Programmable analogue designer's kit $=$ save 30%
ELECTRON WORLD

DECEMBER $2001 \mathbf{£ 2 . 8 0}$

Self on Class-G audio power

Differential RF probe

 Ripple regulator revisited EMI and shieldingTransformer tips
Programmable analogue chip

Quality second-user test \& measurement equipment

Hewiett Packard 8642A - high performance R/F syythesiser
$(0.1-1050 \mathrm{MHz})$
$£ 250$

3335A - synthesiser ($\mathbf{2 0 0 H z - 8 1 M H z) ~} £ 1995$
Hewlett Packard 436A power meter and sensor (various) from $£ 750$
Marconi 6310 - programmable sweep generator (2 to 20GHz) - new
$£ 2500$
£2995
 Hewlett Packard 5370B Hewlett Packard 8662A synth-sig. gen. (10 kHz to 1280 MHz)
Hewlett Packard 3324A synth. function/sweep gen. (21MHz).
Hewlett Packard 3314A Function Generator $20 \mathrm{MHz} \quad{ }_{\mathrm{f}}^{\mathrm{L} 250}$ Hewlett Packard 8904A Multifunction Synthesiser (opt $2+4$
 $£ 1950$ Hewlett Packard 4278A $1 \mathrm{kHz} / 1 \mathrm{MHz}$ Capacitance Meter $£ 375$ Hewlett Packard 53310A Modulation Domain Analyser (opts 1\&3)
Hewier Packard 4191A R/F Inpedance
nalyser ($1-10001 \mathrm{MHz}$)
Clill ESG-D3000A (E4432A) $250 \mathrm{kHz}-3 \mathrm{GHz}$ Signal Gen.

SPECTRUM ANALYSERS

Telnet, 8 Cavans Way, Binley Industrial Estate Coventry CV3 2SF. CIRCIE NO. 101 ON REPLY CARD

Radio Communications Test Sets

Will FPGAs kill off Asics?

- Voice recognition tracks young offenders
- Magnetic fields make rats walk in circles

Java for the masses

- Words on wheels

Niobium replaces tantalum for capacitor

A new hardware digital signal processing (DSP)
technology knocks spot off fast fourrier transforms and
Lses far less hardware than conventional multi-channel uses far less hardware than conventional
digital fiters. Find out how on page 897.

- Better and cheaper chip ESD protection
- Camera lechnology sends pictures
direct to Internet

- New $\begin{array}{l}\text { N } 300000 \\ \text { achievement }\end{array}$ prize for mathematical

900 A NEW LOOK AT
CLASS-G POWER
Douglas Self has been investigating one of the lesser-known classes of audio power amplifier - Class-G. His finding
reveal that it is considerably more
efficient than Class-B when handling
realistic signals. But can Class-G compete
with Class-B in terms of linearity?

908 SHIELDING AND EMI

Joe Carr explains the basics of one of the hottest topics in today's electronics design
arena - EMI shielding. Joe gives practical tips on grounding the circuit and its shield, and on physical enclosure requirements.
914 FIELD-PROGRAMMABLE ANALOGUE ARRAY
Described as a "field-programmable analogue array', Anadigm's chip use switched-capacitor technology and
comprises a configurable matrix of 20 programmable cells. Claudia Colombini describes the technology behind this field programmable analogue array,
highlighting its design and cost benefits.

918 WIRELESS ACROSS THE WAVES
Anthony Hopwoord has been looking at Cunard's first newspaper. Produced in 1904 to keep transatlantic liner passengers up to date with the news, this paper benefits of wireless.

922 DIFFERENTIAL-IN

 100MHZ SCOPE PROBEDesigned for RF test and measurement,
Cyril Bateman's differential-input scop probe system provides useful results at more than gain, 4 pF loading and at low cost.

931 HIGH-RESOLUTION PC VOLTMETER
Yongping Xia's PC add-on allows an 18 bit analogue-to-digital converter to be read via a printer port. Using the sourcecode presented, readings are displayed on length alters depending on the input

934 UNDERSTANDING

TRANSFORMERS
Lan Hickman delves into the inner
workings of transformers.
937 NEW PRODUCTS
New product outlines, edited by Richard Wilson
948 THE HYSTERETIC REGULATOR
Fernando Garcia argues that the ripple regulator - considered by many to be due to advances in components. He's produced a prototype that gives 3.3 V a 11 A from a 13.5 V input with an
efficiency of almost 90%.
956 CIRCUIT IDEAS

- Q-meter signal generator add-on - Battery life extender for torches, etc - Non-locking push-button latch
- Audio level indicator
- Three-phase sine-generator
- Simple three-state logic probe

962 WEB DIRECTIONS
Useful web addresses for electronics engineer

Doug Self investigates Class-G audio power. It certainly offers benefits in
terms of efficiency, but can it compete on the linearity front? Find out on page 900.

This 433.92 MHz transceiver provides bidirectional wireless 20 communication at ranges up to 201m and runs from a
There's a full deccription of this and other essential new products starting
on page 937 on page 937...

Exclusive reader offer Complementing our article on Anadigm's programnable analogue
array is a special offer on the array is a special offer on the
companys companys
normal p rice is is $£ 349$, but for limited period, EW readers can obtain it for $£ 249$ (excluding VAD.

SCHEMATIC SIMULATION PCB AUTOROUTING CADCAM DESKTOP MANUFACTURE

Be The First

hy woit for prototype PCB's or spend time switching between ditterent programs for schematic and
about netlist files or pay extra for autorouting? Introducing Electronic Design Studio 3, integrated EDA with built in simulation, autorouting and now available with new DeskTop Manufacture (DTM)

Getting your product to market first can make all the difference, that's why Electronic Design Sudio 3 (EDS) combines 3 powerful programs
into one tuly integrated package. You'll spend into one truly integrated package. You'll spend
less time switching berween different programs and worrying about netlists, and more time designing. But that's not all, with EDS 3 we are introducing Desk Top Manufacture (DTM) which works together with precision CAM hardware to machine a range of prototype PCB's directly on your desktop

Poject Navigator Jumps to it EDS is project based, and with our project and net navigators, you can jump to any document, module, symbol, gate or pin with the click of a
mousel No more hunting for schematics sheets mousel No more hunting for schematics sheets
or symbols. The new overview window lets you or symbols. The new overview window lets you
zoom to any part of your document with a single click, and our CADCheck system can keep you PCB synchronised with your schematic in realtime - no more netlist worries
Hierarchical Schematics the way you want. EDS is now available with full support for EDS is now available with fuil support for
modular, hierarchical, multi-sheet schematics. Visual tags make linking beerween modules and sheets easier, and there is full support in the project navigator. Editing is easier tool New Collow me" wiring tools and intelligent symb
ew document schemes also let you instantly change the look of your schematics. Whether its flashy presentations, or serious lechnical chematics, EDS's DTP quality output can wor for you.

SPICE/XSPICE Simulation - its in the Box EDS 3 includes an enhanced SPICEXSPIC based simulator. All the symbol \& simulation properties can be set directly within EDS, and you can create your own models, extend the
libraries supplied, or use external SPICE mod libraries supplied, or use external SPICE model
All output is displayed in graph windows within EDS ready for pasting into your reports!

PCB Creation with Polyblend
EDS features a range of exciting new PCB editing tools including "follow mee" wiring, intelligent pads which change colour when
correct links are made, and our new polyblend module which lets you weld polygons, punch holes in polygons and more. There is also our dynamic copper pour zones, Viper rip-up and
retry autoonuter, and online shape based DRC eatures. Inm resolution and support for unlimited layers is also available!

DeskTop Manufacture
ncredibly, EDS 3 can also link directly to ADCAM hardware to manufacture your PCB o your deskiop using standard copper clad boand
Copper tracks are machined using precision loating head technology, and drilling and 2 layer support is also available.
Customisable Power at an Affordable Price! EDS 3 feaures fully customisable toolbars, acluding the abilyty to add hims to your Tools menu. With the latest "XP" look and feel, EDS is available in 4 variants, with prices starting at nder $£ 100$ for systems with autorouting and simulation! Why not call us now on +441422
255010 for a FREE demonstration pack or visit 255010 for a FREE demonstration pack or visi information? We look forward to talking to yout
Over 18,000 licensed users of our Quickroute CIRCIENO ios an Reply

SUSSCRIPTION HOTLINE el (0) 1444475662 cax (0) 1444445447
sUbSCRIPTION QUERIES bp.subscriptions@rbi.co.uk el (0) 1444445566 Fax (0) 1444445447

Igniting the spark and fanning the flames
ne cold auurnn aftemoon, when I was five, I cam
within a cal's whisker of killing myself. I'd been playing upstairs on my own.
There was a 2 kW electric bar fire blazing away in my bedroom. By that age. I already knew that metals conducted electricity, but I didn't really understand the consequences of mains electricily. So as an experiment, removed the fire's plug from the sockel, wrapped a If I close my eyes now, I can sill see the dazzling blue, hemispherical flash, fringed with brilliant orange sparks. Still. I can hear the sound - a surprisingly soft popping noise, like a balloon bursting under a duvel.
Apart from a few stern words, I was never punished for my 'experiment'. In retrospect my parents probably
thought I had punished myself enough. In any case. I suspect my father had a sneaking regard for such a bold experiment (as a boy in Poland he had blown the cellar door off its hinges making gunpowder).
I already had a love of scierce. My father was an engineer who encouraged my interest. Much of my early childhood was spent in my father's garage, amidst a plethora of tools,
car batteries, bits of old televisions, model steam engines, dynamos, valves, tobacco tins crammed with nuts and bolls. boxtes of mysterious and wonderfu-smelling chemicals, electric motors, relays, bulbs, strange actuators filched from scrapped aircraft, timber, sheet netal, hardboard, paints, vamishes and Holl's Cataloy
1 would sit on the floor, playing with wires, while he made a rotary saw from an old school desk, a washing
machine motor and a fan belt. The thing was lethal and made a hideous noise but it cut wood like a knife through butter. He taught me to solder when 1 was nine, and logether we built my first short wave radio Thesc carly influences stood me in goods stead during secondary school and university, when science got
tougher and more and more maths crept in. Somehow knew that beyond the siog, the essential wonder of science remained, and all the techniques that I found difficult
were just so many tools in helping you achieve something
really worthwhile
In order to write this leader, 1 circulated a questionnaire to the students in imy deparment here at UMIST. It asked
them about their inpressions of science and scientists while they were at school. and why they chose to pursue science or engineering at university.
Individual experiences aside. there was a considerable
degree of conformity among the replics. Firsh, most students
chose science because they liked it -not necessarily because
it improved their career prospects. Second, the reasons most
people gave for students avoiding science and engineering
was because it was perceived as being hard.
All agred that teachers played a criciol
an individual's enthusiasms: almost all thought that while
science was well-taught at schoot within the bounds of the
national curnicilum, not enough was being done during the
As any parent knows, the younger the child, the more readily he or she will respond to encouragement. The years, and you will have a mountain to climb later. I like to think this can be encapsulated in a simple equation that is no doubt inaccurate but which serves the point - ' effect equals encouragement divided by age'. It follows that if a child has a giff or spark for any subject, and encouragement is given, his or her enthusiasms wil buoy them education
primary school system, th -in the home. Perhaps some children, who would otherwise blossom as scientists and engineers, do nol This may be because the perceptions of science and This may be because the percpions of science and science is cerrainly not considered trendy or fashionable. as indicated by the questionnaire.
Many view scierce with suspicion, regarding scienists as remote, aloof and even arogant. It must be said, there is some truth in this argument. We, the scienuific community,
have some work to do to put our house in order have some work to do to put our house in order.
Earlier this year, the Govermment commissioned an
independent review into the supply of scientists and engineers, chaired by Sir Gareth Robers FRS, published on June 21 (www.hm-
treasury. gov.ukddocs/2001/scientists_2006.html). This review, a consultation document, was commissioned "in response to concerns that innovative businesses in the UK sometimes find it difficult to recruilt the skilled
In reply to this, the Institution of Electrical Engineers (IEE) submitted a detailed reply to the Government (www.iec.org/Policy/Submis/s 589 .cfm) outlining the reasons it believed the problem existed. One of these was the desperate shorage of qualified and high quality mauts
and science teachers. Even more worrying, the UK has and science teachers. Even more worrying, the UK has women into science careers. Although some progress wa made, recent statistics show that the situation may have regressed.
These day
These days my thrills come in the form of abstruse equations having a very real effect on the digital audio
signals processed in our tabs. But these connections are signals processed in our tabs. Bur these cond
abstract, and do not appeal to a child's mind.
There is no question that schools play a vilal mole in addressing this issue, but so do parents, and probably more so. Maybe we need to take risks again, and show young people what science can really be like. I'm not suggesung that we take a party of lots down to the local
swimming pool, sit them in the balcony and hurl a chunk of potassium into the water, but you lhow what I mean. Science can be thrilling, and we need to prove that to our youngsters.

Patrick Gaydecki

South, 2nd F| New York, NY 10016 Teli; 212) 6798888 Foxi; (212) 7799455 Gumulus Business Media is o division of lighbury

umulus

 Senertil correspondence 10 Jackie Lowe, Cumulus BusinessMedia, Anne Boleyn House, 9.13 £woll Road, Cheam, Media, Anne Bole
Surray, S m $88 z$

 Perrymoun Rood, Howwards Heoth, Sussex RH1 6 3DH. Telephone
O1444 475631 . Please nolity chonge of oddress.

 ROW 1 yeor $£ 61.002$ yeors C 98.003 yeors $£ 123$
Overseas advernising agents: fronce ond 8 Belgum:

UPDATI

Buckyballs act as superconductors at $-156^{\circ} \mathrm{C}$

Buckyballs, football shaped carbon
molecules C_{6} can act as highmolecules C_{60}, can act as high-
temperature superconductors, claim temperature superconductors, claim
researchers from Bell Labs, when they trap other organic molecules. Carbon C_{60} has shown superconducting behaviour before,
but only at temperatures up to $52 K$ but only at temperatures up to 52 K ,
or $-221^{\circ} \mathrm{C}$.

Bell Labs has raised the critical
temperature to a balmy 117 K , or temperatere
$-156^{\circ} \mathrm{C}$. This is salmy sificant, because transistors and other devices made using the materials can be cooled with liquid nitrogen, rather than much more expensive liquid helium.
"This shows that buckyballs may live up to their initial promise of
being a material that will be very
important to technology," said important to technology," said
Federico Capasso, vice-president of physical research at Bell Labs. To increase the superconducting temperature, physicist Hendrik schon
and his team inserted molecules of and his team inserted molecules of
either chloroform or bromoform into either chloroform or bromoform into
the lattice structure of a buckyball crystal.
crysta.
Increasing the spacing of the
buckyball buckyball molecules lowers electrical and molecular attraction and increases the superconducting "I'm surprised; I didn't expect the temperature to go up so much," said
Professor Peter Littlewood, head of theory of condensed matter physics research at the University of Cambridge. "It's a very clean result. 117 K are copper oxides. However th physics for these materials is far more complex. Buckyballs could make cheaper transistors that are easier to work with.
"This result makes buckyballs infinitely more interesting to study,"
added Capasso.

Data hides in sound
Researchers in Cambridge are inaudibly hiding control data in sound, and toys may be the first application.
2003," said John Edgley toys in of Intrasonics, the company spun square metre microelectronics technology group
facility in Woburn, Massachusetts.

out of Scientific Generics to exploit the technology. Toys could
shop in two years, he said. The data-encoding technique allows data up to 20 bil /s to be added to audio signals. "It uses direct-sequence spread spectrum to make the data look like white noise and psycho-acoustic
techniques to hide it," said Edgley Enabled toys will react to signals the audio making them appear to dance to music for instance, or
move in respo
According to Edgley, an extension of the technology, using four loudspeakers, enables a receiver
with a single microphone to with a single microphone to locat itself physically to within two
inches in an encoded sound field inches in an encoded sound field. whole audience equipped with enabled devices to be sent different
www.generics.co.uk

Build It In Cyberspace

www. labcenter co. uk

Develop and test complete micro-controller designs without building a physical prototype. PROTEUS VSM simulates the GPU and any additional electronics used in your designs. And it does so in real time. *

- CPU models for PIC and 8051 and series micro-controllers available now. 68HC11 comming soon. More CPU models under development. See website for latest info.
- Interactive device models include LCD displays, RS232 terminal, universal keypad plus a range of switches, buttons, pots, LEDs, 7 segment displays and much more.
- Extensive debugging facilities including register and memory contents, breakpoints and single step modes.
- Source level debugging supported for
selected development tools.
- Integrated 'make' utility - compile and simulate with one keystroke.
- Over 4000 standard SPICE models included Fully compatible with manufacturers' SPICE models.
- DLL interfaces provided for application specific models
- Based on SPICE3F5 mixed mode circuit simulator.
- CPU and interactive device models are sold separately build up your VSM system in affordable stages.
- ARES Lite PCB Layout also available.

New software tests electronic kit remotely

Communications specialist Esgen from Bristol has developed test software for distributed network
systems that can isolate problems systems that can isolate problem
when products are in the field. By including extra hardware and software probes, a product can be accessed through the network when in use.
Called Assayer, the tool is aimed products such as mobile phones ome entertainment networks and automotive systems.
Testing is part of the whole life ycle of a product - including after you've shipped it," said Pete

Will FPGAs kill off Asics?

Programmable logic firm Altera has formed a link with The Math Works ndis Matiab tools to improve digita ignal processing in its feldAltera has developed a tool called DSP Builder, which can take design from Matlab and Simulink and convert them into a form suitable for Altera's Quartus software
We want to make our design flow sed to," said Paul Hollingworth, marketing director at Altera.
DSP Builder carries out the conversion, creating code in the HDL hardware description
But, "de.
But, "designers need know nothing Hollingworth.
The move is driven by the ncreasing use of DSP in wirele ommunic systems. "The move from 2G to 2.5 G to 3 G adds a lot of
"We think you need to be able to when devices are in the field." Moore cites a home e working perfectly which might ode, such as a DVD player is added. However, when the system crashes, the DVD machine might ot be at fault. Instead another evice, working close to the limit as the cause. dentified in the field to find offending equipment.
Assayer consists of test-bed controller software that, through
data processing to voice. It's causing he DSP requirements to go up exponentially," Holling worth said.
GSM requires about 400Mflops of processing, but full speed 3 G will need over 12000 Mflops . "That's a pectacular increase," said Hollingworth.
FPGAs are more suited to this processing than dedicated DSPs, he hot to say we're going to take over the DSP business, but for many applications we can be more fficient," Hollingworth said. Moreover, he reckons the recession is causing firms to shy away from hey bring.
"In five years' time the Asic market s we know it won't exist. We're just sarting $0.13 \mu \mathrm{~m}$ in the fab and nonecoverable engineering costs are hree-quarters of a million dollars," he said.

This gadget from Seiko may be for diagrams and use PDA. SmartPad hides a page-sized digitiser under the paper and copies sketches to your
Palm or clone. For Palm or clone. For an alpha-numeric keyhoard to peck t under the pad.
evices on the network.
"Testing is actually something, that's part of the design flow, it's
not something you do at the end," ointed out Stephen Maudsley, CEO of Esgem.
Via the Internet protocol network, or whatever connects the products, the probes could look a individual electrical signals, hrough to snooping a bus, or Even if only one device in a network has been designed with Assayer probes, it can often figure ut which other device is causing problem, said Maudsley.

Strong magnetic fields make rats walk in circles

Strong magnetic fields can alter rat behaviour and may affect humans, fter experiments on rodents.
Thomas Houpt and James Smith caimed the animals not only devel op strong taste aversions after exposure but also walked in circles or a time.
The field used by Houpt and Smith as 9.4 teslas - not much more than and exposure lasted 30 minutes.
The effects were that the animals
which enjoyed drinking sweetened water before the experiment, would rot did after exposure. Control rats did.
he addition, rats oriented toward he south pole without exception hose facing the north pole turned clockwise. All settled down soon clockwise. All settled down soon,
and circling behaviour diminished to nothing after several exposures. hospitals generally work between 0.3 and 1.5 T , with some operating at 4 T .

More powerful machines are pro posed, at 17 T the health of individual cells can theoretically be determine scanned patients don't complain aversions to food after scanning even at 3 T , but there is some anecdotal evidence that research workers operating near powerful magnels have suffered nausea.
Subsequent analysis of test rat
brains showed high neural the stomach, intestines and inner ear control regions of the brain.

Low-cost InP chip provides alternative to erbium-doped fibre amps

An optical chip that amplifies multiple wavelengths of light has bee developed by British start-up Kamelian
Based on Kamelian's indium optical amplifier technology, the optical linear amplifier (OLA) could replace expensive erbium-doped fibre

Paul May, Kamelian's CEO
amplifiers in certain applications There is an opportunity for a low cost replacement for an EDFA in a metro environment," said Paul May, CEO of Kamelian
usually make use of fewer work will lengths of light than longer haul systems, perhaps eight or fewer. An OLA is smaller and cheaper to produce than an EDFA, the latter being more suited to long distance transmission.
Kamelian 's OLA has variable gain, dependent on an injected current.
Normally the amplifier would be designed into a closed loop system to maintain a consistent power output easily," said May "Typically a system designer will want a certain output power."
The OLA will be produced at

Java for the masses

Croydon-based OneEighty Software has created a Java virtual machine (JVM) that can run on cheap $\$ 1$ processors such as the venerable - yet popular - 805
The software, called Origin-J, is aimed at bringing Java to low cost appliances and Internet gateways. "Origin-J is a very, very compact fuil implementation of Java, said Peter Dzwig, the firm's chief executive. OneEighty has created a cleanroom verst any processor including the 8051.
"Origin-J on an 8051 comes in at Russel 40 k and 50 kbytes ," said Russel Winder, the firm's chief professor of computing formence

King's College, London. No other company, he believes, can run a complete JVM on so simple a processor.
"Performance is slightly slower than native C, but you would expect that,"
added Winder "We"re not added Winder. "We're not trying to The software has already been ported to several processors including the 68 HC 12 , ARM and i 386 . It also runs on Cyan Technology's 16-bit XAP processor.
Porting to other processors can take justhors for a simple von Neumann architecture or a couple of weeks for more complex Harvard architecture. Multi-threading allows several tasks to be run concurrently, without running n software.

Kamelian's Oxford fabrication plant, which is close to coming on stream. It's unique. Not many companies have growth, processing and packaging of indium phosphide," said May "That puts us in a very strong posi-

Artificial personality... In an attempt to make an easy-tose computer interface, Carnegie Mellon University is developing Viki
artificial personality being jointly created by Computer Interaction Institute and Entertainmen Technology Center. Vikia has, apparently, already been given her own personal history as the first robotic student
at the university.

Voice recognition keeps tabs on young offenders

Young offenders released into the community will have a new security recognition.
Rather than keep tabs on offenders with personal visits by parole officers and tagging, voice recognition will allow their whereabouts to monitored by telephone. Manchester-based systems firm
Guard Plus has integrated voice recognition technology into a security system for monitoring offenders in the community.
Called Vqvoice, the technolog. ould be used, for example, to confirm that an offender has turned
p for work, or is at home durin urfew hours
"Vquoice is already being used by ecuricor as part of the Youth Justice Board's intensive supervision and urveillance programme," said Stephen Freathy, business evelopment manager at On Guard Tagg
Tagging is the traditional method of confirming location and is also used. but this only registers a presence near dransponder, usually at the home address.
"Voice verification allows the t various locations," said Freathy

It's not a replacement for tagging, but they could
conjunction.
Vquoice is based on technology developed by Belgian firm Keywar A biometric server enables multiple dentification algorithms to run, suc as fingerprint, voice or iris scan
The voice recognition uses The voice recognition uses
Igorithms developed by Lemout \& Hauspie, but any other algorithm could be included.
The error in the system, either falsely rejecting or passing, is abour wo per cent, so the password or hrase is normally repeated, cuttin eriors to 0.04 per cent.

Words on wheels

Adflash, a Devon-based company, has spent five years developing WheelFX, which uses LEDs synchronised to the rotation of a wheel to
display messages - from five to over $200 \mathrm{mile} / \mathrm{h}$ said the company. WheelFX has been adopted by film star Paul Newman and the Newman-
Haas Racing Team to advertise on their car wheels and got its first outing in Haas Racing Team to advertise on their car wheels and got its first outing in Britain this year at the Rockingham Motor Speedway in the CART FedB Championship.
ut as Adflash is ware said to be interested and taxi drivers need not be le

Niobium looks set to replace tantalum for capacitors

Restictons in he supply of

 human tragedies linked to its Congo man tragedies linked to its sources, are turning capacitor akers to niobium as an alternative. he introduction of niobium into ommercial capacitors. The highe dielectric strength of its oxide hould make for moré compact apacitors, bu leake current and temperature stability are inferior totantalum. And niobium capacit production is not so well understood.
As it is, niobium capacitors tend to e slightly larger than the tantalums they replace.
The latest company to introduce sum capacitors is Vishay which is sampling solid niobium capacitors in the industry-standard 293D, 292D, and 595D form factors, from 4 to 16 V and 4.7 to $680 \mu \mathrm{~F}$.

New technique knocks spots off FFT

Pipeline Frequency Transform could soon be the expression on the lips of
spectrum analyser makers and radar pectrum analyser makers and radar Develop tar-up company RF Engines, PFC as it is called is a hardware digital signal processing (DSP) technology that knocks spots off fast Fourier ransforms and uses far less hardware digital filters - or so claims its inventor John Lillington.
The technology "gives exactly the same output as a bank of filters", said illington, who is CEO of RF
Engines, "but 16384 filter modules are needed to filter 16 k channcls with 14 modules".
PFT uses a series of filter modules PFT uses a series of filter modules
one after the other, each one spliting he incoming spectrum into two half width bands.
This architecture would seem to lead to a 'rree' structure with each ters as the previous layer, but this is not the case.
Lillington realised that, although wice the number of filters is needed, ach filter has half the processing load This means layer above. at each level is the same. One dentical filter block can be for each ayer, the lower ones time-
multiplexed between channels. lower layers is memory, as swap files re needed for each channel. On a demonstration board, using four Xilinx Virtex FPGAs, Lillington claims that he can handle in excess of 100 MHz bandwidth signal at eight-bit with sharp (stop band rejection better

Extracting $30 \mu s$ pulses switching between four frequencies and an $80 \mathrm{CHz} /$ sweep signal would give most spectrum analysers a headache. A pipeline frequency
than 75 dB) filter characteristics. With two XCV2000E FPGAs and (ome RAM, an entire 4 MHz band can be monitored with better than 200 Hz solution, an update rate of 200 Hz , ynamic range of over 130 dB and ass band ripple of 0.2 dB . where the threat to spectrum analyser and warships comes from.
If these claims are correct, a few FPGAs executing a PFT can spilt a spectrum into narrow channels, with one go - with no need for sweeping filters.

This performance makes good spectrum analysers look pretty silly military signals stand out clearly from surrounding noise. As well as looking at instrumentatio and defence applications, RF Engines applications as PFT is suited to decoding several comms modulation schemes, particularly OFDM. This is the coding scheme used in Digital Audio Broadcasts and could well be mobile phones, said Lillington. mobile phones, said Lillington.
ww.rel.

Better and cheaper chip ESD protection

Improved circuirry for electrostatic discharge (ESD) protection could cent, according to developer Samoff The chip process technology firm developed the technology, called TakeCharge! at its European subsidiary in Belgium.
"We've found a way to shrink an protection area, that's been stuck same size for years. We reduce it at least 30 per cent, while improving device performance," said Koen Verhaege, technical director for device
design at Sarnoff Europe.
"TakeCharge! typically allows $\$ 100$ in extra pars to be placed on a wafer, with no additional masks or process line changes."
Part of the process is to get rid of the silicide blocking of transistors in the 'back-end-ballast'. This reduces back-end-ballast This reduces
resistance in the diffusion and the gate, hereby increasing speeds. An added bonus is that if this is the only use of silicide on the chip, then a whole mask step is saved, reducing
costs further.
Two other changes help improve SD by up to 60 per cent and reduce fwo to three In a $0.25 \mu \mathrm{~m}$ process, the ESD circuitry held out against 8 kV dis charges for over 10000 repetition arnoff claimed.
Test devices have been manufactured while 0.35 and $0.11 \mu \mathrm{~m}$ are going, hrough testing. Toshiba and Hynix are he first publicly named licensees of the technique.

Camera technology sends pictures direct to Internet

Cambridge Consultants has unveiled digital camera concept product called 'SEE'. It has no memory to tore images. instead it wites dires Bluetooth link and a mobile SEE includes both stills and video capability. A touch screen allows images to be edited and a pen allows messages to be added on top of captured images.

Reconfigurable design tools aid pipeline pigs
Pipeline inspection firm PII is using reconfigurable Pipeline inspection firm PII is using reconfigurable
hardware design tools it its 'intelligent pigs'. The pigs are processing capability of up to $6 \mathrm{Mbyte} / \mathrm{s}$.
The Northumberland company will use Celoxica's DKI software and Altera FPGAs to replace obsolete, custom hardware in the pigs.
"We were using VHDL schematic entry tools but it was a struggle to mainain our in-house VADL capability, PII.
"Each inspection tool, including circuits, drive elements, data capture and storage, costs the company around $£ 6 \mathrm{~m}$ to develop. Typically the return is realised over a 10 to 15 year term of service so componen obsolescen " said Braysorations of inspection tool is a major issue," said Brayson.

"The limits on file size and battery
life can compromise the potential of digital cameras," said Donna Wilson, group leader with CCL's product definition team. hundred stills or half an hour of video on one set of batteries, she said.
SEE uses a VideoCore chip from lphamosaic, a recent spin-off from Cambridge Consultants.

New $£ 300000$ prize for mathematical

 achievementMathematicians have long been denied the honour of being considered for the Nobel Prize, so the setting up of their own special award should be welcomed.
The Norwegian government has set up a prize for maths called the Abel, fter Norway's most famous mathematician Niels Henrik Abel.
The award will be made annually with a cash prize of around $£ 300000$. . An international prize in mathematics dedicated to his [Abel's] name An intermational prize in mathematics dedicated to his [Abers] na
an expression of the importance of mathematics, and is intended to encourage students and researchers," said Norway's Prime Minister, Jens Stoltenberg.
Niels Henrik Abel lived until the age of just 26 at the beginning of the 19th century. His countrymen rate his achievements alongside those of music and ar.

Surgeons in New York remove French woman's gall bladder - while she's still in France
A medical operation has been carried out by a remotely controlled robot Claimed to be the first use of Telemedicine, 'Operation Lindbergh' involved a team surgeons in New York and a patient in Strasbourg. France. Surgeons in New York controlled a robotic system manufactured by Computer Motion to remove the woman's gall bladder. The link between the surgeons and the robotic system was an end-to-end high-speed fibre optic service provided by the France Telecom Group. The patient is said to be recovering without complications.
www.websurg.com, www.eits.org and www.computermotion.com

B^{2} Spice 2000

Professional analogue and digital
circuit design for the PC and Mac

Accurate results that can be relied on
8^{2} Spice 2000 is used by thousands UK und a aroad and contoms to the Berkeley SPICE standard. Detailis of education discounts and site licences are available on request.

Just a few of the features:
Uses the latest Xspice engine for accurate mixed mode simulation. Parameterised AC and transient sweep, Monte Carlo analyses, new Xspice simulations and new noise and distortion analyses. Plus all the model libraries are included in e price, over 7000 parts included
B^{2} Spice 2000 also comes with a powerful model editing package that allows you to create and modify parts and make changes to the libraries
The best way to see if this software is what you need is to try it - risk free for 30 days.

VIS
RD Research, Research House. Norwich Road, Eastgate, Norwich NR10 4HA
Tel: 01603872331 Emall: rd.research @paston.co.uk www.lokking.co.uk/ soice Tel: 01603872331 Emall: rd.deresearch@paston, co..uk www. I.ooking. co. uk spice

The Complete Integrated Schematic PCB Layout

Package

Too good for words

The New Ranger XL Series
Ranger 2 for Windows
NEW Ranger 2XL
260
NEW Ranger XL from $£ 950$
FREE Website Download Demo
SEETAME
Advanced Systems \& Technology for PCB Manufacturers
Old Buriton Lime Works, Buriton. Pelersfield, Hants. UK GU31 SSJ

A new look at

 Class-G power

 Class-G power}Douglas Self has been investigating one of the lesserknown classes of audio power amplifier - Class-G. His findings reveal that this class is considerably more powerefficient than Class-B when handling realistic signals. Class-G has a reputation for sacrificing linearity for efficiency, but the innovative design to be presented features a distortion figure that's lower than all but the very best of Class-B.
lass-G amplifiers have been around since 1976, bu to the best of my knowledge, no constructional pro ject for a Class-G amplifier has ever been published
This deficiency is now remedied. In the field of audio it is easy to find amplifiers less effilent tban Class-B; Class-AB is markedly less efficient the low end of an amplifier's power capability, while it has
to be faced that Class-A squanders huge amounts of energy. Finding something with higher efficiency is rathe more difficult.
Class-D, using ultrasonic pulse-width modulation, promises high efficiency and sometimes delivers it, but it lepends crucially on derd technology. Class-D efficiency characteristics. The LCails of circuit design and device response into one load impedance, and there are daunting EMC difficultics. It is not an attractive proposition for igh-quality amplifiers that must work with separate speak ers. ch leaves the Class-G principle, in whic the signal demands. This important technology is used extensively in very-high-power amplifiers for large PA systems, where the power savings can be crucial, and is five amplifiers instead of two their losses are sionificant.

Class-G has also recently begun to appear in powerful sub-woofers, and even in ADSL drivers. It has historically been used in high-power sonar transmitters, but since these tend to be fitted to nuclear submarines, details are
scarce. scarce.
Basic principles of Class-G
It is the large peak-to-mean ratio of music that makes possible improved efficiency in Class-G. By large peak-tomean ratio, 1 mean thai most of the time the power output
is much below the peak levels Statistics on typical value is much below the peak levels. Statistics on typical values
for this ratio for various kinds of music are surprisingly hard to find, but it is generally accepted that the range between 10 dB for compressed rock, and 30 dB for classical material, covers most circumstances.
Clearly, the signal spends most of its time at low powers, if the peaks are much greater than the average level. As a
result, a low-powered amplifier will be much more efficient. However, when the occasional high-power peaks do come along, they must be catered for by some mechanism that can draw high power, causing high internal dissipation, but only for brief periods.
In the usual Class-G configurations, there are two or three pairs of supply rails; for most of the time lower outa low voltage-drop between rail and output, and core-
spondingly low dissipation. The infrequent peaks above the pondingly low are supplied from the high-voltage pair ails.
Clearly the switching between rails is the heart of the matter, and anyone who has ever done any circuit design will immediately start thinking about how easy - or oth erwise - it will
20 kHz signal.
There are two main ways to arrange the dual-rail system; series and parallel, i.e. shunt. This article deals only wit the series configuration, as it seems to have had the great est application to hi-fi. The parallel version is more often used in high-power PA amplifiers

Series-configured Class-G
A series-type Class-G output stage with two rail voltages A series-type Class-G output stage with two rall vollages is
shown in Fig. 1. The inner devices are those that conduc continuously; those that perform the rail-switching are the outer devices.
In all cases in this article, the emitter-follower, or EF type of output stage is used; the complementary-feedback
pair, or CFP, configuration can be used for inner, outer, or both sets of output devices, but I fear I have insufficient space to deal properly with this issuc here.
For maximum efficiency, the inner stage normally operates in Class-B, though there is no inherent reason why it ould not run in Class-AB or even Class-A; more on this later. Therefore if the inner devices are in Class-B, and the outer devices are effectively in Class-C.
According to the classification scheme I proposed in ref erence I , this configuration is Class $\mathrm{B}+\mathrm{C}$. The plus sign indicates the series connection of the outer and inne devices. This basic configuration was developed by Hitach with the exp
Musical signals spend mosi of their time at low levels, due to the high peak/mean ratio. Dissipation is greatly reduced by running off the lower $\pm V_{1}$ supply rails at these mes. The inner stage $T_{3,4}$ operates essentially in norma Class-B. Transistors $T r_{1,2}$ are the usual drivers and R_{1} the hared emitter resistor
quired, shown here split compensated $V_{\text {bias }}$ generator is metry when the stage is simulated; note that it is the inne output devices whose temperature must be tracked. Low-level supply power is drawn through diodes $D_{3,4}$ These are often called the commutating diodes, because of heir rail-switching role. Using the word 'commutation avoids confusion with the usual Class-B crossover at zero Whe
ceeds $+V_{1}$ positive-going instantaneous signal ${ }^{2}$ lurns off, so the entire output current is now drawn from the higher $+V_{2}$ rail, with the voltage-drop and hence the dissipation shared between $\operatorname{Tr}_{3,6}$. Negative-going signals
are handled the same way. Figure 2 shows how the collectors of the inner power devices retreat away from the output rail as it approaches the transition level
Class-G is often said to have worse linearity than Class B, the blame being placed on problems with diode commutation. As usual, received wisdom is only half of the story, and there are other linearity problems ty
due to sluggish diodes, as you will see shortly.
It is characteristic of Class-G that such olitches only

Volume in (dB)
fig. 3. Power partition diagram for a conventional Class-B probability-density function. X-axis is volume

fig. 4. Power partition diagram for Class-G with $\mathbf{V 1 / V} \mathbf{V} 2=30 \%$. Signal has a triangular PDF. X-axis is volume; outer devices dissipate nothing until -15 dB is reached

Fig. 5. Power partition diagram for Class-G with $V_{1} / V_{2}=60 \%$ riangular PDF. Compared wish fig. 4, the inner devices maximum volume.
occur at moderate power or above, and they are well displaced away from the critical crossover region. A Class-G amplifier has a low-power region of true Class-B linearity, in much the same way as a Class-AB ampli
power region of true Class-A performance.

Class-G and efficiency

The standard mathematical derivation of Class-B efficiency The standard mathematical derivation of Class-B efficiency
with sinewave drive uses straightforward integration over a half cycle to calculate internal dissipation against volt-age-fraction, i.e. the fraction of possible voltage swing. As is well known, dissipation reaches about 40% of maximum output power, at a voltage-fraction of 63%, which also delivers 40% of maximum output power to the load.
The mathematics is simple, because the waveforms do not vary with output level. Every possible idealisation is assumed, such as zero quiescent current, no emitter resistors, no $V_{\text {cef }}$ art) losses and so on.
In Class-G, the waveforms are a strong function of output level, requiring variable limits of integration... it all gets rather unwieldy. The simulation method detailed in
reference 4 is much easier - if rather laborious - and can be used with any input waveform, to yield a power-partition diagram, or PPD. This diagram shows how the power being drawn from the supply is distributed between output device dissipations and useful load power.
It is recognised that sinewaves and the like are very poor simulations of music for this purpose. Their main advanmathematical approach.
However, the whole raison d'etre of Class-G is power saving. With this technology in particular, the waveform used has a strong effect on the results. For this reason, I have concentrated on the PPD of an amplifier with real musical signals, or at any rate, their statistical representa-
tion. The details of the triangular probability distribution function, or PDF, approach are given in reference 5 . Figure 3 is the triangular PDF PPD for conventional Class-B EF, while Fig. 4 is that for Class G with $V_{2}=50 \mathrm{~V}$ and $V_{1}=15 \mathrm{~V}$, i.e. with $V_{1} / V_{2}=30 \%$. The PPD plots power dissipated in all four output devices, the load, and the total drawn from the supply rails. It shows how the input power
is partitioned between the load and the output devices. The total sums to slightly less than the input power, the remainder being accounted for by the drivers and Re losses. In Fig. 4, the lower area is the power in the inner devices and the larger area just above is that in the outer devices; there is only one area for device is on at a time
wwitching threshold dissipation is zero below the raildevice dissipation at full output is reduced from 48 W in Class-B to 40 W . At first glance, this may not appear to be
a good return for twice as many power transistors.
Figure 5 shows the same PPD but with $V_{2}=50 \mathrm{~V}$ and $V_{1}=30 \mathrm{~V}$, i.e. with $V_{1} V_{2}=60 \%$. Here, the low-dissipation tion is higher due to the increased lower rail voltages. The overall result is that total device power at full output is reduced from 48 W in Class-B to 34 W , which is a definite improvement.
The efficiency is very sensitive to the ratio of rail voltages used. Very few domestic amplifiers are operated at likely to give lower general dissipation. I do not suggest
that $V_{1} / V_{2}=\mathbf{3 0 \%}$ is necessarily the optimum lower-rail voltage for all situations, but it looks about right for domestic hifi.

Practicalities

1 have wrestled with many 'new and improved' outpu stages that proved to be anything but. My first thoughts on
Fig. 1 ran something like: "Will this work in SPICE sim ulation?" It did. "And will this work for real at IkHz ?" It did - first time.
The second question is more subtle than it looks. It is al oo easy to design complicated output stages that work cautifully in simulation but prove impossible to stabilis seem to suffer from this. I also asked myself, " ${ }^{\text {W }}$
t will - and indeed at 50 kHz her. This is a very different que. I haven' pushed it furor real at 1 kHz ?". It is quite possiblem "Will this work configuration that either just does not work at up with a provoked into oscillation that is not tigered by a kHz timulus.
Having settled these points, I proceeded with the design

The biasing chain

The biasing requirements are rather more complex than fo Class-B. Two extra bias generators $V_{\text {blas } 3,4}$ are required to ensure $T r_{6}$ turns on before $I r_{3}$ runs out of voltage. This
voltage is not critical, so long as it does not fall too low, or become much too high. Fixed zener diodes of normal commercial tolerance are quite good enough
If this bias is set too low, so that the outer devices turn on late, then the $V_{\text {ce }}$ across T_{r} falls too low, and its curren capability declines; when evaluating this bear in mind the the bias is too high, then the outer transistors turn on too early, and the dissipation in the inner devices is greate han it need be.
If the bias is too high, this is less of a problem. If you're in doubt, make this bias higher rather than lower. The orig nal Hitachi circuit in reference 1 put zener diodes in series quiescent bias, Fig. 6. This effectively subtracted their oltage from the main bias generator, which was set up 0V or so, much higher than usual. Simulation showed that Zeners in the forward path caused poor linearity, which is not exactly surprising.
There is also the problem that the quiescent condition will be affected by changes in the zener voltage. Also, if have much too high a temperature coefficient for prope hermal tracking.
To alleviate these problems, I rearranged the biasing as in Figs $1 \& 11$; the amplifier forward path now goes directly to the inner devices, and the extra bias voltages are

Fig. 7. Spikes due to charge storage of conventional diodes, simulated at 10 kHz . They only occur when the diodes tur off, so there are only two per cycle. These spikes disappear Completely when Schottky diodes are used in the SPIC

Fig. 6. The original
Hitachi Class-G
biasing system, with inner device bias derived by subtracting $V_{\text {bias } 3, \text {, from the main }}$
bias generator.

Fig. 9. SPICE simulation shows variations in the incremental gain of an EF-type
Class-G series output stage. The gain-steps at trancition - at 16 V - are due to Class- G series output stage. The gain-steps at Iransition $-a t \pm 16 \mathrm{~V}$ - are due to
Early effect in the transistors. The Class-A trace is the top one, with Class-B optimal below. For both, the inner driver collectors are connected to the switched inner rails, i.e. the inner power device collectors, as in Fig. 1.
in the path to the outer devices; since these do not control the output directly, the linearity of this path is of little importance.
The zener diodes are out of the forward path and the bias generator can be a standard type. It must be thermally coupled to the inner power devices; the outer ones have no effect on the quiescent conditions.

Lineárity problems of series Class-G
Series Class-G has always had a question-mark against its linearity because of difficulties with the rail-switching. The diodes $D_{3,4}$ must be power devices capable of handling a dozen amps or so.
Conventional silicon rectifier diodes take a long time to turn off due to stored charge carriers. This has the follow-
ing deleterious effect: when the vollage on the cathode of D_{3} rises above V_{1}, the diode attempts to turn off abruptly. its charge carniers though sustain a brief but large reverse current as they are swept from its junction. This current is supplied by $\boldsymbol{T r}_{6}$, attempting as an emitter-follower to keep its emitter up to the right potential. So far so good. ducting heavily, due to its own charge-carrier storage. The extra current it turned on to feed D_{3} in reverse now goes through $T r_{3}$'s collector, which accepts it because of this transistor's low $V_{\text {ce }}$ and passes it onto the load via its emit ter and emitter resistor
This process is readily demonstrated by a SPICE commutation transient simulation, Figs 7 \& 8. Note that there
are only two of these events per cycle - not four - as they only occur when the diodes turn off. In the original Hitachi design, this problem was reportedly tackled by using fast transistors and relatively fast gold-doped diodes, but according to reference 2 , this was only partially successful. It is now easy to eradicate this problen. Schotky power
diodes are now readily available - as they were not in 1976 - and they are much faster due to their lack of minority carriers and charge storage. They also have the added advantage of a much lower forward voltage drop at large 50 A forward currents.
The only snag with Schotky power diodes is their relatively low reverse withstand voltage. Fortunately, the V_{2} and V_{1}, and this only in the low power domain of operation.
Another good point about these components is that they appear to be reasonably tough; I have subjected 50 A Motorola devices to 60 A -plus repeatedly without a failure.
The spikes disappear completely from the SPICE plot is The spikes disappear completely from the SPICE plot if MBR5025L diodes capable of 50A and 25 PIV were used in simulation.

Static linearity

Spice simulation reveals in Fig. 9 that the static linearity Cle. that revealed by a DC analysis - is distinctly inferior to
Chere is the usual gain-wobble around the crossover region, exactly as for straight Class-B, but also there are now gain-steps at $\pm 16 \mathrm{~V}$.
The result with the inner devices biased into push-pull Class-A is also shown, and proves that the gain-steps are not related to crossover distortion. Since this a DC analysis, he dyeps canner be due and Early effect was immedi-
other dynamic phenomena, and ately suspected. Early effect is the increase in collector cur-
rent when the collector voltage increases, even though the be remains constant.
When unexpected distortion intrudes into a SPICE sim ulation, and beta effects seem unlikely, a handy diagnostic technique is to turn off Early effect for each transistor in turn. In PSpice models the Early effect can be disabled by
setting the parameter VAF to a much higher value than the default of 100 . This quickly proved that the gain-step were caused wholly by Early effect acting on both inner drivers and inner output devices: the gain-steps are completely abolished.
When $T r_{6}$ begins to act, $T r_{3}$'s $V_{c e}$ is no longer decreasing as the output moves positive, but substantially constant as
the emitter of T_{r} moves upwards at the same rate as the emitter of Tr_{3}. This has the effect of a sudden change in gain, which degrades linearity
The effect appears to occur in both drivers and outpu devices in equal measure. It can be easily eliminated in the drivers by powering them from the outer rather than th rate in which driver V vevaries. The improvement in lin earity is seen in Fig. 10, where the gain-steps are halve in size.

fig. 10. Connecting the inner driver collectors to the outer V_{2} rails reduces Early effect nonlinearities in them, and halves the transition gain-steps.

Figure 11 shows the resulting circuit. Driver power dissipation is naturally increased, but this is such a small part of the total that the overall efficiency is not significantly
degraded. It is clearly not practicable to apply the same method to the oupput devices, because then the low-voltage rail is never used and it isn't Class-G any more. The smallsignal stages before the drivers naturally have to work from the outer rails to generate the full voltage swing. At this stage we have eliminated the diode glitches, and
halved the size of the gain-steps. With these improvements halved the size of the gain-steps. With these improvements
it is now practical to design a Class-G amplifier with midband THD below 0.002%. My second article on this topic shows how to do just that, presenting a complete, working Class-G power amplifier design.

References

1. Self, D., 'Self On Audio’ Newnes, ISBN 0-7506-4765-5, p. 347
2. Sampei et al, 'Highest Efficiency \& Super Quality Audio Amplifier Using MOS Power FETs in Class-G Operation' IEEE Trans on Consumer
Electronics, Vol CE-24, No 3, Aug. 1978, p. 300 . ${ }^{\text {E }}$, Raddman 'Class-G High Efficiency Hi-Fi Amplifier', Radionics, Aug. 1976, p. 47
Self, D., 'Self On Audio', Newnes, ISBN 0-7506-4765-5, p. 369 (simulation Self. D. 'Self On Audio' Newnes, ISBN 0-7506-4765-5, p. 386. (Triangular PDF).
ig. 11. Class-G output stage with inner drivers powered
om outer supply rails.

SURVEILLANCE

PROJECT KITS

\qquad

- RECAIVEPOSLIIVE ION QENERATOR - LEO OICE Clussic Intro 10 electionies $\&$ circuir 3003KT 9.95 - STARMWAY TO HEAVEM Tests handeeve co. Ordination Press switch when green segment of LED lights to climb the statway - miss a start again! $G 000$ intro to several basic c circunts 3005 KT $\underline{9} .95$ down \& drops itmo a slot 10 LED's Good infro CMOS ceccase counters \& OD-ATpS 3006 KT £10.95 - 9V XENON TUBE FLASHER Transtormer circuit - LEO FLLSHER 15 uhtra bright reo LED's tuash in 7 selectable patterns $3037 M \mathrm{KT}$ \&S. 95 - LEO PLASHER 2 Simila to above ou - imtroouction to pic programhinga. Leazn progam ming irom scratch. Program ming hardware, a P16FSSA chip and a wo part. practical, and nands -on tutoial sefies are provicec 3081KT ع22.95 - SERIILL PIC PROGAAMMER for ail a/1azz/40 Din DIP Sefial proprammed PICs Shareware yet powertul programmer tor the Atmel B9C 1051 , $89 C 2051$ \& $89 C 4051$ UC's. Programmer does NOT require special sotiware other than a teemminal 3127 KT £24.95 - exponsive TO gV batteries wit conventer Reopace Ideas for hobbyis \& professional laboratory, Very ruliabie \& versatie esesion at an extemely reasonable price: Short circuit protection trans tormer PCB 1007XT E16.95	
30-in-ONE Electronic Project Lab	
Great introduction to electionics Ideal for the buoding eiectronics expert Build a radio, burgar alam, wate detector, morse code parctice circuit. simple computer dircutts, andmuch morel NO sotdering, tools or previous electronics much mocrel No soldering, 1001 or previous electionics repeatedty Compretensive 68 . page manual with expianations. schemaztics and assemoly diagrams. Suitable for age $10+$ (phone for bulk discount)	

READER OFFERS

KENWOOD

66L29t 6L6L0 nselze pues д䒑pene

 Supplies •Generators •Meters •PMR Radio CD/DVD Test •AV Test •Oscilloscopes •Powe
Tecstar Electronics Ltd
1 Nufifeld Road. SI. Ives. Cambridgeshlre, PE27 3LX
www.tecstar.co.uk

Shierting Pताi $: \frac{1}{2}=1$

Joe Carr explains the basics of one of the hottest topics in today's electronics design arena EMI shielding. In this first article of a set of two, Joe gives practical tips on grounding the circuit and its shield, and on physical enclosure requirements.

[^0]Let's look at shielding materials and methods Figure 1a) shows a universal 'black box' circuit with three ports: A is the input, B is the output and C is electronic circuit. It is used to universalise the discussion so that ideas are not associated with any specific class of circuit.
What's inside the black box enclosure could be a circuit, or a system such as a transmitter, receiver, audio amplifier, or a medical electrocardiograph
amplifier. It doesn't matter for our present purposes Shielding involves placing a metal screen or barrier around the circuit. In Fig. 1b) the black box circuit is placed inside a shielded compartment, as indicated by the dotted lines. In addition, the input voltage $V_{A C}$ and output voltage $V_{B C}$ are shown: the subscript letter refer to the por designations.
Any time that two conductors are brought into close proximity to each other, but not touching, a capacitances are intentional. But in other cases, the capacitances are incidental to construction. An example of such incidental capacitance is an insulated wire laying on a chassis. In the case of Fig. 1b) there and $C_{C D}$. Shielding of the sort shown in Fig. 1b) is not terribly effective. It can lead to instability - and outright oscillation under some circumstances. The feedback path that causes the problem is better seen in the redrawn version of the circuit shown in Fig. 1c) divider, with the "output" connected through $C_{A D}$ to the input terminal A of the black box. Under the right circumstances, this circuit can lead to very bad EMI/EMC consequences.
Shielding rule No 1
The solution to the problem is to apply shielding rule The solution to the problem is to apply shielding rule
No 1: the shield must be connected to the zero siggal reference point in the circuit being protected, i.e. the common line between output and input.
In some cases, the common might be a floating connection that is not earth grounded, i.e. a counterpoise grond plane. The common point may be at a non-zero voltage, but for the purposes of the input

Fig. 1. When considering shielding it often helps oo think of a circuit as a 'black box' with three erminals - input, output and common, as in a). In b), the black box is shown inside a shielding enclosure. But this method of shielding has in the redrawn version of the set-up in diagram c) in d) is a configuration wired with the shield connected to the zero signal reference point - as it should be for reliable shielding
and output signals it is the zero-signal reference point. In most cases, the zero-signal point is, in fact, at a otential of zero volts.
Application of this rule is shown in Fig. 1d). The common, C , is connected to the shield D , effectively shorting out capacitance $C_{C D}$, and the common node of eneral rule connect the shield and common signal lin general rule: connect the shield and common signal line ogethe
the case of Fig. 1, the 'black box' circuit is single onnected directly to the shield
Figected directly to the shield. Foplex In shows a situation that's a little more shielded enclosure and supplies output signal to som sor of resistive load. The load connects to the shielded nclosure by some sort of shielded cable. Similarly, a shielded signal source $V_{i n}$ is connected to the input of he 'black box' by another length of shielded cable. In this case, there could be too many grounds. Suppose hat the common signal point inside the main shielded is, in turn grounded at point A. The signal source is also grounded, but to a different point, namely point B If current I_{G} flows in the ground plane resistance R_{G} then a voltage drop V_{G} will be formed across the resistance of the ground path. The current might be due o external circuits, or it may be due to a potential inside the shielding Whatever the source, however, a difference of potential between points A and B gives rise to a spurious signal voltage V_{G} that is effectively in series with the actual signal voltage $V_{\text {IN. }}$. Thus, the total signal seen as解' problem.
The key to
onnect the shield to the ground plane at the signal end B, and not at any other points. An application of rule No might say: "The shield and common of the internal crcuiry shat be cormecti" in whe where the signal source is grounded." In other words, break the

nnection at point A and rely instead on point B , as shown in Fig. 2b).
This class of problem is representative of a class of problems in which a common impedance - in this case a
 tiage drop appears across the common impedance en a problem will surface.
wo approaches to shielding here are two basic approaches to shielding: absorption nd reflection. These mechanisms often operate ogether.
pose arge external field is present. In the case of bsorption, the field may penetrate the shield but is
greatly attenuated. In the case of reflection, the field is urned back by the metal shield. The absorptive method is usually used at frequencies㯖 1000 kHz for magnetic fields. The types of materials tend to be the ferromagnetic materials such as steel and a special material used especially for magnetic
shields called 'mu-metal' hields called 'mu-metal' or μ-metal. field is of more importance than the magnetic field better shielding materials are copper, brass and aluminium.
Skin effect and skin depth
Alternating currents do not flow uniformly throughout currents. Due to skin effect AC as is the case with direct currents. Due to skin effect, AC currents flow only near
the surface of the conductor.
This effect creates a situation where the AC resistance of a conductor will be higher than the DC resistance. If the current density from the surface to the centre of a cylindrical conductor is graphed, then it will be found hat the curve is a section of a parabola The critical depth for a cylindrical conductor is the depth at which the current density falls off to 0.368 we use to determine the AC resistance.
Sheets or plates of metal used for shielding also show a skin effect when currents flow in them. The skin depth, Fig. 3, is analogous to the critical depth in cylindrical conductors. In both cases, 63.2% of the skin depth, ∂. The skin depth is calculated from:
 grounds, which could cause
problems. Diagram b) shows a rewire to eliminate the problems cause by multiple ground points.

$\partial=\frac{2.602 \mathrm{k}}{\sqrt{F_{\text {Fz }}}}$
Where: ∂ is the skin depth in inches, F_{Hz} is the frequency in hertz, and constant k is 1.00 for copper 00 for steel.
Why is this important? In the case of absorptive loss, hield has a skin depth of $0.86 \mathrm{~mm}(0.034 \mathrm{in})$ If 6 mm ($1 / 16$ in) stock is used, the total depth is equivalent to
84 , so the attenuation for magnetic fields would be
$8.7 \mathrm{~dB} \times 1.84=16 \mathrm{~dB}$.
To obtain maximum reflective loss at radio frequencies, the thickness of the shielding material should be about three to ten times the skin depth. The thicker the shield, he better the shielding - up to a point.
At 10 MHz for example, aluminium has a skin depth of $0.0254 \mathrm{~mm}(0.001 \mathrm{in})$, and copper has a skin depth of $.020 \mathrm{~mm}(0.0008 \mathrm{in})$, so the shield thickness should be for copper or more. Given that common $1 / 16$ in thick stock is 1.6 mm thick, aluminium will be marginal while copper would be more than sufficient.
It is only fair to note that some textbooks say a shield should be at least three times the skin depth... but that is for minimal shielding.

Ground planes and wire size
The ground plane might be an actual earth ground. In most electronics circuits though, it will be either a printed circuit board or a chassis.
In the case of printed circuit boards, it is usually recommended in RF circuits to use a double-sided board with the top-side copper used as a ground
possibly to carry DC power-supply lines.
In RF circuits, it is not advisable to use small wires or printed circuit tracks as ground lines. The AC resistance of cylindrical wire conductors is a function of both the wire diameter and the frequency. For any given wire ize, the AC resistance
$R_{A C}=\mathrm{k} R_{D C} \sqrt{F_{\text {MHt }}}$
The value of the k factor depends on the wire size: Wire size (AWG) k-factor
10
14
18
22
35
28
18
11
7
Thus, when you use \#22 AWG solid hook-up wire to carry a $I \mathrm{MHz} \mathrm{RF}$ current, the AC resistance is seven times the DC resistance. If this wire is a ground, and carries a current, the AC resistance of the wire might drop.
Even if the wire is large enough to reduce the effect of AC resistance at radio frequencies, the inductance might be a problem. The inductance of a straight lengt of $\$ 22$ AWG wire is about $600 \mu \mathrm{H} / 1000 \mathrm{ft}$ A one foot run of wire will have an inductance about $0.6 \mu \mathrm{H}$. This inductance will not be noticed in an abdio

circuit, or even many low-frequency RF circuits, but as the frequency climbs it becomes significant. In the upper lumped inductances intentionally placed in portion of If the wire is in a ground path, then it is a common impedance. Any RF voltage developed across its inductive reactance forms a valid signal, and may cause problems. The key to the problem is star grounding, i.e. grounding all circuit elements to the same point. If the signal source is grounded, then its ground connectio uight to be used as the overall grounding point.

Shielded boxes

A number of manufacturers sell prefabricated shielded boxes. Some of them are quite good, while others are not very good at all. Figure 4 shows one of the poorer rew it con f is thells. The bent into a ' U ' channel shape (see end view). The top

Fig. 4. Many prototype pressed aluminium and steel enclosures have a bottom with an open-ended channel structure and a lid with folded-over ends. Such an enclosure does not provide an effective screen - particularly
at higher frequencies.

fig. 6. At UHF, the improved enclosure in Fig. 5 also starts to leak because of the distance between the screws. Adding screws to bring the spacing down to
at most 0.05λ of the highest frequency involved will solve the problem.

Fig. 7. An enclosure specifically designed for RF work may have many small lips in its lid, each of which will dig into the mating part of the enclosure and provide a low-resistance electrical path between the two part

Fig. 8. Slots in an enclosure can provide very effective radiation paths. A slot for even with the connector fitted.
shell is slightly larger, and designed to fit over the bottom shell.
A pair of tabs on each side of the top shell either overlap of fit into mating notches in the bottom shell. This type of box is suitable for low frequency - up particularly sensitive to external EMI
A somewhat better form of box is shown in Fig. 5 The bottom shell is essentially the same as in the other box, but the top shell is built using an overlapping lip rather than tab-and-notch construction. This form of construction is good up to several megahertz, but may fail in the VHF and up region.

Holes in shields
Ideally, a shield should contain no holes. In practice, this is impossible though. There are always some connections - input, output, power supplies - th must go in or out of the shielded enclosure
In other cases, the circuitry may generate considerable heat so some holes are provided to ventilate the interior. The holes must be very small compared to the wavelength of the highest frequency signal being protected against.
The general rule is that screw or mounting hole should spaced not more than $1 / 20$ wavelength (i.e. 0.05λ) apart at the highest frequency of operation. At
1 MHz , this is not hard to meet because $0.05 \lambda>49$ feet. But at VHF and up it might be a bit tricky because the wavelengths are much shorter. For example, spacing the screws that keep a shield firmly in place three inches apart may be sufficient for mechanical strength, and will shield at lower
frequencies. But three inches is 0.05λ at 197 MHz . Above 197 MHz the shielding effect is therefore reduced.
In the shielded enclosure of Fig. 5 the screws are on the end portions of the flange. At UHF frequencies this can be a problem. A better solution is shown in Fig. 6 where spacing S is less than 0.05λ The effects of wide spacing of mounting screws can
be dramatic. I once saw a case where a mechanical engineer had 're-engineered' the specification for an RF enclosure without understanding the RF effects. The electrical engineer who designed the original box demonstrated the effects to her by taking a well shielded pulsed RF transmitter and connecting it to a dummy load. He then used a specrum analyser
whip antenna on it to monitor the energy emitted from the RF box.
He started by removing every other screw. As soon as the first screw was loosened, the harmonics and spurs showing on the spectrum analyser display spacing recommended by the mechanical engineer and at high frequencies the shielding was almost ineffective.
Another form of box is shown in Fig. 7. This type of box used a bottom shell that is enclosed on all sides but the top. A top cover with RF 'fingers' can
be used to shield the top side. The fingers dis into metal of the bottom shell, creating a tighter RF bond

One popular form of this type of box is manufactured by SESCOM, and is made of tinned steel.

Slots in enclosures

Be really wary of slots in shielding enclosures. The are relatively efficient radiators - so much so that some microwave antennas are little more than arrays
of slot apertures. of slot apertures.
When the slot
then it may radiate rather effectivelengh orlong occur when connectors such as the 'DB-x' type for digital interfaces like RS-232C are mounted to the shielded enclosure, Fig. 8
Connectors are not the only form of 'slot' found in me equipnen. 1 covers or shes bives in aluminium project boxes are just butted together, as
shown previously in Fig. 4, then the lack of a tight fit might form with together, Fig. 5 . Other accidental slots are created when internal shielding panels are put in place to create multaple
shielded compartments, and the mechanical fit is no shielded compartments, and the mechanical mise
good. One reason to use copper or brass to make good. One reason to use copper or brass to make
enclosures is that a bead of solder can be used to ensure these panels are firmly anchored to ground with no 'slotting' effects.

In the second article on this shielding, I will be looking at mounting connectors, multi-compartment enclosure spray-on shielding, guard shielding and ground loops.

Valve Radio and Audio Repair Handbook

* A practical manual for collectors, owners, dealers and service engineers *Essential Information for all radio and audio enthuslasts *

This book is not only an essential read for every professional working with antique radio and gramophone equipment, but also dealers, coliectors and valve technology enthusiasts the world over. The
emphasis is firmly on the practicalities of repairing and restoring, so technical content is kept to a minimum, and always explained in a way that can be followed by readers with no background in electronics. Those
who have a good grounding in electronics, but wish to learn more about the practical aspects, will given to hands-on repair work, covering mechanical as well as electrical aspects of servicing. Repair
techniques are also illustrated throughout. This book is an expanded and updated version o Chas Miller's classic Valve Radio Repair. Full coverage of valve amplifie will add to its appeal to all audio enthusiasts who appreciate the sound quality of valve equipment

(7e Price: £22.50 Europe $£ 25.00$ Row $£ 27.00$

ess Media,
Post to Jackie Lowe, Cumulus Business Media,
Anne Boleyn House, 9-13 Ewell Road, Cheam, Surrey, SM3 8BZ

How to pay

(Valve Radia and Audia Repoir Hondbook) paperbock

- 1 enclose a cheque/bank draff for £ \qquad (payable to Cumulus Business Media)

Please charge my credit/charge card

Signature of Cardholder

Name

Post Code \quad Tel:

Anadigm is producing a programmable analogue chip that is quite different from Zetex's Trac device, featured in last month's issue. Described as a 'field-programmable analogue array', Anadigm's chip uses switched-capacitor technology and comprises a configurable matrix of $\mathbf{2 0}$ programmable cells. Claudia Colombini describes the technology behind this field-programmable analogue array, highlighting its design and cost benefits.

Field-programmable analogue array

1

though a variety of

 programmable analogue arrays have beenavailable on the available on the market years, none of them has provided the reconfiguration flexibility that makes FPGAs such invaluable devices for digital designers. Now, by combining general-purpose analogue resources with static random access memory
configuration logic, Anadigm has created a field-programmable analog array. or FPAA, that looks set to revolutionise analogue system design. The ANIOE40 FPAA comprises a 20 -cell op-amp array arranged in a 4 -
by-5 matrix, surrounded by a programmable interconnect and I/O structure. The device is packaged as an 80 -pin $14 \mathrm{~mm}^{2}$ QFP, requires a single
$5 \mathrm{~V} \pm 5 \%$ DC supply, and has a typical $5 \mathrm{~V} \pm 5 \%$ DC supply, and has a typical
power consumption of less than 13 mW per active cell.
Many of the more common signalconditioning functions such as rectifiers, gain stages, comparators and irst-order filters can be implemented functions such as high-order filters oscillators, pulse-width modulators and equalisers can be implemented using two or more cells.
The frequency range of the FPAA

Filter design made simple

Anadigm has recently added a filter synthesis tool to its free FPAA configuration software. Known as FilterDesigner, the new tool provides users with an extremely additional signal conditionig-order classical liters and then comble-gip, analogue solutions.
The tool enables high-pass, low-pass, band-pass and band-stop filters to be created in minutes, using combinations of the standard bi-linear and bi-quad filter configura tions from the AnadigmDesigner analogue function library.
depends on the circuit functions being implemented; the amplifiers have a bandwidth of 5 MHz and the maximum switching clock rate is 1 MHz . signal frequencies from DC to 500 kHz , making it ideal for filtering,
instrumentation and control applications in industrial, medical, automotive and low-lo-medium frequency communications markets. The FPAA's circuit elements are device powers-up, using data held in on-chip SRAM; the SRAM is loaded automatically direct from a low-cost serial EPROM during the power-up sequence. Digital field-programmable gate arrays are configured in a simila way.
Alernatively, the FPAA can be reconfigured on-the-fly by data from a microcontroller, making it an extremely versatile and space-saving component. Reconfiguration can be more than fast enough to allow, for example, several signal inputs to be multiplexed to a single analogue signal conditioning circuit. The ability to handle in-service changes to
configuration - or even functionality -brings unprecedented flexibility to the world of analogue design.

Optimised technology Each configurable analogue block or CAB, comprises an amplifier feedback nelwork, as shown in Fig. 1. These binary-weighted capacitor clusters can be set to any one of 256 different values. It is the use of this technology that is key to the FPAA's versatility, enabling highly
stable $R C$-equivalenı networks to be stable implemented using just switches and capacitors.
Figure 2 contrasts a conventional resistor-based circuit with a switched capacitor circuit; the charge that is transferred from node
1 to node 2 depends (to the first approximation) on the capacitor's value and the switching duty cycle, effectively making the FPAA an analogue sampled-data device. As a point of interest, the Allhough it is difficult to device Aemiconductor capacitors with accurate absolute values, it is relatively easy to ensure that all capacitors on the chip have exactly the same value - which is precisely what's required for this application ageing are alleviated by the fact that all components are on the same die and therefore track each other. The AN1OE40 FPAA also includes 13 buffered analogue $1 / O$ cells, two uncommitted op-amps, four programmable clocks and a source.
Each configurable analogue block can connect to adjacent neighbours, and there are also 10 horizontal and 12 vertical routes for global up to eight adjacent blocks and a up to eight adjacent blocks and an
'Drag-and-drop' design ease Designing an analogue system based on the AN10E40 FPAA demands minimal circuil skills or maths abilities. A free CAD tool known as
AnadigmDesigner enables the entire 'design', simulation and FPAA SRAM download process to

Conventional circuth

Fig. 2. Switched capacitor technology and switches for resistors to enable digital control.
be accomplished in as short a time as 10 minutes. You can download mww.anadigm.com if yo ant to find out for yourself. The software runs on a standard han 50 configurable analogue circuit functions that range from imple amplifiers comparators, integrators and differentiators hrough to complex functions such bi-quad filters. Most of the FPAA's 20 cells, and none takes more than three.
Building an analogue circuit is simply a case of selecting the apropriate analogue functions dragging and dropping' them onto the screen display of the complete array, and click-dragging
appropriate signal interconnects.
Performance characteristics o each function are specified via pop
up dialogue boxes. Should a chosen signal intercounect route not be available, the software automatically advises the user to hoose an alternative
facilities for programming the array's clock generators and voltage reference source. There are also facilities for connecting or disconnecting a mid-rail voltage reference source, or VMR, to the This approach to design means that users do not need to worry about the underlying circuit implementation. For example, to huild a signal-conditioning chain, users simply select a summing
amplifier and filter from the function library. They then speci the desired offset correction, gain and low-pass frequency parameters, and interconnect the array cells.

eader offer is more than the average development board. Anadigm's development system for fieldprogrammable analogue arrays
includes a microcontroller to investion programmable-analogue technology as a peripheral to an embedded system. The regular cost of this designer's ki is $£ 349$. Anadigm will discount this by almost 30% to $£ 249+$ VAT for $E W$ readers - and include free postage and (Interested readers from outsid please e-mail for shipping details EU rebecca.shade@ anadigm.com) This offer is valid until 31 December 2001. Electronics World dispatched by its destination so the cut-off date for claims from outside the UK has been extended to 31 January 2002

What do I get?

The kit includes the FPAA board, powe supply, cable and manual. The FPAA free download from the web site. The FPAA development board provides an environment for rethinking analogue electronics strategy. It introduces concept of analogue syster
as reconfigurable peripheral of a as reconfigurab
Designated AN10DS40, the board provides a range of resources to help electronics engineers evaluate FPAA technology and develop working systems. It additionally incorporates an onboard microcontroiler to demonstrate adapted in the field, to help users understand the technology's potential for radically reshaping the way electronics products function.
The board provides an FPAA - with its 20 configurable analogue cells - and This interface allows programs crea using the free AnadigmDesigner CAD package to be downloaded.
Also onboard are numerous
connectors, interfaces and status LED o simplify development
terconnection and test, including in applications involving audio signals. Users can develop two kinds of FPAA-based analogue systems. first is a fixed-function FPAA to integrate discrete analogue componen
based circuitry, which boots from a serial EEPROM - for which a socket is provided

HC08 microcontroller

The AN10DS40 board's powerfil HCO microcontroller can dynamically modify

Own a development system for field programmable analogue arrays for £249+VAT - norma price £349
PAA functionality by reloading a new较ing coniguration hile - an opelaws laking just $100 \mu \mathrm{~s}$. This feature users to explore the concept of adapting analogue periormance in lashion.
Four pushbutton switches are provided to manually trigger interruptbased reconfiguration, to simplify the al-world test of this innovative new a a sility
A standard peripheral interface (SPI) also provided on the AN10DS40 oard to allow the FPAA to be controlled from an alternative microcontroller - and/or a user's own prototype hardware.
Dynamic reconfiguration can be used by an engineer to radically improve product performance, and lower costs one chip.
For example, a general purpose data cquisition board could reconfigure its ront-end signal conditioning for different shannels - providing - as it savings in both PCB space and cost

Altematively, FPAA functionality could be modified according to operating conditions, such as a change in ligh level, providing analog designers with a practical low cost method of mplementing real-time adaptive The EEPROM-based co method also provides designers with considerable flexibility, allowing one standard PCB to be configured for different applications at the end of the

Ordering details

Please send the coupon below, logether with a cheque, to Anadigm Ltd, Mailard Way, Crewe Business Park, Crewe CW1 6ZQ, UK. For queries or please call +44 (0) 1270531 gen or +44 (0)1270531999

Use this coupon to order your designer's kit

Please send me one AN10DS40 kit at the special offer price of $£ 293$ fully inclusive of VAT and shipping ($£ 249 \mathrm{ex}$. VAT).

Name
Address \qquad

Phone number/fax
Total amount $£$.
l enclose a cheque
For queries or for corporate purchasing enquiries, please call +44 (0)1270 531990 or fax +44 (0) 1270531999
e-mail rebecca.shade@ anadigm.com

Please send this coupon to Anadigm Ltd, together with payment Address orders and all correspondence or queries relating to this order to Anadigm Ltd, 3-5 Mallard Way, Crewe Business Park, Crewe CW1 6ZQ, UK. For queries or for corporate purchasing enquiries please call +44 (0)1270 531990 orfax +44 (0)1270 531999 e-mail rebecca.shade@anadigm.com, quoting 'EW Anadigm offer'. Make cheques payable to Anadlgm Lid

Even as early as 1904, society was seeing the benefits of wireless. Anthony Hopwood has been looking at the first Cunard Daily Bulletin - a newspaper for transatlantic liner passengers that could not have existed, were it not for wireless communication.

In this centenary year of Marconis first transmission across the Allantic, it's interesting to look back 97 years to June 1904, when the
first regular daily newspaper appeared first regular daily newspaper appeard how quickly the new medium had become established
The ship was the Cunard liner RMS Campania, which left Liverpool on aturday 4 June for New York with Marconi on board. The first issue I have, No 32 俍 single issues per trip) is dated Sunday 5 June and states
" although it was not intended opublish the Cunard Daily ing, the Cunard Company decided to print a limited number of Souvenir Bulletins for distribution to the Press..
Needless to say, these issues were ealously guarded by their recipient. The eight-sided bulletins were printed via photogravure. Sunday's ssue records the distance from the Poldhu station as 220 miles at 1 pm. The news by Marconigram, 'direct to hapanese war, including the use of carrier pigeons by the Russians under siege at Port Arthur. American news mentions floods in Kansas with all raffic on railways and tramway suspended
Business in Wall street was 'stagnan and featureless'. Tabloid interest was well known b that Frank J. Young, a owner' was fatally shot in a New York cab on his way to the White Star Line pier where he intended to join his wife orall to Europe. His companion coroner that the deceased 'had sho himself without taking the pistol from his pocket'
The story develops in the 'Stop press' section - "The coroner has Tommbs without bail". One wonders if the story would have featured at all if Mr Young had been booked with Cunard!
front cover from the second issue Electronics World's predecessor

Daily changes Side six of the Bulletin also changes daily. Under the strapline, 'Smok room gossip', it seems to be a
resting place for old music hall and shaggy dog stories. Here's jokes sample:
"A man bought a horse ar horse fair, and found the dealer had shor changed him strated with him and was told - 'Naw sir, we never gives money back, but you can have an extra horse if you like.
You get the idea.
On the 6th, radio communication was established with the Canada Marconi station at Cape Breton when the ship was still 2000 miles from New York. Apart from the Russo-Japanese war news, the positions of icebergs reported by other ships were given. striking miners at Cripple Creek, Colorado had gone on the rampage and killed 12 while placing dynamite under the railroad station. In a subsequent battle with State troops was really wild in those days. was really wild in those days.
Aboard ship, things were quieter with the 505 third class passengers breakfast menu promising
Oatmeal porridģe and milk Golden syrup.
herrings. Beef steak and onions.
Boiled jacket potatoes,
resh bread and butter
Marmalade.
Tea or Coffee
In the high summer of Empire, cargo details that would be secret today were a matter of pride, and published in the daily Bulletin. Apart from 8000 packages of fine manufactured goods and 1650 mail bags. monds and sapphires worth about $£ 10000$, and $£ 5000$ worth of minted silver coin in 17 large cases. To deter opportunist thieves, "the precious stones and coin are securely On the Bih Lord Inverclyde.

Chairman of Cunard sent the following message to Marconi on board;
"I trust this message will reach you promptly and wish your Wireless Telegraphy."

During the 8th, while still some 000 miles from New York th running log recorded that from 4 am 8, the sea temperature rose the Gulf Strean.
On the 9th, the sporting news section reported that the amateur champion Travis was playing inferior golf at the British Ope Elsewhere, the Canadian C Breton Marconi station reported tha Mary Virginia Rhodes, beneficiary in he Will of the late Cecil Rhodes had been found at Washville Carolina working as a missionary.
In a posiscript to the first week's run of the Daily Bulletin, the Editor remarks that
"Wireless Telegraphy has indeed struck a staggering
blow at the hitherto absolute power of Father Nepunne, so power of Father Neptune, so
that he is no longer in supreme command of his own domains."

A sharp reminder that the old tyrant was still at work would come eight years later, when the White Star cold calm night. Wireless was only able to save a third of those aboard after a Cunard liner, the Carpathia, scorched the paint off her funnel in dash to rescue the survivors. In the single 'Arrival Supplemen
sheet on 11 th, there is a less than prompl reply from Mr Marconi to Lord Inverclyde's message on the 8th.;
-Sincere thanks for your cordial wishes received
Wednesday mid-ocean Wednesday mid-ocean. Happy
inform you Daily Bulletin entirely successful and greatly appreciated
Even Marconi was watching cal charges at $7 / 6 \mathrm{~d}$ (38p) a word!

Cuman Maily Thullctin.

cuxakn maiis nevictis

Current issues - on your doorstep

Keep up-to-date with an Electronics World subscription, delivered direct to your door every month.

PPM5

20 pin DIL Peak Programme Meter PROFESSIONAL MEASUREMENT OF AUDIO LEVEL

Consumption 3mA.

Fully meets BS5428-9

* PPM10 In-Vislon PPM and Chart Recorder » Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz} \star$ Stabilizer frequency shift units for howl reduction \#Stereo Variable Emphasis Limiter \# PPM9, PPM5
hybrid and PPM8 IEC/DIN $-50 /+6 d B$ drives and movements \star Broadcast Monitor Recelver 150 kHz -30MHz * SURREY ELECTRONICS LTD The Forge, Lucks Green, Cranleigh GU6 7BG Telephone: 01483275997 Fax: 01483276477

Shaws Row, Old Road, Chesterfield, S40 2RB
Tel 01246211202 Fax 01246550959 MastercardNisa/Switch Tel 0124621202 Fax 01246 550959 Mastercard/Nisa/Switch
Callers welcome $9: 30$ a.m to $5: 30$ p.m. Monday to Safurday

Yes I＇d like to subscribe to Electronics World Today！

Please enter my subscription for one of the following terms．When I subscribe for three years，I pay the pric for just two years．

		Europe	Rest of World

1 year（ 12 issues）$\square £ 36 \quad \square £ 51 \square £ 61$
every fissue
－Detailed circuit diagram
－New product news
－Informative design－orientated explanations
－CAE software
．．．all this dellvered direct so your door sach month

If you＇re not completely satisfied with Electronics World within the first 60 days we＇ll refund your money in full no questions asked

Please allow $\mathbf{2 8}$ days for delivery of your first issue．
mulus Business Media Limited may use this information for direct marketing xurposes．from ourselves or other companies．If you do not wish to receive lirect marketing please write to us at Cumulus Bustiness Media Limited，

Cumulus Business Media Limited，Anne Boleyn House

Three ways to pay
1 I enclose a cheque for $£$ made payable to Electronics World． 2 Please charge my Visa／Mastercard／American Express／Diners Club／Switch／Delta（Please delete as appropriate）
Card number
$\square \square \square$ Expiry date $\square \square / \square \square$ Valid from $\square \square \square / \square \square$ Issue no．\square

Signed \quad Date
3 Please invoice me／my company．Purchase Order No．
Name
Job title
Company
Address
Tel No． \qquad
E－mail address
Company VAT registration number
Return your completed form to：
Electronics World Subscriptions，Cumulus Business Media Limited， Fax：＋44（0） 1444445447

Credit Card Orders－（quoting code 159）

Tél：＋44（0）1444 475662

TEST EQUIPMENT \＆SPECIAL INTEREST ITEMS

DISTEL on the web I！－Over 16，000，000 items from stock－WWW．idstel．co．ak世ए।
－ELECTROANHES－

THE ロSCILLロSCロPE IS MロVING ロN．．．

Features：

A A fraction of the cost of benchtop scopes Ask for a FREE catalogue and
\triangle Save multiple setups，for ease of use of demo software，or visit
－Save，print and e－mail your traces \triangle FREE software and upgrades A Automated measurements
A Large colour displays
－Scope，spectrum functions

．．．DDN＇T GET LEFT BEHIND
Tel：＋44（0） 1480 396395，Fax：＋44（0） 1480 396296，E－mail：post＠picotech．com
CIRCLE NO． 112 ON REPLY CARD

WATCH SLIDES ON TV
 MAKE VIDEOS OF
 YOUR SLIDES
 PPM5

DIGITISE YOUR
SLIDES
（using a video capture card）
＂Liesgang dialv＂autromatic slide viewer with built in hioh quality coliw TV came
 are in very good condition with tew signs ol usee For further detailis see www．dialy．c．c．uk
 Pars They al

Plaase add $1.66+$ val $=$ E1．95 postage $\&$ packin
JPG ELECTRONICS
Shaws Row，Old Road，Chesterfield，S40 2 RB
Tel 01246211202 Fax 01246550959 Mastercard N isa／Switch
Callers welcome 9：30 a．m．to 5：30 p．m．Monday to Saturday
CIRCIE NO． 113 ON REPLY CARD

20 pin DIL Peak Programme Meter PROFESSIONAL MEASUREMENT OF AUDIO LEVEL

mother Boart Mer
Consumption 3mA．
Fully meets BS5428－9
＊PPM10 in－Vision PPM and Chart Recorder＊Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz}$＊Stabilizer frequency shitt units for how reduction＊Stereo Variable Emphasis Limiter » PPM9，PPM hybrid and PPMB IEC／DIN $-50 /+6 \mathrm{~dB}$ drives and
movements \star Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz} \star$

SURREY ELECTRONICS LTD
The Forge，Lucks Green，Cranleigh GU6 7BG
Telephone： 01483275997 Fax： 01483276477

Differential-in 100MHz scope prohe

Designed for RF test and measurement, Cyril Bateman's differentialinput scope probe system provides useful results at more than
100 MHz and features switchable gain together with 4 pF loading. As with Cyril's previous designs, this one follows the philosophy of high performance at low cost.

A11 voltage measurements take place between two points. Using a battery-powered multimeter to measure DC or low frequency AC, both measured points higher frequencies - and especially using a conventional mains powere instrument - measurements are usually referred to one common point, electrical ground Consequently, using a conventiona waveform, you are constrained to making ground-referred measurements.
Many two-channel oscilloscopes include a facility to add or subtract heir ' A ' and ' B ' channel waveforms.

This feature allows the voltage differences between two points to be displayed.
In many cases, if your oscilloscope can accurately subtract out the common voltage, you are able to
display the difference voltage ${ }^{1}$. However this method has limitations

- Both the ' A ' and ' B ' signals mus be able to simultaneously 'fit' on the oscilloscope screen. This display sensitivity that can be used If the required difference waveform is small relative to the 'A' or 'B' voltage waveforms, this difference waveform simply cannot be seen.

Fig. 1. Low-capacitance differential probes and amplifier, provide excellent performance from audio to 100 MHz . When measuring single-ended signals using one probe only, a short ground lead should be clipped to the test prod body. For differential use, ground leads are not needed

- Both oscilloscope input amplifier channels and any probes used must be carefully matched for gain and phase over frequency cerrainly to better han 1%.
However the thickness of most screen traces make these adjusiments difficult - if not impossible. As a result, relatively impossible. As a result, rela variations can dramatically change your displayed waveform ${ }^{2}$

In an attempt to avoid these problems, many engineers disconnect their oscilloscope's earth, hoping that 'floating' the oscilloscope will suffice. Apart from causing a safely hazard, this imposes an ill-defined circuil.
The only satisfactory way to observe the difference waveform between two voltage points is by
using a differential-input amplifier using a differential-input amplifier with phase-matched probes or Such equipment is available commercially, intended either for low-frequency, high voltage measurements or for high-frequency but lower voltage measuremen Both types chen
expensive.
expensive. This article describes the design and assembly of two 100 MHz AC coupled, high-impedance probes having less than 4 pF capacitive loading. Each can be switched to accept maximum common-mode
inputs of 10 V or 100 V . The article also describes a matching differentia input, low-noise, low-distortion amplifier, having switched gains of 1 or 10, Fig. 1.
Design details
Each probe is designed to be hand Each probe is designed to be
held and is connected to the differential amplifier using a one metre length of RG179B/U coaxia cable.

Both probes are powered with $\pm 5 \mathrm{~V} \quad$ Common-mode rejection obtained from the differential amplifier. Each includes a rangeswitching relay, controlled from a input amplifier. The differential-input amplifier is
designed to mount directly onto the designed to mount directly onto the
oscilloscope's front-panel BNC oscilloscope's front-panel BNC input connector Powered from a nominal $\pm 9 \mathrm{~V}$, it includes two 'three
leg' linear stabilisers that provide leg' linear stabilisers that provide a
stabilised $\pm 5 \mathrm{~V}$ for its own use and to power both probes.
The three relays used are each powered from the +9 V input via 180Ω current limiting resistors. They are controlled by a switch to select
unity.

With an input common mode voltage of 10 V and the differential input amplifier set to unity gain, a 10 mV peak difference voltag
clearly visible, Table 1 Using the maths facility of a dual channel oscilloscope with conventional probes, a 10 mV difference signal in a common-mode voltage of 10 V is completely invisible. In this case, the difference voltage would have to approach 0.5 V Excellent CMR and the extremely flat frequency response allow a single probe to be used. This can replace a conventional scope probe, providing he benefit of a much lower capacitance loading on the test circuit.

Table 1

Measured performance of completed probes and differential input amplifier						
Gain error by frequency using Probe 1 as input				CMR with differential probe input,		
Gain select	$\div 100$	$\div 10$	$\div 1$		$\div 10$	$\div 1$
Frequency (Hz)	Input 10dBm	Input 10dBm	Input 0dBm	Frequency (Hz)	input 1 volt	Input 1 volt
1 k ,	OdB	OdB	OdB	1 kHz	$-86.4 \mathrm{~dB}(5 \mathrm{~V})$	-74.7dB
1 M	OdB	OdB	OdB	1 MHz	$-87 \mathrm{~dB}$	$-63 \mathrm{~dB}$
10M	OdB	OdB	OdB	10 MHz	-73dB	-59dB
20M	${ }^{-0.05 d B}$	OdB	$-0.1 \mathrm{~dB}$	20 MHz	$-66 \mathrm{~dB}$	$-54.5 \mathrm{~dB}$
30M	-0.1dB	OdB	$-0.1 \mathrm{~dB}$	30 MHz	-62dB	-52dB
40 M	$-0.4 \mathrm{~dB}$	0.05 dB	$-0.1 \mathrm{~dB}$	40 MHz	$-58.5 \mathrm{~dB}$	-50dB
50M	-0.2dB	0.2 dB	-0.2dB	50 MHz	$-61.5 \mathrm{~dB}$	-52dB
60 M	$-0.1 \mathrm{~dB}$	0.2 dB	$-0.25 \mathrm{~dB}$	60 MHz	$-56.5 \mathrm{~dB}$	$-48.5 \mathrm{~dB}$
70M	-0.8dB	0.18 dB	OdB	70 MHz	$-56.5 \mathrm{~dB}$	$-45.5 \mathrm{~dB}$
80 M	$-1.2 \mathrm{~dB}$	OdB	$-0.4 \mathrm{~dB}$	80 MHz	-51dB	$-41.5 \mathrm{~dB}$
90M	$-1.8 \mathrm{~dB}$	${ }^{-0.3 \mathrm{~dB}}$	$-0.5 \mathrm{~dB}$	90 MHz	-51dB	$-39.5 \mathrm{~dB}$
100 M	-3.0dB	$-1.2 \mathrm{~dB}$	$-0.75 \mathrm{~dB}$	100 MHz	$-49.5 \mathrm{~dB}$	-37dB
110 M	$-4.0 \mathrm{~dB}$	$-3.2 \mathrm{~dB}$	$-4.0 \mathrm{~dB}$	110 MHz	-49dB	$-36 \mathrm{~dB}$
120M	$-7.5 \mathrm{~dB}$	$-5.5 \mathrm{~dB}$	$-6.0 \mathrm{~dB}$	120 MHz	-49dB	$-36.5 \mathrm{~dB}$
Max safe input (volts)	100 V	10 V	2 V		10 V	10 V

Equipment used: HP331A voltmeter and the HP8405A vector voltmeter both have high impedance low capacitance inputs. The 331A meter is specified to 3 MHz , the 8405 A irom 1 MHz to 1 GHz . To ensure consistent test signal voltage with requency, the signal generator output was loaded with a 10 dB attenuator and a Macom 50Ω through termination. The HP331A fitted with a divide-by-10 probe and the HP8405A were used to monitor test signals at this termination. See box 'Measurement equipment'

Fig. 6. Schematic for both test probes. Note the 150Ω resistor R_{4} now inserted between the relay and input of the MAX4005. This resistor, combined with the IC input capacitance, damps out a very high frequency resonance between the relay contact inductance and this input capacitance. All signal path capacitors are COG ceramic.
assuming the inductance might
simila assuming the imple turn coil,
similar to a estimated a value.
At least one trimmer capacitor would be needed for each probe and the differential amplifier. The a pre-set resistor, to compensate for variation of probe gain and maximise low-frequency CMR.
Again I was unable to find any self-
inductance specifications for inductance specifications for these components, so I prepared estimates
based on the component's physical sizes.

At high frequency, each component pad and track introduces capacitance and inductance. Each PCB layout or component change should be reflected in the simulation, Fig. 5.
Implementing the design Developing a prototype proved extremely time-consuming, requiring
repeated refining of PCB layout and re-simulation with amended circuit strays. This highlights only too
clearly the difficulties of desionin clearly the difficulties of designing
moderately high frequency circuits using an essentially time-domain

Spice-based, low-frequency

simulator.

For my needs, I cannot justify the domain or harmonic balance high. frequency simulator and related PCB design software. In the past I have used the ubiquitous 'Touchstone' and the 'MDS' microwave design systems.
Such specialised CAD packages do much to facilitate high-frequency mulations and PCB layouts, bu hey still need to be fed with the correct modelling data. When it is not vailable from the component maker, data can be obtained from practical measurements, using perhaps a
HP8753 vector network analyser To de-embed component dala from measured values, a pre-calibrated test jig suited to the part being measured is essential. From my work measuring capacitors and EMC filters to 3 GHz , know thar designing and calibrating
high-performance test jigs, is high-performance test j igs, is consuming.
However repeated simulations and PCB layout refinements culminated in a prototype printed board assembly esting. esting

Prototype PCBs for the probes My original hope was to use closetolerance capacitors and resistors, with just one trimmer capacitor to for stray capacitances. However during my simulations 1 realised this

The capacitor, resistor and inductor models built into Spice The capacitor, resistor and inductor models built into Spice
based simulators assume ideal loss-free components having a constant value regardless of frequency.
Some simulators include a relay model, but only for the switching mechanism's delay and contact bounce. This is no help at all with contact capacitance or self-inductance. For transient or time-domain simulation, Spice automatically semiconductors, but not for passive components. Unfortunately, with real-life components, almost all parame-
ters are frequency dependent.
The latest simulators still assume ideal passive components in their libraries. Some though, including Microcap 6, provide a frequency dependent expression. Regrettably, as far as I am aware, suitable model libraries are not provided.
A restricted number of component models ${ }^{9}$ can be downloaded from Intusoft, and are supplied with the company's simulators. These offer a limited choice so usually do not exactly fit ones needs. The modelling approach used was
initiated in 1994, by John Prymak of Kemet.

Kemet ${ }^{10}$ now offers a Spice based data sheet for their Ceramic and Tantalum capacitors as a free download. This software provides on-screen plots of capacitor behaviour with frequency, including capacitance, ESR, tan δ, inductance, mpedance, series and parallel resonances.
For any one frequency of interest, the simulation circuit used and its component values can be displayed on screen. These frequency sweeps.
Unfortunately thes
easily be extracted for simulation component values cannot eanalysis. extracted for use in wide-band frequency domain analysis.
The ma
The main problem is that this frequency-dependent expression relates to an individual element. A resistor that possesses elements.
Capacitor models may be considerably more elaborate. It would be convenient if one could download manufacturers macro models for passive components - or better still S
parameters - as has long been possible for many ICs.
would not work out and two trimmer capacitors would be needed. Both trimmer values would then interact, Fig. 6. By choosing suitable capacitor and
resistor values I was able to arrange resistor values sas able to arrange
for simple calibration at two low frequencies only, 1 kHz and 1 MHz . A 1 kHz these irimmer capacitors have no effect. Attenuation can be autput, for both relay sctitings, when subject to a known input voltage. Increasing frequency to 1 MHz with this same input voltage, the trimmer capacitors should be adjusted to attain output voltages identical to those
measured at 1 kHz . However becaus of their interaction, these trimmers will need re-adjusting in furn several times, as the relays are switched. With the trimmer capacitors set correctly for 1 MHz outputs, my initial probe PCB, size 63 mm by response to 50 MHz . At 100 MHz , a IdB rise in output was measured when the system was set to divide by 100 , Fig. 5 . This rise was caused in part by an unnecessarily inductiv PCB track associated with C_{5} Soldering in place a scrap of copper foil easily modified the board. This
modified track is shown in the figure but the photographs were taken prior to this modification, Fig. 7.
Prototype PCBs: differential amplifier
My initial differential-amplifier PCB required more substantial modifications, such that the first board was eventually scrapped. Following careful in-circuit probing using the HP8405 vector vortmeter and repeated simulations, the layou
was improved. Revised boards measuring 68 mm by 40 mm wer assembled and used for the test
results. Fig. 4.
The MAX4144 and MAX4107 together draw some 28 mA from $\pm 5 \mathrm{~V}$ the decoupling used on my originat board was inadequate. Extra
capacitance was needed and the 1 mm wide tracks used to supply power to each IC had to be widened. Finally the impedance of the two-sided Decoupling capacitance and groun plane improvements were made on my original board. Copper shim was soldered around all four sides to bridge top and bottom ground planes together. The design then work 'modified'.

Fig. 7. Final double-sided PCB layout as used for the divide-by-10, divide-by100 low-capacitance probes. The PCB track modifications with the addition of ranges. At the highest frequencies, the self inductance of trimmer C_{6} becom ranges. Art.
significant.

Fig. 8. Revised double-sided, differential amplifier PCB now shows the three Fig. 8. Revised double-sided, differential amplifier PCB now shows the three
capacitors introduced to reduce excess high-frequency gain and noise levels
 enables operation with a wide range of capacitive loads, without compensating adjustments.
Measurement equipment

The HP331A meter has an oscilloscopeequivalent input impedance and is speci fied for use to 3 MHz . The HP8405 is a narrow bandwidth sampling vector volt meter that uses permanently attached from 1 MHz to 1 GHz .
To ensure consistent test signal voltage with frequency, the signal generator output was loaded with a 10dB attenuator and a Macom 50Ω through termination. The HP331A fitted with a divide-by- 10 probe test signals at this termination.
These instruments were then used to measure output from the differential amplifier. To-compensate for the HP8405 probe's 5 pF capacitance, additional capac lance was added to the differential prop output connector to produce an 18 pF
oscilloscope load. The 0.8% resistive load change, from the HP331A's $1 \mathrm{M} \Omega$ to the HP8405A 100kS2, when in parallel with th 910Ω output resistor R_{10}, was ignored. My high-impedance RMS meter could also have been used. ${ }^{8}$ However, the
HP331A and HP8405A both provide direct
readings in decibels relative to 0dBm Using these instruments avoided a consid erable number of calculations. In the table, results for probe 2 are not isted. As you can see from the CMR results, they must be indistinguishable from
those for probe 1 . With differential measurements, CMR at higher frequencies is most important. Thus frequency performance was optimised for CMR and noise evel, rather than for flattest response. Using the HP331A voltmeter and with
probe relays set to divide by 100 or divide by 10 , noise level measured 0.07 mV . Set to unity gain noise level measured 0.62 mV . With the relays set to divide by 10 or 100 , less than 1 mV peak noise is seen using a 100 MHz oscilloscope. With gain set to unity, noise level is less than 5 mV peak. Because the maximum permitted input to He HP8405A vector voltmeter is 1 V , n
divide-by-100 CMR results could be dideby 100 CMR results could be sensibly measured at higher frequencies But at 1 kHz with 30 V input, a divide by 00 differential measurement gave -109.5 dB CMR.

Fig. 9. Final schematic of the differential input amplifier as used for performance tests. Trimmer C_{15} is a slow adjustnent that only affects high-frequency single probe gain linearity. This can be replaced by a fixed 2.2 pF capacilor with little effect on remia regua terminal regulators are not shown.

A revised PCB wàs assembled and used for final tests. This revised design is shown in the photograph ngures. With this design and sing the ground plane through link round the PCB edges was not needed Fig. 8.
Interconnected to the finished probes using one metre of RGI79B/U coaxial cable, the complete assembly worked extremely well. Common-mode were both excellent.
With no signal input and the relays set to unity gain, noise measured less than 1 mV on a 3 MHz bandwidth voltmeter. Noise output viewed on a 100 MHz oscilloscope desired.
Following further measurement and simulations, noise output was ound to peak near 100 MHz . At requencies below 60 MHz , nois utput was acceptably low

educing noise

Careful measurements using my HP4805 vector voltmeter indicated an increasing voltage input to the oi found measuring this rise was not found ineasuring the probe
differential amplifier with 75Ω input. was probably due to inductance contributed by the trimmer resistor $V R_{1}$. To replicate this peak, my
simulations needed a much higher self inductance than I originally estimated for this component. Two small $100 \mathrm{pF}, 1 \%$ capacitors, C_{24} and C_{25}, were soldered betwee the $V R_{1}$ terminals and ground. The were 0805 -sized COG types. At
100 MHz these provided a 0.5 dB reduction of signal input to the MAX4144 differential amplifier without compromising the CMR performance.
To further reduce high-frequency noise, I decided to roll off some achieved by adding an 18 pFF COG capacitor, C_{26}, in parallel with R_{1} The differential amplifier can now be used with oscilloscope input capacitances ranging from 15 pF 22 p without compensating 9 . 9 .

These changes reduced the outpu noise viewed on my 100 MHz oscilloscope. It is now less than 1 niV peak with relays switched to divide by 10 or 10 . Less than 5 m ,

All the above changes were Table 1 , and are also shown in Figs 6 to 9 . Note that these capacitors were added after I took the photographs.

Final performance results I said earlier that this project required a considerable design effor and many repeated simulation caused by the lack of highfrequency data for components.
However as you can see from the table, this very low cost, easily built design, provides excellent CMR and high frequency performance. While obtaining these performance figures required a capability to measure small changes
in low-level signals over a wide in low-level signals over a wide facilities suffice to calibrate the three trimmer capacitors and the resistor.
To calibrate for accurate measurements to 10 MHz . all that is needed are a signal source able to
supply from 200 mV to IV at 1 kHz and 1 MHz when terminated in 50Ω, and the ability to accurately measure these voltages at both frequencies. For higher-frequency use, ideally 30 MHz is also preferred to

Final assembly
Assembling the differential amplifier PCB and its housing three-leg 100 mA stabilisers, pre-set resistor $V R_{1}$, trimmer capacitor and relay, components used are designed for
conventional surface mounting.
For pre-set resistor $V R_{1}$, I used a small single-turn Bourns trimmer, Farnell' part 345-994. Its legs were ben o surface mount on the PCB pads. mounted from the underside of the P'CB Farnell part 176-323, was similarly used for the test
The $1-5 \mathrm{pF}$ trimmer capacitor was a Murata COG ceramic with its legs flattened and trimmed to suit the PCB pads For part number 108 -2 1 , Fig. 10 . or was a similarly modified Murata COG ceramic, Famell part 108-222.
The very tiny $3-10 \mathrm{pF}$ trimmer was an AVX CTZ2 designed for surface mounting. Farnell part 578-370. The PCBs were arranged as far as possible to accept 1% or better and capacitors of 1 nF or lower were COC ceramic types. Where possible, other values were X7R material with $\mathrm{Z5U}$ used for $1 \mu \mathrm{~F}$. The largest capacitors were surface mounting AVX type TA) tantalum chips. The most difficult part of final assembly was to find a suitable housing for the probes. I searched many catacase from the local supermarket proved to be an appropriate size and shape, Fig. 10.
To effect screening, I attached some copper foil to some thin Mylar insulation using two-sided adhesive tape. This laminate was cut and formed to fit tightly inside one half

Fig. 10. Composite view of the prototype differential probes as lested. Both probes are housed in one half of a plastic traveller's oothbrush case. This has a wrap of copper foil inside to act as a Faraday shield. For ease of assembly the differential amplifier was housed in a 110 by 60 by 31 mm die-cast box. This PCB could
easily fit in a much smaller box.
of the toothbrush case, and grounded to the PCB using a hort flying lead.
The test prods for each probe were assembled from hort ength of 4 mm inside-diameter thin-walled brass diameter sewing needle we contact was a 0.7 mm outside insulators, intended as PTFE stand offs, provided a tight fit nto the brass tubing. These test prods on their own measured just 1.5 p .
accurately adjust C_{15} in the
differential amplifier. This is a
slow' adjustment that affects single
probe $\div 10$ and $\div 100$, high-frequency response
However it has only a small effect on the accuracy of high-frequency differential measurements. Fo rial measurements, C_{15} could simply be replaced by a fixed 2.2pF COG ceramic capacitor, shown as $C_{15 A}$ on the PCB.
Clearly, C_{15} has a noticeable effect on the accuracy of single
probe measurements above 50 MHz using an RF voltmeter. The
amplitude accuracy of many
perhaps most - oscilloscopes at
these frequencies will already have
badly deteriorated. The effects of
using a fixed value of $2.2 \mathrm{pF} C_{15}$ will
then not be noticed

References

1. Answers to frequently asked questions,
2. Hickman, I.. 'Distortion - the
facts', Electronics World, p. 760 Oct. 2000
3. Gerstenhaber, M., 'Active feedback amplifier enables Highperformance a-to-d conversion, 4 Bateman, C. 'High-frequency - Bateman, C.. 'High- frequency World, p. 24, Jan. 2001.
4. High-speed low distortion differential line receivers, hup://www.maxim-ic.com/MAX 4144
5. Bateman, C. ‘Active RF scope probc', Cyril Bateman, Electronics World, p. 842 Nov

Touchstone Microwave design system
hup.//con http://contact.um.agilent.com/tmo
8. Bateman, C., 'High inipedance RF probe', Electronics World, p. 778 October 2001
9. Modelling a Capacitor, htp://www. intusoft.com/caps. lib Kspice 185_32.exe. J. Pry

This design completes a series of four simple, se assembly, double sided PCB designs, targeted to assist high frequency measurements. While oneoff single sided PCBs are easy to reproduce, one off double sided boards are more difficult. If sufficient readers desire boards, I can arrange for the PCBs for this series to be professionally produced.
If you are interested, send a 220 by 110 mm SAE to C. Bateman at Electronics World, Cumulus Bur 9-13 Ewell Road, Cheam, Surrey SM3 8BZ.

rish-resoltion PG volimeter

Yongping Xia's PC add-on allows an 18-bir analogue-fo-digital converter to be read via a printer port.

axim's MAXI32 is an 18 -bit plus sign, serial-output analogue-todigital converter.	length depends on the magnitude of the input. When input is shored, the output of MAXI 32 should be zero However, the circuit may not be
Its multi-slope integration conversion method provides high	perfect and the reading is likely to have some value.
resolution as well as speed.	Under software control, the
The chip is designed to interface	MAX132 can shor its input
with many common	lly
icrocontrollers t	call
inputs and a data output. One input	orting the input. Once
selects the chip, one clocks the data	rermined, the zero valu
and the third line carries the	subracted from the reading later to
With a few external components	ompensate the offset ent
and $\pm 5 \mathrm{~V}$ power supply, the	To reduce the error further, the
MAX132 can provide a high	zero error value and normal a-to-d
resolution a-to-d conversion with a	conversion results are averaged by eight readings.
$-512 \mathrm{mV}$	

A-to-d converter input is displayed directly on screen in
millivolts. Length of the harizontal bar depends onter millivolts. Length of the horizontal bar depends onthe'input, giving an easy-to-assimilate analogue readout.

A PC's printer port can be used for general-purpose inputoutput With the circuitry shown, together with the C program, a PC can interface with MAX132 directly hrough its printer port In this design, outputs pin 4 to and SCLK signals respectively. Serial a-to-d conversion data is read into PC through pin 13. Pin 18-25 are grounded.
As the MAX132 is 'bipolar", it needs both +5 V and -5 V power supplies. In order lo simpify charge-pump DC-to-DC converter built around a TC7660. A reference voltage for the AXI 12 is provided by a diode D_{1} and dividers R_{6}, R_{7} and R_{8}. The is from -512 mV to +512 mV . The measured data shows on a PC's screen in two forms. One is the number of millivoits. The other ives an analogue indication in the form of a horizontal bar whose


```
Annotated Clisting for reading the 18-bit analogue.to.digital converter interface through a PC's parallef LPT port. For an electronic
copy of this listing send a request via electronics.worldentlworld.con, with the subject heading '18-bit converter, Decemleer 200`
Note that using this address for any other correspondence will result in disappointmen!
#include <graphics.h>
#include <stdio.h>
#include <stio.h>
#include <dos.h>
#define CLOCK_LOW
#define DIN_LOW
define DIN_HIGH
define CS_LOW
#define CS_HIGH
typedef unsigned int wORD;
int out_port, in_port, out, power_boost_status=0;
float read_data(int measure) /* read data from MAX132 *
    int i, j, test_bit, data{31, command[4]:
    float data_dis;
    data[1]=0;
    if (measure==0)
    command[0]=0x92; /* set to read zero offset *
    command [1]=0\times04; commal=0\times82; /* set to read input voltage *
    command [2]=0\times00;
    command [3]=0\times00
    for, ( j=0; j<4; j++)
```



```
ff ((command[j]&test_bit) ==0
else
Out|=DIN_HIGH;
out|=CLOCK_HIGH; /* clock high
outportb(out_port, out);
delay(1);
datalj-1]=data[j-1]*2+(inportb(in_port)&0\times10)/1
Out&=CLOCK_LOW
        outportb(out_port, out); /* clock low */
        delay(1);
    Out|=CS_HIGH; /* CS high *
    outportb(out_port, out);
    delay(1);
    delay(100): /* wait 100ms
data_dis=((float)data[2])/64+((float)data[1])*4+((float)(data[0]&0\times07))/512
return (datadis)
else return (data_dis-1024+1/512)
void display_data(float data_dis
    int current_x;
    current_x=(int) (data_dis/2);
    clearviewport(); % setfow);
```

bar(310, 0, (current-x+310), 10); /* show a bar on screen *

if (data_dis>512 11 data_dis<-512)
sprintf(msg, "Overrange!")
else
sprintf(msq, "\%. 2 f mv", data_dis)
outtext(msg); ${ }^{\text {sprinte(msg, " } \% \text {. } 2 \mathrm{f} \text { mv", data_dis); }}$ show data on screen *;
void init_screen(void) /* initialize display screen */

More on the MAX123.

The MAX132 is a CMOS, 18 -bit plus sign, serial-output analogue-to-digital converter. Multi-slope integra-tion provides high-resolution conversions in less time than standard integrating a-to-d converters, allowing
Low conversion noise provides guarante
setbkcolor (BLUE)
setcolor (WHITE)
line $(2,2,637,2)$
line $(5,4,634,4)$
line $(2,2,2,477)$,
line $(5,4,5,475)$
line $(5,475,634,475)$
line $(2,477,637,477)$
line $(634,5,637,4775$)
line
line $(637,550,634,350)$
line $(637,2,637,477)$
line $(3,350,634,350)$
setviewport ($450,440,630,460,1$);
sprintf(msg, "press any key to quit")
outtext (msg):
setvi ewport $(0,0,639,479,1)$,

int init_graph(void) /* initialize graphic mode */
int gdriver $=$ DETECT, gmode, errorcode
errorcode $=$ graphresult (); ; an error occurred *
if (errorcode $!=$ grok)
operation with $\pm 512 \mathrm{mV}$ full-scale input range
$(2 \mu \mathrm{~V} / \mathrm{LSB})$. A simple four-wire serial interface connects easily to all common microprocessors, and two's-complement output coding simplifies bipolar measurements.
sleep mode Four serent is $60 \mu \mathrm{~A}$, reducing to $1 \mu \mathrm{~A}$ in can be used to control an external multiplexer or programmable-gain amplifier.
The MAX132 comes in 24 -pin narrow DIP and wide SO packages. It's absolute maximum analogue input range is from the positive supply to the negative supply.

Cumary

$60 \mu \mathrm{~A}$, normal operation
0.006% FSR Accur 1μ, sleep-mode $15 \mu \mathrm{~V}$ RMS noise
Programmed output for MPX and PGA
Periforms up to 100 conv/s
$\pm 2 \mathrm{pA}$ input current
$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection
www.maxim-ic.com
wnimaxinic:-
void main(void)
float tp, measured data $=0$, zero_offset,
find_port ();
init_graph ()
init_screen(
delay (1000):
read data (measure)
read data(measure)
for ($k=0$; $k<8 ; k++$
measur , $+=$ read_data (measure)
measure $=1$
measured_data $=0$;
for $(\mathrm{k}=0 ; \quad \mathrm{k}<8 ; \quad \mathrm{k}$
tp=read_data (measure)
measured_data+=(tp-zero_of fset)
display_data(measured_data/8)

clean_up():
Functional block diagram of the MAX123, above, and its serial timing flow, top.

Understanding Ironsformers

lan Hickman delves into the inner workings of transformers.

n the August issue, I described a rudimentary mains transformer
with a $: 1$ ratio The simplified quivalent diagram in Fig. 2 of tha equivalent diagram in Fig. 2 of tha
article shows the magnetising inductance in parallel with a perfe rransformer.
On load, the efficiency will fall short of 100%, due to losses in the winding resistances. These have been
bundled up together as an equivalent total winding resistance R_{p} in series with the primary winding. The loss in R_{p} will be $I_{p t}{ }^{2} \times R_{p}$ where the total primary current $I_{p \text { i }}$ is the vector sum of the magnetising current and the current in the primary required to load current.
This all describes what happens when the transformer is supplying he load in the steady state. At witch-on though, things may be ery different.

A transformer at switch on magine the supply switch closes when the mains voltage is at its positive peak. Obviously, at the moment of contact, the current is zero, given voltage applied to an inductor
causes the current through it, and h resultant flux, to increase, as happen rom its peak to teo the magetisis urrent and the flux increase from ero to their usual maximum values,
agging the primary voltage by a quarter of a cycle as shown in Fig. 4 and Fig. 5 of the earlier article. This is he nice scenario when the mains voltage is z coro, positive going. When the voltage reaches the positive peak, the current and flux will have increased from ero to their normal maximum values. But the voltage won't be zero provide the back emf balancing the applied voltage, the flux will have to go on increasing, up to twice its normal maximum. Unless the transformer has been very conservatively designed with a
nuch larger core than usual the core will run into saturation, to some degree. As the effective permeability rops, so the magnetising current will have to increase by leaps and ounds to provide the flux and henc voltage. This is the not so nice

Fig. 1. In a lransformer model, 'core loss' can be represented by a resistance R_{c} in parallel with the magnetising inductance $L_{\text {m }}$
cenario, and explains why the fuse used with a transformer is often variety. If the relative permeability of the core dropped right down to unity complete and utter saturation - the current would rise dramatically, being limited only by the primary winding resistance and the effective core.
While in practice things are never quite that bad, if the switch closes at ero mains volts, the current drawn on the first half cycle will be much greater than usual. This will result
a significant volt drop across R alleviating the peak applied voltage somewhat.
On the following negative half cycle, however, the drop across R_{p} will be much smaller. Thus the 'vol second product' applied to the winding will be greater, and at the
end of the first complete cycle the flux will have returned to, and passed hrough zero, reaching some negative value. The same sort of thing happens during the second cycle, and so over succeeding cycles, the positiv negative increase, until in the stead state they are equal.

Volt-seconds

The volt-second product is a key oncept when dealing with inductors determines the change of flux between zeros of the applied voltage. A transformer designed for mains operation at 240 V AC will see a peak second product with 50 Hz mains.
will be less than $339 \mathrm{~V} \times 10 \mathrm{~ms}$ by a factor $2 \div \pi=0.637$, giving a figure of 2.35 Vs . Some inverters, providing a
'mains' output from 12 or 24 V batteries, produce what amounts to a lightly filtered squarewave Exceeding the volt-second product of any transformers that may be sup them to heat up and possibly fail. So such an inverter's peak voltage is limited to not much more than 235V giving the required 2.35 V s product For some applications this is problems. For example a piece of test equipment powered from supplies derived from its mains transformer may malfunction, due to the raw supply voltages to the stabiliser being inadequate.
The simplified treatment in the earlier article ignored the 'core loss',
which in practice must be considered It can be represented by a resistor R_{c} in parallel with the magnetising inductance L_{m}, as in Fig. 1. On full load, the core loss will because the voltage across it falls slightly due to the additional drop across the winding resistance R_{w} and the leakage inductance L_{L}.
Resistance R_{c} is a fiction, representing the heating in the core at state. It is not a real component and as such has no absolute value; if the applied voltage is reduced to 90%, the core loss may differ from the expected 81% of the value at rated voltage. And of course R_{c} does not case of switch-on at a zero of the mains voltage.

'Magnetising current'

It is common parlance to talk loosely what is really meant is che pim

Fig. 2. In a transformer with a $2: 1$ step down ratio, primary off-load current $\mathrm{I}_{\text {pol }}$ consists of
the vector sum of the magnetising current I_{m} the vector sum of the magnetising current I_{m}
and the core loss current I_{c}

off-load current. The magnetising current is in phase with the flux Φ
and ' mmFF ' in Fig. 2, and in quadra ture to the voltage across the primary of the ideai transformer, whereas the off-load current includes the in-phas core loss component.
The figure describes a transformer with a $2: 1$ step down ratio, showing how the primary off-load current $I_{p o l}$ consists of the vector sum of the magnetising current I_{m} and the core loss current $I_{c h}$.

Note that the $2: 1$ ratio transformer lapplies a full load secondary voltage which is slightly less han half the applied mains voltage E_{A}. If you want a 120 V full load output from 240 V mains, you don' want a 2.1 ratio transformer.

Transformer specifications When designing a mains transformer the requirements will specify the supply voitage, the desired secondary voltage(s), and the secondary curspecified, especially if the transformer will experience a varying load.
Often, a transformer will be designed for maximum efficiency at exale or
tion transformer will only experience full load, or somehing nearit, a the peak demand hour. For much of the rest of the time, e.g. at night, it may be running almost off-load Clearly, the efficiency of any
transformer is zero when off load but the designer has the option to trade off full-load loss, primarily copper loss, against core loss, which is there all the time. So the said mains distribution transformer will
probably be designed for very low core loss, at the expense of a litile more copper loss on full load. On the other hand, a transformer designed for continuous operation at full load is gencrally designed so that the

Current transformer In fact, the first transformer I ever had to design was a current trans-
former. Here the requirements are very different, demanding a complet realignment of one's thoughts. As against primary voltage, secondary current, for a current transformer the data are primary current, secondary current and full-load secondary voltage. One is in the topsy-turvy constant-current world. Suppose, for example, it is desired

NEWPRODUCTS

Please quote Electronics World when seeking further information

Vacuum leakage detector

Just occasionally, it is desirable to increase leakage reactance, rather than reduce it. The application I have in mind is in equipment for testing laboratory glass vacuum systems for eakage. I used an Edwards leakage tester when working on basic semiconductor research in the mid 1950s. I subsequently acqu
the circuit diagram is shown in Fig. 3 .
The mains transformer is wound on a three-limbed core using ordinary E and I laminations. However, the primary is wound on the centre limb, and the secondary on one of the The secondary is connected across an adjustable spark gap. When this is open, no secondary current flows, the flux in the two outer limbs is equal and the secondary volt age large $-1 / m$ not sure what the turns ratio is.
When the gap is short circuited, no flux can pass through that limb, and the magnetising current merely doubles; the design is such that the open 'unused' limb does not saturate: When suitably adjusted, a spark is maintained at the gap, and the room rapidly fills with

Capacitor C_{1} picks off the high-frequency energy from the spark. It actually consists of several high-voltage mica capacitors in series, with an effective capacity at a guess, of one or two hundred picofarads.
A screened lead conveys the high-frequency components to the primary of a small Tesla coil, fitted in the body of the hand-held business end. My sketch is not to scale; the lower part of the probe, the handle, is as long as the part containing the Tesla coil. In operation whiskers of electrical discharge emanate from the tip.
A spark about an inch long can be drawn from the tip to the nearest object - test your CMOS here! The nearest object might be a finger. The high source impedance limits the urrent to a perfectly safe low value
In use, the tip is waved all over the surface of a glass vacuum system, looking for pinhole leaks. Any such is betrayed by the much lower ionisation potential of any residual A grain of vacuum wax over the site of the leak, a touch with a warm under-run soldering iron and hey presto.

to monitor a circuit that might carry up to 50 A , with a 5 mA full scale deflection meter. The primary would
probably be just one turn with a probably be just one turn, with a
10000 -turn secondary. If the meter circuit requires, say, 3 V for fsd, that plus the number of secondary turns will determine the maximum flux equired on the core. As with any transformer the primary current $I^{\prime}{ }_{p}$ will balance the
secondary current $I_{\text {s }}$ in accordance with the turns ratio. There will also have to be some quadrature mag-
netising current I in the one-turn primary. This plus I^{\prime} equals the 50 A primary current. Given the small volts per turn figure for the secondary, the flux required will turn out to be quite mined by the window area required
accommodate the 10000 -turn secondary. A 5000 -turn secondary could be used, if the primary had but 10A range in the legendary AVO meter, by omitting the centre E from a stack of E and I laminations, and threading the tape shunt conductor hrough the gaps.
The 3 V drop due to the meter in the primary as a 0.3 mV drop Note that the exact secondary voltage required is not critical; the magnetising current I_{m}, minuscule compared to 50A, will adjust itself o provide whatever voltage drop In fact, the transformer acts as a constant current generator, just as a conventional mains transformer acts as a constant voltage generator. And whereas for a conventional trans former the safe condition is secransformer the safe condition is secondary short circuit. An opencircuit secondary is as potentially disastrous for a current transformer as is a secondary short circuit for onventional transformer. ransformers, leakage inductance and winding capacity do not present any real problems. But both are of prime importance in the design of wideband transformers, where all possi le steps are needed to minimise
ctance can be reduced by splitting primary and secondary Dividing into n sections will reduce the leakage inductance by a factor of r^{2}. This technique is used in the better class of output transformer for
valve hi-fi power amplifiers, providing a ten octave bandwidth. Using interleaving, and the remarkable properies of thick mu-metal lamina ions, it is possible to produce a 50 Hz 102 MHz . 50 Hz to 2 MHz

Software for data
logging
National Instruments has announced a software tool logging. Engineers and scientists can acquire, log, view, and share data with this stand-alone, Because it uses dialogue windows instead of traditional programming, almost anyone can create data logging applications. Engineers and scientists can use the logger for data logging applications.
regardless of the number channels the application requires. They can create a single-channel, temperaturelogging application for produc rariety of meaviseme hardware.
National Instruments Tel: 01635523545 www.ni.com/u

Combination

 socket/terminal stripSamtec is offering as combination sockedterminal strip on $0 . \operatorname{lin} .(2.54 \mathrm{~mm})$ pitch. This is

a self-mating system which is intended to eliminate the need to sock both a terminal and a socket in inventory. The locking eature on this connector increases the unmating force equired for use in high-vibratio applications and provides an mating. The inherent polarisatio of this robust interconnect prevents incorrect mating. The ST series is a double row connector and is available with
from 4 through 60 pins with a choice of common platings. This combination connector also eatures the firm's Tiger Buy contact designed for high
retention. Currently, through hole vertical applications are angle and other pitches are under development. Samtec Tell: 01236739292 www. samtec.com

High-side optimised n-channel Mosfet The latest n-channel Mosfets from Fairchild Semiconductor reduction in die size. The FD56694. SO-8 packaged, 30 fast-switching trench Mosfet is designed for high-side
pplications in synchronous and conventional DC-to-DC computers, desktop computers, and other DC-to-DC power supply applications. Fairchild Semiconductor Tel: 01793856856

Phase-locked Ioop on a chip
Vectron International has introduced a VCXO-based phase-locked loop (PLL)
designed for clock recovery and ata retiming frequency translation, clock smoothing and clock switching applications. The CD-700 features a phase locked loop Asic with a quartz stabilisity and jitter performance. tability and jitter performar 8 kbiv s to $65 \mathrm{Mbi} / \mathrm{s}$ and the output has a tri-state option. In

Twin-die flash microcontroller Microchip has announced its first $512 \mathrm{kbit} \mathrm{I}^{2} \mathrm{C}$ serial EEPROM in a standard 8 -lead SOIC package. With ypical applications likely to include mobile phones, set-10p boxes, pagers and data acquisition ystems, the 24LCS15 serial EEPROM has a pagewrite capability of up to 64 by tes of data and
capable of random reads up to the 512 kbit boundary and sequential reads within each of its 256 kbit blocks. Functional address lines allow up to four devices on the same bus, for up to 2 Mbit otal address space. Additional features include a clock rate of 400 kHz , an operating voltage of 1.8 V A faster version of this chip (24 FC 515) is capable of operating at a bus speed of 1 MHz over the same emperature range.
Microchip
Tel: 01189215858

addition, the supply volage can be eilher 3.3 or SV. The device is hermetically sealed in a ceramic surface mount package Target applications include DWDM, Switching, Wireless Basestation, ATM. SONET/SDHa and XDSL. Vectron intemational
Tel. 02380766288 www vectron com

Audio design kit for games developers Analog Devices has extended its design kit to software
development kits for W PC and Sony PlayStation2 game titles. The toolkit enables game developers to add rendered sound effects by employing repetitive, interactive audio
behaviours in place of the sound effects typically found in games. According to the company, designers can increase the sophistication of their games audio to that achieved in video. API documentation, sofi ware libraries, sample code, and online help. In addition, the PC version features Mission Control III, a graphical user interface tha allows audio designers to incorporate the firm's sPX same audia rendering technologies. Sounds such as footsteps, explosions, car engines and ambient sounds can be realistically produced in real-
ime, in direct response to the
user's actions.
Analog Devices Analog Devices
Tel: 0017819371622 www.staccatosys.com

Two-axis magnetic position sensor Honeywell Solid Stat exis sensor has developed a two compassing and position sensin applications such as handheld wireless systems and GPS

supplier, advantages of this patented design include nearly perfect orthogonal two-axis sensing in a 3 mm by 3 mm by $1 \mathrm{~mm}, 10$-pin miniature surfacemount package (MSOP). The $1 \mathrm{mV} / \mathrm{V} / \mathrm{gauss}$ a a field range up ± 6 gauss and can operate on a supply as low as 1.8 V . Honeywell
Tel: 01189062600 www.honeywell.com

Sockel 370 computer board for £240 Amplicon Liveline is offering its lowest-cost socket 370 single VIA chip set. which is priced £240. Intended for applications in the areas of process control and manufacturing, the Intel Pentium III and Celert both socket 370 processors up to 1 GHz . On-board VGA and LAN are included to support CRT displays and Ethernet. According to the company, it can be used as a slandalone computer, as the
ATX connector obviates the need for a backplane. It also provides support for standard industrial $P C$ configurations. Three 168 -pin DIMM sockets with up to 768MByte SDRAM IDE with Ultra DME $33 / 66$ controllers and a full array of ports are also included. For the more complex timing requirements in critical applications, the device has a

256-level watchdog timer. The onboard VGA controller supports CRT displays with up
to 1600 by 1200 pixels, and hardware monitoring for CPU voltage, temperature and fan speed. System temperature and fan speed can also be monitore Additional features include modem ring-on, wake on LAN
Windows $95 / 98$ shut off and PC99 ACPI power managemen all for the more demanding PC based industrial applications
Amplicon
Tel: 01273608331

Surface-mount coax connector is lightweight The latest surface-mount coaxial connector from Flint Distributio is designed for 2.5 mm high
PCB-mounted connections, and according to the supplier is amongst the lightest available. The U.FL series connectors, which are suitable for signals up to 3 GHz , feature a receptacle of mass 15.7 mg with a choice of

Low power radio transceiver

Available from Low Power Radio Solutions, the BiM 2 transceiver is a complete reworking of the first generation manufactured by Radiometrix. Operating in the harmonised pan-Eurpean SRD band at 433.92 MHz , and fully compliant with both EN $300220-1$ and ETS 300683 , the BiM 2 integrates a SAW-controlled FM transmitter with a double-conversion superhet receiver to provide bidirectional introduced eight years ago and has been used in applications such as handheld terminals, EPOS equipment, barcode scanners, belt clip printers and data loggers. With a transmitter output of 10 mW and a receiver sensitivity of -100 dBm , it is capable of data rates up to $64 \mathrm{kbiv} / \mathrm{s}$. At reduced data throughpur, the device has a useable range of at least 200 m line-of-sight, and a respectable 50 m indoors. The fully screened module shares the same 23 by 33 mm footprint and pin-out as its
predecessor, and so can be used as a plug-in upgrade in applications currenlly using the BiM-433-F. Two versions of the BiM 2 are available. for operation from nominal 5 or 3.3 V single supplies. Power consumption for the 3.3 V version is typically 8 mA while transmitting and 14 mA while receiving.
Low Power Radio Solution
Tel: 019937094

plug assemblies for application using 0.8 mm single-layer shielded or 1.32 mm double layer
shielded cables. The 0.8 mm and 1.32 mm plug and centre contact assemblies have a mass of
53.7 mg and 59.1 mg ,
respectively.
The connectors, which are nanufactured by Hirose, are locking sensation despite their size. At 2.5 mm , the coupling height is 0.7 mm less than the

preceding E.FL miniature coaxial series, from which the provide connections at right angles onto the PCB with an SMT receptacle. Potential uses include portable and mobil telephones, wireless
communication devices, antenna
other electronic measuring instruments and GPS receivers The connectors are rated at 60 V rms, with insulation resistance $500 \mathrm{M} \Omega$ and $20 \mathrm{~m} \Omega$ maximum contact. The outside contact resistance is $10 \mathrm{~m} \Omega$ maximum The U.FL series achieves VSWR of 1.3 or less, enabling use with signals from DC to 3 GHz Flint Distribution
www.flint.co.uk
Pocket-sized 1550nm laser source
Acterna's OLS-6 light source is available in a $1550 / 1625 \mathrm{~nm}$
version. It is a handheld light source with two optical fibre output ports. It is designed for use with an optical power meter, for measurement of loss in fibre networks. It is also claimed to be
one of the first light sources of this one of the firss light sources of this
kind which can be used to make
loss measurements at 1625 nm . This allows the detection and monitoring of such bending
effects for optimisation of netwo performance, said the supplier. Al the instruments in the OLS-6 range feature an internal launct fibre for stable power coupling etween the port and th teasurement cable
Tell: 0013013531560 www.acterna.com

EMil suppression EPCOS has released the X2 series of compact EMI uppression capacitors. Offering 300 V , the capacitance of the X2 series ranges from 10 nF with the mallest capacitor, with mensions of 4 by 9 by 13 mm , , 4.7 F with dimensions of 20 by 39.5 by 41.5 mm The capacitors' polypropylene or polyester dielectric is encased in tough plastic case to a high standard of insulation. They are available with tinned paralle wire leads in two standard other length options available on equest, The series has a selfhealing system, preventing permanent dielectric breakdown in the event of sporadic voltage surges or overcurrent.
Tel: 0990550500
www.epcos.com
Boundary scan system with more I/O
IAG Technologies has extended its line of boundary scan tool or testing complex printed xtended VO scan sysem 51 extended VO scan system

16-bit flash microcontroller
Hitachi has extended its H8S/22xx 16-bit flash microcontroller series with a stripped-down, reduced cost device. The H8S/2214F is available in a chip-scale package (CSP) for volume production
of applications such as portable audio, video and communications devices; bar code readers; portable medical equipment; and
handheld measurement equipment. It offers 128 kbyte embedded lash memory, 12 k byte RAM and a basic peripheral set to minimise cost in comparison with other members of Hitachi's $\mathrm{H} 8 \mathrm{~S} / 22 \mathrm{xx}$ series. The device has a power consumption of 20 mA (typical
full speed and is pin compatible with Hitachi's $\mathrm{H} 8 \mathrm{~S} / 2238 \mathrm{~F}$ microcontroller. It offers 62.5 ns minimum instruction cycle a $3.3 \mathrm{~V} / 16 \mathrm{MHz}$. The 112 -ball Chip Scale Package (TBP-112) measures 10 mm per side with a ball pitch of 0.8 mm . It can be rocessed using conventional industry soldering procedures and equipment. The H8S/2214F is also available in wo Thin Quad Flat ack (TQFP) packages. The device features a four channel DMA from the CPU. This allows the CPU to concentrate on its primary lask of calculations. Other peripherals include three serial ports, one of which has a special high speed asynchronous mode, a three channel 16 -bit timer module and a watchdog timer. The device has I/O pins, some of which have schmitt trigger characteristics terrupt capability and programmable pull-ups.
Hitach
Tel: 01628585163

(XIOS) It provides additional auxiliary test channels used for
fault detection on digital circuit boards using boundary scan (IEEE Std 1149.1) techniques The XIOS 512 can be supplied with $128,256,384$ or maximally
512 channels 3 and may be 512 channels and may be upgraded by adding compatib modules also supplied by JTAG Technologies. Each test channel may be individually programmed as input, output, bidirectional, or tri-state signals. 5 V operation. The system is

NEWPRODUCTS

Please quote Electronics World when seeking further information
applicable in a variety of production test applications to enhance test coverage. For may contain elements that cannot be accessed directly boundary scan such as board dge connectors or non-boundary-scan logic clusters. In such cases, the overall testability
of the board is reduced allowing of the board is reduced, allowin some manufacturing faults to be ackles this problem, extending he reach of boundary scan to include testing of circuit board dge connectors and providin PCB to improve fault coverage The system is compatible with
the firm's DataBlaster family of boundary scan controllers. Wit a built in version of JTAG Technologies' test pod the XIOS connection from the DataBlaster. JIAG Technologies
Tel: 01234272226 www.jilag.com
Varistors have wide operating voltages Retronix Europe has developed a range of zinc-oxide varistors with operating voltages fro 12 V to 1800 V . The varistor reature a fast response to energy absorption capability.

Automatic 3D checking
Zuken's EM Checker is a design tool for Visula that provides automatic verification of a PCB design in its 3D environment. Aterations between PCB and mechanical design groups. as enclosure and obstacle infornation can be loaded and mod in the ECAD environment using the ISO-standard STEP AP203 format. Visualisation, measurement and design rule checking allow the electrical design to be checked against system require ments and any component placement changes made within EM This ensures that mechanical design issues can be resolved early in the design cycle. Full 3D models provide true 3D analysis of the PCB, enclosures, substrates and other obstacles. Verification in 3D increases confidence in the design and avoids the wasted space created when only 2D design approximations are used, delivering the highest functionality products in the smallest volume. EM Checker uses the full PCB design representation
from PCB Layout to ensure no loss of data no changes in the data model and no re-entry of information between electrical and mechanical domains. As well as compatibility with the STEP AP203 format, 3D objects can also be transferred into EM Checker using STL or ACIS descriptions.
Zuken
Tel: 01454207800
www. zuken com

They have a low clamping ratio and no following-on current, said he company. Applications will nclude transistors, diode, IC, hyristor and triac semiconducto orecion, protion in escronic products, and providing electrostatic discharge and nois spike suppression. Relay and electromagnetic valve surge bsorption is another possible pplication area. In summary, electronic system or any electronic product requiring noise protection. Retronix Europe Tel: 01635874123

White LED driver IC Toshiba's latest LED driver IC in a miniature, six-pin SOT23 package delivers an output power p to six while LEDs in series up to six white LEDs in series
with a minimum of external coniponents, said the company An automatic driving current emperature derating function that allows full current to be dilivered at room temperature ount by reducing the number of LEDs needed for a given brightness level. Traditionally said the company, this has not been possible as designers have

had to drive the LEDS with lowe current levels to protect them aganst the effects of temperature incorporates an internal switching n-channel Mosfet with a typical on-resistance of 1.5Ω contributing to an overall device efficiency of up to 90% (pulse
mode) and 85% (DC drive mode).
Toshlba
Tel: 01276694730
www.toshiba-europe.com
32-bit DSP with flash for control in C/C++ Two digital-signal processors Instruments are claimed Texas industry's first 32 -bit control DSPs with on-board flash memory. With performance
specified up to 150 million instructions per second (MIPS) target applications include industrial automation, optical networking and automotive control applications. The TMS320-F2810 DSP and the
TMS320-F2812 DSP are based TMS320-F2812 DSP are based TMS320C28x DSP core. This core is designed specifically for control applications and has extensions for up to 400 MIPS performance levels. The device's unified architecture that processors and DSP capabilities allows both the system and math code to be developed completely in C/C++. reducing developmen time. The F2812 DSPs integrate 128kilowords (kww) of flash
memory and the F2810 DSP 64 mw for reprogramming during development and in-field software updates. Acceleration technology allows code to be executed out of flash at 110 to 120 MIPs while tume-critical performance can be executed directly out of the 18 kw of onchip RAM. In addition, the F2812 DSPs offer an external memory interface with an for systenis requiring a larger memory model.
Sarnples of the TMS320C28x DSPs are scheduled for availability during the first quarter of 2002, with volume production scheduled to follow

Quality Alphanumeric backlit LCDs in $4 \times 40,2 \times 40,4 \times 20,2 \times 20$ and 2×16 formats Supplied either bare or pre-fitted with one of our Eze-Use, Serial interface boards with options such as software buzzer control, backlight control, operator interface, start-up message, big character generation, and PC-AT Keypad /mouse inferface - all at very competitive pricing We also stock Serial Interface Graphic modules and front panel bezels for all our LCDs Please call (01977 683665) or check our web site (www.milinst.com) for full details and pricing.

Milford Instruments - your total LCD solution

CIRCIE NO.A15 ON REPIY CARD

FRUSTRATED!

Looking for ICs TRANSISTORS
A phone call 10 us could get a result. We offer an extensive
range and with a World-wide
database at our fingertips, we are able to source even more. We specialise devices with the following prefix (to name but a few).

We can also offer equivalents (at customers' risk) We also stock a full range of other electronic components. Mail, phone, Fax, Credit Card orders \& callers welcome.

Cricklewood Electronics Ltd
 40-42 Cricklewood Broadway, London NW2 3ET Tel: 02084520161 Fax: 02082081441
 E-mail: sales@cricklewoodelectronics.com

RAEDEK
 Electronics

Raedek Electronics Co
Unit 12, Avenue Fields Industrial Estate
Stratford Upon Avon CV37 0HT, United Kingdom Telephone: +44 (0) 1789209294 Fax: +44 (0) 1789295757 email: sales@raedek.com www.raedek.com

Electron Tubes - R.F. Power Transistors Integrated Circuits \bullet Magnetrons Cathode Ray Tubes - Microwave Diodes Thyristors \bullet Tube Sockets
Many 1000s of current and obsolete manufactured devices in stock

DSP will be offered in a 128 -
lead LQFP, and the F2812 DSP
in a 176 -lead LQFP
Texas instruments
Tel: 01604663399
www.ticom

White LED driver IC

Linear Technology's LT1932 is a switch-mode, fixedboost regulator for driving white LEDs. It has a fixed operating frequency of 1.2 MHz which the supplier claims allows the use of lower profile capacitors, while reducing emitted noise. Typical efficiencies are above 80 per cent, compared with the 50 to 70 per cent efficiencies of charge-pumps. It uses a 36 V switch allowing output voltages
up to 35 V , letting it drive up to eight white LEDs in series. It also uses a constant current topology to drive the LEDs in series ensuring there is a constant current source as the voltage drop across the
temperature. It can also drive 16 LEDs in two parallel.strings of eight. Linear Technology Tel: 01276677676
www.linear-tech.com

Low profile connector in a single piece
Hirose has developed single piece compression connectors PCBs at 1.2 and 1.7 mm . The surface mount connector is on a 1.1 mm pitch and located onto the PCB using mounting bosses. The DF26 contacts connect with gold plated pads on the second space. The gold plated contacts are rated at 0.5 A at 50 V AC. When mating with the second PCB, the contacts deflect 0.7 mm and at the same time employ a wiping action to clean the mating surface, ensuring a gas tight nine and 16 positions and supplied packaged in tape and reel for automatic placement. Hirose
Tel: 01908305400 www.hirose co.uk

LCD controller kit

An analogue interface controller kit from Digital View is preconingured for VGA, SVGA or XGA panel. Based on an ACG-1024 controller board, the kit includes cables, connectors, OSD switch mount. connection diagram and manual. It provides the components to run LCDs Sharp and Toshiba. In a singleboard format, the controller provides a connection to TFT LCD panels with resolutions of 640 by 480,800 by 600 and screen image expansion for ful XGA modes, with a daughter board for connectivity to TDMS and LVDS TFT panels. Digital View Tel: 02082361112 www.digitalview.com

Capacitor range for audio design Working with several loudspeaker manufacturers, capacitor maker Industrial
Capacitors Wrexham has developed capacitors for audio applications. There are four ranges of metallised polypropylene film capacitors with a range of values and
voltages. They are used in
crossover units in hi-fil speakers and studio monitors. There are three axial, wrap and end-seal
ranges - PW PX and SA - and the ASMFP disc shaped capacitor. The ASMFP units ar available in four voltages - 160 , 250,400 and 600 V DC - with capacitance values ranging from 1 to $100 \mu \mathrm{~F}$.
Tel: 01978853805

Single-supply op-amps

 for video markets Maxim Integrated Products has ntrod 4384 sine Max4380 to quad single-supply op-amps that are available in SC70, $\mu \mathrm{Max}$ 。 and TSSOP packages. According to the supplier, the combination of rail-to-rail high impedance disable mode in small packages makes these op-amps suitable for multiplexing applications for the consumer video market. They operate from a single +4.5 $\pm 2.25 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ supplies. They require 5.5 mA quiescent supply current while achieving a $210 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth and a $485 \mathrm{~V} / \mathrm{us}$ slew rate. Their input common-mode range exten beyond the negative power
Protocol tester handles latest Bluetooth specs

The PTW60 Bluetooth protocol tester from Rohde \& Schwarz comes with more than 100 verified test cases that comply with specification. The test cases are of the prescribed qualification program that each product must pass before it can be brought into the market with the Bluetooth labe Providing test cases based on the SIG specifications makes it suitable for product development. Release 5.0 unit has test manager, L2Cap, service discovery pro and generic access profile defined by the SIG. Signalling characteristics, link estab lishment, link disconnection and data cransfer in the master or slave modes are ested. it is suitable for all makers of
Bluetooth chip sets. protocol sofiware and final products as well as for test houses and can be adapted to future versions of the Bluetooth specifications by updates. Rohde \& Schwarz Tel: 01252811377
www. rohde-schwarz.com

The sophisticated cursor read outs have 1 possible read outs. Besides the usual read outs, like voltage and time, also quantities like rise time and frequency are displayed.

Measured signals and instrument settings can be saved on disk.This enables the creation of a library of measured signals. Text balloons can be died to a signal, for special comments. The (colour) print outs can be supplied with three common text lines (e.g company info) en three lines with measurement specific information.

The HS801 has an 8 bit resolution and a maximum sampling speed of 100 MHz . The input range is 0.1 volt full scale to 80 volt full scale. The record length is ulio samples. 10 bil Hz The HS801 is conned of 25 parallel printer port of a computer.

The minimum system requirement is a PC with a 486 processor and 8 Mbyte RAM available. The software runs in Windows $3 . x x$ / 95 / 98 or Windows NT and DOS 3.3 or higher.

TiePie engineering (UK), 28 Stephenson Road, Industrial Estate, St. Ives, cambridgeshire, PE17 4WJ, UK Tel: 01480-460028; Fax: 01480-460340
TiePie engineering (NL),
Koperslagersstraat 37,8601 WL SNEEK The Netherlands
Tel: +31515415416 : $\operatorname{Fax}+31515418819$ Web: http://www.tiepie.nl

NEWPRODUCTS

Please quote Electronics World when seeking further information
supply and their outputs swing rail-to-rail, making them suitable for high-gain applications. Large signal ($2 \mathrm{P}-\mathrm{p}$) gain
flatness of 0.1 dB to 40 MHz , low differential gain/phase of 002 per cenv 0.08° and a spuriousfree dynamic range (SFDR) of -65 dBc at 5 MHz are for andard and high-definition video applications.
Maxi: 01189303388
www.maxim-ic.com
High-side current
sense monitor In a five-pin package, the for measuring load current with sense resistor. Taking the voltage across a shunt resistor and rranslaing it into a proportional output current this current sense

monitor IC from Zctex uses a single scaling resistor to conve the current into a ground referenced output voltage and
eliminates ground plane disruption. Taking less PCB space than alternative matched transistor pairs and offering an improved sensing accuracy of per cent, the SOT23-5 packaged
current monitor suits portable

Build and Upgrade Your Own PC

Second Edition
\square Save $£ 100$ s by making your current PC last longer 7 You can have a PC with a spec that matches your needs Discover the practical techniquies of upgrading a PC and avoid the piffalls

Ian Sinclair's Build Y̌our Own books have established themselves as
authoritative and highly practic authoritative and highly practical guides
for home PC users and advanced hobbyists alike. All aspects of buildin and upgrading a PC are covered; making this the book the computer retailers don't want you to readl By getting to grips with the world of PC hardware you can avoid
the built-in obsolescence that seems to be part and parcel of the fast moving world of PCs, and escape the need to buy a new PC every year. You can also have a PC that keeps pace with the ever-increasing demands that new software applications
place on your system.

The new edition of this book is based round building and upgrading to the latest systems such as Pentium III and dual-processor Celeron motherboards running Windows $95 / 98$ or Windows 2000 . As well as guiding you round the inside of your CPU lan Sinclair also covers monitors, printers, high Capacity disk and tape syst parallel pon accessories

CONTENTS: Preface; Preliminaries, fundamentals and buying guide; Case, motherboard and keyboard; About disk drives; Monitors, standards and graphics cards; Ports; etting up, Upgrats M Windows; Printers and modems; Getting more; Index
battery powered equipment. With a quiescent current of $4 \mu \mathrm{~A}$, the ZXCT1010 operates over an input voltage range from 20 V
down to 2.5 V . An enhanced version of the companion ZXCT 1009 device, the ZXCT 1010 high-side current monitor IC, features a separate pin to ground that improves the typical output offset from
500 mV to $30 \mu \mathrm{~V}$ Zetex
Tel: : 01616224444 www.zetex.com

Multi-chip package

 for mobilesFujitsu has announced a triple stacked multi-chip package
(MCP), combining 64 Mbit NOR-type flash memory an 16Mbit mobile fast-cycle random access memory (FCRAM) with
an asynchronous SRAM-type interface, and 4 Mbit SRAM. The expectation is that designs will
uise flash memory for program use flash memory for program
and data storage, high datacapacity FCRAM as workin memory, and SRAM as cache memory for backup storage when downloading data or when the device is in standby mod The MCP also achieves a used. The MB84VR5E3JIAI offers an address access/program (one word) time of 85 ns maximum, a standard NOR-type flash memory access time of 80 ns , a
mobile FCRAM random read access time of 90 ns maximum and an SRAM read access time of 85 ns maximum. Fuiltsu

496103690257 www.fme.fulitsu. com

How to pay
 (Build and Upgrade Your Own PC) paperback
 a I enclose a cheque/bank draff for $£$ (payable to Cumulus Business Media)
 Please charge my credit/charge card - Mastercard American Express Visa Diners Club Credit Card No:
 Expiry Date:
 Signature of Cardholder
 \qquad
 Cardholder's statement address: (please use capitals)
 Name
 Address
 \qquad
 Post Code
 \qquad
 Tel:
 \qquad

Post your completed order form to:-
Jackie Lowe, Cumulus Business Media, Anne Boleyn House, 9-13 Ewell Road, Cheam, Surrey, SM3 8BZ

Fax your completed order form to 02086438952 UK Price: £22.50 Europe $\mathbf{£ 2 4 . 0 0}$ ROW £26.00 Price includes delivery

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY OISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH RAYY BE M STOCK

ing for Latest Reduced Prices on this advert

SPECIAL OFFERS

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel: (01274) 684007. Fax: 651160
CIRCLENO. ITG ON REPLYCARD

NEWPRODUCTS

Please quote Electronics World when seeking further information

4ns dual comparators Elantec has introduced high speed comparators. The ns propagation delay and perate from 10 mA of supply current per channel, and the 4ns propagation delay on 16 mA of current per channel All have an input voltage range of 5 to 12 V and have common mode input ranges that go below the lower rail. The output sections have their own supplies
and can be used to interface directly with 3 or 5 V logic. Elantec
Tel: 01189776020
Process technology for making ICs
Vitesse Semiconductor has announced its latest process technology for the manufacture of analogue and digital ICs for excess of $40 \mathrm{Gbi} / \mathrm{s}$. The process is built around indium phosphide (InP) heterojunction bipolar
ransistors (HBTs). The firs generation of the InP HBT manufacture physical layer IC for Sonet OC-768 applications and circuitry for $10 \mathrm{Gbi} / \mathrm{s}$ systems that use RZ encoded data. Succeeding generations will provide ICs with up to and integrated optical devices This will provide the ability to make monolithic optical ICs. The first generation InP HBTs use a vertical mesa isolated npn bipolar transistor
Vitesse www. vite

Direct stream digitalaudio support Wolfson Microelectronics has introduced a stereo d-to-a direct stream digital (DSD) audio data format. The DSD udio mode in the WM8728 xtends the reach to cover CD and DVD piayers as wetl for he super audio $C D$ (SACD) bit stream standard. DSD, the core ecording technology behind

SACD, enables the reproduction of sounds that are close to the a multi-bit siemateral. It use a multi-bit sigma-delta a 6 -bit architecture, the 24 -bit audio d-to-a converter integrates a DSP interface and the common industry audio formats which let the user connect single time-multiplexed DSP interface. It provides a hardware or software interface for audio control. Data input word lengths in PCM format are from 16 10 24 bits with sampling rates up provides two channels of 1 -bit DSD with a sampling rate of 2.8224 MHz .

Wollson Microelectronics Tel: 01316679386 www. wolfsonmicro.com

CPU board with up to 1Gbyte DRAM
Concurrent Technologies has released a single-slot 6U VME board. The CPU board has a
choice of an 850 or 700 MHz Pentium III CPU with up to IGbyte onboard DRAM within
a single slot format. This means the VP CPI/Pxx can be used as the main CPU board in a VM 32kbyte of level one cache an 256 kbyte level two cache. The board uses the 82440 BX chipset, which supports the 100 MHz front side bus. A heatsink is fitted to the CPU so
no fan is used on the board. Up to IGbyte of DRAM can be installed on the board, using a combination of Sodimms and modules. This memory is accessible from the Pentium III PCI bus, and VME bus. Features include support for
10/100Mbils Ethernet interface via a front panel RJ45 connector, EIDE interface, AGP graphics with flat panel display support, two RS232 serial interfaces, floppy disc interface eal-time clock, parallel and a watchdog timer. There are also interfaces for keyboard and mouse. Hardware byte swapping nd bus error detection are included.
Tel. 0120675262 www.cc.co.uk

Board connectors get

 technical supportDistributor TTI is offering FCl's Basics connector product support package. The aim of the package is support, drawings, specifications and 24 hour samples. The core product range can be shipped within 48 hours, says the supplier. The Du Box range of connectors offers board to board. and board io modular system. PCB or crimp versions are available as are polarised and anti-mis-match options.
Bergstik headers are also for 2.54 mm use, and are available in or SMT form. The Quickie is a flat cable, 2.54 mm IDC system available to a standard specification of DIN 41651.

Tel: 01494460000
Tel: 01494460000
www.ttieurope.com

Easy-PC For Windows V5.0, now available with SPICE based AD mixed mode simulator

NEW Easy-PC V5.0
Easy-PC for Windows is one of the biggest selling PCB systems in Europe. With Prices stianil price perírmance.

Only

295
SPICE Based Simulator
Easy-Splce is a substantally enhanced version of SPICE3 and XSPICE with the
underlying algorithms being reworked to signicantly mprove convergence and ad new functionality.
Easy-Spice is intergrated with Easy-PC Is supplied ready to use with PICE Illbraries and models.

For more information or for a demo copy call us on +44 (0)1684 773662 fax +44 (0)1684 773664 or E-mail info@numberone.com
or download a demo copy from WWW.numberone.com

```
Number One Systems, Oak Lane, Bredon, Tewhestury, Glos, GL20 TLR
```

CIRCIE NO. 120 ON REML CARD

20\% discount for Electronics World readers
 on audio and

 rf signal generatorsVann Draper Electronics Ltd The test $\&$ measurement specialist Equipment from Grundig, Kenwood, Hameg, Tektronix, Hitachi, Fluke, Avo and many more Use this coupon for your order Please supply me:
Vann Draper is offering over 20\% discount to readers of Electronics World on both their audio and f fignal generators
Both units normally sell for the low price of $£ 151.58$ but for readers of
Electronics World the price is just $£ 119$ fully inciusive of VAT and delive Electronics World the price is just $£ 119$ fully inclusive of VAT and delivery. The generators are supplied ready to use complete with mains lead, operating
manual and a 12 month guarantee. manual and a 12 month guarantee.
To order, simply post the coupon to:
Vann Draper Electronics Ltd, Stenson House, Stenson, Derby DE73 1HL. Or Tel 01283704706 Fax 01283704707 Émail sales@vanndraper.co.uk AG2601 audio generator specification

AG2601 audio gen
Freaueny range Frequency acy

Freauency $\begin{aligned} & \text { accy } \\ & \text { Output waves }\end{aligned}$ Output waves
Output impecance :
ofg amplitude Obs ampititude : : 500 ohm and square -2088 amplitude $\quad: 22 V$ Vpp no no load
4008 amplitude

Sinewave distonion
Sipe and weight
Power requirement

 \begin{tabular}{l}
$1150 \times 250 \times 130 \mathrm{~mm}$,

$115 / 230 \mathrm{Vac} 50.60 \mathrm{~Hz}$

\hline

Auclio

Chystal

Size and

Power

\hline
\end{tabular}

 Freaungry accy
Rot ortur

\qquad Name:
Name:
Address:

Tel No:
Total F
Cheques payable to Vann Draper Electronico te
or debit my viss, mastercard or switch card:
Card type:
Expiry dare
Expiny dare
Switch is No:
Signature
btain this discount but carriage charges vary according to country. Please telephone, fax,
email or writie to vann Droper

Fernando Garcia argues that the ripple regulator - considered by many to be long obsolete - can offer benefits today due fo advances in components. To
 The
 insteraic regulator

Switch-mode power supplies, once the exclusive ealm of military, aerospace or other ultra-high biquitous and indispensable. The main reason for the shift has been the reduced cost and complexity of the switch-mode power supply, or SMPS, thanks to the introduction of high performance, low cost SMPS vendors.

Most devices in this category have settled for constant-frequency PWM architecture. Here, the error voltage obtained from the feedback and reference signals is compared against a constant, high-frequency triangle wave from an internal oscillator. The PWM signal thus generated is routed to protection and steering logic and to the drivers for the main power

Introduced in pioneering devices such as the

UC1524, this basic architecture has been substantially improved over the years. Refinements, such as PWM-controller devices, but at heart they still maintain those same basic features. Figure 1 shows simplified schematic of this classic circuit topology Back in the days when a complex IC was anything with more than 20 transistors, there was another voltage regulator architecture that made use of those simpler devices. As a matter of fact, it predates the integrated circuits.
Although the earliest high-frequency, all-discrete circuit I've personally seen dates' to the mid- 1960 s, I'm sure that there must have been earlier realisations,
employing SCRs or magnetic amplifiers. For the sake of clarity, note that in those days, high frequency meant almost anything higher than the $50 / 60 \mathrm{~Hz}$ pow line frequency - which effectively ruled out SCR phase-control circuits.
This architecture is the hysteretic regulator, also known by several other names like self-excited regulator, or simply a ripple regulator
But why should we even bother discussing an goes around comes around". Present technology has added a new lease of life to many older circuits. Numcrous engineers are discovering that these circuits married to newer technology may provide high

Fig. 4. Normalised frequency change versus the inputoutput voltage ratio.
performance solutions to modern problems at a
In many instances, the actual performance of older circuits was being impaired not by the topology itself, but by the intrinsic limitations of the then available electronic componenis. For instance, I distinctly recall secondary breakdown or thermal runaway in a power bipolar transistor
Additionally, enhanced design tools such as CAD simulations or spreadsheets allow accurate optimisation of circuits rather than time consuming trial-and-error or cumbersome graphical techniques instrumentation have allowed a more accurate assessment of the actual circuit operation. Remember the awkward and expensive CRT-storage scopes?

Step response to a load change

The solution we are looking for is load step response. The architecture shown in Fig. 1 includes For many reasons beyond the scope of this artict the crossover frequency is set lower than half the switching frequency, which essentially means that the transient response will be slow.
The industry's response to the ever-increasing speed requirements for modern computing loads is 10 fur
increase the switching frequencies and to employ multiphase regulators. Such regulators are basically array of parallel regulators with interleaved power pulses. This is a perfectly fine, although complex approach to the problem
On the other hand, several years back I built up a its simplicity and performance, especially with respec to transient performance.
This early circuit had several limitations, but I wondered, could it be improved with newe semiconductor devices? Texas Instruments thinks so since it makes a dual combo regulator for fast DSP
pplications. One of its sections is built around hysteretic regulator. One of its touted advantages is a fast transient response ${ }^{2}$.
For many years, On-Semiconductor has offéred yet For many years, On-Semiconductor has offered
another ripple regulator with a different control another ripple regulator with a different contro
scheme (fixed on-time, variable off-time) which scheme (fixed on-time, variable off-time) which
allows extreme simplicit ${ }^{3}$. My curiosity was thus awakened.

Self oscillation

A simplified, no-frills schematic of the ripple regulator is shown in Fig. 2. The heart of the circuit is a comparator, whose inverting input is connected to a reference voltage and the nor-inverting input is fed Al start-up with the
the comparator's output eapacitor fully discharged n -p transistor Q_{1}. L_{1} and charge C_{1}
The circuit will . in the capacitor increases to a level that exceeds the reference voltage plus some hysteresis At that point the comparator will swing high, cutting off the transistor and the associated charging current. Inductor current, in a buck regulator fashion, is steered via the free-wheeling diode until it is depleted. At that point the output capacitor starts to discharge to voltage, where the comparator switches states again and the cycle repeats itself. The name given to the regulator becomes obvious: in steady state operation its output will oscillate between two voltage levels; the rippie voltage thus generated is required for proper regulator operation!
ripple is not as bad as it seems; all switch-mode regulators generate ripple voltage. In this case, we can
actually tame the ripple level to a known, reasonably small value, and one that's perfectly acceptable to the load.
If the load suddenly rises and the output voltage suffers a dip, the circuit turns on immediately,

replenishing the capacitor charge until the voltage ha recovered. So much performance in such a simple
circuit! But is it
The shor answer is: not quite. As every seasoned engineer knows, every circuit design is full of pitfalls
and compromises. To gain an insight on the potential pitfalls consider the equations ${ }^{4}$ that govern the turn-on and turn-off tinies

$$
\begin{aligned}
& t_{o n}=\sqrt{\frac{2^{*} L^{*} C^{*} V_{\text {ropole }}}{V_{\text {in }}-V_{\text {out }}}} \\
& t_{\text {off }}=\sqrt{\frac{2^{*} L^{*} C^{*} V_{\text {ippic }}}{V_{\text {out }}}} \\
& f=\frac{1}{t_{\text {on }}+t_{\text {off }}}
\end{aligned}
$$

Since the ripple voltage is equal to the difference in upper and lower voltage thresholds, then performing

$$
\text { ne subraction of (4) ano (} 3 \text {) giv }
$$

$$
\begin{equation*}
V_{\text {ripple }}=V_{\text {th }}\left(\frac{R_{2}}{R_{2}+R_{1}}\right) \tag{6}
\end{equation*}
$$

which means that the ripple voltage increases with increasing input voltages. This piffall severely
Constrains the operating voitage range, which negates one of the advantages of a switch-mode power supply
But wait; there's an additional caveat -a killer pitfall. This is the filter capacitor's effective serie
(2) resistance (ESR), shown inside the dotted lines accompanying C_{1} in Fig. 2.
The fact is that until now. only the ripple voltage
(3) caused by the charging/discharging of the capacitance itself has been considered. But as wary power supply
engineers know too well, the impedance of a capacitor at typical switch-mode frequencies is dominated by ESR ${ }^{5}$.
The end result is that the actual ripple voltage seen by the comparator has little resemblance to the actua capacitor charge and nore with the product of
ripple current and ESR. The circuit becomes completely unstable unless the ripple current minimised by an oversize inductor for the ripple
voltage, or by large capacitors, or a combination of the voltag
two.
Thos
Those solutions not only increases the cost, size and
(5) weight of the supply, but they also slow down the load weight of the supply, but they also slow down the
step response, negating the main advantage of this

Fig. 6. Waveforms illustrating actual circuit operation.
type of regulator. For all the above constraints, plus the ones associated with the poor real world performance of early IC comparators and bipolar power transis
applications.

An improved regulator
In the mid-1980s the Unitrode company was rapidly ocusing itself on power components, both discrete and integrated. The company had introduced a new, high-performance power Darlington transistor. Like every company now and then, it would write an application note employing the new componen Most application notes nowadays are mostly integration ICs. However in the 1980s, the customto write very detailed application notes, with a full description of not only the part itself but on the associated circuit topologies. Many circuit tricks were discussed along with appropriate basic theory. Alhough dedicale ly avilable andmark application note ${ }^{6}$ describing a much mproved ripple regulator. The proposed circui employed one of the then ubiquitous voltage regulato ICs, such as the LM305 or the $\mu \mathrm{A} 723$
An improved ripple regulator
Shown in Fig. 3 is such a circuit built around a μ A723 Shown in Fig. 3 is such a circuit built around a μ A7 nside the dashed box. The pin numbers correspond the metal can packaging. l've shown the internal IC building blocks to aid with the following circuit description.
The improvement of this particular circuit over the previous one is that it has a DC feedback path and two AC feedback paths. The DC feedback works in the
raditional fashion, which is to provide DC regulatio The first AC feedback, which follows through capacitor C_{1} into the inverting input, has the following
$V_{\text {bal } A C)}=\left(\Delta \Delta_{l 1} \times R_{3}\right)+\Delta V_{C 3}$

Essentially, this means that the non-inverting input will see the output capacitor's ripple voltage plus the voltage drop across sampling resistor R_{5} due to the inductor current swings.
On the other hand, the non-inverting input receives, via C_{2}, an AC voltage equal to
$V_{\text {mina }(A C)}=\left(\Delta v_{\text {datix }} \times R_{0}\right)+\Delta V_{c,}$
This is the same output capacitor ripple voltage plus the voltage drop across R_{6} due to the main transistor's base drive current.
On closer inspection, it becomes obvious that the capacitor voltage ripple, $\Delta V_{C 3}$, appears on both equations, so it is cancelled due to differential sensing. the transistor drive current is actually compared to the triangular voltage waveform developed by the inductor current swing through the sense resistor. You can equate (7) and (8) to obtain
$\Delta I_{\text {atro }} \times R_{0}=\Delta I_{t, 1} \times R_{1}$
So what's gained by doing this? Since the base drive current is regulated by the feedback action of R_{3} current is regulated by the feedback action of R_{3}
through the transistor at pins 1 and 6 of the control IC, then the hysteresis voltage remains fairly constant. But most important is the cancellation of the capacitor's ripple voltage from the control equation. Assuming that the drive current and the resistor values to be constant, then the ind This is important.
governed by:
$t_{t e f}=\frac{\Delta l_{l} \times L}{V_{m}}$
Since the output voltage and the inductor ripple current are regulated, and assuming a constant independent of the input voltage and most importantly from the output capacitor's capacitance or ESR values. This circuit is still a buck regulator after all, its transfer funct mains the same

Since the off time remains constant, the circuit has to manipulate the on time in order to maintain regulation. The end result is that the frequency still changes with a changing input voltage.
yersus the input-output ratio if iflised frequency frequency is set at an input voltage of three times the output voltage, then at twice that value the frequency has already been reduced to 75% of its maximum value.
As the ratio is further reduced, the frequency approaches zero. Compare this against the behaviour op a fixed-frequency PWM controller
Of course, several assumptions made above will no hold water in a real world circuit. For starters, the inductance value has a negative coefficient with respect to DC bias. This means that at low loads, the frequency may actually decrease.

1 remember having built a prototype circuit and 1 remember having built a prototype circuit and
being pleasantly surprised with the high performanc being pleasantly surprised with the high performance
of such a simple design. However, the circuit would operate with difficulty at frequencies higher than operate
30 kHz .
For starters, the μ A 723 regulator was never optimised for switch-mode operation. Its internal delays were not specified and unpredictable. They Then, the power bipolar transistors required a much more robust base drive to optimise speed than what could be achieved with the simple circuit. Baker clamps were often used, but there were many trade offs between speed and efficienc
Lastly, the current limiter that established the base drive had a soft gain and substantial temperature
dependency. The end result was that the inductor ripple current. and all parameters that depend on it, drifted significantly during operation

A second lease of life

With the advances in semiconductor processes, increasing integration became possible. Circuit
simplicity was no longer an issue. Fixed-frequency, variable duty cycle PWM controllers became the norm. The hysteretic architecture was abandoned, save for a few isolated cases.
However, I was intrigued to see if, with newer higher performance semiconductors, some of the
limitations that plagued the earlier circuits could be overcome, while maintaining its basic strengths. Several key limitations on the original circuit that could be improved upon were identified

- Bipolar transistor power switches have been largel superseded by Mosfets. Although the obvious
choice would be to employ a p-channel device to replace the p - n -p transistor, modern designs almost always employ n -channel devices. The difference in electron versus hole channel mobility makes the n channel devices more efficient for a given die size. Fortunately, driver ICs that incorporate charge pumps that easily drive high-side n -channel devices have become widely available.
- Schottky freewheeling diodes were perfectly acceptable for 5 V output supplies. but the efficiency penalty for lower voltage supplies becomes excessive. Synchronous rectification is now the norm. Semiconductor vendors, recognising requirements for both the high side and synchronous-rectifier n-channel Mosfets. Linear Technologies' LT1 160 device was selected since it provides fail-safe logic which maintains the upper Mosfet off if the bottom one is still on and vice versa, regardless of the control inputs. This is to prevent shoot through conduction that may cause device failure.
- The heart of the circuit, the $\mu A 723$ regulator itself, was state of the art 30 years ago but nowadays it tis extremely slow and has common-mode range

Fig. 7. Fast transient response is the circuit's main capability
imitations. Its voltage reference has a wide olerance, and the output transistor is not suited to drive Mosfets. The comparator section may be eplaced with an improved, much faster device like he LM311 with reduced offset and wider commonhe voltage reference, but the TL431 offers both conomy and high performance, and tight tolerance versions are available from many vendors. Lastly, he drive requirements need be minimal as the power driver IC described above takes care of is

- A current-limiting circuit that relied on the baseemitter voltage threshold was already a heavy ower voltages of 3.3 volts and below, the sampling resistor power loss becomes an unacceptable efficiency penalty. Therefore the sampling resisto illivels full dops wish requires post mplification to perform its task Since this ampling resistor serves double duty as the inductor's curreni ripple feedback, the required amplifier has the triple task of low offset, high slew ate and a common-mode range that includes oltages close to grond hat won't cost you an arm or a les
- Finally, I wanted a comparator with a much more stable hysteresis voltage. Rather than employ the classic circuit in which positive feedback is taken oin the comparator's oupu - with the input sed a variant of a circuit that I had previously published ${ }^{7}$. Here, a resistor that forms part of the eference voltage divider chain is shunted by a Mosfet toggled by the comparator output. The effect is such that the reference voltage at the non verting input increases when the oulput becomes but much more repeatably.

Fig. 8. Snubber reduces voltage ringing.

Practical circuit implementation The completed prototype circuit is shown in Fig. 5. A Stable voltage reference is provided via U_{1}, which is ${ }_{R_{5}}$. ted to a resistive voltage divider string R_{3}, R_{4} and
${ }^{R_{5}}$ Transistor Q_{2} shunts out resistor R_{4} whenever its gate is driven high by U_{3} 's output. Since this will in effect increase the reference voltage applied to the non-inverting terminal, positive feedback is generated A stable value of hysteresis that is independent of the inverting input.
The comparator inverting input is fed from a $D C$
feedback signal via R_{9} and AC feedback via C_{1}. Feedback at DC provides the average DC output value The AC feedback is a replica of the output inductor's current swing as previously discussed.
To maintain low losses, current sampling resistor R_{18} requires amplification by U_{2} and associated components. The operational amplifier used here offers low offset, reasonable slew rate capabilities and both input /output rail to rail capability. The average DC component is low-pass filtered and current limit is reached and the voltage is enough to bias Q_{1} on, its collector will pull down the reference voltage.
Comparator U_{3} is a mature yet quite fast responding device. However, having an open-collector output, it rise time can be significant which would add will be illustrated below. Transistor O_{6} with D_{1} assis in the pull-up current, allowing a much speedier transition. Transistor Q_{3} invers the comparator outpul. Thus complementary puises are provided, necessary for the synchronous rectifier operation.
These pulses are applied to U_{4}, which is a Linear device, which offers the following features: device, which offers the following features:

- TTL threshold-compatible inputs, which nevertheless may be pulled all the way up to the $V_{C C}$ supply voltage without damage.
- Like most modern drivers, a bootstrap topology is employed. This works together with D_{2} and C_{5}, and allows the use of n-channel Mosfets for the highside power switch
- Most important in a half-bridge configuration is the prevention of shoot-through currents. At best, thes could cause an efficiency penalty and at worst they will result in total device failure. Differen semiconductor manufacturers follow different approaches to prevent this, but the approach
followed by LT is quite simple and effective: It senses the Mosfet's gate voltage, and until it has reached to a safe low level, it will not enable the drive for the opposite Mosfet. This regardiess of the state of the 'top_drive' and 'bottom_drive' inputs.
The driver's top output is applied to the main power witch Q_{5}. The bottom output goes to Q_{4}, which work switch Q_{s}. The bottom outpu
Resistor R_{15} keeps Q_{s} off during power up, and resistors $R_{14}, R_{16 \mathrm{a}}$ and $R_{16 \mathrm{~b}}$ are the gate limiting resistors that should be tailored for the rate of voltage rise.
Scho
Schottky diode D_{2} conducts during the transition, where the top switch is turning off and the bottom one
has not yet turned on due to the driver's anti shoothas not yet lurned on due to the driver's anti shoot-
through protection. Lastly, inductor L_{1} and capacitors $C_{6 \mathrm{a}}$ and $C_{6 \mathrm{~b}}$ form the energy storage elements in the Olassic buck topology
Operation of the circuit may be better understood by looking at the waveforms of Fig. 6. Both top traces the inverting and non-inverting comparator inputs. The rriangular trace is the amplified inductor current that has both an AC and DC component. It is compared against the reference voltage that has a squarewave hysteresis voltage. As the triangular current waveform crosses the appropriate thresholds, The middle trace is the outpu bottom trace is displaying the voltage veltage. The node - the Mosfet and inductor junction - showing the effective duty cycle for the power switches. On closer inspection, you may observe that although the top trace has switched states, it takes the bottom pull-up and driver delays. The net effect is that there will be a slight overshoot or undershoot in the current, and the overall ripple will be slightly higher than anticipated. Therefore, the emphasis to minimise delays with the active pull-up circuitry
How about its touted advantage, the fast transien response? Figure 7 shows the results. The top trace
shows the load current jump from a minimum (2.5 amps) to a maximum (11 amps) and back. The electronic load was set for a slew rate of $5 \mathrm{~A} / \mathrm{hs}$, although the actual slew rate was less due to wiring inductance.
Howerer, you can see the minuscule volta overshoot and undershoot, and the almost
instantaneous settling time, in the bottom trace. This achieved with a very modest 65 kHz switching frequency!
The only post-processing performed to the bottom witching -frequency averaging to remove the obscure the voltage change.

ncreasing efficiency

Designing a power supply, like any other clectronic usually involve cost versus performance.
Of the performance, efficiency is usually one of the major considerations. The prototype circuit that I buil achieved a 89.5% efficiency at a 13.5 V input and .3 V output at 11 A . You may achieve a larger or ollows:

Frequency: The first decision in designing a switc mode supply is to determine the ballpark frequency hat it will operate at. Everything else depends on that. A higher frequency is sought after if size is or spending some serious money on components. For instance, aluminium electrolytic capacitors even those low impedance types - start to rapidly un out of performance at frequencies higher than 00 kHz . Specialty capacitors like solid tantalum or OsCon types are required, and multiple paralle mits must be used. Besid arsial For the chose a frequency between 60 and 70 kHz .

- The energy storage inductor is a primary source of losses. Depending on the core material and geometry, wire, etc., the losses may vary greatly. enerated a 4.5% efficiency penalty. The copper losses were excessive. Employing a powder-iron oroid shifted the losses from the copper to the core, as powder-iron core losses increase very apidly above 50 kHz . Employing a bifilar wound, oool-Mu foroid ${ }^{8}$, allowed me to achieve the quoted efficiency values.
- I have briefly touched the electrolytic filter capacitors. For cost reasons, I chose low-Z aluminium electrolytics. The key here is the parallelling of multiple devices.
- Most modern switch-mode supplies employ exclusively n-channel Mosfets. Semiconductor companies are always improving these devices with newer processes. At the time of this writing (early

2001) Infineon is marketing a 'Cool Mos' device with wonderful specifications and at a very atrractive price. By the time you read this, its major competitors may have already introduced similar or improved devices.

- The duty cycle of a 3.3 V supply operating from 13 or so volts will be approximately $1 / 3$ of the time on", $2 / 3$ of the time "off'. Therefore the bottom Mosfet will be conducting most of the time so it
nakes sense to parallel two devices to reduce the static losses. Make sure that the Mosfet driver ca static losses will be more than made up by the dynamic losses.

The icing on the cake is both the parallel schotrk diode and the snubber hetwork. As I mentioned before, hotom Mosfets are not biased on.
Although the body diodes may carry the inductor current, a better approach is to employ a paralleled schotiky diode (D_{2}). Lastly, the snubber network resistors and capacitors need to be considered. Parasitic elements are an inescapable fact of life. they will create a severe voltage overshoot at depends on the actual components, component location, trace layout, etc., but it could be severe enough to damage your switching components. You may attempt to tame them by increasing the gale resistors and thus the rise time, but dynamic losses will increase. Sometimes the only solution is to add a small dissipative $R C$ network.

Depending on how much energy you have to eliminate, the RC snubber will impact on the efficiency loss. In my particular case, the actual overshoot was n bottom trace.
Ther trace, and thus omployed to damp the ringing, efficiency penalty was a mere 0.5%.

In summary

The ripple regulator is not a universal panacea. In particular, the variable frequency operation and the discontinuous may preclude its use in many applications. It is howe ver, a simple, fast, almost fail safe architecture that may appeal to certain solutions I would like to acknowledge the support from Martha Gomzalez during the development of this design.

References

Sorensen, A. A., 'Solid State DC Switchèd Regulators' Electronics 33:48, pp. 121-123 3. On-Semiconductor. 'Application Note an920 www.onsemi.com
4. Gotilieb, 1. 'Switching Regulators and Power Supplies' first ed., Tab Books 1976.
Bateman C. 'Efficient Battery Power Supplies'
Corld, June $2000 . \quad$ Note U-68A
6. Unitrode Corporation, 'Application Garcia, F. "Comparator Provides Stable Hysteresis" EDN, March 1999
8. Magnetics, Inc. Kool-Mu Powder Cores manual.

Q-meter signal generator add-on

While developing RF circuits in th LF to HF range, a need arose for equipment to indicate the Q of esonant circuits, and the facility for frimming inductors for specific The circuit diagram shows an RF generator add-on that measures Q directly. It can be used to determine he resonant frequency of a particular C combination. While not
precision Q meter - there is some
on-linearity due to the characteristic of diode D_{1} - the small outlay is dumed to ommercial Q-meter.
Transistors $T r_{1}$ and $T r_{2}$ are required The 50Ω or 75Ω modulated RF output of a signal generator is too high an impedance to series resonate the $L C$ circuit.
Diode D_{1} extracts AF modulation drive the meter M_{1}. This
Fs_{1}

8100 winner

(F72)

Fact: most circuit ideas sent to Electronics World get published

 The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem - provided it has a degree of ingenuityYour submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders 100 - provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.
Don'l forget to say why you think your idea is worthy.
Clear hand-written notes on poper are a minimum requirement: disks with seporate drawing and lext files in a popular form are best - but please lobel the disk clearly.
Send your ideas to: Jackie Lowe, Cumulus Business Medio, Anne Boleyn House, 9-13 Ewell Road, Cheam, Surrey SM3 $8 B Z$
modulation is amplified when the witch is in the 'SET' position, of buffered when ' Q ' is selected. The op-amp records the peak value Capacitor $V C_{1}$ is calibrated in picofarads, either in situ using a capacitance bridge, or by substitution of close tolerance capacitors for C_{x}. To calibrate M_{1}, it is necessary to have a tuned circuit of known Q; any RF coil can be used. With a 'scope or and the inductor connected to

Components

Components			
R_{1}	$120 \mathrm{k} \Omega$	VC_{1}	500 p max
R_{2}	330Ω	C_{1}	6.8 nF
R_{3}	$20 \Omega(2 \times 10 \Omega)$	C_{2}	6.8 nF
R_{4}	$680 \mathrm{k} \Omega$	C_{3}	470 nF
R_{5}	$22 \mathrm{k} \Omega$	C_{4}	10 FF
R_{6}	$6.8 \mathrm{k} \Omega$	C_{5}	$100 \mu \mathrm{~F}$
R_{7}	$50 \mathrm{~T}(0)$	C_{6}	$220 \mu \mathrm{~F}$
R_{8}	$4.7 \mathrm{k} \Omega$	C_{7}	10 nF
RV	$220 \mathrm{k} \Omega$	D_{1}	Ge diode
RV_{2}	500Ω	D_{2}	1 N 4148

L_{x}, resonate he circur by generator or C_{x} for maximum ndication. Transfer the probe to the anode of D_{1}. Mcasure the voltage in
the SET and Q positions of $S W_{1}$: he SET and Q positions of $S W_{1}$
. Adjust the generaior RF output for a reading of 20 mV in SET and set $R V_{2}$ to read half scale, i.e. 100 on a 0 -200 meter scale.
2. In position Q, if the resulting measured value is e.g. 1000 mV , hen the $Q=50(1000 / 20)$, so $R V$ hould be adjusted to geter. The reading of 50 on the meter. The instrument is now calibrated to
read Q directly on a scale of 0 read Q directly on a scale of
n use, if the SET reading is adjusted for half scale, the Q range is $0-200$ as bove, while if the SET reading is adjusted for full scale, then the Q range is $0-100$. Other values of meter
FSD and scales could be used meter scaled $0-10$ and $0-30$, could. provide Q ranges of $0-10,0-30$ and 0 100 by selecting the appropriate SET indication on the scale
Adjusiment of the signal generator frequency and output should always be carried out after resonating the may be some change in loading on the generator.
Depending on the available outpul level from the signal generator and SD of M_{1}, R_{7} may be required and he value of R_{8} may need to b W Den
Southampton
F72
Circuit ldeas editor's note: If a silicon diode is used at D_{1} a a 680 kS 2 resisto should
C_{2}.

```
T
T\mp@subsup{r}{2}{}
IC1 CA3140
Test L
External C
500mA
```

Battery life extender for torches and bike-lamps
Here, a CMOS 555 timer IC is connected as an astable driving a transistor switch. This ingenious circuit is falls, thus maintaining a constant illumination. A $2-5 \mathrm{~V}$. lamp is run at the equivalent of 1.8 V increasing both lamp and battery life.
C Stanforth
Witney
Oxfordshire
Oxfor
F83
850 winner

As the battery depletes, this regulator increases the PWM circuit's on time so the lamp stays roughly at the same brightness. Used correctly, it makes the battery last longer.

Non-locking push-buttons latch selection

Although the following circuit was designed input out of six signals, although it is easily to be used in a preamplifier, it can be used in any application where a selection has to be performed.
The circuit is designed for input selection with push-buttons rather than with a rotary selector switch.
push-switches.
push-switches.
with PCB-motype, the inputs are selected as the input terminals. This has the advantage that the signals don't have to be routed through the whole amplifier to reach the selector switches at the front.
It is possible to use solid-state switching, configuration it allows the selection of one

The circuit is built around two 74 HC 238
ang Cs connected as a 1 -of- 3 selector. A feedback network is created for each IC, with D_{4}, D_{9}. This feedback network maintains the elected input after the push-button is c_{2}, when an input is selected with $I_{1} ; D_{1}$, $i c_{2}$, when an input is selected with $c_{1} ; D_{1-3}$
ikewise when $P B_{3}, P B_{4}$ or $P B_{5}$ is pressed. An extra feature is that if more than one button is depressed, all the inputs are switched off until only one button remains depressed, since only outputs D_{1}, D_{2} and D_{4} are used from $I c_{1}$ and $I c_{2}$. Thus if e.g. $P B_{0}$ D_{3} is enabled.

An extra input is provided to disable the outputs during on and off switching of the amplifier. During, and after, switch-on no outpur is selected until one of the push onons is pressed. On power down, the inputs are switched off by the enable signal. A resistor divid To drive the
ULN2803 driver IC is useng relays a drives the LEDs that display the selected input.
ernard Van den Abeele
Evergem
Belgium
F78

Circuit Ideas editor's note: the following is a correction Jim Watson's "Phase shitter for headphones', published on page 156 of the February 2001 issue. right hand op-amps should not be connected to 'Headphone ground (centre data)' as shown, but to the input ground at the left-hand side of the circuit diagram.

Audio level indicator

In the February 2001 issue, there was an interesting circuit for audio level indication using a tricolour LED by Graham Booth. However, I wanted a version that would operate from $\pm 9 \mathrm{~V}$ rails, such as from two PP3 batteries.
very effective below about $4 V$, and anyway, I didn't have any in siock I by Graham are not crafty engineer's low-voltage reference, a green LED. This has a forward voltage of around 2 V .
Substituting these for the original zeners, the indicator worked well down to a supply voltage of $\pm 7 V$, as given by run down PP3s. A level control was fitted to the input so that the peak green illumination could be set for - -dBm , being standard level for much unbalanced audio quipment.

Bm, the red LED is fully lit
Michael Cox, CEng., FIEE
Twickenham
F81
F81

Three-phase sine generator

This generator can be used for example to

 control the velocity of rotation ofsynchronous motor.
The circuit diagram of the generator is given generated by two counters . S - are ,
followed by a fourh-order low-pass filter to produce a sinusoidal waveform; the third phase, T, is obtained by adding and invertin R and S. For minimal distortion the output signals of the counters have to be symmetrical and to
make it possible to achieve a phase-shift of 120° the number of count pulses has to be multiple of three
The first counter, $/ C_{2}$, is a binary counter whic h is loaded with 2 by means of $/ C_{3 \mathrm{~A}}$ whe the output reaches 14 , so the output Q_{3} is
symmetrical around 8 (6 count pulses high and low), Fig. 2.
Second counter $/ C_{4}$, also binary, is loaded with 2 when the first counter reaches 6 ; this could be done by ANDing Q_{1}, Q_{2} and invered Q_{1} of $I C_{2}$. That would require an extra inverter, so a variant is used; namely Q_{1} and Q_{2} of $I C_{2}$ and Q_{2} of $I C_{4}$ are subjected to an AND function. After loading of $I C_{4}$ is acquired.

Outputs Q_{3} of $I C_{2}$ and Q_{3} of $I C_{4}$ are fed to wo fourth-order fillers, $/ C_{5}$ and $/ C_{3}$, whose outputs are sinusoidal and form phases R and . hases R and S are added and inverted in
C_{5} to obtain phase T.
The low-pass filters are clocked by a requency 120 times higher than the outpu equency. This gives a filter cut-off output frequency to minimise undesirable phase-shifts, due to the low-pass filters.

ig. 2. Timing for the three-phase generator

As a result: the circuit delivers three sinusoidal signals of 1.5 V pk -pk and the ount of clock riple in the output is 40 m
WEC Dijkstra
Waalre
The Netherlands
F76

$10|1| 2|3| 4|5| 6|7| 8|9| 10|11| 12|13| 2|3| 4|5| 6|7| 8$

December 2001 ELECTRONICS WORLD

Simple three-state logic probe

The following logic probe has proved useful when leaching digital logic to undergraduate students. While most logic probes use coloured LEDs to indicate differen logic states, this one displays logic conditions on two seven-segment ED displays.
Shown in Fig. 1, the circuit uses inverter and a ULN2001A
Darlington driver array. There are wo common-anode LED displays HDSP-3400s in the prototype - and seven resistors.
Output provided is as shown in Fig. 2, whereby the conditions of 'logic displayed as 'LO', 'HI' and 'I I',
respectively. Note that since the f and e segments of each LED display require to be illuminated for each of the three output conditions, they are connected through current limiting resistor R_{6} to gro
on continuously.
Resistors $R_{1} R_{2} R_{3}$ potential divider such that with potential divider such that with the
values shown and the test probe connected to a 'logic 0' signal the voltage at point ' A ' is approximately 1.5 V while point ' B ' will be close to ground potential.
Since CMOS tec
Since CMOS technology nominally regards an input level of less than
half of the supply voltage as "logic 0^{0} ', pin 2 of inverter (a) will be 'high' while pin 6 of inverter (c) will be

Open circuiviristale
display

low'. As a result Darlington driver (a) will sink current through segment of the left LED display and current current through segments a, b, cand d of the right display via resistor R_{7}. The segments thus illuminated combine to form the 'LO' output on he LED displays.
With the test prob
With the test probe connected to logic 1 ' point ' A ' remains close to
5 V , while the potential at approximately 4.7 V . As a result pin 2 of inverter (a) will be 'low' preventing Darlington driver (a) from illuminating the LED segments which display.
Output pin 6 of inverter (c) will go high' allowing Darlington driver (b) to sink current through segments g, b, and c of the left LED display and esistor R_{4}. The display will read
'II' in this case
When the test
When the test probe is unconnected, he potential at point ' A ' is approximately 2.7 V , while the voltage at point ' B ' is around 1.8 V . This results in a 'low' being presented to the puts of both Darlington drivers, inking current through the displays. in this condition the display will how 'I I',
Note that all unused CMOS inputs should be tied to ground or to the supply voltage.
Frank
Stirling
F79

Simple.VCO

In wis simple VCO circuit, a CQY89 IR light-emitting diode and a TSL245 light-10-frequency converter are-mounted close together in a small box, which is shielded against ambient light.
The relationship between input DC-voltage and output frequency is given in the graph. A higher output-frequency can be obtained by using more leds or by mounting the TSL245 closer to the CQY89.
WE C Dijkstra
The Ne
F82

Stereo Indicator

This matrix unit produces $\mathrm{R}+\mathrm{L}$ and $\mathrm{R}-\mathrm{L}$ displays. Monophonic power data is represented by $(\mathrm{R}+\mathrm{L})$ while ($\mathrm{R}-\mathrm{L}$) is the stereophonic data. Mono programme material indicates $(\mathrm{R}+\mathrm{L})$ variations in 3 dB steps only. Stereo signals indicate ($\mathrm{R}+\mathrm{L}$) data on the centre display and $(\mathrm{R}-\mathrm{L})$ data on the side displays, in 3 dB steps.

Put your web address in front of $\mathbf{1 8 , 0 0 0}$ electronic fanatics.

Electronics World acknowledge your company's needs to promote your web site, which is why we are dedicating over 3 pages in every issue to WEB ADDRESSES.

Linage only will cost £150 + vat for a full year.

Linage with colour screen shot will cost £350 + vat for a full year, this will include the above plus 3 cm shot of your web site which we can produce if required.

To take up this offer or for more information call
Pat Bunce
Tel 02087226028

E-mail
p.bunce@cumulusmedia.co.uk

ACQUIVISION Acquilisiso
 logging and Custom Sottware, have bee
 1903)830502

AQUILA VISION http://www.aquila-vision.co.uk

Aquila Vision specialises in supplying and
 OSPs. We also stock robotits soards,
Linux and deneral interest C Co-rom's.
alcatel Components http//hwww.components @alcatel.de ANASOFT LTD http://www.anasoft.co.uk Sueprspiese the aftordable, mlued-mode
windowis cricuit simulator, Wrote by an analogue design engineer tor those
Teitutubies who ike kepping things simple.

ARCOM
http:/www.arcomcontrols.comew A leading international supplier of

communication and controit technolooy
industry, Arcom provides leading edge solutions throughovides leading products.

A.R.S.

http://www.ars-surplus-stock.com We buy electronic, electrical, computer and test equipment. Visit our website or elephone us on 01271867285 ASHWELL ELECTRONICS http://www.ashwell-hq.com Astwell provide technical suppont for
 connectors: MS K Kennedy: Mintech obsoles scence; NSC MilA Aero; Teledyne
Relays and isocom mil/opococouplers. BROADERCASTING COMMMUNICATIONS SYSTEMIS www.broadercasting.co.uk WINRADIO now brings you a complete
choice in personnel computer controled
 Broadcast \bullet Media \bullet Monitoring
Professional Amazeur Radio Communiaions

BEDFORD OPTO
TECHNOLOGY LTD http://www.bot.co.uk Optoelectronic products UK desion
development manulacture standard
 ustion, LLED bargrap
udicators stand ifts,
ransmissiverfeliective
 annel mount LED assemblies.

COMPONENT KITS

 http://www.componentkits.com
distributent K Klits Llecronic manulactures and sted fort profeessionalia engonineering design, rototorye, University lab, and hobbyist
ises. uses.
Visit our website to review our current
product line, request our Free CO-ROM, roduct line, request our
CONCEPT ELECTROMICS
http://www.conceptkey.co.uk
Concepet Keyboards are specialists in the
anion and manufacture of customet Jesecign nond mamutacturue ol customer spectilied membrane panels and
 supported by a turlin electronnicictur) is keybord dond electronicics service, fully keyboard and electronic
accredted to 1509001 .

CONTROL SOLUTIONS mww.Controlsolutions.co.uk Oata acquistion and control for
beginners.
nobbyisiss, and professionals. Perform mathematical and logical
operations on dadat in real time. Emall:

COOKE INTERNATIONAL http://www.cooke-int.com info@cooke-int.com

Test \& Measuring Equipment
Operating \& Sevico Manuals. CROWNHILL ASSOCIATES LTD http://www.crownhill.co. uk Crownhilis supply low cost development

toois Sor use with Micro-Controllers and Smart Cards. Products include Smart Micro Develiopment tools and Bespoke
Be TECHNOLOGY http://www.dbtechnology.co.uk/

EMC Testing and Consultanc. Conoc chamber and open area test site, Rapid accurate ore-compliance tests - Fixes included. FCC Listed.

TELFORD ELECTRONICS
Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Tef erd, Shropshire TF6 6DJ, UK
Tel: (0044) 01952605451 / 670178 Fax: (0044) 01952677978 E-mail: telfordelectronics@ buintemet.com /
marc.007@btintemet.com / annie.007@btintemet.c marc. 007 @ btintemet.com / annie. 007 @ btinternet.com
Web: http://www.telford-electronics.com Second User -
Electronic Test and Measuring Instruments - DC to $100 \mathbf{G H z}$

FANTASTIC BARGAINS TO BE HAD

Please visit our regularly updated web site for all your equipment needs.

We have a clearance/graveyard site with goods from as little as $£ 15.00!!!$

There has never been a better time to go wire free!
*Faster data rates! *PLL stabilised technology! *increased range! *Lower unit cost! *Off-the-shelf solutions! XTR434 100Kbps Data Transceivers $\begin{array}{ll}1+ \\ 10+ & \sum 29.95 \\ 10+ & \sum 25.00\end{array}$

RTcom" ${ }^{\text {re_IRadili-XTR } 57.6 \mathrm{Kbps}}$ modem: With RS232 port, special EW reader price of $£ 120.00$ - per pair RTeom ${ }^{\text {-IIOradio-XTR }} 57.6 \mathrm{KKbps}$ modem: With TTL interface, special
$E W$ reader price of $\{120.00$ per palit Aural Transcaveres from slock All prices *Var
 Tel: $+44(0) 19922576107$ Fax: + 44(0) 1992561994 http:www.radio-tech.co.uk

Chect Norzs on nsivcero
Ten year index: new update

www.softcopy.co.uk
Phoo capies of Electronics World articles from back
issues ape ovailable of a flor rate of $\$ 3.50$ per

Mard copy Electronics World index
indexes on paper for volumes 100,101, and 102 are available at $£ 2$ each, excluding postage.

Hard copies and floppy-disk databases both available
Whether as a PC data base or as hard copy, Solicopy con supply a complete index of yecrs.
going back over the past nine years.
The computerised index of Electronics World magazine covers the nine years from 1988 10 1996, volumes 9410 102 inclusive ond is ovalable now. 1 conlinins almost including a synopsis for each including a synopsis for each
The EW index data base is easy to use and very fost. It runs on any $1 B M$ or compatible PC with 512 K ram and a
hard disk hard dish.
The disk-based index price is still only $£ 20$ inclusive. Please specity whelher you need 5.25 in , 3.5 in DD o 3.5 in HD formot.

Existing users can obtain on 山pgrode for $£ 15$ by quoting
Ordering details
The EW index data base price of $£ 20$ includes UK postlage and VAT Add on extra $£ 1$ for overseas $E C$ orders or $£ 5$ for non:EC overseas orders
Postol charges on hord copy indexes ond on pholocopies ore $50 \mathrm{p} U \mathrm{~K}$, $£ 1$ for the rest of the $£ C$ or $£ 2$ worldwide. For enquires about photocopiess etc please send an sae 10
Softicopy Lid. Send your orders to soficopy Led, Sothcopy Ld. Send your orders to Loftcopy
I Vineries Close, Cheitenham GL53 ONU. Cheques payoble to Solfcopy tid, please ollow 28 days for delivery.

FOR SALE	
RF DESIGN SERVICES All aspects of RF hardware development considered from concept to production.	GOOD CONDITION Stabilock 4040, $£ 1,000$. Tek 3001 GPX Logic Analyzer, $£ 1,000$. Hitachi VC- 6175
WATEREEACH ELECTRONICS	Store O'scope, $£ 500$.
www.rlaver.dial.pipex.com TEL: 01223862550 FAX: 01223440853	Tek 2235100 MHz O'scope, $£ 400$. Tel: 07796865500
As an advertiser you can be certain that your advertisement is going to be read by DECISION-MAKING ELECTRONIC PROFESSIONALS with the POWER TO PURCHASE your products.	Test Equipment
Why not let Electronics World help you? Call Pat Bunce Tel: 02087226028 Fax: 02087702016 E-mail: P.bunce@cumulusmedia.co.uk	Service Manuals. Contact www.cooke-int.com Tel: +4401243555590

TECSTAR................................. 907
TELFORD................................. 966
TELNET...................................IFC
TEST EQUIPMENT OBC
TIE PIE 943
VANN DRAPER........................ 947
WEB PAGES.....................962-965

SURREY........................... 921
966
RD RESEARCH 899
SEETRAX................................ 899
STEWART OF READING......... 907 1

JPG ELECTRONICS................ 921
LABCENTER ELECTRONICS. 893
MILFORD INST........................ 941
NUMBER ONE SYSTEMS....... 947
PICO.. 921
.890
.941

ELECTRONICS

WORLD

READER
INFORMATION SERVICE

$\begin{array}{lllllllllll}101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & 111\end{array}$ $\begin{array}{lllllllllll}112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 & 121 & 122\end{array}$ $\begin{array}{lllllllllll}123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 \\ 134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144\end{array}$ $\begin{array}{llllll}145 & 146 & 147 & 148 & 149 & 150\end{array}$ $\begin{array}{lllllllllll}505 & 506 & 507 & 508 & 509 & 510 & 500 & 501 & 502 & 503 & 504 \\ 512 & 513 & 514 & 515 \\ 516\end{array}$ $\begin{array}{lllllllllll}505 & 506 & 507 & 508 & 509 & 510 & 511 & 512 & 513 & 514 & 515 \\ 516 & 517 & 518 & 519 & 520 & 521 & 522 & 523 & 524 & 525 & 526 \\ 527 & 528 & 529 & 530 & 531 & 532 & 533 & 534 & 535 & 536 & 537\end{array}$ $\begin{array}{lllllllllll}516 & 517 & 518 & 519 & 520 & 521 & 522 & 523 & 524 & 525 & 526 \\ 527 & 528 & 529 & 530 & 531 & 532 & 533 & 534 & 535 & 536 & 537 \\ 538 & 539 & 540 & 541 & 542 & 543 & 544 & 545 & 546 & 547 & 548 \\ 549 & 550 & 551 & 552 & 553 & 554 & 555 & 556 & 557 & 558 & 559\end{array}$ $\begin{array}{llllllllll}538 & 539 & 540 & 541 & 542 & 543 & 544 & 545 & 546 & 547 \\ 548 \\ 549 & 550 & 551 & 552 & 553 & 554 & 555 & 556 & 557 & 558 \\ 559 \\ 560 & 561 & 562 & 563 & 564 & 565 & 566 & 567 & 568 & 569 \\ 570\end{array}$ $\begin{array}{lllllllllll}571 & 572 & 573 & 574 & 575 & 576 & 577 & 578 & 579 & 580 & 58 \\ 587\end{array}$ $\begin{array}{lllllllllll}582 & 583 & 584 & 585 & 586 & 587 & 588 & 589 & 590 & 591 & 592\end{array}$ $\begin{array}{lllllllllll}593 & 594 & 595 & 596 & 597 & 598 & 599 & 600\end{array}$

Name Job title	
Company Address	
Telephone	
Only tick here if you do not wish to receive direct marketing promotions from other companies.	\square

\qquad
\qquad
\qquad

Thank you

Newsagent order form

Pass this order form to your newsagent to ensure you don't miss the next issue of EW .
to.
(name of Newsagent)
Please reserve me the January issue of Electronics World and continue to order every month's issue until further notice

Name..
Address..

Subscribe today!

Guarantee your own personal copy each month

Guarantee your own personal copy each month
 Save on a 2 year subscription ELECTRONICS WORLD
 Subscribe today!

Save on a 2 year subscription
ELECTRONICS WORLD

- LECTRONICS ORLD

SUBSCRIPTION CARD

Expiry Date
כb Title_
ddress

SUBSCRIPTION RATES		Post to:
UK 1 year	£36	ELECTRONICS WORLD
UK 2 years	$£ 58$	P.O. B0x 302
UK 3 years	£72	Haywards Heath,
Student rate (proof required) Alrmall	£21.30	West Sussex RH16 3DH UK.
Europe 1 year	£51	
Europe 2 years	£ 82	CREDIT CARD HOTLINE
Europe 3 years	£103	Tel: +44 01444445566
Rest of the world 1 year	£61	Fax: +44 01444445447
Rest of the world 2 years	¢98	
Rest of the world 3 years	£123	
Surlace mail 1 year	£41	receive direct marketing promotion from

ELECTRONICS WORLD

SUBSCRIPTION CARD

SUBSCRIPTION RATES		Post to:
UK 1 year	£36	ELECTRONICS WORLD
UK 2 years	£58	P.O. Box 302
UK 3 years	¢72	Haywards Heath.
Student rate (proof required) Airmail	£21.30	West Sussex RH16 3DH UK
Europe 1 year	¢51	
Europe 2 years	£82	CREDIT CARD HOTLINE
Europe 3 years	£103	Tel: +4401444 445566
Rest of the world 1 year	£61	Fax: +44 01444445447
Rest of the world 2 years	£98	
Rest of the world 3 years	£123	
Surface mail 1 year	£41	receive direct maxetino

SMART CARD SOLUTIONS

If you don't see what you want, please CALL!

Prices, shown are for guidence in cUK and are exclusive of VAT. Rental prises are per week for a rental period of I month. Free carriage to UK mainiand addresses. This is just a selection of the equipment we have available - il you don't see what you want, please call. All items supplied fully tested and refurbished. All manuals and accessories required for normal operation included. Certificate of Conformance supplied as standard; Cervificate of Calibration available at additional cost. Test Equipment Solutions Terms Apply. E80E

[^0]: t is almost an article of religion in electronics that shielding electronic circuits prevents EMI signals inside in the case of a transmitter - or outside in the case of other forms of circuits. All transmitters generate harmonics and other spurious signals. If they are radiated, then they will interfere with other services. Signals that go out either tuning or filtering networks, which tend to clea up the emission. But if the circuits are not shielded, then direct radiation from the chassis will defeat the effects of the filtering.
 In theory, shields are a good idea. Unfortunately chough, many shields are essentially useless. In some
 cases, they may even cause more problems than they cure. The problem is not just on transmitters, or even just RF circuits in general, but on all electronic circuits. I once worked with medical and scientific electronic instruments that rarely used frequencies above 1000 Hz , and they were subject to severe EMI. nd power line.

