The Ideal TUBE for Vacation Time

At the seashore—in one of our great national parks, or while motoring you will find the Cunningham Dry Battery Detector and Amplifier, Type C-299, the ideal Tube for your portable receiving set. The special filament of this tube having a current so low that it may receive its supply from standard No. 6 Dry batteries or even from ordinary flashlight batteries, makes possible this entertaining application of Radio in places far remote.

Your dealer can give you useful suggestions for the purchase or construction of a highly efficient and practical portable Radio Set. Make this a Radio Summer.

Cunningham C-299 Detector and Amplifier Tube
C-299 3 volts .06 amp. Dry Battery Detector and Amplifier...$5.00
Other Cunningham Radio Tubes
C-301A—6 Volts 1.4 amp. Amplifier...$5.00
C-300—6 Volts Gas Content Detector...$5.00
C-11—11 Volts 25 amp. Dry Battery Detector and Amplifier, Special Base...$5.00
C-12—Similar to C-11 with standard base...$5.00

Patent Notices
Cunningham tubes are covered by patents dated 2-18-08, 2-19-12, 12-30-13, 10-23-17 and others issued and pending.Licensed for amateur, experimental and entertainment use in radio communication. Any other use will be an infringement.

Cunningham 40-page Data Book fully explaining care and operation of Radio Tubes now available by sending 10c in stamps to San Francisco office.

Cunningham Inc.

Branch Home Office:
182 Second Street Branch
CHICAGO SAN FRANCISCO NEW YORK
The Peerless TWIN-AUD

Greater Volume and Clearer Reproduction

The Radio world will be astounded with TWIN-AUD results — in its novelty, likewise in its distinction. The quality of reproduction and volume of sound prove its value — its pre-eminence is established by its performance.

Why use ordinary transformers when the new and marvelous TWIN-AUD will "stop that howl" and transform noise into melody, bringing new delights through its remarkable performance.

Why use two ordinary transformers at added cost when one TWIN-AUD will give greater results.

Complete more compact Finer in appearance More substantial in construction
It can be used in any circuit of audio amplification. Recommended for super heterodyne and neutrodyne. Greater output per stage than any other A.F. transformer. It can be used with any make of amplifier tube.

It stands out in performance as it stands out in appearance

Be among the first to cash-in on the demand for TWIN-AUDS

Peerless
Radio Corporation
17 Washington Street
Wellesley-Massachusetts

Thoroughly Tested
Fully Guaranteed

When writing to advertisers please mention THE WIRELESS AGE
August, 1924 — Contents

Editorial Chat ... 14
The Dark Horse on Radio Pike 17
June Conventions and November Elections, By William A. Hurd 18
Pictorial Section .. 22
A Radio System Built of Air Castle Dreams, By Harvey Clawson 26
Senators Howell and Dial on Senate Proceedings 30, 31
To Those Who Attend Church, By Rev. H. F. Fulton 33
How I Made a Career of Home and Radio, By Mrs. Christine Frederick 34
Radio in the Canadian Wilderness, By Sinclair Arthur 38
The World of Sound, By John P. Milton, B. S., Ph. D. 38
East Meets West in the Great Mid-West 41
World Wide Wireless .. 48
Moore and Music in Marine, By Stuart Hyde Hawkins 50
The y-Tube Fussione, By A. H. Cubberly 51
What's in a Name? .. 54
Afloat and Ashore with the Operator, By W. S. Fitzpatrick 55
European Over-Sea Duplex Radio Telegraphy, By Dr. Albert Neuberger 58
What Selectivity Accomplishes, By Dr. Alfred N. Goldsmith 59
Tempering the Weather, By S. R. Winters 60
The Super-Tone Amplifier, By Robert Alan 61
Information Desk ... 64
Methods of Wavemeter Calibration, By Maurice Buchbinder 65
Subscription Contest .. 67
Humor ... 68
The A B C of Your "C", "B" and "A" Batteries 69
Radioviewing the Industry 70
New Appliances and Devices 72
Selected Radio Hook-Ups .. 74
Broadcasting Station Directory 76
Amateur Radio Stations of the United States 95

Your Authors

REV. HERBERT F. FULTON (To A, Those Who Attend Church) was born in West Springfield, Mass., January 1, 1884. Following his preparatory school education, he attended Lowell Business Institute and Worcester Business Institute. Later he studied for the ministry at Boston University. Since then he has held pastorate in Oxford, Massachusetts, Boston, New York, and Hampden. Rev. Fulton is special correspondent for The Wireless Union, and has written articles on rural life for The Union. At Boston University he specialized in "Rural Sociology and Psychology."

MR. STUART HYDE HAWKINS (Moore and Music in Marine) graduated from high school, then enlisted for the war. During his service he was chosen for the U.S. Naval Academy at Annapolis where he studied for three and a half years. The close of the war somewhat changed his outlook on life. It was his natural desire to write, and since the war released him from military obligations, he gave up the sword of pen, and stored his apprenticeship among New England newspapers. Later he studied art in New York. Accepting the publicity position at Broadcast Central (WJZ) he rapidly gained recognition. Mr. Hawkins has since contributed many articles and stories to well known publications.

MR. MAURICE BUCHBINDER (Wavemeter Calibration) is a graduate of the College of the City of New York. He studied radio under Dr. A. N. Goldsmith. From 1917 to 1920 he was in the Navy Department, Philadelphia, supervising destroyer radio installations. He was Maintenance Engineer for the International Radio Telegraph Company from 1920 to 1921. Since then he has been engaged at Columbia University with activities including dentistry as well as radio.

PUBLISHED MONTHLY AT WIRELESS PRESS, INC., 326 BROADWAY, NEW YORK

Los Angeles, Calif., 410 S. Spring St., Chicago, Ill., 410 N. Michigan Ave., Worcester & Norwich, Boston, 18 Summer St., Charles M. White, New York, N. Y., Great Britain, 121-13, Henrietta St., London. Australia, 27 Clarence St., Sydney, N. S. W.

R. B. Anderson, Managing Editor
R. A. Bradley, Technical Editor
W. A. Hurd, Associate Editor

Because certain statements and expressions of opinion from correspondents and others appearing in these columns are matters of opinion or suggestion and do not necessarily reflect the views of the operators, no responsibility is assumed for any such statements or expressions of opinion or suggestions appearing in this magazine. The wireless age is a member of the Audit Bureau of Circulations.
"Experience is the Vital Factor in Excellence"

Thousands of artists have used the same colors that Gainsborough used to paint the famous "Blue Boy," but there is only one "Blue Boy."
The difference is that Gainsborough knew how to apply and mix the colors.

THOMPSON SPEAKER

The engineering principles of mechanics, electricity, and sound have been applied to the Thompson Speaker by an organization that has made radio products exclusively for the last 14 years.

The "reed"—or driving armature—in a Thompson Speaker is not found in an ordinary speaker, and this is just one of 7 Thompson features—reasons why there can be no distortion in a Thompson regardless of volume.

Why "get along" with any speaker when you can get the best that experienced radio engineers can build—the Thompson. $35 at good dealers.

The Thompson Neutrodyne, which combines features not found in the average neutrodyne, is made by the same organization. $150 without tubes and batteries.

R. E. THOMPSON MANUFACTURING CO.
Manufacturers of Wireless Apparatus for the U. S. Army and Navy and numerous foreign governments
150 NASSAU STREET - NEW YORK, N. Y
FACTORY: JERSEY CITY, N. J.

THOMPSON NEUTRODYNE
Licensed under Haseltine Patents Nos. 1,450,080, 1,489,228 and other patents pending.

When writing to advertisers please mention THE WIRELESS AGE
IN the end it is always quality and performance that wins.

Standard radio products like the Radiola III-A and Crosley "Trirdyne" illustrated herewith always please your customers. Performance and quality are first among the many sales possibilities which makes these two types of receivers profitable for all dealers to handle.

Continental Radio and Electric Corp. can supply these standard products immediately. Check your "Want Book" and let us fill your order.

CONTINENTAL RADIO & ELECTRIC CORPN.
15 Warren Street
New York, U. S. A.

FEDERAL insures to its users only the highest refinement of the art. Each and every manufacturing necessity to produce a harmonious radio set is known to Federal Engineers, and no Federal set is produced without them.

Federal radio sets are built with two thoughts in mind—first, simplicity of operation, but three controls being necessary—second, special controls for refinement for "Lovers of good music" interested in reproducing all the beauty of tones that fill the air.

FEDERAL TELEPHONE & TELEGRAPH CO.
BUFFALO, N. Y.

Look for this sign

"When" writing to advertisers please mention THE WIRELESS AGE.
Understand Radio

An Introduction to Radio

For the Whole Family
In Two Volumes—Handy Pocket Size

FREE TO YOU

We want you to know "THE WIRELESS AGE" (America's oldest radio magazine) and our laboratory tested text books. TO GET ACQUAINTED we offer you this fine little set of books ABSOLUTELY FREE with one year's subscription to "THE WIRELESS AGE." $2.50 A YEAR (Outside U. S., 50c extra). SAVE A DOLLAR.

What's In Them?

VOLUME 1
An Introduction to Radio
The Various Instruments Used in Radio Transmitting and Receiving Outfits

VOLUME 2
Technical Terms Explained
How to Set up Receiving Outfits
Primer of the Vacuum Tube
How to Set up Radio Transmitters
International Morse Code and Conventional Signals

ORDER BLANK

WIRELESS PRESS, INC., Date
326 Broadway, New York.

I enclose $............ Enter my subscription to "The Wireless Age" for one year and send me free a set of "An Introduction to Radio." I also want............ extra sets for some of my friends.

Name..
Street..
City...
State..

☐ New Subscriber ☐ I am now an AGE subscriber.

Wireless Press, Inc. 326 Broadway New York

When writing to advertisers please mention THE WIRELESS AGE
Big Savings on Laboratory Tested Radio Books

Pick out the books you want and Buy at these Rock Bottom Prices

Here is the greatest list of radio books ever presented. In this list are books that are known and used the world over. Our stock room is overcrowded—we must reduce

the weight per square foot. This gives you the chance to buy these books at a tremendous saving. Take advantage of this opportunity to complete your radio library.

<table>
<thead>
<tr>
<th>BOOK</th>
<th>AUTHOR</th>
<th>Regular Price</th>
<th>Class No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Wireless Telegraphy</td>
<td>E. E. Bucher</td>
<td>$2.25</td>
<td>35</td>
</tr>
<tr>
<td>Vacuum Tubes</td>
<td>E. E. Bucher</td>
<td>2.25</td>
<td>35</td>
</tr>
<tr>
<td>How to Pass U. S. Government Wireless Exams</td>
<td>E. E. Bucher</td>
<td>.75</td>
<td>10</td>
</tr>
<tr>
<td>How to Conduct a Radio Club</td>
<td>E. E. Bucher</td>
<td>.75</td>
<td>10</td>
</tr>
<tr>
<td>Alexanderson System</td>
<td>E. E. Bucher</td>
<td>1.25</td>
<td>18</td>
</tr>
<tr>
<td>Practical Amateur Stations</td>
<td>J. A. White</td>
<td>.75</td>
<td>10</td>
</tr>
<tr>
<td>Acquiring the Code</td>
<td>Gordon</td>
<td>.50</td>
<td>6</td>
</tr>
<tr>
<td>Practical Aviation</td>
<td>J. A. White</td>
<td>2.25</td>
<td>30</td>
</tr>
<tr>
<td>Prepared Radio Measurements</td>
<td>Batcher</td>
<td>2.00</td>
<td>30</td>
</tr>
<tr>
<td>Modern Radio Operation</td>
<td>J. O. Smith</td>
<td>1.75</td>
<td>26</td>
</tr>
<tr>
<td>Radio Inst. and Measurements</td>
<td>Bureau of Standards</td>
<td>1.75</td>
<td>26</td>
</tr>
<tr>
<td>The Oscillation Valve</td>
<td>Bangay</td>
<td>2.75</td>
<td>40</td>
</tr>
<tr>
<td>Elementary Principles of Wireless—Part 1</td>
<td>Bangay</td>
<td>1.75</td>
<td>25</td>
</tr>
<tr>
<td>Standard Tables and Equations</td>
<td>Hoyle</td>
<td>3.25</td>
<td>50</td>
</tr>
<tr>
<td>Wireless Telegraphy and Telephony</td>
<td>Dowsett</td>
<td>3.50</td>
<td>55</td>
</tr>
<tr>
<td>Thermionic Valve</td>
<td>Fleming</td>
<td>5.00</td>
<td>80</td>
</tr>
<tr>
<td>Wireless Transmission of Photos</td>
<td>Martin</td>
<td>2.00</td>
<td>30</td>
</tr>
<tr>
<td>Selected Studies in Elementary Physics</td>
<td>Blake</td>
<td>2.00</td>
<td>30</td>
</tr>
<tr>
<td>Operation of Vacuum Tubes in Radio</td>
<td>Brown</td>
<td>.35</td>
<td>4</td>
</tr>
<tr>
<td>Technical Instruction for Wireless</td>
<td>Hawkshead and Dowsett</td>
<td>3.50</td>
<td>55</td>
</tr>
<tr>
<td>Elgie's Weather Book</td>
<td>Elgie</td>
<td>2.00</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOOK</th>
<th>AUTHOR</th>
<th>Regular Price</th>
<th>Class No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternating Current Work</td>
<td>Shore</td>
<td>$2.00</td>
<td>25</td>
</tr>
<tr>
<td>Magnetism for Home Study</td>
<td>Penrose</td>
<td>2.25</td>
<td>30</td>
</tr>
<tr>
<td>Radio Directory and Call Book</td>
<td></td>
<td>1.00</td>
<td>12</td>
</tr>
<tr>
<td>1923 Year Book of Wireless Tel. & Tel. (Paper)</td>
<td></td>
<td>3.00</td>
<td>20</td>
</tr>
<tr>
<td>Lessons in Wireless Telegraph</td>
<td>Morgan</td>
<td>.35</td>
<td>3</td>
</tr>
<tr>
<td>Operation of Wireless Telegraph Apparatus</td>
<td>Cole</td>
<td>.35</td>
<td>3</td>
</tr>
<tr>
<td>Home Made Electrical Apparatus Vol. 1</td>
<td>Powell</td>
<td>.35</td>
<td>3</td>
</tr>
<tr>
<td>Home Made Electrical Apparatus Vol. 2</td>
<td>Powell</td>
<td>.35</td>
<td>3</td>
</tr>
<tr>
<td>Home Made Electrical Apparatus Vol. 3</td>
<td>Powell</td>
<td>.35</td>
<td>3</td>
</tr>
<tr>
<td>Home Made Toy Motors</td>
<td>Morgan</td>
<td>.35</td>
<td>3</td>
</tr>
</tbody>
</table>

HOW TO ORDER

Select the books you want. Add their class numbers together—multiply by five—that's the price you pay. The saving is evident at a glance. This is a real opportunity.

Include a year's subscription with your order, AND GET ANOTHER BARGAIN

THE WIRELESS AGE

Regular Price $2.50 a year—Class No. 45
Postage outside U. S. 50 cents extra

Send all orders to

WIRELESS PRESS, Inc.
326 Broadway
New York City

When writing to advertisers please mention THE WIRELESS AGE
Radio Apparatus that Brings in the Stations Say the Radio Bugs!

February 14, 1924

KELLOGG SWITCHBOARD & SUPPLY CO., Chicago, Ill.

Gentlemen:

My antenna is fifty feet high, and slants towards the lead-in. I have a three-circuit set, completely equipped with Kellogg parts. In the list which I am enclosing, those stations marked with an asterisk were received in one night [five hours]. The complete list numbers 154 stations, all received over a period of one hundred fifteen days.

WOS* WOC* WHB* WLAG* WHA* WTY* WIB* WGR* WSAI WHAZ WJAX WBAH WAT WGGY KYW* WOAI WJAZ WDBG WFAA WDAQ WBAB KFAF* WMAQ* KFI* WJH* WHJ* WCR* WHAM WCBD

Thirty-four of these stations are over a thousand miles, and the whole list includes over thirty-five states, all but one of the Canadian provinces, Cuba, England, Porto Rico, Mexico, Honolulu and Alaska.

Let's give nine hurrahs for Kellogg parts, the best in the world.

Yours very truly, H. G. BROWN, Peoria, Ill.

Every piece of Kellogg radio is guaranteed—your protection of absolute satisfaction. Get the most out of your favorite circuit by using Kellogg parts. USE—is the Test.

Kellogg Switchboard & Supply Co.
1066 W. Adams St., Chicago, Ill.

When writing to advertisers please mention THE WIRELESS AGE
The Guarantee of Quality

A Message to Manufacturers of Radio Equipment

For

Quality—Quantity—Service

STANDARDIZE WITH

Guaranteed Quality

MOULDED BAKELITE and SHAWLAC Insulation

Right now speed is the essential thing to protect yourself against the usual fall shortage of materials.

We earnestly urge immediate conference and placing of orders for insulation if we are to serve you to your satisfaction.

Telegraph or phone today

SHAW INSULATOR COMPANY

Main Office: 150 Coit Street
Irvington-Newark, New Jersey

Sales Representatives

Cleveland Office
Stuyvesant Bldg.
Benj. Phillips

New York City
154 Nassau Street
Havekost & Simonds

When writing to advertisers please mention THE WIRELESS AGE
When you buy General Radio apparatus you are buying certainties. You can definitely depend upon its superior performance in broadcast reception.

By insisting upon General Radio apparatus at the start you avoid the disappointments which so often follow the purchase of inferior parts.

The first closed core audio frequency amplifying transformer available for amateur and experimenter use was introduced by the General Radio Company in 1917.

Since that time the General Radio Type 231-A amplifying transformer has been First, not only in historical leadership, but in Volume and Quality of tone.

For the fullest measure of Quality Amplification use General Radio transformers in all stages.

Turns ratio 3.7 to 1. Impedance Ratio 10 to 1.
Price $5.00

Ask your dealer or write for our Descriptive Bulletin 917W.
June 5th,
1924

Mr. H. L. Welker,
The Wireless Age,
326 Broadway,
New York City, N.Y.

Dear Mr. Welker:

We want to let you know that all of us thought it mighty fine of your magazine to illustrate and describe our Radio-Spinet in the editorial portion of the June issue. We don't regard such publicity as result-getting advertising, but just the same this favorable recognition of the Radio-Spinet on your part cannot help but have a good influence. Thanks, again, for the consideration given us.

Our advertising in your publication has been rather a hit or miss matter, but we assure you that the little we have done, amounting in all to only one and two-thirds pages, has been a revelation to us of the responsive field which you reach. The number of inquiries quickly exceeded expectations, and we are still receiving an occasional coupon from the March ad. Enough orders have resulted directly traceable to our ads to make us feel good and to make us regard Wireless Age kindly.

Just what our advertising plans will amount to the coming season depends upon a few matters that are now being taken care of. The writer leaves in a day or two on a trip that will eventually take him to New York and mayhap there may be some time available to drop in and see you.

Respectfully yours,

MCL-JE.

BAY VIEW FURNITURE CO.

Quality goods find a ready market among our readers. We build a magazine which appeals to the high-grade reader of established purchasing power.

What have you to offer these buyers?

H. L. Welker, Advertising Manager, 326 Broadway, Phone Franklin 1143

When writing to advertisers please mention THE WIRELESS AGE
Home—comfort and entertainment!

Enjoy the cool comfort of an easy chair and all varieties of music, sports, helpful talks and speeches. On the cool side of the porch—the calm pleasure of restful evenings with an entertainer of infinite versatility—radio and a Table-Talker.

The Brandes Table-Talker spreads its mellow tone among your guests. It brightens the evening meal with concerts that fill your largest room. It generously reproduces every part of the fascinating radio program. You comfortably enjoy the entertainers of summer nights.

Brandes

The name to know in Radio

When writing to advertisers please mention THE WIRELESS AGE.
This Radio Battery Has
"Over Twice the Life"

THE Burgess Radio ‘A’ is exclusively a radio battery, designed especially for service on the ‘A’ or filament circuit of dry cell vacuum tubes.

In Radio service it has over twice the life of the ordinary No. 6 ignition battery... costs approximately the same... has a rapid recovery to high voltage after short periods of rest... practically no voltage is lost when not in use.

Replace your worn out ‘A’ battery with a Burgess. Compare the service in your own set under any and all conditions. Then let your experience guide you in your future purchase of Radio ‘A,’ ‘B’ and ‘C’ Batteries; there’s a Burgess Battery for every Radio purpose.

"ASK ANY RADIO ENGINEER"

BURGESS RADIO BATTERIES

Burgess Battery Company

Engineers - DRY BATTERIES - Manufacturers
Flashlight - Radio - Ignition - Telephone

General Sales Office: Harris Trust Bldg., Chicago
Laboratories and Works: Madison, Wisconsin

Branches:
New York - Boston - Kansas City - Minneapolis
Washington - Pittsburgh - St. Louis - New Orleans

In Canada:
Plants: Niagara Falls and Winnipeg
Your dealer has something really new and unusual

MAGNAVOX M4

CALL at your dealer's today and ask him to show you a Magnavox M4 Reproducer.

Try out the instrument critically; satisfy yourself that its clear tone and natural volume are sustained throughout the entire musical range; examine each essential detail of convenient size, handsome finish and sturdy construction; note that its operation requires no battery.

M4 is a definite contribution to the radio art—and one particularly welcome to the moderate income.

There is a Magnavox for every receiving set

Reproducers
M4—the latest Magnavox achievement; requires no battery $25.00
M1—also constructed on the semi-dynamic principle, requiring no battery $30.00
R3—famous electro-dynamic type; new model with Volume Control $35.00
R2—same as R3 but larger size; new model with Volume Control $50.00

Combination Sets
A1-R and A2-R—the only instruments combining electro-dynamic Reproducer and Power Amplifier in one unit $59.00, $85.00

Power Amplifiers
A1, AC-2-C, AC-3-C—the most efficient audio-frequency Amplifiers; one, two & three stage $27.50 to $60.00

To obtain the fullest enjoyment from your receiving set, equip it with the Magnavox—for sale at good dealers everywhere.

THE MAGNAVOX CO.
OAKLAND, CALIFORNIA

New York Office:
350 WEST 31st STREET

Canadian Distributor:
Perkins Electric Limited, Toronto, Montreal, Winnipeg

M4
$25.00

When writing to advertisers please mention THE WIRELESS AGE
Editorial Chat

This number of The Wireless Age has a cover of unique character. Radio is the one subject we have presented to you for twelve years—presented to you in all its ramifications. The Wireless Age has been THE Radio Magazine that has kept pace with the gigantic strides made in this new art.

Radio for the man, woman, child. Radio in social, civil, and private life. Radio as a force in the development of happiness and peace amongst all peoples—these are the things you may read about—in this—THE Radio Magazine.

In this issue you will find a bit of satire on page 17. That page has been dedicated to the important current issue of the month. We present there an editorial viewpoint that would ordinarily cause the slight elevation of ethically trained eyebrows should it appear as serious editorial opinion.

Those June Conventions

Then there is the article bearing on a subject of vital moment. The broadcast June conventions directly affects our political body. And because the reaction comes at a time when our credulity is sought in matters of campaign propaganda this subject stands out as one of feature character. Likewise, education will command first place in our September issue. Education by radio.

Dr. Alexanderson

The story of a great personality, which requires, in the telling, a review of paramount radio development, measures up to a real standard. Read the story of Alexanderson and then judge for yourself how you may satisfy your natural desire to know more of those men who stand pre-eminent in the world of science. Dr. Michael I. Popin, as a great educational figure, and a foremost leader in radio research and engineering, will be presented in our September issue. Many other personalities known to layman and engineer alike will appear in future issues of this magazine. Intimate contact with these brilliant minds reveals, so that we may comprehend, radio in many of its technical phases. There is no mystery, either within or beyond your grasp, in the field of radio. We need only follow the personal story of these human individuals who have blazed the trail along the frontier of early pioneer development and we will be enlightened.

A Mother Who Wanted a Career

Turning over the pages of the present issue you will find another story of a real personality. A woman this time. A mother who wanted a home career. As one of us she knows how to reach the rest of us. Her problems, a drama in domestic life, have been our problems. She has solved them as we can—and, as across the breakfast table, she tells us how. Next month she has something to say about education—the education of children—by radio.

You will find too, a digest of outstanding broadcast events. Each month the really worth while programs are subjected to a critical examination. Correlated, we may grasp a picture of the whole, and come to know what the underlying principles are, and their subsequent value to us.

World Radio News

Radio news from all over the world is assorted, condensed and finally offered in these pages as the abstract of world wide activities.

Of technical material you will find only the best. Our objective is basic, and the presentation authoritative.

Of greater general interest will be our radio fiction. Beginning with the September number, a radio story packed full of action, flavored with romance and adventure and written by one of our leading authors, will be presented to you as the fulfillment of a very real demand.

Fiction—interviews with artists—opinions of national figures—all will be yours for the reading.

The Wireless Age as THE Radio Magazine, has a tradition to maintain. True, a tradition dating back to the comparatively recent 1911. But one that nevertheless acquired a background of experience long before the impetus of the radio industry could upset the equilibrium of our policy. The fever-heat of latter-day progress has not injured this tradition.

The present radio era, as fast as it unfolds itself, will be recorded for your benefit within these pages. Enjoy this issue of your magazine. Look forward to succeeding numbers with an open mind.

—The Editors.
In This Space—
Next Month—

Will be announced an improved product, Which surpasses, in quality, any other Similar product, at anywhere near our price.

UNITED RADIO CORPORATION
Newark, New Jersey

When writing to advertisers please mention THE WIRELESS AGE
Sustained power!

WHERE table or cabinet space is limited, use this new vertical 4.5-volt Eveready "B" Battery No. 772. It has the same long life, the same steady high power as the horizontal Eveready 4.5-volt "B" Battery, but because it stands upright it takes less than half the table space.

Tables and most battery cabinets have more headroom than floor space. This battery is built in recognition of that fact. It fits the Radiola Super-Heterodyne cabinet perfectly.

Many multi-tube receiving sets use a "hard" detector tube which does not require fine adjustment of "B" voltage, so the new Eveready Vertical 4.5-volt "B" has but three plainly marked terminals, negative, plus 22.5 and plus 45 volts.

Standing upright to save space, made of large, powerful cells to last longer, here is the battery you've been looking for.

Manufactured and guaranteed by NATIONAL CARBON COMPANY, Inc., New York—San Francisco

Headquarters for Radio Battery Information

If you have any battery problem, write G. C. Furness, Manager, Radio Division, National Carbon Co., Inc., 108 Orton Street, Long Island City, N. Y.
The Dark Horse on Radio Pike

HADOWY streamers flitted across the face of the moon, twisted, thinned, then with a swirling back-lash utterly engulfed the last vestige of pale light. A black void, still ominous, settled over the stables at the Steepledown Race Course.

Three figures crept into the stall of Black Star, hands groping through the darkness, an occasional whisper stabbing the night like a sudden breeze that has awakened the slumbering voices of a Jack pine. A horse jerked at his halter and snorted.

Black Star, aroused, plunged into the corner of his stall, and stood there quivering. A hand touched his flank. He lunged again. A startle voice cried out, "Quick! Lead him over here! The 'dark' horse is ready to stampede!"

Heavy odds had been placed on Black Star the day before. His showing was bad at the try-out. In the stealth of the night a "dark" horse had been substituted for Black Star. And the dark horse won—won on heavy odds. No one knew of the hoax, other than the culprits. So the dark horse was cheered, and the wagers paid.

And that—we are told—is the origin of the dark horse expression used in politics to-day.

A stately figure stands on the party platform. His hair is streaked with iron-gray. The stern, upright, principles of American democracy seem to radiate from the core of his dominant personality. The magnetism of his voice grips the audience and holds it in a high-strung passion of expectancy.

He steps forward, thrusts his clenched fist heavenward, and with a ringing voice denounces the un-American practices harbored in political machines. His audience is held spellbound, breathless. He points to the planks in his party platform, and with genuine emotion, indicates the high principles of self-government contained in each one.

A pause. He leans forward, slightly stooping. His audience responds, and leans forward in anticipation. With a mighty leap into the air he turns a complete back-flop over and beyond the principal of high-principled planks in his party platform. And there he remains.

Those of us who were listening missed the sylph-like pan-tomime of this silver-tongued orator. He was sufficiently athletic to impress all those who beheld, but the logic of his conduct was dissipated in the ether, long before it reached our radio. His presentation of facts was not clear. It was only the presentation of facts that we could assimilate, and failing this, we would only conclude that another "steam-roller" had been launched, and was truly christened in the good old-fashioned way.

With the advent of politics in radio, we are to become familiar with the individual statesman of our country. We will hear the oratorical fire-works of the professional politician, and come to know the depth of his sincerity. We shall hear, for ourselves, the message from an obscure, but conscientious leader of a political body, and judge with impunity the merits of his plea.

This we shall do by radio.

It is difficult to stampede the radio public with a dark horse and then crush the opposition with a steam-roller. Those of us who have listened in, care nothing for the filibustering mechanics of a political meeting, but greet them in the spirit of Blake:

"Mock on, mock on, 'tis all in vain;
You blow the sand against the wind,
And the wind blows it back again."
How Broadcasting June November

Republicanism and Democracy—The Third Conventions—Changing Campaign Tactics the Sidewalks From Wall Street—Than Political Meetings—Looking

As Viewed by

The Republican Party represents rule by an intelligent few. The Democratic Party represents rule by the mass. But theory and practice are still subject to conflicting facts.

Owen D. Young of the General Electric Company makes this very pertinent observation:

"The wide-spread public interest evidenced in the broadcast conventions, indicates that a clear presentation of facts, only, will be countenanced by those who listen in to political speeches. The old method of meaningless oratorical demonstrations, delivered from a platform, will not be of any consequence to a radio audience. This fact will undoubtedly improve the statesmanlike delivery of political speeches to the American people."

As we become familiar with any one subject, our individual viewpoint change in accordance with our ability to absorb the real, and our competency to cast out the ambiguous. The progressive ratio of opinion influenced may be measured either by our own adroitness in seeking information of reliable character, or by the vehicles of publicity commonly known to influence public opinion. In either case our source of information will have a direct bearing on our final conclusions. Radio is a direct source of information. Broadcasting the June conventions may then be readily accepted as an authoritative source of information bearing on the mechanics of the conventions and the subsequent principles of the political campaigns now in progress. He who has listened in may vote with impunity this coming November.

Just what effect radio has had on the third party policies is yet to be ascertained. The Republican Convention in Cleveland was a brief affair, hardly admitting the comprehensive attendance of the radio audience. The Democratic Convention at New York, in direct contrast, stood in the

BROADCASTING the June conventions has accomplished a two-fold purpose. First, it has thrust upon us the mechanics of nominating our executive heads. This is knowledge gained that we have found the more valuable because it has come direct. Secondly, we have acquired a working basis for determining how we shall vote at the November elections. And this is important because knowledge gained is opinion influenced.

Our knowledge was gained direct. Our opinion was influenced direct. This by radio. At the November elections, those of us who have listened in will probably surprise the rest of us. And this because of radio.

REPUBLICANISM is that form of government known as non-monarchical. The Latin Republics scattered about the world are practicable examples. Democracy is that form of government in which the people rule themselves. England is a practicable example of that.

The United States has a combination, or confusion, or what you like, of the two. Republicanism and Democracy.

In theory, Republican rule is governmental administration by executives who direct the affairs of state independently of the will of the people. These gentlemen are elected by public poll, and then entrusted with the affairs of government according to the dictates of conscience, experience, and necessity. Actually, the will of the people is held and exercised by the people, through the instrument of recurrent voting. This obviates true Republican rule.

And in theory, Democratic rule is governmental administration by executives who direct the affairs of state only as they have been so directed by those who have elected them. These gentlemen are elected by public poll, and then entrusted with the affairs of government according to the voice of the people. Actually, the will of the people can only be complied with after the echo of public voice has been lost in the clamor of a new demand. This obviates true Democratic rule.
Conventions Affects the Elections

Party Question—Highlights of the June by Radio—Reaction of the Press—Down Broadcast Reception More Exacting Forward to the November Elections

William A. Hurd

glaring limelight for too long a period to escape the searching inquiry of those who listened in.

Senator Borah, in one of his speeches, said:

"It is one of the advantages of party government that one political party vigilantly watches and criticizes the other. I hope that will always be so. The conditions would soon be intolerable in this country if it were not so. The danger arises not out of criticism and exposure, but out of a tacit truce between the great parties that they will not criticize or expose the evil practices."

Senator Robert M. La Follette, it is to be hoped, will profit by the lesson beyond price that radio taught us in the June conventions. Broadcasting politics has served to educate us. And we are prepared to tune in for a liberal education from the third party.

THE Republican Convention in Cleveland was broadcast by sixteen stations located at points as far east as Boston and as far west as Kansas City, Missouri. Graham McNamee was the official announcer. His voice was carried below the convention hall to the control apparatus and there distributed over land wires to the stations situated at strategic points for the complete dissemination of all the convention proceedings. KDKA of course, relayed the entire convention to KFKX at Hastings, Nebraska, affording a greater range throughout the west coast states.

One of the most exciting periods of the Republican Convention in Cleveland was during the speech of John Adams Cooper, a delegate from Wisconsin, who offered a minority report to substitute for the majority report of the Resolutions Committee. The radical changes in the platform which he proposed aroused considerable interest on the part of the delegates. After speaking for five or ten minutes, the radio audience heard a great many hisses and boos and shouts which seemed to be in derision of the speaker. But the delegates though unsympathetic, were quite anxious to hear Mr. Cooper who offered the first real thrill of the convention. The hissing was directed at the Sergeant-at-Arms who was stepping forward to the end of the platform as if to lead the speaker away because the time allotted to him had expired. But the Sergeant-at-Arms was actually trying to push Mr. Cooper a little nearer the microphone so that the radio audience could have the full benefit of the political drama he was enacting.

General Dawes and his family listened in on the convention proceedings at a friend's home in Marietta, Ohio. Wholly unprepared for what was to come, the little gathering sat around chatting and speculating on the turn of events. Suddenly, the party was thrilled with the announcement that General Dawes had been nominated for the Vice-Presidency. Crowding around the loud speaker they heard in detail the particulars of the dramatic episode unfolded, and heard before the announcer's voice reached the delegates in the convention hall.

Eric H. Palmer, writing for the New York World, expressed his delight with the broadcasting of the convention. His enthusiasm reflects the real spirit of radio fans all over the country. He reported in part:

"Friends were listening in with me on the radio to the Republican National Convention in Cleveland.

"They admittedly were thrilled by the oratory, music, and the just plain noise that issued from the loud speaker. They said they had no difficulty in fancying themselves viewing the proceedings from vantage points right in the auditorium, instead of reclining at ease in a quiet room 600 miles away.

"Surely it makes our hearts beat faster to contemplate the candidates for President and Vice-President listening in, many hundreds of miles away, as their names are being cheered by delegates and spectators.
“To Calvin Coolidge have come two most dramatic episodes: first, to be sworn in as President of the United States by his father, in the little farm house in Vermont where he was born, and second, to sit in Washington to hear the eloquent words and the applause that marked his nomination as the choice of the Cleveland Convention. And General Dawes, out in Marietta, Ohio, listening in on a friend’s receiver, heard the balloting that again called him into the public service, so that he knew long before the swift telegram, that he had been drafted to run with Coolidge.

“Radio annihilates distance, eliminates the time factor and provides us with the sense of being there when things happen. It gives us a greater zest for reading the papers the next day to get the stories of what has happened behind the scenes and to ascertain the way happenings to which we have listened have been described by journalistic word-painters.

“Thus radio and the press work hand in hand, not rivals, but adjuncts to each other—in the public interest.”

THE Democratic Convention at New York was probably more exciting, and came to the attention of more people, through sheer length. Microphones placed on the dais in front of the speakers carried the voice to twenty stations located throughout the country.

The American Telephone and Telegraph Company, and the Radio Corporation of America were foremost in broadcasting the convention proceedings. Boston, New York, Washington, Schenectady, Buffalo, Providence, Pittsburgh, Cleveland, Cincinnati, Chicago, St. Louis, Atlanta, Worcester, Kansas City and Hastings, Nebraska, were all represented. In some of those cities, several stations divided the honors. Graham McNamee was the announcer for the telephone company, and J. Andrew White announced for the Radio Corporation of America. Both announcers were stationed in glass booths, sound proof, but advantageous for close observation of the speakers and the delegates.

Microphones, distributed throughout the audience, could be cut in for the cheering and pandemonium that reigned when some critical move on the part of the delegates set the house off in wild demonstrations. Frequently the announcers had to break in with a brief description of the excitement and its cause. They kept in close contact with the control apparatus operators located below the hall by a system of buzzers and telephone connections. The personnel employed to broadcast the convention had to stay at their posts, in some instances, for twelve and thirteen hours.

This writer had occasion to sit through weary hours of balloting, the monotony being broken by nothing more exciting than a sojourn to one of the “hot dog” stands, and so it is with heart-wring sympathy that an expression of deep understanding and gratitude is hereby extended to the broadcast personnel.

Soon after the convention opened, John Brown’s ghost stalked about the Garden, recalled to sordid affairs of earthly origin at the mere mention of Wilsonian principles. The rumulous clamor of leather-jungled convention fans rose in great waves of emotion that swept across the hall and broke in a mingled roar of stamping and shouting, and whistling and singing. The hilarious abandonment of a mob gone mad was truly infectious. Some one started a parade. Under the flag-draped roof of the Garden, five thousand people milled in the sweltering heat of a packed hall. As a single voice, the yell rose from fifteen thousand raw-hide throats: “Hail! Hail! The gang’s all here!”

The convention racket reverberated long after the convention had subsided.

Other demonstrations marked the proceedings from day to day. The states up, standards in parade, the march going around the hall, and the audience on chairs and tables was a less frequent occurrence as the convention straggled out to repeated balloting. Forty ballots—forty odd—fifty—fifty odd—and so on seemingly for an interminable duration. An unexpected break in the unit rule of some state would bring a crash of applause, flags and handkerchiefs waving wildly by way of emphasis. But the proceedings proceeded, and with the sagacity of Poe’s “Raven,” we were prompted to quoth; “Evermore!”

Or was it, “Nevermore?”

MR. H. P. DAVIS, Vice-President of the Westinghouse Electric and Manufacturing Company, has been actively engaged in the development of radio dating back to the early pioneer days of KDKA. His contribution to this article is a dedication to the basic principles of American politics broadcast—mind you—broadcast to the American people. Here it is:

“From the reaction of the public to the broadcasting of the two greatest political demonstrations in the world, the Republican and Democratic Conventions, it must be ap-
parent to the leaders that political campaigns of the future must be conducted along different lines from those which were successful in the past.

"For the first time in history, the voting public heard every detail of the proceedings of the political conventions. It heard the wild, tumultuous shouting, the noises of the parades of the cheering delegates, the demonstrations that accompanied the nominating, and finally the enthusiastic scenes that accompanied the voting. The music of the bands and the singing of the artists also played a part in making these political conventions the greatest radio demonstration, or for that matter, the biggest thing in history that was ever brought to the ears of the public.

"The noisy demonstrations, the school-boy enthusiasm of the delegates, the three-ring circus aspect of the entire affair was lost upon the radio audience because it could not see the action. Such appeals to the emotions cannot be made by radio and there is no such thing as working up "mob effects" on the radio listener seated in his own home. Therefore, the political managers, always eager to follow the lead of the public, will probably conduct their future campaigns along somewhat different lines.

"Candidates and campaign managers will come before the microphone and in carefully-worded, well-chosen addresses will state their positions on the various issues of the day. Music there may be with such political campaigns but the day of the stump speech, with the dramatic gesturing of the speaker and his frenzied words, the equally tempestuous parades of his cohorts; this whole appeal to the emotions is passing with the growing use of the radio telephone to broadcast over the entire United States. Radio will play a large part in the election of candidates of the future and because the voting public, at least the greater percentage of them, will actually hear their candidates, it is believed that the voters will grow more and more particular in making their choice.

"Broadcasting the proceedings of the conventions will undoubtedly, this year, bring more people to the polls than have ever before voted. The reason for this is because more people than ever before are taking an interest in the Presidential race since they have heard some of the convention proceedings by radio and have naturally made up their minds, one way or another, regarding the placing of their vote."

Mr. Davis also points out that since KDKA and KFKX have broadened out to international scope, the broadcast proceedings of the conventions were received in Argentina, South America.

Are we proud of our political conventions? Will we be equally proud of our political leaders during the present campaign? The world now listens in.

"Leaders in future political conventions," Mr. Davis believes, "will keep the fact in mind that their demonstrations are being heard not only in the United States, but also across its border and that the Canadians, the Mexicans and the Central and South Americans are also listening in to us choosing our presidential candidates. Perhaps with this in view there will also be other changes in political conventions in the future which will make their proceedings more in keeping with the dignity of the position the United States holds among the world's nations."

NEWSPAPERS were quick to realize the value of radio in reporting the proceedings of the convention. Every newspaper was represented at the conventions. Several foreign newspaper correspondents in reporting the Democratic Convention listened in on a Radiola Super-Heterodyne placed in a room at the Waldorf Astoria in New York. Other journalists and feature writers for American papers likewise engaged a room in the hotel and listened in on a Super-Heterodyne, exploiting to advantage their semi-privacy.

Removed from the heat of the riotous conventions, city editors of newspapers in Western and Mid-western towns copied the proceedings accurately, count by count. Corrections were had even before the reporters seated below the speaker could record them.

The significance is worthy of some reflection. Most city editors have resented the space devoted to radio sections and supplements. They have made the altogether pertinent observation that radio news belongs in the news columns. Radio features, technical articles, and broadcast stories absorb valuable news space. They really belong, it would seem, in magazines. There is certainly no doubt that a daily is purchased for news and a periodical is sought for stories and articles wholly devoted to subjects of deliberate treatment. And so it is that city editors turn to radio for news with the weight of editorial forethought.

Mr. Ford, city editor of the N. Y. Evening Telegram and Mail, transferred his Super-Heterodyne from his home to the office, and listened in on the convention proceedings for long hours, unwilling to relinquish his post lest some development escape his personal attention. This, in itself, was notable because Mr. Ford had originally been reluctant to employ any such device for news.
Another striking example of radio news reception was manifested by the Brooklyn Times' office. The following is an extract from an editorial in that paper:

"Seated with a set of ear pieces around his head, John A. Heffernan, Associate Editor of the Brooklyn Times, pounded the typewriter in perfect rhythm with the air waves that flowed into his ears through the Times' office radio.

"It was a remarkable feat, made possible by the combination of the latest achievement of science and a journalistic master hand. As a result, the story reads as vividly as an expert radio announcer's report plus the inimitable charm of the written word. It will long stand unique in the chronicles of 'covering' conventions, and has the additional value of being safe from frequent imitation—because there are very few men even among the best in American journalism who possess the joint abilities of speed, fluent language, quick wit and a mind so receptive that an impression it has once received immediately reflects itself in a polished sentence."

This editorial expresses the exact attitude of many other newspapers scattered throughout the United States and in some foreign countries. As a matter of fact, the reaction of the press was too broad in scope, and includes too many daily's, for record in this article.

IMMEDIATELY after the Civil War, the majority of this country were middle class. Industrial wage earners were little known and capitalists were hardly of consequence. Each man had his little shop in the back yard and was comparatively independent. Colt discovered that he could pay men higher wages to work in his plant than those men could earn for themselves. And likewise, others with a new mechanical device had a market that made possible good pay to those who would become factory workers.

Today, the middle class—those who have an income they have not, themselves, earned—is a passing phase of America's economic and social structure. Workers—those who earn wages—are the great majority. Capitalists—those who control industries—although still a minority, are nevertheless a power. It is to these gentle-
Broadcasting the Conventions

Graham McNamee, official announcer for the American Telephone and Telegraph Company at the Republican and Democratic Conventions. This photo, was transmitted by wire.

Andrew White, official announcer for the Radio Corporation of America at the Democratic Convention in Madison Square Garden, New York. He is well known for broadcasting sports.

Radio engineers installing amplifying and input apparatus in Madison Square Garden for the convention.

The broadcast station at the Republican Convention. The proceedings were transmitted by direct wires to stations WGY, WGR, KDKA, KSD, WDAF, WJZ, WRC, WJAX, WTM, WJ, WCAP, WGN, WLS, WMAQ, WNAC, and WEAF. This range included Hastings, Neb., west, Boston, east, and St. Louis and Washington, south.

One of the input installations at the Democratic Convention. Proceedings were transmitted by direct wires to stations WJZ, WEAF, WGR, WCAP, WRC, WNAC, WTAT, WJAR, KDKA, WTM, WJAX, WJ, WGN, WLS, WMAQ, KSD, WDAF, WDBH, WSB, WBZ, and WGY. This includes Atlanta, Ga., south, Boston, east, and KFKX (relayed), west.
Broadcast Artists You Have Heard

Ralph Mayhew, "Bubble Book Stories," the bedtime storyteller who tells 'em from station WJZ.

Mrs. Harold McCormick, née Gunna Walska, lyric soprano. Photo made on the occasion of Mme. Walska singing from station WJZ at the Waldorf Astoria. Her radio reception surpassed all expectations.

Frederick William Wile, WRC's political observer who broadcasts his reviews, "The Political Situation in Washington Tonight." Mr. Wile is one of our foremost political writers and correspondents.
Enjoy Summer Radio

A radio on a summer's day picnic adds to the things we like best. The dancing may not be what it could be, but the real fun is there just the same.

In the last month of summer, two winsome maids have carried their radio to the edge of a woodland lake, there to enjoy the rapture of nature in its virgin glory with the best of music and culture brought to them in the peace and rest of the open air. The reflected trees of the distant shore enhance the cool, translucent memories of a lake in the wild.
A Radio System Built Of Air-Castle Dreams

By Harvey Clawson

Some day don the student cap which designates the wearers' class year, and consequent social status. Long after the last care-free voice had resounded over the garden, and the echoes of irresponsible youth were lost in the shadows of a Mediaeval glory, Professor Alexanderson stood at the window and pondered on the future of his boy, and he wondered as he stood there absorbed, what the future held forth. A faint smile crept over his face as he thought of the many fathers who had meditated at length over the same problem only to find in the end that an individuality is apt to be too intangible for arbitrary standards; always beyond the grasp of well-meaning intentions.

"This boy of mine," the professor reflected, "shall have the opportunities—all of them—that education will afford." He turned to depart, satisfied that for the present, at least, his procedure was obvious.

That night, as he lay thinking of the day's problems, an impish thought stole into his mind. He knew the dangers of over-education. "What," he asked himself, pointedly, "would happen to my well arranged schedule if the boy lacked the practical turn of mind so essential to the useful application of acquired knowledge?"

Whatever the answer, it was lost in sleep.

E. F. W. Alexanderson, the professor's son, graduated from the High School of Lund of 1896. The next year, in the shadow of the old Romanesque Cathedral, the younger Alexanderson studied at the University of Lund. With an early life steeped in the historic atmosphere of the ancient and picturesque regions of old Sweden, he entered the Royal Institute of Technology at Stockholm, eager for the learning that lay beyond the threshold of his boyhood world.

A post-graduate course at the Koenigliche Technische Hochschule in Berlin, and contact with cosmopolitan Europe, merely served to accentuate his curiosity. His was an open mind, ever receptive to greater knowledge, stimulated by a restless spirit that recognize no bounds. What he had learned seemed to be of small consequence, devoid of any immediate value. His mind soared into the realm of daydreams and air-castles. The substance of his visions always seemed just be-

A Story That Demands a Review of Electrical and Radio Development in the Telling—a Review That Could Not Be Told Without the Story of This Personality
Beyond the grasp of intrigued fancy. He must seek for greater opportunities. He must go where advancement was not stifled by the inhibitions of precedent. It was then that he turned to America.

E. F. W. Alexanderson migrated to the United States. That was in 1901. He entered the services of the C. & O. Electric Company as an electrical draftsman. One year later, he joined the staff of the General Electric Company at Schenectady where his extraordinary ability and inventive genius were soon recognized. His day dreams and fancies were caught and poured into the mould of practicable mechanisms. Theories were cast into facts. His promotion to the position of consulting engineer was inevitable.

Today, Alexanderson stands at the pinnacle of success as the Chief Consulting Engineer of the Radio Corporation of America.

Mr. Alexanderson has been awarded a Medal of Honor by the Institute of Radio Engineers, in recognition of his contributions to the science of radio communication. Nevertheless, he is one of the most modest of men. It is only with great difficulty that he can be induced to take a prominent part on any official occasion.

Indifference toward his acquired knowledge is characteristic of him. His restless spirit still drives him on to solve the seemingly impossible.

While engaged in solving the problems encountered in the application of electrical power to the railways and industries, it occurred to him that the general principles adopted in power engineering might in many cases be applied to radio telegraphy. It was about this time that the need of a powerful high frequency dynamo for long distance wireless telegraphy became apparent. For a long time radio engineers had recognized the inefficiencies and limitations of the so-called "spark" and "arc" systems of generating high frequency currents, yet none of them were prepared to undertake the design of an alternator which would produce these currents directly. The problem in this case was the production of generators giving frequencies up to 100,000 cycles per second instead of the old requirements of the low-frequency dynamo used in ordinary power work, giving 60 cycles of current per second. This was a stupendous problem, and it was deemed wholly beyond the range of possibility.

Mr. Alexanderson pulled off his coat, rolled up his sleeves, and set to work with a smile of confidence. In the space of several months he had designed a practicable 100,000-cycle alternator giving an output of 2 kilowatts. His smile broadened to a grin.

"The radio engineer," Mr. Alexanderson said, "is, more than any other, compelled to work with conditions which are not within his control, and only partially understood. The law of probability and averages must therefore figure largely in his calculations."

It is notable, however, that he does not allow the law of probability and averages to enter into his results.

This first alternator, designed by Mr. Alexanderson, ran at a speed of 20,000 revolutions per minute, yet through the extraordinary care taken in its construction it functioned uninterruptedly. The output could be fed directly to the antenna system for the generation of the electromagnetic or other waves of radio telegraphy.

The need of a more powerful high frequency dynamo was soon evident. Alexanderson and his assistants then undertook the development of a 50-kilowatt, 50,000-cycle alternator which proved successful at the New Brunswick high power station of the Radio Corporation of America. But a still more powerful generator was needed for continuous trans-oceanic wireless communication under all conditions.

Mr. Alexanderson then accomplished his crowning achievement. He developed an alternator of 200 kilowatts, 27,000 cycles. Two of these gigantic machines were installed at the Radio Corporation of America's trans-oceanic station at New Brunswick, New Jersey.

This high power radio station, the Alexanderson type, contains three important developments:

1. A. An alternator which generates currents directly at the frequencies which are required for radio circuits with which it is associated.

2. A magnetic amplifier which provides a non-arcing control of the alternator output for radio telegraphy, and is equally applicable to radio telephony.

3. A multiple tuned antenna which has markedly reduced the wasteful resistance of the flat-top antenna, and has therefore increased the transmitter over-all efficiency many fold.

These developments have been accomplished by Mr. Alexanderson, and perhaps can only be appreciated by those who are familiar with the problems of radio telegraphy.

The Alexanderson alternator is an inductor type of generator with a solid steel rotor having several hundred slots milled radially on each side of the rim. The slots are filled in with non-magnetic material, with the object of reducing wind friction to a minimum. The fillers are brazed into the disc in order that they may withstand the centrifugal strain of rotation. The rotor is designed for maximum mechanical...
THE WIRELESS AGE

August, 1924

strength by providing it with a thin rim and a much thicker hub. With this construction the strain on the material due to centrifugal force is the same from the shaft to the outer rim.

In regard to some of the electrical features of the alternator it will be noted that the armature and field coils are stationary, the requisite flux variations for the generation of radio frequency currents being obtained from the slots cut in the rotor. The rotor disc revolves between the two faces of the field yokes. The direct current supplied to the field coils produces a magnetic field flux which passes between the field yoke faces and through the rotor.

A solution of the problem of speed regulation with A.C. motor drive was found by Mr. Alexanderson in the use of a resonance circuit, which is tuned to a frequency slightly above the frequency to be maintained at the alternator. This circuit is supplied with current from one of the armature coils on the alternator. The current in this circuit increases with alternator speed, and, through the agency of a rectifier, a D.C. component operates on a voltage regulator connected in the circuit of the dynamo which supplies the saturation current for a set of variable impedances in the two phases of the motor supply circuit. The function of the regulator is to prevent, within established limits, either an increase or decrease of alternator speed.

The multiple tuned antenna used here may be said to establish a radical departure from the types of antennas formerly used for high-power radio transmission. The immediate object of the multiple antenna is to reduce the wasteful resistance of the long, low, flat-top aerials formerly used and to permit the length of such aerials to be increased indefinitely for the use of greater powers. The radiation qualities of the flat-top are not impaired by multiple tuning, as a series of tests have shown that with an equal number of amperes in either type, the same signal audibility is obtained at a receiving station, but there is an enormous saving of power in the case of the multiple antenna.

The multiple tuned antenna has, instead of the single ground wire usually employed, a number of ground leads which are brought down from the flat top at equally spaced intervals, and connected to earth through appropriate tuning coils.

The earth-wire system at the New Brunswick station is a combination of a buried metallic and a capacitive ground. Sixteen parallel copper conductors are laid underneath the antenna and buried one foot in the ground. They extend the entire length of the antenna and are spaced between towers. A network of wires and zinc plates are also buried in the ground around the station. At each of the five tuning points outside the station, connecting key is open, the amplifier short-circuits the alternator and depines the antenna system, thereby reducing the antenna current to a negligible figure.

When it is closed, the output of the alternator is fed to the antenna system.

A standard tower for high-power stations is used. This is of the self-supporting type erected on a suitable concrete base. The antenna wires are suspended from the steel cross arm at the top. This method of antenna suspension lends itself admirably to the long narrow antenna which has been found most suitable for the Alexander System.

In explaining all this, Mr. Alexanderson injects a touch of the romantic. "It is the aim of the radio engineer," he says, "to charter the sea of the ether, to weather its storms and to provide a continuous service of communication day and night."

And he continues: "The transoceanic radio station is a power station. Its input is kilowatts and its output is words. The problem of radio engineering is to establish the relation between kilowatts input and words output. This relation between kilowatts and words is a chain comprising four separate subjects which are being studied by specialists in those subjects. They are:

1. Relation between kilowatts consumed and wave energy radiated.
2. Relation between wave energy at the transmitting station and wave energy at the receiving station.
3. Relation between wave energy at the receiving station and the speed at which words can be received.
4. Influence of atmospheric disturbances.

"The first subject deals with the radio power station and the antenna. The Radio Central antenna at Rocky Point, L. I., is designed from the ground up. It has six ground connections distributed over a distance of one mile and 150 miles of wire buried in the ground. Through these devices the ground resistance has been reduced to 1/10 ohm. The best types of antenna previously used have ground resistances of about 2 ohms. The
losses in the ground have thus been reduced at the rate of 20 to 1.

"The second subject is wave propagation. We have now a great deal of practical data which can be summed up in the rule that the most economical wave length for communication over a certain distance is about one five-hundredth of the distance.

"The third subject deals with the design of the receiving station. It has been found that the speed in words per minute at which it is possible to receive telegraphic code is directly proportional to the amplitude of the wave.

A signal field strength of 50 microvolts per meter corresponds under average conditions to a speed of 50 words per minute.

"The fourth subject deals with the atmospheric disturbances. Our modern receiving system eliminates about 9/10 of the disturbances, but the residual which is not eliminated determines the speed of reception by the law of inverse proportionality.

For elimination of disturbances we use a new type of antenna about ten miles long. It is a simple telegraph wire mounted on ordinary poles. It is not tuned for any particular frequency, and waves at all lengths travel along the wire with the velocity of light. The ether wave thus starts a wave on one end of the wire, and this wave travels along the wire while the original ether wave follows beside it in space, constantly adding energy to the wave on the wire, just as the wind starts a ripple at one shore of a lake and rolls it up to a large wave as it travels along. Thus the wave intensity in the wire grows and becomes a maximum at the far end of the wire. Fortunately on the Atlantic coast, most of the disturbances come from the West, whereas the signals come from the East. The wave antenna thus separates the signal from the disturbance so that the signal appears at the east end of the wire and the disturbance at the west end. The energy of the disturbance is destroyed by absorption in a resistance at the west end of the wire, whereas a practically pure signal can be collected at the east end.

"With the data that is thus available the planning of a new radio system is no longer a matter of guesswork. Before designing our South American system, we sent an expedition of engineers to chart the atmospheric disturbances. Their findings led to a modification of the original plan because it was discovered that at the location first selected, the principal disturbance came from the same direction as the signal, and therefore could not be eliminated. From the data now available it is possible to calculate the number of words that can be received during each month in the year, although the stations have not yet been built."

Building the radio telegraph station at Warsaw, Poland, was a gigantic engineering project. Of course, the Alexanderson system was installed. Mr. Alexanderson was a leading figure in the furtherance and final realization of this station which is now in daily communication with the Radio Corporation of America, Broad Street Office, operating both ways at a speed of 80 words per minute. It was early in 1919 that the then newly constituted Polish Government realized that direct communication with the world, and especially with the United States, was essential. Surrounded as she was by nations whose hostility was either open or hardly concealed, she knew that reliance could not be placed upon the existing wire methods of communication, which entailed the use of the facilities of other nations. Radio was the one most flexible, efficient and certain solution, and the determination to erect a radio station of high power was taken early in the history of the new nation. However, due to the necessity for placing finances in order, and investigating the offers of the various radio constructors, it was not until August 4, 1921, that the Polish Government signed the contract for the station so eagerly desired. By this contract the Radio Corporation of America agreed with Poland to construct for it an international high power radio station of the most modern type, at an approximate cost of $2,000,000, and to have it working in 1923. The promise was kept, and the actual operation of the plant has gone forward with the ultimate success.

The station in Poland is equipped with a broadcast receiver that has been fitted with loading coils so that it is capable of tuning to the long wave lengths of the Radio Central transmitter, and messages for Poland are sent direct on a regular schedule.

The Poland station is interesting in a number of ways, besides its general resemblance to the famous Radio Central at Rocky Point, Long Island. Probably the most striking feature of the installation is the power plant, in which some unusually difficult engineering problems had to be solved.

(Turn to page 80)
BELIEVING that fundamentally and basically the safety of the government rests on the widest and fullest publicity of what the government is doing and contemplates doing, I introduced a resolution in the Senate requesting the Secretaries of War and the Navy to cooperate in the appointment of a joint commission of radio experts from their respective departments to investigate and report to the Senate upon the equipment of the Senate chamber with electrical transmission apparatus so that the proceedings may be adequately heard by every one in the chamber and so that the proceedings may be broadcast.

Some of the details I had in mind were the placing of loud speakers in each Senator’s cloakroom and in each Senator’s office so that if a Senator were compelled to be absent from the chamber itself he might be able to know exactly what matter was being considered by the Senate and to what stage it had progressed. This idea could of course be extended to the office of the President and other high government officials.

There is often confusion of voices in the Senate chamber due to the low tone of voice used by some Senators and also to the proclivity of people to get together in a corner and discuss something. I had in mind a receiving and sending apparatus at each Senator’s desk. When a Senator starts to speak this could be turned on; all other transmitting apparatus in the chamber would then be turned off. Any Senator who was not hearing clearly could turn on his receiving apparatus, and turn it off when he chose. In this way every word spoken which should be heard would be heard and of course be broadcast.

My idea was to use the existing Army and Navy Stations. Immediately upon the announcement of my resolution the Radio Corporation of America volunteered to undertake this broadcasting. The Senate has adopted the resolution. The War and Navy departments are now looking into the matter as set forth in the resolution.

The Congressional Record has a very limited circulation. Those few people who receive it do not read it to any extent. Its appearance is, as literature, uninviting. Consequently very little of the proceedings of Congress reach the people in their original form.

I believe that many meritorious measures would be acted upon and other proposals, which do not deserve approval, or consideration, would not be passed if the people knew the exact time at which they were being considered that these measures were up. Broadcasting of the Senate’s proceedings would bring the people into closer touch with what their representatives are doing and would thus stimulate interest in the issues before the country. The galleries of the Senate would be extended to the borders of the country. Many people do not read much, but these same folks are interested in radio and would listen in.

Undoubtedly much of the irrelevant and extraneous talk and debate would be escaped if my plan were put into effect. Some Senators may be apprehensive that “talking to the country” would preclude the transaction of any business in the Senate, if the proceedings were broadcast. But I am not one sharing this fear. The reaction from constituents resulting from the waste of time by unnecessary debate would more than offset the desire to make speeches for political effect. I am inclined to think that the length of speeches and the quality of debate would be respectively shortened and improved.

There would also be a tendency to be present on the part of Senators during the time the Senate is in session. Calls for a quorum would lessen in number. Senators would want to let their constituents know that they are following closely what is going on in the Senate.

The advertising value of broadcasting the proceedings would be great to the individual Senators and to the parties. Some one has expressed a fear that party organizations would exercise rather strict control over the time, with the result that only the best speakers would get much opportunity to set forth their views on the subjects under consideration. There is no such danger. Party discipline is not what it was in the period following the Civil War. No great issues now separate the two major parties. Members of Congress speak and vote with very free minds. I believe every member would be able to say what he wanted to say. This apprehension is not to be seriously entertained.

The procedure and manner of doing things here is a mystery to most of our citizens. The reason is that they do not have facilities to get the information they need to understand how we do things in Congress. When one can put on a head-piece or turn on a loud speaker and hear what is going on in Washington, so far as Congress is concerned, he would in a short time understand just why it takes so long to do things sometimes.

Personal touch is a very moving influence in human affairs. Reading about what happened in Congress is not nearly so stimulating as hearing it as it is being done. The reaction from Congressional action would be many

Turn to page 79
and Dial on Senate Proceedings

Nathaniel B. Dial
U. S. Senator from South Carolina

Contends That It Is Not Practicable Nor Desirable

The Secretaries of War and Navy, by a resolution of the Senate recently adopted, have been requested to form a board of radio experts from their branches of the federal government to investigate the possibility and practicability of equipping the Senate chamber, without defacing it, so that the proceedings could be broadcast. The use of the existing plants and facilities of the War and the Navy Department is contemplated in the resolution for this broadcasting. The inquiry is to cover also the cost of procuring and installing the necessary equipment, and a report is to be made by the heads of the two departments to the Senate.

Senator Howell, of Nebraska, is the author of this proposal. His resolution includes the consideration also of the matter of so equipping the Senate chamber so that every word spoken in debate, in whatever tone of voice, could be heard easily in any part of the chamber. There is often sufficient noise and confusion, under strained circumstances, to warrant the inquiry as to whether this disadvantage cannot be obviated. I believe something along this line is possible of accomplishment.

I am rather convinced that broadcasting of the proceedings of the Senate is not practicable. The conditions under which speaking is done in the Senate chamber are not comparable to the conditions in a broadcasting station, or to an occasion such as when the President makes a set speech. Any Senator is subjected in the course of a speech or a debate to many unlooked for interruptions. No one can anticipate just when the speaker is about to be asked a question. Debate is so fast and so attentively followed when an interesting and important matter is under consideration that perhaps three or four Senators are addressing the presiding officer at the same instant in an endeavor to get recognition in order to ask the speaker a question.

Granting that some sort of a system could be worked out so that each Senator's desk would be equipped with an arrangement, which could be controlled at a central point, in order that only the Senator actually addressing the chair would have his voice received and broadcast, the operator of this intricate mechanism would have to be humanly active and alert to be able even approximately to follow the proceedings. It would, it seems to me, be beyond human ability and dexterity.

So much for the practicability of the project. The experts are the only persons who can tell us whether it can or can not be done. Science can do wonders. It likely will at some time be able to perfect even such an arrangement.

As to the merits of the proposal, I am quite satisfied in my own mind. I believe broadcasting of the proceedings of the Senate would be a bad thing for the country.

Congress would be slow to adjourn. The political possibilities would be enormous. We have too much talking in Congress now. The eyes of the country are ever on Washington, on the Federal Government, especially on the Congress, waiting and hoping, and in many cases, alas, expecting, that something will be done legislatively that will cure this or that public ill. Most of these things cannot be effected by simply passing a law or two. They require the working out of natural laws and economic processes. The basis of our liberties rests on the government, and the interest therein, of our states and small communities. Our people can accomplish much if they will demand that more be done near where they reside, and less at Washington. Not that there is anything which those who do not favor this new proposal would conceal from the public mind. The people are entitled to know all about what goes on in Washington.

But we do not want to fix their attention on one agency of the government for the best part of the waking half of the twenty-four hours.

What with the news bureaus, news agencies, news service, special correspondents, and the Congressional Record itself, there is surely no dearth of sources to which a curious individual can repair for his information. These various news gathering businesses, each operating independently, covering the same field, are in a very intensely competitive occupation. Each one of them cannot afford to miss anything important. Every worth while fact is related to the public, almost as soon as it happens. The people get this news from several sources, and from each source in a slightly different manner, with the result that all the angles are simultaneously presented to the public's attention for its consideration. The suppression of any news or facts which belong inherently to our people is impossible, much less the passing over of anything done in the legislative bodies, because all the latter are necessarily reported in the Congressional Record.

The dignity of the Senate as a body would be sure to deteriorate if the suggestion to broadcast its proceedings in full were adopted. A mighty political

(Turn to page 79)
Municipal Station WNYC

Operator at receiving equipment at WNYC. This is primarily for listening in on possible SOS calls.

Antenna system in course of completion for WNYC's new broadcast station. This aerial is of the cage type believed to be best suited at this point. Note skyscrapers in background.

P. H. Geer at work on the one kilowatt transmitting equipment of WNYC. Many novel features will be broadcast from this new station, one of the most up-to-date of its kind in the country. All broadcasting will be done from the Municipal Building at New York City.

Anton Grainer installing the speech amplifiers which step-up the voice vibrations caught by the microphone in WNYC's studio. New York City plans to compete with the best broadcast stations in the country, offering a highly diversified program.

PICTORIAL SECTION

August, 1924
To Those Who Attend Church

Radio Church Services Have, From the Very First, Made a Broad Appeal

UNDOUBTEDLY one of the permanent functions of radio broadcasting has become clearly defined when church services are considered. From the first days of this new medium of communication people listened in quite generally to religious services. It is now an established institution.

By means of radio the voices of the clergymen of Schenectady, previously limited to the churches in which they spoke, are now carried great distances. Every Sunday the services of a Schenectady church are attended by two congregations, one visible to the pastor, the other invisible but hardly less appreciative.

For months WGY, co-operating with the Schenectady Ministerial Association, has been putting religious services on the air. Because of the power of the station, the excellence of its modulation and its exceptionally favorable location for distance transmission, the messages of the Schenectady clergy have been carried thousands of miles reaching, especially, thinly populated sections in northern New York, New Hampshire, Vermont and eastern Canada. Each preacher has become known internationally, and his flock has increased many times.

Days after a radio service the clergymen of the church receives letters of appreciation from his listeners. The letters come from invalids, the aged, from the lame and blind and from institutional patients. A great many letters are received from people living in isolated communities where no church services are conducted. Woodsmen, farmers, forest rangers, keepers of light ships on the coast and fishermen shut in by ice on islands off the Canadian coast have acknowledged reception of Schenectady services.

Frequently the letters contain sums of money, the senders feeling that by contributing to the collection they are more completely participating in the service. Some of the churches have set aside the “radio” collections as a mission fund. Each of the Schenectady ministers has broadcast so often that the listeners feel an intimate personal relationship and the letters breathe warmth and friendliness. Not infrequently the writer extends an invitation for a visit, for a fishing or a hunting trip.

Recently Dr. Philip Frick, pastor of the First Methodist Church, received a letter from a Vermont resident who asked the clergyman’s assistance in locating a sister he hadn’t seen for twenty years. The correspondent had a vague notion that his sister lived in or near Schenectady. Dr. Frick started an investigation with the result that sister and brother were reunited.

Rev. H. F. Fulton, pastor of The Community Church, at Hampden, Mass., relates the experience of his congregation after attending a radio church service. He says:

An innovation was introduced recently in The Community Church, located at Hampden, Mass., when on a Sunday morning, a radio receiving set was used in connection with the service. On account of my absence while attending a church conference in Lynn, Mass., a service was broadcast from the South Congregational Church, in Springfield, Mass., through station WBZ. The local congregation followed the service throughout, taking their customary seats during the playing of the organ prelude and bowing reverently when Rev. James Gordon Gilkey, of the South Congregational

(The correspondent continues)

The entire morning services at St. Thomas’ Church, one of the oldest and best-known churches in Manhattan, is broadcast by station WJZ by means of the permanent microphone installation which has now been in use for over a year and which enables the radio congregation to hear the sermon, the choir numbers, and the hymns by the congregation in the church in practically perfect form. Tiny microphones installed in various parts of the church are switched in and out by the operator as the service changes from pulpit to congregation and from congregation to choir—H. F. Fulton.

Grandfather and grandmother Keating listening in during Sunday morning church services

Rev. Lyman R. Hartley of the Port George Presbyterian Church, New York, installs radio sets to relieve sick members of his church
MRS. FREDERICK was at one time consulting Household Editor for the "Ladies' Home Journal," a contributor to "Farm and Home," a contributor to "Modern Priscilla," and is at present Household Editor for "Designer." Her activities in extending the benefits of home life by radio has attracted widespread interest throughout the country. This is a story of a mother who wanted just one career—the career of family and home and radio. Observing the illustration to the left Mrs. Fredericks can say like Cornelia: "These are my jewels," as well as a career.

How I Made a Career Out of Home and Radio

By Mrs. Christine Frederick

WITH two babies and a home to look after, and a feeling that my college education was going to waste in home drudgery, I was not in a contented state of mind ten years ago. (How familiar this will sound to hundreds of women!)

Then one day my husband and I went to hear Harrington Emerson, the scientific management expert. The tale of how factory work was being revolutionized by modern science fascinated me. Mr. Emerson explained the twelve principles of efficiency upon which all this was based. My college training arose from its slumbers—I got an idea! Why not apply to household work the principles of scientific management? Was not the home the greatest factory in the nation—and the one most behind the times? Were not women everywhere ground down by housework done in the same way, almost as a century before?

My husband and I studied the subject intensively; we laid out a series of scientific experiments; we applied the principles of routed, planned work, of proper equipment at the right levels, etc. It was positively thrilling to see that the principles when applied did yield results, did cut down the housewife's footstep, did reduce the time necessary to do the work, did eliminate false motions and duplicated effort. You should have seen our house during those experimental periods—kitchen torn apart to raise sinks to the no-stoop level; stoves re-arranged so that the "preparing process" of cooking moved in consecutive line from ice box to dining room door; and the "cleansing process" in a similar line from table, to sink, to drain board to shelves. Stop watches to time motions, pedometers to count the number of steps taken—it was an eye-opening work, in the revelation it gave of the reason why "women's work is never done."

I prepared a series of articles for a great woman's magazine, and they stirred the country. They were printed in book form ("The New Housekeeping," Doubleday, Page & Co.) and I was called upon to lecture before women's clubs and scientific societies all over the country. My book was translated into Scandinavian, German and French. I opened up the Applecroft Home Experiment Station at Greenlawn, Long Island, our summer home, to continue the work, and issued bulletins, and continued my career as a writer for women's magazines and newspapers from the modern housewife's point of view. Previous to that very little but the old, out-of-date material for women had been provided.

I got thousands of letters from women, some of them tearful with the dreariness of household drudgery and pathetic in their eagerness to take a new view and apply new methods to housework. I was hailed almost as a prophetess and a deliverer, a founder of a new practical religion for women. You see, I preached the adoption in the home of the scientific idea with which men have done so much, while women have lingered in an archaic period.

I spent four years preparing a new and complete book—and added two babies to my family during the interval—which would give women a complete text book of the new methods. It is called "Household Engineering";
and is now used as a text book in many
schools. Harrington Emerson and
Frank B. Gilbreth, both famous engi-
neers, were good enough to write in-
troductions to these books.
I began to be called upon to write
articles, prepare booklets and make
new experiments and invent new
household devices and helps. I was
soon in a perfect whirl of work, and
needless to say, I was happier the
busier I got! But what has from the
very start astounded me is that I have
not done anything which any other in-
telligent woman could not have done.
I merely stopped despising housework
and studied it coldly and scientifically.
I merely began to make a career of
which most women regard as drudg-
ery. I merely picked up the reins
which most women wish desperately
to throw down.
Never have I been more sure than
now that the solving of the great prob-
lem of home-making and housework is
a job which women must tackle
and solve, and out of which careers
are carved. I have the hardest time in
the world trying to find an intelligent,
trained house-manager for my own
home, at very good pay. Think of it!
The profession which belongs by tra-
dition and by necessity to most women,
and there are almost none available!
We are coming rapidly—due to a de-
creased number of servants—to the
point when women must do more of
their own housework, but with the best
available apparatus; and also we are
arriving at a time when we must have
professional house-managers available
like trained nurses, for women who
work in business or professions.
Almost as soon as radio came, I real-
ized what a particularly great factor it
was to be in woman's life, because
isolation has been woman's greatest
bug-bear. Two or three years ago,
when radio was an infant, I began
making experiments. I have one of
the earliest sets made for house use.
I tried it in all conceivable home ways
—as something to keep the sick-room
cheerful; as an attraction to keep chil-
dren at home nights; as an educative
force and as plain home entertainment.
I believed in radio for women so
much that I began to broadcast ma-
terial to women; giving in a cheerful,
womanly way the timely information
women need for the household. Other
broadcasting stations began to read my

Mrs. Christine Frederick has been
actively engaged in organizing a radio
cooking class. This class listens in on
KYW, Chicago, while Mrs. Anna J.
Peterson, director, broadcasts the les-
sions in culinary skill.
Under the auspices of the Home Ser-
vice Department of The Peoples Gas,
Light & Coke Co., Mrs. Peterson
covers every subject of general inter-
est in cooking in a series of twelve
lessons. To those who register for
this course and send in written reports
on at least nine lessons, radio certifi-
cates are issued. It is a course well
worth the while of every woman who
has a radio available. Write to KYW
for particulars. The next radio cook-
ing class will commence in October.

1—Physical Education
a. Daily "setting up" exercises.
b. "First Aid" instruction.
c. Health talks.
d. Beauty hints.

2—Junior Features
a. Little "Children's Hour."
b. Woodcraft and animal sto-
tories.
c. Adventure and history tales.
d. Activities of Boy Scouts
and Campire Girls.

3—Household Interest
a. Housekeeping and cooking.
b. Market reports.
c. Care and hygiene of chil-
dren.
d. Home decoration and furni-
shing.

4—Cultural Topics
a. Correct English.
b. Musical programs.
c. Drama and book reviews.
d. Fashion and dress discus-
sions.

5—Social Interests
a. Current events.
b. Public affairs and politics.
c. News of sports.
d. Worship services.
e. Home finance and thrift.
f. Club and organization ac-
tivities.

Many of these recommendations
were immediately adopted by various
broadcasting stations.
Perhaps the most decidedly advanced
and effective use of radio for the ben-
efit of the home was brought about
when the Peoples Gas Company in
Chicago sent for me to stimulate more
interest in home cooking among Chi-
icago women, who were contracting the
cafeteria habit.
I organized a cooking school, now
attended by over 10,000 women per
week; and even designed special au-
tomobile trucks on which are mounted
complete kitchens, and from which lec-

Illustrating Mrs. Frederick's application of the proper use of radio in the home while at work as well as play
The Conclusion of Our Adventures With Radio in the Canadian Wilderness

By Sinclair Arthur

S

O many of my friends have protested against the unprecedented manner in which I left Dr. Hobart and myself in the wilds of Canada, that I feel there is no alternative for me other than a complete account of our sojourn back to civilization. I use the word “sojourn” advisedly. Our trip, from the time we left the Indian camp at the head of Pike Lake, degenerated to an expedition no less thrilling than a familiar visit to haunts commonly frequented by us.

In June, I described the vacation Dr. Hobart and I had planned. From Chicoutimi we traveled across Clear Lake, down the White Water and then stopped to visit the Indian family at Pike Lake. Our Indian guide, Joe, acting as interpreter, explained the marvels of our radio set to the uninitiated savages of his remote lineage. That celebration in the amphitheater that lay below the interlocking branches of the trees, with a venison feast before us, and the tribal dances displayed for our benefit, was an episode that Doc and I will remember to the end of our days. It is an experience worth the trip to the exclusion of all else.

Incidentally, that little party in the heart of a wild dominion was probably responsible for the change that came over us during our trip back to civilization. The nearest I can come to an analysis—in any degree accurate—is the bland assertion that we acquired, that night, a feeling, or sense of familiarity with all things to do with a wilderness as vast and as untamed as we found in Canada. The idea is absurd—I acknowledge it—but there is no other way of accounting for our sudden feeling of kinship with this wild domain.

When we parted with the Indian family, we did so with a feeling that closely resembled occasions in which life-long friends have bid us adieu, preparatory to an indefinite separation.

Our other guide, the French-Canadian Jacques, promised us what would amount to a glimpse of Paradise. And we were richly rewarded. Across Pike Lake, on a distant shore, a great area of land had been swept by a forest fire, leaving the ground clear for the tender vegetation that is not able to struggle through existence under the thick branches of giant trees. A riot of bright colored flowers covered the hillside in a variegated assortment of inconceivably brilliant shades. On the clear, translucent surface of the lake around us, the delicate tints of the evening’s sunset streaked the myriad ripples with ever-changing combinations of crimson and blue. A faint odor of pine and spruce drifted across the water. The even cadence of the paddles lulled our keener perceptions, and called to mind the many stories of fairyland romance and adventure, learned in the days of early boyhood. The setting was perfect for a radio concert.

In spite of the fact that this radio of ours was a burden on the portages, the guides had become enthusiastic over its presence on this trip. In fact, Jacques annoyed me at times with his insistent demand for more music. During the summer months, the days in Labrador are long, darkness approaching seldom before 10:30 P. M. The long evenings were therefore the more enjoyable because of our radio.

Camp had been pitched on the shore early enough to have a long rest before the next morning’s portage. Everyone, including the Doc and myself, worked terribly hard on the portages, often carrying more than we could support, and stand upright under the load. The full evening’s program had been received from CKAC. The broadcasting of Ilo, the new international language, particularly engaged our
interest as a subject worth while.
After we had turned in for the night, Dr. Hobart and I lay for awhile mus-
ing over the strange sensation of feel-
ing so much at home in our wild sur-
rroundings, and yet, always with the recur-
rent knowledge that we were se-
veral thousand miles away from our real habita-
tion.

WE WERE suddenly awakened.
Something was wrong—I knew it—but I couldn't grasp the full impor-
t of the situation. A voice pierced the utter blackness. It was the Doc. I
jumped to my feet, fully awake. The raging elements had torn our tent loose
from its mooring. Rain swept through
our belongings—pelted our faces with
needle-like intensity—whipped through
the tree branches above with a swish-
ing roar, heightened by the
drone of the wind.
Rain poured down our
necks, soaked through
our clothing, and washed
about our feet in small
torrents.

"Are you there?" Doc
yelled.

Above the roar of a
nature gone mad, the
guides' voices pierced the
night: "Stay where you
are! You move—you get
lost!" In a moment, Jacques
was at my side,
rolling our supplies and
equipment into a blanket.
He explained later that
he had done that merely
to keep them from being
blown away or misplaced
in the confusion. At the
time, I thought he was
trying to keep them dry.
Such an attempt, obvi-
ously, would have been
preposterous.

Jacques clutched my sleeve. "Par-
don, M'sieu," he said, "we mus' put
the tents together, yes?"

I opened my mouth to reply. Water
immediately ran in, causing a spluttering
of words. "Yes! anything!" I
gurgled.

Doc heard it and laughed—or rather,
I should say, started to laugh. It
ended in another splutter that pleased
me immensely. He should have had
more decency than he displayed under
such trying circumstances.

Jacques and Joe finally succeeded in
getting the two tents together in
the general form of a wigwam, with
an opening at the top. A blazing fire
was started in the center and we all gath-
ered around, our clothes hanging on
improvised racks to dry. With the in-
creasing warmth of the fire, some
cheerfulness returned. Enough cloth-
ing was at last dried to wrap about
our persons. Strange, that a small
thing like garb should be responsible
for the return of confidence and the
regaining of a vast amount of our lost
dignity.

Doc wanted to try the radio, and
since nothing would satisfy him until
he had been convinced of the futility
of the idea, the receiver was retrieved
from the pile of equipment and set up
for the experiment.

Joe, the Indian, wanted to know
what Doc was doing. "DX hunting,"
I explained. Joe's eyebrows lifted
slightly. I explained further that DX
hunting was a mild form of the old,
royal game of hunting the whistle-proof
in the jungles of America, but Joe's
eyebrows remained up, and so I de-
cided to leave them there.

When Dr. Hobart found that the ra-
take the chance with his one shot. He
killed the two partridges, but, as he
put it, he had to jerk the gun over
quick in order to hit both birds.

After three more days of wandering,
he found a small lake full of geese. He
slipped into the water, and swimming
around among them, tied their feet to
his belt with a line that he happened to
have in his pocket. His greediness,
however, resulted in tying himself to
too many of the fowl. Alarmed, they
rose into the air carrying him with
them. And, he concluded, in order to
get back to earth he had to pull the
goose, one by one, down to him and
kill them. In that way the few re-
main ing birds were weighted down to
such an extent that they were forced
to land gradually, which they did with-
out injuring him in the least. And,
needless to say, he had enough food to get him
back to the nearest trad-
ing post.

OUR little party, none of the
voice for the storm, reached the low,
rolling tundra land of northern Labrador. Rank
vegetation and dense swarms of gnats and
black flies tormented us nearly
to the point of
distraction. We were
certainly glad to turn
around for the trip back
to the forest-land. Even
our radio refused to
work efficiently so far
north, although I'll ad-
mit that our distraught temperament might have
been to blame.
The tundra of northern
Labrador is so vast, and
so difficult to navigate,
no one has yet been able
to make the trip across them.
On our way back we found an iso-
lated farm, hewn out of the great for-
est. Just why anyone should wish to
live in such a place the year round was
beyond our powers of imagination.
The farmer, a rather unfriendly indi-
vidual, did consent, after some bargain-
ing, to haul our canoe and equipment
to Roberval where we could get a train
back to Chicoutimi.

This farmer, whose name I have
forgotten, irrevocably rejected every
attempt made by Dr. Hobart and my-
self to demonstrate the joy and value
of radio. We wondered afterward
why either of us should be concerned
about this backward individual, and
finally arrived at the conclusion that
sympathy alone was responsible for
our Good Samaritan inclinations.
In Roberval, the people gathered
(Turn to page 86)
The World of Sound
Second Instalment of a series of articles on
SOUND in its relation to RADIO

By John P. Minton, B.S., Ph.D.
Consulting Engineer, Technical and Test Department, Radio Corporation of America, Fellow, Institute of Radio Engineers and American Physical Society.

The radio broadcasting stations take the sound in the air, change it over into electric currents of audio frequencies and transmit or radiate them into the surrounding space or ether on the high frequency carrier wave. At the radio receiver the detector tube separates out the currents of audio frequencies from the high frequency carrier wave and then feeds them through an amplifier to the loud speaker or earphones where they are changed back to sound. Much has been said for the radio, but relatively little has been told about the sounds themselves which we desire to transmit and receive. It seems appropriate then to consider the question of "what is sound" and to describe, in a way understandable by all, some of the common things we experience in the "World of Sound."

In the world of sound three elements are essential; material objects, the air and the ear. Around us are objects of every description. A moving railroad train, subway and elevated trains, moving automobiles, moving people, the running animals, the flying birds, the grasshoppers, the crickets, the "galloping fish," the charging wild beast, the moving boats, the moving branches and leaves of the trees, etc. I could go on, naming hundreds of objects about us. Those I have named move of their own accord or can be made to move by external means. In moving they produce little quivers, so to speak. These little quivers are often far too small to observe with the eye, in which case other means must be provided in order to detect the motions.

We live in a vast ocean of air and all these objects are immersed in it, so to speak. When these tiny motions occur a corresponding motion in the adjacent air takes place. The motion of the adjacent air is communicated to all the surrounding air and it thus runs in all directions through all the surrounding space, spreading out, weakening as it gets farther away until finally it dies.

It is of the greatest significance to us that the air can carry ever so many quivering motions at once, each motion being independent of the others. We are all familiar with this. The sounds of voices, the music of instruments, the noises from passing street traffic, the rustling of leaves, the singing of birds, come to us all together. We need only concentrate our attention on any one of various groups of sounds associated with any particular object to readily comprehend the presence and significance of each of the various groups.

Besides the movements or quivers of objects and the air, there is another important object, the ear, which permits its function so marvelously in the world of sound.

It is not surprising that we human beings as well as practically all animals have been endowed by nature with organs suited especially to detect and observe these quivers and vibrations in the air. In the first article of this group we described how the ear responds to these aerial vibrations. In this respect the ear is unlike the eye. The phenomena of light are of the universe, but our experiences with sound are those of the earth itself, and so we speak, with perfect correctness, of the World of Sound. If the whole of free space were filled with air or other gases, I wonder what awe and fears we would experience by the myriads of new sounds which would come to us from distant quivering planets, suns, stars, etc. Perhaps we should be satisfied with our own world of sound!

To each of us these aerial quivers which travel throughout the air are of great importance. Through long experience we can easily detect and correctly interpret practically all of them. Let some new and unfamiliar sound come to our ears. How quickly our full attention is focused to interpret it. Does it signify danger—alarm us? For the moment it is of supreme importance to us. It may be the whistling of a bullet through the air, the boom of cannons, volcanic eruption, an earthquake, a falling building, a collision of automobiles, the stealthy step of a wild cat, the cautious step of a burglar. We know them all and per-

The laboratory apparatus used to determine the sound transmission characteristic of various materials—note the slot at left where the material is inserted and then clamped tightly in place.
haps, have learned to interpret them because of their significance to us. They are also so different. Indeed, the ear is more wonderful than we give it credit for! It can detect the difference between the voices of men and women, it can distinguish one voice from another. It knows the different inflections of the voice and it can detect instantly and interpret correctly even the spirit that lies behind the spoken word or the cry of the babe! It is everything, almost, to us to be able to converse with our friends and associates, and thus set in motion very special kinds of aerial quivers or vibrations. The world of music also gives great joy and pleasure to many and in this realm, too, special kinds of quivers are produced. Both of the special kinds of vibrations will be treated in a forthcoming article on “Speech and Music in the World of Sound.” For the present, let us become more familiar with the nature of sound.

We have seen that the air adjacent to a vibrating object vibrates with it and that these vibrations of the air are propagated throughout the region. In other words, air conducts the sound vibrations, so to speak. We have all watched the water waves traveling along the surface of the water. This constitutes a wave motion passing through water. Sound is a similar wave motion passing through the atmosphere or air. This can be easily demonstrated. In figure 1 is sketched a glass vessel which can be exhausted of the air within it by pumping out the air. An electric bell is suspended within the vessel and is connected to a battery outside the vessel.

If the electric circuit is completed at A, so that the current operates the bell, we hear it quite easily. We now slowly exhaust the vessel and we observe that the sound from the bell grows weaker. When the exhaustion of air has reached a high degree the sound disappears entirely. This shows that the presence of the air is necessary in order for the sound to be propagated away from a vibrating object. The eye can observe the vibrations of the clapper throughout the whole process which shows that air itself is not needed for light propagation.

This experiment shows that sound will not pass through a vacuum and for this reason no sounds from objects external to our earth can come to us. Air then is the conducting medium for sound waves just as free space or ether is the conducting medium for radio waves and light. This experiment also shows that glass—and other solid objects—not only conduct sounds well, but conduct them without change so that we are able to identify them after they have passed through. When the bell is operating the air is caused to vibrate. These vibrations of the air molecules cause a corresponding vibration of the wall of the vessel by the air molecules beating back and forth against the glass. The glass in turn causes the outside air molecules to vibrate and these motions run throughout all space, a small portion of them acting upon the drum membrane of the ear as described in our previous article.

Sound will also travel through water and other liquids in exactly the same way that it travels through all solids and all gases. During the war great use was made of the passage of sound waves through water in detecting the
presence of and finding the location of submarines and other boats. All material objects then act as conductors of sound. Some are better conductors than others, just as some materials are better conductors of electricity than others. For example, let sound be passing down an iron tube or pipe, as illustrated in figure 2. At a convenient place, P, the pipe is cut in two and various materials are inserted at the joint as shown by M. Let the sound pass from the section A, through M to the section B. If M is air, the sound in A is practically equal to that in B. For all other materials the sound in B is less than that in A. In figure 3 is shown a group of curves which illustrate how the sound is transmitted through a group of various materials, including ordinary wool felt, soft rubber and lead. The wool felt and rubber were 1/16-inch thick while the lead was 5/1000-inch thick. The curves show the percentage of the sound in A which passes into B through various numbers of layers of the three materials. The curves show clearly that for equal thicknesses the lead transmits by far the least, the soft rubber next and felt the most of these three substances.

What happens to the sound that does not pass through the material M? Some is absorbed in the material itself and the remainder is reflected from M back into the A section of the tube itself. The heavy or dense materials, like lead are good reflectors of sound, but the light ones, like felt are poor reflectors. We are all familiar with reflection of sound from buildings, from mountain sides from interior walls of large rooms, etc. The curves in figure 4, show the percentage reflection of sound from materials. The light materials having a density less than one are poor reflectors, but the heavy ones are better reflectors. These curves also show how the high pitch sounds are easily reflected, but the low pitch ones are very difficult to reflect, even from the most dense materials such as copper, iron, etc. That is, low pitch sounds pass right through such materials, but high pitch sounds cannot do so. Then figure 5 shows that the material must have thickness in order to reflect sound no matter how dense or heavy the material may be.

For this reason they are used as absorbers of sound and are made use of in broadcasting studios, auditoriums and theaters.

These three phenomena, namely transmission, absorption and reflection of sound play an important rôle in radio. Suppose, for example, it is desired to broadcast the performance of a symphony orchestra. The music is a complex mixture of sounds from all the different instruments, some low pitch ones, some high pitch ones, some intermediate pitch ones and some a mixture of all pitches from the very lowest to the highest. The lowest pitch sounds tend to pass out through the walls of the hall. That is, there is, in a way, no such thing as a hall for low pitch sounds. The higher pitch sounds are reflected practically 100 per cent. from the walls and windows. Of these the very highest pitch ones are quickly absorbed by the draperies, rugs, cushions and clothing, while the lower pitch of the reflected sound is not so much absorbed. The result is a peculiar combination or balancing of the instruments of the orchestra, with a preponderance of intermediate frequencies which quickly build up in the hall what is known as reverberation and resonance effects. When therefore we broadcast music from halls and auditoriums, this peculiar reverberation effect is readily observable. In studios this effect can be reduced by proper acoustic treatment of the walls, floors and ceiling to a point where it is not noticeable.

These three phenomena also enter in radio for the home. Here again, however, this effect can be controlled and reduced to a negligible point by proper selection of the furnishings of a room. However, if one desires to have the loud speaker in a room apart from the room in which he is located, difficulty of another nature is encountered in addition to these three. In this case the sound will usually have to pass around corners, through halls, perhaps from one floor to another, etc. If sound were a fluid of water, it would be possible to get it to fill up every nook and
crevice with sound. The low pitch sounds do act like this, but the high pitch sounds do not. These are more like the water flowing from the end of a hose and go only where we direct it, so to speak, and cannot pass around corners and fill up the space beyond. In other words the high pitch sounds act somewhat like light in this respect.

These phenomena of diffraction of sound waves are represented by the figures 6 and 7. The door, D, connects the radio room R₁ to the listening room R₂. In the case of the very low pitch sound waves, they are long compared with the dimensions of the door and so spread out to fill up the whole of the second room as shown in figure 6. In the case of the high pitch sound waves, they are small compared with the dimensions of the door and so pass through it without spreading out as shown in figure 7. Consequently if a person is directly in front of the door, he will receive better results than if he stood around the corner as at F. We are all familiar with this effect of diffraction in the case of water waves and many of us are acquainted with it in the case of radio reception. The same phenomenon is observed when large objects are placed in front of a loud speaker or are between the listener and loud speaker. This is why, of course, it is much easier to understand a loud speaker when we are directly in front of it than when we are located in another room.

In addition to diffraction effects as mentioned above, the low frequency sounds will pass from one room to another without much absorption, but the higher pitch ones will be greatly absorbed in their passage along halls from one room to another. Distortion, then, takes place in the original sounds and the effect is not altogether pleasing.

The discussion given above shows how sound energy is propagated and, furthermore, like electric energy along wires or through space as in radio waves, it encounters certain resisting forces which decrease the amount of sound energy that would be transmitted if these forces were absent. All of us are familiar with resistance of the wires, the inductance of the coils and the capacity of the condensers used in radio receiving sets. The acoustical analogies to resistance, inductance and fact that the coil of wire, L, has a certain electric resistance. That is, we cannot divest the wire of its natural electric resistance. Similarly, we cannot divest the neck, n, of its acoustical resistance. The air molecules move back and forth along and in contact with the internal walls of the neck and we all know that rubbing two bodies together requires a certain force on our part and also requires an expenditure of energy as is evident by the heat produced at the rubbing surfaces. This is the corresponding case in electric resistance and is also of the same nature in acoustics. In the electric analogy the resistance is decreased if we increase the cross sectional area of the wire. The same sort of thing holds in the acoustical case—the acoustic resistance, which causes absorption of
WILLIAM JENNINGS BRYAN has been a romantic figure in American politics. When occasion demands he can still hold the nation in the grip of his oratorical genius. It is significant that Mr. Bryan should come forward with the assertion that radio has been the greatest invention since the advent of movable type. In the May issue of The Wireless Age, Mr. Bryan advanced the claim that radio will materially help bring about world peace. Further, he stated that from small candidates up to the presidential nominees each can address the nation the day before election, concentrating their arguments upon the contested issues and answering any misrepresentations that may have been made.

The abuse of so tremendous an influence, he continued, would be so harmful, that the government, acting for all the people, may be relied upon to insure fairness in the use of broadcasting.

Senator Royal S. Copeland had more to say in these pages in the July number. We all know the extent to which radio has been used by President Coolidge in his addresses to Congress. The use of broadcasting during the Republican and Democratic Conventions is now common knowledge. It is, there-

fore, the employment of that instrument of publicity in the coming election campaigns that most concerns us now.

One notable result is the lesson learned by politicians during the conventions in New York and Cleveland. The old method of oratory, with fist-shaking and hair-tossing, was found to be of small value to B.C. Jr., in some cases, thousands of miles distant. Before the fall campaign opens, some of these gentlemen will probably engage private tutelage with teachers of public speaking.

Dr. Delbert Lean, professor of public speaking at Wooster College, predicts that the radio will do much to improve the literary quality of political speeches. Most of the old-time speakers depend much on their physical appearance, their bodily movements, gestures, and facial contortions to stir their audience. Any important point was driven home with a resounding bang of the fist on a convenient table. A whole plank in the platform of the opposing party could be dismissed with a snap of the fingers. A shrug of the shoulders was sufficient to make a pigmy of an erstwhile gigantic opponent. Pantomime took the place of logic, and clear English was not necessary if the speaker was sufficiently athletic to dazzle his audiences.

But with the radio these tricks are as useless as an icebox on a Polar expedition. The swaying of the listeners' emotions is secondary to clear presentation of facts. Only the master of English, who depends solely on the power of his words and his ability to use them, will be able to convince.

Will Rogers, in an off moment when he wasn't occupied with coiling his lariat, voiced the opinion that the convention in Cleveland was the first vice-presidential convention ever held in that city. Such remarks have caused the turning of the tide in many important issues of state. Humor lives any serious project. And it should be so. But a happy limit automatically becomes effective in broadcasting. That vehicle of information is too far-reaching for one speech, one catch-phrase, or a single political stratagem to carry undue weight. A first class broadcast station will not allow one party broadcast privileges without an equal advantage open to the other political party. Propaganda is barred; debate is encouraged. Political machines cannot reach broadcast stations, nor control their policies, as they often do other fields of public opinion, primarily because broadcast stations operate without direct return, and will continue to operate without profit in the future. And then, as Mr. Bryan points out, the abuse of such a tremendous influence would be so harmful, that the
government, acting for all the people, would take active, and probably stringent, measures to insure fairness in the use of broadcasting.

That, alone, is well worth remembering. This presidential campaign will be a broadcast campaign. Tune in on it. As never before, you may rely upon active, individual participation in American politics now that you have radio at your disposal.

Washington led the "straw-foot" brigade in the cause of democratic franchise. Lincoln took drastic steps toward cementing a government run for the people, of the people and by the people. Radio has come to us as an agent of the politic body of America. It is for those of us who will use it.

LENNOX ROBINSON’S "Crabbed Youth and Age," second prize-winning one-act play of the Little Theater Tournament, was presented in full, from the studio of station WJZ. The Garden Players of Forest Hills, an organization of non-professional players, has presented some seventy-five productions, both long and short, in the last nine years. Many of their productions have been given out of doors, using the naturally picturesque background of their beautiful gardens. The cast includes seven.

Of the professional plays broadcast by WJZ, "Sitting Pretty" at the Fulton Theater, and "Plain Jane" at the New Manhattan, were big hits.

Queenie Smith as an orphan in "Sitting Pretty," injected spice and mirth into the broadcast performance. Next best was Frank McIntyre, the comedian. Although Eleanor Griffith, as Queenie Smith's sister, had a rather attractive, winsome manner when viewed from the theater seats, much of her real personality was lost over the radio. The garden party ball, which comprised most of the second act, could not be broadcast effectively since too much time elapsed between spoken lines and the following musical numbers. But for the benefit of those who listened in on "Sitting Pretty," it may be said that nothing was lost through hearing only the first of the two acts. The second act is good only if it is seen. The first act, however, happened to be sufficient unto itself for broadcast purposes.

"Plain Jane" was worth while broadcasting. It is more worth while seeing. Although musical numbers were especially lively and tuneful, and the comedy of the best, the bright scenery and costumes, and the unusually pretty feminine members of the cast, could not be radiated. Described? Yes—but what of it? A broadcast announcer could not do "Plain Jane" full justice. The prize fight in the second act was described, blow by blow, by J. Andrew White, the pioneer "fight" announcer. Incidentally, the "blows" were altogether realistic.

MANY LEGENDS about the origin of chess have been handed down through the ages from dim antiquity. One account runs that an army, long besieged, was in grave danger of broken morale. To prevent the threatening dissension in the ranks, the king had designed a game in which the element of luck would not be a factor. He reasoned that such a game would engage the interest of his men, so arousing mental activity, that each would forget his individual grievances, and thereby regain the confidence that is essential to any project in which a great many have come together for a single purpose. The human weakness for "taking a chance" was soon responsible for the introduction of the practice of casting dice in order to determine which player would make the first move. But chess has come down to us as a product of evolutionary development, always retaining the one great principle—a game well adapted to stimulating thought.

Incidentally, it is significant that the legendary king wishes to stimulate thought at a time when his men, besieged and oppressed, were on the point of revolution. A combination of two thought producers—broadcasting and chess—has been successfully tried and proved popular.

Devotees of the ancient and royal game of chess have used many and...
In the twelfth and thirteenth centuries, troubadours toured continental Europe, carrying tales of distant towns, disseminating culture, and generally affording welcome entertainment. Thus, an air-circuit of that which lies over the horizon and is not to be had except through one who has been there and has seen.

A marked tendency toward local broadcast reception has for long been evident. Local programs, for the most part, can be enjoyed with greater comfort and less effort than DX hunting. It remains for modern troubadours to add the romantic touch to our home broadcast programs. There is much that we can learn from these lyric poets. If they do little more than incite interest, they have accomplished a great deal. We cease to learn at such time that our interest lags.

LANGUAGE is the dress of thought. Ilo is a universal language well adapted to broadcasting. Especially, since broadcast stations have turned to international program development.

The Canadian newspaper, La Presse, realizing the importance of an international language, recently gave a course in Ilo which they may now supplement through their powerful broadcast station, CKAC. Ilo is the result of the collective labor of the world’s best philologists and is not a one-man product. Employing the characters of the international alphabet (Anglo-Latin) only, Ilo can be typed, typewritten or telegraphed throughout the civilized world, without alterations or modifications. Ilo offers no national prejudice, its roots being essentially international: 80 per cent. now known by English, French, Italians, Spaniards, 65 per cent. by Germans, 52 per cent. by Russians, etc. The educated Latinist is not favored at the expense of the general public.

The list of Ilo words is a long one. Thousands of publications in all parts of the world have carried Ilo items. Radio broadcast stations have spontaneously known the benefits of Ilo to humanity—thus helping to solve, in a practical way, the problem of linguistic intercommunication.
The older international language is Esperanto, and is claimed, by many of its advocates, to be the better for auxiliary international communication. In fact, there is much to be said in favor of both.

Esperantists of France had a thrill recently when they heard brother Esperantists talking from station WIP in Philadelphia. It was announced, prior to the Esperanto broadcast, which was clearly heard in France, that European stations would listen in. The experiment was a success. Esperantists, both in America and Europe, hailed this broadcast of their international language, as one of the biggest steps ever made for the advancement of Esperanto.

Which of the two languages shall be the ultimate preference is hard to determine at this early stage of their development. It is, however, safe to predict that broadcasting will be the necessary stimulus for the eventual adoption of some language, and understood, by all civilized peoples.

STATION WJY presented a new and heretofore untired form of broadcast entertainment, which included our evening performances. For the lack of a better term, they were styled "Omni-Oral Productions." Each performance was of two hours' duration, the invisible curtain rising at 8:30 o'clock on the evening of each performance.

The basic principle of the "Omni-Oral Productions" was to give a radio performance which was a unified whole, in which each act, although complete in itself, was an integral and coherent part of the entire performance. While the "Omni-Oral Production" was primarily designed to please the listener who tunes to WJY at 8:30 and remains so tuned until the conclusion of the program at 10:30, each act was in itself a fully attractive and entertaining as any features of similar nature on present-day programs.

Each performance was opened with an instrumental overture, allowing the invisible audience a "tuning-period" of five minutes. Next came a prologue, appropriate to the general nature of the evening's production and explaining the locale of the acts which were to follow. Then came the various episodes which comprised the evening's performance, each of from fifteen-minute to a half-hour duration, each one varying from its predecessor in type, but dovetailing in atmosphere and color with all the others. To the announcer was assigned the responsibility of creating the mental-picture scenery which would aid the listener in "attending" the new type performance.

The Wireless Age has proposed something of this nature, editorially. An evening's entertainment constructed with a degree of continuity throughout the program should merit hearty response from listeners in. Such programs would of necessity be prepared with greater care and a deal more thought exercised in making up the schedules.

"A Night with the Conquistadores" opened with a five-minute overture, followed by a brief prologue explaining the nature and locale of the production. A twenty-minute episode of brilliant Spanish and Argentine dance-music, played by one of the leading Spanish orchestras of New York, comprised the next act. Following that, Miss Mildred Dehna, the gifted Spanish singer, sang several Spanish folk songs, and Vincent De Sola rendered the most famous "Compositions of Spain." Episode III introduced "A Sunday in Caracas," a fascinating reminiscence by Mr. E. E. Plummer, of the customs and manners of that country. In Episode IV the Piedmont Trio, one of the outstanding instrumental organizations in the country, presented a program of Latin American dances. In Episode V a noteworthy group of artists, including Madame Glukerja Campanieskaia, known throughout Europe as "Russia's Greatest Carmen," Enienino Blanco, celebrated tenor; Francesca Catalina, nationally famous Spanish soprano, and Paul Moreno, one of the foremost singers of today, presented "Bits of Carmen.

The second of the "Omni-Oral Productions," "A Night Out of the Past," was opened with a prologue. At 8:40 the invisible curtain rose on Episode I, "The Songs You Know." The celebrated Royal Trio was heard in Episode II, singing "Songs of the '60s." Max Kalfus, eminent tenor who has received unusually large response from the radio listeners after his previous concerts from WJY, presented "Songs of the '90s," and George Laval Chesterton, journalist author, traveler, spun some of his fascinating reminiscences in Episode IV. The Temple Quartet, one of the leading male organizations of its type in the East, sang the "Songs of 1900" as the final episode.

"Sport," the third of the "Omni-Oral Productions" presented to the invisible audience by station WJY, commenced with a lively jazz overture. Following the prologue, the Hennessey Orchestra presented a twenty-minute episode of dance music and xylophone solos. The "Dixie Stars," otherwise known as Bernard and Robinson, gave a genuine rollicking "Sing-Song," followed by Episode III—"Three Miles Up" as told by Andre Peyree, famous French aviatrrix and holder of the World's Altitude Record for Women. Upon returning to terra firma, Koty and Abram, one of the most popular teams on radio, sang popular songs and ballads, and in Episode V, Major J. Andrew White re-lived the most famous radio battles he had witnessed. Episode VI consisted of a one-hour dance program.

The last of the "Omni-Oral Productions," "A Night at the Opera," was arranged with episodes and musical numbers selected from operas known best to all.

—W. A. H.
Owen D. Young, Mediator on German Reparations

Premier Macdonald and Premier Herriot have come to a complete accord on the knotty reparations problem such as England and France have not known in five years.

The two Premiers have put their signatures to a combined program.

Mr. MacDonald yielded to the French demand not to disturb the Reparations Commission's powers, but both Premiers agreed it was proper to invite an American to sit with the Commission to decide whether Germany shall have failed to meet payments according to the experts' plan.

In other words, they compromised by turning over the power to decide the most delicate question to an American.

The agent for reparations, called the "King of the World" by the experts who drew the plan, will, if the London conference accepts the British and French plan, be in reality the most powerful and most responsible individual in the world.

The man they have in mind, if he will accept, is Owen D. Young, Chairman of the Board of the Radio Corporation of America, and one of the American experts who framed the much discussed Dawes plan.

Mr. Young is now in London. He is likely to prove the mediator to put the plan into action, and may some day have it in his power to say whether Germany has failed in her payments willfully.

Seek News from MacMillan

William Chroat, Toronto radio amateur and radio operator for the Canadian Government steamer Arctic, which left Quebec, July 1 on her annual trip to Baffin Bay, may be the first amateur operator to relay back to Canada and the United States the complete details of the winter experiences and homecoming arrangements of Capt. Donald B. MacMillan, Arctic explorer.

The departure of the Arctic, under the Northwest Territories Branch of the Canadian Department of the Interior, comes at a time when the arrival of daylight in the Far North is beginning to shut off the radio contact between McMillan and radio amateurs from Paris, London, South America, and possibly from other parts of the world, as a result of plans of superpower development now contemplated by the great electrical interests of this country," according to David Sarnoff, Vice-President and General Manager of the Radio Corporation of America, in a recent address at the annual convention of the Associated Manufacturers of Electrical Supplies.

"International broadcasting which will link up the furthest corners of the earth is closer at hand than the public imagines," Mr. Sarnoff said.

"The two outstanding developments in broadcast transmission during recent months," he continued, "have been first, the increased power of sending stations under the system of superpower, and second, the advent of rebroadcasting, or the method of linking a number of broadcasting stations so that a program may be passed on instantaneously from station to station.

"We have thus far been thinking in terms of national broadcasting," Mr. Sarnoff continued.

"It is a fact, however, that developments now in progress will project the human voice, and programs of music and information across the oceans. I see international broadcasting in the offing. I may say that in the next twelve months or so we will witness a demonstration of it. When the farmer in Missouri or Kansas can actually tune in and listen to voices in London, Paris or Vienna, in South America or the Orient and vice versa, then you will have introduced a new element into the situation which will irredeemably multiply the present benefits and opportunities of radio. To me the real thrill lies in the great humanitarian aspects of radio and its significance not only as a national, but an international factor."
Palestine Turns to Radio

EVEN the Holy Land has succumbed to the radio, "getting distance" now being one of the popular amusements of Palestine, according to a report received by the Palestine Foundation Fund from Jerusalem. The installation of radio apparatus in Palestine was given official sanction by a government ordinance issued on June 3, the ordinance permitting all inhabitants owning their homes to install either receiving or broadcasting instruments.

The demand for radio sets has increased greatly since the issuance of the government order, according to the report. Radio programs are all given in Hebrew, for the ancient language of the Bible has once more become the everyday language of Palestine, as a result of Jewish efforts to rebuild the Jewish homeland. The Jerusalem Opera Company, whose repertory includes most of the well known Italian, French and German operas, all given in Hebrew, furnishes some of the most popular radio program numbers.

The British government is planning to install a powerful broadcasting and receiving station on the Mount of Olives, where Government House, the home of the British High Commissioner, Sir Herbert Samuel, is situated, to keep the Home Office in close touch with Palestine. The Zionist Executive also plans installing a station to reach the headquarters of the World Zionist Organization in London.

North Pole Expedition Radio Equipped

BRITISH wireless fans are much interested in the expedition of the Oxford University men to the North Pole. Their boat, the Polar Bear, is the first British craft to set out for the point furthest north equipped with a wireless set.

The men on the exploration are delighted with the new arrangement. Already they are counting on listening in to their favorite singers though far from home, and hope to hear the sounds of Piccadilly and Leicester Square even in the land of snow and ice.

Not only the Polar Bear, but every sledging party will be equipped with its own hand-driven transmitting apparatus, so that contact between them and their base ship may be maintained.

This year the Arctic carries a short wave I. C. W. outfit, which will enable its operator to transmit on the amateur wave lengths between 100 and 150 meters. This equipment is in addition to her two regular sets, consisting of a standard 600 meter 2 kw. spark transmitter, and a continuous wave transmitter working on a 2,100 meter wave length.

The call which has been assigned to the Arctic is VDM, while that of MacMillan's ship is WNP. Special permission has been granted for all Canadian licensed amateur stations to use the wave length of 120 meters during specified hours, although transmission on this wave will not be permitted for any other communication.

In order that amateurs will know when to be at their stations for communication with the expedition a definite schedule has been arranged during which Mr. Chat will listen for signals. He will stand watch on the short wave length daily, except Wednesdays and Saturdays, from 11 P. M. to midnight, eastern standard time. Saturday, however, the hours will be extended from 11 P. M. to 3 A. M.

Radio Concession in Paraguay Sought

A PPLICATION has been made to the Paraguayan Government by Messrs. Eduardo Rojas & Compania de Asuncion for a concession to sell radio telephone equipment in Paraguay for five years. It is stated that Mr. Rojas has already obtained the necessary equipment for broadcasting and will place it in operation within six months if the concession should be granted. He contemplates using American material.

Broadcasting in South Africa

A LTHOUGH not actually granted, the Government has definitely promised a broadcasting license to the Associated Scientific and Technical Societies, Johannesburg, for a broadcasting station to be installed in that city.

It is announced that the new station will be installed on the top of the Stuttaford Building, with a broadcasting studio located on the third floor in the same premises. The wave length
THE WIRELESS AGE

Benjamin G. Lamme Dies

Benjamin G. Lamme, Chief Engineer of the Westinghouse Electric and Manufacturing Company, known as one of the "wizard trio" of American inventors, the others being Edison and the late Dr. Steinmetz, died recently in Pittsburgh, Pa., after a lingering illness. He was sixty and had been with the Westinghouse Company since 1889.

More than 150 inventions stand in his name in the Patent Office. He devised the "umbrella" generators that first harnessed the power of Niagara Falls. The high tension system of power transmission, the perfection of the alternating current system, the synchronous converter, railway electrification (applied for the first time successfully by him to the New Haven Railroad), the single-phase alternating current, the high voltage railway system and the single-reduction gear street car motor are among his notable productions.

Thomas A. Edison, Guy E. Tripp, Chairman of the Westinghouse Board, and David Sarnoff, Vice President of the Radio Corporation of America, joined in tribute to Mr. Lamme.

WNYY—526 Meters—Opened

New York City received its share of the air for the first time on July 9, when WNYC, municipal broadcasting station, successfully went into operation. The Police Department Band and Mayor Hylan took turns in the studios on the twenty-fifth floor of the Municipal Building while more than 400 on the roof and thousands in homes listened in.

Mayor Hylan, in a short speech, declared that listeners, by means of the new station, would learn all about New York City if they tuned up to 526 meters, and promised that the new instruments would, aid the Police and Fire Departments and do a great many things no station has done before. He added:

"Municipal information, formerly available only after perusal of reports, is now to be brought into one's home in an interesting, delightful and attractive form. Facts, civic, social, commercial and industrial, will be marshaled and presented by those with their subjects well in hand. Talks on timely topics will also be broadcasted. Programs sufficiently diversified to meet all tastes with musical concerts, both vocal and instrumental, featured at all times, should make 'tuning-in' on the Municipal Radio pleasant as well as profitable.

"Through the employment of this modern and very effective means of transmitting information an aroused public interest in the municipal government may logically be expected to ensue upon a broader understanding, a clearer knowledge and a deeper appreciation of its functioning. And it follows, as night the day, that the more enlightened the citizenship the better it becomes."

Foreign Notes

Belgium is now approaching the dilemma which must be faced sooner or later by the amateurs of every country that develops an interest in radio. She is in the throes of deciding whether receiving sets shall or shall not be heavily taxed. The legislators have advanced numerous tax plans, any one of which would wipe radio out of the country. But the Radio Club de Bruxelles (The Brussels Radio Club) has raised the battle standard. This Club proposes not only to prevent the proposed new taxes but to abolish the old ones as well.

The principal station of the Kingdom of the Serbs, Croats and Slovenes has just been inaugurated at Rakovitsa, near Belgrade, the first message sent being an official salutation to the French Minister of Posts in Paris.

A conference has been held at Lausanne, Switzerland, and may have as far reaching effects for the future as did the famous political conference held in that city. The re-

cent assembly was one of the national pastors, who have taken up the organization of religious worship by radio.

An agreement having been reached between them and the radio people, religious services are now to be broadcast regularly every Sunday evening at 8 o'clock. To avoid schisms and quarrels, the services will be largely evangelical.

Practically all the royal visitors to France make it a point to visit the station of St. Assise. Prince Taffari, absolute ruler of Abyssinia, made a special trip to this great radio center. From there he thanked all of France for her hospitality to him and his suite while he was in Paris.

Holland, which up to now has been principally famous for her production of bulbs—both tulip and radio—is going to have her first exposition of radio early in September.

An interesting commentary upon the speech of the King of England, recently broadcast from Wembley, is that a large percentage of the letters received from hearers have been from women. Many have commented upon the splendid modulation of the sympathetic quality of His Majesty's voice, another phase of radio to restore the "personal touch."

International Radio Week

International Radio Week will be held November 23rd to 30th, inclusive, according to announcement of the National Radio Trade Association who conducted this event last year and who are making plans

Professor M. I. Pupin receiving L. R. E. medal for his research work in radio—Major Armstrong and Prof. J. H. Morecroft, president of the institute took part in the ceremonies.
ain, France, Australia, Canada and Cuba will join in the celebration.

In England the various trade associations already organized will have complete charge of the English part of the celebration, while in the other countries special committees appointed by the trade bodies in the radio field will handle the details to make all the special programs dovetail into one another so as to insure the success of this world wide movement.

From London to South America

Tests made by Senatore Marconi from Poldhu to Buenos Aires in the Argentine Republic have been eminently successful. The first message transmitted was from Señor Le Breton, Minister of Agriculture of the Argentine Republic, who was in London, to General Justo, Minister of War, Buenos Aires. The message was in Spanish of which the following is a translation:

Marconi, who combines great power of realization with his Latin genius, favors us by selecting Buenos Aires for his first experiment of absolutely direct communication. I avail myself of his generous offer to tender a most cordial salutation to the steadfast defenders of our national flag.

This is the first message which has been transmitted to the Argentine by the Beam system and according to telegraphic advice just received by Senatore Marconi the message was received practically instantaneously in Buenos Aires upon a single transmission.

There is now every reason to expect that there will soon be provided a direct telegraph service from London to the South American Republics insuring the delivery of messages within a few minutes of their transmission and at substantially reduced tariffs.

Radio World’s Fair

The First Radio World’s Fair to be held in Madison Square Garden and the 69th Regiment Armory, New York City, September 22nd to 28th, is attracting the radio geniuses of the world and scores of them are preparing to introduce their latest inventions at the coming exposition.

Managers U. J. Herrmann and James F. Kerr have been compelled to enlarge the “New Inventions Section” to a size which will allow the exhibition of one hundred devices. Among the noteworthy American discoveries to be shown will be at least three different instruments designed for the purpose of radiocasting photographs in motion. Europe will also be well represented in this department.

Several Continental inventors will display new inventions of a most unusual character. Half a dozen recognized wireless engineers are now busily engaged trying to perfect systems for radioing pictures.

Sixty nationally known manufacturers of the United States will have de luxe exhibits at the Fair and England, France, Belgium, Italy, Switzerland and Austria will have proper representation in the “Foreign Section.” Exhibition booths of elaborate construction will fill both big buildings.

A number of the leading radio trade organizations are planning to hold their 1924 conventions in New York during the Fair and arrangements are now being made to conduct their business meetings in the lecture halls and demonstration auditoriums of the Armory and Garden between the hours of 9:00 and 12:00 o’clock every morning.

Fully a thousand jobbers and dealers, native and foreign, will attend the big show and two hours per day will be set aside for the exclusive transaction of business between these wholesale buyers and the exhibitors.

The International Amateur Builders’ Contest is assuming such proportions that the show management expects this feature to fill the entire basement of Madison Square Garden. Blanks for this competition are being distributed by radio dealers here and abroad and entries are already coming in from all parts of the world. Twenty-five prizes will be awarded in this contest and entry blanks with full particulars will be supplied to all who write direct to General Manager James F. Kerr, Hotel Prince George, New York City.

Gun Range-Finders in Philippines Use Radio

Radio spotting from army airplanes aided in the annual coast artillery practice at Fort Mills in the Philippines, the average error of the deviation from the target being only twelve yards at a range of 11,000 yards. So successful was the radio spotting that both artillery and aviation officers plan close co-operation in these annual practices.

The 2d Air Squadron stationed at Kindley Field in the Philippines, acquitted itself with honors in relaying data, and reporting the fall of the shells of coastal rifles from the air.

During the entire practice which occupied over two weeks, not a single radio failure was reported.

Trans-Atlantic Phone Tests

The 200-kilowatt transmitting apparatus by which the British government hopes to inaugurate wireless telephony conversations with America will be installed about the end of August at the Rugby station. It is hoped to begin the experiments during the following month.

Speaking in the House of Commons, Postmaster General Harts horn stated that experiments were in progress to test the possibility of establishing commercial telephone wireless between England and the United States. “Spasmodic communication,” said Mr. Hartshorn, “has been achieved over extremely long distances, but the aim of the experiments which are now being conducted is to devise a system which will give a reliable and continuous service.”
Moose and Music in Maine

A story with a background of reality written by one who has spent many summers in the Maine woods

Story and Illustrations by Stuart Hyde Hawkins

SILENCE pure as mountain water and heavy as winter blankets: silence so absolute that its very emptiness weighed down upon one like a heavy burden; silence so vast, so unbreakable, that one's reason swayed and tottered under the strain, urged by the realization of helplessness and impotence.

I took off the head-phones and tossed them dejectedly upon the snorting radio set before me. Totum pushed my pipe across the table-top and smiled sympathetically. Good old Totum! He had never seen a receiving set before, and never heard this one utter even a squawk, but he had accepted its added weight at the portages without a murmur because I wished it, and now he smiled cheerily because he knew I was discouraged. And I, who had created delightful dream-pictures of his amaze and wonder when I should first tune in a concert, could, in spite of my utmost efforts, conjure nothing but silence from the "greatest DX receiver ever built."

To be sure, the location was a hitherto untried one—a tiny camp, unoccupied for eleven and a half months of the year, on the shore of an absurdly small, but wondrously beautiful lake—without-a-name in the deepest backwoods of northern Maine, but the set should at least have howled with glee as I tickled it, I was sure. I had bought it from an amateur friend a week ago in Portland, where I had joined the old Penobscot Indian who now smiled across the table. Totum, whose real name is a paragraph long and signifies He-who-stares-at-death-and-laughs, had become my summer mentor in the intervals between mowing the lawn and chopping wood at our Casco Bay summer cottage, and had become Totum upon our first meeting. I was aged four when he appeared just after I had been shown my first Indian Totem-Pole. That was some nineteen years ago, and in the interim Totum had initiated me into the mysteries of woodlore and woodfolk on every possible opportunity during the summer months; and we were now on the fifth day of an indefinitely long moose-hunt.

So far the moose had proved effectively shy; at least, we had seen none, and I was beginning to feel that Totum regarded the radio as an ill-omen and a Jonah—provided that civilized Indians adopt the Jonah superstition along with Christianity—while the long evenings which I had planned to enliven with Broad ways jazz remained dreamily quiet, broken only by my disgruntled epithets.

The failure of the radio was the only fly in the ointment of content, however, and even that could not mar the perfection of the trip. To him who has never experienced it there is an unguessed joy in store in the sheer pleasure of being alive which the Indian Summer days in the virgin forests of Maine can bring. Cool but not cold, with no taint of civilization's ruthlessness, the days fly by in laughing haste, carrying with them regret, not that nothing tangible has been accomplished, but that they do not allow longer time in which to do nothing so well. Naturally we should have liked exceedingly to have seen a moose. The primary object in our coming was to give me a head for the Massachusetts mantelpiece, but we were content to bide our time and let the moose come when they would.

Dismissing the radio from my mind as the pipe commenced to draw well, I slouched down with my feet toward the rough stone chimney-place and demanded that Totum explain the absence of moose.

"Moose here O.K.,' came in slow, careful syllables from behind the cloud of blue tobacco smoke on the other side of the table. "Moose don't like new thingabob, mebbe.'"

It was what I had feared; his righteous indignation at the twenty apparently useless pounds had at last overcome his politeness, and from experience I knew that nothing would alter his dislike for the silent box.

"Perhaps you're right, I hadn't thought of that," I said. "What do you think of going across the ridge tomorrow and down by Lake Big-Trout—a name of our own adoption, by the way? Maybe if we get away from the box we'll find the moose."

"Uh-huh. Better turn in now, then," was the extent of his enthusiasm.

At what seemed like midnight, but proved to be only a half-hour before dawn, Totum shook me awake and pointed to the already-boiling coffee-pot. In about three minutes—the toilet of a hunter is delightfully simple and quick—I was ready to eat, and as we closed the cabin door behind us the sun was just coming up over Mount Skil-ee-och-mar-ee, which is a poor attempt to render in English the guttural flow of syllables with which Totum designated the pine-covered slope across the Lake-without-a-name. Fifteen minutes' paddling—it was cold on the water and we stroked with a zest—brought us to the other end of the lake, where we beached the canoe and struck off towards the pass over the tiny divide.

Totum never spoke when he was hiking, so my thoughts were my own for the better part of four hours. After the first quarter-mile my interest in the landscape waned, and my boots followed subconsciously in the prints of Totum's knee-moccasins. Walking, particularly strenuous walking, is most conducive to mental activity. I believe—certainly I have always found it so—and my thoughts leaped from subject to subject at random, until they suddenly lighted upon the silent receiving set. In every detail I traced the hook-up, assuring myself that I had done everything which I could or should have; nothing was wrong with the set itself—repeated and thorough investi-
gation had satisfied me on that point. And of a sudden a light burst upon my troubled intellect. Totum had erected the aerial according to my directions given from the ground—and I had gone inside to rescue the potatoes for supper as he was making the final connections. He had appeared in the doorway while I was still at the stove, and had grunted a favorable reply to my inquiry as to whether the task was done. In the evenings which followed I had torn down and rebuilt the set with no thought as to the antenna; and now I was convinced that in the connections on the roof lay the secret of the silence.

Just at that point in my mental preregimations I heard a grunt of satisfaction ahead, and even as I raised my eyes from the trail I stepped through a fringe of scrub-bush and found myself upon the infinitesimal beach of Lake Big-Trout. Without a word Totum leaned both our guns against a tree and pulled out the home-made pemmican which Totum and Totum alone can make palatable. We munched the bread and meat in complacent silence, while I tried desperately to find a suitable phrasing for the expression of my doubts as to Totum's technical ability. By the time we had finished I had decided not to tread upon the tender toes of his sensitivity, but to wait and investigate for myself upon our return.

The afternoon was devoted to exploration—that heart-breaking routine which is known to every hunter of wild game—and it was not until well-nigh sunset that Totum found moose-signs. We had reached the far-side of the lake, and found a treeless peninsula jutting out from the shore-line for some five hundred yards. Unmistakably the peninsula was being used as a drinking-place by moose—not one moose, but at least three of them; and without a word Totum led the way to a hiding-place in the undergrowth at the southern base of the peninsula and left me lying there with my gun. For an eternity, of perhaps ten minutes' duration, after the stealthy cracking of his moccasin feet had ceased, absolute silence covered the entire lake. His Majesty the Sun, having seen that all was as well as could reasonably be expected of a world inhabited by men, retired rapidly behind the pines to the west, and the lake became imbued with that desolate beauty which d inske in the Maine woods brings. Suddenly an eerie wail, half animal, half human, totally unnerving, shattered the stillness. For a moment my body was a mass of goose-flesh, and I perspired in quaking silence. Then I realized that it was only Totum, calling through his birc barks moose-horns in an attempt to draw the real moose to the scene. I heard the sound often before—I have heard it many times since—but invariably its weird uncanniness sends an involuntary chill through my whole being.

For perhaps a half-hour the call continued. "Totum must be blue in the face from blushing," I thought. Grayness had almost given place to blackness, the sky over my head was a candelabrum of myriad crystals, when my hair rose on end with a vengeance. An ungodly mountain, with a pine-tree across its crest, stood not two hundred feet away, stamping an impotent pile-driver (one of four) and shaking the branches of its crown nervously. Nobody had ever told me that a moose was large enough to fill a city block! This creature filled the landscape! My gun felt like a feeble pea-shooter as I subconsciously brought it to my shoulder. And then there I experienced my first real case of "buck fever." Try as I could—although to my startled vision the moose was larger than the entire Appalachian Range—I could not steady my trembling body sufficiently to aim at the vital hinder-shoulder which Totum had so diligently described to me during the past week.

For at least a century I waved the muzzle in small circles, until in desperation I pulled the trigger. To myself I have never been able to state incontrovertibly that my eyes were open when I fired; and when I did see clearly through the haze of smoke the peninsula was empty.

Reeling myself for a weakening and a coward, I strode to where the apparition had been standing and called for Totum. From far away, rapidly going farther, a heavy cracking was audible, proof positive that the moose was unharmed. "But at least he's as scared now as I was then," gave some meager satisfaction to my spirits. Totum had evidently decided to trail him, at least he answered no hail of mine during the next half-hour. And as it was cold and raw on the lake-side, and as my self-esteem was at its lowest ebb, I started for the camp.

That hike was without doubt the meanest one I have even taken! What made me keep on for over five hours through practically pitch-dark woods I do not know to this day. When I finally leaned wearily against the door-

“Totum stood in the doorway staring pop-eyed over a rather small spread of moose-antlers.”
The 5-Tube Fusidine

A Receiver That Is Clear in Tone—Easily Tuned—Selective—Not Difficult to Construct—Brings in the DX on Speaker Through Local Stations

By A. H. Cubberly

The set to be described in this article will more than please you with its performance provided you follow the instructions carefully. The author believes this to be the best five-tube set—considered from all angles—that may be made from five tubes without reflecting. It has all of the advantages of selectivity, volume and distance reception and yet it is not critical either in its operation or in its construction.

The distance it will receive under favorable conditions seems to be limited only by the amount of interference of local stations, single circuit nuisances, or static and the strength of the sending station. An idea of its selectivity may be had when you consider that with the set operating in the office of The Wireless Age and with the powerful WEAF station broadcasting from across the street, we were able to tune out WEAF completely and bring in WHN on the loud speaker. Also, in Newark, N. J., we were able to get both WDAP, Chicago, and WSAI, Cincinnati, while WHN, New York, and WOR, Newark, N. J., were broadcasting. All came out full and clear from a Music Master loud speaker. On an exceptionally good night KHJ, Los Angeles, was heard at about 2 A.M. on the loud speaker.

Neither potentiometer or neutralons are used or required as the set operates perfectly without them.

While distance reception comes in...
better with long outside aerial and a good ground, local stations may be heard plainly on the loud speaker using only a loop or using an aerial without ground.

An open circuit jack is used on the detector, thus making it possible to listen on the head phones without interfering with the loud speaker. This may be desirable sometimes, as for instance, if the set is located in a store or hall where the loud speaker may be a distance from the set. It is then possible for the operator of the set to listen in while tuning the stations or at the same time the loud speaker is operating. Also it may sometimes be desirable to run wires from the detector plug to head phones at a sick bed in another part of the house from that in which the loud speaker is located.

A filament control jack is used on the amplifier tubes so they will not burn when the plug from the loud speaker is removed.

The following points should be noted about the use of the loop. An open circuit jack is used to plug in the loop. You will see that a connection is made from only one side of this jack to the set when the loop is plugged in. This is done to impress all of the energy from the loop to the grid connection of the first tube. Experiment may prove that both sides of the loop should be connected to the set, but if so, both sides of the loop should be connected to one side of the jack. This may be easily done by connecting the two ends of the loop to the two sides of the plug and then bridging the plug posts with a short piece of wire, connecting them together. The aerial and ground should be disconnected from the set if there is static or other interference when using the loop.

In assembling the set, all parts and jacks, except the two phusiformers, are necessary on the three large tuning dials.

The construction of the special tuner is as follows: Wind 35 turns of wire onto a 3½-inch bakelite tube, then skip enough space to allow 7 more turns with a space of one-eighth inch on each side; then wind 35 more turns in the same direction and connect in the center with two wire ends which may be passed through two small holes drilled in the bakelite tube. These ends may then be fastened together and soldered on the inside of the bakelite tube, thus making 70 turns in the same direction which is the secondary of the special tuner. Then wind 7 turns in the space in the center, in the same direction which forms the primary of the tuner. Any silk or cotton-covered wire from size No. 20 to No. 26 will do for this tuner. The two outer ends of the primary and the secondary windings may be fastened to binding posts which may be mounted along the ends of the bakelite tube.

The wiring of the set can all be put out of sight under the sub-panel, making a very neat appearance when anybody looks inside of the cabinet. This is easily accomplished by removing the screws from each socket and replacing with longer ones which must be turned down instead of up. The sockets are then mounted on the sub-panel and the wiring is connected from the under side with the nuts that were taken from the sockets originally. The jacks

MATERIALS REQUIRED

- One 7" x 2½" x 3½" Mahogany panel (Radion).
- One 2½" x 2½" Black sub-panel (Radion).
- One 7½" x 2½" Mahogany finish cabinet.
- One open circuit jack for detector (Federal).
- One closed circuit jack for loudspeaker (Federal).
- One special tuning unit (see details for making).
- One 1-inch variable tuning condenser (Phusiall).
- One bakelite tube 3½ inches long. (Federal).
- One 1/2-inch aerial (Tiltman).
- One 1/2-inch aerial seal (Tiltman).
- Two phusiformers (Paired Red Style or Cosmopolitan).
- Two audio transformers, 4½ to 1 ratio (Superior Products Corp.).
- Three 4-inch Mahogany pitch sails (Radion).
- Two 2-inch disks or knobs for knobs (Radion Mahogany).
- Three hexagon box wire.
- Three lengths high quality varnished spool wire (Alpha "Ebonite").
- One 0.005 fixed mfd. condenser (Evan's of Newark, N. J.).
- One 0.0025 fixed condenser and variable grid jack (Chas. Freshman).
- One 0.001 fixed mfd. condenser (Chas. Freshman).
- One 0.0001 fixed mfd. condenser (Chas. Freshman).
- One 0.00001 fixed mfd. condenser (Chas. Freshman).
- Twenty round head brass nuts 6/32 x 1/4" for sockets.
- Twenty round head brass bolts 6/32 x 1/4" for jacks.
- Two nickel plated brass screws for mounting panel into cabinet. Size about 1/8" x No. 6.

Rear view showing parts mounted on sub-panel and the wiring underneath.
What's in a Name?

introducing
our new name

The Radio Magazine

How do you like it? Here's your opportunity to tell us and perhaps win a $10.00 gold piece :: ::

$20.00 in gold For Best Letters

$10.00 in gold for the best letter, not to exceed 200 words, on why you think our new name "THE RADIO MAGAZINE" is a good one for your favorite radio magazine, or—

$10.00 in gold for the best letter, not to exceed 200 words, on why you think we should retain our present name "Wireless Age"

Choose either side. Contest open to all of our readers. Prize winners will be announced in our November issue. The contest ends September 30. Address all letters "Title Contest," Wireless Age, 326 Broadway, New York City.
ICK JOHNSTONE, popular West Coast radio man and boss of the RCA operators out of the port of San Francisco, attributes his start in the game to the big San Francisco earthquake and fire of April 18, 1906.

While going through the ruins he found some material with which he built his first aerial. Then with a detector consisting of two pieces of carbon with a sewing needle carried on their tops, a dry battery and a single telephone receiver of 75 ohms, he spent many an hour through the nights waiting for signals from the few ships and station in operation at that time.

His success encouraged him to improve the equipment as well as his ability to read the code and two years later, in 1908, he heard the Russian Hill station calling Honolulu, then acknowledged receipt of the first message to pass by radio between the Hawaiian Islands and the continent. This incident of the first establishment of radio communication between the Islands and the mainland is a historic one in radio. Mr. Arthur A. Isbell was at the Honolulu end while Mr. L. A. Malarin was at the California station.

Not long after this Johnstone, through added improvements to his station which included a galena detector, was able to pick up Honolulu. He also installed a coil transmitter with which he worked with other amateurs up to a hundred miles away.

He overheard a ship sending a distress call and perhaps it was this that started it, but anyhow, he decided he was going to be a sea-going operator. In the summer of 1912 he obtained a "Certificate of Skill in Radio Communication," which the government issued to all operators during the year previous to starting the regular licenses, and was assigned to the old Pacific Mail liner Acapulco as only operator—there were no two-operator ships those days—in charge of a 240-cycle Marconi set, a Fleming valve detector and a ten-inch spark coil.

Mr. Johnstone's first trip was a hard one. Shortly after leaving the Golden Gate for Panama the oil condensers blew out and if it were not for the spark coil he would have been entirely out of business. After several days of real work he had the main set again in operation, but in the meantime suffered the torture of hearing the San Francisco station calling him at a distance of 1800 miles while he was unable to answer. With the Fleming valves on this trip he copied signals up to 2200 miles.

During the three years that followed Mr. Johnstone was operator on several Pacific coast vessels and made twenty-two round trips to Honolulu on the flag-ship Wilhelmina of the Matson fleet. On all these trips galena was used as a detector and not once did he or his partner, Edward F. Smith, fail to communicate with San Francisco or Honolulu direct, or through relay in the static season.

At this time Mr. Johnstone's ambition turned toward the famous KPH coast station as San Francisco. To accomplish this end he spent much of his time while in port at the station standing relief watches, and in addition mastered the Morse code which was required.

In 1915 he received an appointment to the KPH station which he held for five years, two and a half years of which were under naval control. In April, 1917, he enlisted in the navy with the others of the station's staff and from then until January, 1920, he was on the circuit, either marine or high power, covering Hawaiian and Oriental traffic.

On February 1, 1920, following his release from the navy, he was appointed storekeeper and in January of the following year was promoted to his present position, that of chief operator of the Radio Corporation of America, marine department, at San Francisco.

ONE of the interesting reminiscences of Mr. Johnstone is that of listening to his first radio concert back in 1909, when a young man by the name of McCarthy had a wireless phone transmitter on Hayes Street, San Francisco, from which he broadcast songs and music of Columbia records for the entertainment of amateurs. A few years later and long before the present day broadcasting there was a station on the roof of the Fairmont Hotel which transmitted phonograph music to the delight and entertainment of ship and coast station operators as well as amateurs.

HERE is an interesting letter that came during the month:

"775 Buena Vista Ave.,
"Alameda, Calif.

(Turn to page 92)
European Over Sea Duplex Radio Telephony

By Dr. Albert Neuburger
Berlin Correspondent for The Wireless Age

Receiving station Rønne

The first radio duplex-line for service between Copenhagen and the isle of Bornholm is now in operation. It serves not only for the connection of that city with the inhabitants of the isle, but also makes it possible for anybody in Denmark to speak with each subscriber on the isle of Bornholm, which is situated in the Baltic and belongs to Denmark. No changes were necessary on the ordinary land line telephone apparatus to connect it in with the radio circuit and the subscribers who speak from Copenhagen to the isle do not realize that they are connected by radio. Only the clearness of the voice, which is better than it has been, marks the improvement that has been accomplished through the use of radio.

When a telephone connection is desired the subscriber in Copenhagen calls in the usual manner for his central-office and gives the operator the telephone number desired. The central-office makes the connection in a few seconds so that conversation may proceed.

The difficulties to overcome in the installation of this system were of different kinds. How to conduct the weak microphone-currents through the telephone network of wires so that it would actuate the radio transmitting apparatus efficiently was one of these problems. On the other hand, the feeble impulses in the receiver must be magnified so that they may be conducted over the land line to the central-office and to the subscriber with sufficient intensity and clearness to be readily heard. This problem was solved by using modern amplifiers and adapting them to this special use. The problem of establishing practical duplex-telephony without mutual disturbance required careful planning. The subscriber using the common land line apparatus is not able to switch from transmitting to receiving on the radio circuit. This difficulty was overcome by devising an automatic distributor which is constructed on the principles of the Wheatstone's bridge.

Interior of the receiving station of Rønne on the Isle of Bornholm
For the Copenhagen-Bornholm circuit the radio transmitter is located at Lingby near Copenhagen. This station works with a Lorenz-Poulsen transmitter. The receiving installation is situated on the island of Amager in the southwest of Copenhagen. For receiving there is erected a frame aerial which is installed on a 25-meter mast. With this mast there are connected two horizontal tubes, extending out from its both sides which help to bear the antenna. At the receiving station is installed the distributor mentioned above.

The transmitting station of Bornholm is at Hameren in the northern part of the island, while the receiver stands near the port of Ronne at the west coast of the island. The transmitting station at Hameren works with an energy of 0.8 kilowatts in the antenna, also using a Lorenz-Poulsen transmitter.

This new duplex radio telephone works for the present only between Copenhagen and Bornholm, a distance of 150 kilometers. In the near future, however, it will probably be used also for other purposes and perhaps there will be a service between Copenhagen and Berlin, for at the trials made before opening the Copenhagen-Bornholm line tests were successfully made with two-way conversation between Berlin and Copenhagen, a distance of 350 kilometers. It was the first time that the telephone systems of two great cities were connected by radio. Before opening this important radio-telephone circuit between Berlin and Copenhagen international treaties between Germany and Denmark must be signed and therefore it will still be some time before this circuit is opened for public use. During the tests the American steamer United States was also successfully communicated with. The captain of the ship spoke from a distance of more than 500 kilometers out on the Atlantic westward from the coast of Norway with a subscriber in Copenhagen. This indicates that the transmitting and receiving stations of the new duplex radio line are capable of being used for other services in addition to the service between Copenhagen and Bornholm.

June Conventions and November Elections

(Continued from page 22)

The Hudson River called for an investigation which disclosed the startling fact that boatmen, dock hands and longshoremen had deserted their posts to listen in at the various radio stores ranging from Battery Park to 14th Street.

Most of the radio stores had power speakers and the doings in the convention hall could be heard above the roar of passing elevated trains and vehicular traffic.

On the sidewalks of Chicago and the byways of New Orleans, in the Commons of Boston and at the markets of San Francisco, banker and banker and candlestick maker listened to the June conventions. Each interpreted the proceedings according to his ability. Across the land we shall go to the polls and cast our votes, each according to his weal.

The majority of women speakers at stations WHN and WOR, during the Democratic Convention, were delegates. They are new in politics. They have not acceded to the oratorical fireworks method of delivery. Consequently, they broadcast well, and shall command a hearing.

Some of the speakers were Mrs. George Bass of Chicago, Mrs. Emily Newell Blair of Joplin, Mo., Mrs. Charles Williams of Washington, Mrs. Solon Jacobs of Birmingham, Mrs. Gertrude M. Pottangall of Augusta, Mrs. Berton McMillan of Tennessee, and Mrs. James W. Gerard of New York. They are a credit to this nation.

Cool Cal Coolidge sounds well over the radio. Cool Cal delivers a cool, dispassionate speech that sounds equally well over the radio. His success has been attributed to radio. Those who should be able to judge, point out that he has reached millions merely because he talks deliberately, concisely, and is understood by those who listen.

The cool, confident voice of a woman coming to us by radio is a revelation.

General James G. Harbord of the Radio Corporation of America, has a common sense message for those who want to know how broadcasting the June conventions affects the November elections:

"Broadcasting will give the people cleaner politics and more effective self-expression. Within a month those who have listened in to the great nominating conventions have divided orators into two classes—the old fashioned rafter, the man with the semaphore gestures, the tremolo in his voice, depending on emotional and hypnotic effect, seeing only an audience of a few paltry thousands; and the keen, clear-voiced, self-contained, logical speaker, delivering a message for thinkers listening in by the millions, and not to be moved by the devices of the old style stump speaker. In political matters more than in any other form of human endeavor, archaic methods still prevail. In getting out the vote, either for a cause that is right or a cause that is wrong, office holders with pecuniary interest in the result are still a major influence. Pulling the doorbell, pleading with lethargic voters to go to the polls and do their duty, is hard work.

"Over the broad highways of the ether will come, in the campaign that is now upon us, the human contact between statesmen and people, that will supplant professional politics and mechanical effort at the front door of the voter, with truth and conviction within the home."
What Selectivity Accomplishes

Another article of utmost importance to radio fans who wish to operate their sets for maximum efficiency

By Dr. Alfred N. Goldsmith, B.S., Ph.D., Fellow, I.R.E.
Director of Research, Radio Corporation of America

The second harmonic super designed for selectivity on broadcast wavelengths

On a winter's night, there may be passing through the air, waiting to be trapped by a suitable receiver, literally hundreds of radio messages from broadcasting stations, trans-oceanic stations, and marine stations. It is clear that some powerful scientific agency is required to pick out any desired one of these messages sharp and clear, and free from interference from the rest of the myriad of hurrying signals which accompany it. Every broadcast listener knows the practical side of the solution, namely the process of "tuning" his receiver to the desired signal to the more or less complete exclusion of all the other signals.

Every signal has its own wave frequency (expressed in kilocycles) or wave length (in meters). Consider a 750-kilocycle (or 400-meter) signal. In part "A" of the drawing accompanying this article, the tuning dial of the receiver is shown set to this frequency, and the strength of the signal is then "very loud," and is indicated by the height of the dashed-line curve drawn above the scale on the dial. If, however, the incoming signal were of the same power, but of a frequency of 730 kc. (kilocycles), its loudness in the telephones would be less, as shown at the point marked "loud" on the dashed-line curve. If the signal frequency were 700 kc., it would become "readable" only, and if the signal frequency were 670 kc., it would be practically "inaudible." Such a receiver as this would therefore discriminate completely between equal signals, one of which was on 750 kc. (400 meters) and the other on 670 kc. (448 meters).

A good crystal receiver will have about this selectivity or power of selection between signals of different frequencies, but the radio engineer would regard this as poor selectivity for any vacuum tube set. Sets employing radiotrons should give much greater selectivity than this. To take an extreme instance of excellent selectivity, the effects shown in the lower portion "B" of the first drawing should be studied. It will be seen that while the signal is very "loud" at 750 kc., remains at practically the same loudness to 756 kc., and then drops very rapidly, becoming "inaudible" at 756 kc. The type of receiver shown at "A" in the drawing will therefore respond to signals falling within a band of frequencies about 160 kc. wide and has very little selectivity. It will not cut out local interference to any great extent, and its user will have to contend with listening to the strongest of his local stations. The type of receiver shown at "B," however, will respond only to signals within a narrow band of frequency, about 10 kilocycles wide. It has extremely good selectivity. In fact, it is not feasible to improve its selectivity at all without destroying the quality of the music received from an ordinary broadcasting station. Theory and experiment agree in showing that a band of 10 kc. width is required for good musical reproduction, and any receiver that receives a band of less than this width is entirely too selective and will destroy the quality of the concerts received. It was for this reason that the Department of Commerce, acting on the recommendations of the Second National Radio Conference, assigned frequencies to broadcasting stations 10 kilocycles apart so that they could be entirely distinguished from each other by a receiver having the greatest usable selectivity and so that they, in turn would not interfere with each other by producing audible whistling or "beat" notes when they were transmitting.

The following tables give in a general way the degrees of selectivity, or power of distinguishing between signals of equal strength at different frequencies, and the usefulness of each class of selectivity:

Receiver tuned to 750 kilocycles (400 meters).

1. Equal signals become inaudible 80 kc. off tune—that is, at 670 kc. or 448 meters. This is poor selectivity, and will barely enable the listener to distinguish between local stations.

2. Equal signals become inaudible 30 kc. off tune—that is, at 720 kc. or 460 meters. This is good selectivity, and will in general enable distinguishing between local signals and some distant signals.

3. Equal signal becomes inaudible 10 kc. off tune—that is, at 740 kc. or 405 meters. This is very good selectivity, and will meet most requirements of reasonable interference prevention.

4. Equal signals becomes inaudible 5 kc. off tune—that is, at 745 kc. or 403 meters. This is excellent selectivity, and will meet all possible requirements. It is, in fact, the very limit of selectivity which can be employed with ordinary broadcasting transmission without injuring the quality of music. Greater selectivity than this, therefore, is unusable and undesirable.

58
As a general rule it may be said that a good crystal receiver of the single circuit type will have selectivity in Class 1 (as indicated in the accompanying table); a non-regenerative receiver will fall between Classes 2 and 3 and generally nearer Class 2; a properly used regenerative receiver will be in Class 3; and the obtaining of a Class 4 receiver requires special design and construction. The accompanying photograph shows some of these receivers.

The selectivity which can be obtained from a receiver depends not only on its design, but also on the correctness of its use. Even the best receiver carelessly used will not yield all the desired results. For this reason, a series of suggestions are given below for getting the greatest selectivity from various types of receivers and thus avoiding interference as far as possible.

In using a non-regenerative receiver of the two-circuit type, reduce the value of the coupling between the antenna circuit and the secondary circuit as far as permissible for the desired signal strength. The tuning of the antenna and secondary circuits should then be sharp.

In using a single-circuit regenerative receiver, do not use an antenna any larger than is required to give a loud signal on the most powerful local station when the tickler has been brought up to the point where further increase begins to spoil the quality of the music. If difficulty with howling or covering the wave length range is experienced under the condition mentioned in suggestion above, place a condenser across the ground and antenna binding posts of the receiver—the value of this condenser being about five ten-thousandths (0.0005) of a microfarad.

In using two-circuit regenerative receivers, keep the coupling from antenna to secondary circuits as loose as will give the desired signal with tickler adjustment well up toward the point where further increase begins to diminish the quality of the music. If necessary reduce antenna dimensions as well and add a condenser to the set as mentioned previously.

Be satisfied with signals of reasonable loudness. The selectivity of any type of set being necessarily limited, it is necessary to be content with nearby station receptions if one is located very close to such stations. Distant station reception, if absolutely required, must then wait for the later evening hours.

Ever so often, the broadcast listener will be told of some receiver that picked up a very distant station loudly through powerful local stations on nearby frequencies or wave lengths and without interference. If he cannot duplicate these results, it is no positive reason for discouragement because transmission conditions vary so much from night to night that any general conclusion is meaningless. Distant stations are sometimes amazingly strong and easily received. It is not meant that receivers of high selectivity will not accomplish wonders compared to those having poor selectivity. What is meant is that "one swallow does not make a summer," and that single records prove very little.

The 5-Tube Fusidine

(Continued from page 53)

must also have the bolts replaced with longer ones so they may be mounted on the sub-panel without disturbing the insulation. The jacks are placed upside down and the sub-panel is bolted between the bases of the jacks and the insulating pieces. The shape of the jack springs may have to be changed slightly, using a plug to test them with to be sure that the jack still operates correctly after it has been mounted. As a precaution against blowing out a tube, you are advised to connect the set completely and attach the A and B batteries and try out a tube in each socket before connecting the B battery. A plug must be inserted in the loud speaker socket before the amplifier tubes will light. A wet storage A battery and 201A Radiotrons are recommended throughout.

When the set is completed, the operation is very simple. Be sure the A and B batteries are connected as shown; also the aerial and ground. Insert the phone plug into the loud speaker jack. Turn on the detector and amplifier rheostats until all tubes light, but not strong enough to cause hissing in the phones. Turn the first large dial to any position, say about 30; then rotate both of the other large tuning dials from about 25 to 35 simultaneously. If a station is heard, return each of the dials for greater clearness and place the phone plug into the detector tube jack and insert the loud speaker plug into the amplifier jack. If no station is heard try changing the first dial up or down about two points and with it in the new position, rotate both of the other two dials about 5 points above or below the number on the first dial. If no station is heard after trial on all of the different points it may indicate that the dials have been incorrectly set on the shafts. These three large dials must be set so they will have the 100 reading opposite the upper mark when the condensers are coupled at maximum capacity or when the rotary condenser plates are fully inside and between the fixed plates. A peculiar thing about this set is that no sound is heard until you get a station and therefore it is hard to get stations the first time. Especially is this true if you have been using a set that tunes in stations on the "whistle." However, after you have succeeded in picking up a station you should log it as it will always come in on the same dial settings just like the combination on a safe. And what is more, you will not annoy your neighbor while you are operating the receiver.
IN SUMMER TIME

on ships at sea, on ranch and on farm and in many occupations the Weather Man is indispensable around the whole year; but in summer time and vacation time all of us—however sheltered our winter existence may be—wonder from day to day, "What will be the weather?" If we are planning a boating trip it is necessary to get a weather forecast; if a picnic is planned, or an outing of any sort, we must regard the probable weather. A sudden unforeseen change of weather will ruin our day's sport or a week's vacation. Now, whether we get our weather advice through the daily paper or directly from our radio receiver—which in many remote vacation spots is the only way—we are bound to be interested in Uncle Sam's use of radio and radio broadcasting to increase the service of his Weather Bureau.

Tempering the Weather

150 Broadcast Stations Enable the Weather Bureau to Serve All Parts of the Country and Vessels at Sea in Its Work

By S. R. Winters

A poet living in the sixteenth century wrote, "God tempers the wind to the shorn lamb." Herdsmen on the ranches in Wyoming, in the twentieth century, are safeguarding their shorn flocks of sheep and their offspring from freezing rains by virtue of weather forecasts dispensed by radio. The shearing of sheep and the arrival of new-born lambs are practically simultaneous occurrences and a wintry rain is disastrous to both unless shelter is given during unfavorable weather conditions. Warnings of precipitation by radio afford opportunity for the bringing of the flocks from the open range to the corrals, thus lessening the mortality rate of wool and mutton-producing animals.

A farmer in Wisconsin upon receiving, by radio telephone, forecast of a cold wave of some duration, communicated with his neighbors and secured their co-operation to the end of scraping and patching the community highway. The road was cut up and in a deplorable state, a condition that would have endured throughout the winter months had the cold wave settled upon it. However, the weather warning by radio telephony enabled the farmers to scrape the bumpy highway and roll a new roadbed in the nick of time. The cold wave, true to the forecast, arrived and the road with its fresh surface froze over. In a measure, it was a boulevard throughout the winter months.

A highway engineer at Carrolton, Illinois, is building a concrete bridge in sections upon the strength of daily weather forecasts received by radio at the local bank, duplicate copies of the bulletins being regularly supplied this bridge builder. A warning of rain may necessitate the employment of an extra force in order to hurry to completion a section of the bridge. He is thus enabled to safeguard his concrete building activities against freezing conditions.

A fisherman, off the New Jersey coast, casts his nets and seines for the finny tribe in obedience to the storm warnings issued by radio. He writes, "I am interested in the weather prevailing and predicted on the fishing grounds from South Jersey as far north as New England." For a reason not altogether dissimilar, farmers in the vicinity of Peekskill, New York, realize the opportune time for harvesting of hay, lest rainfall spoil the newly cured grass. Likewise, producers of cranberries in the vicinity of Chatsworth, New Jersey, learn of the visitations of Jack Frost by radio. These frost warnings likely insured an adequate supply of cranberry sauce for your Thanksgiving and Christmas turkey.

These testimonials suggest the diversity of interests served in the broadcasting of weather forecasts, warnings, and like information by radio. The frequency of the appearance of the words "weather forecast" or "weather report" in the daily broadcasting programs exceeds that of any other service. Moreover, the Weather Bureau of the United States Department of Agriculture is the only agency, government or otherwise, that has enlisted so many broadcasting stations in disseminating its programs—112 radio-telephone and 25 radio-telegraph stations—co-operating.

"Fair and warmer; gentle winds," as commonplace as this phrase and its variations may seem, is of universal appeal. The universal language centers about the weather conditions. The Wyoming ranchman who tends his flock of sheep with the changeable weather conditions constantly in mind...
Weath ter Forecasts by Radio

and the street-car conductor who exchanges greetings in terms of "cold weather" and "a fine day" are both concerned in forecasts, whether the interest is based on useful applications or idle curiosity. Hence, it is safe to assume that music, speech or what not, when dispensed by radio, does not challenge as widespread interest as the condition of the weather on the morrow. The composite interest in weather reports is reflected by the results of a recent survey in which it is computed that 265,000 persons in the United States directly receive forecasts by use of radio. This estimate does not take into account the practice of the operators of radio outfits who distribute the information thus received to their neighbors.

"In my opinion radio offers greater potentialities for the advancement of meteorological science than any other development within the past 20 years," are the words of E. B. Calvert, meteorologist of the Forecast Division of the Weather Bureau, United States Department of Agriculture, in appraising this medium of intelligence for both collecting observations and in the dispersing of forecasts. That radio will be employed eventually as a vehicle of studying weather conditions in remote areas, not now invaded by the cable and telegraph, is implied in the following words of Mr. Calvert which he gave to me in the course of an interview:

"We must secure data as to conditions that are occurring in the inaccessable regions of the north and study them in relation to weather sequences. We know much of the laws in relation to storms and anti-cyclones; about where they form, and the effect of the rotation of the earth on their motions. We know that conditions in one region have a bearing on the weather in another; that a storm over one country today will move to another tomorrow, the next day, or perhaps a number of days later. We feel certain that conditions in and about the polar regions have a decided bearing on conditions of the inhabited regions to the southwest.

"The crying need of meteorology is for more information from those places; more reports to form as complete charts for the northern hemisphere as may be possible. It is not to be supposed that telegraph, telephone, or cable lines will ever be advanced into the frozen regions of the north, but it is well within reason and expectation that scientists equipped with radio apparatus will penetrate into these regions, suffer hardships for the sake of science and send daily reports which will mean so much to meteorologists and the progress of the world."

The use of radio telegraphy in the collection of observations pertaining to the weather in areas not penetrated by land-line communication systems is problematical, of course. The application of radio telegraphy in assembling and reporting atmospheric conditions over expanses of water is, however, a reality—in fact, a daily occurrence. Reports from vessels plying the "seven seas" are received with almost the facility and dispatch that observations are made and exchanged by the land-observing stations of the Weather Bureau. Ships equipped with radio apparatus have been enlisted to take and forward two observations daily to the district forecast centers located at Washington and San Francisco. A nominal sum is paid for each observation. However, such substantial corporations as the Texas Company, the Standard Oil Company, and the Texas Oil and Refining Company, in recognition of the value of these storm warnings, make observations and forward them free of cost to the Weather Bureau, except for the radio and land-line tolls.

The extent of the use of radio telegraphy as a weather observer is suggested by the records that 298 individual ships made approximately 10,000 observations during twelve months. This service includes reports of storms and hurricanes over water areas, their intensity, direction of movement and rate of progress. These warnings after being charted are distributed for the benefit of the ships of all nations. Masters of all vessels operated by the Shipping Board are required to take and transmit daily observations, without cost to the Weather Bureau. In a notable recent instance of the alertness of seafaring vessels in reporting the existence of a hurricane, a warning was issued by the Weather Bureau of a hurricane located south of Nassau and Cuba and during the four-day period of the movements of this storm within a certain area 114 observations were made by masters of ships. The meteorologist in charge of the Forecast Division of the Weather Bureau received a letter from a shipmaster indicating that he picked up, by radio, the first warning issued and was thus enabled to chart his course away from the area in which the hurricane was spending its fury.

However indispensable radio telegraphy may be in reporting observations of atmospheric conditions over vast expanses of water, it is not contemplated that this medium of communication will ever displace the Morse telegraph system as a means of collecting weather observations on land. In fact, the 240 observing stations in the United States and Canada are tied into one vast telegraph system, as it were. There are 23 telegraph circuits averaging about 750 miles in length, the longest being 1340 miles and the shortest 231 miles. One of these telegraphic circuits extends from Washington to St. Louis, tying in eleven stations, including Chicago, St. Louis, Springfield, Indianapolis, Terre Haute, Evansville, Cincinnati, Dayton, Columbus, Pittsburgh and Washington. At 8 o'clock each morning the Washington observation is transmitted over this telegraphic circuit and every operator on this telegraph line copies the message. This procedure is duplicated on all of the communication systems until the 240 reports from as many observing stations are distributed throughout the country by 9 o'clock or a few minutes earlier in the morning. Thus this system of collecting obser-
HAVE you ever wished to throw efficiency and economy to the four winds and forget all the careful habits which you have formed in your experience as a radio experimenter? Most of us have. Have you ever tired of the everlasting substitution of a makeshift appliance for the genuine article in the construction of a radio receiver? If you have, you will appreciate our emotions when we completed the Super-Tone Amplifier.

We have had one ideal. An amplifier that would faithfully reproduce the exact tone quality of incoming signals. This Super-Tone Amplifier is the realization of our ideal.

The ordinary audio-frequency amplifier, using the present-day closed core transformer, can amplify only a limited band of frequencies. This frequency band often fails to amplify the high and low notes on the musical scale. The inherent losses in windings and laminations of the iron core have so far made impossible the perfect audio frequency transformer which rectifies one-half of the alternating current sine. Consequently, these audio frequency transformers were not used in this amplifier, and for the same reason we chose the resistance-coupled, or rather, the capacity-coupled amplifier which makes use of the voltage drop across the resistance inserted in the plate circuit. A resistance-coupled amplifier when properly constructed, amplifies all frequencies perfectly. Therefore, when one is connected to the detector tube we will not miss the notes of a bass horn nor the warbles of a coloratura soprano. This is because the voltage drop across the resistance inserted in the plate circuit through which the plate current flows actuates the grid of the following tube.

The amplification of a resistance-coupled amplifier at so-called audio frequencies, is slightly greater than the amplification of each amplifier tube. Many people are under the impression that in a transformer-coupled amplifier the transformer does all the work and the tube acts only as a coupling. In a properly designed amplifier the tube should do most of the work and the transformer do the coupling. In the case of the resistance-coupled amplifier the coupling is merely a condenser and the tube does practically all the work. For this reason tubes used in a resistance-coupled amplifier should have the same characteristics and be matched. It would likewise be well to have some method of accurately regulating the filament current. This was accomplished with Fil-Ko-Stats in the Super-Tone Amplifier.

Most audio frequency amplifiers have a tendency to amplify tube noises and atmospheric disturbances. The transformer amplifier amplifies to the greatest extent the frequencies of these disturbances. Although more volume is obtained by placing the resistance-coupled amplifier after the push-pull amplifier, by placing these two separate kinds of amplification in the reverse order, stray noises are less apt to enter the final stage of amplification. Consequently, static is not amplified as it is an ordinary transformer coupled amplifier. Although the Super-Tone Amplifier is not a static eliminator, it is certainly a static "diminisher."

Construction Details of the Super-Tone Amplifier

As the majority of the instruments employed in this amplifier are mounted on the baseboard, it is advisable to put all these instruments in place before any work is done on the panel. Five and three-quarter inches from the front of the baseboard draw a line parallel to the front and back of it. This will be the center line for your sockets. The first socket is centered two inches from the left. This is the detector socket. Five and one-half inches from the left fasten the second socket and in the middle of the baseboard mount the third socket. Then using these same measurements locate the fourth and fifth tube sockets. Be sure in mounting the sockets that the two filament posts of each socket are fastened toward the front of the panel so that the filament...
leads will all run between the sockets and the panel. This is necessary because of the connections to be made with the automatic filament lighting jacks. Between the detector tube and first amplifier tube socket and as close as convenient mount the first resistocoupler and between the first amplifying tube and the second, mount the second resistocoupler. The grid condenser and grid-leak of the detector tube are mounted directly back of the grid binding posts on the detector socket, so that the grid lead is as short as possible. In the set made up in our laboratory, this lead was not over one-half inch long. The push-pull amplifying transformers are rather large and it is necessary to mount them in the position shown in the photograph in order to have room for them at all. The binding posts, looking at them from the rear, are marked B+ amplifier, 150 volts, B+ amplifier, 90 volts, B+ detector, 45 volts, A+ B- A- C+, plate, tickler, filament and grid. This makes nine binding posts. The Eby posts are admirably suited for use in this amplifier because of the excellence of their make-up and because they have engraved on their tops exactly what each stands for. Start with the grid and plate lead of each socket and make your connections to the binding posts and to the instruments. Leave the filament connections to the last. Next drill the holes for the Quiny frames which are fastened to each edge of the panel. Then drill the holes for the three Fil-Ko-Stats and three Pen- cent jacks. Draw your center line down the length of the panel three and one-half inches from either edge. The first Fil-Ko-Stat is mounted three and one-half inches from the extreme left end of the panel and the second Fil-Ko-Stat is mounted three and one-half inches from the right end. The middle one, of course, is mounted in the center of the panel. Holes for the three jacks are drilled directly below the Fil-Ko-Stats and one and one-half inches up from the base of the panel.

Now go over the diagram of the filament connections and study them thoroughly before you attempt to hook them up. With a red pencil go over the diagram as each connection is made so that you are automatically checked up if you omit anything. The filament connections on this amplifier are the most complicated of any that you are liable to run across in constructing a modern receiving set. The filament return lead from the tuner is connected to the positive side of the filament. The return lead from the "C" battery in the push-pull stage is connected to the negative side of the filament. The return lead from the resistance-coupled amplifier is connected to the positive side of the "A" battery.

Now connect up your detector jack. Place the tube in the socket and apply six volts to the "A" battery binding post. Turn up the Fil-Ko-Stat, place the phone plug in the detector jack. Now when the plug is inserted in the jack, the detector tube should light up. When it is removed it should break the filament circuit and the tubes should go out. Now complete the filament connections for the resistance-coupled stage and connect up the second jack. Now check up on your movements so far and place the plug in the detector jack. The detector should now light up as before and upon removing the plug it should go out and should have no effect on the next two tubes. Now plug in on the second jack. This should light the first three tubes and upon the removal of the plug they should go out. Next connect up the push-pull stage. When the plug is put in the third jack all tubes should light up and when it is removed all tubes should go out. This method of procedure will check up on any discrepancies in your wiring. Be sure not to make a mistake in placing the resistance and grid leaks. The resistocoupler posts are marked.

Operation of the Amplifier

The only operating details which are necessary to mention are the matching of the tubes in the push-pull stage and the resistance coupled stage. Pairs of tubes which work well together should be placed in the same kind of amplification. After the filaments are lighted, a careful regulation of the filament rheostat will greatly enhance the clarity of reproduction.

[Circuit diagram of the super-tone amplifier]
Using the Information Desk

SOME of the letters which we receive in our every day mail show a decided lack of thought on the part of some of our readers. We are sure it is this rather than ignorance because of the absurdity of some of the questions. A short time ago we received a letter in which the writer asked several questions concerning a receiver described in the pages of THIS WIRELESS Age. Among other things he asked us to compare this set with a standard manufactured product, mentioning the name of the manufacturer. Don’t you see in what position this places us? We cannot make statements concerning a particular type of manufactured receiver, nor can we uncom- promisingly praise a special receiver. This same writer went on to ask what ratio of transformers he should use in constructing this receiver. In this particular receiver there was specified a list of materials used in the construction of the set. We even went so far as to mention the manufacturer which in this case was the Acme Apparatus Co. These people make excellent transformers of one ratio. If the writer had taken the trouble to look up this list of materials it would have been apparent to him that the Acme people make but one ratio of transformer, which they find suitable for all purposes. In most construction articles when special transformer ratios were used it was specified in the list of materials.

Then there is that ever present letter from some of our readers who ask if a certain receiver can be used with UV-199’s or WD-12’s and so forth. We encourage our readers to read the slip which is enclosed with each genuine Radio Corporation of America or Cunningham tube and to read it carefully. This advises in each case exactly what that tube is best suited for. Every tube on the market that is of standard make, can be used as a detector tube. Of these the best detectors are the UV-200 and C-300. These tubes are especially designed for detecting purposes. They will not serve satisfactorily as an audio-frequency amplifier nor a radio-frequency amplifier. Its sole function is to detect and it does that very well. All the other tubes are more or less “hard tubes,” and act best as amplifiers. For a radio-frequency amplifier you should use the UV-199 or UV-201A. For an audio-frequency amplifier the UV-199, WD-11 and WD-12’s are all equal. The WD-11’s and WD-12’s were not designed for radio-frequency amplification and therefore cannot be expected to do this well. Then there is the writer who asks if one set will give more volume than another. With the exception of the superhetodryne and the untradyne, the volume is directly dependent upon the distance of the station from your receiver and the amount of audio-frequency amplification used. If one receiver has a detector and two steps of audio-frequency amplification and another receiver has two steps of radio, detector and two of audio and in each case the same “B” battery and the same tubes are employed and the receiver is located at the same spot, the results if both are properly designed will be practically the same. In other words the amount of pep obtained depends almost entirely upon the audio-frequency amplification and push-pull stage greatly enhances its value in regard to volume and clarity.

Mr. P. S. Young writes that he has constructed the one-tube reflex described in the May issue of THE WIRELESS AGE and states that he cannot get any station except KDKA, and that not very loud. He advises that he cannot get a squeal except when the variable condenser is turned too high. Mr. Young’s trouble probably lies in the crystal detector which he employs. If the crystal detector does not make good contact or is out of adjustment, the results will be similar to those he has obtained. The fact that he gets anything at all does not indicate that the crystal is rectifying. The radio frequency tube when reflexed will act some-

Mr. Harry W. Schaller of Oak Park, Ill., asks, Will you please show in your columns a hook-up for an audio-frequency amplifier using one stage of straight transformer coupled and one stage of push-pull amplification including in the diagram the detector tube and a jack connection for an external detector? I have two sets, one with the detector included and one without and I would like to use this amplifier with either. The diagram you desire is shown in figure 1. The second jack from the left is the external detector jack. By plugging the output of a detector tube into this jack the two stages of audio may be used and by connecting the four output posts of a tuner to the four input posts the whole amplifier and the detector may be used. This sort of an amplifier is a very handy thing to have as it may be used with either one of the two extra detector tubes. And of course the fact that the second stage is what as a rectifier. Mr. Young, we recommend that you get a better crystal detector, preferably an adjustable one.

Mr. Jerome A. McCreary of Westfield, Pa., writes, “Will you please explain to me the action of the plate variometer in producing regeneration in the ordinary regenerative receiver?”

In the tickler coil circuit regeneration is produced by inductive coupling between the grid and plate circuits. This is accomplished by placing the plate inductance in inductive relation to all or part of the grid circuit. The signal voltage after it reaches the plate circuit is fed back by induction to the grid circuit and this feedback is controlled by variable coupling between the grid and plate coils. This action is readily understood. In the two-variometer-vario-coupler receiver the action is somewhat different. The feedback here takes place through the condenser formed by the combination of the detector and the tuning for tube which for a UV-200 is something

Figure 1—Circuit diagram of a, f. and push-pull amplifier
Methods of Wavemeter Calibration

Standard Calibrated Meters, “Click” Method, Harmonics and
Standard Wave Lengths Used to Construct Calibrating Curves

By Maurice Buchbinder

A WAVEMETER is, as the name indicates, a device for measuring the wavelength of a circuit. Essentially it consists of a coil, or series of coils, and a variable or adjustable condenser. The coils and condenser must be well built mechanically, electrically efficient, and permanent in physical constants, in order that a calibration once performed should be relatively lasting. Besides these essentials the wavemeter may have either a driving device for generating radio oscillations—such as a buzzer—or a detecting device for detecting oscillations in another circuit—such as a crystal and headphones. In either case the particular attached device must be present in the circuit when the wavemeter is originally calibrated else its addition or subtraction will affect the wavelength through its intrinsic capacity.

The best wavemeters used for standards in radio laboratories have no extraneous parts. They are merely coils shunted by fixed condensers, and a switching device for selecting the particular capacity desired and thereby changing the wavelength. Fixed condensers are preferable to the usual variable condensers because the latter are mechanically more delicate and liable to change of form.

For ordinary practical usage, however, our wavemeter will present a number of coils, a variable condenser, and either a buzzer or crystal-headset combination or both. The buzzer would be employed in a circuit such as is shown in figure 1; the crystal-headset in a circuit such as is shown in figure 2. It should be noted that the latter are not connected in the usual way across the variable condenser, but are unilaterally attached. This is done so as to diminish the capacity effect, which, negligible at high wavelengths, is quite large at the lower wavelengths and capacities. If both external attachments are present in the wavemeter a calibration is made in each condition—that of receiving and of transmitting by buzzer.

There are several methods available for calibrating a wavemeter. All methods but two require the use of an accurately calibrated standard meter. It is however possible to use known wavelengths as a standard, instead of a wavemeter. It is the purpose of this article to describe in detail each of these methods.

STANDARD CALIBRATED METER

The simplest possible method is illustrated by means of the diagram in figure 3. A represents the standard meter whose calibration curve is known for use as a driver or source of radio signal. B represents the meter which is to be calibrated, connected for use as a receiver by the unilateral method of connection. In the process of calibration we set meter A at the lowest wavelength, and, using the smallest coil of meter B, tune in the signal coming from meter A by varying the condenser of the unknown wavemeter B. At a certain point the buzz emitted by A will be heard. The location of this point can be sharpened by loosening up our coupling between A-B. Then we know of course, that at this point, whatever the condenser reading of meter B may be, the circuit wavelength is that given by the standard A. We then go on, increasing the wavelength by gradual steps and in about ten readings cover the entire range of wavemeter B for its smallest coil. The same is done for each one of the coils and in that way the whole wavemeter range is covered. After having gone through a calibration of this kind we can reverse the process, that is, receive with the standard wavemeter and listen with the meter being calibrated. Thereby two sets of calibration curves are drawn up for wavemeter B, for use as a receiver and a driver respectively—a smooth curve being drawn for each coil for a condenser range of 0 to 180 degrees.

CLICK METHOD OF CALIBRATION

The above method, as already mentioned, is the simplest, but it is not the most accurate. The most accurate method for calibrating wavemeters, because it permits the sharpest tuning, is that which may be called the “click” method. In this procedure use is made of an auxiliary oscillating tube circuit capable of being adjusted through a wide range of wavelengths. It is based upon the following phenomenon of oscillating circuits: If a circuit be made to oscillate and another circuit be magnetically coupled to it, then when the second circuit is tuned just to the wavelength of oscillations, these oscillations will suddenly disappear—and the disappearance will be manifested by a click in the listening earphones due to a change in plate currents. Furthermore, if the coupling between the two circuits be made very loose, then the sharpness of this disappearance will become quite remarkable, the movement of a fraction of a degree of condenser being significant of this principle is quite simple. We must have an auxiliary oscillating tube circuit, a standard wavemeter, and the unknown meter which is being calibrated. The standard wavemeter is coupled to the source and adjusted

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4
until the click is heard, the wavelength of the source having meanwhile been kept constant. Coupling is opened up until the reading is as sharp as we desire it. The standard is now removed and the unknown substituted, the process of determining a "click" point being repeated by varying the condenser of the unknown wavemeter. Then we are safe in saying that the wavelength of the standard and the unknown were exactly equal at the time of the click, and the wavelength of the meter being calibrated is thereby determined for one setting. We then go on to vary the frequency of the source and pass through the range through which it is desired to perform the calibration. Data are thereby given for drawing up calibration curves exactly as with the first method. The question arises in one's mind, does not the mere coupling of another circuit to the source, affect its wavelength and thereby lessen the accuracy? But a little thought shows that the method is not dependent upon any constancy of wavelength—although by use of very loose coupling this is practically attained—but on a direct comparison of known with unknown; i.e., any changes will hold for both known and unknown and cancel one another. Figure 4 reveals the method graphically. The unknown meter may be calibrated in a condition of no external attachments, with a driver, or with a headset-crystal combination. A separate group of curves will result in each case.

Harmonic Method of Calibration

The method of calibration next to be described can be used by an experimenter without a standard wavemeter at his disposal. It is therefore a particularly valuable and, as it happens, a most accurate procedure. It is not well known that any C. W. oscillating circuit does not vibrate at merely one frequency, but it consists of a fundamental frequency and several harmonics, the number depending upon vacuum tube characteristics and so on. Thus a vacuum tube working at 1000 meters also gives off energy at 500, 333½, 250, 200, etc., meters, namely, the first, second, third and fourth harmonics respectively. These harmonics are comparatively minute in intensity, but by suitable methods they are easily made manifest. Theoretically, harmonics in a vacuum tube circuit occur only in case of distortion. The maximum distortion would occur if we entirely suppressed one-half of the oscillation. That is to say, if we rectified the oscillation. It has been shown by mathematicians that a rectified oscillation is exceedingly rich in harmonics. Hence, if we desire to intensify harmonics in an oscillation for a certain purpose, we should endeavor to entirely rectify the oscillation. A circuit which is exceedingly rich in these harmonics will be found in figure 5. It consists of a standard oscillating power circuit. Shunting the condenser of this circuit we find a two-electrode tube in series with an inductance L. The two-electrode tube—which may be an ordinary vacuum tube with the plate and grid joined as one electrode, and the hot filament as another—rectifies the current as it passes through the inductance coil L. In L therefore will be found a circuit very rich in harmonics. The vacuum tube used for oscillations should be a power tube such as the U.V-202 and a high plate potential (200-300V) should be employed so as to insure a large amount of available energy. We now have ready, by means of this circuit, a source of oscillating current rich in higher frequencies. It is possible to detect them down to the seventh and eighth harmonic. The detection is quite simple. All that is necessary is a receiving circuit containing a microammeter in the detector circuit, as illustrated by figure 6. If instead of a direct source of plate potential for the oscillator we should use alternating current, then it would not be necessary to use a microammeter, but the A.C. hum could be heard directly in the earphones.

We now proceed with our method of calibration. Suppose we set the oscillator so the fundamental oscillation is a known wavelength. Then the harmonics also are known because they are exact halves, thirds, quarters, etc., of the fundamental for the first, second, third, etc., harmonics respectively. To illustrate, if the fundamental be 16900—that of the big naval station at Annapolis—then the first harmonic is 8450, the second is 5633, the third is 4225, the fourth is 3380.

In the absence of a standard wave-
Put Your Photo in One of These Frames
And Win a Prize in the Subscription Contest

IN the June issue of The Wireless Age I told about the struggle I have had as a youngster in securing an adequate radio set. As very little was then known about radio, and few dealers even had so much as a glimmering of what it was all about, I had to get my information from library books and carry newspapers in order to purchase the necessary parts.

My first set was a disappointment. It was a good set, but I had worked so hard to get it the result seemed to fall much below my anticipation. I wanted more parts. I wanted a better radio station.

After my set had been completed, and used for some time, my ambition turned to vacuum tube detectors and still better parts. In those days, the old William B. Duck catalogue was my favorite book. I got real joy out of every improvement made.

Once I had conquered the difficulties, I resolved that some day I would make it easy for other young chaps to get the parts with which to build a set. That unquenchable, and very real, desire has stayed with me to this day. My interest has always been centered in boys. In fact, my own boyhood days were a curious admixture of unending troubles. If I wasn't doing a Marathon down the hall with an irate school teacher after me, I was usually misjudging my schoolmates and starting something I could not finish. Often enough I was the despair of my patient parents.

Happily, though, I am now able to realize my ambition—I have the authority and the resources to place within the reach of every live youngster the parts for a radio set, or a complete set ready for operation. Just write a letter to the Boys' Editor. Tell me whether you want a complete set; parts to go with a set you now have; or just what you do want. I will see that you get it.

I have 35,000 names of people who have bought radio sets. Each one of the 35,000 will like to know more about The Wireless Age. Some of those people, in fact, have been taking the magazine, but forgot to renew their subscriptions. Those 35,000 people live in every part of the country. Some of them live in your own town or city.

When I have received your letter telling me what you want in radio, I will write to you and tell you how many subscriptions you must get in order to earn what you want. Even ONE subscription will get you a radio part.

I will teach you how to sell subscriptions. That is important. I will then give you a calling list, supply you with samples and send you out as a full-fledged salesman. You must be a good salesman, and well trained, before we can put the magazine in your hands as a responsible staff-representative in your district.

When I know that you have the right stuff in you, I will give you the appointment for your section and then establish a credit account in your name. You can draw cash from that account or get what you want in radio parts at wholesale prices.

This is not a temporary affair. The job is open to you as long as you feel that I am giving you the proper attention and a good clean-cut proposition. A surprising development in the widespread response to this offer has forced me to extend the scope of my plans. Some of the old-timers, the successful subscription salesman, have written to me. Most of them have been selling subscriptions for other national magazines, but have been attracted by this new schedule. The old-timers are experienced and it is exceedingly gratifying to know that they are more satisfied with my plan than any other they had yet had. But to those, and the many other grown-up "boys," who wish to join the ranks, I must definitely state that this schedule will not (Turn to page 92)
S'MATTER POP?—A HASH MAKER DESIGNED IT

THE ONLY WAY WE CAN REPAY THEM

BY GEORGE McMANUS

EDDIE'S FRIENDS

BY JEAN KNOTT

HEY EDIE, BRING THESE GUYS ANOTHER SLUG OF THAT BATTERY SOLUTION.

COME ON, TURN THEM CARDS IN SO WE CAN DEAL.

BAM! HOW DO THOSE GUYS GET THAT WAY? THEY'RE TRYING TO SHOW MARLON UP.

AWRIGHT, WE'LL ADMIT EVERYTHING YOU CLAIM, Y' DON'T HAVE TO TRY TO軟EN YOU HOW YOU DID IT.

I FOUND OUT HOW TO PREVENT OSCILLATION IN THE DETECTOR TUBE.

WHAT' THE RADIO FREQUENCY?

I GOT TAMANCO LAST NIGHT WITH AN INDOOR ANTENNA.

SAM COOK WAS IN HAVANA, AND A WEEK AGO I TURNED IN ON MEXICO CITY.

YES, THE OTHER NIGHT I SAW A BIRD WITH AN INDOOR ANTENNA.

I'LL NOT ADVERTISE MY ACT, I MIGHT SCARCELY ADD THAT IT'S Boring TO WORK UNDER HOME SWEET HOME.

I WILL NOT OUST HER UNTIL TELL HER HER HOME.

AN ILL NOT OUST HER UNTIL SHE TELL HER HER HOME.

SWEET HOME.

IS THIS MISS DELLA WARE?

I JUST WANTED TO LET YOU KNOW THAT I'M TOO BUSY TO TELL HER HER HOME.

SWEET HOME.

PROF. FOREST C. ENSIGN of the University of Iowa was able to cash a personal check in a strange bank in another city recently with the sound of his voice over the radio as his only identification.

An officer of the bank recognized Professor Ensign's voice as one he had heard a short time ago giving an address from the University of Iowa radio station WHAA.

And that—as so many eminent philosopers have remarked—is that. It would be, in our opinion, a real test, if Professor Ensign had cashed a money order at a post office with radio identification.

"The Liar"

A fool there was and he spent his dough (Even as you and I). For one of these new fangled radios That was built for a hundred miles or so But the fool thought he ought to get Tokio (Even as you and I).

Oh the money it cost And the sleep he lost And the wonderful lies he planned To tell to the fellows who hadn't got wise And unless they're bugs they'll never get wise And never will understand.

So the fool stayed up all night and tried (Even as you and I). To get the stations away outside His natural zone just to swell his pride When he said he got them we knew he lied (Even as you and I).

Oh the stations he got And the ones he sought Are always one and the same To the radio bug who has learned how to lie And we all know how easy one lies If it's in the radio game.

—S. W. LEAVER.

BRINGING UP FATHER

—N. Y. Tribune

—N. Y. American

—N. Y. Sun

—N. Y. Evening Journal
The ABC of Your “C,” “B” and “A” Batteries

How to Recharge Your “A” and “B” Storage Batteries From a 32-Volt System and the Correct Method of Tapping “C” Batteries

All types of storage A and B batteries may be readily and successfully recharged from a 32-volt farm lighting system. The diagrams show how the Willard A and B radio batteries may be recharged by merely using the house lighting receptacles connecting with a cord and 32-volt lamp in series with the battery. Select the socket which is most convenient for charging the battery. Screw in an attachment plug, being careful volt B batteries where the charging device is that of a 32-volt house lighting system. Figure 2 shows the manner in which a 48-volt B battery may be recharged, that is by charging only half or 12 cells at a time, then shifting the leads to the additional 12 cells or 24 volts.

It is possible to recharge higher voltages from a 32-volt lighting system; that is, batteries using up to 500 volts on power amplifiers and transcharged while the generator is being operated to charge the plant battery. After obtaining the polarity mark, make sure that the positive of the charging line is attached to the positive of the six-volt storage battery as indicated in figure 3. A number of radio set owners today require the use of a C battery. Those who possess Willard storage B batteries need not purchase a separate cell or battery for this purpose.

Figure 1 is a diagram showing the

that the two wires do not touch each other. Determine the polarity of the charging wires by placing the ends of the attachment leads in a glass of water. Bubbles will form around the negative wire. If both leads show bubbles, the negative lead will give off a far greater number. After determining which is the positive and which is the negative lead, note some kind of a distinguishing mark on the negative and always use this particular socket when charging.

To properly recharge the batteries the positive of the charging line must go to the positive of the battery. It is possible to recharge only 24 volts of B battery at one time. Therefore, we would recommend the buying of 24-mitters, by following the method in the diagram. Any multiple of this system may be used such as 49, 72, 96, and 120 volts.

A fully charged radio A or B battery will have a specific gravity reading of 1.275 to 1.300 and may be considered discharged when it has a specific gravity reading of 1.175. For best radio results the battery should be recharged when it has a reading of 1.200.

Owing to the very low charging current needed for a B battery the efficiency of a charging plant is not lowered to any great extent by charging it from the plant storage batteries, rather than from the generator. However, a high charging current is needed for an A battery and it should only be manner in which negative B taps can be taken off the storage B battery and used for C battery purposes.

The voltage for C batteries varies from two to six volts on the ordinary receiving set. If six volts are required, it is necessary to use three storage cells of the B battery, if four volts then two cells, two volts then one cell.

Figure 1 will answer the purpose for most cases. Note that the three end cells of the battery have been divided from the balance of the 24 cells. This hook-up gives an individual six-volt, four-volt or two-volt battery as a C battery. In rare cases it may be that more than six volts will be required for C battery. If, however, more than six (Turn to page 64)
PERMANENT radio expositions in the country's market centers are mute evidence of the growth of radio. More important, these expositions, being of a permanent character, establish radio as an industry that has a long time to stay.

The Chicago Radio Mart, on Michigan Boulevard, has been opened as a centralized, open-all-the-year-round exhibition for dealers and jobbers. This represents a worthy confidence in an industry comparatively new. It also indicates an earnest effort to catch up and run abreast of radio's rapid progress.

It has just been learned that DX reception has been logged from a number of distant stations by an antennaless receiving set operated on Montauk Point, L. I., until now believed by the government, many radio engineers and amateurs to have been a dead spot for other than nearby local stations. This performance resulted from a hasty experiment conducted under the supervision of Dr. Francis LeRoy Satterlee, of Flushing, L. I., inventor of the Satterlee Coils, and adds another to a growing list of achievements credited to the inventions of this well-known radio scientist.

At its eastern end, Long Island branches into two arms, and Montauk Point, whose lighthouse is first glimpsed by homecoming Americans, is located on the extreme narrow strip of land, between Block Island Sound and the Atlantic Ocean, as being quite distant for modern sending stations. So far as known, previous scientific investigations for radio reception have been discouragingly futile, and it is generally reported that perhaps one of the most remarkable facts concerning the Montauk reception was that all stations were received with no antenna. The receiver itself, which is more commonly known as the Moon C-2-A, manufactured by the Moon Radio Corporation of Long Island City, N. Y., employed by Dr. Satterlee, was taken from factory stock. Dr. Satterlee's official log of the event has recorded the instrument as "Moon C-2-A, No. 1121, stock." Another unusual consideration is that all the stations logged were received with distinct audibility over a non-power loud speaker.

THE Southwest Radio Exposition will be held in Dallas, Texas, November 14th to 22nd, inclusive, in the southwest's finest and largest palace, the Gardner Park Auditorium. This exposition will be under the auspices of the S. W. R. C., Manufacturers and dealers from all over the country will be there with exhibits. Viewing the situation from the standpoint of local enthusiasm, this show will undoubtedly be a milestone in the enterprise of southwestern radio development.

Texas is a large state, geographically. Projects instigated there usually reflect the largeness of its wind-swept plains. Radio is a decided asset to those who live on ranches far removed from human contact of any sort, and Texas intends to make the most of it.

A NOETHER instance of progressive merchandising employed in marketing radio products is the attractive display containers in which the sockets, made by the Alden Manufacturing Company, are neatly arranged for the retail trade. Sound merchandising is a guarantee of dependability.

A new circuit booklet entitled, "What to Build," is printed by this concern, and packed with every Na-aid product. This booklet shows diagrams, and includes complete building information for several selected and tested circuits using from one to five tubes. Among these circuits are the Neutrodyn, Reflex Superdyne, and a Two-Stage Amplifier. Other information of interest to the radio owner is contained in this booklet. It may be purchased direct by those who care to send for it.

CLARENCE E. ODEN, Founder and President of the Automatic Electrical Devices Company, manufacturer of the Homelarger, has recently organized and incorporated under the Laws of Ohio, a new concern—The Kodel Manufacturing Company—for the manufacture of a portable radio set, of which he is the inventor.

This company's first offering to the trade will be a small, compact and really portable long distance radio set—The Kodel—the Camera of Radio. This set weighs less than five pounds complete with all accessories. Contained within a neat leather covered case is a standard UV-199 tube, "A" and "B" dry batteries, pair of standard head phones, ground and aerial wires.

Tendency toward compactness in radio outfits will probably do for radio what the small folding camera did for amateur photography.
LITERATURE invariably follows in the wake of any activity. Much of it is use-
less, but it usually contains information of value to those who are interested in the particular activity seldom realizes the proper distribution. Book reviews, in daily and periodical publications, serve that end, no doubt, better, but only for literature of a non-publicity character.

Many radio manufacturers have printed booklets, designed, of course, to promote their individual interests, but commendable ones very good grounds of dispensing knowledge.

A striking example of this is to be found in booklets published, from time to time, by the Federal Telephone and Telegraph Company. Their latest achievement is offered in, "Who Will Be the Next President?"

THE DX Instrument Company have printed a small booklet, "Improved Radio Reception Through Scientific Tube Tuning," in which the vacuum tube has been comprehensively explained. The necessity of tuning the vacuum tube to a perfect adjustment and the problem of the tube control, and just what happens in a tube, has all been dealt with in a manner worthy of the reputation enjoyed by text books.

"The Mysterious Voice Without Distortion," is a fifth edition of that booklet, published by the Acme Apparatus Company. It contains 36 pages of information that every set owner would find of real value, exceptionally well illustrated, and surprisingly to the point. In general, it is a discussion on radio, with particular reference to the construction and operation of radio, audio and relx amplifiers and sets. Specific alone prompts the review which this thorough-going booklet deserves. Incidentally, it will be well to ask for the supplementary pamphlets when writing for this booklet.

Lewis J. Selnick has entered the radio field with the same enterprise that has made for his remarkable success in moving pictures. He has issued a leaflet presenting "The Miraculous Voice From the Sky," which he incorporates in his new Portable Vocolette Receiver. The unsuspecting reader would anticipate another story of a "just released film." Mr. Selnick then followed with a clever booklet entitled, "Getting Reel with the Vocolette" (Voice from the Sky). This is arranged in a clear, concise manner that makes it interesting reading whether one has a Vocolette or not.

THE Zenith Radio Corporation has a new six-tube portable set, including batteries and loud speaker, built into a small suitcase.

President McDonald of the Zenith Radio Corporation made a remarkable demonstration in Chicago. Carrying the set, he started from the twentieth floor of the McCormick Building, rode down the elevator, walked through the lobby, stepped into a taxi, and traveled around the city, a tenor singing apparently from the suitcase during his sojourn. This continued on his way into the Congress Hotel. Throughout the demonstration, crowds gathered, hardly believing their hearing. When Mr. McDonald repeated this experiment in New York, a riot occurred.

The dramatic character of such episodes is a passing incident. Of far greater importance is the significance of such possibilities. Compact, portable receivers will probably add tremendous impetus to the spreading of the gospel of radio.

THE first session of the "Distributors' Service Class" was held at 98 Worth Street in the Technical Class Room of the Radio Institute. Forty-one were present, representing a large number of RCA distributors in the Eastern District. The class was called to order and its object briefly explained. Mr. Chubb and Mr. Holmes, of the Westinghouse Electric and Manufacturing Company, were then introduced, their subject being Radiola III, Radiola III-A and Radiola Balanced Amplifier. After the talk all questions were answered and instruction was given on locating and remedying defects.

The next program was discussion on Radiola Regenoflex and Radiola X. Immediately following this, luncheon was served at the Pine Tree Restaurant; followed by inspection of the Harrison Lamp Works.

BELIEVING that the fall and winter seasons promise to show the greatest development in the popularity of radio in Milwaukee, nearly one hundred dealers have joined forces for a radio exposition. The co-operative demonstration will be held September 1 to 7 at one of the largest halls in the downtown section of Milwaukee. Each firm participating will have demonstration space in which to show their equipment. The show will be under the direction of the Milwaukee Journal.

Dealers in Milwaukee became interested in the radio possibilities of a united exposition after the Milwaukee Journal had completed the fall and winter season program. That newspaper had surveyed the city showing that but one family out of every ten owned a radio equipment.

The exhibition will be held in the Arcade Hallroom of the Hotel Amburs, in the heart of Milwaukee's downtown business and theater section. The program will include artists from the larger broadcasting stations who have been heard in Milwaukee in the last year. This includes the larger stations in Chicago, Elgin, Ill., Davenport, la., and others. Each night during the exhibition a different set of entertainers will do actual broadcasting from the exhibition auditorium. Arrangements have already been made for the appearance of these popular artists.

The demonstration will be held the week following the Wisconsin State Fair at Milwaukee. An attendance of more than 50,000 is predicted. One-third of the total spaces have already been allotted to Milwaukee dealers.

Local radio dealers have expressed the opinion that what radio business needs more than anything else is a chance to educate the public on radio development and that every effort made to bring the dealers and public nearer together merits their support.
Allen Soldering Paste

L. B. ALLEN CO., INC., manufacturers of soldering supplies, located at 4519-29 N. Lincoln St., Chicago, III., recently developed a new soldering paste known as the Allen Special Radio Soldering Paste. This paste is guaranteed by the manufacturers to be non-corrosive, flameless and is approved by the National Board of Underwriters. It is a quick working flux designed to secure a clean soldered job. It is put up in a conveniently sized can and retails at a low price. In connection with this new soldering paste the company has published an interesting pamphlet “How and Why to Solder Radio Sets.”

Kodel Portable Receiver

WITH teams being written every day and the radio magazines devoting some of their space to the portable radio receiver, the Kodel Manufacturing Company of Cincinnati, Ohio, deems the time propitious to announce the Kodel. This is a complete radio receiver packed in a camera case. Complete is really the word to use as space has been provided for “A” and “B” batterys, vacuum tube and head phones, together with two collecting wires; and weighing as a whole only 43 1/2 pounds.

No aerial is necessary, and by attaching the ground to a water pipe or some other connection which will complete the circuit, the receiver is ready for use.

Sales to the vacationists are being pushed as the Kodel Company sees tremendous possibilities in this field: Long range, easy carriage and low price being the big factors in the appeal. This receiver has an appeal to all classes of vacationists as it is adaptable to various conditions and will meet with the most exacting requirements.

Prest-O-Lite Co. Broadcast Auto Race

MOST of the thirteen and one-half million automobile owners are interested in the International 500-Mile Race at Indianapolis, yet only about one hundred and fifty thousand of them get an opportunity to see this speed classic. But this year The Prest-O-Lite Co., Inc., of Indianapolis, whose enormous factory is directly across the road from the Speedway, broadcast the race through Chicago Tribune Station, WGN, and the speed fans got a realistic impression of the race on their radio.

A special wire was run from a sound-proof booth in front of the judges’ stand at the Speedway direct to the broadcasting station at Chicago and over this wire one of the most absorbing pictures of a sporting event ever given went on the air.

Special arrangements were made to cover every phase of the activity at the huge 2 1/4 mile brick oval. Leading to the booth were telephone lines from important points at the track. For instance, technical experts stationed at the pits furnished authoritative information on the pit stops of the cars. The reporting of the standing and the speeds of the cars alone presented a problem requiring quick, accurate co-operation as the race proved to be the fastest and most bitterly fought in the history of the classic with the lead frequently alternating.

From the standpoint of realism, the broadcasting has seldom been excelled. The roar of the motors, the cheering of the crowds, the tense instructions of the drivers as they stopped for supplies and hasty adjustments were so graphically transmitted from a special microphone in the Prest-O-Lite pit that listeners said, “Everything was there except the smell of burning rubber.”

“Sen” Kane, one of the best known of his craft, handled the announcing. Henry Ford supplied an unexpected feature of the day’s activities by addressing the radio fans on the significance of the race in relation to the automobile industry. Mr. Ford, who himself was a builder and pilot of racing cars in the early days of his career was referee of the race.

It is reported that the broadcasting aroused unusual interest. Hundreds of thousands of sets tuned in and in radio stores, garages and private homes great crowds followed the progress of the race on special charts which were distributed by The Prest-O-Lite Co. Thousands of telegrams, letters and applause cards were received thanking The Prest-O-Lite Co. and the Chicago Tribune for the wonderful program and congratulating them on their success.

NEW APPLIANCES AND DEVICES

The Multiple Tuning Bruno Condenser

THE Bruno Radio Corporation, 300 Water Street, N. Y. City, announce that they are now in production on a new low loss condenser. There are many features embedded in this precision instrument. Long brass bearings insure smooth turning and long life. The method of mounting this condenser is greatly simplified by the three-in-a-line arrangement for drilling. The 22-plate type Bruno Ultra-Vario Condenser as pictured here has two 11-plate blocks which are electrically insulated from each other. Consequently by parallel or series connections a user may obtain a 7, two 11’s or a 22-plate condenser. This model has been so designed by Bruno engineers to be used to tune two stages of radio frequency with one dial. This feature alone should appeal to the amateur who wishes to simplify the number of tuning controls. The price is $5.50 list.

Unity Cartridge Rheostat

THE Unity non-vernier rheostat, or cartridge rheostat, is designed for efficiency and economy, say the makers, the Unity Manufacturing Co., Chicago. A phosphor bronze fork type of contact is used. This insures minimum changes and smooth variations in resistance. The positive contact given by the fork type makes certain that no distortion or noise is caused by leaks in the amplification circuit, where non-vernier rheostats are used.
Long Wave Transformers

JEFFERSON ELECTRIC MFG. COMPANY'S Intermediate Frequency Transformers are especially designed for use as amplifiers in all circuits requiring this type transformer. In such circuits it is highly important that the transformers match and are in perfect balance. A slight deviation will usually render the set inoperative. Expert designing and workmanship have placed behind these transformers the reputation for uniformity of manufacture and performance which all Jefferson products enjoy. Their specially constructed, high grade laminated silicon steel cores assure great stability and power. This transformer covers a range of wave lengths from 5,000 to 25,000 meters.

Newest Type of Rathbun Condenser

THE newest member of the Rathbun family is a vernier combination type with main rotor shaft and vernier rotor shaft absolutely independent of each other; it is impossible for one to move the other under any condition of adjustment. The new condenser has a positive and independent contact for both vernier and main rotor; no current passes through bearings. These points and the fact that all metal parts are of brass, bronze and aluminum insure minimum resistance. High efficiency and low loss are secured through wide spacing of contacts from rotor and stator element and the use of the minimum amount (consistent with strength) of the best grade of bakelite obtainable as dielectric for end plates. A vernier capacity of .00002 mfd. affords a real vernier adjustment that makes tuning of the most critical circuit an easy matter.

The rheostat is single bolt mounting. Resistance cartridges suitable for each tube are sold separately, so that tubes may easily be changed in a set, and the proper resistance inserted, without removing the bracket from the panel, and at very small expense. Potentiometer Cartridges are also made which fit the same brackets.

Daven Resistance-Coupled Amplifier

THE Daven Radio Company have brought out the type 3-A Amplifier illustrated, and in their catalogue set forth its merits very enthusiastically. It is claimed that this amplifier is worth while to the broadcast enthusiast because of the absence of distortion in receiving programs.

It is said that in addition to other features this amplifier consumes 1/4 of the usual plate current and eliminates the necessity of using "C" batteries. Another advantage is that there are no delicate windings or wires to fuse under the strain of excessive loads. The ballast resistors eliminate the necessity of rheostats to maintain a proper filament current throughout the useful discharge of the "A" battery. The Amplifier is equipped with pilot lamps showing what tubes are in operation. The wiring system is so arranged that the plugging in of the receivers automatically cuts out the Loud Speaker attached to the binding posts.

Bremer-Tully Condenser

A NEW "laboratory type" variable condenser is among the latest products of the Bremer-Tully Mfg. Co.

This is of the "low-loss" "high-ratio" type. It is arranged for either panel or baseboard mounting and both rotor and stator plates of aluminum are cast by a new and improved method. End plates are, also, of cast aluminum of unique design, which gives the product a very handsome appearance.

N&K Imported Loudspeaker

THE N&K Imported Loudspeaker, Type W, has broken away from all tradition. It projects sound waves in their full roundness, giving forth a soft, mellow, musical tone.

It is different in shape. The N&K Imported Loudspeaker is not easily tipped over or knocked down. Circular in shape and mounted on a flat base, it presents an agreeable appearance to the eye and harmonizes with the furnishings of even the finest home. It is economical of space. The pleasing black and gold stippled surface gives it an air of distinction also. The base, felt protected, does not scratch or mar polished surfaces.

Type W, N&K Loudspeaker is made of hurix, a scientific product providing the stiffness of wood or metal, but neither cellular nor crystalline in composition. It is more like a very thick, absolutely rigid fabric. This quality causes it to transmit only the actual vibrations of the broadcast waves.

The unit used in the new Type W, N&K Loudspeaker embodies the same quality of tone as the N&K phonie units, but is adapted to amplification purposes. It is especially designed for the reproduction of musical tone, bringing out the entire range of the human voice or musical instrument with extreme clearness, sharpness and naturalness.

New York Coil Condenser

A LOW loss grounded rotor variable condenser of novel design. Adjustable cone bearings support the revolving plates. Flexible pigtail connections prevent loose contacts. Hard rubber is used as the dielectric. A geared vernier may be added by attaching with screws.
Selected Radio Hook-Ups for the Home-BUILDER

In figure 1 we show a circuit which few of the present day constructors are familiar with. It is the, at one time, well-known "X" circuit designed by Roy Weagant for the reception of long wavelengths and employing large honeycomb coils. It takes very little twisting and turning of this diagram to show the old Reinartz circuit which suddenly came into such marked popularity at the advent of broadcasting. It is a very simple matter to convert the two honeycomb coils one tube super-regenerative into this circuit. All that is needed is the addition of a 43-plate variable condenser and a 50-turn honeycomb coil inserted in the plate circuit as shown. If the circuit does not oscillate readily the coil L should be placed in inductive relation to the secondary coil. This primary-secondary coil can be either a vari-coil or two honeycomb coils. In connecting up the circuit be sure that the rotary plates of the variable condenser are connected to the filament side of the circuit. Any type of tube may be used and the "A" battery and rheostat should conform to the type of tube employed. Do not shunt the phones and "B" battery with a fixed .005 mfd. condenser as in ordinary circuits as this is the equivalent of placing this condenser between the grid and plate terminals of the tube. The path of the radio-frequency current should be from the plate of the tube through the coil L through the variable condenser to the grid circuit by way of the positive filament. In case the circuit does not oscillate insert in the plate circuit between the coil L and the phones a choke which may be a 200-turn honeycomb coil. This will prevent the radio-frequency currents from passing through the phones and high resistance "B" battery. It will be found that this circuit if constructed properly will give a very nice control of regeneration, being a very stable and sensitive receiver.

For those who desire quality rather than disagreeable volume coming forth from a loud speaker, the resistance-coupled amplifier shown in the diagram in figure 2 comes the closest to approaching the ideal. Because of its characteristics it can be used as a radio-frequency amplifier, as an audio-frequency amplifier or as an intermediate frequency amplifier in connection with a heterodyne receiver. When used as an amplifier of radio frequencies it is not recommended for use on the 200- or 600-meter wave band, because of other details which render its operation at these frequencies very poor. The construction of such an amplifier is very simple and has been made more so since the advent on the market of suitable mountings for the resistances and grid leaks and coupling condensers. For further information on these consult the "ads" in the last pages of this issue and the article on the super-tone amplifier. In figure 2 the value of "R" is 100,000 ohms. R-1 is one megarohm, R-2 is one-half megarohm, R-3 is one-quarter megarohm.

Figure 3 represents a Colpitts oscillator used in a detector circuit with the addition of a wave trap and an oscillation trap. These latter two items also comprise the antenna tuning circuit. Coil L2 is a 50-turn honeycomb coil which comprises the grid plate circuit. As it stands now this represents an oscillating circuit.

It is a continuous generator of oscillations, the frequency of which is dependent upon coil L2 and the coupling between L1 or L3 and L2.

In order to control this oscillation and permit the right amount of regeneration the trap and tuning circuits L1 and L3 are shown. These are inductively coupled to the coil L2 and this coupling should be variable. Many of us will remember that this is quite the same as the four-circuit tuner except for the antenna coupling. The coil L3 acts as an absorber of oscillations and the condenser across this coil is employed to bring it into resonance with the coil L2. L1 serves as a wave trap and a tuning control for the antenna circuit together with a condenser shunted across it. A vernier rheostat control such as the Filkostat should be used in order to secure the best results. This circuit, like almost any other oscillator circuits, is rather difficult to tune at first and it will be necessary for the operator to acquire a little experience in this type of receiver in order to get the knack of it. In connecting the variable condensers into the circuit, be sure that the rotary plates are hooked up to the ground and the stator plates to the aerial to avoid hand capacity effects in tuning. In case the circuit does not oscillate, insert in the plate circuit between the phones and the plate a radio-frequency choke. This can be made up by winding 250 turns of No. 28 D. S. C. wire on a two-inch tube in a helter-skelter fashion. Don't use regular nor banked nor any fancy winding.
To Those Who Attend Church
(Continued from page 33)
Church, offered his morning prayer. Through the courtesy of Dr. Gilkey, the usual church announcements were made over the radio and the offering was taken at the proper time by deacon of the church.

The full service, including hymns, announcements, choir singing and sermon came in with great clarity and the audience was unanimous in endorsing the whole arrangement.

The inspiration for the service came to the pastor one day as he was passing a Springfield music store where a radio receiving set with loop aerial was being exhibited. Entering the store he made arrangements for a preliminary "try-out" of the set at his church. A group of officials who heard the set on the night of the "try-out," were loud in their praise of its performance. In fact, so loudly did the concerts come in from Louisville, Ky., Washington, D. C., and Boston, Mass., that the operator was compelled to soften the tones to a large extent.

On the previous Sunday to the radio service taking place, the pastor made arrangements with the congregation to sing the Doxology at the close of the service and also instructed the deacons to greet the people as they left the auditorium. Previous arrangements were made with Dr. Gilkey to say a few words of greeting to the members of the church.

The introduction of a service of this type into a country church has opened up a great field of speculation. One writer claims that soon funerals, weddings and all church services as well as pastoral visitations will be conducted from a city church sending station by radio. Such a view, however, is not logical to any who understand modern country life where the social factor is to be considered. The country church is always in need of a personal leadership. However, what we do think will come will be the introduction of a radio sending apparatus into the average country parsonage which at stated times can be used by a busy pastor to keep in touch with his members and constituents living at a distance from the center. One thing is sure, that the latest improvements in the scientific world are quite readily introduced into a country church today.

Tempering the Weather
(Continued from page 61)
In the new method of tempering the weather, one farmer quotes a weather report to the effect: "Farmers be merciful to live stock tonight, a cold wave is coming and the weather will be down below zero before morning, with a piercing cold wind from the North." He obeyed the mandate of the Weather Man and his cattle were snugly enclosed under shelter. The name of this farmer will be legion if we are to accept the seasoned opinion of E. B. Calvert, meteorologist in charge of the Forecast Division of the Weather Bureau, when he told the writer: "The Weather Bureau has taken advantage of the opportunity that radio telephony provides for reaching the farmers, and arrangements have been made for the establishment of broadcasting systems in all of the states. Government, commercial and private broadcasting stations are utilized. Forecasts and warnings are furnished to these stations and are broadcast on schedule hours two or three times daily.

Methods of Wavemeter Calibration
(Continued from page 66)
the wavelength, namely, 16900, of Annapolis, we can calibrate a wavemeter through any desired range with considerable accuracy. The whole procedure is shown on figure 8.

The method in the description of it seems complicated. But in reality it involves merely the use of some large coils, condensers, a microammeter, besides the more usual possessions of a radio experimenter. It has the advantage of requiring no standards and a use of the method will teach more about the properties of radio circuits than many pages of reading can tell.

Standard Wavelengths Used for Calibration
The next and final method of wavemeter calibration to be discussed, like the previous one, requires no standard meter. It is based on the fact that the Bureau of Standards station WWV, Washington, D. C., sends out periodic wave signals by continuous wave, preceding the signal by an announcement of the wavelength. The power of the station is sufficient to make it audible anywhere east of the Mississippi. In brief, the method is this: The WWV signals are picked up by a unicircuit oscillating tube receiver. The C.W. is heterodyned and the receiver accurately adjusted to zero heterodyne at each one of the waves broadcast, in every case the condenser setting being noted. Then the wavemeter which is to be calibrated is coupled with the receiver and the click method already described, at each of the settings of the receiver successively, the wavemeter is adjusted so as to cut out the oscillations, using loose coupling. Then, as before, the wavemeter setting for each case equals the wavelength of the WWV signal. Thus data is furnished for drawing smooth calibration curves.

The transmissions on August 5 include the frequencies used by ship and point-to-point communication, those on September 5 ship communication, those on September 22 broadcasting.

All transmissions are by unmodulated continuous-wave telegraphy. A complete frequency transmission includes a "general call," a "standard frequency signal," and "announcements." The "general call," is given at the beginning of the eight-minute period and continues for about two minutes. This includes a statement of the frequency. The "standard frequency signal" is a series of very long dashes with the call letters WWV intervening. This signal continues for about four minutes. The "announcements" are on the same frequency as the "standard frequency signal" just transmitted, and contain a statement of the measured frequency.
<table>
<thead>
<tr>
<th>State</th>
<th>City</th>
<th>Station Name</th>
<th>Call Letters</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Carolina</td>
<td>Raleigh</td>
<td>WRAL</td>
<td>WRLN</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WCNC</td>
<td>WCPN</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WJEZ</td>
<td>WJEN</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Durham</td>
<td>WRD</td>
<td>WRDN</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Asheville</td>
<td>WLOS</td>
<td>WLOL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WMTW</td>
<td>WMTQ</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Raleigh</td>
<td>WDRM</td>
<td>WDRQ</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greenville</td>
<td>WFXI</td>
<td>WXFX</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WBTW</td>
<td>WBTV</td>
</tr>
<tr>
<td>North Carolina</td>
<td>High Point</td>
<td>WQTV</td>
<td>WQTY</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WHOL</td>
<td>WHOL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WQAM</td>
<td>WQAM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Durham</td>
<td>WJZT</td>
<td>WJZT</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Raleigh</td>
<td>WSCA</td>
<td>WSCA</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Asheville</td>
<td>WLOS</td>
<td>WLOL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WSBN</td>
<td>WSBN</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WRAL</td>
<td>WRAL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WBTW</td>
<td>WBTW</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Raleigh</td>
<td>WDRM</td>
<td>WDRM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WFXI</td>
<td>WFXI</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WQTV</td>
<td>WQTV</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WHOL</td>
<td>WHOL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WQAM</td>
<td>WQAM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WRAL</td>
<td>WRAL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WBTW</td>
<td>WBTW</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Raleigh</td>
<td>WDRM</td>
<td>WDRM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WFXI</td>
<td>WFXI</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WQTV</td>
<td>WQTV</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WHOL</td>
<td>WHOL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WQAM</td>
<td>WQAM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WRAL</td>
<td>WRAL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WBTW</td>
<td>WBTW</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Raleigh</td>
<td>WDRM</td>
<td>WDRM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WFXI</td>
<td>WFXI</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WQTV</td>
<td>WQTV</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WHOL</td>
<td>WHOL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WQAM</td>
<td>WQAM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WRAL</td>
<td>WRAL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WBTW</td>
<td>WBTW</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Raleigh</td>
<td>WDRM</td>
<td>WDRM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WFXI</td>
<td>WFXI</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WQTV</td>
<td>WQTV</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WHOL</td>
<td>WHOL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WQAM</td>
<td>WQAM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WRAL</td>
<td>WRAL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WBTW</td>
<td>WBTW</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Raleigh</td>
<td>WDRM</td>
<td>WDRM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WFXI</td>
<td>WFXI</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WQTV</td>
<td>WQTV</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WHOL</td>
<td>WHOL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WQAM</td>
<td>WQAM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WRAL</td>
<td>WRAL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WBTW</td>
<td>WBTW</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Raleigh</td>
<td>WDRM</td>
<td>WDRM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WFXI</td>
<td>WFXI</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WQTV</td>
<td>WQTV</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WHOL</td>
<td>WHOL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WQAM</td>
<td>WQAM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WRAL</td>
<td>WRAL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WBTW</td>
<td>WBTW</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Raleigh</td>
<td>WDRM</td>
<td>WDRM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WFXI</td>
<td>WFXI</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WQTV</td>
<td>WQTV</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WHOL</td>
<td>WHOL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Greensboro</td>
<td>WQAM</td>
<td>WQAM</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Winston-Salem</td>
<td>WRAL</td>
<td>WRAL</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Charlotte</td>
<td>WBTW</td>
<td>WBTW</td>
</tr>
</tbody>
</table>
The Daven Radio Type 3-C Amplifier Kit

as illustrated, contains all the parts necessary to build a three stage resistance coupled amplifier. It is packed in a neat compartment box with full directions for assembling and operation with any detector and tuner.

Price Complete $13.50

THE IDEAL BROADCAST AMPLIFIER

Only an amplifier that can reproduce a woman’s voice with the sweetness and color of reality—the mellow richness of the contralto, the piercing beauty of the coloratura soprano—is worthy of being called “IDEAL.” This is the acid test of amplifiers. Almost all amplifying systems fail before it, and only the resistance coupled amplifier passes the test consistently, economically and invariably.

The Daven Radio Resistance Coupled Amplifiers

bring forth a new quality and beauty from every receiver, the most lowly or the most pretentious—a purity of tone that rarely passes the first tube. To the layman, the resistance coupled amplifier is a revelation, to the virtuoso it is the realization of that subtle perfection that he alone appreciates!

Read our booklet, “Resistors—Their Application to Radio Reception”
By Zeh Bouch. Price 15 cents.

DAVEN RADIO CORP.
Resistor Specialists
11 CAMPBELL STREET,
NEWARK, N. J.

Information Desk

(Continued from page 64)
of the order of .00008 mfd. and for the 201A is .00010 mfd. The feedback is induced into the grid circuit by placing a variable inductance—which in this case is a variometer—in the plate circuit of the detector tube. The tickler coil circuit, however, is preferable to the variometer tuned, because the latter has too much effect on the wavelength and is not to be recommended.

Charles Yerrick of Fort Worth, Texas, wishes to know how to add two stages of tuned radio frequency to his present detector and amplifier unit.

The diagram for this is shown in figure 2. The transformers shown are exactly like the astatic transformers shown in the D-coil Receiver in the June issue of The Wireless Age. The coils are wound on 3-inch tubing slotted at opposite sides of the diaphragm with a slot 1/8-inch wide and the primary wound with 12 turns of No. 20 D.C.C. or D.S.C. wire and the secondary divided with 60 turns of the same size wire. The windings are separated 3/6-inch. With this number of turns a .0005 mfd. variable condenser will tune to the entire broadcast wavelength band and the need for the .001 mfd. condensers will be obviated.

Mr. W. J. Udick of Pittsburgh, Pa., writes, “I have started to build the D’ coil receiver described in the May issue of The Wireless Age, but find that you did not mention the ratio of the audio-frequency transformer. I would also like to know where the B minus is connected.”

The ratio of the audio-frequency transformers can be anything from 5-to-1 to 10-to-1 in the first stage and preferably a 3/4-to-1 or 4-to-1 in the second stage. In Mr. Mellivain’s set two Acme audio-frequency transformers were used each having a ratio of 3/4-to-1. The negative B should be connected to the positive of the A battery as in all amplifiers.

Reinartz 10-Meter Radio Transmitter

I n a short acceptance speech after receiving the Radio Cup, an annual award of the Executive Radio Council, Second District, given to the radio amateur whose experimental work during the year most befits him for the honor, John L. Reinartz, recognized radio engineer and amateur radio experimenter declared at a monster convention of radio amateurs from the Metropolitan area that he had turned over to the Navy Department his en-
tire developments on a radio transmitter functioning on 10 meters. He further declared that his system could be adapted to any amateur station operating today, within less than ten minutes. Previously, radio communication on 100 meters was considered epoch-marking. At this high frequency, special insulation is necessary, as bakelite bursts.

President W. J. Howell of the Executive Radio Council presented Reinartz with the cup before several hundred cheering amateurs gathered at the Convention Hall of Seaman's Church Institute, 25 South Street, Saturday, June 7th. Reinartz was selected for the award for his short-wave transmission and reception experiments. Preceding the award, Boyd Phelps, Wm. Diehl, J. Clark, P. Willis delivered technical papers.

Broadcasting Senate Proceedings

(Continued from page 30)

fold intensified. Senators and Representatives would hear oftener and more promptly from their electorate as a result of this innovation.

The great value, of course, of broadcasting the Senate's proceedings lies in the educational factor. We need more general and intensive public knowledge of what the great public questions are. Extend this proposal to the courts and legislatures of all the states. Let one's imagination add to that the probability of radio photography and radio vision, so that one might see, as well as hear what these agencies are doing, and even the most conservatively thinking person will see that a great improvement in our government and its workings is bound to take place.

I believe that broadcasting of the proceedings of Congress is coming and that it will be very beneficial to the country.

Broadcasting Senate Proceedings

(Continued from page 31)

bureau would immediately develop. Parties and politics are essential if a country is to keep out the morass such as some unfortunate lands are now suffering in. But politics simply for its own sake has no justification and it should not be permitted to hamper business legislation. I am afraid that much of the time of the Senate would be wasted under any such arrangement in purely political activity.

The educational value of this proposal I think is not large. One has but to read the Congressional Record to

The Mirror of the Broadcasting Studio

"Why, Charles, that musical reproduction is perfect. Can that be our old set? It looks the same but how different it sounds. We were never able to get such perfect music before. It seems as though the artists were right here in the room. What have you done?"

"Simplest thing in the world, Mary. The boys at the office have been talking Thordarson Amplifying Transformers so hard that I decided to install them in place of my old ones. I see now that it was a wise move."

* * *

The Super Transformer is indeed the mirror of the Broadcasting Studio. It was designed with one primal aim—perfect reproduction. It has the same function in a radio set that the reproducer has on your phonograph. Install a pair— it will take you but a few minutes—and you will marvel at the rich musical quality obtained.

Kennedy, Zenith, Radiodyne and many other leading set manufacturers use the Thordarson Super Transformer in their apparatus. That's irrefutable proof of Thordarson superiority.

THORDARSON ELECTRIC MFG. CO.

Huron and Kingsbury Streets

Chicago, Ill.

Learn the Code at Home with the Omnigraph

"Just Listen—The Omnigraph will do the teaching"

THE OMNIGRAPH Automatic Transmitter will teach you both the Wireless and Morse Code—

From your own home—quickly, easily and inexpensively. Connected with Booster, Receiver and Amplifying Transformer, it will send you unlimited new words, in your own home, even while you are writing. The Omnigraph is used by many schools in High Schools, Colleges and Universities, and in educational institutions throughout the world. It is equally valuable for police, firemen, and others who must be familiar with the Morse Code.

THE OMNIGRAPH is used by many schools in High Schools, Colleges and Universities, and in educational institutions throughout the world. It is equally valuable for police, firemen, and others who must be familiar with the Morse Code.

Send for Free Catalog describing three models. Do it today.

THE OMNIGRAPH MFG. CO.

160 Hudson St. New York City

If you own a Radio Phone set and don't know the Code—you are missing most of the fun.

When writing to advertisers please mention THE WIRELESS AGE
A MANUFACTURERS' EXPOSITION WHICH WILL BE ATTENDED BY THE PRINCIPAL RADIO JOBBERS AND DEALERS OF THE UNIVERSE

De Luxe Exhibits by Nationally Known American Manufacturers

Representative Displays By The Famous Manufacturers Of

ENGLAND FRANCE BELGIUM
ITALY SWITZERLAND AUSTRIA

Direction of

U. J. Herrmann and James F. Kerr

Business Office
Hotel Prince George.
New York City.

IMPORTANT ANNOUNCEMENT
Soon to Be Made
NATANN Battery Charger
THREE STYLES
Listing $22.00, $17.50, $13.50
NATANN CO.
30 Front St. Brooklyn, N. Y.

EMPIRE
Oiled Tubing

REAL RADIO BENS OF TO-DAY—THE KIND THAT LAST LONG AND WORK BEST—ARE INSULATED WITH GENUINE EMPIRE OILED TUBING.

MICA INSULATOR CO.
68 Church St. 142 So. Dearborn St.
New York Chicago
Works: Schenectady, N. Y. 2030-F

When writing to advertisers please mention THE WIRELESS AGE

know that many, many pages must be plowed through in order to procure the coveted information sought for. Much of the labor of the Senate is merely routine, of no particular interest to most people. Yet it is business which must be consummated, and it would of course come over the radio. Sometimes the pace of the proceedings is extremely rapid, and in these cases, especially when, for example, bills on the unanimous consent calendar are being considered—to make the case emphatic, at night sessions—radio would be impossible even with the most perfect equipment, operators and atmospheric conditions. Why, the Senate passed, as I recall, ninety-four bills at one session!

Improvement in the knowledge of the public as to things political will come not only from the reading and hearing of the news of the day's proceedings. We need now in this country a return to the fundamentals of our Constitution. The study of the basis of the government takes much time and thought and contemplation; such a process and avocation is far removed in character from broadcasting the Senate's proceedings.

The House of Representatives could, of course, decide also to broadcast its proceedings. The Supreme Court might like the notion. Each state legislature would undoubtedly be interested. The advertising opportunities are so full of potentialities. One can easily see that there would be practically no end to the train of eventualities of the Senate's approval of this proposal.

Radio has accomplished wonders for mankind. Its possibilities, are, of course, still mostly in the future. We have hardly scratched the uppermost surface.

However, I can see no good results accruing from broadcasting the proceedings of the Senate, and I can see many disadvantages resulting from any such unlikely decision.

A Radio System Built of Air-Castle Dreams
(Continued from page 29)

There being no available source of suitable electric energy, a separate electrical generator plant had to be provided. This contains two engines, one a Diesel, and the other a steam turbine, each of 750 horse power. The Alexanderson alternators are 200 kilowatts each.

Although Mr. Alexanderson has been associated with the great strides made in power transmission, his radio researches have by no means been con-
Get Directly at Them

Are the contacts in the sockets of your radio set easily accessible for ordinary and necessary cleaning?

With Na-al'd De-Luxe Sockets in use you need neither sandpaper or an extra reach to keep contact strips and tube terminals bright and clean.

Just rotate the tube three or four times. Instantly the dual-wipe laminated contacts remove corrosion, making a bright perfect connection. This action is on the side of the tube terminals away from the soldered ends. "It's the contact that counts."

Make your Superheterodyne set free from socket trouble by using Na-al'd De Luxe Sockets.

Sockets and panel mounts for all tubes. Prices 35c to 75c. Send for catalog.

ALDEN MANUFACTURING CO.
Dept. A
SPRINGFIELD, MASS.

Keep Contacts Clean

A Calibrated Grid Leak!!

You set it for a specified resistance and adjust it for best results. You read the resistance in exact terms of the megohm through a peep-hole in the panel. It's also equipped for table mounting. Each FIL-KO-LEAK is individually hand-calibrated in the laboratory. Resistance element is constant and accurate, and is not affected by atmospheric conditions or wear. The FIL-KO-LEAK assures you smooth, gradual control of resistance. You get both distant and local stations with greater clarity caused by resistance. You set the negative bias on the grid at the desired volume, tune and volume than ever before, for when the negative bias is placed on the grid, the element is precisely right. The tube is puffed right tube neither "chocked" nor "spills over." The improvement will be most noticeable on the weaker stations.

Every FIL-KO-LEAK is guaranteed to be perfect electrically and mechanically, and to be accurate calibrated over the range of about 5 tubes (1 to 5 megohms). This calibration is double checked before the instrument is shipped.

New!

1.50

With the $100 Guarantee

Absolutely warranted to protect your set from lightning, with a guarantee to pay you $100 or to replace your set, should it be damaged through faulty operation of the detector. The "Makelite" shield keeps dust, moisture, etc., from the insulation, preventing leakage causing from aerial grounds. This makes certain that all radio impulses reaching the antenna pass through your set, which assures maximum reception.

$2.00

With Battery Switch Attached

Supreme protection by every test.

Simple Sturdy Sure

50c

Carry the usual FIL-KO-LEAK unconditional guarantee.

A single-tube counting "A" Battery switch that's easy to attach. Wiping contacts assure clean, positive connection when the switch is in the "On" position. When the switch is "Off," the contacts have a positive break and are separated by highest quality insulating material. The terminal ends of the switch can be used for colder connections, or the screw can be held in place by the screw provided for that purpose.

The switch knob and the entire housing are insulated from the terminals, so that any wires accidentally coming in contact with any part of the switch outside of the terminals themselves cannot cause damage.

FIL-KO-LEAK

Scientifically Correct Variable Grid Leak

FIL-KO-STAT

Scientifically Correct Radio Rheostat

FIL-KO-SWITCH

Scientifically Correct A Battery Switch

RADIANT

The Supreme Insulation Panels, Dials, Sockets, Knobs, Insulators

AMERICAN HARD RUBBER CO., N.Y.

When writing to advertisers please mention THE WIRELESS AGE
RADIO AMATEURS TALK 7,000 MILES FOR 2 HOURS

Argentinian and New Zealander Establish What Is Declared a Record for Non-Professionals.

BUENOS AIRES, May 24 (Associated Press)—Carlos Braggio of Bernal, near here, and Ivan O'Meara of Gisborne, New Zealand, radio amateurs with 7,000 miles of South American continent and Pacific Ocean between them, conversed for two hours by radio Thursday morning, establishing what is claimed to be a world's amateur radio record.

Braggio, who knows English, had spent most of the night unsuccessfully attempting to get some North American amateur to answer the signals of his station, CBIZ, when at 4 o'clock in the morning he was amazed to receive an answer from the other side of the globe—O'Meara's station, 2AC.

The amateurs opened a conversation which continued until 6 o'clock, when Braggio told O'Meara he had been up all night and wanted to go to bed. The New Zealander answered that he was sorry because it was only 6 o'clock in the evening at Gisborne. Later on Thursday Braggio received a congratulatory cable from O'Meara, confirming the conversation.

In connection with the radio communication test inaugurated this week by the United States Argentine amateur are unable to understand why they are unable to get signals from North American amateurs while the latter apparently are unable to get theirs, although some of the Argentine stations are more powerful than some of the American ones which have been heard.

It is believed that many of the powerful broadcasting stations operating in the United States nightly interfere with the Argentine waves. In the future Braggio will try sending on a 120 meter wavelength at 3 a.m., Eastern Standard Time.

ELECTRIC SPECIALTY COMPANY

TRADE MARK "ESCO"

231 SOUTH ST.

STAMFORD, CONN., U. S. A.

Pioneers in developing High Voltage Apparatus for Wireless Operation

ARGENTINIAN AND JERSEYITE EXCHANGE RADIO GREETINGS

Special to The New York Times.

HARTFORD, Conn., June 2—Two-way radio communication by amateurs between North and South America was attained for the first time last week by Norman R. Welble of Collingwood, N. J., and Carlos Braggio of Bernal, suburb of Buenos Aires. The feat was checked and verified today by the American Radio Relay League of this city, which tonight announced that Welble and Braggio had a twenty-minute connection on short wave lengths just before daybreak last Friday.

Braggio heard the New Jersey amateur calling him, and at 4:15 A. M. sent the following: "GM greetings and congratulations QRZ QRK." Welble immediately replied in Spanish, "Saludo, Amigo de America del sur QRK.

A letter dated May 21, received to day from E. J. Simmonds, an English amateur, stated he had heard the South American station transmitting.

Mr. Braggio Used "ESCO"

Item 37.—Double Commutator

1000 V. 600 W. for Plate

12 V. 300 W. for Filament

He writes: "If I have the luck to be heard in the United States a great part of the success will be due to the good capacity of the "ESCO" set."

This is Item 37, used by CBZB.

Y. M. C. A. RADIO INSTITUTE

specializes in rapid training for well-paid positions in all branches of Radio service.

RADIO OPERATORS RADIO MECHANICS

Resident and Home Study Courses.

Write today for booklet; specify course desired.

149 East Eighty-Sixth Street

N. Y. City

When writing to advertisers please mention THE WIRELESS AGE

fixed to that branch of engineering. He has carried out extensive development and research work in connection with radio receiving apparatus.

During the war, he evolved what has been aptly termed the "Barrage Method of Radio Reception." The immediate object of this receiving system was to eliminate mutual interference of the enemy who might send out waves of the same or nearly the same wave length as those which it was desired to receive.

Through an ingenious combination of receiving aerial systems and special apparatus, he was not only enabled to eliminate such interference, but to receive signals from European stations, nearly to a high power transmitting station in the United States which operated on the same wave length as that of the station received.

Further researches of vital importance were conducted by Mr. Alexander who led to the evolution of the duplex radio telephone system by which a subscriber to a land line telephone could establish connection with a radio telephone station and conduct a two-way conversation with the facility of an ordinary land-line circuit.

The two phases of this system of duplex radio telephony are classified by Mr. Alexander as the "bridge receiver" and the "barrage receiver."

The bridge receiver is a device which permits reception of signals at a given station while the transmitter at that station is in operation. This is accomplished by erecting a separate receiving and transmitting antenna, but placing them close enough together to gain the approximate effect of a Wheatstone bridge, the receiver and transmitter being so paired that a "balance" is obtained.

The barrage receiver is a combination of two aperiodic horizontal antennas. These have a unilateral directional characteristic. By the means of appropriate phase shifting devices, signals from any given direction can be balanced out while the desired signal is retained.

And so it is that many of us have come to know of rapid strides in the telegraphic and telephonic progress of radio, and have learned to use many of the service systems, of which many could be traced back to the tremendous activity of E. F. W. Alexander, and yet those are the ones of us who have failed to realize the romance of their origin, or the adventurous journeys into the realm of science that lured this great personality to seek the unexplored and accomplish the impossible.

In quest of the further evidence of
What PACENT Leadership Should Mean to You

WITH the fact that over thirty of the leading and most widely known radio set manufacturers equip their sets with Pacent Radio Essentials is proof conclusive of Pacent quality.

Only after meeting high Electrical and Mechanical Standards are Pacent Radio Essentials worthy of bearing the Pacent Trademark.

By following the judgment of these set manufacturers in your selection of radio parts, you will minimize the possibility of disappointment in results in your home-made sets.

Insist on "Pacent" Radio Essentials. Your favorite dealer carries them or can get them for you. Write for complete Pacent catalog No. W-8.

PACENT ELECTRIC COMPANY, INC.
22 Park Place, New York, N.Y.

Pacent Radio Essentials
Adapters
Audioformers
Call Plug
Call Plug Receptacle
Condensers, Variable
Detector Stand
Duo-plug
Duo-plug
Duo-plug
Duo-plug
Flat (Lateral) Cuts
Foot Plug (Everytime)
Jack
Jack set
Loop Plug
Loop Jack
Multijack
Plugs
Pots
Rheostats, Variable
Rheostats
Rheostats
Twin Adaptor, etc., etc.

Get on the subscription list of The Wireless Age and be sure of getting your copy.

Radio—your chance

From no knowledge of radio—to licensed operator. From operator up the opportunity ladder to the big jobs at the top. And a life of fascinating interest, well paid.

The Radio Institute of America is conducted under the auspices of the Radio Corporation of America, the greatest radio organization in the world. This insures the most thorough and up-to-date instruction, and therefore means preference for positions when you earn your government license.

The demand for trained men is great—and growing. Write today! Get your start—and grow with radio!

Radio Institute of America
(formerly Marconi Institute)
Established 1909
Western District Resident School
New Call Bldg., New Montgomery St.
San Francisco, Cal.

HOME STUDY DIVISION
326 Broadway
New York City

Indicate by a cross X for course you are interested in:

Radio Institute of America, 326 Broadway, New York
Please send me full information about radio opportunities today, and your
COMPLETE RADIO COURSE
ADVANCED RADIO COURSE

Name
Address

When writing to advertisers please mention THE WIRELESS AGE
Alexanderson's exploits, we stroll into the United States Patent Office and find more than 100 patents granted to him during the course of a few years. Along with this extensive program, we find that he has had time to present more than twenty scientific papers before the American engineering societies and through the technical press. And all of them bearing upon principles and practice in power engineering and radio telegraphy and telephony.

Then we drop in to visit Mr. Alexanderson. Busy! Of course! But we are cordially received, comfortably seated, and immediately put at our ease by this very human mortal. Lo! he is one of us. His interest centers on boats—big boats this time—but after all, what is the difference between boyhood, hand-whittled ships, and modern battle-cruisers? A small difference in our ages, perhaps.

Mr. Alexanderson tells us about his experiments in electric motor propulsion of battleships in the U. S. Navy. The New Mexico and other battleships of that type are now electrically propelled by apparatus designed by him. His attention was also directed to electrical propulsion of freight and passenger ships with the result that a large Japanese transport and many other privately owned ships now receive their motive power electrically.

Here, indeed, is a man whose enterprise and versatility and remarkable achievements amount to a thorough review of electrical and radio development, but a review that is indelibly associated with the growth and development of a personality.

The ABC of Your "C," "B" and "A" Batteries

(Continued from page 69)

voltages are required, the desired amount of voltage may be tapped off in accordance with figure 1 for C battery.

When the battery requires recharging, the C battery cells should be thrown in series and the entire battery recharged just the same as though it were a standard 48-volt B battery.

In figure 1 the alternative connection A shows the C battery as a part of the regular B battery and is recommended where a radio set is so wired that the negative A and negative B battery are connected together.

For proper operation as a C battery the negative B lead is extended to any number of cells which are to be used as a C battery. In this particular diagram, six volts or three cells are utilized. However, this hook-up should not be used where the negative B battery lead goes to the positive A.

Bristol Single Control Radio Receiver

Complicated combinations are eliminated when tuning in with Bristol Single Control Radio Receiver—every station is on one dial. It gives the joys of radio with technicalities left out.

The well-known Grimes Inverse Duplex System (non-radiating) is utilized in this Receiving Set. Because of the reflex, only four tubes are required to give power equivalent to six. The price, without accessories, $190.00.

You forget the radio equipment when listening thru the Audiphone Loud Speaker. The tone is full, clear and pleasing. It gives a true reproduction of the original. Made in three models: Junior $30.00, Junior $22.50, and Baby $12.50.

Ask for Bulletins Nos. 3014 and 3015-V.

Made and Sold by

THE BRISTOL COMPANY
WATERBURY CONNECTICUT

CARTER "ONE WAY" Plug

Built up to a high Standard
Not down to a low Price

Rigid construction—best material and workmanship. Will not break or get out of order. Terminals cannot twist and short.
You Can’t Get Music from a Dishpan

That’s what the conventional loudspeaker tries to do with its metal diaphragm. The harder you vibrate it, the more raucous its tones. The metal diaphragm is impossible for delicate reproduction. The phonograph makers—pioneers and masters of sound reproduction—and amplification—years ago abandoned the metal diaphragm, and perfected the mica reproducer, to improve tones, not distort them. Since it alone uses the phonograph reproducer as well as the tone arm and wooden tone chamber of the phonograph, only the

RHAMSTINE® Needlephone can give you all of the advantages of the phonograph. It is as big a step ahead of the phonograph loudspeaker which replaces the phonograph reproducer as that unit was over the old loudspeaker with a tin horn. It alone takes full advantage of phonograph perfection.

Take No Risk — Send No Money

Rhamstine® backs up these claims and wants you to prove them at his risk. Send the coupon, pay on delivery, and try it with your own set and your own phonograph. Try it with a soft needle on local broadcasting and see what real mellowness is. Try it with a loud needle and get a new standard of perfect amplification with volume and without metallic noises. Then if it is not better than your former best, we’ll gladly refund your money.

Send today—you need the best for summer.

J. THOS. RHAMSTINE
304 E. Woodbridge, Detroit, Michigan

$10 Complete with Cord

Not a loudspeaker—not an attachment—but a complete unit, plugged in like a loudspeaker that transforms the electrical energy of your radio into vibrations which, through the phonograph needle, are transmitted to the reproducer of your phonograph. It makes your phonograph the world’s finest loudspeaker.

For use with any phonograph except Edison without Victor adapter.

Crescent Lavithe Resistances
Absolutely Non-Inductive
12,000, 48,000, 50,000, 100,000 Ohms
List $1.50 Each

Special Sizes to Order

Used in all Circuits and Resistance Coupled Amplifiers

Discounted 10% when ordering 5 or more.

Crescent Radio Supply Co.
3 Liberty St.
Jamaica, N.Y.

Copperweld Antenna Wire in Cartons

“The Ideal Radio Antenna”
Strongest—Most Efficient—Best

Copperweld Lead-In and Ground Wire in Cartons
Rubber Insulated—Brown Braid
For inside and outside use

100, 150 & 200 ft. per carton
25, 50, & 100 ft. per carton

The construction directions and Underwriters’ regulations on the carton answer all questions

Save Time—Sell it in Cartons

“Copperweld”
Made Exclusively by the Copperweld Steel Company

New York, N.Y.
6 Church St.

Rankin, Pa. (Pgh. Sub.)
8 Braddock Past Office

Chicago, Illinois
129 S. Jefferson St.

San Francisco, Calif.
403 Radio Building

When writing to advertisers please mention THE WIRELESS AGE

More Money For You in RADIO

The amazing expansion of Radio has opened up hundreds of wonderful new positions on land and sea. Big salaries, fascinating, easy work, short hours, and a wonderful future are offered to ambitious men who get into Radio now.

Take advantage of these wonderful opportunities to step into a big paying position in this great new field. Radio offers you an opportunity to travel and see the world, with all expenses paid, and a fine salary besides. Or you can stay at home and work up to a position paying up to $10,000 a year.

One of our recent graduates secured a position one week after graduating, paying a salary of $300 per month. Hundreds of others report equal success.

Easy to Learn Radio at Home

Hundreds of men are already earning handsome incomes in this new science. If you want to get into a profession where opportunities are unlimited make Radio your career. Become a Certified Radio Operator.

Thousands of Certified Radio-Telegraphers are needed to design Radio sets; to make new Radio improvements; to manufacture Radio equipment and to install it in marine and operator freight vessels; to install stations and Home Radio sets to repair and sell Radio apparatus; to do fine business for themselves; to operate ocean ships and land stations.

You can easily and quickly qualify in your spare time at a small fraction of the cost of the new
INSTITUTE for Wireless Telegraphy. Accredited by the National

Institute for Wireless Telegraphy. Accredited by the National

Radio Institute, Dept. 46HA
Washington, D.C.

Without obligation send me your book, “Radio Broadcasts in Radio,” which tells all about the opportunities in Radio, now space study at home will qualify me quickly as a Certified Radio-telegrapher so I can get one of these splendid positions, and how your Employment Service intends to ensure a big pay job. (Please write plainly.)

Name:
Address:
City:
State:

Thousands of men are already earning handsome incomes in this new science. If you want to get into a profession where opportunities are unlimited make Radio your career. Become a Certified Radio Operator.
Ballantine and Bakelite

Molded Bakelite insulation forms a large part of the Ballantine Variotransformer produced by the Radio Frequency Laboratories, Inc. This instrument has been notably successful in insuring improved reception and preventing outside interference. During a trial test it was subjected to a heat of 120 degrees F. for 24 hours, followed by an ice bath. Even under these extreme conditions, it functioned smoothly and without loss of efficiency.

It is because of this stability under severe service conditions that Bakelite is accepted as standard insulation for radio apparatus.

Send for our Radio Map

The Bakelite Radio Map lists the call letters, wavelengths, and locations of every broadcasting station in the world. Enclose 10 cents to cover the cost and we will send you this map. Address Map Department.

Send for our Booklet A.

BAKELITE CORPORATION
247 Park Avenue, New York, N. Y.
Chicago Office: 636 West 22d Street

THE MATERIAL OF A THOUSAND USES

PALL MALL PRODUCTS

Pall Mall 180° Variocoupler, Pall Mall Varionmeter, tune 130-650 meters. Small wound with Green Silk Wire. Pall Mall Products make a good set better. List Price $2.00 each. Jobbers, Dealers write for discounts.

ESSEX MFG. CO.
119 Mulberry St. Newark, N. J.

Satisfied Users Prefer Standard Equipment

The following are a few of the companies for which we are distributors: Zenith (Regenerative) De Forest Transmitters and Sets (Reflex) Cunningham Tubes Remer Material Grebe Sets (Regenerative) Murock Sets (Neutrodyne) General Radio

Send stamp for Catalogue W

J. H. BUNNELL & CO.
32 PARK PLACE NEW YORK

Radio in the Canadian Wilderness (Continued from page 37)

around us to stare at our radio and speculate about its performance, but none seemed the least disposed to do anything more about it. So the Doc and I let the matter rest there.

The town of Roberval is a small clearing in the heart of a vast forest. The people are mostly of French extraction and were not particularly cordial. They were probably a little shy in front of strangers. It is true that few people from the outside world, especially from the United States, ever visit this town. Like most of the French-Canadian villages, this one is dominated by a church at the head of the main street. The conspicuous absence of trees mark the fear of the forest, common to most French-Canadians. To stay in a lumber camp during the season is, to these people, a feat that proves beyond question, the full manhood of the one who can do it.

On the train back to Chicoutimi, we saw a few lumberjacks who were returning from camp. The wild, uncouth manner of those men unmistakably branded them with the supreme hardship of that existence. Few care to pursue the calling over one or two seasons at the most.

When Dr. Hobart and I finally arrived in Montreal, we agreed that a trip into the Canadian wilderness is really worth while. The more so, with radio. Our next trip there will include a better receiver. Probably, an RCA portable Super-Heterodyne.

Moose and Music in Maine (Continued from page 51)

the set would capture some of them. I lit the tubes—all six of them—and turned the dials half-heartedly.

Without a word of warning the loud-speaker emitted a ribald squeal which suddenly merged into and disappeared from among the strains of a jazz song—the most wonderful sounds I have ever in all my life heard.

I stood inarticulate, my feelings were chaotic with mingled glee, amazement, shock and triumph. For a full minute I stood with open mouth, grasping the realization that what I heard was genuinely true. As suddenly at it had left me the power of speech returned, and as the yell finally passed my lips I turned to the door to see Totum staring pop-eyed over a rather small spread of moose-antlers.

I was the first to break the silence. "So you got one, did you?"

Without moving his eyes which were fixed in mute inquiry in the direction of the loud-speaker, Totum responded:

"Uh-huh. You kill him. He ran mile or two. One shot—not so bad."
Build a FADA 5-tube Neutrodyne Receiver

You can assemble one in a few hours. For distance, selectivity and loud speaker volume there’s nothing better. The FADA 5-tube Neutrodyne outfit No. 167-A contains everything needed—the finest Neutrodyne parts that can be purchased. The FADA “How to Build It” book makes everything as simple as A, B, C. Buy the original FADA No. 167-A in the sealed package, $65.00.

F. A. D. ANDREA, INC.
1581 Jerome Avenue New York

LEARN THE CODE BY THE Marconi-Victor Method
You Just Listen and Learn

MARCONIVICTOR COURSE IN WIRELESS TELEGRAHY

It’s just as interesting to read the dots and dashes as to listen to broadcasting. These records will teach you quickly, under actual operating conditions, to read code at a speedy rate.

Six Double-Faced Marconi Victor Records, with instruction Manual $5.00

WIRELESS PRESS, Inc. Room 405
326 BROADWAY NEW YORK

Keep your Customers satisfied

by aligning yourself with a dependable radio jobber

This organization wholesales exclusively—they represent only the leading radio equipment manufacturers—their products are guaranteed—they are, therefore, a dependable source of supply, and the type of jobber you should tie up with for your requirements.

Send for the Hommel Encyclopedia No. 256-E.

LEARN WIRELESS PRESS, sealed original Neutrodyne and hours.

Your dealer will tell you why Marle Transformers do not howl or distort Uniform amplification up to as many as 3,500 cycles.

MARLE ENGINEERING CO. ORANGE, NEW JERSEY

Practical Wireless Telegraphy
By ELMER E. BUCHER

More than 90,000 copies of this book have been sold—your copy is ready to be shipped.

See page 6.

WIRELESS PRESS
326 Broadway New York

When writing to advertisers please mention THE WIRELESS AGE
Simplicity in Summer Tuning

Precise and accurate tuning is most vital for best Summer reception.

Accuratunes are micrometer tuning controls—calibrated for infinite tuning precision, and geared 80 to 1 ratio for simplicity of operation.

Specified as standard on the famous Ultradyne and other Super-Heterodynes. Replaces ordinary dials on any radio receiver.

The Accurature must not be confused with other tuning controls. Accuratune is the original—guaranteed. Mounts flush with panel. Fits all standard condenser shafts.

Price $1.50 each and worth it in genuine tuning satisfaction. At your dealer—otherwise send purchase price and you will be supplied postpaid.

Write for Descriptive Circular

ACCUROTUNE

80 to 1 MIROMETER CONTROLS

Mydar Radio Company

9-A Campbell St. Newark, N.J.

Prices in the manufacture of high quality vernier devices.

Radio, Ltd., Montreal, Canada

Canadian Representatives

RED-HEAD PHONES

Used and Praised the World Over

3000 Ohm, $6.50. 2000 Ohm, $5.00

Complete with Cord and Headband.

At your dealer's, or send direct.

THE NEWMAN-STERN CO.

Newman-Stern Bldg. Cleveland

A RADIO SENSATION

Patent Applied For

A tuner that works without "B" batteries. Something new: Reliable, Portable, Fool-proof, and a hook-up that will revolutionize the art. It positively does not re-radiate and works with loop or aerial. Works loud speaker with one tube on local signals.

Circulars two cents

TRESCO SALES, INC.

DAVENPORT IOWA

Sound

(Continued from page 41)

A tremendous amount of energy is wasted in our task of accomplishing this. The number of changes or handleings of the coal undergoes in being transported to the apartment house is alarmingly large and each handling necessitates a large expenditure of energy in order to change it from one state to another. Thus far all our effort is spent in attempting to reduce the energy expenditure or waste to a minimum. If, however, a way could be found so as to eliminate the many changes or handleings and one scheme of transportation used then much effort would be saved.

The same thing holds in electricity and also in sound. In the case of electricity the greatest care is used in telephone and radio transmission to avoid changes in the electrical characteristics of the apparatus from point to point. Wherever changes occur, a loss in energy by reflection is certain to occur. This is why your loud speakers and phones have a high resistance in order that such resistance may equal or "match" that of the place circuit of the tubes. It is also the reason why a transformer in a radio set is made with a definite number of turns in the primary and secondary windings.

In the case of sound passing along a pipe or through space care must be used in order to secure the transmission of the maximum amount of sound energy. In the accompanying figure if sound is passing along a pipe in the direction of A to B, more sound energy will be transmitted in case the internal diameter of the pipe is unchanged, as shown by the dotted lines, than is transmitted if the diameter is suddenly increased at c and again decreased at d. At both c and d sound energy is reflected back toward A and less is transmitted to B. Reflection of sound energy again occurs at the open end, E, of the pipe and still less energy gets out into the surrounding space S.

In a later article when we take up loud speakers we shall see how important these effects are in securing efficient and satisfactory horns for loud speaker use.

There are numerous other phenomena which we might describe to show the nature of sound, but it seems wise to include these in the next and succeeding articles. The present article may be summarized briefly somewhat as follows: Around us are material objects of every description immersed in an ocean of air. These objects are caused to shake or vibrate and set the surrounding air in a corresponding
WIRELESS AGE RECOMMENDS
GENERAL INSTRUMENT CORPORATION
GROUNDED ROTOR CONDENSERS

The LOW LOSS General Instrument GROUNDED ROTOR CONDENSER has practically no dielectric losses and hence you get 37% more DISTANCE and VOLUME than with the average variable condenser.

ASK FOR IT AT YOUR DEALER
OTHERWISE SEND PURCHASE PRICE DIRECT TO US AND YOU WILL BE SUPPLIED
GENERAL INSTRUMENT CORPORATION
423 BROOME STREET
NEW YORK CITY

THE FAMOUS
BEL-CANTO
ACOUSTICAL LOUD SPEAKER
PRICE $10.00

Direct from Factory to you. Delivered free C.O.D. to your door. Sold on a guarantee of money back, any time within 10 days. It is insured.

BEL-CANTO MFG. CO.
General Office & Factory
Dept. WA
417-419-421 E. 24th St., N. Y. C.

CATALOG

DOUBLE "A" SUPER-HETERODYNE

ACME parts KIT only $60.18. Panel engraved and drilled. Everything needed including blueprints and instructions to build 5 tube set. Ready to hookup.

Dealers—Send for Catalog and Discounts

AMERICAN RADIO MFG. CO.
WHOLESALE DISTRIBUTORS
Dept. U, 6 West 14th St., Kansas City, Mo.

Improve your set with an AmerTran
And enjoy radio this summer as never before

Type AF-6 (Turn ratio 5), has long been ac- knowledged the Standard of Excellence for audio amplification.
Type AF-7 is now offered for 2nd or 3rd stage amplification with AF-6 for 1st stage. In this use AF-7 decreases the tendency to overload the last amplifying tube on loud signals. Price, either type, $7, at your Dealer's.

American Transformer Company, 179 Emmet St., Newark, N. J.
Designers and builders of radio transformers for over 23 years

When writing to advertisers please mention THE WIRELESS AGE

Every Question ANSWERED for only $1

JUST OUT
514 PAGES

ICS RADIO HANDBOOK
Compiled by
HARRY F. DART, E.E.
Formerly with the Western Electric Co., and U. S. Army In- structor of Radio.
Technically edited by
F. H. Buene

NO MORE need you turn from book to book, hoping to find what you want. It is all here, in 514 pages crammed full of every possible radio detail. Written in plain language, by engineers for laymen. $9.00 sold.

IT EXPLAINS: Electrical terms and circuits, antennas, batteries, generators and motors, condenser (vacuum) tubes, every receiving hook-up, radio and audio frequency amplification, broadcast and com- mercial transmitters and receivers, super-regeneration, codes, license rules. Many other features.

Send $1 today and get this 514-page I. C. S. Radio Handbook—the biggest value in radio today.

RADIO PAYS BIG

EARN $3000 to $9000 a Year

Prepare for Big Pay in Spare Time

My reputation as Radio Engineer and instructor inspires you confidence, speed, success, at home or in spare time. Earn while you learn. I make you expert in radio designing, building, repairing and operating and teach you only practical "inside" dope. You quickly complete my course and step out into Big Pay. No ex- perience required.

FREE RADIO OUTFIT
1000 MILE TUBE SET

For a short time I will give tube radio set in handsome cabinet to men who enroll now, absolutely FREE. Send address and my free Radio Outfit, Radio Ass'n of America, 415 E. Randolph Avenue, Dept. 9, Chicago, Ill.

RADIO ASS'N OF AMERICA
415 E. Randolph Avenue, Dept. 9, Chicago, Ill.

Dear Sir: Send me your FREE Radio Book and your limited plan without cost or obligation.

Name
Address
City

www.americanradiohistory.com
SUPER-UNIDYNE PARTS
Are Now Available for Building Your OWN

LATEST IMPROVED SUPER HETERODYNE

Illustration shows seven tube set. The Super-Unidyne may be built in five tube receiver for use with Western Electric Power Speaker, six or seven tubes with one or two stages audio, or eight tubes for one stage audio and two tube Push Pull Power Amplifier. Two stages Tuned Radio and one Stage Intermediate Radio used throughout.

Kit for building the Super-Unidyne
Including all Special Coils, Set of Full Size Blue Prints, Instructions, etc. $16.00
Full size blue prints only, set of two 21" x 48" 1.50
All standard parts from your dealer.

No. 35 Tuned R. F. Transformer, for all circuits.
Price $2.50

Intermediate Transformer, made in 30-50-100 K. C., for all circuits.
Price $3.50

If your dealer does not carry UNIRADIO Parts we will supply you direct. Jobbers and Distributors will want our line. Write or wire for proposition.

UNIRADIO MANUFACTURING COMPANY
Makers of
High Grade Radio Apparatus
Slate Dept., Jos. Mack Bldg.
Detroit, Michigan

How I Made a Career
(Continued from page 35)

The first set employing the Super-Unidyne principle was placed in the hands of the user one year ago and since that time over ONE HUNDRED sets, built for and by the individual and subjected to every conceivable test have gone into use.—Not One Set Has Ever Been Changed.

UNIRADIO Tuned R. F. Transformers (not mounted at an angle) and Calibrated Intermediate R. F. Transformers have made the SUPER-UNIDYNE possible. No new or untried features are employed, every principle has been used by Radio Engineers throughout the country. A simple combination, thoroughly explained and easily understood puts the SUPER-UNIDYNE ahead of every other set of any type.

UNIRADIO Kits will make any type Super Het better and cheaper. Every kit calibrated and tuned at highest point.

...
WHOLESALE DISTRIBUTORS FOR
Radiolas and Radiotrons
Radio Corporation of America
Sales Dept., Suite 206B, 333 Broadway, New York
District Sales Offices:
30 South LaSalle St., Chicago, Ill.
433 California St., San Francisco, Cal.

<table>
<thead>
<tr>
<th>ILLINOIS</th>
<th>NEW JERSEY</th>
<th>OHIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUSCOLA RADIO SUPPLY STATION</td>
<td>RADIO DISTRIBUTING CORPORATION</td>
<td>THE MILNOR ELECTRIC COMPANY</td>
</tr>
<tr>
<td>Tuscola Radio Apparatus</td>
<td>Guaranteed Radio for Every Purpose 8 WEST PARK STREET NEWARK, NEW JERSEY</td>
<td>Large Stocks—Quick Service 129 GOVERNMENT SQUARE CINCINNATI, OHIO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAINE</th>
<th>PENNSYLVANIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLANTIC RADIO CO., Inc.</td>
<td>Music Master Corporation</td>
</tr>
<tr>
<td>Complete Service</td>
<td>10th & Cherry Sts. 1005 Liberty Ave. Philadelphia Pittsburg</td>
</tr>
<tr>
<td>211 TEMPLE ST. PORTLAND, ME.</td>
<td>Special service to dealers on Radio Corporation of America products in Pennsylvania, New Jersey, Delaware, Maryland, District of Columbia, Virginia, West Virginia and Ohio.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MASSACHUSETTS</th>
<th>NEW YORK</th>
<th>PENNSYLVANIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. D. PITTS CO., Inc.</td>
<td>TIMES APPLIANCE CO., Inc.</td>
<td>LUDWIG HOMMEL & CO.</td>
</tr>
<tr>
<td>Exclusively Radio</td>
<td>Approved Radio Merchandise Wholesale Only</td>
<td>WHOLESALE EXCLUSIVELY</td>
</tr>
<tr>
<td>210 Columbus Ave. BOSTON, MASS.</td>
<td>145 WEST 45th ST. NEW YORK</td>
<td>Hommel's Illustrated Encyclopedia of Radio Apparatus 235 E will be sent free to dealers. We sell to no others.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MINNESOTA</th>
<th>DEALERS</th>
<th>PENNSYLVANIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>STERLING ELECTRIC COMPANY</td>
<td>DEALERS Here you will find the R. C. A. DISTRIBUTOR who can serve you best Tie up to him</td>
<td>PENN ELECTRICAL ENGINEERING CO.</td>
</tr>
<tr>
<td>MINNEAPOLIS, MINN.</td>
<td></td>
<td>Westinghouse Agent Jobbers SCRANTON, PA.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISSOURI</th>
<th>WEST VIRGINIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>WESTERN RADIO CO.</td>
<td>CHARLESTON ELECTRICAL SUPPLY CO.</td>
</tr>
<tr>
<td>Dependable Merchandise from America's Greatest Manufacturers BALTIMORE AT FOURTEENTH KANSAS CITY, MO.</td>
<td>Electrical Jobbers CHARLESTON, WEST VIRGINIA</td>
</tr>
</tbody>
</table>

When writing to advertisers please mention THE WIRELESS AGE.
London
Hawaii - Porto Rico

A Canadian amateur (T. A. Crowe, Calgary), operating on three Myers Tubes, heard the concert broadcasted by J.J.O. London, England, and picked up Hawaii and Porto Rico the same evening. (Calgary Herald, April 1st). Are you getting results like this? You can with

Myers Tubes
Practically Unbreakable

They banish the noise that spoils reception and give wonderful volume and clarity to long-distance messages. Myers Tubes function perfectly as Detectors, Amplifiers and Oscillators. You can't break 'em unless you deliberately try. Two types: Long Life and Universal for storage batteries. ($4.00)

Demand Myers Tubes at your dealers or send price and be supplied postpaid. See words 'Made in Canada' on each tube. Others not guaranteed. Complete with clips ready to mount. No extra equipment required.

E.B. Myers Co., Ltd.
Radio Vacuum Tubes
240 Craig Street, W.
Montreal, Canada

Prize Contest
(Continued from page 67)
favor them in the least.
Men who make their living by subscription selling have accepted my plan whole-heartedly, and have joined the staff on the basis outlined here.
One special feature deserves attention.
To furnish an extra incentive, and to put a little spirit into this plan, I have made a contest of the whole affair. This contest closes September 15th, and all who want to get in the running must do so at once. Later, I will arrange other contests, but this present one is the big event.
I am giving a Paragon R2B $135.00 Receiver for first prize. This prize goes to the one who sends in the most subscriptions by September 15th.

For second prize, I am giving a Thompson Magnaphone $35.00 Loud Speaker to the one who sends in the next largest number of subscriptions by September 15th.

And the third prize is an N & R $5.50 Headset for the one who sends in the third largest number of subscriptions by September 15th.

The prizes will be given in addition to what you receive for the subscriptions. If you win a prize, your subscriptions will bring you cash or radio parts just the same. You are paid for your time even though you don't win a prize!

Put your photo in one of the frames and send it in—we want to see what you look like! But act promptly. Do it at once!

Afloat and Ashore with the Operators
(Continued from page 55)
"Dear Sir—"

"I wish to thank you for giving me a line on one of 'That Old Gang of Mine!' Have not been in touch with Frank Rosenquist since he was up in Maine during the war. Frank and I used to build tuning coils about three feet long out of wire from old buzzers. Ask him about them.

"Just as a suggestion, would it not be possible to extend the scope of your articles to take in some of the old timers who have left the game but who will never be forgotten? It would prove most interesting. I most certainly would like a line on old ops, for instance, 'Don' Pier, Dick Cuthbert, 'Red' Sutherland and 'Dusty' Rhodes."

"I am at a loss to know just exactly how to reach Frank so would ask that you forward these lines to him. Would like to hear from him and if he or any of the other old timers get out this way, there most certainly will be a place for them to hang up their hats and room for their feet under the 'mahogany.'"

"Thanking you, I am,"

"R. J. Dean,
"Ex-operator, SS. Montanan,
Eocene, Prince Jacob, Pennsylvania,
Texas, Mexican, Nebraska and naval radio station Pt. Arguello."
Small Ads of Big Interest

Space in this department costs only 65 cents a line
Minimum space 7 lines Payable in advance

MAKE $100 WEEKLY In Space Time. Sell what the public wants—long distance radio receiving sets. Two sales weekly pays $100 profit. No big investment, no canvassing. Sharpe of Colorado maillot $95 in one month. Representatives wanted at once. This plan is sweeping the country—write today before your county is gone.

OZARKA, INC., 854 Washington Blvd., Chicago.

RADIO GENERATORS—500V 100 Watt $28.50. Battery ChargingGenerators $8.50. High Speed Motors, Motor Generator Sets, all sizes. MOTOR SPECIALTIES CO., Crayton, Penna.

FREE!
Radio
"Applause Cards"

"—Station W-JZ signing off. If you have enjoyed the artist's program, won't you write in and tell them?"

By all means! Quickly and easily with "Applause Cards," the handsomenly printed mailing cards. All ready for you to fill in with your comments, sign, and drop in the mail box. Keep a pack of them near your receiving set. You can use "Applause Cards" liberally because they are FREE AT YOUR RADIO DEALER'S.

"Applause Cards" were originated by this Company, makers of the popular Dictograph Loud Speaker and the Aristocrat Diaphragm Headset. The only "Applause Cards" are Dictograph Copyrighted "Applause Cards."

A big FREE package of them awaits you at your dealer's. Or, if he has not yet stocked, we will send you a large package of "Applause Cards" prepaid direct to you, providing you will furnish us with your dealer's name. Dept. F-8.

DICTOGRAPH PRODUCTS CORPORATION
220 West 42nd Street New York City

www.americanradiohistory.com
Durable

A Bakelite-Dilecto Panel wears like iron. None has ever been known to fail in any one of its many duties as radio insulation.

bakelite
Dilecto
(Distinguished by Its Red Stripe)

THE CONTINENTAL FIBRE CO.
Factory: Newark, Delaware

Service from:
New York, Woolworth Bldg.
Chicago, Wrighty Bldg.
Pittsburgh, 301 Fifth Av.
San Francisco, 140 Fremont St.
Los Angeles, 307 B Hill St.
Seattle, 1041 Sixth Av., So.

RATHBUN SINGLE-HOLE MOUNTING

SUPERIOR CONDENSERS

"Extremely Low Losses"

Tests by "Lefax" and other dependable laboratories invariably find that the losses in Rathbun Condensers are "negligible"—not worth mentioning.

Mechanically and electrically as perfect as fine engineering can make them. Ask your dealer to show you some of the Rathbun "points of superiority"—single hole mounting, self-wiping contacts, anchored stator plates, non-magnetic materials, remarkably sturdy mechanical structure and other advantages.

Write for Literature TODAY

RATHBUN Manufacturing Company, Inc.
JAMESTOWN NEW YORK

EQUIP YOUR SET WITH

AND NOTE THE DIFFERENCE
STILL BETTER
New Crosley Radio Receivers

PROVING that Crosley Radio Receivers have made Satisfied Customers, The Crosley Radio Corporation sold more receiving sets last year than any other manufacturer in the world.

The new Crosley line illustrated here is still better as shown by laboratory tests and by reports from users of performance under all weather conditions.

Listen in on a Crosley—Compare it with other receivers—Then you will choose a Crosley!

CROSLEY 50, a new one-tube Armstrong Regenerative Receiver. We believe this to be the most efficient one-tube receiver ever put on the market. Price, $14.50

Crosley 50-A, one-tube amplifier may be added at $18.00.

CROSLEY 51, two-tube regenerative receiver, the biggest selling radio receiver in the world. Gives loud speaker volume on local and distant stations under average conditions. Price, $18.50.

Crosley 51-A, one-tube amplifier may be added at $14.00.

CROSLEY 52, a new three-tube Armstrong Regenerative Receiver. Provides loud speaker volume on distant stations under practically all conditions. Price, $30.00.

CROSLEY 51-P, this is our new portable set. It is the Crosley Model 51, two-tube receiver mounted in a leatherette-covered car type case, battery space and all self-contained. Price, $25.00.

CROSLEY TRIRDYN 3R3, this three-tube receiver gives the efficiency and power of five tubes. We believe it to be the most efficient and sharpest tuning receiver on the market at any price for bringing in long distance stations. Price, $65.00.

CROSLEY TRIRDYN 3R3 SPECIAL is the same as the Trirdyn 3R3 except cabinet is larger to contain "A" and "B" dry cell batteries. Case is finished to match the highest grade of furniture. Price, $75.00.

CROSLEY 51-P...$25.00
Crosley 51...$18.50
Crosley 50. $14.50
Crosley 51-A...$14.00
Crosley 52. $30.00
Crosley Trirdyn 3R3...$65.00
Crosley Trirdyn Special...$75.00

CROSLEY 51-P. This is our new portable set. It is the Crosley Model 51, two-tube receiver mounted in a leatherette-covered car type case, battery space and all self-contained. Price, $25.00.

CROSLEY TRIRDYN 3R3, this three-tube receiver gives the efficiency and power of five tubes. We believe it to be the most efficient and sharpest tuning receiver on the market at any price for bringing in long distance stations. Price, $65.00.

CROSLEY TRIRDYN 3R3 SPECIAL is the same as the Trirdyn 3R3 except cabinet is larger to contain "A" and "B" dry cell batteries. Case is finished to match the highest grade of furniture. Price, $75.00.

All Crosley Regenerative Receivers licensed under Armstrong U. S. Patent 1,113,149

CROSLEY
Better - Cost Less Radio Products

MAIL THIS COUPON TODAY
The Crosley Radio Corporation,
828 Alfred Street, Cincinnati, O.

Gentlemen—Please mail me free of charge your complete catalog of Crosley instruments and parts together with booklet entitled, "The Simplicity of Radio.

Name ________________________________
Address ______________________________

THE CROSLEY RADIO CORPORATION
828 ALFRED STREET
CINCINNATI, OHIO

Powel Crosley, Jr., President

The Crosley Radio Corporation owns and operates broadcasting station WLW

www.americanradiohistory.com
Radiotrons WD-11 and WD-12 Made History!

These are dry cell tubes—the tubes that made possible the swift progress of radio in the home everywhere. They meant clear tone—undistorted detection—radio and audio amplification—and volume reproduction—all with dry batteries. They meant radio in the city—on the farm—off in camp—everywhere!

And to-day, there are millions of these popular Radiotrons in use. Today everybody knows them familiarly as "WD-11's" and "WD-12's." But they are not genuine unless they are RADIOTRONS.

Always be sure to look for that mark on the base, and for the RCA mark on the glass. It's important, whether you are buying a new set with the Radiotrons in it, or buying new Radiotrons to replace old ones. Always look for the Radiotron mark and the RCA mark. Then you have the genuine—sure to live longest—serve best.

Radio Corporation of America
Sales Offices: Dept. 18
233 Broadway, New York 10 So. LaSalle St., Chicago, Ill.
433 California St., San Francisco, Cal.

This symbol of quality is your protection.

REG. U.S. PAT. OFF.