Train safety: are rail companies thinking laterally?

ELECTRONICS WORLD

NOVEMBER 2001 £2.80

100MHz active scope probe
MOSFET modelling
CRT phosphor issues

Circuit ideas:
Class-A MOSFET audio
V-to-F converter
Smoke alarm timer
Scope calibrator
Auto NiCd charger
Fan speed control
Latching relay
Magnet sniffer

Receiver design IV: dynamic performance
Is a PRBS Gaussian?
Analogue programmable array
Hewlett Packard

Radio Communications Test Sets

Marconi 2955
£1500

Marconi 2955B/608
£2300

Marconi 2955A
£2200

Armit 5555A-A2
£1200

Hewlett Packard 9622B (GSM)
£2400

Hewlett Packard 9622A (atts 1.23, 4, 5, 11)
£1750

Hewlett Packard 9620 (atts 1.2, 7, 11, 12)
£7250

Hewlett Packard 9620M
£6000

Schumberger Sialkoop 4031
£950

Schumberger Sialkoop 4040
£1500

Racic 911 (GSM)
£1750

Racic 9115 (GSM)
£1750

Racic 6103 (GSM) Digital Radio Test Set
£7000

Rhode & Schwartz CMTA 54 (GSM)
£4950

Rhode & Schwartz CMT 55 (20GHz)
£8000

Rhode & Schwartz CMT 90 (40GHz) DECT
£4995

Rhode & Schwarz CPM 57 GSM Test Set (atts B1,4/7/9/12/4/3/6)
£1995

Wavelet 4103 (GSM 900, 1800, 1900) Mobile Phone tester
£1500

OSCILLOSCOPES

Gould 400A 20MHz - DSO, 2 channel
£600

Gould 1421/20MHz, 2 channel
£1000

Gould 406A 100MHz, 4 channel DIS
£1350

Hewlett Packard 5420A - 300MHz DIGITRON
£1950

Hewlett Packard 5420A - 600MHz DIGITRON
£2495

Hewlett Packard 54522A - 30MHz
£1600

Hewlett Packard 54522B - 50MHz
£1300

Hewlett Packard 54520A - 500MHz
£2000

Hewlett Packard 54520B - 1GHz
£2240

Hewlett Packard 54520C - 2GHz
£2500

Hewlett Packard 54520D - 4GHz
£2500

Signal Gen.

£8250

MISCELLANEOUS

Avanti B320 S temmeter (5000MHz) in carry case and Transit case
£350

Eaton 14275-4, Older Hamish Power Amplifier
£12750

EIP 54A-26.5GHz Frequency Counter
£1995

ENI 4445A 1000kHz-20GHz Power Amplifier
£2750

EN 1040 (100MHz-500GHz) 400 Watt Power Amplifier
£2750

Fluke 5000-A50/A58-00A - Calibration units (Various available)
£3500

Hewlett Packard 339A Distortion measuring set
£4600

Hewlett Packard 3453A multimeter in 1/8" box
£1950

Hewlett Packard 3784A - Digital Transmission Analyser
£1150

Hewlett Packard 3712A - jitter Generator & Receiver
£1150

Hewlett Packard 3584A - 1 GHz Frequency counter
£1150

Hewlett Packard 6021A - Autoscoping System PSG (20-30MHz)
£1950

Hewlett Packard 6021A - Digital Signal Processing System
£5500

Hewlett Packard 8061A - Sine Frequency synthesiser
£1150

Hewlett Packard 8594A Synth. sig. gen. (1-140MHz)
£1950

Hewlett Packard 9510B - Modulation Analysis
£1950

Hewlett Packard 9930A, B, E & E - Distortion Analysers
£1950

Hewlett Packard 16500A + B - Logic Analyzers Mainframes
£1950

Hewlett Packard 37900D - Signalling Test Set
£2750

Hewlett Packard 6320A (DC/PCS test units)
£3600

Hewlett Packard 65310 - 1000kHz-20GHz MHz Sig Gen
£4500

Hewlett Packard 65130 - 20GHz Microwave Freq. Counter
£2750

Hewlett Packard 65400A + B=10GHB (1GHz) Vector Voltmeter
£1950

Hewlett Packard 3708A Noise and Interference Test Set
£1250

Marconi 3100 - modulation unit
£999

Marconi 2610 True RMS Voltmeter
£890

Marconi 9959B/9306B Power Meters & Sensors
£100

Motorola 2804A P 9MHz Transmission Analyser
£900

Phillips 5155 - TN - Colour TV system generator
£1400

Phillips 515 - 5MHz - 50MHz Frequency Generator
£1400

Leco 5210 Signal generator (500kHz - 1400MHz) AM/FM/CW with built-in FS meter
£2950

modulator (as new) a strip et
£999

Racic 902 - 1300 GHz Frequency Counters
£1500

Rohde & Schwartz NFR dual channel power meter & NVV 22 Sensor
£1750

Armit 3832A (1kHz - 2GHz)
£1450

Roberts & Schwartz TFM (atts 2, 6, 8) Modulation Analyser
£2450

Techno SM 100 - Audio Signal Generator
£750

Wavelet 178 Function generator (50 MHz)
£750

Wayne Kerr 3425 - Precision Inductance Analyser
£1195

Wayne Kerr 4245 - Precision Component Analyser
£2500

All equipment is used - with 30 days guarantee and 90 days in some cases

Add carriage and VAT to all goods.

Tel: 02476 650 702

Fax: 02476 650 773
811 COMMENT
Such a simple task...

812 NEWS
- Low-cost GaAs devices a step closer
- New Bluetooth chip duo
- Fast low-k chip technology gets a boost
- Battery for vehicles has 15 year life
- Filters for programmable analogue chip
- Fastest Java processor
- A computer that anyone can use
- Wind-driven ball for Mars roving
- New Internet security standard
- "Museum" shows interactive story book

818 CRT PHOSPHOR TECHNOLOGY
Douglas Clarkson looks at the composition of the colour dots that make up the picture on your TV and monitor screens.

822 IS A PRBS GAUSSIAN?
There's a generally held view that a low-pass filtered pseudo random bit sequence provides Gaussian white noise. Ian Hickman's article brings that view into questions.

828 PROGRAMMABLE ANALOGUE BOARD
Yehuda Sonneblick and colleagues have been investigating the evaluation board for Zetex's Trac programmable analogue chip. An AM receiver example illustrates its versatility.

832 RAIL SAFETY
Wilf James discusses the problems with train safety, and suggests how railways can be made much safer using electronics.

834 DESIGN COMPETITION
Cream of the entries from our recent design competition:
- Direct conversion AM radio receiver
- Frequency standard using Droitwich
- Ultrasonic receiver
- BFO CW/SSB detector and filter
- Side-band image solution
- Acoustic leak monitor

842 ACTIVE RF SCOPE PROBE
You've probably noticed the high price of active scope probes. Cyril Bateman's unity-gain oscilloscope probe features low capacitance and provides faithful results up to 100MHz, yet it won't leave you out of pocket.

848 THE MOSFET EXPOSED
Bryan Hurt shows how the shape of a mosfet's drain characteristics can be explained via a first-order model. He then shows how to use that model to analyse and design some typical mosfet circuits.

855 LETTERS

857 NEW PRODUCTS
New product outlines, edited by Richard Wilson

876 DESIGNING RADIO RECEIVERS IV
With today's solid-state electronics and band crowding, it is essential to evaluate a receiver's dynamic performance. In this fourth and final article on receiver design, Joe Carr explains how it's done.

868 CIRCUIT IDEAS
- Single-ended MOSFET Class-A amplifier
- Smoke alarm interrupter
- One-chip scope calibrator
- V-to-F converter with polarity indicator
- Solenoid valve tester
- 5V to -15V voltage inverter
- Operate latching relay from low voltage
- Fully-automatic NiCd charger
- Fan speed reducer

882 WEB DIRECTIONS
Useful web addresses for the electronics engineer.

Spot the difference. This is a 5MHz square wave before and after passing through Cyril Bateman's active oscilloscope probe, described in full detail on page 842.

Even when the proposed automatic stopping system has been installed in every train, it still won't prevent the sort of accident that occurred recently when a Land Rover fell onto the line. Wilf James' solutions would though. Find out how on page 832.

December issue on sale 1 November
Introducing Electronic Design Studio 2, the new modular electronics design system that includes simulation, schematic, PCB, autorouting and CADCAM modules as standard.

Our state of the art integrated design environment brings powerful management to your projects and now features expanded libraries with 3D style PCB footprints, and the new Viper autorouter. EDS 2 Advance also includes rip up and retry routing, net styles, shape based realtime design rule checking (DRC), full copper pour support with unlimited automatic zones, split power planes with router support, cross probing, netlist navigation, DTP quality feature rich schematics and a wide range of import/export options.

EDS2 is fully compatible with TINA Pro 5.5 with support for FAST TINA net import using the Project Wizard.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Advance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schematic, Simulation, PCB & CADCAM Modules</td>
<td>Yes</td>
</tr>
<tr>
<td>Viper Autorouter</td>
<td>Single Pass</td>
</tr>
<tr>
<td>Multiple copper pour, thermal relief, power planes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cross probing & Net Styles</td>
<td>Yes</td>
</tr>
<tr>
<td>Shape based Design Rule Check</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Price* £199 £349

Award Winning Professional Simulation

The international award winning TINA Pro circuit simulator combines ease of use with an incredible range of features. Fully mixed mode, TINA Pro Industrial includes over 20,000 models, 21 types of analysis, 9 virtual instruments, hierarchical schematic design with teamwork and bus support, professional graph presentation (Bode, Nyquist, poles & zeros, transient, temperature sweep, Smith and polar, etc), electrical rules check (ERC), bill of materials (BOM), easy importing of SPICE models and sub-circuits, and PCB netlist export support.

TINA Pro is also fully compatible with EDS 2 and now features EDS footprint selection within the schematic editor.

<table>
<thead>
<tr>
<th>Classic</th>
<th>Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models Included</td>
<td>10,000</td>
</tr>
<tr>
<td>Full range of analysis and output options</td>
<td>Yes</td>
</tr>
<tr>
<td>Advanced hierarchical Schematics & Teamwork</td>
<td>Yes</td>
</tr>
<tr>
<td>SPICE Library manager & Parameter Extractor</td>
<td>Yes</td>
</tr>
<tr>
<td>Component Generator</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Price* £169 £299

TINA

Information & Demonstration Software

www.dotqr.com

Next Generation Electronics CAD

Electronic
Design Studio 2
Such a simple task...

It's ironic that an industry that has persuaded people in 78 per cent of British homes to buy a mobile phone cannot convince them they are safe. In statistical terms, it must be predominantly the same people who are happy to use the things — and expect seamless radio coverage — that also rebel whenever the erection of a new transmitter is proposed.

Although people have no problem using the things, they go into blind panic if a mobile must should sprout in local school grounds or by some village green. The objections range from fear of death by rays to impaired visual amenity, with no consistency in their objections.

That of course is nothing new; when the passenger train travel was launched in the 1830s eminent pundits predicted people would die of suffocation if they travelled faster than 30 mile/h, and cattle in nearby fields would become barren and cease giving milk. It was drivel then and it's drivel now.

But 'Mast Action UK' — a high-profile pressure group opposed to mobile radio towers — reportedly includes Jerry Hall, Glenda Jackson and Caron Keating among their campaigners. Another organisation, the 'Mobile Phone Mast Action Group', has a more graphic (but less literate) campaigning website. For all the rant these sites contain, it cannot be denied their viewpoint is catching the media's attention.

The importance of this debate to electronics professionals is clear; if the idea that transmitters and radio devices are dangerous takes hold, this could put a serious damper on the development of 3G mobiles, wireless LANS, broadband radio data distribution and even Bluetooth. The irrationality of the arguments proposed is irrelevant.

Educating people about RF issues should not be difficult. There's no need for the industry to make heavy weather convincing the public transmissions are safe. People have lived with high-powered UHF transmitters for decades without ill effects. Take the Crystal Palace television transmitter in south London for instance; bang in the middle of an urban area buckets of microwaves. It needs also to be explained that the amount of radiation directly underneath a transmitter is minimal (the 'lighthouse effect') because the radiation pattern is optimised to cover a wider area. And since handsets are much closer to people's brains than the base station, this signal, although weaker than the base station's, is likely to have considerably more effect (radiation decreasing as the square of the distance).

Since handsets turn down their own radiated power when receiving a strong signal, there's a powerful argument for building more, not fewer, base stations. This point was argued convincingly at the British Association science festival at Glasgow University in September by electrical engineer Alasdair Philips.

Unfortunately there's a lot of ignorance around that needs to be corrected. During September a businessman in Ireland blamed burns on his hands, chest and ears on exposure to his cellphone, while a mobile phone mast in West Lothian was blamed for the disappearance of over 50 racing pigeons. Now, along with hundreds of fellow fanciers, he is considering taking legal action against the mobile companies responsible for ruining the homing instincts of their feathered friends.

Meanwhile, in London’s Harley Street, a storm is brewing after a private hospital agreed to the installation of base station antennas. This is despite the fact that the heart hospital claims that it conducted a survey to prove there were 'no health effects' from the antennas and that they would not interfere with hospital equipment.

Nearby residents knew better of course, despite the reassertance of the government’s Stewart Report last year that affirmed, "the balance of evidence indicates there is no general risk to health". Dr Adam Burgess, author of a forthcoming book, 'Mobile Phones, Public Fears and a Culture of Caution,' also states the health issues are marginal but has allowed them to become, "a powerful Trojan Horse for other objections".

Planning delays are already showing a serious cause for concern to the build-out of 3G mobile services and could hinder the system's chances of success. This will not be helped by Kent County Council's unilateral decision, in contravention of government guidelines, to refuse mobile network companies permission to install any phone masts on its property. Equally unhelpful is the news that mobile operators are finding it increasingly difficult to obtain liability insurance cover, with some insurers declining to quote for this risk.

There's no doubt that jobs are at risk from what Cellnet calls, "emotion versus logic". The electronics industry cannot allow these uninformed views to persist any longer; it must act now and with a united voice. It should also pressure the government to lend a hand in the same way as the farmers did earlier this year.

If the government can be persuaded to issue categorical statements on the triviality of foot and mouth disease, then giving an authoritative reassurance on radiation should be a no-brainer.

As agendas go, it really is a simple task.

Andrew Emmerson

Electronics World is published monthly. By post, current issue £2.80, back issues (if available). Orders, payments and general correspondence to Jackie Lowe, Cumulus Business Media, Anne Boley's House, 9-11 Ewell Road, Cheam, Surrey, SM3 8BZ.

Newstrade: Distributed by COMAG, Tavistock Road, West Drayton, Middlesex, UB7 7GE Tel 01895 444055.

Subscriptions: Quadrant Subscription Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444 445566. Please note change of address. Subscriptions rates: 1 year UK £22.00; 2 years £44.00; 3 years £66.00; 4 years £82.00; 5 years £103.00. ROW 1 year £61.00; 2 years £98.00; 3 years £123.00.

USA mailing agents: Mercury Airfreight International Ltd Inc, 1093 English Ave, Avenel NJ 07001. Periodicals postage paid at Rahway NJ Postmaster. Send address changes to above.

Printed by Polar Printers (Clevedon) Ltd, Frome; usp Beachwood Printers, USA; and in other countries by local agents.

Business Media is a division of Highbury Communications PLC

November 2001 ELECTRONICS WORLD
Cardiff-based wafer maker IQE and Motorola claim to have perfected the manufacture of gallium arsenide (GaAs) chips on 300mm silicon wafers.

The move, if taken successfully to production, could dramatically cut the cost of GaAs devices. Raw silicon wafers are several times cheaper than their smaller 150mm GaAs counterparts, and significantly more robust.

Attempts to grow III-V materials such as GaAs and indium phosphide on top of silicon normally result in cracks as the lattice constants of the two crystals differ by around four per cent.

Scientists at Motorola used an intermediate material – strontium titanate – that can match with both silicon and GaAs. The technology could allow standard silicon circuits to be made on the same substrate as laser diodes and LEDs for optical communications applications.

Meanwhile, IQE and recently privatised research centre Qinetiq (formerly DERA) are collaborating on the development of advanced semiconductor materials.

They will form an as yet unnamed company based in Malvern to carry out R&D projects and materials assessments using epitaxial growth technology.

“For the first time we will have a true R&D capacity, enabling us to develop new technologies that will be incorporated back into our main business in the future,” said Steve Byars, managing director of IQE Europe.

Both firms will transfer staff into Qinetiq’s Malvern site, while new facilities should be built within three years.

New Bluetooth chip duo cheaper than single chip

Alcatel Microelectronics is developing a two-chip version of its Bluetooth design – a move that could reduce cost even though component count is increased.

Alcatel was perhaps the first firm to offer a single chip for Bluetooth, but shrinking process technology makes a two-chip version a better economic proposition.

The split has been forced by the shift to more advanced processes such as 0.13µm for the digital baseband part of the design. This process is not yet available for the analogue RF section, which uses a 0.25µm process.

A shift to a smaller process for the digital functions also allows much more memory to be added to the chip set. Alcatel has an agreement with TSMC for integrating flash memory. The 0.25µm version integrates 2Mbit of flash.

Moreover, a two-chip system will enable designers to select an RF chip from Alcatel or another supplier.

Fast low-k chip technology gets a boost

A new wafer polishing technique from a Californian company could cut copper-on-low-k-dielectric chip-processing problems. Low-k (k is dielectric constant) materials can improve chip speeds by reducing capacitance, but they are not as robust as conventional SiO₂ and SiN insulators and can compress or tear when smoothed by chemical-mechanical polishing, or CMP – particularly near flimsy fine geometry copper tracks.

The company, ACM, claims its ‘stress-free copper polishing’ (SFP) works with dielectrics with a k of less than 2.2 on chips and feature sizes of 0.13µm and below.

“The latest results demonstrated by using ACM Ultra SFP confirm what we expected,” said Michel Rehayem, director of sales at ACM. “No mechanical damage to copper interconnect lines or to the ultra-low-k dielectrics. The material between the copper lines could be micro bubbles of air, without the concerns of stress or delamination.”

SFP removes copper by electro-polishing, the reverse of electro-plating. In the past, experiments with electro-polishing were abandoned because of unsuccessful results on the wafer, said Dr David Wang, founder of ACM, who has developed a proprietary technique to solve the problems using “localised control” of some form.
TEST EQUIPMENT SOLUTIONS

If you don't see what you want, please CALL!

See our extensive online catalogue at www.TestEquipmentHQ.com Flexible commercial solutions available on all products.

01753 59 6000
fax: 01753 59 6001

www.TestEquipmentHQ.com
email: info@TestEquipmentHQ.com

CIRCLE NO. 105 ON REPLY CARD
New battery for electric vehicles has 15 year operating life

US company ElectraStor is predicting a 15-year operating life and 3000 discharge cycle life for a new electric vehicle battery based on nickel-hydrogen (NiH) chemistry. The company claims its battery will be competitive with experimental lithium ion and lithium polymer batteries.

NiH batteries are not new, they have been used by NASA in spacecraft since 1976.

Hydrogen is, apparently, stored in a safe, solid state in the ElectraStor battery and it can accept over-charge, reversal and 100 per cent discharge.

Sizes between 30 and 90kWh will be available and there will be a conventional automotive starting version as well.

Intel and Texas license ARM version 6

Two big US players, Intel and Texas Instruments, have taken out licences for version 6 of the ARM architecture.

Intel will use v6 for future XScale processors while TI will use the architecture in its OMAP mobile phone platform.

"The new licensing agreement provides Intel with a strong foundation upon which we can continue to build features for XScale products," said Peter Green, general manager of Intel's hand-held computing group.

Details of the ARM v6 architecture are being kept secret until October's Microprocessor Forum. Simon Segars, v-p engineering at ARM, told EW why v6 has been developed. "We looked at our current architecture, and how to improve its performance when integrated into systems, for example, flushing the cache on context switch," he said.

Towards this TI, which has been working with ARM for many years, has been involved in the v6 design. "TI has influenced it [the ARM design] even more in the last two years. The new ARM will have a closer on-chip relationship with our DSP through improved data synchronisation and a shared memory manager," said Christian DuPont, European wireless director of TI. A v6 ARM will share chip space with TI's C55x in the latest version of OMAP.

Along with bias towards effective system-on-chip integration, the v6 will include features revealed last year. "It includes the media extensions we spoke about at last year's Microprocessor Forum, additional instructions for video and audio," said Segars.

However, v6 "is fundamentally a 32-bit architecture", according to Segars - therefore not the extended 64-bit ARM processor that has been mooted.

Filter software routines for programmable analogue chip

UK field-programmable analogue array (FPAA) company Anadigm has added filter synthesis to its configuration software.

This means that high-order classical filters can now be programmed into the chip alongside other analogue conditioning circuitry without a deep understanding of the FPAA.

Dubbed 'FilterDesigner', the new tool comes free with the latest version of Anadigm's FPAA software package.

Users can choose from high-pass, low-pass, band-pass and band-stop filter types. Coefficients are produced for implementation using combinations of the bilinear and biquad filter elements provided in Anadigm's drag-and-drop library of ready-to-use 'IPmodules'.

www.anadigm.com/filtersynth.html

Fastest Java processor planned

Two UK companies, Amino Communications and Vulcan Machines, plan "The fastest and most flexible processor for Java based technology available on the market."

It will combine Amino's network appliance technology with Vulcan's native processor for Java. Code named IntActMoon the combination increases the flexibility of Vulcan's Moon processor by enabling other devices to be added without the need to port device drivers.

RF signal processing firm gets a boost

Isle of Wight signal processing specialist RF Engines has completed a second round of funding, bringing its total to over £1m. RF Engines' technology is called a 'pipelined frequency transform'; from which it has developed a series of cores that can be integrated into Asic and system-on-chip designs.

"We have created and patented a whole new way of handling large amounts of digital signals - a need that is growing every day as we move more and more into the Digital Age," explained John Lillington, RF Engines' CEO. Applications for the cores are those handling real-time processing of wideband RF signals, including mobile basestations, broadband fixed wireless access, satellite systems and defence.

The company says it is currently negotiating with firms for the first licences of the technology.
India develops a computer that anyone can use

Designers in Bangalore are developing a computer to meet the needs of the Indian population—ever poor illiterate people who have never used a computer before. Called the Simputer, it arose out of discussions at the 1998 BangaloreIT.com IT show and has subsequently been supported by the Simputer Trust—an academic-industry partnership with members predominantly from the Indian Institute of Science and Encore Software, both Bangalore-based.

To meet its design brief the Simputer is PDA-style touchscreen-and-stylus based and avoids on-screen words by using a Linux-based custom pictorial interface language called IML (see box). Synthesised and pre-recorded speech are used for complex data output.

The design cost is R9000 (£130–100000 units) putting the unit out of reach of much of the population.

With this in mind, a smartcard interface is included.

A smartcard will personalise the Simputer, reducing the cost of use to the price of a smartcard and a computer rental charge.

To push Simputers into the wider community the trust is looking for uses that will mean companies and organisations distribute the machines as part of their businesses. “We hope government and large multilateral organisations will use the Simputer as a platform for various IT initiatives, indirectly making it affordable for poor communities to get access to Simputers,” said the trust.

Whatever uses are found or developed, they will have to operate without local bulk storage as Simputer has none beyond the smartcard.

Mass-storage in servers can be reached through the in-built modem.

Information mark-up language

Information Mark-up Language, or IML, has been developed especially for the Simputer, which must be usable by people who cannot read. “It could well be an illiterate Mark-up Language,” said a Simputer Trust spokesperson.

HTML and Wireless mark-up language (WML) were considered but, “HTML is not currently as versatile as IML and we don’t control the standards and hence cannot make the necessary changes to our requirements,” said the trust. “WML caters to one extreme of device capabilities, while HTML caters to the other. There is a clear space between these two extremes that correspond to the space of hand-held PCs like the Simputer.”

IML is an XML application whose features are a superset of WML although there is no provision for a script language.

Text entry is through a soft-keyboard through a Graffiti-like language called ‘tapAtap’ which does not require the user to be familiar with windows, slidebars or pull-down menus.

A browser-like programme, implemented with perl/Tk, keeps the interface simple and consistent says the trust.

Potential manufacturers

The Simputer Trust will not be making computers but will license the reference design to manufacturers. March 2002 is mooted as the earliest production date.

One licensee is PicoPeta Simputers, a new venture started by the four faculty members of the Indian Institute of Science who are part of the Simputer team.

PicoPeta claims to be a “Simputer solutions company” whose primary business is “to use the Simputer as a building block to provide large scale IT solutions to International clients.”

PicoPeta has been operational since May of 2001

www.picopeta.com

Technical specification:

- 200MHz SA-1100
- StrongArm CPU
- 32M-byte DRAM
- 24M-byte flash
- 320 by 240
- monochrome LCD
- + touch-panel overlay

Connectors:

- Loudspeaker
- Microphone
- Smartcard Connector
- Telephone (RJ-11)
- USB

- Size 8x13x2cm
- 3 AAA-sized NiMH batteries

www.simputer.org

Software

- GNU-based Linux
- V.34/V.17 data/fax soft modems
- Perl/Tk scripting environment
- Web browser for Internet and email
- ‘Tapatap’ (Graffiti-like) stylus data input
- ‘Dhvanitr’ text-to-speech
- MP3 Player
Runaway tyre prompts wind-driven ball for Mars

After a lucky accident, NASA may develop a Mars rover that is more Spacehopper than Sojourner.

The potential Martian is a huge inflatable ball that would be blown across the landscape by breezes in Mars' thin atmosphere.

The idea came after a thin-walled balloon tyred off another prototype rover and blew away. "It went a quarter of a mile in nothing flat," said technician Tim Connors, who had to hitch a lift on a passing all-terrain vehicle to catch it.

Tests with a 1.5m-tall version of the 'tumbleweed rover' in the Mojave Desert suggest a 6m-diameter bouncer should be able to climb over or around one-metre rocks and travel up 25° slopes on Mars.

The proposal involves slinging instruments inside with bungee cords and partially deflating the ball to stop it or hold it steady. Some steering is possible, said NASA, by actively displacing weights inside as it rolls.

"With a 20 kilogram payload, the 6-meter diameter tumbleweed ball is light enough that it could be added on to another lander and deployed from the ground, or it could be in its own delivery vehicle," said researcher Jack Jones. The large, lightweight ball could possibly also serve as its own parachute and landing air bag.

Internet DES security standard has a new rival

Design firms Amphion from Northern Ireland, D'Crypt from Singapore, and Cambridge-based Helion Technology have all announced cores supporting the Rijndael encryption algorithm.

The Rijndael algorithm is at the heart of AES, the advanced encryption standard designed as a replacement for the current Internet security algorithms DES and 3-DES.

It was developed by Joan Daemen and Vincent Rijmen, and is a block cipher using 128, 192 or 256-bit keys. Belfast intellectual property developer Amphion is developing over 20 cores supporting AES.

"It's quite conceivable that every mobile communicator, server, and Internet-enabled appliance in the communications infrastructure world-wide will embed strong encryption technology in some form or other," said James Doherty, CEO of Amphion.

Although the algorithm can be implemented in either hardware or software, Amphion's cores will be hardware based. This, the firm says, gives anything from one to five orders of magnitude faster encryption and decryption times.

Meanwhile, Helion has cores for both Asic and Xilinx FPGA users. "We have worked very hard to optimise the performance of these cores," said Graeme Durant, CEO at Helion. "As data rates get higher, there is more and more pressure on a system's encryption capabilities."

Durant claims the fast Asic version is capable of encrypting data at well over 20Gbit/s, while a pipelined variant will run at over 25Gbit/s.

The Xilinx version can encrypt data at rates well in excess of 10Gbit/s, he said. D'Crypt, on the other hand, is aiming its cores at users of Altera Apex 20KE programmable logic, and can encrypt or decrypt data at up to 2.5Gbit/s. "These cores are possibly the fastest of their kind in the world today," said Dr Antony Ng, D'Crypt's CEO.

The encryption core uses 6167 logic elements, the decryption core 6784 logic elements. This is about a sixth of a million gate FPGA.

'Museum' shows interactive story book

Xerox's famous PARC research labs has designed, built and is running a 'museum' exhibit on the future of reading - especially the interaction of digital technology with reading.

Central to the exhibit is the Listen Reader, an interactive children's story book which plays suitable ambient sounds as the child turns the pages to read.

Three of the Listen Readers graced the first outing of the exhibition. "It was common to see several children squished together into the easy chair, reading the books together - to the surprise of the museum staff, who didn't think that reading was a very compelling topic," said lead designer Marieth Back.

The sounds for each page are multi-track with the volume and mix controlled by the child waving a hand over the page.

This seemingly magic capability comes courtesy of four book-mounted Oprox capacitive field sensors, from Southampton-based Quantum Research.

RF identification tags in the pages tell the book which part of the story the child has reached so it can play sounds appropriate to that part of the story.

What has been learned from the exhibition may affect the future of electronic books and learning.

www.parc.xerox.com/red/projects/xfr
www.qprox.com
B² Spice 2000
Professional analogue and digital circuit design for the PC and Mac

Accurate results that can be relied on

B² Spice 2000 is used by thousands of universities and businesses in the UK and abroad and conforms to the Berkeley SPICE standard. Details of education discounts and site licences are available on request.

Just a few of the features:
Uses the latest Xspice engine for accurate mixed mode simulation. Parameterised AC and transient sweep, Monte Carlo analyses, new Xspice simulations and new noise and distortion analyses. Plus all the model libraries are included in the price, over 7000 parts included.

B² Spice 2000 also comes with a powerful model editing package that allows you to create and modify parts and make changes to the libraries.

The best way to see if this software is what you need is to try it - risk free for 30 days.

Telephone 01603 872331 or visit www.spice-software.com

Quality Alphanumeric backlit LCDs in 4x40, 2x40, 4x20, 2x20 and 2x16 formats
Supplied either bare or pre-fitted with one of our Eze-Use, Serial interface boards with options such as software buzzer control, backlight control, operator interface, start-up message, big character generation, and PC-AT Keypad/mouse interface - all at very competitive pricing.

We also stock Serial Interface Graphic modules and front panel bezels for all our LCDs. Please call (01977 683665) or check our web site (www.milinst.com) for full details and pricing.

Milford Instruments - your total LCD solution

Milford Instruments
Milford House, 120 High St
South Milford
LEEDS LS25 5AQ
Tel 01977 683665
Fax 01977 691465
www.milinst.com

CIRCLE NO.107 ON REPLY CARD
Douglas Clarkson looks at the composition of the colour dots that make up the picture on your TV screen.

CRT phosphor technology

The final process in the creation of a colour CRT image is the release of light from the red, green and blue phosphors on the glass screen's surface. There are three component colours primarily because colour in the human visual system is perceived to originate from sensing of three components of colours associated with three distinct sets of retinal cones.

The first attempt to make objective measurement of the eye's response to colour was in 1931. Then, the CIE, or Commission Internationale de l'Eclairage, defined a nominal colour response system for the eye. The basic components of colour are in fact spectral combinations of 'blue', 'green' and 'red' as indicated in Fig. 1.

In theory, any colour could be described as a combination of primary components red, green and blue. Specific red, green and blue phosphors commonly used for CRT display technology do not map exactly to the separate colour responses of the eye, so in fact it is not possible to use CRT technology to display every possible colour.

The human eye, however, would be hard pressed to determine any such deficit. Using this initial CIE colour space, a specific colour can be described as a value of X, representing red, and Y, green, as indicated in Fig. 2. The value corresponding to blue, i.e. Z, is not typically shown since it is assumed that X+Y+Z=1.

In theory, there is an absolute chain of reference from the colour of an object imaged by a TV camera to the colour displayed on a TV display. While this is very much the challenge of the broadcast TV engineer, much less consideration is given to this by the viewing public, who have really very little appreciation of the basics of colour theory.

To walk through a retail outlet where various models of TV are all tuned to the same station will usually reveal that there are significant differences in colour rendition. While there are a number of factors involved in determining colour 'quality', it will be useful to consider basic aspects of phosphor technology.

Phosphor attributes

Over time, considerable effort has gone into developing phosphors used with CRT displays. Factors that affect the

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>General attributes of CRT phosphors.</td>
</tr>
<tr>
<td>Specific name (TEPAC-WW)</td>
</tr>
<tr>
<td>CIE emission 'colour' (X and Y values)</td>
</tr>
<tr>
<td>Peak wavelength (nm)</td>
</tr>
<tr>
<td>Decay time to 10% (micro seconds)</td>
</tr>
<tr>
<td>Efficiency (%)</td>
</tr>
<tr>
<td>Chemical composition</td>
</tr>
<tr>
<td>Typical particle size</td>
</tr>
</tbody>
</table>

Fig. 1. Nominal colour response of the eye according to CIE.
quality of pixel colour include:

- Relative brightness of phosphor colour.
- Spectral light distribution of phosphor colour.
- The phosphor’s persistence.
- Chemical stability.

The use of inefficient phosphors requiring large excitation currents will tend to require more expensive electronic circuitry. Phosphors should also provide closeness to the primary responses of the eye so that as wide a range of colours as possible can be faithfully represented. Phosphors should also have acceptable stability over the lifetime of the CRT display device.

Phosphor technology is used across a wide range of industries, with the main application that of display technology. In conventional CRTs, electrons are accelerated to voltages up to 30kV, imparting their energy to specific phosphors which in turn release part of this energy as visible light. The key parameters to describe specific phosphors is indicated in Table 1.

Monochrome phosphors such as P4 decay down to 10% in 60µs, while colour phosphors have a shorter persistence of around 10 to 20µs.

While the emphasis has been with high-voltage CRT displays, there is considerable interest in development of low-voltage phosphor technology. Already, the rich green luminescence of zinc oxide, or ZnO, has been extensively used in green-only displays. A key research focus has been to develop blue and red low-voltage phosphors of comparable luminous efficiency.

Increased demand for more precise printing of CRT phosphor arrays requires the production of phosphors with well-defined particle size distributions. Phosphors of one to two micrometres in diameter have excellent packing characteristics – giving rise to dense, thin deposition layers. The use of thin layers requires less material to achieve high brightness characteristics and improve resolution. Best results are also obtained when phosphors are generally spherical.

An intrinsic feature of TV displays is the proportion with which individual red, green and blue phosphors contributions are mixed to produce specific colour – and in particular white. In order to assess relative brightness, consideration has to be made of the eye’s visual or ‘photopic’ response which peaks at 555nm and decreases for shorter or longer wavelengths.

In terms of relative values of luminous flux (lumens – unit lm: analogous to watts of radiant energy) as perceived by a human observer, the ratios for white generation on CRT displays is commonly described as 0.3 lm red, 0.59 lm of green and 0.11 lm of blue.

A set of ‘standard’ colour primaries has been identified for

Fig. 2. CIE colour space as a means of mapping specific colours into values of X and Y. The colour spots are approximately where the R, G and B phosphors lie.
optoelectronics

colour television display tubes in the UK, Table 2. Table 3 indicates some commercially available CRT phosphors which match closely to the set CIE components identified in Table 2.

The position of the specific primaries are identified in Fig.

Table 2

<table>
<thead>
<tr>
<th>Colour</th>
<th>CIE X</th>
<th>CIE Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>0.64</td>
<td>0.33</td>
</tr>
<tr>
<td>Green</td>
<td>0.29</td>
<td>0.60</td>
</tr>
<tr>
<td>Blue</td>
<td>0.15</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Colour code</th>
<th>CIE X</th>
<th>CIE Y</th>
<th>Composition key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red P22-X(R)</td>
<td>0.647</td>
<td>0.343</td>
<td>Y2O2:Eu R</td>
</tr>
<tr>
<td>Green P20-KA</td>
<td>0.297</td>
<td>0.571</td>
<td>(Zn,Cu)/S:Ag G</td>
</tr>
<tr>
<td>Blue P11-BE</td>
<td>0.147</td>
<td>0.076</td>
<td>ZnS:Ag B</td>
</tr>
</tbody>
</table>

2, which shows the structure of the CIE diagram as R, G and B. The various phosphors occupy points of a triangle within the 'horseshoe' of the locus of the visible spectrum.

The absolute definition of 'white' on the TV screen, however, is rather more complicated and relates to identification with a specific spectral description of 'white' light. The standard adopted for colour TV in the UK is D6500. This is a spectral distribution identified as approaching the spectral distribution of a black body radiating at 6500K. This standard seeks to replicate white as being close to 'standard' daylight.

Phosphor dot geometry

Most CRT systems use so-called shadow-mask technology. Separate electron beams for red, green and blue are intercepted by a shadow mask about 1cm behind the phosphor surface as indicated in Fig. 3.

The shadow mask ensures that only phosphor dots corresponding to the colour of the incident electron beam are illuminated. The mask is about 0.15mm thick and typically fabricated from thin sheet steel. This sheet is photoetched from both sides, producing a tapered hole that reduces electron scattering.

In one method of such shadow mask production, one specific phosphor layer is deposited on the inside of the glass screen and the shadow mask secured in place. The mask/screen is then irradiated with an intense beam of ultraviolet light at the position of the specific electron gun. This etches in the 'pixels' to correspond to the specific phosphor. This is then repeated for the other phosphor types.

After the final phosphor layer has been applied, the inner screen surface is coated with a thin layer of aluminium. This acts to protect the deposited phosphors and also reflect light outwards from the phosphor targets, which would otherwise be lost. About 80% of the incident electron beam energy is dissipated on the shadow mask.

Sony's Trinitron tube generates three separate electron beams for red, green and blue but can fire them through a single slot in an 'aperture grill' to reach the phosphor surface as indicated in Fig. 4 and still maintain phosphor separation. Using this technique, around 30% more in the way of electrons can reach the phosphor screen - leading to brighter picture quality. So called in-line gun display tubes share features of both delta-gun and Trinitron tube designs. The so-called slot mask passes more of the electron beam energy.

Phosphor evolution

With early colour TV systems incorporating three separate tube displays, some degree of filtering of early 'yellow-red' borate phosphors was necessary. The development of single-tube CRT displays however focused the development of phosphor technology. This in particular lead to introduction of so-called rare earth elements such as europium.

Typically high electron-beam currents are needed to produce red relative to those required for green or blue. The relatively small proportion of blue necessary to create 'white' can lead to a noticeably less intense rendition of screen areas that are predominantly blue.

Where CRT systems are being used primarily for text and graphics, increased brightness can be provided by using a slightly desaturated blue phosphor.

The future

With the world more and more inclined to spend its time in front of a display system of some kind, the market for phosphor products to provide the necessary brightness for such devices has never been greater.

The widespread use of systems for displaying and printing colour images has given rise to an increasing interest in 'describing' colour in a more objective way - in order to ensure more faithful representation of such images.
Develop and test complete micro-controller designs without building a physical prototype. PROTEUS VSM simulates the CPU and any additional electronics used in your designs. And it does so in real time.*

- CPU models for PIC and 8051 and series micro-controllers available now. 68HC11 coming soon. More CPU models under development. See website for latest info.
- Interactive device models include LCD displays, RS232 terminal, universal keypad plus a range of switches, buttons, pots, LEDs, 7 segment displays and much more.
- Extensive debugging facilities including register and memory contents, breakpoints and single step modes.
- Source level debugging supported for selected development tools.
- Integrated 'make' utility - compile and simulate with one keystroke.
- Over 4000 standard SPICE models included. Fully compatible with manufacturers' SPICE models.
- DLL interfaces provided for application specific models.
- Based on SPICE3F5 mixed mode circuit simulator.
- CPU and interactive device models are sold separately - build up your VSM system in affordable stages.
- ARES Lite PCB Layout also available.

*E.g. PROTEUS VSM can simulate an 8051 clocked at 12MHz on a 300MHz Pentium II.
Is a PRBS Gaussian?

In the July issue, Ian Hickman described how shift registers can generate pseudo random bit sequences and noise. In an earlier article, on probability density distributions, he repeated the generally held view that a low-pass filtered pseudo random bit sequence provides Gaussian white noise. This article looks again at the subject, questioning that generally received wisdom.

In a recent article,\(^1\) I illustrated the Gaussian voltage density distribution of random noise. The range of voltage level was repetitively swept at a fairly slow rate across a waveform under test. A very simple low-pass filter was used to derive the cumulative voltage at each point. Consequently, the noise had to be high-pass filtered before applying it to the test circuit.

This filtering was of no importance in itself. As the article explained, the voltage distribution depends only on the wave shape, and hence independent of frequency.

<table>
<thead>
<tr>
<th>Run length</th>
<th>Consecutive 1s</th>
<th>Consecutive 0s</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>n-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>n-2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n-3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>n-4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>(2^{n-4})</td>
<td>(2^{n-4})</td>
</tr>
<tr>
<td>1</td>
<td>(2^{n-3})</td>
<td>(2^{n-3})</td>
</tr>
</tbody>
</table>

The noise used for this experiment was provided by an audio-frequency noise generator that I made some years ago.\(^2\) It obtains the noise from the low-pass filtered output of a linear feedback shift register. This LFSR is connected so as to provide a pseudo random bit sequence, or PRBS, of maximal length.

With a 28-stage shift register, its sequence is \(2^{28}-1\) bits long. Being clocked at about 6MHz - a period of 166ns - the sequence repeats every \((2^{28}-1)\times166\text{ns}\), which is just under 45 seconds.

The way that different length runs of noughts or ones result in a pseudo noise waveform is illustrated in Fig. 1. This shows a segment of a PRBS, together with a low-pass filtered version of the same.

Thus the noise consists not of a truly continuous spectrum like 'real' noise, but of spectral lines, all of equal amplitude, at a fundamental frequency of \((1/45)\text{Hz}\) and all harmonics thereof.

The spectrum extends up to the cut-off frequency of a simple first-order low-pass filter, which was set at 80kHz. It thus covers the whole audio spectrum, with a couple of octaves in hand, for good measure. The result is a flat spectrum up to 20kHz.

A fault rectified

When the noise generator was switched on, there was a period of a few, or many, seconds before the noise output appeared. During this interval, there would be silence, or a high pitched whistle or other strange noises.

At the time that I built the instrument, I thought that it was entering the sequence from a 'side-arm', as in figure 3 of ref. 3. This was of course nonsense, since any possible state of the 28 stages must be a member of the maximal length sequence, as several readers wrote in to point out at the time.

As my range of instrumentation is now much better than when the original article, "Wide-range noise generator", was published back in 1982, some investigation was called for. Following the signal through the various stages, immediately following switch-on,
revealed that the thirteenth stage of the shift register did not operate straight away, but only after a ‘warm-up’ period.

This was a little surprising, as components usually work, or fail, completely. It is ironic that only recently I was telling students at the RF Club at Portsmouth University that when their circuits don’t work, in nine hundred and ninety nine cases out of a thousand, the fault is with their construction, not with a component. So this was the odd thousandth case. Replacing the 7495 duly cleared the fault. But nonetheless, a curious riddle remained.

Not symmetrical
Although the instrument now burst into life instantly on switch on, the positive-going noise peaks of the audio noise seemed definitely larger than the negative-going, Fig. 2. Could this really be so, or was there a silly mistake somewhere?

To check, I fed the sequence through an inverter prior to the low-pass filter. This simply resulted in the negative-going peaks being the larger, Fig. 3. The conclusion was inescapable; the effect was real, and the noise waveform was not truly Gaussian in distribution.

This was puzzling, as the noise from this same generator, used as a test signal in the voltage density distribution experiment described in ref. 1, did not show this asymmetry: see Fig. 5 of that article. But then I remembered that the noise had been high-pass filtered, which would have nullified the effect of long runs of noughts and ones.

The exclusive-ored feedback input to the shift register was taken from stage three, and the last stage. This corresponds to what is, I believe, the only trinomial of 28th degree. Taking the feedback from stages 24 and 28 would give the same maximal length sequence of noughts and ones, but in the time-reversed order.

However, this would not affect the voltage distribution, by the same token that the voltage distribution of a sawtooth waveform is the same, whether the slopes are positive-going, or negative-going, or equal as in a triangular wave.

To see whether the unequal distribution of peaks was simply a fluke, peculiar to the choice of a 28-stage LFSR, I took the exclusive-or feedback from stages 3 and 25, giving a rather shorter maximal length sequence of 2^{25}.-1.

The result was as in Fig. 4, and the asymmetry in the amplitude of positive-and negative-going peaks is even more marked – time to don the thinking cap.

How random is random?
Table 1 gives the number of runs of noughts and ones, of various lengths, for a maximal length sequence of any degree (number) of shift-register stages, n. Apart from lengths n and n–1, there are as many runs of length m of noughts, as of ones (m less than n–1). But this gives no information whatever about how they are distributed – where they occur in the sequence.

With 28 shift-register stages – or even 25 – it is difficult to see what is going on. So I shortened the shift register to a mere six stages. This gives a maximal length sequence of 63, corresponding to the trinomial \textit{x}^6+\textit{x}+1, using feedback from the first and sixth stages.

The resulting low-pass filtered noise shows a gross asymmetry in the size of positive and negative peaks, and closer study indicates why, Fig. 5. A run of four ones is followed by a single nought and a run of five ones, taking the voltage net eight units positive. This is followed immediately by a run of six noughts, resulting in a large positive peak, as shown.

By contrast, longish runs of noughts are interspersed with runs of ones, so there is no large negative-going

Fig. 2. Low-pass filtered waveform at a much slower time base speed of 2ms/div. horizontal – the positive-going spikes seem larger than the negative-going ones.

Fig. 3. As Fig. 2, but the PRBS inverted before low-pass filtering. Result – the negative-going pulses are as large as the positive ones were before the inversion.

Fig. 4. Low-pass filtered noise produced by a 25-stage LFSR shows even more asymmetrical peaks than a 28-stage LFSR.

Fig. 5. An even shorter LFSR with just six stages produces this ‘noise’ waveform.
peak. Evidently the same occurs, to a greater or lesser extent with much longer LFSRs.

There are numerous other feedback connections for a 28-stage shift register, giving other sequences, also of maximal length. They all require more than one exclusive-or gate, as they are not trinomials.

Maybe some erudite reader knows whether these arrangements with more non-zero coefficients would provide low-pass filtered noise, giving a more symmetrical distribution of peaks.

Gold codes to the rescue

Having discovered that an asymmetrical distribution of peaks was unavoidable, using a 28th degree trinomial, the question was what could be done about it?

An obvious answer was to invert the sequence periodically. Clearly the inversion should be less frequent than every 28th clock pulse, to avoid breaking up the longest runs of noughts and ones. Even then, however infrequent, the inversion could occur in the middle of a long run.

In true Gaussian noise, occasional large spikes of either polarity occur; even the odd spike of infinite amplitude. It’s just that such spikes occur infinitely infrequently—fortunately. Although the spike amplitude it provides is strictly limited, nevertheless an LFSR with as many as 28 stages can in principal give a good approximation to the theoretical bell-shaped Gaussian distribution.

Such periodic inversion though is only an artificial fix. There is no method for choosing how often to invert the sequence.

A much better idea seemed to be to invert the sequence randomly, with another, different, maximal length sequence. In other words, the two sequences are simply ex-ored together: this is known as a Gold sequence. The length of the Gold code produced by ex-oring two shift registers, of n and m stages, is,

$$(2^n - 1) \times (2^m - 1)$$

The circuit modified

A pair of convenient trinomials of degrees n and m, where $n + m = 28$ does not exist, and I did not wish to shorten the overall length of the sequence. So another 7495 four stage shift register was added, and values of 20 and 11 stages used for the two shift registers. Both correspond to trinomials. Maximal length sequences were obtained with feedback from the third and twentieth stages, and the second and eleventh, respectively.

The length of the sequence is now,

$$(2^n - 1) \times (2^m - 1) \times 166\text{ns}$$

which is around 6 minutes.

Incidentally, for many values of n, $(2^n - 1)$ is not prime. For even values of n, up to 34, $(2^n - 1)$ factorises, with $(2^{32} - 1) = 7 \times 7 \times 127 \times 337$, while $(2^{11} - 1)$ also factorises, equalling 23×89. There are no common factors between the two, although I do not believe it would affect the Gold code even if there were.

Figure 6 is a segment of the noise output from the modified circuit, and shows a good balance of negative and positive peaks. While the longest run of 20 ones from one shift register is likely to be broken up by the exclusive-or input from the other, there will be instances of a segment of one sequence happening to match a segment of the other, or its inverse. Presumably this would result in a run of up to 30 or 31 noughts or ones.

Certainly, occasional quite large spikes, of either polarity, are evident in Fig. 6.

Not forgetting the spectral response...

It was important to know that the spectrum of the noise is flat, and this is proved by the upper trace, covering 0 to 20kHz, in Fig. 7. The trace appears to be – and
indeed is – 20dB below the reference level. With the spectrum analyser’s input attenuator set to the next more sensitive 10dB step, the overload indicator lit, due to the high ratio of peak-to-rms value of the signal.

For this test, the variable filter in the generator was set to low pass, with a 100kHz cut-off frequency, i.e. above the cut-off of the fixed 80kHz filter mentioned earlier. The variable filter can be set to low pass or high pass, with the cut-off frequency adjustable in a 1-2-5 sequence. There is in addition a variable control filling in the range between these settings, and a flat position is also available.

The high-pass setting was used for the test in the Beginners’ Corner article on waveform distributions. In the low-pass position, the variable filter can also be set to provide a peaked response of varying magnitude, giving, in effect, a band-pass response. This is shown, at one of its less extreme settings, in the lower trace in Fig. 7. To avoid overload, the spectrum analyser’s input attenuation has been increased by 20dB.

Figure 8 looks very boring, but in the context is a

More on random bits

In response to Ian’s first article on pseudo-random binary sequences in the July issue, Rafael Deliano has provided this supplementary information on why a PRBS doesn’t always have gaussian distribution. Rafael also outlines a method for checking short registers.

Some explanation as to why the signal after the low-pass filter doesn’t always have gaussian distribution can be found in Gaug, Weinricher “Verarbeitung von Pseudozu finalssignalen durch digitale Filter” NTG-Fachtagung 1973.

The authors have first a look at the probabilities of transitions of bits. The ideal is shown in Fig. A, with: 0,0=He; 1,1=He; 0,1=Hz; 1,0=Hz. The ‘sparse’ trinomial, Fig. B, of an eight-bit LFSR is worse than a configuration with 50% of the taps used, Fig. C. This 50% version gets closer to ideal as the length of the register increases, Fig. D. Sets with to many taps deteriorate again.

The authors then show that 50% gives best results for the gaussian distribution of filtered data too. Since published tables rarely list anything other than trinomials, they are not much help. For short registers, it is quite easy to test whether numbers generate m-sequences. A simple example would be an eight-bit LFSR.

You can program the LFSR in assembler on a computer. The LFSR is best implemented in Galois configuration as shown in the upper circuit of Fig. E. The Fibonacci-configuration in the lower circuit will work with the same polynomials.

For testing, load the LFSR with a pattern, like A416, then clear an eight-bit counter and start counting. While the LFSR and the counter are running, look for the pattern.

On an m sequence the pattern repeats as the counter overflows to 0016. If the counter overflows to any other value, the LFSR is stuck in a short cycle. If the pattern repeats early, the same has happened.

This simple test of a polynomial is good enough to do an exhaustive search for short lengths like eight bits, for all 256 polynomials. Using my 6502-based computer and Forth, the calculations take only seconds.

For longer LFSRs, 16 bits, say, a full search of all patterns is no longer possible. Tests to exclude impossible polynomials – an odd number of taps for example – are necessary. It is still possible to search groups like ‘all patterns with 50% taps used’. It takes hours on a 6502, but a PC will do the job a lot quicker.
Fig. 10. As Fig. 9, except 0Hz to 1MHz and 10kHz resolution bandwidth.

very important piece of evidence. It shows a span covering 75 to 125Hz, with a 1Hz resolution bandwidth. Given the 360 seconds period of the Gold sequence, the spectral lines constituting the noise are 0.0027Hz intervals. So there are 360 of them within the analyser bandwidth, forming virtually a continuous spectrum.

The important piece of evidence is the absence of any trace of a hump at 100Hz, indicating the absence of any hum from the full wave rectified supply rails.

In principle, if you could sufficiently narrow the analyser’s bandwidth further, a suspicion of hum might be apparent. In this case, you would ultimately be comparing its level with just one of the 360 spectral lines in a 1Hz bandwidth of the noise waveform.

Even at the 1Hz setting, a very slight bump was visible at 100Hz, before the smoothing capacitor on the positive rail supplying the +5V stabiliser, was increased from 1500µF to 4700µF.

References
Professional PCB Layout and Simulation for Windows at Computer Store Prices!!

From Only £97 Easy-PC for Windows 5

Easy-PC for Windows delivers world-beating PCB design performance, with levels of quality and pricing that is changing PCB Layout forever. Call us for a CD or download a demo version of this amazing product to be convinced.

A selection from the high value feature set...

- True Windows 32-bit product with Windows Interface
- Integrated Schematics and Layout as standard
- Windows drag & drop throughout
- Multiple documents within display
- True Type fonts - new in release 5
- Mouse wheel controlled Zoom In/Out - new in release 5
- Multi-level Undo/Redo
- Integrated standard AutoPlace
- Optional shape based AutoRouter
- Full Copper pour with Split Powerplanes
- Visualisation of inner power-planes - new in release 5
- Formattable Parts lists / Pick & Place
- Unlimited signal/powerplanes+non-electrical/doc layers
- Keep In/Out areas for routing
- Right-hand mouse menu support
- Full forward and backwards annotation SCM/PCB
-and so much more!

For more information on Easy-PC/Easy-SPICE or for a demo copy call
Number One Systems on +44 (0)1684 773662 fax +44 (0)1684 773664 or
E-mail info@numberone.com

or you can download demo copies from www.numberone.com

Number One Systems, Oak Lane, Bredon, Tewkesbury, Glos, GL20 7LR
Programmable

Yehuda Sonneblick and colleagues* have been investigating Zetex’s Trac programmable evaluation board for the analogue designer. An AM receiver illustrates its versatility.

Designers of digital equipment are now well used to having general-purpose devices that can be configured to almost any pattern desired. Such devices, which include gate arrays and PLDs, have been around for a long time.

Analogue computers consisting of various circuits that can be patched together have also existed for many years. These enable various differential equations to be solved. Although such devices preceded digital computers, they are still around and mostly used in aerodynamic and mathematics departments.

Analogue computers usually consist of a number of discrete circuits on a large board. These circuits can be patched together to make the desired circuit configuration. They are almost invariably used for solving differential equations. They can also be used to solve integral equations, but with less accuracy.

A programmable analogue device

A new device has appeared on the market in recent years. It is a totally reconfigurable and programmable analogue circuit device: the TRAC020LH. A development board is available for the device. This board accommodates four such devices giving 80 possible cells.

The development board is not fully programmable though. For some of the functions, it is necessary to add external components such as resistors or capacitors.

The manufacturer refers to the chip as a field-programmable analogue array or FPAA. This ingenious device is in a 36-pin small-outline package. It has 20 general-purpose cells. Each can be configured – and indeed reconfigured – into an almost unlimited combination of circuits.

Configuration is carried out by programming from a computer using a three-digit binary code. The data is sent serially from the computer to the chip. In general, the various functions operate between −1.5 V and 1.5 V input voltage with a maximum 1.5 V or −1.5 V output voltage. The values given by the manufacturer are shown in Table 1. Full details of this device can be obtained from http://www.fas.co.uk.

Figs 1 & 2 show two examples. The first is a simple amplifier, the second a more complex low-pass filter.

The functions available for each of the Trac’s elements are: add, negate, non-inverting pass, log, antilog and off. While a cell is ‘off’, no signal can pass through it, so that it is effectively removed from the circuit. In addition there are rectifier and amplification functions. Thus, provided your circuit has fewer than 80 cells, you can configure the chip to carry out almost any analogue task that your imagination allows.

* The authors — Yehuda Sonneblick, Michael Sifkin and Shaul Israeli — are with the Department of Electronics, Jerusalem College of Technology

Table 1

<table>
<thead>
<tr>
<th>Cell function</th>
<th>$V_{in\text{-max}}$</th>
<th>$V_{in\text{-max}}$</th>
<th>$V_{out\text{-max}}$</th>
<th>$V_{out\text{-max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIP</td>
<td>−1.5</td>
<td>1.4</td>
<td>−1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>NEG</td>
<td>−1.4</td>
<td>1.2</td>
<td>−1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>ADD</td>
<td>−1.4</td>
<td>1.4</td>
<td>−1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>LOG</td>
<td>−1.4</td>
<td>1.4</td>
<td>−0.8</td>
<td>0</td>
</tr>
<tr>
<td>ANT</td>
<td>−0.8</td>
<td>0.8</td>
<td>−1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>REC</td>
<td>−0.8</td>
<td>1.4</td>
<td>0</td>
<td>1.4</td>
</tr>
<tr>
<td>AUX</td>
<td>−1.4</td>
<td>1.4</td>
<td>−1.5</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Fig. 1. One of the Trac IC's twenty blocks configured as an amplifier using the Trac programming software.

Fig. 2. Part of a Trac IC configured as a low-pass filter, left, and its op-amp equivalent, right.

828 ELECTRONICS WORLD November 2001
analogue board

In a way, this device is an analogue equivalent to a DSP development board in that you can use programming to effect a wide variety of functions. However, unlike a DSP there is a certain minimal amount of external patching to be done. We were struck by the obvious utility of this device and bought the development board to find out if it really came up to the manufacturer's specifications.

Figure 3 shows the manufacturer's schematic diagram of the device. It does require a clock, which

Fig. 3. Circuit outline of the Trac020, showing how the device is programmed by a string of binary data that's clocked in from the left. Note that not all of the 20 cells are shown as they all interconnect identically.

Fig. 4. Simulation of an AM transmitter using four Trac programmable analogue chips. There wasn't enough room on the evaluation board to try it out so we could only simulate it via the Trac simulator, which is available for download at the Trac web site.
can be provided from the computer. In addition, the manufacturer provides simulation software, which allows you to program the device on screen and to simulate its performance. The manufacturer's application notes also give a variety of different circuits that can be made.

We wanted to see how the evaluation board worked as a combined AM transmitter and receiver. However, there wasn't enough room to build the transmitter and receiver on the board so we could only simulate the transmitter, Fig. 4.

In/out descriptions shown in Table 2 are more or less self-explanatory. Mixing of the carrier wave and the information signal is carried out by obtaining the logarithm of the carrier wave and the information signal and then adding them.

As logarithms can only be used with positive numbers though, a wholly positive wave results. To make the wave symmetrical about the base line, it is necessary to subtract and offset, referred to as 'E' in the table. Taking the antilogarithm then gives the correct CW plus signal that an AM transmitter emits.

The transmitter worked fine and the result of the simulation is as you would expect.

An AM receiver

Next we decided to build an AM receiver to see how easy it was, and what the performance was like. Rather than build a conventional AM receiver, which would have been very easy, we opted for a less conventional approach using cascaded filters. This is probably not a very practical method. However, it does illustrate how quick and easy it is to set up circuits just to see how they behave, without the problem of hard wiring and troubleshooting.

It is useful to try out unconventional ideas. Of course you only really need to do the simulation to get a reasonable idea of how it works. In most instances, the hardware prototype will probably not differ significantly from the simulation results. However, read on to what we found with our circuit. The manufacturer does issue a warning every time you do a simulation that the simulated results may well differ from the real results.

Outlined in Fig. 5, the AM receiver, consists of three sections. These are a band-pass filter to prevent overloading at the front end of the receiver, an amplifier, and a somewhat unusual rectifier.

Figure 6 shows the AM receiver's configuration. The resistors are 80kΩ and the capacitors are 100pF. Table 3 shows the In/Out description of the circuit. This printout is similar in format to that produced by the manufacturer's software.

One of the features of the software is that each pin can be given a description. When the circuit is printed out,
the description is also printed, more or less as shown. You can also print out a whole range of different parameters, such as the links that we show here on the circuit diagram.

We used the simulation to show how the receiver converts the incoming CW plus information wave into the required signal. The various stages are shown in Figs 7, 8, and 9. Finally we actually configured the circuit as per the diagram.

We tested the real AM receiver using a signal generator as the transmitter. It was connected to an antenna similar to the one at the input of the AM receiver. To prevent overload we placed a simple band-pass filter between the antenna and the board. This was just an inductor of 1mH in series with a capacitor of 1μF and a resistor of 250Ω. The two instruments were placed about 2m away from each other.

The system worked well with signals from around 100 to 20kHz and carriers from 300 to 920kHz. In fact, the bandwidth of this board was slightly less than given in the manufacturer's specification.

There was a pronounced phase shift between the signal wave and the original detector for frequencies up to about 10kHz. This varies from 180° at low frequency to nothing at 20kHz. This was not predicted by the simulated results, which show only a very slight phase shift. While this shift is not important for an audio transmission, it could well be critical if on transmitting data, phase relationships need to be maintained.

Another difference is that the circuit turned out to be better than the simulation would suggest. The waveform we received from the actual circuit gave no sign of the carrier wave, which can still be seen as a ripple in the simulated wave shown in Fig. 9.

In summary
This board with its associated software is certainly of great value to anyone interested in analogue design. No longer do you have to hard-wire components on a breadboard. Everything is to hand on a single board with full simulation software.

The only drawback for the enthusiast is that it is rather expensive. However we would hope that if it becomes popular, the price will drop. But for someone with a yen to try out different ideas and to test them both by simulation and in practice this is a real boon.

Table 3

<table>
<thead>
<tr>
<th>I/O descriptions for the AM receiver, Fig. 6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input signal descriptions</td>
</tr>
<tr>
<td>I/O</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>I/O</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>29</td>
</tr>
</tbody>
</table>

Fig. 6. AM receiver using cascade filters, implemented in a Trac020.

Fig. 7. Incident wave from the AM receiver after passing through the diode section. Carrier and its amplitude modulation are as you would expect.

Fig. 8. Recovered modulation wave after further low-pass filter detector.

Fig. 9. After even yet more low-pass filtering.
Trains safety

Wilf James discusses the problems with train safety, and suggests how railways can be made much safer using electronics.

A sideways look at trains

As a comparison, just imagine how silly it would be if buses were strung together in trains of six to twelve, or heavy lorries moved around in strings of thirty or forty. I am sure that you would like trains that would run like individual motor coaches. A twelve coach train that runs hourly could be split up into individual coaches that run every five minutes. Just imagine what motorways would be like if vehicles were spaced five minutes apart.

If rail passenger coaches ran singly, there would be no need to make them extremely strong and heavy to withstand the extreme compressive forces that arise when a crash occurs. Single coaches could use track brakes that would not pull the track to pieces. These are a bit like one-sided bicycle calliper brakes.

The track brake would have rollers on the inside to prevent wear on the inside of the track so that the gauge can be maintained. Track brakes are unworkable with a twelve coach train weighing nearly 400 tons. Lighter, single coaches would cause less track wear.

Motor coach operators like National Express use one driver per coach and charge much less for fares than rail operators do. The accident rate for motor coaches is low yet the drivers do not have the overseeing benefit of signalmen or a track that dedicated to their sole use. A typical unladen motor coach weighs less than five tons. A typical railway coach weighs thirty tons or more.

There is a proposal to make trains safer by using a method of stopping trains automatically if the signals are at red. It is estimated that it will take until 2008 to complete the installation of the system at a cost of three billion pounds.

Even when the automatic stopping system has been installed in every train though, it will not prevent the sort of accident that occurred when a Land Rover fell onto the line at Great Heck on 28 February this year.

The existing and planned train control systems assume that the only obstacle that may be encountered by a train is another train that is not derailed on the same track. There are two reasons for having any sort of automatic stopping system:

1. Trains are still using what is basically 19th century technology. In other words, the brakes are so poor that a driver cannot stop a train within the distance that he or she can see ahead.
2. A driver may suffer from sleepiness or otherwise lose concentration and fail to observe stop signals.

Trains stop slowly – very slowly

Using figures obtained from an American train accident enquiry, the deceleration rate for a passenger train was found to be between 0.8 and 1.1 feet per second per second. This was done with the aid of an anti-slip braking system.

Anti-slip braking systems on trains perform two functions. Firstly, they prevent flats from being created on the train wheels. Secondly, they attempt to optimise the braking effort. It would be hard to improve on these figures with manual braking control. Incidentally, train wheels have to be removed and reground to remove any flats that occur due to locked wheels.

At a stopping rate of 160 miles per hour – about 0.3m/s – the stopping distance for a 125 mile/h, i.e., 201 km/h, express train is 3.18 miles, or just over 5km. A theoretical motor coach travelling at 125 mile/h could stop with a deceleration of around 0.8g in 218 yards, or just under 200m.

The thinking distance is not included in
these figures. The brakes on a long train work slowly. The vacuum or compressed air systems are usually activated with one vent for the whole train. Goods trains usually rely on the locomotive's brakes so the stopping distance is very much longer.

If trains could stop as quickly as a conventional long-distance motor coach (0.8g), or, dare I say it, as quickly as a Formula 1 racing car, (more than 2g) most of the need for an elaborate safety stopping system would be unnecessary.

However, it is unlikely that trains will be brought up to a 21st century standard for many years so an alternative way of making train travel safer is needed.

How can electronics make trains safer?

Alongside most railway tracks are a series of posts. These may be telephone poles or the supports for the overhead electrical power supply cables.

The posts are close enough to the track so that anyone who was on one of them would have a very clear view up and down the track – for half a kilometre or more in most cases. A television camera could view the same length of track quite easily – particularly if it had a zoom lens fitted.

Ordinary television cameras are very cheap nowadays and the humble web camera is even cheaper. Mobile-phone technology has reached an advanced stage so that it would be possible to use the GSM system to transmit slow scan television pictures from the cameras to the train drivers and the signalling staff quite easily.

Compression using, say, JPEG, could reduce the bandwidth needed to a low enough figure to suit existing GSM channels. A slow-scan system would enhance the camera's sensitivity in dim light.

I suggest that a video screen is fitted into every train driver's cab. The screen would normally display the next, say, nine sections of track in sections of the screen. The identification of each section would show the driver the sequence of views from the closest to the most distant.

The driver could select any section at will to enlarge it temporarily to the full screen size. The driver could also use the camera's zoom lens – using the GSM system to control it – to see a more distant view more clearly. The same information could be relayed to the signalmen covering the same track sections.

If the cameras have infra-red sensitivity as well as normal (human) vision, it would be possible to identify objects in view that were warmer or cooler than the track more easily. A false colour version of the view could easily be arranged.

A further addition would be a frame store that could be used to compare the standard view with the view currently showing. Any changes in the view would be a reason for an alert or warning that something unusual has occurred.

This system could work on its own in daylight in the absence of fog. It would enable drivers to see whether or not the track in front of them is clear for several miles. This alone would mean that nearly all accidents that might occur in daylight would be avoidable. This would at least halve the likelihood of serious accidents occurring.

In practice, the likelihood of accidents occurring is higher during daylight hours because more trains run during the daytime and there is a greater possibility that a road vehicle is stuck halfway across a level crossing.

Radar look ahead

A further improvement that would be fairly cheap to implement is radar.

Low-power radar was used extensively – and relatively cheaply – for road speed traps and for controlling traffic lights. Traffic-light radar could be used to monitor any changes that occur within its range on a section of railway line. It would also work well in dark tunnels.

Most of these changes would be caused by trains so the information thus gained could be relayed to signalmen to check the progress of scheduled train services. If a change is observed when a train is not expected, the signalling staff would know that something unusual and possibly dangerous has occurred. This could be anything from an animal or some other obstruction that has appeared on the line or that a land slip has occurred.

The speed-trap type of radar could be used to check that passing trains are travelling at the correct speed. For practical reasons it would be triggered by approaching trains – because trains are usually long vehicles. This would be the opposite of that used for road speed traps that check the speeds of departing vehicles.

As GSM is a two-way system, it could be used to relay snapshot views taken by a digital camera mounted on the front of the train. The camera could be triggered by the reception of a radar signal from a proximity (traffic light) radar transmitter mounted on a rail signal gantry. Such pictures could be used to check the visibility – or otherwise – of the rail signals as the train approaches them.

Avoiding sleepiness

There are several rules that can be used to reduce or eliminate the problem of driver sleepiness.

I suggest that the first one must be included.

• If a train driver feels sleepy he/she should be able to report the fact by mobile phone without having to worry about his job or being paid for his shift. A replacement driver should be found at the next safe stopping place. No driver should ever be sacked for reporting sleepiness. If no accident occurs, a driver who passes a red signal without reporting sleepiness beforehand should be transferred to a lower risk job at a reduced salary.

• There must always be two – or more – rail staff on every passenger train. The other person could be a guard, a ticket collector or a dining car attendant. The person concerned should be instructed how to stop a train quickly and safely. There have been true stories about a passenger who has landed an aeroplane safely when the pilot became disabled. Stopping a train would be much easier.

• The drive power must be reactivated every, say, twenty seconds, otherwise the engine shuts down. If the train starts to slow down without an apparent reason, the other employee would be duty bound to find out why. An intercom connected to the the driver's cab would enable a quick check to be made. If the driver does not reply immediately, the other staff member could use a mobile phone to report the situation very quickly. A member of the train staff who travels on the same route regularly would be likely to realise that something was wrong if the train started to slow down where it had not done so previously. If two reactivations are missed, an automatic message can be sent to the signal control centre.

• The nine (or more) view video display could be equipped with a touch screen that would cancel the view of each section of track after it had been traversed. A failure to cancel the view would be treated as if an engine reactivation had been missed.

• A driver should report his or her status and position by phone whenever asked to do so by the signalling staff.

• The driver should be tested for his or her reaction time periodically to check that he or she is alert. This could be a visual or audio signal that has to be cancelled by pressing a button.

• A video camera in the cab may well discourage a driver from falling asleep. A driver is less likely to fall asleep with 'Big Brother' watching.

The British automatic train stopping system, when implemented, would have to be operated so that a train would be stopped within the appropriate safe distance for the train in question – assuming that it was travelling at the correct speed. The correct permutation of train types, normal running speeds, safe stopping distances and signal positions would have to be chosen by a computer in the signals control centre – when a red signal is passed. The cost and complexity of the planned system is mainly designed to deal with just one human failing – sleepiness.

And the cost?

I cannot say how much it would cost to implement the TV and/or radar systems, but I doubt that they would cost more than three billion pounds. Even if these systems cost more, they would be much more effective and could be implemented much sooner than 2008. They would overcome most of the limitations imposed by 19th century technology and driver sleepiness.

Readers of Electronics World have had to struggle continually to keep up with the advances in electronics technology from the time that its predecessor the Macaroniograph was published. It is a pity that train operators have failed to improve their technology at a comparable rate.
Design competition

These entries from our recent design competition demonstrate not only the versatility of the ZXF36 oscillator/mixer, but also the imagination and competence of their designers. On the following pages you will find:
- Direct conversion AM radio receiver for 30kHz to 700kHz
- Frequency standard using the Droitwich long-wave transmitter
- Ultrasonic receiver
- BFO CW/SSB detector and filter
- Solution for direct-conversion side-band image problems
- Acoustic leak monitor

Frequency standard using the Droitwich long-wave transmitter

Before Droitwich’s frequency was changed from 200kHz, it was relatively easy to produce a frequency standard locked to the highly stable carrier of the transmitter. The ground wave signal from this transmitter covers not only most of the UK but also some parts of Western Europe as well.

Figure 1 shows a block diagram of such a standard. The 10MHz from the crystal is divided down to 200kHz and then compared with the received signal to give a control signal which frequency or phase locks the crystal to the Droitwich transmitter.

Unfortunately, the Droitwich frequency had to be changed to fit in with the standard for Europe that all transmitter frequencies would be a multiple of 9Hz and so it is now at 198kHz.

There is no easy way of dividing 10MHz to give 198kHz. Instead, you have to divide the 10MHz by 5000 and the received signal by 99 with the comparison being done at the highest common factor of 2kHz. The disadvantage of this is that the sensitivity to frequency or phase errors is reduced by a factor of 100.

Alternatively, a 200kHz output from the crystal divider chain can be mixed with the received signal. The difference frequency output of 2kHz is then compared with a 2kHz output from the crystal divider chain. This method only causes a 1% reduction in sensitivity to frequency or phase errors. Figure 2 shows a block diagram for such a method.

Zetex’s ZF36L01 ideally suited for this mixing function as it combines both the mixer and a filter that can be readily tuned to the required 2kHz difference frequency. Figure 3 gives the circuit of a frequency standard using the ZXF26L01 in this manner. It is actually an old OMB ‘615 Off Air Frequency Standard’ that was designed when Droitwich was on 200kHz and has been successfully modified with the ZXF26L01 to work with the new frequency.

Using appropriate division ratios, this method is suitable, for locking frequency standards to suitable transmitters on other frequencies. In general, only long wave transmitters should be used because of the greater area covered by their ground wave signals. At higher

Fig. 1. Outline of a scheme for obtaining a frequency reference from the Droitwich transmitter's signal.
frequencies the ground wave area is smaller and unless you are close to the transmitter, multipath reception of sky wave signals will cause problems especially after dark.

Circuit details

Originally, the RF amplifier for the ferrite-rod antenna involved nine transistors on the main circuit board. As the original ferrite rod was missing, I took the opportunity combine an ic amplifier with the replacement ferrite rod. These were placed in an insulated tube and connected to the main unit with about 200mm of screened cable so that the antenna could be adjusted as need be to get the best signal. A gapped screen was placed inside of the tube around the coil and amplifier.

The voltage-controlled oscillator in the NE561 phase-lock loop ic produces an unmodulated output frequency locked to the received signal. The centre frequency of the vco should be set far enough away from 198kHz so that, in the absence of the received signal, the crystal oscillator will not be able to lock to it.

Both the mixer in the ZXF36L01 and the XOR that acts as the crystal oscillator’s phase comparator need to be driven by a square wave. These are obtained by the slightly unconventional connection of the 74s90 decade dividers. This means that the fourth bit has a 20% duty cycle rather than the required 50%.

The 50kΩ potentiometer should be set to give 300mV pk-pk at the signal input of the evaluation board. The 47kΩ resistor sets the mixer drive signal to the correct level.

Output is only a 1.6V pk-pk sine wave so a comparator is used to convert it to a TTL — or CMOS, as appropriate — square wave for the second input to the XOR gate. The output XOR the gate is filtered, both to remove the 4kHz ripple of the gate’s action as a phase comparator, and to remove the low frequency phase modulated data signals that are applied to Droitwich.

P F Gascoyne
Wantage
Oxfordshire
Direct conversion AM radio receiver for 30kHz to 700kHz

This receiver takes advantage of the ZXF36L01 IC's local oscillator ability to be driven directly from a microcontroller's output port - i.e. with a square wave. A highly-stable signal is needed in a direct conversion receiver. In this application, it is easily provided by a simple program in one of the new flash microprocessors that use a crystal oscillator.

Using a microcontroller also allows for such functions as automatic scan tuning in any number of steps, direct readout of frequency on an LCD of LED display, and the ability to receive SSB transmissions by slightly offsetting the frequency away from the carrier. This design also removes the need for any special or hard to source inductors.

Circuit details

Transistor T_r_1 and associated components act as an RF amplifier between the antenna and mixer receiver stage to reduce the possibility of the local oscillator signal being radiated from the receiver's aerial. This amplifier also introduces a useful 6dB of gain.

Secondly, through C_3, the stage rolls the response off above about 700kHz, which increases stability. Capacitors C_1 and C_2 roll off the response below 30kHz.

The 50% duty cycle square wave from the microprocessor at the required reception frequency is attenuated by R_3 before being applied to the mixer at $I C_1$ at pin 20.

Signal emerging at pin 7 contains a multitude of frequencies above the wanted audio. These are passed through $I C_1$'s band-pass filter, setup in notch mode with attenuating skirts but with R_6 and C_5 transposed. This configuration acts as a low-pass filter with a cut-off frequency of 4.8kHz and thus reduces the level of the unwanted signals at the output pin, 22.

Transistor T_r_3 and associated components now form an audio preamplifier which boosts $I C_1$'s output by around 20db before the signal is passed to T_r_3 for further filtering in a second order 7.2kHz low-pass filter.

Audio emerging from C_{14} will now be suitable to drive a power amplifier and speaker but may also benefit from further low-pass filtering if greater selectivity is required. For best results the input impedance of the following stage should be 10kΩ or higher.
When you come to implement your chosen microcontroller, make sure that you use the crystal clocking option, as opposed to RC or ceramic resonator alternatives. Crystal timing will give the greatest waveform stability and allow the maximum 700kHz to be reached. It may also be advantageous to use a device with as fast a clock as possible. An easier—but not as effective—means of tuning the receiver without using a microcontroller is shown as an inset to the main diagram. Output from this circuit just feeds the local oscillator input instead of the microcontroller’s output. Tuning can now be accomplished manually using RV1.

Lee Archer
Ashton-in-Makerfield
Lancashire

Ultrasonic receiver

Ultrasonic detectors find many uses both in industry as leak and corona detectors, and in natural studies where they can be used to extend our hearing range into that of bats and insects. Using the ZXF36L01 as a direct conversion mixer and filter simplifies the design of these instruments. I transposed the Zetex development board into a detector I made some time ago with good results. I did however change the board centre frequency to 1.6kHz from the 10kΩ as supplied. This value allows a reasonable energy to be recovered from swept signals, which will be attenuated with narrow frequency bandwidths. I also used a variable-frequency oscillator and a digital local oscillator with no problems.

Portable ultrasonic detection circuit

In Fig. 2, the ultrasonic microphone, which may be of the capacitance, ceramic or electret type produces a signal which is amplified by the low-noise preamp. This signal is then mixed with the output of the digital or analogue variable-frequency oscillator. The notch-pass filter with attenuating skirts selects the resultant audio signal. A frequency of around 1.6kHz was selected for the audio tone. This enables a swept signal so that a characteristic of bats to be resolved without too great a loss of recovered signal energy. Similarly the Q factor should not be too great if narrow pulsed or rapidly swept signals are to be resolved satisfactorily.

The resolved signal will be of the double side band type with the centre frequency being the null between the two ±1.6kHz side-bands.

Doppler acceleration alarm

Replacing the audio amp with a detect circuit and activating a target with an ultrasonic signal would enable the production of a Doppler acceleration alarm. By adjusting the local oscillator, which would in effect be the acceleration alarm trip set point, an output would be obtained when the Doppler shifted frequency fell within the pass band of the filter. For example if the energising field was 40kHz and the local oscillator was 40.1kHz and the pass-band was 2kHz a Doppler shift of 1kHz would be required to meet the trip point. With the local oscillator at 40kHz a Doppler shift of 2kHz would be required.

Peter Fry
Holbury
Southampton

![Diagram of the Ultrasonic Receiver](attachment:ultrasonic_receiver_diagram.png)
Electronics World reader offer:
x1, x10 switchable oscilloscope probes, only £21.74 a pair, fully inclusive*

*Additional pairs as part of the same order, only £19.24 each pair.

Please supply the following:

Probes

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Postcode*</th>
<th>Telephone</th>
</tr>
</thead>
</table>

Method of payment (please circle)

Cheques should be made payable to Cumulus Business Media Access/Mastercard/Visa/Cheque/PO

Credit card no

Card expiry date Signed

Please allow up to 28 days for delivery

Seen on sale for £20 each, these high-quality oscilloscope probe sets comprise:

- two x1, x10 switchable probe bodies
- two insulating tips
- two IC tips and two sprung hooks
- trimming tools

There’s also two BNC adaptors for using the cables as 1.5m-long BNC-to-BNC links. Each probe has its own storage wallet.

To order your pair of probes, send the coupon together with £21.74 UK/Europe to Probe Offer, Jackie Lowe, Cumulus Business Media, Anne Boleyn House, 9-13 Ewell Road, Cheam, Surrey, SM3 8BZ

Readers outside Europe, please add £2.50 to your order.

Specifications

Switch position 1
- Bandwidth: DC to 10MHz
- Input resistance: 1MΩ – i.e. oscilloscope i/p
- Input capacitance: 40pF + oscilloscope capacitance
- Working voltage: 600V DC or pk-pk AC

Switch position 2
- Bandwidth: DC to 150MHz
- Rise time: 2.4ns
- Input resistance: 1MΩ
- Input capacitance: 12pF if oscilloscope i/p is 20pF
- Compensation range: 10-60pF
- Working voltage: 600V DC or pk-pk AC

Switch position ‘Ref’
- Probe tip grounded via 9MΩ, scope i/p grounded
Solving direct-conversion side-band image problems

The following are design ideas that I had while trying to design a frequency tracker that could work in poor signal to noise ratios and harmonics such as in a guitar tuner. I didn’t have the test equipment or enough development boards to fully verify them but they are presented for your interest.

When operating in the direct-conversion mode, two side-bands, separated in frequency by 2x filter frequency, will be resolved. For example, with the local oscillator set to 44kHz and the filter set to 1kHz, an output will be produced when the input is at 45kHz or 43kHz.

The same situation applies if the input is 4kHz and the local oscillator is swept from 43 to 45kHz. This may not confuse manual operators, but if this signal is to be detected and further processed automatically then problems could arise if the system locks on to the ‘wrong’ side-band.

Using the XZF36L01 in a mixer notch pass with attenuating skirts and the local oscillator under software control, two possible configurations could solve this problem.

The first solution rejects the ‘unwanted’ sideband while the second processes both side-bands to indicate the centre frequency.

Direct-conversion image-rejecting CW output

In this circuit the local oscillator is fed to two XZF36L01 devices. Each is configured for notch pass with attenuating skirts both at, say, 1kHz pass.

The local oscillator, which is software controlled, is fed simultaneously to both mixers. The centre frequency +1kHz is fed to one mixer and centre frequency -1kHz to the second. This results in both side-bands being simultaneously detected.

All that now remains is to declare one side-band as the wanted signal and to use the other as the ‘pass enabler’. The output of the wanted side-band is only enabled to the output when two side-bands are present a further interlock the side-band amplitude could be checked for equal height.

The microprocessor will indicate the centre frequency at this point.

Direct-conversion image rejection with switched output

In this circuit two XZF36L01s are used, the first in a mixer and filter configuration, the second tuned slightly higher to act as a slope tuned FM demodulator. Alternatively, two filters could follow the first such that a better FM detector could be realised.

Acoustic leak monitor

This use of the XZF36L01 is for acoustic monitoring of leaks. The mixer section reduces ultrasound to audible frequencies, and the filter allows the signal to noise ratio and sensitivity to be increased.

In many industrial plants, there are multi-plate heat exchangers. A typical use is in food industries, where it is necessary to raise and lower the temperature of a product on a short time scale to kill bacteria. Such exchangers work by having an interleaved stack of stainless steel plates so that the heating or cooling fluid passes over one side, and the product over the other. Leakage between the two sections can result in the product contamination and so regular checks are made.

During maintenance, leakage is measured by applying compressed air and checking the pressure decay rate. If a leak is found in one plate the exchanger must be dismantled and each plate checked in turn to find what might be tiny pin-hole leaks.

To help locate leaks, acoustic monitoring is useful. Air leakage through small holes can have characteristic
audible or ultrasonic output.

The proposed design speeds up the leak detection by enabling operators to hear and observe these acoustic signal levels.

Circuit details

A block schematic is shown. The signal from a contact probe, microphone, or ultrasonic receiver is matched and adjusted by an appropriate low-noise amplifier then fed to the mixer input of the ZXF36L01.

If a minimal solution is needed, the sensitivity is high enough to allow direct operation from some types of transducer. However, a pre-amplifier allows gain adjustment to maximise dynamic range and noise performance.

The local-oscillator input is fed from a simple feedback RC oscillator, which is adjustable from 20 to 200kHz. The circuit produces a near 50% duty cycle and has a level of 25mV peak-to-peak. Ultrasonic signals mix with the oscillator output to produce a difference frequency in the audible range. Typically, a 36kHz signal and a 34kHz oscillator produce a 2kHz output.

The variable-Q band-pass filter is centred at 2kHz — which is where the ear has good sensitivity. When initially searching for leaks the filter is set to a low Q factor so that signals from the mixer above and below 2kHz can easily be heard. Increasing the Q factor and adjusting the local oscillator frequency allows the wanted sound to be "tuned in".

Higher Q settings give more selectivity and reduce unwanted out of band signals. Selection of appropriate Q and gain allow the sensitivity to be maximised.

Output is amplified to headphone driving levels by a low-voltage full-bridge device such as the TDA7052A. This is a low component count amplifier with a DC volume control.

There are many other devices that could be specified in this application, some of which have a shut down option. Such a device could be used along with the ZXF36L01 shuts down pin for a battery saving feature. Alternatively, a 5V regulator with shut down could be used to provide total automatic switch off.

I haven’t tested the design, but the data sheets indicate that the device will function well at the frequencies and Q factors involved.

Other applications

The principles here can be applied to other ultrasound monitoring applications. Checking mechanical bearings and engine vibrations in the ultrasound range could give interesting insights. There are also possible medical applications for example, monitoring artificial heart valves and other implants.

Bryan Brooks
Burton-on-Trent
Staffordshire

The ZF36L01 could be used as a CW detector and filter in a communications receiver.

BFO CW/SSB detector and filter

Bringing the Q setting out to the operator would enable a variable Q filter for optimum CW reception. The maximum Q permitted must give a safety margin away from the self-oscillation value. The normal centre frequency of 800Hz could be used depending on preferences.

The same principle could be used for SSB reception. Depending on the audio quality required though, it may be desirable to cascade two filters with offset centre frequencies so that a broader SSB characteristic filter response is obtained.

A fine tune on the IF injection oscillator will enable the signal to e adjusted exactly in the pass-band.

Peter Fry
Holbury
Southampton
Current issues – on your doorstep

Keep up-to-date with an Electronics World subscription, delivered direct to your door every month.

See reverse for details...
Yes I'd like to subscribe to Electronics World Today!

Please enter my subscription for one of the following terms. When I subscribe for three years, I pay the price for just two years.

<table>
<thead>
<tr>
<th>Terms</th>
<th>UK</th>
<th>Europe</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 years (36 issues)</td>
<td>£72</td>
<td>£103</td>
<td>£123</td>
</tr>
<tr>
<td>1 year (12 issues)</td>
<td>£36</td>
<td>£51</td>
<td>£61</td>
</tr>
</tbody>
</table>

In every issue:
- Detailed circuit diagrams
- New product news
- Informative design-orientated explanations
- CAE software

...all this delivered direct to your door each month!

Full money back guarantee
If you're not completely satisfied with Electronics World within the first 60 days we'll refund your money in full - no questions asked.

Please allow 28 days for delivery of your first issue.

Cumulus Business Media Limited may use this information for direct marketing purposes, from ourselves or other companies. If you do not wish to receive direct marketing please write to us at Cumulus Business Media Limited, Perrymount Road, Haywards Heath, West Sussex, RH16 3DH.

Cumulus Business Media Limited, Anne Boleyn House, 9-13 Ewell Road, Cheam, Surrey SM3 8BZ, UK. (Registered No. 4189911).

Three ways to pay
1. I enclose a cheque for £____ made payable to Electronics World.
2. Please charge my Visa/Mastercard/American Express/Diners Club/Switch/Delta (Please delete as appropriate)
 Card number _________________________________
 Expiry date ____/____/____ Valid from ____/____/____ Issue no. ___

Signed _____________________________ Date ________________________

3. Please invoice me/my company. Purchase Order No. ________________

Name _____________________________
Job title ___________________________
Company __________________________
Address ___________________________
Tel No. ______________ Fax No. ___________
E-mail address _______________________

Company VAT registration number __________________

Return your completed form to:
Electronics World Subscriptions, Cumulus Business Media Limited, Perrymount Road, Haywards Heath, West Sussex RH16 3DH
Fax: +44 (0)1444 445447

Credit Card Orders – (quoting code 159)
Tel: +44(0)1444 475662
OLSON IS THE MARKET LEADER FOR HIGH QUALITY MAINS DISTRIBUTION PANELS

POWER FOR THE OFFICE

A WIDE RANGE OF PRODUCTS AVAILABLE WITH RCD, MCB AND TPFLR PROTECTION

POWER FOR 19" RACKMOUNT SYSTEMS

INTERNATIONAL RANGE
For 19" rackmounting systems, designed for vertical or horizontal use. Available with European, American, Australian and IEC sockets.

FLOOR BOXES

19" CABLE TIDIES

INDUSTRIAL WITH RCD PROTECTION

DATA PATCH PANELS

32 AMP MULTI POWER CABLE MANAGEMENT SYSTEMS

19" VENTILATION PANELS

19" FAN TRAYS

NEW CATALOGUE!
SALESLINE 020 8905 7273

24 HOUR DELIVERY SERVICE
VISA, MASTERCARD & SWITCH CARDS ACCEPTED

OLSON HOUSE, 490 MONEYPOT LANE
STAMMORE, MIDDLESEX, HA7 1JX
TEL: 020 8905 7273 FAX: 020 8952 1232
E-MAIL: sales@olson.co.uk WEBSITE: www.olson.co.uk

ELECTRONICS LIMITED
Active RF scope probe

Have you ever stopped to work out just how much the loading from your passive scope probes is affecting your measurements? If you have, you’ve probably noticed the high price of active probes too.

Cyril Bateman's unity-gain oscilloscope probe features low capacitance and provides faithful results up to 100MHz, yet it won’t leave you out of pocket.

Many oscilloscopes measure to at least 100MHz, but because of capacitive loading, most test probes inhibit measurement of high-frequency low-level signals.

My Coline M12SW oscilloscope probes have a claimed bandwidth of 250MHz and 1.4ns rise time. When set to divide by ten, the probe applies 18pF capacitive loading to the circuit.

Set to times one though, each probe applies 60pF to the test circuit. The probe’s bandwidth reduces to just 10MHz and its rise time increases to 35ns. Square wave signals of 100kHz and above are visibly badly distorted. Fig. 1.

While at low frequency the Coline probe exhibits greater than 1MΩ impedance, by 10MHz this reduces to 800Ω when set to divide by ten. Set to divide by one its 60pF capacitance results in an impedance of just 265Ω. Other probes may impose heavier loading. An HP9100 probe for example set to times one, applies a 150pF load to the circuit under test. Many modern ICs become unstable, or at best peaky, when loaded with such capacitance. One might wonder just what our measurements do represent! — the circuit under test or our scope probe?

Measuring low signal levels, you may be forced to set the probe to divide by one in order to obtain an adequate display. The resulting capacitive load then attenuates and distorts the displayed signal.

To properly measure low-level signals you have to reduce the probe’s capacitance to ground. In practice this means using either a 50Ω measurement system or a low capacitance active probe.

Most low-level circuits are not intended for use with 50Ω loading, so for these an active probe is essential. Commercially available active probes however can be extremely expensive.

With my 250MHz Coline probe set to divide by 10 and using an oscilloscope sensitivity of 10mV/cm, I can measure signals down to 0.2V. A low-capacitance active probe with unity gain, a 100MHz range and a maximum input voltage of 2V would provide a useful overlap with the Coline probe for measuring lower-level signals.

In my last article I discussed how to design a high input-impedance, low-capacitance active probe with AC coupling. It provides a flat response from 100Hz to 100MHz into a properly terminated 75Ω coaxial cable. It has a very fast rise time and as a stand-alone probe its performance to 100MHz, equals that of my 250MHz Coline probe set to divide by 10.

This active probe design was based on the Maxim unity-gain MAX4005, which has a very high frequency range and a JFET input. It is supplied complete with an internal 75Ω precision thin-film output resistor.
The 4005 provides a ±0.1dB gain flatness of 60MHz and ±0.2dB to 80MHz, a 350ps rise time and 950MHz bandwidth, Fig. 2.

Using this IC, my assembled probe provided flat performance from 100Hz to 100MHz, when terminated in 75Ω. With a coaxial test prod that accommodates Coline oscilloscope probe accessories, it provided some 4pF and 2.4MHz input impedance and a maximum input capability of 7V pk-to-pk, Fig. 3.

However on its own, this probe does not have unity gain. It attenuates its input signal by approximately 10dB to output some 650mV for a 2V input signal.

To provide unity gain requires a 75Ω terminating stage with 10dB gain at the scope input connector to restore signal levels. To measure low level signals, this gain stage should be low noise and have a 0.1dB bandwidth as good as or better than the MAX4005.

This article discusses how to design an active 75Ω matching termination, which mounts directly onto the oscilloscope front panel connector. This terminator provides sufficient low-noise gain to overcome probe and cable losses, resulting in a high impedance, low cap, unity gain 100MHz scope probe.

Terminating gain stage
To allow a margin for corrections and calibration, a gain of five is required. Attaining a low-noise gain of five with a flat response from 100Hz to 100MHz is no small design task.

Low frequency and 75Ω impedance combine to require the use of extremely large value coupling capacitors. These become series self resonant at very low frequencies – certainly within the desired pass band. Near self resonance, capacitor impedance is much lower than its theoretical impedance. Above this resonance frequency the capacitor behaves as a DC-blocking inductance.

At some higher frequency, parallel, high impedance resonances occur. At frequencies close to parallel resonance the capacitor then appears as an extremely high impedance – almost open circuit.

When a capacitor is used to block DC but pass the wanted signal, these parallel resonances also effectively block, or attenuate the wanted signal.

For these reasons, while my probe's input is AC coupled, the input circuit of this 75Ω terminator is not. DC output offset for my prototype measured only 1.1mV. Any significant circuit DC offsets could simply be blocked by switching the scope input from DC to AC only.

Choosing an IC
Following an examination of ICs available from main-line distributors, I selected the Maxim MAX4106 for my terminating gain stage design. This is described in the data sheet as a 350MHz ultra-low-noise op-amp, compensated for closed loop gains of 5V/V or greater. It is only available in the small, surface-mounting, SO8 package.

The 4106 has a claimed noise level of 0.75nV/V/Hz at 10kHz and 9.5pV RMS integrated from 1 to 100MHz. Its low distortion architecture provides a spurious-free dynamic range of 63dB at 5MHz. Set to a gain of five, it has a ±0.1dB bandwidth of 75MHz, and can slew to 275 V/μs.

As the 4106 is a current-feedback...
design with 20µA bias current, it is essential to use low-value resistors from both MAX4106 input pins to ground. Capacitance to ground for both inputs must be minimised.

Terminator gain-stage design
The Maxim CD ROM includes a macro model for the MAX4106 op-amp. This was inserted into the Microcap MC6 simulation file used to design my low capacitance probe, replacing the AD8361 and INA133 circuitry. The MAX4106 was set to a gain of five using 27Ω to ground and 110Ω feedback resistors. With due allowance for circuit strays and the IC's 2pF input capacitance, these values eliminate potential in-band feedback loop resonance.

For convenience of assembly and to minimise parasitics, I used a 110Ω 0.08Ω resistor for feedback with a 27Ω size 1206 from the negative input to ground. A simple 75Ω input termination resistor to ground – a 1206 sized surface mount device – was also modelled. With a replica 1MΩ oscilloscope input as load, simulations commenced. See the panel entitled 'Frequency-domain simulation' for more details. Initial results to 100MHz looked good, but suggested some higher frequency resonances could occur. In addition, the output needed buffering for capacitive loads and attenuating to unity gain.

With the addition of these components, my simulation circuit design was complete. Fig. 4

Terminator circuit board
Because space on an oscilloscope front panel is restricted, I wanted to fit this circuit into a small diecast

Frequency-domain simulation

The capacitor, resistor and inductor models built into Spice based simulators assume ideal loss-free components having a constant value, regardless of frequency. For transient or time-domain simulation, Spice automatically provides a facility for amplitude-dependent changes for semiconductors but not for passive components.

Unfortunately with real-life components, almost all parameters are frequency dependent.

The latest simulators still assume ideal passive components in their libraries. Some though, including MC6, provide the facility to override the internal constant-value model using a frequency-dependent expression. Regrettably as far as I am aware, suitable-model libraries are not provided.

A restricted number of component models can be downloaded from Intusoft, and are supplied with their simulators. These offer a limited choice so usually do not exactly fit ones needs. This modelling approach was initiated in 1994 by John Prynak of Kemet.

Kemet now offers a Spice based data sheet for their Ceramic and Tantalum capacitors as a free download. This software provides on-screen plots of capacitor behaviour with frequency, including capacitance, ESR, tanδ, inductance, impedance and series and parallel resonances. For any one frequency of interest, the simulation circuit used and its component values can be displayed on screen. These can then be used in transient analysis and narrow-band frequency sweeps. Unfortunately these simulation component values cannot easily be extracted for use in wide-band frequency-domain analysis.

The main problem is that this frequency-dependent expression relates to an individual element – a resistor has resistance, capacitance and inductance. It then requires three elements, each with its own frequency expression.

Capacitor models may be considerably more elaborate. It would be convenient if one could download manufacturers' macro models for passive components – better still 'S parameters', as has long been possible for ICs.
box, 50 by 50 by 30mm. This box, with a MACOM panel mounting BNC plug connector, Farnell part 309-461, would fit directly onto my scope input without fouling the controls. The same box would contain the termination and gain stage, the coaxial interconnect termination and power leads to the probe. Power for both probe and terminator would be provided by tapping into the internal supplies of my scope Fig. 5.

Because of the wide bandwidth and slew rate capabilities of the MAX4106, substantial on-board decoupling capacitance would be needed. A 1nF COG, a 100nF X7R size 1206 ceramic and small 10μF 10V tantalum chips were used.

To compensate for the oscilloscope's input capacitance at high frequency, a trimmer capacitor, part of the output attenuator, was required. I choose a Murata 6.5pF COG washable ceramic, Farnell part 108-222. This is a through-hole mounting part, but bending and trimming its mounting tags provides an acceptable surface mounting version. Fig. 6.

These decoupling capacitors together with the output trimmer capacitor, occupy much of the final 43 by 38mm PCB design, Fig. 7.

To minimise signal path capacitance to ground for this double-sided board, both ground planes were well distanced from the high-frequency signal, feedback paths and the IC body.

Initial performance tests
The probe and termination stage were interconnected using a metre of RG179 B/U coaxial cable. This PTFE-insulated* coaxial cable, available in cut lengths, is easily soldered direct to the PCBs without damaging the cable.

The input trimming capacitor, C1, in the probe body, had previously been adjusted for a good 1kHz square wave response. Assuming that you're using 1% or better resistors throughout, calibration of the 75Ω terminator stage attenuator resistors should not be needed Fig. 8.

The only other adjustment is of the output capacitor, C2, in the termination stage. This is used to optimise response at high frequencies. Any minor amplitude error can be compensated by resetting the scope input channel gain.

I fitted a BNC adapter from my Coline M12SW probe on to the active probe's test prod. Then inserted this adapter into a MACOM 50Ω through termination.

Initial square-wave testing showed a good square wave was maintained up to 5MHz – the usable limit of my generator.

In high-frequency sinewave measurements, I used my HP8405A vector voltmeter to monitor input and output levels. The probe/termination combination, with trimmer C2 set to

*PTFE is an amazing material, but it becomes a serious health hazard if subjected to very high temperatures. Read up on it if you're in doubt. Ed.

Fig. 5. The 75Ω terminator/gain PCB fits easily into a small die cast box. Provided with a panel mounted plug, it mounts directly onto an oscilloscope front panel without fouling user controls.

Fig. 6. Schematic for the final version of the 75Ω terminating, times-five gain stage, as built and tested. All signal path capacitors are COG ceramic. Capacitors C2 and C24 compensate at high frequency for the capacitive loading of the typical oscilloscope input.
Fig. 7. Final double-sided PCB layout used for the 75Ω terminating, times-five gain stage. By changing \(R_5, R_6 \) and \(R_{6A}, R_7 \), either a high or low output impedance can be provided. Following performance tests, the high output impedance option has been dropped.

Fig. 8. The small double sided PCB for the low capacitance, high input impedance probe. It connects to the 75Ω terminating gain stage via a 1 metre length of RG179 B/U, PTFE insulated coaxial cable. Note the non-standard orientation of the ±5V supplies.

Measuring equipment used

The HP331A voltmeter and the HP8405A vector voltmeter both have high-impedance low-capacitance inputs. They were used with a 10dB attenuator and MACOM 50Ω through terminator to establish the signal generator output at the MACOM terminator at exactly 0dBm. The HP331A meter is specified to 3MHz, the HP8405A from 1MHz to 1GHz.

My high-\(|Z|\) RMS meter could equally well have been used\(^2\). However the HP331A and HP8405A both provide direct readings in decibels relative to 0dBm. Using these instruments avoided a considerable number of calculations.

maximum, was better than \(-1.5\)dB and \(-3\)dB set to minimum, at 100MHz.

The all important noise figure, from audio to 3MHz, measured less than 100\(\mu\)V with the probe and terminator screened and the probe prod input shielded, but not grounded, by the Coline BNC oscilloscope-probe adapter.

Viewed on my oscilloscope set to display 5mV/cm, this noise level could just be discerned as a thickening of the scope trace. Reset to display 10mV/cm, no noise was visible.

Final performance tests

Setting output trimmer \(C_2 \) to maximum provided the flattest measured response. Some square wave overshoot was evident however when comparing the active probe output with the scope response fed directly from the MACOM 50Ω through termination.

I found the HP8405A vector voltmeter probe loading of 100kΩ and 5pF was depressing the measured response by some 0.5dB at 100MHz. This accounted for the overshoot seen when the vector voltmeter probe loading was removed.

Fig. 9. A 5MHz square wave viewed using the low capacitance active probe, bottom, versus direct scope input from a terminated 50Ω impedance generator, top. As you can see, this active probe design has not visibly degraded the waveform.
I decided to remove output trimmer \(C_2 \) and capacitor \(C_{2A} \), replacing both with a 68pF COG fixed capacitor. I then retested the circuit using the 50Ω through-terminated 5MHz square wave. The active probe output into channel B was compared with the 50Ω through terminated waveform in channel A Fig. 9.

The previous overshoot was removed. Visually, both channel waveforms were now identical. I then repeated the sine wave measurements, using this 68pF output capacitor. See Table 1.

For the amplitude results, I used an HP331A voltmeter below 1MHz and an HP8405A vector voltmeter for higher frequencies. There's more on this in the panel entitled 'Measuring equipment used'.

References
3. 950MHz FET-Input Buffer with 75Ω Output, http://www.maxim-ic.com

Table 1

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Trimmed min. 53pF</th>
<th>Fixed 68pF COG</th>
<th>Trimmed max. 97pF</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1k</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10k</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100k</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1M</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10M</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25M</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0</td>
</tr>
<tr>
<td>40M</td>
<td>-0.35</td>
<td>-0.3</td>
<td>0</td>
</tr>
<tr>
<td>50M</td>
<td>-0.6</td>
<td>-0.4</td>
<td>0</td>
</tr>
<tr>
<td>60M</td>
<td>-0.8</td>
<td>-0.5</td>
<td>0</td>
</tr>
<tr>
<td>70M</td>
<td>-1.1</td>
<td>-0.8</td>
<td>0</td>
</tr>
<tr>
<td>80M</td>
<td>-1.8</td>
<td>-1.2</td>
<td>-0.6</td>
</tr>
<tr>
<td>90M</td>
<td>-2.7</td>
<td>-1.9</td>
<td>-1.2</td>
</tr>
<tr>
<td>100M</td>
<td>-3.0</td>
<td>-2.2</td>
<td>-1.6</td>
</tr>
<tr>
<td>120M</td>
<td>-4.0</td>
<td>-3.0</td>
<td>-2.2</td>
</tr>
</tbody>
</table>

Results for 60MHz are depressed approximately 0.1dB due to the 100kΩ and 5pF load of my HP8405A vector voltmeter probe. This loading increases with frequency and by 100MHz depresses measured value by 0.5dB. Corrections have not been applied in the above table.

Calibration notes

Originally, the terminator PCB was designed to provide both low and high output impedances, simply by changing a couple of components. I initially built and photographed the high output-impedance version mentioned in the body of the article. For this, \(R_2 \) is omitted, \(R_6 \) and \(R_{6A} \) are 100kΩ, \(R_5 \) is 91kΩ, Fig. 10.

This version worked extremely well and was easily calibrated. However obtaining accurate high-frequency performance data was almost impossible. My original plan was to use my oscilloscope display. However on checking, this was flat only to 40MHz, and its sensitivity was almost 3dB down at 100MHz.

The high frequency loading using high-impedance low-capacitance probes also seriously influenced results. Consequently I abandoned this version and show only the low output-impedance variant in my figures. For this, \(R_6 \) and \(R_{6A} \) are omitted. Resistor \(R_2 \) is 100Ω and \(R_5 \) becomes 27Ω.

Calibration is much simplified. Capacitor \(C_1 \) in the probe is adjusted at low frequency. The preferred method is to apply 0dBm at 1kHz or lower frequency and note the voltage output using a high-impedance meter.

Apply 0dBm at 1MHz or higher and adjust \(C_1 \) in the probe to attain the noted reading. A suitable meter has been described in Electronics World.

Alternatively, should no suitable RF voltmeter be available, apply a good 1kHz square wave at 500 to 600mV pk to pk from the oscilloscope calibrator. Adjust \(C_1 \) in the probe to display the best possible square wave.

If you can source and measure 100MHz using a high input-impedance, low-capacitance RF voltmeter, adjust \(C_2 \) in the terminator to read 1 to 2dB down at 100MHz relative to the output with 0dBm input at 10MHz.

If you aren't able to perform the 100MHz measurement, good performance will be assured if you simply replace trimmer \(C_2 \) and capacitor \(C_{2A} \) with a fixed 68pF COG ceramic capacitor.

![Fig. 10. The final PCB assembled for the 75Ω terminating stage is dominated by the decoupling capacitors and the 6-50pF trimmer capacitor. By changing the values of three resistors, this board can provide either a high or low output impedance capable of driving a standard 1MHz oscilloscope load.](image-url)
The mosfet exposed

With the aim of helping you better predict a mosfet-based circuit’s performance, Bryan Hart shows how the shape of a mosfet’s drain characteristics can be explained via a first-order model. He then shows how to use that model to analyse and design some typical mosfet circuits.

A curve-tracer, whether commercially manufactured, or home-produced to a design such as that described recently by Ian Hickman, is capable of producing instant graphical information about the DC performance of a semiconductor device.

However, a display of a set of curves, by itself, has its limitations. An analogy is a map without a compass. In the case of experimentally observed device characteristics, a ‘compass’, is a simplified circuit model based on the physical electronics of the device’s operation.

This article shows how the shape of the drain characteristics of a mosfet can be explained by reference to a first-order model. The model is then used to analyse and design some typical circuit schemes.

The model reviewed

The mosfet chosen for discussion is an n-channel enhancement-mode device. This is the most widely used type and it’s the easiest to understand.

A schematic cross-section of its physical structure is shown in Fig. 1a). The space, L, between the source, S, and drain, D, defines the length of the channel that forms under the gate G when it is suitably biased: the gate width is a direction perpendicular to the paper is W.

Figure 1b) shows a standard circuit symbol with the reference directions for terminal voltages and currents marked on it. Substrate B is normally biased so that there is no current flow between it and the source and drain. That is why the substrate does not appear in the DC model6 of Fig. 2a), which is suitable for the usual case of operation in what is known as the ‘strong-inversion region’.

The ‘boxed’ diodes DF, DR have the ideal piecewise-linear characteristics of Fig. 2b) and the voltage generators VF, VR the characteristics in Fig. 2c). Parameter VTH is the threshold voltage, which is dependent on substrate doping.

Current generators IF, IR have a square-law voltage dependence, as indicated in Fig. 2d). Thus, for,

\[V_F = V_G - V_{TH} > 0, \]
\[I_F = K V_F^2 \]

Similarly, for,

\[V_R = V_G - V_{TH} > 0 \]
\[I_R = K V_R^2 \]

Consequently,

\[I_D = I_S (I_F - I_R) = K (V_F^2 - V_R^2) \]

The parameter K is given by,

\[K = \frac{C \mu}{2 L} \]

In this, C is the gate capacitance per unit area and μ is the effective mobility of electrons in the channel.

For a given processing technology the product Cμ is a constant, but the chip designer has control of the
geometrical ratio WL. From a user's standpoint, K is readily determinable from terminal measurements, as outlined later. For a p-channel enhancement-mode mosfet all the elements comprising the model of Fig. 2a) are reversed, as are the directions of voltages and currents.

Equations (1a) to (1d) reveal all we need to know about the DC performance of this first-order model. As shown in Fig. 3, there are four possible operating regions, or modes, because D_F, D_R can each be independently forward or reverse biased.

The numbering shown for these regions is arbitrary. Regions 1 and 3 are the most interesting for digital applications where they refer, respectively, to the open and closed conditions of a switch. Region 2 is used for linear amplification. In Region 4, the mosfet operates in the reverse mode.

I will now look at each region in turn to show how the model provides a basis for an explanation of the observed mosfet drain characteristics in the common-source connection.

Region 1. Here, D_F and D_R are both off, as V_{GD} and V_{GD} are both less than V_{TH}, so $I_F=I_R=0$. In this "cut-off" region $I_D=0$ regardless of the sign of V_{DS}. In a refinement to the model of Fig. 2a), D_F and D_R can be assumed to have a finite reverse current to allow for the small leakage current that flows in practical devices when $V_{DS} \neq 0$.

Region 2. In this case, D_F is on and D_R is off so,

$$I_D=I_F=KV_T^2=K(V_{GS}-V_{TH})^2$$

Figure 4 shows an appropriate circuit model. Following an example set by early workers in this field, it is convenient to represent the drain characteristics in dimensionless form as it makes them universally applicable. To do this two parameters are defined, namely n, the gate-drive factor, and I_{DO}, a drain reference current. Thus,

$$n=rac{V_F}{V_{TH}}=rac{(V_{GS}-V_{TH})}{V_{TH}}$$

and,

$$I_{DO}=KV_{TH}^2$$

Physically, I_{DO} is the value of I_D for $V_{GS}=2V_{TH}$, or $n=1$.

From equations (2), (3) and (4),

$$\frac{I_D}{I_{DO}}=n^2$$

On a graph, Fig. 5a), of y, which is I_D/I_{DO}, versus x, which is V_{DS}/V_{TH}, the drain characteristics, for $n=1$, 2, etc., comprise a series of unequally-spaced horizontal lines.

The description "current saturation" is appropriate for this region in view of the constancy of I_D with

Figure 2. In a) is a DC model of the mosfet and 2b), 2c), and 2d) are the characteristics of its constituent elements.

Figure 3. A mosfet can be described as having four operating regions.

Figure 4. A simplified model for a mosfet's Region 2.

Figure 5. Output characteristics for Region 2, a), showing boundary curves A and B discussed in the text. Diagram 5b) is a simplified mosfet model for a gate-drain strap.
COMPONENTS

\(V_{DS} \). The boundary curve for Region 2 is obtained for the condition \(V_R=0 \), or in circuit terms \(V_{DS}=V_{GS}-V_{TH} \). From equation (3), this means,

\[
\eta = \frac{V_{DS}}{V_{TH}}
\]

Substituting this value in equation (5) yields,

\[
\frac{I_D}{I_{DO}} = \left(\frac{V_{DS}}{V_{TH}} \right)^2
\]

This equation describes the parabola \(y=x^2 \), the relevant part of which is curve A in Fig. 5a). Illustrative points \(P_1 \) and \(P_2 \) refer to \(x=1 \) and \(x=2 \) respectively.

Suppose, now, that the mosfet has a gate-drain strap. That connection scheme is used in some analogue IC designs and in measurements to determine the basic parameters \(K \) and \(V_{TH} \). A simplified model is shown in Fig. 5b).

Substituting the condition \(V_{DS}=V_{GS} \) in equation (3) gives,

\[
\eta = \frac{V_{GS}-V_{TH}}{V_{TH}}
\]

and putting this value in equation (5) gives,

\[
\frac{I_D}{I_{DO}} = \left(\frac{V_{GS}-1}{V_{TH}} \right)^2
\]

This describes curve B in Fig. 5a). It is curve A shifted horizontally to the right by one \(x \)-axis unit.

Figure 6a shows an experimental set-up to find \(K \) and \(V_{TH} \). When the best straight line is drawn through a plot of \(\eta D \) versus \(V_{GS} \) in Fig. 6a), the slope gives \(V_{TH} \) and the extrapolated intercept on the \(V_{GS} \) axis gives \(V_{TH} \).

Experiments indicate that if \(V_{GS}<0 \) and \(V_{GS} > 0.8 \), then \(K \) remains constant but \(V_{TH} \) increases by an amount \(\Delta V_{TH} = \gamma (V_{GS}) \), in which the parameter \(\gamma \) is dependent on substrate doping. Typically, \(2>\gamma>0.5 \).

A plot of \(\eta D \) versus \(V_{GS} \) for a sample mosfet from the long-established CMOS unit type CD4007A gave \(K=150 \mu A / V^2 \) and \(V_{TH}=1.7 \) with \(V_{GS}=0 \). Figure 7 shows the first-quadrant drain characteristics, obtained using a Tektronix 575 curve tracer. On these is superimposed, by double photographic exposure, a characteristic for the condition \(V_{DS}=0 \), corresponding to curve B in Fig. 5b).

It is evident that the practical characteristics in Region 2 are not strictly horizontal but have a small positive slope, which is not predicted by the simple model under consideration. Viewed on a compressed \(V_{DS} \) scale, the characteristics can be approximated by straight lines radiating from a common point of intersection on the negative \(V_{DS} \) axis at,

\[
V_{DS} = -\frac{1}{\lambda}
\]

The reason for this is a shortening in the effective channel length with increase in \(V_{DS} \) that is similar to the base-narrowing effect in bipolar junction transistors. The upshot is that the characteristics can be represented by the expression,

\[
I_D = K(1+\lambda V_{DS}) \frac{V_F}{V_F} \left(K(1+\lambda V_{DS}) \right) \left(V_{GS}-V_{TH} \right)
\]

The model of Fig. 2a) is still applicable if \(K \) is replaced by a voltage-dependent parameter, \(K'=K(1+\lambda V_{DS}) \).

In dimensionless form – see Fig. 8 – equation (8) becomes,

\[
\frac{I_D}{I_{DO}} = \eta \left(1+\lambda V_{TH} \times V_{GS} \right)
\]

A low-frequency incremental model for Region 2 is shown in Fig. 9. It is based on equation (8), from which the mutual conductance, \(g_{ds} \), and the output resistance, \(r_{ds} \), can be found by differentiation. For the usual practical
case 1: \(\Delta V_{DS} \),

\[
g_m = \frac{i_m}{V_{DS}} = 2\sqrt{Kl_D}
\]

and,

\[
e_o = \frac{V_{DS}}{i_o} = \frac{1}{\lambda_D}
\]

Region 3. In this region, \(D_F\) and \(D_R\) are both on so \(V_{DS}(=V_F-V_R)\) can fall to a low value. This suggests the description ‘voltage-saturation’ for this region in preference to the often-used, but arguably confusing, word ‘triode’.

\[
I_D = I_F - I_R = K(V_F^2 - V_R^2)
\]

and

\[
V_R = V_F - V_{DS}
\]

Hence,

\[
I_D = K[V_F^2 - (V_F^2 - V_{DS})^2]
\]

In dimensionless form this becomes,

\[
\frac{I_D}{I_{DO}} = n^2 - \left(\frac{V_{DO}}{V_{TH}}\right)^2
\]

This equation provides an expression for the drain characteristics in Region 3. This region occupies part of two quadrants of the \(I_S, V_{DS}\) plane because you can have either \(V_F>V_R\) or \(V_R>V_F\).

Consider, first, the condition \(V_F>V_R\). Then \(I_F>I_D\) and operation is in the first quadrant of Fig. 10. It is bounded by the vertical axis and curve (i) which is curve A, of Fig. 5a, re-labelled for convenience. It is specified by equation (6). The same result emerges when \(V_{DS}+V_{TH}\) is substituted for \(n\) in equation (15).

To interpret equation (15), graphically, make the following substitutions,

\[
y = \frac{I_D}{I_{DO}}; \quad y_1 = n^2; \quad x = \frac{V_{DO}}{V_{TH}}; \quad \text{and} \quad x_1 = n
\]

Then equation (15) becomes,

\[
(y - y_1) = -(x - x_1)^2
\]

For various values of \(n\), and hence, \(x_1\) and \(y_1\), this describes a family of downward-facing parabolas, the relevant parts of which are the sections for \(x < n\), for \(x > n\).

Equation (16) is no longer valid.

Each parabola has a vertex at \(x_1, y_1\) on the boundary curve and passes through the origin. Curve (ii), in Fig. 10, is one such curve for an arbitrary value of \(n(>0)\). The tangent, at \(x=0\), to a parabola defines the incremental conductance, \(G_P\), for \(V_{DS}=0\) and a given \(V_{GS}\).

The range over which this tangent can be taken as a good approximation to the parabolic curve can be assessed by substituting \(V_F=V_{GS}-V_{TH}\) in equation (14) and simplifying. Then,

\[
I_D = K(2V_{GS}-V_{TH}) - V_{DS}\]

For the range \(V_{GS}-V_{TH})>>V_{DS}\),

\[
R_{DS} = R_0 = \frac{1}{G_p} = \frac{1}{2K(V_{GS} - V_{TH})}
\]

The existence of this relationship leads to the description ‘ohmic’ for operation in the vicinity of \(V_{GS}=0\), though the word is sometimes (mis)used also to describe the whole of Region 3.

Fig. 9. Small-signal low-frequency equivalent circuit for Region 2.

Fig. 10. Operating characteristics for Regions 3 and 4.

Fig. 11. Model for curve (iv), left, and, model for curve (v) of Fig. 10, right.

Consider now the condition \(V_F=V_R\). Equations (15) and (16) still apply so curve (iii) in Fig. 10 is a smooth continuation through the origin, into the third quadrant, of curve (ii).

The boundary for Region 3 in the third quadrant is curve (iv), for \(V_F=0\), corresponding to \(n=0\). Putting \(V_F=0\) in equations (12) and (13), gives \(I_D=-KV_{DS}\), so curve (iv) can be regarded as curve (i) rotated about the origin through an angle of 180°. Figure 11a shows a simplified model for \(n=0\).

Region 4. Operation to the left of curve (iv) in Fig. 10 counts as in Region 4. The model in Fig. 11b refers to curve (v), which represents the limit condition \(V_{GS}=0\), corresponding to \(n=-1\) and \(I_D=-K(V_{DS}^2-V_{TH})^2\).
Curves, not shown, for non-integral values of \(n \) in the range \(0>n>-1 \) lie between (iv) and (v). These curves have the same shape as (iv) because the gate and drain of the mosfet are effectively strapped together, either directly, for the condition \(n=-1 \), or via a battery - equivalent directly to the particular value of \(V_{DS} \) used - for the case \(0>n>-1 \). Thus, any change in \(V_{DS} \) is seen as a change in \(V_{GS} \).

If you connect the mosfet to the curve-tracer with the drain and source electrodes interchanged, curves similar to those of Fig. 9 are obtained provided \(V_{GD} \) is the parametric variable instead of \(V_{GS} \). In that case,

\[
 n = \frac{V_{GD} - V_{TM}}{V_{TM}}
\]

Figure 12 shows a curve-tracer plot for the CD4007A sample referred to previously. The curve on the extreme left in the third quadrant is for \(n=-1 \). This is further along the negative \(V_{DS} \) axis than might have been expected from the value of \(V_{TH} \) indicated in Fig. 7. That is because the source-substrate bias necessary to observe the curves, namely \(-5V\), increased the magnitude of the threshold voltage above its value at \(V_{TH}=0 \).

Figure 13 shows an expanded view of the drain characteristics in the vicinity of the origin. These exhibit the linearity predicted by equation (18) over the \(V_{DS} \) range observed. Practical applications of the mosfet model are considered next.

Application examples

The three examples that follow illustrate the use of the mosfet model, Fig. 2a) and its derivatives in circuit analysis and design.

![Fig. 12. Curve-tracer output characteristics, for CD4007A, in Regions 3 and 4.](image)

Vertical scale \(I_{D}=0.5mA/div \)
Horizontal scale \(V_{GS}=1V/div \)
\(V_{GS} \) steps, 1V \(V_{GS}=-5V \)

![Fig. 13. Showing linearity of drain characteristics near the origin.](image)

Vertical scale \(I_{D}=50uA/div \)
Horizontal scale \(V_{DS}=20mV/div \)
\(V_{GS} \) steps, 1V

![Fig. 14. A 1:1 current-mirror configured using mosfets.](image)

The first is a four-mosfet 1:1 current-mirror, Fig. 14. This is similar in device configuration to the four-BJT version. Transistors \(Q_{1A} \) and \(Q_{1B} \) comprise the principal mirror components. Transistor \(Q_{2B} \) increases the incremental output resistance above that obtained using a simple two-mosfet mirror. \(Q_{2A} \) is included to balance the drain-source voltages of \(Q_{1A}, Q_{1B} \) so they operate under the same DC bias conditions.

Assuming all the devices have identical characteristics and operate in Region 2, it follows that

\[
 I_{O}=I_{1}
\]

With its drain-gate strap, \(Q_{1B} \) must operate in Region 2, but how do we guarantee that \(Q_{2B} \) does also? The answer to this is provided by inspection of Fig. 13, which is based on the model. The boundary line, curve A, for Region 2 operation of \(Q_{2B} \) is specified by \(I_{D}=KV_{DS}^{2} \) so, at a given current, \(I_{D}=I_{1} \).

\[
 V_{DS} = \sqrt{\frac{I_{1}}{K}}
\]

Curve B, for \(Q_{1B} \), is given by

\[
 I_{O}=K(V_{DS}-V_{TH})^{2}
\]

so, at the same current, \(I_{1} \).
\[V_{01} = V_{TM} + \left(\frac{I_1}{K} \right) \]

Hence,

\[V_{0i} = V_{01} + V_{os} = V_{TM} + 2 \left(\frac{I_1}{K} \right) \]

Location \(P \), is one point on curve \(C \), with co-ordinates \(I_1 \), \(V_{01} \), which shows the lower boundary line, for constant-current output of the current-mirror.

Rearranging equation (22), this curve is specified by,

\[I_0 = \frac{K}{4} (V_O - V_{TM})^2 \]

This describes a parabola with its vertex on the horizontal axis at \(V_{DS} = V_{TH} \). The boundary line is the right-half section of this parabola. A routine small-signal, low-frequency, circuit analysis of Fig. 14, making use of the equivalent circuit of Fig. 9, shows that the incremental output resistance is,

\[r_{O} = (g_{fs} r_{ds}) r_{ds} \]

This discussion explains the shape of the output characteristics, Fig. 16, of an experimental circuit constructed from unselected samples of CA3600E – a version of the CD4007A more suitable for linear applications.

Voltage-controlled resistance

The second application concerns a mosfet used as a voltage-controlled resistor. In the attenuator circuit of Fig. 17a), \(V_i, V_o, V_{GS} \) are respectively the input, output and control voltages. Transistor \(Q \) operates in the ohmic region if \((V_{GS} - V_{TH}) \gg V_o \). Then the drain-source resistance \(R_o \) is given by the equation (18), and the attenuation factor, \(\alpha \), is given by,

\[\alpha = \frac{R_o}{R + R_o} \]

The condition \((V_{GS} - V_{TH}) \gg V_o \), which might be restrictive in some applications, can be relaxed by use of a well-known circuit modification that is elegant in its simplicity. In Fig. 17b, feedback resistors \(R_X (\gg R) \) are added and \(V_C \) is the new control voltage.

By inspection,

\[V_{gs} = \frac{V_o + V_C}{2} \]

Substituting this, and \(V_o = V_{DS} \), in equation (17) gives,

\[R_o' = \frac{1}{K(V_C - 2V_{TM})} \]

\(R_o' \) is now effectively constant over a typical output range of several volts.

The third application involves the model in the calculation of the ‘1’ output level in single-polarity mosfet logic. Figure 18a) shows an NMOS logic-inverter stage in which \(Q_1 \) is the drive mosfet and \(Q_2 \) the load mosfet. Fig. 18b) is applicable for calculating \(V_o \) when \(Q_1 \) is passing a leakage current \(I_L \) in its ‘off’ state.

\[V_o = (V_{DD} - V_{TM} - V_o) \]

and,

\[I_L = KV_F^2 \]

Hence,

\[V_o = V_{DD} - V_{TM} - \left(\frac{I_L}{\sqrt{K}} \right) \]
The reduction in V_O from an ideal value V_{DD} results in a significantly smaller 'on' drive for a subsequent stage. This problem can be overcome by connecting the gate of Q_2 to a separate supply rail $V_{GG}(>V_{DD})$, as shown in Fig. 19a.

From the new equivalent circuit of Fig. 19b),

$$I_L = I_F = K(V_F^2 - V_G^2)$$

and,

$$V_F = (V_{GG} - V_{TH} - V_{DD})$$

Substituting $(V_{DS} + V_R)$ for V_F in equation (31), expanding and rearranging gives,

$$V_{DS}^2 + 2V_{DS}V_F - K = 0$$

If $2V_K > V_{DS}$, the first term in the equation is negligible in comparison with the second; with the result that,

$$V_{DS} = \frac{I_L}{2KV_K}$$

Thus,

$$V_{DS} = \frac{I_L}{2K(V_{GG} - V_{TH} - V_{DD})}$$

provided,

$$(V_{GG} - V_{TH} - V_{DD})^2 > \frac{I_L}{K}$$

Equations (35) and (36) provide selection criteria for V_{GG} in order to obtain a low value of V_{DS} and, hence, a value for V_O close to V_{DD}.

The inconvenience of using a second supply rail to minimise V_{DS} can be avoided by replacing Q_2 by a depletion-mode mosfet operating with $V_{GG}=0$ but that involves extra chip-processing steps because of the two different mosfet types used. The analysis is similar to that described above but for the depletion model of the mosfet the polarity of the battery V_{TH} in Fig. 2a) is reversed.

A nearer solution still is to use CMOS, but that may not be suitable for high voltage interface-circuit design.

References

Make sure of your copy of *Electronics World*

It can be difficult finding a copy of *Electronics World* at local newsagents. The number of magazines being published keeps increasing, which means that newsagents have less shelf space for the display of particular titles. Specialist magazines in particular get crowded out.

There's a solution to the problem. Most newsagents provide "shop-save" and/or home-delivery services. There's no charge for a shop save. You simply ask your newsagent to order a copy for you; it will be kept on one side each month ready for you to collect. Home-delivered copies are ordered in the same way, but generally incur a delivery charge.

A newsagent can order any magazine for you, whether or not the shop normally stocks it. If you buy your copies of *Electronics World* from a newsagent and want to make sure you get each issue, just ask at the counter.
Wireless designing
Compliments to Joe Carr on a great first installment of "Designing Radio Receivers" in the August issue. I would like to add some small insights into the architectural decision of whether to choose either low-side or high-side LO injection with a super-heterodyne receiver.

Depending on the distance between your IF and RF, the associated system bandwidth and the external RF environment that the receiver will be placed in, the incorrect choice of which ‘side’ to inject the LO signal on can be disastrous to the overall design from the consideration of the receiver’s spurious response. Interference from undesirable signals such as harmonics of the desired RF signal mixing with harmonics of the LO driving the receiver’s mixer(s) can cause spurious or unwanted frequencies to fall within the receiver’s IF band degrading receiver sensitivity.

Through the use of a power series expansion on the non-linear device’s transfer function, in this case a mixer, or a decent commercially produced spur search program, many of these un-desired receiver responses can be located (Intermodulation, Half-IF and Able-Baker to name a few).

Knowing the frequencies that these mixing products can produce, can often help determine what is the appropriate LO injection ‘side’ to choose for a particular radio system to reduce, and/or eliminate, these spurious responses from landing in the receiver’s IF band.

Looking forward to an exciting continuation of articles on receiver design from the ground up.

Jeffrey Kitchinos PE
Field Applications Engineer
Analog Devices
Hoffman Estates
Illinois

Pseudo-random bits
I have just bought the July 2001 issue and I was delighted to find the article by Ian Hickman titled "Pseudo-random bits". Ian’s article touches on another aspect of exclusive circuitry, so-called linear circuitry that illustrates the extraordinary diversity of applications for these gate circuits.

Ian says: "It is possible that feedback arrangements exist that can generate two different non-maximal length sequences. No doubt one of you will already have the answer.

LFSRs are digital-sequential circuits and can be analysed by the methods applicable to digital sequential circuits. The method is essentially the same for both asynchronous and synchronous circuits. Ian might be interested in an article on my web site that gives an example of the method of analysis and the results for a circuit that exhibits multiple loops. The link is: http://users.senet.com.au/~dwsmitl/relay.htm.

David Warren-Smith CEng MSc
Elizabeth Downs
South Australia

DAB debate
Dave Kimber’s editorial on DAB in the August issue makes interesting reading. I had always understood that the problem of co-channel interference between transmitters carrying the same multiplex on a given frequency – or strictly group of frequencies, since it is a spread spectrum system of sorts – would be addressed largely by the use of many, relatively low-power, transmitters so that those 75km away would have little chance of coming significantly into the equation. That situation may, therefore, improve (we can but hope...) when the installed base of transmitters grows to nearer the intended final density.

The business of spectrum re-use for different local multiplexes, however, seems more serious if listeners near the edge of each local station’s coverage area are to be able to hear the stations at all.

Phono preamp for the CD era
I do not object to opinions that differ from mine. I specifically object to Mr Self’s obnoxious manner in expressing that difference. I am certainly not the first to so fault Mr Self; he has an unenviable reputation in that regard, a fact of which I suspect he is well aware.

I quoted no noise performance specification at all, so I have no idea why he states that I quoted one of ~82dB re 5mV at 1kHz. I guess I would worry, too, about an amp better than noiseless, but I made no such quote and no such claim.

I was specifically referring to the amplification headroom, as it seemed Mr Self was doing. Now, apparently, he claims he really was talking about noise headroom. It’s certainly rough to hit a moving target. The noise issue has been run into the ground.

As a practical matter, the preamp’s noise performance is more than adequate. No one who has listened to it has been able to hear any noise unless their ear was placed immediately in front of the speaker. Even there, there was no more audible noise than heard coming from my Krell preamp.

The preamps that I have measured that used the single-stage topology did not better than 0.4dB maximum deviation from the RIAA curve, compared with 0.1dB for my design. I did a little better than this when I briefly played around with such designs, but it seemed that they were noticeably more sensitive to component variations.

To claim an op amp-based design is simpler than my discrete design ignores the internal circuit complexity of the op amp. From the designer’s standpoint, the op amp is certainly more straightforward, but the number of devices in the signal path is unlikely to be any less and is probably greater. I actually have no qualms about op amp-based designs, but many people do. I designed my preamp with those kind of potential objections in mind.

Dr Norman Thagard
Via e-mail

In response to Mr Thagard’s letters in the May and September issues, I am very sorry that he has taken such offence at my brief enquiry as to why he designed his preamplifier the way he did. It is, I am afraid, unrealistic to publish a design in a journal like Electronics World and expect it to receive uncritical adulation.
When I published my last preamplifier design, I positively invited people to say if they could do better; the idea is to foster healthy competition rather than aggrieved correspondence.

The implication of Mr Thagard’s reply in May is that his PSpice simulations are superior to my mathematical model. This model is a spreadsheet based on the philosophy of NatSem's Application Note AN-104. Both are useful, and both are inferior to measuring the real thing.

I therefore fired-up both techniques and compared the results with real-life measurements of my 5534 single-stage design as used in Preamp '96; see EW July 1996. See Table below.

The two theoretical methods differ by 1.48dB in their noise output. I suggest that this is due to differences in the input noise specs for the 5534. The parameters for the mathematical modelling are taken from the manufacturer’s data sheet, while the PSpice model comes from the TI macromodel library and is not in a format that allows direct comparison of e_n and i_n. The real-life measurement is in the middle of the two theoretical results, which I think demonstrates we are not far from the truth.

Note that extracting noise results from PSpice—in my version at least—is not at all straightforward, requiring a rather complex macro.

The comparison was done over the bandwidth 400-22kHz because in practical noise measurements high-pass filtering is needed to exclude the magnetic hum pickup of a real MM cartridge.

In each case, removing the cartridge resistance causes the noise to drop by less than 0.4dB, so it is clearly making only a minor contribution.

Mr Thagard quotes a noise performance of -82dB re 5mV in (1kHz), which according to my calculations and simulations, represents a noise figure of -0.4dB, i.e. the system is quieter than one with a noiseless amplifier. This is a little worrying.

To return to the noise headroom issue, in his last letter Mr Thagard says that if the second stage of a two-stage RIAA preamp is given enough gain, there is no extra headroom limitation in the first stage. This is of course true, but neglects the point that the second stage will then generate considerably more noise, which will not be low-pass filtered by the RIAA HF roll-off.

The two-stage philosophy means that you must amplify, attenuate, then amplify again; this introduces the unwelcome headroom/noise trade-offs. The one-stage version simply amplifies as much as required and no more. Mr Thagard also says that a two-stage preamp is “much more likely to accurately track the RIAA curve than the single-stage design”. I cannot see why this should be so; after all, we are only setting up a few time-constants. It is true this requires more calculation in the one-stage case, but the mathematics was clearly set out by Stanley Lipshitz in 1979. Possibly I should have described the algorithm fully in my previous articles.

I am still uneasy about the philosophy of this design, which uses considerable complexity but underperforms a twenty-year-old op-amp. It may be good enough for listening to, as Mr Thagard insists, but I’m afraid that it seems too complicated to me. If you can make something better, simpler, and cheaper at the same time, then you don’t call that process overdesign.

Doug Self
London

| Table: Investigation of the 5534 op-amp. |
|------------------|------------------|------------------|
| Noise out | Noise out | Noise ref 5mV/n |
| MathModel | Full model | Full model |
| -93.34 dBu | -93.73 dBu | -79.40 dB |
| -94.86 dBu | -92.15 dBu | -77.92 dB |
| Measured | -82.3 dBu | -78.4 dB |
| Difference | 0.39 dB | 0.29 dB |
| $R_{eq}=0$ | | |

DISTANCE LEARNING SHORT COURSES with BTEC CERTIFICATION

Analogue and Digital Electronics, Fibre Optics, Fault Diagnosis, Mechanics, Mathematics and Programmable Logic Controllers

- Suitable for beginners and those wishing to update their knowledge and practical skills
- Courses are very practical and delivered as self-contained kits
- No travelling or college attendance
- Learning is at your own pace
- Each course can stand alone or be part of a modular study programme
- Tutor supported and BTEC certified

For information contact:
NCT Ltd., PO. Box 11
Wendover, Bucks HP22 6XA
Telephone: 01296 624270; Fax: 01296 625299
Web: http://www.nct.ltd.uk
Transceiver for DS3, E3, STS-1

TDK Semiconductor has expanded its DS3/E3/STS-1 product family with multi-channel line interface units. The three devices operate with data rates of 34Mbit/s (DS3), 45Mbit/s (E3) and 51Mbit/s (STS-1). Primary product applications for the multi-ports include DSLAMs, T3/E3 digital multiplexers, SONET Add/Drop multiplexers, PDH equipment, DS3-to-fibre optic and microwave modems, and ATM WAN access for routers and switches. The 78BP702L (dual port), 78P703L (triple port) and 78P704L (quad port), are extensions of the 78P7020L single-chip IC. Each of the multi-ports is a line interface transceiver for E3, DS3 and STS-1 applications.

TDK Semiconductor
Tel: 00 714 508 98821
www.tdksemiconductor.co.uk

Octal voice codec

IDT has announced an octal codec capable of processing eight individual analogue voice channels. The high channel count is the highest density available, said IDT, making it ideally suited for communications equipment in the enterprise/carrier-class network, wireless infrastructure and access network markets. Applications include voice routers, voice-over-Internet-protocol gateways, multi-service access switches, residential integrated access devices and digital loop carrier voice switches. Also included in the family are two quad codecs. All three devices include AC impedance matching, tone generation, transhybrid balance, frequency response correction, gain setting, and selectable microprocessor interface or general communications interface. Integrating these features within the CODEC, rather than in an external Asic or digital serial port, gives the designer flexibility, said IDT. It also reduces parts, saves board space and cuts costs.

IDT
Tel: 01372 363339
www.idt.com

SMT power inductor has low DC resistance

Pulse has announced two surface mount power inductors for use with Volterra’s low-voltage power delivery semiconductors. With a profile height of 0.125in. (3.17mm), the SMT power inductors are designed for high-current, low-voltage, low-profile DC-to-DC power converter applications which use latest generation microprocessors. The low DC resistance, which offers improved circuit efficiency, and the high-current capability, is the result of the squared-toroid core design. The package used by Pulse for these devices is a flat-top, self-leaded design with a fixed clip, said to be ideal for easy pick-and-place applications and higher current ratings.

Pulse
Tel: 01483 401700
www.pulseeng.com

Low-power Bluetooth transceiver

Specialist distributor Telecom Design Communications stocks a Bluetooth RF transceiver from Conexant. The CX72303 meets Bluetooth class 2 and 3 standards for the version 1.1 specification of the wireless system. The single-chip transceiver has a voltage supply of 1.8V, a 14mA maximum transmit (Tx) and receive (Rx) current consumption and a one to ten metre operating range. RF sensitivity is -86dB. Integrated within the chip are a voltage-controlled oscillator, synthesiser, power amplifier, and low-noise amplifier.

TDC
Tel: 01256 332800
www.tdc.co.uk

Credit card-sized AC/DC supply

Measuring less than the size of a

Twin-die flash microcontroller

Hitachi’s latest flash microcontroller uses a multi-chip package to add on-chip EEPROM to the device. Based on the H8/300H CPU core, the H8/3664N is shipped with 512 bytes of embedded EEPROM in a second die within the package. The device offers 16-bit performance and a range of peripherals. The addition of on-chip EEPROM makes the device suitable for applications that require non-volatile storage of initialisation or calibration information, such as meters or motion control systems, security systems and communication systems where passwords or other addressing information must be stored. In addition to the embedded EEPROM, the H8/3664N also has 32kBbytes of on-chip single supply flash memory. This allows reprogramming of the memory without any additional circuitry and provides for end of line production programming, said the supplier. The on-chip I²C interface makes the device appropriate for many consumer applications, such as radios and stereos, where I²C is de facto communications standard, and set-top boxes, where it can be used for handling housekeeping and I/O functions. Other peripherals include two 8-bit timers, a high speed USART, eight channels of 10-bit a-d converter and 37 I/O pins. Samples are available in a 64-pin Quad Flat Pack package.

Hitachi
Tel: 01628 585 163
www.global.hitachi.com
credit card, the new medically approved GSM15 from Condor DC Power Supplies will suit medical equipment applications, such as monitors or pumps, where an ultra small power supply is needed. The family of 15W AC-to-DC supplies is available with 5, 12, 15, 24 and 28V outputs and a wide input range of from 90 to 264V AC. Leakage current under normal conditions Class I grounding is 25µA with Class II grounding at 132V AC and rising to 84µA with Class I grounding at 264V AC. EMC meets TN6 1000 level 3 and conducted emissions meet EN55011. It will achieve 15W with convection cooling and 18W is possible with 150LFM of air. It is protected against short circuit and overload with an on-board AC line fuse as standard. Condor Tel: 01769 540744 www.condorpower.com

Electro-optic moulded interconnectors

CPE-Europe is offering a moulded interconnect technology that is claimed to simplify the assembly process for electro-optics, electromechanical modules and sensors. It is based on moulded (plastic or ceramic) substrates that create electro-mechanical features. By selectively creating copper tracks (down to 50µm track or gap) on the three-dimensional form, the substrate can simplify assembly and increase reliability of the electronic functions. This new service is now available in the UK and Europe through CPE-Europe.

CPE-Europe
Tel: 01604 620215
www.cpe-europe.com

Very-low-power static RAM

The BS616LV4010 low-power 4Mbit RAM manufactured by BSI is available from Memotech. Available in either 216k or 512k by 8 formats, the device is fabricated using a six-transistor memory cell design. Its data retention mode is designed to allow data to remain valid at a minimum power supply voltage of 1.5V. Supplied in TSOP II or BGA packaging styles, the part's Vcc range is quoted as 2.7 to 3.6V, with a typical standby current of just 1µA. The SRAM is available in commercial, 0 to +70°C, or industrial -40 to +85°C, temperature ranges. A 5V version of this SRAM is also available.

Memotech
Tel: 01223 370060
www.memotech.co.uk

Zero-profile solderless socket

Tycor Electronics is offering the Holite socket (part of the August brand), which is designed for high-density systems and standard or non-standard devices with zero profile above the PCB. The sockets press in to the existing plated through hole, requiring no soldering. To address thermal issues associated with certain components, it is designed to maximise heat dissipation around the device. The sockets use a precision-machined four-finger contact.

Tycor Electronics
Tel: 0208 954 2356
www.cpe-europe.com

Highly-integrated transmit IC for dual-band cellular phones

Maxim Integrated Products has introduced a baseband-to-power amplifier complete dual-band cellular phone transmit ICs. They are designed for dual-band, dual-mode, and single-mode NCDMA, TDMA, G11T, and W-CDMA cellular phones. The MAX2361 series has a high integration level, which dramatically reduces component count and size, said Maxim. Maxim Tel: 0118 930 3368 www.maxim-ic.com

Data acquisition for use under Matlab

Amplicon Liveline, distributor for UEI PowerDAQ products in the UK, is offering a Matlab driver for its PowerDAQ family of acquisition and control plug-in boards for the PCI-bus. Matlab has a good reputation for data-analysis among scientists and engineers. To assist users

DWDM network analyser

Telecom testing specialist Conformance Standards Ltd (CSL) is offering a network analyser for dense wavelength division multiplexing (DWDM) from Digital Lightwave. The DCA-425 is a portable system for installation and maintenance of DWDM systems. It combines the functions of an optical power meter, spectrum analyser and bit-error-rate analyser. Features include measurement of optical channel signal to noise (QSNR) and protocol analysis of DWDM signals at STM-64 rates. It can monitor four fibre inputs with wavelength spacing as low as 50GHz.

CSL
Tel: 01452 385025
www.cslcomms.com

NEWPRODUCTS

Please quote Electronics World when seeking further information
working with real-world data rather than simulations. The MathWorks developed the Data Acquisition Toolbox, which interfaces with data acquisition and control hardware. Users can create sophisticated applications based on M-files, complete with graphical-user interfaces, as well as conduct experiments directly from the Matlab command line. This combination can be used to automate the process of collecting data, performing analysis, and either display results or create a response signal and send it out through the same I/O board.

Amplicon
Tel: 01273 570220
www.amplicon.co.uk

Low-noise precision voltage references
Analog Devices has introduced a family of low-noise precision voltage references that it claims achieve the lowest noise performance for a given supply current in 5V systems. The AD824 family is based on the firm’s XFET technology, designed specifically for low noise, linear temperature coefficient performance and to solve many of the inherent problems that limit the use of band-gap and buried-zener references. These parts, said Analog Devices, achieve five times better noise performance than a band-gap reference at the same supply current. Typical applications would include digital voltmeters, precision instrumentation, high-resolution data acquisition systems, industrial process control systems and optical network control circuits. The AD824 family has four members, each with noise of 1.75μV pk-to-pk at a supply current of 0.6μA. Output voltages 2.048, 2.5, 3.00 and 5.00V. Temperature coefficient is 3ppm/°C. Packages are either 8-pin small outline or mini-SOIC and the devices are specified over the industrial temperature range. A-grade devices cost $2.25 in 5000 units.

Amplicon
Tel: 01273 570220
www.amplicon.co.uk

Single-chip, two-channel transceiver
Exar Corporation has announced the XRT73L02, a standards-compliant 3.3V, two-channel transceiver line interface unit for E3, DS3, and STS-1 applications. This is the final device in Exar’s transceiver product family, which includes single, dual, triple and quad-channel devices. It is aimed at multi-port E3/DS3/STS-1 applications such as digital cross-connect systems, ATM switches, routers, and add/drop multiplexers. The device includes equaliser and clock recovery circuits allowing reliable use over a wide range of cable lengths. On-chip transmit clock duty cycle correction guarantees pulse template compliance, said the firm. Each channel can be configured independently to run at either of the three data rates via either hard wire connections or a 4-pin serial interface. Over coaxial cable data rates range from 34.368Mbit/s using E3, through 44.736Mbit/s of DS3, to 51.84Mbit/s using STS-1. The 80-pin TQFP operates at the industrial temperature range of -40 to 85°C.

Exar Corporation
Tel: 0033 49364 775
www.exar.com

Co-planar board mating interfaces
Samtec has a range of interconnects allowing printed circuit boards to be mated in the same plane. On 1.27mm pitch, headers and sockets are available for a variety of applications. Surface mount and through-hole headers and shrouded headers mate with right-angle sockets with pin outs on 1.27 mm or 0.64mm for high density. For 2mm pitch applications, surface mount (MMT & MMS Series) and through-hole (TMM, TMMH & CLT Series) headers and sockets are available for parallel board connection. Surface mount and through-hole shrouded headers (TSH Series) are available. 2.54mm pitch surface mount co-planar board mating is available (TSM/SSM Series) as well as through-hole (TSTW/BBCS Series) applications. Surface mount and through-hole shrouded headers (TSSH Series) are available for blind mating. For micro pitch applications, Samtec also has a mini-edge card system (MEC) on Imm pitch, and for 0.8mm pitch applications, high speed edge-mount connectors (QTE/QSE Series) are also available.

Samtec
Tel: 01236 727113
www.samtec.com

LCD backlight inverters
BF Group has launched a range of LCD backlight inverters for driving monochrome STN, passive colour STN and active-matrix TFT LCD. The inverters are suitable for consumer, office automation, industrial, medical markets and POSI POI/Kiosk applications. Aimed at single-tube, dual-tube and quadruple-tube CCFL backlight displays, the display inverters can cater for a wide range of tube current, drive frequency, running voltage and kick-off voltage parameters. The inverters are fitted with either a simple voltage-controlled dimming system, or the more complex pulse-width modulation method that allows dimming ratios of up to 2000:1 to be achieved. Custom designs can also be carried out to meet any CCFL backlighting system requirement for use in an LCD, said the firm.

BF Group
Tel: 01444 413777
www.bfgroup.co.uk

Please quote Electronics World when seeking further information
Detection switch with 1.4mm profile

Matsushita Electric Works' latest detection switch measures 3.4 by 3.5 by 1.4mm. The ABC2 switch's coil spring and contact have been integrated to provide contact force and reliability. Contacts are gold-coated for reliability. The switch can be operated from both horizontal and vertical directions. Mounting can either be conventional surface mount or the switch body can be recessed into the PCB for a low profile. In addition, the device's 1.0mm over-travel and positioning boss is intended to simplify installation.

Matsushita
Tel: 01908 231555
www.memotech.co.uk

VCXOs for WDM

NDK Europe has unveiled a series of voltage-controlled crystal oscillators (VCXO) for wavelength division multiplexing (WDM). The devices have a frequency range of 50 to 780MHz, with frequency drift of either 20, 50 or 100ppm.

NDK Europe
Tel: 020 8930 8344
www.ndk.com

Solderless power connector

Molex's line of Mini-Fit-CPI connectors are dual row, vertical headers which feature a compliant pin interface with 'eye of the needle' press-fit pins that require no soldering. They are suitable for high current requirements in telecoms and networking equipment, including backplanes. The connectors feature phosphor bronze terminals that can handle up to 8A per terminal depending on circuit size and will not twist in PC board holes, said the supplier. They can be applied to PC board thicknesses of 0.094in and up. Blind mating capability can simplify wire-to-board and board-to-board assembly. Available with tin or gold-plated contacts and with 4 to 24 circuits, these connectors are intermateable with Molex's Mini-Fit, Jr and Mini-Fit BMI receptacles.

Molex
Tel: 01252 720751
www.molex.com

Side-actuated SM switch

The latest surface mount side-actuated tactile switch from ITT Industries, Cannon measures 4.6 by 3.5 by 1.42mm. Available in a single-pole, single-throw configuration with normally-open contact, the KMS switch features a sharp tactile feedback. Typical applications are likely to be mobile phones, pagers, keyless entry systems and automotive electronics. The switch has a large hard plastic actuator, robust construction, four solder terminals and a ground terminal on the switch cage. Technical specifications include a maximum contact voltage of 30V, minimum current ratings of 1mA/50mA, and bounce of less than 3ms.

ITT Industries
Tel: 0033 60245151
www.ittcannon.com

Resistor array integrates eight devices into one package

The MNR18 chip-resistor array from Rohm integrates eight resistors with values up to 1MΩ...
null
NEW PRODUCTS

Please quote Electronics World when seeking further information

2.4GHz spread-spectrum radio transceiver

AeroComm has released its line of LX 2.4GHz frequency-hopping spread-spectrum (FHSS) transceivers, available in Europe from Low Power Radio Solutions. Unlike radios designed from chip sets, LX transceivers are agency-approved, ready-to-use modules designed for integration into larger volume OEM products. There are also RF development tools and support. Manufacturers can choose short-range, low power consumption versions for battery-powered or piconet applications, and higher power radios coupled with repeaters for miles of range. All LX transceivers have identical dimensions, connectors and software requirements, and so modules are interchangeable for changing design needs. The modules support RF data rates up to 244kbit/s. The range's power output starts at 3mW for local uses (within 15m), and reaches 150mW for kilometres of range in outdoor applications or for large industrial facilities. For longer distances, or when obstacles block the communication path, a repeater can be employed to extend range. All transceivers are available with integral strip dipole antennas for applications not permitting external antennas. Or, radios with antenna connectors are available for use with a variety of agency external antennas.

Low Power Radio Solutions
Tel: 01993 709418
www.iprs.co.uk

MSOP-packaged DSL driver

The LT1969 is a customer premises equipment line driver for ADSL/VDSL/xDSL applications. It consists of a dual high output power (±300mA), low distortion (THD = -72dBc at 1MHz) high-speed (gain bandwidth product=700MHz) op-amp that features adjustable supply current and two-bit digital power control. Packaged in a low profile (1mm thick) thermally enhanced MSOP 10-pin package, the LT1969 occupies only 15mm² of board area. The LT1969's adjustable supply current allows a designer to trade off power consumption versus output power and distortion for optimum DSL line driver performance, said the supplier. The 2-bit digital programmability allows the LT 1969 to be programmed for up to four driver conditions.

Linear Technology
Tel: 01276 677676
www.linear-tech.com

Dual-mode RF chip set

Zarlink Semiconductor (formerly Mitel Semiconductor) has a new RF chip set for cellular hand sets operating in dual-mode TDMA/AMPS networks that are installed primarily in North America. The MGCM02 and MGCT04 devices have a complete intermediate frequency receiver, baseband interface and transmitter in a two-chip solution. The MGCM02 is an IF receiver and baseband interface chip. The device integrates Zarlink's existing MGCG01 IF receiver and MGCM01 baseband interface chips into a single 49-pin 7 by 7mm ball-grid array (BGA) package. The MGCT04 transmit circuit provides the transmit function in dual-band, dual-mode TDMA/AMPS and CDMA wide output swing, 14.3V with +6V supplies into a 25Ω load. It allows the device to operate on low voltage supplies, either ±5V(10V) or ±6V(12V).

Zarlink Semiconductor
Tel: 01793 518128
www.zarlink.com

Snap-in Al capacitors

BCcomponents has added to its family of snap-in aluminium electrolytic capacitors in the shape of the 197 PGP-SI, a general-purpose power capacitor targeting consumer applications such as audio-visual equipment, domestic appliances and PCs. The capacitance range is 56 to 1800μF, and its voltage range is 160 to 450V, depending on case size. The category temperature range is -40 to +85°C and the product's load life and useful life at 85°C is 2000 hours, while its useful life at 40°C is 25 000 hours.

BCcomponents
Tel: 0031 40259 0724
www.bccomponents
ERVICING
Y
OUR
COMPLETE
PROTOTYPE
NEED

Prototypes at a fraction of the cost
Industry standard quality
Follow up series runs
CAM / CAD consulting
Fr4 1.6mm, 35µm Cu

= £ 29.89*

FREE

0800-389 8560

Simply send your files and order ONLINE:
WWW.PCB-POOL.COM

CIRCLE NO.117 ON REPLY CARD

Raedek Electronics Co.
Unit 12, Avenue Fields Industrial Estate
Stratford Upon Avon CV37 0HT, United Kingdom
Telephone: +44 (0) 1789 209294 Fax: +44 (0) 1789 295757
e-mail: sales@raedek.com www.raedek.com

Avionics
Broadcast
Industrial
Marine
Medical
Military
Telecoms
etc . . .

Electron Tubes • R.F. Power Transistors
Integrated Circuits • Magnetrons
Cathode Ray Tubes • Microwave Diodes
Thyrists • Tube Sockets

Many 1000s of current and obsolete manufactured devices in stock

CIRCLE NO.118 ON REPLY CARD

INTERNATIONAL FAIR OF TELECOMMUNICATIONS,
INFORMATION TECHNOLOGY AND ELECTRONICS

23rd – 26th April 2002, Poznań, POLAND

Be part of Poland’s largest electronics exhibition

Scope
Technological equipment for the electronics industry,
electronics laboratories and measuring instruments
Computer systems
Computer software
Computer networks
Telecommunications
Multimedia, audio-visual systems

Exhibition application deadline: 29th November 2001

CIRCLE NO.119 ON REPLY CARD
Integrated colour sensors

From Pacer are the new range of integrated colour sensors from Texas Advanced Optoelectronic Solutions (TAOS). Designated the TSL X257 series, the new devices consist of three individual optoelectronic sensors that provide on-board conditioning plus colour filters. Each of the three new colour sensors is designed to detect one of three primary colours: red, blue or green. The TSLR257 detects red light; the TSLB257 blue light and the TSLG257 detects green light. All three TAOS colour sensors are built on the TAOS light-to-voltage converter platform with a colour filter deposited on the detector chip. Colour identification applications for the sensors include CRT-screen test and set up, colour tone scanning applications on printed materials, paints and cosmetics, process control, medical diagnostics such as body fluid analysis as well as dental, fabric and fashion applications. Colour filtering applications include fluorescence and mark detection, optical band pass filters as well as medical diagnostic applications. The devices are mounted in side looking plastic packages. Future devices will include linear array colour detectors and single packaged devices with three primary colour detection plus reference photodiode.

Pacer
Tel: 0118 964 5280
www.pacer.co.uk

DC-to-DC power modules

Lambda has unveiled its range of PG-10 DC-to-DC surface-mounted power modules. Using synchronous rectifier circuit technology, the PG-10 achieves 88 per cent efficiency on the 5V output model. Measuring 28.0 by 8.7 by 37.7mm, the module is aimed at next generation telecom infrastructure applications and similar high-speed digital systems. The PG-10 offers a choice of output voltages selectable from a range of 1.2V to 5V with power output ratings from 4.2W to 10W. The DC-to-DC converter supports parallel operation and features output alarm signal and on/off control. By cutting down waste heat at source the PG-10 only requires convection cooling, eliminating the need for a heat sink. The power module has full overcurrent and overvoltage protection and complies with safety standards including UL1950 and CSA950. The device is designed to operate over the temperature range of -40°C to 85°C.

Lambda
Tel: 01271 856600
www.lambda-gb.com

How to pay

(Build and Upgrade Your Own PC) paperback

☑ I enclose a cheque/bank draft for £________ (payable to Cumulus Business Media)

Please charge my credit/charge card
☑ Mastercard ☑ American Express ☑ Visa ☑ Diners Club

Credit Card No: __________ Expiry Date: __________

Signature of Cardholder: ________

Cardholder’s statement address: (please use capitals)

Name: ____________________________

Address: __________________________

Post Code: __________ Tel: __________

Post your completed order form to:-
Jackie Lowe, Cumulus Business Media,
Anne Boleyn House, 9-13 Ewell Road, Cheam,
Surrey, SM3 8BZ

Fax your completed order form to 020 8643 8952

UK Price: £22.50 Europe £24.00 ROW £26.00

Price includes delivery
Features
10Hz - 2.5GHz frequency
3 input ranges
8 digit LCD display
Auto power off
Period measurement
Data hold and relative
Memory, min/max/average
4 gate times per range
Optional rf antenna available

Vann Draper is offering the FC2500 2.5GHz frequency counter to readers of Electronics World at a special discount. The FC2500 normally sells at an already low price of £116.33 but is available to readers for only £99 fully inclusive of VAT and delivery.

An optional telescopic antenna (AT-20) for rf measurement is available for just £6.95 fully inclusive.

The FC2500 is supplied complete with operating instructions and a 12 month guarantee.

Date sheets for all products are published on our web site at www.vanndraper.co.uk

To order your counter simply post the coupon to:

Vann Draper Electronics Ltd, Stenson House, Stenson, Derby DE73 1HL
Or Tel: 01283 704706 Fax: 01283 704707 Email: sales@vanndraper.co.uk

Use this coupon for your order

Please supply me:

FC2500 freq counter(s) at £99.00 inc VAT and del

AT-20 antenna(s) at £6.95 inc VAT and del

Name

Address

Tel No

Total £

Cheques payable to Vann Draper Electronics Ltd or debit my Visa, Mastercard or Switch card

Card type

Card No

Expire date

Signature

Overseas readers can still obtain this discount but carriage charges vary according to country. Please telephone or fax

{\text{CIRCLE NO.121 ON REPLY CARD}}
NEWPRODUCTS

Please quote Electronics World when seeking further information

Spectrum analyser gets remote control
IFR Systems' 2399 portable spectrum analyser is now available with remote control and diagnostics capability. Introduced in January of this year, the analyser is used in a wide range of applications including mobile communication service workshops, base station installation, repair and maintenance plus broadcast TV and education. Remote monitoring is made possible with Easy Span, a software program developed by IFR. Test and field engineers using the 2399 can easily access instruments located anywhere in the world via a direct connection or through a dial-up modem using RS-232. This capability means the 2399 can be used by anyone needing remote operation and data collection to perform remote diagnostics. Using RS-232 as the communications medium simplifies the operation and is less expensive than using the GPIB protocol and PCMCIA cards. The 2399 covers a frequency range of 9kHz to 2.9GHz. New features include semi-automated measurement capabilities, a fast processor, large memory capacity and TFT LCD display with a 640 by 480 pixel active display.
IFR Systems
Tel: 01438 772087
www.ifrsys.com

Small surface mount crystals
Advanced Crystal Technology has further reduced the size of its surface-mount crystals with the ACT200. Measuring 8.0 by 3.8 by 2.5mm, the 32.768kHz ACT200 is compatible with existing PCBs, yet occupies 50 per cent less volume. Suitable for many personal, portable domestic and mobile applications, the ACT200 also requires very low drive level at ±300µW maximum. Frequency tolerance to ±5ppm, combined with low frequency temperature coefficient at -0.034ppm/°C, create a stable reference throughout the industrial temperature range -40°C to +85°C. By retaining the footprint of previous generation 32.768kHz watch crystals, the ACT200 is drop in compatible with existing designs, while the reduced dimensions allow designers to save weight and space. The ACT200 is suitable for automatic placement from tape and reel. It is able to withstand peak soldering temperature up to 260°C, and therefore compatible with the majority of reflow profiles.
ACT
Tel: 0118 979 1238
www.advancecrystatechnology.com

Quad-output dc-to-dc converters
Power-One announces its new IMX35 Series of quad-output DC-to-DC converters. The IMX35 is ideal for use in stationary or mobile applications, including use in the areas of telecom, datacom, transportation, and industrial automation. The design is based upon a flyback converter topology, using all surface-mount components and planar magnetics.
There are six IMX35 quad output models available. Models with four separate, electrically-isolated outputs of (5V @ 1.35A ea.), (12V @ 0.65A ea.), or (15V @ 0.55A ea.), have input voltage ranges of 9-36V DC. Models with an 18-75V DC input range are available with outputs of (5V @ 1.4A ea.), (12V @ 0.7A ea.), or (15V @ 0.6A ea.). All outputs can be parallel and series connected providing substantial flexibility, giving output variants from 5 up to 60V DC. Other input ranges as well as double and triple output voltages are also available.
Other IMX35 features include industry-standard pin out, fixed-frequency operation, input voltage enable/shutdown, overvoltage and short circuit protection, adjustable output voltages (80-105% of nominal), and thermal protection. IMX35’s are available in either an open-frame 2.87in x 1.88in x 0.35in (72.8mm x 47.8mm x 9.0mm) package or in a rugged full-case version with 3.00in x 2.50in x 0.41in (76.2mm x 63.5mm x 10.5mm) dimensions.
The IMX35 also contains input and output filtering to provide immunity to EMC as well as exceptionally low ripple and noise. The IMX35 with an input voltage range of 18-75V DC is priced at $91.00 in quantities of 100. IMX35 design complies with international safety standards of IEC/EN 60950, UL 60950, and CAN/CSA C22.2 No. 950-95.
Power One
Tel: 01425 474 752
www.power-one.com
Pandora's drums

Unique and atmospheric music recorded in the early 1900s – the days before 78s.

Use this coupon to order your copy of Pandora's drums

<table>
<thead>
<tr>
<th>Track</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Washington Post March, Band, 1909</td>
</tr>
<tr>
<td>2</td>
<td>Good Old Summertime, The American Quartet 1904</td>
</tr>
<tr>
<td>3</td>
<td>Marriage Bells, Bells & xylophone duet, Burckhardt & Daab with orchestra, 1913</td>
</tr>
<tr>
<td>4</td>
<td>The Volunteer Organist, Peter Dawson, 1913</td>
</tr>
<tr>
<td>5</td>
<td>Dialogue For Three, Flute, Oboe and Clarinet, 1913</td>
</tr>
<tr>
<td>6</td>
<td>The Toymaker's Dream, Foxtrot, vocal, B.A. Rolfe and his orchestra, 1929</td>
</tr>
<tr>
<td>7</td>
<td>As I Sat Upon My Dear Old Mother's Knee, Will Oakland, 1913</td>
</tr>
<tr>
<td>8</td>
<td>Light As A Feather, Bells solo, Charles Daab with orchestra, 1912</td>
</tr>
<tr>
<td>9</td>
<td>On Her Pic-Pic-Piccolo. Billy Williams, 1913</td>
</tr>
<tr>
<td>10</td>
<td>Polka Des English's, Artist unknown, 1900</td>
</tr>
<tr>
<td>11</td>
<td>Somebody's Coming To My House, Walter Van Brunt, 1913</td>
</tr>
<tr>
<td>12</td>
<td>Bonny Scotland Medley, Xylophone solo, Charles Daab with orchestra, 1914</td>
</tr>
<tr>
<td>13</td>
<td>Doin' the Raccoon, Billy Murray, 1929</td>
</tr>
<tr>
<td>14</td>
<td>Luce Mia! Francesco Daddi, 1913</td>
</tr>
<tr>
<td>15</td>
<td>The Olio Minstrel, 2nd part, 1913</td>
</tr>
<tr>
<td>16</td>
<td>Peg O' My Heart, Walter Van Brunt, 1913</td>
</tr>
<tr>
<td>17</td>
<td>Auf Dem Mississippi, Johann Strauss orchestra, 1913</td>
</tr>
<tr>
<td>18</td>
<td>I'm Looking For A Sweetheart And I Think You'll Do, Ada Jones & Billy Murray, 1913</td>
</tr>
<tr>
<td>19</td>
<td>intermezzo, Violin solo, Stroud Haxton, 1910</td>
</tr>
<tr>
<td>20</td>
<td>A Juanita, Abrego and Picazo, 1913</td>
</tr>
<tr>
<td>21</td>
<td>All Alone, Ada Jones, 1911</td>
</tr>
</tbody>
</table>

Total playing time 72.09

21 tracks – 72 minutes of music.

Published by Electronics World. All recordings reproduced by Joe Pengelly.
Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem – provided it has a degree of ingenuity.

Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too – provided you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.

Don’t forget to say why you think your idea is worthy.

Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best – but please label the disk clearly.

Send your ideas to: Jackie Lowe, Cumulus Business Media, Anne Boleyn House, 9-13 Ewell Road, Cheam, Surrey SM3 8BZ

Single-ended MOSFET Class-A amplifier

shown here is a single-ended MOSFET design with clean class-A sound. As an experimental prototype, the circuit was only designed to provide about 3W of output power, but it can be scaled up to any reasonable output power, the main practical limitation being the heat dissipation.

Unlike the more usual three-stage designs, this amplifier only uses two stages. P-channel MOSFETs Q1-Q2 form a differential amplifier that provides fast, symmetrical drive to the output MOSFET via current mirror. Q3-Q4.

Transistors Q1 and Q2 were selected from a batch of about 20 devices for similar gate threshold voltages. The yield is usually at least two pairs having less than 5% difference.

This differential amplifier is operated at a relatively high tail current, around 30mA, for good linearity and speed. Transistors Q6 and Q5 form a constant-current generator setting the drain current of the output MOSFET, Q5, to about an amp.

Note that the less usual shunt feedback topology is used. In this way, the problems associated with the limited CMRR due to the difference in the characteristics of Q1 and Q2 can be completely eliminated. As a result, distortion is greatly reduced.

One major benefit of having only two stages is that the amplifier is extremely stable. The square-wave response looks virtually identical when the load is changed from 8Ω resistive to 1F capacitive loading. There is no sign of ringing or other instability.

As a result of using the shunt-feedback topology, the amplifier inverts. This, if necessary, can be compensated for by driving it from an inverting pre-amplifier.

Laslo Gaspar
Biggleswade
Bedfordshire

Class-A power amplifier has only two stages. Output power is 3W, but there’s no reason why you can’t scale up the design.
Smoke alarm interrupter

Using just eight components, this simple circuit could save lives. Batteries are frequently removed from smoke alarms in kitchens to stop alarms caused by cooking fumes. However, the absence of an alarm can have tragic consequences in the event of a genuine emergency.

The circuit supplies power to the alarm via the normally closed contacts of relay RL. Pressing the alarm interrupt push button switch S applies 9V to the relay coil, the other end of which is held initially near 0V by the integrator Tr_1 and C.

With the relay energised, its contacts change over, disconnecting the smoke alarm and latching the relay after S is released. The ‘Alarm Disabled’ warning LED lights and the voltage across the relay coil decreases as C charges.

After approximately eight minutes – a pause generally long enough for the fumes to disperse – the relay drops out. Most smoke alarms will then beep to indicate the application of power.

After the relay has dropped out, C discharges via RL, R_1, D_1 and D_2. When the LED extinguishes, discharge continues via R_2. Note that the interrupt period is a function of four parameters: battery voltage, the value of C, the relay drop-out voltage and the gain of Tr_1. Consequently, the quoted eight minutes is a nominal figure.

The circuit consumes power only during the interrupt period; the average current is less than 9mA.

Keith Cummins
Chale Green
Isle of Wight
F63

*If you modify a smoke alarm, or use it in a manner other than that prescribed by its maker, you may void your fire insurance and also any maker guarantees and approvals associated with the alarm. But I agree with Keith that adding this circuit is a lot more sensible than removing the battery! Ed

THE OSCILLOSCOPE IS MOVING ON...

Features:

- A fraction of the cost of benchtop scopes
- Save multiple setups, for ease of use
- Save, print and e-mail your traces
- FREE software and upgrades
- Automated measurements
- Large colour displays
- Scope, spectrum analyser & meter functions

Ask for a FREE catalogue and demo software, or visit:

www.picotech.com

...DON’T GET LEFT BEHIND

Tel:+44 (0) 1480 396395, Fax:+44 (0) 1480 396296, E-mail: post@picotech.com

November 2001 ELECTRONICS WORLD
One-chip scope calibrator

This simple circuit uses a single 4066 CMOS quad switch to generate a 1kHz square wave with precise amplitude. CMOS switches A and B form an astable multivibrator running at 1kHz and having complimentary outputs. The outputs drive two switches, C and D, which are connected across a precise voltage set by RV1. The square wave output is taken from the centre point between switches C and D.

The voltage at the 'test point' can be set, for example, to 1.00V using a conventional digital multimeter. Providing that the output load is greater than 100kΩ, most scopes have an input resistance of 1MΩ - then the peak-to-peak amplitude will be within 0.5% of the test point value.

Other amplitudes could be obtained by changing the value of R3 and R5 or by replacing R3 with a switched potential divider or precision multi-turn potentiometer.

John Lawrence.

Prestatyn

Denbighshire

F64

Voltage-to-frequency converter with polarity indicator

While developing a piece of test equipment for medical ultrasound systems, the need arose for a voltage-to-frequency converter with rather unusual features.

The circuit had to provide output pulses with a frequency zero hertz for zero input, and a logic-level output to indicate the polarity of the input signal. This was required to control the count rate and direction of an eight-bit, up/down counter. Other possible uses may be associated with stepper motor control, for example.

The solution is shown in the accompanying circuit, which requires a supply current of little more than 1mA. It produces a peak output pulse frequency approaching 20kHz for an input range of ±0.5V. The pulse duration is approximately 2μs, determined by the recharge time of C1. Using a rail-to-rail op-amp as IC1 and standard CMOS for IC2 allows single supply operation over a wide supply-voltage range.

Diodes D1, D2 and IC1b form a conventional full-wave rectifier stage, with IC1b acting as a high impedance buffer.

Incorporating the extra diode, D2, requires the output of IC1b to exceed 1V whenever the input signal goes negative. This condition turns Tr1 off, producing a logic '1' at the output of IC2a, indicating a 'reverse' count.

Together, IC1b and Tr2 form a current source, governed by the potential difference across R4 - a full-wave rectified version of the analogue input. That current discharges C1, until it reaches the lower input threshold of IC2b (Schmitt), at which point it is recharged by the high level, which is also the output pulse. As this is so much less than the discharge time the pulse frequency is effectively governed by the modulus of the analogue input signal.

Frequency linearity is better than 95% over an input range from ±2mV to ±500mV, and there is very little distortion in the rectified signal for sine waves up to 100Hz. Obviously the circuit could be adapted for greater input signal bandwidth, and output pulse frequency by substituting faster devices.

Improved linearity could be achieved by reducing the recharge time - replacing IC2b, with a high output-current comparator would achieve this. Deriving the comparator threshold levels from a band-gap voltage reference would improve overall stability.

G C Aucott.

Leicester

F62
Magnet sniffer – solenoid valve tester

Solenoid valves are common components in process plant, controlling flows of air, water, hydraulic oil or other fluid media. Generally, they give little trouble. But when they appear to have failed, is it due to an electrical, mechanical or control failure?

Electrical testing is normally the first step in fault diagnosis and this often entails disconnection of the solenoid coil. This is costly and time consuming, often only for the coil to be reconnected again when the fault is confirmed as a mechanical failure. The following test device was designed to avoid this.

The suspect coil or other electromechanical device is approached with the test probe. If the coil is correctly energised, one of the two LEDs will light, depending on the magnetic polarity.

In the case of an AC energised coil both LEDs will light. With familiarity, residual magnetism will be recognised and ignored.

Sensor IC1 is a linear hall-effect device chosen for low cost and small size. A small piece of ferrite rod is glued on to its operating face. This projects through the case to act as a search probe and should be covered with a heat-shrink sleeve and cap.

Op-amp IC2a is a differential amplifier with a roll off at 160Hz to eliminate any HF interference that may be present. Resistor R8 and its buffer IC2b are used to null any offset from the Hall-effect sensor. This is generally set to give a no signal output from IC2b of 2.50V.

Op-amp IC3 forms a comparator, positive signals lighting LED1 and negative signals lighting LED2. Resistor R10 is a sensitivity control giving symmetrical adjustment of the set point around the 'no field' level from the preceding stage.

Both variable resistors may be preset if desired, depending on your application. No hysteresis was applied around the comparators, giving a dimming effect on weak or diminishing signals.

This is a useful, reliable test instrument with a multitude of uses to ease fault finding on process plant.

AMIIE(elec.)
St Leonard's on Sea
East Sussex
F69

Triple capacitive voltage inverter with MAX871

This design idea is based on a customer request for a cheap and not very accurate negative voltage supply of about −2V to −15V with a low output current <5mA. Input voltage is 5V. This application might be used for negative op-amp supply.

Figure 1 shows the typical operation circuit with the flying capacitor C1 and C2. Output voltage on pin 1 is −VIN. Four additional capacitors C3 to C6 and four additional diodes D1 to D4 triple the negative output voltage at the OUT pin from −VIN to −3VIN. C1 and C2 decrease the voltage with every step by −VIN.

Without any diode voltage drop C3
CIRCUITS IDEAS

The circuit allows a relay to be operated from a regulated supply without exceeding its ratings. It does this by using two charge transfer switches to operate the latching relay. Charge rate – and hence maximum current – is set by the two resistors marked R_C. The subsequent time needed to build up enough charge to operate the relay is set by one section of a dual monostable. The second monostable determines the relay on time and retriggers the first monostable to charge and operate the relay reset coil.

It is possible to modify the circuit by connecting the trigger pulse to the negative trigger ($-T$) of the second monostable, letting the trigger pulse length largely determine the relay on time.

Operate latching relay from any voltage

The circuit allows a relay to be operated from a regulated supply without exceeding its ratings. It does this by using two charge transfer switches to operate the latching relay. Charge rate – and hence maximum current – is set by the two resistors marked R_C. The subsequent time needed to build up enough charge to operate the relay is set by one section of a dual monostable. The second monostable determines the relay on time and retriggers the first monostable to charge and operate the relay reset coil.

It is possible to modify the circuit by connecting the trigger pulse to the negative trigger ($-T$) of the second monostable, letting the trigger pulse length largely determine the relay on time.

Switch a latching relay whose voltage rating exceeds that of the supply.

Components

- C_{1-6}: 470nF ceramic
- C_{input}: 10µF
- D_{1-4}: BAT41

Martin Baumbach

Maxim GmbH
Fully-automatic NiCd charger

The circuit is based on a digital timer controlling a constant-current sink and, being so simple, can easily be modified to charge at different currents and for different periods. It is also small enough to be retro-fitted into cordless drill charger units.

A 4060 forms an oscillator/counter running at 0.16Hz, the frequency being set by R1, C1 and VR1. When the timer has counted 8192 clock cycles (14 hours) Q14 goes high shutting down the oscillator and constant current circuit.

An LM358 and transistor provide a good constant current sink – the 358 being chosen because of its ability to work near ground potential. The second half of the 358 is a simple Schmitt oscillator to flash a LED when the battery is charging and, when the battery is charged, to glow constantly.

Because the charger uses a true constant-current circuit, you can charge one or more cells in series, provided that the supply is sufficient and the transistor’s dissipation is considered.

Potentiometer VR1 allows charge current adjustment. This is 150mA for a sub-C/RR cell, such as used in many cordless drills. The regulated 5V supply ensures oscillator stability and provides a voltage reference for the constant current circuit.

An optional trickle current can be provided by a simple resistor – shown as RF in the diagram. Note that adding this resistor affects the quality of the constant current circuit.

When first testing the circuit, use a 220pF capacitor for C1. This will result in a full count cycle of about 20s rather than 14 hours. When you are happy that the circuit works replace C1 with the correct value and calibrate the oscillator by adjusting VR1 until 6 full clock cycles at pin 9 of the 4060 takes 37s.

The values shown will charge RR (sub-C) cells for 14 hours at 150mA.

Mike Arnold
Sale
Cheshire
F65

Fan speed reducer

I devised this circuit to run a domestic fan at low speed, for long periods. The capacitor network was placed in series with the motor, to reduce its speed.

The capacitor value required for the desired speed is selected on test, the minimum value required being just enough to start the motor. Resistors are included to discharge the capacitors, in the event that they be left charged up at the instant the on/off switch opens.

Warning: all parts of the circuit are live – and hence potentially lethal – as soon as mains is applied.

Gregory Freeman
Mt Barker
South Australia
F66

Use capacitors rated for mains use. Ed.

This circuit slows down an extractor fan, making it quieter and reducing its power consumption in return for lower air flow.
SPECTRUM ANALYSERS

ANTENNTE R4131B 10Hz-3.5GHz Synth...£3500
H.P.3631A 10Hz-1GHz 25mV...£4300
EATON/ALTECH 757 0.01-2520Hz...£1500
H.P.3826A with Main Frame 100kHz-150MHz...£1750
H.P.3836A (Dg Frame) with 855A 10MHz-21GHz...£2500
H.P.3850A Audio Analyser Step-Sweep. As new £1500
B & K 2031A Signal Analyzer...£1500
H.P 5452A 10kHz-100MHz...£2000
MAGNO 220Hz-20kHz-110MHz...from £820
H.P 5432A Systems 8551 140MHz...from £680
5954A 50MHz-125MHz from £720, 8552 £550
H.P.3272A Frequency & Time Interval Analyzer (0-250Hz)

OSCILLOSCOPES

TEKTRONIX TDS380 Dual Trace 40MHz 2GS, £2200
TEKTRONIX TDS250 Dual Trace 20MHz 1GS...Unruled £1500

TEKTRONIX TDS320 Dual Trace 50MHz 2GS...£2950
LEMOYNE B6 40MHz 2GS...£1500
TEKTRONIX TDS455 4 Ch 200MHz etc. Unruled £2400
TEKTRONIX TDS310 Dual Trace L.C. 100MHz 500MS...Unruled £950
HITCH 5825 Dual Trace 200MHz 205154 etc. Unruled £2000
Philips PM2000 2-2 Ch 200MHz Delay £300...As new £950
PHILIPS PM2002 2-2 Ch 100MHz Delay £750...As new £950
TEK TDS455 Dual Trace 100MHz Delay...£750
TEK 2455B-4 Ch 40MHz Delay Curs. £950
TEK 2455B/4 4 Ch 10MHz Delay Curs. £950-£950
TEK 466 Dg Storage, Dual 100MHz Delay...£450
TEK 465 Analog Storage, Dual 100MHz Storage...£550
TEK 480 Dual Trace 30MHz Delay...£350
TEK 475 Dual Trace 200MHz Delay...£450
Philips PM2317 Dual Trace 50MHz Delay £200-£250
GOODS 071111 Dual Trace 100MHz Delay £390
HAMEG HM203 Dual Trace 30MHz Delay £200
HAMEG HM303 Dual Trace 20MHz Delay £150
HAMEG HM503 Dual Trace 20MHz Delay £100
HARNET 071253 Dual Trace 30MHz Delay £180
MANY OTHER OSCILLOSCOPES AVAILABLE...£250

SPECIAL OFFERS

TEKTRONIX 2455A & C 10MHz ONLY £425
DUAL DMMs! Any DMM from £125
SCHLUMBERGER 2955/2955A from £200
AD Included

CIRCUIT NO.157 ON REPLY CARD

FRUSTRATED!
Looking for ICs TRANSISTORS?
A phone call to us could get a result.
We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name a few)

We can also offer equivalents (at customers’ risk).
We also stock a full range of other electronic components.
Mail, phone, Fax, Credit Card orders & callers welcome.

FRUSTRATED!
Looking for ICs TRANSISTORS?
A phone call to us could get a result.
We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name a few)

We can also offer equivalents (at customers’ risk).
We also stock a full range of other electronic components.
Mail, phone, Fax, Credit Card orders & callers welcome.

FRUSTRATED!
Looking for ICs TRANSISTORS?
A phone call to us could get a result.
We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name a few)

We can also offer equivalents (at customers’ risk).
We also stock a full range of other electronic components.
Mail, phone, Fax, Credit Card orders & callers welcome.

FRUSTRATED!
Looking for ICs TRANSISTORS?
A phone call to us could get a result.
We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name a few)

We can also offer equivalents (at customers’ risk).
We also stock a full range of other electronic components.
Mail, phone, Fax, Credit Card orders & callers welcome.

FRUSTRATED!
Looking for ICs TRANSISTORS?
A phone call to us could get a result.
We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name a few)

We can also offer equivalents (at customers’ risk).
We also stock a full range of other electronic components.
Mail, phone, Fax, Credit Card orders & callers welcome.

SPECTRUM ANALYSERS

ANTENNTE R4131B 10Hz-3.5GHz Synth...£3500
H.P.3631A 10Hz-1GHz 25mV...£4300
EATON/ALTECH 757 0.01-2520Hz...£1500
H.P.3826A with Main Frame 100kHz-150MHz...£1750
H.P.3836A (Dg Frame) with 855A 10MHz-21GHz...£2500
H.P.3850A Audio Analyser Step-Sweep. As new £1500
B & K 2031A Signal Analyzer...£1500
H.P 5452A 10kHz-100MHz...£2000
MAGNO 220Hz-20kHz-110MHz...from £820
H.P 5432A Systems 8551 140MHz...from £680
5954A 50MHz-125MHz from £720, 8552 £550
H.P.3272A Frequency & Time Interval Analyzer (0-250Hz)

OSCILLOSCOPES

TEKTRONIX TDS380 Dual Trace 40MHz 2GS, £2200
TEKTRONIX TDS250 Dual Trace 20MHz 1GS...Unruled £1500

TEKTRONIX TDS320 Dual Trace 50MHz 2GS...£2950
LEMOYNE B6 40MHz 2GS...£1500
TEKTRONIX TDS455 4 Ch 200MHz etc. Unruled £2400
TEKTRONIX TDS310 Dual Trace L.C. 100MHz 500MS...Unruled £950
HITCH 5825 Dual Trace 200MHz 205154 etc. Unruled £2000
Philips PM2000 2-2 Ch 200MHz Delay £300...As new £950
PHILIPS PM2002 2-2 Ch 100MHz Delay £750...As new £950
TEK TDS455 Dual Trace 100MHz Delay...£750
TEK 2455B-4 Ch 40MHz Delay Curs. £950
TEK 2455B/4 4 Ch 10MHz Delay Curs. £950-£950
TEK 466 Dg Storage, Dual 100MHz Delay...£450
TEK 465 Analog Storage, Dual 100MHz Storage...£550
TEK 480 Dual Trace 30MHz Delay...£350
TEK 475 Dual Trace 200MHz Delay...£450
Philips PM2317 Dual Trace 50MHz Delay £200-£250
GOODS 071111 Dual Trace 100MHz Delay £390
HAMEG HM203 Dual Trace 30MHz Delay £200
HAMEG HM303 Dual Trace 20MHz Delay £150
HARNET 071253 Dual Trace 30MHz Delay £180
MANY OTHER OSCILLOSCOPES AVAILABLE...£250

SPECIAL OFFERS

TEKTRONIX 2455A & C 10MHz ONLY £425
DUAL DMMs! Any DMM from £125
SCHLUMBERGER 2955/2955A from £200
AD Included

CIRCUIT NO.157 ON REPLY CARD

FRUSTRATED!
Looking for ICs TRANSISTORS?
A phone call to us could get a result.
We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name a few)

We can also offer equivalents (at customers’ risk).
We also stock a full range of other electronic components.
Mail, phone, Fax, Credit Card orders & callers welcome.

FRUSTRATED!
Looking for ICs TRANSISTORS?
A phone call to us could get a result.
We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name a few)

We can also offer equivalents (at customers’ risk).
We also stock a full range of other electronic components.
Mail, phone, Fax, Credit Card orders & callers welcome.

FRUSTRATED!
Looking for ICs TRANSISTORS?
A phone call to us could get a result.
We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name a few)

We can also offer equivalents (at customers’ risk).
We also stock a full range of other electronic components.
Mail, phone, Fax, Credit Card orders & callers welcome.

FRUSTRATED!
Looking for ICs TRANSISTORS?
A phone call to us could get a result.
We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name a few)

We can also offer equivalents (at customers’ risk).
We also stock a full range of other electronic components.
Mail, phone, Fax, Credit Card orders & callers welcome.
In the days of valve radio, it sufficed to evaluate a receiver in terms of its static performance. But with today's solid-state electronics and band crowding, it is essential to consider a receiver's dynamic performance. In this fourth and final article on receiver design, Joe Carr explains how it's done.

The dynamic performance specifications of a radio receiver are those that deal with how the receiver performs in the presence of very strong signals, either co-channel or adjacent channel.

Until about the 1960s, dynamic performance was somewhat less important than static performance for most users. Today, though, the role of dynamic performance is probably more critical than static performance because of crowded band conditions.

There are at least two reasons for this change in outlook. First, in the 1960s receiver designs evolved from tubes to solid-state. The new solid-state amplifiers were somewhat easier to drive into non-linearity than tube designs.

Second, there has been a tremendous increase in radio frequency signals on the air. There are far more transmitting stations than ever before, and there are far more sources of electromagnetic interference – or EMI – than in prior decades.

With the advent of new and expanded wireless services available to an ever widening market, the situation can only worsen. For this reason, it is now necessary to pay more attention to the dynamic performance of receivers than in the past.

Intermodulation products

Understanding the dynamic performance of the receiver requires knowledge of intermodulation products (IP) and how they affect receiver operation. Whenever two signals are mixed together in a non-linear circuit, a number of products are created according to the $mF_1\pm nF_2$ rule, where m and n are either integers or zero ($0, 1, 2, 3, 4, 5...$).

If an RF amplifier is overdriven by a strong signal, mixing can occur in either the mixer stage of a receiver front-end, or in the RF amplifier. It can also occur in any outboard preamplifiers used ahead of the receiver.

It is also theoretically possible for corrosion on antenna connections, or even rusted antenna screw terminals to create intermodulation products, or IPs, under certain circumstances. One even hears of alleged cases where a rusty downspout on a house rain gutter caused re-radiated mixed signals.

The spurious IP signals are shown graphically in Fig. 1. The order of the product is given by the sum $m+n$. Given input signal frequencies of F_1 and F_2, the main IPs are:

- **2nd order**: $F_1\pm F_2$
 $2F_1$
 $2F_2$

- **3rd order**: $2F_1\pm F_2$
 $2F_2\pm F_1$
 $3F_1$
 $3F_2$

- **5th order**: $3F_1\pm 2F_2$
 $3F_2\pm 2F_1$
 $5F_1$
 $5F_2$
When an amplifier or receiver is overdriven, the second-order content of the output signal increases as the square of the input signal level, while the third-order responses increase as the cube of the input signal level.

Consider the case where two HF signals, $F_1=10\text{MHz}$ and $F_2=15\text{MHz}$ are mixed together. The second-order IPs are 5 and 25MHz; the 3rd-order IPs are 5, 20, 35 and 40MHz; and the 5th-order IPs are 0, 25, 60 and 65MHz. If any of these are inside the pass band of the receiver, then they can cause problems.

One such problem is the emergence of ‘phantom’ signals at the IP frequencies. This effect is seen often when two strong signals, F_1 and F_2 exist and can affect the front-end of the receiver, and one of the IPs falls close to a desired signal frequency, F_3. If the receiver were tuned to 5MHz, for example, a spurious signal would be found from the F_1–F_2 pair given above.

Another example is seen from strong in-band, adjacent-channel signals. Consider a case where the receiver is tuned to a station at 9610kHz, and there are also very strong signals at 9600kHz and 9605kHz. The near (in-band) IP products are:

- 3rd-order: $9595\text{kHz} (\Delta F=15\text{kHz})$
 $9610\text{kHz} (\Delta F=0\text{kHz})$ (On channel!)
- 5th-order: $9590\text{kHz} (\Delta F=20\text{kHz})$
 $9615\text{kHz} (\Delta F=5\text{kHz})$

Note that one third-order product is on the same frequency as the desired signal. This product could easily cause interference if the amplitude is sufficiently high. Other third and fifth-order products may be within the range where interference could occur, especially on receivers with wide bandwidths.

Theoretically, the number of IP orders is infinite because there are no bounds on either m or n. However, in practical terms, because each successively higher order IP is reduced in amplitude compared with its next lower order mate, only the second, third-order and fifth-order products usually assume any importance. Indeed, only the third-order difference frequencies are normally used in receiver specifications sheets because they fall close to the RF signal.

There’s a large number of IMD products from just two signals applied to a non-linear medium. But consider the fact that the two-tone case used for textbook discussions is rarely encountered in practice. A typical two-way radio installation is in a signal-rich environment, so when dozens of signals are present the number of possible combinations climbs to an unmanageable extent.

The -1dB compression point

An amplifier produces an output signal that has a higher amplitude than the input signal. The transfer function of the amplifier - indeed, any circuit with input and output - is the ratio of input to output.

For the power amplification of a receiver RF amplifier it is P_o/P_i, or, in terms of voltage, V_o/V_i. Any real amplifier will saturate given a strong enough input signal, Fig. 2.

The dotted line represents the theoretical output level for all values of input signal. The slope of the line represents the gain of the amplifier.

As the amplifier saturates however, as represented by the solid line, the actual gain begins to depart from the theoretical at some level of input signal P_{in}. The -1 dB compression point is that output level at which the actual gain departs from the theoretical gain by -1dB.

The -1dB compression point is important when considering either the RF amplifier ahead of the mixer – if said exists – or any overtone preamplifiers that are used. It is the point at which intermodulation products begin to emerge as a serious problem.

Harmonics are also generated when an amplifier goes into compression. A sine wave is a “pure” signal because it has no harmonics. All other waveshapes have a fundamental plus harmonic frequencies. When a sine wave is distorted, harmonics arise.

The effect of the compression phenomenon is to distort the signal by clipping the peaks. This raises the harmonics and intermodulation distortion products.

Third-order intercept point

It can be claimed that the third-order intercept point, or TOIP, is the single most important specification of a receiver’s dynamic performance. This is because it predicts the performance as regards intermodulation, cross-modulation and blocking desensitisation.

Third-order – and higher – intermodulation products are normally very weak. They don’t exceed the receiver noise floor when the receiver is operating in the linear region. But as input signal levels increase, forcing the front-end of the receiver toward the saturated non-linear region, the intermodulation products emerge from the noise, Fig. 3.

At this point, the IPs begin to cause problems. When this happens, new spurious signals appear on the band and self-generated interference begins to arise.

Figure 4 shows a plot of the output signal versus fundamental input signal. Note the output compression effect that was seen earlier in Fig. 1. The dotted gain line continuing above the saturation region shows the theoretical output that would be produced if the gain did not clip.

It is the nature of third-order products in the output signal to emerge from the noise at a certain input level, and increase as the cube of the input level. Thus, the slope of the third-order line increases 3dB for every 1dB increase in the response to the fundamental signal.

Although the output response of the third-order line saturates similarly to that of the fundamental signal, the gain line can be continued to a point where it intersects the gain line of the fundamental signal. This point is the third-order intercept point (TOIP).

Interestingly enough, one receiver feature that can help reduce IP levels back down under the noise is the use of a front-end attenuator, also called an input attenuator. In the presence of strong signals even a few decibels of input attenuation is often enough to drop the IPs back into the noise, while afflicting the desired signals only a small amount.

Other effects that reduce the overload caused by a strong signal also help. Situations arise where the apparent third-order performance of a receiver improves dramatically.
when a lower gain antenna is used.

This effect can be easily demonstrated using a spectrum analyser for the receiver. This instrument is a swept frequency receiver that displays an output on an oscilloscope screen that is amplitude-versus-frequency, so a single signal shows as a spike. In one test, a strong, local VHF band repeater came on in the air every few seconds, and you could see the second and third-order IPs along with the fundamental repeater signal.

There were also other strong signals on the air, but just outside the band. Inserting a 60 dB barrel attenuator in the input ('antenna') line eliminated the IP products, showing just the actual signals. Rotating a directional antenna away from the direction of the interfering signal will also accomplish this effect in many cases.

Preamplifiers are popular receiver accessories, but can often reduce performance as much as signals. While it makes the signal louder, it also makes the noise louder by the same amount. Since it's the signal-to-noise ratio that is important, one does not improve the situation. Indeed, If the preamp is itself noisy, it will degrade the signal-to-noise ratio.

The other problem is less well known, but potentially more devastating. If the increased signal levels applied to the receiver drive the receiver non-linear, then intermodulation products begin to emerge. When evaluating receivers, a TOIP of +5 to +20dBm is excellent performance, while up to +27dBm is relatively easily achievable, and +35dBm has been achieved with good design; anything greater than +50dBm is close to miraculous — but nevertheless attainable.

Receivers are still regarded as good performers in the 0 to +50dBm range, and middling performers in the −10 to 0dBm range. Anything below −10dBm is not usually acceptable. A general rule is to buy the best third-order intercept performance that you can afford — especially if there are strong signal sources in your vicinity.

Dynamic range

The dynamic range of a radio receiver is the range — expressed in decibels — from the minimum discernible signal to the maximum allowable signal. While this simplistic definition is conceptually easy to understand, in the concrete it's a little more complex. Several definitions of dynamic range are used.

One definition of dynamic range is that it is the input signal difference between the sensitivity figure — 0.5μV for 10dB S+N/N for example — and the level that drives the receiver far enough into saturation to create a certain amount of distortion in the output. This definition was common on consumer broadcast-band receivers at one time. It was especially common on automobile radios, where dynamic range was somewhat more important due to mobility.

A related definition takes the range as the distance in decibels from the sensitivity level and the −1dB compression point. Yet another definition, the blocking dynamic range, is the range of signals from the sensitivity level to the blocking level (see below).

A problem with the above definitions is that they represent single signal cases, so do not address the receiver's dynamic characteristics. There is both a 'loose' and a more formal definition that is somewhat more useful, and is at least standardised.

The loose version is that dynamic range is the range of signals over which dynamic effects — like intermodulation — do not exceed the noise floor of the receiver. For HF receivers, the recommended dynamic range is usually two-thirds the difference between the noise floor and the third-order intercept point in a 3kHz bandwidth.

There is also an alternative definition: dynamic range is the difference between the fundamental response input signal level and the third-order intercept point along the noise floor, measured with a 3kHz bandwidth. For practical reasons, this measurement is sometimes made not at the actual noise floor — which is sometimes hard to ascertain — but rather at 3dB above the noise floor.

A certain measurement procedure is used that produces similar results. Two equal strength signals are input to the receiver at the same time. The frequency difference has traditionally been 20kHz for HF and 30 to 50kHz for VHF receivers. Modern band crowding may indicate a need for a specification at 5kHz separation on HF.

The amplitudes of these signals are raised until the third-order distortion products are raised to the noise floor level. For 20kHz spacing, using the two-signal approach, anything over 90dB is an excellent receiver, while anything over 80dB is at least decent.

The difference between the single-signal and two-signal (dynamic) performance is not merely an academic exercise. Besides the fact that the same receiver can show as much as 40dB difference between the two measures — favouring the single-signal measurement — the most severe effects of poor dynamic range show up most in the dynamic performance.

Blocking

The blocking specification refers to the ability of the receiver to withstand very strong off-tune signals that are at least 20kHz away from the desired signal, although some use 100kHz separation. When very strong signals appear at the input terminals of a receiver, they may desensitise the receiver, i.e. reduce the apparent strength of desired signals over what they would be if the interfering signal were not present.

Figure 5 shows the blocking behaviour. When a strong signal is present, it takes up more of the receiver's resources than normal. As a result, there is not enough of the output power budget to accommodate the weaker desired signals. But if the strong undesired signal is turned off, then the weaker signals receive a full measure of the unit's power budget.

The usual way to measure blocking behaviour is to input two signals, a desired signal at 60dBμV and another signal 20 or 100kHz away at a much stronger level. The strong signal is increased to the point where blocking desensitisation causes a 3dB drop in the output level of the desired signal.
A good receiver will show >90dBuV, with many being considerably better. An interesting note about modern receivers is that the blocking performance is so good, that it's often necessary to specify the input level difference (dB) that causes a 1dB drop, rather than 3dB drop, of the desired signal's amplitude.

The phenomenon of blocking leads us to an effect that is often seen as paradoxical on first blush. Many receivers are equipped with front-end attenuators. These allow fixed attenuation values of 6dB, 12dB or 20dB - or some subset thereof - to be inserted into the signal path ahead of the active stages.

When a strong signal that is capable of causing desensitisation is present, adding attenuation often increases the level of the desired signals in the output, even though overall gain is reduced. This occurs because the overall signal that the receiver front-end is asked to handle is below the threshold where desensitisation occurs.

Cross modulation

Cross modulation is an effect in which amplitude modulation (AM) from a strong undesired signal is transferred to a weaker desired signal. In HF receivers, testing is usually done with a 20kHz spacing between the desired and undesired signals, a 3kHz IF bandwidth on the receiver, and the desired signal set to 100µV EMF (~53dBm). The undesired signal 20Hz away is amplitude modulated to the 30 percent level. This undesired AM signal is increased in strength until an unwanted AM output 20dB below the desired signal is produced.

A cross modulation specification ≥100dB would be considered decent performance. This figure is often not given for modern HF receivers, but if the receiver has a good third-order intercept point, then it is likely to also have good cross-modulation performance.

Cross modulation is also said to occur naturally, especially in transpolar and North Atlantic radio paths, where the effects of the aurora are strong.

According to one legend, there was something called the 'Radio Luxembourg effect' discovered in the 1930s. Modulation from a very strong broadcaster (BBC) appeared on the Radio Luxembourg signal received in North America. This effect was said to be an ionospheric cross modulation phenomenon. It apparently occurs when the strong station is within 175 miles of the great circle path between the desired station and the receiver site.

Reciprocal mixing

Reciprocal mixing occurs when noise sidebands from the local oscillator (LO) signal in a superheterodyne receiver mix with a strong undesired signal close to the desired signal.

Every oscillator signal produces noise, and that noise tends to amplitude modulate the oscillator's output signal. It will thus form sidebands either side of the LO signal. The production of phase noise in all LOs is well known, but in more recent designs the digitally produced synthesised LOs are prone to additional noise elements. The noise is usually measured in -dBc, i.e. decibels below carrier, or, in this case, dB below the LO output level.

In a superheterodyne receiver, the LO beats with the desired signal to produce an intermediate frequency, IF, equal to either the sum LO+RF or difference LO–RF. If a strong unwanted signal is present, then it might mix with the noise sidebands of the LO, to reproduce the noise spectrum at the IF frequency, Fig. 6.

In the usual test scenario, the reciprocal mixing is defined as the level of the unwanted signal (dB) at 20kHz required to produce noise sidebands 20dB down from the desired IF signal in a specified bandwidth. This bandwidth is usually 3kHz on HF receivers. Figures of –90dBc or better are considered good.

The importance of the reciprocal mixing specification is that it can seriously deteriorate the observed selectivity of the receiver, yet is not detected in the normal static measurements made of selectivity. It is a 'dynamic selectivity' problem. When the LO noise sidebands appear in the IF, the distant frequency attenuation - more than 20Hz off-centre of a 3kHz bandwidth filter - can deteriorate 20 to 40dB.

The reciprocal mixing performance of receivers can be improved by eliminating the noise from the oscillator signal. Although this sounds simple, in practice it is often quite difficult.

A tactic that works well is to add high-Q filtering between the LO output and the mixer input. The narrow bandwidth of the high-Q filter prevents excessive noise sidebands from getting to the mixer. Although this sounds like quite the easy solution, as they say 'the devil is in the details.'

IF notch rejection

If two signals fall within the pass-band of a receiver they will both compete to be heard. They will also heterodyne together in the detector stage, producing an audio tone equal to their carrier frequency difference.

For example, suppose you have an AM receiver with a 5kHz bandwidth and a 455kHz IF. If two signals appear on the band such that one appears at an IF of 456kHz and the other is at 454kHz, then both are within the receiver pass band and both will be heard in the output. However, the
2kHz difference in their carrier frequency will produce a 2kHz heterodyne audio tone difference signal in the output of the AM detector.

In some receivers, there’s a tunable, high-Q notch filter in the IF amplifier circuit. This tunable filter can be turned on then adjusted to attenuate the unwanted interfering signal, reducing the irritating heterodyne. Attenuation figures for good receivers vary from –35 to –65dB, or so – the more negative the better.

There are some trade-offs in notch filter design. First, the notch-filter Q is more easily achieved at low IF frequencies – such as 50kHz to 500kHz – than at high IF frequencies like 9MHz. Also, the higher the Q, the better the attenuation of the undesired squeal, but the touchy it is to tune. Some happy middle ground between the irritating squeal and the touchy tune is mandated here.

Some receivers use audio filters rather than IF filters to help reduce the heterodyne squeal. In the AM broadcast band, channel spacing is typically 8 to 10kHz, depending on the part of the world. The transmitted audio bandwidths – hence the sidebands – are 5kHz.

Designers of AM broadcast-band receivers usually insert an RC low-pass filter with a –3dB point just above 4 or 5kHz right after the detector in order to suppress the audio heterodyne. This filter is called a ‘tweet filter’ in the slang of the electronic service/repair trade.

Another audio approach is to sharply limit the pass band of the audio amplifiers. For AM broadcast-band reception, a 5kHz pass band is sufficient. This means that the frequencies higher can be rolled off at a fast rate in order to produce only a small response an octave higher (10kHz).

In shortwave receivers, this option is weaker because the station channels are typically 5kHz, and many don’t bother to honour the official channels anyway. And on the amateur-radio bands frequency selection is a perpetually changing ad-hocracy, at best.

Although the shortwave bands typically only need 3kHz bandwidth for communications, and 5kHz for broadcast, the tweet filter and audio roll-off might not be sufficient. In receivers that lack an effective IF notch filter, an audio notch filter can be provided.

Internal spuri

All receivers produce a number of internal spurious signals that sometimes interfere with the operation. Both old and modern receivers have spurious signals from assorted high-order mixer products, from power supply harmonics, parasitic oscillations, and a host of other sources.

Newer receivers with either synthesised local oscillators and digital frequency read-outs – or both – produce noise and spurious signals in abundance. Note that low-power digital chips with slower rise times – CMOS, NMOS, etc – are generally much cleaner than higher-power, fast rise-time chips like TTL devices.

With appropriate filtering and shielding, it is possible to hold the ‘spurs’ down to –100dB relative to the main maximum signal output, or within about 3dB or the noise floor, whichever is lower.

Antennas and propagation for wireless communication systems

How to pay

Antennas and propagation for wireless communication systems

☐ I enclose a cheque/bank draft for £_________ (payable to Cumulus Business Media)

Please charge my credit/charge card

☐ Mastercard ☐ American Express ☐ Visa ☐ Dinners Club

Credit Card No.: Expiry Date:

Signature of Cardholder

Cardholder’s statement address: (please use capitals)

Name:

Address:

Post Code ___________ Tel: ___________

Post your completed order form to:

Jackie Lowe, Cumulus Business Media, Anne Boleyn House, 9-13 Ewell Road Cheam, Surrey, SM3 8BZ

UK Price: £42.50 Europe £45.00 ROW £47.50

Price includes delivery

This will be a vital source of information on the basic concepts and specific applications of antennas and propagation to wireless systems, covering terrestrial and satellite radio systems in both mobile and fixed contexts. Antennas and propagation are the key factors influencing the robustness and quality of the wireless communication channel and this book includes:

- Illustrations of the significance and effect of the wireless propagation channel
- Overview of the fundamental electromagnetic principles underlying propagation and antennas
- Basic concepts of antennas and their application to specific wireless systems
- Propagation measurement, modelling and prediction for fixed links, macrocells, microcells, picocells and megacells
- Narrowband and wideband channel modelling and the effect of the channel on communication system performance
- Methods that overcome and transform channel impairments to enhance performance using diversity, adaptive antennas and equalisers

It will be essential reading for wireless communication engineers as well as for students at postgraduate or senior undergraduate levels.

Distinctive features of this book are:

- Examples of real world practical system problems of communication system design and operation
- Extensive worked examples
- End of chapter questions
- Topical and relevant information for and about the wireless communication industry
null
Put your web address in front of 18,000 electronic fanatics.

Electronics World acknowledge your company’s needs to promote your web site, which is why we are dedicating over 3 pages in every issue to WEB ADDRESSES.

Linage only will cost £150 + vat for a full year.

Linage with colour screen shot will cost £350 + vat for a full year, this will include the above plus 3cm shot of your web site which we can produce if required.

To take up this offer or for more information call
Pat Bunce
Tel 0208 643 6207

E-mail
p.bunce@cumulusmedia.co.uk

ACQUIVISION
http://www.acquivision.com

A.R.S.
http://www.ars-surplus-stock.com

We buy electronic, electrical, computer and test equipment. Visit our website or e-mail us at info@ars-surplus-stock.com Telephone us on 01271 867285

AQUALIA VISION
http://www.aqualia-vision.co.uk

ASHWELL ELECTRONICS
http://www.ashwell-hq.com

Ashwell provide technical support for Apex Microtechnology op-amps and DG/OC/SC, Aeroflex EMP filtered connectors; M S Kennedy, Mintech obsolescence; NESC MIL/Aero; Teledyne Relays and soconm mbi/optocouplers.

BROADCASTING COMMUNICATIONS SYSTEMS
www.broadcasting.co.uk

WINRADIO now brings you a complete choice in personnel computer controlled radio scanning and reception solutions. Broadcast ● Media ● Monitoring ● Professional Amateur Radio communications

BEDFORD OPTO TECHNOLOGY LTD
http://www.bot.co.uk

Optoelectronic products UK design development manufacture standard and custom, LED bargraphs, circuit board indicators, stand offs, transmissive/reflective switches, baseefa optocouplers tubular and surfacemount, panel mount LED assemblies.

COMPONENT KITS
http://www.componentkits.com

Component Kits LLC manufactures and distributes Electronic Component Kits used for professional engineering design, prototype, University lab, and hobbyist uses. Visit our website to review our current product line, request our Free CD-ROM, or join our newsletter.

CONCEPT ELECTRONICS
http://www.conceptkey.co.uk

Concept Keyboards are specialists in the design and manufacture of customer specified membrane panels and keyboards, and electronic design. Concept’s membrane manufacture is supported by a full electronic production facility to provide a complete turnkey keyboard and electronics service, fully accredited to ISO9001.

CONTROL SOLUTIONS
wwwcontrolsolutions.co.uk

Data acquisition and control for beginners, hobbyists, and professionals. Perform mathematical and logical operations on data in real time. Email: info@controlsolutions.co.uk

Cooke International
http://www.cooke-int.com

info@cooke-int.com

Test & Measuring Equipment Operating & Service Manuals

CROWNHILL ASSOCIATES LTD
http://www.crownhill.co.uk

Crownhill supply low cost development tools for use with Micro-Controllers and Smart Cards. Products include Smart Card development tools, Smart cards, Micro Development tools and Bespoke Design Services.

DB TECHNOLOGY
http://www.dbtechnology.co.uk/

ACQUVISION
AcquVision solutions, including XY-Plotting, Oscilloscopes (with FFT), Data Logging and Custom Software, have been getting the most from computers since 1994. Download software Telephone (01933)830502

ALCATEL COMPONENTS
http://www.components@alcatel.de

ANASOFT LTD
http://www.anasoft.co.uk

SuperSpice, the affordable, mixed-mode windows circuit simulator. Wrote by an analogue design engineer for those Teletubbies who like keeping things simple.

ARCOM
http://www.arcomcontrols.com/ew/

A leading international supplier of communication and control technology to industry, Arcom provides leading edge solutions through a comprehensive range of market leading products.

Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs. We also stock robotics boards, Linux and general interest CO-ROM's.

BROADCASTING COMMUNICATIONS SYSTEMS
www.broadcasting.co.uk

WINRADIO now brings you a complete choice in personnel computer controlled radio scanning and reception solutions. Broadcast ● Media ● Monitoring ● Professional Amateur Radio communications
For the pick of the UK's Top High-Tech Software and Hardware career opportunities - from fresh Grad/PhD to Senior Engineer/Manager - £22,000 - £70,000

November 2001 ELECTRONICS WORLD

EDWIN PCB DESIGN SOFTWARE
http://www.swifteurotech.co.uk

Swift Eurotech supply the best-selling EDWin CAD/CAE system for PCB design, including schematics, simulation and PCB design. Discounts up to 60% for non-commercial users.

EDAForce
http://www.edaforce.co.uk

EDAForce is a division of the independent specialist recruitment consultancy TelecomForce. We specialise in placing engineers and engineering managers, either contract or permanent, in the role that is right for them. Visit the web site, email us on edaforce@telecomforce.co.uk or call +44(0)1628 850273 to find out how we could help you.

EQUINOX TECHNOLOGIES UK LTD
http://www.equinox-tech.com

Equinox Technologies UK Ltd., specialise in development tools for the embedded microcontroller market.

ELECTRONICS AND COMPUTING PRINCIPLES
http://www.epsoft.com

Studying electronics or computing or just want to keep up-to-date in an easy and enjoyable way, then this fully interactive software is for you.

FARADAY TECHNOLOGY LTD
http://www.faradaytech.co.uk

Over 17 years experience in the design and manufacture of high quality passive filters and delay lines. Used in Broadcast, Telecommunications, Medical, Multimedia, and computer industries. Currently exporting worldwide

FIELD ELECTRIC LTD
http://www.fieldelectric.co.uk

Field Electric Ltd has been successfully trading since 1958 in the re-sale of used test & measurement equipment & computer hardware. We buy and sell in small or bulk quantities and can source equipment to particular requirements. Visit our web site or call 44 01837 83738.

FELLER UK
http://www.feller-at.com

Feller (UK) Ltd. manufacture fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial

Countries to National and International Standards

FLASH DESIGNS LTD
http://www.flash.co.uk

Flash supply low cost AVR ISP programmers (£39), MINI-ICE starter kits (from £29), Portable Easy-ICE emulators (from £199), ICE Adapters & 'C' compilers for any ATMEL AVR, MC551, Dallas, Hitachi-H8 microcontroller. Download FLASH NEWS now. Watch out for Special Offers, ARE YOU developing code in a Flash?

GOOT PRODUCTS
http://www.kieagoot.co.uk

Kie Trading Company is the sole agent of Goot products. We specialise in supplying the soldering and desoldering product range manufactured by Goot Japan for the UK market. Goot uses advanced production technology to manufacture high quality soldering iron products for industrial, professional and general purpose use.

HSPS LTD
http://dspace.dial.pipex.com/hsps/

HTB ELEKTRONIK
http://www.htb-elektronik.com

We are selling second-hand test & measurement equipment and accessories for over 10 years, from all leading manufactures.

LABCENTER
http://www.labcenter.co.uk

Download evaluation versions of our unique Proteus VSM mixed mode SPICE and CPU simulator, and also the full range of Proteus PCB Design products. Register the Proteus Lite shareware versions online for as little as £20.

LOW POWER RADIO SOLUTIONS
http://www.lprs.co.uk

LPBS markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiometric, Circuit Designs, RDT and Micrel. Applications for telemetry, video and remote control.

LEYV/LATHAM GLOBAL
http://www.leyvlaham.com

U.S. Military Surplus meters, plug-ins, test sets, oscilloscopes, power supplies, signal generators, spectrum analyzers and radio components from Tektronix, Hewlett Packard, Sony, Phillips and more!

MATRIX MULTIMEDIA LTD
www.matrixmultimedia.co.uk

Matrix Multimedia publishes a number of highly interactive CD ROMs for learning electronics including: Complete electronics course, analogue filter design, and PICmicro(R) microcontroller programming (C and assembly).

NORCALL
http://www.norcall.co.uk

Suppliers and repairers of MOBILE RADIO EQUIPMENT
SALES
HIRE
REPAIR
Huge stocks of used radios and spares Pye Philips Simoco Icom Kenwood Standard Cleartone Maxon Yaesi Key Midland. WE CAN PROGRAM ANYTHING 24hr Service

OMEGA RESEARCH LTD
http://www.omega-research.co.uk

'SMD prototyping adapters. Unique, flexible, low cost adapters to allow bench working with SM devices. Range suits most devices down to 0.5mm pitch.'

PCS:PHILIP COLLINS & ASSOCIATES PTY. LTD
http://www.pca.cc

Pca manufactures Radphone 2000DX remote control systems for narrowband broadcasters and government agencies wanting worldwide control of communications receivers and transceivers from any tone phone.

POLY-FLEX CIRCUITS LTD
http://www.polyflex.com

Design, manufacture and population of printed polyester flexible circuits, including Flip Chip on Flex providing practical, low cost, reliable solutions for today's small lightweight products.
Over 250 electronic kits, projects and ready built units for hobby, educational & Industrial applications. TEL: 01279 467799, FAX: 07092 203496 or EMAIL: ew@quiller.co.uk

QUILLER ELECTRONICS
http://www.quiller.com

100+ pages of detailed technical information on Schrack Relays, MEC Switches, Hirose Connections.

QUASAR ELECTRONICS
www.quasarelectronics.com

RADIOMETRIX
http://www.radiometrix.co.uk
Radiometrix specialises in the design and manufacture of VHF & UHF, RF data modules. We offer a broad range of PCB mounted miniature transmit, receive and transceiver modules for OEM use.

RADIO-TECH LIMITED
http://www.radio-tech.co.uk
Radio modules, modems, telemetry, audio transmitters, pagers, antennas, remote controls and much more. All UK designed and manufactured.

RALFE ELECTRONICS
professional test & measurement

www.ralfe-electronics.co.uk

RS COMPONENTS LTD
http://rswww.com
The award winning on-line service from RS
- 110,000+ products available
- Technical data library
- Stock availability check
- Integrated on-line purchasing
- Order by 5pm - with you tomorrow.

SESCOM, INC.
http://www.sescom.com

SESCOM, INC. is a 30-year manufacturer of audio "problem solvers" and transformers. We also offer easily-fabricated aluminum enclosures for small production runs and prototypes.

SOFTCOPY
http://www.softcopy.co.uk
As a PC data base or hard copy, SoftCopy can supply a complete index of Electronics World articles over the past ten years. Photo copies of articles from back issues are also available.

STAFFORDSHIRE WIRELESS COMPANY
http://www.staffs-wireless.com
Wireless, communication, test equipment, bought and sold for very competitive prices visit our web site or telephone John on 01889 55928 or 0973 296461.

SUPRA AUDIO CABLES
http://www.jenving.se
Jenving Technology AB is the manufacturer of Supra Audio Cables. OEM productions are also accepted.

TEST EQUIPMENT SOLUTIONS
http://www.TestEquipmentHQ.com
Quality second user test equipment with full warranty and support. All types of equipment from all leading manufacturers including general purpose, communications and industrial test.

TELONIC
http://www.telonic.uk.com
"Telonic specialists in laboratory AC & DC Power Supplies, Electronic AC & DC Loads, Electrical Safety Testing and complete test systems. Pairs RF Filters, Attenuators, Diesel Engine Smoke Measurement, Quartz Crystal Microbalances. Tel: +44 (0) 118 9786911"

TELNET
http://www.telnet.uk.com
Top quality second-hand Test and Measurement Equipment eMail telnet@msn.com

TEMWELL CORPORATION
http://www.temwell.com.tw
Manufacturer & Exporter of Heical BPF Filter. 30 Watts BPF Power Filter and Panelized/Basic Station Duplexers

THOSE ENGINEERS LTD
http://www.spiceage.com
Working evaluations of SpicEage mixed-mode simulator, Spicey PCB design tools and Superfilter demo (synthesises passive, active, digital filters). Tech support, sales links and price list.

THERMOSPEED
http://www.thermospeed.co.uk
Temperature and pressure, control and instrumentation. Full on-line purchasing.
* Overnight ex-stock delivery
* Create your own hotlist
* Download datasheets
* Full technical support

TOTAL ROBOTS
http://www.totalrobots.co.uk
Robot Kits and Control Technology products, including OPIC the first Object-Oriented Programmable Integrated Circuit. Secure on-line ordering and fast delivery.

TRIDENT MICROSYSTEMYS LTD
http://www.trident-uk.co.uk
Visit the Trident website for details and datasheets on their entire LCD and printer product range. Download data and subscribe for our regularly updated newsletter.

TOWER HILL TECHNICAL SERVICES
http://www.towerhillairerals.com

TECHNICAL AND SCIENTIFIC SUPPLIES
http://www.technicalscientific.com
Suppliers of pre-1985 equipment and components.
- Test/measurement equipment
- Valves and semiconductors
- Transducers and pressure gauges
- Scientific books and catalogues
- Manuals and data sheets
ABRITARY WAVEFORM GENERATOR-
STORAGE OSCILLOSCOPE-
SPECTRUM ANALYZER-
MULTIMETER-
TRANSIENT RECORDER-

The HS801: the first 100 Mega samples per second measuring instrument that consists of a MOST (Multimeter, Oscilloscope, Spectrum analyzer and Transient recorder) and an AWG (arbitrary waveform generator). This new MOST portable and compact measuring instrument can solve almost every measurement problem. With the integrated AWG you can generate every signal you want.

The versatile software has a user-defined toolbar with which over 50 instrument settings quick and easy can be accessed. An intelligent auto setup allows the inexperienced user to perform measurements immediately. Through the use of a setting file, the user has the possibility to save an instrument setup and recall it at a later moment. The setup time of the instrument is hereby reduced to a minimum.

When a quick indication of the input signal is required, a simple click on the auto setup button will immediately give a good overview of the signal. The auto setup function ensures a proper setup of the time base, the trigger levels and the input sensitivities.

• The sophisticated cursor read outs have 21 possible read outs. Besides the usual read outs, like voltage and time, also quantities like rise time and frequency are displayed.

• Measured signals and instrument settings can be saved on disk. This enables the creation of a library of measured signals. Text balloons can be added to a signal, for special comments. The (colour) print outs can be supplied with three common text lines (e.g. company info) on three lines with measurement specific information.

• The HS801 has an 8 bit resolution and a maximum sampling speed of 100 MHz. The input range is 0.1 volt full scale to 80 volt full scale. The record length is 32K/64K samples. The AWG has a 10 bit resolution and a sample speed of 25 MHz. The HS801 is connected to the parallel printer port of a computer.

• The minimum system requirement is a PC with a 486 processor and 8 Mbyte RAM available. The software runs in Windows 3.xx / 95 / 98 or Windows NT and DOS 3.3 or higher.

• TiePie engineering (UK), 28 Stephenson Road, Industrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK Tel: 01480-460028; Fax: 01480-460340

• TiePie engineering (NL), Koperslagersstraat 37, 8601 WL SNEEK The Netherlands Tel: +31 515 415 416; Fax: +31 515 418 819

Web: http://www.tiepie.nl
As an advertiser you can be certain that your sales message is going to be read by decision-making electronics professionals with the power to purchase your products.

The pre-paid rate for semi-display setting is £17 per single column centimetre (maximum 4cm). Box number £22 extra. All prices plus 17½% VAT. All cheques, postal orders etc to be made payable to Reed Business Information. Advertisements together with remittance should be sent to Electronics World Classified, Cumulus Business Media, Anne Boleyn House, 9-13 Ewell Road, Cheam, Surrey SM3 8DZ. Tel: 020 8722 6028. Fax: 020 8770 2016

Service

Link

FOR SALE

RF DESIGN SERVICES

All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS

www.rlaver.dial.pipex.com

TEL: 01223 862550

FAX: 01223 440853

Test Equipment

Service Manuals.

Contact

www.cooke-int.com

Tel: +44 01243 55 55 90

GOOD CONDITION

Stabilock 4040, £1,000.
Tek 3001 GPX Logic Analyzer, £1,000.
Hitachi VC-6175 Store O'scope, £500.
Tek 2235 100 MHz O'scope, £400.

Tel: 0779 6865 500

ELECTRONICS WORLD

covers topics of most interest to the readers. Every section of the magazine is of interest and value to the Electronics Professionals who buy Electronics World every month. Your advertisement will appear in an environment which captures and holds the readers interest. For further information call Pat Bunce

Tel 020 8643 6207

Fax 020 8770 2016

E-mail: p.bunce@cumulusmedia.co.uk

CIRCLE NO.133 ON REPLY CARD

ARTICLES WANTED

BUYERS OF CAPACITORS • TRANSISTORS • IC'S • DIODES • CONNECTORS • INDUCTORS

for a serious result

call a serious company.

Definitely no

monkey business!

C L

tel: 01676 53 53 50 fax: 01676 53 53 30
www.oemXS.co.uk email: purchasing@computercomponents.ltd.uk

SURPLUS WANTED

WE BUY: ICs, Memory, Relays, Caps, PSUs, Semiconductors, Populated Boards, Computers + Test Equipment

ANYTHING CONSIDERED

For our wide range of Semiconductor + Passives List, please ring, fax or email

MAIL ELECTRONICS

TEL: 0161-761 4520 / FAX: 0161-763 8863
EMAIL: andrew@mailelectronics.com
www.mailelectronics.com

TOP PRICES PAID

For all your valves, tubes, semi conductors and ICs.

Langrex Supplies Limited

1 Mayo Road, Croydon, Surrey CR0 2OP

TEL: 020 8684 1156 FAX: 020 8684 3056

LINEAGE

ELECTRONICS WORLD

November 2001

887
From Concept To Production

Electronic design and manufacturing services for the new millennium:

- Embedded monitoring & control
- PSTN telephones and test equipment
- Data/phone interfacing, line driving, etc.
- Switch mode & linear PSU & battery management
- Fan & vibration systems
- Printed Circuit Board design
- Technical documentation, schematic layout & language translation

Email: sales@designersystems.co.uk
Tel/Fax: +44 (0) 1872 223306

POWER SUPPLY DESIGN

Switched Mode PSU
Power Factor Correction designed to your specification

Tel/Fax: 01243 842520
e-mail: eugen_kus@cix.co.uk

Lomond Electronic Services

ADVERTISERS' INDEX

ARMSCROFT..........................873
BETA..................................863
CMS....................................827
CONFORD..............................873
CRICKLEWOOD.........................875
CROWNHILL............................IBC
DISPLAY ELECTRONICS..............861
EPTSOFT................................OBC
GREENWELD............................873
INFO SYSTEM..........................863
JOHNS RADIO...........................881
JPG ELECTRONICS......................873
LABCENTER ELECTRONICS............821
MILFORD INST..........................817
NCT....................................856
NUMBER ONE SYSTEMS.................827
OLSON..................................841
PICO..................................869
QUICK ROUTE..........................810
RAEDEK................................863
RALFE ELECTRONICS.................885
REO COMPONENTS......................826
RD RESEARCH..........................817
SEETRAX...............................865
SOWTER.................................875
STEWART OF READING..............875
TELNET.................................IFC
TEST EQUIPMENT.......................813
TIE PIE................................886
TRIANGLE...............................856
VANN DRAPER..........................865
WEB PAGES.............................882-885
XL SYSTEMS............................826
Newsagent order form

Pass this order form to your newsagent to ensure you don’t miss the next issue of EW.

To .. (name of Newsagent)

Please reserve me the December issue of Electronics World and continue to order every month’s issue until further notice.

Name...
Address...
..
..

Thank you

Subscribe today!

Guarantee your own personal copy each month

Save on a 2 year subscription
Please enter my subscription to ELECTRONICS WORLD. I enclose Cheque/Eurocheque to the value of £ , made payable to Reed Business Information.

Please charge my Mastercard/Visa/Amex account

With £ Expiry Date

Signature

Name

Job Title

Address

Tel:

Postcode

Country

Post to:

ELECTRONICS WORLD

P.O. Box 302

Haywards Heath,

West Sussex RH16 3DH UK.

CREDIT CARD HOTLINE

Tel: +44 01444 445566

Fax: +44 01444 445447

Please tick here if you do not wish to receive direct marketing-promotion from other companies ☐

SUBSCRIPTION RATES

UK 1 year £36

UK 2 years £58

UK 3 years £72

Student rate (proof required) £21.30

Airmail

Europe 1 year £51

Europe 2 years £82

Europe 3 years £103

Rest of the world 1 year £61

Rest of the world 2 years £98

Rest of the world 3 years £123

Surface mail 1 year £41

SUBSCRIPTION RATES

UK 1 year £36

UK 2 years £58

UK 3 years £72

Student rate (proof required) £21.30

Airmail

Europe 1 year £51

Europe 2 years £82

Europe 3 years £103

Rest of the world 1 year £61

Rest of the world 2 years £98

Rest of the world 3 years £123

Surface mail 1 year £41

Post to:

ELECTRONICS WORLD

P.O. Box 302

Haywards Heath,

West Sussex RH16 3DH UK.

CREDIT CARD HOTLINE

Tel: +44 01444 445566

Fax: +44 01444 445447

Please tick here if you do not wish to receive direct marketing-promotion from other companies ☐
ChipDrive Starter pack
ChipDrive Microh - serial port card terminal
Samples of Smart cards (6 cards)
Source code examples on CD ROM (VB3,4,5,6, Delphi & C)
Windows API Description, Windows DLL Documentation on CD ROM (PDF format)

£69.95 +VAT

SIM Card Editor for Mobile Phones
This advanced editor allows the user to modify, copy and print data held on any GSM SIM card. No longer do you have to battle with complicated programming sequences on the numeric keypad of your mobile phone. Simply connect the SIM card READER WRITER to your PC, install the easy to use software to:
- View and Print a detailed card profile
- Edit, Delete or Add phone book entries
- Edit, Delete or Add SMS messages
- PIN administration. Enable and Up-Date PIN1/2, unlock PIN’s, Display the error counter for each PIN
- Archive SIM Card data to hard drive, copy Save and restore complete card data sets.
- Copy SIM card data from card to card
- Charge Control. set up charge counter limit, display current charge value, setup displayed price per unit.
- View and change preferred service providers

£29.95 +VAT

Requires Windows 95/98, NT, 2000 & Pentium Class PC
Electronics and Computing Principles V7

Interested in PIC microcontrollers, this is the software for you!

Look what's NEW!
FREE TRIAL VERSIONS ELECTRONICS, COMPUTING AND MATHS SOFTWARE FOR EVALUATION BEFORE YOU BUY. Also existing software updates.

www.eptsoft.com

Visit www.eptsoft.com or telephone for full details, including a description by Robert Penfold.

Electronics and Computing Principles V7 comprises more than a thousand main topics, covering AC and DC theory, Transistors, Op-Amps, Electrical, Digital techniques, Micro processors and Mathemactics PLUS Components and Equipment Picture dictionary, SAQ's, Electronics toolbox etc. and more...

Also included is an enormous amount of interactive technical information about PIC micro controllers and the full instruction set.

For beginners our PIC topics start with an interactive introduction to the PIC program structure and basic operation with a summary of the complete instruction set and code examples.

PIC16F84 Architecture is shown whereby a context sensitive description of its action is displayed. Every PIC operation is discussed (even the more advanced are explained). Just as it occurs inside a PIC, we show it in colour on the screen.

PIC16C71 A/D functions are given the same treatment, along with a full explanation of the A/D conversion process, even the calculations.

A visually attractive set of Windows designed to help you quickly and easily get started in the development of your own PIC programs.

Personal user £99.95 +VAT
Education* £299.95 +VAT

(* Includes unlimited multi-user site licence.)

Visit www.eptsoft.com or telephone for full details, including a description by Robert Penfold.

Electronics and Computing Principles V7 comprises more than a thousand main topics, covering AC and DC theory, Transistors, Op-Amps, Electrical, Digital techniques, Micro processors and Mathemactics PLUS Components and Equipment Picture dictionary, SAQ's, Electronics toolbox etc. and more...

Also included is an enormous amount of interactive technical information about PIC micro controllers and the full instruction set.

For beginners our PIC topics start with an interactive introduction to the PIC program structure and basic operation with a summary of the complete instruction set and code examples.

PIC16F84 Architecture is shown whereby a context sensitive description of its action is displayed. Every PIC operation is discussed (even the more advanced are explained). Just as it occurs inside a PIC, we show it in colour on the screen.

PIC16C71 A/D functions are given the same treatment, along with a full explanation of the A/D conversion process, even the calculations.

A visually attractive set of Windows designed to help you quickly and easily get started in the development of your own PIC programs.

Personal user £99.95 +VAT
Education* £299.95 +VAT

(* Includes unlimited multi-user site licence.)