VOLUME EXPANDER

Increases dynamic programme range. Adds realism to orchestral music.

ADD-ON CLIPPING MONITOR

Monitor circuit powered by amplifier output.

OPTO-COUPLED

An Invitation to Transmit 'K' Tone Generator

Automatic logic sends a Morse ‘K’ at each ‘OVER’

MORSE PRACTICE BUZZER

MULTI-OPTION CHIP
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>50 Projects Using IC CA3130</td>
<td>£1.25</td>
</tr>
<tr>
<td>19</td>
<td>50 CMOS IC Projects</td>
<td>£1.25</td>
</tr>
<tr>
<td>20</td>
<td>A Practical Introduction to Digital IC's</td>
<td>95p</td>
</tr>
<tr>
<td>22</td>
<td>Beginners Guide to Building Electronic Projects</td>
<td>£1.25</td>
</tr>
<tr>
<td>23</td>
<td>Essential Theory for the Electronics Hobbyist</td>
<td>£1.25</td>
</tr>
<tr>
<td>26</td>
<td>52 Projects Using IC741</td>
<td>95p</td>
</tr>
<tr>
<td>28</td>
<td>Two Transistor Electronic Projects</td>
<td>85p</td>
</tr>
<tr>
<td>29</td>
<td>How to Build Your Own Metal and Treasure Locators</td>
<td>£1.00</td>
</tr>
<tr>
<td>30</td>
<td>Electronic Calculator Users Handbook</td>
<td>95p</td>
</tr>
<tr>
<td>31</td>
<td>Practical Repair and Renovation of Colour TVs</td>
<td>£1.25</td>
</tr>
<tr>
<td>32</td>
<td>Handbook of IC Audio Preamplifier and Power Amplifier Construction</td>
<td>£1.25</td>
</tr>
<tr>
<td>33</td>
<td>50 Circuits Using Germanium, Silicon and Zener Diodes</td>
<td>75p</td>
</tr>
<tr>
<td>34</td>
<td>50 Projects Using Relays, SCR's and TRIACS</td>
<td>£1.25</td>
</tr>
<tr>
<td>35</td>
<td>Fun and Games with your Electronic Calculator</td>
<td>75p</td>
</tr>
<tr>
<td>36</td>
<td>50 (FET) Field Effect Transistor Projects</td>
<td>£1.25</td>
</tr>
<tr>
<td>37</td>
<td>50 Simple L.E.D. Circuits</td>
<td>75p</td>
</tr>
<tr>
<td>38</td>
<td>How to Make Walkie-Talkies</td>
<td>£1.25</td>
</tr>
<tr>
<td>39</td>
<td>IC 555 Projects</td>
<td>£1.75</td>
</tr>
<tr>
<td>40</td>
<td>Projects in Opto-Electronics</td>
<td>£1.25</td>
</tr>
<tr>
<td>41</td>
<td>Radio Circuits Using IC's</td>
<td>£1.35</td>
</tr>
<tr>
<td>42</td>
<td>Mobile Discotheque Handbook</td>
<td>£1.35</td>
</tr>
<tr>
<td>43</td>
<td>Electronic Projects for Beginners</td>
<td>£1.35</td>
</tr>
<tr>
<td>44</td>
<td>Popular Electronic Projects</td>
<td>£1.45</td>
</tr>
<tr>
<td>45</td>
<td>IC LM3900 Projects</td>
<td>£1.35</td>
</tr>
<tr>
<td>46</td>
<td>Electronic Music and Creative Tape Recording</td>
<td>£1.25</td>
</tr>
<tr>
<td>47</td>
<td>Practical Electronic Calculations and Formulae</td>
<td>£2.25</td>
</tr>
<tr>
<td>48</td>
<td>Radio Stations Guide</td>
<td>£1.45</td>
</tr>
<tr>
<td>49</td>
<td>Electronic Security Devices</td>
<td>£1.45</td>
</tr>
<tr>
<td>50</td>
<td>How to Build Your Own Solid State</td>
<td>£1.50</td>
</tr>
<tr>
<td>51</td>
<td>50 Circuits Using 7400 Series IC's</td>
<td>£1.45</td>
</tr>
<tr>
<td>52</td>
<td>Second Book of CMOS IC Projects</td>
<td>£1.50</td>
</tr>
<tr>
<td>53</td>
<td>Practical Construction of Pre-Amps, Tone Controls, Fitters & Attenuators</td>
<td>£1.45</td>
</tr>
<tr>
<td>54</td>
<td>Beginners Guide to Digital Techniques</td>
<td>95p</td>
</tr>
<tr>
<td>55</td>
<td>28 Tested Transistor Projects</td>
<td>£1.25</td>
</tr>
<tr>
<td>56</td>
<td>Digital IC Equivalents and Pin Connections</td>
<td>£2.50</td>
</tr>
<tr>
<td>57</td>
<td>Linear IC Equivalents and Pin Connections</td>
<td>£2.75</td>
</tr>
</tbody>
</table>

POSTAGE: 20p PER BOOK. IF MORE THAN 3 BOOKS ORDERED: 10p PER BOOK
NEWS AND COMMENT

THE MAGIC HAND – Suggested Circuit
 by G. A. French

RECIPROCAL WORKING by G. B. Brown

ADD-ON CLIPPING MONITOR – Monitor Circuit Powered by Amplifier Output, Imposes Negligible Loading –
 by M. V. Hastings

MORSE PRACTICE BUZZER
 by P. Fletcher

The INStructor – A Practical Introduction to Microprocessors –
 Part 5 by Ian Sinclair

IN NEXT MONTH’S ISSUE

OPTO-COUPLED VOLUME EXPANDER –
 Increases Dynamic Programme Range, Adds Realism to Orchestral Music –
 by R. A. Penfold

MULTI-OPTION CHIP by R. J. Caborn

TRADE NOTE

SHORT WAVE NEWS – For DX Listeners
 by Frank A. Baldwin

“K” TONE GENERATOR by Trevor Hopkins

NEW PRODUCT

THE “HAUNTED” RADIO – Novelty Medium Wave Radio Faults – in Your Workshop

NEGLECTED OSCILLATOR by R. S. Burns

RADIO TOPICS by Recorder

VOLTAGE REGULATORS
 Electronics Data No. 64

Published in Great Britain by the Proprietors and Publishers, Data Publications Ltd, 57 Maida Vale, London W9 1SN.

The Radio & Electronics Constructor is printed by LSG Printers, Portland Street, Lincoln.
Conquer the chip.

Be it career, hobby or interest, like it or not, the Silicon Chip will revolutionise every human activity over the next ten years. Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home.

MASTER ELECTRONICS

LEARN THE PRACTICAL WAY BY SEEING AND DOING

- Building an oscilloscope.
- Recognition of components.
- Understanding circuit diagrams.
- Handling all types Solid State 'Chips'.
- Carry out over 40 experiments on basic circuits and on digital electronics.
- Testing and servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment.

MASTER THE REST

- Examination courses (City & Guilds etc.) in electronics. Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc.

MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS.

- Complete Home Study library.
- Special educational Mini-Computer supplied ready for use.
- Self Test program exercise.
- Services of skilled tutor available.

Please send your FREE brochure without obligation to:-

F R E E B L O C K C A P S P L E A S E

BRITISH NATIONAL RADIO & ELECTRONICS SCHOOL

4 CLEVELAND ROAD, JERSEY, CHANNEL ISLANDS.

Please send your FREE brochure without obligation to:-

I am interested in :-

PRACTICAL ELECTRONICS
COMPUTER TECHNOLOGY
OTHER SUBJECTS...
(please state your interest)
R.E.C. PROJECT KITS

Make us YOUR No. 1 SUPPLIER OF KITS and COMPONENTS for R.E.C. Projects. Each carefully selected set of parts to enable you to construct R.E.C. projects. Project kits include ALL THE ELECTRONICS and HARDWARE NEEDED - we have even included appropriate screws, nuts and I.C. sockets. Each R.E.C. Kit comes complete with its own FREE COMPONENT IDENTIFICATION SHEET. We supply - you construct. PRICES INCLUDE CASES UNLESS OTHERWISE STATED. INCLUDED. IF YOU DO NOT HAVE THE ISSUE OF R.E.C. WHICH CONTAINS THE PROJECT - YOU WILL NEED TO ORDER THE INSTRUCTIONS/REPRINT AS AN EXTRA 45p. each.

LIGHT CHANGE ALARM Dec. 79 £1.94
In daylight detects someone moving around a room - after dark can be triggered by just flash light. Units output rs a relay (included).

DYNAMIC MIC PREAMP Feb 79 £7.98
Features the ZN424E - with very low distortion and noise.

ULTRA SENSITIVE ULTRASOUND REMOTE CONTROL Feb 79 £12.45 and
DOPPLER SHIFT ADD ON UNIT Mar 79 extra £5.22
First part covers the construction of a sensitive remote control switch - an ultrasonic transmitter and receiver. The Doppler Shift add on unit detects movement within the vicinity of the transducers, and so has applications as a burglar alarm.

RING OF LEDS PRINT TIMER Jan 80 £11.22
Unusual display indicates 8 segments of timing period. A ring of 8 leds light progressively. Switch selects timing periods of 1, 2, 3, and 4 minutes. Very smartly housed in a Vero Case.

LOGIC TESTER Jan 80 £6.95
Detects overload, logic state and pulse voltages in TTL circuits. A piece of venetian blinds is included but the layout is left to the constructor. Portable. Battery operated. Supplied with test leads.

TELEPHONE BELL REPLACER Feb 80 £7.45
Includes 2 cases and speakers. Twin fig 8 cable to link units 7 p per metre extra. Remote unit warns when the telephone rings. Battery powered.

INFRARED INTRUDER ALARM Mar 80 £9.95 case.
Invisible infra red beam protects property - when the beam is broken the relay in the receiver is activated. Max. range 3 metres. Kit Includes relay. Requires 9V supply.

STEREO MIXER Mar. 80 £12.72 Mixes the Impedance dynamic mic and nurse inputs. Based on 4 LF351 Ics. Two dual pwr form the controls for mic and line. Sockets for inputs and outputs. CONSTANT CURRENT N.C. CHARGERS Sept 80 £18.95 Charges up to 10 cells - suitable for all normal n-i-cads. Continuously variable output current. Panel meter indicates the output current. Supplied with leads.

BASIC SHORT WAVE RADIO June 78 £18.95
3 band trf design covering 1.2 to 24 MHz. Features five front panel controls - v-waves, bandswitch, bandspeed, reaction, and aural attenuator. Built on a pcb. The frequency range covers all the HF broadcast and amateur bands.

3 BAND SHORT WAVE RECEIVER Feb 79 £15.98
Uses a dual gate MOSFET. Tunes from 1.8 to 30 MHz in 3 bands. Adjustable gain control. Provides additional selectivity and sensitivity when used with a receiver.

BEGINNERS MEDIUM WAVE RADIO Aug. 79. £9.95
Provides crystal or earpiece reception of broadcast w. band. Crystal earpiece is supplied.

TOP BAND FERRITE AERIAL Unit Sept 78 £8.99
An active tuned and amplified 150 metre band ferrite rod aerial unit. Provides directional reception facilities when used with a 160 metre receiver. Reduces interference and increases sensitivity for broadcast reception.

SINGLE CHIP M.W. RADIO Sept 79 £11.37
Simple sensitive M.W. receiver with loudspeaker. Uses an LM398 IC for gain, gain and power output. Ideal for beginners.

STEREO AERIAL Dec 78 £11.98
Improves receiver performance over 1.8MHz to 30MHz. Provides an increase in signal strength and reduction of strong interfering signals, spurious responses etc.

SIMPLE SHORT WAVE SUPERHET. Feb and Mar 80 £27.39
Covers 180 to 200 alignments. Very low problems. Very low battery current. Plug in coils. Uses a dual gate MOSFET as a mixer. Regenerative RF stage allows reception of a.m. w. v. and stereo.

80 METRE AMATEUR BAND RECEIVER July 80 £19.98
Expressly designed for sbb and cw amateur signals. This simple homodyne design provides world wide reception of amateur communications. Housed in a small voro case.

PORTABLE SHORT WAVE RADIO Aug 80. £18.94

LATEST KITS: S.A.E. OR 'PHONE FOR PRICES

MAGENTA ELECTRONICS LTD.
RC3, 98 CALAIS ROAD, BURTON-ON-TRENT, STAFFS., DE13 0UL. 0283-65435. 9-12, 2-5 MON.-FRI.
MAIL ORDER ONLY
ADD 25p. P.A.P. TO ALL ORDERS. ALL PRICES INCLUDE V.A.T.

ERIE & BIPPO ORDERS

KITS TRANSISTORS CAPACITORS

ICs - LESS 10%.

SOLDERING KITS - LESS 15%.

(COVERS V.A.T. REFUND & EXPORT DOCUMENTS.)

PAYMENT: STERLING TO U.K. BANK DRAFT, U.K. POSTAL ORDERS OR U.K. CHEQUE. MINIMUM ORDERS £10.00 ENCLOSE 2 INTER-NATIONAL POSTAL COUPONS.

80/81 ELECTRONICS CATALOGUE

HUNDREDS OF ILLUSTRATIONS, PRODUCT DATA, CIRCUITS AND DETAILS OF ALL OUR KITS AND EDUCATIONAL CIRCUITS. NOT INCLUDED. ALL PRODUCTS ARE STOCK LIST FOR FAST DELIVERY BY FIRST CLASS POST.

SEND 6 x 10p stamps for your copy.

ADVENTURES WITH ELECTRONICS

by Tom Duncan

Same style as above book; 11 projects based on integrated circuits - includes: dice, two-tone doorbell, electronic organ, MW/LW radio, reaction timer. etc.

Component pack includes a Bimboard, 1 plug in breadboard and the components for the projects. Advents With Microelectronics £2.35.

Component pack £2.75 less battery.

THE INStructor

A FULLY CONSTRUCTION PROJECT INCORPORATING AN INS8060 MICROPROCESSOR CHIP

- A Practical introduction to microprocessor functioning
- Relatively small number of components required
- An instructional

8 part series. Part 1 In Aug. 80 issue. Reprints of previously published part available. 45p each part.

The Instructor is a low cost assembly which provides a practical introduction to microprocessor component and its functioning. Like a kit, but it is a working circuit which allows microprocessor working to be followed, one program step at a time. Build the instructor and you will gain microprocessor experience. The series is based on the INS8060 microprocessor IC, also known as the SC/MP 44 26. Circuits are built on a plug in Eurobreadboard and is available with or without the breadboard. INSTRUCTOR COMPONENT PACKAGE: Including Eurobreadboard £27.85; or less Eurobreadboard £21.65.

HEADPHONES AND EARPIECES. The short wave radios require a crystal earpiece or high impedance mono headphones.

MONO HEADPHONES £2.98.

High impedance 2k. Sensitive, Lightweight. Adjustable padded earpieces. Fitted with 3.5mm jack plug.

CRYSTAL EARPIECE 50p.

Fitted with lead and 3.5mm jack plug. Top quality.

SSTHEODOSCOPE. 69p.

Optional attachment for use with our earpiece.

TOWERS INTERNATIONAL TRANSISTOR SELECTOR £10.35

ANTEX T25 SOLIDIER IRON. 25W. £4.91.

SOLDERING IRON STAND. £2.03.

SPARE BITS. Small, standard, large, 6sp each.

SOLDER, Handi size. 95p.

EUROBREADBOARD, £6.20.

LOW COST LONG NOSE PLIERS. £1.81.

LOW COST CLUTCHES. £1.59.

SOLDERING IRON. 12V. £5.18.

P.C.B. ASSEMBLY JIG. £11.58.

P.C.B. ETCHING KIT. £4.98.

MONO HEADPHONES. £2.98.

STEREO HEADPHONES. 8 ohm.

Padded. £4.35.

MAGENTA gives you FAST DELIVERY BY FIRST-CLASS POST OF QUALITY COMPONENTS AND KITS. All stock lines are new and full specification. We give personal service and quality products to all our customers - HAVE YOU TRIED US YET?

INTO ELECTRONICS CONSTRUCTION

R.E.C. LATEST KITS

Tremelo modulation unit Nov 80 £11.27.

3_button combination switch Nov 80 £7.22.

9 coil coupled 5w converter Nov 80 £20.80.

DESOIDERING Braid. £6p.

HOW TO SOLDER BOOKLET. 12p.

HEAT SINK TWEETERS. 15p.

SOLDER BRASS. 30p.

DESOIDER PUMP. £5.98.

CONNECTING WIRE PACK. 5 x 5 yd coils. 55p.

VERO SPOT FACE CUTTER. £1.21.

VERO 1" INCLUSION TOOL 0.1". £1.16. £0.15" £1.67.

RESISTOR COLOUR CODE CALCUL- LATOR 21p.

MULTIPLIER TYPE 1, 1000 o.p.v. with probes. 2" x 3" x 1". £6.66.

MULTIPLIER TYPE 2, 20000 o.p.v. with probes. 5" x 3" x 1". £11.52.

PRICES INCLUDE V.A.T.

1980 ADVERTISEMENTS

www.americanradiohistory.com
SEMICONDUCTORS
SEND YOUR ORDERS TO
DEPT. RC12, PO BOX 6, Ware, HERTS.
VISIT OUR SHOP AT: 3 BALDICK ST., WARE, HERTS.
TEL. 0920 3182. TELEX. 817861

TRANSISTORS

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD101</td>
<td>BC467</td>
<td>£0.24</td>
</tr>
<tr>
<td>CD102</td>
<td>BC463</td>
<td>£0.22</td>
</tr>
<tr>
<td>CD103</td>
<td>BC447</td>
<td>£0.20</td>
</tr>
<tr>
<td>CD104</td>
<td>BC445</td>
<td>£0.18</td>
</tr>
<tr>
<td>CD105</td>
<td>BC441</td>
<td>£0.16</td>
</tr>
<tr>
<td>CD106</td>
<td>BC440</td>
<td>£0.14</td>
</tr>
<tr>
<td>CD107</td>
<td>BC437</td>
<td>£0.12</td>
</tr>
<tr>
<td>CD108</td>
<td>BC435</td>
<td>£0.10</td>
</tr>
<tr>
<td>CD109</td>
<td>BC433</td>
<td>£0.08</td>
</tr>
<tr>
<td>CD110</td>
<td>BC431</td>
<td>£0.06</td>
</tr>
<tr>
<td>CD111</td>
<td>BC429</td>
<td>£0.04</td>
</tr>
<tr>
<td>CD112</td>
<td>BC427</td>
<td>£0.02</td>
</tr>
<tr>
<td>CD113</td>
<td>BC425</td>
<td>£0.00</td>
</tr>
</tbody>
</table>

THYRISTORS

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD121</td>
<td>2SC147</td>
<td>£0.02</td>
</tr>
<tr>
<td>CD122</td>
<td>2SC146</td>
<td>£0.01</td>
</tr>
<tr>
<td>CD123</td>
<td>2SC145</td>
<td>£0.00</td>
</tr>
</tbody>
</table>

SILICON RECTIFIERS

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD131</td>
<td>2SD131</td>
<td>£0.00</td>
</tr>
</tbody>
</table>

DIODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD141</td>
<td>1N914</td>
<td>£0.01</td>
</tr>
</tbody>
</table>

BRIDGE RECTIFIERS

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD151</td>
<td>1N4001</td>
<td>£0.00</td>
</tr>
</tbody>
</table>

CMOS ICs

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD161</td>
<td>74HC14</td>
<td>£0.01</td>
</tr>
</tbody>
</table>

LEDs

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD171</td>
<td>1N4007</td>
<td>£0.00</td>
</tr>
</tbody>
</table>

VOLTAGE REGULATORS

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD181</td>
<td>7805</td>
<td>£0.10</td>
</tr>
</tbody>
</table>

FUSE BOXES

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD191</td>
<td>5A/250V</td>
<td>£0.05</td>
</tr>
</tbody>
</table>

ZENER DIODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD201</td>
<td>1Z331</td>
<td>£0.02</td>
</tr>
</tbody>
</table>

GROSS WEIGHT: 500G

All prices include VAT. Add 50p post per order — Just quote your Access or Barclaycard number.
Terms: Cash with order, cheques, POs, payable to Bi Pak at above address.
Access and Barclaycard also accepted
Giro A C No 3887006

www.americanradiohistory.com
DECEMBER 1980

1.5-VDC Model Motors

SEMICONDUCTORS

PROJECT BOXES
Sturdy ABS black plastic boxes with brass inserts and lid. 75 x 56 x 35mm 65p. 95 x 71 x 35mm 75p. 115 x 95 x 37mm 85p.

MOTOROLA PIEZO CERAMIC TWEETERS
No crossover required

2.5" Direct Radiating Tweeters. Maximum rating 25 volts R.M.S. 100 watts across 8 ohms. Freq range 3BkHz-20kHz, £3.65

TOOL SALE

HANDY BENCH VICE
1" Jaw opening, £2.95.

Hand drill, double pinion with machine suit gears, 1/4", only £2.75 plus 55p p&p.

MORSE KEYS
Beginners practice key £1.05. All metal full adjustable type. £2.50

MINIATURE LEVEL METERS
1 Centre Zero 17 x 17mm 75p. 2 (scaled 0-10) 28 x 25mm 75p. 3 Grundig 40 x 27mm 1£.15.

JVC NVICO STEREO CASSETTE MECHANISM.
Music centre type. Rev. counter, remote operation £13.50 and £1.00 p&p.

MOTORS
1.5-VDC Model Motors

SEMICONDUCTORS

PROJECT BOXES
Sturdy ABS black plastic boxes with brass inserts and lid. 75 x 56 x 35mm 65p. 95 x 71 x 35mm 75p. 115 x 95 x 37mm 85p.

MOTOROLA PIEZO CERAMIC TWEETERS
No crossover required

2.5" Direct Radiating Tweeters. Maximum rating 25 volts R.M.S. 100 watts across 8 ohms. Freq range 3BkHz-20kHz, £3.65

TOOL SALE

HANDY BENCH VICE
1" Jaw opening, £2.95.

Hand drill, double pinion with machine suit gears, 1/4", only £2.75 plus 55p p&p.

MORSE KEYS
Beginners practice key £1.05. All metal full adjustable type. £2.50

MINIATURE LEVEL METERS
1 Centre Zero 17 x 17mm 75p. 2 (scaled 0-10) 28 x 25mm 75p. 3 Grundig 40 x 27mm 1£.15.

JVC NVICO STEREO CASSETTE MECHANISM.
Music centre type. Rev. counter, remote operation £13.50 and £1.00 p&p.
DIRECT SUPPLY SERVICE TO READERS

TOWERS INTERNATIONAL TRANSISTOR SELECTOR
(NEW REVISED EDITION)

This is dead! 🙁

Would this replace it? 🤔

If it takes you longer than 1 minute to find out all about these transistors then you need a copy of TOWERS INTERNATIONAL TRANSISTOR SELECTOR. It's one of the most useful working books you will be offered this year. And probably the cheapest! In it, you will find a really international selection of 13,000 transistor types — British, Continental European, American and Japanese. And we think that they will solve 90% of your transistor enquiries.

Current and widely used obsolete types were carefully selected and arranged in Numerical-Alphaetical order by an author who was uniquely qualified to do the job. With this compendium, all you need to know is the type number and you can learn all about a transistor specification; who made it and where to contact them; or what to use to replace it.

Price £10.35 inc P&P

(please allow 21 days for delivery)

Towers' International Transistor Selector

To:—DATA PUBLICATIONS LTD.
57 MAIDA VALE
LONDON W9 1SN

Please send me . . . copies
to the address shown below

NAME

ADDRESS

...(Block capitals)

TOWERS INTERNATIONAL FET SELECTOR

If you deal with field effect transistors, or fet's — whether as a student, a hobbyist, a circuit engineer, a buyer, a teacher or a serviceman — you often want data on a specific fet of which you know only the type number.

Specifications apart, you may be even more interested in where you can get the device in question. And perhaps more important still (particularly with obsolete devices), you may want guidance on a readily available possible substitute.

This fet compendium, a comprehensive tabulation of basic specification, offers information on:

1. Ratings
2. Characteristics
3. Case details
4. Terminal identifications
5. Applications use
6. Manufacturers
7. Substitution equivalents (both European and American)

The many fet's covered in this compendium are most of the more common current and widely-used obsolete types.

It is international in scope and covers fet's not only from the USA and Continental Europe, but also from the United Kingdom and the Far East (Japan).

Price £4.00 inc P&P

(please allow 21 days for delivery)

Towers' International Fet Selector

To:—DATA PUBLICATIONS LTD.
57 MAIDA VALE
LONDON W9 1SN

Please send me . . . copies
to the address shown below

NAME

ADDRESS

...(Block capitals)
NEW COMPONENTS
uA723 regulator 60p, uA748 op-amp 40p, LF351 65p, TDA2030 amplifier 180p, BC167, 8, 9, 11p, BC207, 8, 9, 15p, Capacitors 4.7 uF 63V 10p, 10uF 16V 8p, Neons 240V 15 x 12 mm lens, red or green 35p, round lens 13mm 35p, FULL RANGE OF TTL ICS AVAILABLE, Knobs, various types plastic and metal trims etc, prices from 14p to 50p. Metal and plastic boxes, e.g. Verobox 6" x 3½" £2.10, 8" x 3½" x 1½" £2.25. Plastic box 4½" x 3¾" x 1" £1.10. Metal two sections, vinyl covered top and sides, aluminium front and back, 8" x 5" x 2" £2.25, 6" x 4" x 1½" £1.85, 6" x 3½" x 3½" £2.25.

Denco products available, Transistor tuning coils £1.40, MW, SFR ferrite rod aerial £1.30, most other products available. Jackson Bros. variable capacitors C914 5, 10, 15, 20pF £3.35 each. Dilecon 100, 300pF £2.10, 500pF £2.10.

Many other components and accessories in stock. Please send 30p in stamps for our full lists.

SPECIAL OFFERS (Many half price!)

R & EC KITS
GO/NOGO TRANSISTOR TESTER £6.50
20dB AMPLIFIER (PART ONE) £4.75
PERSONAL MEDIUM WAVE RADIO £5.75
CONSTANT CURRENT NI-CAD CHARGER £12.40
9 VOLT 1 AMP POWER SUPPLY £8.80
LABORATORY POWER SUPPLY £12.80
CAPACITANCE MEASURING ADAPTOR £8.75
DUAL POLARITY VOLTMETER £9.60
INFRA-RED INTRUDER ALARM £6.10
80M AMATEUR BAND RECEIVER £21.75
LOGIC TESTER £3.05
RINGS OF LEDS PRINT TIMER £7.80

The above is only a selection. Please note that some kits exclude certain items, full details on kits since January 1980 are available on receipt of an S.A.E. Please allow 14 days for delivery.

SPECIAL CHRISTMAS OFFER
10% DISCOUNT ON ALL ORDERS RECEIVED BEFORE 9-1-81

DECEMBER 1980
DECEMBER 1980

OPTO ELECTRONICS

Photo Diodes: BPX40, BPX40C, BPX40C1, COY47, COY47V, COY48, COY48V, BPX37, S260...
Wire and neon 4p.

Photo Transistors:

BPX60, 2N5777, 360, OCP71, 46p. LED, (Mutual Se- noidal Red "2" I.P. 125p...)

125p. Micro Yellow

PHOTO DETECTOR C/W CLAMP OUTPUT

PHOTO LENS CONTROLLED SWITCH BPX66

PNP/Skip 2p 34p C3062 Photo Detector

and power amp £1

BRIDGE RECTIFIERS

60V BC30 C350 23p

60W WZ401 23p

0.6

140 OS150-200 25p

200V WZ1304 45p

400V WO4 28p

WZ227 27p

800W WO8 27p

1000W WO10 35p

750V IY2Y34 11p

150V IY2Y35 15p

100 WZ132 45p

150 WZ131 40p

50 KB305 35p

80 KB301 35p

500 KB304 35p

1000 KB302 35p

300 KB306 30p

1 M B40C 3508 50p

Miniature Meter Type £34p

2N2082 40V 15A 170wt PNP Germanium F.E. 70

2N2082 60V 15A Unexempt equipment £1.41p.
Here

NOW

ELECTROVALUE

CATALOGUE '81

as included FREE with December issue of PRACTICAL ELECTRONICS

It's work-bench size for keeping alongside your favourite journal for instant reference to stock and technical data.

With more to choose from than ever - all the items you have learned to depend on being obtainable from Electrovalue PLUS MANY NEW ONES to bring Catalogue '81 bang up to date. The V.A.T. inclusive price list that goes with it will hold for at least 4 months before the next one is issued.

Yes - you will enjoy dealing with Electrovalue - prices are keen - service is tops.

Write, phone or call if you haven't yet got Catalogue '81 - and you will receive yours by return. (We pay postage).

AND YOU GET BONUS DISCOUNTS AND FREE U.K. POSTAGE TOO, WHEN YOU BUY FROM ELECTROVALUE.

First the EuroBreadBoard

Now the EuroSolderBoard

Worlds best Breadboard buy

Accepts all D.I.L. I.C. packages

Indispensible for the professional

Ideal for the beginner

Design on a EuroBreadBoard — Instal on a EuroSolderBoard

First the EuroBreadBoard

Will accept 0.3" and 0.6" pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to 35mm dia leads.

500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.

All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)

Long life, low resistance (<10m ohms) nickel silver contacts

£6.20 each or £11.70 for 2

Now the EuroSolderBoard

Now 100mm square, 1.8mm thick printed circuit board with pre-tinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.

Four 2.5mm dia fixing holes.

£2.00 per set of three ESB's

And don't forget the EuroSolderSucker

Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only £7.25 including VAT & PP

Snip out and post to David George Sales,

Unit 7, Higgs Industrial Estate, 2 Herne Hill Road, London SE24 0AU

David George Sales

Unit 7, Higgs Ind. Est., 2 Herne Hill Rd., London SE24 0AU

Please send me:

1 EuroBreadBoard £6.20
or 2 EuroBreadBoards £11.70
or 3 EuroSolderBoards £2.00
or 1 EuroSolderSucker £7.25

All prices are applicable from Jan. 1st 1980 and include VAT & PP but add 15% for overseas orders.

Name

Company

Address

Tel. No...

Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing.
AND THERE'S MORE WHERE THIS CAME FROM

It's a long time since one of our adverts was presented in 'list' form - but simply because we do not try to squeeze this lot in every time doesn't mean that the information isn't available. Our new style price list (now some 40 pages long) includes all this and more, including quantity prices and a brief description. The kits, modules and specialized RF components - such as TOKO coils, filters, etc. are covered in the general price list - so don't wait for a free copy (with an SAE please). Part 4 of the catalogue is due out now incorporating a revised AMS KIT. (see Pt.1).
AUTORANGING, AUTO UNIT DISPLAY DMMs for under £40

A major price breakthrough on Autoranging, 3½-digit DMMs with a unique Auto Unit Display has been announced by Maclin-Zand Electronics, with four models selling from only £39.95, inc. VAT.

Hand-held, rugged, and with ergonomically laid out fascias, the four models offer a range of features you'd be hard put to find on DMMs costing two to three times as much. Zero adjustment; 3½-digit LCD with 200 hrs continuous battery life, Full Autoranging; Auto 'Batt' Warning; Auto Unit Display, plus buzzer for Continuity Test and Over Range Indicator on Models 6110 and 6100. Models 6110 and 6220 measure AC/DC current to 10 A, Models 6100 and 6200 to 200mA.

Available only from Maclin-Zand direct, prices are £39.95 for the 6200, £49.95 for the 6220, £64.95 for the 6100 and £74.95 for the 6110. These price include VAT, batteries, pair of test leads, spare fuse and one year guarantee, but exclude p&p, for which £1.15 should be added. Full information and specs on the range are available from Maclin-Zand Electronics, 38 Mount Pleasant, London WC1X 0AP.

GYR AND LANDIS COMMENORATIVE PRIZE – 1980

The 1980 Karl Heinrich Gyr and Heinrich Landis Commemorative Prize has been awarded by the Institute of Electrical Engineers to Martin Weston of the BBC Engineering Research Department.

Martin Weston has worked at the Research Department for ten years and has spent much of that time developing the techniques of digital television processing. He has been awarded the Prize for his development of the Electronic Zone-Plate which is proving to be a valuable tool in testing and assessing the performance of digital television systems. The Zone-Plate generates television pictures incorporating periodic gratings of all possible pitches, slopes and rates of movement by electronic means.

The Commemorative Prize won by Martin Weston is awarded annually by the I.E.E. and sponsored by Landis and Gyr Ltd. for practical contributions to the advance of electrical and electronic science and engineering with particular reference to measurement and assessment techniques.

UNIPART AUDIO RANGE

Ten separate Unipart radios, radio/cassette players and cassette players built with technologically advanced quality products that look as good as they should. Each unit is competitively priced and is backed by Unipart's extensive range of accessories, fitting kits and aerials.

The new Unipart audio range consists of:- 1. A manually tuned AM radio. 2. Two five push button AM radios. 3. A six push button AM/FM radio. A prestige 6 push button AM/FM stereo radio. 5. An under dash stereo cassette tape player. 6. Two manually tuned radio combined stereo cassette tape players. 7. A six station pre-selection AM radio combined with a stereo cassette tape player. 8. A six station, pre-selection AM/FM stereo radio combined with a stereo cassette tape player.

Each audio product will be available at 240 BL distributors, 2,000 other UK distributors, 650 Unipart shops and 130 Unipart centres.
THE NIGHTINGALE'S
FIRST BROADCAST

A number of readers were very interested in the article 'First Woman Broadcaster Ever' which appeared in our August 1980 issue.

Many readers will therefore probably be interested to learn of the first broadcast by Dame Nellie Melba, known to the world as 'The Nightingale. It was made approximately three months after those of Miss Sayer – the first woman broadcaster ever.

The event was advertised widely in the national press and on 15th June 1920 Dame Nellie Melba went to the Chelmsford Works of Marconi to sing.

Completely unaware of how the 'magic' of broadcasting worked, she was shown the site. When told that her voice would go out from the aerial slung some four hundred and fifty feet above her head from two masts, she said to Arthur Burrows (later BBC's first Director of Programmes) "Young man, if you think I'm going to climb up there, you're quite mistaken."

In the event she sang in the transmitter shed, which today is the high-power test area of Marconi Communication Systems Limited.

Amongst those present at her broadcast were William Ditcham, a Marconi engineer, who had made the world's first broadcast, and Miss Winifred Sayer. Miss Sayer, now 82 years old Mrs Winifred Collins, recalled Dame Nellie, who had two accompanists, kicking back the carpet that had been laid on the concrete floor as it spoilt the acoustics. The microphone was a problem, as it did not have an adequate mouth-piece, so one was improvised from the sides of a Havana cigar box and the microphone was suspended in front of Dame Nellie, who subsequently autographed and dated it. The microphone and its embellishments is still in the possession of The Marconi Company.

Dame Nellie's broadcast was an immediate success. It was followed up over the next few months by further broadcasts using other famous voices. There were also news and current affairs broadcasts as well as instrumental recitals, and in August 1920 the first broadcast to a ship at sea was made, specifically to the SS Victorian which was taking delegates to an international press conference in Canada. They were daily kept informed of news by a bulletin from Chelmsford.

Still experimental, these broadcasts led to the establishment of '2MT Writtle', just outside Chelmsford, in February 1922 and '2LO Strand' in May 1922. '2LO' was later handed over by Marconi to the newly formed British Broadcasting Company in November 1922.

DESIGN OFFICE REFERENCE

Now available from MCP Electronics on behalf of TRW LSI Products is a new 1980 'short form' catalogue offering the immediate answer to what could well be described as hundreds of Digital Signal Processing Design problems.

Copies of the new 1980 short form are available on request from: MCP Electronics Ltd., 38 Rosemont Road, Alperton, Wembley, Middlesex HA0 4PE.

POCKET POWER FROM TANDY

One of the smallest computers on the market, the new Tandy TRS-80 Pocket Computer, should be available by the time these notes appear.

This latest addition to the Tandy TRS-80 range is only 175mm x 70mm x 15mm and will sell for £119 (including VAT). It is battery powered which means that a number of programmes can be loaded and retained for up to 300 hours (the life of the battery) even when the power is switched off.

Because it does not rely on a mains supply the new TRS-80 Pocket Computer can be carried around and used almost anywhere.

There are already eight packages of software available to cover varying needs. These include civil engineering, aviation, maths drill, business statistics, real estate, personal finance and a games package. These, too, will be in the shops in late autumn at prices ranging from £8.95 to £13.95 (including VAT).

The Tandy Pocket Computer has a 4-bit CPU consisting of two microprocessors. It can carry 1.9K of user memory (RAM) and a total of 11K of ROM – 7K for the BASIC interpreter and approximately 4K for the monitor.

Using the cassette interface (£17.95), multiple programmes can be loaded from cassette tape without the previous programme being erased.

SEALLED NICKEL CADMIUM
BATTERIES

The 520/8 range of nickel cadmium sealed batteries, style NR-AA, offered by Symot Limited have a nominal voltage 1.2V and a capacity of 500 mAh. The quick charging rate is 4.5 hours at 150 mA and a life of more than 500 cycles of operation, under normal conditions, is claimed.

The volume is 0.51 cubic inches (8.3 cc) giving an energy density rating of 60mA/h per cc.

These batteries are suitable for use up to 45deg. C. The batteries are fitted with flat contact type terminals and weigh 0.74 ounces (21 gm). A re-sealable type of safety vent is fitted.

Full information can be obtained from: Symot Limited, 22a Reading Road, Henley on Thames, Oxon RG9 1AG.
This article describes a novelty device which can be both instructive and amusing.

On the surface of a wooden or plastic panel is affixed a piece of card cut out in the shape of a hand. A person being introduced to the device is asked to place his hand flat on the panel, so that the fingers and main part of his hand conform with the cut-out and are positioned within its outline. As soon as the hand is fully placed on the cut-out a circuit is completed, this consisting of the lighting of a lamp, the sounding of a buzzer or any other effect favoured by the constructor. At the same time there are no visible or obvious electrical connections or contacts on the panel which the person's hand can touch.

FOIL CONTACTS

Fig. 1(a) shows the cut-out of the card hand as seen from above. On the underside are glued two pieces of kitchen aluminium foil with the approximate shape and size shown in Fig. 1(b), and having two straight edges at the centre spaced from each other by approximately 1/4 in. When a hand is placed on the top side of the card, the increased capacitance between the two pieces of foil activates the circuit which lights the lamp or produces the alternative effect.

The circuit of the device is given in Fig. 2. Here, ICI is a 555 oscillating in the standard astable mode at a frequency of around 200kHz. Its output at pin 3

![Diagram of the Magic Hand](image-url)
connects directly to one of the pieces of aluminium foil shown in Fig. 1(b). The other piece of foil connects via C3 to the inputs of a NAND gate in a CMOS 4011 i.e., the NAND gate output connecting to a second NAND gate. Both gates are employed as inverters. The inputs of the first gate are kept low by R3, and the output of the second gate is similarly low. Normally, the stray coupling between the 555 output and the first NAND gate inputs is too low to have any effect on the NAND gate. When, however, a hand bridges the two pieces of foil, the increased capacitive coupling takes the NAND gate inputs sufficiently high on positive pulses from the 555 to produce corresponding low pulses at the NAND gate output. The output of the first NAND gate is fed to the second NAND gate, which provides any further amplification that may be needed. Thus, when a hand is placed over the two pieces of foil an output at 200kHz, with the maximum amplitude which a CMOS NAND gate is capable of providing, is produced at the output of the second NAND gate.

The use of the two NAND gates in this manner ensures that, as the capacitance between the two pieces of foil is increased, there is a level of capacitance at which the second NAND gate commences, fairly abruptly, to produce a 200kHz output. There is not a gradual increase in 200kHz output as would be given with a normal linear amplifier.

RECTIFIER CIRCUIT

When it is present, the 200kHz output of the second NAND gate is applied to the shunt rectifier circuit consisting of C4 and D1, and a rectified positive voltage appears at the junction of these two components. This voltage is applied via R4 to the base of TR1, whereupon TR1 turns on and causes the relay to energise. The relay contacts then switch on the lamp or cause the alternative effect to be given. The relay de-energises again as soon as the hand is taken away from the pieces of aluminium foil.

Apart from R3, the components are all standard types. The author employed ten 10MΩ resistors connected in series to produce the 100MΩ required in R3. Higher value resistors could similarly be connected in series to produce approximately the value required. The relay employed with the prototype circuit was an "Open Relay" with 410Ω coil, and this is available from several suppliers including Maplin Electronic Supplies. The diode specified for D1 has reduced efficiency at 200kHz but it functions adequately in the present circuit where there is a relatively low impedance.
output from the second NAND gate. Diode D2 is, of course, the usual diode found in relay circuits, and it prevents the formation of a high back-e.m.f. across the relay coil when the relay de-energises. Incidentally, an ICM7555 (the “CMOS 555”) is not suitable for the present circuit since its output is at a higher impedance than that of the standard bipolar 555. The current drawn from the 9 volt supply is about 15mA with the relay de-energised. This increases to about 35mA when the relay is energised.

PRACTICAL POINTS

The piece of card on which the hand is drawn should be cut out to have about the same size and shape as an adult male hand. Finger nails, etc., can then be inked in. The thickness of the card should be a little more than about twice the thickness of the cover of this magazine. Connections to the pieces of aluminium foil can be made by sandwiching several strands of thin tinned copper wire between the foil and the underside of the card when the foil is glued to the latter. The wire is then passed through two holes in the panel on which the card hand is mounted, and the electronic circuitry is positioned behind the panel.

The circuit should be laid out so that the output wiring from the 555 does not too closely approach the input wiring to the first NAND gate. The only other point which requires attention is to ensure that C1 is positioned close to IC1.

RECI PROCAL WORKING

By G. B. Brown

Rapid results from your calculator

Even the less expensive general purpose electronic calculators can make short work of solving electronic calculations. What are probably three of the most useful key functions here are the square (\(x^2\)), the square root (\(\sqrt{x}\)) and the reciprocal \((1/x)\) keys. If your calculator has these three keys then it is capable of quickly working out most of the simple electronic problems you are likely to encounter. The key I would like to concentrate on in this short article is the reciprocal key, since it can provide useful short cuts in working out such things as cycle length and frequency in RC oscillators.

MULTIVIBRATOR

Take the familiar multivibrator of Fig. 1. During the multivibrator cycle TR1 is turned off for part of the time and TR2 is turned off for the remainder of the cycle. The length of time each transistor is turned off depends on the values of the resistor and capacitor connected to its base. Mathematically, the length of time when TR1 is turned off is approximately equal to 0.7 times the time constant of R2 and C1, and the length of time when TR2 is cut off is approximately equal to 0.7 times the time constant of R3 and C2.

Before proceeding further a word of warning. When each transistor is initially turned off in the cycle its base goes negative of the negative rail by nearly the full supply voltage. If this voltage exceeds the transistor base-emitter junction reverse breakdown voltage no harm results, but the junction behaves like a zener diode and upsets the timing calculations. Nearly all modern silicon transistors have base-emitter breakdown voltages of the order of 6 volts or more, so if you want the multivibrator of Fig. 1 to run at around its calculated frequency it’s a good idea to use a supply of 6 volts or less. And now to the calculations.

TR1 cut-off time is approximately equal to 0.7 times the time constant of R2 and C1, i.e. it is equal to 0.7 \(\times R2 \times C1\). Useful units are megohms, microfarads and seconds. Let’s say that, as in Fig. 2(a), R2 is 220kΩ (=0.22MΩ) and that C1 is 0.047μF. We press the calculator keys to give:

\[
0.7 \times 0.22 \times 0.47 =
\]

[Image of multivibrator circuit diagram]

Fig. 1. The standard multivibrator. Frequency is controlled by the values of R2, R3, C1 and C2.
and we find that the time is 0.00724 second to three significant figures. If we next say that R3 is 100kΩ (=0.1MΩ) and C2 is 0.01µF, the time when TR2 is off calculates as 0.0007 second. Total cycle time is 0.00724 plus 0.0007, which equals 0.00794 second.

And the frequency? Press the 1/x button and you’ll find that it is 126Hz to three significant figures.

When R2 equals R3 and C1 equals C2 the total cycle time is approximately 1.4CR. Let’s assume that R2 and R3 are 22kΩ (=0.022MΩ) and that C1 and C2 are 0.01µF. See Fig. 2(b). The key sequence:

\[
1.4 \times 0.022 \times 0.01 =
\]

gives 0.000308 second. Pressing the reciprocal key gives the frequency, which is 3250Hz, or 3.25kHz.

555 AND ICM7555

The usefulness of the reciprocal key becomes more apparent when we deal with oscillators incorporating the 555 and ICM7555. The basic oscillator circuit is shown in Fig. 3 and frequency is given by:

\[
f = \frac{1.46}{(RA + 2RB)C}.
\]

Units can be megohms, microfarads, seconds and Hertz.

Now, the most cumbersome part of the right hand side of the equation is the \((RA + 2RB)C\) and it is a good plan to work this out first. After that we invert it and then multiply by 1.46. Here’s the key sequence:

\[
2 \times RB = + RA = X C = 1/x X 1.46 =.
\]

The “equals” keystrokes in the middle of the sequence are needed to get the calculation, as it progresses, into the calculator register. Let’s try the example of Fig. 4, with RA being 470kΩ (=0.47MΩ), RB being 220kΩ (=0.22MΩ) and C being 0.68µF. We press:

\[
2 \times 0.22 = + 0.47 = X 0.68 = 1/x X 1.46 =
\]

and we arrive at a frequency of 0.36Hz.

Using the reciprocal key in this manner takes quantities from below the fraction bar and produces their values when shifted above the fraction bar. If we hadn’t used the reciprocal key we would have had to do something like work out \((RA + 2RB)C\), write the result on a piece of paper (or, in a more expensive machine, store it), clear, key in 1.46 and then divide by the result we had noted (or stored).

Reverting to the equation we have just solved, how do we find the total cycle length corresponding to the frequency of 2.36Hz? That’s easy. We just press the reciprocal key again, and the calculator tells us that it is 0.424 second.
ADD-ON CLIPPING MONITOR By M. V. Hastings

- Monitor circuit powered by amplifier output
- Imposes negligible loading
- Quick turn-on and slow decay.

If an audio amplifier is overdriven, the output signal becomes distorted due to the inability of the amplifier to provide a sufficiently large output voltage swing. The peaks of the signals are flattened by the overloading, causing a type of distortion which is known as "clipping".

Overdriving an amplifier is unlikely to damage the amplifier itself, although this is still possible with some designs, and the main result is increased distortion. The severity of this distortion depends on how hard the amplifier is overdriven and to a certain extent on the nature of the programme material. Although there may be a significant loss of fidelity, it still may not always be obvious to a listener that clipping is taking place.

One danger given by clipping is that the distortion causes the generation of new signals, most of which will be at high frequencies. If the speakers employed in the system incorporate tweeters, the amount of power fed to the tweeters can be considerably increased by the clipping. It is possible, with the amplifier driving the speakers hard, that the tweeters will be fed with signals approaching or even exceeding the maximum power that they can handle. Indeed, clipping can (and does) sometimes lead to tweeters being burnt out.

OVERLOAD INDICATOR

It is not uncommon these days for an amplifier to be fitted with an output power meter, or l.e.d. overload indicators, either of which give a visual warning when the amplifier is being overdriven. It is not difficult to add clipping indicators to an amplifier which does not already have this facility built in, and a simple add-on clipping monitor forms the subject of this article.

The monitor has two l.e.d. indicators, one to monitor each stereo channel of the amplifier. The appropriate l.e.d. flashes on if clipping occurs in the channel being monitored. The circuit is connected to the two outputs of the amplifier, or across the two speakers, and no other connection is required. Furthermore, the circuit is powered by the signals taken from the amplifier and does not require a battery or other form of power supply. The additional loading imposed on the amplifier by coupling the monitor to it is negligibly low.

The two monitoring channels are identical and are not interconnected with each other in any way. If a mono amplifier is to be monitored, only one monitoring channel needs to be constructed.

The monitor inputs are taken to two 2-way DIN sockets mounted on the rear panel.
The unit is powered by the amplifier output which it monitors, and the only items mounted on the front panel are the two clipping indicator I.C.D.'s.

THE CIRCUIT

The circuit of one monitoring channel is shown in Fig. 1. This breaks down into three basic sections: an adjustable attenuator at the input, a full-wave rectifier which rectifies the output from the attenuator, and a voltage detector flashing circuit which is actuated by the rectified signal voltage.

The output from the amplifier is applied to R1 and R2 in series. R1 is a current limiting resistor which reduces the risk of damage to the amplifier in the event of a fault or constructional error. R2 is adjusted to suit the particular amplifier with which the monitor is to be used and it can be set to the required level for any amplifier having a maximum peak-to-peak output swing of at least several volts. Quite small amplifiers are capable of providing an output of this magnitude.

The signal voltage tapped off at R2 slider is fed to the full-wave rectifier consisting of D1 to D4, the rectified voltage being smoothed to a small extent by the fairly low value reservoir capacitor, C1. Since C1 is charged from a fairly low source impedance the voltage across it quickly responds to any rise in the input voltage. Its discharge path is through the voltage detector section, because discharge back to the input circuit is blocked by the bridge rectifier. If there is a sudden and short increase in signal level, C1 charges quickly and then discharges slowly.

The purpose of the voltage detector flashing circuit is to turn on the I.C.D. indicator D7, when the voltage across C1 exceeds a certain threshold level. It incor-

COMPONENTS

Resistors
(All fixed values ½ watt 5% unless otherwise stated)
- R1 2-off 10Ω
- R2 2-off 470Ω pre-set potentiometer, 0.25W horizontal
- R3 2-off 3.9MΩ
- R4 2-off 100KΩ
- R5 2-off 390Ω

Capacitors
- C1 2-off 3.3µ electrolytic, 10V Wkg.
- C2 2-off 0.1µ polyester, type C280

Semiconductors
- IC1 2-off ICM7555
- D1-D4 8-off IN4001
- D5 2-off IN4148
- D6 2-off IN4148
- D7 2-off TIL220 (see text)

Sockets
- SK1 2-off 2-way DIN socket

Miscellaneous
- Case (see text)
- Veroboard, 0.1in. matrix
- 2-off panel-mounting bushes (for D7)
- Nuts, bolts, wire, etc.

Fig. 1. The circuit of one channel of the clipping monitor. The other channel is identical. R2 is set up such that I.C.D. D7 flashes when the associated amplifier output is at, or very close to, clipping level.

DECEMBER 1980
All the components apart from the input sockets are assembled on a Veroboard panel. This is secured inside the case by the front panel mountings for the two I.E.D.’s.

porates an ICM7555, which is the CMOS version of the well-known 555 timer i.c. and has the advantage here of requiring a supply current in the order of tens of microamps. This is very much lower than the current consumption of the standard 555. Only a limited drive current is available from C1 and the use of an ICM7555 ensures that as much of this current as possible is used to drive the I.E.D., with only a very small current being lost in the i.c.

The i.c. is employed in a standard 555 monostable configuration, in which a positive output pulse appears at pin 3 when the trigger input at pin 2 is taken below one-third of the supply voltage. The duration of the output pulse would (with a steady supply voltage to the i.c.) be theoretically 425ms.

The two forward biased silicon diodes, D5 and D6, act as a voltage regulator and apply a voltage of about 1.2 volts to pin 2. If the voltage across C1, which is the supply voltage for the ICM7555, exceeds 3.6 volts the monostable is triggered since pin 2 is then at less than one-third of this supply voltage. Pin 3 goes positive and current flows through the i.e.d. via R5. In practice, the i.e.d. may not always turn on for the theoretical 425ms pulse period given by the monostable timing components, because the i.e.d. current now drawn from C1 may cause the voltage across this capacitor to fall. The length of time during which the i.e.d. stays alight depends on the nature of the input signal from the amplifier but it will still be lit for a long enough period to clearly indicate that clipping has occurred.

R2 is adjusted so that the monostable is triggered when the amplifier output is just at the clipping level. Output voltages which are even slightly below the clipping level will not actuate the monostable.

The ICM7555 i.e.d. is available from Maplin Electronic Supplies. Two TIL220 I.E.D.'s are required, and these are red i.e.d.’s with a diameter of 0.2in. They are not critical components and any other similar i.e.d.’s of reasonable sensitivity may be used instead. Each i.e.d. requires a panel mounting bush. Capacitor C1 is specified in the Components List as having a working voltage of 10 volts. It will be quite in order here to use a 3.3μF electrolytic capacitor having a much higher working voltage, such as 63 volts.

CONSTRUCTION

All the components are assembled on a Veroboard panel of 0.1in. matrix having 25 holes by 25 copper strips. This has to be carefully cut out from a larger size by means of a small hacksaw. (As will be explained shortly, a board having the same number of strips but with more holes and more breaks in the strips may be required if the constructor wishes to adopt a method of mounting which differs slightly from that used by the author.)

The board is next prepared by making the ten breaks in the copper strips which are shown in the layout diagram of Fig. 2. In each channel, four of the breaks isolate the two rows of i.c. pins from each other whilst the fifth break isolates the input connection at R1 from the remainder of the circuit. The components and link wires are then soldered into place, with the i.e.d.’s being connected last. Although the ICM7555 is a CMOS device it does not need the special handling precautions normally associated with CMOS integrated circuits.

If the unit is to be used with a mono amplifier only one monitor circuit has to be built, and this can be assembled on a board having 25 holes by 12 copper strips.

The completed board is small enough to fit into most small cases. The prototype is housed in a metal case type TP2, available from Maplin Electronic Supplies, which measures approximately 152 by 114 by 44mm. This has a vinyl cover with a teak wood grain finish which blends will with most hi-fi equipment. As can be seen form the photographs the two i.e.d.’s appear at the front panel, and their bushes are mounted in holes having their centres spaced by 1.3in. The i.e.d. lead-out wires are bent at right angles, so that when the i.e.d.’s are secured to the front panel the Veroboard panel is horizontal. The board is quite light, and the only support provided for it with the prototype was given by way of the i.e.d.’s in their panel-mounting bushes. Constructors who would prefer a mounting point could initially employ a board with 25 strips by 28 holes, the 3 extra holes extending to the right of the board as it is shown in fig. 2. A third anchoring point could then be given by drilling a 6BA clear hole at the extreme right of strip “M”, and then passing a 6BA bolt, with a suitable spacing washer, through a matching hole in the case bottom. A 6BA nut is then fitted on top of the board.

It is most important that all parts of the monitor circuit be fully isolated from the metal case and three extra breaks in the strips, at holes “L25”, “M25” and “N25” will also be needed.

Two 2-way DIN sockets, one for each channel, are used as input sockets, and these are mounted on the rear of the case.

CONNECTIONS AND ADJUSTMENTS

The unit is connected to the amplifier or the speakers by way of two suitable lengths of twin cable, with a 2-way DIN plug at the cable which connects to the monitor. The type of connector fitted at the other end of each cable must be chosen to suit the amplifier or speakers. Some amplifiers have outputs for two sets of speakers, and if the second pair of outputs is otherwise unused the monitor can be fed from these. On many amplifiers the outputs are taken from screw terminal using spade type connectors and in these instances it is usually not difficult to take two connections from each terminal. It is quite common for loudspeakers to have provision for two methods of connection, and
Fig. 2. The components for the two channels are assembled on a Veroboard panel with the layout shown here.

Close up view of the Veroboard assembly.
The vinyl covered metal case employed for the prototype clipping monitor blends comfortably with modern hi-fi styling.

they might be fitted with, say, 2-way DIN sockets and screw terminals. If, for example, the input to a speaker is normally taken to the screw terminals, an output for the monitor can be taken from the DIN socket. Finding suitable take-off points from the outputs for the monitor inputs is really a matter of initiative on the part of the constructor.

The polarity of the connection from each amplifier output to each monitor input is unimportant. On the other hand it is essential that the connections to the monitor are such that there is no risk of any amplifier output being short-circuitcd.

The easiest way of adjusting R2 for each monitor channel is to drive the amplifier to the point where it is obviously clipping and then adjust each pre-set potentiometer for the lowest sensitivity (as far in a clockwise direction as possible) before the appropriate i.e.d. indicator turns off. If it is desired that the monitor should warn of potential clipping the amplifier output can then be slightly reduced to just below the clipping level and each pre-set potentiometer given a final fine adjustment in a clockwise direction to take the monitor threshold to this output level. If, however, the loudspeakers being used incorporate tweeters, this method of setting up has to be modified because, as already mentioned, the tweeters can be overloaded and may even suffer damage if the amplifier runs at clipping level for prolonged periods. Therefore, if speakers of this type are used, do not purposely overdrive the amplifier for more than a few seconds at a time. It is still possible to set up the two pre-set potentiometers whilst observing this precaution, although the process will take a little longer.

MORSE PRACTICE BUZZER By P. Fletcher

Schmitt NAND gate oscillator.

The circuit shown in Fig. 1 is for a morse code practice oscillator having a frequency of around 1kHz. It can of course function as an oscillator in other applications. Current consumption from the 9 volt battery is about 0.2mA when the key is up, and increases to about 1.7mA with the key down. The second current figure assumes that the headphones have a total resistance of 4,000Ω, i.e. 2,000Ω per phone. Headphones with a total resistance of 2,000Ω can also be used, with a corresponding increase in key-down current. Low resistance headphones should not be used.

OSCILLATOR

The circuit employs two gates of a quad 2-input NAND Schmitt trigger i.e. type 4093, and the oscillator itself is given by the gate associated with pins 1, 2 and 3. Schmitt trigger NAND oscillators are rarely encountered in the pages of this journal and a brief description of oscillator functioning will not, in consequence, be out of place here.

Fig. 2(a) shows pins 1 and 2 of the Schmitt NAND gate coupled to the slider of a potentiometer connected between the supply rails. A voltmeter, M1, is connected between the potentiometer slider and the negative rail, and a second voltmeter, M2, between

Fig. 1. The circuit of the morse practice oscillator. The headphones are high impedance magnetic types. The oscillator can, of course, be employed in other applications.

RADIO AND ELECTRONICS CONSTRUCTOR
We now have an oscillator. At switch-on, the capacitor is discharged so that the gate inputs are low and the gate output is high. The capacitor commences to charge via the resistor until the voltage across it reaches VA, whenupon the pin 3 output suddenly goes low. The capacitor now discharges through the resistor until the voltage across it falls to VB. The pin 3 output then suddenly goes high again and the capacitor once more starts to charge. As a result, we have an oscillator with a near-square wave output at pin 3, and with the capacitor alternately charging to VA and then discharging to VB.

FREQUENCY

The length of the oscillator cycle is very approximately equal to the time constant of the resistor and the capacitor. In seconds, this is the product of resistance in megohms multiplied by capacitance in microfarads. The resistance and capacitance values in the oscillator circuit of Fig. 1 are 100kΩ and 0.01μF, giving a time constant of 0.001 second. The reciprocal of 0.001 is 1,000, and so the oscillator frequency is in the region of 1kHz.

The second gate in Fig. 1 is a buffer amplifier, and it is enabled when the key is closed. When the key is opened, the pin 5 input of the gate is taken low by R2, whereupon the pin 3 output is always high regardless of the voltage on the pin 6 input. The headphones are returned to the positive rail so that they consume no current when the key is up.

ASSEMBLY

There are two remaining gates in the 4093 and their inputs are all taken to the negative rail. Their outputs appear at pins 10 and 11, and no connections are made to these pins.

Pin 5 of the second gate is maintained at a fairly low impedance to the negative rail by R2 but, even so, care should be taken to see that the leads to the key are kept clear of high voltage wiring, such as mains leads. The only other precaution is to ensure that C1 and R1 are positioned fairly close to the i.e. pins to which they connect. As the 4093 is a CMOS device it must be wired into the circuit with a soldering iron having a properly earthed bit.

Fig. 3 A volume control can be incorporated between the pin 4 output and the positive rail.

The 1kHz output in the headphones is quite loud and, if desired, a volume control can be added. This simply consists of a 10kΩ log potentiometer, wired up as shown in Fig. 3.

DECEMBER 1980

Universal Logic Operations

An important point about the microprocessor is that it can be used as a "universal logic chip". That needs a fairly detailed explanation. We can build logic circuits using gates and flip-flops to control machines, make calculations and add a form of intelligence (the ability to make decisions) to existing gadgets. These logic circuits can be replaced by a microprocessor system, provided that we can write a suitable program and have enough memory to store it. In other words, anything we can do with "hardware"—gates and flip-flops on a printed circuit board—we can do with "software"—a program for microprocessors. Every microprocessor must therefore be able to carry out the standard logic operations for which we use gates and flip-flops in a hard wired circuit. This month, we're going to look at a few of these operations.

LOGIC GATE INPUTS

Before we start, though, there's one important point. We're fairly accustomed to logic gates with two inputs, like the gates whose symbols are shown in Fig. 1. How do we represent these inputs on the eight data lines of the microprocessor?

The answer is that we use the microprocessor to provide us with eight separate gates, using each data line as a separate gate input. We then simulate the number of inputs to each gate by the number of times we carry out the logic action. Let's make that clearer by an example, Suppose
we want to instruct the microprocessor to "AND" three bits. We choose a data line for the bits, DO will do as an example. We feed in the first of the three bits into DO, using a load immediate, then follow this by an AND instruction, and then the second bit into DO. We then need another AND instruction, and the third bit into DO. When this is displayed, the bit at DO on the readout i.e.d.'s will be the AND of the three bits we have separately fed in. While we're doing this, we can AND seven more lots of bits on the other data lines as well.

Now we can try a two-byte AND. The program in Fig. 2 uses a LDI instruction to load in the byte 11001010, and follows up with AND-immediate (11010100) on the data byte 10111001. Now this isn't arithmetic - it's logical AND, so that there's no carry involved but just the AND-ing of corresponding bits. The law of AND-ing is that 1 and 1 gives 1, any other combination gives zero. We can therefore expect the answer at DO to be 0, because the DO bits were 0 and 1 respectively, and so on for each bit separately. We can display the result in the usual way to check what has happened.

AND-ing is a very useful way of comparing patterns. Suppose, for example, you have a set of bits you want to recognise. This might be the correct combination to open a lock, a code for printing the letter B on a video screen, or anything. If you repeatedly AND an input byte with the one you want, the only time that the byte in the accumulator doesn't change is when it is AND-ed with an identical byte, and you can instruct the microprocessor to carry out some action (open the door, activate a character generator) when this happens. Since microprocessors operate fast, you can check a byte against several thousand others in a fraction of a second.

Back to the breadboard. The program in Fig. 3 carries out the OR operation on the two bytes 10011011 and 01000001. The law of the OR gate is that the output is 1 if either or both inputs are at 1, so we expect the answer 11011011.

The simple OR gives a 1 at the output when both inputs are 1, and this is sometimes not wanted. The exclusive OR (XOR) excludes this state and its truth table is as shown in Fig. 1(c). We can carry out XOR operations on bytes in the microprocessor and Fig. 4 shows a program for XOR-ing 10011001 with 11001100. Decide for yourself, using the truth table, what the result of this should be, and then try it out on the program. XOR-ing is very commonly used for pattern recognition, because if a byte is ZOR-ed with itself the result is zero.

LOGIC INVERSION

In quite a lot of logic circuits we find inversion useful, and we make use of NAND and NOR gates. These logic actions are not needed as often as we might think, it's just that these gates are convenient to make and use. For most logic circuits it's the AND and OR which are needed, but it is certainly useful to be able to get NAND and NOR. The NOT part of the action is inversion or complementing, so that we should be able to obtain a NAND result by complementing the output of an AND. The problem is, how do we do it?
There’s no obvious way, until you start to look at the action of the extension register, because the only complementing instructions are the complement and add ones. We can’t get the result of an AND operation in the accumulator and then complement it – there’s no instruction for doing this directly.

A suggested program is shown in Fig. 6. We reset, so making sure that the extension is reset, and then load in a set of bits to be NAND-ed. We then AND immediately with the other set of bits, so that the accumulator now contains the AND result. Following this with XAE causes the AND result to be loaded into the accumulator. Now if we use the instruction CAE (01111000) we can complement the number in the extension register, so producing the NAND, and add it to the number (which is zero) in the accumulator. We can display the result and satisfy ourselves that it is the result of a NAND.

Two points have to be watched carefully here. One is that the extension must be cleared before this program starts, because any number which is present in the extension register will be added in to the result at the CAE stage. We’ve cleared the extension by resetting before the start of the program, but at other times we might not be able to do this and we would have to clear the extension register by loading a byte of zeros into the accumulator and exchanging with the extension.

The other point is that the final operation is a complement and add, so that the carry/link bit will be automatically added in. Once again this has not affected us, because we had reset, but in the middle of a long program we would need to clear the carry/link bit before starting the NAND operation. Now try for yourself to write and test a program to give the NOR operation, which is OR followed by NOT. If you’re a glutton for punishment, you can follow that up by an XNOR, which is the XOR followed by NOT.

We’ve dealt with all the immediate instructions, meaning all the double byte instructions which are followed immediately by the data to which they refer. That doesn’t mean that we’re finished with double byte instructions because there’s quite a number of these we shall be returning to. Before we start on the single byte instructions, though, there’s one unusual instruction, which as far as I know, is peculiar to the 8060. It’s the DLY instruction, which simply lets the microprocessor tick away for some time before going to the next step. In other words, it introduces a time delay. On other microprocessors this has to be done by a procedure called a ‘counting loop’. In a counting loop a number is loaded into the accumulator and is decremented (meaning 1 is subtracted) on the next step. The number is then checked, and if it isn’t zero it’s decremented again and compared. This is done over and over again until zero is reached, then the microprocessor goes to the next program step. On the 8060, the DLY instruction does this for you. It’s a double byte instruction, with the second byte measuring the amount of delay. The rules for finding the delay are a bit complicated (Fig. 7), but the important point is that the greater the size of the number which follows the DLY instruction, the longer is the delay before the microprocessor goes to the next step.

If the clock frequency crystal is controlled, we can use the delay for time measurement, producing time readings in hour, minutes and seconds, providing of course we have the memory and the program set up to do so. On our machine we can make use of DLY to measure the clock frequency, so providing the way to a useful method of measuring frequency without the use of an oscilloscope. The program is shown in Fig. 8. The DLY instruction is loaded and then the data switches set to 11111111, so as to load in the number 255 (unsigned numbers are used here) whenever the GO button is pressed. Now if we start a stopwatch at the instant when we press GO, or press GO just as the seconds indicator of a watch is at zero, we’ll find that the address I.e.d. 50 go out when the GO switch is pushed and don’t come back on until the delay is finished. Stop the watch or note the number of seconds when this happens, and you have the total delay time. To find the frequency, divide 524332 by the delay time and the answer is frequency in Hertz!

The reasons are not too complicated. The 255 (decimal) byte causes a delay of 524332 clock cycles, and dividing this by the time taken gives the number of clock cycles per second, which equals frequency. If the clock is a fast one, of

<table>
<thead>
<tr>
<th>instruction</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET</td>
<td>11000100</td>
</tr>
<tr>
<td>LDI</td>
<td>11001010</td>
</tr>
<tr>
<td>ANI</td>
<td>11010100</td>
</tr>
<tr>
<td>BYTE2</td>
<td>10111001</td>
</tr>
<tr>
<td>XAE</td>
<td>00000001</td>
</tr>
<tr>
<td>CAE</td>
<td>01111000</td>
</tr>
</tbody>
</table>

Fig. 6.

Calculating the delay time for the INS8060: If (AC) is the number in the accumulator and (disp) is the displacement number (the second byte of the instruction) then the delay is:

\[13 + 2 \times (AC) + 2 \times (disp) + 512 \times (disp)\]

in microcycles.

The time of a microcycle (the unit used by the microprocessor) is 4 clock cycles. If, for example, a 1MHz clock is used, the clock cycle time is 1 microsecond, and the microprocessor microcycle time is 4 microseconds.

Fig. 7.

<table>
<thead>
<tr>
<th>instruction</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET</td>
<td>10001111</td>
</tr>
<tr>
<td>DLY</td>
<td>01001111</td>
</tr>
<tr>
<td>Disp</td>
<td>11111111</td>
</tr>
</tbody>
</table>

Now find out how long it takes before the address I.e.d.’s come on again!

Fig. 8.

RADIO AND ELECTRONICS CONSTRUCTOR

220
course, there may not be time to operate a stopwatch but for low frequencies it works quite well. We’re not stuck with the frequency which the microprocessor generates for itself, either, because if we remove the oscillator components and connect XIN on the 8060 to the output of gate 3, then a frequency fed in at one input of gate 3 (with the other input connected to +5V) will clock the microprocessor. The 8060 is one of the few microprocessors which will operate at frequencies as low as 100Hz or so—and if you used the full delay at this frequency you would have to wait almost nine minutes! The upper limit is 4MHz, but at that frequency you couldn’t time even a full delay with a stopwatch. In a microprocessor system with a memory this is easily solved by following one delay instruction with another. The delay is a favourite method of using the 8060 to generate musical notes. This is done by setting a bit in the status register to 1, delaying, setting the bit to zero, delaying, then starting over again. This sets and resets the bit at a rate decided by the delay, so generating a frequency which can be amplified and fed to a speaker.

THE CAS INSTRUCTION

Now to other matters. We have to start looking at some of the single byte instructions which we’ve neglected so far. Quite a few single bytes have appeared, and NOP, CAE, CCL and SCL have all been used in programs. Fig. 9 reminds you of these. There’s another, CAS, which is used to copy the byte in the accumulator into the status register without erasing the byte in the accumulator.

Now the CAS instruction is a particularly useful one, for reasons which you’ll not appreciate unless you know several types of microprocessor i.e. fairly well. On a lot of microprocessors the only way you can get a useful output is by connecting up another i.e. to the data lines. The 8060 allows us to take three single bit outputs from the status register to pins labelled FLAG 0, FLAG 1, FLAG 2. These are, as you would expect, the bits at positions 0, 1 and 2 in the status register. If we want the voltage at the FLAG 0 pin to go to 1, we load the number 00000001 into the accumulator, and then follow with CAS, which copies this pattern into the status register, setting all the bits which can be set (see later on this one!) to zero, but bit 0 is set to 1.

Similarly, loading 00000010 will set bit 1, and 00000100 will set bit 2. Since there are three outputs, we can even switch eight circuits! How? The circuit of Fig. 10 shows how—the three flag outputs feed an octal counter, so that any combination of 1’s and 0’s on the flags produces a 1 on one of the counter output pins!

We can try out the flag operation by using our spare i.e.d. and the program in Fig. 11. Start by using the spare i.e.d. to monitor FLAG 0; this is done by linking B2 on the Eurobreadboard to B21.

DECEMBER 1980
STATUS REGISTER

Bit: 7 6 5 4 3 2 1 0
Use: Carry/link Overflow SB SA IE F2 F1 FO

To set flags (example): LDI 00000101
CSA (this sets flags 2 and 0)

A long link wire can be used and it doesn’t need to hug the board. Now load in the number 00000001 and follow up with CAS (00000111). The l.e.d. should light and stay lit. Unlike some outputs, which load for only one clock cycle, the bits of the status register are latched, so they’ll stay at their 1 or 0 setting until the setting is changed. Now load in 00000010 and CAS again, as shown. The l.e.d. will go out, but when the far end of the link wire is moved from B2 (the FLAG 0 output) to A1 (the FLAG 1 output), the l.e.d. lights, showing that FLAG 0 has been reset to zero, and FLAG 1 set to 1. When 00000100 is loaded and CAS’d, then FLAG 1 will go out, but shifting the link to A2 will show that the FLAG 2 output is at 1. Check for yourself that all three flag outputs are at 1 when the number 00000111 is loaded in and copied to the status register.

One instruction we’ll spend no time over is HALT. This is a byte of zeros, and it doesn’t stop the microprocessor working! What it does do is to cause a 1 to appear on the D7 line at a time when the microprocessor is neither reading nor writing memory. At the same time, a negative pulse appears on the pin marked NADS. If we gate and latch these two outputs, we can cause the microprocessor to halt when this instruction appears by wiring the latch to the CONT input. With CONT low the microprocessor stops without resetting any registers. With CONT taken high again the microprocessor starts operating once more. Few microprocessor units use the HALT instruction because, at the end of the program, the microprocessor has to be kept running in order to display the results.

Next month – Shifting, Rotating and Serial input/output.

(To be continued)

The previous series on Microprocessors by Ian Sinclair, Databus series 1-11, appeared in our issues August 1979 to July 1980. Copies are still available from our Back numbers Department.
IN OUR NEXT ISSUE

FUZZ BOX

★ SILICON DIODE CLIPPING ACTION
★ VERY LOW NOISE LEVEL
★ VARIABLE OUTPUT FILTER

DOUBLE OUTPUT TEST OSCILLATOR

- 1kHz output with harmonics up to several MHz
- Peaked i.f. output at 470 kHz
- Ideal for signal tracing

JANUARY 1981
60p
OPTO COUPLED VOLUME EXPANDER

By R. A. Penfold

Increases dynamic programme range.

Adds realism to orchestral music.

Although a volume expander may be an unfamiliar item of equipment to many readers, it is by no means a new or even recent invention. The purpose of a volume expander is to increase the dynamic range (the difference between maximum and minimum signal levels) of a processed audio signal. In other words, an expander causes quiet passages to be made quieter and loud passages to be made louder.

This is not a gimmick but represents a serious attempt to compensate for loss of dynamic range during a recording or a transmitting process. The type of audio signal which suffers most, with which a volume expander offers its most useful effect, is classical orchestral music which, in its original form, can have a dynamic range of over 70dB. This dynamic range has to be reduced if the signal is to be recorded or transmitted in order that the quiet passages are adequately greater than noise level and the loud passages do not overload and cause distortion in the recording or transmitting channel. Popular recording and transmitting mediums can handle a dynamic range of about 60dB, and the range is only a little higher than 50dB for a good non-Dolbyised cassette.

With a professional recording the reduction in dynamic range, or "compression", is provided manually by the recording engineer. For amateur recordings it is more usual for an automatic recording level circuit or an audio limiter to provide the compression. However skilfully or otherwise the compression is applied, the result must have an adverse effect on the signal because of the reduction in contrast between quiet parts of the performance and loud climaxes.

Volume expansion is the opposite of compression and enhances the level of loud musical passages. Noise level is at the original level with quiet passages and increases with loud passages but this is not noticeable because it is masked by the loud passages themselves. An effective increase in subjective signal-noise ratio results.

It must be stressed that a volume expander cannot restore the dynamic levels to precisely their original values as this would require an expansion law which exactly reciprocated the compression law. Since the latter is unknown and is probably different for each recording or transmission, an exactly correct expansion law is not practicable. However, even though an expander provides only approximate correction it can still give effective and acceptable results in practice. For best results it should give little or no expansion at low dynamic levels, and the expansion should be smoothly introduced and increased over the medium and high dynamic levels. Normally, the reproducing amplifier volume control is set to a lower level than would be appropriate for non-expanded music. As a result, the quieter passages are reproduced at a lower level whilst the expansion increases the volume of the louder passages.

The earliest form of volume expander, employed with valve amplifiers, merely consisted of a light bulb connected across the loudspeaker! The bulb filament had a low resistance with quiet passages because it was fairly cool, and the amplifier output was reduced because of the extra loading. At higher volume levels
The front panel layout of the volume expander. The mains on-off switch is to the left, with PL1 on its right. The remaining two controls are S1 and S2.

Switched expansion selected 6dB, 10dB and 12dB.

The bulb’s filament heated up and its resistance increased, resulting in reduced loading on the amplifier and an increased output. Such an arrangement could not be employed with modern transistor amplifiers, which have extremely low output impedances and which the output voltage is only affected marginally by output loading. Also, in order to give truly acceptable results an expander needs to respond very rapidly to changes in dynamic level, and a light bulb type of expander tends to be too slow due to the thermal inertia of the filament.

VOLTAGE CONTROLLED AMPLIFIER

Somewhat more sophisticated circuitry is therefore required and the block diagram of Fig. 1 shows the arrangements employed in the expander described in this article.

The broken line in Fig. 1 encloses a voltage controlled amplifier or v.c.a. This incorporates an operational amplifier with the signal input applied via a cadmium sulphide photocell to its inverting input and with a feedback resistor, R_1, from the output to the inverting input. The voltage gain of the amplifier is equal to R_1 divided by the resistance of the photocell.

The input signal is also applied to an active rectifier followed by a buffer stage. The active rectifier both half-wave rectifies the signal and amplifies it, and the resultant d.c. signal is applied to the l.e.d. and its series resistor, R_2. Under low signal conditions the l.e.d. will either fail to light or will glow very dimly. In either instance it will have no effect on the photocell resistance which, under these conditions, can be assumed to be approximately equal to the value of R_1. (In the practical circuit the photocell is shunted by a resistor having the same value as R_1.) The operational amplifier therefore has a voltage gain of approximate unity. Higher signal levels cause the l.e.d. to light up quite brightly, with a consequent decrease in photocell resistance and increase in operational amplifier voltage gain. Thus, the gain of the v.c.a. is controlled by the voltage applied to the l.e.d. and R_2.

As will be gathered, the increase in gain is dependent upon the input signal amplitude and so a full expansion effect is provided. Greatest expansion occurs when the buffer stage offers its full voltage output and this results in an operational amplifier gain of about 4 times. In consequence, the unit can give a maximum expansion of some 12dB, and this is about the highest level of expansion that can be usefully provided in practice.

![Fig. 1. Basic operation of the volume expander. The voltage gain of the op-amp is equal to R1 divided by the resistance of the photocell. When increased voltage is applied to the l.e.d. and R2, the l.e.d. glows more brightly and causes the resistance of the photocell to decrease.](image-url)
Components

Resistors
(All fixed values $\frac{1}{2}$ watt 5%)
- R1 2-off 150Ω
- R2 2-off 100kΩ pre-set potentiometer, 0.25 watt horizontal
- R3 2-off 180kΩ
- R4 2-off 18kΩ
- R5 2-off 47kΩ
- R6 2-off 120kΩ
- R7 2-off 22kΩ
- R8 2-off 22kΩ
- R9 2-off 120kΩ

Capacitors
- C1 2-off 0.22µF polyester, type C280
- C2 2-off 0.47µF electrolytic, 10V. Wkg. (see text)
- C3 2-off 10µF electrolytic, 10V. Wkg.
- C4 2-off 10µF electrolytic, 10V. Wkg.
- C5 1000µF electrolytic, 25V. Wkg.
- C6 0.1µF polyester, type C280
- C7 0.1µF polyester, type C280
- C8 100µF electrolytic, 25V. Wkg.

Semiconductors
- IC1 2-off CA3140E in 8 pin d.i.l.
- IC2 2-off 741C in 8 pin d.i.l.
- IC3 7812
- TR1 2-off BC108
- D1 2-off TIL220
- D2 1N4001
- D3 1N4001

Transformers
- T1 mains transformer, secondary 12-0-12V. at 100mA

Photocell
- PCC1 2-off ORP61

Switches
- S1 4-pole 3-way miniature rotary with adjustable end stop (set for 2-way)
- S2 4-pole 3-way miniature rotary (only 2 poles used)
- S3 d.p.s.t. rotary toggle

Fuse
- FS1 100mA cartridge fuse, 20mm.

Neon
- PL1 panel-mounting neon with integral series resistor

Sockets
- SK1 dual phono socket
- SK2 dual phono socket

Miscellaneous
- Metal instrument case (see text)
- Chassis-mounting fuseholder, 20mm.
- 3 control knobs
- Printed circuit board
- Nuts, bolts, wire, etc.

The volume expander should have a fast attack rate so that it responds quickly to rises in dynamic level, and a slightly slower (although still quite fast) decay time. A quick reduction in resistance and a slightly slower increase in resistance are innate characteristics of the cadmium sulphide photocell employed, and these comfortably meet the attack and decay requirements. A simplification of the circuit results because there is then no need to incorporate timing components. A further advantage of the opto-coupled circuit is that it introduces negligibly low quantities of noise and distortion.
THE CIRCUIT

The expander is intended to handle stereo signals and the circuit for one of the two channels is given in Fig. 2. It is normal practice for the two channels of the stereo signal to be processed separately.

IC2 is the inverting mode operational amplifier of Fig. 1 and its non-inverting input is biased to half the supply voltage by R7 and R8. C3 filters out any hum or noise which might otherwise be applied to the non-inverting input.

Under low signal conditions the photocell, PCC1, has a resistance of many megohms, whereupon the voltage gain of IC2 is determined by the equal value resistors R9 and R6. The voltage gain is therefore unity. At high signal levels the resistance of PCC1 falls to about 40kΩ, boosting the voltage gain in IC2 by about 4 times, or 12dB. The full level of expansion is not always required, and S2 can be adjusted to insert either R4 or R5 in series with PCC1, whereupon the boost is reduced to approximately 10dB or 6dB respectively.

C2 and C4 provide input and output d.c. blocking. S1(a)(b) can be set to bypass the expander, if desired, so that normal operation can be obtained without having to disconnect the expander from the hi-fi system.

IC1 is the active rectifier. The input signal is applied to its non-inverting input via C1, and this input is biased to the negative supply rail by R3. As a result, IC1 amplifies positive-going half-cycles only. The i.e. output connects to the emitter follower, TR1, which drives the i.e.d., D1. Negative feedback to the inverting input is obtained from the slider of R2. This feedback path is chosen because it is necessary to take the base of TR1 positive by about 2.2 volts to overcome the forward voltage drop in its base-emitter junction and the forward voltage drop in the i.e.d. if the latter is to light up. Low level input signals are therefore given a high degree of amplification until the output of IC1 takes the base of TR1 up to the 2.2 volt level. The feedback circuit then takes over and limits the gain to a level dependent upon the setting of R2 slider. The circuit permits the illumination level in the l.e.d. to follow signal amplitude smoothly. If the negative feedback had been taken from the output of IC1, there would have been an abrupt signal level at which the l.e.d. commenced to light up.

The curve of Fig. 3 shows the expansion characteristic of the prototype with S2 in the "12dB" position. The precise characteristic obtained will, of course, vary slightly between different units, and it also varies considerably with different setting in R2.

The TIL220 employed for D1 is a red l.e.d. with a diameter of 0.2in. It is available from a number of suppliers. The ORP61 required for PCC1 can also be

Fig. 2. The circuit for one channel of the volume expander. The other channel is identical.

Fig. 3. Curve showing the expansion characteristics given by the prototype.
obtained from several suppliers, including Maplin Electronic Supplies. C2 is listed as 0.47µF electrolytic. 10V. Wkg. In practice it will be in order to employ a 0.47µF electrolytic capacitor having a much higher working voltage than this, even as high as 250 volts.

POWER SUPPLY

A well smoothed 12 volt supply is required, and the maximum mean current consumption is about 50mA. This is obtained with the regulated circuit of Fig. 4. The mains on-off switch is S3(a)(b) and PL1 is a panel-mounting neon indicator with integral series resistor intended for 240 volt a.c. operation.

The transformer secondary voltage is full-wave rectified by D2 and D3, with C5 providing a considerable amount of smoothing. Protection is provided by fuse FS1, which is rated at 100mA. Although there is an initial surge of current at switch-on as C5 charges, it was found with the prototype that a quickblow type of fuse was quite suitable and seemed to be perfectly capable of withstanding the surge. IC3 is a 12 volt voltage regulator which provides an extremely well smoothed output. C6 and C7 provide stability and ensure a good transient response, and C8 gives final smoothing of the output. IC3 does not require a heat sink in this circuit.

CONSTRUCTION

The author's unit was housed in a metal instrument case measuring approximately 8 by 5½ by 2¾in. This is a case type BC3, available from Harrison Bros., P.O. Box 55, Westcliff-on-Sea, Essex, SS0 7LQ. It is advisable to obtain the mains transformer, or at least ascertain its dimensions, before ordering the case, to ensure that it can be accommodated. The front panel layout can be seen in the photographs. S3 is mounted on the left, with PL1 to its right. Balancing these on the right are S1 and S2, with S2 being at the extreme right. On the rear panel are the two input sockets (one for each channel) and the two output sockets, with the input sockets on the left as seen looking at the rear panel. Dual phono sockets are used. A hole on the right hand side of the rear panel is fitted with a grommet and takes the 3-core mains cable. The cable must be secured inside the case by a suitable plastic or plastic-faced clamp.

The photograph of the interior shows the layout of components. The mains transformer and fuseholder are secured to the case bottom, with a solder tag under one of the mains transformer mounting nuts. If the transformer has tags on the top of its body, and if there is any risk of these closely approaching the inside surface of the case lid, a piece of thin s.r.b.p. should be glued to the inside of the lid at the appropriate position.

Fig. 5 shows the wiring inside the case. Except for the power supply components, there are 2-off of each
Fig. 5. Wiring up and details of the printed circuit board.
resistor and capacitor, and both are given the same R or C number. The same comment applies to ICl, IC2, D1, PCC1 and TR1. With the exception of R4 and R5, which are fitted at the tags of S2, all the small components are wired up on a printed circuit board which is reproduced actual size. Before connecting to any of the switches, ascertain the tag positioning with a continuity tester or ohmmeter. With some switches the relative tag positioning may differ from that shown in Fig. 5.

The printed board is secured to the bottom of the case by means of three 6BA bolts and nuts with metal spacing washers. Two of these washers provide a chassis connection to the board. There is also a wired chassis connection from the board to the chassis tags on the input and output sockets. The board should not be finally mounted in place until all the connections from it to external components have been completed.

Components on the board which require special mention are the CA3140E i.e.'s, the I.E.D.'s and the photocells. The CA3140E has a PMOS input stage which is susceptible to damage by high static voltages. It should be kept in its protective packaging until it is to be wired into circuit and it should then be handled as little as possible. Preferably, the two CA3140E's should be the last items to be fitted to the board and they should be soldered into circuit with an iron having a reliably earthed bit. Alternatively, i.e. holders can be soldered to the board and the CA3140E's fitted into these afterwards.

With each pair of D1 and PCC1, the two components should be positioned so that the light output from the I.E.D. is aimed directly at the photo-sensitive surface of the photocell. The photocell has side-on illumination, and the sensitive side is indicated by a coloured dot on the component body. The photosensitive element is clearly visible above this, well to the top of the component. The I.E.D. has what is effectively a built-in lens, and it emits maximum light energy forward in the direction opposite to its lead-out wires. It is quite easy to position each I.E.D. and photocell at 45 degrees to the board surface, to that they are at right angles to each other with the end of the I.E.D. as close to the sensitive element of the photocell as is possible. Their alignment is not especially critical as the I.E.D. is a large component which gives a strong light output over a comparatively large area.

Unscreened wires connect the tags of S1 to the input and output sockets. These are designated "L" and "R" in Fig. 5. Connections may be made to the corresponding left and right sockets as seen looking at the rear of the case.

ADJUSTMENT AND USE

The unit can be connected between a tape deck and an amplifier, or between a tuner and an amplifier. If the amplifier has a tape monitor facility the expander can be wired into this, and it should then be possible to use it in conjunction with any normal programme source including a record deck. It is not possible to obtain good results by connecting the unit between a record deck with magnetic cartridge and an amplifier. Acceptable results here can only be given if a suitable pre-amplifier is used ahead of the expander, and the expander output is fed to a high level input on the amplifier. The unit works satisfactorily with input signal levels of between about 100mV and 1V r.m.s., and so is compatible with virtually any standard hi-fi system.

Empirical means are used to find the best setting for each R2. If the potentiometer is adjusted too far in a clockwise direction the gain of ICl will be inadequate and full expansion will not be obtained. Setting the potentiometer too far anti-clockwise will give excessive gain in ICl, with full expansion occurring too abruptly and at too low a level. The first adjustment will manifest itself by the expander having little or no effect, and the second adjustment will cause the action of the expander to be clearly audible on most programme sources. With R2 correctly adjusted, D1 should light up dimly on low level signals, reaching full brightness only on peak level signals. The expansion should then be applied in a smooth and non-obvious manner.

When used in a stereo system it is best to initially connect up one channel only and adjust the R2 for that channel. When it has been given the optimum setting, the other channel is connected and the second R2 set for correct balance. These adjustments should be carried out with S2 in the "12dB" position.

The expander will not function correctly if the case lid is removed and the printed board is subjected to a high ambient light level, since the photocells will then be too brightly illuminated. However, the unit will work quite normally with the printed board shaded from bright light sources, and this fact will enable the two R2 potentiometers to be adjusted.

In use, the best position for S2 with each particular programme source can only be found by trial and error. It should be borne in mind that not all sources will benefit from the use of expansion, and that only a few really need the full 12dB expansion. Using excessive or unnecessary expansion can result in the music sounding unnatural. As was stated at the beginning of this article, the programme source most likely to benefit is classical orchestral music.

RADIO AND ELECTRONICS CONSTRUCTOR
MULTI-OPTION CHIP

By R. J. Caborn

Single CMOS i.c. offers many logic functions.

When we deal with CMOS digital i.c.'s we expect a single device to offer exactly what it is designed to do. For instance a 4011 contains four 2-input NAND gates and that's all we anticipate finding in it. The only time we don't use the gates as NAND gates is when we connect their inputs together and use them as inverters. NAND gates are NAND gates, and that's that!

But there is one CMOS i.c. lurking in the lists which can provide a multiplicity of functions. It can be used as a triple inverter, it can be used as a single high current inverter, and it can be employed to drive separate loads from single f.e.t.'s inside the chip. Not only are these functions readily available but the chip will also act as a 3-input NOR gate or as a 3-input NAND gate. All these applications are available by simply choosing the requisite interconnections between the i.c. pins.

VERSATILE CHIP

The versatile chip with all these options is the 4007, and it has the internal circuitry shown in Fig. 1. Its official title is "Dual Complementary Pair Plus Inverter". The two complementary pairs are TRA, TRD and TRB, TRE. The inverter is given by TRC and TRF and employs normal CMOS operation. When the inverter input at pin 10 is high, i.e. close to or at the positive supply rail, TRC is turned off and TRF is turned on, resulting in a low output at pin 12. And when pin 10 is low, i.e. close to or at the negative rail, TRF is turned off and TRC is turned on, producing a high output at pin 12.

Whatever the function, pin 14 of the device always connects to VDD, the positive supply rail. Similarly, pin 7 always connects to the negative supply rail, or VSS.

TRA, TRB and TRC are P-channel f.e.t.'s, and TRD, TRE and TRF are N-channel f.e.t.'s. The thin line at the left of each f.e.t. symbol is the gate, and the centre of the three thick line rectangles is the f.e.t. substrate. As can be seen, all the P-channel substrates connect internally to pin 14, and all the N-channel substrates connect internally to pin 7. This is exactly what is required for correct f.e.t. functioning and from now on we can forget about the substrates, knowing that these are all properly connected, and concentrate on device functioning in terms of the remaining f.e.t. electrodes, the drains and the sources.

TRIPLE INVERTER

What is probably the most obvious application for the 4007 is to use it to give three inverters. One inverter, employing TRC and TRF, is already there. If we join together pins 13 and 8, TRA and TRD give us another inverter. Joining pins 1 and 5 produces a third inverter incorporating TRB and TRE. We also need to connect together pins 14, 2 and 11, to give a positive supply to all the inverters. And, finally, we have to join pins 7, 4 and 9 to provide the negative supply.

All these interconnections are illustrated in Fig. 2, with the interconnected pin numbers being shown in brackets. To use the first inverter we apply an input at pin 6 and obtain an output at either pin 13 or pin 8. The second inverter takes an input at pin 3 and gives an output at pin 1 or pin 5.

Fig. 1. The internal circuitry of the CMOS 4007 Dual Complementary Pair Plus Inverter i.c.
Fig. 2. Connecting the 4007 pins together in the manner shown here results in a triple inverter circuit.

The output impedance for each inverter, in either the high or low state, is 500Ω typical with a supply of 10 volts. So, if we draw from any output a current of 2mA (which is a reasonable current near the maximum for a digital CMOS output) the voltage dropped in the i.c. will be about 1 volt.

Connecting the 4007 as in Fig. 3 provides a single super-current inverter. All three inverter inputs are connected together, as are all three inverter outputs. An input at pin 6 produces an inverted output at pin 12. The output impedance is now in the order of one-third of 500Ω, and we can expect to draw output currents up to 6mA for a voltage drop in the i.c. of 1 volt. It is quite in order to connect the inverter outputs together in this manner, and the circuit of Fig. 3 has the blessing of the i.c. manufacturer.

Fig. 3. With the three inverters in parallel, a single inverter with a high output current capability is produced.

Fig. 4. The open-ended outputs of the 4007 can be used to drive separate loads in the manner shown here.

OPEN-ENDED OUTPUTS

Open-ended f.e.t. outputs are available at pins 13, 8, 1 and 15, and we can use these outputs in the manner illustrated in Fig. 4. If, in this example, pin 6 is taken high TRD is turned on, and it will drive a load connected between pin 8 and the positive rail. Taking pin 6 low causes TRD to turn off, and no current flows through the load.

At the same time, taking pin 6 low turns on TRA, and this can then cause current to pass through quite a separate load connected between pin 13 and the negative rail. The load current ceases when pin 6 is taken high.

NOR GATE

An application which may not be so obvious at first sight of the i.c. circuitry is shown in Fig. 5. Here, the 4007 is connected to function as a 3-input NOR gate. Examination of the diagram shows that the drains and sources of TRA, TRB and TRC are connected in
TRAD NOTE

PORTABLE COMPUTER FOR AGRICULTURE

A marketing agreement was signed at the Royal Bath and West Show between Microdata Computers and Agriday Computers.

Agriday will have exclusive distribution rights for the new MICROLINK 1 portable computer system within the agricultural community.

The MICROLINK is the first portable computer to include a keyboard, plasma display, acoustic coupler, BASIC interpreter, bubble memory, real time clock and text processor, and is manufactured in Hayes, Middlesex.

In addition to the agricultural software to be supplied by Agriday, programme packages will be available to meet the needs of accountants, engineers, stock-takers, insurance brokers and salesmen.
The items presented here are for the general guidance of readers who wish to tune over the short wave bands, some of the loggings will interest the short wave listener whilst others may catch the attention of the Dxer. All details are correct at the time of writing.

- **PAKISTAN**
 Radio Pakistan on 17910 at 1548, local-style songs and music in the “World Service” programme in Urdu intended for the Middle-East and the Persian Gulf areas, scheduled from 1330 to 1600. A news cast read at slow speed in English followed at 1600, this for the Middle East and East Africa.

- **VIETNAM**
 Hanoi on a measured 15009.5 at 2120, a programme all about life in Hanoi now that peace reigns, in the English transmission directed to Europe, scheduled from 2030 to 2130.

- **JAPAN**
 Tokyo on 21610 at 0800, station identification, time and frequency details followed by a newscast of local affairs — all in the English programme for Europe, scheduled from 0800 to 0830. Also logged in parallel on 17855.

- **NORTH KOREA – 1**
 Radio Pyongyang on 11350 at 1315, music and songs in the Korean Domestic Service, scheduled here from 2000 to 0300, 0400 to 0900 and from 1500 to 1800.

- **PORTUGAL**
 Radio Renascenca on 9670 at 1504, station identification and announcements in Portuguese to Europe, scheduled from 1500 to 1530 — a relay from Radio Trans Europe, Sines, Portugal for Portuguese Catholics away from home.

- **CANADA**
 RCI (Radio Canada International), Montreal, on 5995 at 0209, YL (Young Lady = female announcer) with station identification and programme details at the end of the English programme for Africa and Europe, scheduled from 2000 to 2030. Into the French programme at 2023. All this from the BBC relay station at Daventry.

- **PORTUGAL**
 Lisbon on 6025 at 2040, YL with a news cast of both local and world events, followed by station identification. This was followed by OM (Old Man = male announcer) with the Dx programme for short wave listeners. All in the English programme for Europe scheduled from 2030 to 2100 on this channel.

- **SEYCHELLES**
 FBEA (Far East Broadcasting Association), Mahe, on 11860 at 1638, chimes interval signal, OM with station identification as "Halkani wa FBEA Seychelles" — at least according to my tape recorder!

- **AUSTRALIA**
 Melbourne on 6035 at 1700, OM with station identification and a newscast of world events in English.
 Melbourne on 9570 at 0804, OM with both world and local newscast, this transmission in English to Asia.
 Melbourne on 11865 at 1635, OM with local weather forecasts in an English programme directed to Asia.
 Melbourne on 21570 at 0805, OM with news report in English, followed by a review of Australian business affairs.

- **FINLAND**
 Helsinki on 6120 at 2135, OM with the English programmed "Northern Report" in a transmission to Europe, North West Africa and South America, scheduled from 2130 to 2200. "Compass North" commenced at 2140.

- **CLANDESTINE**
 A Voz de Verdade on 4950 at 1820, OM with a trade in Portuguese about Angola and UNITA. This is a pro-UNITA transmitter broadcasting to Angola.

- **NAMIBIA**
 Windhoek on 4965 at 1721, OM in vernacular. This is a new transmitter which commenced operations in early October. The evening transmission on this channel is scheduled from 1515 to 2200.

- **EQUATORIAL GUINEA**
 Radio Equatorial, Bata, on 4925 at 2020, a programme of local songs and music in typical style. This one seems to have abandoned 5005 for the time being.
 Malabo on 6250 at 2022, YL with announcements in Spanish, short excerpts of classical music.

- **KENYA**
 Nairobi on a measured 4934 at 0314, YL with announcements in vernacular, African drums. This is the North Eastern Service operating from 0250 to 0630 and from 1400 to 2015. The power is 100kW.
SIERRA LEONE
Freetown on 5980 at 2225, local pops on records, OM in vernacular, just audible under QRM.

UGANDA
Soroti on a measured 5027 at 1928, U.K. pops on records, OM with station identification at 1933 followed by a local newscast in English. This is the National Programme in English, French and Swahili, operating from (weekdays) 1300 to 2100; Saturdays and Sundays from 0300 to 0545 and from 1400 to 2100 (Sundays from 1430). The power is 250kW.

ZIMBABWE
Gwelo on 3396 at 1735, OM in vernacular, songs and music in local style. This is the General Service, scheduled from 0350 (Sundays 0500) to 0545 and from 1500 to 2200 (Sundays 2105). The power is 100kW but it operates on 10kW only from 0545 to 0615, additional to the foregoing schedule.

CHINA
CPBS Peking on 4905 at 2035, YL announcer, Chinese classical music in the Domestic Service 1 programme, operating from 2000 to 2300 and from 1100 to 1735. Also logged in parallel on 7504.
Wuhan, Hypeh, on 3940 at 2150, OM and YL in Chinese, orchestral music local style. Schedule is from 2100 to 0100 and from 0300 to 1605.
Hohhot, Neimenggu, on 4000 at 2153, Chinese classical music. The schedule is from 2145 to 0555 and from 0900 to 1520.
Lanzhou, Gansu, on 4865 at 2211, OM with a talk in Chinese, The schedule is from 2145 to 0100 (Sundays to 0600), from 0320 to 0600 and from 1000 to 1600.
Nanning, Guangxi, on 5010 at 2215, YL announcer, Chinese music. This is Guangxi 2 operating from 2115 to 2200 and from 0950 to 1530.
Harbin, Heilongjiang, on 4840 at 2052, YL in Chinese with short periods of Chinese classical music. This one operates in Chinese from 2040 to 0630 and from 0830 to 1530, except in Korian from 0300 to 0400 and an English language lesson from 2130 to 2200.

MALAYSIA
Kuala Lumpur on 4845 at 2257, OM and YL with songs, Indian-type music in the Tamil programme. The schedule is from 2130 to 0130 and from 1545 to 1530 Monday to Friday, from 2130 to 0330 and from 0545 to 1530 on Saturdays (2130 to 1530 on Sundays). The power is 50kW.

NORTH KOREA – 2
Radio Pyongyang on 4770 at 2208, OM and YL in Korean in the Home Service 2, operating on this channel from 2200 to 2230 and from 1000 to 1045 irregularly. The power is 120kW but the channel suffers from QRM.

MONGOLIA
Ulan Bator on 4830 at 2202, four-note tuning signal repeated several times, National Anthem, OM and YL in Mongolian. This is the Home Service, scheduled from 2200 to 0100 and from 1030 to 1500.

The power is not known.

SRI LANKA
Colombo on 4902 at 1829, religious chants on full moon day. This is the Home Service 1 in Sinhala, timed from 0000 to 0230 and from 1000 to 1745. On full moon days additionally from 1600 to 2400.

COLOMBIA
La Voz del Cinaruco, Arauca, on 4865 at 0010, OM with newscast of local events in Spanish (the language not the events!). Many mentions of Colombian place-names. This one operates from 0900 to 0330 and the power is 1kW.
La Voz del Norte, Cucuta, on 4875 at 0505, OM with the local news. Still there at 0526 return but this time with a political harangue, complete with cheers and jeers of the audience! The schedule is 0930 to 0500 but has been reported closing as late as 0630 on occasions. The power is 5kW.

ECUADOR
Radio Popular Independants, Cuenca, on a measured 4801.5 at 0447, OM with announcements in Spanish, YL With folk songs. The schedule is from 1000 to 0530 but the frequency can vary from 4800 to 4802. It also identifies sometimes as “Radio Amiga Popular de Cuenca”. The power is 2kW and this one is heard only after Radio Lara, Barquisimeto, Venezuela closes at 0400.
La Voz de los Caras, Bahia de Caracas, on 4795 at 0420 the usual mix of local music and songs. OM with clear and full identification at 0434. The schedule is from 1100 to 0430 and the power is 3kW.
Radio Nacional Espejo, Quito, on a measured 4679.4 at 0438, OM with song in Spanish, local-style pops. The schedule is form 0800 to 0600 but sometimes around the clock and the power is 5kW.

BOLIVIA
Radio Cobija, Cobija, on 4855 at 0406, OM with a political talk in Spanish. Local music and songs from 0430 after clear station identifications at 0415 and 0418. Gone at 0500 return. This one operates irregularly from 1000 to 0300 and is seldom reported in the SWL press. The power is 1kW.
Radio Difusora Cristial, La Paz, on a measured 5006 at 0024, choral folk song, OM with announcements in Spanish. Tentative logging – no identification heard despite several later observations.

DECEMBER 1980
"K" TONE GENERATOR

By Trevor P. Hopkins

Automatic logic sends a morse "K" at each over

When working s.s.b. Dx, on both the h.f. and v.h.f. bands, it is often very difficult to determine exactly when the other station's over has been completed. This point is especially true when the signal is very weak or during contest operation.

One technique to overcome this problem is to use a "pip"-tone generator which produces a short tone every time the Push-To-Talk (P.T.T.) switch is released. However, this can occasionally be confusing and a better method is to send a "K" in morse code (dah-di-dah) at the end of each over. The letter "K" is usually used during c.w. operation to mean "Invitation to transmit". The device to be described will provide this "K" function and is easily connected in the microphone lead of most transceivers.

CIRCUIT OPERATION

The complete circuit of the "K" tone generator is given in the accompanying diagram. Assuming that the function switch, S3(a) (b), is in the "Automatic" position, the following sequence takes place. When the P.T.T. switch is closed, a logic "0" is applied to pins 1, 2 and 5 of IC1. The output of IC1(b) then turns on transistor TR2, which energises a miniature reed relay RLA. Contacts RLA1 close the original P.T.T. line, so that the transceiver goes into the transmit mode. LED2 lights up to indicate this state.

When the P.T.T. switch is released, pin 3 of IC1(a) reverts from logic "1" to logic "0". The negative-going edge is differentiated by C2 and R3, and the resulting negative pulse triggers the latch consisting
The circuit of the "K" tone generator. When S3 is set to "Automatic" this produces a morse "K" at the end of each over. Note that no connections are made to the pins of IC4 which do not appear in the diagram.
A closer look at the Vero-board panel. The miniature reed relay is at centre left, and the three preset variable resistors are mounted at the right near the bottom edge.

COMPONENTS

Resistors

(All fixed values 1 watt 5%)

- R1 10kΩ
- R2 15kΩ
- R3 680kΩ
- R4 22kΩ preset potentiometer, 0.1 watt.
- R5 82kΩ
- R6 10kΩ
- R7 15kΩ
- R8 15kΩ
- R9 1kΩ
- R10 1.2kΩ
- R11 1.2kΩ
- R12 15kΩ
- R13 15kΩ
- R14 10kΩ preset potentiometer, 0.1 watt
- R15 22kΩ preset potentiometer, 0.1 watt
- R16 82kΩ
- R17 15kΩ
- R18 390Ω
- R19 1kΩ
- R20 1kΩ

Switches

- S1 s.p.d.t. toggle, centre off, biased one way
- S2 s.p.d.t. push-button
- S3 2-pole 3-way, miniature rotary
- S4 s.p.s.t. toggle

Capacitors

- C1 0.047µF ceramic
- C2 0.22µF polyester
- C3 0.47µF polyester
- C4 0.01µF ceramic
- C5 0.047µF ceramic
- C6 0.047µF ceramic
- C7 2,200pF ceramic
- C8 2,200pF polystyrene
- C9 0.047µF ceramic

Semiconductors

- IC1 4011
- IC2 4093
- IC3 555
- IC4 4017
- TR1 ZTX108
- TR2 ZTX108
- D1 – D9 1N4148
- D10 BZY88C9V1
- LED1 – LED3 TIL209

Relay

- RLA miniature reed relay, 12 volt coil.

Miscellaneous

- Metal case
- Control knob
- Microphone socket, etc.

of IC2(a) and IC2(b). Pin 3 of IC2 goes to “1” and pin 4 to “0”, and there are four results. First, the output of IC1(b) stays at “1”, so that the relay remains energised and the transceiver stays in the transmit mode. Second, transistor TR1 turns on and illuminates LED1 to indicate that a “K” is being produced. Third, the reset pin of the 555, IC3, is taken to “1”, allowing pulses to appear at its output pin 3. Finally, pin 13 of IC2(c) is taken to “1”.

The pulses from the 555 are fed to the clock input of the 4017 decade counter/divider, IC4. Diodes D3 to D9 form a logic OR gate and take pin 9 of IC2(d) to logic “1” on the counts 012 – 4 – 678. IC2(d), which is a Schmitt trigger hysteresis a.f. oscillator, is thus
enabled to produce a tone having the correct dash– dot – dash pattern for the letter "K". IC2(e) gates the oscillator output when the latch is set and feeds the "K" audio tone to the passive filter R13, C6, R12, C5, and thence to the transmitter microphone input. After the last "K" forming pulse from IC4, its pin 11 goes to logic "1" and IC1(c) resets the latch to its previous state. The S55 is inhibited, TR2 is turned off and relay RLA releases, thereby opening the transceiver P.T.T. line. Preset resistor R4 sets the speed at which the "K" is transmitted. R15 adjusts the tone frequency and R14 allows its audio level to be set. Switch S1 is the transmit switch and allows the transceiver to transmit continuously. In the prototype, S1 was a single pole changeover toggle type with a centre-off position and biased one way only. This enables the same switch to be used for both momentary or continuous operation.

S3 is the mode switch. In the “Standby” position, transmission is disabled; and in the “Normal” position no "K" tone is generated. Putting S3 to “Automatic” causes the "K" tone to be generated at the end of each over. Pressing S2 allows a morse "K" to be transmitted in the “Normal” mode. S4 is the on-off switch, and LED3 lights up to indicate that the 12 volt supply is switched on.

OPTIONS

As just described, the "K" tone generator can be constructed as a self-contained unit. However, the maximum current consumption is approximately 50mA, mainly due to the I.E.D.‘s, and the prototype was powered by the transceiver power supply. If desired, the I.E.D.‘s can be omitted along with TR1, D10, R7, R9, R18, R19 and R20, and RLA replaced by a 6 volt type. The generator will then operate from a 9 volt dry battery and will have a very low standby current consumption. The circuit may be further simplified by removing all the switches, and in this form could be incorporated inside many transceivers.

CONSTRUCTION

The layout of the circuit is not critical and any convenient method of construction may be used. The prototype components were assembled on a piece of 0.1in. Veroboard measuring 4 by 2in., and were housed in a proprietary metal case measuring 6 by 4½ by 1in. (152 by 114 by 44mm.). The preset resistors were vertical types mounted at one edge of the board, and holes were drilled in the rear of the case, and fitted with grommets, to allow adjustment. The microphone plug and socket were chosen to suit the author’s transceiver. Other arrangements can be made to suit other transceivers.

SETTING UP AND TESTING

It is suggested that the output of the generator be connected to a suitable audio amplifier for initial testing. All three preset resistors should be set to their centre positions and a microphone connected to the input. Connect a suitable 12 volt supply and switch on. With S3 in the “Normal” position, operating the microphone P.T.T. switch or the transmit switch S1 should actuate relay RLA and light LED2. Set S3 to “Automatic” and press and release the P.T.T. switch. Both LED1 and LED2 should light and a morse “K” should be heard. Adjust R4 and R15 respectively for suitable speed and tone. Speak normally into the microphone and adjust R14 until the audio levels are the same. Final adjustments should be carried out “on-air”, using a monitor receiver or by requesting a critical report. Ensure that the audio level does not overdrive the transmitter as this will cause severe distortion and interference.

No r.f. interference problems with the control logic were experienced with the prototype, although the use of a metal box is to be recommended. If r.f. problems do arise, 1,000pF decoupling capacitors and ferrite beads should be used on inputs and outputs.

NEW PRODUCT

The new Model SB 3M oscilloscope from Albol Electronic will serve most purposes required by industrial and service and hobby engineers, and yet manages to keep on the right side of the significant £100 price barrier. With a bandwidth of 0 to 3 MHz at -3 dB (extending to 6 MHz at -6 dB), the SB 3M breaks new ground in its class, by offering time-base automatic triggering by IC comparator control of the type usually fitted only to luxury 'scopes. A 10 mV signal is all that is needed for a firmly locked and triggered time-base.

Albol say that this is an ideal personal oscilloscope for use by hobbyists, laboratory engineers and production-line testers, and for use as a garage diagnostic instrument, where it is complementary to the recently-announced Albol SD-80 petrol engine test and monitoring equipment.

The SB 3M takes about 20 watts from the 240 V mains, weighs 4.5 kg, and measures 150 mm wide by 340 mm deep by 280 mm high. Price: £99.00 plus VAT; delivery ex-stock.

Albol Electronic & Mechanical Products Ltd., 3 Crown Buildings, Crown St., London SE5 OJR.
The “Haunted” Radio

The set which always worked for Smithy, but never for Dick.

Had you chanced to enter the Workshop on the morning when our story commences you might well have thought yourself taken back through time by at least several decades when, first, you caught sight of Smithy the Serviceman delving into the interior of a mains valve radio with a cabinet styling dating from the early 50s. But this is the Age of the Antique, when almost anything which has survived at least a quarter of a century suddenly seems to acquire a value grossly in excess of its true worth. The owner of the old radio had sought Smithy’s assistance in bringing it back to working order, and Smithy was now checking through the components, removing paper capacitors and fitting more modern polyester components in their place. He had already replaced the electrolytics and, indeed, there seemed very little else that needed to be done to the radio, whose aged valves gave evidence of a cathode emission which was so prolific as to be almost unseemly.

VINTAGE YEARS

Had you then carried on to observe Smithy’s assistant, Dick, your reaction might well have been that the tapestry of the years had been drawn back even further, and you could in fact have wondered whether you were in an electronic servicing establishment at all. For Dick was carrying over from the “For Repair” rack a small shiny model of a truly vintage car which, since you are undoubtedly up on these things, you would at once have identified as a Rolls-Royce “Silver Ghost”.

But things these days are rarely what they seem. The model of that prestigious car, which Dick was now placing on his bench, had two adjuncts which could never have existed on the original. Just visible above the running board on the right projected the milled edge of a flat circular knob, whilst a similarly positioned knob rim could be seen on the left hand side of the model. And, of course, you would have realised that the model was not just a model of a vintage motor car, attractive in its own right as it might be. It was also a radio, with one of the knobs being the tuning control and the other the combined volume control and on-off switch.

Dick sat down on his stool and turned the model over. A leaflet slipped out from the driving seat and fluttered onto the bench surface. Dick put down the car and examined the leaflet. Some unknown and helpful hands in far-off sunny Hong Kong had not only printed an illustration showing the positions of the battery cover, speaker and controls, but had also appended the circuit diagram of the radio as well. (Fig. 1.)

Dick picked up the model and again turned it over. A grille on the underside was obviously the aperture for the speaker. Dick turned one of the knobs, and there was a mechanical click as the radio became turned on. He then experimentally turned the tuning control, but there was no sound from the speaker. He held the model close to his ear. He could detect...
a faint hiss but nothing else.

He next opened the battery cover, to reveal a PP3 battery. With the radio still switched on, he checked the battery voltage with his testmeter. The meter indicated 7 volts, whereupon Dick walked over to the spares cupboard to obtain a fresh battery. After fitting this, he checked its voltage with the radio still on. The meter gave a satisfactory reading of about 9.2 volts. Once more he tried the tuning control, but the set still refused to reproduce any signals. Irritably, Dick switched the radio off and glared at it.

"What the devil have you got there?"

Startled, Dick turned round to find the Serviceman leaning over him.

"Blimey, Smithy, I wish you wouldn't sneak up on me like that. You're always creeping up on me and scaring the wits out of me!"

"Perhaps," said Smithy sternly, "it's a good thing I do. I should remind you that you're supposed to be servicing radios and TV's in here, not playing around with model cars."

"This," retorted Dick with dignity, "is not just a model car."

"Oh, then what is it?"

"It's also a medium wave radio."

Smithy looked down suspiciously at the shiny little model.

"Humph," he grunted. "Radios ought to look like radios."

He reached out and turned one of the two controls.

"That one's for tuning," said Dick. "You switch it on and control the volume with the other one."

Smithy turned the remaining control, whereupon the model car at once reproduced, quite clearly and with reasonable volume, a string ensemble working away vigorously at one of the
works of Bach.

"That must be Radio 3 on 247 metres," commented Smithy. "Let's see what else we can get."

He adjusted the tuning control. The strains of Bach disappeared, to be replaced after some moments by strident pop music.

"And that," Smithy pronounced, "can only be Radio 1 on 285 metres."

He continued to turn the tuning knob and the car-cum-radio emitted the unmistakable tones of Jimmy Young.

"And that," said Smithy finally, "will quite certainly be Radio 2 on 330 metres. Well, there doesn't seem to be very much wrong with this set."

He switched off the radio, replaced it on Dick's bench and walked back to his own bench.

INTERMITTENT

Scowling, Dick picked up the radio and turned it on. Apart from the faint hiss, it was completely dead.

"Hey, Smithy," he called out, "what did you do with this set? I can't get a peep out of it!"

Smithy returned to Dick's side and picked up the model car. He turned one of the knobs, remembered that it was the tuning control, and then rotated the other. Once again the radio worked quite satisfactorily. Smithy tuned through Radio 3 on 247 metres, Radio 1 on 285 metres and, finally, Radio 2 on 330 metres. He switched the radio off and handed it back to his assistant.

"It's working all right as far as I can see," he remarked. "Try it for yourself."

Bemusedly, Dick turned on the radio again. As before, it was completely dead. He adjusted the tuning control but to no avail. The set stubbornly refused to pick up any signals whatsoever.

"This is crazy," muttered Dick as he switched the radio off. "Here, you try it again, Smithy."

Smithy took up the radio and switched it on. A little distorted, because the Radio 3 signal was slightly mistuned, the efforts of the string ensemble as they worked their way through their Bach repertoire at once became audible. Smithy tuned in the signal properly and then tuned, respectively, to Radios 1 and 2. He switched the radio off and replaced it on Dick's bench.

Dick picked it up and turned it on. No matter how he adjusted the tuning control the radio simply refused to reproduce the vaguest suspicion of a signal.

"This," moaned Dick as he switched off the set, "just cannot be true! We've got a simple medium wave radio here, admittedly in an unusual housing, and it's only got two controls. If I pick it up and switch it on it refuses to work. And yet when you pick it up it works perfectly. Here, do it again!"

Smithy took up the radio and turned it on. As he turned the tuning control the sounds of Bach, pop music and Jimmy Young issued successively from the speaker inside the model vintage car. He switched the radio off and placed it in front of Dick.

Dick looked bleakly at the model car and shrugged.

"I'm getting to the point where I daren't even touch the darned thing," he wailed. "That radio's got a spell on it. I bet there's someone in the factory out at Hong Kong who puts an old Chinese curse on these sets just to put the frighteners on young foreign devils like me!"

"Well," admitted Smithy, "I must confess that it's a bit odd that the radio works every time with me but never for you. Give it another try."

THE MODERN BOOK CO.

Largest selection of English & American radio and technical books in the country.

19-21 PRAED STREET
LONDON W2 1NP
Tel: 01-402 9176

Please mention *Radio & Electronics Constructor* when replying to advertisements
Dick reached out a faltering hand to switch on the radio and then adjusted the tuning.

As before, the set stayed completely dead. "What did I tell you?" he stuttered. "The flame thing's bewitched!"

"Nonsense," snorted Smithy. "It must have an intermittent fault of some sort which will show up after a bit of straight-forward fault finding. Can you get the printed board out, Dick?"

Dick examined the bottom of the model car closely.

"There are four screws holding the bottom plate on," he said. "Let's take these out."

Dick removed the screws, to find that the whole radio section came out neatly as one module.

"Obviously," remarked Smithy, "we haven't got a service manual for this job."

"We've got a circuit," said Dick. "I forgot to tell you that there was a leaflet with the model car which showed the circuit of the radio."

Dick picked up the leaflet and passed it over to Smithy, who examined it carefully.

CIRCUIT DIAGRAM

"You know, Dick," he remarked after some moments, "you've got to take off your hat to the people who design and manufacture these novelty medium wave radios. Everything is tidy and functional and yet the circuit uses the bare minimum of components."

"That circuit may be tidy and functional with you," complained Dick, "but it certainly isn't functional so far as I'm concerned!"

"Well, let's just take a butcher's at it," pronounced Smithy. "If we work from the speaker it's very easy to follow. There's the usual Class B output stage preceded by the driver transistor. As almost always with these little radios, a.f. transformers are used instead of the more modern a.f. amplifier arrangements which don't require transformers."

"Before the driver transistor," put in Dick, "there's the third i.f. transformer and the diode detector which feeds into the volume control."

"That's right," agreed Smithy. "The volume control is also the diode load, and you'll notice that the diode is connected so that the top end of the volume control track goes more negative as signal strength increases. The voltage at the top of the volume control track is fed back via a 33kΩ resistor to the base of the first i.f. transistor to give automatic gain control."

"There isn't an i.f. transformer between the two i.f. transistors," put in Dick, "they're coupled together by a 0.005µF capacitor."

"True," confirmed Smithy. "So the coupling between these two transistors is untuned. But there are two i.f. transformers between the mixer-oscillator transistor and the first i.f. transistor. These are coupled together by a 2µF capacitor to form a band-pass pair. So there are still three tuned circuits in the i.f. amplifier." (Fig. 2.)

"All that seems fair enough," commented Dick. "What about the mixer part?"

"That uses a very simple circuit arrangement," stated Smithy. "Since the set only tunes over the medium wave band very few components are needed here. A coupling winding on the ferrite rod aerial couples in the base of the mixer transistor. The mixer collector connects through a coupling winding on the oscillator coil to the first i.f. transformer, and the..."
Fig. 2 Two i.f. transformers, coupled to form a bandpass pair, appear between Q1 and Q2.

Smithy increased the signal generator attenuation until the modulation could just be heard and then adjusted the generator frequency for maximum output. After that he removed the 0.01µF capacitor and the signal generator earthy lead from the radio, then glanced at the generator frequency scale.

"The i.f. amplifier," he remarked in a satisfied tone, "is peaking nicely at 470kHz, and the i.f. stages seem to be giving plenty of amplification. I thought I'd start off by checking the i.f. amplifier as a whole rather than inject a signal at each stage and work back to the mixer. I had a hunch, inspired by your remark about the hiss, that the whole i.f. amplifier would be all right, and so it has turned out to be."

"So," said Dick slowly, "let's see what we've got up to now. I've switched on the set and, as always, it refuses to pick up any signals for me. And yet the i.f. amplifier is all right. There must be a fault in the ferrite aerial circuit, then."

"There could be," agreed Smithy, frowning. "Or it could be that the mixer isn't oscillating."

"Not oscillating?"

Fig. 3 Since the mixer-oscillator has only to cover the medium wave band it has a very simple circuit.
DECEMBER

was also what scale. frequency capacitor start switch given to the so is the mixer happening and for the Radio 3 signal first? "I can't remember," said Dick dolefully.

Smithy leaned forward, switched off the radio, set the tuning capacitor to the high frequency end of its range and switched on again. He then slowly adjusted the tuning capacitor, and a signal almost immediately became audible. It was a talk on social proclivities in Outer Mongolia. Johann Sebastian Bach must have won and Radio 3 was now continuing with its next programme, cutting its own narrow swathe through the airwaves of England. "Ye gods," said an aghast Dick, "Even when its out of its case that darned radio will still only work for you!"

Smithy proceeded to turn the tuning control, passing yet again through Radio 1 and Radio 2. After tuning in this last station he switched off the radio and turned it on again. And the radio remained silent.

"It's the oscillator that's wrong," stated Smithy triumphantly. "What's happening is that the mixer is only just oscillating. If I set the tuning capacitor to a low capacitance at the high frequency end of the range the oscillator tuned circuit is at its highest efficiency, so that the little shock given to the oscillator at switch-on is enough to start it oscillating. What I've been doing, without realising it at the time, has been to always switch on the set with the tuning capacitor near the high frequency end of the scale. On the other hand what you were doing, and also without knowing it, was to switch on the radio with the tuning capacitor set to a greater capacitance. With the reduced tuned circuit efficiency which resulted, the switch-on shock just wasn't enough to start the oscillator."

"But you got the mixer to oscillate at those lower frequencies."

"Only after I'd initially got it to start at the high frequency. This quite often happens with a reluctant oscillator, particularly when there's a coupling capacitor somewhere in the feedback circuit. As you can see, there's a 0.005µF coupling capacitor in the emitter circuit. When the oscillator is caused to start at the high frequency it settles down to proper working and it will then continue to oscillate even when you take it down to frequencies lower than that at which it starts. You get a similar sort of effect with a badly designed reaction circuit in a t.r.f. receiver. You advance the reaction control until the circuit goes into oscillation, and then find you have to back off the reaction control well beyond the point at which oscillation started to make it stop again. The effect is called 'backlash'."

"Blow me," said Dick, brightening. "So that set wasn't putting a hex on me after all. Wait a minute, though. You got the mixer to start oscillating by tuning around the Radio 3 wavelength of 247 metres, and it then kept oscillating right down to Radio 2 on 330 metres, which is nearly 100 metres down the scale. Isn't that a long way for your backlash thing to remain effective?"

"Not if you think in terms of oscillator frequency," stated Smithy. "Now, let me consult my newspaper."

Smithy walked over to his coat, hung on its peg on the inside of the Workshop door, and retrieved his daily newspaper from a pocket. He selected the page with the radio programmes.

"We're more than a bit old-fashioned in this country," he remarked, "because we still tend to keep talking about station wavelengths on medium and long waves. Now my very superior newspaper not only gives station wavelengths but it also gives frequencies, and it tells me that the Radio 3 frequency is 1,215kHz whilst the Radio 2 frequency is 909kHz."

"That's still," objected Dick, "a ratio of something like 3 to 2."

"Ah yes," agreed Smithy, "but don't forget that oscillator frequency is higher than signal frequency by the intermediate frequency, which, with this set, is 470kHz."

Smithy took out a pen and proceeded to jot some figures in the margin of the circuit diagram leaflet. (Fig. 5.)

Fig. 4 Checking the i.f. and a.f. stages by injecting a modulated i.f. signal into the base of Q1.

Fig. 5 The oscillator frequencies corresponding to the signal frequencies of Radio 3 and Radio 2.
"The oscillator frequency for Radio 3 is 1,215 plus 470kHz," he went on, "which comes to 1,685kHz. And the oscillator frequency for Radio 2 is 909 plus 470kHz, which works out as 1,379kHz. The ratio between these two frequencies is not 3 to 2 but is less than 5 to 4, which is quite low enough for a backlash effect to take place."

NEW TRANSISTOR

Smithy was right, of course. A few quick checks showed that the resistors and capacitors around the mixer transistor were as they should be, whereupon the fault could lie in the oscillator coil or in the mixer transistor itself. Smithy plumped hopefully for the latter which, the little leaflet told him, was a 9011G. Even Maplin don’t list this one so Smithy consulted the Workshop copy of the invaluable Towers’ International Transistor Selector – Update 2 to find that this was a silicon transistor with a quoted hFE of 72 to 108. A BC107A seemed a reasonable substitute and this, with due attention to its different lead layout, was ceremoniously installed by Dick.

And, with its new transistor, the little radio worked perfectly regardless of whether Smithy or Dick switched it on. It would probably even have worked for Jimmy Carter. Every cloud has its silver lining, and the silver lining in this case was that the radio was not after all haunted despite its silver glory housing.

NEGLECTED OSCILLATOR

By R. S. Burns

When the ICM7555 (the “CMOS 555”) came on the scene we looked upon it as the latest thing in low supply current operation. Having all the attributes of the 555, apart from output current capability, the ICM7555 could run as an oscillator requiring only about 40 to 50µA from a 9 volt supply. But a CMOS digital device which can function as an oscillator with even lower current consumption was already sitting in the listings before the appearance of the ICM7555. This digital device is the 4047 Low-Power Monostable/Astable Multivibrator.

4047 PINOUT

The 4047 has the pinout shown in Fig. 1, and a simplified block diagram representing its internal logic is given in Fig. 2. As can be seen, it includes a low power astable multivibrator whose output passes to pin 13. The multivibrator output is also fed into a frequency divider which divides it by 2, with a Q output at pin 10, and a not-Q output at pin 11. There are a number of inputs, most of which are concerned with monostable functioning. The astable and not-astable inputs at pins 3 and 4 respectively do, however, control the i.c. in astable operation.

Fig. 3 shows the 4047 connected for free-running astable operation. You can take an output at multivibrator frequency from pin 13, or an output at half multivibrator frequency either from pin 10 or from pin 11. The two divided outputs are guaranteed square waves. Frequency is controlled by the values of R and C.

Fig. 4 shows the output waveforms at pin 13 and pin 10 relative to each other. The pin 13 output is not a guaranteed square wave because its duty cycle depends upon the transfer characteristic of the f.e.t. inside the i.c. which follows pin 3. The pin 10 output changes state on every positive-going pulse edge of the pin 13 waveform. Since each half-cycle of the pin 10 output has the same length as a whole pin 13 cycle, the pin 10 output has to be a true square wave. The cycle length of the pin 10 waveform is specified as being typically:

\[T = 4.40 \ \text{RC} \]

where \(T \) is in seconds, \(R \) is in ohms (or megohms) and \(C \) is in farads (or microfarads). Interestingly enough, this equation for typical cycle length represents the minimum time within tolerance. If the transfer characteristic of the multivibrator input f.e.t. shifts in either direction to its specification limits the maximum cycle length is given by:

\[T = 4.62 \ \text{RC} \]

4.62 is 4.40 plus 5%. So you can calculate cycle length by using the 4.40 figure, and this will give you the actual cycle length within ±0% and ±5% To take an example, let’s say that \(R \) in Fig. 3 is 470kΩ and that \(C \) is 0.0022µF. The typical cycle length at the pin 10 output is then:

\[T = 100 \ \text{µs} \]

Fig. 1. Pin functions for the 4047 monostable/astable multivibrator.
Fig. 2. The internal logic of the 4047.

Fig. 3. Connecting up the 4047 as a free-running multivibrator. There are three outputs, one at multivibrator frequency, and two at half multivibrator frequency.

Fig. 4. The relationship between the outputs at pin 13 and pin 10. The pin 10 waveform changes state at every positive-going pulse edge at pin 13.

\[4.40 \times 0.47 \times 0.0022 \]
which calculates as 0.00455 second. The reciprocal, which gives the frequency, is 220Hz.

DECEMBER 1980

LIMITING VALUES

The manufacturer's limiting values for the timing components, R and C, state that the resistance must lie between 10kΩ and 1MΩ, whilst the capacitance must have a minimum value of 100pF with no limit on maximum value.

Current consumption, when employed as a free-running multivibrator, depends almost entirely upon the value of the timing resistor. When this is 1MΩ the current drawn from a 9 volt supply is less than 25µA, and when it is 100kΩ the current is less than 45µA. With a 10kΩ timing resistor the current at 9 volts is much higher, being in the region of 600 to 800µA. So, provided the timing resistance is 100kΩ or more, a 4047 oscillator draws less current from its supply than does an ICM7555 oscillator.

The 4047, when free-running, can be controlled by voltages at the astable and not-astable inputs. If pins 4, 5 and 6 are connected as shown in Fig. 5(a), the multivibrator runs when pin 5 is high and stops when pin 5 is low. With the pins connected as in Fig. 5(b), the multivibrator runs when pin 4 is low and stops when it is taken high.

DECEMBER 1980

www.americanradiohistory.com
So far as Mother Nature is concerned I'm a real townie, and my concept of the good earth is a nice shiny brass pin on a 13 amp plug at the end opposite to where the wire goes in. But I recently had to assume responsibility for a small plot of ground measuring some 6 feet by 4 feet which had become completely overgrown. I could either donate it to the nation as an area of outstanding natural free-growing flora or get to work in pulling up the weeds. I like to live in peace with my neighbours and so I decided on the latter course. Believe it or not, I filled at least a dozen bin liners before I had the area reasonably well cleared.

THE TREE

Normal weeds were easy enough but the ground also supports a little tree of such abundant fecundity that it's beginning to dog my dreams. The roots go under some concrete and so I just contented myself with cutting it down. But I only have to turn my back on it for a couple of days to find that it has pushed out a whole new system of branches all covered with bright chlorophyll laden leaves. And, of course, the branches and leaves exactly reflect the basic make-up of the tree, which I assume to be a member of the genus Quatermass.

Now, it occurs to me that this abundantly productive tree is carbon based, and that it should not be beyond the capabilities of our experimental biologists to create a silicon based form of plant life. Just imagine the benefits to modern technology which would accrue. We could, for instance, raise 4001 or 4011 trees, each producing rich crops of NOR gates and NAND gates respectively just for the picking. A BC109 shrub would be attractive, and by careful grooming and selection it should be possible to cultivate three individual plants which fell into the BC109A, BC109B and BC109C categories. As our silicon plant cultivators became more adept we could have a 555 bush or even an MC6800 tree. In fact it is in the microprocessor field that my scheme should produce the greatest awards. In just the same way as a carbon based tree interfaces with its environment the silicon based microprocessor plant could interface with its own source of nutrient, with each branch providing its own data bus coupling it with the main trunk.

I think I'll take another look at that prolific tree of mine. Ordinarily sand is a good source of silicon, and I see no reason why I couldn't try copper nitrate as a fertilizer. So watch this space. Even if I only succeed in producing a 1N914 plant, it will still be quite a major step forward. But with my gardening luck I'll probably end up with an OA70 bush.

ASSEMBLY STATION

In the accompanying photograph you can see an operator at the factory of Oxford Medical Systems assembling one of the firm's tape recorders, which are used to monitor heart beats. This is not a flow line production system, and the operator builds the complete assembly. She is helped by a "Trescomp" independent assembly station designed and produced by Link-Hampson Ltd, 5 Bone Lane, Newbury, Berkshire, RG14 5TD.
The Link-Hampson "Trescoomp" independent assembly station is part of an integrated parts handling system which can provide increased levels of production over more conventional factory flow lines. Oxford Medical Systems were one of the first firms to install these stations, and they report an increase of 40% over the previous flow line system. At their Abingdon based factory, where tape recorders for monitoring heart beats and associated analysis equipment are produced, "Trescoomp" stations are used to complete the different assemblies. The products are constructed from a mix of electro-mechanical and electronic components and individual operators are responsible for complete assemblies.

Each assembly station has a motorised conveyor which supports rows of trays with sufficient capacity to carry 153 different components. Before the assembly work commences the trays are loaded with all the required components in a pre-planned sequence. The operators then follow a pre-determined order of assembly. When a new component is needed, the conveyor is activated by a foot switch and the appropriate component moves into position.

By employing independent stations it is found that not only does production output increase but increased reliability also results from greater operator responsibility. This is because each operator builds up a complete assembly and any defect that occurs can then be rectified by the person concerned. As can be readily visualised, there is less personal association with a completed product when it is assembled using the flow line system, with defects being rectified by a special repair section employing different staff.

CABLE STRIPPER

The second photograph shows the Type AML insulation stripper which has been introduced by Klippon Electricals Ltd., Terminal Works, Power Station Road, Sheerness, Kent, ME12 3AB. This is suitable for use with round cables having an outer sheath diameter of 4.5 to 28.5mm. The AML is a compact and easily held hand-tool, yet it is very robust and will give many years of trouble-free use.

The insulation cutting blade can be adjusted with a simple thumbscrew to obtain the correct cutting depth, and the tool firmly grips the cable during the rotary cutting action. To complete the cutting operation, the blade is rotated by means of a push-button to enable an axial cut to be made.

In cases where the insulation is extra thick or difficult to remove, the tool features an integral hook-blade cutter which can be pulled along the initial axial cut to ensure easy removal of the insulation. The AML is made of steel and high strength thermoplastic and measures a mere 5½ by 1½in.

We regret that owing to pressure on space, the article entitled Experimental Electronics has been held over to our next issue.

Mail Order Protection Scheme

The publishers of this magazine have given to the Director General of Fair Trading an undertaking to refund money sent by readers in response to mail order advertisements placed in this magazine by mail order traders who have become the subject of liquidation or bankruptcy proceedings and who fail to supply goods or refund money. These refunds are made voluntarily and are subject to proof that payment was made to the advertiser for goods ordered through an advertisement in this magazine. The arrangement does not apply to any failure to supply goods advertised in a catalogue or direct mail solicitation.

If a mail order trader fails, readers are advised to lodge a claim with the Advertisement Manager of this magazine within 3 months of the appearance of the advertisement.

For the purpose of this scheme mail order advertising is defined as:

"Direct response advertisements, display or postal bargains where cash has to be sent in advance of goods being delivered."

Classified and catalogue mail order advertising are excluded.
ELECTRONICS
A NEW AND EXCITING HOBBY!!
BIG, WELL ILLUSTRATED BOOK
Ideal for beginners - gives
lots of general information
- explains how to build
lots of projects:
Intercom, Rain Alarm,
Radios, Organ, Parking
Light etc. All parts
supplied and can be
re-used on special
dock provided, so
NO SOLDERING is
required. Just needs
4½V battery.

£17.50 inc. VAT & Post
Also
ADVENTURES WITH MICROELECTRONICS
- Explore the world of silicon chips -
All components & Deck, £27.95 inc VAT & Post.
Component Catalogue & Bargain List 75p

GREENWELD
443G Millbrook Road, Southampton SO1 0HX

A CAREER IN RADIO
Start training today and make sure you are qualified to take
advantage of the many opportunities open to the trained person. ICS
can further your technical knowledge and provide the specialist
training so essential to success.
ICS, the world's most experienced home study college, has helped
thousands of ambitious men to move up into higher paid jobs - they
can do the same for you.
Fill in the coupon below and find out how!
There is a wide range of courses to choose from, including:

TECHNICAL TRAINING
ICS offer a wide choice of non-exam
courses designed to equip you for a
better job in your particular branch of
electronics, including:
Electronic Engineering & Maintenance
Computer Engineering/Programming
Radio, TV & Audio Engineering
& Servicing
Electrical Engineering Installations & Contracting

COLOUR TV SERVICING
Technicians trained in TV Servicing are in constant demand. Learn all the
techniques you need to service Colour and Mono TV sets through new home
study course approved by leading manufacturer.

POST THIS COUPON OR TELEPHONE FOR FREE PROSPECTUS

I am interested in

Name

Address

Occupation

Accredited by CAAC
Member of

ICS

To: International Correspondence Schools
Dept 276B, Intertext House, LONDON SW8 4LU or phone 01-622 3911 (anytime)

www.americanradiohistory.com
SMALL ADVERTISEMENTS
Rate: 12p per word. Minimum charge £2.00
Box No. 30p extra

Advertisements must be prepaid and all copy must be received by the 4th of the month for insertion in the following month's issue. The Publishers cannot be held liable in any way for printing errors or omissions, nor can they accept responsibility for the bona fides of Advertisers.

Where advertisements offer any equipment of a transmitting nature, readers are reminded that a licence is normally required. Replies to Box Numbers should be addressed to: Box No. –, Radio and Electronics Constructor, 57 Maida Vale, London, W9 1SN.

BURGLAR ALARM COMPONENTS. PVC coated steel bell box £8.74. 6in. masterbell £13.53. 106dB sounder £11.53. Latching personal attack button £2.95. Surface contact £1.28. Flush contact £1.28. Large pressure pad £2.85. Stair tread pad £2.00. 20m range infra red beam £45. Mains/battery alarm control module £17.20 or send for our free component catalogue and price list. All prices inclusive. Sigma Security Systems, 13 St. Johns Street, Oulton, Leeds, W. Yorks. LS26 8JT.

BIGGEST RANGE SERVICE SHEETS/MANUALS. Any published sheet £1. plus s.a.e. Repair data any named TV £5.50 (with circuit set £7). S.A.E. newsletter, quotations, bargains. G.T., 76 Church Street, Larkhall, Lanarkshire.

WANTED: FAX equipment, manuals, service sheets, etc. G2UK, 21 Romany Road, Oulton Broad, Lowestoft, Suffolk. NR32 3PJ.

ZX80 PEOPLE. Free leaflet explains how to overcome load problems, 1-price memories, etc., supplied with four games on cassette. Send £3 or s.a.e. for details. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

(Continued on page 252)
Strip-fix Plastic PANEL SIGNS

★SET 3-Wording-WHITE ★SET 4-Wording-BLACK

Over 1,000 words and symbols, covering more than 300 terms, in each set

Illustration of actual size equals RADIO

★SET 5-DIALS

6 sheets containing one Large and two Medium scales, Large Horizontal Tuning scale, Frequencies, 12 Control Panels

6 SHEETS IN EACH SET

PRICE: £1.50 per set including VAT. p.&p. 11p per set.

To DATA PUBLICATIONS LTD.,
57 Maida Vale, London, W9 1SN

Please supply Panel Signs as follows: Set 3.....Set 4.....Set 5.....

I enclose cheque/crossed postal order for (Tick which set is required)

NAME

ADDRESS

(BLOCK LETTERS PLEASE)

SMALL ADVERTISEMENTS

(Continued from page 251)

FOR SALE: Wide angle 9.5mm cine equipment: camera, projector, screen, etc. Also several other 9.5mm cine cameras. S.A.E. for details Box No. G388.

JOIN THE INTERNATIONAL S.W. LEAGUE.

Free services to members including Q.S.L. Bureau, Amateur and Broadcast Translation, Technical and Identification Dept. – both Broadcast and Fixed Stations, DX Certificates, contests and activities for the SWL and transmitting members. Monthly magazine, Monitor, containing articles of general interest to Broadcast and Amateur SWLS, Transmitter Section and League affairs, etc. League supplies such as badges, headed notepaper and envelopes, QSL cards, etc., are available at reasonable cost. Send for League particulars. Membership including monthly magazines, etc., £6.00 per annum. (U.K. and British Commonwealth), overseas $12.00. Secretary ISWL, 1 Grove Road, Lydney, Glos., GL15 5JE.

12 UNUSED RECHARGEABLE Gel type Lead Acid Batteries. 12V 1.5 A.H. £4 each. R. Garas, 147 Seaford Avenue, New Malden, Surrey.

USE OPTICAL FIBRES TO CARRY LIGHT.

Tough, wire-like strands that are excellent for communications, lighting, electrical isolation, etc. Introductory pack totals sixteen feet of four assorted types, plus twenty page illustrated guide. Send £3.55 inclusive to Quantum Jump Ltd., 53 Marlborough Road, Tuebrook, Liverpool L13 8EA.

INTERESTED IN OSCAR? Then join AMSAT-UK. Newsletters, OSCAR NEWS Journal, prediction charts, etc. Details of membership from: Ron Broadbent, G3AAJ, 94 Herongate Road, Wanstead Park, London, E12 7EQ.
SMALL ADVERTISEMENTS
(Continued from page 252)

THE RADIO AMATEUR INVALID & BLIND CLUB is a well established Society providing facilities for the physically handicapped to enjoy the hobby of Amateur Radio. Please become a supporter of this worthy cause. Details from the Hon. Secretary, Mrs. F. E. Woolley, 9 Rannoch Court, Adelaide Road, Surbiton, Surrey, KT6 4TE.

POSTAL ADVERTISING? This is the Holborn Service. Mailing lists, addressing, enclosing, wrapping, facsimile letters, automatic typing, copy service, campaign planning, design and artwork, printing and stationery. Please ask for price list. - The Holborn Direct Mail Company, Capacity House, 2-6 Rothsay Street, Tower Bridge Road, London, S.E.1. Telephone: 01-407 6444.

INTERESTED IN RTTY? You should find the “RTTY Journal” of interest. Published in California, U.S.A., it gives a wide outlook on the current RTTY scene; RTTY-DX; DXCC Honour Roll; VHF RTTY news; and up to date technical articles are included. Specimen copies 35p from: The Subscription Manager, RTTY Journal, 21 Romany Road, Oulton Broad, Lowestoft, Suffolk. NN32 3PJ.

LEARN-KIT OSCILLOSCOPE, etc. £50. Telephone: Newcastle-Upon-Tyne 862813.

PERSONAL
JANE SCOTT FOR GENUINE FRIENDS. Introductions to opposite sex with sincerity and thoughtfulness. Details free. Stamp to: Jane Scott, 3/Con North St. Quadrant, Brighton, Sussex, BN1 3GJ.

(Continued on page 255)

DECEMBER 1980

253
TV

FAULT FINDING MANUAL for 405/625 LINES

£1.20
P. & P. 27p

REVISED & ENLARGED
EDITED BY J. R. DAVIES
132 pages

Over 100 illustrations, including 60 photographs of a television screen after the appropriate faults have been deliberately introduced.

Comprehensive Fault Finding Guide cross-referenced to methods of fault rectification described at greater length in the text.

UNDERSTANDING TELEVISION
by J. R. DAVIES

Over 500 pages
300 diagrams

£3.95
P. & P. £1.00

UNDERSTANDING TELEVISION deals with:

- Principles of 405 line reception
- Principles of 625 line reception
- Nature of the television signal
- Receiver tuner units
- A.F. and video amplifiers
- Deflector coil assemblies
- Automatic gain and contrast control
- Receiver aerials
- The cathode ray tube
- Receiver i.f. amplifiers
- Vertical and horizontal timebases
- Synchronising
- Power supply circuits
- Colour television

- COLOUR TELEVISION - 80 page comprehensive introduction to the subject

The reader is required to have only a basic knowledge of elementary radio principles. The treatment is non-mathematical throughout, and there is no necessity for any previous experience in television whatsoever. At the same time UNDERSTANDING TELEVISION is of equal value to the established engineer because of the very extensive range it covers and the factual information it provides.

To Data Publications Ltd., 57 Maida Vale, London, W9 1SN

Please supply the 4th revised edition of TV FAULT FINDING, Data Book No. 5

Please supply UNDERSTANDING TELEVISION, Data Book No. 17

I enclose cheque/crossed postal order for .. (Tick which book is required)

NAME ..

ADDRESS ..

(BLOCK LETTERS PLEASE)
SMALL ADVERTISEMENTS (Continued from page 253)

BROADLANDS RESIDENTIAL CLUB for elderly people. Are you recently retired and looking for a home? We have a delightful top floor room overlooking Oulton Broad, facing south. Write to: The Warden, Broadlands Residential Club, Borrow Road, Oulton Broad, Lowestoft, Suffolk.

IF YOU HAVE ENJOYED A HOLIDAY on the Norfolk Broads, why not help to preserve these beautiful waterways. Join the Broads Society and play your part in determining Broadslands future. Further details from: The Hon. Membership Secretary, The Broads Society, "Icknield," Hilly Plantation, Thorpe St. Andrew, Norwich, NOR 8SS.

SPONSORS required for exciting scientific project Norwich Astronomical Society are building a 30" telescope to be housed in a 20" dome of novel design. All labour being given by volunteers. Already supported by Industry and Commerce in Norfolk. Recreational. Educational. You can be involved. Write to: NAS Secretary, 195 White Woman Lane, Old Catton, Norwich, Norfolk.

NORTHAMPTON: Television and Electrical Goods and Repairs. Old established business in freehold premises retail shop - well known local name. For Sale as a going concern plus S.A.V. Price £22,000 includes Shop, small workshop, private car park. Very busy main road position between public house and car showrooms. Apply: Jackson-Stops & Staff, 20 Bridge Street, Northampton.

SITUATION VACANT

WANTED: Representatives to sell Electronic Components to shops and industries on good commission basis. Please send full details of experience to: Summit Electronics, 96 Peel Road, Wembley, Middlesex. Telephone: 01-904-6792.

PRINTED CIRCUIT BOARDS FOR "RADIO & ELECTRONICS CONSTRUCTOR" PROJECTS.

"Two 20dB amplifiers" Board for part 1 68p plus 25p P&P
Board for part 2 82p plus 25p P&P

All boards ready for use, roller tinned and drilled. glassfibre.

Trade enquiries welcome. Highly competitive prices. Write now for quote To:

BRB PRINTED CIRCUITS (REC)
109, Potter Street, Worksop, Notts. S90 2HL.

DURRANT RADIO
(Electronic Components)
9 St. Mary's Street, Shrewsbury SY1 1EB. Tel. 61239

Prices include V.A.T. Please add 35p P&P.

100 Cable ties 50p. 100 Assorted resistors 60p.
100 Assorted resistors 60p. 100 P.C.B. spacers 40p
100 Assorted capacitors £1.50. 100 Rivets mixed 35p
100 Lengths of Heat Shrink Sleeving 40p.
50 Micro switches (mixed) £2.50
100 Self tapping screws 50p. 100 BA Bolts mixed 50p.
100 NA Bolts mixed 50p. 100 BA Bolts mixed 50p
50 Solder tags 25p. 50 Reed switches £2.00
100 Presets mixed £2.00. 50 Fuses 250 ma 1lin. £1.50
100 P.C. Chips mixed £1.00. 10 0A01 Diodes £1.10
10 Nixie tubes on panels £1.25. 50 Rubber Grommets 40p.
10 P.C.B.s with markings for P.S.U. panels 60p
10 Mullard OC 71 Transistors £2.25.
10 Assorted Micro switches 60p. 100 Brass eyelets 25p.
100.022 mfd Polyester Capacitors £2.00
0.047 mfd Polyester C280 Capacitors 4p each £3.00 100.
470 K. Lin Pots with lin. dia. shaft 40p, each.
1N4001-7 Diodes 8p each or 50p, per 10.
Diodes 1amp 300 volts 40p per 10.
8 way Terminal blocks 25p each.
Rotary switches Tp 2W Centre off 25p each.
1N4142 Diodes 5p each. 1N4142 Diodes 6p each.
Panels with 2 phono sockets & 1 d.in. socket 40p each.
29 Volt Les Bulbs 5p each. Spade connectors 16p doz.
Relays 24 V.D.P. C/O plug in 35p each.
33 mfd 500v C Can type capacitors 40p each.
Multi-turn presets 5x 25p each.
Presets 250k 5p each. 2.5m Presets 5p each.
Amplifiers (works from 14 to 6 volts) 40p each.
Tag strip 7 way 8p each. Fuseholders 9p each.
Ferrite rods 5m 35p each. 50 Circuits mixed 25p.
Resistors ± 2p each. ± 5watt 3p each.
C-Mos 4013 IC Circuits flip-flops 20p each.
LEDS ±12-14p each. ± 2-15p each.
BC107-8-9 Transistors 10p each.
Capacitors 32 x 32 MFD 450v 46p each.

We stock 1000s of components too numerous to list. Why not pay us a visit when in the Shrewsbury area.

AERIAL SPLITTERS
2-UNF Televisions from one aerial.
Price £1.70.
10 Assorted Co-ax plugs £1.20.
Low loss Co-ax Cable white 15p per metre.
100 MULLARD C280/C281 CAPACITORS
Values from 0.1uf to 1.5uf 250vW, our choice, good mixed selection. Price per 100 £2.00.
AERIAL AMPLIFIERS
Aerial amplifiers can produce remarkable improvement on the picture and sound in fringe or difficult areas.
S40 - for mono or colour this is tunable over complete UHF television band.
B11 - for stereo or standard VHF/FM radio.
B11A - 2 Aircraft bands.
All amplifiers are complete and ready to use.
Battery type PP3 or B to 15v dc, or, using the set type fitting, Prices £6.70 each.
SIGNALL INJECTORS with (pre-set) variable AF, which emits RF harmonics into the UHF band. Protected up to 300 watts dc. Complete with leads £5.70 each.

All prices include VAT at 15% P&P per order. S.A.E. for leaflets. Access cards.

ELECTRONIC MAILORDER LTD,
62 Bridge Street, Ramsbottom.
Via Bury, Lancs. BL0 9AGC. Tel. Ramsbottom 3036

BUILD YOUR OWN
P.A., GROUP & DISCO SPEAKERS by R. F. C. Stephens
Save money with this practical guide. Plans for 17 different designs. Line source, I.B., Horn and Reflex types, for 8"-18" drive units. £3.95 post free ($5 overseas).

THE INFRA-BASS LOUDSPEAKER by G. Holliman
(full constructional details for versions using 15", 12" and 10" (drive units). £2.95 post free ($5 overseas).

THE DALESFORD SPEAKER BOOK by R. F. C. Stephens
This books is a must for the keen home constructor. Latest technology DIY designs. Plans for I.B., and Reflex designs for 10-100 watts. Also unusual centre bass system. £2.20 post free ($5 overseas).

VAN KAREN PUBLISHING
5 Swan Street, Wilmslow, Cheshire
RADIO & ELECTRONICS CONSTRUCTOR

Single Copies
Price 60p each, p&p 18p
Issue(s) required ..

Annual Subscription
Price £9.50 inland, £10.50 overseas (including Eire)
post free, commence with

Bound Volumes:
Vol. 27. August 1973 to July 1974 Price £3.00, post & pkg £1.30
Vol. 32. September 1978 to August 1979 Price £5.50, post & pkg £1.30

CORDEX SELF-BINDERS
With title, 'RADIO & ELECTRONICS CONSTRUCTOR' on spine,
maroon only Price £2.25, post & pkg 50p
With no title on spine, maroon Price £2.25, post & pkg 50p
With no title on spine, green Price £2.25, post & pkg 50p

Prices include V.A.T.

DATA BOOK SERIES
DB5 TV Fault Finding, 132 pages Price £1.20, P.&P. 27p
DB6 Radio Amateur Operator's Handbook,
 New edition in course of preparation
DB17 Understanding Television, 504 pages Price £3.95, P. & P. £1.00
DB19 Simple Short Wave Receivers
 140 pages Price 80p, P. & P. 27p

STRIP-FIX PLASTIC PANEL SIGNS
Set 4: Wording – Black – 6 sheets Price £1.50, P. & P. 11p
Set 5: Dials – 6 sheets Price £1.50, P. & P. 11p

Prices include V.A.T.

I enclose Postal Order/Cheque for in payment for

NAME ..
ADDRESS ...

(BLOCK LETTERS PLEASE)

Postal Orders should be crossed and made payable to Data Publications Ltd.
Overseas customers please pay by International Money Order.
All publications are obtainable through your local bookseller
Data Publications Ltd., 57 Maida Vale, London W9 1SN

PLEASE MENTION THIS MAGAZINE WHEN WRITING TO ADVERTISERS
A voltage regulator is intended to provide a nearly constant supply voltage for a load despite varying load current and varying regulator input voltage. In (a) the zener diode is a reverse biased silicon diode which is designed to break down at a specific voltage. The voltage-current characteristic is shown in (b). As the reverse voltage approaches the breakdown zener voltage reverse current starts to flow and, after some curvature, produces nearly a straight line graph. Vs divided by Is is the zener "slope resistance". The value of R in (a) is chosen to ensure that, within its permitted dissipation figure, the zener diode functions on the straight part of its characteristic at all load currents and unstabilized input voltages. In (c) the added emitter follower carries nearly all the load current, so that variations in the latter have only a small effect on zener diode current.

The forward biased light-emitting diode of (d) drops a voltage of typically 1.6 volts which increases only slightly with increasing forward current. It may in consequence be used as a voltage regulator. So also, as in (e), may a series chain of forward biased silicon diodes, each of which drops around 0.6 volt, again with a zener-type voltage-current characteristic.

An amplified voltage regulator is illustrated in (f). A reference voltage from the zener diode is applied to the non-inverting input of the amplifier whilst a fraction of the regulated output voltage is applied to the inverting input, giving the relationship shown. Any very small change in regulated voltage at once produces an amplified correcting voltage in the opposite direction at the amplifier output, and a very high level of voltage regulation results.
A massive new catalogue from Maplin that’s bigger and better than ever before. If you ever buy electronic components this is the one catalogue you must not be without. Over 300 pages, it’s a comprehensive guide to electronic components with thousands of photographs and illustrations and page after page of invaluable data. We stock just about every useful component you can think of. In fact, well over 5000 different lines, many of them hard to get from anywhere else. Hundreds and hundreds of fascinating new lines, more data, more pictures and a new layout to help you find things more quickly.

Maplin

Maplin Electronic Supplies Ltd.
All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR.
Telephone: Southend (0702) 554155, Sales (0702) 552911.
Shops:
159-161 King Street, Hammersmith, London W6. Telephone: (01) 748 0926.
284 London Road, Westcliff-on-Sea, Essex. Telephone: Southend (0702) 554000.
Both shops closed Mondays.

www.americanradiohistory.com