type TH-B11 or TH-B15, can be used. The TH-B11 has a resistance of 1MΩ at 20°C, 30kΩ at 100°C and a final minimum hot resistance of 170Ω; whilst the TH-B15 has a resistance of 100kΩ at 20°C, 79.5kΩ at 25°C and a minimum hot resistance of 320Ω.

When, in Fig. 3, thermistor resistance decreases due to increasing temperature, pin 2 of the 555 is taken positive until, at a pre-determined level, the relay energises. A typical application for the circuit is as a thermostat.

The value required for VR1 in Figs. 2 and 3 depends upon the transducer and the light or temperature level at which it is required that the relay energises. A possible starting value for the potentiometer could be 1MΩ. When the final adjusted value has been experimentally determined, a series combination of a fixed resistor and a potentiometer of smaller value could be fitted in place of VR1, giving a finer degree of control and easier adjustment. For maximum sensitivity, the potentiometer is adjusted to the level just below that at which the relay energises.

Fig. 2. The 555 employed as a voltage comparator. Here, it causes the relay to energise when the light falling on the l.d.r. drops below a pre-determined level, as set by VR1.

Fig. 3. In this circuit the 555 is triggered by a thermistor, causing the relay to become energised when thermistor temperature passes a pre-determined level.

www.americanradiohistory.com
LATCH UP

Fig. 4 shows how the output can be made to latch up. This makes use of the 'reset' facility on pin 4 which, if taken to below 1 volt, drives the output to its low state. Pin 7 is the 'discharge' pin for an external timing capacitor when the 555 is used as a timer, and it gives a short-circuit to earth when the flip-flop operates. It is coupled here to pin 4 via the 220Ω resistor, and it causes the i.c. output to latch at the low state when the relay is energised. To reset the i.c. the circuit between pins 7 and 4 needs to be broken.

The circuits described can be assembled on a small piece of 0.1 in. Veroboard, to which the 555 in its 8 pin d.i.l. package can be readily fitted. Supply voltages should not exceed the maximum rating for the i.c. of 16 volts. In some instances the supply could consist of a 9 volt battery, as the current drain on standby with the relay de-energised is only of the order of 7mA at this supply voltage. The relay should be capable of energising at a coil voltage a little lower than the supply voltage and the coil current should not exceed the maximum output current rating for the 555 of 200mA. Preferably, the coil current should be 100mA or less. As an example the relay available from Home Radio under Cat. No. WS159, which has two changeover contact sets, could be used with a 9 volt supply. This relay has an energising voltage of 6 volts and a coil resistance of 185Ω, whereupon the coil current cannot exceed some 49mA. Other relays offering a similar performance can be used. The diode across the relay coil can be any general purpose silicon diode, such as the 1N914. Take care to connect the diode into circuit with correct polarity; if it is connected wrong way round the i.c. will be damaged.

The reader will see from this short article just how versatile the 555 can be. No doubt before very long even more applications will be discovered.
A VARIABLE OUTPUT LOW VOLTAGE POWER SUPPLY unit is one of the most useful pieces of test equipment for the electronics enthusiast, and should be one of the first items he obtains. The power supply unit described in this article provides a well smoothed and regulated output at any voltage between approximately 2.5 and 25. The maximum continuous current rating is 500mA on the higher voltage outputs (10 volts and above) and a little less than this on the lower outputs.

The unit is protected against short term overloading by a built-in current limiting circuit. The regulation efficiency is more than adequate for most amateur applications, and the maximum difference between zero and full load conditions is less than 200mV at any voltage setting. A switch selects either positive or negative earth.

A reasonably compact design has been achieved, and the unit is housed in an attractive home-made case measuring about 10 by 5 by 3 in. excluding the feet and control knobs. A built-in voltmeter indicates the output voltage.

BASIC REGULATOR CIRCUITS

All the common types of regulated power supply unit require a stable voltage reference source. The stability of this reference voltage is of prime importance, since the stability of the final power supply output voltage can be no better than the stability if the reference source.

The circuit of the familiar basic zener shunt stabilizer is shown in Fig. 1(a), and this type of circuit can give...
Two zener diodes connected as shown here, despite input voltage variations, give a highly stable voltage output, and the circuit will still function efficiently even if the minimum input voltage is as little as 1 volt greater than the zener voltage.
PRACTICAL CIRCUIT

The circuit diagram of the complete power supply unit is shown in Fig. 2.

T1 is a mains transformer whose 30 volt secondary offers taps at 12, 15, 20 and 24 volts, all at 0.5 amp. No connection is made to the taps and the total 30 volt secondary is applied to the bridge rectifier given by D1 to D4. This feeds into the reservoir capacitance made up by C1 and C2 in parallel.

The zener reference voltage is given by D5, and this diode is fed from the constant current source comprising TR2, R2, R3, D6 and D7. The positive stabilized voltage from the zener diode is coupled to the emitter follower TR3, causing a voltage to be built up across VR1 and R1 which is equal to the zener voltage less 0.6 volt dropped in the base-emitter junction of TR3. VR1 is the voltage control for the power supply unit, and its slider can be adjusted to select any voltage from about 4 to 26.4, this voltage being at a fairly high impedance with respect to the negative rail.

TR4 and TR5 are a Darlington pair emitter follower having R5 and R6 respectively in their emitter circuits. The output voltage at TR5 emitter is equal to the voltage at VR1 slider minus about 1.4 volts dropped across the base-emitter junctions of TR4 and TR5. This output voltage can in consequence be varied by adjusting VR1, whereupon the output voltage ranges from approximately 2.5 to 25 volts. The exact voltage range will vary slightly in individual power supplies due to tolerances in the zener diode, VR1 and R4.

TR4 and TR5 provide a high degree of current amplification and so the unit achieves a very low output impedance. Output currents of up to 500mA may be provided with a minimal voltage drop in TR4 and TR5.

CURRENT LIMITING

Unless suitable precautions are taken, the high current which TR5 can pass could cause this transistor to be destroyed if the power supply output were accidentally short-circuited. An ordinary fuse is too slow-acting to give adequate protection against short-circuits and it is usual in circuits of this nature to incorporate some form of electronic current limiting. In the present design the current limiting is provided by R1 and TR1.

R1 is connected in the negative supply rail and the voltage across it is proportional to the output current. This voltage is applied to the emitter and base of silicon transistor TR1, which will be unaffected when the voltage is lower than about 0.5. If the voltage exceeds 0.5 volt TR1 will commence to pass collector current, thereby diverting current from the zener diode.

With a potential of about 0.6 volt across R1, TR1 will be biased almost to saturation, whereupon the
voltage across the zener diode and, in consequence, the power supply output will be virtually zero. It is obvious from Ohm’s Law that a voltage of 0.6 across R1, which has a value of 1Ω, corresponds to a current of 0.6 amp, or 600mA. As a result, 600mA is the maximum output current that can flow, even when the output is short-circuited.

Although the current limiting configuration is extremely simple and requires only two additional components, it nevertheless works extremely well, giving a very well defined current threshold. Note, however, that it is only intended to provide short term protection. The output should not be short-circuited indefinitely as, in time, this will cause TR5 to be destroyed by overheating.

Meter M1, in company with series resistors R7 and R8, forms a voltmeter having a full-scale deflection of 25 volts. This monitors the power supply output voltage. C3 provides a low a.c. impedance across the zener diode and reduces any hum ripple here and at TR3 emitter, thereby producing a level of electronic smoothing across VR1. C4 provides further smoothing. If the unit is used with equipment such as a Class B a.f. power amplifier, C4 provides any current peaks which exceed the 600mA threshold of the current limiting circuit.

S2 is the positive/negative output earth switch. This component must be a break-before-make type as a make-before-break switch will short-circuit the output whenever it is operated.

COMPONENTS

The mains on-off switch, S1 (a) (b), is a rotary toggle type. If difficulty is experienced in obtaining a 2-way break-before-make rotary switch for S2, a 3-way switch may be employed with no connection made to the centre fixed contact. This has the slight disadvantage that the switch has to pass through two indent ‘clicks’ instead of one when it is adjusted from one position to the other. In the prototype, meter M1 is a 0-50µA movement and the type employed is from the Henelec 38 Series retailed by Henry’s Radio. A small economy would be effected by using a 0-500µA or 0-1mA meter from the same Series. With a 0-50µA meter R7 requires a value of 47kΩ, and with a 0-1mA meter it requires a value of 22kΩ. The value of R8 is found by experiment after the unit has been completed. Variable resistor VR1 is a standard carbon potentiometer. If R1 cannot be obtained in 1/2 watt 5% carbon, a small wire-wound resistor, such as that available from Henry’s Radio in 1 watt, can be employed instead.

The two diodes, D6 and D7, in the constant current section can be any small general purpose silicon diodes, suitable types being BAV31 or OA200, etc. Mains transformer T1 is a Douglas component type MT112, and it can be obtained from Adam Scientific Products, Ltd., Byre House, Simmonds Road, Wincheap, Canterbury, Kent, CT1 3RW. The BC257 required for TR2 is listed by Electrovalue Ltd., 28 St. Judes Road, Englefield Green, Egham, Surrey, TW20 0HB.

<table>
<thead>
<tr>
<th>Resistors</th>
<th>(All fixed values 1/2 watt 5% unless otherwise stated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1Ω</td>
</tr>
<tr>
<td>R2</td>
<td>220Ω</td>
</tr>
<tr>
<td>R3</td>
<td>15kΩ</td>
</tr>
<tr>
<td>R4</td>
<td>820Ω</td>
</tr>
<tr>
<td>R5</td>
<td>3.3kΩ</td>
</tr>
<tr>
<td>R6</td>
<td>1.8kΩ 1 watt</td>
</tr>
<tr>
<td>R7</td>
<td>470kΩ 2%, high stability</td>
</tr>
<tr>
<td>R8</td>
<td>see text</td>
</tr>
<tr>
<td>VR1</td>
<td>5kΩ potentiometer, linear carbon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (a) (b)</td>
</tr>
<tr>
<td>S2</td>
</tr>
</tbody>
</table>

The components inside the supply unit
Fig. 3. Most of the power supply unit components are fitted to a printed circuit board, the copper side of which is shown here. This is reproduced full-size for tracing.

PRINTED CIRCUIT BOARD

Most of the components are mounted on a printed circuit board measuring 6 3⁄4 by 2 3⁄4 in. The copper side of the board is reproduced full-size in Fig. 3, whilst Fig. 4 shows the layout on the component side of the board. The letters ‘X’ and ‘Y’ apply to the same corners in Figs. 3 and 4, and assist in mentally orienting the two views. The printed circuit board is prepared in the usual way, and the three mounting holes are drilled for 6BA clearance.

When the board has been etched, drilled and thoroughly cleaned, the various components are mounted in the positions shown. The printed circuit board assembly is completed by soldering in the flexible insulated leads which will later connect to the output sockets, TR5, T1 secondary and VR1. The approximate lengths of these leads can be judged by referring to the photographs of the prototype and to Fig. 6. They should be made slightly on the long side, and can be cut to the final required lengths when the free ends are connected.

THE CASE

Construction of the case commences by cutting out two 18 s.w.g. aluminium sheets 9 3⁄4 by 2 3⁄4 in. These form the front and rear panels. The front panel then requires the holes shown in Fig. 5. No diameters are given for the holes for S1, S2, and the two output terminals, as these depend on the particular components used here. The large cut-out for the meter may be made by means of a fret saw. The four small meter holes are drilled for 6BA clearance, and their positions can be marked out, after the large hole has been made, with the aid of the meter itself.

The rear panel is next drilled to take the mains input cable grommet and TR5. The hole for the grommet is at the centre of the panel. The exact positioning for TR5 is not critical and it may be mounted at the point indicated in the photograph of the rear. It should be
central between the top and bottom of the panel. Most retailers will supply TR5 with a mica washer and insulating bushes, whereupon the mica washer can be used as a template to mark the hole positions for this transistor. Alternatively, the positions can be taken from the transistor itself. The transistor is mounted directly to the panel and is not insulated from it. A tight thermal contact between the transistor and the panel is essential, and the panel surface must be flat and free from burrs at any of the holes.

The construction of the remainder of the case is illustrated in Fig. 6. The 9\(\frac{3}{8}\) in. dimension shown for the top and bottom panels assumes that 3/6 in. thick plywood is employed. If a different thickness is used then the 9\(\frac{3}{8}\) in. dimension is changed to a figure equal to 9\(\frac{3}{4}\) in. plus twice the thickness of the wood. The parts of the case are next glued together by means of a high grade adhesive, such as Araldite. This adhesive is employed for securing the aluminium panels in position as well as the wooden parts. The lid is made so that it is a tight push fit into the rest of the case.

When the adhesive has firmly set, four small holes are drilled near the corners of the case bottom to allow rubber feet to be mounted. Then, the printed board assembly and the other components are mounted in their respective places. The approximate positioning of the board assembly and transformer T1 can be judged from Fig. 6. The printed circuit board requires three short 6BA mounting bolts with small spacing washers between the bottom of the case and the board underside. T1 is mounted by means of two short 4BA bolts. All the bolt heads are below the case bottom.

A solder tag is fitted under the upper mounting nut of the meter which is nearer VR1. As already mentioned, TR5 is bolted direct to the rear panel, and a solder tag under one of its mounting nuts provides the connection to its collector. Silicone grease should be applied to the transistor and panel surfaces to ensure a good thermal contact.

WIRING

The free ends of the leads from the printed circuit board are now trimmed to length and connected to the appropriate components. The mains lead is passed through the grommet in the rear panel and its live and neutral wires connected to two of the tags of S1 (a) (b), as in Fig. 2. The remaining two tags of S1 (a) (b) are then connected to the primary of T1. The mains earth

Fig. 4. Layout and wiring on the component side of the board

Fig. 5. Drilling details for the front panel. The material is 18 s.w.g. aluminium sheet
wire connects to the arm of S2. Also connected to this switch arm is an insulated wire which travels to the solder tag secured under the mounting nut of the meter. Thus, the front panel is connected to the mains earth. In Fig. 2 the front panel is represented by the chassis symbol.

A further insulated wire connects the negative terminal of the meter to the negative output terminal of the power supply. R7 and R8 in series are connected to the positive meter terminal, and their remote end is connected to the positive output terminal by another insulated lead, in the manner shown in the photograph of the interior of the unit. For the time being, R8 can be a 12kΩ resistor if a 0–50µA meter is employed, a 1.8kΩ resistor if the meter is 0–500µA, or a 1kΩ resistor if the meter is 0–1mA. These values will allow the meter to give approximate indications of output voltage. Constructors who prefer to have resistors secured between fixed points may fit a small 2-way tagstrip to the cabinet bottom near the meter and solder one lead of R7 and both leads of R8 to this.

TESTING

After all the wiring has been thoroughly checked the unit can be connected to the mains and switched on. Connect a multimeter set to read 25 volts across the output, and check that VR1 controls output voltage over a range of about 2.5 to 25 volts.

Many panel meters have a fairly wide tolerance and, in order to obtain an accurate front panel voltmeter for the power supply, different values for R8 should be tried experimentally until one is found which causes the reading of the panel meter to agree with that of the multimeter connected to the output terminals. Obviously, the multimeter should be a good quality type if a high degree of accuracy is to be given. With the prototype, a value of 12kΩ was found to be correct with the 0–50µA meter, but it is quite possible in some cases that R8 may require a value quite far removed from the temporary value given to it.

To check the current limiting circuit, a high wattage resistor of about 22Ω is connected across the output terminals with the output voltage set to 22 volts. If the unit is working correctly this should cause the output voltage to drop to around 13 volts. The dissipation in the 22Ω resistor used for this test is about 8 watts. However, a resistor with a lower wattage rating can be used if it is connected to the output terminals for a very short period only.

When using the power supply unit it must be remembered that the front panel is always at earth potential and is coupled to whichever output terminal is selected by S2. The rear panel of the unit is, however, at the same potential as the collector of TR5. Great care must be taken to ensure that the rear panel does not come into contact with any earthed objects as damage to components can then be caused. For output voltages below 10 volts, the maximum output current should be derated linearly from 500mA at 10 volts to 330mA at 2.5 volts.

To finish off the unit, constructors who feel confident to carry out the task may carefully mark up the scale of the meter in terms of volts from zero to 25. The case may then be given a coat or two of varnish. The appearance of the front panel is improved if legends indicating control functions are added. These may be taken from 'Panel Signs' Set No. 4.
Three Waveband Transistor Portable

Part 2.

By Sir Douglas Hall, K.C.M.G., M.A.Oxon.

The article published in last month’s issue described circuit operation and the construction of this receiver. This concluding article gives details on setting up and the assembly of a suitable case.

Details of circuit operation and a description of the major part of the construction of this receiver were given in the article which appeared last month. We now carry on to the process of setting up.

Setting up

It is next necessary to fit and connect up the two batteries on the battery platform. The PP3 battery is held in place by the 1 in. spring clip, whilst the No. 800 battery is fitted, negative terminal strip downwards, between the screws at holes C and E of the platform. The positive terminal strip presses against the bolt at hole C, and the battery is secured in position by means of the s.r.b.p. strip of Fig. 3(c). Set S1 to short waves, VC1 with its vanes fully open, VR1 fully anti-clockwise, VR2 slider fully to the left as seen in Fig. 2, VR3 fully clockwise and VR4 with its slider fully to the track end connecting to the anode (negative) lead-out of D5. Temporarily disconnect the lead between S2 and the positive terminal of the 3 volt battery and insert a current reading meter set to give a clear indication of 8mA. Switch on and turn VR5 clockwise. Adjust VR4 to give a reading of 8mA. Take the meter out of circuit, and replace the connection to S2. For maximum useful life of the battery it is helpful to repeat this adjustment after the receiver has been in use for about 20 hours and the battery voltage has settled down.

Next set the meter to give a reading of 0.7 volt with at least 20kΩ meter resistance in circuit. That is to say, a 20kΩ per volt meter may be set to read 1 volt or more full-scale, a 10kΩ per volt meter to read 2 volts or more full-scale or a 1kΩ per volt meter to read 20 volts or more full-scale. The 0.7 volt reading should, in the last case, just be capable of being resolved. Clip the meter across VR3, with positive to the tag which connects to TR2 collector, and adjust VR2 until the reading of 0.7 volt is given. Disconnect the meter.

Turn VR1 carefully in a clockwise direction until a slight hiss is heard. Short wave stations should be heard around the dial, the bands which provide most signals depending on the time of day or night. Keep the receiver in its most sensitive state by adjusting VR1 to the point at which the hiss occurs, and orientate the receiver for best results when a station is found. Position L1 on the 7 in. ferrite rod so that the 19 metre band is received with the vanes of VC1 almost fully open. This will involve one or two turns of L1 lying beyond the end of the rod. Do not reduce the number of turns in L1 in an attempt to have the coil fully on the rod, as this will result in a refusal of the circuit to oscillate at the high frequency end of the short wave band.

Next set S1 to medium waves. Check that the receiver functions satisfactorily and that medium wave signals are picked up. It is permissible to add a few turns to, or remove a few turns from, L2 if either end of the medium wave band is not properly covered.

Similarly check for reception on the long wave band. If no wiring mistakes have been made and the receiver has been set up as described on the short wave band, results should be satisfactory on the other two bands.

When all the setting up processes are completed, the speaker panel and the plywood panel of Fig. 4(b) can be screwed together. Place insulating tape over the speaker frame at any points where this may touch or short-circuit against components and wiring on the group board.
RECEIVER CASE

A case can be made up as shown in Fig. 5. The dimensions given here are for guidance and may be amended slightly if the receiver 'chassis' has not been made exactly to the dimensions given in the constructional details. Note that there is a 2 in. square aperture in part C. The case is fixed to the 'chassis' by means of the two small hinges shown in Figs. 5 and 4(b). These are on the inside of the speaker panel but are on the outside of section B of the case. Section B is the bottom of the case, and is fitted with four small rubber feet to ensure that the hinges do not scratch any surface the receiver is placed on.

The case is covered with Fablon or Contact before it is fitted to the receiver 'chassis'. A piece of thin speaker fabric is affixed to the inside of the 2 in square cut-out after the Fablon or Contact has been applied.

A neat appearance can be given by covering the top of the receiver, which is the plywood panel of Fig. 4(b), with an extra panel of s.r.b.p covered with Fablon or Contact. This may have glued to it a card tuning scale, inscribed with wavelengths or frequencies, for VCI. Two tuning scale pointers can be made with wire and screwed to the flange of the tuning drive. A particularly neat effect is given by alternatively fitting a circular piece of Perspex to the tuning drive flange. This can be inscribed with two radial lines on either side of the tuning drive spindle.

The current drawn for from the PP3 battery is a little less than 1mA. The current from the No. 800 battery can rise to 50mA or more at a.f. output peaks, but it will be around 10mA for low level outputs. At the time of writing, these two batteries cost less than a single PP9 type, which many similar receivers would employ. Also, the use of two batteries makes for very stable operation on the short wave band.

THREE TRANSISTOR REGENERATIVE RECEIVER

In Fig. 3 of this article, which appeared in the November issue, the lower lead-out of C1 is shown connected to the lower lead-out of R2. There should be no connection between these two points.

CONSTRUCTOR'S CROSSWORD - SOLUTION

Across
1. Morse Key. 5, Henrys. 9, Tracings. 10, Acumen. 12, Actors. 13, Condense. 15, Interference. 18, Transmitters. 23, Negative. 24, Double. 26, Auntie. 27, Antinode. 28, Design. 29, Ohmmeter.

Down
1. Mutual. 2, Reacts. 3, Emitron. 4, Edge. 6, Encoder. 7, Remanent. 8, Sintered. 11, MOSFET’s. 14, Believe. 16, Standard. 17, Tangents. 19, Setting. 20, Rhodium. 21, Abvolt. 22, Veneer. 25, Inch.

RADIO & ELECTRONICS CONSTRUCTOR
Details of circuit operation and cabinet assembly were given in last month's issue. This concluding article completes the information on construction and also describes the building of a mains power supply unit.

The R.F. Amplifier Section is assembled on a 6-way tagstrip, as shown in Fig. 7. The tagstrip employed by the writer had a length of approximately 3 in., and the s.r.b.p. strip on which the tags are mounted is horizontal. If a similar type of tagstrip cannot be obtained, it may be cut out from an R.S. Components 18-way 'Standard' groupboard. An 8-tag section should be cut out, and the two end tags then drilled out to provide mounting holes. The 6-way tagstrip thus obtained will be a little shorter than that used by the author but will still, nevertheless, be satisfactory. The R.S. Components groupboard can also provide the tagstrip required, later, by the mixer section.

In the r.f. amplifier layout shown in Fig. 7 all leads are kept as short as possible, especially those connecting to chassis. All tags and component wires should be tinned before soldering, and VC3 should be mounted in a position which enables it to be adjusted from above the tagstrip. The two end tags are connected to chassis by way of solder tags held under the mounting nuts, as shown in the diagram.

For clarity, coil L1 is omitted from Fig. 7. This coil is made from a short length of 16 s.w.g. enamelled copper wire and is self-supporting. It is wound on any ½ in. diameter former, such as a ¼ in. diameter twist drill, and has precisely 5 turns. These are well spaced out, and the finished coil is stretched out to a length of 1½ to 1 in. before the former is removed. The coil has lead-outs about ½ to 1 in. long, and it connects to tags 2 and 5 of the tagstrip in Fig. 7 by these lead-outs. Before it is mounted, a tap needs to be made into the coil 1½ turns from the end which will connect to tag 2. The enamel is scraped off at the tapping point and the bare wire underneath is tinned. The coil may then be soldered to the two tags, ensuring that the lead-outs are no longer than the dimension just mentioned. The coil is positioned above the tagstrip.

The coaxial aerial input socket is coupled to the r.f. amplifier strip by a short length of coaxial cable. At the amplifier strip the centre conductor of the cable is soldered to the tap in L1 and its outer braiding is earthed to the solder tag connecting to tag 1. The other end of the braiding is also earthed, being connected to the solder tag held under one of the nuts securing the coaxial socket.

Coil L2 has 1½ turns, spaced approximately by wire thickness, of 16 s.w.g. enamelled wire with an inside diameter of ½ in., and it is also self-supporting. Although this coil is connected to the r.f. amplifier tagstrip it is positioned at the mixer tagstrip, being in line with coil L3 and thereby providing signal coupling to the latter. The two lead-outs of L2 are about 4 in.
long and pass behind the 2-gang tuning capacitor before connecting to tags 3 and 4 of the amplifier tagstrip. It may be found more convenient to solder L2 into circuit after the mixer section has been assembled and mounted in position.

The r.f. amplifier tagstrip is mounted to the tuner base plate in the position shown in Fig. 5 (published last month). It must be spaced a little clear of the base plate to ensure that none of the tags short-circuit to chassis. The method employed is illustrated in Fig. 8, and this same method of spacing is used for the mixer tagstrip and the component boards.

MIXER-OSCILLATOR

The mixer-oscillator section is shown in Fig. 9. This is wired on a 7-way tagstrip of the same type as is used for the r.f. amplifier. The length of the tagstrip in the prototype is approximately 3 in. and, if necessary, a suitable alternative can be cut out from the R.S. Components 18-way groupboard in the same manner as was described for the r.f. amplifier tagstrip. The end tags are earthed to chassis, as illustrated, and again all leads must be kept as short as possible.

Coil L3 is almost identical to L1, having the same number of turns, the same wire, the same inside diameter and the same lead-out length. It is, however, only ½ in. long and it does not have a tap. Coil L2 is shown in broken line alongside the earthy end of L3.

L4 is a home-wound r.f. choke. It consists of 45 turns of 24 s.w.g. enamelled wire pile-wound on the body of a ¼ watt 47kΩ resistor. The ends of the winding are anchored by being soldered to the lead-outs of the resistor fairly close to the body. The resistor lead-outs are then, in turn, soldered into circuit at the tags indicated.

The completed mixer-oscillator section is mounted alongside the 2-gang tuning capacitor in the position illustrated in Fig. 5. For convenience, VR2 and C14 are separate from the tagstrip, being mounted on the i.f. amplifier component board.

I.F. AMPLIFIER

The i.f. amplifier, discriminator and a.f. amplifier stage are assembled on a plain 0.1 in. Veroboard having 37 by 17 holes. The component layout is illustrated in Fig. 10, the wiring under the board being shown in broken line. The board is cut from a larger piece with the aid of a Junior hacksaw, after which the two 4BA clear mounting holes are drilled out. This type of board is fairly brittle, and care must be exercised when it is being cut and drilled.

The various components can then be mounted in the positions shown in the diagram, their leads being bent over after they have passed through the appropriate holes in the board. Most of the wiring can be carried out using the component lead-outs themselves, although two lengths of bare tinned copper wire will be needed for the positive and negative rail leads which traverse most of the length of the board. Two wires need to be insulated with sleeving, these being the lead from C6 to TR3 base and that from C11 to TR6 base. The output of the mixer-oscillator section, at the junction of R3 and L4, is connected to the i.f. component board by way of a short length of coaxial cable. The braiding of this cable is earthed to chassis at the component board end only, in the manner indicated in Fig. 10. The holes which
take the tags of VR2 and TR6 are slightly enlarged by careful drilling. All the wiring under the board should be kept close to its underside so that there is no risk of short-circuits to the tuner base plate when the board is mounted in position.

The a.f. output from the board couples to VR1 via a screened lead. Capacitor C13 is mounted at the volume control central tag in the manner shown in Fig. 11. The connection from this capacitor to the output phono socket is made via a screened lead also.

When completed, the component board is mounted to the tuner base plate in the position indicated in Fig. 5.

MAINS SUPPLY UNIT

The tuner can be powered by a 9 volt battery, such as a PP6 or PP7, and since the current consumption of the tuner is only about 10mA the battery will have a long life. There is ample space for it inside the case. Should a battery be employed, its negative terminal is connected to any convenient chassis point. Its positive terminal is routed via one pole of switch S1 to the positive input point, at R11, of the component board of Fig. 10.

If a mains-powered version is preferred the simple

Fig. 11. Wiring to volume control VR1. If the phono socket employed does not have its outer contact common with chassis the chassis connection here should be made by way of a solder tag secured under one of its mounting nuts

JANUARY 1975
Close-up of the r.f. amplifier and mixer-oscillator sections

The following components are required for the optional mains power supply.

Resistor
- R13 100Ω ¼ watt 10%

Capacitors
- C15 1,000µF electrolytic, 15 V. Wkg.
- C16 1,000µF electrolytic, 12 V. Wkg.
- C17 4,000µF electrolytic, 12 V. Wkg.

Transformer
- T1 Mains transformer, secondary 9-0-9V, 80-100mA

Diodes
- D2 1N4002
- D3 1N4002
- D4 BZYC88C9V1

Neon
- NE1 Neon bulb assembly, 250V

Miscellaneous
- Plain Veroboard, 0.1 in. matrix
- 2 4BA ¼ in. threaded spacers.
- Clamp (for C17)
- ½ in. grommet
- 3-core mains lead

stabilized supply shown in Fig. 12 can be used. In this simple circuit, D2 and D3 provide full-wave rectification into the reservoir capacitor C15, this being followed by the smoothing and voltage stabilizing circuit incorporating R13, C16, C17 and zener diode D4. Originally, C17 was not included, but it was added when it was found that the hum content without it was too high. The value of C17 is not very critical, but it should be at least 2,500µF. T1 is any small mains transformer offering 9-0-9 volts at some 80 to 100mA, and which is capable of fitting into the space available. This particular transformer does not have mounting feet, but two solder tags may be soldered to it to enable it to be bolted down.

Most of the power supply components are assembled on a second piece of 0.1 in. Veroboard, this also being the plain type and having 24 by 13 holes. This board is shown, from the component side, in Fig. 13, the wiring under the board being indicated in broken line. As with the i.f. component board, the power supply board has

Fig. 12. Circuit of the mains power supply unit
to be cut out and drilled with care. Wiring up on the board is carried out in the same manner. As may be seen from the photographs and from Fig. 5, T1 and C17 are mounted on the base plate separate from the board, C17 being secured in a horizontal position by means of a home-made aluminium clip.

A solder tag is fitted under one of the nuts securing the mains transformer, and the earth lead of the mains cable is soldered to this. The live and neutral mains leads connect to the two poles of S1, these in turn connecting to the primary of T1, as in Fig. 12. If any doubt exists as to tag positioning on S1, its two poles may be identified with the aid of a continuity tester or ohmmeter. The neon lamp assembly, which as already mentioned is of the type having its own integral series resistor, connects to the primary of T1 either at the transformer tags or at S1 tags, according to which is the more convenient. The neon assembly should, preferably, have flying leads.

AERIAL

The input circuit is designed to accept a quarter wave whip aerial. This merely consists of a short metal rod about ½ in. in diameter, coupling to the receiver via a length of coaxial cable. The inner and outer conductors of the cable connect to the coaxial plug at the receiver in normal manner, but only the centre conductor of the cable connects to the whip aerial, there being no connection to the outer conductor at this end.

The length of the rod is calculated from the formula:

\[
\text{Length} = \frac{2808}{\text{Frequency}}
\]

where length is in inches and frequency is in MHz. For the band covered here, the length works out at about 30 in. There is no need to have a different length for each station, as an aerial cut for the centre of the band gives satisfactory results. A dipole can also be used, and will give better results. The additional element will also be

Angled view looking at the rear
Inside the front panel, as seen from the rear

30 in. in length, and will connect to the outer conductor of the coaxial cable.

In nearly all instances the three main B.B.C. signals are transmitted with horizontal polarisation, whereupon the receiving aerial must also be horizontal. It will have directional properties and should be orientated for maximum signal strength.

With an indoor aerial, results will vary considerably with the positioning of the aerial. Generally speaking, the aerial should be mounted well away from walls, which have an adverse effect on the signal, and should be as high as possible.

ADJUSTMENTS

For initial testing, VR2 is set to pass almost the maximum supply voltage to the oscillator circuit. This setting is nearly fully clockwise. VC3 is set to half its full capacitance, or to about a quarter of full capacitance if a 10pF trimmer has been employed here. The output may be applied to an a.f. amplifier or to a crystal earphone, and a suitable aerial connected. VR1 is set for maximum a.f. output. The tuner is then switched on and the 2-gang capacitor adjusted in search of a signal. It should be possible to tune in a few stations. For the best sensitivity, VR2 is turned as fully clockwise as possible before instability occurs. This will show up as a sudden increase in noise as VR2 is turned clockwise. The author did not find the setting required in VR2 to be too critical so long as a good aerial signal was present.

The r.f. amplifier is adjusted for maximum signal by adjusting VC3 with a plastic trimming tool. The effect of opening out or contracting the turns of L1 can also be tried. It should be mentioned that this adjustment will not have a very marked effect on sensitivity as the tuning of the r.f. stage is very broad.

The prototype has been found to be extremely sensitive for such a simple circuit. When the author's tuner was initially tested, an aerial consisting of two crocodile clip leads joined end to end was connected to the centre contact of the coaxial socket and, once the circuit had been properly adjusted, this produced a well limited signal. The author lives 25 miles from the transmitter, and the tuner was in a ground floor room. The signal to noise ratio of the tuner is extremely good, and frequency stability is more than adequate.

(Concluded)
ALTERNATIVE SPEAKER FEED CIRCUIT

By N. R. Wilson

A method of speaker coupling which can offer potential advantages.

The usual circuit for feeding a speaker from the output of a transistor amplifier is by means of a series capacitor, as shown in Fig. 1. The series capacitor can, typically, be 1,000µF or more. In some instances this method of connection can cause a heavy surge of current to flow in the speaker immediately after the amplifier has been switched on. The amplifier output point rises quickly to half the supply rail voltage, and there is then a relatively high current in the speaker as the series capacitor charges up.

ALTERNATIVE APPROACH

If the amplifier standing output voltage is governed by a potential divider across the supply rails at an earlier stage, it is possible that a reduction in switch-on surge current can be achieved by using the alternative coupling arrangement shown in Fig. 2. The earthing side of the speaker is now returned to the junction of two equal value electrolytic capacitors connected in series across the supply rails. These two capacitors perform the secondary function of providing a bypass capacitance across the supply rails which is equal to half the capacitance of either. The speaker is now connected direct to the amplifier output point and is coupled to the amplifier earth via the two capacitors.

On switch-on, the two electrolytic capacitors charge up to the full supply voltage. As their values are equal, it can be reasonably expected that their junction will be at about half the voltage which appears across their outside terminals during the period of the charge. At the same time, the amplifier output voltage, being potential divider controlled, will be at approximately half the voltage across the supply rails as the two capacitors charge up to the full supply voltage value.

Thus, as the amplifier supply voltage rises to its full level after switch-on, the amplifier output and the junction of the two capacitors both carry about half the rail voltage at all instants during the period of charge. The result, theoretically at any rate, is the elimination of the switch-on current surge in the speaker.

There are snags, of course, the most obvious one being that it is difficult to obtain two electrolytic capacitors of precisely the same capacitance because of the wide tolerance on value of these components. Also, the voltage at the amplifier output, even when potential divider controlled, will not be at exactly half the supply rail voltage during the period when the capacitors charge up.

Nevertheless, the circuit approach is of interest and could well merit the attention of the experimenter who likes to develop his own amplifier designs.
LIGHT-EMITTING DIODES

By R. J. Caborn

Some unusual circuits incorporating small light-emitting diodes.

LIGHT-EMITTING DIODES, OR I.E.D.’S, HAVE REDUCED IN COST DRAMATICALLY OVER THE LAST FEW YEARS. AT THE TIME OF WRITING, SMALL RED I.E.D.’S ARE RETAILING AT BETWEEN 20p AND 30p, WHEREUPON THEY BECOME ATTRACTIVE FOR EXPERIMENTAL APPLICATIONS.

FORWARD CHARACTERISTIC

The author has not seen any published forward current – forward voltage curves for small i.e.d.’s and so he decided to check the forward performance of some diodes for himself. The diode type he chose was the Texas Instruments TIL209. This is a red diode rated at 40mA maximum, and the manufacturer specifies the static forward voltage as 1.6 volts typical and 2 volts maximum at a forward current of 20mA.

The author checked the forward voltage across four of these diodes for forward currents from zero to 30mA and in all cases obtained the characteristic shown in Fig. 1 with hardly any noticeable spread. The i.e.d. commences to emit visible light at about 1.5 volts forward voltage, after which the forward voltage becomes 1.55 volts at 1mA and 1.6 volts at 5mA. The forward voltage then increases very slowly to 1.7 volts at 30mA.

The characteristic from 5 to 30mA exhibits an extremely low slope resistance, and this can be considered as 0.1 volt divided by 25mA, or 4Ω. It becomes feasible, therefore, to give consideration to the idea that an i.e.d. could be used not only to provide an indication that an instrument is switched on but also to give a low stabilized voltage for use in that equipment as well. A typical circuit giving a stabilized voltage of about 1.6

Fig. 1. The forward current – forward voltage characteristic of a group of i.e.d.’s checked by the author.
volts is shown in Fig. 2(a). Two l.e.d.'s in series, as in Fig. 2(b), provide a stabilized voltage of twice the value, together with a regulation resistance of 8Ω. This regulation resistance is far lower and the stabilizing performance is much better than are given by a standard 3.3 volt zener diode. In Figs. 2(a) and (b) the series resistor may have a value which causes a current of between 5 and 30mA to flow in the diode or diodes.

Before concluding on this particular subject it must be emphasised that the characteristic shown in Fig. 1 is not a manufacturer's curve, but is purely a curve arising from the author's experience with a few red l.e.d.'s of the type stated. Since the primary function of an l.e.d. is to provide visible light within the voltage and current ranges specified by the manufacturer, there is no guarantee that any particular l.e.d. will offer a similarly low slope resistance, and the stabilizing circuits shown in Figs. 2(a) and (b) have to be looked upon as being experimental.

SWITCHING CIRCUIT

The fact that a red l.e.d. (having a performance similar to those checked by the author) commences to emit light at 1.5 volts and then stabilizes at 1.6 to 1.7 volts makes possible the interesting circuit shown in Fig. 3.

When in this diagram switch S1 is closed, LED2 becomes illuminated. The voltage of around 1.6 to 1.7 volts which is dropped across this diode appears also across D1 and LED1. However, D1 is a silicon rectifier and cannot pass forward current until there is a forward voltage of about 0.6 volt across it. In consequence, LED1 does not light up. When the switch is opened, LED2 extinguishes and LED1 becomes illuminated, since there is now no restriction on the voltage across this l.e.d. and D1.

Fig. 3 is a technical novelty but it could have a minor application as a continuity tester by removing S1 and connecting two test leads in its place. LED1 then lights up when there is no circuit between the two test leads, whilst LED2 lights up if they are short-circuited together. The l.e.d.'s light up immediately current flows through them, and the fact that one l.e.d. extinguishes and the other lights up when the test circuit is made or broken gives a more readily noticeable indication of test conditions than would be given by, say, a battery and filament bulb or by an ohmmeter. Care should be taken to ensure that the test leads are not accidentally connected to a source of voltage which could apply a reverse voltage across LED2 exceeding its maximum reverse rating of 3 volts.

BATTERY VOLTAGE MONITOR

An l.e.d. may be employed to monitor the battery supply voltage in an item of equipment, giving an indication when the voltage is too low for proper functioning.

A very simple circuit suitable for equipment having a nominal 9 volt supply is shown in Fig. 4. Here, a zener diode is connected in series with the l.e.d. and its series resistor, whereupon small changes in battery voltage cause relatively large changes in i.e.d. current.

With a 6.2 volt zener diode, as shown, the circuit of Fig. 3 performed in practice in the following manner. A voltage of 9.6 volts caused an i.e.d. current of about 17mA to flow; 9 volts a current of 11mA; and 8.5 volts a current of 4mA. The l.e.d. extinguished when the supply voltage dropped to 8 volts. Thus, the circuit is capable of indicating when the battery voltage is 8 volts or less. If indication were required at a lower voltage, a zener diode with a smaller voltage rating could be employed and a new value found for R1. The latter should be such that i.e.d. current is about 10 to 15mA at a voltage of 9 volts less 1.6 volts (dropped in the l.e.d.) and the zener voltage. In Fig. 4 the voltage across R1, when the supply is 9 volts, works out at 9 minus 1.6 and 6.2, or 1.2 volts. The calculated i.e.d. current with a supply at 9 volts is thus 12mA. In practice the current varies slightly from the calculated value due to tolerances in the zener diode and the series resistor.

The circuit of Fig. 4 has the disadvantage of drawing
a relatively large current when the battery voltage is near its nominal value. This disadvantage could be overcome by inserting a push-button between the positive rail and the zener diode (or anywhere else in the series circuit) this button being pressed whenever it is desired to check battery condition. A second disadvantage with Fig. 4 is that the l.e.d. becomes progressively dimmer as battery voltage falls.

The somewhat more complex circuit shown in Fig. 5 overcomes both these objections. In Fig. 5 the l.e.d. does not become illuminated until the battery voltage falls to a predetermined level. The only current drawn from the supply at levels above that at which the l.e.d. lights up, is, in consequence, quite low. In practice it is approximately 2mA.

When the battery voltage is above the predetermined level sufficient current flows into TR1 base via ZD1 and R1 to cause this transistor to bottom. Its consequent low collector voltage then keeps TR2 turned off and the l.e.d. is extinguished. As battery voltage falls so also does the voltage at the lower terminal of the zener diode. Eventually a voltage is reached where there is insufficient current in TR1 base to keep this transistor fully conductive; its collector current falls and base current flows into TR2. TR2 turns on and the l.e.d. lights up to indicate that the battery voltage has fallen to the predetermined level.

There is no regeneration between TR1 and TR2, but the very high overall gain which is given when TR1 is turning off and TR2 is turning on is sufficient to give an abrupt illumination of the l.e.d. when the battery voltage reaches the predetermined level. If, for some reason, the battery voltage increases, the l.e.d. will extinguish in an equally abrupt manner.

The voltage level at which the circuit operates can be pre-set by adjusting R2. With the author's unit it was found that when the potentiometer was set to insert its full resistance into circuit the l.e.d. became illuminated at a battery voltage of 6.7 volts. With R2 set very near minimum resistance the circuit operated at a supply voltage of 10 volts. Intermediate settings for R2 select intermediate voltages for circuit operation. Obviously, voltages in excess of 9 volts will not be required, whereupon part of the track of R2 is not used. However, it is so easy to set up this potentiometer that there is no point in inserting a fixed resistor in series with it to ensure that all its track is usefully employed.

To set up R2, a supply voltage equal to that at which it is required the circuit to operate is applied. R2 is initially set to insert maximum resistance into circuit, after which it is slowly adjusted to insert continually decreasing resistance. A setting will then be found at which the l.e.d. abruptly lights up. This is the required setting for the potentiometer.

Capacitor C1 is connected across R2 to prevent r.f. oscillation during the instant of change-over in the circuit. Such oscillation is possible if R2 is set to insert a high level of resistance into circuit. Should it be desired to have the circuit operate at a lower predetermined voltage than a value of about 6.7 volts, as was given with the author's circuit, a zener diode having a smaller voltage rating should be employed.

The l.e.d. in Fig. 5 will not be illuminated at very low supply voltages. However, such voltages will be so small that the supplied equipment will, in most instances, similarly not operate.

In the circuits of Figs. 3, 4 and 5, the fixed resistors are 1⁄4 watt components. In Fig. 5, R2 may be a skeleton potentiometer. The zener diode in both Figs. 4 and 5 can be rated at 200 to 400mW.

Fig. 4. A simple circuit in which an l.e.d. is used to monitor battery supply voltage.

Fig. 5. A more efficient voltage monitor circuit incorporating two transistors.
A Happy New Year to you, Smithy!

And," returned Smithy, "the same to you, my boy.

The pair beamed benevolently at each other as they took off their raincoats and hung them up behind the workshop door. Smithy rubbed his hands together briskly and gazed around him. The workshop still bore the ravages of their pre-Christmas burst of activity, during which a disproportionately large number of sets had decided, in the period leading up to Christmas Day, to join the ranks of the unserviceable. Since then, however, several days off and a week-end of blessed peacefulness had intervened, and Dick and Smithy had spent only one short desultory morning in the workshop clearing up odd jobs before embarking on New Year's Eve.

Now, on the second day of the year, they had arrived together. In the workshop, test equipment was still stacked untidily on both their benches, and these were liberally littered also with odd spare components. Also present were Dick's Christmas decorations: the two paper chains which hung from corner to corner, the cotton-wool snow on the windows, the huge plastic Santa Claus on the wall above Smithy's bench and the equally enormous rubber reindeer on the wall above Dick's.

ELECTRONIC VOLTMETER

"Blimey," commented Dick lazily, "The place looks a bit of a shambles, doesn't it?"

"It must do," replied Smithy with an air of equal indolence, "if you notice it."

"Do you realize," continued Dick, "that there isn't a single set in for repair?"

"It isn't there? Then that's a highly satisfactory state of affairs."

"Stap me," said Dick, surprised. "I don't think I've ever heard you say anything like that before. You're usually going up and down the agony column if we haven't got half the neighbourhood sets lined up to be fixed."

"They'll soon start coming in," replied Smithy sagely. "What I'm pleased about is the fact that we have got a few hours spare. We can use that time to make up a little project I've been thinking about during Christmas."

"A project, eh? This sounds interesting."

"It should be," confirmed Smithy. "I've worked out all the circuit details and all that's now required is the actual building."

"What's it to be? A bit of test gear?"

"That's right," stated Smithy. "It's going to be a low cost knockabout electronic voltmeter with a very high input resistance."

"That will certainly be useful here," stated Dick warmly. "Can I have a look at the circuit?"

Smithy opened a drawer in his bench and produced a sheet of paper with a circuit diagram on it. (Fig. 1.)

"Here it is," he announced. "If you come on over I'll explain how it works."

Eagerly, Dick picked up his stool and seated himself alongside the Serviceman. He gazed at the circuit.

"At first sight," he remarked, "it looks as though you've got some sort of bridge arrangement with a meter strung between two f.e.t.'s."

"That's a fairly close description," stated Smithy. "The first thing I want to point out is that the two f.e.t.'s are both MOSFET's. That word is an abbreviation for Metal Oxide Silicon, or Semiconductor, Field Effect Transistor. With normal depletion f.e.t.'s the gate is an infusion of opposite polarity semiconductor material in the main channel, but with a MOSFET the gate is a layer of metal which is completely insulated from the channel by a very thin layer of silicon oxide. Because of this it is possible to employ a MOSFET in a voltmeter circuit in which you forget all about current flow in the gate. You just think in terms of voltage only."

"Where?" asked Dick suspiciously. "Is the snag?"

"The only snag," replied Smithy, "is that the very thin MOSFET gate insulation can be easily broken down by a high static voltage. So you have to take special precautions when connecting a MOSFET into a practical circuit, and particularly when you apply a mains soldering iron to the gate lead-out."

"This must lead to a lot of trouble when MOSFET's are being handled by retailers and people like that."

"Not really," replied Smithy. "When MOSFET's are in store or in transit they have the gate lead-out short-circuited to the other lead-outs. A typical method of providing the short-circuit is to fit a small springy wire clip round the leads. This is then removed when it is desired to use the MOSFET."
VOLTMETER OPERATION

"Fair enough," said Dick. "Well, let's get down to this voltmeter of yours."

"Okey-doke," replied Smithy equably. "I'll deal quickly with the power supply arrangement first. The voltmeter is fitted with a 12 volt battery, and the positive terminal of this connects, via the on-off switch S2, to the simple voltage regulator given by zener diode D1 and transistor TR3. A stabilized voltage of about 9.1 volts appears across the diode and this is applied to the base of TR3. TR3 acts as an emitter follower, and a stabilized voltage of about 8.5 volts is then available at its emitter for the voltmeter circuits. Okay up to now?"

"Sure," said Dick. "I'm a bit puzzled, though, by the fact that you've shown a chassis connection which doesn't go to either the negative or the positive supply rail."

"That chassis connection," explained Smithy, "provides a common return with the negative input test terminal. It connects to the junction of R12 and R13, and these hold it at about 2.4 volts positive of the battery negative terminal."

"These two resistors have fairly high values," said Dick critically. "Won't they cause the negative and positive battery rails to be floating?"

"Not really," replied Smithy. "The standing current in R12 and R13 is 0.7mA, and this is more than enough to hold the battery negative and positive rails rock steady with respect to chassis potential. The current drawn from the junction of these two resistors by the circuit to the left of them is virtually zero, and it consists only of leakage current between the substrates and the channels of the MOSFET's. A MOSFET substrate, incidentally, is merely a layer of semiconductor material having opposite polarity to that in the channel. The MOSFET's we are using here are R.C.A. 40468A's and, with these, the substrate lead-out is also common to the metal case. In consequence, we can earth the substrates and the cases to the chassis line."

"I see," remarked Dick. "Let's carry on to the part of the circuit which includes the 50mV meter you've marked as M1."

"Well, now," said Smithy. "This meter couples between the two MOSFET sources, and, in conjunction with the series resistors R9 and VR1, acts as a voltmeter. Both of the MOSFETS are source followers. A source follower is rather like a valve cathode follower because, when the gate goes positive so also does the source, and also because the source has a potential which is positive of that on the gate. Now, TR1 couples to the voltage which is to be measured and, if that voltage is zero, TR1 gate is at chassis potential. Typically, the source voltage is then some 3.5 to 4 volts positive of the negative supply voltage from the battery. If the voltage at TR1 gate with respect to chassis is zero then we want the 50mV meter to read zero too, and so we adjust VR2 until the source of TR2 is at the same potential as the source of TR1: VR2 then becomes the set zero control for the electronic voltmeter and it's mounted on the front panel. Okay?"

"That's right," concurred Smithy. "The two MOSFET's will both be passing the same channel current and we can reasonably expect that any changes in performance in one due to ambient temperature variations will be at least partly balanced out by a similar change in the other. If any small changes do occur, they can be corrected by readjusting the zero set control with the test terminals short-circuited. You'll notice that VR2 can take the gate of TR2 all the way from the negative battery line to half the stabilized voltage. I found in a few preliminary experiments with these:

RADIO & ELECTRONICS CONSTRUCTOR

Fig. 1. The circuit of the electronic voltmeter. The MOSFET's in the TR1 and TR2 positions are available from Henry's Radio Ltd. The zero set control, VR2, has a wide range to accommodate spread in the MOSFET's. R11 and VR2 are later removed and a set zero control circuit with a lower range is connected in their place.
TEST VOLTAGE

"What happens," asked Dick, "when a test voltage is applied?"

"Ah," said Smithy. "What happens then is that the test voltage takes the gate of TR1 positive of chassis. The source of TR1 also goes positive, whereupon the needle of the 50μA meter is deflected away from zero to the right. Now it's necessary at an early point in the design of an electronic voltmeter like this to make an arbitrary choice of the voltage at TR1 gate which will cause the 50μA meter to give full-scale deflection. I settled here for 1 volt, and this figure fits in nicely with the voltage range resistor network which is switched by S1."

"I suppose," remarked Dick, "that the purpose of VR1 is to set up the 50μA meter so that it reads f.s.d. when there's 1 volt positive on TR1 gate."

"That's correct," agreed Smithy. "VR1 need only be set up once, and a small skeleton pre-set pot can be used here."

Dick gazed at the circuit with increasing interest.

"What," he asked, "about the voltage range resistors?"

"Do you mean R1 to R6?"

"I do."

"Those resistors," explained Smithy, "present a resistance of 15MΩ to the test terminals on all voltage ranges. All we have to do then is simply tap TR1 gate into suitable points along the resistor chain by means of the range switch, S1. The chain uses preferred resistor values, which should make it easy to obtain R4, R5 and R6. It will be harder to obtain single resistors for R1, R2 and R3. In fact, because close tolerance values above 1MΩ are more difficult to find. If necessary, R1, R2 and R3 can each consist of two or more close tolerance resistors in series."

"That seems reasonable enough," commented Dick. "How exactly does the voltage range circuit work?"

"Let's say," replied Smithy, "that we put the range switch, S1, to the 500 volt range. This means that the 50μA meter should give full-scale deflection when a voltage of 500 is applied to the test terminals. Now, we know that the meter gives an f.s.d. reading when the gate of TR1 goes positive by 1 volt, and so it is obvious that the switch must now tap off one-hundredth part of the voltage on the test terminals."

Smithy pulled his note-pad towards him and scribbled out a circuit. (Fig. 2(a)).

"If you add up the values of R1 to R6," he went on, "you'll see that they..."
come to the 15MΩ figure I mentioned just now. So the voltage across the 30kΩ resistor will be 30kΩ over 15MΩ, or one five-hundredth part, of 500 volts. In consequence, 1 volt is applied to the gate of TR1.

"I see," grunted Dick thoughtfully. "Incidentally, doesn't that 2.2MΩ resistor in series with the gate of TR1 have any effect on the voltage?"

"It has no effect at all," replied Smithy. "Everything in TR1 gate circuit operates simply in terms of voltage. You can short out that 2.2MΩ resistor when the voltmeter is giving a reading, and the reading won't alter one little bit."

"Then why have the 2.2MΩ resistor in the circuit in the first place?"

"In company with C1," explained Smithy, "it forms a simple protection circuit for the gate insulation of TR1. These two components ensure that any transient voltages or spikes at the test terminals won't reach the gate, where they could otherwise break down the gate insulation."

"I'm with it now," said Dick. "How about the 100 volt range?"

"This time," replied Smithy, "S1 selects R5 and R6 in series, and these have a total value of 150kΩ. A figure of 150kΩ over 15MΩ corresponds to a fraction of one-hundredth. Thus, one hundredth part of 100 volts is applied to the gate of TR1, and gives an f.s.d. reading in the meter. If 50 volts is applied when the 50 volt range is selected, the voltage applied to TR1 gate is that across R4, R5 and R6 in series. These total up to 300kΩ, which means that one fiftieth part of 50 volts is fed to TR1 gate. (Figs. 2(b) and (c))."

"Blow me," said Dick, impressed.

"Those resistor values certainly fit neatly into place. Let's see what happens with the 10 volt range. This gives us R3 to R6 in series and these add up to, let me see now, 1.5MΩ; 1.5MΩ is one-tenth of 15MΩ and so we must get f.s.d. in the meter when there's 10 volts across the test terminals." (Fig. 3(a)).

"If you look at the 5 volt range next," said Smithy, "you'll find that the total resistance given by R2 to R6 is 3MΩ. (Fig. 3(b))."

"And that," chimed in Dick, "means that one-fifth of the test voltage is applied to TR1 gate. Finally, when the 1 volt range is selected the positive test terminal just goes direct to the gate of TR1, so that this time a test voltage of 1 volt gives the f.s.d. reading in the meter." (Fig. 3(c)).

CONSTRUCTION

"Exactly," concurred Smithy. "The delightful part of the range switch calculations is that everything is in terms of voltage with no current flow at all. Well now, Dick, how about embarking on your first constructional job for the New Year?"

"My trusty soldering iron," responded Dick, "is, as ever, at the ready."

"Good," said Smithy. "I've collected all the bits and pieces you'll need, including a metal box to act as a case for the voltmeter."

"Wouldn't a plastic case be just as good?"

"The metal case is better," said Smithy. "The input circuit is at such a high impedance that it's desirable to have it screened. In consequence, all the parts can be fitted inside the metal case with only the positive and negative test terminals on the outside. The metal case is common with the negative test terminal and to the chassis symbol in my circuit diagram."

"What about the 12 volt battery?"

"A couple of 6 volt PP1 batteries in series will do nicely here," said Smithy. "These won't be excessively bulky and they should give a pretty long life since the current drawn from them at 12 volts is only about 8mA."

Smithy reached to the back of his bench and pulled forward a cardboard box.

"Here you are," he said, handing this over to his assistant. "You'll find all the components here. The layout of the parts inside the case isn't critical, and I'll leave you to sort that out."

Dick looked through the contents of the box.

"Hello," he said, "you've put in a couple of 4-way transistor holders and a 2kΩ pot."

"The holders are for the two MOSFET's," explained Smithy. "The idea is that we fit the MOSFET's to these holders after all the wiring has been completed. This reduces the risk of gate insulation breakdown. We'll use the 2kΩ pot later, and I should add that the wiring to R11 and VR2 need only be of a temporary nature at this stage."

Cheerfully, Dick took the cardboard box and Smithy's circuit over to his bench. It was not long before the workshop resonated with the ear-splitting racket from Dick's electric drill as he made a series of holes near the periphery of that needed for the meter cut-out. Smithy breathed a sigh of relief as the last hole was drilled, but the ensuing silence was soon shattered by the rasp of Dick's half-round file as he started cleaning up the meter hole. Shuddering, Smithy cast his eyes around for a task that would take his mind off the ear-splitting racket from Dick's bench. He spotted the two Christmas paper chains and decided that now would be as good a time as any to take these down.

He carried his stool over to a corner of the workshop and, standing on this, attempted to unfasten the end of one of the paper chains. It seemed to be secured very firmly to the wall and his efforts eventually ended with him tearing the chain at the point where it left the wall. Mystified, he attempted to replace the chain over the three corners but met with similar results. There were, now, four small torn pieces of gaily coloured paper stuck, apparently immovably, to the wall at each corner of the workshop. The centres of the two paper chains were

![Fig. 3(a). Input resistor values for the 0–10 volt range](image-url)

(b) One-fifth of the input voltage is applied to TR1 gate on the 0–5 volt range

(c) On the 0–1 volt range the positive test terminal couples direct to the gate of TR1
fixed to the flex of the light in the middle of the ceiling, and Smithy decided next to remove them from this point. He ended with four separate segments of paper chain, leaving two fragments of brightly coloured paper adhering, seemingly for ever, to the flex.

Scratching his head, Smithy took his stool back to his bench and pondered the situation. It was some time before he realised that the sounds of metal-work from his assistant's bench had ceased.

"Hey, Smithy!"

The Serviceman dismissed the mystery of the paper chains from his mind and walked over towards his assistant. The latter had already started on the wiring of the voltmeter. The 0–50µA meter, the two switches, the zero set potentiometer and the test terminals were already fitted to the front panel, and Dick had mounted a number of small tagstrips on the rear surface of this to take the remaining components.

"Any problems?" asked Smithy.

"Only with R1, R2 and R3," replied Dick. "What have you provided for these?"

"Ah yes the high value resistors," responded Smithy. "Well, I was lucky enough to obtain a single close tolerance 1.5MΩ resistor for R2. R3 will have to be a 1MΩ and a 200kΩ resistor in series. The best I could do for R1 was four separate 3MΩ resistors, and these can also be connected in series.

"Righty-ho," said Dick obligingly.

"I thought I'd have to do something like that from the resistors you'd put in the box. It won't be long now before I get this job completed.""

FINAL TESTS

Smithy leaned over Dick's bench, watching his assistant as he briskly carried out the remainder of the wiring. And, indeed, it was not long before Dick proudly announced that the last solder joint had been completed. Smithy carefully checked the wiring, connected up the two P11 batteries and switched on. Taking up the leads of Dick's testmeter he checked the voltage between the negative battery terminal and the emitter of the BC107.

The meter indicated a comforting 8.6 volts. Smithy switched off the battery again.

"The voltage stabilizing part is all right," he announced. "Let's fit the MOSFET's to their holders."

He took up the two 4046HA's, removed the lead-out short-circuiting wires and carefully fitted them into the transistor holders. He next set VR1 to insert maximum resistance into circuit, adjusted VR2 to mid-travel and switched on. The needle of the 0–50µA meter moved over to just below full-scale deflection. Smithy adjusted VR2 and soon had the meter giving a zero reading.

"Blimey," remarked Dick, "that set zero control is pretty fierce, isn't it?"

"It is rather," agreed Smithy. "As I said earlier on there's a very wide spread in these MOSFET's so far as gate-to-source voltage is concerned. There is, even, a slight risk with some MOSFET's that you won't be able to get a zero reading within the range of VR2. If this occurs the best plan is to swap the two MOSFET's over and try again. Anyway, the next job is to set up VR1. All we need here is a 3 volt battery, a pot having any value between 500kΩ and 20kΩ and the use of your testmeter to indicate the input voltage."

Smithy quickly found a potentiometer and battery and connected these up to produce a test voltage of 1 volt, as monitored by Dick's testmeter. He then connected the electronic voltmeter to this 1 volt source, selected the 0–1 volt range and adjusted VR1 for an f.s.d. reading in the electronic voltmeter. He disconnected the electronic voltmeter, rechecked the setting of its zero set potentiometer and coupled it to the 1 volt source once more. He then gave VR1 a final adjustment and switched off the meter.

(Fig. 4.)
"There you are," he announced, "all we now need to do is to make a change to the circuit around VR2."

"Is that?" asked Dick, "why you said that I should wire in R11 and VR2 temporarily only?"

"It is," confirmed Smithy. "It's necessary for VR2 to have a wide range initially in order to cater for MOSFET spread. But, after VR1 has been set up, this wide range is undesirable because it can result in high currents flowing in the 50kΩ meter. So what you do now is measure the resistance between the emitter of TR3 and the slider of VR2, and between the slider of VR2 and the negative side of the battery. You then fit a 2kΩ or a 2.2kΩ pot in place of the 10kΩ one, and put fixed resistors on either side of it having values which will enable this to give a zero reading when it's at about the centre of its travel." (Fig. 5.)

"That sounds reasonable," remarked Smithy. "What you now need to do is to change R11 to 12kΩ, put in the 2 or 2.2kΩ pot in place of VR2, and insert a 6.2kΩ resistor between the bottom of VR2 track and the negative battery line."

Dick walked over to the spares cupboard and returned with the two fixed resistors.

Smithy looked on as Dick made the circuit alterations for the new zero set control. A thought occurred to him.

"I've been looking down the paper chains you put up for Christmas," he remarked, "and I just couldn't unfasten them at all. How did you secure them to the walls and to the light flex?"

"I stuck them there."

"What with?"

"Araldite."

"Oh."

The battery negative line.

"I'll soon get that done," said Dick, reaching for his testmeter.

"I should remove TR2 from its holder whilst you're making these circuit changes," advised Smithy. "There's no point in taking risks with its gate insulation."

"Okey-doke," said Dick cheerfully, as he removed the MOSFET.

He applied the test prods of his meter to the electronic voltmeter.

"There's 13kΩ between the emitter of TR3 and the slider of VR2," he called out. "And there's about 7kΩ between the slider of VR2 and the

376

Fig. 5. The final set zero control circuit. The two added fixed resistors have values to suit the particular MOSFET employed in the TR2 position

Smithy looked at the rubber reindeer above Dick's bench. Standing up, he grasped one of its back legs and tugged. The figure changed in shape but still remained tenaciously secured to the wall. Smithy released the leg, whereupon the reindeer snapped back smartly to its original form.

"Did you," asked Smithy, "stick this reindeer in place, too?"

"Yes, I did," replied Dick absenty, busy with his tacking iron.

"What with?"

"Araldite."

The Serviceman gazed doubtfully at the apparently immovable rubber figure. The first tremors of foreboding arose in his mind.

"I've wired up the new set zero circuit," announced Dick. "Let's try it out."

He refitted the MOSFET to its transistor holder and switched on. This time the set zero control was much easier to adjust and caused far less meter deflection.

"Very good," commented Smithy. "We were a bit lucky there. We might have had to fiddle around a bit with the values of these two extra resistors before we got them right."

"Well," said Dick, "that's one electronic voltmeter all complete and working."

But Smithy had become preoccupied with other matters. He pointed a finger at the plastic Santa Claus above his bench.

"Did you fix that in place with Araldite, too?"

"I did."

Smithy walked over to his bench and, reaching up, caught hold of the beard of the Santa Claus. The plastic figure did not have the elasticity of the rubber reindeer but, as Smithy pulled, it slowly changed shape. The head moved outwards towards Smithy, and the front of the body became distorted downwards. The figure still stayed firmly affixed to the wall. When, eventually, the despairing Serviceman released the beard, the head started to return, very slowly, towards its original position. But Smithy had overstrained the plastic and the head finally took up a crooked sloping posture reminiscent of a body on the gibbet. The face was twisted out of shape, too; where previously there had been a beauteous smile the mouth now exhibited a salacious leer of unplumbable corruption.

Smithy reeled back from this dreadful Santa Claus.

HAIRY OUTLOOK

But his cup of woe was not yet replete. He suddenly caught sight of the windows, each pane of which had its complement of imitation cotton-wool snow. Impulsively, he dashed over to the nearest window and scrambled feverishly at the cotton-wool balls. Each left a circle of matted fibre stuck irremovably to the glass.

"Ye gods," wailed the stricken Serviceman. "Hairy windows next! How could you do it, Dick?"

"It was easy," replied Dick airily.

"I just stuck the cotton-wool on with what was left of the Araldite. I must admit that I hadn't realised it would stick so strongly as it has, though."

Men can always adjust to a changed environment and, as the day proceeded, Smithy found that he could still carry on in the appallingly altered workshop.

Provided, that is, he didn't raise his eyes above bench level or attempt to look out of the windows.
Radio Topics

By Recorder

F.M. RADIO SUBSYSTEM

The rather striking photograph which accompanies my notes this month aptly demonstrates the performance capabilities of the SGS-ATES integrated circuit type TDA 1200. This provides a complete subsystem for the amplification and detection of f.m. signals.

The i.c. incorporates a three-stage 10.7MHz amplifier complete with its own limiting stage and quadrature detector, and has an internal supply voltage regulator. It enables controlled inter-signal muting (squelch) to be carried out, and it provides a detected audio output, an a.f.c. output and a delayed a.g.c. output for the receiver f.m. tuner. Further facilities are outputs for the switching of a stereo decoder and for the driving of a tuning meter.

The main performance features claimed for the i.c. are high limiting sensitivity, high a.m. rejection, high audio output, low capture ratio, and low distortion due to the high level of linearity in the detector.

The TDA 1200 is encapsulated in a 16 lead dual-in-line plastic package. Its manufacturers are SGS-ATES Group of Companies, Via C. Olivetti 1, 20041 Agrate Br., Milan, Italy.

PIPED RADIO

The following story is quite true and it was recounted to me by a service engineer friend of mine.

Whilst calling on a family recently about a matter unconnected with work he noticed a length of rubber garden hose running along the carpet in one of their rooms. On investigating further he found that one end of the hose led to a leg of an easy chair then travelled up its side to terminate at the top of the chair back. In the other direction the rubber hose went to the leg of a table nearby then carried on up to and over its surface. On the table was a medium sized radio, over the loudspeaker aperture of which had been taped the open end of a large tin funnel. The garden hose had been passed over the narrow section of the funnel.

On enquiring, my friend found that an elderly man in the family was rather deaf. In the past he had been in the habit of turning the radio on at full volume, thereby sending his next-door neighbours spare. The funnel and hose pipe was his answer to the problem, since it enabled him to run the set at a reasonable volume whilst he sat in the chair with the hose pipe end held near his ear. What frequencies finally emerged after passing through the combination of funnel and hose pipe is a matter of conjecture but the old chap who used the contraption seemed to be quite satisfied.

Indeed, he walked into the room whilst my friend was there and proudly surveyed his novel invention.

"The neighbours don't bang on the wall any more now," he remarked contentedly.

ROTARY SWITCH WIRING

The appeal of our hobby is, I sometimes feel, that whilst many aspects of it are quite simple, a job now and again crops up which is surprisingly difficult to carry out. I recently had to devise a rather complicated six-way switching circuit for a project I'm working on, and I started by getting out pen and paper and working out the simplest form the circuit could take up. This is usually quite an enjoyable task, especially if there are a number of different possible combinations of switch connections. I got things down to a 4-pole 6-way circuit then, after a little head-scratching, to a 3-pole 6-way circuit. After that I looked around to see if I could find a suitable switch. I did, in 4-pole 6-way!

It was a miniature rotary switch with two wafers, each offering 2 poles and 6 ways.

Anyway, I proceeded to wire up the 3-pole version of the circuit, as I wasn't going to throw away all that brain activity even if it did mean that one of the switch poles would be unused. And, after my first wiring error, I decided to get my testmeter out. I then used it, switched to read ohms, as a continuity tester to ensure that each tag I connected up to was the right one.

It is, in fact, surprising how easy it is to make a mistake when wiring a new circuit to a miniature rotary switch having a large number of tags. It is necessary to remember all the time that clockwise rotation of the knob whilst looking at the front means anti-clockwise rotation of the contacts whilst looking at the rear. When locating the contacts visually from the rear there is a continual temptation to fall into the trap of counting off the tags in the wrong direction. The best plan is to do what I belatedly did, and that is to use a continuity tester with one clip coupled to the arm of the particular pole that is being wired up, and then set the switch knob to the position to be wired up whilst actually looking at the knob from the front. The corresponding fixed contact can then be found with complete certainty by means of the continuity tester.

Wiring up with a continuity tester may take a little longer but at least it proceeds without error, and there is a hidden bonus in that the switch contacts are themselves being automatically tested at the same time as the wiring is being carried out.
PRECISION POLYCARBONATE CAPACITORS
ALL HIGH STABILITY - EXTREMELY LOW LEAKAGE
400V AC (+10%)
63V Range +11% +3% +5%
+0.1µF (1 x 9)
50p 0.47µF
4p 46p
+0.12µF (1 x 9)
50p 0.1µF
46p 46p
+0.2µF (1 x 9)
50p 1µF
46p 46p
+0.3µF (1 x 9)
5p 2.2µF
46p 46p
+0.47µF (1 x 9)
5p 4.7µF
1.30 1.05 0.85
+0.5µF (1 x 9)
5p 6.8µF
1.64 1.29 1.09
+0.68µF (2 x 5)
50p 10.0µF
2.00 1.60 1.40
+1.0µF (2 x 5)
50p 15.0µF
2.75 2.15 1.90
+2.0µF (2 x 5)
50p 22.0µF
6.35 5.70 5.35
TANTALUM BEAD CAPACITORS Values available: 0.1, 0.22, 0.47, 1.0, 2.2, 4.7, 6.8µF at 15V or 25V; 10.0µF at 16V/200V or 35V; 22.0µF at 6V/10V or 16V; 33.0µF at 6V or 10V; 47.0µF at 3V or 6V; 100.0µF at 3V. ALL AT EACH; 10 for 99p; 30 for £4.00.
TRANSISTORS:
BC107/8/9 9p BC183/183L 11p BF194 12p BF75 20p
BF194 12p BC184/184L 12p BF196 13p BF75 20p
BF197 13p BC187/8 12p BF77 30p BN3055 50p
1N914 4p; 8 for 45p; 18 for 70p. 1N916 8p; 6 for 45p; 14 for 90p.
1N45 1p; 11 for 9p; 24 for £1.00. 1N44 4p; 6 for 27p; 12 for 48p.
LOW PRICE ZENER DIODES: 400mW; Tol. ±5% at 5mA. Values available: 3V; 3.6V; 4.7V; 5.1V; 5.6V; 6.2V; 7.5V; 8.2V; 9.1V; 10V; 11V; 12V; 13V; 13.5V; 15V; 16V; 18V; 30V; 22V; 24V; 27V; 30V. All at 7p each; 6 for 39p; 14 for 84p. SPECIAL: 100 Zeners for £5.50.
RESISTORS: High stability low noise carbon film 5%; ±5% at 40°C; ±10% at 70°C, ±12 series only - from 2.2Ω to 2.200Ω ALL AT EACH; 8p for 10 of any one value; 7p for 100 of any one value. SPECIAL PACK: 10 of each value 2.1Ω to 2.200Ω (730 resistors) £5.00.
SILICON PLASTIC RECTIFIERS - 1.5 Amp - Brand new wire wound. 2N27: 100 P.I.V. - 7p (4/26p); 400 P.I.V. - 8p (4/30p); 800 P.I.V. - 11p (4/7p); BRIDGE RECTIFIERS: 2 Amp. 200V; 40p; 300V - 45p; 600V - 55p.
SUBLINATURE VERTICAL PRESETS 0.1W only. ALL AT 8p each: 50Ω, 100Ω, 220Ω, 470Ω, 680Ω 1kΩ, 2.2kΩ, 4.7kΩ, 6.8kΩ, 10kΩ, 15kΩ, 22kΩ, 47kΩ, 100kΩ, 250kΩ, 1MΩ, 2.2MΩ, 4.7MΩ.
TRANSFORMERS: Primary 220-240V, 12V @ 2A & 24V @ 1A. £2.00 plus 22p post.
 Please ADD 8% V.A.T. TO ORDERS. PLEASE ADD 10p POST AND PACKING ON ALL ORDERS BELOW £5.00. Send S.A.E. for lists of additional ex-stock items. Wholesale price lists available to bona fide companies. ALL EXPORT ORDERS ADD COST OF SEA/AIRMAIL.

MARCO TRADING
Dept. C9, The Old School, Edtastone, NR. WEM, Salop.
Tel: WHIXALL (Salop) 464 (STD 094872) (props: Mincost Trading Ltd.)

I. Understand electronics.
Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered using our unique Lerna-Kit course.

1. Build an oscilloscope.
2. Read, draw and understand circuit diagrams.
3. Carry out over 40 experiments on basic electronic circuits and see how they work.

2. Become a radio amateur.
Learn how to become a radio amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure, without obligation to:
BRITISH NATIONAL RADIO & ELECTRONICS SCHOOL, Dept AX 1374
P.O. Box 156, Jersey, Channel Islands.

NAME __________________________
ADDRESS _______________________

Free! Block caps please
SMALL ADVERTISEMENTS

Rate: 5p per word. Minimum charge 75p
Box No. 10p extra.

Advertisements must be prepaid and all copy must be received by the 4th of the month for insertion in the following month’s issue. The Publishers cannot be held liable in any way for printing errors or omissions, nor can they accept responsibility for the bona fides of Advertisers. Replies to Box Numbers should be addressed to: Box No. — Radio and Electronics Constructor, 57 Maida Vale, London, W9 1SN

MINI MAINS TRANSFORMERS. 30 x 30 x 37mm. Cool, quiet, British. Pri: 220/250V. Type MT3, 3-0-3V rms, 300mA; £1. MT7, 7-0-7V, 120mA; £1. VAT included. Use MT3 for 3V or 6V rectified d.c., MT7 for 9V or 18V. Circuits supplied. Mail order only. U.K. post 5p per order. Amatronix Ltd., 396 Selsdon Road, South Croydon, Surrey, CR2 0DE.

HARDWARE SUPPLIES. Sheet aluminium, screws, nuts, washers, etc. Fascia panels in aluminium, individual requirements. Printed circuit boards, one-off or small runs, individual and for patterns published in this magazine. Send 10p for list. Ramor Constructor Services, 29 Shelbourne Road, Stratford-upon-Avon, Warwicks. CV37 9JP.

FOR SALE: Polarised relays, suitable for RTTY terminal units. £1.00. Box No. G235.

FOR SALE: L.E.D.’s, sirens, motors, meters, project cases, electronic components – all cheap. Grimsby Electronics, Lambert Road, Grimsby, Lincs. List 6p. (Callers Saturdays only).

WANTED. Early radio books, prior to 1925. Box No. G236.

SUPERB INSTRUMENT CASES by Bazelli. Manufactured from heavy duty P.V.C. faced steel. Hundreds of radio, electronic and hi-fi enthusiasts are choosing the case they require from our range of over 200 models. Generous trade discount. Prompt dispatch. Free literature: Bazelli, Dept. No. 26, St. Wilfrids, Foundry Lane, Halton, Lancaster, LA2 6LT.

SERVICE SHEETS for Radio & TV etc. 40p each plus s.a.e. Bell’s Television Services, 190 Kings Road, Harrogate, Yorkshire, Telephone: 0423-55885.

BUILD THE MULLARD C.C. TV CAMERA. Complete kits now available from Crofton Electronics. Send large s.a.e. for details to:- 124 Colne Road, Twickenham, Middlesex, TW2 6QS. Telephone: 01-898-1569.

FOR SALE: C60 cassettes, 30p each. 5p postage. Daniel Collier, Sturminster Farm, Middle Street, Bumbles Green, Nazeing, Essex.

(Continued on page 380)
The "CORDEX" Patent Self-Binding Case will keep your copies in mint condition. Issues can be inserted or removed with the greatest of ease. Specially constructed Binding cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for, and the Cords will always remain taut and strong. It is impossible to over-stretch the springs, as a safety check device is fitted to each.

COLOURS: MAROON OR GREEN
(If choice not stated, colour available will be sent)

PRICE 95p P. & P. 18p

Available only from:
Data Publications Ltd.
57 Maida Vale London W9 1SN

SMALL ADVERTISEMENTS
(Continued from page 379)

JOIN THE INTERNATIONAL S.W. LEAGUE. Free services to members including Q.S.L. Bureau, Amateur and Broadcast Translation, Technical and Identification Dept. — both Broadcast and Fixed Stations, DX Certificates, contests and activities for the SWL and transmitting members. Monthly magazine, Monitor, containing articles of general interest to Broadcast and Amateur SWLS, Transmitter Section and League affairs, etc. League supplies such as badges, headed notepaper and envelopes, QSL cards, etc., are available at reasonable cost. Send for League particulars. Membership including monthly magazines, etc., £2.75 per annum. (U.K. and British Commonwealth), overseas £7.50 or £3.00. Secretary ISWL, 1 Grove Road, Lydney, Glos., GL15 3JE.

8 VOLUMES Newnes Radio & Television Servicing from Volume 1 to 1959/60 edition. £16.00, post paid. Bell's Television Services, 190 Kings Road, Harrogate, Yorkshire. Telephone: 0423-58885.

FOR SALE: 10-18U oscilloscope, 4.5MHz bandwidth 30mV pk. to pk./cm, rise time less than 0.02μS, input impedance 3.4MHz shunted by 12pF. Virtually unused. £50 plus £5 p. & p. Also TW50K multimeter, 46 ranges — £8 plus £1 p.p., and T.T.145 transistor/diode tester £10 plus £1 p.p. C. Moon, Studio 409, Central School of Art, Southampton Row, London W.C.1. (Mon-Fri 9 a.m. to 6 p.m.).

WANTED: Avo 8 or Selectest in good condition. Fair price paid. Sharp, 9 Harold Road, Coventry, Warwick.

POSTAL ADVERTISING? This is the Holborn Service. Mailing lists, addressing, enclosing, wrapping, facsimile letters, automatic typing, copy service, campaign planning, design and artwork, printing and stationery. Please ask for price list. — The Holborn Direct Mail Company, Capacity House, 2-6 Rothsay Road, London, S.E.1. Telephone: 01-407 1495.

ANTIQUE WIRELESS ENTHUSIASTS. For all your requirements in radio pre-1945 contact: Tudor Rees's Antique Wireless Service. Retail shop now open at 64 Broad Street, Staple Hill, Bristol. Telephone: 0272-256472.

1972 World Radio TV Handbook, only 75p post paid. Bell's Television Services, 190 Kings Road, Harrogate, Yorkshire.

MAGNIFIERS, ideal for wiring printed circuit boards, etc. 4" dia. lens on flexible arm and heavy base £6.00. Also Binomag headband magnifier — £5.70. Available by post from Revor Optical & Technical, 36 Baker Street, London W.1. Telephone: 01-836 4536.

PRINTED CIRCUIT BOARDS. PCB from your pattern £1 plus 5p per square inch. From published patterns in this magazine 50p per board. Add v.a.t. 5p P. & P. per pcb. Mail Order only. TEC, 241 Burnt-Oak Broadway, Burnt Oak, Middlesex.

WORLD DX CLUB covers all aspects of SWLing on Amateur and Broadcast Bands through its monthly bulletin "Contact". Membership costs £1.60 a year. Enquiries to John Rush, 12 Northfield Road, Thatcham, Berks.

(Continued on page 381)
SMALL ADVERTISEMENTS
(Continued from page 380)

FOR SALE: Daystrom “Cotswold” 3-element Speaker, 25 watts programme capacity. 26 x 23 x 15 in. Current price of list £68 for £40. Telephone: Dunster 301.

QUARTZ CRYSTALS. 5675 kc/s to 8650kc/s in steps of 25kc/s. £1 pin spacing. £2 for our selection. 7000 to 7175 £1.00 each. E.E.S. Ltd., The Airport, Exeter, Devon. Telephone 66523.

FOR SALE: Puffs and cans galore. Mica, ceramic, 2p each. Smoothing blocks 60p each. Quantity discount. Send 10p for list. Post and packing free on orders over £1.50. Quartic Electronics, 6 Stancliffe Avenue, Bulwell, Nottingham, NG6 5HP.

FREQUENCY LIST TRANSFERS. We have a limited supply of sheets of Dial Frequency Transfers in black. Short Wave frequencies 1.8Mc/s to 32Mc/s and 114Mc/s and 146Mc/s. Includes amateur and marker frequencies at 100kc/s points and other short wave frequencies from 2 to 32Mc/s at every 500kc/s points. Each frequency is repeated. Two sheets for 5p, five sheets for 10p, postage 3p. Data Publications Ltd., 57 Maida Vale, London W9 1SN.

FOR SALE: Plain maroon binders available for Radio & Electronics Constructor magazine in excellent condition, 40p each including postage. Frank Morton, 65 Malmsley House, Vauxhall Street, London SE11 5LU.

RADIO & ELECTRONICS CONSTRUCTOR. Issues from August 1963 to July 1974, mint condition, best offer. Rylance, 46 Cedar Drive, Hatch End, Pinner, Middlesex.

RECITALS OF RECORDED MUSIC. The second Saturday evening of each winter month. Next recital: January 11th, 1975, 8 p.m. at Woodford Green United Free Church Woodford Green, Essex. Bus routes 20, 20A, 179 and 275 — alight at “The Castle” stop.

FM RADIO Transmitter Modules complete with microphone and battery. Four simple connections only required. Return of post delivery. £4.50. E.E.S. Ltd., The Airport, Exeter, Devon.

PERSONAL

JANE SCOTT FOR GENUINE FRIENDS. Introductions to opposite sex with sincerity and thoughtfulness. Details free. Stamp to: Jane Scott, 3/Con North St. Quadrant, Brighton, Sussex, BNI 3GJ.

IF YOU HAVE ENJOYED A HOLIDAY on the Norfolk Broads, why not help to preserve these beautiful waterways. Join the Broads Society and play your part in determining Broadslands future. Further details from: The Hon. Membership Secretary, The Broads Society, “Icknield”, Hilly Plantation, Thorpe St. Andrew, Norwich, NOR 8SS.

(Continued on page 383)
NOW AVAILABLE... NEW FIFTH EDITION

TV FAULT FINDING for 405/625 LINES

REVISED & ENLARGED
EDITED BY J. R. DAVIES

Over 100 illustrations, including 60 photographs of a television screen after the appropriate faults have been deliberately introduced.

Comprehensive Fault Finding Guide cross-referenced to methods of fault rectification described at greater length in the text.

132 PAGES
90p
POSTAGE 9p

To Data Publications Ltd., 57 Maida Vale, London, W.9 1SN

Please supply the NEW EDITION OF "TV FAULT FINDING" DATA BOOK No. 5.

I enclose cheque/crossed postal order for.

NAME
ADDRESS

(BLOCK LETTERS PLEASE)
SMALL ADVERTISEMENTS
(Continued from page 381)

ELECTRONICS MEN. You are worth more than a measly £40 or £50 a week. Much more. And you do not need to be highly qualified. Last year I earned £3,600 for six months work. The other six months I had off. My booklet will tell you how I managed and how you too could do similar if not better. No selling and no capital outlay except the price of the booklet. It's 65p from Alben, Site 3, Church Street, Diss, IP22 3DD.

ESSEX GARDENERS. Buy your Bedding and rock plants, shrubs, etc., also cacti from May’s Nurseries, 608 Rayleigh Road, Hutton, Brentwood, Essex. Callers only. Monday to Saturday.

SPONSORS required for exciting scientific project. Norwich Astronomical Society are building a 30’ telescope to be housed in a 20’ dome of novel design. All labour being given by volunteers. Already supported by Industry and Commerce in Norfolk. Recreational. Educational. You can be involved. Write to: NAS Secretary, The Manse, Back Lane, Wymondham, Norfolk.

SITUATION VACANT

FREE
YOURSELF FOR A BETTER JOB WITH MORE PAY!

Do you want promotion, a better job, higher pay? "New Opportunities" shows you how to get them through our low-cost home study courses. There are no books to buy and you can pay-as-you-learn.

This helpful guide to success should be read by every ambitious engineer. Send for this helpful 76 page FREE book now. No obligation and nobody will call on you. It could be the best thing you ever did.

CUT OUT THIS COUPON

NAME

ADDRESS

POSTCODE

Home of British Institute of Engineering Technology

JANUARY 1975

HOW TO MAKE 2M & 4M CONVERTORS FOR AMATEUR USE. Available at last after many delays. Fully comprehensive Contains circuits. tips, units, component lists, diagrams and full instructional notes. Price 60p, p. p.

DIRECTORY OF ENGINEERING AND ELECTRONICS DEALERS. Gives details of surplus electronic equipment owned or dealers implementing surplus equipment and space that they are likely to have available. A valuable book only 60p, p. p.

THE THEORY OF GUIDED ELECTROMAGNETIC WAVES. The most comprehensive book yet written about waveguides, transmission lines, cavity resonators. Over 500 pages. Ideal for anyone interested in Radar and UHF. Published at £11.50 Special offer: £4.50, p. p.

MOBILE RADIOTELEPHONE EQUIPMENT HANDBOOK. Gives circuits, details and illustrations plus valuable modifications for amateur use for commercial radiotelephone equipment including PVE and other popular makes. Available early November. £1.76 p. p.

Send for this fully comprehensive catalogue of radio books. Free!

THE BARGAIN BOOK GAZETTE. Contains thousands of interesting new and out of print books at bargain prices. Subjects include all types of hobbies, collecting, 1001 interests. Published regularly and sent free on request. Dept. R. C. GERALD MYERS (Publisher & Bookseller), 130 Cardigan Rd., Headingly, Leeds 6. Yorks. (Callers Welcome).

MASSIVE CLEARANCE BARGAINS

Bargain component parcels contain Resistors, Capacitors, Potentiometers, Knobs, Rotary, Slide, Switches, IFs, Tag Strips, Drive Drums, Springs, Cores, Cables, Mica, Wire, Cables, Pulley Wheels, Magnets, Transistor Plates etc., etc. Save yourself £4 on these well selected parcels 6lbs net weight £1.96, p. p. 50p.

Millard Ferrite Cores LA100 to 500kHz, 500p, LA410 to 30kHz, 75p. LA1200 3 to 200kHz, 50p.

P.V.C. Flexible Connecting Wire Assorted Colours 100 yards for £1.00 p. p. 20p.

Please include 8% VAT to total cost of goods.

MAIL ORDER ONLY

To ALDERMaston COLLEGE, Dept. ERED, Reading Rd 409 ERE 01

NAME (block capitals please)

ADDRESS

POSTCODE

Te ALDERMaston COLLEGE, Dept. ERED, Reading Rd 409 ERE 01

NAME (block capitals please)

ADDRESS

POSTCODE

Home of British Institute of Engineering Technology

JANUARY 1975

MORSE MADE EASY!!!

FACT NOT FICTION. If you start RIGHT you will be reading amateur and commercial Morse within a month. (Normal progress to be expected.) Using scientifically prepared 3-speed records you automatically learn to recognise the code RHYTHM without translating. You can't help it, it's as easy as learning a tune. 18-W.P.M. IN 4 WEEKS GUARANTEED. Complete course, 3 RECORDS and booklets, £4.90 p. F. P. F. (Overseas £1 extra). Or details only, 4p stamp. Orphone S. Bennett, G3HSC, 01-860 2898.

Box 38, 45 GREEN LANE, PURLEY, SURREY.

www.americanradiohistory.com
SMALL ADVERTISEMENTS

Use this form for your small advertisement

To: The Advertisement Manager, Data Publications Ltd., 57 Maida Vale, London W9 1SN

Please insert the following advertisement in the issue of RADIO & ELECTRONICS CONSTRUCTOR

15 words at 5p = 75p.

ALL WORDING IN BLOCK LETTERS PLEASE

I enclose remittance of being payment at 5p a word. MINIMUM 75p.

Box Number, if required, 10p extra.

NAME
ADDRESS

Copy to be received four weeks prior to publication. Published on the 1st of every month.

DATA BOOK SERIES

DB5 TV FAULT FINDING

DB6 RADIO AMATEUR OPERATOR’S HANDBOOK

DB16 RADIO CONTROL FOR MODELS

DB17 UNDERSTANDING TELEVISION

DB18 AUDIO AMPLIFIERS

DB19 SIMPLE SHORT WAVE RECEIVERS

I enclose Postal Order/Cheque for ... in payment for ..

NAME..
ADDRESS...

(BLOCK LETTERS PLEASE)

Postal Orders should be crossed and made payable to Data Publications Ltd.
Overseas customers please pay by International Money Order.
All publications are obtainable from your local bookseller.
Data Publications Ltd., 57 Maida Vale, London W9 1SN

PLEASE MENTION THIS MAGAZINE WHEN WRITING TO ADVERTISERS
D.S.C. Wire Coil Lengths

The Table lists lengths, in inches, of close-wound coils using D.S.C. (double silk covered) enameled copper wire. Thus, a 70 turn coil of 28 s.w.g. wire has a length of 1.3m. Similar coil lengths will be given with D.R.C. (double rayon covered) enameled wire.

<table>
<thead>
<tr>
<th>Wire Gauge (s w g)</th>
<th>10 Turns</th>
<th>20 Turns</th>
<th>30 Turns</th>
<th>40 Turns</th>
<th>50 Turns</th>
<th>60 Turns</th>
<th>70 Turns</th>
<th>80 Turns</th>
<th>90 Turns</th>
<th>100 Turns</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0.71</td>
<td>1.4</td>
<td>2.1</td>
<td>2.8</td>
<td>3.6</td>
<td>4.3</td>
<td>5.0</td>
<td>5.7</td>
<td>6.4</td>
<td>7.1</td>
</tr>
<tr>
<td>18</td>
<td>0.53</td>
<td>1.1</td>
<td>1.6</td>
<td>2.1</td>
<td>2.7</td>
<td>3.2</td>
<td>3.7</td>
<td>4.2</td>
<td>4.8</td>
<td>5.3</td>
</tr>
<tr>
<td>20</td>
<td>0.41</td>
<td>0.82</td>
<td>1.2</td>
<td>1.6</td>
<td>2.1</td>
<td>2.5</td>
<td>2.9</td>
<td>3.3</td>
<td>3.7</td>
<td>4.1</td>
</tr>
<tr>
<td>22</td>
<td>0.33</td>
<td>0.66</td>
<td>0.99</td>
<td>1.3</td>
<td>1.7</td>
<td>2.0</td>
<td>2.3</td>
<td>2.6</td>
<td>3.0</td>
<td>3.3</td>
</tr>
<tr>
<td>24</td>
<td>0.27</td>
<td>0.54</td>
<td>0.80</td>
<td>1.1</td>
<td>1.3</td>
<td>1.6</td>
<td>1.9</td>
<td>2.1</td>
<td>2.4</td>
<td>2.7</td>
</tr>
<tr>
<td>26</td>
<td>0.22</td>
<td>0.44</td>
<td>0.66</td>
<td>0.88</td>
<td>1.1</td>
<td>1.3</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>28</td>
<td>0.19</td>
<td>0.37</td>
<td>0.56</td>
<td>0.74</td>
<td>0.93</td>
<td>1.1</td>
<td>1.3</td>
<td>1.5</td>
<td>1.7</td>
<td>1.9</td>
</tr>
<tr>
<td>30</td>
<td>0.16</td>
<td>0.32</td>
<td>0.48</td>
<td>0.63</td>
<td>0.79</td>
<td>0.95</td>
<td>1.1</td>
<td>1.3</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>32</td>
<td>0.14</td>
<td>0.28</td>
<td>0.43</td>
<td>0.57</td>
<td>0.71</td>
<td>0.85</td>
<td>1.0</td>
<td>1.1</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>34</td>
<td>0.12</td>
<td>0.25</td>
<td>0.37</td>
<td>0.49</td>
<td>0.62</td>
<td>0.74</td>
<td>0.86</td>
<td>0.99</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>36</td>
<td>0.22</td>
<td>0.32</td>
<td>0.43</td>
<td>0.54</td>
<td>0.65</td>
<td>0.76</td>
<td>0.86</td>
<td>0.97</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0.18</td>
<td>0.27</td>
<td>0.36</td>
<td>0.45</td>
<td>0.54</td>
<td>0.64</td>
<td>0.73</td>
<td>0.82</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.16</td>
<td>0.24</td>
<td>0.31</td>
<td>0.39</td>
<td>0.47</td>
<td>0.55</td>
<td>0.63</td>
<td>0.71</td>
<td>0.79</td>
<td></td>
</tr>
</tbody>
</table>
LARGEST SELECTION OF ELECTRONIC COMPONENTS AND EQUIPMENT. LOW PRICES—MEAN LESS VAT.

INTEGRATED CIRCUITS. FULL RANGE IN STOCK

Prices & descriptions correct at time of proof. Subject to change without notice
8% VAT TO BE ADDED TO ALL ORDERS (EXPORT VAT FREE) & D/E

Electronic Centres
404-4 Delphonic Components & Equipment 01 402 8381
309 PA - Disco- Lighting High Power Sound 01 723 6963
303 Special offers and bargain stock
All mail to 303 Edgware Road, London W2 1BW
FREE stock list on request