Eectronic Enginearing

FEBRUARY I951

ing. lonisation testing. Electron-optical equipment. Geiger-Muller Tubes. Photo multiplier Tubes. High speed cathode ray tubes. Chemical Analysis. Electrostatic precipitation. Air Cleaning, etc.

Full lists and prices sent on request HAZLEHURST DESIGNS LIMITED

introduced by
This is news of great importance to the Television Industry. The production of these steel tubes by the English Electric Valve Company means:

- A new source of supply
- Greater prospects in the "big screen" market
- Almost flat face plate
- Improved directly viewed pictures
- Stronger tubes for lighter weight
The new techniques used in the design and manufacture of the metal tubes bring increased picture brightness, improved picture detail resolution, good contrast even under high ambient light conditions, and a large screen area in relation to face area. Size of tube $16^{\prime \prime}$ diameter.
List price $£ 16.0 .0$, plus $£ 4 \cdot 3 \cdot 3$. Purchase Tax.

All enquiries to

THE ENGLISH ELECTR|C COMPANY LTD.
Television Department, Queens House, Kingsway, London, W.C.2. Telephone: Hol. 6966

The charge for these advertisements at the LINE RATE (if under I" or 12 lines) is : Three lines or under $7 / 6$, each additional line $2 / 6$ The line averages seven words.) Box number $2 /-$ extra, except in the case of advertisements in "Situations Wanted," when it is added ree of charge. At the INCH RATE (if over l" or 12 lines) the charge is $30 / \cdot$ per inch, single column. Prospectuses and Company We advertisement. Repliesto box numbers should be addressed to: Morgan Bros. (Publishers), Ltd., 28, Essex Street, Strand, London, W. 2 , and marked "Electronic Engine

OFFICIAL APPOINTMENTS

B.B.C. invites applications for a post of Enginee in the Studio Section (Recording) of Planning and installation Department, based in London Applicants should have a good theoretical and practical knowledge of the principles involved in adio-frequency and sound-recording work. A University Degree in Electrical Engineering, or equivalent qualifications, would be an advantage The successful candidate must be prepared to spend a considerable amount of time away from London, as he will be required to plan and supervise the installation of sound-recording equipment at any of the Corporation centres throughout the country Starting salary, $£ 745$ per annum (may be ligher if qualifications and experience are exceptional), rising by annual increments on a five-year pro gression to 2965 per annum. The successiul appacant will become eligible for consideration for appointment to established staf (Contributory Applications, stating age, qualifications and Applications, stating age, qualications and Officer, Broadcasting House, London, W. 1 within seven days

ADMIRALTY. Vacancies exist for Electrical and/or Mechanical Engineering Draughtsmen in Admiralty Research and Development Establishments located in the vicinity of Weymouth. Portsmouth, Teddington (Middlesex) and Baldock (Herts.). Draughtsmen experienced in light and electronic equipment are particularly needed Candidates must be British subjects of 21 years of age and upwards, who have had practical workshop experience (preferably an apprenticeship), together with drawing office experience. Appointments will be in an unestablished capacity, but opportunities may occur for qualified staff to compete for established posts. The salaries offered, deponding on age, experience, ability and place of duty, will be within the range $£ 283-£ 510$ per annum. Exceptionally well-qualified candidates may be considered for appointment in a higher grade within the salary range $£ 470-£ 610$ per annum. Hostel accommodation is available at some establishments. Applications, stating age and detaits of technical qualifications and apprenticeship (or equivalents) and workshop and drawing office experience. should be sent to Admiralty (C.E.II, Room 88), Empire Hotel, Bath. Original testimonials should not be forwarded with application Candidates required for interview (at London two weeks of receipt of application. W 2687

SITUATIONS VACANT

DEVELOPMENT ENGINEERS required by firm in N.W. London manufacturing an extensive range of industrial instruments and controls. Candidates should have a good theoretical background, preferably with a Degree, or equivalent, in Physics or Electrical Engineering, and in addition should havo experience in one of the following: (a) Industrial instruments and process control. (b) Servo mechanisms. (c) Magnetic amplifier design. (a) Application of electronics to industrial measurements and control. The starting salary will be according to the experience of the applicant, to 650 per annum for specially qualified applicants. Write Box No. W 2696.

PROTOTYPE WIREMEN required for producing highest grade television transmission and other equipment. Applicants should possess sound fundamental knowledge of both radio and television, together with some experience of layout and wiring of video equipment. Wiring to be of instrument standard and applicants must be capable of producing own component layouts. City and Guids, High Nat. or similar qualifications, desirable, but comprehensive practical experience acceptable in lieu. Write, stating age, experience Wowky Bridge Road, Lower Sydenham, S.E. 26 .

W 2700

ASSISTANT, with BSc or equivalent required for High Frequency Laboratory in Research for High Frequency Laboratory in Research in North Kent. Reply Box No. W 2697.

JUNIOR ENGINEERS, interested in radio/radar nd servo-mechanisms, are required in specia English Electric Company laboratories, working on new defence project. Preference given to applicants with Ordinary or Higher National Certificate in Electrical Engineerig. Progressive post. Commencing salary, $\mathbf{~} 400-\mathbf{2 6 0 0}$ per annum, and Services, English Electric Co. Lid., 24-30. $\begin{array}{ll}\text { Services, English Electric Co. Lid., } \\ \text { Gillingham Street, London, S.W.I. } & \text { 240, } \\ 2705\end{array}$

EX-R.E.M.E. Officer or Mechanical Engineer with organising ability, required to assist in th organising of light engineering constructiona pe, and supervise field trials of a novel device Apply, giving full details, and mentioning Ref. 487 Lid., 24-30, Gillingham Street, London, S.W.1.

HOUSE (married accommodation) available for Senior Engineer for experimental work on servomechanisms required for important defence project in special English Electric Company laboratory. Permanent post. Good experience in servo design essential. Commencing salary, $£ 700-£ 900$ per annum. Apply, giving full details and quotin Ref. 844 A , to Central Personnel Services, English Electric Co. Ltd. 24-30, Gillingham Stree London, S.W.I.

W 2707
WANTED, experienced Electronics Engineer, to ake charge of investigations with effects o vibration or electronic gear and development of anti-vibration measures, in special English Electric Company laboratory. Starting salary, \&600-£800 per annum, according to qualifications. Apply giving full details and quoting Ref. 850, to Centra Personnel Services, English Electric Co. Ltd., 24-30 Gillingham Sireet, London, S.W.I. Wi 2708

DRAUGHTSMEN and Designers are required by the Research Laboratories of the General Electric Co. Lid., Wembley, Middlesex, for work of grea hational importance in the field of electronics Preference will be given to candidates aged 21-30 who have had practical workshop or laboratory experience. Attractive starting salaries will be paid. Applications should be sent in writing to the Personnel Onicer (Rer. GBLC/411) and should give details of age, qualifications and experience

W 2703
MARCONI'S WIRELESS TELEGRAPH Co. Ltd. have vacancies for Technical Assistants fo contract work in their Broadcasting Division Appleant should duction Some experience of broadcasting or celevision equipment would be an advantage Successful candidates will be paid a salary in grade whicl rises to a maximum of £sis pe annum. A Staff Pension Scheme is in operation Please write, giving full details and quotin Ref. 847, to Central Personnel Services, English Ref. 847, to Central Personnel Services, English London, S.W.1. 2

ELECTRONIC ENGINEER, with Physics or Engineering Degree, capable of lecturing semi technical and technical students on theory and practice of radar, required by large Light Engineer ng Company, East London district. Applications in writing, giving details of age and qualifications to Box No. W 2701.

KADIO MECHANIC wanted for development of industrial electronic equipment. Teddington area Write, stating experience and salary required, to
Box No. W 1242 . Box No. W 1242.

RADIO AND TELEVISION Development Engineers required by large Company in Eas London area. Applicants should have technical qualifications and several years laboratory positions with good prospects. Kindly state full positions with good prospects. Kindly state full and salary required, to Box No. W 2710.
E.M.I. ENGINEERING Development Limited require experienced Electronic Engineers, including team leaders, for the development and design of Appla degree or equivalent technical training with a degree, or equivatent qualification, and several years experience in this field; a thorough knowledge of microwave technique and ability to originate circuitry is
essential. The appointments are for permanent essential. The appointments are for permanent
pensionable stafi and carry a good salary and excellent prospects. Applicants should write excelient prospects. Applicants should write,
quoting ED/34, and give full details to Personnel Department E.M.I. Engineering Development Limited, Blyth Road, Hayes, Middlesex. 2709

HOUSE (married accommodation) availabie for Senior Engineer for experimental work on radar radio and/or electronics for important defence project in English Electric Company laboratory Honours Degree preferable. Commencing salary 2 700 - 2900 per annum. Apply, giving full detail Services, English Electric Co. Ltd., 24-30 Gillingham Street, London, S.W.1. Ltd., W 2704

A VARIED and interesting opportunity occurs for versatile Physicists or Electronic Engineers who versatile Physicists or Electronic Engineers who wish to apply scientific principles to a wide range of problems in the Engineering Industry. Applica
tions are invited for posts in the West London area and should give full details of education, qualifications experience and salary required, to Box A.E.219, c/o Central News, 17, Moorgate, London,

RADAR ENGINEERS required by London firm speciaizing in Marine Radar. Applicants should be ex-Army Staff Sergeants or Navy P.O. Grades, with experience of Service Radar and passed long Radar Course. Apply Box No. W 2711.

A KADAR Engineering Post offering great scope for advancement in well-paid and interesting work is available immediately. Applicant must be competent and well-qualified engineer, with sound and broad experience in modern design techniques, who can quickly prepare himself for a senior position, involving responsible development work in the field of high voltage pulse techniques. Applications, giving age, qualifications and experiences, to The Radar Laboratory, Decea Radar Ltd., Shannon Corner, New Malden,
Surrey. Surrey.
FERRANTI LIMITED have vacancies at their Radio Works, Moston, Manchester, for: (a) A young Graduate in Physics or General Science, to assist in the General Physics Section of the Laboratory (Reference G.P.). (b) An Honours Graduate in Physics, interested in Thermionic Emission, Electron Optics, Vacuum Techniques and General Electronic Process work, to assist in the Physical Laboratory on production control o cathode-ray tubes (Reference, C.R.P.). Libera salary, according to qualifications and experience Pensionable appointment. Application forms
from the Staf Manager, Ferranti Ltd. Hollin wood, Lancs. Please quote appropriate reference

W 2714
PHYSICAL CHEMIIST or Physicist with a good Honours Degree, is required for fundamental work on semi-conductors. Graduate with 3-5 years experience in this or a related field will be preferred. Some "Solid Physics" experience is desirable. Applications, in writing, should be sen to the Personnel Officer (Ref. GBLC/447), Research Laboratories of Me General Electric Co
Ltd. North Wembley, Middlesex, stating age academic record and post-graduate experience. 2717
W 271

A TECHNICAL ASSISTANT is required with considerable experience of the Wire and Cable Industry for light current and electronic engineering. The posilion involves a wide knowledge of specifications, the ability to prepare and maintain a clist designers in choosing cables. Laboratory assist designers in choosing cables. Laboratory experienciving Apply. giving age, fullest details of experience, etc. Development Lid ED/B, Blyth Road Hayes Middlesex. Lid, ED/B, Blyth Road, W 2718

THE MULLARD RADIO VALVE Company require : (a) Senior Research Pbysicist for work in connexion with research and development on special valves. Ist or 2nd Class Honours Degree and previous experience of this type of work essential. Salary according to age and experience. (b) Three Physicists or Engineers for research and development on special valves. 1st or 2 nd Class Honours Degree and previous research experience preferred. Applicants should not be over 25 years of age. Commencing salary according to age and experience, but will not be less than $£ 450$ per annum for week of 39 ? hours. (c) Six Laboratory and Technical Assistants, to assist in the production and development of valves. Inter B.Sc. or equivalent and previous experience preferred. Commencing salary not less than $£ 325$ per annum for week of 44 hours. Write for application forms,
quoting Ref. (a), (b) or (c), to Personnel Officer, quoting Ref. (a), (b) or (c), to Personnel Officer, $\begin{array}{lll}\text { Mullard Radio Valve Company Limited, New } \\ \text { Road, Mitcham Junction, Surrey. } & \text { W } 2713\end{array}$

LABORATORY ASSISTANTS and Radio Mechanics with Ordinary or Higher National Certificate or City and Guilds Full Technological Certíficate, are required at Stanmore, Middlesex, for work with research engineers engaged on new developments. Experience in a radio or television laboratory and ability to construct wire and test communications equipment and to use machine tools are essential. Replies will be sent to all applications sent to the Personnel Officer, Research Laboratories of The General Electic Co. Lid. East Lane, North Wembley, Middlesex (Ref GBLC/445), which give details of age, qualifications
and experience.
W 2715

GRADUATE PHYSICISTS and Engineers are required by the Research Laboratories of The General Electric Co. Ltd., North Wembley, Middlesex, for: (a) A research group concerned with microwave valves. Applications are invited from those interested in both the theoretical and experimental aspects of the fundamental problems concerned with the interaction of electrons with electro-magnetic fields. (b) Work concerning problems of experimental valve constructional techniques. A man with experience in this field would be preferred. (c) Problems of waveguide ransmission. A sound theoretical knowledge of this field of work is required, together with an interest in the engineering applications Candidates should write to the Personnel Officer (Ref. GBLC/447), giving age, qualifications and
experience.
W 2716

UNITED SHEFFIELD HOSPITALS. Royal Infirmary, Sheffield. Applications are invited from suitably qualified persons for the post of Senior Technician to the Department of ElectroEncephalography, shortly to be set up at the Roya Infirmary. The salary paid will be in accordance with qualifications and experience of candidate who should possess a full knowledge of the working of the electro-encephalograph and be able to undertake the necessary recordings. Applications, together with copies of testimonials, to be addressed to the undersigned forthwith. Frank Hart, Superintendent, Royal Infirmary, Sheffield, 6.

W 1248

APPLICATIONS are invited for the post of Electronic Assistant in the University Mathematica Laboratory for work in connexion with electronic calculating roachines. Candidates, who should be over 21 years of age and have completed National Service, should have had some experience in Electronics and should be able to read circui diagrams and wire-up chassis. The commencing wage will be within the range $£ 234$ - $£ 338$ by $£ 13$ per annum, according to experience and age. Applications should be sent at once to the Director, Unine Cambridge Laboratory, Free w 1237

ELECTRONICS TECHNICIAN wanted by University Department in a Medical School to assist with the design, construction and raaintenance of apparatus for electro-physiological research. Must have wide knowledge of audio and radio frequency techniques, cathode-ray oscillography and photographic recording. Work shop experience an advantage. Salary in range Allowance and Superannuation. Apply, in writing, Middlesex Hospital Medical School, London, W.1.

LABORATORY ASSISTANT, B.Sc. Degree standard, Electronic Engineering, industrial experience not necessary, to train in laboratory of a firm of high voltage Engineers. Progressive post for right candidate. Salary according to qualifications. Please ring PARK 6955 or write to Box No. w 2719.

RESEARCH LABORATORIES of The General Electric Co. Lid., North Wembley, Middlesex require a Graduate in Physics or Engineering with 3-5 years" experience in work of an electronic mature for research on all aspects of receiving valve applications, including investigations of perforni ance at high and low frequencies, standardisation of new types, noise, microphony, etc. Previous Applications tois feld will Applications, giving details in writing of age Personnel Officer (Ref. GBLC/475) W 2720

PHYSICAL CHEMIST of Electro-Chemist required to build up and operate a small pro duction unit for the manufacture of a new type of lectrolytic condenser. Previous experience of electrolytic condenser manufacture and testing in Northamptonshire. State full details to Box No. W 2721 .

PROMINENT AIRCRAFT firm in Greater London area, commencing new project of great National importance, offers unique opportunity for advancement. High salaries with monthly staff status and Pension Scheme offered to suitably qualified applicants. Electronic Engineers with Ist Class Honours Degree in Mathematics or Engineering preferably with several years' practical experience, though not essential. Apply, stating
age, nationality and experience, to Box Ac. 58212 , age, nationality and experience, to Box Ac. 58
Samson Clarks, $57-61$, Mortimer Street, W.I.

W 131
RADIO AND RADAR Mechanics. Ferranti Limited have additional vacancies in their Edinburgh Works for fully qualified men capable of constructing and testing electronic equipment. At least five years' practical experience and City and Guilds qualifications desirable. Interesting nonrepetitive work offering scope for initiative. Starting wage according to qualifications. Apply, quoting Kef. R.M., and giving full details of experience, etc., to the Personnel Officer, Ferranti
Lid,. Ferry Road, Edinburgh. 130

ELECTRONIC TEST ENGINEERS (2) for interesting post development work, including the design of test equipment. Should have Degree in Electrical Engineering, or equivalent, and preferably experienced in electronics. Apply, quoting ably experienced in electronics. Apply, quoting qualifications and experience, to the Personne Officer, Ferranti Ltd., Ferry Road, Edinburgh.

MARCONI'S WIRELESS TELEGRAPH Co. Lid. invite applications from persons interested in joining teams which will spend a considerable time propagation experiments leading to the selection of sites for the erection of wireless stations Preferably applicants should possess a University Degree but consideration will be given to those possessing other qualifications. Selected applicants possessing other qualifications. Selected applicants will be trained under expert guidance in this country before taking up duties, and will be employed in the laboratory during intervals of successful applicants will receive an overseas successful applicants will receive an overseas
allowance and liberal expenses whilst abroad. The Company operates a Staff Pension Scheme. Apply, quoting Ref. 833, to Central Personnel $\begin{array}{llll}\text { Services, English Electric Co. Ltd., } & \text { 24-30, } \\ \text { Gillingham Street, London, S.W.1. } & & 2672\end{array}$

TECHNICAL Writer required for leading company in London engaged in radio, radar and electronics in London engaged in radio, radar and electronics have withinternational business. Applicants must design staff and to compile technical manuals, design staft and to compie technical manuals, subjects for editorial purposes. The position offers wide scope for initiative and the opportunity of building up an efficient technical information department. Previous experience in this field essential. Please write fully in confidence, stating technical qualifications, age, salary required and all details, to Ref. CJ. Box No. W 2671.

ENGINEER, capable of initiating production of bigh stability carbon resistors, or precision conright man. Write, stating experience, etc. Box

ELECTRICAL ENGINEERS wanted by large firm in the Manchester area to specialise in the laboratory development of servo-operated and process control instruments. Apply, in writing, stating age, qualifications, experience, salary required, etc., marking envelopes "Meter," to Box No. W 2669.

WELL-KNOWN Firm of Precision Engineers and Scientific Instrument Makers requires Research Physicists and Engineers for the Physics and Electronic Circuits Division of their Research Laboratories situated on the northern outskirts of London. Vacancies exist for: (1) A Senio Research Engineer, age 30 to 40, starting salary $£ 1,000$ to $£ 1,500$ per annum, according to qualifica tions and experience. (2) Research Engineers and Research Physicists, age 25 to 30 , to take charge of small research groups, starting salary $£ 700$ to El,000, according to age and experience. (3) Junior Research Physicists and Engineers, age 21 to 26 , starting salary $£ 350$ to 270 , according to age and experience. Candidates for posts (1) and (2) are expected to have an Honours Degree in Physics or Engineering and to have had research experience. For one of the posts under (2) experirequired for in advanced circuit techniques is required; for other posts, particular research experience is not important but the research to be carried out will be mainly on the properties of materials. Candidates for posts under (3) are expected to have an Honours Degree or research experience. All posts will be permanent and a
Superannuation Scheme, to which the firm con rributes, will be available to those successful candidates who wish to join. Applications must be made in writing by 14 th February, 1951. Before appointment candidates will be expected to attend an interview in the vicinity of London. Reasonable travelling expenses will be paid. Box No. W 2668.

MARCONI'S WIRELESS TELEGRAPH Co. Ltd. have vacancies for Junior Engineers in the Television Demonstration Section of their Broadcasting
Division. Applicants should preferably lave had Division. Applicants should preferably lave had experjence in the installation, operation and maintenance of television or film production equipment. Successful candidates will be paid a salary in a grade which rises to a maximum of $£ 590$ per annum. Subsequent promotion will be by transfer to other sections of the Division. The Company operates a Staff Pension Scheme. Please write, giving full details, quoting Ref. 467A. to Central Personnel Services, English Electric Co.
Lid., $24-30$, Gillingham Street, London, S.W.1.

W 2665

ENGLISH ELECTRIC require a Technical Representative for the Birmingham area. Candidates should have good experience of industrial electronic equipment and be resident in the Birmingham area Previous commercial experience in this field is desirable. Car mrovided Write, giving full details of previous experience Quoting Ref. 356 E , to Central Personnel Services, Quoting Ref. 356 E , to Central Personnel Services,
English Electric Co. Ltd., $24-30$, Gillingham Street, Westminster, S.W.I. \quad W 2666

MARCONI'S WIRELESS TELEGRAPH Co. Lid. have vacancies for Project Engineers in their Broadcasting Division. Applicants must have experienced in installation, operation and maintenance of broadcasting or television transmitting or studio equipment. Some design experience would be an advantage. Successful candidates will be paid a salary in the grade of $£ 440$ to $£ 880$ per annum, the starting point being determined The Complicant's qualifications and experience. Please write operates a Staft Pension Scheme. to Central Personnel Services, English Electric Co. Ltd., 24-30, Gillingham Street, London, S.W.I.

W 2667
A COMPANY of international repute have a vacancy for a communications specialist with experience in the planning of H.F. and V.H.F. radio networks in either the Civil or Aeronautical spheres. The post is primarily a sales one, but
some technical experience is essential applicant should bave access to Government and similar authorities likely to be interested in such equipment in both this country and overseas. This is a senior post with a commensurate salary Write, in confidence, full details of experience, age and salary required. Our staff have been informed of this vacancy. Box No. W 2656.

CLASSIFIED ANNOUNCEMENTS continued on Page 4

EKCO ${ }_{\text {radoation }}$ MONITOR Typeli32A

This Monitor is designed for use with X-Rays and will give accurate indication of dosage of soft radiation. It is self-contained and portable. There are other Ekco Monitors of similar design for Gamma dosage and Beta qualitative detection, as listed on right.

	Type 1132A	Type 1043C	Type /118A
Ronge $\mathrm{mR} / \mathrm{hr}$	$0-15$ $0-150$	$0-125$ $0-1250$	$0-15$ $0-150$
Use	X-radiation lokeV up- Wards	Gamma dosage and Beta qualitative detection	

EKCO

E. K. Cole Ltd. can supply a complete range of equipment for the radiochemical laboratory. Write for catalogue giving full specifications and prices.
ELECTRONICS

WIDE RANGE

CALIBRATED OSCILLOGRAMS

The illuminated graticule and single shot camera attachment gives clear records and accurate measurements.

STABLE TRACES

The exceptional synchron. ising properties of the Time Base, and stability of the D.C. Amplifiers aids measurement and photography.

SEE what you measure!

TIME BASE RANGES

Calibrated sweep velocities from 2 in . per sec. to 2 in. per a sec. Triggered or continuously running.

D.C. AMPLIFIERS

Voltage calibrated and fully stable Response, Maximum Gain and Sensitivity $0-20 \mathrm{~K} / \mathrm{cs} . \quad 0-2 \mathrm{Mc} / \mathrm{s} \quad 0-10 \mathrm{Mc} / \mathrm{s}$
100,000 20,000 300
$0.12 \mathrm{mV} /$ inch $\quad 0.60 \mathrm{mV} /$ inch $\quad 40 \mathrm{mV} /$ inch
Phase to frequency ratio constont. Perfect square wove definition within the limitations of each frequency range.

NAGARD

245, BRIXTON ROAD, LONDON, S.W. 9

AITRACTIVE opportunities are available at the Research Laboratories of The General Electric
Co. Ltd., North Wembley, Middlesex, for Physicists and Engineers aged $25-30$, with at least two and preferably five years' experience in research or development work in one of the following fields: (a) Microwave aerial and feeder systems. (b) Microwave transmitters or receivers. (c) Generation and handling of special waveforms as used for television, pulse multiplex or computers. These positions are especially suitable for men with good academic qualifications, experimental ability and a flair for original work. Good starting salaries with excellent prospects. Applications should
sent to the Personnel Officer (Ref. GBLC/209).

W 2670

PHYSICIST required by Radio Manufacturer in London area for work in connexion with acoustic problems. Applicants must have Degree in Physics and some development experience. The successful applicant will be required to start up and run new experience with age and salary required, to Box No. W 2654.

SALES MANAGER required to act as controller of overseas agencies for large light engineering company with offices situated in the London area. Applicants should have basic training in engineering and some electronic experience would be an advantage. Knowledge of overseas markets and experience of export sales is essential. Applicants should give the fullest details of past experience
with age and salary required to Box No. W 2655.

SENIOR PHYSICIST required for Development Laboratory situated in a country district of Essex. Applicants must have Degree in Physics and should have development experience on ceramics, preferably covering measurement of electrical properties. Housing accommodation will be available for the successful applicant. Please state full details of qualifications and experience with age and salary
required to Box No. W 2657 .

MECHANICAL ENGINEER required. Good academic qualifications and recognised apprenticeship desirable. Preferably experienced in one or more of the following: Precision mechanical design : hydraulics or pneumatic servo systems; servo theory; aerodynamics. Apply, with full details of experience and salary required to the Personnel Manager, Sperry Gyroscope Co., Lid..
Great West Road, Brentford, Middlesex. W 129

ELECTRO-MECHANICAL ENGINEER required
Good academic qualifications and recognised apprenticeship desirable. Experience in electrical and electro-mechanical methods of computation ; servo theory, and instrument design preferred. Apply with full details of experience and salary required to the Personnel Manager, Sperry Gyroscope Co., Ltd., Great West Road, Brentford,
Widdlesex.
W 125 Middlesex.

W 125

ELECTRONIC ENGINEER required. Good academic qualifications and recognised apprenticeship desirable. Required for development work on control systems. Experience of D.C. amplifiers and computing devices an advantage. Apply with full details of experience and salary required to the Personnel Manager, Sperry Gyroscope Co., Ltd., Great West Road, Brentford, Middlesex.

TELEVISION DEVELOPMENT ENGINEER, with at least four years' laboratory experience in the development of vision and sound receivers, required to fill a vacancy in a new section. Applidesign of such equipment for production. Apply in writing, giving age, qualification details of experiwriting, giving age, qualification, details of experience, and salary required, to Cinema-Television, S.E.26. W 2653

COMMUNICATION RECEI VERS. Engineer required with sound practical knowledge to take charge of small section. Full particulars in writing of past experience, and salary required,
to Box No. W 2690 . (

RUNWELL HOSPITAL, near Wickford, Essex. Recordist for Electro-encephalographic Department required. Salary $£ 300$ to $£ 350$ per annum, according to experience. Applications should be sent to the Physician Superintendent.

ATTRACTIVE and interesting openings for Graduate Physicises and Engineers, age 21-30 Gre available at the Research Laboratories, The in the following fields: (a) Radiocommunications and Telephony; (b) Waveguides: (c) X-ray Analysis; (d) Transmitting and Receiving Valves (e) Cathode Ray Tubes; (f) Vacuum Physics; (g) Illumination; (h) Domestic Heating Appliances. Vacancies exist for men and women with and without industrial experience since leaving the university. Good starting salaries will be paid and prospects will be excellent. Candidates should send details of their age, qualifications and record in writing to the Personnel Officer. (Ref. GBLC/122.)
W 2659

QUALIFIED JUNIOR PHYSICIST required for experimental work on cathode-ray tubes and allied vacuum tubes. Age 21-28. Previous experience of vacuum work desirable, but not essential. Write, stating age, experience and salary required, to Cinema-Television, Ltd.,
Worsley Bridge Road, Lower Sydenham, S.E.26. Worsley Bridge Road, Lower Sydenham, S.E. 26 .

TECHNICAL ASSISTANT required for development of electronic test gear for Vacuum Tube Department. Qualifications up to Inter B.Sc. or
Ordinary National, City and Guilds No. 2 or 3. Ordinary National, City and Guilds No. 2 or 3.
Write, stating age, experience, and salary required, Write, stating age, experience, and salary required,
to Cinema-Television, Lid., Worsley Bridge Road, Lower Sydenham, S.E. 26 .

W 2652

PLANNLNG ENGINEERS required. Intelligent and energetic men to assist in the planning of development work on electronic apparatus. One appointment wis departmen. Some practical experiell include field is essential since the duties win include, planning, estimating and forecasting. Initiative in investigating all aspects of the work with a flair
for lucid presentation of the findings will be important qualities. Adequate salaries will be paid proportional to aue and qualifications Applicants proportional to age and qualications. Applicand should send full detals of age, education and ment, E.M.I. Engineering Development Limited, ment, E.M. Hengineering Development Limited,
Bly 2663

INSTRUCTOR in Radio and Television Servicing required for the Manchester area. In addition to taking charge of short practical courses in television servicing, this instructor should be able to lecture to the level of the City and Gui!ds Radio II salary depends on experience and qualifications and will be in the range of $£ 450$ to $£ 650$ per annum. Applications, with the names and addresses of two persons to whom reference may be made, should be sent to : The Principal, E.M.I. Institutes, Lid., 10, Pembridge Square, London, W.2. W 2693

TECHNICAL WRITERS (female) required to prepare and edit reports and handbooks for publication. Qualifications: A good general training in electronics with practical experience of electronic equipment desirable : marked critical faculty, and ability to write clear English. Applicants should write, giving full details and quoting ED/19, to Personnel Department, E.M.I. Limited, Blyth Road, Hayes, Middlesex.

W 2695
E.M.I. Engineering Development Limited have a number of vacancies for Engineers and Senior Engincers on interesting development work in various electronic engineering projects. The posts are for permanent pensionable staft and offer good prospects. Qualifications A Degree in Physics or engineerng or or years design or following fields:-(a) I F Equipment (b) Tele vision Equipment:(c) Microwave Techniques (d) Pulse Techniques (c) Microwave Techniques (d) Pulse Techmiques , (e) Servo mechanisms should write giving full details of experience and type of work required, and quote ED/33, to type of work required, and quote ED/33, to
Personnel
Department, E.M.I. Engineering. Development, Lid., Blyth Road, Hayes, Middlesex

EXPERIENCED Electronic Engineers required for interesting development work. Qualifications : A good Honours Degree in Physics or Engineering with several years' design experience, including radar equipment or specialized experience on centimetric techniques. The appointments are for permanent pensionable staff and offer good prospects. Applicants should write, giving full
details and quote ED/32, to : Personnel Departdetaits and quote ED/32, to : Personnel Depart-
ment, E.M.I. Engineering Development Limited, ment, E.M.I. Engineering Development Limited,
Blyth Road, Hayes, Middlesex.
W 2662

ASSISTANT to Engineer in charge of the Dovelopment Laboratory required by large light engineering company in London area. Applicants should be and electrical knowledge. Experience in the design and electrical knowledge. Experience in the desig and mechanical instrument assemblies, and and mechanical instrument assemblies; and laboratory staff is essential. The appointment is a senior one and a commensurate salary will be paid. Kindly state full details of qualifications and experience, with age and salary required to Box No. W 2664
E.M.I. Institutes. Principal : Professor H. F. Trewman, M.A.(Cantab.), M.I.E.E., M.I.Mech.E. M.Brit.I.R.E. The introduction of our four-year course has created vacancies for lecturers in Electronic and Telecommunications Engineering. Applicants for these posts should be graduates in Physics or Electrical Engineering and should possess industrial experience, with preferably some instructional experience. Applicants should be between 23 and 30 years of age. The commencing salary depends on qualifications and experience and will be in the range of $£ 510-£ 730$ per annum Applications, stating age, qualifications and experience, with the names and addresses of two persons to whom reference may be made, should b 10, Pembridge Square, London. W.2. W 2694

DYNATRON RADIO require highly experienced Radio and Television Service Engineer. First class applicant with pleasing personality, and good driver only need apply: Personnel Manager, head, Berks.

REQUIRED by the British Telecommunications Research. Ltd., at their research and development laboratories in Bucks., several sentor radio communication fields. Salary range $£ 400$ to $£ 800$ pe and U.H.F. fields. Salary range 2400 to 2800 per annum. Application forms available from Court, Taplow, Bucks. Suitable applicants will be invited for interview. W 2692
-
ADMINISTRATIVE ENGINEER with experience of technical correspondence and pre paration of contracts required by department of Midlands firm engaged in electronic control per annum according to experience. Write giving details of age and experience mention ing reference HBG to Box No. W 2685.

ELECTRONIC ENGINEER required for development work by expanding industrial elecronic team of well known manufacturin company. Previous experience of servo mechanisms and industrial process control together with Degree of H.N.C. essential. Write giving full details
Box No. W 2684.

MARCONI'S WIRELESS TELEGRAPH Co Ltd., have vacancies for two engineers fo work on VHF Development. Applicants for the first post must have good practical know ledge and experience on VHF Low Power Transmitters. For the second post, experience on Multiplex Channelling Audio and/or Video is required. Applicants must be familiar with problems on linearity, distortion, etc., and a knowledge of centimetric techniques would be an asset. Salary will be not less than e650 per annum and may be higher for candidates witl outstanding qualifications and experience The Company has a Staff Pension Fund Please apply giving full details, quoting ref Electric Co. Ltd., 24-30 Gillingham Street London, S.W.1.

ELECTRONIC Development Engineers. Senior and Junior Electronic Engineers required for design and development work on interesting new projects. Degree or Higher National Certificate essential. Good salary and excellent prospects. Pension. Scheme. State age, qualifications and experience to Personnel Manager, Fairey A

CLASSIFIED ANNOU NCEMENTS continued on Page 6

ASSISTANT Mechanical Engineer required by large well known firm to undertake mechanical design of interesting new electro mechanical equipments. The work will be varied and the prospects good. Apply quoting ref. DIH to Box No. W 2686.

NELSON RESEARCH Laboratories, English Electric Co., Stafford, have vacancies in their laboratories for men interested in experimental and theoretical work on small transformers and other allied iron core devices. This work will include the study of the behaviour of transformers, etc., under transient and steady A.C. conditions. Preference given to men with good Honours Degree in Physics or Engineering, in terested in experimental work. Experience in this field desirable but not essential. Salary according to qualifications. Apply, stating age, qualifications and experience, quoting Ref. 821 to Central Personnel Services, English Electric Co.... Ltd., 24-30 Gillingham Street, London,

RADAR, Radio and/or Electronics Senior Development Engineer wanted for work on important defence project in special English Electric Company Laboratory. Salary, £600£900 per annum, according to experience. Write perience, mentioning Ref. 456A to Central perience, mentioning Ref. 456A, to Centra 24-30 Gillingham Street, London, S.W.i

W 2678

TEST ENGINEERS required for design and manufacture of apparatus for production testing of Radar, Communications, and Electronic Equipment. Salary according to qualifications
and experience. Full details to the Personnel Manager, E. K. Cole Lid.. Malmesbury, Wilts. W 2676
E. K. COLE LTD., have vacancies in their Electronics Division at Malmesbury, Wilts., for Senior and Intermediate Draughtsmen in the Development Drawing Office, for work on Radar, Communications, and Electronic projects. Previous experience in this feld desirable but not essential. Apply, in writing, to the Wersonnel Manager, Ekco Works, Maunesbury 2677

SCIENTIFIC GLASSBLOWER for Vacuum Physics Laboratories. experienced in high vacuum work and knowledge of glass and metal seals an advantage but not essential. Interesting work in ideal conditions and surroundings. Permanent staft position. Apply, stating salary expected and giving full details of training. qualifications and experience, to Personne
Officer, Ferranti Ltd., Ferry Road, Edinburgh W 2674

VACANCIES exist for Electro-Mechanical De signers used to engineering the mechanical side of communications and similar projects, and also associated with heavy mechanisms. A good ing or similar qualification is desirable as well ing or similar qualification is desirable as well as several years experience in a Laboratory or Factory design department. Salary according to qualifications. Apply to Personnel Othcer. Mul | Nr. Redhill, Surrey. |
| :--- |
| W 2630 |

HIGH FREQUENCY Induction Heating Applications Engineer required by progressive and expanding company specialising in the manufacture of high frequency equipment. Experience in induction heating essential and a good knowledge of metallurgy would be considered as an additional qualification. The position offers excellent opportunities for advancement to a really energetic man having the requisite experience. Write giving experience and salary required to Box No
W 1213 .

FERRANTI IIMITED have vacancies in their Radio Works, at Moston, Manchester for Radio/Television Design Engineers, both senior and junior. Generous scale of payment, ex tending liberally into the four figure range, according to qualifications and experience. Permanent staff, appointments with super-
annuation benefits. Forms of application from The Staf Manager, Ferms of application from The Staf Manager, Ferranti Lid. Hollinwood,
Lancs. P.ease quote reference R.E. W 2617

INTERESTING vacancies exist witl the Nelson Research Laboratories of the Eng'ish Electric Co. Ltd., for university trained electronic engineers or physicists with an interest in the design of special circuits for computing machines. These vacancies are at Stafford and in the London area and offer scope for original work in this interesting field. Write giving full details mentioning reference 305A to Central Personnel Services, English Electric London, S.W.1. 24-30, Gillingham W 2621

RADIO VALVE ENGINEERS. The MO. Valve Company have vacancies for qualified engineers in connection with the development manufacture and application of radio valves Please apply by letter stating particulars and salary required to Personnel Department. The M.O. Valve Co., Osram Works, Brook Green, Hammersmith.

COIL WINDER required for interesting development work on a wide variety of coils and transtormers. The applicant should have had at least three years experience of factory methods on small tranformers and wave wound coils. A knowledge of design and testing methods would be an advantage. Staff appointment, salary according to qualifications. Apply
to Personnel Officer, Mullard Electronic Research Laboratory, Salfords, Nr. Redhill, $\begin{array}{lll}\text { search Laboratory, Salfords, Nr. } \\ \text { Surrey. } & \text { Redhill. } \\ \text { W } 2629\end{array}$

A VACANCY occurs for a Senior Draughtsman of at least H.N.C. standard for layout work, on interesting electro-mechanical projects. Salary according to qualifications. Apply to Personnel Officer, Mullard Electronic Research Laboratory, Salfords, Nr. Redhill, Surrey

V 2628
AN EXIPERIENCED Valve Engineer is required for employment at Chelmsford Applicants should be 25-35 years of age, qualified engineers and preference will be given to those with previous design or production experience of smali transmitting valves. Write giving full details of experience mentioning ref. Lid., 24-30 Gillingham Street, London, S.W.1.

APPIICATIONS are invited from men aged 21-40 years for work of a permanent nature which offers considerable scope for advancement. Applicants should have experience in the development and construction of Laboratory Test or Instrumentation Equipment or SubMiniature U.H.F. Gear. Ordinary or Higher National Certificate or C. and G Telecommunications (Parts II and III) desirable. Salary commensurate with qualifications and experience. Apply to Box No. W 2637.

MURIHY RADIO LTD., having recently expanded their Electrical Design Department invite applications from television and radio engineers having good academic qualifications ncering) and experience in industrial desjen ncering and experience in industrial design Lahoratories. There are also openings for graduates traincd in these branches, but without industrial experience. Applications giving should be forwarded to: Personnel Department, Murphy Radio Ltd., Welwyn Garden City, Herts.

MARCONI'S WIRELESS TELEGRAPH Co. Ltd. have vacancies for Junior Engineers to work on VHF Transmitter Development and Multiplex Channelling. Candidates should have a Degree in Physics or Electrical Engineering or equivalent qualifications, or should have had good experience on radio development or re search. Experience on VHF or Multiplex Channelling is desirable. Good salaries will be paid, hased on qualifications and experience. The company has a Staff Pension Fund. Apply Personnnel Services, English E'ectric Co. Lid 24-30 Gillingham Street. London, S.W.1.

W 2641

A NUMBER of Senior and Junior vacancies for Radio, Radar, Electronic, Television, etc., Development, Service Engineers, Draughtsmen, required, 30 Television Service Engineers. Write in confidence: Technical Employment Agency 179 Clapham Road, London, S.W.9. (BRIxton

RADIO-RADAR Development, Engineers urgently required, accommodation a vailable. A pplications are invited from Senior and Junior Development Engineers, preferably with experience of Radar or microwave technique, who are capable of developing equipment or components to Service Specifications. Successful candidates will be employed on work of great NHC (5) to Personnel Ofice quoting reterence Co Strcet, Coventry. \& Television Works, Spon

SITUATIONS WANTED

ELECTRONICS ENGINEER, B.Sc.(Hons. Eng.), 27, administrative, drawing ottice, instrument and electronic development, and design experience, seeks responsible post. Box No. W 1234.

EXPERIENCED development engineer (elec(ronics) seeks active partnership in existing firm or new enterprise. Capital available. Box No. W 1236.

GRADUATE, 5 ycars' experience in D.C. amplifiers and servos, seeks development post in medical (or similar) electronics. Box No. W 1244.

GLASSBLOWER, 20 years' experience bard and soft glass, electronic devices, vacuum circuits, glass-to-metal seals, chemical apparatus, etc. Box No. W 1245 .

MECHANICAL AND ELECTRONIC Engineer. G.1. Mech.E., age 26. Experience includes workshop training, administration, failure investigations, sales promotion, and sales information services. for initia connected with electronics and calling for initiative, enthusiasm, inventiveness, and Please write fully 10 Hox No w 1247 preferred Please write fully to Box No. W 1247

FOR SALE

AMERICAN MAGAZINES. One year post free. Radio Electronics, 32s. 3d. "Audio Engineering," 28s. 9d. "Radio and Television
News," 36 s .: "Popular Science," 28s. 6d. News, for full list from Willen Ltd., (Dept. 9), 101 Fleet Street. London. E.C.4.

GLASS-TO-METAL SEALS and High Vacuum by Hall, Drysdale \& Co. Lid., of 58 Commerce Road, Wood Green, London, N.22. 'Phone:
BOWes Park 7221.

COILS. Special inductances $1 \mu \mathrm{H}$ to 2 H at RF, singly or quantity, wound to order. Bel Sound Products Co., Marlborough Yard, Archway,
N.19. Archway 5078 . 112

WEBR'S 1948 Radio Map of World, new multi-colour printing with up-to-date call signs and fresh information; on heavy art paper, $4 \mathrm{~s} .6 \mathrm{~d} .$, post 6 d . On linen on rollers, 11 s .6 d . 102
post 9 d .

MERCURY SWITCHES are made by Hall Drysdale \& Co. Lid., of 58 Commerce Road, Wood Green, Londón. N.22. Phone BOWes Park 7221-2.
G. A. RYALL, " Utopia," Mayfield Road, Herne Bay, Kent, offers Post Free Bargains. Instrument boxes, metal, thick gauge, black finish, size $8+\frac{i}{}$ in by 7! in. by $3 \frac{1}{2} \mathrm{in}$. deep, with paxolin lid, $\frac{1}{2}$-in. fixing lues for wall or bench, and corner sockets for panel fixing, 6s. 9d. each. Meters, $2 \frac{1}{2} \mathrm{in}$. or $3 f$ in. overall, flush type front fixing, $0-30 \mathrm{~mA}$, good make m/c., 5 s . 9 d . And $0-300 \mathrm{v}$, 2 -in. size, square front ditto, sepa series res. FSD 5 mA ,
Ss 9d each. Miniature instrument switches $2 P$, Ss. 9d. each. Miniature instrument switches $2 P$,
$6 \mathrm{~W}, ~ i s . ~ 3 d$.
$3 \mathrm{~B}, 2 \mathrm{P}, 6 \mathrm{~W}$ five-pole, total 1 s . 6 d .

CLASSIFIED ANNOUNCEMENTS continued on Page 8

A new MINIATURE

 Voltage Reference Tube

Designers of compact industrial equipments will welcome this new Mullard Miniature Voltage Reference Tube. Built on the small B7G base, it is characterised by high stability and robust construction. It should prove of great value where an extremely accurate and reliable performance, coupled with a maximum saving of space, is required. The larger version of this tube known as the 85 Al built on a B8G loctal base is also freely available.

Working in a constant current circuit, these tubes provide a voltage source of extremely high constancy, and in the majority of applications may be used to replace a standard cell as a built-in source of voltage reference. They may likewise be used as a reference against which to compare or fix the level of almost any physical quantity which is convertible into an e.m.f. Their use in this manner in position control systems, temperature control devices, etc., will thus be apparent.

Mullard
THERMIONIC VALVES AND ELECTRON TUBES

VALVE DATA	
Nominal Operating	
Voltage	85 V
Max. Starting Voltage	125 V
Current Range	$1-8 \mathrm{~mA}$
Operating Current	4.5 mA
Internal Resistance at	
4.5 mA	290 ohms

INDUSTRIAL POWER VALVES • THYRATRONS • INDUSTRIAL RECTIFIERS • PHOTOCELLS FLASH TUBES • ACCELEROMETERS • CATHODE RAY TUBES • STABILISERS AND REFERENCE LEVEL TUBES . COLD CATHODE TUBES . ELECTROMETERS, ETC.

MULLARD ELECTRONIC PRODUCTS LTD., CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C. 2

HORIZONTAL glass-working Lathe, $12-\mathrm{ft}$ bed $12-\mathrm{in}$. centres, complete with three movable heads and also fire carriages. Further particulars S.T. \&C., Lid., IIminster, Somerset. W 1240,

[^0]MAGSLIPS at $1 / 10$ th to $1 / 20$ th of list prices Huge stocks. Please state requirements. K Logan, Westalley, Hitchin, Herts. W 116

PROF, KITAI'S ingenious valve voltmeter, assembled complete, 12 gns. Coils, transformers wound, ingly or quantity. Bel Sound Products Co. Marlborough Yard, Archway, N.19. ARC. 5078

BARREL PLATING capacity available. Cadmium, copper, tin, and electro-galvanizing Packer \& Son, Sion Place, Clifton, Bristol, 8

RUBY STYLUS, . 0027 -in. radius for E.M.I. ight Eicht Pickup. Every one shadow-eraphed Pightweight Pickup. Every one shadow-graphed with order. Bradmatic 4 s. Birmingham, 6.

NEW BOXED VALVES, fully guaranteed. 5Z4, 6X5, 6K7, 6K7GT, EBC33, 12A6, 6M7, VR137, 9D2, IC5, DDLA, 6SK7, 6AC7, 7Q7, 37. EL32, EK32, EC52, VR54, VR57, EF36, 617, 5 s .9 d . each. $607 \mathrm{G}, 6 \mathrm{Q} 7 \mathrm{GT}, \mathrm{EF} 39,5 \mathrm{E} 4 \mathrm{G}, 6 \mathrm{Cs}$, 6C6, 6D6, 807, VR150/30, 707, 6V6, 5Y4, 77, 78, 6s. 6d. each. IS4, IS5, IR5, 3S4, IT4, 7s. each.
Send for lists. CO.D. or C.WO. Carriage paid. Send for lists. C.O.D. Or C.W.O. Carriage paid. Alpha Radio Supply Co., S-6, Vinces Chambers, Victoria Square, Leeds, 1, Post orders only
W 2647

"TO SPECIFICATION" or STANDARD, if the problem is Transformers or Chokes, none are more experienced to find the solution than Partridge. Nearly two decades of specialised research and production have prompted leading industrial concerns and Government Experimental Stations consistently to use the unequalled Partridge service. Your need, too, can be adequately met for transformers ranging from 5 VA to 50 kVA -power or A.F. Send for catalogue and data sheets.

* Note: All Partridge components are now available
hermetically sealed in oil

PATIMBDCE TRANSFORMERS LTD

ELECTRICAL Measuring Instruments of every make repared and standardised. The Electrical instrument Repair Service. 129 Kilburn Lane London, W.9. Tel: Lad. $4168 . \quad$ W 2675

SPEAKERS reconed and reconditioned. Wavewound Oscillator, Aerial and I.F. Coils re wound. Transformers. Fields, Armatures rewound. H. Davies, A.M.I.P.R.E., Radio \& Transformer Services, Church Hill, Connah's Quay, Chester.

N 2680

TRANSFORMERS, Chokes and Coils. Quantities of one dozen or more at keen prices Good delivery. Ruskill Products Lid., Kingswood Works, Pitsea, Essex. Phone: Vange 3124. W 1216

GLASSBLOWING, repetition and scientific, by Hall Drysdale \& Co. Lid., of 58 Commerce Road, Wood Green, London, N.22. Phone BOWes Park 7221-2.

EDUCATIONAL

THE POLYTECHNIC, 309, Regent Street, W. 1. Electrical Engineering Department, Head of Department : W. H. Date, B.Sc.(Eng.), M.I.E.E. A special course of four lectures on Ultrasonics and its Applications in Industry will be given by L. I. Member of the Staff of the Research Laboratories Member of the Staft of the Research Laboratories of the General Electric Co., Ltd., on Fridays a 6.30 p.m., commencing March 2nd, 1951. Fee for the course, los. A syllabus may be obtained Director of Education. W 2683

-Hadiospares*

 Quality Parts
The
 Service Engineer's First Choice

SERVO CONTROL EQUIPMENT

MAGSLIPS
Resolvers, Transmiters. Hunters Receivers, ecc., $2^{\prime \prime}$ and $3^{\prime \prime}$ sypes.

SELSYNS

Power and Phase-Shifting types.
INDUCTION MOTORS AND VELODYNES
Send for list and cechnical decails.
Repair facilities for all types of British and American Magslips, selsyns, test equipment,

HOPTON RADIO,

I, Hopton Parade, Streatham High Road, LONDON, S.W.I6.
'phone: STReatham 6165

CITY AND GULLDS, (Electrical, etc.) on No Pass-No Successes. For full details of modern courses in all branches of Electrical Technology send for our 176-page handbook-Free and post free. B.I.E.T. (Dept. 337c), 17 Stratford Place London, W.I.
E.M.I. gave the world electronic television E.M.1. is now giving the finest home study television courses. Moderate terms facilities for easy payment. Free brochure giving details on applica tion to the Registrar, Dept. EE7, E.M.I. Institutes 10, Pembridge Square, London, W.2. Bayswate 5131/2.

W 2689

WANTED

 WANTED, Coherers, Fleming Valves, Lieben-Reisz Relay, Round's Type "C," T ," N ," and "CA" valves, Rangmuir Pliotron" carly and office repeaters, Marconi-Osram four-electrode office repeaters, Marconi-Osram four-electrode and Type M.T. 3 valves, Siemens-Halske Schottky
tetrode, French "Horned " or "Kamerad," White and Lowe Multiple valves, also other early White and Lowe Multiple valves, also other early vacuum tube specimens to augment a personal
historic collection. Full details and price, etc., to P, Kailus, 4625, Clausen Avenue, Western Springs, Illinois, U.S.A. W 1241

BEST OFFERS for (or offers invited) Cossor Double Beam Oscillograph. Model 1035. Model 1049 purchased for D.C. tests. Box No. W 2688.

PATENTS

IT IS DESIRED to secure the full commercial development in the United Kingdom of BritishPatent development in the united Kingdom "BritishPatent Systems" either by way of the grant of Jicences or otherwise on terms acceptable to the Patentec. Interested parties desiring copies of the patent specifications should applv to Stevens, Langner, Party \& Rollinson, 5 to 9, Quality Court, Chancery Lane, London, W.C. 2.

 TRANSFORMERS

for
QUALITY, PERFORMANCE AND RELIABILITY

A wide range available for every Radio and Television purpose.

EP. 70 SHIELDED MAINS ... 39/6
EP. 90 SEMI-SHIELDED MAINS ... $39 / 6$
EP. 76 STEP-DOWN MAINS ... $41 / 3$
EP. 87 AUTO MAINS 34/9
DP. 61 HEAVY DUTY OUTPUT ... 49/6
Full range sent on application.
Special components supplied for Home Built Televisors

OLIVER PELL CONTROL LTD
 EAMORIDGI Row EURAAGERGAD

E.M.I. TRAINING for the best posts

e.m.i. institutes, the college backed by the greatest electronic industry in the empire.

DAYTIME ATTENDANCE COURSES

- Principles and Practice of Radio-1 year.
- Telecommunications Engineering-2 years (leading to City and Guilds Final Certificate).
- Electronic Engineering-3 years (including one year's practical training in E.M.I. factories)-leading to Ciky and Guilds Full Technological Certificate.
\star Next courses commence April, 1951. Early enrolment is advised.
Moderate Terms. Facilities for easy payment.
Write for free Brochure to the Registrar, Dept. 11.

TOOL MAKERS
MOULDERS•ASSEMBLERS TUBE MAKERS

A•I•D Approved ELCO PLASTICS LTD
 TUBE LAMINATION LTD.

PLASTICRAFT WORKS
DESBOROUGH PARK ROAD, HIGH WYCOMBE, BUCKS.

the value of

to the electronic engineer
Because of their unusual properties 'dag' dispersions of colloidal graphite are constantly finding new applications in the electronics industry.

The films formed possess :Good electrical and thermal conductivity and radiation. Inertness to E.M. radiation and electron bombardment.
Opacity, Diamagnetism, Chemical inertness. Applied by brush, spray or dip, they may be used as :Electrodes in Cathode Ray Tubes, Geiger counters, radiation meters. Conducting coatings for bleeding off static. Screens on T.V. cabinets to suppress E.H.T. radiation.

Resistors-printed and conventional types.

POST THIS COUPON TO-DAY

TO: ACHESON COLLOIDS LIMITED
18, PALL MALL, LONDON, S.W.I

Please send me additional information on the above or other applications, for 'dag' in the field of electronics.

NAME

ADDRESS. \qquad

D/18

Technical excellence supported by constant research and an unrivalled knowledge and experience of Radio Frequency Cable applications, ensures the continuance of the lead established by TELCON in this field.
Even before the introduction of Telcothene* as a cable dielectric, an application pioneered by TFLCON, a range of Radio Frequency cables with unique capacity and attenuation characteristics was produced, using Telconax.
Today, developments are still going on and the solution of any problems involving the application of Radio Frequency, cables will be found in the wide range manufactured by TELCON.
\star Telcothene (Regd.)-Polythene processed by Telcon to provide specific characterisfics

Ask also for details of
 TELCON METALS

THE TELEGRAPH CONSTRUCTION \& MAINTENANCE CO. LTD FELCON
Head Office: 22, Old Broad Street, London, E.C.2. Tel : LONdon Wall $7104(\ldots)^{\circ}$ Enquiries to: Telcon Works, Greenwich, S.E.IO. Tel: GREenwich 3291

VALVES

$6 \mathrm{V6CT}$.	6/6.	VR137.	5/-.	25L6C.	7/.	6 K 7.	5/6.
6V6C.	6/6.	MS/PEN.	8/-.	6 Cb .	7/-	6 SH 7.	3/6.
$6 \mathrm{AC7}$.	6/3.	9D2.	4/9.	6 D6.	7%	6 Q 7.	6/6.
$5 \mathrm{Z4M}$.	6/-.	6H6.	3/.	6 C 5.	71	12A6.	5/9.
6×5.	6/.	154.	7/3.	DDL4.	4/6.	VU1i.	4/6.
5U4C.	6/\%	1 S 5.	7/3.	6 SK 7.	4/9.	EC52.	5/6.
6 F 6.	6/	IR5.	7/3.	12K8.	6/9.	ERC33.	5/6.
EF39.	6/-.	354.	7/3.	707.	$6 / 6$.	EA50.	2/6.
EL32.	6/..	174.	7/3.	U18.	$7 / 6$.	SP61.	3/6.
807.	61-.	41.	71.	EF8.	$7 / 6$.	SP41.	$2 / 6$.
IC5.	6!-.	42.	7/.	CV6.	1/6.	$12 \mathrm{H6}$.	4/6.
EK32.	6/.	77.	7\%.	6 J 5.	3/9.	5 Y 4.	6/9.
6 L 6.	9/-.	78.	7/.	6 J 7.	5/9.	5 Y 3.	$7 /$.
1 C 5.	6/6.	80.	7/.	37.	$4 / 9$.	EF50.	$8 /$
H63.	7/.	25A60.	71.	EF50.	71:.	Sylvania.	

WILLIAM CARVIS,

 103, NORTH STREET, LEEDS, 7

THE DONOVAN ELECTRICAL CO. LTD.
Safuse Works • Stechford • Birmingham 9

Condenser leadership - from the inside!

'VISCONOL’ CATHODRAY CONDENSERS

THE TELEGRAPH CONDENSER CO. LTD RADIO DIVISION•LONDON•W.3. Tel: Acorn OC6I (9 lines)
 WESTMINSTER COIL

FULLYAUTOMATICMULTIPLECOIL WINDER
Type 4A for precision winding of round or rectangular coils with paper interleaving. Perfect layering, smooth acceleration and deceleration from inching to full speed. Constant tension. Simple adjustments. No gear changes.

Sole Distriburars

DUAL PURPOSE SINGLE COIL WINDER Type H.B.D L for light and heavy wire gauges.
Perfect layering. Controlled tension. Simple adjustments. Wide range. No gear changes.

Designed and manufactured b.
WESTOOL LTIJ., ST. HELENS AUCKLAND, BISHOP AUCKLAND, CO. DURHAM

THE

STATION WORKS, BURYROAD
(RADCLIFFE), LANCS.

Where excellent quality reproduction is essential ..

 1. . the Metrovick
AUIDIO AMPLIFIER
is the instrument to use
This instrument is designed to give excellent quality reproduction with the added advantages of being a self-contained unit, portable and attractive in appearance. Thus it will prove ideal for Public Address work, educational authorities and similar organisations.

SPECIFICATION

Supply: $\quad 200 / 250 \mathrm{~V} 50 \mathrm{c} /$ s single-phase; consumption approximately 170 VA for full output.
Input: \quad Gramophone 0.2 V for full output. Microphone 0.02 V for full output. The two circuits can be mixed as required.
Impedance: 7 ohms, 15 ohms and 45 ohms.
Output: $\quad 20$ watts with negligible distortion.
Tone Control : Continuously variable.
Response: $\pm \mathrm{Idb}$ from 30 to $15000 \mathrm{c} / \mathrm{s}$ at zero position of tone control.
Controls: These are recessed to avoid damage and are illuminated when in operation.
Dimensions: $\quad 18 \frac{1}{2}^{\prime \prime} \times 8 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 10 \frac{1}{4}^{\prime \prime}$.
Finish :
The instrument is housed in an attractive steel case, stove enamelled in cream or blue as desired. A leather carrying handle is fitted.

METROPOLITAN-VICKERS ELECTRICAL CO. LTD. TRAFFORD PARK, MANCHESTER 17
 Member of the A.E.I.group of companies

METROVICK

- Pioneers in radio and electronic equipment

For further details apply to E.M.I. FACTORIES LTD.

HAYES • MIDDLESEX

INVESTIGATIONS IN THE SPECTRAL RANGE 2200-6000 A.U.

The Ediswan Mazda 27M3 photomultiplier has a special glass envelope which transmits ultra voilet radiation, and is characterised by high sensitivity to ultra voilet as well as to the visible region of the spectrum.

By the cylindrical formation of the secondary cathodes or dynodes (see diag.) an exceptionally compact 9 -stage multiplier is obtained, in which, by a repeated process of secondary emission, a very small photo current can be amplified by an average of one million times, when the tube is operated at 100 volts per stage.

Since the secondary emission proccss occurs instantaneously the frequency response is flat up to the frequencies, above 10^{8} c.p.s, at which transit time becomes a limiting factor. The output current is also a linear function of the intensity of the exciting radiation under normal operating conditions.

The cell is suitable for many applications where investigations are required in the spectral range 2200 6000 A.U., e.g. for U.V, absorption measurements, spectrographic and fluorescence analysis.

electrode structure,

tYPICAL OPERATION

Voltage between anode and secondary cathode $k 10$

50 volts
Voltage difference per stage 100 volt:
Max anode dark current (with 100 volt: between anode and cathode klo) $0.25 \mu \mathrm{~A}$
Luminous sensitivity (taken on the basis of a lamp colour temperature of $2700{ }^{\circ} \mathrm{K}$ and a light area of $4 \mathrm{~mm} x$ $20 \mathrm{~mm}) \quad 10 \mathrm{amps} /$ lumen
Current amplification (ratio of anode sensitivity/cathode sensitivity) 10^{6}

The "Belling-Lee" page for Engineers

B7G VALVEHOLDER

This valveholder has now been approved by the Services Committee on Valveholder Development and has reached production stage. It is intended to fill the gap between the cheaper types and the very expensive P.T.F.E. holders, and should meet the requirements of most electronic instrument manufacturers.

L718/F
 WITH FLANGE

L718/S
WITH SKIRT

Features in its design include:-
1 Low loss nylon filled moulded insulators.
2 Beryllium copper silver plated contacts differentially hardened to obtain the best possible contact pressure.
3 A flat screen providing adequate screening between contacts, easily shortened if there are space limitations.
4 Tin dipped solder tags which do not snap on bending.
5 Complies with R.C.S. 251.
6 Can be used on frequencies up to $200 \mathrm{M} / \mathrm{cs}$.
7 Experimental Inter-Services Nos. XZ. 560127 for L. $718 / \mathrm{S}$ and XZ. 560132 for L.718/F have been allocated, and it is understood that the X will be dropped now as full Type Approval has been granted.

B. Electronic

The Coupling Coil shown is supported by our "Frequelex" Ceramic Rods, and forms part of a 200 KW. Radio Transmitter.
This is only one of many applications where Rods made to close limits are required.
We specialise in the manufacture of Ceramic Rods and Tubes of various sections in several classes of materials over wide dimensional ranges.
The principal materials are:

1. Porcelain for general insulation.
2. Frequelex for High Frequency insulation.
3. Permalex and Templex for Capacitors:

The degree of accuracy depends on the size of the Rod or Tube, but the standard degree of accuracy is outlined in the Inter - Service Component Manufacturers' Council-Panel R Specification embodied in our Catalogue of Radio Frequency Ceramics, copy of which will be sent on request.
Large Rods up to $44^{\prime \prime}$ long and $x z^{\prime \prime}$ square are used as supports for Tuning Coils, etc.

We shall be pleased to have your enquiries for all sizes of Tubes and Rods. Prompt deliveries can be given for most sizes.

BULLERS LIMITED, 6 Laurence Pountney Hill, E.C.4. Phone: MANsion House 9971 (3 lines). Grams: •Bullers, Cannon, London'

Can this

Instrument

 solve aproblem

for you?

Here are some details of Model 1049 as illustrated: The Double Beam Tube presents two simultaneous independent traces over the full diameter of a 90 mm . screen, and provision is made for the measurement of both input voltage and time upon the calibrated dials of the instrument. The Oscillograph is particularly suitable for obtaining permanent photographic records using the Cossor Model 1428 Camera for which a Motor Drive Attachment Model 1429 is available.

Widely different industries are daily finding new uses for the COSSOR Double Beam Oscillograph. Sometimes it provides the answer to an industrial problem of long standing. The tracing and measurement of noise, strain and vibration are typical everyday applications of this versatile instrument which is already helping engineers in industries as far apart as brewing and the manufacture of jet engines. Call on our technical advisory staff if you have a problem. They will quickly let you know whether the Oscillograph can help you.

COSs0R

Double Heam 0SCILLOGRAPHS
Please address enquiries to:
A. C. COSSOR LTD., INSTRUMENT DIVISION (Depl.B), HIGHBURY GROVE, LONDON, N.5.

Telephone: CANonbury 1234 (30 lines)

FERRANTI TRANSFORMERS

' H ' series hermetically sealed

 ' C ' core transformers and chokesDesigned to conform to Specification R.C.S. 214 and R.C.L. 215. Fully approved by the Admiralty, War Office and Air Ministry for use in Service Equipment.

Designed to meet Customer's particular requirements. For quotations and further information please write directly to :FERRANTI LTD•TECHNICAL SALES DEPARTMENT•FERRY ROAD•EDINBURGH,5

One dog - One bone
 0ne man - one job
 0 ne plant - one purpose
 One factory - one plant

Technicians with a
background of 25 years'
experience, working with
single-purpose plant
in a factory
designed for one object produce nothing but
the high standard of
transformers
that bear the name

PARMEKO of LEICESTER

Makers of Transformers for the Electronic and Electrical Industries

Electronic Engineering

Incorporating
ELECTRONICS, TELEVISION and SHORT WAVE WORLD ${ }^{\circ}$

Managing Editor, H. G. Foster, M.Sc., M.I.E.E.

Vol. XXIII.
FEBRUARY 1951
No. 276

In This Issue

Commentary 43
The Measurement of High Vacuum by Electrical Methods-Part II. By ${ }^{\circ}$. Wade
The Home-Built F.M. Receiver Reception Tests By K. R. Sturley, Ph.D., M.I.E.E.
Electric Controllers for Laboratory Furnaces
By M. H. Roberts, B.Sc.
A Precision Electronic Tachometer
By S. W. Punnett, B.Sc., and H. G. Jerrard, B.Sc., A.Inst.P.
Inverse or Reciprocal Scales from Linear Potentiometers

By A. F. Boff, B.Sc., A.M.I.E.E.
High-Speed Waveform Monitor 60
The Effect of Pen-to-Paper Friction in Recording Instruments By M. J. Tucker, B.Sc.
The Holme-Moss Television Transmitting Station ...
A Choke-Coupled Phase-Invertor of High Accuracy By R. A. Seymour and D. G. Tucker
A Null Method of Measuring the Gain and Phase Shift of Comparatively Low Frequency Amplifiers
By T. Baldw:n, A.M.I.Mech.E., and J. H. Littlewood. M.Sc.
A Simple Analogue Computor for Fourier Analysis and Synthesis

By J. H. Bowen. B.Sc., and T. E. Burnup, D.Sc.
A High-Stability Simple High Frequency Audio Source

By W. E. Brunt
Letters to the Editor Brunt
Electronic Equipment 72
Book Reviews
$\begin{array}{cccc}\ldots & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots\end{array}$
Notes from the Industry 77
Meetings this Month 78

Published Monthly
on the last Friday of the preceding month at 28 Essex Street, Strand, London, W.C.2.

Telephone CENTRAL 6565
Telegrams 'LECTRONING, ESTRAND, LONDON '

Subscription Rate:
(Home or Abroad) Post Paid 12 months 26s. or $\$ 3.75$ (U.S.)

Classified Advertisements. Page 1.
Index to ADVERTISERS, Page 40

LACQUER RECORDING BLANKS

THE FINEST FOR LACQUER DISC RECORDING

The "Emidisc" lacquer recording blank fulfils the requirements of the most exacting standards of Broadcasting Authorities, Film and Professional Recording Studios. It may be used with confidence by the critical professional recording engineer and by the owner of the most modest equipment.
Accurate engraving to the limits of the recording equipment is ensured by these essential qualities and characteristics.

- SUPERIOR UPPER FREQUENCY RESPONSE Will record up to 20,000 c.p.s. with appropriate recording equipment
- LOW NOISE LEVEL-Average figures:
-45 db . ref. level 1 cm . per sec. velocity.
-63 db . ref. level 8 cm . per sec. velocity.
(Cut at 78 r.p.m., $9 \frac{1}{2}$ "diameter using sapphire cutter with 16 micron bevel.)
- ANTI-STATIC Easy swarf clearance with brush or low power suction systems.
- Lacquer thickness Constant over whole recording area.

Buchmann \& Meyer pattern of a gliding tone, 20 Kilocycles to 25 cycles recorded by E.M.I. Studios Ltd., on an Emidisc blank (Actual photograph).

- g000 Wearing qualities

- PROCESSING Mirror-like surface ensures ideal condition for processing (on appropriate sizes of blanks).
- PACKEO IN HERMETICALLY SEALEO mETAL CONTAINERS Ensures good shelf life and protection. $10^{\prime \prime}$ sizes and upwards have individual air separation of blanks.

Types and Sizes available for all purposes

GREEN LABEL "Standard" selected direct recording blank- $6^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}$ and $16^{\prime \prime}$ sizes.
YELLOW LABEL "General Purpose" direct recording blank- 10^{*}, $12^{\prime \prime}$ and $16^{\prime \prime}$ sizes.

PLAIN LABEL "Audition" direct recording blank for experimental and general testing work- 10^{*} and 12^{*} sizes.
SILVER LABEL "Process". The blank for processing$11^{\prime \prime}, 12^{\prime \prime}, 13^{\prime \prime}$ and $17^{\prime \prime}$ sizes.

Manufactured in Great Britain under exclusive licence from PYRAL S.A.R.L. France.

WRITE FOR FULL PARTICULARS TO:-

E.M.I. SALES \& SERVICE LTD

DOMESTIC RECORDING EQUIPMENT DIVISION

HIAQ OIFIff: hayes miodesex - ENGLAND

Electronic Engineering
 Vol. XXIII.

Commentary

$S_{B}^{1 R}$IR WILLIAM HALEY, Director-General of the B.B.C., at a Press conference on December 15 th last confirmed the plans already announced for what might be termed the Five-Year Plan for the expansion of the B.B.C.'s Television service.

Details of the proposals, which include considerable expansion in studio equipment and facilities, are to be found in the Annual Report of the British Broadcasting Corporation 1949-50 (H.M.S.O. 3s.) to which we referred editorially in the November issue of Electronic Engineering.
According to Sir William Haley, the capital expenditure over the next three years for the development of television will amount to $£ 4,250,000$ representing 60 per cent of the Corporation's income, and the timetable for the completion of the new main transmitters will be:-

Holme Moss (35 kW)-North of England Mid' 1951
Kirk o' Shotts (50 kW)-Central Scotland End 1951
Bristol Channel (50 kW)-Wales and West of England Mid’ 1952
to be supplemented by five low power transmitters as follows:-

Newcastle	1952
Southampton	1952
Aberdeen	1953
Belfast	1953
Plymouth	1954

This project which was initiated by the opening of Sutton Coldfield in December 1949 is thus expected to be completed by the end of 1954 by which time a coverage of 85 per cent of the total population will be obtained. There will still be some areas, notably East Anglia and the North of Scotland where satisfactory reception is problematical, but even so it is stated that this represents the highest service in the world.

Based on this coverage the number of television licences is expected to grow from the present 600,000 to $1.575,000$ by April 1953 and it is anticipated that the radio industry will have no difficulty in keeping pace with the demand for television receivers, provided of course that the rearmament programme does not effect the position.
This rate of growth in the number of television licences appears however to be unduly conservative, and almost pessimistic for it implies that if there are on an average four viewers for every set-which is probably on the high side-then only $6,000,000$ or $1 / 7$ th of the population living in the service area will be viewers by April 1953. This contrasts very unfavourably with the position of sound broadcasting with its near saturation figure of 12 million licences.

There may be some dissatisfaction over the programme
material, and indeed grousing about the television programmes has almost developed into a national pastime, but there can be no complaint regarding the technical achievements in some of the recent outside broadcasts or in the performances from the Lime Grove studios. Moreover, it is well known that the present 405 line system still gives the best possible picture when all the conflicting requirements are taken into account, and requires at the same time a receiver with a minimum number of valves and components.

SEVENTEEN years have elapsed since the Radio Research Board last published its annual report which was for the period January 1932 to September 1933.

During that period considerable reorganization was taking place which resulted in the amalgamation of the Wireless Division of the National Physical Laboratory and the Radio Research Station at Slough into what is now known as the Radio Division of the National Physical Laboratory with Sir Robert Watson Watt as its first Superintendent.

The Report of the Radio Research Board for the period October 1933 to December 1948 (H.M.S.O. 2s.) which has just appeared after this long interval is therefore very welcome and makes most interesting reading. The Board's Chairman, Col. Sir A. Stanley Angwin in a brief report of some ten pages modestly apologises for not publishing a report since 1933 "for a number of reasons of which the most important were the occurrence of the second World War and the concentration of the efforts of a large section of the staff of the Radio Division on defence projects of very great importance from 1935 onwards," and in a delightful self-effacing manner dismisses the magnificent contributions to the war effort in no more than one page regretting that "there was some deflexion of effort from certain of the long-term projects to those of more immediate practical application."

For the sake of continuity, the Chairman's report contains reviews of the three periods (1) October 1933 to August 1939, (2) September 1939 to August 1945 and (3) Sentember 1945 to December 1948.

In the remaining 50 pages of the Report, Dr. R. L. Smith-Rose, the Director of Radio Research, contributes a more detailed survey of the investigations carried out during the years 1934-47 and concludes with his report for the year ended December 1948.

The present research programme contains 15 major items covering, in the main, the study of the ionosphere and the propagation of radio waves throughout the whole effective radio spectrum.

The Measurement of High Vacuum by Electrical Methods (pat 2)

By F. Wade *

Penning or Philips Ionization Gauge

BY using a discharge tubc of special construction in conjunction with a permanent magnet, Penning ${ }^{20}$ was able to measure pressures down to $10^{-5} \mathrm{~mm} \mathrm{Hg}$. The discharge tube, (Fig. 14) consisted of two flat plates forming a common cathode and interspaced between these plates is a wire loop, this being the anode.

With suitable potentials and no magnetic field the electrons emitted from plates P_{1} and P_{2} will travel towards the ring R. If a magnetic field of sufficient strength be applied in a direction perpendicular to the plates the electrons will move towards R in a spiral motion about the axis of the magnetic field. The electrons emitted from P_{t} will travel in the direction of P_{2} where they are repelled and return to the direction of P_{1}. This process is repeated several times before the electron finally comes to rest, thus the distance travelled by an electron is greatly increased, thereby increasing the probability of ionizing a gas molecule.
The Penning gauge is connected as shown in Fig. 15. For qualitative measurements only, the length of glow in the neon indicator is used; when quantitative measurements are required, the current recorded on the microammeter is expressed as a function of pressure. A typical calibration curve is shown in Fig. 16.

Fig. 14. Philips gauge

Triode Ionization Gauge

The possibility of using a triode thermionic valve as an ionization gauge was first reported by Buckley. ${ }^{14}$ Soon afterwards Simon ${ }^{19}$ revealed that a triode valve had been used in this manner with considerable success in the laboratories of the "Telefunken Gesellschaft." Since these first reports this type of gauge has become one of the most used high vacuum measuring devices.

In the triode ion gauge the source of the electrons is an incandescent cathode. lonization takes place in the interelectrode space due to the collision of electrons with gas molecules. the positive ion current being collected by the negative electrode. There are two methods of operating the gauge and they are generally classified as A and B. In method A the grid is made negative to cathode, while the anode is maintained at a high positive potential, thus the grid becomes the collector and the anode is the accelerator. In method B the functions of the electrodes are reversed. i.e., the grid is positive and the anode negative. Method B has been found to be the more sensitive due to the fact that the electrons oscillate about the positive grid with the result

[^1]that the path taken by the electron is greater than in method A.

A complete mathematical treatment of the ionization gauge has been given by Kaufmann and Serowy. ${ }^{18}$ This is for method A only. Their work is based upon an empirical formula of Möller's ${ }^{35}$:

$$
\begin{equation*}
p=k I_{\mathrm{E}} / I_{\mathrm{a}} \cdot d \tag{14}
\end{equation*}
$$

where $p=$ pressure
$k=$ an empirical constant
$I_{8}=$ grid current
$I_{\mathrm{a}}=$ anode current
$d=$ distance between grid and anode.
Their investigations had the object of ascertaining the dependence of the magnitude of k on the potentials, both empirically and theoretically. For their experiments they used a valve with the usual concentric electrode arrangement where:

$$
\begin{aligned}
& r_{0}=\text { radius of filament wire } \\
& r_{1}=\text { radius of grid } \\
& r_{2}=\text { radius of anode }
\end{aligned}
$$

and cathode, grid and anode voltages $=V_{\mathrm{k}} ; V_{\mathrm{g}} ; V_{\mathrm{n}}$.

Fig. 15. Philips gauge with indicator
They show mathematically that:

$$
\begin{equation*}
\boldsymbol{I}_{\mathrm{F}} / I_{\mathrm{a}}=\frac{\boldsymbol{p}}{b\left(V_{\mathrm{a}}-V_{\mathrm{g}}^{1}\right)}-\int_{r_{\mathrm{a}}}^{r_{\mathrm{a}}} r f(V) d V \tag{15}
\end{equation*}
$$

where $p=$ pressure

$$
b=\frac{1}{\log _{\mathrm{e}}\left(r_{2} / r_{1}\right)}
$$

$V^{2}{ }_{\mathrm{g}}=$ an imaginary charged surface of fictitious potential $V^{\prime}{ }_{g}$.* The second term was arrived at under the simple
*In the absence of space charge the action of the grid in a triode can be represented by the action of a conducting "Equivalent plane" in the same position as the mid-plane of the grid. The effective grid voltages in this plane are:

$$
\begin{equation*}
V_{\mathrm{s}}=\frac{V_{\mathrm{g}}-D V_{\mathrm{a}}}{D\left[\frac{1}{\log _{e}}\left(r_{1} / r_{2}\right)+\frac{1}{\log _{\mathrm{c}}}\left(r_{2} / r_{1}\right)\right]+\frac{1}{\log _{e}}\left(r_{2} / r_{1}\right)} \tag{17}
\end{equation*}
$$

where $D=1 / \mu$;
$\mu=$ amplification factor
For a more complete treatment of this subject the reader should consult the works of Dow, ${ }^{\text {s8 }}$ Chaffee ${ }^{37}$, Liebmann ${ }^{38}$, or any reference book on radio valve design.
assumption that if the initial velocity of the electrons is zero and is therefore only affected by V, therefore the number of ions N, per unit path traversed will depend upon this value and on the density of the gas molecules and will thus be directly proportional to p.

Thus:

$$
\begin{equation*}
N=p f(V) \tag{16}
\end{equation*}
$$

Kaufman and Serowy state that as V_{g}^{1} can be replaced by known terms, it is possible to calculate the gas pressure for valves of known goemetry.

The theoretical treatment of the use of the ionization gauge in method \mathbf{B} is far from complete. It is of a much more complex nature than when the gauge is operated as method A. This is mainly due to the fact that it is difficult to estimate the number of times that the electron oscillates about the grid.

In method B the anode of the valve becomes the collector and the grid by virtue of a high positive potential becomes the accelerator. In this mode of operation electrons will leave the filament and travel towards the grid. Owing to their high velocity and the open mesh of the grid, the majority will pass through and will continue moving towards the anode. At some point between the grid and anode they will reverse direction and travel back towards the grid. The majority will pass through the grid mesh and will travel towards the filament until they change direction and begin the whole cycle again.

Reynolds ${ }^{39}$ has investigated this problem and has shown that it is possible to calculate the average number of journeys made by an electron. For his investigations he

Fig. 16. Caibration carve for Philips jonization gauge
used an ionization gauge developed by Dushman and Found. ${ }^{17}$
Fig. 17 shows the potential geometry relations for this gauge. Neglecting space charge it shows diagrammatically the distance that an electron travels and also the fields acting upon it. In the case taken, the electrodes are concentric cylinders and it is assumed that the radial fields are linear. The velocity of the electron at A^{1} is determined by the value of the positive potential applied to the accelerator V_{s}. If now V_{1} is the ionizing potential of the gas or gases under investigation, then between the points A^{1} and B^{1} the electron will have sufficient energy to ionize a gas molecule. The point of reversal of the electron in the grid anode space is at D. Neglecting the space charge of the filament the electron will travel back again along the same path. There is, of course, the likelihood of the electron being collected at A^{1}, or it may continue to oscillate about the grid until it is finally collected. Therefore, the distance that the electron travels in which ionization can take place
is some multiple of $2 \times A^{1} B^{1}$. It has previously been shown in Fig. 7 that the probability of ionization will vary with the voltage applied to the accelerator as well as the gas under investigation. From this curve it is thus possible to approximate the probability of an electron producing a positive ion in one single journey between $A^{1} B^{1}$. This is done by integrating under the curve of Fig. 7 between the two defined limits V_{a} and V_{1} and then multiplying the result by the distance $A^{1} B^{1}$. The probability when multiplied by the value of the electron emission current $I_{e m}$ will give a value for I_{p}^{1}, this being the positive ionization current produced by a gauge at a pressure of 1 mm Hg . This is assuming that the electron traverses the distance $A^{1} B^{1}$ only once.
Reynolds calculates the value of $I^{1}{ }_{v}$ by using a formuka of Thompson. The average number of times that an electron traverses the grid anode space is given as:

$$
\begin{equation*}
Z=\left(\frac{2 \theta}{1-\theta^{2}}\right) I_{\mathrm{er}} \tag{18}
\end{equation*}
$$

where $\theta=$ effective open area of grid
$I_{\mathrm{em}}=$ electron emission current.
The calculated and measured values of I_{p}^{1} did not agree and it was found necessary to introduce a correction factor of 3.9 to bring these results into agreement with each other.

Alphatron Gauge

The most recent of all types of vacuum gauges is the
 ionization gavge (Reynolds)

Alphatron Ionization Gauge. This gauge contains a small radium source which emits alpha particles. Any gas molecules present in the gauge are ionized, thus the ionization current is a function of the pressure and can be expressed as such. The ion current is very small and it must be amplified on a high gain D.c. amplifier. Meller ${ }^{21}$ has described a gauge and amplifier of this type and has given the working range of this gauge as $10^{-\frac{8}{2}} \mathrm{~mm} \mathrm{Hg}$. to 25 mm Hg .

Knudsen Gauge

The only absolute vacuum measuring gauge that has been developed so far, that can be operated electrically, is that of Knudsen. ${ }^{40}$ The operation of this gauge is dependent upon the radiometer effect. This is an effect which occurs when a gaseous medium is at such a pressure that the mean free path is much greater than the vessel in which
it is enclosed. Under such conditions, two surfaces at different temperatures will exert a mutual mechanical force Knudsen has shown that if two plates are enclosed in a vessel containing a gas at a pressure p, and that the temperature of the sides of the plates facing each other is T_{1} and that of the enclosure T_{2}, the plates will be repelled by a force F.

Where:

$$
\begin{equation*}
F=p / 2\left(\vee \overline{T_{1} / T_{2}}-1\right) \text { dynes per } \mathrm{cm}^{2} \tag{19}
\end{equation*}
$$

The resultant force is thus independent of the type of gas present. Knudsen applied these principles in the mechanical arrangement as shown in Fig. 18.

Fig. 18. Mechanical arrangement of a Kinudsen gauge
A and $A_{\mathrm{I}}=$ two fixed plates, electrically heated.
$B=$ cold plate suspended by means of C.
$C=$ quartz fibre to which D is attached.
$D=$ glass mirror.
He found that the formulæ was only valid under the following conditions:
(i) The distance between the plates was small compared with the mean free path.
(ii) The dimensions of the plates are such that the edge effects could be neglected.
He also found that under certain temperature conditions Equation (19) could be re-written thus

$$
\begin{equation*}
p=\frac{4 F . T_{3}}{T_{1}-T_{2}} \tag{20}
\end{equation*}
$$

By including the physical constants of the gauge, Equation (20) becomes :

$$
\begin{equation*}
p=\frac{8 \pi^{2} \sigma d_{1}}{\mathrm{Dat}^{2} d_{2}} \cdot \frac{T_{2}}{T_{1}-T_{2}} \tag{21}
\end{equation*}
$$

where $\sigma=$ moment of inertia of moving vane.
$a=$ area of one side of moving vane.
$D=$ mean diameter of moving vane.
$t=$ period of oscillation of moving vane.
$d_{1}=$ scale of deflexion.
$d_{2}=$ distance of scale from mirror.
The hot plates A and A_{1}, Fig. 18, were made of platinum foil and were electrically heated. $T_{1}-T_{2}$ can therefore be expressed in terms of ohmic resistance of the hot plate at $0^{\circ} \mathrm{C}, \mathrm{T}_{1}{ }^{\circ} \mathrm{C}$ and $\mathrm{T}_{2}{ }^{\circ} \mathrm{C}$.
Then:

$$
\begin{equation*}
T_{1}-T_{2}=\frac{R_{1}-R_{2}}{R_{0} a} \tag{22}
\end{equation*}
$$

where $R_{0} ; R_{1} ; R_{2}$ are resistances at $0^{\circ} ; T_{1}{ }^{\circ} ; T_{2}{ }^{\circ}$ and a is the temperature coefficient of the platinum.

On substituting Equation (22) in (21)
then:

$$
\begin{equation*}
p=\frac{8 \pi^{2} \sigma d_{1} a T_{2}}{\operatorname{Dat}^{2} d_{2}} \cdot \frac{R_{0}}{R_{1}-R_{2}} \tag{23}
\end{equation*}
$$

Knudsen found that the range of pressure over which his gauge would operate satisfactorily was from $10^{-3} \mathrm{~mm}$ Hg. to $10^{-5} \mathrm{~mm}$.

Sherwood ${ }^{41}$ was able to improve on this and he made a gauge of the Knudsen type work satisfactorily at a pressure as high as $5 \times 10^{-2} \mathrm{~mm} \mathrm{Hg}$.
Much effort has been made to try to produce a Knudsen type gauge of a simple sturdy construction. Among those whose efforts have been directed in this manner are Woodward, ${ }^{42}$ Reigger, ${ }^{43}$ and Du Mond and Pickles. ${ }^{44}$

Comparison of Various Types of Gauges

The optimum ranges of the gauges that have been discussed are shown in Fig. 19. It will be seen that with the exception of the "Alphatron" the ranges of pressures covered by each gauge are limited. This makes it necessary to employ two or more gauges to cover the range of pressures associated with medium and high vacuum measurement. The various combinations used will be dealt with later.
With the exception of the gas discharge tube, all the gauges that have been described are still in general use in one form or another. The limitations of the discharge tube are obvious, it can be seen that it would require a highly skilled operator with a very keen sense of colour discrimination to be able to read accurately the pressure by this method. The other methods, i.e., measuring breakdown voltage and length of the Crookes dark space are very cumbersome, thus the discharge tube has gradually been sunerseded by more scientific methods.
The hot wire gauges are very much used in vacuum work, they require simple electrical circuits and they are reasonably rugged in construction. If by any chance there should be an accident on the vacuum system and a sudden inrush of air takes place, there is no danger of the filament or heater burning out, owing to the low temperature at which these gauges are operated. These gauges are usually calibrated from atmospheric pressure down to the order of 10^{-3} or $10^{-4} \mathrm{~mm} \mathrm{Hg}$., so there is not very much risk of the galvanometer being damaged by a sudden increase in pressure.

The disadvantage of the Pirani gauge is that there is a tendency for it to drift from the position of bridge balance. It is obvious that in order to have a means of measuring a vacuum with a constant degree of accuracy, the pos-

Fig. 19. Chart illustrating the optimum ranges of the various electrically operated high vacuum gauges
RANGE OF PRESSURE $\mathrm{m} / \mathrm{m} \mathrm{Hg}$.

sibility of drift from the balance position must be made as small as possible. This means that the bridge potential must be constant and that the walls of the glass bulb containing the Pirani gauge must be shielded from draughts and sudden changes of temperature. By immersing the Pirani gauge in liquid air the sensitivity can be increased, it is not normal laboratory practice to do this or to keep the gauge at the temperature of melting ice as sometimes recommended. The practical method of compensating for change of room temperature is that of Hale. ${ }^{23}$

With the thermo-couple gauge the great advantage is that the millivolt meter can be connected direct to the thermo-couple, these readings can then be calibrated and expressed in terms of pressure. Thus the possibility of such things as drift of zero point are eliminated. To obtain greater sensitivity it is possible to use a bridge circuit and include a second thermo-couple gauge in the circuit, as is used in Hale's method of using a Pirani gauge. The current passed through the heater of the thermo-couple must, of course, be kept constant because with a sensitive thermocouple slight alteration of the condition of the heater will cause a considerable increase or decrease in the thermal e.m.f. It can be seen from Fig. 6 that the range of the thermo-couple gauge is from approximately 10^{-1} to 10^{-4}

The greatest advantage of the three electrode ionization gauge is that it can be subjected to the same heat treatment as the valve or tube that is being exhausted. This enables considerably more accurate measurements of the pressure to be recorded. If the gauge is not given the same treatment as the vessel that is being exhausted it may assist in either "cleaning up" the vacuum, thus acting as a getter, or it may reduce the quality of the vacuum when occluded gases are set free. This gauge also enables rapid changes in the pressure to be observed immediately.

It has been found by Blears, ${ }^{45}$ that the diameter of the glass tubulation that is used to connect the ionization gauge to the pump system is somewhat critical if it is desired to measure the pressure with accuracy. With a wide bore connecting tube the resistance which is offered to the entry of gases or vapours from the pump system is much less than that of a small connecting tube. This can be seen from the following equation:

$$
\begin{equation*}
W=l / r^{3} \tag{24}
\end{equation*}
$$

where $W=$ impedance of connecting tube
$l=$ length of tube.
$r=$ radius of tube.

Fig. 20. Circuit of "Cathodeon" combined Pirani and ionization gauge
mm Hg . At the extreme ends of the curve it will be seen that the calibration is very cramped. Under normal conditions the lower limit of the hot wire gauges is of the order of $10^{-3} \mathrm{~mm} \mathrm{Hg}$.

The hot wire gauges have a very definite use when used in conjunction with another gauge which will measure the lower pressures. With the majority of these precision low pressure instruments, it would result in damage to the instruments if they were operated at pressures higher than $10^{-3} \mathrm{~mm} \mathrm{Hg}$. Thus the hot wire gauge gives an excellent indication when it is safe to switch on the more sensitive instrument.
The three electrode ionization gauge when used in its most sensitive mode of operation, i.e., method B, permits the measurement of these low pressures with comparative ease providing, of course, that the gauge has a good sensitivity.

The Penning or Philips gauge is very suitable for everyday industrial use as it is of a very simple construction and does not require any elaborate precautions to reduce shock or tremor. This gauge has the great advantage that it does not introduce any supplementary vapours of its own; this is due to the fact that while operating there is little or no temperature increase. The choice of the metal from which the cathode is made has some considerable influence upon the sensitivity of the gauge. The first cathodes were made of iron; later it was found that by using a more efficient source of emission such as zirconium or thorium not only was the sensitivity increased but the cathode sputtering that occurs at the higher pressures was reduced. Continual sputtering is detrimental to the life of the gauge, therefore special precautions have to be taken in the mounting of the electrodes, so that the possibility of the formation of leakage paths is reduced. This is usually done by placing
glass sleeves over the electrode wires in the glass pinch upon which the gauge is mounted. By using mica disks to screen the lead-in wires small particles of metal may also be deflected away from the vulnerable areas.

The "Alphatron" gauge appears to have several advantages. Firstly, that it will work over a very wide range of pressures, secondly, that it has no bot electrodes and therefore does not cause any supplementary gases to enter the pumping system.

The gauges that have so far been mentioned all suffer from the same disadvantages in that they have to be calibrated against some form of absolute gauge.

The only form of an electrically operated absolute vacuum gauge is the Knudsen. As shown in Equation (23), given certain information, the performance of the Knudsen gauge can be calculated.

The disadvantages of this form of vacuum measurement are many and it is not generally used except for calibration work. The gauge has to be mounted so that it is not subjected to mechanical shock or tremor. The torsion control of the repulsion can give trouble at low pressures; this is due to the relatively large moment of inertia of the suspended system and the virtual absence of damping. If an external means of damping is employed there is a tendency for the zero point to drift. The one great advantage of this form of vacuum gauge is that it does not need different calibration scales for different gases. It also possesses the advantage that the temperature at which it operates is very low, this is particularly suitable for the measurement of pressures on large systems where organic vapours are present.

Fig. 21. Combioed thermocouple and Penning gange circuit (Pickard-Smith and Zollard)
It has been shown that no one particular gauge can cover the complete range of pressures that are normally encountered in medium and high vacuum work, i.e., 0.1 mm to $10^{-7} \mathrm{~mm} \mathrm{Hg}$., and so it is usual to use two or more gauges to do this. This introduces the undesirable features that more space is taken up by the ancillary electrical apparatus connected with each gauge. This has been overcome in special vacuum measuring equipment. ${ }^{40}$ In this invention the same electrical power supplies are used for both the medium and the high vacuum gauge. The medium vacuum gauge may take the form of a Pirani or thermo-couple gauge and the high vacuum measuring device is a three electrode ionization gauge. The electrical circuit is shown in Fig. 20 and from this it can be seen that by the use of a multibank change-over switch, either the medium or high vacuum gauges can be used. With the use of suitable shunts the same meters that indicate bridge current and out of balance current in the Pirani gauge may also indicate the electron current and positive ion current of the ionization gauge.

Provision has been made in this vacuum measuring unit so that the ionization gauge can be bombarded with electrons in order to degas the electrodes while on the pump. It is necessary to do this before any attempt is made to measure the pressure, otherwise a true indication of the vacuum will not be given due to the slow outgassing of the metal electrodes while operating.

Another instrument has been described ${ }^{47}$ which consists of a thermo-couple gauge and a Penning ionization gauge. The circuit is shown in Fig. 21. By the use of the two pole three position switches, either the thermo-couple or the Penning gauge can be operated.

Conclusion

The writer hopes that he has shown that the measurement of low pressures is no longer an art but a science that has gradually been evolved from the "hit and miss" methods of the vacuum technicians and workers of the early 18 th century. Like many other sciences its implications are not always realized. There is nothing tangible to be seen from the work of the high vacuum engineer unless it is realized that without his efforts to create lower pressures and the means to measure them, there would be no such things as radio telephony, radar, television and hundreds of other devices where thermionic electron tubes are used.

The writer would like to thank the Director of the Atomic Energy Research Establishment for permission to publish this paper, and to Dr. G. Liebmann, of the Research Laboratories, A.E.I., Aldermaston, Berks., for the encouragement given to him in the preparation of a previous paper which has been condensed for the purpose of this article.

REFERENCES

${ }^{1}$ Hauksbee : Phil. Trans., ${ }^{1705}$.
3. 'Nollet and Morgan : "'High Vacua," Kaye, 1879-85.

- Crookes : Phil. Trans., 1879.85 .
" J. J. Thompson : "Conduction of Electricity Through Gases."
- Pirani : Ver. d. Deutsch. Phys. Ges., 1906.

7. Maxwell: Phil. Trans., 154, 49, 1867.

- Kundt and Warburg : Poggend, Ann. Phys., 156, 177, 1875.
- Schleirmacher : Wiedem. Ann. Phys., 34, 621, 1885.
${ }^{10}$ Bottomley : Proc. Roy. Soc., 37, 177, 1884
${ }^{11}$ Voege : Phys. Zeit, 7, 498, 1906.
${ }_{13}$ Rohn : Zeits. f. Electrochem., 20, 539, 1914.
${ }^{13}$ Rumpi : Zeits. f. Tech. Phys., 5, 224.1926.
${ }^{14}$ Buckley: Proc, Nat. Acad. Sci.' 2, 683, 1916.
${ }^{16}$ Misamichi So. : Proc. Phys. Math. Soc. Japan, 1, 76, 1919.
${ }^{17}$ Hausser-Gandswint and Rukop : Tel. Zig. 1920.
${ }^{17}$ Dushman and Found: Phys. Rev., 17, 7, 1921.
${ }^{18}$ Kaufman and Serowy : Zeits. f. Phys.'s, $319,1921$.
- Simon : Zeils. f. Tech. Phys., 5, 221, 1924.

10 Penning: Physica, 4, 71, 1937.
Meller : Electronics, April, 1946
${ }^{12}$ Soddy and Berry : Proc. Roy. Soc., 83, 254, 1910.
${ }^{3}$ Hale : Trans. Amer. Electrochem. Soc.. 1911.
${ }_{34}^{4}$ Campbe 11 : Proc. Phys. Soc., 33, 287, 1921.
${ }^{24}$ Eliet and Zabel : Phys. Rev., 37, 1102, 1931
${ }^{36}$ Dushman : J. Franklin lnst., 21I, 689, 1931. 1938.

* Kovalenko: Tech. Phys. of U.S.S.R., 5, 779, 1938
\& Dunlap and Trump : Rev. Sci, Inst., 8, 37, 1937.
${ }^{2}$ Compton and Van Voorhis: Phys. Rev., 23, 450, 1924,
20 Compton and Van Voorhis: Phys. Rev., 23, 450
Hughes and Klein : Phys. Rev., 26, 436, 1925.
it Althenhum, Reger and Seeliger : Zeits.f. tech. Phys., 95, $161,1928$.
A Althenhum, Reger and Seeliger : Zeils
* Yarwood : Electronic Engineering, 16, 461: 1944,
* Ytintzing : Zlectronic Engineering, Phys. Chem., 10s. 70 , 1914.
*s Moller : Die Electronrokren und ihre Anwendungen, 1920
*S Dow : © Fundamentals of Engineering Electronics," 1937
"Dow "Chaffee : "Theory of Thermionic Vacuum Tubes," 1933
3s Liebmann : J.I.E.E.I $93,138,1946$.
: Reynolds : Physics. 1, 182, 1931.
${ }^{1} 0$ Knudsen: Amm, d. Phys. 32, 809,1910
${ }^{11}$ Sherwood: Phys. Rev., II, 143, 1918.
*Woodward: Phys. Rev., 4, 419, 1914.
${ }^{4}$ Keigger : Zeits. J. Tech. Pjoys.. IOI, 16, 1920.
${ }^{4}$ Du Mond and Pickles: Rev. Sci. Insi., 9, 417, 1938.
is Blears : Nature, 154, 20, 1944.
64 British Patent 574,798.
${ }^{47}$ Picard, Smith and Zollers: Rev. Sci. Inst. 17, 1251946

General References

Dushman, S.: "High Vacuum."
Kaye, G. W. C. : "High Vacua."
Monch, G. " Vakuumtechnik im Laboratorium,"
Newman, F. H. : "Production and Measurement of Low Pressures."
Newman, F. H. : Production and Measurement of
Strong, J. : "Modern Physical Laboratory Practice."
Ytrong, J. "Modern Physical Laboratory, "High Vacuum Technique.
Yarwood, J. M. : Philips Tech. Rev., July,
Pirani, M. and Neumann, R. : Electronic Engineering, December, 1944.

The Home Built F.M. Receiver Reception Tests

By K. R. Sturley, Ph.D., M.I.E.E. *

Abstract

An experimental V.H.F. service is now being radiated by the B.B.C. from Wrotham, Kent, with simultaneous A.M. and F.m. modulation. The 25 kW F.m. transmitter is at present operating at $91.4 \mathrm{Mc} / \mathrm{s}$ and the 18 kW A.m. transmitter at $93.8 \mathrm{Mc} / \mathrm{s}$ from Monday to Friday from 11 a.m. to 4.30 p.m. with an hourly interval at mid-day and then from 6 p.m. onwards until the close of the programme being radiated. Since the design for the Electronic Engineering "Home Built F.M. Receiver" (Price 4/6) was first published in September, 1949, a considerable number have been constructed and satisfactory reports on its performance have been received. The Home Built F.M. receiver has a sufficiently wide range to tune to either of the transmitters and constructors may now wish to convert the receiver for reception of A.M. signals.

THE experimental V.h.F. transmissions of F.M. (91.4 Mc / s) and A.M. ($93.8 \mathrm{Mc} / \mathrm{s}$) from the B.B.C. station at Wrotham have given the author an opportunity of testing the performance of the home built F.M. receiver under normal conditions and it is thought that the results of the tests will be of interest to experimenters in this field. Modifications which were made to improve the performance of the receiver when operating on the fringe of the service area are also described.
The receiver was tested at two widely separated points, one in Central London and the other at Evesham, about 20 and 110 miles respectively from the transmitter. The field strength over the London area is comparatively high and the test demonstrated little other than that the performance of the set is satisfactory under these conditions, that F.M. gives excellent suppression of impulsive inter-
with reflector and director spaced as indicated in Fig. 50 (page 70) of the booklet was used on a chimney about 40 feet from the ground. A 20 feet coaxial cable connected the aerial to the receiver in a first floor room. A very satisfactory audio output was obtained with some background hiss due to thermal noise in aerial and receiver. The average value of signal at the input to the receiver appeared to be about $100 \mu \mathrm{~V}$. The hiss, which varied in intensity, was generally only noticeable during breaks in the programme. Monitoring the limiter grid current showed that variations in signal strength occurred quite often but had little effect on aural output because of the high degree of limiting in the receiver. Occasionally,

Fig. B. Main alterations to the existing circuit to permit A.M. reception
ference and that the use of the wider A.F. band made possible by v.f.F. gives a great improvement in quality. The rendering of the higher frequency musical instruments is realistic and without the harshness and sibilence so often associated with any attempt to achieve a wider frequency response with the average broadcast receiver. The dipole described in Chapter VII was employed, set up in the same room as the receiver. The room, an office, was 7 n a third floor, about 50 feet from a busy road. The main criticism of the receiver was on the score of hum level, which was perceptible during pauses in the programme.

At Evesham the site was favourable to the v.h.f. transmission, being on a hill facing the direction of Wrotham with five miles of comparatively flat country before a rise of 800 feet to the Cotswolds. A folded dipole aerial

[^2]in the trough of a deep fade, noise formed a noticeable background to the programme. An aeroplane in sight of the aerial produced the well known flutter variation in signal and impressed a rhythmic variation on the noise background. A road ran parallel to the direction of Wrotham at a horizontal distance of approximately 40 feet from the aerial. Unsuppressed cars on this produced a faint "spitting" noise in the loudspeaker. The suppression of impulse noise cannot be entirely satisfactory at this signal level because the limiter is not fully effective against noise peak amplitudes comparable with the signal.

The need for correct tuning when signal strength is low was seen, for noise was markedly minimum when the receiver was accurately tuned. The tuning indicator enabled this to be done quite easily and the A.F.C. action held the tuning point satisfactorily.

As a result of the experience gained on these listening tests, an appreciable reduction of hum and microphony
and a worthwhile increase in signal-noise ratio at low signal inputs was achieved. The modifications made to the receiver will be considered under the three headings, hum, microphony and noise.

Hum Level

Examination of the hum level of the receiver indicated that it originated in the r.f. unit, and to a less extent in the a.F. unit. Tests on the latter revealed three sources of hum: the mains leads from the mains input plug to the switch $S 1$ (Fig, 41, page 59 of the booklet); the H.T. supply to the unit, the hum entering via the anode circuit of $V 1$ and grid circuit of $V 2$; the first valve $V 1$ and its grid circuit.

Hum from the mains leads was suppressed by enclosing them in an earthed screen made from the outer sheath of some aerial coaxial feeder, the insulation and inner conductor of which had been withdrawn. Hum entering from the H.T. supply was reduced to negligible proportions by paralleling C10 (Fig. 41) by a $16 \mu \mathrm{~F}$ electrolytic capacitor. It was found that hum from the grid circuit of valve $V 1$ could be reduced to negligible proportions by surrounding capacitor $C l$ with foil connected to earth and by returning the earth lead of volume control $R 1$ to the same earth point as the feedback resistor $R 19$ and decoupling capacitors $C 2$ and $C 4$. Most of the hum remaining after these modifications proved to be due to the magnetic field of the mains transformer $T 2$ (Fig. 41) linking valve $V 1$. It could be suppressed by surrounding $V 1$ by a mu-metal screen.

With the ear close to the loudspeaker slight hiss was observed and this was reduced by increasing the resistors $R 5$ and $R 9$ from $\frac{1}{2}$ to 1 watt rating. It appeared to be caused by the passage of d.c. through the resistors.

The i.f. amplifier contributed little to hum level, for with the first valve V1 (Fig. 26a, page 36) removed, and A.F. volume control set for normal listening, there was little change in output hum by connecting the output lead from the I.F. amplifier. Examination of the r.F. unít indicated that the main source of hum was the heaters of the oscillator valve V2 (Fig. 17, page 24). An improvement was registered by inserting R.F. chokes in both heater leads. This effectively places an additional series impedance between cathode and heaters so that any impedance variation between these two electrodes has less chance of frequency modulating the oscillator. For minimum hum a better arrangement was found with the earthed L.T. pin taken to earth separately from all other earth connexions to the oscillator valve $V 3$, and with the other L.T. pin connected to it by $C 24(100 \mathrm{pF})$ and to the 6.3 volt supply through an 8 turn 20 s.w.g. R.F. choke (L4) wound on a $\frac{1}{4}$ in. former. Noise and hum was greatly increased when a finger was brought near the oscillator tuning coil thus emphasizing the need for adequate screening. The variable reactance D.c. valve V4 (Fig. 17) also contributed hum due to pick up on the grid lead. This was suppressed by inserting $R 12(0.47 \mathrm{M} \Omega)$ in series with the grid lead at $V 4$ with a $0.1 \mu \mathrm{~F}$ capacitor (C25) from grid to earth. A diagram of the component changes made in the oscillator and reactance valve circuits is given in Fig. A. R, L and C numberings are as for Fig 17 (page 24 of booklet). With all these modifications the hum level of the complete receiver was quite low and attention was next turned to a reduction of microphony and to an improvement in signal-to-noise ratio.

Microphony

On page 26 of the booklet the tendency of the EF50 valve to microphony when used as a v.h.F. oscillator is remarked upon. The EF54 valve was considered to be better and the valve pin connexions were changed to accommodate this type of valve. The reduction in microphony was most marked. No change was made in the
circuit components or the cathode tap. A.F.C. factor at 1/10 (compared with $1 / 4$ for the EF50) proved to be appreciably better. Attempts to change the cathode tap brought no improvement in sensitivity or signal-to-noise ratio; either the valve failed to oscillate or it squegged. Raising the cathode tap actually reduced A.F.C. action; this was to be expected because it reduces the oscillator current, upon the control of which A.F.C. is dependent.

Signal-to-Noise Ratio

A check on the r.F. amplifier valve $V 1$ indicated a gain less than unity. This was raised to about 2 by increasing capacitor $C 5$ (Fig. 17) from 5 to 100 pF . Raising the tapping point of the coaxial cable from $\frac{1}{2}$ to $1 \frac{1}{2}$ turns of the input coil $L 1$ also improved signal-to-noise ratio for input signals of the order of $100 \mu \mathrm{~V}$. If it is desired to have a balanced input using a twin feeder from the aerial, a 2-turn coil of 26 s.w.g. plastic insulated wire may be inserted between the turns of the input coil L1.

On page 48 of the booklet reference is made to the improvement in signal-to-noise ratio obtained by reducing C12 (Fig. 26a). Positive feedback appeared to be occurring, but the cause was not known. Investigations eventually showed that it was due to the unit construction. An I.F. feedback loop connecting input and output was formed by connexions from the input end of the I.F. amplifier to the r.f. unit through the Mains Supply Unit back to the output end of the I.F. unit. It was not possible to decouple all the leads from the Mains Unit to the r.f. unit so as to leave only one effective earth, and the next best solution was to bond the I.F., R.F. and Mains Supply Units together at several points by copper strip. This has disadvantages when experimenting so that it was felt better to tolerate the positive feedback and maintain satisfactory signal-to-noise by keeping $C 12$ at 5 pF . If bonding between units is carried out effectively, C12 can be increased to 50 pF .

Since an appreciable proportion of thermal noise was provided by the frequency changer valve $V 2$ of the R.F. unit in the absence of signal, an EF54 was tried in place of the EF50. The improvement in signal-to-noise ratio was not sufficient to warrant making the change.
No further increase in signal-to-noise ratio could be gained by adjustment of the electrode voltages to the valves in the R.F. or I.F. units, though an improvement in A.F.C. action without a reduction of impulse noise suppression could be gained by increasing the h.T. voltage to the final limiter valve V4 (Fig. 26b). At the same time there is an increase in A.F. output from the I.F. unit almost in proportion to the increase of the H.T. voltage. The table below gives the A.F.C. correction factor for various in.T. voltages when an EF54 valve is used as the oscillator.

H.T. $V 4$	A.f.C. (correction factor)
48	0.11
72	0.075
96	0.05
120	0.04

Thus if the h.t. to $V 4$ is 96 volts, a correction factor of 0.05 means that an off-tune frequency of $100 \mathrm{kc} / \mathrm{s}$ is reduced to a final mistune of $5 \mathrm{kc} / \mathrm{s}$. This improvement in A.F.C. action is important when signal strength is low because good signal-to-noise ratio is then only obtained when the receiver is correctly tuned.

Reception of A.M. Transmission

Some experimenters may wish to listen to the amplitude modulated V.H.F. transmission at $93.8 \mathrm{Mc} / \mathrm{s}$. Though the receiver has not been designed for A.M. signals it may be modified to accept the Wrotham A.m. broadcast. The grid of V3 (Fig. 26b) may be used as the diode detector with $C 20$ and $R 18$ rearranged as shown in Fig. B and an additional $R^{\prime}(0.47 \mathrm{M} \Omega)$ and $C^{\prime}(50 \mathrm{pF})$ included as an R.F.
filter in the lead going to the A.F. amplifier. Some form of bias control is needed on $V 1$ and $V 2$ of the I.F. unit (Fig. 26a) and $V 1$ of the r.F. unit (Fig. 17) in order to prevent overloading and obtain good signal-to-noise ratio. This could consist of additional cathode resistors preset to suit the strength of the A.m. signal being received. The EF50 valves used in the receiver have only a limited variable gain action so that some form of input signal control, such as variable coupling between aerial and first tuned circuit L1 (Fig. 17), would be essential. A more satisfactory arrangement would be to replace the valves $V 1$ and $V 2$ in the I.F. unit by EF92 valves, which have variable gain characteristics. Their mutual conductance is, however, much less than that of the EF50 valves. If this change is made automatic gain control could be included by using a Germanium crystal diode from the anode of valve V2 (Fig. 26a) with a suitable delay voltage. The ratios of the A.G.C. voltages applied to $V 1$ (EF50) of the r.F. unit, and $V 1$ and $V 2$ (EF92) of the I.F. unit should
be about $\frac{1}{4}$ maximum, maximum, and $\frac{3}{4}$ maximum. Suitable decoupling values for R and C in the a.g.c. leads are $0.47 \mathrm{M} \Omega$ and $0.1 \mu \mathrm{~F}$, and the A.g.c. voltage to $V 1$ in the r.F. unit could be conveyed through pin 2 of the 7 pin I.F. plug by replacing the Convertor d.c. Volts lead. Pin 2 of the R.F. plug is free and may be used to take the A.G.c. line to the r.f. unit.

A switch may be inserted on the A.F. unit to switch C1 (Fig. 41) either to the F.M. or A.M. output so that $R 1$ (Fig. 41) is the volume control for both systems of transmission. No changes should be made in $V 3$ and $V 4$ of the I.F. unit so that A.F.C. is fully operative on A.M. as well as F.m. The sensitivity of the receiver will be much less than for F.M. since the gain of V3 (Fig. 26b) is appreciable for small signals and the maximum gain of each EF92 valve is only about 0.4 of that of an EF50 valve. Satisfactory reception should however be obtained within about 30 miles of Wrotham unless the location is particularly unfavourable.

Electric Controllers for Laboratory Furnaces

By M. H. Roberts, B.Sc. *

Abstract

Two designs of temperature controller for laboratory electric resistance furnaces are described. The general design is based on previous circuits used by Prosser, ${ }^{1}$ Coates, ${ }^{2}$ and Yates, ${ }^{3}$ but more emphasis is laid upon simplicity of construction and operation, economy and use of only standard componens, and design for maximum expectation of life and minimum probability of breakdown, the most likely failures being arranged to send the furnace temperature down, not up. The first design gives simple two-position control., and is adequate for general metallurgical heat treatment, while the second design, used in conjunction with a saturable inductor, gives proportional control by smooth variation of power from maximum to nearly zero, and is superior where available voltages, and thermal lag due to furnace arrangement, make the oscillation with two-position control greater than is permissible.

SEVERAL circuits of electronic temperature controllers for laboratory furnaces have been described in the literature, and the reason for presenting two further versions is that they offer greater economy of construction
several months, such as are common practice now in metallurgical research, make it a matter of considerable economic importance that breakdowns, meaning the loss of much time and work, be reduced to the absolute minimum. The

Fig. 1. Operation of iwo-position controller

Fig. 2. Operation of proportional controller
and simplicity of operation, require no special adjustments, and eliminate as far as possible those features which are prone to cause trouble in the form of erratic operation or complete breakdown. High temperature tests lasting

[^3]circuit arrangement and choice of components have therefore been directed to this end, and to ensuring that the most likely breakdowns send the temperature down, not up, since a test can frequently be usefully continued after a drop in temperature, whereas a rise in temperature is generally ruinous.

\[

$$
\begin{array}{ll}
\mathrm{R} 1=24 \Omega, & \mathrm{R} 2=32 \Omega, \mathrm{R} 3=11 \times 1 \Omega, \\
\mathrm{R} 5=1.6 \Omega, & \mathrm{R} 6=1000 \Omega, \mathrm{R} 7=1000 \Omega, \mathrm{R} 8=24 \Omega, \\
\mathrm{Pt}=11 \Omega \text { Resistance Thermometer. }
\end{array}
$$
\]

Fig, 3. Arrangement of variable resistors in the resistance thermometer bridge

There is no difficulty in obtaining adequate sensitivity with three valves of modern type, extreme sensitivity being generally unusable because of the lag in heat transfer in the furnace, unless the complication of derivative control is added, and the metallurgist is usually well satisfied with an accuracy of control of $\pm \frac{1}{2}$ to $1^{\circ} \mathrm{C}$, provided that reliability is first-class. Such controllers are not restricted in application to the maintenance of constant temperatures, but also provide the most satisfactory means of obtaining any desired programme of heating and cooling, by varying the setting of the controller with time.
Two general types of controller are useful for such work
(A) A simple two-position arrangement, the operation of which is illustrated by Fig. 1, switches on to high power
when the temperature falls below a certain value, and switches off, or to a reduced power, when it rises above a very slightly higher value. The actual difference in thermometer temperatures at which the relay switches on and off, due to backlash or time lag in the relay, can be made extremely small, by using enough amplification, and does not then limit the accuracy of control. This type is satisfactory where the inevitable hunting or oscillation of temperature is tolerable. The amplitude and period of oscillation increases with the lag in heat transfer from furnace winding to thermometer, so that the usefulness of this type of control depends on the furnace arrangement and the amount of oscillation tolerable. Mains voltage variations necessitate a certain minimum ratio between the average values of low and high power, but the less this can be, the less the temperature oscillates.
(B) A proportional controller varies the power input continuously with temperature as shown in Fig. 2, so that as the temperature rises over a certain range, the power input falls rapidly but smoothly, and the system reaches equilibrium at some point on this curve, where the power input is just what is required to maintain that temperature. This system can be free from oscillation unless the thermal lag and sensitivity are too high. The optimum sensitivity is obtained when the temperature overshoots slightly on reaching the set value, and becomes steady after a few cycles of rapidly damped oscillation. Greater sensitivity will merely produce sustained oscillation. Where the furnace arrangement involves considerable thermal lag, this type of instrument is generally essential to obtain sufficiently close control, as type A would produce excessive hunting.
The most suitable method of " measuring" the temperature is by means of a resistance thermometer, generally of platinum for high temperature work, as the standards of reference can then be passive resistances, whereas a thermocouple requires a standard voltage and cold junction control or compensation. Also a resistance thermometer bridge can be energized by $50 \mathrm{c} / \mathrm{s}$ A.c. and the out-ofbalance e.m.F. amplified by valve circuits, whereas the d.c.

Fig. 4. Circuit of the Type A controller

$\mathrm{R} 1=1 \mathrm{M} \Omega, \quad \mathrm{R} 2=2.2 \mathrm{k} \Omega, \quad \mathrm{R} 3=220 \mathrm{k} \Omega, \quad \mathrm{R} 4=1 \mathrm{M} \Omega$,
$\mathrm{R} 5=100 \mathrm{k} \Omega, \mathrm{R} 6=1 \mathrm{M} \Omega, \mathrm{R} 7=2.2 \mathrm{k} \Omega, \mathrm{R} 8=220 \mathrm{k} \Omega$, $\mathrm{R} 9=1 \mathrm{M} \Omega, \mathrm{R} 10=220 \mathrm{k} \Omega, \mathrm{R} 11=330 \mathrm{k} \Omega, \mathrm{R} 12=47 \mathrm{k} \Omega$, $\mathrm{R} 13=47 \mathrm{k} \Omega, \quad \mathrm{R} 14=1 \mathrm{M} \Omega, \quad \mathrm{R} 15=22 \mathrm{k} \Omega, \quad \mathrm{R} 16=100 \Omega$, $R 17=100 \Omega$. $\mathrm{VI}=6 \mathrm{~J} 7 \mathrm{G}, \quad \mathrm{V} 2=6 \mathrm{~J} 7 \mathrm{G}, \quad \mathrm{V} 3=\mathrm{KT} 61$ (Osram).
$\mathrm{C} 1=0.1 \mu \mathrm{~F}, \mathrm{C} 2=0.5 \mu \mathrm{~F}, \mathrm{C} 3=0.1 \mu \mathrm{~F}, \mathrm{C} 4=0.1 \mu \mathrm{~F}$, $\mathrm{C} 5=.002 \mu \mathrm{~F}, \mathrm{C} 6=0.5 \mu \mathrm{~F}, \mathrm{C} 7=0.5 \mu \mathrm{~F}, \mathrm{C} 8=0.5 \mu \mathrm{~F}$, $\mathrm{T} 1=250-0-250 \mathrm{~V} \quad 50 \mathrm{~mA}, \quad 6.3 \mathrm{~V} \quad 1.5 \mathrm{~A}, \quad 5 \mathrm{~V} \quad 2 \mathrm{~A}$, $F 1=1 \mathrm{amp}, \quad \mathrm{F} 2=60 \mathrm{~mA}, \quad \mathrm{MR1}=$ any 250 V . lmA or more, Metal Rectifier, $S=$ Sunvic H.V.S. Type 602.
signal from a thermocouple circuit would have to be converted by a vibrator or other means to A.c. before valve amplification.

Nothing more complex than the normal Wheatstone bridge is required, but the arrangement of the variable resistances for setting the temperature is a matter of some importance. The arrangement shown in Fig. 3 takes advantage of the very high input impedance of a valve amplifier to make the current through the adjustable contacts almost zero. Actually it is desirable to have a resistance across the bridge output terminals to prevent the amplifier grid from "floating" and picking up stray signals if one of the contacts comes adrift, but it need not be less than $1 \mathrm{M} \Omega$ if the grid lead is screened. A step-up transformer between the bridge and the amplifier was found to be not worth while, as it would have to be specially designed to match the bridge, and thoroughly screened from the magnetic field of nearby circuits, while a considerably greater gain was obtained from an extra valve stage, with less trouble and expense. The absence of appreciable current through the contacts means that contact resistance is relatively unimportant and so enables cheap radio-type switches and potentiometers to be used satisfactorily.

The use of a multi-way switch and fixed resistors instead of a potentiometer for the coarse setting $R 3$ is preferable as it makes the settings accurately reproducible, whereas a slight displacement on an ordinary small potentiometer as $R 3$ would cause a considerable change in temperature. However, for heating or cooling to a desired programme, a helical potentiometer of 10 or 100 revolutions may be used for $R 3$, and rotated by a motor. Moderate fluctuations of contact resistance cause no trouble as practically no current passes through the contact. Such a potentiometer is more expensive, however, and is not necessary for steady temperatures.

The fine control potentiometer $R 4$ can be any easily obtainable value, e.g., 10 ohms , and is made to cover a range equal to one step of $R 3$, with some overlap, by
using a suitable value of $R 5 . \quad R 6$ and $R 7$ are nominally 1,000 ohms each, to limit the temperature change produced if the contact on $R 4$ fails. On a controller to cover the range $400 \cdot 1,000^{\circ} \mathrm{C}$. (approximately $20-44 \mathrm{ohms}$ on a thermoneter of 11 ohms at room temperature), $R 3$ consisted of 11 one-ohm resistors, $R 232$ ohms, $R 1$ and $R 8$ 24 ohms each, $R 51.6$ ohms. All resistors should be wound reasonably non-inductively, merely for the sake of avoiding magnetic pick-up in loops of wire, and screening is then unnecessary. The entire bridge circuit may conveniently be constructed on a single panel of $\frac{1}{b} \mathrm{in}$. Tufnol sheet, on which the terminal tags are fixed and the resistance wire wound. In the event of a fault, a complete spare bridge unit may then be quickly substituted. No special transformer is needed for the bridge supply, the 5 V winding provided for a rectifier valve on a standard mains transformer being quite satisfactory.

Electronic Circuits

In view of the need for the maximum possible reliability and life of the controllers, the designs have been varied somewhat from conventional practices. Metal rectifiers have been used in place of valve rectifiers, and paper capacitors in place of electrolytic, any extra cost or bulk being accepted as necessary. Gas-filled valves have been avoided as they are not always as reliable over extended periods as vacuum types. The use of sharply tuned filters or transformers has been excluded, as such circuits might go out of adjustment or cause errors when the mains frequency varies, as it sometimes does under present conditions. Preset adjustments have been eliminated, so that any controller constructed to specification from tested components will work satisfactorily, and the only adjustment required in use is the setting of the bridge circuit to give the desired temperature. A sensitivity control could be incorporated but has not been found necessary. Standard types of transformers and other components have been used, to avoid difficulty or delay in obtaining supplies.

The amplifier circuits are straightforward, but the

Fig. 5. Schematic of the Type B Controller

$\mathrm{R} 1=1 \mathrm{M} \Omega, \mathrm{R} 2=1 \mathrm{k} \Omega, \quad \mathrm{R} 3=220 \mathrm{k} \Omega, \quad \mathrm{R} 4=1.5 \mathrm{M} \Omega$, $\mathrm{R} 5=100 \mathrm{k} \Omega, \mathrm{R} 6=1 \mathrm{M} \Omega, \mathrm{R} 7=220 \mathrm{k} \Omega, \mathrm{R} 8=47 \mathrm{k} \Omega$, $\mathrm{R} 9=47 \mathrm{k} \Omega, \quad \mathrm{R} 10=10 \mathrm{k} \Omega, \mathrm{R} 11=6.8 \mathrm{k} \Omega 2 \mathrm{~W}$, $\mathrm{R} 12=47 \mathrm{k} \Omega 2 \mathrm{~W}$
$\mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{C} 2=0.005 \mu \mathrm{~F}, \mathrm{C} 3=4 \mu \mathrm{~F}, \mathrm{C} 4=0.01 \mu \mathrm{~F}$, $\mathrm{C} 5=0.5 \mu \mathrm{~F}, \quad \mathrm{C} 6=0.5 \mu \mathrm{~F}, \mathrm{C} 7=4 \mu \mathrm{~F}$.
$\mathrm{V}_{1}=$ SP61 (Mazda), $\quad \mathrm{V}_{2}=$ ECC32 (Mullard), $\mathbf{V 3}=\mathbf{K T} 66$ (Osram) .
$\mathrm{Tl}=350-0-350 \mathrm{~V} \quad 150 \mathrm{~mA}, 6.3 \mathrm{~V} 3 \mathrm{~A}, 5 \mathrm{~V} 2 \mathrm{~A}$, $T 2=$ Wharfedale G.P. 8
$\mathrm{S}=$ Saturable Inductor, Electro Methods
Type MAF $20 / 1150 \mathrm{~W}$.
$F 1=2 \mathrm{amp}, \quad F 2=250 \mathrm{~mA}, \quad \mathrm{~L} 1=20 \mathrm{H}, \quad 150 \mathrm{~mA}$,
$M R 1=$ S.T.C. $V 2540$ Il.
response is resiricied somewhat at higher and lower frequencies than $50 \mathrm{c} / \mathrm{s}$., to make instability easier to avoid.
To distinguish whether the bridge is above or below balance, the triode circuit, as used by Prosser and by Coates, with an A.C. anode voltage in phase with the bridge input, and the amplified bridge output applied to the grid, is simple and satisfactory. No bias voltage need be used, and a high resistance grid stopper prevents the grid from going positive, thus effectively limiting the maximum current, when grid and anode voltages are in phase. When the bridge is the other side of the balance, the grid voltage is in opposite phase to the anode, and the rectified anode current is reduced by an amount proportional to the amplitude of grid voltage. This circuit is much more economical and simpler in operation than the pentode circuit used by Yates, as it does not require a special transformer winding, bias and screen potentiometer adjustments, double diode for limiting, or output transformer. It is used in the type A controller, Fig. 4, as the output stage, since the Sunvic Hot Wire Vacuum Switch used as the power relay responds purely to the heating or R.M.S. value of the current, and half-wave rectified current can be used. The anode supply can then be obtained straight from the transformer, and the D.c. supply of about I mA for the previous stages is very economically rectified, and smoothed by $M R 1, C 7, R 10, C 6, R 5, C 2$. The value of $R 15$ is chosen to set the maximum current through the hot wire to a safc value. If a fault in the amplifier caused no signal to appear at the grid of V3, the full relay current would be obtained and the furnace would remain switched to full power indefinitely, were it not for the signal introduced by $R 14$ and $R 13$, which is enough to reduce the relay current below the switching value. Apart from thus displacing the operating characteristic of the controller, this circuit does not in any way affect its operation, but it does confer added safety.

The type A controller, including the bridge circuit, has been constructed, without any crowding or use of miniature components. on a chassis $5 \frac{1}{2} \mathrm{in}$. by 11 in . in a metal case $7 \frac{1}{2} \mathrm{in}$. high, but with the relay on the outside of the front panel. The retail price of components amounted to about $£ 7$, plus $£ 110$ s. for a ready-made chassis and case, and $£ 4$ for the relay, totalling $f 1210 \mathrm{~s}$.
The type B circuit has been designed to control creep testing furnaces, which run continuously for 1,000 to 10,000 hours, so that a breakdown sending the temperature high may mean the loss of months of work. The circuit, shown in Fig. 5, is generally similar to that of Coates, and uses a saturable inductor to control the fu:nace current. The use of a large tetrode output valve with a D.c. anode supply is in this case the most economical arrangement, giving up to 20 watts input to the saturating winding, so that the magnetic amplification required is not too great. The type MAF $20 / 1150 \mathrm{~W}$ saturable inductor has been designed by Electro Methods, Ltd.. to control the 1 kW or so required (at maximum) by the furnace with a nominal 20 W (actually only 15 W is needed) which can be economically provided by the output valve. A smaller valve output would considerably increase the cost of a suitable saturable inductor. $R \mid I$ prevents excessive screen grid dissipation at low anode voltage, but allows a higher sensitivity and less anode dissipation than triode connexion. The variable control grid bias for $V / 3$ is provided by the rectified and smoothed output of $V 2$. A small 12:1 loudspeaker transformer steps up the heater voltage to give about 75 volts a.C. on the anode of $V 2$, which is quite adequate for full control of $V 3$.

Loss of cathode emission in V2 would remove the bias from V3 and allow maximum furnace current to flow, so a double triode of ample cathode and anode ratings, with parallel-connected heaters, has been used with the two sections in parallel, to give a greater factor of safety. Possibly this could be improved upon by using a metal rectifier to
provide a fixed negative bias for $V 3$ and arranging $V 2$ to give a positive output, but it would involve additional complication of the circuit. Loss of emission in V1 or V3, or loss of signal before $V 2$, will cause a drop in temperature. It is not practicable to arrange for every possible fault to send the temperature down, but this can be done for the most usual types of fault, such as broken heater, loss of emission, or loss of signal amplification through short or open circuits. Analysis of valve failures in the 18,800 -valve ENIAC, ${ }^{4}$ during a year of operation, has shown that these are the most frequent faults. All the valves are run well below their maximum dissipation limits, and the н.r. supply, rated at 150 mA , normally supplies only 70 to 80 mA , with 100 to 120 mA during initial heating up of the furnace. The use of metal rectifiers and a choke input filter should ensure the maximum life, and if one rectifier fails to pass current the other should be able to maintain the h.r. supply.

The retail price of components for the type B instrument, including everything but the saturable inductor, is about f13.

The correct operation of both types of controller may be checked by plugging a milliammeter into the anode circuit of the output valve, and connecting a fixed resistance of, say, 30 ohms as thermometer. The change in output current, produced by a resistance of about 10,000 ohms placed across the thermometer, can then be used as a measure of the sensitivity and will show whether the bridge input needs reversing to give the correct sense of operation The bridge controls should, of course, be set to bring the output current to a suitable point on the operating characteristic, about half maximum. If a meter jack is built permanently into the instrument, the contacts which are opened by pushing the plug in niay give trouble, so it is desirable to put a 100 ohm resistance across them, or to use a voltmeter, across the anode load, instead of a milliammeter, to prevent failure of the controller if the contacts become dirty.

The use of a saturable inductor to give continuous variation of furnace current has many advantages. It eliminates the switching relay, a probable source of trouble after long periods of use, and should be as reliable as a transformer. It gives more sensitive control without hunting than a system in which proportioning is done by varying the ratio of on and off periods, since it gives immediate correction for any change in conditions and produces no periodic cycling of heat input. The repeated violent fluctuations of heat input to the furnace and power taken from the supply mains are also eliminated, full power being used only during initial heating up. It is unnecessary to use any variable voltage tappings or rheostats for temperatures in the range 400 to $1,000^{\circ} \mathrm{C}$. used for most creep testing. Excellent control has been obtained on furnaces run from a supply subject to large variations of voltage, caused by arc furnaces on the same line, where other controllers of the switching proportioning type have given inferior results.

Both types of controller described have been used for some time in these laboratories by people not conversant with electronic circuits and have given very little trouble over long periods.

Acknowledgment

The author's thanks are due to the Electronics and Creep Laboratories assistants who have helped in constructing the instruments described, and to Dr. C. Sykes. Director of the Brown Firth Research Laboratories for permission to publish this paper.

REFERENCES

${ }^{2}$ Prosser, Engineering, 148. 9S, 1939.
${ }^{2}$ Coates, G. E., Journal Scientific Instruments, 21, 86, 1944.
${ }^{5}$ Yates, E. L., Journal Scienific Instruments, 23. 229. 1946.

+ Michael, F, R., Electronics, 20. 117, 1947.

A Precision Electronic Tachometer

By S. W. Punnett, B.Sc.* and H. G. Jerrard, B.Sc., A.Inst.P.*

THE measurement of speeds of revolution of rocating shafts can be carried out in several ways, the method employed depending on the conditions which exist and the accuracy desired. Accurate methods most recently developed appear to be those in which the number of revolutions occurring in an accurately measured interval of time is electronically counted. ${ }^{1}$ Whatever the method, however, a tachometer may with advantage possess the

following features: it should (1) require little or no alteration to the shafi, (2) impose no load on the shaft, (3) give direct and continuous reading, (4) be capable of the immediate detection and measurement of sligat variations in speed, (5) have the speed indicator remoie from

* Universiry College, Southampton.
the shaft, (6) give no ambiguity and be easy to use, (7) be small and light, (8) give high accuracy over a wide range.

In this article a description is given of the circuit details of an electronic tachometer accurate to 0.05 per cent which satisfies these requirements and whose upper speed limit can be made far in excess of that likely to be required in practical use.

In the instrument to be described an alternating voltage is generated by the rotating shaft and is fed through an A.F. amplifier to the Y-plates of a cathode-ray tube. The output of a variable frequency oscillator is connected to the X-plates. The resultant trace on the tube is a Lissajous figure. If the frequency of the oscillator be adjusted so that the figure is easily identifiable and if the oscillator frequency be known, then the unknown frequency is immediately found. Any slight variation of speed causes a precession of the Lissajous figure and the change is easily recognizable. Larger changes alter the figure completely and thus there can be no ambiguity.

Description of Components

(a) The Alternating Voltage Generator.-To generate by the movement of the shaft the required alternating voltage two types of generator unit are employed. ${ }^{2}$ The first type is electro-magnetic. in which an alternating voltage is induced in a small pick-up coil placed near the shaft by changing the magnetic flux linked with the coil. The unit is very similar to those employed in tachometers which use an a.C. meter to measure the voltage so produced, and hence give an indication of the speed of the shaft. The second type employs a photoelectric cell which, when placed near the shaft, can receive light intermittently reflected from the shaft. To obtain this reflected light a narrow strip of paper of length equal to the circumference of the shaft and ruled with alternate black and white bands of equal width is attached to the shaft. The paper strip has a matt surface, and in addition the light falling on it is diffuse, so that there is no focus-

Fig. 2. Circuit Diagram of Signal Generator

$\mathrm{C} 1=12 \mathrm{pF}, \quad \mathrm{C} 2=0.1 \mu \mathrm{~F}, \quad \mathrm{C} 3=0.1 \mu \mathrm{~F}, \quad \mathrm{C} 4=12 \mathrm{pF}$, $\mathrm{C} 5=12 \mathrm{pF}, \mathrm{C} 6=0.001 \mu \mathrm{~F}, \mathrm{C} 7=0.001 \mu \mathrm{~F}, \mathrm{C} 8=12 \mathrm{pF}$, $\mathrm{C} 9=12 \mathrm{pF}, \mathrm{C} 10=0.005 \mu \mathrm{~F}, \mathrm{C} 11=0.005 \mu \mathrm{~F}, \mathrm{Cl} 2=12 \mathrm{pF}$, , $\mathrm{C} 13=12 \mathrm{pF}, \mathrm{C} 14=0.05 \mu \mathrm{~F}, \mathrm{C} 15=0.05 \mu \mathrm{~F}, \mathrm{C} 16=0.001 \mu \mathrm{~F}$, $\mathrm{C} 17=0.01 \mu \mathrm{~F}, \mathrm{C} 18=0.1 \mu \mathrm{~F}$.
$\mathrm{V} 1=V 5=$ SP61, $\mathrm{V}_{2}=\mathrm{V} 3=\mathrm{V} 4=6$ SN 7 .
$X=100 \mathrm{kc} / \mathrm{s}$. crystal. $L=15 \mathrm{mH}$.

ing of the light either before or after reflexion. The light reflected from the strip is allowed to fall on the photo-cell through a narrow slit. Due to the absence of focusing, it is not difficult to see that for the light falling on the sensitive surface of the cell the variation of the illumination from the mean value is approximately sinusoidal in character: thus the voltage generated is also approximately sinusoidal. This arrangement is very flexible and, as no accurate focusing of the light is required, the position of the cell with respect to the shaft is not critical. In many cases there is no need to make special provision for the artificial illumination of the shaft as ordinary daylight will give a satisfactory response.
(b) The Amplifier and Cathode-ray Tube.-The output from either gene:ator is applied to a straightforward $R-C$ coupled amplifier which has a maximum gain of about 1,000 over the middle range of frequencies. It also gives a reasonable gain over the frequency range $10 \mathrm{c} / \mathrm{s}$ to $5,000 \mathrm{c} / \mathrm{s}$ and should be sufficient to satisfy all requirements. The circuit diagram and component values a"e shown in Fig. I. Careful consideration was given to the

a.

b.

c.

d.

Fig. 3. Output waveforms from (a) first selective amplifier, (b) first selective ampifier after amplification, (c) squaring circuit, (d) calibration unit. The inpot waveform to the selective amplifier unit appears above each trace. The sixth harmonic is being selected
layout of the amplifier, and screening and de-coupling were employed to avoid, as far as possible, the pick-up of spurious signals, particularly from a.C. power lines. The presence of such undesired signals, however, does not render the tachometer useless or even reduce its accuracy, but merely causes a blurred trace on the screen of the cathode-ray tube. The form of the trace can still be identified and so accurate readings remain possible. The electrical connexions for the cathode-ray tube, which has a diameter of $2 \frac{1}{2} \mathrm{in}$. are normal except that for convenience the negative side of its H.T. supply is earthed.
(c) The Calibration Unit.-This consists of two sections-one of which is a signal generator to produce a rectangular waveform with a pulse repetition frequency
of exactly 100 while the other is a selective amplifier unit ${ }^{3}$ with preset tuning to pick out the harmonics from the output of the first section.

The signal generator consists of a crystal oscillator, ${ }^{4}$ three multi-vibrators ${ }^{j}$ and a squaring circuit: these are connected in series. The circuit is shown in Fig. 2. The crystal oscillator employs a $100 \mathrm{kc} / \mathrm{s}$ quartz crystal which has a very small frequency/temperature coefficient. The output, which consists of short pulses, is taken from the anode of the pentode oscillator valve and is used to lock the three multi-vibrators connected in cascade. Each multi-vibrator produces a 10 to 1 step down in frequency, so that the final output from the last multi-vibrator consists of short pulses with a repetition rate of 100 per second. This output is applied to a squaring circuit as shown in Fig. 2, so that the final output of the unit consists of a rectangular waveform with a mark-space ratio of about 10 to 1 . This ratio is not critical; it is merely essential that the output should contain a reasonable percentage of all the harmonics from 1 to 10 of the pulse repetition rate.

As an alternative io multi-vibrators, blocking oscillators, trigger relays of the Eccles-Jordan type or other devices can be used to get the required frequency division.

The rectangular waveform is applied to a selective amplifier unit. Due to the large proportion of harmonics present in this waveform, a single simple selective amplifier is not capable of producing, in the case of the higher harmonics of the pulse repetition rate, an output which is even approaching a sinusoidal voltage. In consequence the unit consists of two simple selective amplifiers which are separated by an amplifying and squaring circuit. The first selective amplifier produces a recurrent damped sinusoidal output (Fig. 3a) whose frequency is an integral multiple of the $100 \mathrm{c} / \mathrm{s}$ input. This is amplified (Fig. 3b) and applied to the second squa-ing circuit whose output (Fig. 3c) then consists of a voltage of rectangular waveform with a mark-space ratio of $1: 1$. This voltage is applied to a second selective amplifier tuned to the same frequency as the first so that it has to handle a signal with a mark-space ratio of $1: 1$ and not, as did the first selective amplifier, a ratio of $10: 1$. Furthermore, it has only to pick out the fundamental of this signal, whereas the first amplifier may be tuned to the 9th or 10th harmonic of its

Fig. 4. Circuit Diagram
$\mathrm{R} 1=200 \mathrm{k} \Omega, \quad \mathrm{R} 2=10 \mathrm{k} \Omega, \quad \mathrm{R} 3=1 \mathrm{M} \Omega, \quad \mathrm{R} 4=20 \mathrm{k} \Omega$, $\mathrm{R} 5=1 \mathrm{k} \Omega, \quad \mathrm{R} 6=1 \mathrm{M} \Omega, \quad \mathrm{R} 7=5 \mathrm{k} \Omega, \quad \mathrm{R} 8=1.5 \mathrm{k} \Omega$, $\mathrm{R} 9=3.5 \mathrm{k} \Omega, \quad \mathrm{R} 10=5 \mathrm{k} \Omega, \quad \mathrm{R} 11=5 \mathrm{k} \Omega, \quad \mathrm{R} 12=2 \mathrm{M} \Omega$, $\mathrm{R} 13=1.5 \mathrm{M} \Omega, \mathrm{R} 14=10 \mathrm{k} \Omega, \mathrm{R} 15=20 \mathrm{k} \Omega, \mathrm{R} 16=20 \mathrm{k} \Omega$, $\mathrm{R} 17=0.5 \mathrm{M} \Omega 2, \mathrm{R} 18=1 \mathrm{k} \Omega, \mathrm{R} 19=0.5 \mathrm{k} \Omega, \mathrm{R} 20=100 \mathrm{k} \Omega$. $\mathrm{R} 21=100 \mathrm{k} \Omega, \mathrm{R} 22=100 \mathrm{k} \Omega, \mathbf{R} 23=2 \mathrm{k} \Omega, \mathbf{R} 24=1 \mathrm{M} \Omega$, $\mathrm{R} 25=10 \mathrm{k} \Omega, \mathrm{R} 26=1 \mathrm{M} \Omega, \mathrm{R} 27=20 \mathrm{k} \Omega, \mathrm{R} 28=1 \mathrm{k} \Omega$. $\mathrm{R} 29=1 \mathrm{M} \Omega, \mathrm{R} 30=5 \mathrm{k} \Omega, \mathrm{R} 31=1.5 \mathrm{k} \Omega, \mathrm{R} 32=3.5 \mathrm{k} \Omega$.

of Selective Amplifier Unit

$\mathrm{R} 33=5 \mathrm{k} \Omega, \mathrm{R} 34=5 \mathrm{k} \Omega, \quad \mathrm{R} 35=2 \mathrm{M} \Omega, \quad \mathrm{R} 36=2 \mathrm{M} \Omega$, $\mathrm{R} 37=1.5 \mathrm{M} 3$. R , variable resistances. (See Fig. 5). These four resistances are ganged together.
$\mathrm{C} 1=0.01 \mu \mathrm{~F}, \quad \mathrm{C} 2=1 \mu \mathrm{~F}, \quad \mathrm{C} 3=0.1 \mu \mathrm{~F}, \quad \mathrm{C} 4=8 \mu \mathrm{~F}$, $\mathrm{C} 5=50 \mu \mathrm{~F}, \quad \mathrm{C} 6=0.01 \mu \mathrm{~F}, \mathrm{C} 7=8 \mu \mathrm{~F}, \mathrm{C} 8=0.01 \mu \mathrm{~F}$. $\mathrm{C} 9=50 \mu \mathrm{~F}, \mathrm{C} 10=8 \mu \mathrm{~F}, \mathrm{C} 11=1 \mu \mathrm{~F}, \mathrm{C} 12=0.01 \mu \mathrm{~F}$ 。 $\mathrm{C} 13=0.1 \mu \mathrm{~F} . \quad \mathrm{C}=0.008 \mu \mathrm{~F}$. $\mathrm{V} 1=\mathrm{V} 2=\mathrm{V} 3=\mathrm{V} 4=6 \mathrm{SN} 7$.
R_{14}

input signal. Thus the second selective amplifier, which has a moderate Q -factor, produces an almost sinusoidal output (Fig. 3d).

The circuit and component values are shown in Fig. 4 The two selective amplifiers are identical in form; each consists of a single valve amplifier whose output is applied to two phase shifting circuits connected in cascade. A fraction $1 / n$ of the output of the second phase shifting circuit is applied to the input grid of the valve amplifier.

Fig. 5. Switch Arrangement of Selective Neiwork
$C=0.008, \mathrm{k}$
$\mathrm{R} 1=20 \mathrm{k} \Omega, \mathrm{R} 2=2.22 \mathrm{k} \Omega, \mathrm{R} 3=2.78 \mathrm{k} \Omega, \mathrm{R} 4=3.6 \mathrm{k} \Omega$,
$\mathrm{R} 5=4.7 \mathrm{k} \Omega, \mathrm{R} 6=6.67 \mathrm{k} \Omega . \mathrm{R} 7=10 \mathrm{k} \Omega, \mathrm{R} 8=16.7 \mathrm{k} \Omega$, $\mathbf{R 9}=33.33 \mathrm{k} \Omega, \mathbf{R} 10=100 \mathrm{k} \Omega$.

Fig. 6. Circuit Diagram of Variabie-Frequency Oscillator
$R 1=30 \mathrm{k} \Omega, \quad \mathrm{R} 2=1.2 \mathrm{k} \Omega, \quad \mathrm{R} 3=0.5 \mathrm{M} \Omega, \quad \mathrm{R} 4=43 \mathrm{k} \Omega$, $\mathrm{R} 5=1.8 \mathrm{k} \Omega, \quad \mathrm{R} 6=15 \mathrm{k} \Omega, \quad \mathrm{R} 7=1 \mathrm{k} \Omega, \quad \mathrm{R} 8=10 \mathrm{k} \Omega$, $\mathrm{R} 9=2 \mathrm{M} \Omega, \mathrm{R} 10=43 \mathrm{k} \Omega, \mathrm{R} 11=10 \mathrm{k} \Omega, \mathrm{R} 12=2.2 \mathrm{k} \Omega$, $\mathrm{R} 13=1.2 \mathrm{k} \Omega, \mathrm{R} 14=2 \mathrm{Mi} \Omega, \mathrm{R} 15=150 \mathrm{k} \Omega, \mathrm{R} 16=10 \mathrm{k} \Omega$. $\mathrm{R} 17=10 \mathrm{k} \Omega, \mathrm{R} 18=0.22 \mathrm{M} \Omega, \mathrm{R} 19=0.66 \mathrm{M} \Omega, \mathrm{R} 20=2 \mathrm{M} \Omega$, $\mathrm{R} 21=6 \mathrm{M} \Omega . \mathrm{R} 22=0.22 \mathrm{M} \Omega, \mathrm{R} 23=0.66 \mathrm{M} \Omega, \mathrm{R} 24=2 \mathrm{M} \Omega$,

It can be shown that the feedback is given by the expression

$$
\begin{gathered}
\beta=\frac{1}{n} \cdot \frac{2-j y}{2+j y} \\
\text { where } y=f_{0}-\frac{f_{0}}{f} \text { and } f_{0}=\frac{1}{2 \pi C R}
\end{gathered}
$$

This expression is deduced ignoring such effects as stray capacitances, load impedance, etc. The frequency f is that of the applied signal; C and R are the values of the components of the networks connecting anode and cathode of the two phase inverting valves. (See Fig. 4.)

If now the gain of the amplifier valve without feedback is A, then the gain, G, with feedback is given by,

$$
\begin{aligned}
G & =\frac{A(2+j y)}{2(1-A / n)+j y(1+A / n)} \\
& =\frac{G_{0}(1+j y / 2)}{1+\mathrm{i} G_{0}(1 / 2 A+1 / 2 n) y}
\end{aligned}
$$

where G_{0} is the gain when the applied frequency f is equal to f_{0}. When A is small and n is made very slightly smaller than A so that G_{0} is large the following approximate expression is obtained for the gain G,

$$
G=\frac{G_{0}(1+j y / 2)}{1+j y\left(G_{0} / A\right)}
$$

so that the effective Q factor of the complete circuit near resonance is approximately G_{0} / A.

At the frequency f_{0} the two phase shifting circuits each produce a phase shift of $\pi / 2$, giving a total phase change of π so that positive feedback results and therefore the gain of the amplifier is large. At all other frequencies the feedback is not in phase with the input and this gives a reduced gain. A frequency at which the feedback is positive must always exist with this circuit; tuning is thus very simple. The capacitors, C, employed need not be accurately adjusted. The form of the phase shifting resistors together with their switch arrangenment is shown in Fig. 5. To adjust the selective amplifier to the desired trequencies it is only necessary to make small changes in one of the two chains of resistors. In actual practice the phase shift in each phase shifting circuit need not be exactly $\pi / 2$; it is only necessary that the sum of the two phase shifts shall be π.

This selective amplifier circuit theoretically has one

$$
\mathrm{R} 25=6 \mathrm{M} \Omega, \mathrm{R} 26=3.3 \mathrm{k} \Omega, \mathrm{R} 27=500 \Omega
$$

$\mathrm{Cl}=0.05 \mu \mathrm{~F}, \mathrm{C} 2=0.05 \mu \mathrm{~F}, \mathrm{C} 3=0.5 \mu \mathrm{~F}, \mathrm{C} 4=0.1 \mu \mathrm{~F}$,
$\mathrm{C} 5=0.5 \mu \mathrm{~F}, \quad \mathrm{C} 6=50 \mu \mathrm{~F}, \quad \mathrm{C} 7=8 \mu \mathrm{~F}, \mathrm{C} 8=0.5 \mu \mathrm{~F}$
$\mathrm{C} 9=0.1 \mu \mathrm{~F}, \quad \mathrm{Cl0}=8 \mu \mathrm{~F}, \mathrm{C} 11=50 \mu \mathrm{~F}, \mathrm{C} 12=600 \mathrm{pF}$
$\mathrm{C} 13=20 \mathrm{pF}, \mathrm{C} 14=1000 \mathrm{pF}, \mathrm{C} 15=100 \mathrm{pF}, \mathrm{C} 16=500 \mathrm{pF}$

other advantage in that if the effects of stray capacitances, load impedance, etc., are again ignored, the magnitude of the voltage fed back to the input is independent of the sizes of C and R and of the frequency.

The resultant sinusoidal output of the whole selective amplifier unit whose frequency can be that of any harmonic of the $100 \mathrm{c} / \mathrm{s}$ multivibrator is applied to the cathode ray tube after amplification by the main A.F. amplifier (see Fig. 7); this is necessary to produce a reasonable deflexion on the tube. Although in the circuit shown the tenth harmonic is the highest available, it is possible by using Lissajous figures of different orders to standardize a very large number of points on the dial of the variable frequency oscillator. The preset tuning of this tuned selective amplifier unit is accomplished by the use of a four-gang switch which connects the required resistors into the phase shifting networks.
(d) The Variable Frequency Oscillator. To ojtain all accuracy as high as 0.05 per cent it is essential to use a variable frequency oscillator possessing good frequency stability. It is not necessary this should be long term stability since the frequency can be quickly re-checked by the unit described in section (c). The circuit is as shown in Fig. 6.

The principle is the same as that employed in ordinary $R-C$ coupled oscillators but precautions are taken to secure short term stability as far as possible of the frequency of the output. Further it is necessary to open out the scale so that the dial can be read to the desired accuracy. To secure this open scale the frequency covered by each switch position is decreased from the more usual 10 to 1 employed in this type of oscillator to 3 to 1 . Capacitance tuning is employed and thus large fixed shunt capacitances are connected across each section of the ganged tuning capacitances so that the ratio of maximum to minimum is 3 to 1 . High stability resistors are employed for the resistors $R 18$ to $R 25$ (Fig. 6) of the frequency determining network. The large values required for these rendered impracticable the use of wire wound types so that

Fip. 8. Typical traces for electro-magnetic generator. First, second and third order Lissajous figures representing speeds of 600, 1,200 and
high-stability cracked carbon resistors have been employed. These have a negative temperature coefficient of the order of 200 parts per million per ${ }^{\circ} \mathrm{C}$ and, in conjunction with a suitable selection of capacitors for the fixed shunt across the tuning capacitors, partial compensation for tempera-
ture changes has been achieved. Complete compensation with this arrangement is not practicable as capacitors with temperature coefficients greater than plus 140 parts per million per ${ }^{\circ} \mathrm{C}$ are not commercially available. However. after an initial warming up period of abouc twenty minutes the oscillator gave a highly satisfactory performance at room temperature.

It is possible to obtain an even greater temperature stability by using a frequency determining network in which the capacitances have fixed values and the tuning is accomplished by the use of variable resistors. The increased cost usually does not warrant this especially as the effect of slow changes in temperature is removed by periodic calibration.

The effects of mains voltage variation are eliminated by using a valve s!abilizer of standard pattern."

The frequency dial is supplied with a vernier reading to five parts in ten thousand and small ganged trimming capacitors are provided so that the dial may be reset if necessary each time the oscillator is calibrated.

The arrangement of the complete circuit is shown in Fig. 7. Initially the outpu's of the variable frequency oscillator and the calibration units are connected to the X and Y plates of the cathode ray tube respectively. By using suitable stationary Lissajous figures the former is calibrated. The calibration unit is switched off, whereupon the tachometer is ready for use with either generator. Fig. 8 shows typical traces.

Conclusion and Acknowledgment

The tachometer described above is suitable for any speed range and possesses the featurcs outlined above in the introduction. The complete unit shown in Fig. 9 occupies

Fig. 9. General view of tachometer and photo-electric generator
a space of only 18 in . by 14 in . by 12 in . and weighs less than 80 lb . If miniaturization technique is employed these figures can be considerably reduced. By the use of a shielded cable from the indicator to the generator head the former can be at any distance from the shaft.
The authors wish to express their thanks to Messrs. R. D. Hilton and G. Q. McColl, who constructed the apparatus, and to Professors A. M. Taylor and E. E. Zepler in whose laboratories this work was carried out.

REFERENCES

:Finden, H. J. : Electronic Engineering, 22, 21950.
? Jerrard, H. G. and Punnetı, S. W. : J. Sci. Insirumi (27, 244, 1950)
${ }^{3}$ "Vacuum Tube Amplifiers." Radiation Laboratory Series, Ist ed., 18, Chapt. 10.
New York: McGraw-Hill Book Co., 1948

* "Waveforms." Radiation Laboratory Series, Ist ed., 19, p. 16. New York:

McGraw-Hill Book Co., 1948.
"Waveforms," Radiation Laboratory Series, 1st ed., 19, Chapt. 16. New
York: McGraw-Hill Book Co., 1948.
"Terman, F. E.: "Radio Engineers' Handbook," Ist ed., p. 614. New York McGraw-Hill Book Co., 1943.

Inverse or Reciprocal Scales from Linear Potentiometers

A. F. Boff, B.Sc. *

IN the design of measuring equipment it is often required to divide a potential in accordance with an inverse or reciprocal law. Frequently, wire-wound potentiometers are used in which the core is tapered, or the wire graded, in an endeavour to attain the characteristic required but, owing to the inherent practical difficulties of constructing an element having a truly reciprocal law, the result is very approximate and usually inadequate. In this article a simple method is described by means of which exact reciprocal scales and approximate logarithmic scales, may be obtained using standard linear components.

Fig, 1. Characteristics of normal linear potentiometer and logarithmic potentiometer

Fig. 2. Effect of shunting a linear potentiometer with a fixed resistor

Fig. 1 shows the characteristic obtained by normal use of a linear potentiometer, and for comparison, the curve of a logarithmic potentiometer of well-known manufacture.

It has been assumed that the total angular rotation of the potentiometer scale is 300°; a figure in accordance with most types conmercially available.

Figs. 2 and 3 illustrate the effect of shunting a linear potentiometer by a fixed resistance connected to the moving contact. Values of the ratio $R 1 / R 2$ are indicated on the curves.

In practice the entire range of the curves is rarely required and the useful working range is therefore restricted to perhaps two thirds or less of the available rotation of the potentiometer. A considerable improvement is indicated in Figs. 4 and 5 in which one end of the potentiometer is open-circuited. The method is rendered still more universal by the insertion of a resistance in series with the potentiometer as shown in Figs. 6 and 7, and its effect is illustrated in the accompanying curves.

Design of such a potential divider is influenced by the

[^4]value of potentiometer $R 1$, which is not readily obtainable in wire wound types for values in excess of 100,000 ohms and also by the permissible current from the source of potential.

An example will serve to illustrate application of the device:-

A source of potential of 12 volts is available and a potential divider is required having a range of 10 volts to 1 volt, according to a reciprocal law (Fig. 8). Calculation by the method given below gives the following ratio :-

$$
R 1 / R 2=10.8 \text { and } R 3 / R 2=0.2
$$

Fig. 3. Effect of alternative method of shunting a linear potentiometer with a fixed resistor

Fig. 4. As for Fig. 2, but with one end of the ootentiometer disconnected

In order to keep the current as small as possible $R 2$ and hence $R 1$ should be as large as possible.

$$
\begin{aligned}
\text { Let } R 1 & =100,000 \text { ohms, } \\
\text { then } R 2 & =\frac{100,000}{10.8}=9260 \mathrm{ohms} \\
\text { also } R 3 & =0.2 \times R 2=1850 \mathrm{ohms}
\end{aligned}
$$

The circuit of Fig. 9 will therefore provide the desired sharacteristic, and the maximum current taken from the source is:

$$
E /(R 2+R 3)=1.08 \mathrm{~mA}
$$

Calculation. The general mathematical expressions for the curves of Figs. 6 and 7 respectively are,

$$
\begin{align*}
& \frac{e}{E}=\frac{1}{A+K \theta / \theta^{\circ}} \tag{1}\\
& \frac{e}{E}=\left\lvert\, \begin{array}{l}
A+K\left(1-\theta / \theta^{\circ}\right.
\end{array}\right. \tag{2}
\end{align*}
$$

where $E=$ Potential to be divided

$$
e=\text { required portion of potential }
$$

$\begin{aligned} & \theta^{\circ}=\text { range of angular rotation of potentiometer } \\ & \theta=\text { angular rotation of potentiometer from posi- } \\ & \text { tion of naximum potential } \\ & A=\text { constant } \\ & K=\text { constant }\end{aligned}$
Consider the circuit of Fig. 6 where R2, R3 are fixed resistors and $R 1$ is a linear potentiometer, then :-

$$
\frac{e}{E}=\frac{R 2}{R 2+R 3+R 1 \theta / \theta^{\circ}}\left(1+\frac{R 3}{R 2}\right)+\frac{R 1}{R 2} \theta / \theta^{\circ}
$$

Comparing this equation with equation (1) we see that,

$$
\begin{align*}
& A=1+R 3 / R 2 \tag{3}\\
& K=R 1 / R 2 \ldots \tag{4}
\end{align*}
$$

thus by suitable choice of values $f \subset: R \mathrm{i}, ~ R 2, R 3$, any desired values of A and \bar{K} may be obained.

Similarly for the circuit of Fig. 7.

$$
\begin{aligned}
\frac{e}{E} & =\frac{R 3+R 1\left(1-\theta / \theta^{\circ}\right)}{R 2+R 3+R 1\left(1-\theta / \theta^{\circ}\right)} \\
& =1-\frac{1}{(1+R 3 / R 2)+R 1 / R 2\left(1-g / \theta^{\circ}\right)}
\end{aligned}
$$

Fig. 5. As for Fig. 3, but with one end of the notentiometer disconnected
Fig. 6. Circuit of Fig. 4 with series resss:or added to potentiometer

Hence by comparison with equation (2)

$$
\begin{aligned}
& A=1+R 3 / R 2 \\
& K=R 1 / R 2 \quad \text { as before }
\end{aligned}
$$

In the example used for illustration above we have the following data

$$
E=12 V
$$

when $\theta=0, e$ is required to be 10 V
when $\theta=\theta^{\circ}, c$ is required to be 1 V
Now using Equation (1) and substituting $E=12$,

$$
=0, e=10 \text { and } E=12, \theta=\theta^{\circ}, e=1
$$

we have $10 / 12=1 / A \quad$ Hence $A=1.2$

$$
\begin{aligned}
\text { and } 1 / 12 & =1 / A+K \quad \therefore A+K=12 \\
\text { but } A & =1.2 \quad \therefore K=10.8
\end{aligned}
$$

Hence from equations (3) and (4) we have

$$
\begin{aligned}
& R 3=0.2 R 2 \\
& R 1=10.8 R 2
\end{aligned}
$$

which are the ratios used in the example.

Fig. 7. Circuit of Ifig. 5 with series resistor added to potentiometer
Fig. 8. Characteristic required in numerical cxamp'e

Fig. 9. Required va uen to give the characteristic of Fig. 8

High-Speed Waveform Monito ${ }^{\circ}$
A.E.R.E., Harwell, have developed a high-speed oscilloscope tor testing scalers, amplifiers, coinciaence circuits, etc. \mathbf{Y} voltage measurements can be made by balancing in a bridge circuit the input signal potential against a d.c. potential supplied by the oscilloscope circuit, and metered by a built-in high grade multi-range moving coil voltmeter. Measurements can be made on a.c. and D.C. signais, and as it is a null method the accuracy is independent of Y amplifier linearity and gain, and of mains input variations.

The Y amplifier enables a sensitivity varying from 2 mm volt to 2.3 cm volt to be achieved with a rise time of 0.07μ seconds. For inspection of hum levels, etc., a sensitivity of up to $15 \mathrm{~cm} /$ volt is a vailable with some deterioration of transient response.

Time base speed is variable by means of a switch as follows: $1.5,5,15,50,150$ and 500 micro-seconds, and $1.5,5,15$ and 50 milliseconds. In addition, by operation of the X gain control the effective length of the trace can be expanded from about 8 to 50 cm , any portion of which can be viewed by operation of the X shift control.

Recovery time varies with sweep soeed; it is about $8 \mu \mathrm{~S}$ on the $1.5 \mu \mathrm{~S}$ setting and 33 mS on the 55 mS settings.

Normally the fly-back is blacked out and a jack is provided to inject external blackout waveforms.

The monitor is manufactured by E.M.I., Ltd.. Hayes. Middlesex, and is known as the High Speed Waveform Generator, Type 3794B.

The Effect of Pen-to-Paper Friction in
 Recording Instruments

By M. J. Tucker, B.Sc. *

THE effect of friction between the pen and chart of recording ammeters and other devices using mechanical registration can be of importance in accurate work. For example, in the recording ammeter used for most of the investigations described in this article (an "Evershed and Vignoles" 500 ohm 3-0-3 milliamp recorder using the Murday system), the maximum deflexion supportable by static friction alone could be over 3 per cent of the scale-width, and a similar figure was obtained when the pen-to-paper friction in an Esterline-Angus 1 milliamp 1,300 ohm recorder was measured. In practice the effect is usually reduced by the movement of the chart, and in many industrial applicatiors where recording meters are used to measure slowly varying quantities that do not produce steep curves, the effect is negligible. However, appreciable errors can be introduced when steep curves are recorded.

The main difficulty in dealing with static friction is its unreliable nature. Measurements of the friction between the same pen and chart roll in a recorder using the Murday System varied from the mean by as much as 60 per cent, though this was mostly due to the pen being tilted at extreme deflexion, in which circumsiances the friction also varied according to the direction of measurement. However, even in the centre of the chart successive measurements varied from the mean by up to 20 per cent, the friction being practically independent of the direction of measurement here. This means that calculations of the effect of static friction are approximate and must be used with caution.

Experiment indicates that the stationary and moving friction of the pens is the same, and this will be assumed in this article. It will also be assumed that the friction is the same for all directions of movement of the pen.
The weight of ink in the pen is important and in pens of the reservoir type where this can vary, corrections must be based on a friction value corresponding to the correct weight of ink. A Murday reservoir pen when full of ink has approximately twice the friction of an empty pen.

The effect of static friction may be practically eliminated if there is a comparatively high frequency vibration supcrimposed on the pen, and it is a well-known practice to superimpose a small amount of $50 \mathrm{c} / \mathrm{s}$ current on the input to electrical recorders for this purpose. The a.c. power required is very small, being that which will cause a just noticeable thickening of the record line. Where a vibration is fortuitously present it can invalidate static friction corrections. With seismographs it has been found that vibration from sources such as lorries passing on nearby roads can reduce friction effect to negligible proportions.
This article assumes that the recording is taking place sufficiently slowly for the effects of inertia and of fluid or magnetic damping to be neglected, and that the pen moves perpendicularly to the direction of movement of the paper. The errors invo'ved in applying the resul!ts to curved-scale recorders will not be large.

Measurement of the Static Friction

A convenient practical measure of the amount of static

[^5]friction is the maximum deflexion supportable by static friction alone, and this, measured as a distance, is used below as the static friction constant K. It may be measured directly by letting the pen return slowly from a small deflexion and measuring the final distance from the true zero. The chart must, of course, be stationary during the return, but should be moved forward just before this starts, so that the pen moves over clean paper. When using electrical recorders, the deflecting force is best produced by a small current and the slow return by thick oil in the dash-pot. The average of several readings- should be taken. The pen will sometimes catch on a paper fibre. and cases should be disregarded where this has obviousiy happened.

The value of K can also be obtained fron the shape of the error decay curve drawn by the pen when the paper is moving. Fundamentally this method is beiter as it measures the moving friction and takes an average over a length of line. However. the two methods are found to give similar results and the direct method described above is much less laborious.

Fig. 1. Diagram of the forces exerted on the pen by its supports

Basic Equation for Calculating the Error at any Point

Fig. 1 is a diagram of the forces exerted on the pen by its supports.
y is the error deflexion due to static friction, and hence the force F_{y} tending to reiurn the pen to the true position is $-y S$, where S is the restoring force per unit deflexion of the pen.
F_{x} is the force along the direction of movement of the chart.
F_{c} is the force of constant magnitude necessary to overcome static friction, and is thus the resultant force on the pen when it is moving over the paper. This force will act along the tangent to the curve at the point of writing, so that θ is the angle beiween the tangent to the curve and the x axis.

Since $F_{y}=-y S$, the error deflexion y is given by

$$
y=-F_{y} / S=F_{v} \sin \theta / S
$$

K (the maximum deflexion supportable by friction alone) is given by y, so that when $\theta=90^{\circ}$

$$
\begin{equation*}
K=F_{r} / S \text { and } y=K \sin \theta \tag{1}
\end{equation*}
$$

This equation is general, and allows the error at any point to be calculated from the slope of the curve: If necessary, corrected curves can be plotted (Fig. 2).

Fig. 2. The effect of static friction
The thin line is the wave-form of the driving current, and the points are calculated from the recorded curve using Equation (1). A small curve 4 as recorded 10 exaggerate the effect, and has been magnified.

Slowly Varying Records

If the maximum slope of the record is less than about 30°, the effect of static friction is similar to that of viscous or magnctic damping. With these the resisting force and hence the error deflexion produced is proportional to the rate of deflexion, that is to $\tan H$, so that for small slopes where $\sin \theta$ and $\tan H$ are approximately equal, static friction has a similar effect.
When the slope of the record is 30°, the deflexion due to static friction is 0.5 K .

Step Deflexion and Return to Zero

When a deflecting force is suddenly removed from a pen recorder or a steady force is suddenly applied, static friction will prevent the pen from reaching its correct position immediately. The error deflexion will slowly disappear as the paper moves, and the curve drawn by the Den can be calculated. The shape of this error decay curve is the same for all recorders, only the overall scale is altered by the amount of static friction present.

From Equation (1)

$$
\text { Thus } \begin{align*}
\frac{d y}{d x}=\tan 4 & =\frac{\sin \theta}{V\left(1-\sin ^{2} \theta\right)} \\
= & \frac{y / K}{v 11-(y / K)}
\end{align*}
$$

This equation can be solved and gives
$x / K=-V\left[1-(y / K)^{2}\right]+\log _{e}\left[K / y+V\left((K / y)^{2}-1\right)\right]$
It will be seen that this result is in terms of x / K and y / K only, and hence when plotted the resulting curve is universal (Fig. 3). Fig. 4 is an enlarged photograph of an astual error decay curve.

For small values of y / K, (2) tends to the exponential form

$$
\begin{equation*}
x / K=-1+\log _{e} 2 K / y \tag{3}
\end{equation*}
$$

Thus, a plot of $\log _{e} y$ against x should tend to a straight line with a slope of $-1 / K$. As mentioned above, this provides an alternative method of determining K, but is laborious and no more satisfactory than the direct method.

The distance the paper must move for the recorder
reading to be correct within given limits can be found from Fig. 3 or Equation (2).

Deflexions of Short Duration

The error in the amplitude of such a record is difficult to assess. If the paper does not move appreciably during the time of deflexion, the error is K, but owing to the steepness of the initial part of the error decay curve the slightest movement of the paper reduces the error considerably. Probably the best procedure is to apply a correction of 0.75 K in all cases where the pen has dwelt within 0.5 K of its maximum deflexion for a time corresponding to a chart movement of less than 0.5 K and this will nearly always give an answer correct within $0.2 K$.

Sinusoidal Driving Force

The differential equation obtained for the general case of a sinusoidal driving force is not readily soluble, and so no general result can be given. An approximate solution obtained by Reid ${ }^{1}$ and by Nakamura ${ }^{2}$ independently also takes account of inertia and viscous damping. If we insert in their formula the conditions that the period being recorded is much longer than the natural period of the recording movement and that the viscous damping is small, it becomes

$$
\begin{equation*}
A / A_{1}=V\left[1+\left(A^{1} K / A_{1}\right)^{2}\right] \tag{4}
\end{equation*}
$$

where
A is the amplitude of the curve that would have been drawn in the absence of friction.
A_{1} is the amplitude of the curve actually drawn by the pen.
A^{1} is a factor dependent on A_{1} / L.
L is the wavelength of the curve.
A^{\prime} is tabulated by Reid and Nakamura. Inserting the values corresponding to curve B in Fig. 5, this gives $A / A_{1}=$ 1.026, whereas the computed value is 1.05 .

To obtain their formula they consider the case of a pen actually drawing a sine wave, in which case the error

Fig. 3 (above). Universal error decay curve of a recorder kept from its true position by static friction of the pen

Fig. 4 (right). Actual error decay curve. For this curve a 50 milligram weight was placed on the pen to increase friction

curve may be calculated. This error curve is found to contain harmonics in only small proportion compared with the amplitude of fundamental present, and they therefore neglect these. It so happens, however, that the phases of these harmonics are such that they add up to give a large effect just before the maximum of the curve drawn by the pen. A typical example is shown in Fig. 6. It will be seen that though the amplitude of the third harmonic of the error curve is only approximately 0.2

Fig. 5. The effect of static triction on the response of a pen recorder (computed)
that of the fundamental, and higher harmonics are much smaller than this, they have an effect approximately equal to the fundamental in the last K of horizontal movement before the maximum of the curve drawn by the pen is reached. It is this last K of distance which largely governs the error at the maximum, and hence the ratio of approximately $2: 1$ between the actual error and that derived from the Reid-Nakamura formula is explained.
The error curve in Fig. 6 is fundamentally a graph of the error force due to static friction, and if the system were inertia controlled, as is normally the case in seismographs for which the formula was developed, the third harmonic would have relatively much less effect owing to its higher frequency and could be safely neglected. The ReidNakamura formula is therefore only valid in cases where the frequency of the driving force is greater than the natural frequency of the recording device.

It is interesting to note that the A^{1} of the formula is the amplitude relative to K of the fundamental component of the error curve.

Individual response curves can be computed by using Equation (I) to develop the curve step-by-step, and Fig. 5 shows three such computed curves.

Sine waves whose ratio of amplitude to wavelength (as drawn by the pen) is less than 0.11 may be treated as "Slowly varying curves" and the formula obtained for the correct amplitude A is

$$
\begin{align*}
A / A_{1} & =V\left(1+4 \pi^{2} K^{2} / L^{2}\right) \\
& \approx V\left(1+40 K^{2} / L^{2}\right) \tag{5}
\end{align*}
$$

This formula will be only slightly in error when applied to considerably steeper waves if the wavelength is long compared with K, as the steep parts of the curve will be remote from the top and any error due to them should have practically disappeared by the time the top is reached. If L is greater than $8 K$, curves to which Equation (5) may be applied are those in which

$$
\begin{equation*}
A<L / 10 \sin (4 \pi K / L) \tag{6}
\end{equation*}
$$

Conclusion

It is well known that the most effective way of eliminating the effect of pen-to-paper friction is to run the paper very fast, but this is not always possible or convenient. Using the information given above it is possible to find how fast the paper must run to reduce the frictional error

Fig. 6. A is part of a sine curve drawn by a pen with friction
B is the curve that would have been drawn if the pen had no friction
C is the error curve
D is the fundamental content of the error curve
below a given value, or to estimate the frictional error in a record already taken if the value of K is known.
lt is emphasized again that for reasons set out in the introductory remarks, corrections for static friction must be used with a great deal of caution.
The author wishes to thank C. E. Perry, of Messrs. Evershed \& Vignoles, for information on the variations of pen-to-paper friction in Murday Recorders.

REFERENCES

${ }^{1}$ Reid, H. F.: "The influence of friction on Seismographs," Bull. Seis. Soc. Amer., 15, 224, 1925.
Amar., $15, \mathrm{~S}$, T . "An approximate solution of the true motion of the ground
from a record of a Pendulum Seismometer subject to friction at its recording
point " Proc. point." Proc. Imp. Acad. (Tokyo), 8, 155, 1932.

Holme Moss Television Transmitting Station

The B.B.C. announce that each of the new Holme Moss television station transmitters has been designed and manufactured by Marconi's Wireless Telegraph Co., Ltd. The vision transmitter is to have a power output of approximately 35 kilowatts, and will employ grid modulation on the output stage. Its valves will be air-cooled, except for the output stage, which will be water cooled. The sound transmitter will be similar to the one at the Sutton Coldfield Station, with a power output of 12 kilowatts.

The area within which reception of the television programme from Holme Moss can be relied upon is expected to be roughly rectangular in shape, stretching from Lancaster to Bridlington in the north, and from Birkenhead to Grimsby in the south. This area has a population of over 11 millions, and includes almost the whole of the West and East Ridings as well as most of Lancashire.

As mentioned on page 489 of the November, 1950, issuc of Electronic Engineering. the vision transmitter will operate on a carrier frequency of $51.75 \mathrm{Mc} / \mathrm{s}$ (5.8 metres) and the sound transmitter on $48.25 \mathrm{Mc} / \mathrm{s}$ (6.2 metres).

A Choke-Coupled Phase-Invertor of High Accuracy

By R. A. Seymour * and D. G. Tucker \dagger

PHASE-INVERTORS using resistance-loaded triode valves are well-known, ${ }^{1}$ and if equal resistances are used in anode and cathode circuits, then the anode and cathode voltages can be almost exactly equal and of opposite phase. It is often possible to make this circuit of adequate voltagehandling capacity, so that grid current can be avoided, but in many applications, e.g., a transformerless rectifier modulator recently described, ${ }^{2}$ it is necessary to raise the applied voltage to the limit. In such a case, grid current may flow and, since it flows in the cathode resistor but not in the anode, it unbalances the outputs. This difficulty can be avoided by using a balanced-choke coupling as described below; the grid current may then be permitted to become as large as distortion considerations allow, while still retaining good balance of voltage and accuracy of phase. The same result could not be obtained by the use of an ordinary transformer circuit, since although a transformer phase-invertor may give equal voltages and opposite phases with some accuracy, the phases will not correspond correctly to the phase of the applied signal owing to the large phase-shift introduced by the leakage

inductance. This point is of great importance in all feedback circuits, whether they are feedback amplifiers, oscillators, servo loops, etc.

The circuit arrangement is shown in Fig. 1 and is analyzed in terms of a general resistance load R which has the requirement that its centre point should remain at earth potential. In the case of a modulator, this corresponds to no carrier leak.
The equivalent circuit is shown in Fig. 2. Here a gridcurrent circuit is added in which R_{G} is the effective resistance from grid to cathode when grid current flows. The analysis has two objects, (a) to determine the voltage and phase-shift of the output (V c) relative to the applied input voltage (e), and (b) to show that grid current does not seriously unbalance the output, although it does do so in the simple resistance-coupled phase-invertor.

(a) Voltage and Phase-shift of Circuit

Since the effect of grid current on the efficiency of the circuit must be small, it is adequate here to ignore the grid current circuit altogether.

Then, since no current flows in $-M$, the point J must be at earth potential.

So $V_{\mathrm{Ac}}=2 V_{c}$ (where $V_{A c}=$ voltage from anode to

[^6]cathode). Thus we have:
$\frac{-2 V_{\mathbf{c}}}{-\mu\left(e-V_{\mathrm{c}}\right)}=\frac{\mathrm{j} 2 R \omega(L+M)}{R+\mathrm{j} 2 \omega(L+M)} /\left[r_{\mathrm{i}}+\frac{\mathrm{j} 2 R \omega(L+M)}{R+\mathrm{j} 2 \omega(L+M!}\right]$
Now put $2_{w}(L+M)=X$ and solve for V_{c}.
Then
\[

$$
\begin{equation*}
V_{\mathrm{c}}=\frac{\mu R X}{(\mu+2) R X+2 r_{\mathrm{a}} X+\mathrm{j} 2 r_{\mathrm{a}} R} \cdot e \tag{1}
\end{equation*}
$$

\]

so that the phase-shift between input (e) and outpu: (V_{C}) is given by

$$
\begin{equation*}
\tan \phi=\frac{2 r_{3}}{(\mu+2) R+2 r_{\mathrm{a}}} \cdot R / X \text { exactly } \tag{2}
\end{equation*}
$$

and if we assume $X \gg R$, the voltage gain is

$$
\begin{equation*}
V_{\mathrm{c}} / e \approx \frac{\mu R}{(u+2) R+2 r} \tag{3}
\end{equation*}
$$

From these equations we can see that the phase-shift (which is required to be smali) is determined, as far as the choke is concerned, entirely by its shunt inductance, and the leakage inductance has no influence except for the very second-order effiect that $L+M$ will be slightly less than $2 L$. In a transformer coupling, as discussed earlier.

the leakage inductance may have a first-order effect on the phase-shift. Any self-capacitance or other stray capacitance may be included in the term X in Equation (2). It is clear that the anode-to-cathode coupling, which produces negative voltage-feedback, gives the effect of a low internal resistance in the valve, since the greater the amplification factor (μ) the smaller the phase-shift becomes.

Since the equivalent circuit is, in the absence of grid current, quite symmetrical about the point J, it is evident that the voltage from anode to earth is in exact phase opposition to that from cathode to earth.

(b) Effect of Grid Current

It can be seen almost by inspection of Fig. I that grid current flowing from cathode to earth will not unbalance the output if the coupling between windings is perfect, and thus the mid-point of the load R will remain at earth potential. It is perhaps more difficult to see this from the equivalent circuit of Fig. 2, but the analysis is quite simple. lgnoring r_{a} (which can be considered as absorbed into R), the grid current flows into two paths at C. Consider a current i_{1} flowing through $L+M$ and $-M$ to earth, and a current i_{2} through $R, L+M$ and $-M$. Then by equating voltages from C to J, we have

$$
i_{1}=\frac{R+j \omega(L+M)}{\mathrm{j} \omega(L+M)} i_{2}
$$

and if $V_{c^{\prime}}$ is the voliage from cathode to earth due to grid current, then

$$
\begin{align*}
V_{0}^{\prime} & =i_{2}[R+j \omega(L+M)]-\left(i_{1}+i_{2}\right) j \omega M \\
& =i_{2}\left[R+j \omega L-\frac{M}{L+M}\{R+j \omega(L+M)\}\right] \tag{4}
\end{align*}
$$

Now if the coupling is perfect, $M=L$, and then

$$
\begin{equation*}
i_{2}=V_{\mathbf{C}}^{\prime} / R / 2 \tag{5}
\end{equation*}
$$

which means that the centre-point of R is at earth potential.

When the coupling is not perfect, i_{2} is given by Equation (4) and the out-of-balance voltage at the centre-point of R is given by:

$$
\begin{gather*}
V_{\mathrm{C}}^{\prime}-i_{2} \mathrm{R} / 2 \\
=i_{2}\left(L-M\left[\frac{R}{2(L+M)}+j \omega\right] .\right. \tag{6}
\end{gather*}
$$

Noie that if $\omega(L+M) \gg R$,
$i_{2} \approx \frac{1}{2} i_{\mathrm{G}}$ where $i_{\mathrm{G}}=$ total grid current.
Thus the out-of-balance voltage is approximately proportional to the product of grid current and leakage reactance. In practice, therefore, design must aim at a high total inductance to keep the phase errors small, and a low leakage inductance to keep the effect of grid current small.
The above analysis ignores the presence of an E.M.F. $\mu V^{\prime}{ }_{c}$ in series with r_{a} due to the feedback effect, but this is evidently quite justifiable because it has already been shown that the circuit is balanced in any case to signals in the r_{a} circuit.

REFERENCES

${ }^{1}$ Sowerby, J. M. : "Some Notes on Phase-Splitters," Wirelens World, 55, 492, Dec., 1949.
"Tucker, D. G. : "Balanced Rectifier Modulators Without Transformers," Electronic Engineering, 22, 139, 1950.

A Null Method of Measuring the Gain and Phase Shift of Comparatively Low Frequency Amplifiers

By T. Baldwin, A.M.I.Mech. E. * and J. H. Littlewood, M.Sc. *

THE following is a description of a method used to determine the gain and phase characteristics of low and medium frequency amplifiers. It has been found convenient in practice and gives repeatable results, without requiring more complicated equipment \dagger than an accurate attenuator calibrated in 0.1 db steps, an oscillograph, a variable decade capacitor, a known resistor and a variable frequency oscillator giving an adequate output. The gain and phase shift in the amplifier are cancelled out by equal and opposite gain and phase shift. Consequently, the measurements are made under overall zero conditions of gain and phase shift and thus the method can be regarded as null.

In testing low and medium frequency amplifiers, the following is a common procedure:
(i) The same a.c. voltage is applied to the X and Y

Fig. 1. Usual circuit to measure voltage gain
plates of a cathode-ray oscilloscope. For simplicity it will be assumed that push-pull deflexion is not employed. The slope of the resulting line on the e.r.T. is indicated by the points of two pins secured to the tube face by plasticine.
(ii) The circuit shown in Fig. 1 is connected up. It is usual to place a resistor R in series with the attenuator, R being greater than the characteristic impedance (R_{A}), of the attenuator. This is because the potential

Fig. 2. Modified circuit to measure voltage gain and phase shift
Difficulties are encountered, however, when the test fre quencies are such that phase shift is present in the amplifier, because the straight line on the tube face opens out into an ellipse which may become nearly circular, and under such conditions it is difficult to assign a precise direction to the major axis. The method to be described obviates this difficulty, and at all reasonable frequencies enables final

[^7]measurements of gain and phase to be made with a straight line indication on the cathode-ray tube.

Briefly, it is arranged to alter the phase of the voltage applied across the attenuator input with respect to that applied to the X plate, so that the phase shift is equal and opposite to that introduced by the amplifier. In this condition the figure on the tube face reduces to a straight line. Manipulation of attenuator controls can then give intersection of the trace extremities by the pin points.

Fig. 2 illustrates the form of circuit used. The only essential addition to Fig. 1 is a variable capacitor (a screened decade capacitor box in parallel with a calibrated variable air capacitor). One side of this unit is earthed, the other terminal T being connected either to the attenuator input terminal B or to the X plate at D, depending on whether a leading or lagging phase shift is introduced by the amplifier. This scheme works well when the amplifier output is in phase opposition to the input, but a difficulty arises in practice when the amplifier output is approximately in phase with its input. This sets the trace in the opposite direction to the line through pin points obtained by applying the same potential to both \mathbf{X} and \mathbf{Y} plates.

It is comparatively easy to modify the circuit as shown in Fig. 4, the capacitor terminal T being either connected to B_{1} or D. However, the resulting calculations are not quite so simple because the attenuator input potential is included in that applied to the X plate. Also, neither terminal of the capacitor is grounded when T is connected to D. thus preventing grounding of the capacitor case or else giving rise to stray capacitance to earth from the capacitor plates.

It seems easier to include a resistor R_{1} equal to R. as shown in Figs. 2 and 3a. S_{1} is switched to E and the Y plate also connected to E. This provides a push-pull output with equal and opposite potentials to the X and Y plates for use when setting the pin points, T being disconnected.

While a good 60 ohm attenuator is satisfactory with a 6,000 ohm series resistor at the lower audio-frequencies, a 75 ohm attenuator with a lower value of series resistor would probably be better when working at higher frequencies, particularly if low gains are to be measured. The provision of adequate power in the oscilfator then becomes a more serious problem, and care in wiring and use of screened cable is recommended.

Theory

(A) When the phase of the Steady-State Output of the

Amplifier is in advance of the input. (See Fig. 3b).
Since the current of angular frequency ω is the safee for both series portions of the circuit

$$
\begin{aligned}
\frac{E_{\mathrm{Y}}}{E_{\mathrm{X}}} & =\frac{\text { Impedance of } R_{\mathrm{A}} \text { and } C \text { in parallel }}{\text { Impedance of } R} \\
& =\frac{1}{1 / R_{\mathrm{A}}+j \omega C} \\
R & \frac{1 / R_{\mathrm{A}}-j \omega C}{R\left(1 / R_{\mathrm{A}}^{2}+\omega^{2} C^{-}\right)}
\end{aligned}
$$

If ϕ is the phase angle between E_{Y} and E_{x}, considering both E_{Y} and E_{X} to be due to the flow of current in the series circuit, E_{Y} will lag behind E_{X} under steady-state conditions,
$\tan \phi=-\omega C R_{A}$

$$
\begin{aligned}
& \text { The ratio } \begin{aligned}
& \frac{\text { amplitude of } E_{\mathrm{Y}}}{\text { amplitude of } E_{\mathrm{X}}} \\
&=\frac{V 1 / R_{\mathrm{A}}{ }^{2}+\omega^{2} C^{3}}{R\left(1 / R_{\mathrm{A}}{ }^{2}+\omega^{2} C^{2}\right)}=\frac{1}{R \vee 1 / R_{\mathrm{A}}{ }^{2}+\omega^{2} C^{2}}
\end{aligned} .=\frac{1}{2}
\end{aligned}
$$

Hence, if the fractional attenuation in the attenuator is $1 / A$, the fractional gain of the amplifier will be

$$
\mathrm{AR} \vee 1 / \mathrm{R}_{\mathrm{A}}^{2}+\omega^{3} C^{2}
$$

and the phase shift through the amplifier will be $-\phi$, or $\tan ^{-1} \omega C R_{\mathrm{A}}$ will be the positive angle by which the amplifier output will be in advance of the input.
(B) When the phase of the Steady-State Output of the Amplifier lags behind the input. (See Fig. 3c).

As before, $\frac{E_{Y}}{E_{\mathrm{X}}}=\frac{\text { lmpedance of } R_{\mathrm{A}}}{\text { Impedance of } R \text { and } C \text { in parallel }}$

$$
=\frac{-\frac{R_{\mathrm{A}}}{\frac{1}{1 / R+\mathrm{j}_{\omega} C}}=R_{\mathrm{A}}\left(1 / R+\mathrm{j}_{\omega} C\right)}{}=
$$

E_{Y} will be in advance of E_{X} and $\tan \phi={ }_{n} C R$
The ratio $\frac{\text { amplitude of } E_{Y}}{\text { amplitude of } E_{\mathrm{X}}}=R_{\mathrm{A}} \vee 1 / R^{3}+\omega^{2} C^{2}$
Again taking the fractional attenuation in the attenuator to be $1 / A$. the fractional gain of the amplifier will be

$$
\frac{A}{R_{\mathrm{A}} \vee 1 / R^{2}+\omega^{2} C^{2}}
$$

and the amplifier output will lag behind its input by an angle equal to that by which the attenuator input is in advance, i.e., by $\tan ^{-1}{ }_{(0)} C R$.

Acknowledgments

The writers gratefully ack nowledge the permission given by the Railway Executive to publish this description.
(Since this arficle was submitted (June, 1950), the writers' allention has been drann $t o$ the following arnicle referring to the same principles in the measurement of phase shift, bus utilizing a differeur method:-
Ragazzini, J. R. and Zadeh, L. A., "A Wide Band Audio Phase Meter." Rev. Sci. Inst. 21. 145. Feb. 1950.)

A Simple Analogue Computor for Fourier Analysis and Synthesis

By J. H. Bowen, B.Sc., and T. E. Burnup, D.Sc.

A circuit containing only standard electrical components is made to solve the tedions integrals encountered in the study of the responses of elecrro-mechanical systems by Fourier meltods. Typical applications are briefly described.

THE designer of automatic control systems often includes, in. his electro-mechanical networks, devices with unknown transfer functions. For example, a primary measuring element (e.g., a thermocouple) may operate a self-balancing potentiometer, from which a re-transmitting potentiometer may feed into the rest of the control system. In the author's experience even the best manufacturers do not specify the transfer functions of these instruments. A similar difficulty frequently arises regarding the process itself, where the steady-state characteristic may be precisely known, but the differential equation governing the transient behaviour is very difficult to determine.
In such cases the value of the method of "harmonic testing " is well known, giving the steady amplitude and phase of response, for a steady sinusoidal input of constant amplitude and with frequency varied over the range of interest. The curves of amplitude $S(11)$ and phase $\phi(\omega)$ vs. frequency, thus obtained, exactly specify, in the case of linear circuit elements, the response to any input, and are conveniently regarded as secondary, derived parameters of the system. In this frequency characteristic form the network elements may be combined and calculations made of maximum gain and stability margins. Finally, however, the main interest will be the transient response of the whole system for various types of input. If the frequency characteristic of any input is analysed by means of the Fourier integral formula, and combined for each frequency with the response characteristic, corresponding amplitudes being multiplied together and phase angles added, the Fourier synthesis of the compound frequency characteristic is the required transient response. In particular, the response to a δ-function or unit impulse input is easily obtained since this function has a frequency characteristic of unit amplitude and zero phase angle. In this case, the transient response is given by:

$$
G(\tau)=1 / \pi \int_{0}^{\infty} S(\omega) \cos [\phi(\omega)+\bar{\omega} \omega] d \omega
$$

when $G(-)$ is the response at the instant of time τ secs. after the application of the impulse.

If $S(\omega)$ and $\phi(\omega)$ are recognizable mathematical functions, the integral may either be solved directly or resolved into partial fractions, set up on the electrolytic tank, and solved by determining the residues at the poles. ${ }^{2}$ However, as explained above, often $S(\omega)$ and $\phi(\omega)$ have been determined experimentally and graphical integration is indicated. Since this must be repeated for a reasonable number of values of the parameter r, the calculation is laborious. This paper describes a simple anadogue computor which has been designed to solve this integral with sufficient accuracy. A more accurate device has been described in Ref. 3.
A fairly obvious extension of the following reasoning also permits the computor to solve problems of Fourier analysis, thus:

$$
A(\omega)=\int_{-\infty}^{G(l)} \cos (1) d t \text { and } B((1))=\int_{-\infty}^{\infty}{\underset{-}{\infty}}_{\infty}^{\infty}(l) \sin (\omega) d t
$$

Here $G(t)$ is a transient, non-recurrent function of time.
For example, the step-function response of a servomechanism may by this means be transformed into its frequency characteristics.

Theory
The integral is re-written as:

$$
\begin{aligned}
& G(\tau)=1 / \pi\left[\int_{0}^{\infty} S(\omega) \cos \phi(\omega) \cos \tau(\omega d(\omega--\right. \\
& \left.\int_{\cdot}^{\infty} S(\omega) \sin \phi(\omega) \sin \tau \omega d \omega\right]
\end{aligned}
$$

Put $S(\omega) \cos \phi(\omega)=A(\omega)$ and $S(\omega) \sin \phi(\omega)=B(\omega)$
Approximating to finite differences:

$$
\begin{aligned}
& G(-) \approx 1 / \bar{\pi}\left[\begin{array}{l}
\omega=\omega_{1} / n, 2 \omega_{1} / n, \ldots \omega_{1} \\
A((1)) \cos -(\omega) \delta_{(1)}
\end{array}\right. \\
& \left.\sum \begin{array}{l}
(0)=(1)_{1} / n_{0} 2(0) / n \ldots\left(n_{1}\right) \\
B((1)) \sin -(1) \delta_{(0)}
\end{array}\right]
\end{aligned}
$$

Fiy. 1. Circuit details of the analogue consputor
The larger n, the more accurately the approximation holds, exactly as in a mid-ordinate summation.
The integral is normally convergent, since at sufficiently high frequencies, most frequency-dependent devices become asymptotic to an attenuation-frequency slope of -6 Ndb ./ octave where N is an integer, dependent upon the number of time-constants involved, and on the number of steady state integrations occurring in the network. The phase at the same time approaches asymptotically $N-/ 2$ radians. The procedure is, therefore, either to extend the integration range to a value ω where $A(\omega)$ and $B(\omega)$ are so attenuated as to be negligible; or, preferably, to use the computor to integrate from ω_{0} to ω_{1} when $S\left(\omega_{1}\right)$ is a point on the final asymptotic slope although not necessarily greatly attenuated. The remaining integral, from ω_{1} to $N_{\text {, }}$ is calculated. (See App. A).

The expressions $\sum(A(w) \cos \tau w \delta w$ and

$\Sigma$$B(\omega) \sin$ - $\omega \delta \dot{\delta} \omega$ are separately set up and evaluated.

Snce physical integration is most easily achieved with respect to time, the variable ω becomes time in the analogue. The basic and analogue expressions are written for comparison:

$$
\mathrm{G}(\tau)=\sum_{\omega=\omega_{1} / n, 2 \omega_{1} / n n_{0}, \omega_{1}} A(\omega) \cos \tau \omega \delta \omega \quad V(p)=\sum_{\mathrm{Q}} \mathrm{Q}(t)\left(V_{\text {max }} \cos p t\right) \delta t
$$

$\left(V_{\text {max }} \cos p t\right)$ is obtained from a low-frequency oscillator, the same, in fact, as used for the sine-wave tests already described. $\mathrm{Q}(\prime)$ is a voltage-dividing potentiometer set up to vary with time to represent the variation of $A(\omega)$ with ω. Consideration of the constants of proportionality connecting the expressions will be deferred until the actual circuit has been discussed.

Circuit Arrangements. General

The variation of $\mathrm{Q}(t)$ is achieved by means of a Post Office type 25 -contact 5 -bank uniselector, one bank not being used. 24 contacts are connected each to a 3 W 10 k radio-type potentiometer. This was considered simpler than the alternative of a single potentiometer with 24 adjustable tapping points, since standard apparatus could be used. One bank of the uniselector is used to switch in one potentiometer at a time to avoid undue loading on the previous circuit. The uniselector is externally pulsed to complete its travel in about 5 secs. The potentiometers having been preset, the voltage appearing at the uniselector wiper follows the law $V[Q(1)]$. Also V from the oscillator $=V_{\max } \cos p t$ or sin $p t$ according to the instant at which $\mathrm{Q}(t)$ commences on the cycle of V, when the wipers step off the 25 th contact which is earthed. This is achieved by a switching interconiexion between oscillator and uniselector.

The resulting voltage $V_{\max } \mathrm{Q}(t) \cos \omega t$ is supplied to a standard integrator (Fig. 1) in which the amplifier will be recognized as providing a "virtual earth". R4 is made variable for scaling purposes as described below.
O is a mechanical oscillator, generating a sine wave of voltage on the slider of $R 1$, at frequencies between 1 cycle/ min . and 2 cycles $/ \mathrm{sec}$. according to the driven speed.

When voltage is applied to the pulsating relay. Xla opens and $X 1 \mathrm{~b}$ closes applying voltage to the uniselector drive magnet. This does not step on until X1b opens, which occurs when $C 2$ has charged. On reaching contact $25, C 2$ is shorted via an earth on bank 3 and the wipers remain in this home position. The earth line to $C 2$ is broken by momentarily opening $S I$ and $S 2$, which are in parallel the selector then stepping on a complete cycle. $S 2$ is a second oscillating wiper moving together with the main oscillator brush arm, but running on an earthed strip having an insulating segment whose position is adjusted to trigger off the uniselector at the appropriate instant according to the sine or cosine requirement.

Operating Details

The oscillator wiper is positioned at its mid-point of travel, then with $S 3$ and $S 5$ each set to "a", $R 2$ and $R 2$ " are adjusted for a balanced input shown by zero voltage on $V . V$. The wiper is now set to maximum travel and $R 3(25)$ set for full scale deflexion on $V . V . S 3$ is set to b. and $R 3$ (1 to 24) set up to the 24 mid-ordinate values of $A(11)$. If these values are <1, no difficulty arises, but if a resonant peak exists in the amplitude characteristic, a reading >1 may be required on a voltmeter whose full scale is being treated as $0-1$. If a back-off setting is provided on $V . V$. this may be used to extend the scale, otherwise

Fig. 2. Transient characteristics of a moving-coil self-recording veltmeler
$A(\omega)$ must be normalized to 1 , and the final integral multiplied by the same factor. If negative values of $A(\omega)$ exist, the potentiometers representing these ordinates should be set to 0 , the + and - integrals being determined separately and finally subtracted.
The integrator is now calibrated by setting $S 5$ to $b, S 3$ to a, and breaking $S 1$ and $S 2$, which allows the uniselector to step one cycle. $S 4$, which is a push-button switch, is kept open during this operation, and a voltage appears on Cl which is a summation of the unit voltages picked off bank 2 , multiplied by the time of dwell on each contact, i.e., δt.

$$
\begin{array}{rl}
G(\tau) & =\sum A(\omega) \cos \tau(1, \delta \omega \\
V(p) & =\sum Q(\prime) V \text { max. } \cos p \prime \delta f \\
(1)=\frac{(\cdot), 2()_{1} \ldots}{n} n & t=\frac{l_{1} 2 t_{1}, l}{n} n
\end{array}
$$

We make: $V \max . \mathrm{Q}(t)=A(0) \quad \delta t=t_{1} /\left(\omega_{1} \delta_{(1)}\right.$

$$
\text { and } \tau \omega=p \prime
$$

$$
G(\tau)=\omega_{1} / t_{1} V(p)
$$

Now if $V C$ is the voltage appearing on the capacitor, and $V i$ is the voltage input to $R 4$.
and $G(\tau) / \omega_{1}=R 4 / t_{1}$ Vc. Note: $G(\tau) / \omega,=$ average value of $G(\tau)$.
In the calibration experiment, $V_{\max } Q(t)=1$ and $\cos \mathrm{pt} .=1$, p being zero

$$
\begin{aligned}
& \sum(1) \delta t=t_{1} \\
& t=t_{1} / 24,2 t_{1} / 24, \ldots t_{1}
\end{aligned}
$$

$\therefore V c l=t_{1} / R 4$ when $V c l$ is the reading of $V . V$. in the calibration experiment. $R 4$ is adjusted till $V c l=1$. Then $V c$ reads $G(\tau) a v$ direct which is preferred to reading $G(\tau)$, as the average value of the same order of magnitude as $V_{\text {max. }} . Q(t)$, whereas the integral will generally be greater by a factor of about 10 .

Following calibration, S 3 is set to b, the uniselector sent through one cycle, and Vc noted giving $G(o) a v$. The procedure is repeated for as many values of oscillator frequency as values of τ are required in the final time plot of the transient. The appropriate value of τ in secs. is given by $\bar{\tau}=\left(p t_{1}\right) / \omega_{l}$ when $\left(p t_{1}\right)$ is the radian measure of the angle reached by the oscillator when the uniselector arrives at contact 24 representing t_{1}. In practice, at the low frequencies concerned, it is easy to adjust the speed of the

$$
\begin{aligned}
& t_{1} / 24 \ldots t_{1} \\
& \therefore G(\tau)=R 4 \omega_{1} / l_{1} V c
\end{aligned}
$$

ω Radians
Fig. 3. Fourier analysis and re-synthesis of a short pulse
oscillator until full travel of the uniselector corresponds with multiples of, say, $1 / 12$ cycle of the oscillator frequency. τ then increases in multiples of $T_{1} / 12$ where T_{1} is the period of the highest frequency ω_{1}.

Conclusions

To illustrate the accuracy of computation, Fig. 2 shows calculated and computed values of the transient response of an Elliott $0-5 \mathrm{~V}$ recording voltmeter. The integrals of the unit impulse responses are also plotted as step-function responses, and the experimentally obtained step function response is included. Agreement is in this case better than might normally be anticipated, the sources of error being :
(1) The mid-ordinate approximation.
(2) The limitations of the standard components used throughout; e.g. non-linearity of valve voltmeter, capacitor leakage, the approximation of the "virtual earth."
(3) The voltmeter scale used which only permits reading to ± 1 per cent of full scale.
For these reasons, the expected accuracy is put at about ± 5 per cent of the maximum reading; but this is con-
sidered normally sufficient for the design calculations indicated at the beginning of this article.

Since this paper was written, a computor independently developed in the U.S.A. for the same purpose has been described. ${ }^{2}$ The principle, however, is quite different, and in view of the enormous disparity between the costliness of the two methods, it is felt that this paper may still serve a useful purpose. Fig. 3 is included for comparison with Fig. 8(C) of that paper, the main difference being that the Gibbs effect is more strongly marked in the computor we describe. This is ascribed to the fact that the equivalent of 39 steps are used in the American device; and it is now felt that a 50 step uniselector would be a useful improvement. Also, in Fig. 2, the double transformation process has introduced double errors.

Appendix A

As an example, in the very common case of two major time lags, when $\omega>\omega_{1}, S(\omega) \rightarrow 1 / T^{2} \omega^{2}$ i.e.- 12 db . per octave.

$$
\begin{aligned}
& \text { Also } \phi(\omega) \rightarrow-\pi \text {. Then } A(\omega)=-1 / T^{2} \omega^{2} . B(\omega)=O . \\
& \text { The integral } I=1 / \pi T^{2} \int_{\omega_{1}}^{\operatorname{Cos} t \omega / \omega^{2} d \omega} \\
& \text { When } t=0, I(o)=1 / \pi T^{2}[1 / \omega]_{\omega_{1}}^{\infty} \\
& =-1 / \pi T^{2} \omega_{1}=-2 f_{1} S\left(\omega_{1}\right) \\
& \text { When } t>O I(t)=-t / \pi T^{2} \int_{t \omega_{1}}^{\infty} \frac{\cos t(\omega) d(t \omega)}{t^{2} \omega^{2}} \\
& =-t / \pi T^{2}\left(-\left[\frac{\cos t \omega}{t \omega}\right]_{t \omega_{1}}^{\infty}-\int_{t \omega_{1}}^{\infty} \frac{\sin t \omega}{t \omega} d(t \omega)\right) \\
& =-t / \pi T^{2}\left(+\frac{\cos t \omega_{1}}{t \omega_{1}}-\pi / 2+\operatorname{Si}\left(t \omega_{1}\right)\right)
\end{aligned}
$$

Where $\mathrm{Si}\left(t \omega_{1}\right)$ is the sine integral function commonly tabulated.

REFERENCES

${ }^{1}$ Boothroyd, Cherry and Makar. Electrolytic tank and transient response. J.I.E.S. Pt. 1, No. 99, May 1949.
, Lehman. Harmonic analyzer and synthesizer. Electronics Nov. 1949.

- Furth R, and Pringle, R. W. : A photo-electric Fourier transformer. PhW. Mas37, 264, 1946.

A High-Stability Single-Frequency Audio Source

By W. E. Brunt

THERE are many uses for a single-frequency audio source especially when it is simple, inexpensive and possesses frequency stability, accuracy and waveform of a fairly high order. The unit to be described possesses all the above features, yet presents few difficulties in construction.

Fundamentally it is a two-stage tuned amplifier. The input is coupled to the н.T. rectifier via a single-stage differentiator and, the amplifier being tuned to $400 \mathrm{c} / \mathrm{s}$, the eighth harmonic is selected and amplified.

The excellence of the output waveform is largely controlled by the " Q " of the tuned circuits. In the model as constructed " Q " is approximately 20 , and the peak value of all distortion and hum products does not exceed 1 per cent. This is more than adequate for all normal purposes. In fact, it is probably true to say that no simple signal generator of the conventional types can approach this performance. Furthermore, the frequency, accuracy and stability are those of the supply mains, and this (power

cut periods excepted) is a fraction of 1 per cent.
The frequency of $400 \mathrm{c} / \mathrm{s}$ was chosen because it is in universal use for amplifier and receiver measurements and because it is probably the most useful for general bridge work. In construction, it is important to ensure that the coils used are sensibly of the "constant inductance" type, and that they are tuned to the desired frequency. The valves and coils were those to hand, and any others with similar characteristics may be used; in fact, EF50 or VR65 valves would be rather better.

Letters to the Editor

(We do not hold ourselves responsible for the opinions of our correspondents)

Positive Feedback in A.F. Amplifiers
Dear Sir,-Concerning Mr. C. H. Banthorpe's contribution on audiofrequency positive feedback, I feel that your readers may possibly be interested in an amplifier which I constructed recently for A.C/D.C. operation for 12 watts output, which features negative feedback across three stages to cancel odd harmonic distortion, and positive feedback from the triode connected EF36 phase-splitter to the EF36 pentode driver stage, cathode coupled, for the combined purpose of raising the gain and balancing the upper frequencies on the cathode output side of the phasesplitter (see below).

It was found best to leave the phasesplitter cathode undecoupled as this gives smoother positive feedback control and a greater stable maximum gain. The extra smoothing for the first two stages is essential owing to the high gain, about 3×10^{8} maximum. The $.005 \mu \mathrm{~F}$ anode to anode output capacitor is essential to prevent mainly supersonic oscillation.

R. Michael Cross,

Margate, Kent.

Mr. Banthorpe replies:

Dear Sir,-l am pleased to see that Mr. Cross uscs a similar arrangement to mine to get positive feedback and his amplifier looks quite interesting in several respects. It would be informative to have his comments on positive feedback and the performance generally.
C. H. Banthorpe,

Hayes, Middlesex.
Drar Sir,-While not disagreeing with the general principle put forward by your contributor, Mr. Banthorpe, in your November, 1950, issue, I think the actual circuit he gives with the volume control placed between the triode and the output pentode should be used only with considerable caution.

With the circuit valves given, the triode can not give more than about 30 volts peak at the anode, when the feedback voltage developed across the 4.7 k cathode resistor will be about 1.5 volts and the grid to cathode voltages also about 1.5 volts. The maximum input voltage that can be handled, therefore, cannot be more than three volts peak; and since in a conventional superhet the controlled valves will require at least 20 volts of A.v.c. bias for cut-off, there will be a serious risk that the A.F. triode will be overloaded on strong signals.
E. F. Good,

Malvern, Worcs.

Mr. Banthorpe replies:

Dear Sir,-Mr. E. F. Good is quite right to point out that it is possible to overload the triode valve in the circuit given, but it is of little practical significance in the application shown, which is actually part of a small receiver using a small frame aerial. Mr. Good mentions a voltage of 30 V at the triode anode. but this would never be needed, and if the volume control position is reduced to prevent overloading the output stage, the triode can cathode-follow better, and handle a bigger input voltage without distortion occurring. He also mentions 20 volts of A.V.C. bias to cut off the controlled valves, but, of course, if they were cut off there could be no A.v.c. bias. In the receiver mentioned, a signal into the frequency changer grid of approximately 10 millivolts is needed before the triode causes distortion, and this is a larger signal than is generated by most stations. In the odd situation where trouble might te experienced, the frame aerial can be rotated to prevent overloading. As a matter of interest, with this input, approximately 5 V of A.V.c. bias is generated. In many applications it may be best to put the volume control in the triode input, but this has no connexion with the use of positive and nega-
tive feedback. The circuit given merely shows a method of using feedback, and also how the circuit lends itself to gain control at high signal levels with the corresponding reduction of noise due to the control, but it is probably a good thing for your readers to know how distortion can occur and I am pleased Mr. Good has raised the matter.
C. H. Banthorpe,
Hayes, Middlesex.

Precision A.C. Voltage Stabilizers

Dear Sir,-In an article under the above heading (October issue, page 426) Dr. Patchett criticises a statement of mine 1 to the effect that a bridge voltage regulator constructed from Siemens Types 1 and 2 barretters has no appreciable thermal time lag. He appears to have overlooked the fact that this statement referred not to iron/hydrogen resistors, but to the Siemens tungsten/ hydrogen type, in which the ballast action depends upon the variable gas density principle which forms the subject of British Patent No. 378877. Dr. Patchett's statement that a barretter, after a change in voltage, takes several minutes to settle down to the new equilibrium condition, applies only to the iron/ hydrogen type: oscillographic tests ${ }^{2}$ prove that for the T1 tungsten/hydrogen ballast resistor the corresponding period is 50 milliseconds.
C. Morton,

Chelsea Polytechnic, S.W.3.
1 Journal Sci. Inst. 21, p. 15, 1944.
Wireless World, Nov. 15 th. 1935.

Dr. Patchett replies:

Dear Sir,-1 am interested in the remarks of Mr. Morton concerning the Siemen's tungsten hydrogen type barretter's. I have had no experience of this type and did not realize that the Siemen's barretter referred to in his reference ${ }^{1}$ operated on a different principle, no

justified in a treatise on aerials, particularly since most of the information is available elsewhere. It is suggested that some of the space allocated to propagation might have been more usefully employed in discussing the measurement of the polar diagram, gain and impedance characteristics of aerials-subjects not fully covered in this book.

In spite of the minor limitations noted above, "Antenna Theory and Design" can be confidently recommended to all engineers concerned with aerial design, no matter in what part of the frequency spectrum.
W. J. Bray

Invention and Innovation in the Radio Industry

By W. Rupert Maclaurin. Pp. $304+$ xii. Mac midan, New York. 1949. Price 30s.

THIS is an unusual book which should be read by all concerned with radio and its allied subjects. At the same time stimulating and depressing, it sets out to record the histories and inventions of the great names in radio-Marconi, Fleming, de Forest, Armstrong, etc., and of the commercial giants which grew up and around them, the Marconi companies, R.C.A., General Electric, Westinghouse, A.T. \& T., and so on: It recounts the story of the "perennial gale of competition" and of the endless patent litigation which followed each major advance in the art, and gives an integrated view of how the present complex structure of radio big business has evolved. Many books must have been written on the scientific and technical aspects of radio progress, but this is perhaps the first that has examined the economic factors which influence technological discovery to a greater extent than is sometimes realized.

The volume is one of a series-the Massachusetts Institute of Technology Studies in Innovation-and is written by an economist, with a scientific background, who is well qualified to lead the way through such a particularly involved topic. Engineers, commercial men and the general public alike will find this book performs a valuable service in bringing out the relations between, and the inter-dependence of, commerce and science in the field of radio. The treatment is substantially non-technical but the text is the more easily understood by those with a working knowledge of radio, and a short appendix outlines the technical elements of modern radio communication systems for lay reader.
A few chapter headings: The Impact of New Scientific Advances on Established Industry; The Process of Invention and Innovation-Marconi and the Wireless Telegraph: 1896-1920; The Role of the Large Electrical Firms in Wireless: 1912-1921; The Struggle over Patents: 1921-1928; The Perennial Gale of Competition: 1928-1941, and The Rise of Industrial Research-Radio: 1900-1941 illustrate the gencral scope of the book, but cannot tell of the wealth of fact and detail that is present in its pages. The names of radio organisations which are almost household names on both sides of the Atlantic constantly recur and the
eternal struggle for power, the competitive frenzy, the legal fights and the commercial manocuvring of the American radio industry during the last halfcentury are detailed and analysed with keen insight. It presents some amazing stories-of the court case on valves which lasted for 18 years, the mushroom growth and almost equally rapid dissolution of many firms, the ever shifting sands of commercial politics, and gives the inside story of the colossus that American radio has grown to be.

Altogether, this is a book not to be missed by all radio people, whether commercial or technical, who sometimes stop to think of the philosophical and economic aspects of their job and wonder what the future holds. It should be bought and used, not only as highly interesting general reading, but also as a well-informed text on an unusual facet of the radio game.
E. D. Hart

Electronics Manual for Radio Engineers

Edited by Vin Zciuff and Jobn Markus 879 pp. McGraw-Hill Book Company, Inc., New York and the McGraw-Hill Publishing Co., Ltd., London. 1949. Price 57s. net.

THIS manual contains 289 of the more important articles which appeared in the American journal "Electronics" during the period 1940 to 1948 , thus covering the War years when activity in research and development in the field of electronics was at its maximum. The articles are collected in 16 chapters, each covering a separate phase of electronics, viz., Antennas, Audio Equipment and Techniques, Circuit Theory, Components, D.c. Amplifiers, Filters, Ionosphere (including some articles on tropospheric propagation), Mcasuring Equipment and Techniques, Microwaves, Power Supplies, Production (i.e., equipment and techniques for the control of industrial processes), Receivers, Television, Transmission Lines, Transmitters and Tubes. The location of a desired article is straightforward since both an author and a subject index are included, the latter being extensively cross-indexed.

In general the emphasis is on the type of practical information needed by an engineer with a design problem to solve in a minimum of time, for example there are numerous charts, design curves, nomograms and tables of data for the rapid solution of circuit and propagation problems. A large proportion of the circuit diagrams give component values, most of the constructional diagrams are dimensioned and the performance of the circuits or components described is, in nearly all cases, illustrated by measured characteristics. Although the book will be mainly of value to engincers, it will also te of assistance to research workers in electronics by providing them with ready-made solutions to many of their circuit problems, thus freeing them for more fundamental work.
The "Electronics Manual for Radio Engineers" is particularly valuable for the broad survey it provides of the most recently developed techniques in electronics, much of the information presented is not available even in the most recently published text-books in

CHAPMAN \& HALL

Just out
CONDUCTIMETRIC
ANALYSIS AT RADIO FREQUENCY
A New Technique for Titration by
G. G. Blake
F.INST.P., M.I.E.E.

Foreword by
o. U. VONWILLER
(Emeritus Professor of Physics, Sydney University)
109 pages 40 figures 15s. net
Ready this month
TIME BASES
by
O. S. Puckle
M.B.E., M.I.E.E.

Second Edition
Completely Revised and Enlarged
416 pages 257 figures 30s.net

37 ESSEX STREET, LONDON, W.C. 2

ELECTROPHYSIOLOGICAL TECHNIQUE

by C. J. DICKINSON, B.A., B.Sc. (Magdalen College, Oxford)
Demy 8vo. 140 pp.
Price 12s. 6d. Postoge 6d.
The author desciibes the use of electronic methods as applied to research in Neurophysiology. Chapters are devoted to modern techniques for time marking, stimulating production and recording of mechanical movement.

VOLTAGESTABILIZERS
by F. A. BENSON, M.Eng, A.M.I.E.E., M.I.R.E. (University of Sheffield)

Demy 8vo. 125 pp.
Price 12s. 6d. Postage $6 d$.
This monograph describes the various devices employing magnetically saturated elements in glow-discharge tube circuits and thermionic valve arrangements for voltage stabilization. A comprehensive bibliography is included.

PUBLISHED BY

28, ESSEX STREET, STRAND, LONDON, W.C. 2
this field. This information includes descriptions of methods, equipments and techniques developed in the research laboratories of commercial organizations, accounts of work done during the War under Government contract for the American Office of Scientific Research and Development and which has hitherto only been available through official documents and reports, together with some account of work in electronics carried out in the research laboratories of universities and colleges. Particularly important from the industrial standpoint is the chapter on the application of electronics to the control of manufacturing and mass production processes, this being a field in which the Americans have made notable contributions.

In addition to the numerous practical articles there are several theoretical analyses, relating for example to signal-to-noise and bandwidth considerations in communication systems, the design of cathode followers, filters, rectifier type power supply systems and microwave components. However, the main value of the book will undoubtedly be for its treatment of the practical aspects of the subject, the theoretical side being in general subjugated to the practical.

It would of course be unreasonable to expect a uniformly high standard of clarity, accuracy and originality throughout a book compiled from so many diverse sources, nevertheless the general standard is high for a manual of this type and is a tribute to the thoroughness of the editing.

Perhaps one of the main advantages of having the material presented in the form adopted is not only that articles on similar subjects are collected together for easy reference, but it is possible to read a given article from beginning to end without having to search among the advertisement pages for its continuation, as was the case when the articles were originally published in periodical form.

This manual is thoroughly recommended, as it will undoubtedly save its cost in many electronics research and development laboratories by reducing the man-hours spent in searching for information. and in minimizing the unnecessary duplication of work already carried out on the other side of the Atlantic.
W. J. Bray

Elektronenoptik, Vol. I

Dr. Alexander A. Rusterhoin. 249 pp. Grundziige der theoretischen Elektronenoptik, BirkTHE new science of electron optics 1 was well documented from its very inception. The first comprehensive treatise, by Bruche and Scherzer, appeared in 1934, only eight years after Busch had formed the magic union of the two words "electron" and "lens." which until that time appeared to be worlds apart. This was followed by the textbooks of Maloff and Epstein, Picht, Myers, Klemperer, Cosslett, Zworykin and collaborators, not to mention the numerous works on such special branches as cathode ray tubes and electron microscopes. The new treatise by Dr. Alexander A. Rusterholz, Engineer in the Electron Valve Works of the Brown, Boveri Co.. Baden. Switzerland, promises to continue the tradition on an even
larger scale. The first volume, which has just appeared, is a painstakingly complete re-statement of the classical parts of geometrical electron optics, in plane or rotationally symmetrical fields, without space charge. It is correct and complete, and the student who does not want to go beyond what is already well known could not find a better book. But it has also its limitations, which it shares with many other textbooks primarily written for engineers, who are presented with a living and growing branch of engineering in a frozen form, and might be led to belicve that all they would have to do in practice will be the application of known formulae. This is particularly important in electron optics, which had an unusually rapid development, and has come up very early against limitations, which can be overcome, if at all, only by unorthodox means. This is a situation quite different from that in light optics, which, after 300 years, is still progressing steadily by more and more complicated applications of the same orthodox principles, aided only by new materials. But electron optics has only one medium, the electromagnetic field in vacuo, and though it is very easy to produce a "first order" lens, we know that we cannot, by orthodox means, ever produced a corrected lens. Hence it would be desirable, if a large textbook, like the present, would from the start present the reader with a wider view, and more general methods. It may be, however, too early to pronounce a judgment before seeing the second volume, in which the author promises to treat also non-stationary fields and space charges. In the reviewer's opinion, to be satisfactory it ought to comprise also non-symmetrical systems and at least the elements of electron wave optics.
The limited field which forms the subject of this first volume is treated with great thoroughness, as may be judged from its chapters: 1. The electron in electric and magnetic fields; 2. The electron-optical refractive index; 3. Rotationally symmetric fields; 4. Electron trajectories in rotationally symmetrical fields; 5. Electric lenses; 6. Magnetic and electro-magnetic lenses; 7. The aberrations; 8. Two-dimensional fields. Electron prisms; and 9. Electron mirrors. There are ample references, and a subject index.

The high price of the book will probably restrict the circulation in this country, as far as the general and individual reader is concerned, but it may be recommended to university and laboratory libraries.
D. Gabor

Microwave Measurements

By H. M. Barlow and A. L. Cullen. 399 pp. Constable. 1950. Price 30s.

THE only text-books on measurements at centimetric wavelengths so far published are relatively expensive American works and the appearance of this volume will be welcomed by microwave workers in this country. Microwave measurements involve a more detailed examination of electromagnetic fields than is the case at longer wavelengths and so the techniques are very different. In the first three chapters an outline of the theory of waveguides and
cavity resonators is given: it would be impossible to discuss these without reference to Maxwell's equations, but the non-mathematical reader need not be afraid of finding the treatment beyond him. The introduction of the analogy with transmission lines is introduced at an early stage and a detailed discussion of the circle diagram follows. The many examples of calculations which follow later in the book bring out very clearly the advantages to be obtained from use of the circle diagram.

The first measurements to be considered are those of wavelength and frequency, and as elsewhere in this book the emphasis is upon general principles rather than descriptions of particular pieces of apparatus, for which ample references are given. The cavity resonator method is the most fully described, but an omission which might well be rectified in a future edition is the use of this method for the determination of the velocity of electromagnetic waves.

One of the commonest measurements required is that of a standing wave ratio and it is fitting that one of the longest chapters should be devoted to this. A more exhaustive analysis of the effect of the probe on the accuracy of measurement than has hitherto been available is given and will be of value to anyone who habitually uses a standing wave gear. Much useful information on the mechanical tolerances required in order to achieve a given standard of accuracy is given in the section on constructional methods. Standing wave measurements are usually the preliminary to the matching of a transmission system and this is treated in the following chapter. The bulk of the discussion, much of which is new, is concerned with the general case and a minor criticism is that there is no detailed example of the application to a particular problem. The question of the bandwidth of the match, a most important one in practice, merits a rather fuller treatment than is given.
The remaining chapters deal with attenuation, power, the properties of materials and the measurements arising with receivers, transmitters and aerials. The section on attenuators is particularly interesting for the circuit analogy explaining the apparent paradox, that the power in an attenuator is transmitted by an attenuated mode.

A very pleasing feature of this book is the large number of experimental values and curves used to illustrate the measurements described.

The authors are to be congratulated on producing a book which may orofitably be read by anyone working in this field.
J. Brown

Electrical Engineers' Companion

268 pr . 2nd Edition. London Elestric Wire Ce. and Smiths, Lid. 1950. Price 5s.

THIS attractive little pocket book of useful electrical data has been brought up to date in this edition, and arranged and indexed for easy reference to any specific subject.

Modern data has been collated relating to bare and insulated wires and cables from many sources. including the B.S.I., I.E.E., and E.R.A.

Notes from the Industry

PUBLICATIONS RECEIVED

The Physical Society's 35th Annual Exbibition of Scientific Instruments and Apparatus will be held from Friday, 6, to Wednesday, 11 April, 1951, excluding Sunday.

This year both the Royal College of Science Main Building, Imperial Institute Road, and the Huxley Building, Exhibition Road (opposite Science Museurn) will be used. On Friday morning the Exhibition will be open for members of the Society and the Press only, and all tickets will be valid for entry into both buildings.

This Exhibition takes place before the opening of the Festival of Britain, but physicists from abroad who intend to visit the latter may like to make arrangements to come to England earlier as the Exhibition affords one of the most important displays of scientific achicvement which is held in Great Britain, and is. unique in showing side by side the work of a cademic scientists, commercial instrument makers and research workers in Government and other laboratories. It witl also provide a convenient opportunity for conversations and contacts with technical representatives of British firms and associations.

Discourses will be delivered by eminent scientists on four days of the Exhibition, and the prize-winning models of the Society's Craftsmanship and Draughtsmanship Competition will be on show. This competition, which is open to apprentices and others under the age of 22 years, is organized to stimulate the interest of young craftsmen and draughtsmen. in industrial firms. technical colleges and Guvernment departments.

A Handbook of the Exhibition, containing full descriptions of all exhibits will be obtainable in early March from the Physical Society at 1, Lowther Gardens. Prince Consort Road, London, S.W.7.

Ohituary. Mr. Percy Good, C.B.E., M.I.E.E.. died on December 2. He was a director of the British Standards Institution. and had been connected with the Institution for 37 years. Mr. Good was also a past president of the Institution of Electrica! Engineers.
B.S.I. New Director and Secretary. Mr. H. A. R. Binney, C.B., has been appointed director and secretary in succession to the late Mr. Percy Good, C.B.E.

Lectures on Ultrasonics have been arranged at the Polytechnic, 307-311 Regent Street. London, W.1, commencing March 2. There will be four lectures, and the fee for the course is 10 s . The syllabus covers fundamentals, generation and reception of ultrasonic waves, and applications of ultrasonics. Full details can be nbtained from the Polytechnic.

New R,A.M.A.C. Secretary General. Mr. E. Fost has been appointed Secretary General of R.A.M.A.C. in succession to Mr. J. Conneli, who is now retiring from the post, which he has held since the formation of the Association. R.A.M.A.C. (Radio Marine Associated Companies) is a world organization of companies operating marine radio services. The resources of the member companies are co-ordinated to further the development of ships' radio equipment and aids to navigation.
Mr. Fost has been associated with marine radio for 25 years. His office will be at the R.A.M.A.C. headquarters, 109 Eaton Square, London, W. 1 .
New Cbairman for Standard Telephones and Cables, Ltd. Sir Thomas G. Spencer, M.I.E.E., managing director of Standard Telephones and Cables, Lid., has been elected chairman of the board of directors of the company. He succecds the late Sir Frank Gill, K.C.M.G., O.B.E., who died on October 25, 1950.

With Standard Telephones and Cables, Ltd. (formerly the Western Electric Company, Ltd.) since 1907, Sir Thomas was called upon to take charge of the company in 1932, and will continue in the capacity of managing director in addition to holding the office of chairman.

The R.C.A. Manual RC-16. The new R.C.A. Receiving Tube Manual, RC-16, which incorporates many new features reflecting new devclopments in clectronics, has been completely revised, expanded, and brought up to date. Containing over 300 pages, it is 25 per cent larger than the previous RC-15 edition which it supersedes.
The same complete coverage of technical data contained in previous editions, ranging from elementary theory to descriptions of latest receiving-tube applications, has been continued and enlarged in the new RC-16. Detailed technical information is provided on more than 460 R.C.A. receiving tubes and cathode ray tubes including many discontinued types. The section on valve and circuit theory has been expanded and includes formulae and examples for calculation of power output, load resistance and distortion for several classes of amplifier service as well as cathode follower design information. Television coverage includes c.r.t. installation data and handling information.

Orders for single copies of the RC-16 Tube Manual may be placed with R.C.A. Photophone, Ltd., 36 Woodstock Grove, W.12. The price of the manual is 5s. 6d. post free.
American Order. Messrs. Tenaplas, Ltd., have recently received orders covering a total of over 950 miles (five million feet) of polythene-covered and P.V.C.-covered twin flat wire from a firm in New York. The wire is to be used for electrical purposes.

HELVIN LIST B. 209 describes the applications of this special type of PV.C. made by Hellermann Electric, Ltd.. Tinsley Lane, Crawley, Sussex, which include a wide range of articles for the radio, electronic. automobile and aircraft other special processes described in this hooklet.

SCIAKY PMCO2ST THE THREE PHASE MODU WAVE WELDER concerns a new developed by Sciaky Bros. 4915 West 67 ih Street Chicago 38 Illinois US A from whom a brochure may be obtained.

EDISWAN MICROFILM READERS is a brochure describing these instruments, which provide high quality reproduction from all normal 35 mm . microfilm frame with easy manipulation. and do not necessitate a dark room. Full details from the Edison Swan Electric Co., Ltd., 155
G.B. 16 MM. ENTERTAINMENT FILM CATALOGUE includes a section on industrial films, which covers steel, optical glass, the manufacture of plastics, etc. Civics and social welfare are also subjects of interest. It is obtainable from G.B. Equipments, Ltd., Mortimer House, 37-41 Mortimer Street, London, W.I.
BURGESS MICRO-SWITCHES CATALOGUE NO. 50 is a brochure describing the types made by Burgess Products Co., Ltd., Micro-Switch Division. Sapcote, Leics., and includes schematic
diserams of the switches.
"FLUON" POLYTETRAFLUOROETHYLENE is a booklet concerned with the manufacture of this type of plastic. It has previously been
developed commercially in the U.S.A., and is now made in Britain by Imperial Chemical Industries, Lid.. Gloucester Housc, 149 Park Lane London, W. 1 .

ELECTRICAL ENGINEERING ABSTRACTS. DECEMBER 1950. This booklet is Section B of "Science Abstracts" which are edited and issued monthly by the Institution of Electrical Engincers, Savoy Place, London, W.C.2.
EKCO CAR RADIO is a catalogue of the types of car radio made by Ekco's. It gives full technical details of their parts, etc., and can be obtained from E.K. Cole, Lid., Ekco Works,
Southend-on-Sea, Essex.

WIGGIN NICKEL ALLOYS NO. 328 features various types of furnace equipment, and the heatresisting uses of high nickel alloys. Other items of general interest are uses of these materials in glass blowing, modern engine fuel lines, food processing, hospital equipment, and chemical plant. Henry Wiggin \& Co., Ltd., Wiggin Street, - JUAN

FOR N DE LA CIERVA " FOUNDATION tion and Development. This most attractivanizahe:tutifully illustrated brochure describes and Spanish technical Foundation. It lays out its purpons. and descrihes its centres and institutes which cover a wide range such is scientific apparatus, fuel reve:rrch, welding, iren and steel. electronics and rationalization. Institute of Electronics, Rios Rosas 54, Madrid, Spain.

EASIBIND FOLDERS

Readers are reminded that a few of the old size Easibind Folders are still avail. able for binding their 1950 issues of "ELECTRONIC ENGINEERING", and can be obtained from the Circuiation Depariment. price 12s. 6d. postage 6d. Easibind Folders for the new size journal are also available at the same price.

1950 INDEX

The 1950 Inder, Volume 22. is still available. Copies may be ohtained with. out charge and post free, on application to the Circulation Department of this Journal.

MEETINGS THIS MONTH

INSTITUTION OF ELECTRICAL ENGINEERS

Alt London meetings, unless otherwise stated are held at the Institution of Electrical Engineers Savoy Place, London, W.C. 2
Date: February I Time: 5.30 D.m
Lecture: Standardization and Simplification in the By: J. T. Moore, B.Sc.
Lecture: An Organization for Internal Standardization in a Large Manufacturing Company
By: P. J. Daglish, B.Sc.
Date: February 14. Time: 6.30 p.m
Date: February Central Hall, Westminster S W
Faraday Lecture: Lamps and Lighting-A Record
of Industrial Research.
By: L. J. Davies, M.A., B.Sc.
Radio Section
Date: February $7 . \quad$ Time: 5.30 p.m.
Lecture: Radio-Valve Life Testing.
By: R. Brewer
Date: February 19. Time: 5.30 p.m. for a
Discussion: Is there an Optimum Speed for a Gramophone Record?
Opened by: G. F. Dutton, Ph.D., B.Sc.(Eng.).
Measurements Section
Date: February 13. Time: 5.30 p.m
Lecture: The Inductor Compass.
By: A. Hine, B.Sc.Tech
Date: February 27 . Time: 5.30 p.m
Discussion: Electrical Measurement by Thermal Effects.
Opened by: Professor J. Greig, M.Sc., Ph.D. L. G. A. Sims, D.Sc., Ph.D., and J. G Freeman, M.A., Ph.D

Utilization Section
Date: February 15. Time: 5.30 p.m.
Lecture: The Dimming of Low-Pressure Discharge Lamps.
By: C. E. Williams, B.Sc
Informal Meeting
Date: February 12 Time: 5.30 p.m
Discussion: Inventor. Engineer, and Manager
Opened by: P. P. Eckersley.

Supply Section

Date: February 21. Time: $5.30 \mathrm{p} . \mathrm{m}$.
Lecture: Transient Theory of Synchronous Generators Connected to Power Systems.
By: B. Adkins, M.A.

INSTITUTION OF POST OFFICE

 ELECTRICAL ENGINEERSDate: February $6 . \quad$ Time: 5 p.m
Held at: Institution of Electrical Engineers, Savoy Place, W.C. 2
Lecture: Some Aspects of Electronic Circuit
Design. Proadhurst and A W M Coombes Ph.D.

Informal Mecting

Date: February 21. Time: 5 p.m.
Held at: Conference Room, 4th Floor, Waterloo Bridge House, S.E.l.
Lecture: Public Speakin
By: A. K. Robinson, M.I.E.E.

TELEVISION SOCIETY

Date: February 1. Time: 7 p.m.
Held at: Cinerna Exhibitors' Association, 164 Shaftesbury Avenue, W.C. 2 .
Lecture: On the Technique of Television Interviewing.
By: Leslie Mitchell
Date: February 23. Time: 7 p.m.
Held at: The Cinema Exhibitors' Association, 164 Shattesbury Avenue, W.C. 2
Lecture: Television from Calais-The First CrossBy: \mathbf{W} Richards
By: W. D. Richardson and W. N. Anderson
Engineering Group
Date: February $8 . \quad$ Time: 7 p.m
Held at: The Cinema Exhibitors' Association, 164 Shaftesbury Avenue, W.C. 2 .
Lecture: The First British Multi-Channel Receiver By: W. D. Asbury, K. M. B. Wright and W. M Lloyd, B.Sc.

SECRETARIES OF ASSOCIATIONS

INSTITUTION OF
ELECTRICAL ENGINEERS
The Secretary, Institution of Electrical Engineers, Savoy Place, W.C. 2

Cambridge Radio Group
G. E. Middleton, M.A. University Engineering Laboratory, Cambridge.

North-Eastern Radio and Measurements Group
G. A. Kysh (Asst. Sec.), Carliol House, Newcastle-on-Tyne, 1

North-Western Radio Group
A. L. Green (Asst. Sec.), 244 Brantingham Road, Chorlton-cum-Hardy, Man chester, 21.

South Midland Radio Group
W. H. Brent, B.Sc., Regional Director's Office Midands Region (G P O) Civic House. Great Charles Street, Birming ham, 3.

BRITISH INSTITUTION OF RADIO ENGINEERS
The General Secretary, 9 Bedford Square, London, W.C. 1

West Midlands Section

R. A. Lampitt, A.M.Brit.I.R.E., 20 Northfield Grove, Merry Hill, Wolverhampton.

INC. RADIO SOCIETY OF GREAT BRITAIN
General Secretary, New Ruskin House. Little Russell Street, W.C.I.
BRITISH SOUND RECORDING ASSOCIATION
Richard W. Lowden, "Wayford," Napoleon Avenue, Farnborough, Hants

TELEVISION SOCIETY
Lecture Secretary: T. M. Lance, 180 Bromley Road, Beckenham, Kent.

Engineering Group
G. T. Clack, 10 Tantallon Road, Balham, London, S.W. 12.

RADAR ASSOCIATION

The Secretary, 83 Portland Place, London, W.1.

INSTITUTION OF POST OFFICE ELECTRICAL ENGINEERS
W. H. Fox, A.M.I.E.E., Engineer-inChief's Office (T. P. Branch), Alde House, E.C.l.
INSTITUTION OF ELECTRONICS
Lecture Sec.: W. Summer, 3! Beech Road, Bournville, Birmingharm, 30 North-West Branch
W. Birtwistle, 17 Blackwater Sireet, Rochdale, Lancs.

SOCIETY OF RELAY
 ENGINEERS

T. H. Hall, M.Brit.I.R.E., 23 Dalkeith Place, Kettering, Northants.
SOCIETY OF INSTRUMENT TECHNOLOGY
L. Lambert,
London, W. London, W. 3.

SOCIETY OF INSTRUMENT TECHNOLOGY

Date: February $27 . \quad$ Time: 6.30 p.m.
Held at: Manson House, Portland Place, London W.1.

Lecture: The Measurement of Surface Temperature.
By: Dr. R. C. Parker.

BRITISH INSTITUTION OF RADIO

 ENGINEERS
London Section

Date: February 21. Time: 6.30 p.m.
Held at: London School of Hygiene and Tropica Medicine, Keppel Street, London, W.C.I.
Lecture: Electronics and Air Transpor
By: C. H. Jackson, B.Sc., A.F.R.Ae.S. A.M.I.Mech.E.

Scottish Section
Date: February 1. Time: 6.45 p.m.
Held in: Edinburgh.
ecture: Multi-Station V.H.F. Communication
Systems using F.M. W . P. Cole, B.Sc., and E. G. Hamer, B.Sc
Merseyside Section
Date: February $7 . \quad$ Time: 7 p.m
Held at: Electricity Service Centre, Whitechapel, Liverpool.
Lecture: A Transmitter for an Experimental 8-Channel Wire-Broadcasting System
By: R. G. Kitchenn, B.Sc.(Eng.).
South Midlands Section
Date: February 14. Time: 7.15 p.m. Midard
Coventry. Survey of Television Developmen and its Problems.
By: H. J. Barton-Chapple,
North Eastern Section
Date: February 14. Time: 6 p.m
Held at: Nevile Hall, Westage Road, New castle-on-Tyne.
Lecture: The Use of Foster's Theorem in Circuit Design.
Ry: E. Williams, Ph.D.

West Midiands Section

Date: February $28 . \quad$ Time: 7 p.m.
Held at: Wolverhampton and Stafis. Technica College. Wulfruna Road, Wolverhampton.
Lecture: Power Rectifiers.
By: J. C. Milne.

BRITISH SOUND RECORDING ASSOCIATION

Date: February 16. Time: 7 p.m
Held at: Royal Society of Arts, John Adam Sireet, London, W.C.2. of Arts, John Adam Lecture : The Application of Elementary Mechanics to Sound Recording.
By: J. F. Doust.

INSTITUTION OF ELECTRONICS

Midiands Branch

Date: February $6 . \quad$ Time: 7 p.m.
Held at: Warwick Room, Imperial Hotel, Temple Sireet, Birmingham
Lecture: Electronic Aids in Engineering, Research By: J. R. Cornelius

RADAR ASSOCIATION

Date: February 6. Time: $7.30 \mathrm{p} . \mathrm{m}$
Held at: The Albert Tavern, Victoria Street London, S.W. 1

East Anglian Branch

Date: February 24.
Held at: Lamb Inn, Norwich
Monthly Meeting.

INC. RADIO SOCIETY OF GREAT
 BRITAIN

Date: February 23 . Time: 6.30 p.m
Held at: Insfitution of Electrical Engineers, Savoy Place, W.C. 2 .
Lecture: Post-War Developments in Television
By: H. A. M. Clark, B.Sc.(Eng.), A.M.I.E.E.

By request

At the request of many of our constructor friends, we give here full details of the famous range of Stentorian chassis.

Type	Cone dia.	Flux Density (Gauss)	Pole dia.	Gap length	Flux face	Total flux	$\begin{gathered} \text { Speech } \\ \text { coil } \\ \text { Impedance } \\ \text { (ohms) } \end{gathered}$	Handling Capacity (watts)	Prices	
									With Trans.	Without Trans.
* 5.2 .57	$2{ }^{\prime \prime}$	7,000	. $375^{\prime \prime}$.033"	.093"	5,285	3	. 3	-	156
* S.3.57	$3{ }^{\prime \prime}$	7,000	. $625^{\prime \prime}$.035"	. $125^{\prime \prime}$	11,500	3	2	-	166
S. 507	$5^{\prime \prime}$	7.000	. $75^{\prime \prime}$. $040^{\prime \prime}$. $125^{\prime \prime}$	14,000	3	2.5	150	176
* S. 610	$6^{\prime \prime}$	10,000	.75"	.040"	. 125	20,000	3	3	186	110
S. 707	$7{ }^{\prime \prime}$	7,000	$1{ }^{\prime \prime}$. $043^{\prime \prime}$.187"	27.650	3	3.5	1106	110
S. 810	$8{ }^{\prime \prime}$	10,000	I'	.043"	.187"	39,500	3	5	1136	140
S. 912	97	12,000	$1 "$.043"	.187"	47,400	3	7	1190	196
S. 1012	$10^{\prime \prime}$	12,000	1 "	.043"	.187"	47.400	3	10	2110	1176
S. 12135	$12^{\prime \prime}$	13,500	1.5"	.050"	. $25^{\prime \prime}$	106,000	15	15	8880	$\begin{array}{lll}7 & 7 & 0\end{array}$
S. 1814	$18^{\prime \prime}$	14.000	2.5"	.0625 ${ }^{\prime \prime}$. $312^{\prime \prime}$	227,000	12	30	-	2400

Further details of these speakers and of the famous Concentric-Duplex models gladly sent on request.

 tenturian

 tenturian}* All chassis material is of Mazok 3 except S.2.57. S.3.57 and S. 610 which ore of Drown Steel.

LOUDSPEAKER

 CHASSISWHITELEY ELECTRICAㄴ RADIO CO. L!TD.
MANSFIELD
NOTTS.

4HERE is a Delaron grade to suit any desired electrical insulation requirement and to meet all official specifications. Delaron can be sawn, drilled, punched, shaped and fabricated-is available in thicknesses from min -in two colours, black and brown, matt or glossy finish-and in various board sizes. Please write for details and samples

THOMAS DE LA RUE \& CO., LTD. (Plastics Division)
IMPERIAL HOUSE, REGENT STREET. LONDON, W.I

the "decca" $f r$ PlCK-UP uses MUREX

SINTERED pemanent MAGNETS

Where small complex shapes with high magnetic efficiency and stability are required, sintered permanent magnets are essential.

Photographs by courtesy of the Decca Record Co. Lid.

MUREX Ltd.
 (Powder Metallurgy Division)

RAINHAM • ESSEX

Actual Size of Magnets

London Sales Office: Central House, Upper Woburn Place, W.C.I.
Telephone: EUSton 8265.

Not by any stretch of imagination would Tufnol make a good dart-board, yet our illustration, which is part of a chemical pump, serves a double purpose. It proves two points-the accuracy and intricacy possible in machining ' ufnol and its resistance to corrosion.
But Tufnol combines many other qualities ideally sought after in metals and hardwoods but seldom realised in either. It is only half the weight of aluminium yet structurally strong enough to work sympathetically with steel ; it is an excellent electrical insulator, yet it will not splinter or crack under impact. Neither exposure to corrosive atmospheres nor extremes of climatic conditions have any appreciable effect on its composition or finish. Given ordinary workshop facilities, any com-

An oden view of a chemical pump made of Tufnol ponent can be easily produced from standard Tufnol sheets, tubes, rods, angles, or channels. Specially moulded blanks or finished parts can also be supplied to your exact specification. Can you afford to makedo without Tufnol when others are making progress with it?
 data, particular uses, and in fact everything known about Tufnol. But what may be more important to you is our keenness to cooperate in any technical development incorporating its use in nezv ways. Why not outline your requirements in a letter -and send it TODAY.

TUFNOLLTD•PERRYBARR•BIRMINGHAM•22B

Osram

Caesium-Antimony-Photocells

Dimensions: 92 mm seated length, 28 mm diameter and mounted on ofour-pin British base.

Osram caesium antimony cells, vacuum and gasfilled, have a higher sensitivity level to artificial light than the cells of the caesium silver oxide type, and for most purposes are, therefore, preferable.

The minimum sensitivityof the vacuum cell to radiation from a tungsten lamp operating at $2850^{\circ} \mathrm{K}$ is 25 micro-amperes per lumen, and of the gasfilled cell 120 micro-amperes per lumen at 90 volts with a gas factor not exceeding 8. These are guaranteed minima and most cells have considerably higher response.

The caesium antimony cathode has a peak response in the blue end of the visible spectrum so that for any application involving blue light the sensitivity is vastly greater than the above figures would imply.

The cell is also far more sensitive than the caesium silver oxide type for any application involving daylight as the light source.

Even though the point of spectral response is farther removed from the peak of the radiant energy curve of a tungsten lamp than that of the caesium silver oxide cell, the average sensitivity level, as mentioned above, is higher.

- The caesium antimony cell has no response to infra-red and cannot, therefore, be used for applications involving such invisible radiation. Even this characteristic is not without its advantages. Infra-red sensitivity is known to be closely associated with dark current which contributes to background noise in sound reproduction and similar applications.
The cathode is deposited on the wall of the bulb, which construction removes a possible source of microphony. The vacuum and gasfilled cells, therefore, have a much reduced noise level.

For further information write to: Osram Valve and Electronics Dept., Magnet House, Kingsway, W.C.2

for balanced and unbalanced measurement at frequencies between $1 \mathrm{Mc} / \mathrm{s}$ and $100 \mathrm{Mc} / \mathrm{s}$.

THE WAYNE KERR LABORATORIESLIMITED, NEWMALDEN, SURREY. PHONE: MALDEN 2202

(wivK TYPE C.P.20A AMPLIFIER

For AC Mains and 12 volt working giving 15 watts output, has switch change-over from $A C$ to $D C$ and "Standby" positions. Consumes only $5 \frac{1}{2}$ amperes from 12 volt battery. Fitted with mu-metal shielded microphone transformer for 15 ohm microphone, provision for crystal or moving iron pick-up with tone control for bass and top. Outputs for 7.5 and 15 ohms. Complete in steel case with valves.

- PRICE $E 28$.

OTHER MODELS IN OUR RANGE OF AMPLIFIERS "SUPER-FIFTY WATT" - - - PRICE 36 $\frac{1}{2}$ gns.
" THIRTY WATT" - - - - - ${ }^{\text {" }}$ 30 $\frac{1}{2}$ gns.
" 10-15 WATT RECORD REPRODUCER" "
PRICE $25 \frac{1}{2}$ gns.
These are fitted in well ventilated steel cases with recessed controls, as illustrated.

Iaboratory measurements of the frequency response of filters, amplifiers, transformers and other components usually require a considerable amount of preparation, involving as they do the use of an oscillator, an attenuator, a valve voltmeter and various change-over switches.

The Transmission Measuring Set Type D-514-A combines all these items in one compact unit, and with its aid gain or loss measurements of up to 50 db at any frequency between rooc/s and $40 \mathrm{kc} / \mathrm{s}$ may be carried out immediately with no preparation other than the connexion of a power supply.

This instrument also finds many applications in the field, especially for transmission measurements on telephone and carrier telegraph circuits. When an A.C. supply is not available, the turn of a switch enables the power unit to be operated from a 12 volt accumulator.

- FREQUENCY RANGE: $100 \mathrm{c} / \mathrm{s}$ to $40 \mathrm{kc} / \mathrm{s}$ continuously variable.
- FREQUENCY ACCURACY: better than $\pm 0.4 \%$ over entire range.
- POWER SUPPLY: A.C. mains $100-250$ volts, $40-60 c / 3$, or from a 12 volt accumulator.
- OSCILLATOR may be used separately, if desired.
- LAMP BRIDGE LEVEL METER: controls standard level of 1 mW within $\pm 0.2 \mathrm{gdb}$.
- RANGE OF MEASUREMENT: gain and loss up to so db at any frequency.
- OUTPUT IMPEDENCE: for use on 600 ohm circuits.
- PORTABLE: contained in two tough laminated plastic carrying cases.

AN H.F. ULTRASONIC GENERATOR FOR RESEARCH LABORATORIES

Equipped with special transducer for immersion in conductive liquids

THis generator has been developed to assist industrial research laboratories in their studies of Ultrasonics.
It is capable of providing the highest ultrasonic power outputs within reach of a commercial instrument. And it covers the frequency range in which high intensities can be generated by a quartz crystal.
The transducer can be immersed in conductive liquids. This is a unique feature of the apparatus. All the

Transducer Head. The generating crystal is air-backed to give maximum ultrasonic output. Special rear connections to crystal eliminate corona discharge at high R.F. potentials. Silastic rubber sealing rings can be supplied, enabling the transducer to be immersed in liquids up to $150^{\circ} \mathrm{C}$. temperature. inconvenience and power loss of operating the crystal under transformer oil is avoided.
The generator comprises a control pancl with meters, power oscillator, output voltmeter, relay panel and power supply. It is mounted in a tubular frame. Trolley wheels make it easy to move about. And the cover is adequately ventilated. Mains supply is 230 volts $50 \mathrm{c} / \mathrm{s}$. Power consumption up to 1.5 kilowatts.

The Mullard Ultrasonic Generator, type E.7562, Dimensions: Height 3'. Width $\mathbf{1}^{\prime \prime} 4^{\prime \prime}$ Length 2^{\prime}. Weight 2 cwt. I6 lbs. Please write for full technical details.

Mullard

MULLARD ELECTRONIC PRODUCTS LTD., EQUIPMENT DIVISION, CENTURY HOUSE, SHAFTESBURY AVENUE, W.C.2. TELEPHONE: GERRARD 7777

M1.347)

TIME INTERVAL METER TYPE 771 4 4 皿

THIS instrument, which is compact and portable, enables accurate measurement of time intervals between 10 milliseconds and 60 seconds to be made. The versatility of the timer makes it particularly suitable for measuring the time delays of relays, contactors and other types of switches, whilst the design is such that the integration of a number of short time intervals may be made over a relatively long period.

Full details of this or any other Airmec instrument will be gladly forwarded upon request.

SPECIFICATION

PRICE $£ 32$
The instrument will measure:-

1. Duration of a contact "make" or a contact "break."
2. Interval between energisation of a relay coil and opening or closing of a contact.
3. Interval between de-energisation of a relay coil and opening or closing of a contact.
4. Interval between closing of one contact and opening or closing of another,
5. Interval between opening of one contact and opening or closing of another. It may also be used as a stop clock.
RANGES: 0-60 seconds, $0-30$ seconds, $0-6$ seconds, $0-3$ seconds, $0-600$ milliseconds, $0-300$ milliseconds, $0-60$ milliseconds.
ACCURACY: $\pm \mathbf{5 \%}$ of half scale deflection of the meter. DIMENSIONS: $13^{*} \times 9^{*} \times 6^{*}$.

AIRMEC LABORATORIES LTD

HIGH WYCOMBE•BUCKINGIIAMSHIRE E ENGLAND

The 'CINTEL' ADJUSTABLE PHASE CORRECTOR
 is a new approach to the solution of this old problem and enables the phase distortion in any wide band amplifier of 75 ohms impedance to be corrected simply by "turning a knob."
 For full technical details please write for leaflet No. PUCl|1.

Northern Agents:
c. COBINSON \& PARTNERS LTD

287 Deansgate, Manchester 3

Scottish Agents:

ATKINS. ROBERTSON \& WHITEFORD LTD
100 Torrisdale Street. Glasgow 5.2

THERE are many problems which confront the electronic engineer from day to day which may be regarded as " necessary evils"' and one of these is the correction of phase-distortion in an amplifier.

TO AN OLD PROBLEM...

BRIEF SPECIFICATION

These Plugs and Sockets are manufactured to an R.E.C.M.F. Specification, and the minimum performance figures after testing to $\mathrm{RCi} / \mathbf{r}$ Yellow Specification including tropical exposure test, are :-
Capacity (Plug and Socket
together) 5 pF max.
Contact Resistance (Outer
Contacts)
$\begin{array}{cccc}\text { tracts) } & \ldots & \ldots & \ldots . \\ \text { Rence } & \text { milliohms max. }\end{array}$ Leakage Resistance 10 Megohms min. Steady withdrawal force ... $6!16 \mathrm{lb}$.

PAT. NO. 637613

$A^{\text {NTIFERENCE }}$

ANTIFERENCE LIMITED, 67 BRYANSTON STREET, MARBLE ARCH, LONDON, W.I.
Telephone: PADdington 7253 P.B.X.

VARIABLEBUT DEPENDABLE

The value of the EGEN midget pre-set variable resistor to the television and electronics designer has been enhanced by a new double slider operating on the radius of the element, giving greater stability and making accurate adjustment easier. This reliable, precision engineered component can also be supplied mounted in a series of one, two or three on a common panel which can be suitably engraved. Available in any value from 10 ohms. to 25,000 ohms.

- Worm drive for smooth action
- Ratchet action prevents overwinding
- Silver-plated solder tags

EGEN ELECTRIC LTD.
Charfleet Industrlal Estate, Canveylsland,
Essex. 'Phone Canvey 60

EGED

POTENTIOMETERS

 trawsfgrmer co. LTD

TRANSFORMERS \& CHOKES
for

UTMOST

RELIABILITY

Woden Compound Filled transformers have been developed for use in exacting industrial and climatic conditions and have the following features:-

The Universal Bridge

Type TF 868 is one of the most sought -after Marconi instruments and, for the first time, is available for immediate delivery

RANGE
L $1 \mu \mathrm{H}-100 \mathrm{H}$
C $1: 1,1 F-10012 F$
R $0.1 \Omega-10 \mathrm{M} \Omega$
PHASE ANGLE $0 . \infty$ ACCURACY $\pm 1 \%$

MARCONI INSTRUMENTS LIMITED

ST ALBANS, HERTFORDSHIRE Telephone: St Albans 6161/5
Northern Office: $3 \boldsymbol{J}$ Albion Street, Hull. Midland Office: 19 The Parade, Leamington Spa

ORMOND STREET, BIRMINGHAM, 19

foremost with Stabilised Power Supply Units

Type $1930 ;+220$ to 380 V variable ;

Delivery
ex Stock
$0-100 \mathrm{~mA}$; regulation $.5 \%$; ripple 2.5 mV .
Negative stabilised -150 V at 20 mA .
Heater supplies-6.3V, 4 V and 2.3 V A.C,

5328 B

TUNGSTEN
Contacts, Rods, Pins, Lead-inWires, Targets, Shaped Components, Heater Wires, Spark Gaps.

MOLYBDENUM

Tubes, Nuts, Bolts, Per-
forated Sheets, Coils, Spirals, and other Components made from High Refractory Metals to Customers' Design.

ELECTRO-ALLOYS LTD.
12, BRUNELROAD, LONDON, W. 3 Telephone SHE 3460,3031

> Technical
> Excellence
combines with beouty and soundness of DESIGN in the
OXLEY

DIFFERENTIAL AIR

 DIELECTRIC TRIMMER
1.5 Heights
1.5
1.8 to $8 p \mathrm{pF}-8 \mathrm{~m}$
1.5
 Law: Straigh pae capacts Porrer pachar: Lans than -001
lasulnation: Over 2.000 meroain Voltace: 500 D.C.
OXLEY DEVELOPMENTS GO., LTD., ULVEASTON, N. LANCS. TEL. ULVERSTON 3306

HIGH-CAPACITY PRECISION MICA CONDENSERS
By leading manufacturers. Accuracy plus or minus 0.5 (point five) per cent of stated value. Pure mica and copper foil.
$\begin{array}{lllllll}\text { (a) } & 0.017970 \mu \mathrm{~F} & \cdots & \cdots & 1 / 3 \mathrm{~d} . & \text { (g) } 0.087460 \mu \mathrm{~F} & \cdots \\ \text { (b) } 0.023570 \mu & 1 / 6 \mathrm{~d} .\end{array}$
$\begin{array}{llllll}\text { (b) } 0.023570 \mu \mathrm{~F} & \cdots & \cdots & 1 / 3 \mathrm{~d} . & \text { (h) } 0.108435 \mu \mathrm{~F} & \cdots\end{array} \cdots \quad 1 / 9 \mathrm{~d}$.
$\begin{array}{llll}\text { (d) } 0.040710 \mu \mathrm{~F} & \cdots & \cdots & 1 / 6 \mathrm{~d} . \\ \text { (i) } 0.123750 \mu \mathrm{~F} & \ldots & \ldots & 1 / 9 \mathrm{~d} .\end{array}$
$\begin{array}{lllll}\text { (e) } 0.055820 \mu \mathrm{~F} & \cdots & \cdots & 1 / 6 \mathrm{~d} & \text { (i) } 0.147000 \mu \mathrm{~F} \\ \text {... } & . . . & 1 / 9 \mathrm{~d} \text {. }\end{array}$
(I) $0.065350 \mu \mathrm{~F}$ 1/6d. (k) $0.205276 \mu \mathrm{~F}$ 2/Many close colerance standard values may be made up by parallel or other combinations of above, e. 8 .

$$
4 k+i+e=1 \mu \mathrm{~F} ; 2 \mathrm{k}+\mathrm{g}=0.5 \mu \mathrm{~F} ; \mathrm{c}+\mathrm{f}=0.1 \mu \mathrm{~F} .
$$

Special terms to monufocturers, universities, or other reseorch hodies. Post or corriage extra.

GARLAND BROS.
Chesham House, Deptford Broadway, London, S.E.8. Phone: TIDeway 44/2/3.

MAGNETIC
RELAYS
LARGEST STOCK IN GREAT BRITAIN OF RELAYS, KEY SWITCHES AND UNISELECTORS
Government Contractors
RELAYS P.O. $3000-600-\mathrm{HIGH}$ SPEED Also 230 v . A.C. 50 cy .
ALLL NEW EX-MINISTRY GOODS
JACK DAVIS (Relays) LTD. dept. e.e. 36 PERCY STREET, LONDON, W.1.

Phones: MUSeum 7960 LANgham 4821

Overseas Enquiric's to nearest E.M.I. Organisation Depot.

D. 18

THE
 BRITISH NATIONAL RADIO SCHOOL
 ESTD. 1940

Now in our eleventh year and still-

NO B.N.R.S. STUDENT H'ASTEVER FAILED

to pass his examination(s) after completing our appropriate study course. Nothing succeeds like SUCCESS and what we have done already for so many of your colleagues, we can do again for YOU.
All our courses are conducted by correspondence, on INDIVIDUAL lines and our Syllabus includes preparation for the following examinations: A.M.Brit.I.R.E.; City and Guilds, Radio, Telecommunications, Mathematics and P.M.G. (theory only). Other courses include what we believe to be the finest RADAR course availabie anywhere.
Free Booklet and specimen lessons (please mention this advt.) from

STUDIES DIRECTOR

BRITISH NATIONAL RADIO SCHOOL 66 ADDISCOMBEROAD, CROYDON Phows Addiscombe 3341

Main London stockists for

EDDYSTONE " 750 "

Communications Receiver

A double-superheterodyne circuit, with variable selectivity, eleven valves. Covers $32 \mathrm{Mc} / \mathrm{s}$ to $480 \mathrm{Kc} / \mathrm{s}$ in four wavebands. Easy tuning by mechanical band-spread allowing accurate re-setting and calibration
£59 10s. Od.
EDDYSTONE " 680 "
Communications Receiver
Uses fifteen valves in advanced circuitry design. Covers $30 \mathrm{Mc} / \mathrm{s}$ to $480 \mathrm{Kc} / \mathrm{s}$. Two R.F. and two I.F. stages. Crystal Gate. Variable Selectivity. Push-pull output. "S"meter. Designed for professional communications work, its many features commend it to the discriminating amateur. Brochure with performance figures and curves free on request.

E89 5s. Od.
EDDYSTONE " 740 "
Communications Receiver
A newcomer to the Eddystone range, offering unparalleled value for money. Uses eight valves, including rectifier. Covers 30.6 to $\mathrm{r} .4 \mathrm{Mc} / \mathrm{s}$ and 205 to 620 metres in four bands. Flywheel tuning gives silky and precise control.

$$
\mathrm{E} 32 \mathrm{l} 10 \mathrm{~s} .0 \mathrm{~d} .
$$

"EDDYSTONE" equipment

EDDYSTONE " 720 "
" Yachtsman's" Receiver
Designed for use in cabin cruisers, yachts, etc. Internal loudspeaker. 80 to 620 and 900 to 2,300 metres covering Consol signals, weather forecasts, 600 metre distress band, time signals, trawler and small ships band, news and broadcasts. Operates from 12 volts (2 amps .).

E43 10s. Od.
EDDYSTONE " 670 "
" Marine " Receiver
Used the world over by seafarers. Designed for general purpose broadcast cabin listening. AC/DC mains operation 110-200-230 volts.
£39 7s. 6d. (plus Purchase Tax $£ 8$ 19s. 2d.)
EDDYSTONE "710"
"All World Six" Receiver
For overseas use, operating from 6 -volts (2.5 amps.). A high-performance short and medium wave broadcast receiver.
£43 10s. Od.
(No Purchase Tax for Export)
STOP PRESS ! Endeavours towards what we hope will be a peaceful world are affecting supplies of these receivers. PLEASE ENQUIRE BEFORE ORDERING.

Dept, MR7, 74 Gt. Hampton St., Hockley, Birmingham 18.

DISCS DIAPMRATMS EIEMAENT STRIPS $\mathbb{C O N D E N S E R P I A T I E S}$ SPECIAL SHAPES RAWN NOUCA WASMERES Cte
BRITISH MICA COLTP-BEDFORD.

PRECISION EQUIPMENT by AUTOSPARES

Square Wave Generator, $A C$ mains, enclosed cabinet $£ 12$.
Screen Modulator for 1 kw ElO . Modulation transformers 25/Miniature 3 -valve volume Expander/Compressors $\$ 3$.
RF Scopes $3^{\prime \prime} \& 10,5^{\prime \prime} \mathbb{E 1 2}$, Oscilloscopes $£ 15$.
Tape Recorder Amplifiers $£ 10, £ 15$ and $£ 18$.
Type 38 Walky Talky transceivers $45 /-$ ATP 4 valves $5 / \mathrm{kd}$.
ive AC/ De -uxe Amplifiers, Mu Metal output transformer.
listed 45 gns . three at El 8.
15 watt 616 Amplifier $\mathbb{C} 10.7$ watt minature $85 /$.
Cabinet speakers, GEC 35/-. G12 walnus floor cabinet 815 , 46 Mahogany baffle on castors 28 .
Ecko 8 -valve All Wave motor tuned table consoles 18 gns. HP terms 63 down
Push Pull $15 / 20$ watt output transformers $9 /-$
Ported Chokes $50 \mathrm{~m} / \mathrm{a} 7 / 6 \mathrm{~d}$., $100 \mathrm{~m} / \mathrm{a} 9 / 6$., $75 \mathrm{~m} / \mathrm{a} 6 /-$.
Powertul amplifiers and Receivers, instruments, circuits, HP terms. Illustrated leaflets. Radiograms Modernised.

AUTOSPARES

180 HIGH STREET, TOOTING, LONDON, S.W.I7
POTENTIOMETERS "RELIANC:

Wire-wound and Composition types. Single, Ganged, Tandem Units.
Characteristics: linear, log., semi-log., noninductive, etc. Full details on request.
RELIANCE MNFG., CO. (SOUTHWARK), LTD., Supherland Road, Higham Hill, Walthamstow, E.17 Telephone: Larkswood 3245

-Reasonably priced

- Immediate delivery

This instrument is a Peak to Peak calibrated A.C. source for calibrating Cathode Ray Oscilloscopes and Amplifiers. Output is from 1 millivolt to 100 volts (balanced or unbalanced) in ten switched steps, monitored by a special peak to peak measuring voltmeter circuit.

Write to BRITISH ELECTRONIC INDUSTRIES, 28, Upper Richmond Rd., S.W.15. Tel.: VANdyke 1856

MIGHTY
PARTICLE

Wherever natural or synthetic rubber is important, there is the case for DAINITE.

Dainite mounee nuauss

HARBORO' RUBBER CO., LTD., MARKET HARBOROUGH

SYNTHETIC RESIN LAMINATED MATERIALS
SHEET, ROD AND TUBE IN ALL DIMENSIONS BOBBINS \& COIL FORMERS TO ANY SPECIFICATION MICA AND MICANITE SHEET AND MANUFACTURED PARTS

MICA \& MICANITE SUPPLIES LTD.,

BARNSBURY SQUARE, LONDON, N.I.
Telephone : NORth 3032/5
Telegrams: MICASULIM - LONDON

INDEX TO ADVERTISERS

Achesen Colloids Ltd.
Acru Electric Tool Mfg. Co., Lid., The
Airmec Laboratories Lid.
All-1'ower Transformers Lid.
Anliference Ltd.
Audigraph Ltd.
Autospares

Belling \& Lee Lid.
Bradmutic Ltd.
British Electronic Industries
British Institute of Engineering Technology
British Mica Co., Ltd.
British National Radio School, The
British Thomson-Houston Co., Lid., Th
Bullers Ltd.

Carvis, William
Castle Engineering Co. (Nottingham) Lid., The
Caxton Publishing Co.. The
Chance Bros.
Chapman \& Hall Ltd.
Cinema-Television Lid.
Cole Lid., E. K.
Connoliy's (Blackley) Lid.
Cossor IIdd., A. C.

Darwins Lid.
Davis (Relays) Ltd., Jack
De La Rue \& Co., Lid., Thomas
Donovan Electrical Co., Ltd.

Edison Swan Electric Co., Ltd., The
Egen Electric Ltd.
Elco Plastics Lid.
Electro Alloys Lid.
E.M.I. Factories Lid.
E.M.I. Institutes Lid.
E.M.I. Sales \& Service Ltd.

English Electric Co., Ltd., The
Ferranti Lid.
Furzehill Lahoratories Lid.
18

Gardner's Radio Ltd.
Garland Bros
General Electric Co.. Lid., The
General Engineering Co. (Radclife) Lid.
37

Harboro' Ruhber Co., Ltd., The Hazlehurst Designs Lid. Hopton Radio

London Electric Wire Co. \& Smiths Lid.
Marconi Instruments Lid.
Marconi's Wireless Telegraph Co., Ltd
Measuring Instrnments (Pullin) Ltd.
Metropolitan-Vickers Electrical Co., Lid.
Mica \& Micanite Supplies Ltd.
Muirhead \& Co., Ltd.
Mullard Electronic Products Ltd, 7 and 27
Murex Lid.

Nagard Ltd.
Oxley Developments Co., Ltd. 36
Painton \& Co., Lid. 32
Parmeko 19
Partridge Transformers Lid.8
35
Pearce (Pressings) Lid., William35
Radiospares Lid. $\begin{array}{r}8 \\ \hline 9\end{array}$
Sangamo-Weston Lid. Covar ii
Standard Telephones \& Cables Lid.$i i$
5
Telegraph Condenser Co., Ltd., The 9
Telegraph Construction \& Maintenance
Co., Ltd., The

The 34
Tufnol Lid. 2.3
United Insulator Co., Ltd. 31
Valradio Lid. 37
Vortexion Ltd. 26
Walter Instruments Ltd. Cover iv
Wayne-Kerr La 26Webh's RadioWhiteley Electrical Co., Lid.
38

These three restangular instruments are designed
 on symmetrical lines, thus giving a distinctive clear open scale and pleasing appearance. Each size available in all standard ranges. The Series 65 and 35 can be fitted with dial illumination.

MEASURING INSTRUMENTS (PULLIN) LTD.
Electrin Works, Winchester St., Acton, London, W. 3.
Telephone ACOrn 4651/3 \& 4995

[^8]
(2

Iles sirthat's mu baiby

Type B.T.

If you have only limited space and require only simple switching, then the Type B.T. is the switch you need. It is a midget, and has been specially designed for small spaces. Here are some new features which we have recently included -.

Walter Instruments

I.MMITED

GARTH ROAD, LOWER MORDEN. SURREY

- The contact blades are fixed in a new way. This makes them completely rigid all the time.
- The drive spindle is positioned definitely in the wafer. This provides double bearing.
- Steady contact resistance.
- Improved insulation between contacts.
- Positive contact.
- Self-cleaning action.

It ought to be good? it is good sensible and efficient. It will last you a long lime.

[^0]: "ELECTRONIC ENGINEERING,"
 January; 1947-MAR ENGINEERN: ‘Television Oct. and Dec., 1934, July, 1935. Offers? G Short, Fowlmere, Royston, Herts. Ofters? 1233

[^1]: - Aromic Energy Research Establishment, Harwell.

[^2]: - Head of B.B.C. Engineering Training Department.

[^3]: - Brown Firlh Research Laboratories

[^4]: *Formerly of Stardard Telecommunicalion Laboratories, Lid.

[^5]: - Nafinnal Imsiaute of O. e.mography

[^6]: - Post Office Researth Station.
 + Roval Naval Scientific Service, formerly Pust Office Research Stotion.

[^7]: \dagger A more elaborate equipment with an accuracy of measurement of approximately $\pm 0.2^{\circ}$ of phase was demonstrated by The Royal Aircraft Establishment, Ministry of Supply, at the Physical Society Exhibition in 1948.

[^8]: Printed in Great Britoin by The Press at Coombelonds, Lid. Addlestone, Surrey, for the Proprietors, Morgan Brothers (Publishers) Led., 28, Essex Street, Strand. W.C.2. Registered for Transmission by Canadian Magazine Post

