AN EXCELLENT PROJECT FOR THE NEWCOMER

IC MORSE PRACTICE OSCILLATOR

BAND II PORTABLE

NOVEL TESTING TECHNIQUE

CONSTANT CURRENT TRANSISTOR TESTER

ALSO FEATURED
★ DOPPLER SHIFT ADD-ON UNIT
★ ELECTRONIC 'HANGMAN'
MARCH 1979
Volume 32 No. 7

Published Monthly
(3rd of preceding Month)
First Published 1947

Incorporating The Radio Amateur

Editorial and Advertising Offices
57 MAIDA VALE LONDON W9 1SN

Telephone 01-286 6141 Telegrams Databux, London

© Data Publications Ltd., 1979. Contents may only be reproduced after obtaining prior permission from the Editor. Short abstracts or references are allowable provided acknowledgement of source is given.

Annual Subscription: £7.50, Overseas £8.50 (U.S.A. and Canada $15.00) including postage. Remittances should be made payable to "Data Publications Ltd". Overseas readers, please pay by cheque or International Money Order.

Technical Queries. We regret that we are unable to answer queries other than those arising from articles appearing in this magazine nor can we advise on modifications to equipment described. We regret that queries cannot be answered over the telephone, they must be submitted in writing and accompanied by a stamped addressed envelope for reply.

Correspondence should be addressed to the Editor, Advertising Manager, Subscription Manager or the Publishers as appropriate.

Opinions expressed by contributors are not necessarily those of the Editor or proprietors.

Production—Web Offset.

CONSTANT CURRENT TRANSISTOR TESTER 408
by John Baker

NEWS AND COMMENT 414

RECENT PUBLICATIONS 416

ELECTRONIC "HANGMAN" — Suggested Circuit 417
by G. A. French

TUNE-IN TO PROGRAMS — Part 2 419
The second in our down-to-earth series on calculator programming — by Ian Sinclair

NEW CASES FOR TEST EQUIPMENT 421

TUNNEL DIODE OSCILLATORS by P. R. Arthur 422

I.C. MORSE PRACTICE OSCILLATOR by I. M. Attrill 424

THE DECISION MAKER by Ian Sinclair 428
Double Deccer Series No. 5

SHORT WAVE NEWS — For DX Listeners 430
by Frank A. Baldwin

BAND 11 PORTABLE — Part 1 432
by Sir Douglas Hall, Bt., K.C.M.G.

STEREO RECORD PLAYER TROUBLE 438
— In Your Workshop

IN NEXT MONTH’S ISSUE 443

DOPPLER SHIFT ADD-ON UNIT by R. A. Penfold 444

A DRILL FOR PRINTED BOARDS by I. B. Brodrick 448

LOGIC INVERTERS — Electronics Data No. 43 For the Beginner

Published in Great Britain by the Proprietors and Publishers, Data Publications Ltd, 57 Maida Vale, London W9 1SN.
The Radio & Electronics Constructor is printed by Swale Press Ltd.
POTENTIOMETERS
5K-2M2 single 28p ea. 1000-2M2 horizontal 5K-2M2 stereo (dual) 75p ea. or vertical preset 6p ea. 5K-2M2 DP switched 60p ea.

BRIDGE RECTIFIERS

<table>
<thead>
<tr>
<th>Type</th>
<th>PIV</th>
<th>Type</th>
<th>PIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>W005</td>
<td>50</td>
<td>W01</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>W02</td>
<td>200</td>
<td>W04</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td></td>
<td>0.4</td>
</tr>
</tbody>
</table>

METAL FILM RESISTORS

A range of high precision, very high stability, low noise resistors. Rated at 0.5% tolerance.

Available from 51 ohms to 33k ohms in E24 series. Any mix of values from 51 ohms to 33k ohms (a total of 930 resistors)...

MINIATURE TRANSFORMERS

240 Volt Primary

Secondary rated at 100mA. Available with secondaries of 6.8, 4.7, 2.5, 2.2, 1.2 and 12-0-12. 92p each

HEAT SINKS

T018 9p each
T020 20p each
T022 20p each
T05 8p each
T0126 20p each

Double T03 predrilled pin finish. 100mm x 124 x 27mm...

LINEAR

A SELECTION ONLY! DETAILS IN CATALOGUE.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>709</td>
<td>250 Ohm</td>
</tr>
<tr>
<td>741</td>
<td>220 Ohm</td>
</tr>
<tr>
<td>746</td>
<td>100 Ohm</td>
</tr>
<tr>
<td>1000</td>
<td>50 Ohm</td>
</tr>
</tbody>
</table>

OPTO

Carbon film resistors. High stability, low noise 5%.

E12 series. 4.7ohms to 10M. Any mix of values from 0.5 to 33k ohms (650 pcs.)...

CAPACITORS

H ere are just a few of the capacitors stocked.

TANTALUM BEAD

Each 0.1, 0.15, 0.22, 0.33, 0.47, 0.68, 1.22 and 3.3uF @ 35V 9p.

MYLAR FILM

0.001, 0.01, 0.022, 0.033, 0.047 3p.

RADIAL LEAD ELECTROLYTIC

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1200</td>
</tr>
<tr>
<td>100</td>
<td>720</td>
</tr>
</tbody>
</table>

SKTS

Low profile wholesale...
MARCH

'Harversonic' Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

Supersound is suitable with individually controlled two controls, Pri.

SUPERSOUND 13 HI-FI MONO AMPLIFIER

HARVERSOUND MODEL P.A. TWO ZERO

HARVERSOUND SUPER SOUND 10 & 10 STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first five stages. Designed to give better performance in a lighter lower noise level with improved sensitivity. Integrated pre-ampl with bass, treble, level and volume controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to modify to suit many existing cartridges - instructions included. Output transformers from 8 to 100 ohms. Compact design. All parts supplied including drifted metal works. A really ready drilled printed circuit board with component identification clearly marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder, nuts, bolts - so easy to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief specifications: Power output: 14 watts r.m.s. channel into 8 ohms. Frequency response ±3db 12-30,000 Hertz. suitable for 80-100 watt M.P. Power supply bandwidth ±15db 2,000-15,000 Hz. Bass boost approach to ±15db. Treble cut approach to -16db. Negative feedback 15db over main amp. Power requirements 12v at 1.5 amp. Output impedance 4Ohm. Overall size 11" x 9" x 2 3/4". Fully detailed 7 page working manual and parts list with kit or send 25p plus large S.A.E.

SPECIAL OFFER

Limited number only!

New but very stylishly fitted solid state radio and cassette recorder to enable you to listen to your vinyl records and cassettes with wonderful treble, bass and output transformers with built in short term thermal overload protection. All components including rectifier smoothing capacitor, fuse, tone control, volume control, treble control, bass control, master volume control, output transformer and anodised aluminium front panel. Each model uses I.G. integrated circuit amplifiers. AC mains or battery operated covering VHF/FM and MW bands. £10.00 + £1.30 p&p

Speaker cables are specially made for this amplifier. Suitable for use in up to 50 watt systems. £5.45 each & 99p F. & P. £6.00.

SYNTHETIC BAGS

40 12" x 21" x 13" £15.00 and 50 12" x 21" x 13" £17.50 each. £.25 F. & P. £30.

PRICE £8.75 per 150. F. & P. £9.50 per 1000.

STEREO-DECODER SIZE

2" x 3" x 1"

ready-built, pre-tested and tested. £1.00 per unit. 20-50 units £0.90 per unit. £1.00 with 50 units £0.80 per unit. £1.00 with 100 units £0.75 per unit. £1.00 with 200 units £0.70 per unit.

OPEN 9.30-5.30 Monday to Friday. 9.30-5.00 Saturday. Send for prices.

HARVERSON SUPPLIES CO. LTD.

Dept. REC 170 MERTON HIGH ST, MERTON, LONDON, SW16. Tel: 01-640 3966.

A small quantity of components are available on request. Contact our sales representative for details.

For the full range of our catalogue, please contact our sales representative for details.

Our prices include VAT at 15%. SUPPLIES AND CARRIERS OF HIGH QUALITY ELECTRONIC COMPONENTS AND CIRCUITS.
Enrol in the BNR & E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates), the Grad, Brit, I.E.R. Exam, the RADIO AMATEUR'S LICENCE, P.M.G. Certificates, the R.T.E. Servicing Certificates, etc.

Also courses in Electronic Transistors, Radar, Computers, Servo-mechanisms, Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. fullest details will be gladly sent without any obligation.

Brochure without obligation to

British National Radio & Electronic School

P.O. Box 156, Jersey, Channel Islands.

NAME

ADDRESS

RADIO AND ELECTRONICS CONSTRUCTOR

Re: 1-76
THIS is the Catalogue you need to solve your component buying problems!

Many people have called it "the finest components catalogue yet published." Others call it "the electronic constructor's Bible." Whatever you call it, at £1.25 including packing and postage, the Home Radio Components catalogue is a wonderful bargain. Just look at these features:.

- About 2,500 items clearly listed and indexed
- Profusely illustrated
- 128 A4 size pages, bound in full-cover colour
- Bargain List of unrepeatable offers included free
- Catalogue contains details of simple Credit Scheme

Send the coupon today with cheque or P.O. for £1.25

HOME RADIO (Components) LTD., Dept. RC, 234-240 London Road, Mitcham, Surrey CR4 3HD. Phone: 01-648 8422

At last, DIY Hi Fi which looks as if it isn't.

That's not to say it doesn't look like HiFi - just that it doesn't look like the usual sort of thing you have come to associate with DIY HiFi. The NA.3 outsprings and outperforms all British made HiFi tuners, and most imported ones too. Certainly at the price, there isn't one near it. But more than that, it looks superb. A small pie here would be an insult, so send an SAE for details on the kit that looks as if it's nothing else.

- Exceptionally high performance - exceptionally straightforward assembly
- Boardbuild and plug-in construction. Future circuit developments will readily plug in, to keep the NA.3 at the forefront of technical achievement
- Various options and module line-ups possible to enable an installation approach to the system

Now and previewing the matching 60W/channel VMOS amplifier:

- Matching both the style and design concepts of the NA.3 HiFi, FM tuner
- Hitachi VMOS power transistors - characterised especially for HiFi applications
- Power output readily multiplied by the addition of further MOSFETs
- PLL circuits on the preamp - not simply dancing according to vol level
- Racketed with the usual Ambit expertise and technical capacity in audio

The PW Dorchester LW, MW, SW & FM stereo tuner

The DIGITAL DORCHESTER ALL BAND TUNER

With styling and dimensions to fit in with the rest of AMBIT's new range of tuner & audio equipment.

When the range of new OKI digital frequency display ICs was announced, the original prototype of the Dorchester had been made - but since so many of you wanted to use the OKI frequency counter/display system with the Dorchester, we quickly designed a unit to incorporate the necessary facilities. The Digital Dorchester is designed in 19 inch form, and forms a perfect match for the other units in the range. If you don't want to go to the expense of the full Ambit DFM module, with AM/FM/Time/Time, then the MA1023 clock module can be used instead.

The Dorchester has been described in PW, Dec., Jan. and Feb. issues - but for those of you who may have missed it, it is an All Band Broadcast tuner, covering LW, MW, SW and FM stereo in 6 switched ranges. Construction is very straightforward, with all the switching being PCB mounted, and the revolutionaries, TDA1090 IC used for AM/FM. The electronics for the radio section of the Dorchester remain unchanged at 33.00 with 12.5% VAT. The hardware package of case, meter PSU, power costs £33.00 - 8% for the fully digital version, with Ambit DFM, the price is £56.50 - 8% VAT.

2 Gresham Road, Brentwood, Essex. 397
BOOKS BY BABANI
The following books are offered at 10% off their normal retail price.

<table>
<thead>
<tr>
<th>Book Title</th>
<th>Normal Price</th>
<th>Sale Price (10% off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S87</td>
<td>£1.95</td>
<td>£1.76</td>
</tr>
<tr>
<td>S84</td>
<td>£1.75</td>
<td>£1.58</td>
</tr>
<tr>
<td>S82</td>
<td>£1.95</td>
<td>£1.76</td>
</tr>
<tr>
<td>S83</td>
<td>£1.75</td>
<td>£1.58</td>
</tr>
<tr>
<td>S85</td>
<td>£1.95</td>
<td>£1.76</td>
</tr>
<tr>
<td>S86</td>
<td>£1.75</td>
<td>£1.58</td>
</tr>
<tr>
<td>S88</td>
<td>£1.95</td>
<td>£1.76</td>
</tr>
<tr>
<td>S89</td>
<td>£1.75</td>
<td>£1.58</td>
</tr>
<tr>
<td>S90</td>
<td>£1.95</td>
<td>£1.76</td>
</tr>
<tr>
<td>S91</td>
<td>£1.75</td>
<td>£1.58</td>
</tr>
<tr>
<td>S92</td>
<td>£1.95</td>
<td>£1.76</td>
</tr>
<tr>
<td>S93</td>
<td>£1.75</td>
<td>£1.58</td>
</tr>
<tr>
<td>S94</td>
<td>£1.95</td>
<td>£1.76</td>
</tr>
<tr>
<td>S95</td>
<td>£1.75</td>
<td>£1.58</td>
</tr>
<tr>
<td>S96</td>
<td>£1.95</td>
<td>£1.76</td>
</tr>
<tr>
<td>S97</td>
<td>£1.75</td>
<td>£1.58</td>
</tr>
<tr>
<td>S98</td>
<td>£1.95</td>
<td>£1.76</td>
</tr>
<tr>
<td>S99</td>
<td>£1.75</td>
<td>£1.58</td>
</tr>
</tbody>
</table>

RADIO AND ELECTRONICS CONDUCTOR
SPECIAL OFFER! COMPETITION PAKS
Order No Quantity
16185 5 pairs Assorted Finish rods 40p
16192 2 pieces Tuning range MKIV/LV 40p
16170 50 metres Single stranded wire 40p
16171 10 Read switches 40p
16172 2 Micro switches 40p
16176 20 Assorted electrolytics Trans types 40p
16179 10 Assorted miniature fuses, bulbs etc. 40p
16180 15 Assorted control knobs 40p
16184 15 Assorted Fuses 100mA-5 amp 40p
16187 30 metres stranded wire assorted colours 40p
5100 120 j.el. resistors, Pre-formed. 1978 Prod. Our mix 40p
5101 120 j.el. resistors, Pre-formed. 1978 Prod. Mixed values. 40p
5102 250 j.el. resistors. Ranges 100ohms 40p
5103 220 j.el. resistors, Range 100 ohms 40p
5104 60 Low ohm 1 watts res. 10 - 100 ohms 40p
5105 40 Low ohm 1 Watts resistors 12 - 100 ohms 40p
5106 25 mil wirewound resistors 40p
5107 20 Tantum ball caps 22 - 200uf 40p
5108 High quality electrolytics 10mf 500vdc voltage range 40p
2,000 mix for 40p.
16204 C280 Pk. Contains 50 metal foil.

POTMIETERS

SLIDER 40/60MM TRAVEL
Order No Price
16191 6 x 47ohm LIN Single 40p
524 6 x 1 K LIN Single 40p
16183 6 x 22K LIN Single 40p
16185 6 x 47K LOG Single 40p
16187 6 x 100 K LOG Single 40p
257 6 x 150 K LOG Single 40p
258 6 x 500 K LOG Single 40p
259 6 x 1M LOG Single 40p
322 6 x 22K LIN TRAVEL 40p
323 6 x 1M LIN TRAVEL 40p
330 6 x 2.6 K LOG Single 40p
534 4 x 10 K LOG 40p
537 4 x 1.5 K LOG 40p
538 4 x 2 2.2K LOG 40p
539 4 x 5 6.8K LOG 40p
540 4 x 10 K LOG 40p
561 4 x Mixed Assorted Values 40p
562 4 x Mixed slider pots various values 40p
539 4 x Chrome slider knobs 40p

WIREWOUND

590 Woundg wire wound potentiometer Mixed useful values for 5p each 40p

CARBON TYPES

591 Car Radio type. Dual Switched Pot. 10Kp. 100K LIN Switched 2 5 K LIN. 60p each

DUAL POTS PC MOUNTING

592 4 x 100 K LIN 1.00p
593 4 x 10 X LOG 1.00p
594 15 Rotary Pot Assorted 1.00p
595 25 Assorted Assorted Values 1.00p

ZENER PAKS

No. 555 20 mixed values 400mV Zener diodes 3 10 each 1.00p
No. 556 25 mixed values 200mV Zener diodes 11-32V 1.00p
No. 557 10 assorted 1W Zener diodes 3-10V 1.00p
No. 558 10 assorted 1W Zener diodes 11-32V 1.00p

SILICON POWER TRANS N.P.N.

597 BD371 2amp 12v 60vdc Hart 40-400 4.00p
598 2N2932 RCA. 36v with amps 75vdc I00a 30-120 6 for £1.00p

PLUGS FOR ABOVE

No. 16105 2.5 plastic £0.05
No. 1697 3.5 plastic £0.15

MONO CRYSTAL CARTRIDGE

S123 LM151/152 Special Offer £1.25

NICOLAS CADMIUM RECHARGEABLE BATTERIES

1.25v

S128 3000D Cell size — U2 £2.80
S129 1.25v single cell 111 1.00
S130 Complete kit of parts to build nickel cadmium radialium £3.50

SPECIAL SAVE PK

S134 £4.71
S150 £5.65

SUPER DUPER COMPONENT BOX

S138 Super & End Mix of Manufacturers Line-Prep. with Base, Treble, Volume Control and circuit diagram supplied.

SOLD ONLY FOR £1.25

S137 20 Assorted Slider Knobs Chrome/Black £1.00

DIODES

S131 2 x 12v Relays plastic case £0.70
S132 4 x 24v Relays plastic case £0.70
S133 1 switch bank 5 way incl. £0.10
S134 2 x Magnets suitable for relay switches £0.10
S135 10 Viewboard 2 pcs 25 sq. ins. approx. £0.10
S136 Veroboard 2 pcs 60 sq. ins. approx. £0.10
S1601 1 Viewboard 30 sq. ins. approx. £0.50
S1602 15 Viewboard 30 sq. ins. approx. £0.50

TRANSFORMERS

S141 2028 24vdc primary 0.5vdc at 2 Amp £2.50
S142 0352 24vdc primary 0.25vdc at 10 Amp £2.50 secondary £0.50 + £0.68 pp

COMPLETE AMPLIFIER KITS

STA15 15 watts per channel amplifier kit Conusics 2 x AL0, 1 x PA100, 1 x MB100, 2 x 204t transformer 2 x coupling capacitors £37.70 inc. VAT + £6.85 pp
STA25 25 watts per channel amplifier kit Conusics 2 x AL0 1 x PA100, 1 x MP120/145, 1 x 240t transformer, 1 x reservoir cap 2 x coupling capacitors £48.45 inc. VAT £54.30 inc. VAT + £10.18 pp
STA35 35 watts per channel amplifier kit Conusics 2 x AL0 1 x PA100, 1 x MP120/145, 1 x 204t transformer, 1 x reservoir cap, 2 x coupling capacitors £64.45 inc. VAT £71.20 inc. VAT + £13.98 pp
STA45 45 watts per channel amplifier kit Conusics 2 x AL0 1 x PA100, 1 x MP120/145, 1 x 204t transformer, 1 x reservoir cap, 2 x coupling capacitors £91.45 inc. VAT £101.45 inc. VAT + £19.28 pp

SPECIAL OFFER

S126 125 watts per channel amplifier kit: Conusics 2 x AL0 1 x PA100, 2 x 204t, 1 x MP120/145, 2 x 240t transformer, 1 x reservoir cap, 2 x coupling capacitors £68.20 inc. VAT + £10.18 pp
S125 125 watts per channel amplifier kit: Conusics 2 x AL0 1 x PA100, 2 x 204t, 1 x MP120/145, 2 x 240t transformer, 1 x reservoir cap, 2 x coupling capacitors £91.45 inc. VAT £101.45 inc. VAT + £19.28 pp

BATTERY HOLDERS

S255 £0.65 inc. VAT + £0.18 pp

EX. G.P.O. MICROSWITCHES

Order No. £0.95 10p each

CABLE CLIPS

S250 50 x 12 in single pin fitting 30p

OPTOELECTRONICS

2nd Quality LED Paks

No. 1507 10 Assorted Colours and Sizes £0.75
No. 1523 10 x 1.2 Red £0.60
No. 1522 10 x 1.2 Red £0.60

NEW

No. 870 Child in. £0.03
No. 747 6" £0.25
No. 1928 5" £0.10
No. 1927 4" £0.08

P.O. RELAYS

£0.05 inc. VAT + £0.03 pp

BATTERY HOLDERS

Order No. £0.95 10p each

EX. G.P.O. MICROSWITCHES

Order No. £0.95 10p each

CABLE CLIPS

S250 50 x 12 in single pin fitting 30p

TOOLS

All with insulated handles

No. 2011 5 in. wide gauge £1.30
No. 2012 5 in. long gauge £1.45

POWER SUPPLY STABILIZER BOARD

Unusual re-ammunication enabling input 30v D.C. Output 30v, Complete with circuit diagram.

Order No. 581 £1.25

I.C. INSERTION EXTCTION TOOL

O/N 2015 30p each

SPECIAL OFFER SGS TB4800 IC's 10 FOR £5.00.
CIRCUIT TESTER. simple method of continuity testing £1.20
AMPHENOL CONNECTORS PLS.250 pairs. 45p SO239 sockets 40p Reducers. 12p
30011 F.M. INDOOR TAPE AERIALS. T pattern. 35p
NEW LOW COST MULTIMETERS
KRT100 1,000 Ohms per volt. 1KV AC/DC. 150mA DC current. 0-100K RES. miro display. range selector switch. £4.65
KRT101: is above but range selection by test prod Indication. £3.50
12VDC 15 WATT PORTABLE SOLIDERING IRON. £1.60
SPECIAL OFFER.
7 * 4 15/20 Ohm SPEAKERS. new 75p each.
HORN SIRENS. 125mm, high pitched wailing note at varying frequency £7.75
Operating Power Supply plugs into 13 amp socket. 6-7.5-VDC outputs at 300mA £2.95
F.C. Aalborg. 12VDC input. 4BD output. fully regulated. 1 amp max £1.90

MOTORS
Small synchronous 240VAC Motors. with gearbox. 15th RPM. 70p
Concent 115 VAC 4 RPM Motors. New. 95p
Heavy duty 240V A.C. Solenoids. 2" pull. 25lbs. £3.95 4 54p 8p
Small push button, insulated handles £1.35
Small sub-800 series, insulated handles £1.65
9 VOLT BATTERY ELIMINATORS, stabilized output, at 120MA max. only £2.45

MOTORS. 1.5 TO 6V DC MODEL MOTORS 20p. SUB. MIN. BIG INCH 115v AC 3/8PM MOTORS 30p. 12V DC. 5 POLE MOTOR 35p.
BOXES: BLACK ABS PLASTIC PROJECT BOXES. BRASS INSERTS AND I.D. 75 £5 25 and 35mm 45p. 95 £7 25 and 35mm 50p. 115 £9 25 and 35mm 60p.

MAIN TRANSFORMERS. All 240VAC primary, postage shown in brackets per transformer.
1 X KENON/TRIAC PULSE TRANSFORMERS 30p. £1.11 PULSE T/F 60p. BUZZERS: GPO TYPE 6-12 volts 40p. 12 volt LARGE PLASTIC DOMED BUZZERS (50mm) LOUD NOTE 50p. MIN. INDOUSE BUZZERS 6-9-12 OR 74 volt. ALL 5MA 75p each.

U.F. TESTERS: PUSHER BUTTON T.V. TYPE (NOT VARICAP) NEW AND BOXED £2.50.
TAPE HEADS: STEREO CASSETTE £3.00. MN1330 DUAL IMPED. R/P HALF TRACK. HEADS 50p. SP 90p & TRACK R/P HEADS £1.95. STANDARD 8 TRACK STEREO £1.75. TD10 DUAL ASSEMBLY 2 HEADS. BOTH 6 TRACK R/P WITH BUILT-IN ERASE MOUNTED ON TRACKET £1.20.

METERS: 200 MICRO AMP MIN. LEVEL METERS 75p. GRUNDIG IMA BATT LEVEL METERS 40 £1.10. DUBLIUF 1MF 500V DC MIN. DIELECTRIC CAPACITORS 15p.
50 VAC CAM UNITS. WITH 10 C/O MICRO SWITCHES. SUPPLIED WITH CAPACITOR FOR 240 VAC EX EQUIPMENT. £1.95 (1x5p 8p)
SWITCHES: MIN. TOGGLE SPST 8 x 7 x 5mm 45p. DPDT 8 x 7 x 5mm 70p. DPDT CENTRE OFF 12 x 1 x 9mm 75p. MIN. PUSH TO MAKE OR PUSH TO BREAK 16 x 16mm 10p EACH TYPE. SLIDER SWITCHES: DPDT MIN. 12p. DPDT COFF 20p. 8-WAY RIBBON CABLE. MIN. SOLID CORE. 15mm. 50p.

B-TRACK 12 volt motors. new £1.25
6V Cassette motors. new £1.35
ROSS SIREN ALARMS. operate on 6VDC 85p
ORP61 MULLARD NEW BOXED 30p
ORP12 (PHILIPS TYPE) 45p
110MF 600VDC BLOCK PAPER CAPS. new 65p
TOSHIBA 0.2" GREEN LEDs 14p

MICRO SWITCHES
Standard size SPOO roller operated 15p
Heavy duty. 15 amp. button operated SPOO. 65 £1 x 15mm 25p

JUMPER TEST LEAD SETS
10 leads with insulated croc clips each end. different colours 80p
LM309K V5 REGS. 75p
LM340T. 6V 1A VOLTAGE REGS. 40p
7415 (wide bandwidth) B-pin DIL 35p
HC330 ALPHANUMERICAL DISPLAYS
full spec with data sheet £2.50

TAPE HEAD MAGNETISERS. 240 VAC with on/off switch £2.00

TELEPHONE PICK UP COIL. section type with leads and 3.5mm plug 50p

PRECISION SCREWDRIVER SETS. 6 drivers in plastic case £1.75
MURATA MA401L 40kHz TRANSDUCERS, REC/SENDER. £3.25 pair

AMPLIFIERS
DI-110 11W watt include into 8 Ohms mono. 28VDC max. 1.45p
Small valve amplifier module. 3 watts output into 8 Ohms 12VDC £3.35

LOW COST METAL DETECTOR, with Telescopic Search Coil Shaft. new and boxed £9.75

12 AMP RUBBER TRAILER EXTENSION SOCKETS. 38p.
LA1230 ADOJ CORE 15MM DIAM. 14MM. HI Q. 6 FOR 50p.

TERMS: CASH WITH ORDER (OR OFFICIAL ORDER FROM COLLEGES ETC.) POSTAGE 30p. OVERSEAS POST AT COST. V.A.T. INCLUDED IN ALL PRICES S.A.E. PLEASE FOR NEW ILLUSTRATED LISTS

PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2.
A breadboard as big as your ideas.

EXPERIMENTOR 325 £2.54
The ideal Breadboard for 1 chip circuits. Accepts 8, 14, 16 and up to 22 pin ICs. Has 130 contact points including two 10-point bus-bars.

EXPERIMENTOR 600 £7.88
The Breadboard for quick construction of Microprocessors and other circuits. EXP 600 has 550 contacts including two 40-point bus-bars with 0.6" centres.

EXPERIMENTOR 350 £4.21
EXP 350, specifically designed for the hobbyist working with up to 3 x 14 DIP ICs. With 270 contact points including two 20-point bus-bars the EXP 350 accepts any size DIP with 0.3" spacing.

EXPERIMENTOR 650 £4.70
Perfect for checking out Microprocessors. EXP 650 has 270 contacts including two 20-point bus-bars with 0.6" centres.

EXPERIMENTOR QUAD BUS STRIP £3.29
Need more bus-bars? clip on an EXP 48 and you have four 40-point bus-strips with 8-, 12- and 16-line address, create data-buses by combining EXP 48, Bus Strips.

No soldering simply plug all standard components in and out, nickel-silver contacts allow Breadboard and components to be used over and over again without damage.

Adaptable accepts any component without adaptors or jumper leads, use 22-30 gauge solid wire for jumper leads.

Mix and Match large and small chips in the same circuit. Use 300 series for smaller and 0.3" pitch DIPs, 600 series for Microprocessors with 0.6" centre channel for full fan-out with larger chips.

Smallest to Biggest, remember CSC's Breadboards "snap-lock" together so you can start with a small idea and expand your ideas to as big a Breadboarding area as you like.

Easy Permanent Mounting, using four screws from front or six self-tappers from rear. Vinyl-insulated backing lets you fasten to any surface.

Pick any project that you want to build, or any part of a project that you want to test or modify. Count up the number of ICs you need for the project. Then simply look up in the box opposite the Breadboard you require. If you need more than two bus-bars simply add the correct number of Quad-Bus Strips. GET STARTED NOW FOR AS LITTLE AS £2.54.

How to order: Telephone 071 / 21682 and give your Access, American Express or Barclaycard number, and your order will be in the post that night. Or send your order, enclosing cheque, postal order, or sending over card number and expiry date. For full catalogue showing all CSC products for the engineer and hobbyist send large S.A.E.

CONTINENTAL SPECIALIES CORPORATION
TO ALL TRADERS, MAIL ORDER HOUSES
CONTACT MRS TINA KNIGHT FOR "PROFIT-PACKAGE" DETAILS
BARGAIN COMPONENTS

ALL GOODS NO HIDDEN EXTRA PRICES LISTED POST PAID

VALID UNTIL 28/3/79

SUPER TESTED PKS

Twenty BC107
Six pot knobs
Twenty 2W resistors
Four assorted trimmers
Forty 3 and 4 watt resistors
Six switcher FET's
Twenty BC108

C280 CAPACITORS

- 240V, 250uF 6.3V 15p each
- 240V, 500uF 6.3V 15p each
- 240V, 1000uF 6.3V 15p each

PHOTO RESISTOR

- 0.75W
- 1W

TOGGLE SWITCH

- 16A 250V
- 16A 500V

TERMINAL BLOCKS

- 2-way 5A rating
- 7p each

13A RUBBER SLOTS

All new
- 5 amp
- 10 amp
- 15 amp
- 20 amp
- 25 amp
- 32 amp

AMPLIFIER I.C.'s

- Wideband Radar type
- 10 to 150 MHz
- new but untested
- with data 18p each

WIRESWOUND POTS

All new
- 5 ohm
- 15 ohm
- 20 ohm
- 25 ohm
- 50 ohm
- 100 ohm
- 250 ohm
- 500 ohm
- 1K ohm
- 2.5K ohm

PRICES LISTED

- £1.30
- £6.75
- £3.60
- £4.60
- £1.80
- £3.50

BARGAIN COMPONENTS

DO NOT ADD ANY EXTRAS UNLESS INDICATED

Some of the advertised components are offered below normal prices due to their being unmatched or identified and tested new and workable by ourselves, any unsatisfied customer may return goods purchased within 8 days for full refund as long as the goods are undamaged.

ORDER DETAILS

It is helpful if you send a S.A.E. with all orders or enquiries. lists free on request.

ELECTROVAC

Tel: 01-736 0685 MAIL ORDER ONLY
P.O. BOX 191 LONDON SW6 2LX

RADIO AND ELECTRONICS CONSTRUCTOR

QUESTIONS AND ANSWERS
RADIO REPAIR

Les Lawry-Johns

Can a signal injector be used for testing loudspeakers?
How can transistors be checked using an ohmmeter?
What are the major problems with small i.f. coils?
What does an electrolytic capacitor do when it ‘dries up’?
How are tuning slugs re-aligned?
What is the difference between a trimmer and a padder?
What is a Phantom Dabbler?
What causes poor reception and background noises?

Simple and concise answers to these and many other questions which puzzle the beginner and student — from first principles to a useful level of practical knowledge are given in this practical book.

0 408 00367 7 £1.50 US $ 3.50 1979

BURGLAR ALARM SYSTEMS

Vivian Capel

* Will your home or business figure in next year’s crime statistics?
* On average a break-in takes place every three minutes and even now your premises may be under observation by a thief just awaiting his chance!
* Is it not surprising that an alarm system is becoming essential for every home and business?

Here is everything that the house owner or businessman needs to know to protect his premises, and there is also much of interest to the professional installer.

0 408 00405 3 £4.70 approx. US $ 10.75 approx. 1979

Newnes Technical Books

Borough Green, Sevenoaks,
Kent TN15 8PH
OFFERS CORRECT AT 19/1/78 APPLICABLE TO ORDERS RECEIVED DURING FEBRUARY

VALVE BASES

Printed circuit B7G 7p
Chassis B7-G 11p
Shrouded Chassis B7-G/88 13p
812A tube. Chassis B9A 13p

Smaller 6" x 4.5" 5 ohm ideal for radio £1.56
4½" diameter 30 Q 1.75
2½" diameter 32 or 8 Q. 0.70

TAG STRIP-6 way 4p
9 way 6p Single 1p
300Pf trimmers 35p

COLECTORS

Many others in stock

Up to 10V 25V 50V 75V 100V 250V 350V 500V MFD
10 6p 7p 7p 10p 13p 15p 26p 32p
25 6p 6p 7p 10p 13p 15p 26p 32p 37p
50 6p 7p 7p 12p 16p 23p 32p 37p
100 7p 8p 13p 15p 24p 26p
250 12p 13p 15p 16p 30p 55p
1000 16p 27p 50p 60p £1.05
2000 26p 47p 59p 93p

As total values are too numerous to list, use this price guide to work out your actual requirements 8/10/10, 12/20, 22/50, 47/75. Tub. Tant. 24p each 16-32/27/5V, 100-150V, 100-200/25V 4/5/50 (4½") £1.50-5/00 non polar. 32-52-50- 300V, 20-20-20/350V 0.1-0.5/00 AC 80p 200V 100-200-60/300V £1.30-10/00-16/300V £1.85

RS 100-0.100 micro amp null indicator

Approx. 2" x 2½" x 4½" £1.85

INDICTORS

Bulgin D767 red. takes M.E.S. bulb 38p
12 volt. or mains red. push up £1
R.S. Scale Print. pressure transfer dial £2.30

CAPACITOR GUIDE

Up to 10 ceramic 4p. Up to 0.01p 6p
12 up to 68p etc. 8p. Silver mica up to 630pF 10p. Then to
2200pF 13p then to 0.01mF 25p. 1/750 13p... £2-60. 352
0.001mF £1.25
Many others and high voltage in stock.

SONNENSCHEIN/POWERSONIC-DI-FIT-REPLACEABLE SELED GEL (Lead Antimony) BATTERY, 6V 1 amp.hr (3½" x 2½" x 1") £3.70.
4½" x 2½" £6.00
5½" x 2½" £8.00
6½" x 2½" £10.00

EX -equiment, little used.

CONNECTOR STRIP

Belling Lee L1469, 4 way polythene strip. 9p each
11 glass fuses 250 mA or 3 amp (box of 12) 20p
Bulgin 5mm Jack plug and switched socket (pair) 40p

Reed Switch 28mm, body length 11p

Aluminium circuit tape, 1½ x 36" - self adhesive. For window, adi. in. co's, circuits, etc. 95p

TRAY MACHINES

5 assorted units for - 75p

100p air-spaced tuning capacitor £1.30
5 ½" x 2½", Speaker, ex-equiment 30p
2 Amp Suppression Choke 10p
4½" x 2½" £1.09
8p PAXOLINE £5 for 36p
30p
10p
15p
15p
£3.60
£7.00
12p

PORTORIES with adjuster

LA2508-LA2519 43p per pair

16 Watt Power Amp. Module
35v 1A power required, giving 16 watt
RMS into 8Ω

£3.45

ADJ. VARIABLE, NIAO 450K. Capacity 6V
400 m. a.h. at 10 hour rate, Ex -equiment 50p

MDC 4 or 5 amp plug and socket extension 50p

Bulgin alarm and sounder, for windows, doors, upstairs, etc. £4.11

Mail Order 10% to 15p, except large orders. 50p to 50p

BRIAN J. REED
161 ST. JOHNS HILL, BATTERSEA. LONDON SW11 1TQ
Open 10 a.m. to 7 p.m., Tuesday to Saturday. VAT receipts on request.
Terms: Payment with order Telephone: 01-223 5016

SAPRE STYLII. 15 different, dual and single point, current and hard to get types. My mix £2.
MARCH 1979

VAT & POST PAID

NO MORE TO ADD - Prices include VAT and Post/Packing

ALL ENQUIRIES, ETC., MUST BE ACCOMPANIED BY A STAMPED ADDRESSED ENVELOPE

MARCH 1979

UK & EIRE - Post Orders for same day delivery. Services charge 25% over £200 net. Services charge 10% over £100 net.

Mullard Special offers - up to 14% off - M.O.R. orders also available on request.

MARCH 1979

VAT & POST PAID

NO MORE TO ADD - Prices include VAT and Post/Packing

ALL ENQUIRIES, ETC., MUST BE ACCOMPANIED BY A STAMPED ADDRESSED ENVELOPE

MARCH 1979

UK & EIRE - Post Orders for same day delivery. Services charge 25% over £200 net. Services charge 10% over £100 net.

Mullard Special offers - up to 14% off - M.O.R. orders also available on request.
DIRECT READER SERVICE

RADIO & ELECTRONICS BOOKS

1. **50 PROJECTS USING RELAYS, SCR’s & TRIACS**
 by F. G. Rayer
 £1.25

2. **FUN & GAMES WITH YOUR ELECTRONIC CALCULATOR**
 by J. Vine
 90p

3. **50 (FET) FIELD EFFECT TRANSISTOR PROJECTS**
 by F. G. Rayer
 £1.40

4. **DIGITAL IC EQUIVALENTS AND PIN CONNECTIONS**
 by Adrian Michaels
 £2.70

5. **50 SIMPLE L.E.D. CIRCUITS**
 by R. N. Soar
 90p

6. **THE COMPLETE CAR RADIO MANUAL**
 by F. C. Palmer
 90p

7. **SOLID STATE NOVELTY PROJECTS**
 by M. H. Babani
 £1.00

8. **28 TESTED TRANSISTOR PROJECTS**
 by R. Torrens
 £1.10

9. **SOLID STATE SHORT WAVE RECEIVERS FOR BEGINNERS**
 by R. A. Penfold
 £1.10

10. **50 PROJECTS USING IC CA3130**
 by R. A. Penfold
 £1.10

11. **50 CMOS IC PROJECTS**
 by R. A. Penfold
 £1.10

12. **HOW TO BUILD ADVANCED SHORT WAVE RECEIVERS**
 by R. A. Penfold
 £1.35

13. **BEGINNERS’ GUIDE TO BUILDING ELECTRONIC PROJECTS**
 by R. A. Penfold
 £1.40

14. **50 CIRCUITS USING GERMANIUM SILICON & ZENER DIODES**
 by R. N. Soar
 90p

15. **LINEAR I.C. EQUIVALENTS AND PIN CONNECTIONS**
 by Adrian Michaels
 £3.00

all prices include postage & packing

To: Data Publications Ltd., 57 Maida Vale, London W9 1SN

Please send me within 21 days copy/copies of

..

..

..

No. ...

I enclose Postal Order/Cheque for £...............

Name ..

Address ..

(Block Letters Please)

(We regret this offer is only available to readers in the U.K.)
THE MODERN BOOK CO
BEGINNER'S GUIDE TO HAM RADIO
by Len Buckwalter K10DH
Price: £4.00

ABC'S OF ELECTRONICS
by F. J. Waters
Price: £4.15

BEGINNER'S GUIDE TO HOME COMPUTERS
by M. Grossworth
Price: £3.20

ADVENTURES WITH ELECTRONICS
by T. Duncan
Price: £2.85

PROJECT PLANNING & BUILDING
by M. A. Colwell
Price: £2.20

110 COSMOS DIGITAL IC PROJECTS FOR THE HOME CONSTRUCTOR
by R. M. Marston
Price: £3.00

110 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME CONSTRUCTOR
by R. M. Marston
Price: £2.75

TESTING METHODS AND RELIABILITY ELECTRONICS
by A. Simpson
Price: £4.30

DIGITAL ELECTRONIC CIRCUITS AND SYSTEMS
by N. M. Morris
Price: £4.30

BEGINNER'S GUIDE TO MICROPROCESSORS
by C. M. Gilmore
Getting acquainted with microcomputers
by L. Frenzel
Price: £7.00

We have the finest selection of English and American radio books in the Country.

19-21 PRAED STREET (Dept RC) LONDON W2 INP
Telephone 01-723 4185

CHESTER ELECTRONICS

HI VOLTAGE TUBULAR CERAMIC CAPACITORS
1.5pf, 1.5pf, 1.0pf, 2.0pf, 2.0pf, 2.7pf, 2.7pf, 3.0pf, 3.0pf, 4.0pf, 4.0pf, 5.0pf, 5.6pf, 6.0pf, 9.1pf, 10pf, 12pf, 15pf, 15pf, 17pf, 18pf, 22pf, 22pf, 22pf, 22pf, 27pf, 22pf, 33pf, 33pf, 39pf, 39pf, 60pf, 60pf, 70pf, 70pf, 100pf, 100pf, 220pf, 220pf, 220pf, 220pf, 220pf, 330pf, All at 6p each, or £0.25.

POLYESTER CAPACITORS
0.01u, 0.015u, 0.033u, 0.068u, 0.1u, all 250v @ 5p each
0.15u, 0.22u, 0.33u, all at 250v @ 7p each
1.0u, 2.2u, at 250v @ 15p each

MYLAR CAPACITORS
0.001u, 0.005u, 0.005u, 0.005u, 0.005u, 0.01u, 0.02u, 0.03u, all at 250v @ 7p each
1.0u, 2.2u, at 250v @ 15p each

SPECIAL OFFER: Humes 300uf 600v, 0.015u, 0.040v at 5p each
Silver mylar 20pf 2% only 6p each

Reversible Capacitors: 6.8u, 40v, 6p each, 40uS, 40v only 10p each

0.25uf Pre-Sort available at 7p each, 50 for £2.10, 100 for £4.10
Vertical: 100u, 220u, 470u, 500u, 2k, 4k, 7k, 32k, 47k, 220k, 1M, horizontal: 100u, 1k, 4k, 10k, 47k, 1M, 3M, 5M (Values of both types may be mixed to obtain price breaks)

C1164 15p BC125 10p BD132 34p BT106 £1.06
C127x 25p BC147 7p BD135 32p BU208 £1.00
A142 65p BC146 7p BD136 32p BPX50 £1.80
A145 50p BC150 10p BD232 60p BPX65 £1.80
A161 50p BC184c 7p BD234 50p BPX52 £1.00
A162 35p BC184cl 8p BD235 45p TIP32C £0.85
AU11 1.00 £1.00 BC212 10p BD236 32p 2N3055 £1.95
BC107 8p BC213 10p BD271 15p 2N3070 £0.85
BC108 8p BD219 10p 2N3092 £0.85
C109 8p BD131 34p BXR39 28p 2N3093 £0.85

(Slides the above transistors are fully branded, full spec devices)
Small slow movers (Smiths clocked) 50p @ 2v. New only £1 each

SLIDE SWITCHES
Double Pole Double throw 77p each

MINIATURE TOGGLE SWITCHES
Single Pole Single throw 77p each

PANEL METERS 2½" x 1½" x 1" (Brand New)
0-50uA 0-50mA 0-500mA 0-300V 0-500V
Price: £2.20

MULTITESTERS
All of the multitesters listed below are brand new.

Type Specification Price Each
LT101 Economy 10000 OPV £9.00
T1 Standard 10000 OPV £12.00
Price £30.00

SERIES 10,000 OPV £46.00
Price £30.00

TMM50 10,000 OPV (incl. case) £31.00

SOLDERING IRONS
(Brand New)

Antex C2N £8.00
Antex CX £4.75
Antex C25 £4.75
Antex 8K £8.50

RUBBER FEET
10 for 50p

LEADS FOR THE ABOVE
Standard test leads £1.60 each
Curly lead with Banana Plug £2.10 each
Test Lead Kit £2.95 each (ideal for the beginner)

PROBE: 25Kv High Voltage 1000 Meg. Ohms probe only £15.00

SPECIAL OFFER: TERO-BOARD 0.11" 16" long x 31" wide only £1.75 each

JACK PLUGS
Mono Plastic Unscreened 15p each
Monoblock Screened 30p each
Stereo Plastic Unscreened 28p each
Stereo Metal Screened 38p each

JACK SOCKETS
1 Jack Mono Plastic 20p each
1 Jack Stereo Plastic 40p each
1 Jack Mono Plastic Closed 20p each
1 Jack Chassis Stereo Plastic Closed 30p each

Do not add VAT to the above prices. Only add 20p Post & Packing. No callers please as we have no retail facilities.

SEND YOUR ORDERS TO: CHESTER ELECTRONICS
6 Hunter Street Chester CH1 2 AU

MARCH 1979

407
CONSTANT CURRENT TRANSISTOR TESTER

By John Baker

NOVEL TESTING TECHNIQUE MEASURES TRANSISTOR GAIN AT A CONSTANT COLLECTOR CURRENT

This relatively simple transistor tester has practical gain measuring ranges of 10 to 250 and 100 to 2,500 at collector currents of 1mA and 10mA. The unit incorporates a meter which gives a direct read-out in terms of current gain and the base current drawn by the device under test. The correct collector current is automatically fed to the test device and it is not necessary to adjust the current manually before a reading can be made.

The unit can also be used to make leakage measurements and there are three leakage current ranges: 0-10μA, 0-100μA and 0-1,000μA.

METHOD OF OPERATION

A simple form of transistor tester having direct meter read-out is shown in Fig. 1(a). Here, the transistor being tested is fed with a known current via a base bias resistor. The resultant collector current is measured by a meter connected in the collector circuit of the transistor.

In a practical circuit the base current could be 1μA, and the meter could have an f.s.d. sensitivity of 1mA. The test transistor would then require a gain of 1,000 to produce f.s.d. in the meter. Lower
drops a little more than half the supply voltage when the meter is at full-scale deflection.

The meter read-out will not be as convenient as in the previous arrangement because base current is inversely proportional to the gain of the transistor. In other words, the higher the gain of the test transistor the lower the resultant base current and meter reading. Ideally, the meter should be given an additional scale calibrated in terms of current gain, but this is not absolutely necessary as it is a simple matter to mentally convert base current into terms of current gain. In fact, once the user has become familiar with a tester employing a base current read-out, conversion to gain figures tends to be carried out automatically with hardly any conscious thought.

A possible shortcoming with the arrangement is that the transistor emitter current is really collector current plus base current, so that with a very low gain device a significant amount of the constant current would be drawn by the base. The collector current would then be lower than the nominal value of the constant current, whilst the base current indicated by the meter would be that needed for this reduced collector current.

However, all transistors in common usage have minimum gain figures of 20 or more, whereupon the effect will not introduce serious errors and can be considered to be of academic importance only.

CURRENT METER

Another factor which has to be considered is that the base current drawn by a high gain transistor will be very small, perhaps less than 2µA for a collector current of 1mA. Panel-mounting meters having f.s.d. sensitivities of the order of 10µA or so as would be required here are not readily available, but this problem is easily overcome by using an amplifier to boost the sensitivity of a standard meter.

A practical meter amplifier circuit is shown in Fig. 1(c). An operational amplifier has its output connected back to its inverting input, giving 100% d.c. negative feedback. The amplifier is a unity gain voltage follower, and the voltage at its output is virtually equal to the voltage at its non-inverting input.

If, assuming negligible resistance in the meter movement, RA is equal to RB and a positive voltage is applied to the non-inverting input, the current flowing through RB will be equal to the current flowing through RA. This must be so, because both resistors have the same value and the same voltage appears across each. If RA has ten times the value of RB then, for any positive voltage at the non-inverting input, the current in RA will be one-tenth of that in RB. The circuit may then be used as an electronic current meter, with the current to be measured passing through RA and the meter indicating this current multiplied by ten. The sensitivity of the meter is therefore increased by ten times. Should RA have one-tenth the value of RB, it follows that the meter will indicate one-tenth of the current flowing through RA.

Thus, the sensitivity of the circuit can be easily varied by simply choosing appropriate values for RA and RB, and the f.s.d. sensitivity may be made equal to, greater than or smaller than the actual f.s.d. sensitivity of the meter movement itself.
THE CIRCUIT

The complete circuit of the transistor tester is given in Fig. 2. In order to minimise the n.p.n.-p.n.p. switching needed, separate constant current generators and test sockets are used for the n.p.n. and p.n.p. testing modes. TR1 is the p.n.p. constant current source and the base of this transistor is held about 1.3 volts negative of the positive supply rail by the simple stabilizer formed by R1 and the forward biased silicon diodes, D1 and D2. There is a voltage drop of some 0.6 to 0.65 volt across the base-emitter junction of the transistor, leaving 0.7 to 0.65 volt across whichever of the two emitter resistors is selected by S1(a). R3 has a value of 680 Ω and causes a constant current with a nominal value of 1mA to be given. The resistance of R2 is 68 Ω resulting in a constant current having a nominal value of 10mA.

In the p.n.p. mode the electronic current meter is the same as that shown in Fig. 1(c), with RA being replaced by R7, R8 or R9, according to the setting of S2, and RB being replaced by R5. The f.s.d. meter sensitivities selected by S2 are 10μA, 100μA and 1mA respectively.

TR2 is the constant current generator for the n.p.n. test mode. The circuit around this transistor is identical to that for TR1 except that all the polarities are reversed.

S3 provides polarity reversal when changing from the p.n.p. to the n.p.n. test mode and vice ver-

COMPONENTS

<table>
<thead>
<tr>
<th>Resistors</th>
<th></th>
<th>Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>(All 1watt 5% unless otherwise stated)</td>
<td></td>
<td>S1 3-way 3-pole rotary (see text)</td>
</tr>
<tr>
<td>R1 4.7k Ω</td>
<td></td>
<td>S2 3-way 1-pole rotary (see text)</td>
</tr>
<tr>
<td>R2 68 Ω 2%</td>
<td></td>
<td>S3 3-way 3-pole rotary (see text)</td>
</tr>
<tr>
<td>R3 680 Ω 2%</td>
<td></td>
<td>Meter</td>
</tr>
<tr>
<td>R4 4.7k Ω</td>
<td></td>
<td>M1 0-100μA moving-coil (see text)</td>
</tr>
<tr>
<td>R5 56k Ω 2%</td>
<td></td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>R6 2.7k Ω</td>
<td></td>
<td>Plastic case (see text)</td>
</tr>
<tr>
<td>R7 560k Ω 2%</td>
<td></td>
<td>9-volt battery type PP3</td>
</tr>
<tr>
<td>R8 56k Ω 2%</td>
<td></td>
<td>Battery connector</td>
</tr>
<tr>
<td>R9 5.6k Ω 2%</td>
<td></td>
<td>3-off control knobs</td>
</tr>
<tr>
<td>R10 680 Ω 2%</td>
<td></td>
<td>2-off 3-way DIN sockets</td>
</tr>
<tr>
<td>R11 68 Ω 2%</td>
<td></td>
<td>3-way DIN plug</td>
</tr>
<tr>
<td>Capacitors</td>
<td></td>
<td>Veroboard, 0.1in. matrix</td>
</tr>
<tr>
<td>C1 0.1μF type C280 (Mullard)</td>
<td></td>
<td>Test leads</td>
</tr>
<tr>
<td>C2 100pF ceramic plate</td>
<td></td>
<td>3-off crocodile clips</td>
</tr>
<tr>
<td>Semiconductors</td>
<td></td>
<td>Wire, solder, etc.</td>
</tr>
<tr>
<td>IC1 CA3130T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR1 BC179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR2 BC109</td>
<td></td>
<td>1N4148</td>
</tr>
<tr>
<td>D1-D6 1N4148</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. The circuit of the constant current transistor tester
When switching to n.p.n., S3(a) takes the common return for R7, R8 and R9 from the negative rail to a positive supply point, whilst S3(b) and S3(c) change the meter connections so that the meter negative terminal couples via R6 to the operational amplifier output and the meter positive terminal connects to the positive supply point. The positive supply point is about 1.3 volts negative of the positive rail, being held at this level by the forward biased silicon diodes, D5 and D6. This method of working is necessary because the CA3130T used as the operational amplifier does not function well when its inputs are close to its positive supply potential.

C1 is the supply decoupling capacitor and C2 is the compensation capacitor for IC1. S1(c) provides on-off switching. The tester has a quiescent current consumption of about 9mA, and this increases, when a test transistor is connected, by 1mA or 10mA according to the setting of S1.

In the prototype, M1 is a 0-100μA meter with a resistance of 580 Ω, and it has a plastic front measuring 60 by 45mm. It is available from a number of suppliers, including Maplin Electronic Supplies. Switches S1 and S3 are 4-pole 3-way miniature rotary types with one pole unused. S2, in the prototype, was one pole of a 3-pole 4-way miniature rotary switch, with an adjustable end stop set for 3-way operation. It could alternatively be one pole of a 4 pole 3 way switch. S3, it will be noted, has a central blank position. This is because most miniature rotary switches have a make-before-break action. If two adjacent contacts of such a switch were used for polarity changing, the supply could be momentarily short-circuited via D5 and D6 as the switch was moved from one setting to the other.

CONSTRUCTION

The transistor tester is assembled in a white plastic case measuring approximately 120 by 100 by 45mm. This is a case type V219, available from Greenweld, 443 Millbrook Road, Southampton, S01 0HX. The parts are mounted on the lid, which then effectively becomes the front panel of the unit. The general layout can be seen from the photographs. Looking at the front of the tester, the p.n.p. test socket is to the left of the meter and the n.p.n. socket is to the right. The three switches are

Apart from the battery, all the parts are mounted behind the front panel. There is adequate space for the battery inside the case, and this may be secured in place with a simple homemade clamp.
in a horizontal row below the meter with S2 ("Range") to the left, S3 ("Mode") in the centre and S1 ("Function") on the right.

3-way DIN sockets are used as test transistor sockets, and TO18 and TO5 transistors will readily plug into these, as will certain other types. A set of test leads is made up for other transistor styles. This merely consists of a 3-way DIN plug to which...
three short insulated flexible wires of different colours are connected. The wires are terminated in small crocodile clips, which clip on to the leads of the transistor being tested.

Most of the smaller components are wired up on a small 0.1in. matrix Veroboard having 13 copper strips by 17 holes. The Veroboard assembly is shown in Fig. 3. IC1 has a PMOS input stage and can therefore be damaged by high static voltages. It will normally be supplied in a protective package and should be left in this until it is soldered to the Veroboard. The i.c. should be the last component to be fitted to the board, and its lead-out should be soldered with an iron having a reliably earthed bit.

Fig. 4 shows the component layout behind the front panel, and it will be seen that some of the resistors are soldered to the switch tags. Interconnections between the front panel components and the Veroboard are identified by the letters “A” to “L” in Figs. 3 and 4. The board is positioned vertically between the meter and the n.p.n. test socket, with the component side towards the meter. If fairly stout and short wires are used for the connections between the Veroboard and the panel components, these will provide the board with quite a firm mounting, and no other means of securing it are then necessary.

USING THE TESTER

The transistor under test is either plugged into the appropriate test socket or connected to it by the test leads, and S3 is switched to the correct mode. When testing most small transistors S1 should be switched to the 1mA position, as small signal transistors usually have their gain quoted at a current of about this level in brief form data sources. Some small signal devices, mainly r.f. and switching types, have their gain levels quoted at a higher collector current of about 10 or 20mA. In such instances the 10mA setting of S1 should obviously be used.

The 10mA setting should also be used when checking medium and high power transistors. It must then be borne in mind that these devices normally have their gains quoted at a collector current of 100mA or more. However, it is not really practicable to provide such high currents in a small battery powered unit such as this, and so the lower current must be used. This will tend to give a slightly low gain figure with the power transistors.

When S1 is in the 1mA position only the 10µA and 100µA ranges of the tester are used. The 10µA range represents a gain of 100 at full-scale deflection, rising to a gain of 2,500 at the first meter scale division of 4µA. The corresponding levels on the 100µA range are 10 and 250. With S1 in the 10mA position, only the 100µA and 1mA meter ranges are employed, and again these provide scale limits of 100 to 2,500 and 10 to 250 respectively.

If desired, numbers taken from “Panel Signs” Set No. 4 can be affixed to the meter scale as a guide to the gain figures. The number “10” can be added above the 100 on the meter scale, “12.5” above 80, “17” above 60, “25” above 40 and “50” above 20. The fronts of modern meters simply unclip to allow access to the scale, but the addition of the numbers should only be carried out by constructors who feel competent to undertake the task; the meter has a delicate mechanical construction which can be very easily damaged by careless handling or the ingress of dirt or dust particles.

Leakage current (the current which flows between emitter and collector when the base is open-circuit) can be measured by connecting the emitter normally, and the collector to the base socket, or base test clip. No connection is made to the base. Silicon transistors, when they are fully functional, usually have very low leakage currents of less than 1µA. On the other hand germanium transistors, including power types in particular, can often exhibit quite high leakage currents even when they are fully serviceable. Of course, if a device does have a very high leakage current the gain figure provided by the tester will be higher than the true value. This is because a significant part of the collector current will be leakage current, whereupon a correspondingly lower base current is required. Fortunately, this state of affairs can be detected by the leakage current test, and it will in any case only apply with a small proportion of obsolescent germanium transistors.
NEW DIGITAL PHOTO TACHOMETER

New from Power Instruments of the USA is a touchless, digital photo tachometer, designed for measuring the rpm of rotating objects from distances of between 1/2" to 30" using a beam of light and readout on a digital scale.

A piece of reflective tape, provided with the tachometer, is fixed on the surface of an object, and when it is rotated, a beam of light from the probe is focused on it. A "target eye" lights up on the tachometer, showing when contact is made, and a rpm readout is given on five ½” LED’s on the digital scale. An exclusive “never forget” memory holds the reading indefinitely.

Powered by ordinary batteries, the model 1891 touchless tachometer is provided with a robust, aluminium carrying case, reflective tape and other accessories. Measuring only 8½” x 4½” x 2”, it weighs 1½ lbs. and is 100% solid state optional extra accessories include measuring wheels, hand held or permanent surface mounted to measure linear speed.

Price is £155, plus VAT and carriage, from the sole UK importers, Electronics Brokers Ltd, 49/53 Pancras Road, London NW1 2QB.

As regular readers will know we have always borne in mind the short wave interest of so many electronics enthusiasts. Following last month’s 3 Band Short wave Preselector article we feature in this issue an I.C. Morse Practice Oscillator. It is a simple to build project particularly suitable for beginners who aspire to become radio amateurs with their own call sign.

Short Wave enthusiasts, in particular, when in London may very well like to visit HMS Belfast moored in the Pool of London, between Tower Bridge and London Bridge. There is an amateur station aboard which, last autumn, was granted a special Amateur Radio call sign, GB2RN. During the summer months the ship is open to the public from 1100 to 1800 hours and from 1100 to 1630 hours in the winter, British local time.

The station is especially interested in establishing schedules with other special interest stations worldwide, these and other stations requiring schedules should contact Don Walmsley, 153 Worple Road, Isleworth, Middlesex TW7 7HT.

All HF bands from 1.8 to 28MHz are covered CW or SSB. The station operates under the auspices of the Royal Naval Amateur Radio Society.

BATTERY HOLDER OF SIMPLE CLIP-IN DESIGN

Most small enclosures on the market today make no provision for battery housing and dismantling a complete instrument in order to replace an exhausted battery is both tedious and time consuming.

Vero Electronics Limited now make available an injection-moulded battery housing of simple clip-in design offering access for battery changing from outside the instrument.

The holder accepts a 9V battery and may be easily fitted to a panel of enclosure with a thickness of 1.5 to 3mm. All that is required for fitting is a rectangular cut-out into which the holder is pressed home, where it is firmly held by the unique clip-type retention feature.

The cover, with a flip-over type hinge moulded as part of the housing opens easily for battery changing and snaps closed securely.

Supplied as a kit, the battery holder comes complete with battery connector and lead for less than £1.00.
FULLY SELF CONTAINED CURRENT-TIME INTEGRATING METERS

Mega Electronics Ltd., of 9 Radwinter Road, Saffron Walden, Essex, have announced a new range of current-time integrating meters designed primarily for applications in electroplating.

These new, low-cost units can be supplied with counting units of either ampere minutes or ampere seconds, or can be alternatively factory adjusted to meet individual requirements. They feature linearity of 1.0% or 0.2%. Two basic models are available. One reads up to 99999 units and is manually resettable, while the other incorporates a presettable counter which operates a changeover contact when the integrating meter reaches the preset number. Both can be supplied as free standing or panel mounted (DIN) units, and only require connection to the a.c. mains supply and two current sensing wires preparatory to operation. There are no operator controls.

Operational features include normal sensitivities of 50mV or 75mV, and a maximum count rate of 20 units per second. They are priced from £65.00.

ELECTRONIC PROJECTS INDEX

A very commendable non-profit making venture has been set up by the Principal Librarian (Technical) of North Tyneside Libraries and Arts Department. The venture is the publication of an index covering all electronic projects which have appeared Radio & Electronics Constructor and other electronic journals over the period of 1972 to 1977. Projects are listed under subject headings such as “Calculators”, “Disco Equipment”, “Displays”, etc., and each entry consists of the title of the article presenting the project together with a succinct description of the project itself. The Index comprises 119 large pages, and is well printed and laid out.

The Electronic Projects Index may be obtained by post from M. L. Scaife, Central Library, Northumberland Square, North Shields, Tyne & Wear, NE30 1QU. Postal orders and cheques should be made payable to “North Tyneside M.B.C.”. Prices, which include postage and packing, are £1.50 each for 1 to 2 copies, £1.40 each for 3 to 6 copies and £1.35 each for 7 to 10 copies.

HOME RADIO CATALOGUE

The latest edition of the catalogue of Home Radio (Components) Ltd. has now been published and brings up to date the listing of this well known company’s stocks. Containing 128 large pages, the catalogue is profusely illustrated with photographs and line drawings.

The various items proceed through the catalogue in alphabetical order, starting with Aerials, followed by Batteries, then Books, and so on. The ability to locate any individual component is assisted by a comprehensive cross-reference index at the end of the catalogue.

Of particular interest are the “Bargain Lists”, which are being increased in size. These offer new and unused components at very low prices, and apply while stocks of these components last.

The general component listing follows the helpful approach evident in previous Home Radio catalogues. The very wide range takes in such items as tuning drive parts, all types of capacitor and resistor, tools, test gear, transformers, and many other categories of electronic component. The price of the catalogue is £1.10 plus 25p postage and packing, or it may be obtained for £1 and the special coupon in the Home Radio advertisement in this issue.

TV FOR THE DEAF

The Independent Broadcasting Authority (IBA) and the Independent Television Companies Association (ITCA) are jointly supporting a research project at Southampton University to help the deaf and partially deaf to benefit more fully from television programmes.

The work expected to cost over £50,000 is aimed at providing optional sub-titling for the deaf and hard of hearing by means of the ORACLE teletext system. The project, expected to take three years, will be to establish the form of sub-titling which would most benefit the deaf and hard of hearing. Since the commencement of the ORACLE service, it has been appreciated that teletext offers a valuable means of providing an optional sub-titling service without distraction to other viewers.

MARCH 1979
WORLD COMMUNICATION: THREAT OR PROMISE? By Colin Cherry. 243 pages, 270 x 190mm. (10½ x 7½in.) Published by John Wiley & Sons Limited. Price £11.00.

This very perceptive book covers such a vast range that there must inevitably be shortcomings in any attempt to discuss it in a short review. It does not deal with communications from the engineering point of view, instead it discusses the effects that the present communications explosion is having upon the social structures of the world, both in the Western nations and in the developing countries.

The general viewpoint of the book would appear to be that the present advanced and future advancing systems of communications are beneficial rather than otherwise, for instance, domestic communications systems such as radio and television do not reduce the ability of people to think for themselves but enhance it. The book also deals with communications in the economic sphere, with telephone communication, newspapers, railways and roads, all in the light of environmental change, and is particularly concerned with the very different communications conditions which exist in the poor and the rich countries of the world.

Professor Cherry contends that the outcome of wide-ranging international communications will be the creation of overlapping federations rather than a centralised fount of control. He points out that "progress" is achieved only by dissent. A situation will never be altered by those who are satisfied with it, evolution, and hence change, must almost inevitably proceed with each rising generation. All discussion in the book is backed by extensive research and the bibliography extends to no fewer than 391 titles.

This is a book for the thoughtful and the concerned. Originally appearing in 1971, it is a revised edition which updates statistical data and diagrams, and takes into account comments arising from the earlier version.

The full title of this volume is "Television (Colour and Monochrome) Part III: 4th Year. Specimen Answers To Examination Papers 1972-1976" and it is particularly intended for students examining for the City and Guilds examination in Television (Colour and Monochrome) Course 222, Part III, 4th Year. In addition to the answers, additional explanatory notes have been given where it is considered necessary to assist the reader.

The book is very well produced, with clear text and diagrams. The fold-out diagrams are the circuits of complete commercial television chassis. So far as the student at which it is aimed is concerned, the book offers quite excellent value for its cost. Whilst it is obviously not a textbook, service engineers and others interested in television engineering would find the book a useful aid towards testing and brushing up their technical knowledge of colour and monochrome television reception.

Another exceptionally good book from Norman Price, the work under review has been written for the technician who is required to adjust and maintain CCTV equipment in industrial and commercial applications. The present volume is concerned mainly with monochrome television, and a later volume will deal with the implications of colour. The approach is largely non-mathematical, and it is assumed that the reader already has a basic knowledge of semiconductors and electronic circuits. Also kept in mind are domestic television service engineers who are considering entering the CCTV field.

The first chapter in the book gives an introduction to its subject and then deals with basic elements of light. This is followed by chapters covering lenses, CCTV signals and principles, camera tubes, camera circuit operation, video monitors and monitor tubes, camera and monitor adjustments, lighting, and special features of the signal cable in CCTV. The final chapter is devoted to fault finding and presents a series of fault finding charts. There follow four appendices dealing with sync separation, transistor reactance, maximum viewing distance and the lens equation.

The book has many helpful diagrams as well as some well produced photographs. The author is Senior Lecturer in Television at Lincoln College of Technology.
In the last October issue the author introduced a method of causing an ordinary domestic electric bell to give a single “ping” when activated instead of a sustained ringing. In the article, “Pinging Bell Circuits”, it was pointed out that a “ping” can have a more pleasant sound than is given by continuous ringing.

The author has returned to this subject and hopes to produce some unusual “pinging” circuits in the future. In the meantime, the present article describes a simple novelty project which enables a single “ping” to be given when a finger is applied to a touch-button.

CIRCUIT OPERATION

The circuit of the project appears in Fig. 1. Transistors TR1 and TR2 are two emitter followers coupled in cascade, with the emitter of TR2 connecting to the base of TR3. TR1 and TR2 are small signal devices whilst TR3 is a power transistor with a maximum peak collector current rating of 4 amps. The circuit is powered by the mains supply consisting of transformer T1, half-wave rectifier D2 and reservoir capacitor C3.

When the unit is switched on at S1 the rectified supply voltage appears across R5 and C2 in series, whereupon C2 charges rapidly to the supply voltage. Transistors TR1, TR2 and TR3 are all cut off since the base of TR1 is held at the potential of the negative supply rail by R3.

If a finger is applied to the touch-button, bridging its two contacts, a small current flows through the skin of the finger and then through R1 into the base of TR1. There is a very high level of current gain from the base of TR1 to the base of TR3, and the small current at TR1 base causes TR3 to turn hard on. In so doing TR3 allows capacitor C2 to discharge through the bell, producing a single “ping”. When the finger is removed from the touch-button TR3 turns off again and C2 is allowed to charge rapidly once more via R5. Applying a finger to the touch-button again will produce a further “ping” of the bell.

Diode D1 is connected across the bell to prevent the possible formation of high reverse e.m.f. voltages which could damage TR3. R2 and R4 are merely current limiting resistors which ensure that unnecessarily high currents are not passed by TR1 and TR2. The connection to the touch-button is made by screened cable since the lead to TR1 base, if unscreened, could pick up mains hum and r.f. with consequent irregularity of opera-

Fig. 1. The circuit of the touch-button “pinger”. Bridging the touch-button contacts with a finger causes TR3 to turn on and discharge C2 through the bell

MARCH 1979
To: Please

"Understanding Television"

Synchronising timebases

The control receiver A.F. signal reception

Principles

R.

LETTERS

of

DAVI

by

J. R. DAVIES

Over 500 pages

300 diagrams

Principles of 405 line reception
Principles of 625 line reception
Nature of the television signal
Receiver tuner units
A.F. and video amplifiers
Deflector coil assemblies
Automatic gain and contrast control
Receiver aerials
The cathode ray tube
Receiver i.f. amplifiers
Vertical and horizontal timebases
Synchronising
Power supply circuits
Introduction to Colour TV

£3.95 P. & P.
70p

To: DATA PUBLICATIONS
Ltd., 57 Maida Vale London W9

Please supply ... copy(ies)
of "Understanding Television"
Data Book No. 17. I enclose
cheque/crossed postal order for

Name

Address

BLOCK LETTERS PLEASE

RADIO AND ELECTRONICS CONSTRUCTOR
The keyboard of the Texas Instruments TI-57 programmable calculator. Most keys have a second function, wherebyupon facilities are nearly double the number of keys provided.

SETTING UP A PROGRAM

When we use a calculator to solve a problem, we make use of the normal range of number and function keys such as 1, 2, 3, +, −, = and others. If we want to make use of the action of these keys as part of a program of instructions, we need some method of signalling to the calculator that the key-strokes are part of a program. This is done on the Texas Instruments TI-57 programmable calculator by pressing the key marked [LRN]. Once the [LRN] (for learn) key has been pressed, every following key-stroke forms part of a program which will be stored in a separate memory. Pressing the [LRN] key again signals that the program is complete, and the calculator can be used normally again. Meanwhile, the program is stored until the calculator is switched off.

What can we instruct the calculator to do? Well, on a calculator such as the TI-57 the prospects are pretty wide, but we must get one important point clear. Any function key, whether it is part of a program or not, always operates on the number which is in the X-register. That, in normal language means the number that you are looking at in the display. Before we can ask a program to do anything, we must make sure that there is a number in the display to work on. If that number is zero, then some operations are possible, but others are not.

For example, suppose that our program starts with the instructions

\[+ \ [1] \ [-]. \]

What the machine will do when this program runs is to take the number that is displayed, add 1 to that number, and display the result. You can then put it on the head. If, however, the instructions had been

\[\times \ [2] \ [-]. \]

the program would run if the number had been −1, 1, 5, 8.9 or anything else, but not zero. Zero is the number that is displayed if nothing else is keyed into the display, and zero times anything is still zero. You can add or subtract with zero in the display and get an answer, but multiplication or division will give zero or the flashing display that indicates an error. It’s the laws of arithmetic that you’re up against here, and not the rules of programming.

RUNNING AND STOPPING

Let’s suppose that we have a simple program stored in the machine, and we’re itching to try it. First of all, we need to make sure that there is a number showing in the display, because that is the number that the program will operate on (later we’ll look at other methods). Ready to start? No, not yet,
there's one more point. When the machine was programmed, it was instructed step by step. We now have to give one additional instruction — go back to the start of the program. If we don't add this instruction somewhere, then the machine will start at a blank part of the program with no instructions stored, just where the program ended when the [LRN] key was pressed for the second time. The [RST] (reset) key is the one we need to make the program start at the beginning.

Now we can run the program. Press the [R/S] key (run/stop) and the program runs. How do we instruct it to stop? Easy, we make [R/S] the last step in the program. Let's go through a program now, a really simple one which just adds 1 to the number shown in the display. See Fig. 1. The [LRN] key instructs the calculator that this is the start of a program, and the [+][1][=] key-strokes instruct the calculator to add 1 to the number that was displayed, and then to display the new number. [R/S] then stops the program, so that the answer is displayed steadily, and the second press of the [LRN] key completes the program so that any other key-strokes are not part of the program. Now we can put a number into the display by pressing the appropriate key or keys (take your pick!) and we press [RST] to reset the program. Now press [R/S], the display flickers and obediently changes to the next number up. To repeat, press [RST] and [R/S] again.

Wait a minute though, why are we having to press the [RST] key each time? Can't we instruct the calculator to do this for itself? We certainly can and the best place to have the [RST] instruction is right after the [R/S]. Then next time the program runs and gets to the [R/S] it will display the number which is the result of its calculation; but the next time [R/S] is pressed, starting the program running, the next instruction in the program is [RST], so that the program goes back and starts at the beginning again. We have therefore made the reset automatic, by incorporating it into the program. We've saved an operation each time, and that's what it's all about.

The revised program looks as shown in Fig. 2, with the [RST] step now included. Each depression of the [R/S] key will now cause the number in the display to be increased by 1. We must, of course, start our program by clearing the display, using [CLR], setting to the start using [RST], keying in whatever figure we want at the start for the program to operate on, and then starting everything off with the [R/S] key.

Very interesting, but useless, you think? Well, we have to start somewhere and it's not so useless as it might seem. Suppose we want to calculate the reactance of a capacitor at 1kHz frequency intervals from 1kHz upwards. The little program of Fig. 2 would have to be part of our reactance calculating program (we call such a part a subroutine) to ensure that the value of frequency is changed by 1kHz each time. There's a bit more to that one, though, which must wait for later.

We can just as easily now set up a program which will multiply the number in the display by 5, and continue to do so. The program is shown in Fig. 3, but we have to remember to start with a number such as 1 in the display, because if we start with zero, then the answer will be zero. Couldn't we place that 1 into the program, do I hear you say? We could, but then the answer would always be 5, because we would always be starting with 1, and not with the result of the previous calculation. It can be done, but not at this stage!

PROGRAM START

1. Make sure that the program is complete (the [LRN] key completes the program, and the reference numbers which appear on the left hand side of the display during programming disappear).
2. Clear the display, using [CLR].
3. Reset the program ready to start, using [RST].
4. Key in any figures which must be present at the start of the program.
5. Start the program running, using [R/S].

AUTOMATIC RECYCLING

All this key-pressing wears your fingers flat, so let's look for a way of making the whole process automatic. If we left out the [R/S] step in the programs of Fig. 2 and Fig. 3, then the machine would return to the start of a program automatically, and we would need to press the [R/S] key only once. There's one small snag here; the calculator works rapidly, so that there is no chance that we would be able to see each answer as it flashed on the display. Texas have thought about that one, though. Above
the [SST] key is the instruction [Pause] which we activate by pressing [2nd] [SST] in that sequence. Now when this pause instruction is written into a program, the program will do just that, pausing for about $\frac{1}{2}$ of a second so that you can take a look at the display. If you want more time, perhaps to write down the number, then you can program in [Pause] [Pause], or even three of them to increase the time at the expense of the number of program steps.

Let's try it. The program of Fig. 4 should do what we want, with the display counting up 1 at a time. If it happened that one cycle of the program took exactly 1 second, we could even use this to check the time we have spent on it.

Successive multiplication is just as easy; the program of Fig. 5 multiplies by 2 each time, so that it generates the numbers of the binary scale, 1, 2, 4, 8, 16, 32 and so on, as long as we remember to start with 1. It doesn't take very long to get to some rather impressive numbers, either.

Now have a go for yourself. We convert voltage gain figures into decibels by using the formula

$$\text{db} = 20 \log G,$$

where G is the voltage gain. Can you write a program which will convert a voltage gain figure in the display into decibels when the [R/S] key is pressed? One point of information is needed. We take the log of a number in the display by pressing the log key, and we don't have to follow it with [=]. (Answer on page 446.)

So far, so good, but it restricts us to working with the number which is in the display and no others except those fixed in the program. To make our programs more useful, we need some method of working with more than one number at a time, and this means using the memories. For example, going back to the idea of calculating capacitor reactance in 1kHz steps, using the formula

$$X_c = \frac{1}{2\pi f C}$$

we can use our counting program for the frequency f, but we need at some stage to multiply by 2π and by the value of C, as well as adjusting the figures for the use of kHz rather than Hz, and μF rather than F. Each operation of this type places a new number into the display, so that the others are lost unless they have been stored somewhere ready to use again.

In the next part, then, we shall be looking at the [STO] (store) and [RCL] (recall) steps, along with [SUM] and [Prd] (product) keys. The TI-57 has eight memories, which leaves room for some rather impressive number juggling. Watch this space!

PRO100 DIFFERENCES

For readers using the CBM PRO100, the following important differences exist.

1. A 3-position switch is used in place of the [LRN] key of the TI-57. To load a program, this switch is put to the [LOAD] setting. When the program steps have been completed, the switch is returned to the [RUN] position. The program can be erased completely by setting the switch to [CLEAR] and pressing [R/S].

2. There is no [Pause] key on the PRO100. In the programs using a pause, this must be replaced by [R/S], and the [R/S] key will have to be pressed after each display of an answer.

3. There is no [RST] key on the PRO100. The instructions [GOTO] [O] [O] must be used in place of [RST] both in the program and in preparing the calculator to run a program.

Other differences will be dealt with in future parts.

(To be continued)

NEW CASES FOR TEST EQUIPMENT

Rossmayne Limited of 16a Reading Road South, Fleet, Hampshire, have introduced aluminium flight cases designed to carry instruments and test equipment.

Monitor Flight Cases have internal dimensions from 8 x 6 x 6 inches to 21 x 12 x 15 inches. Special sizes and internal designs can be made without additional tool costs, enabling equipment to be custom fitted, for transportation, if required.

Manufactured in 24 SWG embossed patterned aluminium, they are also lined with 6 mm plywood for resilient strength. All corners and edges are reinforced, and the total unit will withstand the weight of a man. All fastenings are lockable for extra security.

MARCH 1979
TUNNEL DIODE OSCILLATORS

By P. R. Arthur

Although tunnel diodes have been readily available to the amateur electronics enthusiast for well over ten years now, these interesting devices are very rarely featured in the amateur electronics magazines. It must be admitted that the tunnel diode is rather limited in its practical applications so far as the home-constructor is concerned, but it does represent an interesting and unusual component for the experimenter to use.

OPERATING THEORY

The operating theory of the tunnel diode is complicated, and is different from that of other semiconductor devices. The tunnel diode has a p-n junction in the same way as other semiconductor devices, but it uses germanium which has a much higher level of doping than would normally be the case; about 1,000 or more times the normal level in fact. When slightly forward biased the diode will conduct due to electrons “tunnelling” through the depletion layer, and it is from this effect rather than from any physical characteristic that the device derives its name.

Increasing the forward bias voltage results in the tunnelling effect falling away, and the current flow through the device reduces. Still further increasing the bias causes the device to conduct in the same way as does a normal germanium diode.

The circuit symbol normally used for a tunnel diode is shown in Fig. 1(a), but occasionally a different symbol may be used and there seems to be no general standard here. The symbol of Fig. 1(a) is also sometimes used for the zener diode, of course. Tunnel diodes have a wide variety of encapsulations and lead-out configurations, but the AYE11 device which is employed in the circuits described in this article has a standard TO-18 encapsulation with the lead-out configuration shown in Fig. 1(b). Note that there are three lead-out wires, two of which connect to the anode of the component.

NEGATIVE RESISTANCE

The voltage versus current characteristic for a forward biased tunnel diode is shown in Fig. 1(c). As just explained, as the bias voltage is increased the current flow first rises to a peak point, then rapidly falls away into a valley region, and finally increases steadily as the device begins to function as an ordinary diode. The significant part of this characteristic is the section between the peak and valley regions. Here the current actually falls with increasing voltage, or rises with decreasing voltage, which is of course the exact opposite to normal!

This effect is often called “negative resistance”, but the term is rather misleading since resistance is equal to voltage divided by current, and since some applied voltage is needed in order to produce a current flow through the diode, the component always has a positive resistance. “Negative resistance” simply means that on some part of the voltage — current characteristic of a device the normal relationship of increased voltage producing increased current is reversed. Incidentally, this effect is not unique to the tunnel diode, and occasionally f.e.t. and bipolar transistors are used in circuits which produce the same result.

TUNNEL DIODE OSCILLATOR

Tunnel diodes can be employed in various switching applications, but to the amateur they are probably most useful as oscillators, and a typical basic example is shown in Fig. 2. This merely consists of a potential divider network, RA and RB, which biases the diode into its negative resistance region, and a tuned circuit which is connected in series with the tunnel diode. In a normal circuit the natural oscillations which are produced in a tuned circuit when it is excited soon die away due to the effects of positive resistance. In the negative

Fig. 1(a). Circuit symbol commonly used for the tunnel diode.
(b). Lead-out layout for the AYE11 diode.
(c). Typical forward voltage — current characteristic for a tunnel diode.
If the output from the circuit is found to be rather noisy and lacking in purity, adding a resistor of about 2.2Ω in series with D1 should rectify this.

WIDE RANGE

The circuit of Fig. 4 uses Denco Miniature Dual Purpose Green coils (originally designed for valve usage) and it can cover a wide range of frequencies. Green coils in Ranges 2 to 5 can be employed, giving the following coverage: Range 2, 0.525 to 1.7MHz; Range 3, 1.6 to 6MHz; Range 4, 5 to 16MHz; Range 5, 10 to 33MHz. Thus the circuit could, for example, form the basis of a wide range signal generator.

For those who are unfamiliar with the Denco coils, these have a 9-pin base which enables them to be plugged into a standard B9A valve holder so that plug-in range changing can be carried out. They have an adjustable core which can be adjusted here so that about 10mm. of metal screw thread protrudes above the top of the coil.

AVAILABILITY

The AEY11 tunnel diode employed in the circuits is available from Watford Electronics, 33/35 Cardiff Road, Watford, Herts, WD1 8ED.
Many people find it necessary to learn the Morse code, and the ability to send and receive Morse is needed in order to obtain an amateur transmitting license type A. It is also a desirable asset for the short wave listener, and is useful in many other fields.

A Morse practice oscillator is a very useful piece of equipment to have when learning the code, and a simple unit of this type is described here. The unit is self-contained, having an internal speaker and battery supply, but an output for high impedance headphones or a tape recorder is provided. The circuit is very simple and utilises an audio power amplifier i.c. plus a few passive components. It makes an excellent project for the newcomer to electronics.

WIEN NETWORK

Obviously any audio tone generator can be used in this application, but a sine wave oscillator has the advantage of producing a signal of the same type as that given by a real c.w. signal, and it is also less tiring to listen to for long periods than other waveforms. It was therefore decided to design the unit to generate a reasonably pure sine wave signal, and the circuit is based on the well known Wien Bridge type oscillator circuit.

A Wien network is shown in Fig. 1(a) and, as will be apparent from this, it merely consists of two resistors and two capacitors. The attenuation provided by the network varies with frequency, minimum loss occurring at a frequency determined by the values of the resistors and capacitors. It is frequently convenient to have RA equal to RB, and CA equal to CB, whereupon the minimum loss is 9.5 dB. The frequency at minimum loss is then equal to

\[f = \frac{1}{2\pi \sqrt{RB \cdot CA}} \]

where frequency is in Hz, resistance is in ohms and capacitance is in farads. There is zero phase shift through the network at this frequency.

A Wien network can be employed in the oscillator configuration shown in Fig. 1(b). Here it is connected between the input and output of a non-inverting amplifier (i.e. an amplifier which has its input and output in phase) and, provided the amplifier has a gain of more than 9.5 dB (about 3 times), it will compensate for the losses through the Wien network and there will be sufficient positive feedback to sustain oscillation. In order to obtain a sine wave output signal the gain of the amplifier must be just adequate to give oscillation, and there will then only be sufficient feedback to maintain oscillation at the Wien network frequency. If amplifier gain is too high the circuit will oscillate violently, with consequent clipping and distortion of the output signal.
COMPLETE CIRCUIT

The complete circuit of the Morse practice oscillator is given in Fig. 2, and it is based on an LM380 audio power amplifier integrated circuit. This i.c. has both inverting and non-inverting inputs, and only the latter is required for the present application. The inverting input, at pin 6, is connected to the negative supply rail. The Wien network consists of C3, R2, R1 and C1, and these produce an operating frequency of about 1kHz. The gain of the LM380 is internally pre-set at approximately 34dB (50 times), which is far higher than the gain needed for oscillation at the Wien network frequency. The Wien network is...

COMPONENTS

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Capacitors</th>
<th>Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(All fixed values ± watt 5%) R1 3.3k</td>
<td>C1 0.047µF type C280</td>
<td>IC1 LM380</td>
</tr>
<tr>
<td>R2 3.3k</td>
<td>C2 10µF electrolytic, 10V. Wkg.</td>
<td></td>
</tr>
<tr>
<td>R3 3.3k</td>
<td>C3 0.047µF type C280</td>
<td></td>
</tr>
<tr>
<td>R4 470n pre-set potentiometer, 0.1 watt, horizontal</td>
<td>C4 6.8µF electrolytic, 10V. Wkg.</td>
<td></td>
</tr>
<tr>
<td>R5 27n</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Speaker
- LS1 50Ω to 80Ω, miniature

Sockets
- SK1 3.5mm. jack socket
- SK2 3.5mm. jack socket

Miscellaneous
- Plastic case (see text)
- Veroboard, 0.1in. matrix
- Morse key
- 3.5mm. jackplug
- 9 volt battery type PP3
- Battery connector
- 14-way d.i.l. i.c. holder
- Speaker fabric
- Wire, nuts, bolts, etc.

Fig. 2. The circuit of the Morse practice oscillator. High impedance or crystal headphones may be plugged into SK2, whereas the speaker is automatically muted.
therefore, not fed directly from the output of the amplifier, but from a potential divider consisting of R3 and R4. The latter is adjusted so that the level of feedback is just sufficient to sustain oscillation at an adequate amplitude, enabling a good output waveform and volume level to be obtained.

C4 is the output d.c. blocking capacitor, and this feeds the loudspeaker by way of a break contact on the phone socket, SK2. The contact automatically disconnects the internal speaker when a pair of headphones is connected to the unit. C2 is a supply decoupling capacitor, and it helps to give a good keying characteristic. It discharges very rapidly when the key is raised and does not alter the formation of the Morse characters. R5 is a current limiting resistor and prevents the very high current surges which would otherwise flow, due to charging current in C2, when the key closes. R5 also helps to give a good keying characteristic as well as preventing sparking at the key contacts, with a consequent improvement in the contact life.

No on-off switch is required as no power is consumed by the unit until the key is pressed. With the key down, current consumption is about 20mA, but the precise figure will depend to a large extent on the setting of R4. The author used a PP3 battery in the prototype, but a larger 9 volt battery, such as the PP7, could be employed if desired. The larger battery will, of course, have a longer life than the PP3.

The two electrolytic capacitors in the circuit are specified as 10 volts working. It is, of course, quite in order to use capacitors having higher working voltages, when these are more readily available.

CONSTRUCTION

The unit can be housed in any small plastic case capable of taking the parts and the battery, and that used by the author measured about 150 by 80 by 50mm.

The case stands on its side and what would otherwise be the bottom becomes the front panel. As can be seen from the photographs, the front panel layout is very simple. SK1 and SK2 are mounted to the right, with SK1 above SK2. The circular speaker aperture, which can have a diameter of about 48mm, is to the left. A miniature speaker having any impedance between 50Ω and 80Ω can be used, and its diameter can be of the order of 60mm. or so. One way of cutting out the

Fig. 3. Wiring details. Nearly all the components are assembled on a Veroboard panel of 0.1in. matrix. The strips should be cut at the points indicated in the lower view before commencing wiring.
aperture in the front panel is to drill a ring of small holes, say about 3 to 4mm. in diameter, just inside the periphery of the required aperture. Provided the holes are closely spaced it should then be possible to punch out the material at the centre. A large half-round file is then used to smooth the inevitable rough outline of the cut-out and also to enlarge the hole to the appropriate size. An alternative method consists of simply cutting out the circle with a miniature round file or a fretsaw. A piece of speaker fabric is glued in place on the inside of the aperture, and the speaker is then glued to the fabric. It is important to ensure that the adhesive is applied only around the outer rim of the speaker; if any adhesive becomes smeared over the speaker diaphragm or its surround the performance of the speaker may be impaired.

The remaining components are assembled on a piece of 0.1in. Veroboard having 13 copper strips by 23 holes. The layout and connections here, as well as external wiring, are illustrated in Fig. 3. The two mounting holes may be 6BA or M3 clearance. The i.c. is mounted in a 14-way d.i.l. holder; this is soldered to the Veroboard and the i.c. is inserted later. The panel is mounted on the bottom of the case with R4 towards the rear, so that it can be adjusted easily. Spacing washers are required between the inside of the case and the Veroboard underside. Without such washers the panel will be strained and is liable to crack when the mounting bolts and nuts are tightened. The panel should not be finally mounted until it has been wired up to SK1, SK2 and the battery connector.

The wiring is finally completed by making the two connections between SK2 and the speaker, and by connecting the positive battery connector lead to the appropriate tag of SK1. There should be plenty of space for the battery inside the case, and it may be held in place by a simple home-made clamp. Alternatively, foam rubber or plastic may be placed over it so that it is secured in position when the rear of the case is screwed on.

ADJUSTMENT

The slider of R4 is set to the fully anti-clockwise position and the key is then plugged in and pressed, whereupon the unit should oscillate. (If it does not do so, the wiring should be carefully checked for errors.) At this stage the output waveform will lack purity and will be virtually a square wave. A more pleasant tone will be produced if R4 slider is adjusted in a clockwise direction, but the slider must not be advanced too far or the volume level will become very low, or the oscillation will cease altogether. The final setting for R4 is a good compromise between purity of tone and output volume level.

A pair of high impedance or crystal headphones can be plugged into SK2 and, as explained earlier, will mute the internal speaker. Low impedance headphones should not be plugged in as the volume in these will probably be excessive and they will also cause a heavy battery drain. It is in order, however, to use low impedance headphones if a 100Ω ½ watt resistor is connected externally in series with the phones. The output can be coupled via a screened lead to a high level input of a tape recorder. It should not be applied to a tape recorder microphone input, as the latter will almost certainly be overloaded unless a suitable attenuator is interposed between the oscillator and the recorder.

The attenuator may take the form shown in Fig. 4, in which the signal voltage fed to the recorder is equal to the fraction \(\frac{RY}{RX+RY} \) of the oscillator output. If, for example, \(RY \) is 10Ω and \(RX \) is 1kΩ, the input to the recorder will be very slightly less than one-hundredth of the output of the oscillator.

MARCH 1979

THE DECISION MAKER

Instructive circuit incorporates serial multivibrator and binary divider

The decision maker, or coin-toss, circuit is one which gives a yes-no decision at random, just as the toss of a coin should. Decision-maker circuits of this type can be used as an amusement, but can also be the basis of serious work since they can generate random numbers for use in draws or statistical work. Since the output of each decision circuit will be a 1 or a 0, each circuit gives a binary digit, and a large number of such circuits can give large binary numbers. For example, a six stage decision maker could give numbers between 000000 (zero) and 111111 (63) at random. This could give instant random numbers for football pools or other selections.

Simple single-DeC versions of the decision maker often suffer from the problem of trying to do too much with too few transistors, and the present circuit achieves greater reliability by separating the different parts of the circuit.

SERIAL MULTIVIBRATOR

TR1 and TR2 form an oscillator circuit. To keep the number of components down, a serial multivibrator has been used, with the collector of the p.n.p. transistor TR1 connected directly to the base of the n.p.n. TR2. The base of TR1 is also connected directly to the collector of TR3, completing a positive feedback loop around these two transistors. R2 is the collector load resistor for TR2, whilst R1 and C1 are oscillator timing components connected to the emitter of TR1.

To understand the operation of this oscillator, imagine that the circuit is just being switched on with C1 discharged, so that the emitter of TR1 is at zero volts with respect to the negative rail. The collector of TR2 will start at 3 volts, because of the equal value resistors R2 and R3, so that the base of TR1 is also held at this voltage. Since TR1 is a p.n.p. silicon transistor it will only start to conduct

Fig. 1. The decision maker circuit. TR1 and TR2 form a serial multivibrator, TR3 and TR4 a bistable, and TR5 functions as a lamp driver.

RADIO AND ELECTRONICS CONSTRUCTOR
when the base voltage is about 0.5 volt negative of the emitter (or, of course, when the emitter is 0.5 volt positive of the base). At the instant of switch-on, therefore, with the base of TR1 3 volts positive of its emitter, TR1 does not conduct. With TR1 non-conducting, there is no base bias current for TR2 so that this transistor is also cut off.

Immediately after switch-on C1 commences to charge through R1. After a period rather less than the time constant of R1 and C1, the voltage at the emitter of TR1 will reach 3.5 volts positive of the negative rail, causing its base to be 0.5 volt negative of the emitter. TR1 will now start to conduct, and an initially small current will flow into the base of TR2, turning on this transistor. TR2 collector draws an amplified current through the base of TR1, turning this transistor hard on and, in consequence, turning TR2 hard on as well. The two transistors then cause C1 to be rapidly discharged, and a steep negative-going pulse edge appears at TR2 collector.

When C1 discharges to a level below 1 volt, the current from this capacitor flowing into TR1 emitter commences to reduce. There is a corresponding reduction in the base current of TR2 with, at a certain level, a reduction in TR2 collector current. The voltage at TR2 collector rises, taking the base of TR1 positive with respect to its emitter. TR1 collector current reduces further and the two transistors very quickly turn off, allowing TR2 collector to return to its starting voltage of 3 volts positive. Capacitor C1 commences to charge again via R1, and another cycle begins.

The output waveform at TR2 collector has steep negative-going and positive-going pulse edges. The frequency is of the order of 1kHz. Note that in this serial multivibrator the transistors are either both on or both off, unlike the usual type of circuit.

COMPONENTS

Resistors

(All 1/2 watt 5%)

- R1 150kΩ
- R2 4.7kΩ
- R3 4.7kΩ
- R4 150kΩ
- R5 1.8kΩ
- R6 150kΩ

Capacitors

- C1 0.01μF polyester or mylar
- C2 0.001μF polyester or mylar
- C3 0.001μF polyester or mylar

Semiconductors

- TR1 2N2905
- TR2-TR5 2N697 or 2N2219 or BFY50
- D1, D2 1N914 or 1N4148

Switch

- S1 push-button, press to close

Lamp

- PL1 6V, 60mA, m.e.s.

Miscellaneous

- 2-off S-Dec
- 6V battery
- Lampholder, m.e.s.

BISTABLE

The oscillator output is taken to the decision switch, S1. When this switch is closed, the pulses from TR2 collector are fed through C2 and C3 to the steering diodes of the bistable circuit incorporating TR3 and TR4. This is the usual bistable circuit, such as was described in the third article in the Double Decer series. An output is taken from TR4. On each negative pulse from TR2 the bistable changes states, so that the output at TR4 collector is alternately high and low for successive pulses from TR2.

The collector of TR4 is coupled through R10 to the base of TR5, which is connected as an emitter follower with the 6 volt lamp, PL1, in its emitter circuit. When TR4 is cut off and its collector is high, current can flow through R9 and R10 to the base of TR5, allowing the lamp to glow. The lamp is extinguished when TR4 collector voltage is low.

With the oscillator connected to the bistable circuit (S1 on) the output of the bistable is a square wave having a frequency which is half that of the oscillator. This frequency is too high for the lamp to follow, so that it merely glows very faintly.

When S1 is opened, however, the bistable is no longer triggered and will remain in the state it was switched to by the last pulse passed to it. The collector voltage of TR4 will therefore be either high or low, and will not change until S1 is closed again. If the collector voltage of TR4 is high the lamp will be lit, and if the collector voltage of TR4 is low the lamp will be extinguished.

We can call this the condition of the YES or 1 answer, and the extinguished condition the NO or 0 answer. Since either of these is equally likely when we open the switch the answer we get is purely a matter of chance, a truly random decision.

S-DEC CONSTRUCTION

To construct this circuit as a Double Decer, first clip the two DeCs together, end to end, to form one long Dec. Plug in the nine wire links, noting the long links from points 60 and 65 of Dec 1 to points 58 and 63 of Dec 2. These link wires carry the trigger pulses. The switch S1 and the lamp PL1 can be mounted on the front panel of one Dec, or positioned remotely, as desired. Remember that single strand wire should be used for connections.

Now plug in the capacitors, followed by the diodes. The capacitors are not electrolytic in this circuit, so that they may be plugged in either way round, but care should be taken in either way round the diodes are inserted with correct polarity. Diodes generally have a red spot or white band to identify
By Frank A. Baldwin

BRASIL
Radio Relogio, Rio de Janeiro, on 4905 at 0058, OM with announcements in Portuguese, time signals (pips) in the background. The schedule is from 0800 to 0300 and the power is 5kW.
Radio Sociedad, Feira de Santana, on 4865 at 0150, OM with announcements then into a programme of recorded local pops. The schedule is from 0730 to 0400 and the power is 2kW.
Radio Aparecida, Aparecida, on 5035 at 0205, OM with announcements, OM with a local ballad. The schedule is from 0900 to 0300 and the power is 1kW.
Radio Itatiaia, Belo Horizonte, on 4805 at 0225, OM with a sports commentary in Portuguese. The schedule is on a 24-hour basis and the power is 25kW.
Radio Tabajara, Joao Pessoa, on 4795 at 0133, OM with a love song in Portuguese, OM with identification at 0135. The schedule is from 0730 to 0400 and the power is 2kW.
Radio Ribeirao Preto, Ribeirao Preto, on 3205 at 0020, OM with a sports commentary in Portuguese, the schedule of this one being from 0800 to 0400 and the power is 5kW.
Radio Clube de Para, Belem, on 4855 at 0432, OM with announcements, local pops on records. The schedule is from 0800 to 0500 and the power is 10kW.
Radio Globo, Rio de Janeiro, on 11805 at 0100, OM with identification in Portuguese under interference from Radio Moscow. Radio Globo has a schedule from 0800 to 0330 (the closing time can vary) and the power is 10kW.
Radio Clube de Pernambuco, Pernambuco, on 11865 at 0115, OM with a sports commentary in Portuguese. The schedule is from 0800 to 0430 and the power is 1kW.

Next month some Colombian stations which may be logged on the LF 60 metre band will be featured here.

SOUTH AFRICA
RSA Johannesburg on 11900 at 1800, interval signal, identification, six 'pips' time-check followed the programme in German, scheduled from 1800 to 1850.
SABC Meyerton on 4835 at 1811, pops on records, OM announcer in English. This is the English programme radiated from September through to May from 0358 (Saturday 0430, Sunday 0500) to 0635 and from 1520 to 2115 (Saturday until 2205). The power is 100kW.

U.S.S.R.
Ashkhabad, Turkmen SSR, on 4930 at 0116, classical orchestral music. Ashkhabad relays Moscow 2 on a 24-hour schedule.
Naryn, Kirgiz SSR, on 4795 at 1805, OM with a ballad in Russian. Naryn relays Frunze 1 from 2300 through to 1930.
Osh, Kirghiz SSR, on 4810 at same time as above and with the same programme. This transmitter operates in parallel with Naryn.
Kalinin, Moscow Oblast, on 4860 at 1517, OM with a talk in Russian. This one transmits the Foreign Service to North America in English, Spanish and Ukrainian from 2200 through to 0530 and at other times, schedule unknown, relays Moscow 2.
Kiev, Ukrainian SSR, on 4940 at 1836, opera in Ukrainian. Kiev 2 relay in Ukrainian is scheduled from 0300 through to 2330. The schedule is from 0300 through to 2300.
Tbilisi, Georgian SSR, on 5040 at 0248, OM with local folk songs. This transmitter relays Tbilisi 1 mostly but also includes relays of Moscow 1. The schedule is from 0200 to 2105 and the languages used are Armenian, Azerbaijani, Georgian and Russian.
Alma Ata, Kazakh SSR, on 5035 at 1842, OM and YL alternate in Chinese. The schedule is from 0000 to 1200 relaying Alma Ata 1, from 1200 to 1630 relaying the Tashkent/Alma Ata Foreign Service in Kazakh and Uighur and from 1630 to 2300 with the Moscow Foreign Service and ‘Peace and Progress’ in Chinese.
Yerevan, Armenian SSR, on 4810 at 0207, OM and YL alternate with news in Armenian. This one relays Yerevan 1 from 0200 to 1300 and Yerevan 2 from 1300 to 2000.
Petrozavodsk, Karelian ASSR, on 4780 at 0226, YL with instructions for physical exercises to music. The schedule is from 0200 to 2100 relaying Moscow 1 except for the period 1500 to 1530 when local programmes are featured.
Tyumen, Tyumen Oblast, on 4895 at 0120, YL with instructions for physical exercises to piano music. The schedule is from 0100 to 2005 relaying Moscow 1 except for local programmes at the following times; Monday to Friday from 0235 to 0300, from 0315 to 0400, from 0420 to 0430, from 1445 to 1530. Saturday from 0230 to 0300, 0420 to 0430 and from 0515 to 0600. Sunday from 0215 to 0300.
Dushanbe, Tadjik SSR, on 4975 at 0010, OM with a newscast in Russian. The schedule is from
0000 to 1200 relaying Dushanbe 1, 1200 to 1300 local programmes in Russian and Tadzhik, and from 1300 to 1330 relaying the Moscow Foreign Service in Farsi (Persian).

Radio Moscow on 11750 at 0421, OM with the Spanish programme for Latin America (“Peace and Progress”), scheduled from 0400 to 0430 on this channel and in parallel on 11850, 11890, 11900 and on 11920.

Radio Moscow on 11880 at 0425, YL with the English programme to Africa, scheduled from 0400 to 0600 here and in parallel on 11980 — and many other channels on other bands.

- HUNGARY
 Radio Budapest on 11910 at 1505, OM with local songs in the Hungarian programme for Europe, scheduled from 1500 to 1630 (Sunday only, Saturday only until 1530).

- AFGHANISTAN
 Kabul on 4775 at 0130, 4 pips time-check, readings from the Holy Qur’an. This is the Home Service 1 scheduled here from 0100 to 0330, 1230 to 1740 except for the periods 1300 to 1530 when the Foreign Service is radiated (English from 1400 to 1430). The power is 100kW.

- GUINEA
 Conakry on 4910 at 0405, OM with a talk in French on national affairs. The schedule is from 1230 through to 0730 and the power is 18kW.

- ALBANIA
 Gjirocastër on a measured 5057 at 1755, local music on an accordion-type instrument in the Tirana Home Service, scheduled here from 0400 (October to April from 0500) to 1930. The power is 50kW.

- CHAD
 N’djamana on a measured 49045 at 1835, African drums and instruments with YL’s chanting. The schedule is from 0425 to 0630 and from 1740 to 2200 (Saturday until 2300). The power is 100kW.

- AUSTRALIA
 ABC Brisbane on 4920 at 1923, pops on records, OM announcing in English. The schedule of this local transmitter is from 1900 (Sunday from 1930) to 1402 and the power is 10kW.

- ECUADOR
 Radio Splendid, Cuenca, on 5025 at 0400, OM with identification, OM song in Spanish, local-type music. The schedule is from 0900 to 0500 but closing can vary to 0430 and, just to confuse matters, sometimes operates around the clock and can vary in frequency to 5026. The power is 5kW — at least that is constant — we hope!

- HONDURAS
 La Voz Evangelica, Tegucigalpa, on 4820 at 0332, OM with a religious programme in English. The schedule is from 1030 to 0500 with programmes in English from 1500 to 1600, 0300 to 0400 and from 0415 to 0430. The power is 5kW.

- CHINA
 CPBS Peking on 3920 at 2014, OM with the Domestic Service 1 Programme, scheduled here from 1000 to 1735 and from 2000 to 2400.
 CPBS Peking on a measured 7504 at 2020, OM and YL announcing a Chinese music programme in the Domestic Service 1, scheduled here from 2000 to 1735.
 Radio Peking on 15045 at 1310, OM with a programme in Malay, scheduled from 1300 to 1400.
 Radio Peking on 15030 at 1945, YL with the Italian programme for Somalia, scheduled from 1930 to 2000.

- HUNGARY
 Radio Budapest on 15225 at 0328, YL with identification in English and interval signal at the end of the English programme to North America, scheduled from 0300 to 0330.

- ROMANIA
 Bucharest on 15250 at 1300, OM with identification in English in the programme for Europe, scheduled from 1300 to 1330.

- FINLAND
 Helsinki on 15265 at 1305, OM with the English programme to Europe, North America, the Far East and Australasia, scheduled from 1300 to 1325.

- EGYPT
 Radio Cairo on 15175 at 1250, OM with identification in Arabic in the Domestic Service, radiated here from 0700 to 1300.
 Radio Cairo on 15475 at 0530, OM with a newscast in Arabic.

- CZECHOSLOVAKIA
 Radio Prague on 15395 at 0920, OM and YL with the English programme to Africa, the Far East, South Asia, Australia and New Zealand, scheduled here from 0830 to 0900 (Saturday and Sunday until 0930).

- AUSTRIA
 Vienna on 15335 at 1812, local-type music in the German programme to Europe, East and South Africa and the Middle East, scheduled from 1700 to 1830.

THE DECISION MAKER (Continued from Page 429)

the cathode lead-out, but unmarked diodes will need to have their polarity determined. If a multimeter switched to an ohms range is used to check diodes, remember that the terminal polarity is reversed when the ohms range is used. With the diode connected to the multimeter in the manner which causes the needle to be deflected (due to the diode conducting) the “±” terminal of the meter is connected to the diode cathode, and the cathode end of the diode body should be marked using quick-drying paint. The multimeter will not normally indicate zero ohms when the diode is connected to it so that it conducts, this being due to the forward voltage drop in the diode itself.

The transistors can now be fitted to the DeCs. Remember that TR1, the p.n.p. type, has the same lead-out arrangement as the n.p.n. types used in the remainder of the circuit. If necessary, make sure that the p.n.p. type can be identified should the type number rub off.

Finally, plug in the resistors and connect the battery. The Decision Maker is then ready for use.

MARCH 1979
The author has published a number of receiver designs, both a.m. and f.m., incorporating his "Spontaflex" r.f.-a.f. reflex circuitry. This article deals with the latest f.m. version, which is the most sensitive so far and which can be relied on to receive Band II signals very well in most parts of the British Isles. An output power of about 400mW is available.

CIRCUIT OPERATION

The circuit of the receiver appears in Fig. 1, in which the vertical dashed line shows how the components are divided, in construction, between two tagboards. The aerial signal is applied to the emitter of TR1 through the isolating capacitor, C1, and is amplified by TR1 in the common base mode. The amplified signal at TR1 collector next passes via C2 to the tuned circuit, VC1, L1, and thence to the base of TR2, operating as an emitter follower. TR2 is in a gently oscillating state, and demodulation takes place at the germanium diode, D1, by the synchronous method. The amplitude of oscillation is set by VR2 which, due to silicon diode D2, has a stabilized direct voltage across it of about 0.6 volt. When the slider of VR2 is at the top of its track as shown in the circuit, or when its central knob is turned fully anti-clockwise, a forward current of a few hundred microamps flows through the detector diode D1. This reduces the impedance of the diode, thereby increasing the damping across the tuned circuit. As the control is turned clockwise, causing the slider to approach the negative rail, damping of the tuned circuit reduces until oscillation starts. Oscillation takes place in the capacitive or Colpitts mode, due to C5, C7 and internal capacitances in TR2.

Three advantages accrue from this method of oscillation control. First, adjustment of VR2 has practically no effect on tuning in Band II (although this standard of performance is not so good at lower frequencies, for which the present receiver is not designed). Second, the audio gain of TR2, in the common base mode, is greater when the impedance of D1 is reduced by the forward current passing through it than it would be if the only current flowing through the diode were TR2 emitter current on its own. Third, there is a compensating effect as the battery runs down. With reduced battery voltage there will be a smaller current flowing through D2 and the zener diode D3, resulting in a slight lowering of the voltage across D2 and, hence, the current in D1. The reduced damping imposed by D1 on the tuned circuit then counteracts the slightly reduced supply voltage for TR2 and helps to maintain TR2 in the gently oscillating condition. In practice, the setting of VR2 remains reasonably constant throughout the useful life of the battery. Note that D1 must be a high efficiency diode as specified, whilst almost any silicon diode will do for D2. C5 is in parallel with C6 in order to provide a low impedance circuit path at v.h.f. The leads of C5 must, in the assembled circuit, be kept as short as possible.

As has just been mentioned, TR2 provides a.f. gain as a common base amplifier, the a.f. signal at its collector being built up across VR1 and applied back to the base of TR1. TR1 now operates as a common emitter a.f. amplifier with the a.f. output appearing mainly across R1. The a.f. input impedance at TR1 base is high because of the small amount of negative feedback given by R3, the high amplification factor of TR1 and the low current which passes through it. This high input impedance matches adequately with the similarly high a.f. impedance at TR2 collector.
(All fixed values are 1/10 watt)
R1 8.2k Ω
R2 2.2k Ω
R3 330 Ω
R4 2.7k Ω
R5 1.2k Ω
R6 2.2k Ω
R7 1.5k Ω
R8 12k Ω
R9 12k Ω
R10 3.3k Ω
R11 47k Ω
R12 4.7 Ω
VR1 100k Ω pre-set potentiometer, 0.25 watt, horizontal
VR2 4.7k Ω potentiometer, linear
VR3 22k Ω potentiometer, log
VR4 4.7k Ω pre-set potentiometer, 0.25 watt, horizontal

Capacitors
C1 22pF silvered mica or ceramic
C2 1pF silvered mica
C3 470pF silvered mica or ceramic
C4 470pF silvered mica or ceramic
C5 0.1µF polyester
C6 160µF or 150µF electrolytic, 3 V. Wkg.
C7 6.8pF silvered mica or ceramic
C8 200µF electrolytic, 3 V. Wkg.
C9 10µ F electrolytic, 6 V. Wkg.
C10 47µF electrolytic, 3 V. Wkg.
C11 0.1µF polyester
C12 100pF silvered mica or ceramic
C13 1,000µF electrolytic, 10 V. Wkg.
VC1 5pF variable, type C804 (Jackson)

COMPONENTS

Inductor
L1 see text

Semiconductors
TR1 BC169C
TR2 2N3663
TR3 2N4289
TR4 2N3707
TR5 2N3405
D1 0A81 or 0A91
D2 1S44
D3 BZY88C6V2
D4 BZY88C3V0
D5 1S44

Switch
S1(a) (b) d.p.d.t. slide switch, standard size

Speaker
LS1 15 Ω 5in. (see text)

Miscellaneous
9 volt battery type PP3
9 volt battery type PP9
Battery connectors
Telescopic aerial (see text)
18-way group panel (see text)
2 polystyrene rods, ½in. dia. (see text)
½in. grommets (see text)
3 knobs (see text)
Materials for receiver assembly and case (see text)

Fig. 1. The circuit of the Band II portable receiver. The vertical dashed line divides the tuner section from the a.f. amplifier section.
Looking at the receiver assembly from the side opposite the speaker. The 13 way tagboard is at the left and the 5 way tagboard is to the right

A.F SECTION

All the processes so far described take place on the first of the two tagboards on which the receiver components are assembled. The a.f. signal now passes through the r.f. stopper R6 to the volume control, VR3, on the other side of the vertical dashed line in Fig. 1. The slider of VR3 connects to the base of TR3, which gives a high level of gain in the common emitter mode, with its collector signal passing via C11 and R11 to the base of emitter follower TR4. TR4 emitter couples directly into the base of the output transistor, TR5.

It will be noted that diode D5 is also in the base circuit of TR4, and that its cathode is returned to the slider of pre-set potentiometer VR4, across whose track appears a stabilized voltage of about 3 volts. In the absence of signal, VR4 is set up such that TR4 and TR5 pass a low current only. When an a.f. signal is applied, D5 causes C11 to charge such that its right hand plate goes positive to a level corresponding with the amplitude of the signal. The result is that the base current of TR4 increases with increasing input signal amplitude, automatically taking TR5 to the state in which it can handle the signal level. Consequently, the battery supplying TR5 is only required to provide the current which is necessary for the incoming signal. Thus, although the circuit is in the form of a Class A amplifier, it exhibits the economy attributes of a Class B amplifier. Since VR4 is supplied by the zener diode D4, the standing bias for TR4 and TR5 is kept reasonably steady as the battery voltage falls.

A small level of negative feedback in the output stage is given by R12, in the emitter circuit of TR5. C12 provides a necessary degree of selective feedback across TR4 and TR5.

The tuner section to the left of the dashed line is powered by a PP3 battery, whilst the a.f. section to the right of the line has a separate PP9 battery. The use of two batteries gives several advantages, including the fact that tuner supply voltage is completely free of variations resulting from large output currents in the a.f. section when high level a.f. signals are being reproduced. There is also a considerable simplification in supply decoupling. Since the current drawn from the PP9 battery is only about 2mA, its life is very long.

Some points need to be discussed concerning components. Both C2 and VC1 are low capacitance components, and they are available from Home Radio. The 2N3663 transistor can be obtained from Electrovalue. The 0A81, 0A91 and 1844 diodes are listed by several suppliers, including Bi-Pak Semiconductors. The 15Ω 5in speaker employed by the author was obtained from Radio Component Specialists, 337 Whitehorse Road, West Croydon. Other speakers of the same impedance and nominal size may be employed, although they might not fit as readily into the receiver layout. (As will be made clear in next month's concluding article, the speaker is not bolted directly to its panel but is fitted, instead, by a non-microphonic floating mounting.)

The two tagboards on which most of the receiver components are wired consist of a Doram "Standard" 18 way panel group cut into two sections. This group panel can also be obtained from Home Radio. Extension spindles are required for VR2 and VC1 and these consist of two, ½ in diameter polystyrene rods 12in. long, which are cut to length after the assembly of the receiver. The rods couple to the component spindles by way of home-constructed flexible couplers, each of which is made up of two grommets having ½ in. central holes. A further grommet of this type is used at the forward end of the extension rod for VC1 to keep the rod centralised. Suitable grommets are available, in packets of 25, as Type G10 from Electrovalue. A telescopic aerial with an extended length of some 3 to 4ft. is employed, this being preferably a type which, when extended, can be set to different angles. The telescopic aerials most commonly available have tapped 4BA holes at the centre of the bottom for mounting purposes. The control knobs on the prototype were Type JV18 from Electrovalue, and these fit neatly into the receiver assembly. The potentiometers employed for VR2 and VR3 need to be small in physical size to fit into the receiver layout. These having a body diameter of 0.79in. and a depth behind the panel of 0.46in.

CONSTRUCTION

Turn to Fig. 2 and start construction by cutting out the three sections shown, using ½ in. thick s.r.b.p. for Fig. 2(a) and ½ in. plywood for Figs. 2(b) and 2(c). Two sections cut to the dimensions of Fig. 2(b) are required; one is an upper section having the ½ in. hole and the slide switch cut-out shown in the diagram, whilst the other is a lower section without the hole or the cut-out. The bottom section of the telescopic aerial passes through the ½ in. hole. If the particular aerial used requires a hole of different diameter, the size of the hole should be amended accordingly.

Next, take the 18 way group panel and cut a 13 way section from it. This section must be 5in. long and it will be found that to achieve this the cut will be close to the 14th pair of tags. Drill two small holes at each end ½ in. in to take small woodscrews which will later secure the tagboard to the ends of the upper and lower sections of Fig. 2(b), as in Fig. 3(e). Drill a ½ in. hole at the upper end of the tagboard, as shown in Fig. 3(e), this being central
End view of the receiver. VC1 is readily visible at the upper end of the 13-way tagboard

(c) The speaker panel, again consisting of 1/4 in. plywood. The PP9 battery fits in the rectangular cut-out and is held in place when the case is fitted onto the receiver assembly.

(b) Top panel of the receiver assembly. The bottom panel has the same outside dimensions but does not have the circular and rectangular cut-outs. The material is 1/4 in. plywood on the board and 1/4 in. down from the top. The spindle of VC1 passes centrally through this hole. Still following Fig. 3(a), remove the three tags at the bottom right hand corner. Drill out a 1/4 in. hole in the board at the point indicated. VR2 is mounted to this hole with its body on the same side as the tags.

Cut out and drill the section shown in Fig. 3(a). This is made up of 1/4 in. s.r.b.p. and will later have VC1 mounted on it. Because of the high audio gain in the receiver it is necessary for VC1 to be secured on a pliable mounting as, otherwise, howling can occur due to acoustic and mechanical feedback from the speaker at audio frequencies. Take a standard rubber pencil eraser measuring about 1 1/2 in. by 1 1/2 in. by 1/4 in. and cut it down the middle, leaving two sections measuring 1 1/2 in. by 1 in. by 1/4 in. Drill a 1 in. hole through the centre of one of the sections, then drill two 1/4 in. holes in both sections about 3/4 in. from the ends, ensuring that the holes match up section to section. Bolt the rubber section with the central hole to the item of Fig. 3(a) using a countersunk 6BA bolt passing through the rubber into the 1/4 in. hole in the s.r.b.p., and with a 6BA nut on the s.r.b.p. piece. Cut off the screw flush with the nut. Mount VC1 on the item of Fig. 3(a). Using the rubber pieces as a template mark out two holes at the top of the end of the 13-way tagboard which will enable thin woodscrews to be passed, later, through the rubber and the tagboard into the end of the up-

MARCH 1979
Fig. 3(a). The s.r.b.p. item on which VC1 is mounted
(b) Side view showing the non-microphonic mounting for VC1
(c) Looking down on the mounting. The two woodscrews pass through both the rubber items, through
the tagboard and then into Fig. 2(b) upper. The 6BA screw passes through only one rubber piece
(d) Winding coil L1. Details of the former are given in the text
(e) The wiring on the 13-way tagboard. For ease of presentation the PP3 battery is shown smaller than
actual size
(f) The 5-way tagboard is mounted on the item of Fig. 2(a). The manner in which the receiver sections
are assembled will be shown in detail in next month’s issue.

per Fig. 2(b) item. These holes should be positioned such that the spindle of VC1 is central in the \(\frac{3}{8} \) in. hole in the tagboard and will not touch it. This provides the non-microphonic mounting for VC1, and further details are given in Figs. 3(b) and (c). Put the rubber and s.r.b.p. assembly, with VC1 mounted on it, on one side for the time being. Incidentally, the woodscrews passing through the rubber items are clear of Fig. 3(a) because the corners of the latter are cut away.

Coil L1 is next wound, and this is illustrated in Fig. 3(d). The former is a 1in. length cut from the outer casing of a “Bic” ball-point pen. Drill two \(\frac{3}{8} \) in. holes \(\frac{3}{8} \) in. in, at the ends of the former, so that there is \(\frac{1}{8} \) in. between the holes. Wind on 8 turns of wire, as illustrated in Fig. 3(d). When
counting the turns, ignore the two extra half turns which are formed by passing the wire through the holes to anchor the coil. The wire should be around 20s.w.g., and ordinary single strand tinned copper wiring-up wire with the insulation removed is very suitable.

Wire up all the components on the 13 way tagboard following Fig. 3(e), but omitting VC1, which is fitted later and for which room should be left. Remember that C5 should be connected into circuit with the leads as short as are possible. All wiring should be kept reasonably short, and component bodies should not lie outside the board area. They are shown spread out in Fig. 3(e) for ease of presentation. The PP3 battery takes up the approximate position shown, and the connections to the aerial, to S1, to the audio amplifier board and to the PP9 battery are made later.

The remaining 5 way tagboard is mounted to the item of Fig. 2(a) in the manner shown in Fig. 3(f). A 4BA bolt is passed through the 4BA clear hole in Fig. 2(a) and this secures the board, as well as a solder tag which provides a useful extra connection point. Fit VR3 to the panel of Fig. 2(a) with its body on the same side as the tagboard. Then complete the wiring illustrated, omitting C13 and the wiring to the tuner board and the speaker. No connection is made to the integral heat sink of TR5. In Figs. 3(e) and (f) the cathodes of zener diodes D3 and D4 are indicated by plus signs. The cathode lead is identified by a white band on the actual component.

Constructional details will be completed in next month's issue, and the next article will also explain the manner in which the items so far discussed are assembled together. Readers should, on no account, attempt to bring the receiver into working order from the information which has been given this month. There are some important setting-up adjustments to be carried out and if these are not done properly incorrect operation or even damage could result.

(To be concluded)
"This looks like a nice little job to finish off the day."

Smithy took up a stereo record player, which was all that was left on the "For Repair" rack, placed it carefully on his bench and spent a minute or two examining it externally for any obvious signs of disrepair. Straightening up, he was surprised to see that its two small speakers had mysteriously appeared at either end of his bench. Dick's voice became audible behind him.

"I thought I'd just give you a hand, Smithy."

Smithy turned round.

"Blimey, where did you spring up from? The last time I looked over at your bench you had your nose poked inside a cassette recorder."

"I've just fixed that," said Dick. "And since there's nothing else in for repair I decided to join you on this record player."

DISTORTION

"Fair enough," stated Smithy. "Well, perhaps you could start to make yourself useful by getting out the service manual for it."

Dick noted the make and type number of the player and cheerfully made his way towards the filing cabinet. As he did so, Smithy plugged the record player into the mains and connected up its two speakers. He then reached up to the shelf over his bench, took up an LP disc and put it on the turntable. He next started the turntable, placed the pick-up stylus on the outside groove of the record and turned up the volume.

The music from the right hand speaker was a splendid reproduction of all the instruments of the orchestra whose sound was entrapped in the grooves of the revolving disc. The woodwind played like the trilling of early wakening birds, the cadences of the strings swept sensually along their scale, the brass called stridently in concord and the tympani was as the fulminating resonance of approaching thunder.

The noise from the left hand speaker, on the other hand, was terrible.

Smithy turned off the record player.

"Gosh," came Dick's voice as he returned from the filing cabinet, "what was that ghastly racket?"

"Very heavy distortion in the left hand channel," stated Smithy briefly. "Let's take a butcher's at the circuit diagram."

He took the service manual which Dick had extracted from the filing cabinet, opened it out at its circuit diagram and laid it down flat on the surface of his bench. (Fig. 1.)

"It looks," ventured Dick, "pretty straightforward."

"Yes," agreed Smithy, "it's one of those nice simple amplifier circuits with discrete transistors which are still being used in some of the lower priced record players. As you can see, there's a ceramic pick-up which couples via a 1MΩ series resistor into the base of the first transistor. The presence of the 1MΩ resistor ensures that the pick-up response is reasonably flat although there is, of course, quite a loss of signal voltage in it. The first transistor is a straightforward common emitter amplifier with a fair amount of negative feedback given by the unby-passed 3.3kΩ resistor in its emitter circuit. The amplified signal at its collector passes to a top-cut tone control consisting of a 0.047µF capacitor in series with a 47kΩ pot and also to the volume control. After that we get the main amplifier part of the circuit. Which has a voltage gain of 100 times."

"You caught me out on this voltage gain business once before," chuckled Dick, "but you're not going to do so this time. Let's see, now. Is the voltage gain 100 times because of the 1kΩ resistor going back from the output transistor emitter to the emitter of TR2?"

"That's half of it. The 1kΩ resistor forms an a.f. feedback circuit coupling through the 220pF electrolytic down to the 10Ω resistor going to chassis. It's a classic negative feedback circuit from an amplifier output to its inverting input, and since 1kΩ divided by 10Ω is 100, the voltage gain of the amplifier is held at 100 times." (Fig. 2.)

"Let's just trace the feedback loop all the way through," said Dick. "The 1kΩ resistor connects to the emitter of TR2, and the signal at the collector of this transistor will be in phase with that at its emitter. This signal is then applied to the base of TR3, whose collector is out of phase with its base."

"Right," put in Smithy briskly, "and this out-of-phase signal is then fed to the two output transistors, which are both emitter followers and which do not therefore change..."
Despite the availability of a.f. integrated circuits, many current stereo record players continue to use the basic amplifier circuit shown here. The right hand channel is identical, and the 6.8kΩ and 330µF decoupling components are common to both channels. Component values are representative of commercial practice.

PSYCHIC SERVICING

With sudden alarm, Smithy stood back and watched his assistant. Dick had taken a pin from the lapel of his overall jacket and, his eyes closed, was now holding it with its point down over the service manual circuit. He swung the pin across the surface of the manual and then suddenly brought it down. Its point went through the exact centre of the upper output transistor, TR4.

Dick opened his eyes. "There you are," he grinned. "That's what's wrong with the left hand channel of this record player amplifier. TR4 has gone faulty!"

"What in heaven's name are you raving about?"

"It's my new type of servicing," explained Dick. "I've just been reading in a book about a champion water diviner who can detect the presence of water anywhere simply by working with a map of the district concerned. I'm carrying out the same principle for servicing. I'm divining the presence of a fault by just working with the circuit of the faulty equipment!"

"You must," spluttered Smithy, "be out of your tiny mind."

"We'll see," stated Dick mysteriously. "Don't forget that there are many strange unexplained things these days, even in the technological world of 1979. Tell you what, I'll bet you 20 pence that the faulty part in this amplifier channel is TR4."

Smithy glanced suspiciously at his assistant. "I'm not a betting man," he said abruptly. "I would suggest that the best thing you can do next is stop messing around with pins and get the printed board out of this record player so that we can do a few voltage checks on it and find the real fault."

"Which," intoned Dick darkly, "will be TR4. You just wait and see."

As Smithy looked at him irritably, Dick set about removing the printed circuit board from the record player cabinet. Eventually he was able to withdraw it completely, still connected to its input, speaker and supply leads.

"Why," he asked, as he neared the completion of his task, "do these record players still use discrete transistor amplifiers. You'd have thought the manufacturers would have gone over to integrated circuit amplifiers ages ago."

"That's a very good question," replied Smithy, manifestly relieved that the conversation had changed from the subject of Dick's fault-divining powers. "A lot of record players do use i.e.'s, of course, but discrete transistor amplifiers of the type we have here still keep cropping up, even in the very newest models. The amplifiers all have the same basic stage line-up after the volume control, although you'll frequently find that the transistor..."
and supply polarities are reversed. In that case TR2 would be p.n.p., TR3 would be n.p.n., TR4 would be p.n.p. and TR5 n.p.n. But all the circuits have the first transistor with negative feedback applied to its emitter, a second common emitter driver transistor and, finally, the two output emitter followers.

"This one," pointed out Dick, "uses old-fashioned germanium transistors as the output emitter followers."

"I know," agreed Smithy, "and you'll find germanium output transistors in quite recent amplifiers, too. I think that the latest amplifiers do use silicon output transistors, though. At any event, the basic circuit is a very well established one so far as relatively inexpensive record players offering about 3 to 4 watts per channel are concerned."

VOLTAGE CHECKS

"I notice," continued Dick, "that this circuit uses two diodes to provide quiescent biasing between the output transistor bases."

"Those will be two forward biased germanium diodes," replied Smithy, "with a drop of about 0.1 to 0.15 volt across each. Just enough to keep the germanium output transistors conducting when there's no signal. Incidentally, there are quite a few current paths in the circuit from the positive to the negative rail, and if you are interested in tracing out any of these you simply follow the arrows."

"Follow the arrows?"

"That's right. 'Conventional current', which is assumed to flow from positive to negative, flows in the direction of the emitter arrow in a transistor and in the direction of the arrow-head which is implicit in the symbol for a diode. As an example, current flows from the positive rail into the emitter of TR3, passes out at the collector, goes next through the two bias diodes and finally ends up at the negative rail by way of the 680 Ohm resistor and the speaker."

"Follow the arrows, eh? Right, I'll remember that."

"Good," said Smithy. "Well, let's do a few voltage checks on that board next. Since it's a stereo amplifier with two channels we can, if we like, compare voltages on the serviceable channel with those in the faulty channel. Switch on, Dick, and see what the supply voltage is."

Obediently, Dick turned on the record player and applied his test probes between chassis and the positive rail. (Fig. 3(a).)

"I'm getting about 24 volts here," he called out.

"Now try the output emitters," said Smithy. "They should be sitting at around half the supply voltage." (Fig. 3(b).)

"Okeydoke," said Dick. "I'll try the serviceable right hand channel first. The output emitters here are giving — just a jiffy — 11 volts.

"And the left hand channel?"

Dick reapplied the positive test prod of his meter to the output emitters of the faulty channel.

"Just under 11 volts."

A gleam appeared in Smithy's eyes.

"Are you still willing to bet that it's TR4 which is faulty? You mentioned 20 pence just now."

"You wouldn't take me up on it."

"I've changed my mind," said Smithy hastily. "What's more, I'm even prepared to increase the bet to a pound. If, as you say it is, TR4 is causing the trouble, I give you a pound."

Fig. 3(a). Measuring the supply voltage across the 2,200µF reservoir capacitor

(b). In a serviceable amplifier the quiescent voltage at the output emitters will be approximately half the supply voltage

ELECTROCONSTRUCTORS

SAVE MONEY!

With our BARGAIN PARCEL...

Contains:
- 10 x BC107, 10 x BC108, 10 x BC109, 3 x BF151; 3 x 2N3819, 3 x 2N2222; 10 Mixed Values — ELECTROLYTIC; 10 Mixed Values — CAPS: 20 Mixed Values — FIXED CAPS, 10 DIODES GERMANIUM — Sm, 0491, 10 DIODES SILICON — Sm, D914; 2 x 74110/2, 1 2µm, PHIL PINAL CRYOCAP PRASE, VAT inc. (all items are brand new). Plus a Free Gift worth 75p.

Send £5 plus 50p pp &p (Cheque, Postal Order, Money Order) to

SIGTRONIC ELECTRONICS
27 Malvern Street, Stapenhill
Burton-on-Trent, Staffs. DE15 9DY
Tel: (0283) 46868 special orders
"And if it isn't?"
"You give me a pound!"
"Hey," protested Dick, "take it easy, Smithy. I mean that original bet to be more of a joke than anything else."
"Come on," retorted the Serviceman. "You were keen enough to risk a bet then. Don't say that you're now chickening out."
"Oh, all right," said Dick, incensed, "A pound it is, then."
"And you've lost it," crowed Smithy triumphantly. "That last voltage check has proven that the output stage is perfectly all right. So TR4 can't be faulty."
"How do you make that out?"
"You remember that audio feedback circuit with the 1kΩ and 10Ω resistors?"
"Yes."
"Well, there's a d.c. negative feedback circuit there as well. If we assume that the 220μF electrolytic capacitor connecting to TR2 emitter has almost infinite resistance, there is 100% d.c. feedback. (Fig. 4.)"
"How come?"
"Look at the circuit," replied Smithy. "The base of TR2 is held somewhat higher than half supply voltage by the 150kΩ and 330kΩ resistors which connect to it. In the absence of signal, the output emitters then stabilize at a slightly lower voltage which, in practice, is about equal to half the supply voltage. This allows just sufficient direct current to flow through the 1kΩ resistor connecting to the emitter of TR2 to stabilize the output emitters at the half supply point. If, for some reason, the output emitters try to go positive the emitter current for TR2 falls. TR2 collector current, and hence TR3 base current, also falls, and the collector of TR3 goes negative. This counteracts the initial attempt of the output emitters to go positive."
"I suppose," said Dick glumly, as he gazed at the circuit, "if the output emitters try to go negative the opposite happens and the collector of TR3 pulls them positive again. And, since we're getting the correct half supply voltage at those output emitters, all this means that TR4 simply cannot be faulty."
"Precisely," beamed Smithy. "One pound please!"
"Don't go so fast, Smithy. I'll wait until we've finally found the fault."
"As you wish," said Smithy magnanimously. "I'm a patient sort of a bloke and I don't mind waiting for my money."

Dick was clearly annoyed at the turn of events. "Let's try some other voltage checks."
"Fair enough," replied Smithy airily. "Now that we know that the output stage is all right we should soon be able to trace the fault in this left hand channel."

Fig. 4. With the capacitors removed, the d.c. negative feedback loop incorporating TR2 to TR5 is readily apparent. The quiescent voltage at the output emitters is controlled by the voltage at TR2 base.

FOLLOW THE ARROWS

But, despite exhaustive comparative checks by Dick under the instructions of Smithy, there were no differences in voltage readings between the two channels at any point in their circuits.

Smithy frowned. "We'd better check some voltages with a signal going through," he announced gruffly. "Back to those output emitters again, Dick!"

"Righty-ho, Smithy. I've got my test prod on the right hand channel output emitters now."

Smithy started the turntable and placed the pick-up on the record lead-in groove. The undistorted output from the right hand speaker and the heavily distorted sound from the left hand speaker once more became audible.

"The meter needle's just quivering a bit," stated Dick, looking down at his testmeter."

"Try the left hand output."

"Okeydoke, Smithy."

There was a pause as Dick shifted his test prod to the output emitters of the left hand channel. The sound from the speakers was suddenly drowned in a cry of amazement from Dick.

"What's the matter?"
"It's this meter reading," stuttered Dick. "The voltage it's showing just goes down and down as the music gets louder. It only goes back to the half supply level during very quiet passages."

Smithy leaned over to look at the meter. The needle was, indeed, showing a voltage which was noticeably reduced in sympathy...
with the volume from the record.

Irrately, he took the pick-up off the record and switched the record player off. As Smithy rubbed his chin reflectively Dick removed the test prods and pulled the service manual towards him.

"That upper output transistor, VT4, must be faulty after all," he called out. "Otherwise, why does the output emitter voltage go down when the music gets louder?"

"It can't be faulty," retorted Smithy dogmatically. "We were getting the half supply voltage reading with no signal going through."

Dick ran his finger along the lines of the circuit diagram.

"Hang on a minute," he said. "You don't need the upper output transistor to get that half supply voltage reading!"

"What d'you mean?"

"Let's say," said Dick excitedly, "that VT4 is removed from the circuit and see what result that gives." (Fig. 5.)

"Well..."

"You've still got a complete d.c. feedback loop," went on Dick, "just with TR2, TR3 and TR5. It's as you said — follow the arrows. If we talk about current going from positive to negative, it flows from the emitter of TR2 through the 1kΩ resistor into the emitter of TR5. It can't flow into the emitter of TR4 because TR4 emitter arrow is pointing in the wrong direction!"

Smithy studied the circuit diagram.

"Ye gods," he muttered weakly, "You're right, too. Here, let's have that testmeter."

He grabbed the test leads, switched the meter to a low ohms range and first checked the 2.2Ω resistor in series with VT4 emitter. Obliquely, the meter read approximately 2.2Ω. Smithy then applied the test probes first one way round and then the other way round to the base and collector of VT4. In both instances there was a small deflection of the meter needle due to the circuitry around the transistor, but in neither case did the meter indicate the very low resistance which would be given by a forward biased base-collector junction. Patently, there was an internal open-circuit between the base and the collector of the transistor.

With a stunned expression Smithy walked over to the spares cupboard. He returned, stony faced, with a replacement transistor and in utter silence proceeded to remove the faulty transistor and solder it in the new one. He then switched on the record player and, watched by his jubilant assistant, started the record up again. This time the left hand channel reproduced the sound from the record with just as much excellence as did the right hand channel. Huffily, Smithy returned the pick-up to its stand and switched the player off again.

"You made a boo-boo, didn't you?"

Smithy stubbornly refused to reply.

"I've been waiting years," chortled Dick, "for something like this to happen. Years!"

There was still no comment from the Serviceman.

"Just for once," exclaimed Dick, "it's me that's been right on a technical point and you's been wrong. I never thought I'd live to see the day when I would actually shoot you down in flames!"

PAYING UP

"All right, all right," snorted Smithy crossly. "Don't keep rubb- ing it in."

"What I particularly like," said Dick happily, "is that it was you who raised the bet from 20 pence to a pound. So how about it, Smithy?"

"Don't keep on about it," retorted Smithy. "I know when I've lost a bet. I'll pay you up in full."

And pay up in full he did, after he had sorted through the contents of his bench drawer. Whereupon a protesting Dick became the richer by one fully stamped Co-op book (recovery value 40 pence), two 5 pence vouchers cut out of an electronics catalogue, three 10 pence fruit-machine tokens and two brand-new shiny 10 pence pieces. Which represent, after all, a fitting alternative for the current diminutive, single serial number, luncheon voucher, English one pound note.
A sensitive Band 11 receiver incorporating two integrated circuits and featuring negligible running costs. (Part 1 of a 2 part article).

TESTBENCH AMPLIFIER

- LOW COST DESIGN

HIGH INPUT IMPEDANCE, Greater than 1MΩ

TUNE-IN TO PROGRAMS - No.3
NEW EXCLUSIVE SERIES
Get to grips with programming the easy way.
This 9 part series will guide you through programming using nothing more complicated than a readily available programmable calculator.

Illuminated Dice
Suggested Circuit
April Fool Circuits
In Your Workshop

MANY OTHER ARTICLES
ON SALE 10th MARCH
Avoid disappointment. ORDER NOW

MARCH 1979
Doppler shift
add-on unit

By R. A. Penfold

Gives Doppler intruder surveillance in conjunction with last month's ultrasonic control system

The "Ultrasensitive Ultrasonic Remote Control" system described in last month's issue forms a very useful project having a number of remote control applications. It also, with the aid of a small amount of additional circuitry, lends itself to use as a Doppler proximity detector. Equipment of this nature is commonly employed in burglar alarms, and there are probably many other possible uses for it. This article describes an add-on unit which provides the extra circuitry required.

DOPPLER SHIFT

A Doppler alarm uses the well known Doppler Shift effect to detect the movement of a person or object in the vicinity of the transmitting and receiving transducers. Most readers will be familiar with the Doppler Shift effect, particularly with regard to sound waves. If a source of sound is moving towards an observer the latter perceives an apparent increase in the frequency of that sound. This is because a greater number of cycles per second are impinging on the observer due to the movement of the sound source. Similarly, when a source of sound moves away from an observer the apparent frequency of the sound falls. The effect is commonly encountered in ordinary life, a typical instance being given when an ambulance sounding its two-tone siren passes by.

Doppler Shift of frequency will also be given if the source of sound and the observer are stationary and the sound is reflected by a moving object. This effect is exploited in Doppler Shift proximity detectors.

When a 40kHz transmitting transducer and a 40kHz receiving transducer are placed side by side and aimed into an unoccupied room, some of the transmitter signal will be picked up by the receiver after reflections from walls, ceiling and furniture, etc., and there will probably be a certain amount of direct pick up as well. All these signals will be at the actual transmitter frequency.

An object moving in front of the transducers will also reflect some of the transmitter signal to the receiver, but the reflected signal, due to Doppler Shift, will be shifted slightly in frequency. If the received signal is fed to an a.m. receiver detector, the shifted and unshifted frequencies will produce a relatively low frequency beat note at the output of the detector. This note, which in practice will be at a frequency between a few Hertz and a few hundred Hertz, depending on the speed and direction of the moving object, can be rectified and smoothed to produce a d.c. bias controlling a relay energising circuit.

MODIFICATIONS

A few simple modifications are required to the transmitter and receiver of the "Ultrasensitive Ultrasonic Remote Control" and readers are asked to consult the diagrams for this which appeared last month.

The only modification required to the transmitter is to replace the push-button on-off switch with an ordinary toggle switch so that the transmitter can operate continually.

D1 in the receiver is now omitted and no load is driven from the output stage of the NE567 phase locked loop. (As is explained later, an l.e.d. and series resistor can, however, be used as a load to indicate when the p.l.l. output transistor has switched on.) The additional Doppler Shift circuitry is shown in Fig. 1 of the present article, and its input...
Fig. 1. The circuit of the Doppler Shift add-on unit. The input is taken from the NE567 i.c. which forms part of the ultrasonic remote control system described in last month's issue.

is fed from pin 1 of the NE567. This connection may be made at hole L20 of the receiver Veroboard panel. Fortunately, the NE567 incorporates an a.m. detector circuit, the output of which appears at pin 1 of the i.c. This fact makes it extremely simple to adapt the receiver for the present application. Also, the negative supply rails of the receiver and the add-on unit are connected together.

The additional circuit of Fig. 1 is very simple, and TR1 is a conventional high gain common emitter amplifier which is used to boost the output from the detector. R2 is the collector load resistor for TR1, R1 provides base biasing and C1 is a d.c. blocking capacitor. C3 filters out any ultrasonic signal present in the output from the detector, which could otherwise block the operation of the unit.

C4 couples the output from TR1 to a simple voltage doubling rectifier and smoothing network consisting of D1, D2 and C5. TR2 will normally be cut off and the relay in its collector circuit will not be energised but, in the presence of an input signal to the circuit due to a Doppler Shift being detected, the positive bias produced across C5 will be sufficient to turn on TR2 and energise the relay.

D3 is a protective diode and suppresses the high reverse voltage which would otherwise be generated across the relay coil when it de-energises, and which could damage the semiconductor devices in the circuit if it were not eliminated. The relay has two contact sets, RLA1 and RLA2. RLA1 is normally open contact set; it closes when the relay is energised by TR2, thereby latching the relay in the energised state once the circuit has been activated. Should this latching action not be required, RLA1 can simply be omitted. If, on the other hand, a "reset" control is desired, a normally closed push-button can be added in series with RLA1 as shown in Fig. 2. RLA2 is another normally open relay contact set, and this can be used to operate an audible alarm. Alternatively, either a normally open or a normally closed contact set, as appropriate, can be wired into a comprehensive alarm circuit if one is already installed in the protected property.

The relay used with the prototype was one with a 185Ω coil and two changeover contact sets, available from Maplin Electronic Supplies. Each of the changeover contact sets can, of course, be wired to act as normally open or normally closed, as desired.

The stand-by current of the circuit is less than 1mA, but this rises to some 45mA when the circuit is activated.

CONSTRUCTION AND USE

Apart from the relay (and, if fitted, the "reset" push-button) all the components are assembled on a 0.1in. matrix Veroboard which has 16 copper strips by 22 holes. The component layout is shown in Fig. 3. The two mounting holes may be either 6BA or M3 clearance. There are no breaks in any of the copper strips.

Memorandum: The component numbers given can be obtained by ordering numbers to suit. A list of these is available on request.

Fig. 2. Wiring a normally closed push-button in series with contact set RLA1 provides a reset facility.

Fig. 3. Component layout.
Conventionally, Doppler alarm equipment has the transmitter and receiver circuits both contained within the same housing, with the two transducers mounted side by side or one above the other on the front panel, spaced by several inches. With the present units this will give good sensitivity for 3 or 4 metres directly in front of the transducers, and for a somewhat smaller distance on either side of centre. Even just the movement of a hand within the sensitive area should be sufficient to trigger the circuit.

The transmitter and receiver sections of the system can, instead, be treated as separate items, and it is found possible to increase the area covered by the system by doing this, with careful positioning of the two sections for optimum results. For instance, by positioning the transmitter and receiver units at opposite ends of a room, with the two transducers roughly aimed at one another, the system appears to be effective for movement almost anywhere within the room.

SETTING UP

The setting up of the transmitter and receiver is the same whether they are to be employed as a remote control system or as a Doppler Shift proximity detector, and the details for alignment were given last month. However, when used in the Doppler application, there will be no load for the NE567 in the receiver, and a temporary load must be connected here to act as an indicator in order that R6 in the receiver can be correctly adjusted. Such an indicator can consist of a TIL209, or similar I.E.D., and a current limiting resistor of about 1kΩ wired in series between pin 8 of the NE567 and the positive supply, as illustrated in Fig. 4.

As was mentioned last month, when used in the Doppler system the transmitter is switched on continually, and it is desirable to employ a larger 9 volt battery than the PP3, which is normally adequate for intermittent use. The receiver and the Doppler add-on unit can have separate 9 volt batteries or can share a single 9 volt battery. As both the receiver and the add-on unit have adequate supply decoupling, no difficulties have been experienced with the use of a single supply. Due to the relatively high current which is drawn by the relay coil when it energises, a large battery such as a PP9 should be employed.

Fig. 4. A temporary load, which can consist of an I.E.D. and a series resistor, is connected to the ultrasonic receiver and functions as an indicator during setting up. The letter and number references apply to Fig. 4 in the article published last month

Answer to problem Page 421

[|LRN|]
[|log|]
[|X|]
[|20|]
[|+|]
[|R/S|]
[|RST|]
[|LRN|]

RADIO AND ELECTRONICS CONSTRUCTOR
DIRECT SUPPLY SERVICE TO READERS

TOWERS INTERNATIONAL TRANSISTOR SELECTOR
(NEW REVISED EDITION)

Towers' International Transistor Selector
To:-DATA PUBLICATIONS LTD.
57 MAIDA VALE
LONDON W9 1SN

Please send me copy/copies to the address shown below

NAME ..
ADDRESS

..(Block capitals)

Price £6.00 inc. P&P
(Please allow 21 days for delivery)

Tower's International Transistor Selector
by T. D. Towers
MBE, MA, BSc, C Eng, MIERE
inc. post and packing

If it takes you longer than 1 minute to find out all about these transistors then you need a copy of TOWER'S INTERNATIONAL TRANSISTOR SELECTOR. It's one of the most useful working books you will be offered this year. And probably the cheapest!

In it you will find a really international selection of 13,000 transistor types — British, Continental European, American and Japanese. And we think that they will solve 90% of your transistor enquiries.

Current and widely used obsolete types were carefully selected and arranged in Numero-Alphabetical order by an author who was uniquely qualified to do the job. With his compendium, all you need to know is the type number and you can learn all about a transistor's specification, who made it and where to contact them, or what to use to replace it.

Price £6.00 inc. P&P
(We regret this offer is only available to readers in the U.K.)

TOWERS INTERNATIONAL FET SELECTOR
(JUST PUBLISHED)

Towers' International Fet Selector
To:-DATA PUBLICATIONS LTD.
57 MAIDA VALE
LONDON W9 1SN

Please send me copy/copies to the address shown below

NAME ..
ADDRESS

..(Block capitals)

Price £4.00 inc P&P

If you deal with field effect transistors, or fet's — whether as a student, a hobbyist, a circuit engineer, a buyer, a teacher or a serviceman — you often want data on a specific fet of which you know only the type number.

Specifications apart, you may be even more interested in where you can get the device in question. And perhaps more important still (particularly with obsolete devices), you may want guidance on a readily available possible substitute.

This fet compendium, a comprehensive tabulation of basic specifications, offers information on:

1. Ratings
2. Characteristics
3. Case details
4. Terminal Identifications
5. Applications use
6. Manufacturers
7. Substitution equivalents (both European and American)

The many fet's covered in this compendium are most of the more common current and widely-used obsolete types.

It is international in scope and covers fet's not only from the USA and Continental Europe, but also from the United Kingdom and the Far East (Japan).

Price £4.00 inc P&P

Tower's International Fet Selector
by T. D. TOWERS
MBE, MA, BSc, C Eng, MIERE
inc. post and packing

To:-DATA PUBLICATIONS LTD.
57 MAIDA VALE
LONDON W9 1SN

Please send me copy/copies to the address shown below

NAME ..
ADDRESS

..(Block capitals)
A DRILL FOR PRINTED BOARDS
By P. B. Brodribb

Modifying a battery shaver to act as a hand-held electric drill.

Anyone who has made his own printed circuits will know that drilling the component holes with a hand drill can be both tedious and expensive. 1mm. drills break easily.

Some years ago the author bought a battery shaver for holiday use. This was the type which utilised a small motor to rotate a cutting head against a thin metal foil; in time the foil became damaged and the age of the shaver made it difficult to obtain a replacement. It was decided to see whether it could be adapted to take a twist drill and to see also whether the motor could develop sufficient torque to make a useful tool.

PIN VICE

A pin vice was cut down so that only about half an inch of the shank remained. The remaining shank was then tapped 4BA and forcibly screwed on to the plastic bush which had previously fixed the shaver cutters to the motor shaft. The assembly of pin vice and bush was next pushed back on to the motor shaft. An Eclipse No. 121 pin vice was used in this instance, but a smaller size known as a "Pin Tong" would be just as suitable. The diagram shows the main details.

The only other modification needed was to ensure that the direction of rotation was correct. When used as a shaver the motor rotated the shaft clockwise, whereas a twist drill requires counter-clockwise rotation (as viewed from the cutting end). This particular motor was capable of rotation in either direction and the switch on the motor casing was a centre-off type. However, a small protrusion on the plastic case prevented the switch slide mechanism from taking the motor switch into the counter-clockwise position. The protrusion was cut off with a sharp knife, with the result that the casing slide mechanism could now push the motor switch to either side of centre and the motor could be made to rotate in either direction. Correct rotation could also be obtained by reversing the supply connections. The drill was now ready for field trials.

SINGLE CELL

A single dry cell gave a surprising amount of torque but not quite sufficient to permit a 1mm. drill to pass easily through a printed circuit board. Two dry cells in series supplied enough power to drill through copper-clad fibreglass board fairly easily. The no-load current of this particular motor is about 250mA, rising to 500mA or more when on load. The starting current probably approaches 1 amp. Thus the dry cells should be the high power variety such as HP2.

The supply that the author finally settled for was made with an old 6.3 volt valve heater transformer and a 1 amp silicon bridge rectifier. The load voltage with the unfiltered rectified supply is about 4 volts. The drill is connected to the supply by a few feet of twin lighting flex passing through a hole in the bottom of what was the battery compartment of the shaver. The 1.5 volt motor is somewhat overloaded but does not seem to object, and perhaps the intermittent nature of the load helps. At any rate, quite a number of printed boards have now been drilled with no trouble at all. The only proviso is that the drill be kept sharp. Fibreglass board is particularly hard on drills.

A 1mm. drill is about the largest practicable size that the low power motor can handle, but this size is standard for most components that find their way on to printed boards. Larger holes may be located with the 1mm. drill and then opened out with a hand drill.

As a guide to the type of shaver employed, the one modified by the author was bought at Boots and was marked "Swiss Made, 1.5 Volt". A later version, still used on holiday for its original purpose, is described as the "Companion 1.5". It is also Swiss made for Boots and is very similar to the modified shaver except that it has a flat on the shaft and a slightly different case and switch style.
TRANSMISORISED AUTOMATIC AND MANUAL INVERTERS

AUTOMATIC STANDBY UNITS

These inverters are designed for use in applications where it is essential to maintain an AC mains supply during power failures.

Electric equipment that is required to operate during power failures is left permanently connected to the mains 13A socket on the front of the inverter, two DC battery leads combine to provide a 12V DC charger supply, trickle charging your accumulator continuously and in the event of a mains failure an internal relay switches over automatically drawing power from the battery and switching on the inverter, restoring 200/240V AC 50Hz.

Smoothed/filtered output waveform.

A separate mains lead from the inverter must be left connected to your normal domestic supply, the power consumption of which is a mere fraction.

Switchover time from power failure to mains inverter restoration is approx 5 seconds.

Assembled in very strong metal vented instrument cases, two AC output 13A type sockets, inverter operating indicator and battery charging indicator, DC input/charge leads fused, domestic mains input fused.

ACE/1 — Features as listed, 6½" x 4½" x 4½" 180/200 Watts output £42.00

ACE/2 — Features as listed, 6½" x 5½" x 5½" 280/300 Watts output £58.00

ACE/3 — Features as listed, 12½" x 7½" x 7½" 400/420 Watts output £76.00

ECONOMY INVERTERS

Designed for continuous or intermittent use to convert 12V DC to 200/240V AC 50Hz square wave.

Units have low standing current drain and proportional current consumption with regard to the connected load.

Assembled in simple aluminium instrument cases, mains on/off switch, DC input line fused, mains output via a 13A type socket, panel indicator, mains fused.

Special Feature: built in 12V DC battery trickle charger facility.

ECN/1 — 22/25 Watts output 4" x 4" x 3" details as listed £10.20

ECN/2 — 38/40 Watts output 4" x 4" x 3" details as listed £13.60

ECN/3 — 150 Watts output 5" x 4½" x 4½" details as listed £24.50

ECN/4 — 250 Watts output 9" x 8" x 3½" details as listed £31.30

ECN/5 — 350 Watts output 9" x 8" x 3½" details as listed £40.00

ECN/6 — 450 Watts output 12½" x 7½" x 7½" details as listed £50.50

ECN/7 — 500 Watts output 12½" x 7½" x 7½" details as listed £57.00

ECN/8 — 700 Watts output 14" x 10½" x 8½" details as listed £84.40

OPTIONAL EXTRAS

Smoothed and filtered waveform circuitry £2.50. Additional 13amp output socket £1.20. Panel Fuseholder (20mm) for mains output protection £1.00.

CARRIAGE: We suggest that all units are sent via 'Securicor' to protect against possible carriers damage or at your request and responsibility we will send the unit via post or Roadline. Please add £6.00 per unit for Securicor or £2.80 by post or £4.00 Roadline.

DELIVERY: Most inverters are despatched in 21/28 days, as all are assembled to order. Urgent requirements can be arranged but there is an extra 20% cover on listed prices.

ORDER TERMS: Cheques, bank drafts, postal orders with orders please. No Callers Please: We cannot spare the time to enter callers but will gladly provide any required advice by telephone.

ELECTROVANCE

P.O. Box 191, London SW6 2LS
Tel: 01-736 0685

PRINTED CIRCUITS AND HARDWARE

Comprehensive range Constructors' hardware and accessories. Selected range of popular components. Printed circuit boards for individual designs. Drawing materials for printed circuits. Resist coated laminate, epoxy glass for the d.i.y. man. Full processing instructions, no unusual chemicals required.

Sand 15p for catalogue

Ramar Constructor Services
Masons Road, Stratford-on-Aven - Warwks CV37 9NF

MARCH 1979
Wilmslow Audio
THE firm for speakers!
SEND 15p FOR THE WORLDS BEST CATALOGUE OF SPEAKERS, DRIVE UNITS KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST

WILMSLOW AUDIO DEPT REC
SWAN WORKS, BANK SQUARE, WILMSLOW
CHESHIRE SK9 1HF
Discount HiFi Etc. at 5 Swan Street and 10 Swan Street
Tel: 0625-529599 for Speakers, 0625-528213 for HiFi

Now available...

LATEST BOUND VOLUME No. 31
of
"Radio & Electronics Constructor"
NEW LARGER FORMAT

AUGUST 1977 to JULY 1978
Comprising 768 pages inc. index
PRICE £5.20 P&P 90p

BOUND VOLUME No. 27
(August 1973 to July 1974)
Price £2.80 P&P 90p

BOUND VOLUME No. 28
(August 1974 to July 1975)
Price £3.20 P&P 90p

BOUND VOLUME No. 29
(August 1975 to July 1976)
Price £3.50 P&P 90p

BOUND VOLUME No. 30
(August 1976 to July 1977)
Price £3.70 P&P 90p
Limited number of these volumes still available.

We regret all earlier volumes are now completely sold out.
Available only from
DATA PUBLICATIONS LTD.,
57 MAIDA VALE, LONDON, W9 1SN

Become a radio amateur.
Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Free!
Brochure, without obligation to
BRITISH NATIONAL RADIO & ELECTRONICS SCHOOL
P.O. Box 156, Jersey, Channel Islands
NAME ________________________________
ADDRESS ________________________________
SMALL ADVERTISEMENTS
Rate: 10p per word. Minimum charge £1.50
Box No. 25p extra

Advertisements must be prepaid and all copy must be received by the 4th of the month for insertion in the following month’s issue. The Publishers cannot be held liable in any way for printing errors or omissions, nor can they accept responsibility for the bona fides of Advertisers. (Replies to Box Numbers should be addressed to: Box No. — Radio and Electronics Constructor, 57 Maida Vale, London, W9 1SN.

VINTAGE VALVES, RADIOS, components, literature, service sheets, etc., 1920-1955. S.A.E. please with enquiries and for sample Antique Wireless Newsheet Tudor Rees, 64 Broad Street, Staple Hill, Bristol. Telephone: 0272-565472.

FOR SALE: Inverter, 12V d.c. to 240V a.c. Suitable running electric shaver, camping, boating, etc. £5.50. Box No. G355.

FOR SALE: Ex-A.M. rotary motor generator, 12V d.c. at 3.8 amps to 480V at 0.04 amps. £2.00 plus carriage. Box No. G366.

TIRRO’S NEW MAIL ORDER price list of electronic components now available on receipt of S.A.E. — TIRRO Electronics, Grenfell Place, Maidenhead, Berkshire.

WANTED: Large and small quantities of transistors, I.C.’s, displays, etc., etc. Call any time to: 306 St. Paul’s Road, London N.1. Telephone: 01-539 4224.

COMPONENTS FOR THE ASKING: 365p variable airspaced capacitors, £3 each (inc. P&P); 500pF dioxene variable capacitors, £2 each (inc. P&P); and many other components (limited stock). Send S.A.E. for details. D. E. Wood, M.N.C., Greenhite, Kent.

SOLAR CELLS: Bits, books and bargain. Send 95p for Solar Cell booklet and Data Sheets or stamp for list — Edencome Ltd., 34 Nathans Road, North Wembley, Middlesex HA0 3RX.

TV REPAIRS SIMPLIFIED. Full repair instructions individual kits from £4-50; request free circuit diagram. Stamp brings details of unique TV publications. Ausecer, 76 Churches, Larkhall, Lanarkshire.

INTERESTED IN OSAR? Then join AMSAT-UK. Newletters, OSCAR NEWS Journal, prediction charts, etc. Details of membership from: Ron Broadbell, G3AAj, 94 Herongate Road, Wanstead Park, London, E12 6EQ.

CAR BATTERY GIVING TROUBLE? Try our all electronic battery monitor. IC & PCB, £2.75 inc. S.A.E. for details. Tritech Electronics, 190 Roding Road, Loughton, Essex.

THE RADIO AMATEUR INVALID & BEDFORD Club is a well established Society providing facilities for the physically handicapped to enjoy the hobby of Amateur Radio. Please become a supporter of this worthy cause. Details from the Hon. Secretary, Mr. H. R. Boutle, 14 Queens Drive, Bedford.

CRYSTAL SET KITS. No soldering. Experience unnecessary. £2.00 plus 25p p&p. — P. Faherty, 4 Angus Drive, South Ruislip, Middlesex.

(Continued on page 453)
Chester modules are designed for P.A. Disco or HiFi amplification. Reliability is of the highest importance in P.A. or Group amps, therefore the amplifier has to function into not only a single speaker but multiple speakers whose impedance varies very considerably with frequency. A column of 8 ohm speakers can go down to 3 ohms or less at some frequencies. Unless the amplifier is designed to operate into about 2 ohms, its reliability will be very much reduced.

Our approach is to use sufficient transistors in the output stage to provide a massive reserve capability for the amplifier to drive into about 2 ohms. Transistor protection is incorporated in the event of the output being shorted.

OUTPUT POWER

The output is 32 volts into 2.5 ohms -450 Watts
34 volts into 4 ohms -290 Watts
36 volts into 8 ohms -170 Watts

These are RMS sine wave figures maintained for 30 mins. Or peaks or music much higher powers are possible.

Supply required 90 to 140 volts
Signal to noise (unweighted) 130dB ref 200 watts
Power bandwidth + or - 1dB 30Hz to 25 kHz
Input 0.7 volts at 40k Input Impedance.
T.H.D. typically 0.1% at any frequency.
The module features six 30 amp output transistors and 3 amp driver transistors. The output capacitor is too large to go on a circuit board and is supplied with the amp module.

CHESTER LABORATORIES
96 Glengall Road, London NW6

Send cheque or P.O. for 30p for our catalogue of amps, preamps, tone controls etc.

450 WATTS
POWER AMPLIFICATION BY
CHESTER LABORATORIES

A CAREER IN RADIO

Start training today and make sure you are qualified to take advantage of the many opportunities open to the trained person. ICS can further your technical knowledge and provide the specialist training so essential to success.

ICS, the world's most experienced home study college, has helped thousands of ambitious men to move up into higher paid jobs - they can do the same for you.

Fill in the coupon below and find out how!
There is a wide range of courses to choose from, including:

- CITY & GUILDS CERTIFICATES
- TELECOMMUNICATIONS TECHNICIANS
- RADIO TV ELECTRONICS TECHNICIANS
- ELECTRICAL INSTALLATIONS TECHNICIANS
- ELECTRICAL INSTALLATION WORK
- RADIO AMATEURS
- MPT RADIO COMMUNICATIONS CERT
- EXAMINATION STUDENTS - GUARANTEED COACHING UNTIL SUCCESSFUL

TECHNICAL TRAINING

ICS offer a wide choice of non-exam courses designed to equip you for a better job in your particular branch of electronics, including:

- ELECTRONIC ENGINEERING & MAINTENANCE
- COMPUTER ENGINEERING/PROGRAMMING
- RADIO TV & AUDIO ENGINEERING & SERVICING
- ELECTRICAL ENGINEERING, INSTALLATIONS & CONTRACTING

COLOUR TV SERVICING

Technicians trained in TV Servicing are in constant demand. Learn all the techniques you need to service Colour and Mono TV sets through new home study course approved by leading manufacturers.

POST THIS COUPON OR TELEPHONE FOR FREE PROSPECTUS

Our new 1978 catalogue lists a whole range of plastic boxes to house all your projects. And we've got circuit boards, accessories, module systems, and metal cases - everything you need to give your equipment the quality you demand. Send 25p to cover post and packing, and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT.
Industrial Estate, Chantlers Ford, Hants. S05 32R
Telephone Chantlers Ford (04215) 2966
SMALL ADVERTISEMENTS

(Continued from page 451)

FOR SALE: PARCELS — Cans. diodes, res., trans. items. Over 180 parts, £2.25; 200, £3.50. Mr. Sole, 37 Stanley Street, Ormskirk, Lancs., L39 2DH.

TRANSFORMERS. 5V a to 500V designed and manufactured to specification for hobbyist or O.E.M. Fast service. Many popular types ex-stock. Competitive prices. Send details of requirements for quotations to Louth Transformer Company, Peppin Lane, Fotherby, Louth, Lincolnshire.

FOR SALE: Miniature hearing aid amplifiers £2; Red l.e.d.'s 10p; 1000 diodes £2.50; 100 transistors £1.00. — J. Fulton, Derrynaseer, Dromore, Co. Tyrone, N. Ireland.

TURN YOUR SURPLUS Capacitors, transistors, etc., into Cash. Contact COLES-HARDING & CO. 133 South Brink, Wisbech, Cambs. Telephone: 0945-4188. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance.

JOIN THE INTERNATIONAL S.W. LEAGUE. Free services to members including Q.S.L. Bureau, Amateur and Broadcast Translation, Technical and Identification Dept. — both Broadcast and Fixed Stations, DX Certificates, contests and activities for the SWL and transmitting members. Monthly magazine. Contains articles of general interest to Broadcast and Amateur SWLs, Transmitter Section and League affairs, etc. League supplies such as badges, headed notepaper and envelopes, QSL cards, etc., are available at reasonable cost. Send for League particulars. Membership including monthly magazines, etc., £3.75 per annum. (U.K. and British Commonwealth), overseas £10.00 or £4.00. Secretary ISWL, 1 Grove Road, Lynden, Glos., GL15 5JE.

BURGLAR ALARMS. Include magnetic switches, wire, siren, control unit, etc. No soldering, £9.5. P. Faherty, 4 Angus Drive, South Ruislip, Middlesex.

RHYTHM GENERATOR. Samba, waltz, jazz, rock, cha cha, etc. Down beat led tempo volume stop-start. Slim line case. Battery model £49.50. Mains model £55.90. Inclusion of VAT and post, etc. 2 year guarantee. P.E. Limited, Coed Aben Trading Estate, Wrexham, Clwyd.

POSTAL ADVERTISING? This is the Holborn Service. Mailing lists, addressing, enclosing, wrapping, facsimile letters, automatic typing, copy service, campaign planning, design and artwork, printing and stationery. Please ask for price list. — The Holborn Direct Mail Company Capacity House, 2-6 Rothsay Street, Tower Bridge Road, London, S.E.1. Telephone: 01-407 6444.

FOR SALE: Dichromate hologram pendants, 3 dimensional effect or 2 dimensions £2.00. Voice control ladybird toy with, stop, go, turn or command £1.50. Light sensor shooting game £15.00. — J. Fulton, Derrynaseer, Dromore, Co. Tyrone, N. Ireland.

WANTED: FAX equipment, manuals, service sheets, etc. G2UK, 21 Romany Road, Oulton Broad, Lowestoft, Suffolk. NR32 3PJ.

(Continued on page 454)
The “CORDEX” Patent Self-Binding Case will keep your issues in mint condition. Copies can be inserted or removed with the greatest of ease. Rich maroon finish, gold lettering on spine. Specially constructed Binding Cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for and the Cords will always remain taut and strong. It is impossible to overstretch the springs, as a safety check device is fitted to each.

PRICE £1.80 P.&P. 40p including V.A.T.

Available only from:
Data Publications Ltd.
57 Maida Vale London W9 1SN

SMALL ADVERTISEMENTS
(Continued from page 453)

RECITALS OF RECORDED MUSIC. The second Saturday evening of each winter month. Next recital: February 10th, 1979, 8 p.m. at Woodford Green United Free Church, Woodford Green, Essex. Bus routes 20, 20A, 179 and 275 — slight at “The Castle” stop. Works by Bruch, Handle and Vaughan Williams.

ELECTRIC SHOCK MACHINES. Battery operated, harmless. £1.95 inclusive. P. Faherty, 4 Angus Drive, South Ruislip, Middlesex.

TREASURE HUNTERS: Construct, for £5, tr. mistuned Metal Detector giving 50% performance. For simple illustrated plans, send £1.00. (Dept. R. & P.C.), John Lucas, 2 College Road, Grays, Essex.

FOR SALE: For valve organ 49 note keyboard, contacts and stops, £15. 4 octave tone generators, trem, £10. PSU, 10W amp £5. 12 in. Goodmans 1OW 15Ω £5. — Telephone 0702-49164.

GOOD PRICES for recent Electronics/Computing/Radio books and magazines. Projects, theory etc. — Details to M. Hart, 41 Lutton Place, Edinburgh, Scotland EH8 9PF.

FOR SALE: Damaged Video Tape Recorder £75.00. Closed circuit television camera £50.00. — J. Fulton, Derrynaseer, Dromore, Co. Tyrone, N. Ireland.

LC’s TTT 7273 9099 JK Flin Flops 10p each. Mullard 7306, Mullard 7241, Signetics S7425, LUS20k. 10p each. All brand new. Add 15p post. All i.e.’s offered at 11 for £1. Jack Simpson, 35 Cattlemarket Street, Norwich, Norfolk.

FOR SALE: Volumes 10, 11 and 13 Radio Constructor, £3.00 per volume. Telephone: 06755-2842.

110 INTEGRATED CIRCUIT PROJECTS for the home constructor. 128 pages. By R. M. Marston. £3.70. From Bacca Electronics, Box No. G372.

PERSONAL

JANE SCOTT FOR GENUINE FRIENDS. Introductions to opposite sex with sincerity and thoughtfulness. Details free. Stamp to: Jane Scott, 3/Cor North St. Quadrant, Brighton, Sussex, BN1 3GJ.

BROADLANDS RESIDENTIAL CLUB for elderly people. Are you recently retired and looking for a home? We have a delightful top floor room overlooking Oulton Broad, facing south. Write to: The Warden, Broadlands Residential Club, Borrow Road, Oulton Broad, Lowestoft, Suffolk.

SPONSORS required for exciting scientific project Norwich Astronomical Society are building a 30” telescope to be housed in a 20’ dome of novel design. All labour being given by volunteers. Already supported by Industry and Commerce in Norfolk. Recreational. Educational. You can be involved. Write to: NAS, Secretary, 195 White Woman Lane, Old Catton, Norwich, Norfolk.

(Continued on page 455)

RADIO AND ELECTRONICS CONSTRUCTOR
SMALL ADVERTISEMENTS

(Continued from page 454)

CAN YOU DESIGN PRINTED CIRCUITS, arrange layouts, and re-arrange? Engineer (Kent) requires help via post, to promote new designs. — Reply in complete confidence to Box No. G374.

IF YOU HAVE ENJOYED A HOLIDAY on the Norfolk Broads, why not help to preserve these beautiful waterways. Join the Broads Society and play your part in determining Broadlands future. Further details from: — The Hon. Membership Secretary, The Broads Society, "Ichneuid," Hilly Plantation, Thorpe St. Andrew, Norwich, NOR 8SS.

BUILD YOUR OWN
P.A. GROUP & DISCO SPEAKERS by R. F. C. Stephens
Save money with this practical guide. Plans for 17 different designs. Line source, I.B., Horn and Reflex types, for 8½"-18" drive units. £3.95 post free (£8 overseas).

THE DALESFORD SPEAKER BOOK by R. F. C. Stephens
This book is a must for the keen home constructor. Latest technology DIY designs. Plans for I.B., and Reflex designs for 10-100 watts. Also unusual centre-bass system. £2.20 post free (£5 overseas).

VAN KAREN PUBLISHING
5 Swan Street, Wilmslow, Cheshire

T.T.L. 74 I.C.'s By TEXAS, NATIONAL, I.T.T., FAIRCHILD etc

<table>
<thead>
<tr>
<th>Reference</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7401</td>
<td>14p</td>
</tr>
<tr>
<td>7403</td>
<td>14p</td>
</tr>
<tr>
<td>7410</td>
<td>14p</td>
</tr>
<tr>
<td>7420</td>
<td>14p</td>
</tr>
<tr>
<td>7440</td>
<td>14p</td>
</tr>
<tr>
<td>7445</td>
<td>14p</td>
</tr>
<tr>
<td>7446</td>
<td>14p</td>
</tr>
<tr>
<td>7447</td>
<td>14p</td>
</tr>
<tr>
<td>7448</td>
<td>14p</td>
</tr>
<tr>
<td>7450</td>
<td>14p</td>
</tr>
<tr>
<td>7451</td>
<td>14p</td>
</tr>
<tr>
<td>7452</td>
<td>14p</td>
</tr>
<tr>
<td>7454</td>
<td>14p</td>
</tr>
<tr>
<td>7460</td>
<td>14p</td>
</tr>
<tr>
<td>7461</td>
<td>14p</td>
</tr>
<tr>
<td>7462</td>
<td>14p</td>
</tr>
<tr>
<td>7463</td>
<td>14p</td>
</tr>
<tr>
<td>7464</td>
<td>14p</td>
</tr>
<tr>
<td>7465</td>
<td>14p</td>
</tr>
<tr>
<td>7466</td>
<td>14p</td>
</tr>
<tr>
<td>7467</td>
<td>14p</td>
</tr>
<tr>
<td>7468</td>
<td>14p</td>
</tr>
<tr>
<td>7470</td>
<td>14p</td>
</tr>
<tr>
<td>7471</td>
<td>14p</td>
</tr>
<tr>
<td>7472</td>
<td>14p</td>
</tr>
<tr>
<td>7474</td>
<td>14p</td>
</tr>
<tr>
<td>7475</td>
<td>14p</td>
</tr>
<tr>
<td>7476</td>
<td>14p</td>
</tr>
<tr>
<td>7477</td>
<td>14p</td>
</tr>
<tr>
<td>7478</td>
<td>14p</td>
</tr>
<tr>
<td>7479</td>
<td>14p</td>
</tr>
<tr>
<td>7480</td>
<td>14p</td>
</tr>
<tr>
<td>7481</td>
<td>14p</td>
</tr>
<tr>
<td>7482</td>
<td>14p</td>
</tr>
<tr>
<td>7483</td>
<td>14p</td>
</tr>
<tr>
<td>7484</td>
<td>14p</td>
</tr>
<tr>
<td>7485</td>
<td>14p</td>
</tr>
<tr>
<td>7486</td>
<td>14p</td>
</tr>
<tr>
<td>7487</td>
<td>14p</td>
</tr>
<tr>
<td>7488</td>
<td>14p</td>
</tr>
<tr>
<td>7489</td>
<td>14p</td>
</tr>
<tr>
<td>7490</td>
<td>14p</td>
</tr>
<tr>
<td>7491</td>
<td>14p</td>
</tr>
<tr>
<td>7492</td>
<td>14p</td>
</tr>
<tr>
<td>7493</td>
<td>14p</td>
</tr>
<tr>
<td>7494</td>
<td>14p</td>
</tr>
<tr>
<td>7495</td>
<td>14p</td>
</tr>
<tr>
<td>7496</td>
<td>14p</td>
</tr>
<tr>
<td>7497</td>
<td>14p</td>
</tr>
<tr>
<td>7498</td>
<td>14p</td>
</tr>
<tr>
<td>7499</td>
<td>14p</td>
</tr>
<tr>
<td>7500</td>
<td>14p</td>
</tr>
<tr>
<td>7501</td>
<td>14p</td>
</tr>
<tr>
<td>7502</td>
<td>14p</td>
</tr>
<tr>
<td>7503</td>
<td>14p</td>
</tr>
<tr>
<td>7504</td>
<td>14p</td>
</tr>
<tr>
<td>7505</td>
<td>14p</td>
</tr>
<tr>
<td>7506</td>
<td>14p</td>
</tr>
<tr>
<td>7507</td>
<td>14p</td>
</tr>
<tr>
<td>7508</td>
<td>14p</td>
</tr>
<tr>
<td>7509</td>
<td>14p</td>
</tr>
<tr>
<td>7510</td>
<td>14p</td>
</tr>
<tr>
<td>7511</td>
<td>14p</td>
</tr>
<tr>
<td>7512</td>
<td>14p</td>
</tr>
<tr>
<td>7513</td>
<td>14p</td>
</tr>
<tr>
<td>7514</td>
<td>14p</td>
</tr>
<tr>
<td>7515</td>
<td>14p</td>
</tr>
<tr>
<td>7516</td>
<td>14p</td>
</tr>
<tr>
<td>7517</td>
<td>14p</td>
</tr>
<tr>
<td>7518</td>
<td>14p</td>
</tr>
<tr>
<td>7519</td>
<td>14p</td>
</tr>
<tr>
<td>7520</td>
<td>14p</td>
</tr>
<tr>
<td>7521</td>
<td>14p</td>
</tr>
<tr>
<td>7522</td>
<td>14p</td>
</tr>
<tr>
<td>7523</td>
<td>14p</td>
</tr>
<tr>
<td>7524</td>
<td>14p</td>
</tr>
<tr>
<td>7525</td>
<td>14p</td>
</tr>
<tr>
<td>7526</td>
<td>14p</td>
</tr>
<tr>
<td>7527</td>
<td>14p</td>
</tr>
<tr>
<td>7528</td>
<td>14p</td>
</tr>
</tbody>
</table>

REVOR OPTICAL & TECHNICAL
42 TAVISTOCK STREET
LONDON W.C.2
Tel. 01-836 4536

£14.91 POST FREE

4" dia. lens
FLEXIBLE MAGNIFIER
WITH CAST IRON BASE,
PRECISION GROUND AND
POLISHED LENS, CHROME PLATED
FRAME AND FLEXIBLE TUBE.
IDEAL FOR HOBBIES, AND
DETAILED WORK WHICH REQUIRES
BOTH HANDS FREE.
CALLERS WELCOME
(Supplied to price ruling at the time of issue)

MARCH 1979
RADIO & ELECTRONICS CONSTRUCTOR

Single Copies
Price 50p each, p&p 13p
Issue(s) required

Annual Subscription
Price £7.50 inland, £8.50 overseas
post free, commence with

Bound Volumes:
Vol. 27. August 1973 to July 1974 Price £2.80, post & pkg 90p

CORDEX SELF-BINDERS NEW FORMAT
With title, 'RADIO & ELECTRONICS CONSTRUCTOR' on spine,
maroon only
With no title on spine, maroon
With no title on spine, green

Prices include V.A.T.

DATA BOOK SERIES
DB5 TV Fault Finding, 132 pages Price £1.20, P. & P. 20p
DB6 Radio Amateur Operator's Handbook,
New edition in course of preparation
DB17 Understanding Television, 504 pages Price £3.95, P. & P. 70p
DB19 Simple Short Wave Receivers 140 pages Price 80p, P. & P. 20p

STRIP-FIX PLASTIC PANEL SIGNS
Set 3: Wording — White — 6 sheets Price £1.00, P. & P. 8p
Set 4: Wording — Black — 6 sheets Price £1.00, P. & P. 8p
Set 5: Dials — 6 sheets Price £1.00, P. & P. 8p

Prices include V.A.T. on Panel Signs

I enclose Postal Order/Cheque for in payment for

NAME

ADDRESS

Postal Orders should be crossed and made payable to Data Publications Ltd.
Overseas customers please pay by International Money Order.
All publications are obtainable through your local bookseller
Data Publications Ltd., 57 Maida Vale, London W9 1SN

PLEASE MENTION THIS MAGAZINE WHEN WRITING TO ADVERTISERS
In the almost universally employed "positive logic" a high positive voltage corresponds to binary 1, and a low positive voltage to binary 0. An inverter, which converts a 1 to a 0 and vice versa, has the symbol shown in (a). The output is 0 if the input is 1, and vice versa.

The circuit of a t.t.l. (transistor-transistor logic) inverter appears in (b), in which the resistor values shown are nominal. A 1 at the input is any voltage between 2 and 5 volts, whilst a 0 at the input is any voltage lower than 0.8 volt. Note that the current required at the input is a few microamps only, since the input impedance is high. The output is a voltage between 0 and 5 volts, with a pull-up resistor to 5 volts.

The input current requirements are not symmetric. The current required at the input for a 1 is normally a matter of microamps only, since the input impedance is high. The current required at the input for a 0 can rise to values of a few milliamps, as the input has to "pull down" (i.e. draw negative current) past the new non-conductive emitter-base junction of the first transistor.

For economic reasons a t.t.l. i.c. chip will have more than one inverter on it. As an example the SN7404 hex inverter ("hex" means "six") has six individual inverters, as shown in (c). These all share the same power supply.

A simple CMOS inverter appears in (d). The insulated gates require very low input current and are not symmetric. The input is close to or at positive supply voltage, and a 0 input is close to or at negative supply voltage.
A wide range of disco accessories at marvellous prices. Our catalogue has all the details.

A superb technical bookshop in your home! All you need is our catalogue. Post the coupon now!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse-width drum controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A massive new catalogue from Maplin that is even bigger and better than before. If you ever buy electronic components this is the one catalogue you must not be without. Over 500 pages—some in full colour—it's a comprehensive guide to electronic components with hundreds of photographs and photographs and copious after pays of invaluable data.

Our bimonthly newsletter contains guaranteed reduce specials and all the latest news from Maplin.

Post this coupon now for your copy of our 1979–80 catalogue price 75p.

Please send me a copy of your 280 page catalogue as soon as it is published (8th Jan. 1979). I enclose 75p but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 75p refunded immediately. If you live outside U.K. send £1 or ten International Reply Coupons.

NAME ____________________________

ADDRESS _______________________

MAPLIN ELECTRONIC SUPPLIES LTD

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR.
Telephone: Southend (0702) 554155.

Shop: 284 London Road, Westcliff-on-Sea, Essex.
(Closed on Monday).
Telephone: Southend (0702) 554155.

A range of highly attractive boxes is described in our catalogue. Our prices are very attractive too!