Base of the Towers of the new Wireless Station being erected near the Volo in Holland

WII—NEW BRUNSWICK
First Description of the Famous Alexanderson System
And a Dozen Exclusive Features in This Issue
THE WORLD'S ONLY MANUFACTURER
Of Moulded High Frequency, High Tension Insulators and Insulating Parts

Medal and Diploma
received at World's Columbian Exposition,
Chicago, 1893

No. 4500 No. 4502 No. 4507

No. 7

No. 2 No. 1 No. 7

No. 4514

No. 14 New No. 10 Old No. 10

Medal and Diploma
received at World's Fair, St. Louis,
1904

No. 4508

INSULATORS 1,000 TO 1,000,000 VOLTS

“ELECTROSE” Insulators are standard with UNITED STATES NAVY and ARMY and Wireless Telegraph and Telephone Companies, “Electrose” is made in a number of grades for various requirements, each grade possessing special characteristics “Electrose” Insulators—Best in the World for High Frequency Currents, Power and Transmission Circuits

SOLE MANUFACTURERS

ELECTROSE MFG. CO.

66-82 Washington Street 27-37 York Street
66-76 Front Street 1-23 Flint Street

BROOKLYN, N. Y., AMERICA

www.americanradiohistory.com
Thermo-Ammeters, Milliammeters and Current-Squared Meters

For Radio Service

Weston

Model 425 Instruments

(3⅜ inches flange diameter)

are particularly adapted for use on small-size Radio panels where space is an important factor.

These Instruments are unaffected by temperature changes; have 50% safe overload capacity; are low in power consumption.

They are for use on Audio and Radio frequencies.

The Current Squared Meter is ideal for use on wave meters and wherever decrement measurements are to be made.

Write for information

Weston Electrical Instrument Company, 27 Weston Ave., Newark, N.J.

When writing to advertisers please mention THE WIRELESS AGE
Learn The Code With The OMNIGRAPH

The Omnigraph Automatic Transmitter will teach you the Code—at home—in the shortest possible time and at the least possible expense. Connected with Buzzer or Buzzer and Phone, the Omnigraph will send you unlimited Continental messages, by the hour, at any speed you desire. It will bring an expert Operator—right into your home—and will quickly qualify you to pass the examination for a first grade license.

Owing to the fact that certain statements and expressions of opinion from correspondents and others appearing in these columns from time to time may be found to be the subject of controversy, scientific circles and in the future, it is sometimes involve questions of priority of invention and the comparative merits of apparatus employed in wireless signaling, the owners and publishers of this magazine positively and expressly disclaim any privy or responsibility for any statements of opinion or partisan expressions if such should at any time appear herein.

Published Monthly at
326 Broadway, New York

GREAT BRITAIN, 12-13 Henrietta St., London
Yearly Subscriptions in U. S., $2.00

When writing to advertisers please mention THE WIRELESS AGE

www.americanradiohistory.com
MAGNAVOX

Radio Telemegafone

When used with one or more stages of amplification will reproduce signals with great volume. For the small fraction of a watt output of your receiver that is available for the production of signals, the Magnavox Telemegafone will produce the greatest volume of sound.

With Small Horn, as Illustrated ... $75.00
With Large Music Master Horn ... 93.00

Write for Bulletin No. 2102

The Magnavox Co.

2701-2765 East 14th Street
Oakland, California

HOOK 'ER TO YER BULB

The most wonderful tuner in the world for only $15.00. Last month this tuner beat in a test one of the Navy Standards at Ketchikan, Alaska.

10 Captains of Ocean-going ships have had their wireless operators install one of our tuners in the captain's cabin so the exact time by wireless can be had without using either tube, bell, or hand.

"GREAT!" says one old sea dog. "WHAT IN SAM HILL WILL YOU SMART ALECS GET UP NEXT?" European stations copied in day time and no fancy aerial is needed. A single wire about 40 long by 25 high will do the trick. London amateur W. R. Wade, Clifton, Bristol, promises report for the magazines to publish showing how the amateurs there read our "sigs" in England. Junk your funny wound coils and get a regular two pound tuner that you can use during the static season. 20,000 meters maximum wave length. Hook up on bottom of tuner.

Knocked Down and Assembled Condensers

Which kind do you want? Made for panel mounting and are complete with scale, pointer and knob. Used all over the world now and still going strong. No C. 0. D. orders. Add parcel post. Buy from your dealers and send us his name if he cannot supply you. Canadian amateurs buy from local dealers or write us for nearest dealer. Formica tops and bases. Movable plates are screwed on and not clamped.

11 plate knocked down - $1.80
21 " " " - 2.25
41 " " " - 3.20
11 plate assembled - $2.75
21 " " " - 3.25
41 " " " - 4.25

SOLD BY YOUR DEALER :: OR

T R E S C O

Davenport, Iowa.
New Radio Products
and
Personal Service

In endeavoring to give personal service to our ever growing clientele, we realize that new and more modern products make for the betterment and improvement of radio work and to this end we offer you the latest scientific achievement in radio.

DUO LATERAL WOUND COILS

made in several different sizes covering every wavelength. These coils have staggered winding and a lower natural period, lower high frequency resistance, very low distributed capacity, lower D. C. resistance and higher self inductance, which makes it an ideal part of any set and superior to all other coils for amateur work.

Radio Engineers have made extensive tests of these coils and give them their highest recommendations.

ORDER BY CATALOGUE NUMBER AS LISTED.

<table>
<thead>
<tr>
<th>CATALOG NUMBER</th>
<th>WORKING WAVELENGTH RANGE IN METERS</th>
<th>INDUCTANCE IN MILLIHENRIES</th>
<th>LIST PRICE EACH UNMOUNTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>130 to 250</td>
<td>.045</td>
<td>$.90</td>
</tr>
<tr>
<td>35</td>
<td>180 to 450</td>
<td>.075</td>
<td>1.00</td>
</tr>
<tr>
<td>50</td>
<td>250 to 700</td>
<td>.156</td>
<td>1.10</td>
</tr>
<tr>
<td>75</td>
<td>350 to 900</td>
<td>.36</td>
<td>1.20</td>
</tr>
<tr>
<td>100</td>
<td>400 to 1400</td>
<td>.46</td>
<td>1.30</td>
</tr>
<tr>
<td>150</td>
<td>600 to 2000</td>
<td>1.40</td>
<td>1.40</td>
</tr>
<tr>
<td>200</td>
<td>1000 to 2500</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>250</td>
<td>1200 to 3500</td>
<td>4.2</td>
<td>4.60</td>
</tr>
<tr>
<td>300</td>
<td>1500 to 4500</td>
<td>6.25</td>
<td>6.10</td>
</tr>
<tr>
<td>400</td>
<td>2000 to 5000</td>
<td>10.62</td>
<td>10.20</td>
</tr>
<tr>
<td>500</td>
<td>3000 to 6000</td>
<td>17.5</td>
<td>17.30</td>
</tr>
<tr>
<td>600</td>
<td>4000 to 10000</td>
<td>25.0</td>
<td>22.00</td>
</tr>
<tr>
<td>750</td>
<td>5000 to 12000</td>
<td>38.0</td>
<td>35.30</td>
</tr>
<tr>
<td>1000</td>
<td>6000 to 15000</td>
<td>72.6</td>
<td>68.30</td>
</tr>
<tr>
<td>1250</td>
<td>10000 to 20000</td>
<td>116.6</td>
<td>112.30</td>
</tr>
<tr>
<td>1500</td>
<td>15000 to 25000</td>
<td>171.4</td>
<td>163.20</td>
</tr>
</tbody>
</table>

We also carry a large stock of high grade electrical apparatus, including a very complete line of heating appliances.

You have our most courteous invitation to spend a few moments in our spacious show rooms and look over our complete stock. We will gladly show you any instrument or part you may desire to examine. It will be a revelation to you, besides it is part of our service.

OUR WORD OF HONOR TO YOU IS
OUR GUARANTEE. LET US PROVE IT.

Write Dept. E5 for literature and price lists.

CONTINENTAL RADIO AND ELECTRIC CORP.

J. DiBlasi, Secy. J. Stantley, Treas.

6 Warren Street New York.

When writing to advertisers please mention THE WIRELESS AGE
The New
Arco Variable Condenser

We offer Radio Men something out of the ordinary in variable condensers. This new model is a step ahead of its rivals in that the plates are made of aluminum and heavier than those found in the average condensers. The rotary plates are rounded at one end, not the usual semi-circular type, thus affording a straight line capacity, which is a very valuable feature in Wave Meter work. The zero capacity in an instrument of this type is considerably lower that of usual condensers. Shaft on which rotary plates are mounted is carefully machined from tool steel.

Instrument can be quickly mounted in case or behind panel.

Made in two capacities, furnished unmouted only, with or without dial of fine black moulded composition and bakelite knob.

Backed up by Radisco guaranteed quality of workmanship and low price.

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Unmounted</th>
<th>With Dial and Knob</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0005 mf.</td>
<td>$5.00</td>
<td>$6.00</td>
</tr>
<tr>
<td>.001 mf.</td>
<td>6.25</td>
<td>7.25</td>
</tr>
</tbody>
</table>

Shipping weight 2 pounds.

Prices quoted do not include carrying charges to Pacific Coast or duty paid for Canadian use.

RADISCO AGENTS carry only apparatus of proven merit. Look for the Radisco trade mark on all parts you buy and be sure of getting efficient apparatus.

Below are listed a few of the reliable firms who carry the RADISCO COILS, Better “B” Batteries and are our Agents for all other standard apparatus of merit.

COMMUNICATE YOUR WANTS TO THEM.

ALBANY, N. Y.
E. L. Long,
21 Magnolia Terrace

ATLANTIC CITY, N. J.
Independent Radio Supply Co.
118 So. New Jersey Ave.

Baltimore, MD.
Radio Engineering Co.,
614 No. Calvert St.

Beinville, Quebe, Can.

BOSTON, MASS.
Atlantic Radio Co.,
88 Broad Street

Brooklyn, N. Y.
Kelly & Phillips Electric Co.,
312 Flatbush Ave.

Bronx, New York
Amateur Wireless Equipment Co.,
1390 Prospect Ave.

Chicago, Ill.
Chicago Radio Laboratories,
1316 Carmen Ave.

Eureka, Peoria, Illinios
Klaus Radio Co.

KANSAS CITY, MO.
McCreary Radio Supply,
4th & Delaware Sts.

Los Angeles, Calif.
The Wireless Shop,
511 W. Washington St.

Montreal, Canada.
J. B. Miller,
1600 Hutchinson St.
McKeeport, Pa.
K. A. L. Electric Co.,
427 Olive Street.

New orleans, La.
L. A. Rose,
121 Camp Street

Newark, N. J.
A. H. Corwin & Co.,
4 West Park Street.

Newcastle, Pa.
Pennsylvania Wireless Mfg. Co.,
507 Florence Ave. “8HA”

Philadelphia, Pa.
The Philadelphia School of Wireless Telegraphy,
Broad and Cherry Streets.

PROVIDENCE, R. I.
Rhode Island Elec. Equip. Co.,
45 Washington Street.

Pittsburgh, Pa.
Radio Electric Co.,
3807 5th Ave.

Seattle, Wash.
Northwest Radio Service Co.,
1801 Sixth Ave.

Scranton, Pa.
Shottin Radio Mfg. Co.,
P. O. Box 3
Branch 8 Kingsbury St.,
Jamestown, N. Y.

Springfield, Mass.
Electric Service Co.,
585 Armony Street.

Toronto, Ont., Can.
The Vimy Supply Co.,
585 College Street.

Washington, D. C.
National Radio Supply Co.,
808 9th St., N. W.

Wichita, Kan.
The Cosradio Co.,
1725 Fairmount Ave.
YOUR HOLIDAYS

Are you going to spend your holidays improving your Radio station, or will you lose that opportunity.
You can do more for your station during your holidays than during all the evenings you have worked in the past months—and it will be genuine recreation—you will finish your vacation with a feeling of "something accomplished."

THE SMALLEST TRANSFORMER IN THE WORLD

How would you like to have "The smallest transformer in the world" if you were convinced that it was also the most efficient?

After all, there is no need for a bolt or a screw in handling audio-frequency currents, if the design is correct. This transformer was designed especially for the operating characteristics of the Moorehead-Marconi-de Forest audion tubes. It has a closed core of the best grade laminated iron, with the primary and secondary windings of several thousand turns of extremely fine enameled wire. The design is such that the distributed capacity and current losses are extremely low.

Order now if you want immediate shipment.

DO YOU USE AUDIONS?

Suppose you wanted to change the leads to your audion socket base—must you rustle 'round for a screw driver, or pair of pliers, or what? Or, at the very least, scratch the bakelite base with an everyday file of the tool? Would it not be much better to have neat bindings posts, with plenty of room to work without fear of shorting thru the metal socket?

Look at the photograph—those terminals are of the best Bakelite type. The base is amply insulated, all aluminum, another WICONY innovation. Notice the manner of support—those legs are drilled and tapped and nicked—heavily nicked—thus giving you an ideal method of fastening to your panel or table.

We have bases with one, two, or three sockets especially mounted for interior of audion cabinets. They are most reasonable in price.

WE ARE AT YOUR SERVICE

Whether you want an audion bulb or a complete audion cabinet—a coil, or a complete receiver, write us your needs. State specifically what you are interested in and we shall give you every possible item of information and assistance. Drop us a line now.

Dealers—It will pay you to write us NOW.

WIRELESS IMPROVEMENT COMPANY
INCORPORATED
Radio Engineers, Manufacturers and Distributors
47A West Street
New York, N. Y.
WORLD WIDE WIRELESS

Thousand-Word-a-Minute World-Wide Radio Station

The world’s biggest wireless plant, to be built at Rocky Point, L. I., by the Radio Corporation of America, will handle 500 words in and 500 words out a minute, simultaneously, the land wire relay of seventy miles from Rocky Point to the company’s office in Broad Street, New York City, being controlled mechanically, the human element entering into the process only at the point of actual transmission.

Mr. Edward J. Nally, President of the Radio Corporation, announces that the company plans a $10,000,000 plant on a 6,000-acre tract about seven miles from Fort Jefferson.

“We are going to erect,” he said, “five units, with another one to be held in reserve for use in the emergency of severe storm or other trouble. Each of the units will have a minimum capacity of sending 100 words a minute and of receiving the same number. This is, of course, the minimum capacity. We are hopeful, however, of doing better than this when the plant is fully geared up.

“To get an idea of the projected plant you might fancy it laid out as a wheel. The big power house represents the hub, while the spokes or wings, twelve in all, radiate out in all directions from the power house. Each wing will have six antennaes strung to 400-foot steel towers.

“It is our plan to transfer the wireless signals directly from the wireless apparatus to land wires and send them right along into New York City, to headquarters, without calling manual labor into the process at any time. We are going to have a radio receiving station about seven miles from the transmitting station, and we plan to operate both simultaneously.

“It is the design to control relays entirely from our city office. All of the operating work will be done there, although the machinery of transmission will be, of course, out at Rocky Point.

“Each of the five units of the plant will serve a separate field. One will be in touch continuously with South America, another will talk to Germany, a third will serve France, another goes to Italy and the fifth will serve Poland.”

The third transoceanic wireless circuit, linking America with the rest of the world, has been opened by the Radio Corporation. Opened principally for commercial messages, the new wireless route connects this country with the Scandinavian countries—Norway, Sweden, Denmark and Finland. The American stations, at Marion and Chatham, Mass., with their complementary stations at Stavanger and Naerobe, Norway, are of the duplex type, sending and receiving simultaneously at high speed.

It was announced that the rates for the new service, from New York City to any point in the countries named, would be, per word, Norway, 24 cents; Sweden, 26 cents; Denmark, 28 cents, and Finland, 29 cents. It was stated that these rates were from 30 to 50 per cent. lower than existing cable tolls. The other commercial circuits in operation by the Radio Corporation are from San Francisco to Japan, via Hawaii, and from New York to Great Britain.

London Daily Mail Has Radiophone News Service

Wireless telephone receiving set has been installed in Northcliffe’s Daily Mail. The paper hopes to have its American news dictated by ‘phone from New York in the very near future.

Marconi Has 500-Mile 3 K. W. Radiophone

Wireless telephone communication over a distance of 500 miles, with apparatus of a strength of only three kilowatts, has been achieved by William Marconi, the Italian inventor. This was announced upon his return to Rome from a cruise in the Atlantic and Mediterranean on board the yacht Electra.

Albany Firm to Use Radiophone

The Esco Electrical Company, of Albany, N. Y., has erected a powerful wireless telephone set in its Broadway store. It will use the radiophone method of communication with its agents in New York and other places as soon as the operation of the instruments is perfected to a point where such points can be reached. Carl Hoffman, employed by the company, is conducting tests in an effort to increase the working distances of the instruments. Already he has established communication with wireless operators at Troy and Schenectady. The firm especially wishes to be able to talk with New York.
Marconi Explains Radio to Spanish Workers

SENATOR GUGLIELMO MARCONI, who is known for his amiable qualities almost as much as for his great invention, has just given another proof of his urbanity. Despatches from Seville, Spain, where he stopped with his yacht Electra, state that a large party of laborers approached the yacht and requested permission to see the wireless apparatus on board. In the absence of the owner the officer in charge refused to grant the permission.

Just as the men were leaving Marconi returned to the vessel and, having been informed of their desire, he invited them aboard and personally explained to them in all its details the working of the wireless apparatus.

Danes Seek Direct Wireless Connection With U. S.

THREE officials of the Danish Government arrived lately to confer with Washington officials regarding the establishment of a direct wireless communication between the United States and Denmark, to facilitate commercial communication between the two countries. A great trans-Atlantic wireless station has been established in Denmark of sufficient range to transmit messages direct across the Atlantic.

When this channel of communication is firmly established, commercial messages will no longer be routed via Great Britain.

Commercial Company to Use Private Radiophone

THE new Winchester stores in the New England States may be connected by wireless and all their business so transacted. Officials have consulted W. J. Butterworth of Boston, assistant federal radio inspector for New England, in regard to the proposed enterprise.

The Winchester company is considering the use of the wireless stations largely on account of the delays caused by wire troubles. This situation was particularly noticeable during the last winter. Often in very severe weather, when the telegraph and telephone lines are out of commission, the weather conditions are especially favorable for wireless. Moreover, the increasing improvement of the radiophone has added greatly to the possibilities of wireless, and radio communication would also be advantageous in that messages are simultaneously heard in all directions and hence at one time the headquarters of a company could transmit orders and information to all branch offices within a radius of one hundred miles.

Whole World to Get Wireless Time Signals

WIRELESS telegraphy may yet prove to be the means of preventing many railway and sea catastrophes. To this end in fact an International Time Bureau is being formed in Brussels, which intends to develop methods of transmitting throughout the world the time signals of the greatest precision.

The bureau is in charge of M. Bigourdin, member of the French Academy of Sciences, who for many years has been attached to the Paris Observatory. Discussing the aims of this new organization M. Bigourdin has called attention to the fact that all through the war the Eiffel Tower sent daily signals that were picked up in the most remote quarters of the globe.

"It is most essential that navigators know at every instant the precise time," says M. Bigourdin. "Extensive experiments have been carried out in the last year and we have reason to believe that the efforts will lead to unexpected discoveries concerning the variations in actual longitude similar to those known to exist with respect to latitude. With precise knowledge of the time, the sun's location and the consequent geographical position ships will more easily avoid dangerous areas."

M. Bigourdin is confident that many sea accidents have been due to the impossibility of ships picking up accurate time signals. He points out also the necessity for the most reliable records for despatching trains in all countries. Further experiments will be conducted with intermittent Hertzian waves approximately 2,600 metres long to replace those of shorter length now used.

M. Bigourdin, whose investigations are receiving support in all allied countries, hopes to create a system whereby the expenses will be distributed among all nations, for it is obvious that once the signals begin to work there is nothing to prevent any mariner from taking advantage of an organization in which French scientists are taking an important part in putting into operation.

Radio Service Between Germany and Spain

PRESS dispatches may be sent between Germany and Spain by wireless, according to an announcement made lately. Most German correspondents, however, have left Spain and consequently the service will be used principally for German propaganda, it is asserted.
Transpacific Steamship Lines Plan Radio Charts

STEAMSHIP lines operating in the transpacific trade are planning to take advantage of the chain of powerful wireless stations, which extend along the Alaskan Coast from Juneau to Dutch Harbor and St. Paul Island, making possible permanent wireless communication with the Orient from Seattle and other North Pacific ports.

The importance of taking advantage of these radio stations in communicating with ships at sea and in transmitting messages from Seattle to China and Japan, has been emphasized by the serious delay to cable messages, now ranging from 150 to 160 hours.

Representatives of the Nippon Yusen Kaisha are preparing maps for use aboard the vessels of the N. Y. K. transpacific fleet and in the company's offices both in the Orient and America, showing the position of the stations and the possibility of constant communication with a vessel of the fleet from the time she sails from Seattle until she berths in Yokohama. This is made possible by the radio stations in Juneau, Sitka, Cordova, Kodiak, Dutch Harbor and on St. Paul Island.

The most powerful of the stations is the one in Cordova, which has a radius of 2,000 miles in the daytime and 4,000 miles at night. The distances the other stations can work follow: St. Paul station, 1,000 miles in daytime and 2,500 miles at night; Dutch Harbor, 300 miles in daytime and 600 miles at night; Kodiak, on Kodiak Island, 1,000 miles in daytime and 2,000 miles at night; Sitka, 1,000 miles in daytime and 2,500 miles at night; Juneau, 500 miles in daytime and 1,000 miles at night.

With the present wireless arrangements of the transpacific steamship lines, the first communication with a ship at sea bound from the Orient for this coast is had when the vessel arrives within 1,000 miles of Victoria, B. C.

Radio Masts Snapped Passing Under Brooklyn Bridge

THE radio masts of the U. S. collier Nereus were snapped off as the ship passed under the middle span of the Brooklyn Bridge on her way to the navy yard recently. The fragments of the masts fell to the deck of the ship, where they narrowly missed hitting some of the crew.

The Nereus arrived from France with the bodies of sailors and marines who had died overseas.

Jap Navy to Use Wireless 'Phone

THE Japanese Navy will no longer depend on radio telegraphy for communication as a result of the perfection of the wireless telephone, which hereafter will take the place of all other forms of signaling.

An official of the Ministry of the Navy said that the new wireless telephone apparatus had been installed on the vessels of a unit of the First Squadron and was being installed on the rest of the Japanese war ships.

Radio Rates to Japan Reduced

TO offset the rising price of necessities, comes the announcement that the high cost of sending wireless messages from Seattle to points in Japan has dropped. The rate now from San Francisco to Tokio is 72 cents a word instead of 80 cents. W. F. McAuliffe, local manager of the Radio Corporation of America, gave this information and declared that within a short time messages destined for the Orient from Seattle will be accepted by messenger boys in the same manner as ordinary telegrams are delivered.

Many will give three rousing cheers, it is said, when they learn that a letter to the Emperor of Japan, say of fifty words, instead of costing $40 as formerly, will now cost but $36.

The cut in the rate of wirelessing, Japan, says Mr. McAuliffe, is made possible by the opening of a new 400-kilowatt station at Haro-no-machi, in the vicinity of Sendai, on the Northern Japanese mainland. This station, with high frequency alternator type equipment, will work directly with the Pacific Coast stations of the Radio Corporation.

"Traffic schedules are being worked out so that Seattle firms will shortly be able to file their business locally, the same as any other ordinary telegraph message," said Mr. McAuliffe. "For the immediate present, however, messages are accepted only in San Francisco, Seattle messages to Japan going through San Francisco by the wiring of messages from Seattle to San Francisco."

U. S. Radio Examinations

THE United States Civil Service Commission announces open competitive examinations for radio engineer (aeronautics), $3,600 to $5,000 a year; assistant radio engineer (aeronautics), $2,500 to $3,600 a year, on July 6, 1920. Vacancies in the Air Service at Large at the salaries indicated, and in positions requiring similar qualifications, at these or higher or lower salaries, will be filled from these examinations, unless it is found in the interest of the service to fill any vacancy by reinstatement, transfer, or promotion.

Competitors will not be required to report for examination at any place, but will be rated on the following subjects, which will have the relative weights indicated:

Subjects—Physical ability, 10 weights; education, experience, and fitness, 90 weights. Total, 100 weights.

Competitors will be rated upon the sworn statements in their applications and upon corroborative evidence. For the position of radio engineer, applicants must have graduated with a B.S. degree, with major courses in physics or electrical engineering, from a college or university of recognized standing; and, in addition, have had at least three year's experience in the design, manufacture, or installation of radio apparatus for the Government or for a contractor who has supplied satisfactory apparatus of this class to the Government.

For the position of assistant radio engineer, applicants must have had the education and one year of the experience prescribed for radio engineer.
“WII”—New Brunswick

By Elmer E. Bucher

Commercial Dept., Radio Corporation of America

Radio engineers early foresaw that the ultimate generator of oscillations for radio-telegraphy and telephony would be one of a type providing more efficient and reliable operation than the systems utilizing the “arc” and “spark.” In fact the literature of the past makes frequent references to the desirability of an oscillation generator constructed along the lines of an ordinary power-house alternator; but because such alternators were required to provide frequencies a thousand times or more in excess of those used in power engineering, new problems of design were encountered which were declared by many to be well-nigh insurmountable.

For a time the development of the art seemed to follow the line of least resistance, and it resulted in the evolution of several systems utilizing the “arc,” the “spark gap,” and the type of radio frequency alternator which generates at a comparatively low frequency, the necessary increase of frequency being obtained either by groups of mono-inductive transformers external to the alternator, or by tuned “reflector” circuits associated with the alternator. None of these systems, however, can be said to have satisfied fully the exacting requirements of commercial operation.

As is well known, the design of radio frequency alternators has occupied the attention of Ernst F. W. Alexanderson of the General Electric Company and his staff for a number of years, and the pioneer work of these men in that branch of radio research is now a matter of common knowledge. Starting with the development of several experimental types of alternators, they have steadily progressed toward the designs of more powerful machines which are now available for commercial use. Standardized alternator sets for transmission at wave lengths between 6,000 and 10,000 meters and between 10,500 and 25,000 meters, are now in production. This description is devoted principally to the discussion of a 200-kilowatt set, although sets of other powers are now under construction.

The typical Alexanderson high-power station may be said to represent a radical departure from current ideas regarding radio design. In fact, at first glance, it seems to possess little in common with the apparatus of other
systems. These features will presently be described in greater detail.

The Radio Corporation, after an extensive test of the Alexander system at its high power station at New Brunswick, N. J., has acquired the rights to the Alexander system, and it will be employed at all its stations devoted to long-distance signaling. A 200-kilowatt alternator set was installed at New Brunswick in September, 1918, and from that time it has provided continuous and most satisfactory service in continent-to-continent communication. Normal transmission is at present conducted at the wave length of 13,600 meters, with antenna current of 400 amperes, corresponding to an alternator output of approximately 60 kilowatts. With this fractional value of the available output of the alternator, trans-oceanic communication has been maintained with European stations throughout the twenty-four hours of the day. The alternator is capable of supplying 600 amperes to the New Brunswick antenna, but its full output of 200 kilowatts is not at present utilized, due to the lack of adequate power supply at that point. The alternator, as installed at the New Brunswick station, is shown in figure 1-2.

The following explanation of the basic principles of the Alexander System and the fundamental circuits of a typical station may be accepted as indicative of a standard 200-kilowatt installation, although largely based upon the apparatus at the New Brunswick station.

A high power radio station of the Alexander type contains three important developments:

1. An alternator—which generates currents directly at the frequencies which are required for the radio circuits with which it is associated. The frequency of these currents is solely dependent upon the number of field poles on the machine, and upon the speed at which the rotating member is driven. This is in distinct contrast to certain other systems in which the radio frequency currents are obtained indirectly by means of “reflector circuits” or frequency raising transformers electrically associated with the alternator.

2. A magnetic amplifier—which provides a non-arcing control of the alternator output for radio telegraphy, and is equally applicable to radio telephony.

3. A multiple turbine alternator—a development which has markedly reduced the wasteful resistance of the flat-top antenna, and has therefore increased the transmitter overall efficiency many fold.

To date the development in radio alternators has included the following types:

2-kw., 100,000 cycle; 50-kw., 50,000 cycles; 200-kw., 25,000 cycle.

The characteristics of several alternators of other power outputs have been investigated from time to time. A standard 25-kw. and a 5-kw. alternator are now under construction and will be shortly put into commercial production.

With the object of providing a distinct range of frequencies, both the 25-kw. and the 200-kw. alternators are manufactured with armatures and rotors with different numbers of poles; also with gears of different ratio for different driving motor speeds. Thus the 25-kw. machine can be assembled for any wave length from 6,000 to 10,000 meters, and the 200-kw. machine for any wave length from 10,500 to 25,000 meters. Frequencies lower than these for which the machine has been assembled can be obtained by running the alternator at a reduced speed.

The standard drive for the 200-kw. Alexander alternator is two-phase, 60-cycles, 2,300-volt alternating current. By the use of suitable transformers, the voltage of the power supply can readily be transformed to the value for which the motor was designed. Special driving motors and control equipment can be supplied for frequencies other than 60/30 cycles.

The Alexander alternator is an inductor type of generator with a solid steel rotor having several hundred slots milled radially on each side of the rim. The slots are filled in with non-magnetic material, with the object of reducing wind friction to a minimum. The fillers are brazed into the disc in order that they may withstand the centrifugal strain of rotation. The rotor is designed for maximum mechanical strength by providing it with a thin rim and a much thicker hub. With this construction the strain on the material due to centrifugal force is the same from the shaft to the outer rim.

The rotor of the 200-kw. alternator—with half of the field frame removed—is shown in figure 3. This also shows the collars of the thrust bearings and a partial sectional view of the main bearing housings.

An assembled 200-kw. alternator with its driving motor is shown in figure 4. The alternator is driven by a 600 h.p. induction motor of the wound-rotor type, which is operated from a 60-cycle, 2,300 volt, quarter-phase source of supply. The motor is connected to the alternator through a double helical gear—with a speed step-up ratio of 1:2.97—which operates in a container partially filled with oil.

The main bearings and the thrust bearings of the alternator are oil-lubricated by force feed at pressures varying from 5 to 15 pounds according to the demand on the bearing. During the periods of stopping and starting,
and in possible emergencies, oil is supplied by a special motor-driven pump mounted on the alternator base. When the alternator is working under normal operating conditions, a separate pump geared to the main driving shaft feeds the bearings, and the motor-driven pump is automatically cut out of service. The oil-supply tank is located in the base of the alternator, to which the oil returns after being pumped through the bearings. The oil gauge on the main feed pipe is fitted with a signaling circuit to call the attention of the operator in case the oil supply fails. The main bearings of the alternator, which are self-aligning, are also water-cooled by a series of copper pipes which run through the bearings near to the friction surface. The armatures of the alternator are also water-cooled from the same pumping source by a series of parallel copper tubes cemented in the frame alongside the laminations.

In order to avoid large losses through magnetic leakage, the air gap between the rotor and the stator frame is maintained at a spacing of 1 millimeter. It is important that the rotor be kept accurately centered, for otherwise the armature coils on one side of the rotor will become overloaded. This is accomplished by the use of specially designed thrust bearings which are inter-connected by a set of equalizing levers with an adjustable controlling leaf between them. These prevent the possibility of binding between the thrusts, due to expansion of the shaft from heating, and they also take up automatically all slack in the bearings as they become worn. Any tendency towards a change in the air gap is thus counteracted by the action of the levers. The equalizers are in part, the heavy vertical column shown at the end of the alternator in figure 4. Should the air gap on either side tend to get smaller, the pull of the field on that side would cause an excessive strain on the thrust at the end and cause heating. This, however, is prevented by the leverage system, which automatically corrects this and holds the rotor in a central position at all times.

In regard to some of the electrical features of the alternator, it will be noted from figure 5 that the armature and field coils are stationary, the requisite flux variations for the generation of radio frequency currents being obtained from the slots cut in the rotor. The diagram points out the fundamental construction of the alternator and the general mode of winding the armature. The rotor disc revolves between the two faces of the field yokes. The direct current supplied to the field coils produces a magnetic field flux which passes between the field yoke faces and through the rotor as shown by the arrows.

The armature coils, which are placed in slots cut in the two faces of the field frames, are shown in the drawing as tipped away from the rotor, although in the actual machine the spacing between the rotor and the frame is but 1 millimeter. Two distinct armature windings are thus provided, one on each side of the rotor. There is but one conductor in each slot and two of these slots make a complete loop, and comprise a pole in the armature windings. One slot in the rotor is therefore provided for each loop in the winding. The armature windings on each side of the rotor are divided into thirty-two independent sections, the circuits of which are completed through transformer primary coils as shown in figure 5. Each primary consists of two turns with sixteen separate wires in each turn. There is no direct connection between the individual armature sections, but, through the two-turn primaries, they combine to act upon the secondary coils of the transformers. It is obvious that with this division of armature circuits the potential on any armature coil—or on the corresponding transformer primary—is very low, and as such, it permits a grounded or open-circuit armature coil to be cut out of the circuit and the operation of the alternator to be continued with but a slight decrease in its output—an obvious advantage.

A detailed view of a portion of the alternator armature windings is given in figure 6, and of the preliminary stages of assembly in figure 7.

Figure 8 shows the laminated armature under assembly, which is wound with 0.037 millimeter steel ribbon and afterward machined into the shape of figure 9.

The completed rotor and its shaft appears in figure 10, while figure 11 is an end view of the alternator with the equalizing column removed. Figure 12 shows the alternator during one stage of the assembly—the driving motor, the alternator transformer and the thrust-bearing equalizing system not having been placed in position.

It is to be noted that a transformer is provided for the armature coils on either side of the rotor. There are therefore two transformers, and they each contain the three coils P_1, S_1, S_2 and P_2, S_2, S_3, shown in the fundamental station diagram figure 19. The primary of each transformer contains two turns of sixteen wires each, as mentioned above. The intermediate coils S_2 have twelve turns on each transformer. The two intermediate coils are connected in parallel, and are shunted by the magnetic amplifier. The coils S_3 are also connected in series with the secondary proper, and the antenna system.
The secondary coils, which consist of seventy-four turns on each transformer, are wound so that their high potential ends are at the center, in order to provide a uniform potential gradient. The two secondaries are connected in parallel and their final terminals are in series with the antenna circuit. More in detail, the low potential terminals of the intermediate coils are connected to the ground, the other terminals of the intermediate coils are connected to the low potential terminals of the secondary coils, and the high potential terminals of the secondary coils to the antenna loading coil. The intermediate coils S_2 are placed between the primary and secondary of each transformer in order to obtain a close coupling with the alternator. One unit of the high frequency transformer is shown in figure 13.

The voltage at the terminals of the secondary winding of the transformer when the alternator is operated at normal speed is about 2,000. The normal output current is 100 amperes. It is thus seen that the alternator is designed for a load resistance of 20 ohms.

Since the antenna circuit is directly associated with the alternator circuit, any change in the rotative speed of this machine would throw the alternator circuit out of resonance with the antenna circuit; consequently it is easily seen that the speed variation of a radio frequency alter-

![Figure 10—Typical rotor construction of the Alexander alternator](image)

The necessity for close speed regulation becomes equally important when considered from the standpoint of the receiving station. With a modern receiving apparatus of low decrement, a very slight change in the wave length of the incoming signal will materially de-

![Figure 11—End view with air-gap equalizing mechanism removed](image)

crease the received current. A change of wave length or frequency is likewise detrimental when reception is obtained by the heterodyne or beat principle, for should the speed of the alternator vary markedly while signaling, the beat note may vary to the degree that will render it objectionable for ear reception. A variation, for instance,

![Figure 12—Alternator partially assembled](image)

of 50 cycles in the alternator will cause the beat note at the receiver to vary by 50 cycles, which is the equivalent of a speed variation of 0.25 per cent. at the wave length of 13,600 meters.

A solution of the problem of speed regulation with alternating current motor drive was found by Mr. Alexander in the use of a resonance circuit, which is tuned to a frequency slightly above the frequency to be maintained at the alternator. This circuit is supplied with current from one of the armature coils on the alternator. The current in this circuit increases with alternator speed and, through the agency of a rectifier, a direct current component operates on a voltage regulator connected in the circuit of the dynamo which supplies the saturation current for a set of variable impedances in the two phases of the motor supply circuit. The function of the regulator is to prevent, within established limits, either an increase or decrease of alternator speed. Additional compensation for the load imposed when signaling is provided by a relay which also operates through the direct current control circuits to vary the line impedances.

The panel board of the voltage regulator system is shown in figure 14.

The multiple tuned antenna may be said to establish a
radical departure from the types of antennae formerly used for high-power radio transmission. The immediate object of the multiple antenna is to reduce the wasteful resistance of the long, low, flat-top aerials formerly used and to permit the length of such aerials to be increased indefinitely for the use of greater powers. In the case of the New Brunswick antenna, its resistance as a flat-top aerial—3.7 ohms—was reduced by multiple tuning to 0.5 ohm. The radiation qualities of the flat top are not impaired by multiple tuning, as a series of tests have shown that with an equal number of amperes in either types, the same signal audibility is obtained at a receiving station, but there is an enormous saving of power in the case of the multiple antenna, as will be presently pointed out.

As shown in the station diagram, figure 19, the multiple antenna has, instead of the single ground wire usually employed, a number of ground leads which are brought down from the flat top at equally spaced intervals, and connected to earth through appropriate tuning coils.

The capacitive reactance of the flat top is thus neutralized by inductive reactance at six points to earth, instead of but one point as in the ordinary system. The inductive reactance in each down lead is therefore made six times the capacitive reactance at a given frequency. The multiple antenna is thus the equivalent of six independent radiators, all in parallel and resonant to the same wave length. Their joint wasteful resistance obviously is much less than that of an antenna with a single ground, and herein lies the saving of power which the Alexanderson antenna brings about.

The relative power inputs required by both types of antennae for the same value of antenna current will be seen from the following illustration: To maintain 600 amperes in the multiple-tuned antenna at New Brunswick, at a resistance of ½ ohm, the power required is $600^2 \times 0.5$, or 180-k. To maintain the same antenna current in a flat-top antenna with resistance of 3.7 ohms requires $600^2 \times 3.7$, or 1330-k. The economy of power secured in the case of the multiple-tuned antenna is an important consideration from the standpoint of the cost of daily operation.

Prior to the advent of the Alexanderson antenna, theory and practice pointed to the desirability of a very high antenna structure for long distance communication at high powers, but as is well known, the cost of erecting an antenna increases very rapidly with the effective height. The multiple-tuned antenna, however, permits the use of a less expensive antenna structure, and gives the same signal audibility at a given receiving station as a high antenna of the old type with less power. The example given demonstrates quite conclusively that the multiple antenna will provide the same antenna current as the flat-top type antenna, but with only one-seventh of the power. The multiple-tuned antenna will be treated more comprehensively in a later article.

The earth-wire system at the New Brunswick station is a combination of a buried metallic and a capacitive ground. Sixteen parallel copper conductors are laid underneath the antenna and buried one foot in the ground. They extend the entire length of the antenna and are spaced between towers somewhat as shown in figure 15. A network of wires and zinc plates are also buried in the ground around the station. At each of the five tuning points outside the station, connection is made from the antenna flat top to the sixteen underground wires.

In order to secure equal distribution of current through the buried ground conductors, equalizing coils are inserted between the tap on the down lead coil and the earth wires at each of the five tuning points outside the station, as shown in detail, figure 15. The function of

Figure 13—High frequency transformer

Figure 14—Control panel of current and voltage regulator

Figure 15—Schematic diagram of earth-wire system at the New Brunswick station

www.americanradiohistory.com
the equalizing coils is to increase the impedance of the wires near the center and hence force current in the outside wires. Since the coils are wound in opposite directions they add no appreciable inductive reactance to the tuning circuits. In one instance, the use of these coils reduced the multiple resistance of the antenna system from 0.9 to 0.7 ohm.

A still better distribution of the earth currents at New Brunswick was obtained by using a capacitive ground commonly known as a counterpoise, which is erected underneath the antenna and a few feet above the earth. A plan view of the counterpoise is shown in figure 16.

Figure 16—Plan view of counterpoise at New Brunswick Station

The capacitive ground may be considered as a combination of a tuned and a forced oscillation circuit, and it has the effect of drawing the current from the ground circuit more uniformly than with wires lying on the ground or buried beneath the surface. In practice the total current in the down lead may be distributed between the capacitive ground and the wire ground in any desired ratio. The effect of adding this unit to the system at New Brunswick was to decrease the multiple antenna resistance from 0.7 to 0.5 ohm. The capacitive ground may be divided into separate units for each tuning down lead or the units may be connected together as shown. A schematic diagram of the connections between the flat top and the capacitive and earth-wire grounds is shown in figure 16a. The equivalent circuit is given at the right of the drawing. The construction of the outdoor inductances for multiple tuning is shown in figure 17.

Telegraphic control of the large antenna currents involved in high-power radio transmitters has ever presented a difficult problem. Particularly has this been

Figure 16a—Schematic diagram of antenna to earth connections of the multiple tuned antenna

true when signaling at high speeds. Rapid signaling obviously requires some device that will not cause destructive arcs and will provide the desired modulation of antenna power without taking upon itself the burden of carrying the full power of the system, during the intervals between signaling.

Figure 17—Tuning inductance for multiple tuned antenna

The magnetic amplifier is a device which meets these exacting requirements, for it provides a non-arcing con-
control with a minimum current in the key circuit, and it takes within itself only a small proportion of the total alternator output. A photograph of the amplifier, removed from its container, is shown in figure 18.

The magnetic amplifier in general may be described as a variable impedance which is connected in shunt with the external circuit of the radio frequency alternator. Its function is to reduce the voltage of the alternator and to detune the antenna system when the sending key proper is open, and to perform the opposite functions when it is closed. Thus when the sending key is open the amplifier short-circuits the alternator and detunes the antenna system, thereby reducing the antenna current to a negligible figure. When it is closed the output of the alternator is fed to the antenna system.

A general idea of the operation of the amplifier can be obtained from the fundamental circuit, figure 19, where it will be noted that the radio frequency coils A and a control coil B are mounted on a common iron structure, and are so disposed that the effect of the control coil upon the radio frequency coils is obtained solely through the agency of flux variations within the core. The impedance of the amplifier is dependent upon the degree to which the iron core is saturated by the control winding. The saturation in turn varies as the current fed into the control circuit. When the control circuit is closed the alternator is short circuited; when it is open, the alternator assumes normal voltage and its output flows into the antenna system.

The magnetic amplifier has been employed in experimental telegraphic signaling at speeds above 500 words per minute, at which rates it functions without lag. It is equally applicable as a modulator of antenna power in radio telephony, in which case the control current of the amplifier is modulated at speech frequencies by a bank of Pilotron (vacuum tube) amplifiers, which in turn are controlled by an ordinary speech microphone.

The characteristics of the amplifier will be treated in greater detail in a later article.

The fundamental circuits of a typical Alexanderson alternator station are shown in figure 19. Beginning at the left of the drawing, it is to be noted that a source of two-phase, 60-cycle alternating current drives an induction motor M, having a wound rotor, the circuits of which include a liquid rheostat R. The motor is connected to the radio frequency alternator through a helical step-up gear.

The alternator armature coils are indicated at A, A, the field coils at F, and the rotor at A. There are two sets of armature coils one on each side of the rotor, which as already mentioned, are divided into 32 sections on each side. The windings on each side connect to the primaries of two transformers shown at P, P. The primary of each transformer (see figure 5) contains two complete turns of 16 wires each turn, which carry the current developed in the 32 sections of the armature coils on each side of the rotor. As can be seen from the diagram, there is no direct electrical connection between the armature circuits leading to the transformer primary, but the individual primary circuits are disposed so that their magnetic fields at any instant are in the same direction; that is, their fields combine to operate on the secondaries S, S. In addition to the primary and secondary coils, the two transformers have intermediate coils S which are connected in parallel and shunted by the magnetic amplifier coils A. The coils S, are connected in series with the antenna system, and are also closely coupled to the primary and secondary.

The multiple tuned antenna, shown in the upper right hand part of figure 19, is a long, low, horizontal aerial of

![Figure 19—Fundamental station diagram](image-url)
The circuits of the speed regulator appear in the lower left hand part of the drawing. Note is to be made first of the variable impedances N and O in the motor supply line with their direct current control coils P₆ and the variable impedance coils S₆.

The extremely close speed regulation essential to alternator operation is obtained from the resonance circuit L₁₀, C₄, P₆, the coil L₁₀ being one of the alternator armature coils. This circuit is made resonant to a frequency slightly above the normal frequency at which the alternator is to be operated and the current developed therein acts inductively on the circuit S₆, E, M₆—E being a rectifier. The latter rectifies the radio frequency current and sends a D.C. component through M₆, which acts with an increase of speed to decrease the voltage held by the voltage regulator M₁, T₁ on the generator K₁. This increases the impedance of the coils S₁ and therefore in M₁. This keeps the speed variation within exceedingly close limits.

The trend of future development is of interest. In event that a larger output than that provided by a single alternator, of 200-k.w. is desired, parallel operation is contemplated. Such operation is entirely practicable and will be employed in the Radio Corporation's high-power stations, when great distances are to be covered.

A standard tower for high-power stations is shown in figure 20. This is of the self-supporting type erected on a suitable concrete base. The antenna wires are suspended from the steel cross arm at the top. This method of antenna suspension lends itself admirably to the long narrow antenna which has been found most suitable for the Alexanderson system.

The antenna layout for a two-alternator unit high-power station using these towers is shown in figure 21,

tends to reduce the speed of the driving motor. As the speed now falls the current in the resonant circuit falls off and likewise that in the coil M₁. This permits the voltage held by the voltage regulator to increase, and therefore acts to reduce the motor supply line impedance and thus increase the speed. A given mean voltage is thus maintained in the control circuit by generator K₁, which depends upon the magnitude of the control current where two antenna wings of any desired length extend in opposite directions from the station house which is located at the center. With this construction the wings may be, tuned to different wave lengths and each energized by a single alternator, thus permitting simultaneous transmission at two different wave lengths; or the two alternators may be joined in parallel to energize both wings at some selected wave length.

Performance and Operation of the New Brunswick Station and the Alexanderson System will be described in detail in the August issue.
The New Marconi Distress Calling Device

In the February issue an announcement was made of a demonstration conducted in England between Chelmsford and Shelford (Cambridge), in which the station at Shelford rang an ordinary electric bell and exploded small mines at Chelmsford, by means of special wireless signals. The purpose of the tests and a description of the apparatus are now available.

A recent article in “The Wireless World” directs attention to the problem arising through the fact that some ships carry only one operator, who cannot spend anything like twenty-four hours per diem “listening in” on the off-chance of hearing a distress call. If such a call is made during his “watch below,” it goes unheeded by his ship. To amend this state of affairs, and to make certain that distress calls would not pass unheeded, the Research Laboratory of Marconi’s Wireless Telegraph Company has been carrying out certain experiments on distant control. It sought a means of ringing a bell at a distance by means of wireless telegraphy, with the object of thereby contributing to the greater safety of life at sea. The operation of the device developed is thus described:

The predetermined signal is a series of dots regularly transmitted at the rate of 180 per minute. This number was chosen as being not too fast for the operator to count and time, and too slow to be interfered with by ordinary transmissions.

The first thing was to make a relay which would respond only to the predetermined signal, and which could be operated by the change in current produced by the reception of such a signal. The change in current with the vacuum tubes in use in the receiver was never more than half a milliamperc.

Many relays were made, and tried out, and for various reasons were rejected. The final design is shown in figure 1, and in construction is not unlike the ordinary moving needle galvanometer. In brief the description is as follows: Two rectangular hollow forms each wound with many hundreds of turns of very fine wire are placed one above the other on a brass base, the windings being connected in series, and the free ends being taken to two insulated terminals in the base. In the rectangular orifice of the coils swings a small ring magnet, pivoted at its centre and supported in jewelled bearings which are carried by two vertical brass pillars screwed to the base. The pivot also carries a small circular phosphor-bronze spring, one end of which is attached to a brass collet on the pivot, the other end being soldered to a tongued brass washer clamped to one of the brass pillars. This tongued washer serves the same purpose as the zero adjustment on an indicating instrument. By twisting it about its center the position of the magnet can be altered and the best working position obtained. Besides these two details the pivot has fixed at right angles to itself a fine platinum-tipped steel arm. This arm is one pole of a switch and is connected by way of the brass pillar, spring and pivot, to the base of the instrument. The other pole of the switch is a small piece of hard carbon, fixed to one end of a strip of flexible copper, the other end of which is supported on a small pillar and connected to a terminal insulated from the base. A glass front is provided in the case of the instrument, so that the action can be inspected from without, and the whole case screws down on the brass base, rendering the interior dust-proof. Two gauze-capped leaden tubes containing a drying agent will be seen in figure 1. The whole instrument is swung in gimbal.

By adjusting the length of the phosphor-bronze spring it is possible to arrange that the wheel magnet, pivot, and arm oscillate at the rate of 180 complete periods per minute.

The resistance of the coils and the current available are sufficient to prevent a single dash, or series of mixed dots and dashes, such as are received in an ordinary telegraphic communication from swinging the moving system far enough to cause the two contacts of the tiny switch to touch. It is only by the regularly delivered impulses arriving at the right moment that the swing can be built up from zero to full, and contact established.

Some trouble was experienced with this tiny switch. In the original model both contacts were made of platinum and sometimes they did not strike with sufficient force to make good contact at the first time. To overcome this fault Dr. Fleming’s Patent No. 112544 of 1918 was employed. The modified connections of this patent are as shown in figure 2. In figure 2, Pt is a contact of platinum or other noble metal, C is a hard carbon contact, K a condenser, L an inductance, T an instrument which it is de-
sired to operate by the battery B on closing the switch Pt C. The battery charges the condenser, and when the switch closes the condenser discharges through the inductance and oscillations pass across the points Pt C and improves the contact at those points.

The point next to be considered was an arrangement for permanently closing the alarm circuit once the contact had been struck, and the instrument shown in figure 3 was designed.

This instrument consists of two coils with soft iron cores mounted on a soft iron plate, forming an electromagnet. Above these coils is placed a soft iron armature connected with a flat steel spring at one end to a brass standard, the other end being free. At the free end is carried a small insulator, which, when the electromagnet is energized, will depress a short platinum-tipped steel spring on to a similar one; also at a little distance from the free end is fixed a manipulating key contact which can strike a similar one situated immediately beneath it.

The action is as follows: The platinum-carbon switch of the receiving relay is connected in series with a 24-volt battery and the coils of this electromagnet; the two platinum-tipped steel springs are connected in parallel with the platinum-carbon switch. When this switch makes contact the electromagnet is energized and the armature is drawn down and closes the switch formed by the two steel springs. This switch being closed and in parallel with the first switch the magnet will remain energized, and the armature depressed, until the battery is switched off. Figure 4 shows these connections. Neglecting the resistance of the connections, it will be seen that as long as the electromagnet is energized there will be a P.D. of about 24 volts at its terminals. The alarm bell, which is an ordinary high-power bell working off 24 volts is connected in parallel with the electromagnet, and so long as the latter is energized the bell will ring.

The adopted automatic transmitter is as shown in figure 5. The instrument consists of two iron-cored coils mounted on a yoke, the whole forming an electromagnet. Between the poles of this magnet swings a heavy brass ring with a soft iron diaphragm bar. To the shaft carrying the ring is attached a spiral steel spring, like a clock spring, and a light flexible steel arm tipped with platinum. Below this arm is a small platinum contact, supported by a helical spring contained in a tube. The free end of the clock spring is clamped to a projection on the wheel of a worm gear, and a handle is provided on the screw of this gear, so that the distance of travel between the moving contact on the shaft, and the spring-supported contact, can be varied. The variation of this travel controls the period of the transmitter, and it is found that the shorter the travel the shorter the period. Three terminals are brought through the base and the whole instrument is mounted in gimbals.

For transmission, a series circuit is made comprising a 24-volt battery, the coils and contacts of the transmitter, and the coils of the instrument shown in figure 3; a small tapping key is connected in parallel with the transmitter contacts. To start the instrument this key is pressed and immediately released. By thus closing the circuit the electromagnets of both instruments are energized and the iron bar of the wheel swings towards the magnet. The circuit being broken and the magnet demagnetized the wheel is urged by the clock spring past its position of rest, and on until the contacts of the transmitter touch; attraction starts again and the circuit is again broken, and so the cycle of events is repeated as long as the battery is switched on. Each time the wheel transmitter is energized the electromagnet shown in figure 3 is energized, the armature is drawn down, and the heavy key contacts meet. These contacts are in parallel with those of the manipulating key of the ship set, so provided that the generator is running, sparking occurs at every striking of the contacts. By means of a watch and the worm gear previously referred to, the operator can adjust the frequency of his signal to a nicety, and when once this is adjusted it is unlikely to vary.

Figure 6 shows the complete diagram of connections from the last vacuum tube of the receiver to the contacts of the manipulating key.
Transmission of High Frequency Waves Over Bare Wires in Water

By Major General George O. Squier
Chief Signal Officer, United States Army

(Abstract of a paper presented to the National Academy of Sciences)

The following reasoning led to the carrying out of the experiments to be described:

Since we can already communicate by radio means between one submarine and another submarine, both completely submerged, it was considered that connecting two such stations by a submerged copper wire could have no other effect than to facilitate the propagation of the electric waves between the stations.

It was considered possible that the behavior of earth or water under the action of high frequency currents might exhibit greatly different properties from those with which we are familiar at direct or low frequency currents.

It was realized that whatever high frequency energy losses might occur in the case of bare wires laid in earth or water, yet the over-all efficiency would be higher than in the case of radio space transmission where the plant efficiency is so very low.

It was noted by the writer in September, 1910, and discussed by him in April, 1912, that the three electrode audion could be used as a potentially operated device on open circuits. This arrangement was considered suitable for the reception of the signals over bare wires in earth or water.

The first experiment was an extremely simple one as follows: A bare No. 18 phosphor-bronze wire, such as is used for the Signal Corps field antenna, was laid across the Washington Channel of the Potomac River from the War College to the opposite shore in Potomac Park. It was paid out from a small boat with sufficient slack to lay on the bottom of the river. A standard Signal Corps radio telephone and telegraph set, SCR 76, was directly connected to each end of the wire, one set serving as a transmitter and the other as a receiver. At the receiving end of the line the bare wire was directly connected to the grid of the receiving set and the usual ground connection left open. A frequency of about 600,000 cycles a second was used and the line tuned at each end by the usual methods. Excellent telegraphy and telephony were obtained.

Care was taken to make this preliminary experiment as simple and basic as possible and precaution taken to insure that the wire itself should be bright and clean and entirely free from any grease or other insulating material.

The success of this simple experiment immediately led to more thorough consideration of the entire subject.

One of the questions to be investigated was the general efficiency of the electron tube when used as a potentially operated instrument. The following experiment was made:

A strip of wire netting was buried in the snow outside the office of the Chief Signal Officer in Washington and a wire attached thereto leading to the second story of the building. The upper end of this wire was connected directly to the grid of an electron tube. The reason for connecting the grid to the upper end of the antenna is of course obvious if we are to use the tube as a potentially operated device. It was necessary for maximum sensitivity to connect it to the point of maximum potential of the antenna which in the case of a linear oscillator occurs at the open end. By this arrangement, messages were readily received from distant points in the United States.

These two simple experiments demonstrated the possibility of transmitting electromagnetic waves along bare wires submerged in water and the use of an electron tube as a potentially operated device for the reception of signals.

For military reasons, if for no other, the Signal Corps has recently undertaken certain investigations in the phenomena connected with the transmission of high frequency electromagnetic waves over bare wires in earth and in water.

In carrying out these investigations—and in attacking the problems from various angles—the research staff of the Signal Corps laboratory at Camp Alfred Vail, Little Silver, New Jersey, was directed to carry out experiments on bare wires laid on the surface of moist ground and also buried in earth. The staff at the Signal Corps research laboratory at the Bureau of Standards was directed to investigate fundamentally the transmission of electromagnetic waves over bare wires in fresh water. In addition to this, the engineering staff of the Office of the Chief
Radio Over Bare Wires in Water

Signal Officer has carried out from time to time certain experiments of a more or less crucial character which have come up for solution in the prosecution of this work at the other laboratories.

Telephone and telegraph communication has been established between Fort Washington, Maryland, and Fort Hunt, Virginia, across the Potomac River, below the City of Washington, over a distance of about three-quarters of a mile, by the use of a bare No. 12 phosphor bronze wire laid in the water to connect the stations. The transmitter consisted of an electron tube oscillator which delivered a current of about 270 milliamperes to the line at a frequency of about 600,000 cycles a second. At the receiving end of the line an electron tube and a 6-stage amplifier were used without any ground connection. With this arrangement good tuning was obtained at both ends of the line, and telegraphic and telephonic transmission secured over the bare wires immersed in fresh water.

A resonance wave coil has been developed. The coil is in the form of a long helix wound with a large number of turns on which stationary waves are produced by the incoming radio signals. An electron tube is used as the detector, the grid being connected to the point of maximum potential on the coil. The wave coil may be used either as a part of the usual antenna system or as a part of a line wire, or it may act itself as the antenna for picking up the energy of the signals. In the latter case the coil may be either free at both ends or grounded at one end. Good results have been obtained in either case. It has been found that the open coil has direction proper-

In the August Wireless Age

Second instalment of "WII—New Brunswick" containing a description of the performance and operation of the Alexanderson system.

An Impedance Curio.

Operating suggestions for the radio amateur.
Universal, Honeycomb and Lattice Coils
In General

By Oscar C. Roos
Fellow I. R. E.

The sudden wide adoption of the universal winding by radio engineers as standard for inductances, has produced conflict and confusion in the names used in the trade to designate various makes. Technical facts have been ignored in the emphasis laid on "selling points."

There are the following names in use to denote varieties of universally wound coils—"Honeycomb," "uni-lateral," "duo-lateral," "uni-lattice," "mono-lattice," "bi-lattice," and "multi-lattice." Why all these "names?" Are they necessary? Cannot engineers adopt a "non-partisan" classification of the universally wound coils which are really different in winding layout and electrical properties?

This paper is an attempt to "clear the air." It touches the subject quite fully on the winding and general properties of universal coils. It adopts the terms, "uni-lattice" for "honeycomb" coil, and "bi-lattice" for "duo-lateral" coil. They are both different from "multi-lattice" coils.

These technical names have an advantage over trade names in that they prevent the physical properties of the different forms from being confused. This has prevented, in several investigations, a great deal of misunderstanding, regarding the differences in their winding schemes.

The following definitions have been tried out by several engineers and have run the gauntlet of general discussion.

All coils wound after the methods used in the machines of the Coto Coil Co. are "universal wound." The average experimenter will not produce a real "honeycomb" coil, and still less, a "bi-lattice" coil (these are defined below) by just sticking on a coil frame and winding it up "bobbin-fashion," the way our mothers used to do their sewing machine bobbins. The very thing the experimenter wants—low capacity—will not be obtained to any extent, even at the cost of the extra wire which is needed in all universal windings to obtain a given inductance.

Lattices, with special winding relations, insure a large decrease of distributed capacity. Universal coils, without special winding layouts, do not do this. Bank windings have about the average capacity of the above two classes.

Figure 1 indicates the general method of laying out a lattice winding, and shows the special features which cause a universal coil to have the additional properties of a lattice coil. The general features in figure 1,

Figures 1 to 6—Details showing method of laying out winding and views at various stages of the winding.

peculiar to a merely universally wound coil are—first, the "angular swing, S," or simply the "swing" of the wire. This is the angle AOB between the elements of the cylinder, between which the "swing" takes place. Second—the length of the swing or the "linear swing, Is" is the actual length of wire in the swing. Third, the "swing arc" or the "arc," which is the length of the arc denoted by the letter "a." Fourth—the "angular pitch" or the "pitch" which is always twice the swing, e.g. the swing in figure 1 is 135 degrees, and the pitch is therefore 270 degrees. Fifth—the "advance, V," which is the angular distance which some multiple of the pitch first reaches, beyond 360 degrees. The advance in figure 1 is 180 degrees, or the difference between twice 270 degrees and 360 degrees. Sixth—a separation of wire of h inches. Now the lattice has two additional features, an advance which is an exact submultiple of the pitch and 360 degrees also and a width such that, if m is the above submultiple, the width of the coil w, is \[\frac{hm}{2} \] if m is even and \[\frac{h(m+1)}{2} \] if m is odd. Hence figure 1 does not represent a lattice coil, strictly speaking.

A swing of 82 2/7 degrees, or other odd fraction of a degree is the kind of swing necessary to get a true lattice, in actual computations. A good short rule is this. The advance must divide 360, and the pitch also. If
we adopt 1.5 degrees as the advance $v = 1.5$, we can get along with a pitch of 183 degrees, 186 degrees, etc., since 1.5 goes into 183 degrees, 186 degrees, etc., and 360 degrees exactly.

We now define lattice coils as those universal coils in which the advance is a submultiple of the circumference and the swing. This is limited only by the condition that the advance must be less than one-half the pitch.

The result of this definition is that all lattice coils end at the same angular point on the circumference at which they start. There is no "creeping" forward of the turns, "stopping up" the radial view through the cells and increasing coil capacity. When the lattice winding has come back to the starting point just once, we have one "layer." This gives us the pattern of a rhombus, or lozenge, which resembles a honeycomb cell and suggested the trade name used by many.

All honeycomb coils are lattice coils, but all lattice coils are not honeycomb coils. The bi-lattice coil described below is not a honeycomb coil, but a uni-lattice coil is.

Figure 2 is a lattice coil of external diameter A, and width W. It shows the honeycomb structure at the left and illustrates the "bi-lattice" differences in structure at the right. If we had repeated the first single "layer" of the lattice winding above specified, until a depth t, was reached, we could look down into the four "cells," a, b, c, and d in figure 2, without finding anything to obstruct the vision. The wires forming the walls of the cells are arranged substantially one over the other. They spread slightly as they recede radially from the axis of the coil.

The bi-lattice coil is so wound that every cell of the original four, a, b, c and d, is broken up into four smaller cells a', b', c' and d' by the new wires of the second lattice. These are shown in dotted lines of which four are lettered SS, TT,UU, VV. It is true that we have smaller cells here—honeycomb cells, if you insist—as far as the mere question of looking down through the coil is concerned, but the successive cell wires are not "over" each other, as in the honeycomb coil. Their average self capacity is smaller. In both forms, in fact in all lattice coils, the cells get "flatter" as the coil gets larger, as will be shown later.

Figure 3 shows the cross-section of three wires and three layers of the "uni-lattice" winding taken at ff and figure 4 shows a cross section of three wires and three layers of the "bi-lattice" winding taken at ff. The latter is easily seen to possess less distributed capacity than the former—about 15 per cent. less on the average.

It is understood that the second lattice when finished, constitutes a complete separate system of honeycomb cells, whose walls are "staggered" half-way between the cell walls of the first lattice. Since a honeycomb coil is a "uni-lattice" or "mono-lattice" coil, the name "bi-lattice" has been given to this other form of winding. Only the alternate layers are started at the same circumferential point.

It was suggested in 1918 to engineers investigating the possibilities of further reducing the self capacity of the honeycomb coil, that by gradually shifting the starting point of the layers forward and then backward, as in figure 5, this self capacity would be reduced. This might be called a "quadruplattice" coil or "multi-lattice" coil, as the series of lattices is repeated regularly.

However, it is not as good a reducer of capacity for given inductance as the bi-lattice winding, drawn to same scale in figure 6. This has a better selectivity at a given wave length.

Study of Coil Lattices

There are two distinct but related problems to be considered in making a lattice coil:

First, how shall we make the winding repeat every "layer" regularly? The solution of all electrical requirements is based on this purely arithmetical problem, in addition to determining the size and kind of wire and the diameter and width of winding.
Second, what is the best angular pitch to use in a coil of given lattice separation? This is determined by the number of turns and the coil width.

There is no exact analytical or even experimental engineering formula, it may be said, for the inductance of lattice coils. It is safe to recommend Professor Hazeltine's practical coil formula, presented at a meeting of the R. C. A. It is as follows:

This formula, based on Stephan's formula, is accurate to about 3 per cent.

\[L = \frac{.0008 a^3 N^2}{6a + 9t + 10w} \]

where \(a \) = mean radius of winding in inches
\(t \) = depth of winding in inches
\(w \) = width of winding in inches
\(N \) = total number of turns

In winding bi-lattice coils, it is not necessary to finish the first layer on one lattice, before starting the first layer of the other. This is especially evident in winding lattice coils by hand.

Coil Dimensions and Winding Factors

We need to establish general limits within which lattice coil dimensions may be considered to conform to practical experience from mechanical considerations. If a coil form is satisfactory from the above standpoint, it may be left unsupported; as it should be mechanically rigid.

It may keep this rigidity through a large variety of windings, of very different electrical efficiencies, without appreciable mechanical change. In figure 9 we have sketched the kind of coil shown in figure 2 without indicating the lattices formed by the windings. This form gives a ratio

\[\frac{d}{t} = \frac{6}{6} \quad \text{and} \quad \frac{t}{d} = 1 \]

changing the ratio to \(\frac{2}{2} \) and \(\frac{5}{5} \) to 10 we obtain figure 10.

Four of these coils, placed close together, coaxially, have a very good time constant if connected in series. We may put this in other words by saying that in this case \(\frac{d}{w} = 5 \), \(\frac{t}{w} = \frac{1}{2} \). Such an equivalent coil is shown in figure 11.

In the light of the "multi-lattice" windings indicated by figure 8, it is interesting to consider the four coils A, B, C and D as wound in a single coil "quadri-lattice" coupler. Every lattice has its pair of separate terminals. By various combinations a range of inductance of 1 to about 36 may be obtained.

A smaller range is obtained by winding the four "coils" of figure 11 as two "bi-lattice" couplers, as shown in figure 12. Each "coupler" with the same area of winding cross-section, 1, 2, 3, 4, 5 or 6, 3, 4, 5 has two sets of terminals, and starts with a lower inductance than figure 11. The first lattice terminals are indicated by \(L_1 \), the second lattice by \(L_2 \), etc. These changes are really of no effect in determining a change of "swing," "pitch," or "advance," when changing the coil of figure 10 into the multi-lattice coupler coil of figure 11 or the two "bi-lattice" couplers of figure 12. The chart in figure 8 would do for any of them, as the "swing" is independent of the width, within wide limits.

The extreme case is shown in figure 13, where \(\frac{d}{w} = 1 \).

This is about the limit of —. The depth of winding is that due to two "layers," and figure 13 could only by courtesy be called a lattice coil.

The best ratios to secure a high time constant are about \(\frac{d}{t} = 4 \), \(\frac{t}{w} = 1 \) shown in figure 14.

(To be continued)
A Loop Transmitter for Local Work

By Albert F. Murray

THE amateur of to-day is familiar with the characteristics of loop antennae, and is perhaps using or has used, some form of loop for receiving. Very few have tried transmitting on loops and up to the present, little has been written about this subject in radio journals. The reason for this, undoubtedly, is the shortened range of transmission when using a loop, although it will prove of great value to the amateur for short-distance or local work. The advantages, construction and operation of such a set follow.

A station desiring a short-range set would be of the more advanced type, possessing a non-synchronous spark transmitter of from 1/4 to 1 kw. The short range work would be among amateurs using vacuum tube detectors, located in the same city or within 15 to 25 miles. The features desired were: sharp tuning, reduction of interference to or from other stations; a good spark note; a fool-proof break-in system with no contacts or moving parts; freedom from complication or duplication of parts. The necessity of two keys, two antenna switches, two sources of power, etc., is naturally to be avoided. All of these advantages are obtained by use of the loop for transmission and at the expense of one item, that is, low radiation efficiency. The power input is large compared to the distance covered. From the amateur viewpoint this is not a great disadvantage.

The wiring diagram of the station is shown in figure 1. To change from "long distance" to "local," throw switch SW from "antenna" to "loop." The additional apparatus required is the loop (described later); a high voltage condenser C of any type whose capacity is approximately equal to that of your antenna, say .0003 mfd. or larger (it should be roughly adjustable in steps); and the inductance L, which is provided for fine tuning. If you do not mind moving the clip on the secondary of your oscillation transformer when changing from loop to antenna, you can tune in that way and omit inductance L, which is a helix of 4 turns, 12 inches in diameter.

In tuning proceed as follows:

With the transmitter in adjustment for maximum radiation on antenna, switch to loop and vary C until the H.W. ammeter reads highest. Shunt H.W. ammeter with a loop of copper wire, unless it will stand four times the ordinary current. Now vary L until a maximum antenna current is obtained. The settings for radiation on the antenna have not been disturbed and either aerial or loop can be used by throwing one switch. However, if maximum range on loop is desired by the experimenter, C should be increased, the secondary inductance of repeating parts of messages lost due to QRM. Unless one has used such a system it is difficult to appreciate the advantages of being able to listen and talk at practically the same time. The grounding of one side of the loop decreases its directive properties somewhat, but experiments show that when the loop is pointing as much as 10 degrees away from a nearby station your signals at that station are inaudible. Of course, many factors, such as

The oscillation transformer decreased, then retune and vary coupling for greatest current in loop. The tuning of the loop is much sharper than that of any antenna circuit because of the low resistance of the former. The coupling should be such that a wave-meter coupled to the loop should show but one "hump."

To operate swing loop so that the coil points in the direction of the station you wish to work. Receive on antenna and leave receiving set connected while sending. It is assumed that an audition is used as detector. Unless the loop and antenna lead are within a few feet of each other, it will be possible to hear the phones while transmitting and be able to hear other stations in the pauses between words. Not only can another station "break in" but you can hear when some loud interfering station starts up and send only during the times when he is not working, thus saving much time in

sensitiveness of receiver, etc., enter into the directional properties of the loop which, however, were found to be fairly pronounced and yet not too sharp. By using a receiving loop in a horizontal position it is said to be a "pick-up" loop receiving from all directions. Whether this is true of a transmitting loop and whether the range is decreased when in this position has not yet been experimentally determined.

It was found that work could be carried on through considerable interference when using the loop for reception. Low power amateur stations 10 miles away could be heard on a single tube, but a one step amplifier is necessary for satisfactory local work.

The loop used by the writer is 5 feet square, this being the largest size that could be handled easily in the operating room. It is mounted above

(Continued on page 41)

www.americanradiohistory.com
A Sensitive Portable Receptor

By Francis R. Pray

FIRST PRIZE, $10.00

In the past, amateurs generally depended on a crystal rectifier for the operation of their portable receiver due to the instability of the early types of gas filled audion tubes. Although they saved in space and weight, the results obtained with the crystal equipped set were not encouraging.

Now that a rugged vacuum tube has been developed for amateur use which can be used with comparatively small plate potentials and low filament current consumption, the practicality of fit. As a Marconi-Moorhead VT requires about .65 amps. to light the filament to full brilliancy, it can be estimated that the battery will last about twenty operating hours before becoming useless. The inherent recuperative powers of the No. 6 cell may extend this time limit, depending on how the battery is treated.

Many VT's will operate with the 22-volt potential derived from a Signal Corps size "en bloc" B battery but it would be advisable to include a couple the condenser scale by variation of the grid condenser. This makes a fairly good regenerative circuit, also, when the condenser values are set at a point just previous to that where oscillations begin.

The most practical form of inductance to use is unquestionably the universal wound coil, which is sold with a plug mounting by the De Forest establishment. Of course the amateur may buy the Radisco coils at a slight saving and equip them with a self-con-

Figure 1—Top view of panel showing arrangement of instruments

Figure 2—Front view showing controls and lower compartment for storing extra coils, phones, etc.

including an audion detector in the portable outfit is an accepted fact, and with it goes the following advantages:

1) Maximum efficiency at the detector.

2) Elimination of the buzzer test and battery.

3) Constancy of operation.

4) By employing the oscillating characteristics of the tube, regeneration or amplification of obtained on spark signals and continuous wave signals may be received.

The one primary obstacle in the use of a VT, is the "A" and "B" battery problem. Most portable sets are taken to destinations which make impossible the use of a storage battery and even if charging facilities are at hand, storage batteries are a bad proposition for field use, as any Signal Corps man will affirm.

Really the only solution possible is the use of ordinary No. 6 dry cells. It would be impracticable to carry along more than a single series—3, to give 4½ volts—as six, in series multiple, although having longer life, would add too much weight to the out-

of small flashlight batteries with Fahnstock clips for terminals, as many tubes require increased plate potential with continued use.

Fahnstock terminals are ideal for binding posts on portable outfits as the wires cannot jar loose, connections are easily made, and there are no thumb-screws to lose.

The next most important consideration is the selection of the circuit. It is at once apparent that an inductively coupled circuit is not required, as a broadly tuned circuit allows the reception of "everything in the air." More and more radio men are conceding that the single coil circuit is the most efficient for all-around reception, except perhaps in 200-meter reception and in long wave continuous wave reception.

In the circuit shown hereafter, all that is necessary is one coil in the tuning circuit, which need not be variable if interchangeable coils such as the De Forest plug inductances are used. All the tuning variation is done with the .001 mfd. condenser and the circuit can be made to oscillate at any point on structed plug with a little ingenuity. The separate brass plugs and sockets used on these plugs can now be obtained separately from the Somerville Radio Laboratory, enabling the radio constructor to devise all sorts of original honeycomb coil mountings at a very low comparative cost.

Reference to the drawings will show the best form of arranging the apparatus. These are drawn to scale, to conform with the dimensions of standard apparatus, but exact dimensions are not given as the constructor can use material already on hand, in many cases, thereby making necessary the enlarging of the cabinet. Roughly speaking, the entire outfit may be placed in a cabinet of half inch oak, 8 x 8 x 8 inches.

The front can be a sheet of 3/16 inch Bakelite or Micarta held in by brass angle strips. The sheet when removed, makes an excellent writing surface for copying messages, and also cuts down weight. The use of Bakelite as constructional material in the instrument compartment also cuts down weight, and makes the mount-
ing of same much easier. The material may be drilled and tapped and held together with machine screws. 4-36 thread screws are the proper size to use on 3/16 inch stock.

The neatest and most compact condenser arrangement is the Radio Equipment condenser equipped with a Radisco dial. The most compact VT socket is one made of Bakelite by a Massachusetts radio company, advertising in Wireless Age. It is equipped with Fahnestock terminals and contacts of phosphor bronze.

The most desirable rheostat for the VT filament regulation is unquestionably the Paragon as it is only 2½ inches in diameter and very easily and neatly back-mounted. Its “off” position obviates the need for the usual “on-off” filament circuit switch. A number of fine holes may be symmetrically bored to observe filament brilliancy or a large 1-inch hole may be cut and covered with a metal gauze screen. The also be purchased equipped with them. Although Murdock No. 55 phones are

not necessarily the best, they can be packed very compactly, are light in weight, and their small cost discounts worry, if the set is dropped in the lake

the best antenna proposition is a couple of 100-200 feet coils of common annunciator wire, one for the antenna and the other for the counterpoise, to serve in lieu of a ground. Don’t forget to include plenty of pencils and writing paper, which may be wrapped in oiled paper and stowed away between the dry cells.

While there are many other practical suggestions which might be made, in closing, let me suggest that you commission some obliging friend or radio company to send by parcel post to the nearest mail destination another set of dry cells, and perhaps a fresh B battery, after a few weeks, as they may come in mighty handy if something should go wrong with the first set.

Portable Receiver

By Norman A. Nyquist

SECOND PRIZE, $5.00

The following described receiver was designed for portable work, and by removing the cover, a perfectly satisfactory instrument for permanent station work is available. The design of an efficient receiver to cover a wide range of wavelengths is very difficult unless sufficient space and complicated mechanical movements are permitted; that is, if it is to be automatically operated. It is believed that manual operation to secure changes to the upper
range of wavelengths will be satisfactory for amateur purposes.

Referring to figure 4, a schematic wiring diagram of the proposed receiver is shown. Starting at the antenna, we come to the primary variable condenser. This condenser is mounted by itself and should have one of the rotor plates bent over at the corner so that it will short-circuit itself in the 180 degree position, as it will not be used for some wavelengths. This condenser should have a capacity of about .0005 mfd. and work through a 180 degree scale. It is preferable to buy a standard condenser and arrange for mounting it on the front panel.

Next we come to the primary loading inductance. This is a small cardboard or dielect tube two inches in diameter and three inches long, wound with 120 turns of 27-38 Litzendrath or No. 22 d.c.c. copper wire, bank wound, two layers. Taps should be taken every twelve turns and brought out to a 10-point switch on the front panel. When finished, the winding should be baked dry and given two coats of a good insulating varnish.

Following the primary loading inductance, is the primary coupling inductance, which is a fixed winding with no taps. A small tube three inches in diameter and two inches long, is wound with 20 turns of the same size wire, single layer, which will leave sufficient room at the other end of the tube, for fastening a bracket to mount the tube to the panel. One end of the primary coupling inductance runs to the ground and completes the primary tuning circuit.

The secondary circuit is now to be considered. The secondary coupling inductance consists of ten turns of the same wire wound on a small disc 5/8 inch wide and 2 1/4 inches in diameter. It should be baked and varnished. This is the movable coil shown in the sketches and swings through 90 degrees and is controlled by the handle with pointer shown in figure 2, marked coupling.

From the coupling inductance we come to the secondary variometer, which construction will be described in detail later on. The secondary variable condenser which is of .005 mfd. capacity is mounted directly on the front panel and the secondary variometer is mounted on the same shaft directly in back. The secondary coupling runs to the positive side of the filament lighting battery.

After another wire is run from the other terminal of the coupling inductance to the other terminal of the secondary condenser to the filament lighting battery, the secondary circuit is complete.

The tertiary circuit is now considered, and starts by a wire running from the plate to one terminal of the tertiary variable condenser which is the same size as the secondary condenser. This wire also runs to one terminal of the tertiary variometer. The remaining terminals of the tertiary variometer and condenser are connected together and are also connected to the positive side of the high potential battery. From the high potential battery a wire runs to the telephones. In this case the telephone terminals are two jacks for the telephone cord plugs and are mounted on the front of the panel as shown in the drawing. From the other telephone terminal a wire runs to the filament battery and completes the tertiary circuit, with the exceptions of the by-passing condenser for battery. This is a small condenser to allow the high frequency oscillations to pass around the high resistance offered by the telephones and high potential battery and is exactly the same as the grid condenser except that there are four discs of copper on each side, eight in all.

On the filament lighting circuit a variable resistance is in circuit, to properly adjust the filament to the proper temperature for best operation and long life. The Adams-Morgan Co., Montclair, N. J., is putting out an excellent rheostat suitable for this purpose and comes ready to mount on the panel, from either the front or rear. The resistance is suitable for VT tubes on operation from 4 to 6-volt batteries.

The most difficult part of the receiver to build will be the variometer, and well spent skill on this portion of the construction will be repaid in results. Referring to figure 5, it will be noted that the variometer is connected directly on the secondary and tertiary variable condensers, and that there is no
variometer on the primary condenser (figure 3). Either a new extended shaft will have to be put through the rotor plates of the variable condensers, or the end of the shaft can be tapped and an extension threaded in and sweated with solder which will be satisfactory. A frame of dilato is then made to hold the stator windings. This is simply two pieces spaced with brass rods and fastened to the rear end dileto piece of the condenser. The windings are held in place by small aluminum brackets that are screwed to the dileto frame pieces. The windings are then tied in place with strong linen thread and waxed. The rotor windings are held in a similar manner. The shaft runs through a dileto rectangular block and is split in the middle and then the shaft continues through the other half of the dileto block out the rear end. This shaft is split so that each of the two rotor winding ends can be brought out through one half of the shaft. The middle two connections of the rotor winding are connected together so that the winding is in a continuous direction.

Variometer winding is shown in the small sketch in figure 5. Preferably wooden forms are turned in a lathe the exact groove being cut as per sketch. The form should be made in such a manner that it can be taken apart to remove the winding. Before the windings are removed, the wires are firmly waxed together with a medium hard wax. It will be found that the windings will keep their form and a very substantial variometer can be constructed.

Now as to the assembly. A possible arrangement is shown in the assembly drawings. The front panel is dileto which is the best material for this purpose and well worth the money it costs. Looking from the rear the tertiary condenser and variometer are at the extreme lower left end, and the secondary condenser and variometer at the lower center. True, there is some permanent coupling between these circuits, but it will not be detrimental to their operation. The primary condenser is at the extreme lower right. The primary inductance is at the upper right end of the receiver and is perpendicular to the panel. The primary coupling inductance is at right angles to the primary load and has no coupling to it. The secondary coupling inductance has no permanent coupling to the primary load in any position.

The VT tube, rheostat and fixed condensers may be mounted as shown in any position convenient to the individual requirements. It will be divided to insert loading inductances in the primary, secondary and tertiary circuit and the receiver may be loaded up to 2500 meters, and used for both damped and undamped reception.

In regard to its operation: Assuming that we did not know the wavelength that was to be received, first, we would tighten the coupling by setting the dial at 75 degrees on the scale, then short circuit the primary condenser by moving it into the 180 degree position. Of course, telephones are now plugged into the jack. Loading coils are short circuited, valve lid and the high potential battery connected and filament adjusted to normal temperature. The tertiary circuit control is set at 0 degrees on the scale. By simultaneously moving the primary inductance switch and secondary circuit control we will cover the range of 175 and 875 meters. It is best to hover around 600 meters as most stations work on that wavelength. When signals are heard, first adjust the primary inductance to the exact point; if this cannot be done directly with the inductance, increase the inductance and throw the primary condenser in series and tune with that. The secondary circuit and coupling should then be adjusted, the coupling being reduced to a point where signals are the best and still readable, and still further if interference is prevailing. Now by moving the tertiary circuit control slowly toward the 180 degree position, we start to tune the plate circuit and the valve regenerates and the signal strength is increased. This increase will continue until the valve starts to oscillate. Of course, then the spark resembles a hiss.

If we are to tune to unamped stations, the valve must be oscillating all the time, and tuning done by the heterodyne method. Indications of oscillations are noted in many ways, but a sure indication is a dull thud as the tertiary is moved from the 0 position to the 180-degrees. After the thud, the static has a different tone.

(Continued on page 41)
Second District Call Letters of Amateur Stations (Continued from June Wireless Age)

<table>
<thead>
<tr>
<th>Letters</th>
<th>Power</th>
<th>Name and address</th>
</tr>
</thead>
<tbody>
<tr>
<td>2M</td>
<td>1000</td>
<td>Earl Hawthorne, 150 Park Pl., So. Orange, N. J.</td>
</tr>
<tr>
<td>2K</td>
<td>2000</td>
<td>Wm. J. Miller, 697 Main St., Jersey City, N. J.</td>
</tr>
<tr>
<td>2A</td>
<td>2000</td>
<td>Howard A. Heron, 109 E. 43rd St., Brooklyn, N. Y.</td>
</tr>
<tr>
<td>2T</td>
<td>2000</td>
<td>Horatio G. Overman, 125 West 50th St., New York City, N. Y.</td>
</tr>
<tr>
<td>2Z</td>
<td>2000</td>
<td>J. B. Smith, 153 Union Ave., Rutherford, N. J.</td>
</tr>
<tr>
<td>2H</td>
<td>2000</td>
<td>John C. Smith, 233 Liberty St., New York City, N. Y.</td>
</tr>
<tr>
<td>2Y</td>
<td>1000</td>
<td>R. E. Brown, 245 W. 49th St., New York City, N. Y.</td>
</tr>
<tr>
<td>2P</td>
<td>1000</td>
<td>Robert C. Bascom, 123 West 50th St., New York City, N. Y.</td>
</tr>
<tr>
<td>2L</td>
<td>1000</td>
<td>James F. Butler, 581 1st Ave., New York City, N. Y.</td>
</tr>
<tr>
<td>2X</td>
<td>1000</td>
<td>John T. Cooper, 345 E. 47th St., New York City, N. Y.</td>
</tr>
<tr>
<td>2M</td>
<td>1000</td>
<td>W. H. Egan, 401 Union Sq., New York City, N. Y.</td>
</tr>
<tr>
<td>2B</td>
<td>1000</td>
<td>H. B. Wadsworth, 219 Union Sq., New York City, N. Y.</td>
</tr>
<tr>
<td>2Z</td>
<td>1000</td>
<td>R. E. Brown, 245 W. 49th St., New York City, N. Y.</td>
</tr>
<tr>
<td>2T</td>
<td>1000</td>
<td>Horatio G. Overman, 125 West 50th St., New York City, N. Y.</td>
</tr>
<tr>
<td>2R</td>
<td>1000</td>
<td>J. B. Smith, 153 Union Ave., Rutherford, N. J.</td>
</tr>
<tr>
<td>2K</td>
<td>1000</td>
<td>R. E. Brown, 245 W. 49th St., New York City, N. Y.</td>
</tr>
<tr>
<td>2Z</td>
<td>1000</td>
<td>R. E. Brown, 245 W. 49th St., New York City, N. Y.</td>
</tr>
<tr>
<td>2K</td>
<td>1000</td>
<td>R. E. Brown, 245 W. 49th St., New York City, N. Y.</td>
</tr>
<tr>
<td>2R</td>
<td>1000</td>
<td>J. B. Smith, 153 Union Ave., Rutherford, N. J.</td>
</tr>
<tr>
<td>2K</td>
<td>1000</td>
<td>R. E. Brown, 245 W. 49th St., New York City, N. Y.</td>
</tr>
</tbody>
</table>

(To be continued)
A Universal Range Portable Receiver

By Chas. T. Jacobs
THIRD PRIZE, $3.00

With the coming of the various multilayer coils into general use, the problem of the construction of a portable receiver to cover the complete range of wavelengths has been greatly simplified. Believing that there is now no obstacle to the construction of a truly universal receiver that would be truly portable, the writer has designed and is now constructing for his own use the receiver described.

The receiver is completely enclosed in a covered cabinet or case 6 x 12 x 13¾ inches, with bakelite panel for controls. It is designed primarily for use with the vacuum valve, either regenerative or simple rectifying action being obtainable at will. Binding posts are provided, however, for a crystal detector, which may be used when desired. The receiver accommodates multilayer coils of present-day design. These are to be obtained or made mounted and a small block of wood, with a hole therein, glued firmly to the inside of each coil, as shown in figure 1. These blocks are made of wood about the same thickness as the coil, and are laid out, drilled and cut on the heavy lines, making six blocks at once.

A rod onto which the coils needed for a certain range of wavelength are slipped, is then set in notches provided for it. Flexible leads from the coils are then connected to the proper binding posts. Coupling is varied by sliding the coils along the rod, there being no tendency for the coils to revolve on the rod, as the hole in the block is above the centre of the coil. The coils are still essentially air-core coils—a great advantage over solid cores. The advantages and ease of operation of this mounting will be readily appreciated.

The secondary circuit is tuned on a novel principle which the writer picked as being most satisfactory in every way. Bearing in mind that the vacuum valve requires a low maximum secondary capacity—an almost zero minimum—and a fine adjustment of capacity for best results, and that the portable set requires a small weight and bulk, the reader will realize the tremendous advantages of this method. A homemade variable condenser having one rotary and two stationary plates, and a six-step adjustable fixed condenser are used, connected in parallel. The variable is calculated to have a maximum capacity of approximately .00005 mfd., and each step of the fixed condenser about .00005 mfd., so that the variable laps well over on each step. The step condenser is controlled by an ordinary seven point instrument switch, one of which is left unconnected. By joint use of this switch and the handle of the variable, a continuous range—very finely adjustable—from almost absolute zero to approximately .000365 mfd. is obtained, which is ample for valve use.

Details for the construction of the variable condenser are given in figure 2. The stationary plates are made from 1/32 inch aluminum as shown, a

Small Ads of Big Interest

A Meeting Place for Buyers and Sellers
Space in this department costs only 25c a line. Minimum space 8 lines. Payable in advance.

“Silverplate” Without Electricity
Modern, efficient radio apparatus is silverplated, giving higher conductivity to high frequency currents, and giving a finer and more substantial appearance. “SILVERPLATE” needs only to be rubbed or brushed on any metal, and will produce a fine permanent silver plating. One bottle will plate whole set. S&c prepaid.

ROBERTS LABORATORY,
11115 Detroit Ave.,
Cleveland, Ohio.

“WHAT YOU WANT TO SAY AND HOW TO SAY IT!”
by W. J. Herman, In French, Italian and German, 25c each.

The only book in the world for the traveler or student. They contain the phrases and sentences most used and give phonetic spelling that enables you to get the correct pronunciation at first try. Satisfaction or money refunded. WIRELESS PRESS, Inc., 318 Broadway, New York City.

Special Summer Sale of Ground Wire No. 4 Triple Braided Rubber Covered as per ft., plus postage. $1.00 buys the 100 ft. wt. 17 lbs. 100 ft. 140 Amp. 400 Volt Lighting Switches. We stock everything worth while in wireless. Have you written us lately? RADIO EQUIPMENT CO., 200 Washington St., Boston, 11, Mass.—LET US QUOTE YOU.

Wireless supplies especially for the amateur. Magnet wire, braided and zinc rod, inductances tubes, Standard wireless knob and lever 25c. Switch points and screws 15c doz. One place switch point with screw stud and nut 40c doz. NOVOTOT RADIO SHOP, 90 West 6th St., Charlotte, N. C.

TELEGRAPHY (both Morse and Wireless) and Railway Accounting taught quickly. Tremendous demand. Big salaries. Great opportunity. Oldest and largest school; established 44 years. All expenses low—run each large part. Catalog free. DODGE'S INSTITUTE, N. St., Valparaiso, Indiana.

Stromberg-Carlson Radio Head Sets
Strong, Durable Construction, Yet Extremely Sensitive
This Stromberg-Carlson Radio Head Set is very simple and efficient. All operating parts are housed in dust-proof, moisture-proof aluminum case. The diaphragm is mounted metal-to-metal in a way that the variation in temperatures cannot disturb the air-gap adjustments. Non-conducting spool heads and slotted pole tips decrease the eddy current losses and make the set more efficient.

Each set wound to a resistance of 2,000 ohms with pure copper wire, furnished complete with a 6-foot moisture-proof cord attached.

All sets thoroughly tested in actual service before shipment. For $12.00 we will ship sample set for trial in your own station. If not satisfied, return equipment and money will be refunded.

Bulletin 1206 will give full particulars. Write today.

Stromberg-Carlson Telephone Mfg. Co.
Rochester, N. Y.
small semi-circle being cut out of the lower edge. The same layout suffices for the rear support of the shaft—a piece of 1/8 inch bakelite—except that instead of a cut in the bottom, a projection is left there, and the center of it drilled 1/4 inch, as shown. The stationary plates and bakelite support are mounted directly on the back of the main panel of the set. The spacers shown are 3/8 inch in diameter, and exactly 5/32 inch thick. They are drilled in the center to pass an 8-32 machine screw. They had best be made by a machinist, together with two 3/4-20 nuts accurately faced to an exact 3/4 inch thickness, and a 2 1/2 inch length of 1/4 inch brass rod, turned down for the rod up to it, and clamped firmly in place with the second accurate nut. The turned down end of the rod is now placed in its hole in the panel. Now slip the bakelite support over the threaded rod and connecting screws, and place nuts on the latter. The distance from the panel to the bakelite is now 17/32 inches, and since the thickness of the two nuts and rotary plate is the same, these should just fit between the panel and bakelite block. A spring washer is now placed behind the block, and an ordinary 3/4-20 nut screwed against it till a slight tension is obtained. This nut is tightened gradually till the rotary plate will stay in any position in which it may be placed, and then a second nut is screwed on behind the first to lock it. The entire assembly as seen from the top is shown in figure 2. The 1/16 inch separation of rotary and stationary plates assures great ruggedness even under hard usage such as a portable set might undergo.

The six-step condenser for the secondary is constructed of mica dielectric, a micro meter being necessary to measure the various thicknesses required. Mica 1 x 2 inches is used, together with a dozen very thin copper plates 3/4 x 1 3/4 inches with projections for connection to switch points, etc. Alternate plates are connected together by soldering the projections, and form one terminal of the condenser, while the intermediate sheets are connected to individual switch points for variation of capacity. It should be understood that only one plate is connected at any one time, it being unnecessary to connect in parallel.

This admits of an ordinary instrument switch being used instead of a fan switch. To this end the copper plates are spaced as shown, the numbers between them indicating the
thickness of the mica in thousandths of an inch, and the numbers at the switch points, the capacity available in microfarads:

<table>
<thead>
<tr>
<th>Value</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>.0003</td>
</tr>
<tr>
<td>10</td>
<td>.0004</td>
</tr>
<tr>
<td>12</td>
<td>.00025</td>
</tr>
<tr>
<td>12</td>
<td>.0003</td>
</tr>
<tr>
<td>15</td>
<td>.0002</td>
</tr>
<tr>
<td>15</td>
<td>.00015</td>
</tr>
<tr>
<td>20</td>
<td>.0001</td>
</tr>
<tr>
<td>30</td>
<td>.00005</td>
</tr>
<tr>
<td>30</td>
<td>.0001</td>
</tr>
<tr>
<td>30</td>
<td>.00015</td>
</tr>
</tbody>
</table>

Two views of the condenser are shown in figure 3. One is a top view

![Image of the condenser](image)

While it may be difficult to measure

of the mica and copper sheets, showing dimensions, and the other is a perspective view showing the assembly placed between two 1/2 inch bakelite blocks 1 inch wide which are to be clamped together by screws and nuts through the holes shown. The bottom block should be made longer than the top, and extra holes drilled therein for screwing to the bottom of the cabinet. The entire unit had best be baked at about 200 degrees F. for several hours to dispel all moisture, and immediately impregnated with insulating compound, which may afterwards be scraped off where connections are necessary.

The primary is tuned by a purchased balanced-type condenser, capacity .0006 mfd., shunted by a two-step condenser having capacities of .0005 and .001 mfd. This is controlled by an anti-capacity, single-pole, double-throw switch, having a neutral position. The capacity obtainable is therefore continuously variable from the minimum value of the variable condenser to .0016 mfd. The two-step condenser is made of the same size mica and copper and is mounted in the same way as the six-step for the secondary, but only four copper plates are needed spaced as follows:

<table>
<thead>
<tr>
<th>Value</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>.001</td>
</tr>
<tr>
<td>3</td>
<td>.0005</td>
</tr>
</tbody>
</table>

A third condenser of this type is required to shunt the head telephones. This is a six-step condenser made of mica plates 1 1/2 x 2 inches and twelve copper plates 1 1/2 x 1 1/2 inches with projections for connections, spaced as follows:

<table>
<thead>
<tr>
<th>Value</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>.003</td>
</tr>
<tr>
<td>1/2</td>
<td>.003</td>
</tr>
<tr>
<td>3</td>
<td>.0018</td>
</tr>
<tr>
<td>3</td>
<td>.001</td>
</tr>
<tr>
<td>5</td>
<td>.0006</td>
</tr>
<tr>
<td>9</td>
<td>.00005</td>
</tr>
<tr>
<td>15</td>
<td>.00035</td>
</tr>
<tr>
<td>12 1/2</td>
<td>.0002</td>
</tr>
</tbody>
</table>

Having described the separate parts which have to be made, attention to the assembly of the instruments is now in order. Figure 4 is a sketch of the front of the receiver, cover removed, and three coils in position. The 1/2 inch bakelite panel, 5 1/2 x 13 inches, is mounted flush in the cabinet. The sliding top, 4 x 13 inches, is made to slide in grooves, so that it may be removed for access to the bulb, etc. Dimensions are not given here, but the various parts are marked. The binding wires on the outside of the set will probably be noticed. While they do not appear so well here, this arrangement conserves panel space and permits closing of the cabinet without disconnecting aerial, ground, battery and phone connections. These posts are mounted on

![Excerpt from a radio history website](image)
THE WIRELESS AGE

JULY, 1920

¾ inch bakelite, which is screwed over the cut-outs in the side of the cabinet. On the left there are three posts mounted on bakelite 1½ x 3¾ inch for connection to aerial and ground. On the right are six binding posts mounted on bakelite 2¼ x 3¾ inches, for connection, to "A" and "B" batteries and telephones.

The hole marked "window" is an aperture of 1½ inch diameter in the panel, through which the vacuum tube is observed. The tube is mounted vertically in a socket which may have to be raised by a block or two of wood, so as to bring the filament opposite the stationary plates of the secondary variable, and since they can be placed in just the position of the upper two screws supporting the stationary and bakelite block, the shanks of the binding posts can themselves be used as the supporting screws, saving extra screws and wiring. The writer places the center of his variable 29/16 inches above the bottom of the panel, and since the holes in the plates are 2½ inches above the center of the variable, the center of the binding posts is brought 5/16 inch from the top of the panel, which is sufficient.

The wiring of the set will be found

Figure 1.—Theoretical wiring diagram of the receiving set

window in the panel. The socket should be mounted as far back as possible so as to leave room for the secondary step condenser in front of it. This condenser, as well as the other two of similar construction, should be screwed to the bottom of the panel through the holes provided. The rheostat, the handle of which is shown on the panel, is a six-ohm instrument of small diameter, and is front mounted on a wooden upright in the back of the cabinet. An extension shaft enables it to be controlled from the front of the panel.

It is here appropriate to mention that since binding posts No. 5 and No. 6 are both to be connected to the sta-

very simple, owing to the logical placement of the apparatus. Bare copper wire, over which varnished cambric tubing has been slipped, is best for wiring, although a flexible lead will be required to the shaft of the homemade variable. All connections should be soldered.

The theoretical circuit is shown in figure 5. The aerial is connected to binding post No. 9, and the ground to No. 11. The primary coil is connected between No. 2 and No. 3. The primary condenser is now in series with the coil. A shunt connection may be obtained by connecting No. 10 to the ground without disconnecting No. 11.

The secondary coil is connected be-

BRUSH UP

on THEORY and CODE

Get a COMMERCIAL LICENSE

Jobs are always waiting for good operators

Study where you get the close personal attention of the finest and most experienced men in the Radio field. We placed approximately three hundred men last year.

Y. M. C. A. RADIO SCHOOL
149 East 86th Street, New York, N. Y.
"The Best Radio School in the East"

NOTE:—We have on hand a select list of Radio text books and blueprint diagram of complete commercial ship set, which we recommend for home study.

When writing to advertisers please mention THE WIRELESS AGE
between No. 4 and No. 5, the “tickler” between No. 7 and No. 8, the telephones to the front two posts on the right—No. 12 and No. 13, the “B” battery to the middle two—No. 14 and 15, and the “A” battery to the back two—No. 16 and 17. To secure regenerative action in the valve, keep the phone condenser switch on any of the first seven points. To secure simple rectification, place the switch on the eighth point, which not only removes capacity from in shunt to the phones, but also short-circuits the “tickler” coil. To use a crystal detector, remove the “tickler” coil, set the detector on the sliding top above the posts No. 6 and No. 8, to which it should be connected, and short circuit posts No. 14 and No. 15. The remarkable flexibility of the set can be appreciated from the foregoing.

Figure 6 shows details of the cabinet, panel and instruments removed. This can be made of any wood desired, preferably 3/4 inch. For this reason only the important dimensions are given, and these are inside measurement to the top of the cabinet. The cabinet may be joined in any way desired, but the back must be screwed on only, so as to be readily removable for better access to the interior than can be obtained through the sliding top. The cover is fastened to the cabinet with separable hinges so that it may be removed by opening and sliding to one side. A lock should be fastened on the side of the cabinet near the bottom. A handle should be fas-

Drafting Supplies

We manufacture a full line of high grade supplies made under our own supervision. We know they are right.

Quality Plus

and at prices that appeal.

A Specialty—

Our

MONROE Drawing Table

A table of general utility made after our own ideas. Stands rigid and lasts a lifetime.

Let us quote on your needs

Ask for catalogue W

New York Blue Print Paper Co.

102 Read Street

New York City

O, What a Pal

was Mary, but say boy,
do you know an up-to-
the minute radio install-
ation is SOME pal too?

We manufacture high grade apparatus only.
Here is a good value—The Ace V. T. Socket—
with grid leak at $1.50 each. Better buy Ace equipment than be sorry you did not. Ask your dealer.

The Precision Equipment Company

2437 Gilbert Avenue, Dept. C, Cincinnati, Ohio
the articles to prevent them from being shaken around. Thus no space is wasted. In conclusion, the writer would unhesitatingly say that, were he planning a set for stationary use only, it would not differ in any essential particular from this portable one—which shows that he believes the efficiency of the set to be as great as it is possible to attain.

A Simple Wavemeter

By E. P. Hurley

The majority of radio amateurs and experimenters unfortunately are under the impression that a wavemeter is more or less a luxury rather than a desirable addition to the equipment of a modern radio station. This idea is refuted the moment they have installed and used it, for this instrument makes it possible to accurately determine the wavelength of their transmitting apparatus.

In the construction of the wavemeter, the feature that should appeal strongly to the amateur is that the condenser can be used in other circuits when not used in conjunction with the inductance as a wavemeter. The first two ½ inch discs with a center 1 inch in diameter. Hard rubber or formica can be used to advantage, instead of bakelite. The coil is now wound with 22 feet of 23/38 litz. Solid wire can be used if litz is not available. Two small holes are drilled in the coil and the ends of the wire brought through to connection marked "B." The detector support "C" is made from ½ inch bakelite. Two supports are made from spring brass and slotted at each end for coil connections and condenser binding posts. Binding posts are mounted on support and cup with rod and detector wire added. Figure 1 shows the arrangement as used by the author. Phone connections are made at "D."

The wavemeter is now ready for calibration. This can easily be done by comparison with a known wavemeter or for precision work the amateur can send the inductance and condenser, prepaid, to the Bureau of Standards, Washington, D. C., accompanied by a written request for the test, enumerating the articles and advising definitely of the test desired. Fees must accompany all.
Bigger Jobs Are Yet To Come

Many new names will be indelibly written on the Wireless Roll of Fame that are now entirely unknown.

These will be the names of men who are preparing now.

When the problem of making wireless available for every-day communication between individuals is solved the names of everybody's lips will be those of men who are studying now, getting ready to do their share.

Will YOUR name be one?

Do you take Wireless Seriously?

They contain the facts that will help you go ahead fast.

Profit by the summed-up knowledge of the men who have made wireless what it is today. Build on what you learn from them.

THE WIRELESS EXPERIMENTERS' MANUAL

By Elmer E. Bucher

The only book published that comprehensively covers the theory and design of amateur wireless transmitters and receivers. Construction of transformers, high voltage condensers, spark gaps, aerials, receiving sets for long and short wave length reception. Construction and operation of a primitive wireless transmitter, receiver, carrier, receiver, cascade amplifiers, prefocused and long and short wave receivers, quench-gap transmitters, methods of measuring the load impedance, and amplification of constant of vacuum tubes are explained.

The most complete textbook on the subject yet published. Cloth bound, 320 pages. Fully illustrated. Price... $2.25

PRACTICAL WIRELESS TELEGRAPHY

By Elmer E. Bucher

More than 6,000 copies of this book have been sold to date. It is used in practically every school, college, and university in this country. Nothing else is the recognized standard wireless text book.

It is the first wireless text book to treat each topic separately and completely, furnishing a progressive course from first principles to practical practice. Starting with elementary ideas, it progresses, chapter by chapter, over the whole ground of wireless—fundamentals, construction and practical applications. Size 6 x 9 inches, 320 pages, 340 illustrations, handsomely bound. Price... $2.25

RADIO TELEPHONY

By Alfred N. Goldsmith, Ph. D.

This complete text on radio telephony is intended for radio engineers, operators and experimenters, also radio technicians in the Navy, in the Service, and especially for men in the aviation service who handle radio equipment. Students and others who desire to be clearly informed concerning this newest and most interesting branch of electric communication need this book.

It is written in clear style, and presupposes very little knowledge of radio. Size 6 x 9 inches, 326 pages, 226 illustrations, Full cloth, stamped in gold. Price... $2.50

HOW TO PASS U. S. GOVERNMENT WIRELESS LICENSE EXAMINATIONS

By Elmer E. Bucher

P. S. --- Include a Subscription to THE WIRELESS AGE in Your Order.

A 7-20 CONCLUSION COUPON—Mail Today

Wireless Press, Inc.

326-28 BROADWAY, New York.

Enclosed please find $________ for which send me the books checked below.

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Experimenters' Manual</td>
<td>Bucher</td>
<td>$1.25</td>
</tr>
<tr>
<td>Vacuum Tubes</td>
<td>Bucher</td>
<td>$1.25</td>
</tr>
<tr>
<td>Radio Telegraphy</td>
<td>Goldsmith</td>
<td>$2.00</td>
</tr>
<tr>
<td>Radio Instruments and Measurements</td>
<td></td>
<td>$1.25</td>
</tr>
<tr>
<td>Practical Wireless Telegraphy</td>
<td></td>
<td>$1.25</td>
</tr>
<tr>
<td>How to Pass U. S. Govt. Wireless License Examinations</td>
<td>Bucher</td>
<td>75c</td>
</tr>
<tr>
<td>* The Wireless Age (one year)</td>
<td>With Book Order</td>
<td>$1.25</td>
</tr>
<tr>
<td>* The Wireless Age (two years)</td>
<td>With Book Order</td>
<td>$3.00</td>
</tr>
<tr>
<td>* The Wireless Age (one year)</td>
<td>Without Books</td>
<td>$2.00</td>
</tr>
</tbody>
</table>

When writing to advertisers, please mention the Wireless Age.
Prize Contest Announcement

The subject for the new prize contest of our year-round series is:

"SOME POINTERS ON RECONSTRUCTION"

Closing date, August 1, 1920.

Contestants are requested to submit articles at the earliest practicable date.

Prize Winning Articles Will Appear in the October Issue.

No one would care to venture that American amateurs are not observing. Each one of us, during the radio year just gone by, has learned many new applications of this wonderful art which has enabled us to increase the efficiency and the range of our installations. What are these things we have learned and how have they enabled us to increase our range and why? Each of us would like to hear of the other fellow's troubles and how he remedied them. It is in this way that amateur stations as a class will increase in efficiency, and we should all welcome this opportunity to do our bit toward forwarding our mutual interest.

PRIZE CONTEST CONDITIONS—Manuscripts on the subject announced above are judged by the Editors of THE WIRELESS AGE from the viewpoint of the ingenuity of the idea presented, its general utility, and originality and correctness in the description. Originality of thought is not needed, but neatness in manuscript and drawing is taken into account. All manuscripts must be submitted to the address below. The closing date is given in the above announcement. THE WIRELESS AGE will award the following prizes: First Prize, $10.00; Second Prize, $5.00; Third Prize, $3.00, in addition to the regular space rates paid for technical articles.

All manuscripts should be addressed to the Contest Editor of THE WIRELESS AGE.

apparatus and remittances made by money order drawn to the order of the Bureau of Standards. The authority for a specially reduced fee for amateurs is set forth under paragraph No. 7, testing schedule No. 90, and reference should be made to this paragraph when forwarding the wave- meter. The fee is 50 cents per point.

With the condenser used as described above, figure 2 shows the curve for inductance. After the wavemaker has been properly calibrated it can be used for calibration of a receiving circuit by connecting a buzzer battery and switch in series to "D." By coupling the wavemaker coil to the coil to be calibrated, a current will be set up at the point of resonance which can be heard in the telephone of the receiving circuit. By referring to the curve the wavelength can be easily ascertained.

For the calibration of the transmitting circuit, the wavemaker is placed near the transmitter and the condenser handle rotated until the signals are the loudest at which point the condenser reading should be taken and reference made to the curve for wavelength.
Club to Time Races

The Radio Club of Burlington (Iowa), organized three months ago, announces its regatta held on July 2nd, 3rd, 4th and 5th there is to be a Regatta held at Burlington under the auspices of the Mississippi Valley Power Boat Association. The Radio Club of Burlington has been given the task of timing the races which are to be held on a one mile course between two bridges. The fact that some of the fastest racing boats in the world, such as the Miss Detroit III and others capable of making a speed of almost seventy miles an hour, and because the officials know the speed and accuracy of Radio, the club has been given this important task.

The following is the secretary's brief description of the method which will be employed in timing the races: "We are to have two ½ kw. transmitting stations, together with receiving sets, one at the starting and one at the finishing points of the one-mile course. In order to avoid a possible mistake and to insure accuracy there will be three official timers and two operators at each station, the operators being members of the club. When the fast boats near the starting line a dash will be transmitted from the station located at this line. The ending of this dash will be a signal that the boats have crossed the starting line, and exactly at the ending of this dash the three official timers at both stations will set their stop watches. When the boats cross the finishing line the order of things will just be reversed."

Secretary H. H. Waugh says: "We realize that our task is to be a tedious and painstaking one but nevertheless we intend to put it across in the right manner and we believe that we have the honor of being the first club to try a stunt of this kind. We will also relay friendly messages, announce the winners of the various races, send re- (Continued on page 42)
“Sparks” says:

“Lasting Satisfaction

is measured to a great extent by the initial quality of the radio apparatus you purchase.”

Our high grade line of Standard-make Commercial and Amateur Radio equipment embodies the latest ideas in design and workmanship, which assures you of lasting satisfaction under all operating conditions.

Our Specialty

is rendering you such Service that you may always know your interests will be looked after as to Quality and price.

Call on us when in town. Your wants will be quickly and Satisfactorily looked after.

Our latest catalog is yours for 10 cents to cover postage. Write for it today.

International Electric Co.
Eugene Dynner, President
226-E Fulton Street, New York, N. Y., U. S. A.

The New Jersey Radio Club was formed at a meeting held in the New Jersey School of Radio-Telegraphy, Elizabeth. There were present about thirty wireless students, from this section of the State, who attend the evening class at the Radio School. It is expected that about ten students of the day class will also join the club. A. V. Hill, of Elizabeth, was elected president; and C. J. Frank, also of Elizabeth, secretary and treasurer.

Meetings will be held every Thursday evening at the school, 218 Broad street, Elizabeth, which is the club’s headquarters. A large ½ KW Marconi transmitting set with a radius of 350 miles; also a receiving set with a radius 3,000 miles has just been installed in the school.

In the near future a trip to the Fleet Supply Base and Bush Terminal, Brooklyn, will be made under the supervision of Lieut. H. Armerding, U. S. N. R. F., who is the principal at the Radio School. Other trips of this sort are in prospect for the members of the club.

The Camden, N. J., Radio Club was organized about a month ago to assist the amateur in the fascinating study of wireless. It has been decided to erect an antenna on the roof of the Y. M. C. A., and install a set for the members’ use. The technical committee has been elected to help any amateur who has difficulty with his set. There is to be a wavemeter for the use of the members, which all amateurs will appreciate. There is to be in connection with the club an apparatus exchange where members may buy or sell any wireless apparatus.

The club has for its president and guide Mr. Knierman, who is at the head of the League Island Radio Testing Laboratory. He is qualified and willing to help the members, so the best thing an amateur can do is to get his friend and go to the Y. M. C. A., room F.
A Loop Transmitter for Local Work
(Continued from page 25)
the instrument table as shown in figure 2. The loop should be either of solenoidal or pancake form, the latter being easier to build. It is wound with two turns, spaced 2 inches apart with a conductor whose cross-section is approximately equal to that of the closed circuit conductor. This can be of litzendraht, of lamp cord in parallel, a cable of magnet wire, or of copper strip. Flexible leads connect the loop to the apparatus.

Those interested in the experimental side of loop antennae for transmission should read Scientific Paper No. 354, Bureau of Standards, by J. H. Dellinger, where there is given valuable formula for calculating distance, received current, etc., using coil antennae. The writer, when working a ½ kw., 500-cycle transmitter of a well-known make, put 8 amps into the loop described above, when using a 0.007 mfd. condenser and optimum coupling. The wavelength was 300 meters. Using a crystal detector, signals were loud at 10 miles. Amateurs within a radius of 15 miles have been worked. The maximum range has not, as yet, been determined.

It is suggested that experimenters should try the loop in a horizontal plane, try to make it uni-directional by combining it with a straight antenna, try enlarging the inductance of the closed circuit, into a loop; in fact, there is no end of experiments one can try when your entire antenna is just above the operating table!

Portable Receiver
(Continued from page 29)
Now after the summer season, if the amateur wishes to use this receiver in his home station, the leg fastenings, front cover and handle can be removed and it is ready for station use. The front cover was designed to hold a portable single wire antenna, telephones, high potential battery and tools.

The World’s Largest Wireless Station

“At Honolulu, H. I. is located the largest wireless station in the world. This station is equipped with a 300 K. W. Crocker-Wheeler radio generator.”

“Radio generators were specially designed by the Crocker-Wheeler Co. for the Marconi around-the-world service in sending messages from Funabashi, Japan, to Bolinas, California, 6512 nautical miles.”

C.W. Motor Generator Sets for Wireless Telegraphy and Wireless Telephony are made for a wide variety of purposes including land stations, ships, portable stations, aeroplanes, dirigibles, submarine chasers and train signaling.

When writing to advertisers, please mention THE WIRELESS AGE.
(Continued from page 39)部件和导电的短路发生器, 以及在一般情况下, 使用一个强大的 1 kw. 转换器站 (Call 9 ACZ) 与一个短波再生接收器, 以及一个组合的步骤, 放大式。"

Queries Answered

Answers will be given to this department to questions of subscribers, covering the full range of wireless subjects, but only those which relate to the technical phases of the art and which are of general interest to readers with similar equipment here. The subscriber's name and address must be given in all letters and only one side of the paper written on, where diagrams are necessary, they must be on a separate sheet and written with India ink. Not more than three questions of the same letter can be answered in the same issue. To receive attention these rules must be rigidly observed.

Positively no questions answered by mail.

J. P. T., Kingsbridge, N. Y. C.:

In order to get the 25-mile radius with the radiophone outfit which you mention, it would be necessary for you to use a 400-volt generator. A 60-volt B battery would probably reduce your radius to something like 3 or 4 miles.

W. F., Troy, Ala.:

We gather from your letter that you are unable to receive signals on either of your two aerials and blame this to lack of a good ground connection. If you have a connection soldered to the city water system and the rest of your apparatus is in the proper shape, you should get some indication of signals. A connection to the water system is, however, not always the best ground possible. If you are still located as to be in a position to erect a counterpoise, we would suggest that you do this. A counterpoise provides an antenna system of high efficiency, regardless of local terrain conditions.

E. N. W., New York City:

We print herewith your corrected diagram covering connections for three vacuum tubes and a radio telephone outfit.

You will probably be able to buy a 2,000 volt D.C. generator from the Electric Specialty Company, Stamford, Conn.

The fundamental wavelength of your antenna is approximately 243 meters.

F. H. M., Albany N. Y.:

The following formula will enable you to find the required condenser capacity for a radio transformer:

\[C = \frac{2W}{E_0 n \times 10^4} \]

where \(C \) is in farads, \(W \) in watts and \(n \) the spark frequency.

J. J. A., Washington, D. C.:

It would be impossible for us to give you instructions covering the construction of a wavemeter having a range of 150 to 12,000 meters. In these columns various articles have been printed from time to time within the last few months covering wavemeter construction. You are able to get sufficient information from these to enable you to build such an instrument.
J. G., Tranquille, British Columbia:

Although the use of 110 volts D.C. is not to be recommended in case you are expecting to use an amplifier in conjunction with your detector, it can be done. A circuit of this sort was published in a recent issue.

In case you have only two tubes, it would be better to use the second as an audio frequency amplifier, rather than a radio frequency amplifier.

Marconi “Q” and “V24” valves are manufactured by the British Marconi Company. “VT1” and “VT2” values are marketed by the Marconi Company and are identical with the Audions sold by the De Forest Company. The amplification factor of the “VTs” is about 7 to 1. We regret that we have no data available, giving the characteristics of the tubes manufactured by the British Company, but we presume that they are at least equally to the product of the American Company.

F. A. W., Woodhaven, N. Y.:

In a recent issue we published a correction covering the circuit diagram shown on page 15 of the April issue. The penciled corrections which you have made on enclosed drawing are O. K.

J. C., Jr., San Jose, Cal.:

The fundamental wavelength of your antenna is approximately 225 meters. In case your antenna terminates on one end at the house in which your radio set is located, it would be impracticable to attempt the conversion of your L antenna into a T antenna. The lead-in from the T antenna should be as nearly vertical as possible. We suggest that you cut off twenty (20) feet of the end of your antenna.

In the June issue of Wireless Age, several wave meters were described, together with information which will enable you to construct one for short waves.

W. S., Port Williams, Nova Scotia:

In the construction of your two-stage audio frequency amplifier, you will find that the best and most convenient method for securing the correct negative grid potential will be by bringing the filament side of the transformer secondary to the slider of your rheostat and connecting the rheostat slider to the negative terminal of the six volt filament light battery. Under these circumstances, in case Marconi “VTs” are used, a resistance of about two ohms will always be used, between the filament connection of the transformer and the filament itself.

If we have two oscillatory circuits inductively coupled, any change of coupling between the two circuits will change the wavelength of both circuits, due to their mutual inductance. The fact that the note of a received undamped signal changes when you vary the coupling in your receiving transformer is due to this effect and only in a minor degree to a variation of capacity in either of the two circuits.

We very much regret that we are unable to tell you at the present time what stations have been assigned the calls PTA, NDN, VAV, and WBF. We will endeavor to secure this information for print at a later date.

H. M., Newport News, Va.:

We regret that we have no actual constructional details covering the uni-control receiver invented by Roy E. Thompson. It is to be presumed, however, that the size of wire and the insulation is of slight importance. If you are considering the construction of such an instrument, we suggest the use of No. 24 double cotton covered, or a No. 28/30 Littendrath double silk covered.

No Seals - No Secrets - But Service!
There is only one Relay Receiver the

THE GREBE RADIO

TYPE CR-3

Relay Receiver

The use of this Receiver is licensed under the original Armstrong and Marconi patents.

THE GREBE RADIO Guarantee

The GREBE RADIO guarantee is absolute and unconditional. Each instrument manufactured by us comes with a guarantee to the owner. This guarantee does not terminate with the sale.

The CR-3 Receiver may be inspected at any of the following progressive dealers:

- Bakar-Varner Electric Co., Los Angeles, Calif.
- Edes and Phillips, Brooklyn, N. Y.
- Continental Radio and Electric Corp., New York
- Hammond Radio and Electrical Supply Co., New York, Chicago, St. Louis
- Farnsworth Electric Co., Inc., New York City
- Farnsworth Electric Co., Inc., New York City
- Harris-Wayne Co., Inc., Washington, D. C.
- Harbert-Still Electric Co., Houston, Texas
- School of Wireless Telegraphy, Philadelphia, Pa.

SOMETHING NEW!

DUO-LATERAL WOUND COILS

THE DUO-LATERAL COIL now being offered for the first time is not to be confused with any other type of machine wound inductances which have been on the market for some time.

The Duo-Lateral Coil, made in various sizes for general and specific application, has the following distinctive advantages which make it superior to any other coil for amateur and commercial work alike:

1. Lower natural period.
2. Lower high frequency resistance.
3. Very low distributed capacity.
4. Lower direct current resistance.
5. Higher self inductance.
6. Mechanically stronger.

Bulletin 111 containing valuable engineering data, constants and prices of numerous sizes of Duo-Lateral Coils covering practically every wavelength used, is yours for the asking. MANUFACTURERS, DEALERS, JOBBERS and DISTRIBUTORS—write for our proposition.

PACENT ELECTRIC COMPANY, Inc.

BUILDERS & SPECIALISTS OF RADIO, ELECTRICAL & LABORATORY EQUIPMENT

Telephone: 5810 **New York City**

When writing to advertisers please mention THE WIRELESS AGE

www.americanradiohistory.com
A More Improved INDICATING DIAL

This new dial made of same quality and workmanship as our famous smaller one, is marketed to fulfill the demand for a dial to fit the standard ¾ inch Shaft. Made of black polished composition with radial lines and figures accurately engraved and filled with brilliant white. Diameter is 3¾ inches; and 3/16 inches thick. Bevelled edge. Knob has set screw to clamp shaft of instrument.

OUR NEW CATALOG now ready for distribution contains 24 snappy pages of news and descriptions of all standard Radio parts, including the above indicating dial.

Sent anywhere upon receipt of 10c.

For sale at all Radico Agencies and by A. H. CORWIN & CO.

4 West Park Street
Newark, N. J.

Here they are
Meraco Perfect "B" Batteries
Standard BA-2 TYPE The same type of a battery as used by the U. S. ARMY and NAVY SIGNAL C. RPS. Fully warranted on a money back basis. Once you use these batteries you will use no other. Meraco Perfect "B" Batteries are made in three sizes and should be ordered by catalog number.

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Cts.</th>
<th>Volts</th>
<th>Size</th>
<th>Shelf Life</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA-2XPR-1K</td>
<td>15</td>
<td>22.5</td>
<td>3/4 x 2 1/4</td>
<td>4 months</td>
<td>$1.00</td>
</tr>
<tr>
<td>BA-2XPR-2</td>
<td>15</td>
<td>22.5</td>
<td>3/4 x 2 1/4</td>
<td>4 months</td>
<td>$1.00</td>
</tr>
<tr>
<td>BA-2XPR-3</td>
<td>30</td>
<td>45</td>
<td>3/4 x 2 1/4</td>
<td>1 year</td>
<td>$4.50</td>
</tr>
</tbody>
</table>

Watch this magazine for future advertisements containing our big offers.

MERCURY RADIO APPLIANCE CO.

DEP. D-TI
672 Broadway
Brooklyn, N. Y.

NEW MOTORS

FACTORY GUARANTEED - ALL SIZES - IN ORIGINAL BOXES

Your Opportunity

to Buy New Guaranteed Electrical Apparatus at Standard Manufacturers.

<table>
<thead>
<tr>
<th>Single Phase Motors</th>
<th>110 volts, A. C. & D. C.</th>
<th>$25.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. P.</td>
<td>1/8</td>
<td>1/16</td>
</tr>
<tr>
<td>1/16</td>
<td>1/32</td>
<td>$1.00</td>
</tr>
<tr>
<td>1/32</td>
<td>1/64</td>
<td>$0.75</td>
</tr>
<tr>
<td>1/64</td>
<td>1/128</td>
<td>$0.50</td>
</tr>
<tr>
<td>1/128</td>
<td>1/256</td>
<td>$0.30</td>
</tr>
</tbody>
</table>

Polyphase Motors

Charging Generators Suitable for All Lighting, Battery Charging and Power Requirements.

<table>
<thead>
<tr>
<th>Single Phase</th>
<th>110 volts, A. C. & D. C.</th>
<th>$25.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. P.</td>
<td>1/8</td>
<td>1/16</td>
</tr>
<tr>
<td>1/16</td>
<td>1/32</td>
<td>$1.00</td>
</tr>
<tr>
<td>1/32</td>
<td>1/64</td>
<td>$0.75</td>
</tr>
<tr>
<td>1/64</td>
<td>1/128</td>
<td>$0.50</td>
</tr>
<tr>
<td>1/128</td>
<td>1/256</td>
<td>$0.30</td>
</tr>
</tbody>
</table>

Battery Charging Supplies

To operate on A. C. 110 volts, single phase. Voltage as specified.

HOT WIRE METERS

12A Roller-Smith, range 2.5 amps, $.25
No. 12B Shunt to enable same meter to read 3 amperes, $.75
No. GR-100 General Radio, range 2.5 amp, $.50
No. GR-200 General Radio, range 2.5 amp, $.50

Note.—These meters are splendid values.

F. D. PITTS CO., BOSTON, MASS.

AMPLIFIERS

No. 200 De Forest 2 step with "B" Battery, $55.00
No. 200 De Forest 2 step with "B" Battery, $55.00
No. 200 De Forest 2 step with "B" Battery, $55.00
No. 200 De Forest 2 step with "B" Battery, $55.00
No. 200 De Forest 2 step with "B" Battery, $55.00

AMPLIFYING TRANSFORMERS

No. A-2 Acme mounted, $7.00
No. A-2 Acme mounted, $7.00
No. B-25W Federal, $5.00
No. Y-735 Clapp Eastham mounted, $7.00
No. Y-735 Clapp Eastham mounted, $7.00

ANTENNA CHANCE-OVER SWITCHES

No. 403 Murdoch, capacity 1 kW, $4.50
No. 403 Murdoch, capacity 1 kW, $4.50

AUDION CONTROL PANELS

No. A-40 De Forest 2 step with "B" Battery, $12.00
No. A-40 De Forest 2 step with "B" Battery, $12.00
No. A-40 De Forest 2 step with "B" Battery, $12.00
No. A-40 De Forest 2 step with "B" Battery, $12.00
No. A-40 De Forest 2 step with "B" Battery, $12.00

BUZZERS

No. 77 Murodc, $2.00
No. 77 Murodc, $2.00
No. 77 Murodc, $2.00
No. 77 Murodc, $2.00

CONDENSERS

No. CV-500 De Forest, 2000 M. F., mounted, $6.25
No. CV-500 De Forest, 2000 M. F., mounted, $6.25
No. CV-500 De Forest, 2000 M. F., mounted, $6.25
No. CV-500 De Forest, 2000 M. F., mounted, $6.25

F. D. PITTS CO., BOSTON, MASS.
WESTERN ELECTRIC RECEIVERS

These are the same type of receivers furnished to the United States Signal Corps and Navy Department and were known in Army circles as the "P-11." The Navy knew them as the "CW-834." They are without exception the best receivers on the American market today. Price $13.00 per pair.

In addition to these receivers we carry one of the most complete lines of high grade radio apparatus in America.

"We make or sell Everything Radio"

3807 Fifth Ave. THE RADIO ELECTRIC COMPANY Pittsburgh, Pa.

NEW SHORT WAVE COUPLER No. 747

Comes up to the CHAMBERS' usual High Standard. Especially adapted to long distance Amateur work. Tunes to 800 meters. Does away with the dead-end effect so common when large coils are used for short wave reception. Malagony finished work. Brass metal parts. Has new slider feature. Secondary has six taps. Wound with Red Enamelled Wire, or, secondary with Green Silk if so ordered. Measurements over all, length 12 inches, width 4½ inches, height 5 inches.

PRICE - $10.00

F. B. CHAMBERS & CO.,
2046 ARCH STREET - PHILA., PA.

AT LAST

Our new catalogue is here showing the most complete line of wireless apparatus ever displayed in catalogue form before. 36 hour shipments in most all goods stocked and shipped from our own stock. This catalogue consists of 128 pages of well displayed apparatus, wireless hookups, radio symbols and other interesting reading matter, and 60 cents in stamps will bring this book to your door.

NOTICE

Wireless Schools College. Vocational Training Schools and Wireless Clubs. - A number of our new catalogue will be sent to those having the proper authority to write in for same.

NATIONAL RADIO SUPPLIES CO.
Dept. 114
208 Ninth St., N.W. Washington, D.C.

The B & H Mounting for Radioso, DeForest and other coils

The single support allows easy change of coils with ample length of rod to allow very loose coupling. The square rod prevents coils from turning. Special Stand and Centers Made to Order.

THE MOST EFFECTUAL STAND ON THE MARKET

Pat. Applied For

No. 1R Complete with 3 Binding posts, flexible leads and 3 Coll Centers. $6.98 $4.98 $7.98
No. 1R Complete with 3 Coll centers, but with flexible leads or Binding rods

No. 3R Extra Coll Centers, (gives size)

$6.10 $4.90 $5.60

[Address:
Finish in Weighed Oak

HIGHEST FREQUENCY CABLE (LITE)

DSC, Enamelized—any other size and covering to order. Send stamp for further particulars.

WIRELESS

A. T. Hovey

81 BELVIDERE STREET

BOSTON-15-MASS.

THE JONES VACUUM TUBE CABINET RECEIVING TRANSFORMER

The Ideal Set for the Experimenter

Extracts from unsolicited Testimonials: Originals on file.

"The set seems very well adapted to Radio Telephone work, and has given satisfaction in all ways."

"Regarding my JONES Cabinet set, which I received about a month ago. It works fine. My set works as good as any set around Detroit."

"Permit us to express our deepest satisfaction in reference to your receiving set recently purchased. From exacting tests, we find it meets all requirements. It certainly is an ideal set."

Our Receiving sets employ a highly perfected Loose Coupler method of wave reception, in conjunction with latest and most approved Vacuum Tube Circuit, all assembled within a metal frame that can be instantly removed from its cabinet. Fitted with modern "DEAD END" switches that balance both sides perfectly, practically eliminating loss of energy, and greatly increasing aerial strength and selectivity. Gets all stations, instantly, from the smallest Amateur spark, to the long undamped musical note of the High Power Government Stations. Unexcelled for Wireless Telephone reception. No complicated tuning arrangements, simply vary the coupling and hear them all come singing in. Read the above testimonials: They tell you plainer than we can, what our sets are doing. Bulletin describing them upon request.

THE JONES RADIO COMPANY, Laboratory, 364 Monroe Street, BROOKLYN, N. Y.
More than 200 young men are enrolled in our classes preparing for employment in the Merchant Marine.

The demand for EXPERT WIRELESS OPERATORS is enormous. The position is most remunerative and the work is unusually pleasant.

The junior ship operator receives $100 per month, the senior $125 per month, to which is added $3.00 per day subsistence pay when the ship is in port.

You may enjoy the life of a globe-trotter and receive this salary by studying from three to four months at the Institute.

Prospective applicants are urged to investigate our course before enrolling elsewhere. Remember that by the greatest number of assignments to the ship service are made in New York City.

The Trans-oceanic Division of the Marconi Company is in need of expert Continental Morse operators. Write us for facts regarding the present radio situation.

We have more than 6,000 graduates to our credit.

AMERICA'S FOREMOST SCHOOL
FOR INSTRUCTION IN
WIRELESS TELEGRAPHY
Afternoon and Evening Classes throughout the year.

Branch School: New Call Building, New Montgomery St., San Francisco, Cal.
Address all inquiries to Director of Instruction

WINN Hi-Quality WIRELESS APPARATUS
"WINN" PORTABLE WIRELESS SET No. 149

"WINN" RECEIVING TRANSFORMER
This instrument gives good results, receiving wave lengths up to twenty-five hundred meters. To simplify the use of Transformer for beginners, this one is to be used in place of tuning coil and tuning inductances, where distance and shorter tuning is required. The aerials in ground are connected with the two binding posts below the primary. The secondary terminals connect with the two remaining binding posts. Transformer is made by means of a slider mounted concentrically on top of the primary. All metal parts heavily nickelled. Base and end pieces of bich highly polished.

"WINN" TRANSMITTER COIL
This coil is especially designed for wireless and high frequency work. Produces heavy, energetic spark. Capable of transmitting up to 55 miles under favorable conditions. "Win" design, and the most sensitive vibrator made. Transmitter complete with exception of Spark Gap and Key. Normal voltage required, 10 to 12 volts, although higher voltage may be used. Mounted on mahogany finished cabinet, with locked plated mounting. Our Detector is a class by itself and the outcome of long and careful experiments to produce an article which does away with all the objections of the ordinary Detector. Enclosed in glass, dust-proof cylinder, which keeps the mineral clean and free from vibrations. This feature alone bears out our claim for general excellence of any and all "WINN" apparatus, all HI-GRADE.

Your dealer will supply you with any "WINN" HI-QUALITY Wireless Apparatus. If not send his name and we will supply you promptly. Write for our "Supplement A" advance catalog, which contains complete information about the entire "WINN" HI-QUALITY Radio goods. THE WIRELESS AGE
John Firth & Company, Inc.
81 NEW STREET, NEW YORK

SOLE DISTRIBUTORS OF THE BALDWIN MICA DIAPHRAGM TELEPHONES, BALANCED ARMATURE TYPE. THE MOST SENSITIVE TELEPHONE ON THE MARKET, STANDARDIZED BY THE NAVIES OF THE WORLD. SCIENTIFIC INVESTIGATORS PRONOUNCE THE BALDWIN "TYPE E" THE ONLY PHONE SUITABLE FOR USE WITH THE MARCONI VACUUM TUBE.

Type C—Navy Standard
Type E—Newest Type
Type F—Smaller Type

Write for Catalogue

MANUFACTURERS OF U. S. NAVY STANDARD LEYDEN JARS, SILVER AND COPPER DEPOSIT, KOLSTER PORTABLE DECMETERS, WAVE METERS, AND ALL HIGH CLASS MEASURING INSTRUMENTS.

Federal Radio Accessories and Parts

Are Distinguished for Their Reliability, Quality and Efficiency

WRITE FOR BULLETIN 101 AND 102

No. 226-W Type A

AUDIO FREQUENCY Transformer $7.10 each

CIRCUIT WITH TWO STAGE AMPLIFIER

One 226-W Transformer with one Marconi V. T. gives an energy amplification of 400 times.
(Audibility amplification of 20 times.)

Two 226-W Transformers with two Marconi V. T.'s give an energy amplification of 160,000 times.
(Audibility amplification of 400 times.)

Liberty Head Set $12.50 per set

Federal Telegraph and Telephone Co.
Buffalo, New York
The "Exide" Battery for Wireless Service

In Wireless Service as well as in many other fields where the application of storage battery power is an important factor the "Exide" has successfully and dependably met the most exacting demands made upon it. They have conclusively proved their right to first consideration for Wireless Service and Emergency Lighting.

Thirty-two years of storage battery building experience is back of the "Exide"—that experience alone is proof positive that the Exide is as nearly 100% right as it is possible to make it.

THE ELECTRIC STORAGE BATTERY CO.
The largest manufacturer of storage batteries in the world

New York Boston Philadelphia, Pa. Chicago Kansas City Denver San Francisco St. Louis
Minneapolis Cleveland Atlanta Detroit Rochester
Special Canadian Representatives—Chas. E. Good Engineering Co., Limited, Toronto and Montreal

Batteries are made by this Company for every storage battery purpose

Bunnell Instruments Always Satisfy

Our Jove Detectors Simplest and Best Beware of Infringing Imitations

Sample mailed for $2.00 Tested and Guaranteed Galena 25 cents
Our Keys, Spark Gaps, Condensers, Transformers, etc., are high grade but inexpensive
Distributors of Standard Electric Novelty Company Type R "Cyclone" Audion Batteries. Also De Forrest, and all other makes of High Grade Wireless Apparatus.
Send stamp for our No. 42-W Catalog.

J. H. BUNNELL & CO. - - - 32 Park Place, New York City, N. Y.

The Atlantic Radio Company Variable Condenser

THE ATLANTIC RADIO COMPANY VARIABLE CONDENSER, illustrated above, is made in two capacities—.0005 Mfd. and .001 Mfd. The rotary plates are rounded on one end, affording a straight-line capacity—a valuable feature in wave meter work. The condenser is furnished unmouted only, but with the addition of Dial and Knob, if desired. Dial is moulded composition, scale in white—0-100 reading. Bakelite Knob. We can guarantee this condenser in every way as to quality, reliability and satisfaction. The low price is decidedly an innovation.

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Unmounted</th>
<th>With Dial and Knob</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0005 Mfd</td>
<td>$5.00</td>
<td>$6.00</td>
</tr>
<tr>
<td>.001 Mfd</td>
<td>6.25</td>
<td>7.25</td>
</tr>
</tbody>
</table>

"BULLETIN 14"—describing and illustrating the best in RADIO EQUIPMENT will be mailed upon receipt of 10 cents in stamps—this amount may be deducted on first order of $1.00 or over.

ATLANTIC RADIO CO., Inc.

NEW ENGLAND DISTRIBUTORS "RADISCO" PRODUCTS

88 BROAD STREET, BOSTON 9, MASS.
Manufacturers!

Wireless apparatus for commercial, experimental and amateur use has recently moved a considerable number of notches ahead.

Yesterday’s Construction Don’t Go Today

Handsome appearance must be combined with efficient working. The true enthusiast looks for both in the apparatus he buys nowadays.

This is particularly true of the insulation used. And the engineers and amateurs of widest experience have learned that when genuine

BAKELITE-DILECTO

is used, SATISFACTION is SURE.

Combine the popularity of this wonderful insulation with the best work you can do. Tell your customers that you use the genuine BAKELITE-DILECTO—and watch your sales grow.

BAKELITE-DILECTO WILL CUT YOUR MANUFACTURING COSTS—
because it comes in sheets, rods and tubes. This means the minimum of fitting work. It is waterproof, permanent and strong.

We also manufacture Vulcanized Fibre and Conite for special insulating purposes.

Write us about your requirements. Our engineers will gladly show you how our products will solve your insulating problems.

THE CONTINENTAL FIBRE CO.

NEWARK, DELAWARE

233 Broadway, New York City.
525 Market St., San Francisco, Cal.
Cor. King and Yonge Sts., Toronto, Ontario, Canada.

332 S. Michigan Ave., Chicago, Ill.
411 S. Main St., Los Angeles, Cal.
301 Fifth Ave., Pittsburgh, Pa.
GRIM necessities of war required the development of a Standard Induction Coil, powerful enough to propagate signals of great intensity over short distances, rugged enough to outlive the hazards of everyday trench service, dependable enough to entirely preclude the possibility of failure at the critical moment. The Amrad Induction Coil—a product of American engineering, met the supreme test of the hour in characteristic American fashion. Honorably discharged from the battlefields of France, it is now available in a new form best adapted to meet the peace-time demand for a standard induction coil capable of maintaining reliable communication over moderate distances. As the Amrad Induction Coil is the only available coil especially designed for short wave radiotelegraphy it is unquestionably the standard and as such merits no comparison. Bulletin P containing full description sent upon request. Prices: 6 volt, $35.75; 32 volt, $38.50.

Dealers: Become the recognized Amrad Retailer in your locality. Write for our new terms made effective June 15th.

Radio Operators. Send us your station call letters and name of nearest radio retailer and we will place you on our mailing list for one year, forwarding our latest bulletins as issued.

AMERICAN RADIO AND RESEARCH CORPORATION

15 Park Row
New York

Address all Communications to New York

Factory and Laboratory
Medford Hillside, Mass.