Audio test with a PC sound card

500MHz sampling front end
RDS back grounder and decoder
Making double-sided PCBs

Circuit ideas:
- Simple fault tester, Low-cost bridge emulator,
- Voice activated recorder, Electronic antenna lengthener
Quality second-user test & measurement equipment

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Price (£)</td>
<td>1250</td>
<td>3500</td>
<td>1750</td>
<td>1950</td>
<td>8600</td>
<td>8750</td>
<td>2750</td>
<td>1290</td>
<td>1750</td>
<td>2625</td>
<td>4500</td>
<td>7500</td>
<td>3995</td>
<td>7995</td>
<td>1500</td>
<td>2000</td>
</tr>
</tbody>
</table>

OSCILLOSCOPES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMS 2042</td>
<td>2MHz 2-channel</td>
<td>6695</td>
</tr>
<tr>
<td>PSG 2042</td>
<td>30MHz 2-channel</td>
<td>6420</td>
</tr>
<tr>
<td>GDS 2042</td>
<td>50MHz 2-channel</td>
<td>11000</td>
</tr>
<tr>
<td>Tektronix 2062</td>
<td>50MHz 2-channel</td>
<td>21950</td>
</tr>
<tr>
<td>Tektronix 2064</td>
<td>100MHz 2-channel</td>
<td>3750</td>
</tr>
<tr>
<td>Tektronix 2065</td>
<td>200MHz 2-channel</td>
<td>5000</td>
</tr>
<tr>
<td>Tektronix 2066</td>
<td>400MHz 2-channel</td>
<td>7500</td>
</tr>
<tr>
<td>Tektronix 2067</td>
<td>600MHz 2-channel</td>
<td>12500</td>
</tr>
</tbody>
</table>

MISCHELLOUS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIP 4064</td>
<td>3GHz 2-channel</td>
</tr>
<tr>
<td>EIP 4066</td>
<td>6GHz 2-channel</td>
</tr>
<tr>
<td>EIP 4068</td>
<td>12GHz 2-channel</td>
</tr>
<tr>
<td>Cal Prop</td>
<td>Portable Calibrator</td>
</tr>
</tbody>
</table>

SPECTRUM ANALYSES

<table>
<thead>
<tr>
<th>Description</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantest 4131 (10GHz - 3.5GHz)</td>
<td>12500</td>
</tr>
<tr>
<td>Ando AD-6211</td>
<td>1.7GHz</td>
</tr>
<tr>
<td>Avcom PSA 65A</td>
<td>2 - 1000MHz</td>
</tr>
<tr>
<td>Advantest TAKEDA RK-4EN</td>
<td>432 - 1000MHz</td>
</tr>
<tr>
<td>Marconi 6500</td>
<td>1GHz - 10GHz</td>
</tr>
<tr>
<td>Marconi 6700</td>
<td>1GHz - 10GHz</td>
</tr>
<tr>
<td>Marconi 6800</td>
<td>1GHz - 10GHz</td>
</tr>
<tr>
<td>Marconi 6900</td>
<td>1GHz - 10GHz</td>
</tr>
<tr>
<td>Marconi 7000</td>
<td>1GHz - 10GHz</td>
</tr>
<tr>
<td>Marconi 7100</td>
<td>1GHz - 10GHz</td>
</tr>
<tr>
<td>Marconi 7200</td>
<td>1GHz - 10GHz</td>
</tr>
<tr>
<td>Marconi 7300</td>
<td>1GHz - 10GHz</td>
</tr>
<tr>
<td>Marconi 7400</td>
<td>1GHz - 10GHz</td>
</tr>
<tr>
<td>Marconi 7500</td>
<td>1GHz - 10GHz</td>
</tr>
<tr>
<td>Marconi 7600</td>
<td>1GHz - 10GHz</td>
</tr>
<tr>
<td>Marconi 7700</td>
<td>1GHz - 10GHz</td>
</tr>
</tbody>
</table>

All equipment is used - with 30 days guarantee and 90 days in some cases. Add carriage and VAT to all goods.

Tel: 02476 650 700 Fax: 02476 650 777

Telnet, 8 Cavans Way, Binley Industrial Estate, Coventry CV3 2SF
3 COMMENT
Steady as she goes

5 NEWS
- New batteries outperform alkalines
- World's largest fuel cell: 1.4MW
- New chips for 10Gbit/s Ethernet
- Electrodes check nerve activity
- NV displays are faster than LCD
- Steerable micromirror
- Epoxies can be electrically un-stuck
- LEDS look set to replace CCFLs
- Accelerator speeds up signal processing

32 CIRCUIT IDEAS
- Tester in a key fob
- Low-cost bridge emulator
- Minimal loudspeakers
- Voice-operated recorder
- Electronic antenna lengthener

39 NEW PRODUCTS
The month's top new products, selected and edited by Richard Wilson.

500MHz SAMPLING FRONT END
Building on his earlier article, outlining how to make a 500MHz scope adaptor,

56 LETTERS
- Star-point grounding
- Making your own PCBs
- Free USB scope software
- Measuring small capacitor values
- Homopolar response

60 WEB DIRECTIONS
Useful web addresses for electronics engineers.

Each platinum-tipped needle in this array tapers from 80µm to 2µm, yet they are strong enough to puncture egg shell. News starts on page 5.

Jason Back has developed oscilloscope software that he's making available to readers free of charge - details in Letters, starting on page 56.

Sound cards and CD rewriters are high-performance pieces of kit, but we tend to take them for granted because they're so cheap. Richard Black looks at ways of using such hardware - together with some low-cost software - for analysing audio-band signals. Page 12.
The HS801: the first 100 Mega samples per second measuring instrument that consists of a MOST (Multimeter, Oscilloscope, Spectrum analyzer and Transient recorder) and an AWG (Arbitrary Waveform Generator). This new MOST portable and compact measuring instrument can solve almost every measurement problem. With the integrated AWG you can generate every signal you want.

- The versatile software has a user-defined toolbar with which over 50 instrument settings quick and easy can be accessed. An intelligent auto setup allows the inexperienced user to perform measurements immediately. Through the use of a setting file, the user has the possibility to save an instrument setup and recall it at a later moment. The setup time of the instrument is hereby reduced to a minimum.

- When a quick indication of the input signal is required, a simple click on the auto setup button will immediately give a good overview of the signal. The auto setup function ensures a proper setup of the time base, the trigger levels and the input sensitivities.

- The sophisticated cursor read outs have 21 possible read outs. Besides the usual read outs, like voltage and time, also quantities like rise time and frequency are displayed.

- Measured signals and instrument settings can be saved on disk. This enables the creation of a library of measured signals. Text balloons can be added to a signal, for special comments.

- The (colour) print outs can be supplied with three common text lines (e.g. company info) and three lines with measurement specific information.

- The HS801 has an 8 bit resolution and a maximum sampling speed of 100 MHz. The input range is 0.1 volt full scale to 80 volt full scale. The record length is 32K/64K samples. The AWG has a 10 bit resolution and a sample speed of 25 MHz. The HS801 is connected to the parallel printer port of a computer.

- The minimum system requirement is a PC with a 486 processor and 8 Mbyte RAM available. The software runs in Windows 3.xx / 95 / 98 or Windows NT / 2000 / XP and DOS 3.3 or higher.

- TiePie engineering (UK), 28 Stephenson Road, Industrial Estate, St. Ives, Cambridgeshire, PE17 3WJ, UK
 Tel: 01480-460028, Fax: 01480-460340

- TiePie engineering (NL), Koperslagersstraat 37, 8601 WL SNEEK The Netherlands
 Tel: +31 515 415 416; Fax +31 515 418 819

Web: http://www.tiepie.nl
Steady as she goes?

In March the London Internet Exchange (LINX) announced it had switched its 250 trillion— that's 250,000,000,000,000th— packet of data since its foundation in 1994. It also claims to handle up to 96 per cent of UK Internet traffic.

That's no mean achievement— especially as LINX is also the largest Internet exchange point in Europe. Peak traffic flows at the exchange can top 14 gigahertz per second, about 140 times greater than its closest UK rival.

Please understand, I'm not knocking the organisation's success. It's highly commendable— but disturbing too when you consider the number of eggs assembled in just one basket.

It was last September's terrorist attacks (I could not avoid mentioning them!) that brought the resilience of the Internet into question. Until then the Internet was probably the last thing you'd expect to fail. Its diversity and built-in redundancy were designed to ensure its survivability; resilience was a key feature of its very nature. In theory.

Events in New York City dispelled this notion and proved that the Internet was perfectly capable of collapsing, even if the failures and logjams that resulted didn't command prominence in the news. The investigations held afterwards uncovered major limitations in the UK Internet infrastructure as well.

It is even rumoured that Her Majesty's Government then gave rather more attention than hitherto to the well-being of the Internet. For anyone reliant on the Internet its strength should now be a matter of prime concern.

Britain has had its share of home-grown Internet incidents. Last October LINX reported that an uncorrected broadcast flood unexpectedly knocked out much of the UK's inter-carrier Internet traffic. Normally, the deluge of traffic would have been corrected automatically but a router fault meant the problem prevented virtually all inter-ISP communication for most of one day.

Interestingly, while traffic through LINX was reduced a trickle on that day, traffic through the Manchester Network Access Point—the UK's second major peering point—rocketed by 400 per cent. Without MaNAP the problem would have been far worse.

The only reliable approach for securing the Internet and all the business that depends on it is duplication and diversity, not concentration. It helps, of course, to understand the precise details of the infrastructure and mechanisms that together form 'the Internet' and hence where the true threats reside.

It then becomes evident that the relative exposure of different ISPs does vary quite significantly and whilst individual users may have little interest in these matters, collectively it's a matter of great concern.

Vulnerability lies both in the 'pipes' that carry Internet traffic and in the exchanges where Internet Service Providers (ISPs) connect with one another and hand over traffic, an activity known as 'peering'. The very largest Tier 1 ISPs tend to have their own private peering points, whereas smaller ISPs tend to use communal (public) exchanges.

To complicate matters further, not all ISPs possess their own network infrastructure and facilities; some merely resell others' spare capacity and are thus 'virtual' ISPs.

Major ISPs are aware of the need to examine their peering capacity at multiple points of presence but many others have not recognised the need to use geographically distanced backup peering facilities. This could leave their customers at significant risk. Users of ISPs that simply re-brand another operator's product without investing in infrastructure of their own will be very vulnerable when problems occur.

Even then, greater dispersal of peering and mirroring facilities will not alone guarantee the Internet's survival under pressure, as it's still totally dependent on the diversity of the physical routing implemented by the telephone companies.

Whilst most ISPs have multi-sourced their backbone provision reasonably adequately, the access links that connect their operations centres to the main backbone are still very vulnerable. If, say, their operations centre has a single fibre link and that link fails, then that's where the holes will appear. Similarly, colocation centres need to ensure greater survivability of their links to the backbone network.

Last year, on 20 November, BT's Colossus IP backbone network suffered catastrophic failure and affected not just BT but many other providers too. Even if ISPs use multiple upstream providers, they may find that both of their diverse suppliers use the same duct in the same ring. When one suffers failure, so does the other; network ISP diversity should never be confused with fibre diversity.

Enough of this doom and gloom; we can be grateful that the Internet works most of the time. But if we want it to work all of the time we'll need a lot more investment in fibre, backup and peering facilities nationwide. Will it take a major disaster on the September 11th scale to make it happen?

Mark Nelson
Develop and test complete micro-controller designs without building a physical prototype. PROTEUS VSM simulates the CPU and any additional electronics used in your designs. And it does so in real time.*

- CPU models for PIC and 8051 and series micro-controllers available now. 68HC11 coming soon. More CPU models under development. See website for latest info.
- Interactive device models include LCD displays, RS232 terminal, universal keypad plus a range of switches, buttons, pots, LEDs, 7 segment displays and much more.
- Extensive debugging facilities including register and memory contents, breakpoints and single step modes.
- Source level debugging supported for selected development tools.
- Integrated 'make' utility - compile and simulate with one keystroke.
- Over 4000 standard SPICE models included. Fully compatible with manufacturers’ SPICE models.
- DLL interfaces provided for application specific models.
- Based on SPICE3F5 mixed mode circuit simulator.
- CPU and interactive device models are sold separately - build up your VSM system in affordable stages.
- ARES Lite PCB Layout also available.

*E.g. PROTEUS VSM can simulate an 8051 clocked at 12MHz on a 300MHz Pentium II.
Nickel-zinc power cell technology outperforms alkaline

Power-hungry digital cameras have prompted battery makers to develop a new type of cell for the consumer market.

To be available in AA-size, the non-rechargeable nickel-zinc batteries could easily find application in professional portable equipment.

Panasonic and Toshiba are close to production, but exact capacities are hard to come by. "The number of shots taken when using the Panasonic battery, on average, surpassed those using the Duracell M3 by 27 per cent and Energizer E2 by 47 per cent," claims Panasonic. "Used in a digital still camera, the [Toshiba] batteries last five times longer than alkaline batteries, and work better in a low-temperature environment," said Toshiba.

Toshiba's GigaEnergy battery uses nickel oxyhydroxide for the positive electrode, a compound often used in rechargeable batteries.

GigaEnergy is due out in Japan this month and Panasonic's is out in May. Prices will be 50 per cent up on alkaline cells said Toshiba.

World's largest fuel cell supplies 1.4MW

A 1.4MW fuel-cell system - the world's largest to date - is being installed by US phone operator Verizon at a call centre in New York.

Verizon's decision to use a fuel cell system, rather than taking power from the grid, is a bold step for the firm and shows the increasing importance attached to fuel cells.

The facility handles call switching for 40,000 lines, and has over 1,000 workers. Seven natural gas powered cells from UTC Fuel Cells will be capable of producing 1.4MW, while four natural gas generators will provide back-up and boost this to 4.4MW.

"We expect this fuel cell project will show us that the technology can deliver for us in terms of reliability, reducing energy costs and protecting the environment," said Paul Lacouture, Verizon's network president.

Fuel cells produce electricity through chemical processes, rather than burning the gas. This reduces pollutants to very low levels, the main by-products being heat, in this case over six million Btu's and water.

Compared to conventional electricity generating, the Verizon system will cut carbon dioxide production by around 5.5 million kilos a year.

Last year Woking Borough Council announced that Britain's first commercial fuel cell would be installed at Woking Park in Surrey.

The 200kW power system, also from UTC, will provide both heat and electricity for the Park's pool, lighting, air conditioning and dehumidifier systems.

Woking is recognised as one of the most ardent supporters of alternative fuel sources in the UK, particularly its promotion of combined heat and power (CHP) systems.

The fuel cell is part of a larger 1.35MW project that will include a reciprocating engine and photovoltaic solar cells.

Woking also operates a 'private wire network' for its electricity, allowing spare electricity from the cell to be kept in the town, rather than fed back into the national grid.

New chips for 10Gbit/s Ethernet

Philips has boosted the speed of its already fast QUBiC4 BiCMOS chip process with a SiGe-based 'G' version.

QUBiC4G will enable Philips to supply ICs needed by the optical fibre networking industry, said the company.

"As the requirements of new markets continually evolve, so our technology portfolio adapts and grows in order to meet the specific needs of our customers", said Neil Morris, director of advanced technology at Philips. "This is one of the reasons why we have intentionally timed the release of our SiGe technology to coincide with the massive explosion in broadband communications."

\(F_t \) and \(F_{\text{max}} \) figures for transistors in the process exceed 75GHz and 100GHz respectively. This should provide the speed required for applications including network switches for 10 Gigabit Ethernet and SONET optical fibre networks.

The first chip out in the QUBiC4G is a single-chip 12.5Gbit/s optical cross-point switch called TZA2060.

For amplifiers and transmission gates, the process has a 2.7V 75GHz \(F_t \) 100GHz \(F_{\text{max}} \) transistor and for VCOs and interface logic a slightly slower 3.8V device.

Its SiGe transistors achieve 0.68dB noise figures at 2 GHz with collector currents of only 240\(\mu \)A. "Ideal for battery powered wireless applications in the 5 GHz to 10 GHz range," said Philips.

Impedance-matched transmission lines in the top two thick metal layers have been added to standard QUBiC features for high-speed signal routing.
Electrodes hit a nerve

Self-proclaimed cyborg Professor Kevin Warwick of the University of Reading recently had electrode attached to the nerve in his wrist.

The key technology in the connection is an implantable multi-electrode array developed at the University of Utah and made by Bionic Technologies of Salt Lake City — see picture below.

The tips of the electrodes are metalised with platinum to make the electrical contact.

To minimise nerve damage, the needles are exceedingly sharp, designed to push through tissue without tearing it, as a blunt point would, or cutting it like a chisel end. Total array volume is 4% of the block of tissue it is pushed into.

Each electrode is electrically isolated from its neighbours with glass around its base. A bonding pad on the back of the array provides a contact for the connecting wire.

The needles are strong enough to be pushed into egg shell and a special pneumatic gun ensures the array is pushed all the way home.

Warwick's current implant is a partially connected array. If all goes well, the experiment may be repeated using a slanted version of the array, with needles between 0.5 and 1.5mm to reach nerves at different depths, with all 100 needles connected.

Eventually, surgeon Professor Brian Andrews of Stoke Mandeville Hospital, who inserted the array, would like to include processing electronics on the back of the implant.

www.bionictech.com

What is Stoke Mandeville getting out of the deal?

Kevin Warwick's implant was inserted by Professor Brian Andrews of the famous Stoke Mandeville hospital.

The hospital is using Warwick's willingness to experiment with human-machine interaction as an opportunity to push forward its spinal injury research.

"We want a reliable way of implanting electrodes," said Andrews. "The first objective is to implant the device without damaging nerves or getting infection."

In future he hopes electronics will help restore feeling and movement to those with nerve injury. Right now he is working on the basics.

Infection is one problem. 15cm between array and wire exit wound should prevent infection creeping in. "We are hoping the skin will form a biological seal around the wires to prevent infection," said Andrews. And this seems to be happening.

After this "we hope to pick up signals to muscles at the base of the thumb," said Andrews. The nerves will then be stimulated artificially "using pulses of a few milliamps", he added.

The question will be: "Can Kevin perceive the pulses as something to do with his hand?" asked Andrews. "For instance, the pulses may create the impression of rubbing a textured surface or pressing something."

If this happens it will be a bonus for those at Stoke Mandeville.

"The wounds are healing nicely and there is no sensory or motor loss," said Andrews. "If we get a recording we can use, it will be the icing on the cake."
The Complete Solution for Electronics Design Automation
from the world's No.1 supplier of circuit design software

You probably know Electronics Workbench software. You may have learnt electronics engineering with it, or used its powerful, intuitive simulation and analysis tools to hone your circuit design skills. But did you know that these days, Electronics Workbench has also moved into the professional EDA market? In fact, it's taking this market by storm. With its unparalleled resources as the world's best-selling supplier of Windows-based electronics design software, Electronics Workbench has developed a set of CAD and CAM tools that match, and in some technologies surpass, the established EDA providers.

Except in one area: price. You may not believe that you can get such comprehensive EDA capabilities for such low prices. But you can.

The new Electronics Workbench Professional and PowerPro suites integrate schematic capture, simulation, analysis and programmable logic, with PCB layout, autorouting and autoplacement. Depending on the configuration you choose, you can handle RF design, co-simulate HDL components with SPICE, and integrate design team projects.

The new Suites complement your existing tools and can be used on an enterprise-wide basis for rapid prototyping and proof of principle. And their affordability means you can equip entire PCB divisions with a full set of design tools on every desk.

So if you're looking to renew or extend your EDA capabilities, make sure Electronics Workbench is on your shortlist. You'll be amazed at what you get for your money. Fill in the coupon today, or call our EDA specialists on 01462 480055.

www.electronicsworkbench.co.uk
New display technology is faster than LCD and non volatile

A powder-based display that exhibits quicker response times than liquid crystal displays and is bistable has been developed by Bridgestone, the Japanese tyre giant.

Called quick response liquid powder display (QRLPD), the technology is based on a powder with what the firm describes as 'high fluidity'. The powder flows like a particulate suspension and responds very quickly to an electric field, changing the display from reflecting to light absorbent.

When subject to a field, the response times for the powder is claimed to be in the hundreds of microseconds, making it between 10 and 100 times faster than liquid crystal.

In reflective mode, the white powder reflects around 45 per cent of incident light. Importantly the display is bistable or non-volatile, so power can be removed once an image is set.

Bridgestone said the display can be driven by a simple passive matrix, rather than more expensive thin film transistor active matrix drivers.

Commercial products in mobile phones, laptops and electronic paper are expected by the firm before the end of next year.

Other firms are developing powder or particle-based displays including E Ink from the US. Its paper-like display, however, will require an active matrix with one transistor per pixel.

Steerable micromirror array has 1200 reflectors

Transparent Networks has announced this 1200 reflector steerable micromirror array, claimed to be the first with high-voltage on-chip drivers.

It is aimed at steering optical fibre signals inside routing equipment and is claimed to be scalable to 18000 port switches.

“Our mirror array is driven by integrated electronics, which is believed to be the world’s largest mixed signal IC. This single-chip design includes 4800 high-speed 15-bit D-to-A converters with 120V outputs,” said Dr Janusz Bryzek, Transparent’s president and CEO.

The mirrors are bulk machined. “We chose bulk micromachining technology for our integrated mirror to provide an optically flat surface enabling superior optical performance and high optical power handling capability – neither of which is achievable with surface micromachining. This future-proofs the switch and allows it to support next generation DWDM systems with over 200 wavelengths per fibre,” said Bryzek.

Electronics are in 1.2μm CMOS with 120V outputs and, “we implemented mechanical design in low-cost bulk MEMS process using only eight masks”, said the company.

Multilayer metalisation is fabricated on a top of the circuit wafer to form four individual electrodes per mirror, which electrostatically drive the reflectors.

An integrated high-speed serial interface enables direct low-voltage communication with a commercial DSP based controller.

Power consumption is said to be below 1mW/mm².
B² Spice AD v4
Try the full version risk free for 30 days

Results you can rely on
B² Spice’s ease of use and above all, accuracy, is why it is used by dozens of universities and thousands of professional designers in the UK and US. B² Spice delivers simulations that accurately behave like the end result. This new version contains a plethora of additional features, from Radio Frequency simulation to PCB capabilities.

More features and simulation options than ever before
Sinusoidal, constant, periodic pulse, exponential, RF, single frequency, FM, AM, DC voltage, AC voltage, VCO, Vcc, piecewise linear, polynomial / arbitrary source, voltage-controlled voltage, voltage-controlled current, current-controlled voltage, current-controlled current, lossy and ideal transmission line, MESFET, uniform RC, current and voltage controlled switches are all available.

Fully mixed mode, single / dual parameter DC sweep, AC sweep, transient analysis, small signal transfer function, Fourier analysis, AC & DC sensitivity, Smith charts, pole zero, Monte Carlo analysis, noise, distortion operating point, temperature change, as well as generating component faults.

Some of the new features
- PCB export and bill of materials.
- Improved schematics with DIN and ANSI symbols.
- RF simulations and network analysis.
- Schematic borders and title-box for professional output.
- Smith and polar plots.
- A massive 16,000 parts as standard.
- Powerful new graphing and plotting - display & switch between multiple graphs easily.
- New “workspace” window to manage your projects and files.
- New “parts chooser” window to easily pick and place parts.
- Combined digital and analogue graphs.
- Even faster simulations.
- Unlimited undo / redo.
- Many new simulation models.
- Create new parts.
- Create and edit symbols.
- Create new PCB layout parts.
- New fully featured schematic editor.

There are NO limits
We set no limit on the size of your design or the number of nodes or parts. It can be as large or as complex as you want. The high quality graphics ensure that your results are easy to understand and interpret. Everything can be customised to suit your needs and preferences.

30 Day no risk trial with free ongoing technical support. If it doesn’t do what you want, then simply return it.

From just £159 ex VAT for the standard version.
Normal price - professional version £229 ex VAT.
Upgrades from earlier versions £179 ex VAT.
All libraries included - no hidden extra costs.
Education discounts and site licences available.

Tel: 01603 872331
Research House, Norwich Road, Eastgate
Norwich. NR10 4HA. Fax: 01603 879010
Email info@looking.co.uk www.spice-software.com

Also order on-line through GREY MATTER
www.greymatter.com/mcm/rdresearch
Epoxy resin can be electrically un-stuck

A US company has developed an epoxy resin adhesive that can be un-stuck with a low voltage signal. Called ElectRelease, only a few milliamps are needed to un-bond a joint without leaving blemishes. According to importers Electromotif, the glue was developed to temporarily attach test equipment to the outside of supersonic aircraft.

Dis-bonding is a result of electro-chemical surface reactions between the amine-cured epoxy and the metal it is attached to. Ten to 50V typically undoes the joint and it works with aluminium and its alloys, low-alloy steel, stainless steel, copper and titanium.

www.electromotif.co.uk
www.eiclabs.com

LEDs look set to replace CCFLs in backlighting applications

Light emitting diodes are set to oust yet another incumbent technology, this time the cold cathode fluorescent lamps (CCFLs) used to backlight liquid-crystal displays.

High-power LEDs from Lumileds will be used by Mitsubishi Electric as backlights for monitor-sized, high-resolution TFT liquid crystal displays.

“We believe that this technology will eventually replace CCFL lamps in most monitors on the market,” said Eishi Gofuku, application engineering manager for Mitsubishi's LCD division.

This is perhaps the first use of LEDs to backlight large flat screens, which will be aimed at applications such as publishing and other desktop uses.

Lumileds claimed its Luxeon LEDs can self-adjust their brightness, are twice as bright as CCFLs, and provide more saturated and lifelike colours. Their 50,000 hour lifetime is up to twice that of CCFLs, said the firm.

Mitsubishi expects to have monitors on the market by the end of this year.

Accelerator speeds up signal processing

UK firm Elixent has designed hardware accelerators that can be reconfigured to implement multiple signal processing functions.

DFA1000 accelerator cores can be configured to implement functions such as FIR filters, discrete cosine transforms, or even complete JPEG and MPEG codecs.

Elixent said it will supply the cores as hard macros that interface to standard RISC processors. Interface to the cores is via the AMBA high speed bus (AHB) from ARM.

The AHB is widely used by processor and peripheral developers to use as the main system bus in chip designs.

Elixent said its cores aim to bridge the gap between traditional DSPs, FPGAs and ASICs. The reconfigurable cores can be more powerful than DSP, faster and smaller than FPGA, and cheaper than ASIC, it said.

Five members of the DFA1000 family range in size from 128 to 2048 arithmetic units.

Each 4-bit arithmetic and logic unit (ALU) has its own registers and RAM. Larger data widths are accommodated by combining ALUs, while a switch matrix passes data between blocks.

Bristol-based Elixent claims the logic is several times denser than an SRAM-based FPGA, which is normally constrained by wiring.

The reconfigurable nature of the cores allows for scaling within applications. For example, a complete JPEG encoder can be created using 680 ALUs of the 1024 ALU core. Alternatively it could be split into three sections in a 256 ALU array, running at a quarter to a third of the speed.

The cores are programmed by treating the core as an FPGA and using either Verilog or through C, the latter using Celoxica's DK1 development tools.

The current cores are designed on a 0.18µm process, with 0.13µm planned for the year end. Elixent has used design rules that are compatible across the TSMC, UMC and Chartered foundries.
M9000 MODULAR GANG PROGRAMMER

- Very cost-effective gang programmer for microcontrollers, flash and eproms.
- Choice of over 125 plug-in modules eliminates the need for fragile socket adaptors in a production environment. Many modules have plug-in sockets which can be changed in seconds if they wear out.
- One or two identical or different modules can be fitted to support devices in DIL, SDIP, PLCC, LCC, TSOP, QFP, TQFP, SOIC, SSOP, PGA (Puma) and uBGA etc.
- New algorithms added monthly.
- Large LCD displays checksum and number of devices programmed for cross checks.
- Flat working surface reduces contact problems with surface mount components.
- Optional remote control Windows PC software (RS232 and Centronics ports available for user written command scripts).
- Also available for next day delivery from international distributors.

Lloyd Research Ltd has been designing gang programmers since the early 1980s.

The M9000 is an improved version of the ‘industry standard’ L9000 which has been used extensively for high volume programming in the telecommunications, automotive and TV manufacturing industries.

M9000 and L9000 modules are interchangeable.

For details of device support and module availability please visit our website.

Lloyd Research Ltd
7 & 7A Brook Lane, Warsash, Southampton, SO31 9FH England
T +44 (0) 1489 574040 F +44 (0) 1489 885853 E progs@lloydres.co.uk W www.lloyd-research.com

MODULAR DESIGN

SPECIFICATIONS

- RAM SIZE
 2, 8 or 32M bits

- REMOTE CONTROL
 PC Windows 95, 98 & NT
 Also available with high-speed download facility for Motorola and Intel files

- RAM EDITING CONTROLS
 Edit, Split, Merge, Fill, Complement and Checksum etc

- LINE SUPPLY
 Standard: 220/240V 50/60Hz
 Optional: 110/120V 50/60Hz

- PHYSICAL
 H 125mm x W 385mm x D 330mm
 Weight: 5kg

Lloyd Research Ltd
7 & 7A Brook Lane, Warsash, Southampton, SO31 9FH England
T +44 (0) 1489 574040 F +44 (0) 1489 885853 E progs@lloydres.co.uk W www.lloyd-research.com
Test and measurement on a budget

Richard Black has been looking at how a PC’s sound card, combined with a versatile piece of sound editing software, can be used to generate arbitrary waveforms and to make useful analyses of audio band signals.

It has become axiomatic that anything requiring computer power per-pound is best done on a desktop computer.

In the field of electronics test and measurement their usefulness is obvious: typically these days they have pretty impressive processor power, acres of memory, practically limitless data storage space and a very high resolution display. This last should not be overlooked, since after all a major part of data acquisition and processing is being able to look at results in as much detail as required. And of course software is widely available for all kinds of tasks.

The computer is not the problem. What is considerably more taxing is how best to get the data into the computer. PCs are made in telephone numbers and cost accordingly, but data acquisition cards aren’t and don’t. This also applies to Macs, but I’d better come clean right away as a ‘PC person’: apologies to Maccies but what follows refers primarily to

Fig. 1. General view of the Cool Edit environment.
PCs. In addition, the software required to interface with data acquisition cards has something of a reputation – not entirely deserved – for being both tricky and expensive.

So why not use the audio card of a computer as the input device? Until recently there was a very good reason why not: most such cards had pretty lousy inputs which contributed enough noise and distortion of their own to mask anything at all subtle that one might be trying to measure.

However, some of the latest cards have much better input performance, such that one can use them to record audio at quite high resolution direct to the hard disk. Using the normal CD format of 44.1kHz sampling and 16-bit resolution, this gives excellent quality from near DC to 20kHz. As an alternative to a sound card input, it is also worth considering an audio CD recorder - stand-alone, not a PC-based burner. Costing from as little as £250, these generally have very good input circuitry and can be used as a 'data capture' unit, recording for up to 80 minutes on an inexpensive disk which, after 'finalising' to make it readable by other equipment, can then be loaded into the PC and the data transferred to the hard disk for analysis.

You'll need audio 'ripping' software to get the files off the CD and into the usual WAV form used for audio: such software is often supplied with a CD drive or available as freeware or shareware via the Internet.

Yet another variant uses a CD recorder – or in this case even a MiniDisc recorder – as an analogue-to-digital converter, connected to the digital input of a computer's sound card by a suitable cable. Again, this benefits from the high quality inputs of the audio device.

You can't use a MiniDisc recorder as a data storage unit, though, because the format uses the 'ATRAC' data reduction system. This system may work tolerably well for audio, but it renders results useless for analysis work.

Software for analysing captured signals

Many engineers already use mathematical packages such as Mathcad and Matlab on a daily basis. However, one advantage of using audio files on the PC is that they can be read by dedicated audio editing software.

One of these programs in particular has several features of great usefulness in data analysis: Cool Edit, Fig. 1. Although it's distributed via the Internet for the extremely modest sum of $69 (from www.syntrillium.com) it is a remarkably clever bit of software. Like any audio editing software it allows you to look at the waveform on the screen. This in itself is very useful, the more so since you can zoom in as much or as little as you want, Fig. 2.

What makes Cool Edit really useful is its 'Frequency Analysis' function. This is a floating fast-Fourier transform (FFT) window that displays a high-resolution frequency-domain plot of the signal around the cursor position. Length of the transform 'window' is variable between 128 and 65536 samples, giving more or less resolution. At lengths of up to 4096 samples the window is updated in real time as the music – or what the program interprets as music – plays through.

It is also possible to scan a selection to get an average of the FFT over a period of time. You can't output the FFT result in any storable form. You can grab the plot window with a screen-capture program though and save it for future examination.

One drawback of the FFT is that it divides the frequency band into 'bins' of equal width. So what if you want to
examine only a portion of the band? Cool Edit provides filtering and modulation functions that allow this to be done. I’ll be looking at this in more detail in a second article. Also, because it intrinsically works in stereo, it gives the possibility of comparing two measurements side by side.

Producing test signals
So far I’ve only considered the ‘response’ part of test and measurement. What’s of equal importance of course is the stimulus.

In simple audio testing, the commonest stimulus is a sine wave at some suitable spot frequency. Most engineers have some kind of sine generator. However, the use of Cool Edit and a CD burner (or audio output from a high quality sound card) also puts an arbitrary waveform generator into your hands, Fig. 3. The only restriction of this generator is the 20kHz bandwidth which we’ve already taken for granted in the measurements.

Cool Edit’s signal generator produces sine waves of any frequency, amplitude and duration. These signals can be swept. Also, several can be added together – using cut and paste much as in desktop publishing – to produce complex multitone signals.

Avoid using digitally-generated square waves, and indeed anything else with discontinuities such as saw-tooth and sine-squared waveforms. These are generated in such a way as to have high distortion due to aliasing.

Cool Edit can generate white and pink noise. At very high zoom magnifications it is possible to grab individual samples with the mouse and edit them, giving truly arbitrary generation if you’ve got the patience.

Produce the basic waveform, multiply it using cut and paste if necessary to obtain a useful duration. Next, save it as an audio file and use any CD burning software to make your very own test CD. I have half a dozen for various purposes.

Obviously you now need a separate CD player to play these tones out, but the chances are you have one already: most homes do. Alternatively, simply play the sound file through a high-quality sound card. Output quality is usually higher than input quality on sound cards and this can work fine.

Multitone testing
Multitone testing is perhaps the most useful facility that this technique adds to the low-budget engineer’s artillery, Fig. 4. You can make – or buy second hand – a decent enough THD test set for not much money. Pulse and noise-based tests are reasonably amenable to simple implementation based on an oscilloscope and perhaps a relatively low-resolution digitiser of some sort.

Multitone testing, by contrast, is of little use without high-resolution spectrum analysis. This is because the intermodulation distortion it shows up is spread all over the test band, among the original frequencies. But it is a very useful and powerful technique.

In audio in particular, multitone testing is arguably the most directly relevant test of distortion since – sensibly implemented – it most closely resembles the case of real music. Significantly, it places realistic stress on equipment under test at high frequencies, without requiring the use of analysis at ultrasonic frequencies as does THD testing.

Wow and flutter
One other test quite easily carried out by my method is wow and flutter testing. Admittedly, such tests are not often necessary these days, but they are still useful for characterising LP and tape replay equipment.

Using Cool Edit’s modulation and pitch-shifting functions, you can actually listen to the speed variations, much magnified. This gives you an instant handle on what might be misbehaving.

Indeed, the possibilities afforded by listening to distortion residuals, etc., are well worth investigating. OK, it’s unscientific in the sense that it gives no numeric answer, but for analytical purposes in development or repair it can be an incredibly handy short-cut.

Mathematical analysis
If you are mathematically inclined you may want to take advantage of Mathcad or similar for analysis. Cool Edit normally works with WAV files, but it can also import and export data in text form, which can then be read into Mathcad – or any other programs that can read columns of figures – as a ‘PRN’ raw ASCII data file.

All sorts of additional possibilities now open up such as correlation and convolution. I haven’t found a need for any of these myself in this field,
but someone surely will! In addition, you can at least save the results of an FFT.

A more detailed look at the possibilities afforded by Cool Edit will make up a later article. A third article will be taking the piece of audio investigation for which I originally refined these techniques as an illustrative example. This was an investigation into the alleged 'sound' of audio cable.

Further reading

Note that the article by Czerwinski et al contains a vast list of 119 further references.

Things to watch out for

Not surprisingly, there are a few drawbacks and limitations to bear in mind – as with any cut-price solution to anything.

One of the most important things to do is to get a baseline of test equipment performance. I usually play test tones from a Rotel CD player and record the results on a Marantz CD recorder.

I made a 'calibration run' connecting the two directly together, with a four-tone test signal, to examine the intrinsic distortion: the resulting spectrum is shown in Fig. A. Note that the highest single distortion spike is 84dB below the highest signal spike, and over a lot of the band there is a clear dynamic range of over 100dB.

A dCS professional analogue-to-digital converter – over £5000-worth – gave the noticeably better results shown in Fig. B. What really surprised me though was that a £350 Sony MiniDisc recorder with digital input level control and all gave results slightly better if anything than the dCS, Fig. C. The MiniDisc player was used in record/pause, so there was no ATRAC processing in the path.

That pretty much covers dynamic range limitations. Frequency range is near DC to 20kHz, take it or leave it. Most audio a-to-d converters have good low-pass filters built in and are highly immune to ultrasonic interference. If you are in doubt, carry out some tests. Because there is a low-pass filter also built into any digital replay equipment, pulses output through it will turn into distinctive windowed sine-function curves, when viewed on an oscilloscope.

In general, replay and recording won't be in phase even though they are at nominally the same frequency. As a result, pulse testing and any other investigations requiring accurate phase alignment may give odd results.

Testing of the digital version of wow and flutter, generally known as jitter, is possible but may well be limited by the jitter of the source and the a-to-d converter used, so don't bet on it. In general, a little forethought and common sense will show up most potential problems before they ever occur.

Fig. A. 'Calibration run' with Rotel CD player and Marantz CD recorder.

Fig. B. As Fig. A, but with dCS professional a-to-d converter replacing Marantz CD recorder.

Fig. C. As Fig. A, with Sony MiniDisc recorder replacing Marantz CD recorder.
There's quite a bit more information in RDS transmissions than is displayed by most RDS-equipped radios. Roger Thomas explains what the 'Radio Data System' is, and how to reveal exactly what's being transmitted.

The Radio Data System – Cenelec* EN50067 specification – is an inaudible data signal added to the VHF FM stereo signal. It was introduced within the European Broadcasting Union (EBU) in the mid 1980s.

RDS was designed to make VHF-FM radios more user friendly by providing the listener with additional information about the radio programmes available. An RDS radio can display the current radio station name and other information. All RDS radios have an eight character alphanumeric display.

A list of alternative frequencies of nearby radio transmitters that are also transmitting the same radio programme is also provided by RDS. This allows the radio to automatically re-tune itself to an alternative frequency if the current frequency is providing poor reception when driving between different transmitter coverage areas.

Automatic re-tuning is also used with traffic announcements so that when you are listening to a network station, the RDS radio will switch to a local radio station carrying traffic information when an announcement becomes available.

Project background
Originally I wanted to build a VHF-FM radio from a kit and connect the output to a single-chip RDS demodulator. I couldn't find out from the kit manufacturer whether the RDS signal would be available though.

There was a second problem. RDS demodulator chips are available from several manufacturers but all require a 4.332MHz timing crystal. I was unable to find anyone who could supply this crystal.

In the end I bought a Goodmans RDS MW/FM analogue clock radio (model GCR 1605RDS) for £25 including VAT. The term 'analogue' means that this radio has manual tuning. It is unlikely that a complete VHF-FM radio and display could be hand built for less than the cost of the Goodmans radio.

This radio incorporates an RDS demodulator chip similar to the one I had originally wanted to use – complete with the elusive 4.332 MHz crystal. No doubt there are other similarly priced RDS radios available.

It may seem daft to buy a radio that is already RDS enabled just to decode the RDS signal, but there is much data that the radio does not use or display. RDS data is taken directly from the RDS demodulator chip. This way all the RDS data is available for decoding irrespective of whether it is also being decoded by the Goodmans radio.

In this article I have given detailed information only on the RDS data groups that are being broadcast. Also, I have used hexadecimal numbers in \(\text{hex} \) form when describing the RDS data transmitted. A glossary is provided.

RDS data signal
RDS's 57kHz sub-carrier, Fig. 1, uses amplitude modulation but with the carrier suppressed. This has the advantage of using less bandwidth than if the RDS data signal were frequency modulated.

Maximum bandwidth of the RDS data signal is ±2.4kHz. Although the RDS data signal is locked to three times the

* Cenelec = Comité Européen de Normalisation Electrotechnique – is responsible for standardising television and radio receivers.
19kHz pilot frequency it is not necessary to have a stereo decoder for RDS. Each RDS data bit phase modulates the sub-carrier by ±90°. When the input data bit is '0' the output remains unchanged, when an input '1' occurs the output is the complement of the previous output. The RDS clock frequency is obtained by dividing the transmitted sub-carrier frequency of 57kHz by 48. Consequently, the data rate is 57000/48, which represents 1187.5 bits per second. Each group takes around 88ms to transmit. Similar VHF-FM sub-carrier data transmission systems have been used for many years prior to RDS. They include MBS (Mobile Broadcast System) a Swedish radio paging system and ARI (Autofaher Rundfunk Information) providing traffic information. However ARI is being replaced by the RDS Traffic Message Channel (TMC) across Europe.

RDS data

Each RDS data group is made up of 104 bits comprising 4 independent blocks of data. Each block is 26 bits in length with 16 bits for data and 10 bits as the check word. Data is transmitted synchronously so there are no inter-block gaps: the data in each block is transmitted most significant bit first. There is no header data or special sequence of data to indicate start of the data block. Instead RDS decoders rely on the fact that only properly received and synchronised data will pass the check word test, Fig. 2.

Check word. The addition of this 10-bit error-detecting check word to each block of data allows detection of all errors of fewer than 10 bits and about 99.9% of longer error bursts.

Syndrome. In a similar data system, the result of the check word calculation previously discussed would normally be zero or all ones if the block had been received correctly. With RDS though, a 10-bit offset is added to each check word. When the data is correctly received the result will be one of the five possible syndromes. Although the word syndrome has medical connotations it simply means a set of characteristics. These syndromes are defined as A, B, C, C', and D. The occurrence of a C' syndrome indicates that block C is a PI number without the need to reference the group type number (PI and group type are explained later).

Block A. The first block of an RDS group transmitted – block A – is always the PI, or 'programme identification' – number of the current radio station. This number can also be found repeated in subsequent blocks in some group types. A PI number is made up of the country code, the coverage area and a unique radio station reference number. It is usually quoted as a hexadecimal number, Fig. 4.

The PI number is fundamental to how RDS works. It is this number that the radio uses when looking for alternative frequencies in case of bad radio reception or switching to other radio stations for traffic announcements. The radio station name displayed on an RDS radio is purely for information.

Having only four bits, the country code only allows differentiation between 15 countries. It is not possible for each country to have its own number, so several countries share the same country number.

These country numbers are allocated to ensure that neighbouring countries have different numbers. For example, France is allocated F16, Ireland is 216, Belgium is 616, The Netherlands is 816, and so on.
Fig. 5. Block B definition showing group type and PTY number. Functions of bits 04 to 00 depend on group type.

<table>
<thead>
<tr>
<th>Group type</th>
<th>1 0</th>
<th>11 10 09 08 07 06 05</th>
<th>B</th>
<th>TP</th>
<th>PTY programme type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0A</td>
<td>0</td>
<td>00</td>
<td>NO PTY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0B</td>
<td>1</td>
<td>01</td>
<td>NEWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>0</td>
<td>02</td>
<td>AFFAIRS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>0</td>
<td>03</td>
<td>INFO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>0</td>
<td>04</td>
<td>SPORT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>1</td>
<td>05</td>
<td>EDUCATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>0</td>
<td>06</td>
<td>DRAMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>1</td>
<td>07</td>
<td>CULTURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>0</td>
<td>08</td>
<td>SCIENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td>1</td>
<td>09</td>
<td>VARIED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5A</td>
<td>0</td>
<td>10</td>
<td>POP</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>5B</td>
<td>1</td>
<td>11</td>
<td>ROCK</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>0</td>
<td>12</td>
<td>EASY</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>6B</td>
<td>1</td>
<td>13</td>
<td>LIGHT</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>7A</td>
<td>0</td>
<td>14</td>
<td>CLASSICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7B</td>
<td>1</td>
<td>15</td>
<td>OTHER</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>8A</td>
<td>0</td>
<td>16</td>
<td>WEATHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8B</td>
<td>1</td>
<td>17</td>
<td>FINANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9A</td>
<td>0</td>
<td>18</td>
<td>CHILDREN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9B</td>
<td>1</td>
<td>19</td>
<td>SOCIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10A</td>
<td>0</td>
<td>20</td>
<td>RELIGION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10B</td>
<td>1</td>
<td>21</td>
<td>PHONE</td>
<td>IN</td>
<td></td>
</tr>
<tr>
<td>11A</td>
<td>0</td>
<td>22</td>
<td>TRAVEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11B</td>
<td>1</td>
<td>23</td>
<td>LEISURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12A</td>
<td>0</td>
<td>24</td>
<td>JAZZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12B</td>
<td>1</td>
<td>25</td>
<td>COUNTRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13A</td>
<td>0</td>
<td>26</td>
<td>NATION M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13B</td>
<td>1</td>
<td>27</td>
<td>OLDIES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14A</td>
<td>0</td>
<td>28</td>
<td>FOLK M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14B</td>
<td>1</td>
<td>29</td>
<td>DOCUMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15A</td>
<td>0</td>
<td>30</td>
<td>TEST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15B</td>
<td>1</td>
<td>31</td>
<td>ALARM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The UK is allocated number C16. Within Europe, we share this number with Croatia, Lithuania and Malta. Consequently all UK radio station PI numbers begin with "C".

Additional information, called 'Extended Country Code', is given in the type 1A group. This combination then allows for a unique country number.

By definition, local radio stations have a limited coverage area signified by the regional information. Some RDS radios have a 'regional' function that allows the RDS radio to re-tune to another local station within the same region.

Block B. The first four bits of block B determine the group type of the following data and the fifth bit (B) determines the group type, Fig. 5.

There are two versions of each group depending on the binary status of bit B: an 'A' or 'B' is appended to the group type, as appropriate. The next bit, TP, is the traffic programme flag. This bit indicates that the tuned radio programme carries traffic announcements. More about traffic announcements later.

The next five bits of block B contain the PTY, or 'programme type', number. Programme type numbers are given to radio programmes according to their content.

Most RDS radios will search for a radio station broadcasting a particular type of programme.

The definitions for the rest of block B, and blocks C and D, vary according to the group type.

Group types
Many different block configurations for different data applications are defined in the RDS standard. Each of the four block groups are dedicated to one type of data application and identified by a group type number from 0 to 15. Different broadcasters utilise different groups.

Fig. 6. RDS group type summary – many group types are currently not used.

Type Function
0A Basic tuning and switching.
0B Basic tuning and switching.
1A Programme item number and labelling codes.
1B Programme item number.
2A Radio Text (64 characters).
2B Radio Text (32 characters).
3A Application Identification for ODA.
3B Open Data Application.
4A Clock time and date.
4B Open Data Application.
5A Transparent Data Channels or ODA.
5B Transparent Data Channels or ODA.
6A In-house use.
6B In-house use or Open Data Application.
7A Radio Paging.
7B Open Data Application.
8A Traffic Message Channel.
8B Open Data Application.
9A Emergency Warning System or ODA.
9B Open Data Application.
10A Programme Name.
10B Open Data Application.
11A Open Data Application.
11B Open Data Application.
12A Open Data Application.
12B Open Data Application.
13A Enhanced Radio Paging or ODA.
13B Open Data Application.
14A Enhanced Other Networks information.
14B Enhanced Other Networks information.
15A not defined in RDS.
15B Fast basic tuning.

Type 0 group. PS (Programme Service) is the eight character name of the radio station displayed by RDS radios. This group is transmitted more frequently than other groups as a total of four type 0A groups are required to transmit the entire PS name. Two text characters of the radio station name are transmitted in each block D.

All PS names are eight characters long; if the name is less than spaces are added. The PS is for information only, thus different radio networks may refer to the same PI number with a slightly different PS. For example, Classic FM refers to Radio 1 as BBC 1 FM (PI=C201).

Networked BBC radio stations have a dynamic
programme type, where the PTY number varies according to the programme content. For example, when the news is broadcast the PTY number changes to 1, similarly when the weather is broadcast the PTY number changes to 16. The majority of commercial radio stations have a static programme type, so their PTY number does not change.

Bits C1 C0 determine which position the character being sent occupies, and which decoder information bit (bit 02) is being transmitted.

TP and TA flags. When the traffic-programme flag, TP, is logic 1, it indicates that the radio station currently being received broadcasts traffic announcements. If the traffic-announcement flag, TA, is logic 1, a traffic announcement is currently being broadcast by this station.

Music/speech bit. Bit 3 in block B indicates whether music or speech is being transmitted, enabling a receiver to be set up with a different volume and tone to suit the audio content. However, the default setting is music and I have not found a station that changes the status of this flag - even when the programming is all talk. Blocks details are given in Figs 8-10.

Alternative frequency. Alternative frequencies, designated AF, are transmitted in block C of each group type 0A. These alternative frequencies are transmitted as a number between 1 and 204. Number 1 signifies 87.6 MHz, 2 signifies 87.7 MHz, and so on in increments of 0.1 MHz up to number 204 (107.9 MHz).

The RDS standard also covers alternative frequencies for medium and long wave but this feature does not seem to be used in the UK. All the AF codes are listed in Fig. 11.

If there are no alternative frequencies then either the filler code is transmitted (205) or a type 0B group is used. With type 0B group block C transmits the PI number again (copy of block A).

Type 1 group. This group provides the extended country code and several other options. The PIN, or 'programme item number' in block D is the scheduled start time of the radio programme and enables a suitable radio to record a particular programme that the user has selected.

The radio paging option does not seem to be used in the UK. Type 1B group has the PI number in block C instead...
of the labelling codes, Figs 12-14.

Using the LA bit allows several radio services with different PI numbers to be treated by the RDS receiver as a single service during times when a common programme is carried. The PIN – or Programme Item Number – is the scheduled broadcast start time and day of month of the radio programme, Fig. 15.

Type 2 group. Broadcasters can send radio text messages of up to 64 characters in length for display on a suitably equipped RDS radio. Each type 2A group carries a total of four characters, with two data blocks (C and D) each block carrying two text characters. Bits C1C2C3C4 determine the text character position.

The A/B flag is used to indicate whether a new text message should overwrite the existing message or if the display should be cleared before the new message is displayed. If the flag value changes between messages then the display is cleared.

Observing the radio text message is a good indication of the quality of the RDS signal. If any data in a type 2A group block is missing, then potentially four text characters will be missed. The same text message is broadcast several times to ensure correct reception.

Type 2B group is limited to 32 text characters as block 3 is used to transmit the PI number rather than text but type 2B group seems not to be used in the UK. Details on the type 2 group are given in Figs 16-18.

Type 3A group. The type 3A group gives information about which 'open data application' (ODA) groups are being carried on the current RDS transmission. An open-data application is one that has not been explicitly defined in the RDS specification. This method of allocating ODA allows additional data services to be broadcast (or data groups to be re-allocated) dynamically.

The type 3A group comprises the application group type number used by the ODA application. The 16 message bits in block B can be used directly by the ODA.

In block D, the AID (Applications IDentification) number is used to uniquely identify a particular application. This number is recognised by the radio's software and the data sent can then be correctly decoded.

These AID numbers are allocated by the European Broadcasting Union, by the broadcast or data provider. The number allocated is arbitrary but AID = 009316 is 147 decimal and as it relates to DAB broadcasts this is rather appropriate number (Eureka 147).

Details on the 3A group are given in Figs 19-21.

Type 4A group. Type 4A group is transmitted every minute and is used to transmit the current time and date. The time is in 'co-ordinated universal time' (UTC) plus local time achieved by using a time offset.

Local time offset is transmitted as the number of half-hour difference from UTC. The most significant bit determines if this is a positive or negative time offset – i.e. east or west of Greenwich longitude.

The date is transmitted in modified Julian day code, where the date is encoded as the number of days from a particular year starting from 1 March 1900 to 28 February 2100. As the date is locked to UTC time not local time, it will change at UTC midnight, as opposed to local midnight.

Figures 22-24 detail block A functions.

Type 6A group. The format of type 6A groups, when used in-house, is defined entirely by the broadcaster. I believe that this data group is used internally by the BBC to communicate the status of the network RDS equipment.

Type 8A group. Traffic message channel, or TMC, information uses type 8A group and the ALERT (Agreed Layer for the European RDS-TMC) protocol. This protocol defines the coding of traffic messages by the use of a pre-
Type 12A group. The 'open data application', or ODA, feature allows data to be transmitted whose format has not been defined in the RDS specification. Such data is determined by the broadcaster or end user. The last 5 bits of block B and blocks C and D are available to carry data. These ODA groups are identified by type 3A group to enable a suitably equipped RDS receiver to process the transmitted data.

Type 14A group. Enhanced other network, or EON, is a feature used to update the information stored within a RDS receiver about radio services available on other radio networks. The BBC network carries information about the BBC networks and BBC local radio stations, as well as information for Classic FM. This information for the other network includes the radio station name, PL number, transmitter frequencies, traffic announcement identification, and programme type. For some stations programme item number (PIN) information is transmitted.

EON is implemented using type 14A group and 14B to send the information of the other radio networks. The value of the variant code (type 14A) determines what

Fig. 16. Definition of block B for type 2A group.

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group type 2A</td>
<td>B</td>
<td>TP</td>
<td>PTY programme type</td>
<td>A/B</td>
<td>C3</td>
<td>C2</td>
<td>C1</td>
<td>C0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 17. Definition of block C for type 2A group.

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio text message</td>
<td>C3C2C1C0</td>
<td>=</td>
<td>0000 character position 1</td>
<td>C3C2C1C0</td>
<td>=</td>
<td>0001 character position 5</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>C3C2C1C0</td>
<td>=</td>
<td>1110 character position 57</td>
<td>C3C2C1C0</td>
<td>=</td>
<td>1111 character position 61</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 18. Definition of block D for type 2A group.

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3C2C1C0</td>
<td>=</td>
<td>0000 character position 3</td>
<td>C3C2C1C0</td>
<td>=</td>
<td>0001 character position 7</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>C3C2C1C0</td>
<td>=</td>
<td>1110 character position 59</td>
<td>C3C2C1C0</td>
<td>=</td>
<td>1111 character position 63</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 19. Definition of block B for type 3A group.

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group type (3A)</td>
<td>B</td>
<td>TP</td>
<td>PTY programme type</td>
<td>A3</td>
<td>A2</td>
<td>A1</td>
<td>A0</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Application group number</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 20. Definition of block C for type 3A group.

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message bits (data available to the ODA)</td>
<td>B</td>
<td>TP</td>
<td>PTY programme type</td>
<td>A3</td>
<td>A2</td>
<td>A1</td>
<td>A0</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Application group number</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 21. Definition of block D for type 3A group.

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Identification</td>
<td>AID = 009316</td>
<td>Cross referencing DAB within RDS (12A)</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>AID = CD4616</td>
<td>ODA transmissions for RDS-TMC using 'ALERT' protocol (8A)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 22. Definition of block B for type 4A group.

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group type 4A</td>
<td>B</td>
<td>TP</td>
<td>PTY programme type</td>
<td>Spare bits</td>
<td>2^16</td>
<td>2^15</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Application group number</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 23. Definition of block C for type 4A group.

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Julian Day Code (1 March 1900 to 28 February 2100)</td>
<td>UTC hour code</td>
<td>UTC minute code (0..59)</td>
<td>Local time offset (in half hour steps)</td>
<td></td>
</tr>
<tr>
<td>2^3</td>
<td>2^2</td>
<td>2</td>
<td>2^3</td>
<td>2^2</td>
<td>2</td>
<td>2^3</td>
<td>2^2</td>
<td>2</td>
<td>2^3</td>
<td>2^2</td>
<td>2</td>
<td>2^3</td>
<td>2^2</td>
<td>2^1</td>
<td>2^0</td>
<td></td>
</tr>
<tr>
<td>(0.23)</td>
<td>(0.59)</td>
<td>(b05) = plus, 1 = minus</td>
<td></td>
</tr>
</tbody>
</table>

number of the station is transmitted in block D. This informs the EON radio that there is a traffic announcement being made on a particular local radio station.

The RDS radio will already know the frequencies associated with this PI number from previous EON data. The radio will first check that it can receive the local station and, if so, will switch from Radio 1 to the local radio station. At the end of the announcement the radio returns to Radio 1.

EON alternative frequencies are transmitted as either a frequency list, or as a mapped frequency where the tuned network frequencies are associated with frequencies of the other network. The frequency sent is not the actual frequency but a frequency code, Fig. 11.

Figures 25-27 define blocks B, C and D for type 14A.

Travel information

For the tuned programme service TP=0 flag in all groups and TA=1 flag indicates that this radio station broadcasts EON information only. This does not mean that there are no traffic announcements on the radio station; only that they are not flagged. A switch to the referenced traffic announcement on the other network is made whenever TA=1 flag is detected in type 14B group (PI for the other network is sent in block D).

See Fig. 29 for a definition of block B for type 14B.

Type 15B group. Type 15B group is referred to as fast basic tuning as the TP, TA, PTY and DI information is transmitted twice, in block B and block D. The PI number is also repeated in block C.

RDS decoder chip

The BU1923 found in the Goodmans radio is manufactured by Rohm and is a 16-pin surface-mount.
device. This RDS demodulator takes care of all the filtering via an eight-stage switched-capacitor type filter, Fig. 30. It uses a phase-lock loop to recover the data. At its output is the recovered clock and RDS data, Fig. 31.

There are many other similar RDS demodulator chips available from other manufacturers. Among them are the TDA7479, TDA7330B and SAA6579. All have the same basic design and provide the same clock and data output. However the pin configuration of these different chips can vary.

This RDS decoder chip is mounted on the small LCD circuit board, not on the main radio circuit board. Visually the build quality and design of the display board is different from the other boards. The display board includes a custom LCD driver and processor chip. It is likely that this display will be used in other radio products.

Wiring the RDS radio to the PIC

This 'modification' does not affect the normal operation of the radio but allows access to all the RDS data being received.

As the output from the RDS demodulator device is TTL compatible, it can be wired directly to the PIC microcontroller. PIC port pin RB0 (clock) and RB1 (data) are used as inputs and have Schmitt trigger inputs which help to ensure a clean input.

Connecting the RDS demodulator to the PIC microcontroller requires two wires – RDS data and clock signal – to be soldered to the BU1923 RDS demodulator chip. As this demodulator is a surface mount device considerable care has to be taken when soldering these wires.

Also the radio’s power supply can be used to power the PIC circuit. The power supply circuit board was marked +lamp for +5V and B— for 0V but this may vary between different versions of the printed circuit board. Confirm the voltage and polarity with a multi-meter before connecting the power supply to the microcontroller.

Warning

You will need to open up the radio and solder wires directly to the display and power supply circuit boards. This will invalidate any warranty or guarantee that came with the radio.

Fig. 29. Definition of block B for type 14B group.

<table>
<thead>
<tr>
<th>PI</th>
<th>PS</th>
<th>Radio station</th>
<th>PTTY RT</th>
<th>EON</th>
<th>TA</th>
<th>0A</th>
<th>1A</th>
<th>1B</th>
<th>2A</th>
<th>3A</th>
<th>4A</th>
<th>8A</th>
<th>12A</th>
<th>14A</th>
<th>15B</th>
</tr>
</thead>
<tbody>
<tr>
<td>C201</td>
<td>Radio_1_</td>
<td>BBC Radio 1</td>
<td>D</td>
<td>D</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>C202</td>
<td>BBC_R2</td>
<td>BBC Radio 2</td>
<td>D</td>
<td>D</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>C203</td>
<td>BBC_R3</td>
<td>BBC Radio 3</td>
<td>D</td>
<td>D</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>C204</td>
<td>BBC_R4</td>
<td>BBC Radio 4</td>
<td>D</td>
<td>D</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>C2A1</td>
<td>Classic_</td>
<td>Classic FM</td>
<td>S</td>
<td>D</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>C487</td>
<td>FOX_FM</td>
<td>Fox FM, Oxford</td>
<td>S</td>
<td>S</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>C111</td>
<td>BBC_Oxfd</td>
<td>BBC Radio Oxford</td>
<td>D</td>
<td>S</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>CD66</td>
<td>MIX 96</td>
<td>Mix 96, Aylesbury</td>
<td>S</td>
<td>S</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

S – static
D – dynamic
Observing RDS data
RDS transmissions started in 1984 so it can be regarded as a mature technology. It comes as a bit of a surprise that the RDS data groups transmitted vary between radio stations.

In general, the BBC makes far more use of RDS than commercial stations. For example, from my local transmitter Classic FM (101.3 MHz) with EON only lists the four BBC networks (no local BBC or other commercial stations). This is of no use for EON traffic information as the four BBC networks do not flag their own traffic announcements.

However, in recent months it has started to transmit TMC traffic data. Also Classic FM changes its radio text message more frequently than any other radio station, whereas my local radio stations (Fox FM, Mix 96 and BBC Radio Oxford) never change their text message.

Type 6A and 12A groups are transmitted by the BBC but as the format is not defined in the RDS specification the PIC software displays the received data as bytes, Fig. 33.

RDS PIC circuit
The RDS decoder circuit, Fig. 34, is not complicated and can easily be built on strip board. When constructing the circuit ensure that the crystal can is connected to 0V.

Keep the wiring between the PIC and RDS radio reasonably short and use appropriate decoupling capacitors on the +5 volt line to the PIC and 74LS14 chip.

There’s a built-in serial communications port in the PIC 16F877 but as the microcontroller is only sending, not receiving, data a serial interface driver chip is not needed. A 74LS04 inverter is used to invert the transmitted serial data as a serial driver would in operation invert the serial data.

Computers can generate radio interference, so the RDS radio and computer need to be kept apart. An RDS radio will start to display data after having received a pre-determined number of groups error free.

As the PIC will decode any error free group, the RDS data may appear on the PC before being displayed on the radio’s display.

PIC software
The PIC microcontroller software is interrupt driven with the edge of RDS clock signal generating the interrupt on RB0. It does not matter which clock edge is used as the data is valid on both edges.

When an interrupt occurs the PIC software looks at port pin RB1 to see if the RDS data bit is ‘1’ or ‘0’. This bit value is added to the RDS data already received. The RDS data is stored in 13 packed bytes, located at memory 35, 16 to 41, 16.

After acquiring 104 bits the parity check routine is executed. Each block of 26 bits (including the check word) is checked by the use of a parity table, Fig. 37. Whenever any message bit is ‘1’ the value from the appropriate position in the parity table is taken and multiplied with the running total using modulo-two arithmetic.

Fig. 35. RDS-PIC components list.

As the parity table contains 10-bit numbers and the internal PIC registers are 8 bit wide, this results in the software having to use two different tables. One table is the top two bits of the parity number and the other table is
the remaining eight bits.

After the block-A check word calculation the result is compared with all the syndrome values to see if the block is valid and to determine the block sequence. If the cyclic redundancy check value is not a syndrome, then all the 104 bits of data are rippled along by one bit with the first data bit lost.

Another bit is read in and stored in the last position and the check word test re-applied until a syndrome value is received. Although it is possible to correct an error burst of up to 5 bits the software does not attempt this.

Fig. 38. Calculating received check word for each data block.

```plaintext
procedure checkA
  crc = 0
  if bit[1] = 1 then crc = crc XOR parity[1] /if
  ... /if
  if bit[26] = 1 then crc = crc XOR parity[26] /if
  if crc = syndromeA then checkB
  else
    ripple RDS data
    checkA
```

In theory, as the group is made up of four independent blocks, a check word failure in one block does not affect the other blocks. However the software will only decode complete groups where each block has passed the check word as this is more reliable than attempting to decode individual blocks.

PIC display modes
The PIC microcontroller software has two RDS decode modes – text or binary. With the text mode the PIC software decodes the RDS data and sends the text information to the PC via the serial port. In binary mode the PIC software sends the raw data for decoding and display by the PC software.

Display mode is selected by the logic voltage on port pin RB2. As the internal PIC pull-up resistors are enabled then leave this pin open circuit and this is the text mode (default).

For selecting the binary mode output, port pin RB2 needs to be taken to 0 volts. The status of this port pin is continually polled so that if the mode is changed then a PIC reset should not be required.

Text mode
The RDS decoded text can be viewed using the Hilgraeve HyperTerminal software that comes with the Windows operating system. Set the properties to: connect using direct to COM option, 57600 baud, 8 bits, no parity, 1 stop bit and no flow control.

The RDS text is not scrolled as the cursor is moved to the start position after each block of text is displayed. The time is set to zero whenever the PIC number changes. If the HyperTerminal software is used but the PIC binary mode is selected by mistake then the screen will fill up with ‘1’s and ‘0’s.

With text mode selected the alternative frequencies are not decoded by the PIC software. If you are using the Goodmans radio (and tuned to an RDS signal) then these frequencies can be displayed by pressing the ‘hour’ button. Similarly the date is not decoded in text mode as this information is also available by pressing the ‘mode’ button.

Received RDS text can be saved using the ‘transfer’ menu and capture text option of the HyperTerminal software. Examples of edited captured text showing the radio station information and example radio text messages are shown in Fig. 39.

Binary mode
Instead of the PIC converting the RDS data into text, the raw data can be sent to the PC in binary mode for display. In binary mode, the PIC software still does the check word
calculation and will only send a complete data group that is error free.

The binary data is sent as ASCII characters '0' and '1', with an 'S' synchronisation character sent as the first byte to indicate start of a data block. Unlike the text mode, the binary mode decodes and displays all the RDS data received. Note that Windows software for carrying out this task is only available from the author.

Figures 41 & 42 show Windows displays produced by the binary software.

PIC programming

The RDS Decoder hexadecimal code file (rds.hex) is available by e-mail from j.low@cumulusmedia.co.uk. Please use the subject heading 'RDS hex file'.

If the PIC programmer is being used in conjunction with Microchip's MPLAB software then select the import to memory option from the file menu. Find the appropriate directory and select the rds.hex file. To view the hex code that will be programmed into the PIC16F877 select from the Window menu (located at the top of the MPLAB form) the 'Program Memory' option to show the Program Memory Windows.

This option will display the object code, choose the 'Hex Code Display' option from the top left icon of the Program Memory Windows. This will show that the beginning of the PIC program is where all the various text messages are stored, starting with thePTY text.

These text messages can be altered using the 'modify' option from the Windows menu but the new message must be exactly the same length as the old message otherwise the following messages will not be displayed correctly. Use Export Memory option from the file menu to save the modified hex file.

When programming the flash PIC ensure that the PIC configuration options are set to the following – oscillator mode is set to HS (high speed), watchdog timer is off and power up timer enabled.

RDS glossary

AID Application IDentification.
AF Alternative Frequency.
ARI Autofahrer Rundfunk Information.
CT Clock Time and date.
DAB Digital Audio Broadcasting.
DI Decoder Information.
ECC Extended Country Code.
EON Enhanced Other Networks.
ODA Open Data Application.
ON Other Network.
PI Programme Identification.
PIN Programme Item Number.
PS Programme Service.
PTY Programme Type.
RDS Radio Data System.
RT Radio Text.
TA Traffic Announcement.
TN Tuned Network.
TDC Transparent Data Channel.
TMC Traffic Message Channel.
TP Traffic Programme.
Hexadecimal listing for 16F877 PIC 20MHz microcontroller

This is the PIC16F877 hex coding is for the RDS Decoder. This PIC code is intended for personal use only; any commercial use requires written permission from the author.

1003A000000742728E07031ACE229E421061D9294F
1003B00E22980A3408C3C031DE22943300D0DE9
1003C0007427010181A297297A10A0EB00B800802
1003D00E0C00C0E0D50D8E0A2F66A0803C07
1003E00031D92A6980D3C1092A5D68B072
1003F00056E0C05FEB00606E000315E0DF3
10040000DE0C8EDEE0B0DE0DDEDE0B0DE0B0D0
1004100AF26A80833C01D92A6908D4C310D2
1004200992岳阳060088066108EC062808DE00
1004300630800031080EDEEDEE0B0DE0B0D0
10044000EDEDDEDEDEDEDEDEDEDEDEDEDC5
10045000E0B0D310EDEDEDEDEDEDEDEDEDAF266A064
1004600023C01D92A68953C03182FA1433
10047000A003C031D124A0960C031D124A2
10048000FA14FAC9292A30E0B0406E0C065086A
10049000DE0D6608EE00310EDEEDEDEDEDE0B0D0
1004A00031010EDEDEDEDEDEDEDEDEDEDEDE0B0D0
1004B000EDE0D0310EDEDEDEDEDEDEDEDEDE0B0D0
1004C000EDEDDEDEDEDEDEDEDEDEDEDEDEDEDED0
1004D000EDEDDEDEDEDEDEDEDEDEDEDEDEDEDE0

June 2002 ELECTRONICS WORLD
Making double-sided PCBs

Cyril Bateman describes how to get round the problem of aligning films when producing one-off double-sided circuit boards.

In my last article on making PCBs, in the May issue, I described low cost DIY methods to create the artwork needed for use with UV photo sensitive, single-sided, boards. Each of these basic steps is also applicable to producing two-sided boards. All that's needed is the additional artwork for the second side.

This second article details the additional techniques needed to make a double sided printed board. It should be read in conjunction with my previous article on single-sided printed circuit boards, in order to be complete.

The double-sided board problem

Unless you can ensure accurate registration of both artworks with each other and with the board for both of the UV exposures needed, the board will not be usable. I speak from personal experience.

Before adopting the method described here, I produced more scrap than usable double-sided prototype boards. Boards were scrapped due to poor registration or one damaged side.

For many years, and still today, if a prototype board can be produced as single sided, that remains my preferred choice. It was only when designing my recent series of double-sided high-frequency RMS meter and probe designs, published in the August, October, November and December 2001 issues of Electronics World, that I decided I should find a solution to end this problem.

Designing two-sided boards presents little more difficulty than does designing single-sided boards. It can in fact be much easier and quicker. Many computer design packages include a usable auto-router, which will at least arrange most tracks for you. This however will most certainly result in cre-
PROJECTS

ating many tracks requiring vias, needed to connect tracks between each board face.

Using DIY methods, plated-through hole vias are not really practical. Through holes are easily replaced though by Harwin Track Pins, inserted into 1mm holes and soldered on both sides of the board. Available as Maplin part FL82D, they were used to avoid plated-through holes, in the abovementioned double-sided printed board designs.

In contrast, designing single-sided boards to avoid using wire links—or at least using as few wire links as possible—can be difficult. To date, each of my single-sided boards has been carefully hand routed. All attempts to use my auto router having failed.

Registering the artwork

If equipment cost is no object, both artwork films can be registered together and both sides of the board exposed simultaneously. However this requires an expensive double sided UV exposure unit. These usually also have vacuum beds to hold artwork and boards in close contact. The lowest cost unit I have seen, listed at £600, is not exactly within many DIY budgets.

Consequently for my budget I accepted having to expose one side at a time, using two quite separate exposures. This need for two separate exposures was the cause of all my original problems with registration.

One early method, which worked occasionally, was to expose then develop one side only. The maker’s protective film or paper, left on the second side, prevented its exposure to light and developer.

Each artwork film was provided with registration drill pads, located outside the finished board area. Using the developed image, these location holes were drilled and used to register the second side artwork for its exposure. Developing this second side without damaging the first side image was the reason for almost all my rejects.

I tried re-protecting the developed image, using self adhesive films, before developing the second side. This resulted in only partial success. Frequently, the developer wickged between the adhesive film and the developed image, along track edges, dissolving parts of the resist image.

I also tried developing and fully etching the first side, leaving the maker’s protective films in place on the second side. Again this was only partially successful. Without adequate protection during immersion for the second etch, the first side continued to etch, causing severe undercut of any tracks or ground plane.

In hindsight, an aerosol spray of board protection lacquer might have provided better protection than using self adhesive films, but at the time I didn’t think to try some.

Modified technique for smaller boards

With the quite small boards and much narrower tracks needed for my recent articles, neither method worked. I searched Internet looking for better ideas, but with no success. After some thought I decided that only one immersion in developer or etchant could be allowed.

Using low-cost methods, this required pre-aligning the board and both artworks, then maintaining this alignment throughout the two separate exposures. Both sides could then be co-developed and etched, just as for a single-sided board.

A two sided exposure frame is needed. This frame must keep both artworks in intimate contact with the board faces. The photo resist on one side of the board is exposed, then the the frame is turned over to expose the other side.

You will need two pieces of 3mm thick glass, one sized larger than your blank circuit board, which must remain fully visible. The second should be some 5cm larger in both directions.

All cut-glass edges must be covered to support the glass and protect your hands. For this I used lengths of thin aluminium channel sold for secondary double glazing.

Five easily-visible registration targets are placed outside the design area, but within the blank board dimensions, and coincident on both artwork films. One target is placed near each board corner and one centrally along one longer side, Fig. 1.

This arrangement of five registration targets reduces the possibility that one or other artwork film becomes accidentally reverse aligned. Nevertheless, I still write clearly on each artwork film, identifying which is the copper or board facing side.

With the track-side artwork positioned correctly over the board, I use a sharp probe to pierce through the centre of each artwork target and the board’s protective film, thus marking the board’s top copper. I drill small holes through the board at these marked positions. This top copper side is identified by a short length of masking tape.

The track-side artwork is taped firmly onto the larger piece of glass, through which it will be exposed. Ensure the board side of this artwork is uppermost.

Remove the protective tape, previously identified with masking tape, and place this side of the board down onto your artwork. Then remove the protective tape from the second, now uppermost, side of the photo film.

With the track side of your board facing down, the pre-drilled board is positioned so that all five target centres are visible through the pre-drilled holes. Taking care to not overlap into the design area, the board is securely taped in position, directly onto the artwork.

I hold the glass frame, artwork and board up so that daylight from a shaded north facing window penetrates through the drilled holes, to facilitate registration.

A partially folded strip of masking tape is placed temporarily on the etch resist on each longer side, clear of the design area. This tape acts as ‘handles’ to aid moving the board into position and to avoid fingernail damage of the resist surface.

When the board is secured in position, remove both handles.

The ground-plane artwork film’s five targets are now carefully positioned over the five pre-drilled board holes, ensuring all five holes are aligned with the target centres. This artwork is also carefully taped into position. The smaller exposure glass is then fixed onto this sandwich, ensuring artworks and board remain in intimate contact, using spring clamps. The design area of both sides of your board must be clearly visible through the glass.

Both sides can now be exposed in turn.

Developing and etching

This method produces good, well registered, double-sided boards. It is suitable for use with surface mount ICs down to eight-lead micro-SOIC size.

When both sides have been exposed, the board is removed from this sandwich and processed as described for a single sided board.

A photographic developing tray having small ridges along the bottom allows the underside photoresist to develop and minimises any scratching. Since the ground plane is usually easier to ‘touch up’ I prefer to develop with the track side uppermost. Before etching, any minor resist scratches can be quickly ‘touched in’ using an etch resist pen.

The board can now be finished following the methods already outlined for single-sided boards.

Cyril is currently developing a low-cost DIY PCB drilling machine. We hope to have a description of this later in the year.

Reference

1. Harwin track pins Maplin Electronics part FL82D, http://www.maplin.co.uk
OLSON

19" RACK MOUNTING DISTRIBUTION PANELS WITH IEC 320 SOCKETS AND REAR CABLE MANAGEMENT

NEW

- 19" Front Panel 1U HIGH
- Sockets on the back
- 10A inlet on the back
- New Colour
- Up to 12 Sockets
- 22 Different types
- With cable support

This unique design offers cable tie slots for instant snap-in installation and stops plugs accidentally being disconnected.

Call for our NEW products catalogue today!

020 8905 7273

OLSON HOUSE, 490 HONEYPOT LANE, STANMORE, MIDDX HA7 1JX
TEL: 020 8905 7273 FAX: 020 8952 1232
e-mail: sales@olson.co.uk
web site: http://www.olson.co.uk
Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem - provided it has a degree of ingenuity. Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too - provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.
Don't forget to say why you think your idea is worthy.
Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best - but please label the disk clearly.
Send your ideas to: Jackie Lowe, Highbury Business Communications, Anne Boleyn House, 9-13 Ewell Road, Cheam, Surrey SM3 8BZ

Precision low-cost bridge emulator

This circuit emulates a precision bridge type sensor, with the adjustment of a single resistor. During testing and commissioning of sensor conditioning circuits or data acquisition systems, that interface to 'bridge' type sensors - including pressure transducers and strain gauge load cells - it can be very useful to be able to emulate the sensor in some way without actually using transducer, which is normally expensive.

If a conventional four-resistor bridge is constructed to emulate the sensor then precision low-temperature coefficient resistors are required. Even then, bridge balance can be effected by thermal gradients across the resistors also it is difficult to generate stable millivolt output signals by unbalancing the bridge.

To overcome these problems I developed the simple five-resistor arrangement shown in Fig. 1, and have found it very useful on many occasions.

This circuit has four significant advantages:

- The circuit performance is relatively insensitive to resistor tolerance unlike a conventional bridge. A moderate imbalance between \(R_1 \) and \(R_2 \) will generate a common-mode input offset voltage, but does not produce a significant change in the signal output. The following instrumentation amplifier cancels the common mode offset resulting in minimal output offset voltage.

- For small output voltages the current through \(R_1 \) and \(R_3 \) remains approximately constant. In particular, the current through \(R_1 \) is always balanced and so the self heating is always balanced. Therefore there will be no thermal gradient between \(R_1 \) and \(R_2 \). This is evident by virtue of negligible output voltage drift in practice.

- The output signal level is easily adjusted by the value of a single resistor \(R_5 \).

- The circuit's low cost!

Bridge-type sensors are ratiometric devices and produce millivolts of output for volts of excitation - 10mV output per volt of excitation at sensor full scale for example, i.e. 100:1 input/output ratio, my circuit is basically a differential potential divider and importantly is also ratio metric.

Example

The circuit can be made to present the same input and output impedances as a bridge sensor by making \(R_1 + R_2 \) and \(R_1 + R_4 \) equal the sensor bridge impedance. Resistor \(R_5 \) can be one fixed resistor to give 0% and 100% output signals or two equal value series resistors giving 0%, 50%, 100%, or say four to give 0.25, 50, 75, 100% switched outputs, Fig. 2.

A simple option is to use a low value 'decade resistor box' for \(R_4 \) and if \(R_4 \) and \(R_5 \) are calculated to pass 1mA then the output is 1mV per ohm set by \(R_5 \).

Note the switch contact resistance appears in series with \(R_4 \) and therefore has little effect on the millivoltage produced by the dummy sensor.

My colleagues encouraged me to submit this idea. Over the years, my colleagues have referred to it as the 'Jaques Bridge'.

Dennis Jaques
St ives
Cornwall

£75 winner

Fig. 1. This simple five-resistor arrangement emulates a conventional bridge, but doesn't need precision resistors.

Fig. 2. Resistor \(R_5 \) can be one fixed resistor to give 0% and 100% output signals, or two equal value series resistors giving 0%, 50%, 100%, or say four to give 0.25, 50, 75, 100% switched outputs.
Enhanced 'PICALL' ISP PIC Programmer

Kit will program virtually all 8 to 40 pin* serial and parallel programmed PIC microcontrollers. Connects to PC parallel port. Supplied with fully functional pre-registered PICCALL DOS and WINDOWS AVR Software. Packed as a software package and a high quality SPST board. Also programs certain ATMEV AVR, SCENIX SX and EEPROM 24C devices. New device can be added to the software as they are released. Blank chip auto detect feature for super-fast bulk programming. Hardware now supports ISP programming. *A 40 pin wide ZIF socket is required to program 0-3" devices (Order Code AZ1F40 @ £15.00).

<table>
<thead>
<tr>
<th>Order Ref</th>
<th>Description</th>
<th>Inc. VAT ea</th>
</tr>
</thead>
<tbody>
<tr>
<td>3144KT</td>
<td>Enhanced PICALL ISP Programmer</td>
<td>£64.95</td>
</tr>
<tr>
<td>AS3144</td>
<td>Assembled Enhanced PICALL ISP Programmer</td>
<td>£74.95</td>
</tr>
<tr>
<td>AS3144ZIF</td>
<td>Assembled Enhanced PICALL ISP Programmer w/ ZIF socket</td>
<td>£89.95</td>
</tr>
</tbody>
</table>

ATMEL 89xxxxx Programmer

Powerful programmer for Atmel 8051 microcontroller family. All fuse and lock bits are programmable. Connects to serial port. Can be used with ANY computer and operating system. The LEDs indicate programming status. Programs 89C1051, 89C2051, 89C4051, 89C51, 89LV51, 89C52, 89LV52, 89C55, 89LV55, 89S8252, 89L8252, 89S53 & 89LS53 devices. NO special software needed – uses any terminal emulator program built into Windows).

<table>
<thead>
<tr>
<th>Order Ref</th>
<th>Description</th>
<th>Inc. VAT ea</th>
</tr>
</thead>
<tbody>
<tr>
<td>3123KT</td>
<td>ATMEV 8xxx Programmer</td>
<td>£29.95</td>
</tr>
<tr>
<td>AS3123</td>
<td>Assembled 3123</td>
<td>£44.95</td>
</tr>
</tbody>
</table>

PC Data Acquisition & Control Unit

Use a PC parallel port as a real world interface. Unit can be connected to a mixture of analogue and digital inputs from pressure, temperature, movement, sound, light intensity, weight sensors, etc. (not supplied) to sensing switch and relay states. It can then process the input data and use the information to control up to 11 physical devices such as motors, sirens, other relays, servo motors & stepper motors.

FEATURES:
- 8 digital Outputs: Open collector, 500mA, 33V max.
- 16 Digital Inputs: 20V max. Protection 1K in series, 5.1V Zener to ground.
- 11 Analogue Inputs: 0-5V, 10 bit (5mV/step.)
- 1 Analogue Output: 0.25V or 0-10V. 8 bit (20mV/step.)

All components provided including a plastic case (140mm x 110mm x 35mm) with pre-punched and silk screened front/rear panels to give a professional and attractive finish (see photo). With screen printed front & rear panels supplied. Software utilities & programming examples supplied.

<table>
<thead>
<tr>
<th>Order Ref</th>
<th>Description</th>
<th>Inc. VAT ea</th>
</tr>
</thead>
<tbody>
<tr>
<td>309KT</td>
<td>PC Data Acquisition & Control Unit</td>
<td>£89.95</td>
</tr>
<tr>
<td>AS309</td>
<td>Assembled 309</td>
<td>£124.95</td>
</tr>
</tbody>
</table>

ABC Mini 'Hotchip' Board

Currently learning about microcontrollers? Need to do something more than flash a LED or sound buzzer? The ABC Mini 'Hotchip' Board is based on Atmel's AVR 8535 RISC technology and will interest both the beginner and expert alike. Beginners will find that they can write and test a simple program, using the BASIC programming language, within an hour or two of connecting it up. Experts will like the power and flexibility of the Atmel microcontroller, as well as the ease with which the little Hot chip board can be "designed-in" to a project. The ABC Mini Board 'Start Pack' includes just about everything you need to get up and experimenting right away. On the hardware side, there's a pre-assembled micro controller PC board with both parallel and serial cables for connection to your PC. Windows software included on CD-ROM features an Assembler, BASIC compiler and in-system program. The pre-assembled boards only are also available separately.

<table>
<thead>
<tr>
<th>Order Ref</th>
<th>Description</th>
<th>Inc. VAT ea</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCMINISP</td>
<td>ABC Mini Starter Pack</td>
<td>£59.95</td>
</tr>
<tr>
<td>ABCMINIB</td>
<td>ABC Mini Board Only</td>
<td>£34.95</td>
</tr>
</tbody>
</table>

Advanced 32-bit Schematic Capture and Simulation Visual Design Studio

Advanced Schematic Capture & Simulation Software

Use to create circuit diagrams. Includes Capture and Edification Capture libraries, part number database, schematic editor and simulator. Features: 200,000 part database, automatic circuit diagram, PowerList, and automatic circuit diagram printer. All software purchased with ATMEV, PICCALL or ABC Mini Starter Pack.

Order Reference: 32BitSchematicCaptureSimulatorSoftware

Serial Port Isolated I/O Controller

Kit provides eight relay outputs capable of switching 5 amps max and four optically isolated inputs. Can be used in a variety of control and sensing applications including load switching, external switch input sensing, contact closure and external voltage sensing. Programmed via a computer serial port, it is compatible with ANY computer & operating system. After programming, PC can be disconnected. Serial cable can be up to 35m long, allowing 'remote' control. User can easily write batch file programs to control the kit using simple text commands. NO special software required – uses any terminal emulator program (built into Windows). Screw terminal block connections. All components provided including a plastic case with pre-punched and silk screened front/rear panels to give a professional and attractive finish (see photo).

<table>
<thead>
<tr>
<th>Order Ref</th>
<th>Description</th>
<th>Inc. VAT ea</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA04</td>
<td>Serial-Port Isolated I/O Controller Kit</td>
<td>£45.95</td>
</tr>
<tr>
<td>AS3109</td>
<td>Assembled Serial Port Isolated I/O Controller</td>
<td>£69.95</td>
</tr>
</tbody>
</table>

Full details of these items and over 200 other projects can be found at www.QuasarElectronics.com
Tester in a key fob

I designed this tester to be something that would take up little space, but would allow many vehicle electrical faults to be found at the side of the road.

With no button pushed, the unit is a voltmeter with the led illuminating if between 3 and 30V is applied to the probe.

High resistance in the voltage source — caused by corroded contacts for example — can be detected by pushing the 'load' button. This causes about 0.5A to be drawn from the source. If the LED dims significantly, the source is high impedance.

Pressing the 'continuity' button allows a simple conductivity test to be made. Anything below a few kilohms will light the led. In this state, the earth clip is positive, so the unit can also be used to check rectifier diodes.

The 'load' part of the circuit is only intended to be used briefly to check that a terminal is not offering significant resistance. As such, the 22Ω resistor can be a small 2W type that will fit in a key fob case. The real power dissipation is 6W, so don't hold the button down for more than a few seconds or the whole unit will melt.

The transistor has to be a high-gain type as the push buttons have little current capacity and there is half an amp flowing in the collector. Reducing the resistor to 10Ω draws 1A and gives the voltage source a better test, but increases the chance of melt-down.

Other power sources, such as a 3V lithium cell, could be used with appropriate resistor changes, but at 3V the unit will no longer check rectifiers.

Two button key-fob cases are available from most electronics catalogues. The unit is short-circuit protected and can withstand over 25V.

Steve Bush
Via e-mail

A lengthening circuit for a short antenna

Output voltage of a short receiving antenna can be substantially increased by adding a quartz crystal, connected to the antenna as shown.

Assume that the height of the vertical wire antenna is many times shorter than the wavelength. In that case the antenna can be replaced by the equivalent circuit containing voltage source e, capacitance C and the resistance R.

Values for e, C and R can be calculated using:

\[e = \frac{E_0 h}{2} \]

\[C = \frac{55h}{\ln(1.15h/d)} \]

\[R = 160\pi^2 \frac{h^4}{\lambda^2} \]

Here, E is the electric field strength, [V/m], h is the geometrical height of the antenna, d is the diameter of the antenna wire in metres and λ is the wavelength, also in metres. The formulas are true when the antenna is placed above a conductive surface and $h/\lambda < 0.1$.

Capacitance C and the inductance of the quartz crystal form the series-resonant circuit. Output voltage of that circuit is many times larger than input voltage e because resistance R is very small and the Q-factor of the quartz crystal is very large.

I simulated the circuit using PSPICE. It was assumed that $E_0 = 1$ mV/m, $h = 0.1m$, $d = 0.002m$, and $\lambda = 300m$ — i.e. the signal frequency is equal to 1MHz. In that case, $e = 0.05mV$.

$C = 1.35pF$, $R = 75 \times 10^{-2}\Omega$. These values were calculated by means of the formulas.

A QZP1 MEG quartz crystal was applied. The PSPICE simulation has shown that the output voltage of the circuit is equal to 1.13mV at the resonance frequency. Output voltage of the same antenna without the quartz crystal is 0.05mV. So the quartz crystal increased the output voltage 22.6 times. That is identical to lengthening of the antenna.

Another way, an antenna of 0.1m with the quartz crystal ensures the same output voltage as an antenna of 2.26m long without the quartz crystal.

The circuit is convenient for application in single-frequency receivers of remote control systems. The input resistance of those receivers must be very large to avoid shorting of the quartz crystal. Such input resistance can be ensured by field-effect transistors.

S Chechheyev
Tiraspol
Moldova
G56
Easy-PC For Windows V5.0, now available with SPICE based A/D mixed mode simulator

NEW Easy-PC V5.0

Easy-PC for Windows is one of the biggest selling PCB systems in Europe. With prices starting from as little as £97 it represents exceptional price performance.

SPICE Based Simulator

Easy-Spice is a substantially enhanced version of SPICE3 and XSPICE with the underlying algorithms being reworked to significantly improve convergence and add new functionality.

Easy-Spice is integrated with Easy-PC Schematics and is supplied ready to use with SPICE libraries and models.

For more information or for a demo copy call us on +44 (0)1684 773662 fax +44 (0)1684 773664 or E-mail info@numberone.com

or download a demo copy from www.numberone.com

The MetalFish Consultancy

- Design service for all your power supply needs
- Custom manufacture and installation
- VA to KVA
- Remote monitoring and control

(T)+44 (0)1444 473472
(F)+44 (0)1444 473471
sales@metalfish.com
www.metalfish.com

PO Box 439
Haywards Heath
West Sussex RH16 4YR
UK

June 2002 ELECTRONICS WORLD
Intelligent voice-operated switch with recorder

One of the main features of this voice-operated recorder is its low cost. It also consumes little power, it’s compact and it’s simple.

As the block diagram makes clear, op-amp IC1 is working as a non-inverting follower. Audio amplifier gain can be increased by increasing the value of \(R_2 \).

Signal input from the microphone feeds this preamplifier. The amplified signal is filtered and rectified by diodes \(D_{1,2} \) to produce a DC voltage over \(R_5 \). Resistor \(R_4 \) can be adjusted to the desired audio level, to activate the relay. This control is set to suit the operator’s voice.

Transistor \(T_{12} \) forms the delay control and DC amplifier. It can be substituted with a BD139 or SL100. Potentiometer \(R_6 \) determines the time between transmitter and receiver switching. Diode \(D_3 \) protects the \(T_{R1} \) during relay operation.

Resistor \(R_4 \) controls the balance between the microphone input and receiver input. Resistor \(R_{14} \) sets the level for operating the relay. Diodes \(D_{2,3} \) produce a signal that prevents false operation of the transmitter while receiving is active.

The last digits of the IC’s part number give the recording time in seconds. For example, the ISD1016A has a recording time of 16 seconds. If you want a longer recording time then an IC with more capacity can be used.

Alternatively, two ISD1016As can be connected in series.

Switch \(S_1 \) is the recording/play back switch, while \(S_2 \) which must always be on while recording resets the recorder. Switch \(S_3 \) is an on/off switch for recording and play back. It must also be on while recording.

P M Prabhu
Kerala
India
G51

Components

- **Resistors:**
 - \(R_1 \) 1k
 - \(R_2 \) 100k
 - \(R_3 \) 220k
 - \(R_4 \) 20k
 - \(R_5 \) 4.7k
 - \(R_6 \) 22k
 - \(R_7 \) 10k
 - \(R_8 \) 2.7k
 - \(R_{10,11} \) 4.7k
 - \(R_{12} \) 10
 - \(R_{13} \) 220
 - \(R_{14} \) 2.2k
 - \(R_{15} \) 470k

- **Capacitors:**
 - \(C_1 \) 0.1\(\mu \)F
 - \(C_2 \) 0.1\(\mu \)F
 - \(C_3 \) 1\(\mu \)F
 - \(C_4 \) 10\(\mu \)F
 - \(C_5 \) 10\(\mu \)F/16V
 - \(C_6 \) 1\(\mu \)F/16V
 - \(C_7 \) 4.7\(\mu \)F/16V
 - \(C_8 \) 22\(\mu \)F/16V
 - \(C_9 \) 220nF
 - \(C_{10} \) 1\(\mu \)F
 - \(C_{11} \) 100nF
 - \(C_{12} \) 100nF
 - \(C_{13} \) 22\(\mu \)F/16V

- **Semiconductors**
 - IC1 LM741
 - IC2 ISDI016A
 - Tr1 2N2222
 - Tr2 BC557
 - D1,2 1N914
 - D3 1N4007
 - D4,5 OA79

- **Miscellaneous:**
 - Condenser microphone
 - SPST relay
 - Switch 1, 2, 3 – push to make switches
 - Speaker – 8\(\Omega \), 500mW
 - PCB, shielded wires and ferrite beads
Minimal loudspeakers

This idea is more electro-acoustic than electronic, but nevertheless may prove useful to many readers.

Loudspeakers using a plain baffle fell from favour many years ago, as the box enclosure took over. However, with a little care, the simple baffle type can yield more than satisfactory results — especially if the left and right speakers are set into two corners of a room.

Extreme economy of construction means that one can afford rather better drive-units than if lots of timber is required — as in the case of traditional boxes. Another feature of the design is that floor-stands that raise the drivers to ear-level are readily incorporated. You don’t have to fix brackets or shelves.

The basic principle is illustrated, where the drive-unit is screwed to the back of a sheet of chipboard, block-board, MDF or whatever. If you must use 3mm hard-board, it is worth adding the horizontal reinforcing bars.

Apart from cutting the round hole, very minimal carpentry skills are needed. The baffle is simply glued and nailed to the battens, or fixed with screws if preferred. Common two-core cable is held with a couple of staples, so as not to strain the electrical connections. Make sure that you end up with correct phasing (polarity), and left-right placing.

The chief criticism of baffles, unless of infinite size, is that air from the back sneaks round the edges and mixes with the useful air at the front. This effect is only significant at low frequencies. For the application — running PC audio off a sound-card — the results are more than adequate.

A further advantage is that the sound is ‘open’, not ‘boxy’ or muffled with acoustic wadding, and thus rather less electrical power is required for a given sound pressure level.

The table gives a selection of eight-inch (20cm) drive units that are readily available. The best value for money is the Farnell 10W type. A pair of these performed remarkably well with a PC.

For use with a hi-fi amplifier, the 20W version might be safer. However, the 40W twin cone unit from CPC is better in my view, and it’s cheaper.

The units from RS and from Maplin seem to have rather limited frequency ranges, at the low and high ends respectively. Interestingly, the 10W units from Farnell were even sensitive enough to give moderate sound levels when connected to the headphone socket of a personal CD player.

C J D Catto
Cambridge
G58

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Outer diameter</th>
<th>Cont. power</th>
<th>Freq. response</th>
<th>Stock no</th>
<th>Price ea.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>198mm</td>
<td>20W</td>
<td>90Hz-20kHz</td>
<td>267-6823</td>
<td>£10.65</td>
</tr>
<tr>
<td>Farnell</td>
<td>203mm</td>
<td>10W</td>
<td>50Hz-12kHz</td>
<td>453-110</td>
<td>£6.40</td>
</tr>
<tr>
<td>Farnell</td>
<td>210mm</td>
<td>20W</td>
<td>54Hz-16kHz</td>
<td>562-248</td>
<td>£10.49</td>
</tr>
<tr>
<td>CPC</td>
<td>205mm</td>
<td>40W</td>
<td>50Hz-15kHz</td>
<td>LSL200WTC</td>
<td>£8.53</td>
</tr>
<tr>
<td>Maplin</td>
<td>203mm</td>
<td>100W</td>
<td>50Hz-5kHz</td>
<td>RCS1YY</td>
<td>£25.52</td>
</tr>
</tbody>
</table>

All 8Ω impedance. Prices excluding post & packing and VAT.

Ordering details

The EW index data base price of £20 includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC overseas orders.

Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide.

For enquires about photocopies etc please send on sae to SoftCopy Ltd. Send your orders to SoftCopy Ltd, 1 Vineries Close, Cheltenham GL53 0NU.

Cheques payable to SoftCopy Ltd, please allow 28 days for delivery.

Photo copies of Electronics World articles from back issues are available at a flat rate of £3.50 per article, £1 per circuit idea, excluding postage.

Hard copy Electronics World index

Indexes on paper for volumes 100, 101, and 102 are available at £3 each, excluding postage.
TAKE YOUR PIC!

- **Parallax BASIC Stamp2**
 - Very easy to use
 - No programmer required
 - 500 lines Interpreted BASIC
 - Windows Environment
 - 16 I/O lines
 - 4000 lines/sec
 - 24-pin DIP package
 - Ready-to-go module
 - £39.00 each

- **BASICMICRO ATOM**
 - Easy to use
 - No programmer required
 - Compiled BASIC
 - 99.99% Stamp2 Compatible
 - Uses 16F876
 - Very fast
 - Interrupts/PWM/Timers/ADCs
 - 32 bit Maths-Int/Floating Point
 - £45.00 each

- **BASICMICRO Compiler**
 - Full spec BASIC Compiler for PICs
 - Windows Environment
 - 99.99% Stamp2 Compatible
 - Requires programmer
 - We use it!
 - Full Debug facility
 - Supports all 14-bit PICs
 (inc 16F84/87X/628 etc)

www.milinst.com

Milford Instruments Limited, Tel 01977 683665, Fax 01977 681465, sales@milinst.com

FRUSTRATED!

Looking for ICs TRANSISTORS? A phone call to us could get a result. We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name but a few).

2N 2SA 2SB 2SC 2SD 2P 2SJ 2SK 3N 3SK 4N 6N 17 40 AD
ADC-AN AM AY BA BC BD BDE BDV BDW BDX BF
BF BFS BFT BFY BFZ BLY BS BR BX BRY BS BSS BY BSW BT BTA BTB BRW BU BUK BUT BUV BUW BUX BUZ CA CD CX CXA DAC DC DD DM DS
DTA DTG LG GM HA HCF HD HFE ICL ICM IEF IKA
KIAL LA LB LC LD LF LM M M5M MA MAB MAX MB
MC MDA MJE MPF MNN MN MMS MPFSA MSF MPFMS MU MRP NIM NE OM OP PA PAL PIC PN RCS SAA SSB SAD SAI SAS SDA SDG SI SL SN SO ST A STK STR STRK STRM STSSTS SVI T TAA TAG TBA TC TCA TDA TBD TEA TIC TIP TPL TEC TL TFC TGL TNP TTP U UA
UAA UCD UDN ULN UM UPA UPC UPD VN X XR Z ZN
ZTX + many others

We can also offer equivalents (at customers' risk). We also stock a full range of other electronic components.

Mail, phone, Fax, Credit Card orders & callers welcome.

Cricklewood Electronics Ltd
40-42 Cricklewood Broadway, London NW2 3ET
Tel: 020 8452 0161 Fax: 020 8208 1441
www.cricklewoodelectronics.co.uk
E-mail: sales@cricklewoodelectronics.com

WATCH SLIDES ON TV MAKE VIDEOS OF YOUR SLIDES DIGITIZE YOUR SLIDES (using a video capture card)

"Designing digital" automatic slide viewer with built in high quality colour TV camera. It has a composite video output to a phone plug (SCART & BNC adaptors are available). They are in very good condition with few signs of use. For further details see www.dash.co.uk £91.91 + vat = £108.00

Front camera with all 512x512 pixels 8.5mm 1/5 inch sensor and composite video out. All need to be housed in your own enclosure and have fragile exposed surface mount parts. They all require a power supply of between 10 and 12v DC 150mA.

47VFL size 63x58x27mm with 6 infra red LEDs (gives the same illumination as a small torch but is not visible to the human eye) £37.00 + vat = £43.48

30VFL size 32x32x14mm any camera with a fixed focus pin hole lens for hiding behind a very small hole. £35.00 + vat = £41.13

40MC size 39x33x27mm camera for C mount lens these give a much sharper image than with the smaller lenses £32.00 + vat = £37.60

Economy C mount lenses all fixed focus & fixed Iris

VSSL1202F 12mm F1.6 12x16 degrees viewing angle £15.97 + vat = £18.76

VSSL402FF 4mm F1.2 63x47 degrees viewing angle £17.65 + vat = £20.74

VSSL602FF 6mm F1.2 24x32 degrees viewing angle £19.05 + vat = £22.38

VSSL802FF 8mm F1.2 24x32 degrees viewing angle £19.90 + vat = £23.36

Better quality C Mount lenses

VSSL1614F 16mm F1.6 60x64 degrees viewing angle £26.43 + vat = £31.06

VSSL1813H 8mm F1.3 with Iris 68x62 degrees viewing angle £77.75 + vat = £91.00

1206 surface mount resistors E12 values 10 ohm to 1M ohm 100 of value £1.50 + vat
1000 of 1 value £5.00 + vat

666 battery pack originally intended to be used with an orbitel mobile telephone it contains 10.1Ah sub C batteries (42x22x28 the size usually used in cordless screwdrivers etc) the pack is new and unused and can be broken open quite easily £7.46 + vat = £8.77

Please add 1.66 + vat = £1.95 postage & packing per order

JPG ELECTRONICS
Shaws Row, Old Road, Chesterfield, S40 2RB
Tel 01246 211202 Fax 01246 550959 Mastercard/Visa/Switch
Callers welcome 9.30 a.m. to 5.30 p.m. Monday to Saturday

June 2002 ELECTRONICS WORLD
NEW PRODUCTS

Please quote Electronics World when seeking further information

JFET amplifier with 1.6GHz gain/bandwidth
Texas Instruments has introduced a JFET amplifier with a gain bandwidth of 1.6GHz. The Burr-Brown device combines device’s gains, amplifier eliminates transimpedance driving errors, technology converter JFET OPa657 range available of the introduced unity-gain applications. Networking, include 1.6GHz. Supplies June

FM-stereo receiver in a single chip
Philips Semiconductors has launched a family of single chip stereo radios which are adjustment free and can tune into European, US and Japanese FM bands. The first chips to be released will be the TEA5767 and the TEA5768 for mobile handset applications. Philips Semiconductors Tel: 0031 40 272 2091 www.ti.com

A double-deck head
Epcos has introduced a series of multilayer varistors (MLV), which it calls Cera Diodes (CD). The range has been designed as a substitute foe zener diodes and transient voltage surge (TVS) diodes in protecting sensitive components from incoming transient over-voltages and electrostatic charges (ESD). The diode range is available in three sizes of packages depending on type: 0603 single line, 0508 dual line and 0612 quad array. According to the supplier the dual CD 0508 package offers a 58 percent saving in board space compared with a dual TVS diode in a SOT23 package. According to the supplier, the multilayer varistors improve on conventional zener and TVS diodes with bi-directional clamping, higher surge current handling capability, and lower capacitance as a function of bias voltage and temperature. Epcos Tel: 08705 550500 www.epcos.com

Mosfets cut on resistance in cars
International Rectifier’s latest 75V HEXFET power Mosfet offer up to 10 per cent lower on-resistance, or RDS(on), over previous devices. The IRF3808, IRF3808S and IRF3808L for 42V automotive systems are available in the TO-220, D2Pak and TO-262 package. In addition, the Mosfets are rated for repetitive avalanche up to 175°C. They are Q101-qualified and are characterised for automotive applications. RDS(on) of these devices is rated at 7mΩ. The low 0.45°C/W thermal resistance in the TO-220 package enables the

Microcontrollers in near chip-scale package
Microchip Technology has introduced micro-leadframe (MLF) packaged versions of a number of its PICmicro one-time programmable (OTP) and flash microcontrollers. The package design does away with the need for conventional side leads and the company calls it a near chip-scale package. According to the company, the design means that devices are 50 per cent smaller than typical SSOP packages. Further space-saving is achieved when soldering the device directly onto the PCB. A feature called ExposedPad technology, provides a die paddle which is exposed and can be soldered directly to the printed circuit board. The first devices will be available in 28-lead 6x6mm packages with a common pitch size of 0.65mm. The initial product offering will include four OTP devices (PIC16C62B, PIC16C63A, PIC16C72A and PIC16C73B) and two flash devices (PIC16F73 and PIC16F76). Additional devices ranging from 8-lead to 40-lead packages are also planned for 2002. There are also development tools to support the MLF devices. The MPLAB In-Circuit Emulator (ICE) 2000 is a full-featured emulator system. The MPLAB Integrated Development Environment (IDE) tool allows users to write, debug and optimise the PICmicro microcontroller applications for firmware product designs. Microchip Technology Tel: 0118 921 5858 www.microchip.com

Die
Mold Compound
Copper Leadframe
Lands
Gold Wire
NEWPRODUCTS

Please quote Electronics World when seeking further information

removal of heat generated from the device more effectively, said
the company. With the
emergence of 42V automotive
electrical systems, automotive
designers need 75V-rated power
semiconductor devices.
International Rectifier
Tel: 020 8645 8003
www.irf.com

ADSL drivers get
efficient amp
Analog Devices has developed an
amplifier architecture which it
claims can improve power
efficiency in ADSL
(asymmetrical digital subscriber line) line drivers. Called the
Adaptive Linear Power (ALP) architecture, it anticipates the
signal peaks and so raises the
internal supply voltage when
peak power is needed. The first
implementation is the AD8393, a
575mW, single-supply ADSL
line driver. It can achieve over
18V of signal on a single 12V
supply, said the company. The
line driver is designed for
driving DMT (discrete multi-
tone) signals onto a twisted pair
line with a crest factor (peak to
RMS ratio) range of 3.3 to 6.4,
while operating from only a
single +12V supply. The full
power dissipation of the AD8393
for full rate ADSL is 575mW for
non-overlapped applications
(19.8dBm line power) and
624mW for overlapped
applications (20.4dBm line
power). It is optimised for
driving a 1:1.2 transformer:
however, it has sufficient output
current to drive up to a 1:2
transformer, said the company. It
is sampling in 28-lead TSSOP
(thin-shrink small outline
packaging) or 32-lead 5x5 mm
CSP (chip-scale packaging).
Analog Devices
Tel: 0032 11 300 635
www.analog.com

70-pin SMT connector
Molex has released its 70-pin
PCB mounted edge card
connector. Intended to enable the emerging 10Gbit family of
z-axis plugable transceivers, this
connector will support the
proposed IEEE 10Gbit Ethernet
Standard (IEEE 802.3ae
10Gbe). The 10Gbit/s
transceivers must be Z-axis
plugable to the host PCB using
this style surface mount edge
card connector. The connector will offer
alignment posts for stable
placement on the PCB and
standoffs for PCB post-solder
cleaning. The design will provide the option for connector
placement on either side of the
PCB. This connector will support transceiver variants 850nm serial, 1310nm serial, 1310 WDM
and 1550 serial transceivers.
Molex
Tel: 01252 720751
www.molex.com

Flash programming on
a network
Data I/O’s FlashPAK is a
networked flash memory
programming system. It is a four-site system which offers
network control to manual flash
programming environments,
providing traceability. The
system uses the same
programming language and
engine as Data I/O’s ProLINE-
RoadRunner automated inline
programming system. It is a
tabletop programming system
having four sites for
simultaneous programming of
up to four fine-pitch flash
memory devices. Features
include auto-start ganged socket
actuation.
Data I/O
Tel: 01280 700262
www.directinsight.co.uk

MPEG-2 cores handle
four video streams
Amphion Semiconductor is
offering MPEG-2
demultiplexing and multi-stream
decoders for designing into
digital video Asics and SoCs.
The CS6804 Multi-source
MPEG-2 Demux can
simultaneously handle four
transport stream inputs from
independent sources, with up to 4
video and 4 audio packetised
elementary streams per
input source. The CS6652 and CS6654
MPEG-2 video decoders perform
simultaneous decoding of up to 2
or 4 video elementary streams
(ISO/IEC 13818-2 compliant),
supporting both main profile at
main level (MP@ML) and
4:2:2P@ML professional
standard video. The decoders can be
configured to handle a single
elementary stream at
4:2:2P@HL, and optional ‘lite’
versions are available that decode
and store only essential
parameters from the MPEG-2
video stream. According to the
company, off-loading video from
the DSP or general purpose
processor lets the designer build a
more exciting application while
spending fewer resources.
Amphion
Tel: 028 9050 4040
www.amphion.com

Audio codecs for sound
Wolfson Microelectronics has
announced two 24-bit, 8-
channel audio codecs for
surround sound applications.
The WM8770 and WM8771 are
the first products to come from
the firm’s alliance with Sanyo
Electric. The codecs integrate
all the necessary ADcs,
multiplexing, DACs and
volume control for multichannel
audio. They are designed to
work in conjunction with
surround sound decoder DSPs
from Sanyo and others. They
are designed for audio playback
of Dolby 5.1 plus L+R stereo
mix down, and Dolby EX 6.1 or
7.1 applications typically
required for new AV receiver
products. Both codecs integrate
an 8-channel MUX with stereo
ADC and 8-channel DAC. The
WM8770 also integrates an
independent 8-channel analogue
volume control. Both the 24-bit
codes are based on the firm’s
proprietary multi-bit sigma-
delta architecture. The ADCs
and DACs offer sampling
frequencies between 8kHz
and192kHz and are designed to
run at different sampling rates.
Both the WM8771FT and the
WM8771IFT are available now
in a 64-pin TQFP. Evaluation
boards and complete reference
design documentation are also
available.
Wolfson Microelectronics
Tel: 0131 272 7000
www.wolfsonmicro.com
Super audio CD chip set for DVDs
Philips Electronics is offering a Super Audio CD (SACD) chip for design into DVD-video players. SACD uses a sampling frequency of 2.8MHz, 64 times higher than that of CD to deliver higher quality sound. The SAA7893 can support different DVD-platforms with 6-channel SACD and DVD playback.
Philips Electronics
Tel: 0031 40272 2091
www.semiconductors.philips.com

1W output CMOS power amp
Fairchild Semiconductor’s latest CMOS power amplifier, the FAN7021, produces up to 1W of continuous output power (1.5W peak) with supply voltages from 2.0V to 5.5V. The device uses an adaptive bias current control circuit to minimise crossover distortion while also minimising quiescent supply current. The low power device also has a shutdown current consumption of 0.15mA. Total harmonic distortion is 0.2% per channel and power supply rejection ratio is 65dB. For audio applications there is also a built-in popping noise reduction circuit to reduce unexpected speaker noise when the system’s power is turned on or off. According to the supplier, the device does not require an output coupling capacitor, a bootstrap capacitor, or a snubber network. Other features include thermal shutdown protection, unity gain stability, and external gain configuration capability.
Fairchild Semiconductor
Tel: 01793 856831
www.fairchildsemi.com

Power controller with adjustable 12V outputs
Siliconix has introduced a multi-output, sequence-selectable power-supply controller for mobile computing and communications applications. With up to 95% conversion efficiency achieved with synchronous rectification, the low-noise Si9137 DC-to-DC controller features fixed 3.3V and 5V outputs and a 00mA adjustable 5V to 12V output set by an external resistor divider. Other features include programmable output sequencing, a 3.3V reference for precision analogue circuits, a 5V/30mA linear regulator output for Mosfet gate voltage control, and output current limit and over/under voltage protection. Operational frequency is 300kHz, and output voltage regulation is ±3% over the combined line voltage, load current, and temperature extremes.
Vishay
Tel: 0191 5144155
www.vishay.com

Enclosure with custom moulding
Serpac has introduced a range of enclosures, featuring a four piece design and interchangeable end panels. Manufactured from robust ABS (UL 94 HB), the A-Series enclosures feature four insert areas where holes, recesses, legends can actually be moulded-in to customer specifications. Available in sizes 108 x 66 x 22.2mm, 108 x 66 x 28.3mm, 134.9 x 85.1 x 38.1mm, 134.6 x 129.5 x 43.5mm, 180 x 127 x 33.3mm and 180.9 x 127 x 41.1mm, the enclosures are assembled by four or six self-tapping screws. Mounting pillars are provided in the top and base panels for fitting PCBs.
Serpec
Tel: 01489 583858
www.serpec.co.uk

VolP gateway in 360 ports
Motorola Computer Group has introduced its first range of application-ready voice over IP communications gateways. The ComStruct IGP series is designed to scale from 120 ports to 20,000 ports per shelf. The first gateway in the series is the IGP1000, offering up to 360 ports of compressed VoIP in a CompactPCI chassis. The application-ready system includes an application processor board, multiple packet voice processor boards, a high availability operating system, and the firm’s FACTMG gateway development software.
Motorola
Tel: 01509 634461
www.motorola.com

3G basestation power amplifier optimises efficiency
Wireless Systems International has introduced a 3G mobile basestation digital power amplifier which it claims is capable of delivering more than 15 per cent efficiency (depending on the required CDMA signal statistics) from a

NEWPRODUCTS

Please quote Electronics World when seeking further information

Switch-mode power supply with its own diagnostics
The latest switch-mode power supply from Bulgin Power Source incorporates remote diagnostics and power-management facilities that are intended to enhance system reliability and also to minimise the need for on-site maintenance. Designed for battery-backed mission-critical applications in the telecommunications, networking, industrial control and utilities sectors, the 560W stand-alone unit provides a 28V main output for powering the load, a 27V battery charging output and a 12V auxiliary output. Via the built-in RS232 serial interface, the system operator can carry out remote adjustment of parameters such as battery charging rate, battery low and undervoltage lockout operating points, as well as interrogating the unit for real-time operating conditions, including PSU temperature, battery life, elapsed charging time and battery energy level. Input voltage range is 90 to 264V at 45 to 66Hz.
Bulgin Power Source
Tel: 01522 500511
www.bulginpower.co.uk

June 2002 ELECTRONICS WORLD
48V DC supply. According to the supplier, as well as supporting this efficiency at high power levels the amplifier's design will also retain its efficiency at typical operating power levels well below the peak. It is based on the firm's proprietary digital pre-distortion amplifier design which supports what it calls built-in clipping. This means that RF power devices do not ever enter saturation point, so optimising the efficiency achieved.

WSI
Tel: 0117 9066200
www.wsi.com

Fixed-value optical attenuator
Honda Connectors is extending its MU range of optical connectors with a range of fixed-value attenuators. Fitting between a standard MU-type plug and adapter, the LGA-5600 series is available in six attenuation values: 1.3, 5, 10, 15 and 20dB. Tolerances range from ±0.5dB for the smallest attenuator, up to ±2.0dB for the 20dB version. While wavelength dependence is characterised as between 0.5 and 1.5dB max. The devices are designed for use with 9.5/125MM optical fibres operating at frequencies of 1310nm or the 1510-1620nm range. Return loss is 40dB or more at 1310nm.

Honda Connectors
Tel: 01793 523398
www.hondaconnectors.com

Battery charger generates 900mA
Ansmann’s latest NiCd/NiMH battery generates a 900mA charging current that can be supplied to each of four cells. AAA, AA, C and D type batteries can be charged. The Powerline 5 charger incorporates a microcontroller-based charging system which controls levels. Also a defined pre-discharge can be triggered which the company said is useful to counter any loss of capacity in NiCd cells that can reduce lifetimes. The unit will then automatically recharge once the cells are fully discharged.

Ansmann
Tel: 01279 838205
www.ansmann.de

Test kit for antennas
Tektronix has added an antenna test capability to its field maintenance tools for wireless communications networks. The YBA250 antenna and transmission line tester module for the NetTek field tool adds the capability to execute antenna and transmission line tests supplementing existing features including radio frequency (RF) and modulation measurements for base stations. It provides antenna performance tests such as return loss, cable loss, and voltage standing wave ratio (VSWR).

Tektronix
Tel: 01344 392000
www.tektronix.com

Boundary scan on Fast Ethernet LAN
Goepel Electronics has launched its first boundary scan controller for Fast Ethernet (IEEE802.3) LANS. It is the first in a series of boundary-scan test and in-system programming devices running on a LAN. Available from distributor BSE UK, the LAN 1149.1 controller when combined with Cascon’s floating licence feature allows test and ISP programming, debugging and execution to be controlled from any Windows workstation on a network. The intention is to allow engineers to remotely test and diagnose boundary scan operations from their desktop. The controller includes a 32-bit PIO to control signals on the unit under test which are not accessible by boundary scan, TCK frequency programmable from 100kHz to 30MHz, a two wire handshake bus for external synchronisation of scan operations and two independent test access ports with I/O levels which are programmable from 1.8V to 3.6V.

Goepel Electronics
Tel: 01420 82122
www.bseuk.co.uk

64-bit processor runs at 250 Mips
Toshiba’s latest 64-bit MIPS-based embedded processor is targeted at audio and multimedia applications which require the extra performance. The TX4925 Rise chip uses the firm’s 200MHz MIPS-based, 1.5V TX49H2 core and delivers 250Mips performance. Supplied in a 256-pin PBGA package, the processor peripherals include a dual-slot PCM-CIA interface, a PCI controller, and an AC-link controller for AC97 audio/modem codecs. A direct memory access (DMA) controller, two UART channels, a serial peripheral interface (SPI), 32 general-purpose I/O ports, an interrupt controller, three 32-bit timer/clock channels, a 44-bit real time clock (RTC), and a high-speed serial Concentration Highway Interface (CHI) are also provided.

Controllers for external memory include an SDRAM/Flash controller, an external bus controller and a NAND flash controller.

Toshiba
Tel: 01276 694730
www.toshiba-europe.com
THE OSCILLOSCOPE IS MOVING ON...

Features:
- A fraction of the cost of benchtop scopes
- Save multiple setups, for ease of use
- Save, print and e-mail your traces
- FREE software and upgrades
- Automated measurements
- Large colour displays
- Scope, spectrum analyser & meter functions

Ask for a FREE catalogue and demo software, or visit:
www.picotech.com

...DONT’T GET LEFT BEHIND

Tel:+44 (0) 1480 396395, Fax:+44 (0) 1480 396296, E-mail: post@picotech.com

FREQUENCY SHIFTER
FOR HOWL REDUCTION

- For public address and sound reinforcement.
- Provides more gain and greater stability.
- 5Hz Fixed Shift Board with mains supply.

- Broadcast Monitor Receiver 150kHz-30MHz.
- Advanced Active Aerial 4kHz-30MHz.
- Stereo Variable Emphasis Limiter 3.
- PPM10 In-vision PPM and chart recorder.
- Twin PPM rack and Box Units.
- PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN –50/+6dB drives and movements.

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh GU6 7BG
Telephone: 01483 275997 Fax: 01483 276477

TELFORD ELECTRONICS
Old Officers Mess, Hoo Farm, Humber Lane, Horton,
Telford, Shropshire TF6 6DJ, UK
Tel: (0044) 01952 605451 / 670178
Fax: (0044) 01952 677978
E-mail: telfordelectronics@btinternet.com / marc.007@btinternet.com / annie.007@btinternet.com

Web: http://www.telford-electronics.com

Second User – Electronic Test and Measuring Instruments – DC to 100 GHz

FANTASTIC BARGAINS TO BE HAD

Please visit our regularly updated web site for all your equipment needs.
We have a clearance/graveyard site with goods from as little as £15.00!!!
Bluetooth software for non-Windows applications
Cambridge Silicon Radio is offering Bluetooth software allowing designers to embed the protocol into a range of devices not running on Windows-based operating systems, such as mobile phones or PDAs. BCHS is the first software to run the Bluetooth stack (L2CAP, RFCOMM and SDP) on the BlueCore2 hardware, leaving only the Bluetooth profiles to run on the host system. The following profiles are supported: Audio Gateway (AG) profile, Dial up networking (DUN) profile and Object Push (OPP) profile. The software is also available bundled with CSR’s BlueCore2 single-chip, hardware reference designs and sample applications. Cambridge Silicon Radio Tel: 01223 692 689 www.csr.com

Miniature Bluetooth 1.1 module is compact
Murata claims to have one of the smallest Bluetooth 1.1 transceiver modules measuring 13.1mm x 10.5mm x 2.3mm. Complying with specification version 1.1, the Blue Module incorporates the RF and baseband IC, LNA, antenna switch, flash memory and crystal oscillator on to a LTCC (low temperature, co-fired ceramic) substrate. Integrated within the substrate are the band pass filter, balun and matching components. The design requires only an antenna for a Bluetooth qualified product. The first devices in the range available are the LBMA2U3AB1, LBMA2U3AB2 and LBMA2U3AB3, each with USB, UART and BCSP interfaces. Murata Tel: 01252 772144 www.murata.com

Build and Upgrade Your Own PC
Second Edition

Save £100s by making your current PC last longer
You can have a PC with a spec that matches your needs
Discover the practical techniques of upgrading a PC and avoid the pitfalls

Ian Sinclair’s Build Your Own books have established themselves as authoritative and highly practical guides for home PC users and advanced hobbyists alike. All aspects of building and upgrading a PC are covered: making this the book the computer retailers don’t want you to read! By getting to grips with the world of PC hardware you can avoid the built-in obsolescence that seems to be part and parcel of the fast moving world of PCs, and escape the need to buy a new PC every year. You can also have a PC that keeps pace with the ever-increasing demands that new software applications place on your system.

The new edition of this book is based round building and upgrading to the latest systems such as Pentium III and dual-processor Celeron motherboards running Windows 95/98 or Windows 2000. As well as guiding you round the inside of your CPU Ian Sinclair also covers monitors, printers, high capacity disk and tape systems, DVD drives, parallel port accessories...

CONTENTS: Preface; Preliminaries, fundamentals and buying guide; Case, motherboard and keyboard; About disk drives; Monitors, standards and graphics cards; Ports; Setting up; Upgrading; Multimedia and other connections; Windows; Printers and modems; Getting more: Index

How to pay
(Build and Upgrade Your Own PC) paperback

☐ I enclose a cheque/bank draft for £__________ payable to ELECTRONICS WORLD
☐ Please charge my credit/charge card
☐ Mastercard ☐ American Express ☐ Visa ☐ Diners Club

Credit Card No: ___________ Expiry Date: ___________

Signature of Cardholder: ___________

Cardholder’s statement address: (please use capitals)
Name: ___________
Address: ___________
Post Code: ___________ Tel: ___________

Post your completed order form to:-
Jackie Lowe, Cumulus Business Media,
Anne Boleyn House, 9-13 Ewell Road, Cheam,
Surrey, SM3 8BZ

Fax your completed order form to 020 8722 6098
UK Price: £22.50 Europe £24.00 ROW £26.00
Price includes delivery
Building on his earlier article, outlining how to make a 500MHz scope adaptor, Ian Hickman here discusses the remaining sections needed to implement the scheme. It turns out that these are as tricky and even more complicated than the sampling circuit described earlier.

As I mentioned in my earlier article", back in the 1950s oscilloscopes struggled to provide a bandwidth of 500MHz: 25MHz was nearer the norm. A notable Tektronix model, with the aid of a special plug-in, managed 85MHz. It was considered remarkable in its day.

Strange to relate, then, that in the late 1950s an oscilloscope appeared which boasted the then incredible bandwidth of 2000MHz. This Hewlett-Packard instrument, whose model number was HP260 or maybe HP280 I think, was an entirely new breed of device, called a 'sampling oscilloscope'.

This instrument achieved its remarkable performance by giving up the quest to handle the incoming signal in real time. Instead, it used a very high-speed gate, operated by a very narrow pulse, to sample the signal at intervals.

Such a same scheme is still used today in digital sampling oscilloscopes: not to be confused with digital storage oscilloscopes. Both types are discussed in reference 1.

The technique was refined over the years by both Hewlett-Packard and Tektronix, leading to instruments with a bandwidth of 14GHz by the 1970s, and more recently, of 50GHz. But like the original models, indeed like all sampling oscilloscopes, these are limited to operating on continuous, repetitive signals. Clearly the technique does not, by its very nature, lend itself to capturing transients, or fast one-off events of any kind.

"March 2000 issue, 'Towards a 500MHz scope adaptor'"
percent of the input voltage. The voltage on the capacitor is then amplified by a factor sufficient to make up the shortfall, giving a measure of the actual input voltage at the instant the sample was taken.

However, the required information is not the absolute value of the capacitor voltage, but the difference between the current sample and its predecessor. So the amplifier is AC coupled, thus it acts as a differentiator. Its output voltage is stored via a second gate, in a memory capacitor.

The memory accumulates the successive capacitor difference voltages; thus it is an integrator and its output represents the value of the input signal at the moment the last sample was taken. The combination of a differentiator and an integrator results in a constant unity gain system, from 0Hz (DC) up to a frequency somewhat below the Nyquist rate.

Figure 2 shows the all-important trigger processing section. A fraction of the input signal energy, about 10%, is picked off and fed to a trigger slicer circuit. This produces a squared up version of the input signal and, via the hold-off gate, will trigger the control bistable, initiating a positive-going 'fast ramp'.

The display-rate generator produces a fixed frequency high enough to avoid flicker, and with a very asymmetrical mark space ratio. During the mark period, a positive-going 'slow ramp' is produced, resetting rapidly during the short space period. The slow ramp is fed out to the external X input of the display oscilloscope.

Both the fast and the slow ramp are fed to the ramp comparator, so that as soon as the fast ramp crosses the level of the slow ramp, a narrow sample pulse is produced. At this same time, the control bistable is reset and the hold-off monostable is triggered. The latter closes the hold-off gate, preventing the output of the trigger slicer triggering the control bistable again for the next 10µs.

When the hold-off gate reopens, the control bistable can again be triggered, initiating another fast ramp. However, this time, the delay at which the fast ramp crosses the slow ramp level will be delayed rather more relative to the trigger that started the fast ramp. This is because the slow ramp voltage will have increased since the previous trigger.

Thus successive samples are taken at slightly later points on the input waveform, building up a pattern across the screen, representing the input waveform, but in 'equivalent time' rather than real time. Clearly, the faster the slow ramp, the smaller are the successive delays, and the closer together the samples cluster on the input waveform.

Ultimately, with a nearly flat 'slow ramp', all samples would be taken at almost the same point on successive samples of the waveform, and it is thus easy to produce an impressive figure for the 'equivalent sampling rate'.

The nitty gritty

While true, the preceding explanation is very simplistic. When the fast ramp crosses the slow ramp level, in addition to triggering the sampling pulse and resetting the control bistable, the ramp comparator output generates a 250ns pulse. This in turn triggers the Gate 2 control monostable, producing a 750ns pulse; see **Fig. 2**.

The 750ns pulse opens Gate 2, the memory gate in **Fig. 1**. The reasons for the various delays and pulse widths will become apparent later, but they are crucial to the operation of the overall system. To see just how, one must turn from block diagrams to the circuitry in detail, and the place to start is at the beginning of the signal processing chain, **Fig. 3**.

Circuit details

Figure 3 shows Gate 1 and its associated components. Early sampling oscilloscopes used a high-impedance probe, with the sampling circuit actually mounted at the end of a cable, in the probe head. This was never entirely satisfactory, resulting in 'kick-out', i.e., fast edges injected into the circuit under test at the sampling rate, from the sampling gate.

This design uses a low-impedance input, 75Ω, intended to be driven by an active probe, such as described in reference 3. Transistor Tr1 is normally OFF. Its collector voltage rises via R7 and R6, aiming at +70V, charging the capacitance of the open circuit coaxial line L1 in the process.

However, the collector voltage never reaches +70V, being clamped via a diode at a voltage V_{clamp}. This clamp is set at typically about +28V, depending on the particular BFR91
used. This is just below the transistor’s avalanche breakdown voltage, and well above the manufacturer’s recommended rated maximum.

When a positive-going trigger pulse arrives, the transistor starts to conduct. But due to the high electric field strength within the device, the few initial carriers multiply rapidly, and the transistor becomes effectively a short circuit.

The voltage stored on the transmission line is then divided between the 50Ω source impedance of the line, the impedance in the emitter circuit of TR1, and the voltage drop across the transistor, which is not inconsiderable. More on the operation of avalanche pulse generators can be found in reference 4.

The impedance in the emitter circuit of TR1 consists of RS and, via TR1, RS together with the diodes D1-D4 forming Gate 1. These diodes are normally reverse biased by the ‘back-off voltage’ between points CC and DD, but conduct briefly during the pulse, momentarily connecting point A to point B.

Pulse length is determined by the two-way transit time of the transmission line L1. This is about 1 μs, depending on the velocity of propagation in the particular type of 50Ω coaxial cable used.

Since the next sample is normally not taken until many complete cycles of the input waveform later, the back-off voltage must be greater than the peak to peak excursion of the input; otherwise the Gate 1 diodes would conduct at the wrong time. So the amplitude of the available pulse from the avalanche pulse generator must be made very small.

Indeed, you will look for it in vain in either Fig. 3, or in Fig. 4. In fact, it consists solely of the stray capacitance at the output of Gate 1, which comprises the input capacitance of IC1a, the self capacitance of R19 and R11, and the capacitance to the rest of the world of the lead connecting Gate 1 output to point B in Fig. 4.

Being so small, this storage capacitance can store the new voltage level out of Gate 1 only very briefly, before it would leak away via R11, returning the voltage at the non-inverting input of IC1a to ground potential. But before that has a chance to happen, the new level is applied by the buffer amplifier IC1b, via C5 and R12, to non-inverting amplifier IC1b. The gain of this is set to X, where 100/X is the percentage sampling efficiency of Gate 1.

Thus the voltage at point H equals what the output of Gate 1 would have been, had its sampling efficiency been 100%. But due to the finite response speed of IC1a and IC1b, this desirable state of affairs takes an appreciable fraction of a microsecond. For this reason, the 750ns wide pulse which opens Gate 2 is delayed by 250ns as shown in Fig. 2.

During the time that Gate 2 is open, IC1c integrates the voltage at point H. The time constant of the integrator, in conjunction with the gain of IC1b, set by R13, is such that the voltage at the output of IC1c reaches a level equal to the input voltage at point A, when the sample was taken.

Unity gain amplifier IC1d is included, as the integrator is an inverting circuit. Non-inverting integrators, such as the De Boo integrator, are well known, but not so convenient in this arrangement, where the integrator input is left open circuit between pulses.

Having extracted the true value of the input, it is necessary to set up the front end to measure the change in input voltage at the time the next sample is taken. This takes two steps. The first consists of charging up the tiny Gate 1 output storage capacitor to the current input voltage, which is achieved via R10.

However, it is also necessary to centre Gate 1 itself on this
Positive or negative?
Response from point B to point K is, as described above, positive. And the output voltage at point K is fed back to point B. This sounds like positive feedback, and indeed it is.

However, the inclusion of passive lag R36 and C6 delays this positive feedback, so that it is virtually ineffective during the period that Gate 2 is open. But during the minimum 10μs delay between samples caused by the hold-off monostable, the voltages at points B, CC and DD all settle to the appropriate values and, crucially, point G returns to ground. Thus when the next sample is taken, purely the difference between it and the previous one is applied to IC1b.

To see how the system works as a whole, consider the case where the input is at 0V for a period, and then makes a step change to, say, +1V. In Fig. 5, the left hand diagram shows what happens if the overall gain of the sample feedback loop, as set by the efficiency of Gate 1 sampling, the setting of R13, the length of Gate 2 opening and the time constant of the integrator, is too high. The result is that the supposedly accurate estimate of the true input voltage is also too high.

Following the step, the system will adjust to correct the overshoot, but by too much again; the loop is under-damped. Thus over the next few samples, the output will settle to accurately reflect the input. So, considered in the long term, the feedback is negative. Unlike a normal underdamped negative feedback loop, the frequency of the ring is independent of circuit parameters. It is simply half the sample frequency, as shown.

The right diagram in Fig. 5 shows what happens, on the other hand, if the sample feedback loop gain is too low. The response is now over-damped. When correctly set up, the sample feedback loop will correctly acquire the true amplitude of the input in a single step.

Despite the overall effect being one of negative feedback, the positive feedback aspect is responsible for some deterioration of the signal to noise ratio of the waveform as reconstructed. This appears in the form of jitter, or sample-to-sample noise. The displayed pulses are then not at all exactly the correct level, a perennial problem with sampling oscilloscopes.

Slewing the samples
Figure 6 shows the sequence of events as the system samples an input waveform. The capital letters by the waveforms refer to corresponding points on the circuit diagrams of the trigger/sample slewing department, detailed below.

The trigger slicer produces an on/off waveform from the input signal. This is applied to the hold-off gate, a two input NAND gate. At some point, the 10μs hold-off period expires and the other input to the gate changes from logic 0 to 1. This permits the output of the gate to go negative, either immediately if the slicer output is already high, or when it next does so.

On the next negative-going edge the hold-off gate output is sent high, triggering the control bistable, which initiates a fast ramp. When the fast ramp level passes that of the slow ramp, several things happen. A Gate 1 sampling pulse is generated, and at the same time, the control bistable is reset.

A 250ns delay is initiated, and the trigger hold-off monostable device is retriggered, preventing further triggers for 10μs. The trailing edge of the 250ns delay pulse triggers the Gate 2 control monostable device, and the sequence of events described in the previous section unfolds.

Trigger/slewing circuitry
Figure 7 shows the front end of the triggering department. Resistor R1, R9 and R27 provide a 750Ω input resistance, with one eleventh of the input voltage available to the MAX913 trigger slicer IC10.

To ensure clean switching, a small amount of positive feedback is applied, providing a small degree of hysteresis. The positive feedback is applied to the non-inverting input, being positive by virtue of being taken from the complementary Q1 output.

Resistor R18 is fitted to maintain the maximum trigger sensitivity despite the attenuation due to R1 and R27. With a MAX913 having zero offset voltage, its value would be 1MΩ, the same as R31. With the particular MAX913 used in the prototype, the required value turned out to be 3.3 MΩ.

The trigger slicer output is taken via one section of IC3 to the input, pin 10, of the hold-off gate. The intermediate gate is a left over from the development phase, being one of various superfluous gates or inverters sprinkled around the system for the same reason.

Assuming the input from the hold-off monostable device, point L, is high, a negative edge at pin 10 will produce a positive one at pin 8, triggering the control bistable IC6. The output of IC6 at pin 5 then goes high, permitting constant current generator Tr 4 to charge C15, with C16 if a slower fast ramp is required.

Switch S1 permits the selection of equivalent timebase speeds of 1, 10 or 100ns/division on the display scope. Capacitor C13 and C14 provide additional decoupling for the fast ramp generator. Any variations in fast ramp timing will cause the sampling points to vary, contributing to a jittery displayed trace.
The fast ramp generator output at Q is applied to the ramp comparator, but before considering that, Fig. 8 shows how the slow ramp is generated. The 555 timer IC₇ generates an asymmetrical square wave.

During the brief period when IC₆ pin 6 is high, the JFET TR₅ is on and shorts out C₃₄, resetting the ramp. During the longer period when IC₆ pin 6 is low, TR₅ is off and the Howland current pump arrangement of IC₉ produces a ramp, which is positive-going from ground.

The two following op-amp sections are a simple bounding circuit, which prevents the slow ramp output at S greatly exceeding +5V. Output S is applied to the X input of the display oscilloscope.

On my scope, in XY mode input channel 1 doubles as the X input, so its input attenuator and VARiable control were used to adjust the sweep to 10 divisions full screen. In other cases, an additional pot like R₅₅ could be incorporated to fulfill this function. Output R provides the slow ramp to the ramp comparator. R₅₅ providing adjustment to set the ramp excursion to +5V maximum.

Figure 9 shows the remainder of the trigger/slewing department. The slow ramp from Fig. 8 is applied at R direct to pin 2 of the ramp comparator IC₆, another MAX 913. The fast ramp is applied to pin 3 via the buffer stage TR₆. Due to D₅, the fast ramp at pin 3 always starts from below 0V, thus ensuring that it always crosses the slow ramp level.

A small amount of hysteresis is again applied, via R₃₉. When the fast ramp overtakes the slow ramp, point P, pin 12 of IC₆, goes high, triggering the avalanche pulse generator TR₇, and applying a sampling pulse to Gate 1. At the same time, pin 10 of IC₆ goes low, resetting the control bistable, triggering the hold-off monostable device at pin 1 of IC₇ and sending pin 8 of IC₆ high. Output from the hold-off monostable device at point L closes the trigger hold-off gate for the next 10μs. With the control bistable now reset, the fast ramp returns to a little above 0V, clamped by D₄, and pin 12 of IC₆ returns to 0V. After a delay of some 250ns, set by R₃₉ and C₁₈, pin 8 of IC₆ goes low, triggering the Gate 2 control monostable device at pin 9 of the 74HC221. IC₇. This outputs a pulse at
N, opening Gate 2 for 750ns.

And there matters rest for the next 10μs at least, until the control bistable is retriggered. In the mean time, the voltage levels at all points around the sample feedback loop settle to steady values, ready to process the next sample.

Power supplies

The suite of stabilised power supplies shown in Fig. 10 was built and tested as a separate module. It supplies the various voltages required by the subsystem, namely +70V,

V_{clamp} +15V, +5V and -15V.

Both MAX913 comparators also require -5V, and this was produced locally by a 79L05, on the trigger/slewing logic board, see Fig. 7.

The MAX913 operates at frequencies up to 150MHz. If you are contemplating higher input frequencies, either a faster device would be required, or a prescaler could be used to divide the input down by a factor of two or more.

A suitable prescaler is incorporated in many synthesiser ICs designed for use in the GSM, DCS/PCS bands, etc. I have a couple of SP8715 1100MHz multi-modulus prescaler ICs in stock, but these are not very suitable, as the minimum sinewave input frequency for correct operation is 200MHz.

The devices will operate down to 0Hz provided the input slew rate is faster than 100V/μs, so should prove suitable if preceded by a fast slicer circuit, perhaps PECL. Note that due to the hold-off gate, the maximum sample rate is 100kHz. So a +64 prescaler would permit operation down to 6.4MHz at the maximum sample rate – and lower if fewer samples across the screen were acceptable.

For frequencies lower than this, the oscilloscope used as the display should be able to handle the signal on its own!

Implementation considerations

When dealing with very high frequencies, the mechanical
design of a circuit becomes of crucial importance. Construction of the critical Gate 1 circuitry of Fig. 3 was carried out on a ground plane, Fig. 11. The square flange of a 7522 BNC panel mounting socket was soldered to the edge of a 6cm by 8cm piece of SRPB copper clad board (ground plane A), and strengthened with a couple of triangular tin plate gussets, as shown.

Two of the diodes and resistors R_3 and R_4 were mounted as shown, on the connector's centre conductor. The other two diodes were mounted pointing upwards, so that point B sits in a hole in another piece of copper clad (ground plane B, not shown), mounted on metal pillars, above the first.

Remaining components of Fig. 1 were mounted on, or just above the ground plane, as shown separately, for clarity, in the right-hand sketch of Fig. 11.

Resistor R_1 was mounted on the connector’s centre conductor, pointing upwards and projecting through another hole in ground plane B, where IC_{10} was mounted. Ground-plane A was subsequently attached with earth straps to a larger piece of copper clad, 20cm by 20cm (ground plane C), as indicated. That completed the critical part of the layout.

The beauty of the sampling scope is that once the samples are taken, they can be processed almost at leisure — certainly at lowish frequencies where handling them is no great problem. So the sample feedback loop of Fig. 4 was constructed on 0.lm matrix copper Strip board.

All ICs were socketed for convenience should changes be necessary. In fact, such a change was necessary; originally IC_1 was a TL084, but the response of this proved too slow, so it was changed to the faster TLE2074 as shown.

The trigger/slewing logic was made up on a standard logic IC prototyping board. The present arrangement is not very satisfactory though, due to the lead lengths this involves between the different modules.

Construction is best done in stages, starting with the power supplies, Fig. 10, and then proceeding to the circuitry of Figs 3 and 4. The remaining sections may then be constructed also, or you may prefer to get each section working, as described below, before proceeding to the next section.

Setting up

A temporary test unit will be needed, producing the 250ns and 750ns pulses at a 100kHz repetition rate, shown in Fig. 2 and the bottom two traces of Fig. 6. With V_{clamp} set near maximum, the avalanche transistor pulse generator Tr_1 should free run.

The pulse itself will be too fast for most oscilloscopes to display; Fig. 12 shows what it looks like on my Tektronix 475A, with its rated bandwidth of 250MHz - 1.4ns rise time, on a good day, bearing in mind its age.

In theory, the pulse is rectangular in shape, but due to the rise time of a 475A, it cannot accurately portray the pulse, and never actually reaches its full amplitude. However, if the pulse itself is too fast to see, the recovery of the potential at the junction of R_5 and R_6 in Fig. 3, towards V_{clamp} will be easily seen. This is evidence that the avalanche pulse generator is working.

With the 25ns trigger pulse and 750ns Gate 2 pulse turned off, V_{clamp} should be reduced until the avalanche pulses just cease. The result will be that the output of IC_{1a} wanders off to one supply rail or the other, as IC_{1e} integrates its own input offsets.

With the 250ns and 750ns 100kHz pulses applied, the output of IC_{1d} should sit at or very near OV, this being the potential at point A, with no external applied input at the 750B BNC socket, assuming a suitable setting of R_9. Adjust this initially so that the back-off potential between CC and DD is 3V.

When a plus or minus 1V potential is applied at the input, the potential at IC_{1d} output should follow the input. If the sample feedback loop gain set by R_{13} is too great, the loop will oscillate, and R_{13} should be backed off until this ceases.

The circuitry of Fig. 8 should now be tested; this module operates purely in a stand alone capacity, and should present no problems. Now add in the circuitry of Figs 7 and 9, enabling the full timebase department to be tested.

A 1V p-p 50kHz sinewave should be applied at the BNC input socket, and should result in a 50kHz squarewave at pin 7 of trigger slicer IC_{10} A value for R_{48} can then be found, that keeps the trigger slicer running down to the smallest possible amplitude of the 50kHz sinewave.

The whole timebase department should now be working, but in view of the highly interconnected nature of the various stages, some trouble-shooting may necessary, unless your constructional skills are infallible! With S_1 set for the slowest fast ramp rate, the fast ramp should be visible at the emitter of Tr_6, even on a scope having a modest rise time.

With the timebase department working, the Gate 1 and Gate 2 pulses, points P and N in Fig. 9, should be connected to the corresponding points in Figs 3 and 4. A 1V p-p 5MHz squarewave connected to the BNC socket should now be reproduced on the screen of the oscilloscope.

For best rise time without overshoot, R_{13} will need adjustment. Note that the setting of V_{clamp}, R_{29} and R_{11} all interact, and some iteration will certainly be necessary to optimise the performance. Clearly, the 5MHz test squarewave should have very fast rise and fall times; a string of 74AC series inverters can be used to sharpen it up.

Further development

As will be all too clear from the circuit diagrams, the system is still at an experimental stage. An obvious improvement would be the addition of ±2 and ±5 timebase ranges, intermediate between the ranges provided by S_1.

Reducing the amplitude of the slow ramp will have the effect of increasing the equivalent sample rate: effectively increasing the equivalent timebase speed. The mean level of this reduced amplitude slow ramp can then be adjusted between the limits of OV and ±5V, giving in effect a variable
timebase delay, permitting closer examination of any part of the input waveform.

But probably the greatest prize would result from further work on the avalanche pulse generator. Halving the length of the pulse forming line \(L_I \) would give pulses around 500ps long, increasing the Nyquist rate to around 1GHz. However, I do not know whether the BFR91 device would still then be suitable, and of course the shorter opening of Gate 1 will halve the sampling efficiency.

While in principle, this can be compensated by increasing the loop gain with \(R_1 \), the increased positive feedback will inevitably increase the amount of vertical jitter of the displayed points on the screen.

I have experimented with a BFR520 at \(T_R \), a device with an \(f_c \) of 9GHz, against the 5GHz of the BFR91. But its lower avalanche voltage limits the available amplitude of the sampling pulse. This in turn limits the usable range of the back-off voltage, setting a limit on the maximum input amplitude the system can accept.

The intention is to use the system with an active probe using the MAX4005, described in reference 3. This has a gain of \(x = 5 \), so that 5V logic signals only require a 0 to +2.5V signal handling range for Gate 1.

All in all, the project has proved a fascinating challenge, and shows very definite promise. As an example, Fig. 13 shows the display of a squarewave of about 28MHz. This was produced by a generator I designed, using a PECL direct digital synthesiser chip type SP2002, clocked at 1268MHz. There is evidence of a degree of jitter in the display, which is doubtless due to the poor layout of the prototype, mentioned earlier.

The SP2002 device data sheet gives lots of data on the sine outputs, but fails to specifyт the rise time of the squarewave outputs. However, this should not substantially exceed the clock period and should therefore be 1ns or less.

It appears that there are several points on the displayed rise time, but this is because the exposure used for Fig. 13 has covered several successive sweeps of the display. It seems that the rise time of the system really is about 1ns.

In oscilloscope applications, rise time is generally a much more key specification than bandwidth, and this system looks very promising in that respect.

References
1 Digital Storage Oscilloscopes, Ian Hickman, Newnes Butterworth-Heinemann, 1996. ISBN 0 7506 2856 1
AGILENT TECHNOLOGIES (HEWLETT PACKARD) an 'as new condition' E8385A 300kHz - 9GHz NETWORK ANALYSER with 010/015/1CL Options (time-domain & high-stability). Current list is over £48k, asking £25,000 Choice of 2 in stock.

AGILENT TECHNOLOGIES

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>010/015/1CL</td>
<td>as new condition</td>
<td>£25,000</td>
</tr>
</tbody>
</table>

All equipment sold calibration-checked by independent laboratories and carries un-conditional refund and 90-day guarantees.

TEST EQUIPMENT WANTED.
TOP PRICES PAID FOR PROFESSIONAL HIGH-END UNITS
AGILENT TECHNOLOGY SPECIALISTS.
FOR COMPLETE STOCK LISTING PLEASE CHECK OUR WEBSITE
www.ralfe-electronics.co.uk

S.R.P TRADING
Manufacturers & Distributors of Communications Equipment

WARNING!! DON'T BUY ANY AIRBAND RADIOS OR SCANNERS UNTIL YOU HAVE VIEWED OUR LARGE SELECTION
WWW.SRPTRADING.COM

FREE POSTAGE AND PACKING!!
GP NI-MH HIGH POWER RECHARGEABLE BATTERIES

Mh-AA160 . . . 1600AH AA cells . . . £12.95 (set of 4) free p&p
Mh-AA180 . . . 1800AH AA cells . . . £15.95 (set of 4) free p&p

Charger for above £8.95 free p&p FREE POSTAGE AND PACKING!!

1175 Bristol Road South, Northfield, Birmingham B31 2SL
Tel: 0121 475 6969 / 0121 475 9898 Fax: 0121 475 3355
E-Mail: srp.trading@virgin.net
WEB: www.srptrading.com
Real-time digital filter

Signal Wizard is a unique hardware and software system for designing, downloading and running filters in real-time. Low-pass, high-pass, band-pass, band-stop, comb or any arbitrary shape can be designed in seconds. Once a filter is designed, the software interface is used to download the filter to the hardware system via a serial link, where it is executed on demand. You don’t need to know about digital signal processing theory or the maths associated with digital-filter design. But if you’re a filter expert, you won’t find yourself restricted by the easy-to-use interface. If you want to do it the hard way, you can even design your filter in long-hand then download the filter’s frequency response as an ASCII file to the Signal Wizard’s control program!

Signal Wizard is a total filter solution. Due to its flexibility, it is ideal for processing audio-bandwidth signals in real time. High-quality analogue signal conditioning and a dual-channel 18/18-bit resolution analogue-to-digital converter and digital-to-analogue converter provide a resolution sufficient for the most demanding applications.

In short, the Signal Wizard brings the power of digital signal processing to any audio-bandwidth domain that requires high-performance electronic signal filtering. Applications include sensor linearisation, audio signal processing, signal analysis, vibration analysis, education and research in electrical, electronic and other physical sciences.

System requirements:
100 MHz PC running Windows 95, 98 or ME
SVGA display (800X600 pixels) or higher
CD ROM drive
10 Mbytes of free hard disc space
Serial port, capable of 19200 bit/s

Signal Wizard - key features:
- Runs under Windows 95, 98 or ME
- Generates FIR filters with a maximum of 1024 coefficients.
- Multiple pass, stop or arbitrary filters.
- Lower –3dB frequency 3.7Hz at 48kHz sample rate and 1.2Hz at 12kHz sample rate.
- Filter operates in single or dual channel modes.
- Import mode – ASCII import of any frequency response.
- Hardware module holds up to 16 filters, instantly selectable with one mouse click.
- Zero-phase distortion in the pass, transition and stop bands, ignoring input and output coupling.
- Choice of rectangular, Bartlett, Hamming, Hanning, Blackman or Kaiser windows.
- Virtual control panel allowing run-time changes to filter gain and sampling rate.
- Includes frequency and time domain plots of filter performance.
- Frequency response plotted as linear, dB, square, root, real, imaginary or phase.
- Impulse, frequency and phase response exportable in a variety of formats (dB, power etc) as ASCII files for incorporation into standard spreadsheets.
- 18-bit resolution in single, 16-bit in dual-channel mode.
- Normal or turbo speed, software selectable.
- User selectable sample rates of 48kHz, 24kHz, 16kHz, 12kHz, 9.6kHz, 8kHz, 6kHz, 4.8kHz, 4kHz, 3.2kHz or 3kHz.

Signal Wizard - a unique, integrated hardware/software system for designing, downloading and running very high performance filters in real time. Available only from Electronics World.

Use this coupon to order your Signal Wizard filter

Order coupon
Please send me Signal Wizard filter(s) at £499, excluding £7 shipping and UK special delivery and VAT (£594.55 fully inclusive: e-mail electronics.world@ntlworld.com for quantity discounts and o/s postage rates).

Name
Address

Phone number/fax

Total amount £......
I enclose a cheque ________

Please charge to my credit/debit card.
Card type (Mastercard/Visa/Switch etc)

Card no __________

Expiry date __________

Please mail this coupon to Electronics World, together with payment. Alternatively fax credit card details with order on 020 8722 6098

Address orders and all correspondence relating to this offer to Signal Wizard Offer, Electronics World, Anne Boleyn House, 9-13 Ewell Road, Cheam, Surrey, SM3 8BZ

email j.lowe@cumulusmedia.co.uk

Make cheques payable to Electronics World.
Letters to the editor

Letters to "Electronics World" Cumulus Business Media, Anne Boleyn House, 9-13 Ewell Road, Cheam Road, Surrey SM3 8BZ

e-mail j.lowe@cumulusmedia.co.uk using subject heading 'Letters'.

Star point
Mr Darney is unduly critical of star-point grounding in the April 2002 issue. His arguments seem to centre on RF equipment, where the technique is indeed normally unsuitable and a ground-plane technique is far preferable.

However, in other circumstances, the essential advantage of star-point earthing is very significant. This advantage is that each sub-circuit has its own return current path — not shared by any other circuit.

Thus large return currents, and the associated voltage drops, can be kept separate from low-current circuits, and distorted or noisy currents can be kept separate from clean ones.

Several of his statements should be challenged in order to dispel confusion:

Star-point earthing and hum in valve/tube circuits: Hum from heaters has absolutely nothing to do with the use of star-point earthing. It would still be there, maybe worse, with ground-plane earthing. This worsening is due to the creation of loops, in which the magnetic fields due to the heater wiring induce circulating currents - see below.

Zero-volt reference is an essential concept in circuit theory; it even appears as the 'bottom line' in circuit diagrams drawn with British conventions. Because any finite conductor has inductance, only a point can be the zero-volt reference; any other point on a ground plane or return conductor has a finite voltage with respect to the zero point unless the current is zero.

Avoidance of loops: Star-point earthing eliminates shared return-current paths as well as loops. Loop elimination, however, is very important in order to ensure freedom from magnetically-induced disturbances. Because loop impedances may be very low — a few milliohms, small induced voltages can result in quite large currents, and all or some fraction of such currents can wreak havoc in sensitive circuits.

Enclosures: Not all equipment, by any means, is housed in a metal enclosure these days.

Loops in systems: Interconnected equipment using unbalanced interconnections is in fact extremely vulnerable to interference caused by earth-loop currents. This is why balanced interconnections, or at least differential input circuits, are preferred. Systems used in proximity to high-power equipment, where high-current mains faults can occur, can and do suffer damage due to huge earth-loop currents.

The explanations in the latter part of Mr Darney's letter are concerned only with high-frequency and transient effects. They do not apply at low frequencies, where, for example, skin depth is equal to or greater than conductor diameter.

It is futile to condemn star-point earthing emotionally and groundlessly. In the right place, it is the preferred technique. Like any other technique, if it is used in the wrong place, it is not good news.

John Woodgate
Via e-mail
http://www.jmwa.demon.co.uk

Making your own PCBs
Seeing Cyril Bateman's article on making PCBs in the May 2002 Electronics world reminds me that I successfully applied a silkscreen layer to my home-made PCBs as follows:

1) Print the silkscreen layer onto OHP clear film.
2) Photocopy the film upside down. A reversed image is then obtained on paper.
3) The paper is placed face down on the component side of the PCB, taking great care with registration

I tried two methods of transferring the image to the PCB:

1) Flooding the paper with acetone or other solvent and pressing down hard achieved good results — not very environmentally friendly!
2) Carefully ironing the back of the paper with a hot iron achieved good results. Peel back the paper carefully and if any of the image hasn't transferred, replace it and apply the iron again.

If the image is obtained via a Laserjet printer or photocopier, then the resulting silkscreen layer is waterproof.

Tom Scharf CEng MIEE
Principal Design Engineer
Cooper Security Ltd

Regarding Cyril Bateman's PCB article in the May 2002 issue, when laser-printing PCB artwork, don't waste money on expensive laser
Free USB scope software

Before reading the February and March issues, I had put off experimenting with USB due mainly to the time needed to get to grips with the quite complicated specification.

After browsing the FTDI web site and reading the company’s application data, it became clear that FTDI had taken the pain away from full-speed USB data transfer. I immediately ordered one of the USB modules and was told that there would be a three week delay due to high demand – proof of a successful article but slightly frustrating nevertheless.

The good people at FTDI sent me some chip samples so that I could build one from scratch. This is underway. If demand is so high, then maybe there is a similar demand for some software to go with the kit.

The proposed hardware solution published in March requires either absolutely no data dropouts or an even number of packets lost. If this doesn’t happen, the scope traces will swap during the trace.

As the February article stated clearly that data delivery is not guaranteed using this mode, then maybe there is room to develop the hardware further to include channel identification and some simple data error detection to help remove any discontinuities in the time domain. Otherwise, at the full data rate, the main use for this kit will be single shot applications. This topic could be far from over.

The reason for this email was to offer an alternative for the other half of the project. I have knocked together the basics of a scope/FFT software package that currently operates on simulated data. I am writing this for my own project and I am willing to release it to those of you who are interested, free of charge.

Note that the software’s copyright remains with me, and you are only allowed to use it for your own personal, non-profit-making interest.

I am also willing to develop the software further, adding more features if I get some good feedback. Looking at some of the commercial packages that are available my offering provides a comparable starting point and could be developed into a very useful tool.

The basic features have been tested on Windows 95, 98, 2000 and XP, but not NT4. They are:

- Two scope channels each with independent full scales on the same timebase.
- A trigger on either positive or negative slope on Ch.A or Ch.B.
- Two markers in the time domain that give time and measurements for the triggered channel.
- Frequency display based on the markers.
- Sliding DC offset so that the channels can be separated.
- Single selectable FFT channel on either Ch.A or Ch.B.
- A left mouse button click on the FFT trace will auto locate the largest amplitude within ±10 bits.
- Simulation uses a sine on ch. A and a square on ch. B. Frequency can be swept.

To use the software, copy all of the files to a directory and run mscope.exe. If you are concerned about removing it then delete the files and the reg key HKEY_CURRENT_USER\software\MScope.

Operation is straightforward, with tool tips providing some information. Just start the simulator and the acquisition and off you go.

Jason Back
Via e-mail
To obtain the software, e-mail jlowe@cumulusmedia.co.uk. Please note that the file is around 1Mbyte unencoded and will take a while to download using a standard modem. www.sevenlands.co.uk/mscope

Gang your own pots

The idea for ganging your own potentiometers in the May issue reminds me of the way power is transferred to the drivetrain of steam locomotives. The wheels on both sides are connected with linking members, whose joints on the wheels are displaced by 90° respective to each other.

A similar arrangement had been
used in the fifties on the NSU-MAX motorcycle. There, the overhead camshaft was not driven by chain or gears, but with two link rods which were driven mechanically 90° out of phase.

Lutz Kutscha, DL6FCU

Via e-mail

John Woodgate pointed out that there was an error in the description of the potentiometer ganging scheme. There was a section that read, "Strips A and C are identical. They’re about 5mm thick on the prototype. Strip B is similar, but a little longer. Strips A and C are linkage arms from hardboard." The last sentence should have read, "Strips D and E are linkage arms from hardboard." Apologies.

Homopolar response

I would like to reply to the many letters on the subject of the Faraday Homopolar Generator.

In the article I was careful in the wording of a possible "free energy device". My experiments were quite lossy and I could not endorse such a claim although some doubts were expressed.

The reference to the late DePalma’s work was mentioned because he was one of the few who went into the constructional details of the machine and was worthwhile for such, rather than for any other claim of "free energy". However the main emphasis of the article was on experiments and their unusual results.

Mr McKinney’s suggestion relating to the rotating magnet/disc is the right example: you see the wire connected to the voltmeter flying past and you think that the voltage is induced in that wire. So screen that wire or wires, magnetically, electrically, with coaxial cable, or a combination of them and I can assure you that you will still measure the same voltage.

This brings us to Mr Ghislazoni’s experimental suggestions: both of the experiments I discussed were carried out — together with many more — before I wrote the article. I tried to limit the loop area as much as possible, twisting the pair as far as it was physically possible: there was no variation of the measured voltage when tested on the DC machines. There was indeed a large variation though when it was applied to the AC machines.

Twisting eliminates the induced voltage, but not the homopolar voltage, which is anyway at least two orders of magnitude smaller. This is what makes it difficult to discriminate in an AC machine.

The experiment relating to Mr Ghislazoni’s second comment was carried out using an electrolytic capacitor rotating together with the combination magnet/disc. During rotation, the capacitor was brought in contact with the rim and centre of the disc and then isolated again. The disc was then stopped and the voltage across the capacitor measured: it was always zero.

Mr Robinson seems to have little trust in the screening of the wires: As I said, they were effective in AC machines but did practically nothing with DC machines.

In what I called a "pulsing generator", Fig. 4a), you will find two signals: one is the classic induced voltage with a positive peak just before reaching the magnet. It is zero when the wire is exactly in the middle of the magnet and a negative peak when it leaves the magnet.

At the same time, there is a much smaller unidirectional signal — the homopolar signal — that is normally zero. It reaches a peak when the wire is at the middle of the magnet and then returns to zero: screening helps to eliminate the induced voltage so only the homopolar voltage is left: the better the screening the clearer you see the homopolar voltage. I am not able to explain this residual voltage with classic theory. Maybe Mr Robinson will.

Dom Di Mario

Milan

Italy

Measuring small capacitor values

I read the article from Michael Slifkin and Shai Kriegman in the March issue 2002 entitled 'Measuring capacitance'. It was a pleasure to read, as it described concepts as well as design aspects.

I was pleasantly surprised to read that the authors are currently working on an improved design, where two identical oscillator circuits have to be used. One of the two oscillators will be detuned by the unknown capacitance and then the beat frequency of the oscillators will be measured to determine the unknown value.

The authors think that this method will be especially useful in measuring very low values of capacitance. It is in the July/August 1996 issue of Electronics World I described a capacitance meter in an article called "C-Meter resolves to 0.1fF". This design involves two identical oscillators.

Outputs from the oscillators are XOR-ed to provide an error signal. This signal is proportional to the small detuning of the oscillator carrying the unknown capacitance.

I have to say this idea works very well for me till today and I really can measure very low capacitance values. I will be very interested to read the future article of the two authors with a similar — I hope — implementation involving the mixing of the two frequencies.

Emil Vladkov, PhD

Sofia

Bulgaria

PSU for electrostatic speakers

Regarding the circuit idea 'Switching EHT generator for ES loudspeakers' in the previous issue, I am concerned not to read any warnings for the use of this circuit which under the wrong circumstances could produce a very nasty electric shock.

Less than a milliamp at these voltages can be fatal. Correctly built and with all parts of the EHT insulated it should be perfectly safe. However, I would recommend including a series resistor - of as high a value as possible - between the voltage source, \(V_{out} \), and the outside world.

For an electrostatic speaker, this current limiting would also help protect the electrostatic membrane in the event of a flashover should the speaker be overdriven.

In a circuit of this type, I would also recommend placing a zener across the collector-emitter terminals of the switching transistor, \(Q_1 \). This should be of a voltage 5% to 10% greater than the normal fly-back pulse when the circuit is operating correctly with its feedback control loop. In a failure mode, where the control loop no longer functions, this will prevent the circuit from generating significantly higher EHT voltages.

Note that the zener should be generously rated for wattage as it must be capable of sinking the output from the fly-back pulse over an extended period of time (e.g. TO220 case size).

Susan JL Parker AMIEE, Consultant

London

Via e-mail
Marcini 2018A SYNTHESIZED SIGNAL GENERATORS 80KHz-100MHz - AM FM - £450 incl. instruction book - tested.

Marcini 2222E SYNTHESIZED SIGNAL GENERATOR 10KHz-1.01GHz AM-FM - £550 inc. instruction book - tested.

HP3444A Tracking Generator £5-15000MHz - £450
HP3444A OPT 059 Tracking Gen £5-15000MHz - £650
HP52610A Spectrum Analyzer Interface - £300
HP439A Protocol Analyzer (few)
HP5900A Noise Figure Meter +3488 Noise - £150
HP1554A Signal Generator £5-250 MHz + HP 180C Heads - 1564A Extra - £150 each.

HP5709B Constellation ANZ £1,000
FARNELL TTI/VERSA FC217010 10 amps - £150
MARCONI 6500 Network Scaler £50 - Heads available to £4500. Mixers are available for ANZs to 6GHz.
Marcini FP274A Zero Loss Probe - £20
Racal/Dana TK711 0.1-20GHz Universal Switch Controller + 200mC Plots and other heads.

Racial/Dana 5003 True RMS Levelmeter - Head - £450
TME920A also A008C9 B010 - £1200
TEK CT-5 High Current Transformer Probe - £250
HP Frequency Counter generator type BI00 - £100
HP Swee Prompt Oscillator type 8610A + plug-ins from 20MHz to 18GHz also 18GHz
HP Network Analyser type 4529A + 8421A or 8501A - 100KHz - £1500 - £2000.
HP 53145A 1502/1503 Sweep Current £200

MICROSCOPIES
HP 3081 LCR meter - £250
HP 4274 FX LCR meter - £300
HP 2488 Switch Counter - £300
HP 7500 VXI Function Generator 50MHz-3GSM £250
HP 83220A 190GHz-Sweep Current £150
HP 16396B 2GHz 1250 AWA 1500W RM5 £250
HP 8574A 1GHz-2GHz RM5 £250

Sweep MF pissa ni ni - £150

ML93A 1502/1503 Sweep Current £200
HP 83220A 190GHz-Sweep Current £150
HP 16396B 2GHz 1250 AWA 1500W RM5 £250

Lighting - £1000-01250.

Marconi 103A-0202 RF millivoltmeter - £300
Marconi 3456A Digital voltmeter - £450
HP357A Universal time interval counter - £150
HP3412A Universal Counter - £150
TEKTRONIX 773 Curve tracer + adaptors - £650
TEKTRONIX 1950/1500 TDR cable test head - £400
HP699B Sweep P. YG Oscillator £150
MF250. Both £50.

Downum 2006 Power supply 0-250V at 2.5A up to 180V - microwave parts new and ex service relays - attenuators - switches - waveguides - Yags - SMA - APC plugs - adaptors etc. in stock.

B&K items in stock for list.

Anritsu M497A Time Domain Reflector - £100

Anritsu M9318 A42-761 Light Source + M9008 LD. £650
Light Source £350

Anritsu M9316 A42-761 Ω. £100
Anritsu M9314 A42-761 Ω. £50
Anritsu M9318A Power Meter £450.

Anritsu M9458 Variable Attenuator £1200 £1000
Photo Dyne 1950 XR Continuous Am. £100 - 1500 £1000 £1000 £1500
Cross-Raytheon 467L Optical Cable Fault Locator 0-1000-1M £200
TEK 70010 Optical Counter 700 MCS-050 £250
TEK 1501 Fiber Optic TDR £250
HP1512A 1500MC 1750 £200
HP4611A Fiber Power Sensor 600-1200 £250
HP1518B ATT OPT £200 £1100 £1350 £1500
HP1518A RX £200 £500-550 £950 £250
STC OPT12 Reflectometer - £250
STC 05X15 Kit. Machine. joining + eye magnifier - £125

Racial/Dana 5010-5020 RF millivoltmeter - £250
Racial/Dana Modulation Meter 5KHz-5GHz - £1500 £1500 £2500 £5000.

Marconi Microwave mixers, ±10GHz 50MHz-5GHz £1500
Gruen '94-1000 MHz £350
£950-3000GHz £150 - £400 all this frequency standards.

HP1802R. HP185. HP187 - £100
HP167A 434A or 83430A 4.3GHz + LF heads to 6GHz £1500 - £1975 £1000
£500-5MHz £150
HP4229A + Sweep P. YG Oscillator - £100 £150
HP4229A + Sweep P. YG Oscillator - £150 £250
HP3101A - £500 £1000 £2500 £5000 £1000 £1500 £25000 £50000.
HP1615A Programmable signal source - £190-500MS ±15 - £1500-01800.
HP3455/3456A Digital voltmeter - £450
HP3570A Universal time interval counter - £150
HP3412A Universal Counter - £150
TEKTRONIX 773 Curve tracer + adaptors - £650
TEKTRONIX 1950/1500 TDR cable test head - £400
HP699B Sweep P. YG Oscillator £150
MF250. Both £50.

Downum 2006 Power supply 0-250V at 2.5A up to 180V - microwave parts new and ex service relays - attenuators - switches - waveguides - Yags - SMA - APC plugs - adaptors etc. in stock.

B&K items in stock for list.

Anritsu M9318 Time Domain Reflector - £100

Anritsu M9316 A42-761 Light Source + M9008 LD. £650
Light Source £350

Anritsu M9314 A42-761 Ω. £100
Anritsu M9318A Power Meter £450.
Put your web address in front of 18,000 electronic fanatics.

Electronics World acknowledge your company's needs to promote your web site, which is why we are dedicating over 3 pages in every issue to WEB ADDRESSES.

Linage only will cost £150 + vat for a full year.

Linage with colour screen shot will cost £350 + vat for a full year, this will include the above plus 3cm shot of your web site which we can produce if required.

To take up this offer or for more information Tel 0208 722 6028

E-mail p.bunce@cumulismedia.co.uk

ANASOFT LTD
http://www.anasoft.co.uk
SuperSpice, the affordable, mixed-mode windows circuit simulator. Wrote by an analogue design engineer for those Teletubbies who like keeping things simple.

BEDFORD OPTO TECHNOLOGY LTD
http://www.bot.co.uk
Optoelectronic products UK design development manufacture standard and custom, LED bargraphs, circuit board indicators, stand offs, transmissive/reflective switches, baseelta optocouplers tubular and surfacemount, panel mount LED assemblies.

COMPONENT KITS
http://www.componentkits.com
"Component Kits LLC manufactures and distributes Electronic Component Kits used for professional engineering design, prototype, University lab, and hobbyist uses. Visit our website to review our current product line, request our Free CD-ROM, or join our newsletter."

COOKE INTERNATIONAL
http://www.cooke-int.com
info@cooke-int.com
Test & Measuring Equipment Operating & Service Manuals.

CROWNHILL ASSOCIATES LTD
http://www.crownhill.co.uk
Crownhill supply low cost development tools for use with Micro-Controllers and Smart Cards. Products include Smart Card development tools, Smart cards, Micro Development tools and Bespoke Design Services.

DB TECHNOLOGY
http://www.dbtechnology.co.uk/
EMC Testing and Consultancy.
Anechoic chamber and open area test site.
• Compliance Tests
• Rapid, accurate pre-compliance tests.
• Fixes included, FCC Listed.
• Flexible, hourly booking available.

DESIGNER SYSTEMS CO.
http://www.designersystems.co.uk
Electronic product design company with over a decade of experience promoting its own product range and designing and manufacturing innovative products for client companies/individuals.

EAGLE PCB DESIGN SOFTWARE
http://www.puresoft.co.uk
• Professional PCB design made easy!
• Fully functional freeware download.
• Schematics, Layout & Autorouting.
• Free tech support.

EDAForce
http://www.edaforce.co.uk
EDAForce is a division of the independent specialist recruitment consultancy TelecomForce. We specialise in placing engineers and engineering managers, either contract or permanent, in the role that is right for them. Visit the web site, email us on ew@edaforce.co.uk or call +44(0)1628 850273 to find out how we could help you.

EQUINOX TECHNOLOGIES UK LTD
http://www.equinox-tech.com
Equinox Technologies Ltd., specialise in development tools for the embedded microcontroller market.

FELLER UK
http://www.feller-at.com
Feller (UK) Ltd. manufacture fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to National and International Standards.

FIELD ELECTRIC LTD
http://www.fieldelectric.co.uk
Field Electric Ltd has been successfully trading since 1968 in the re-sale of used test & measurement equipment & computer hardware. We buy and sell in small or bulk quantities and can source equipment to particular requirements. Visit our web site or call 44 01837 83736.

FUTURE TECHNOLOGY DEVICES INTL. LTD.
http://www.ftdichip.com
FTDI designs and sells USB-UART and USB-FIFO interface I.C.'s. Complete with
June 2002 ELECTRONICS WORLD
shop for TV, FM, Satellite, Amateur Radio PMR Aerials, Distribution Equipment, Cable & Accessories.

TECHNICAL AND SCIENTIFIC SUPPLIES
http://www.technicalscientific.com
Suppliers of pre-1985 equipment and components.
- Test/Measurement equipment
- Valves and semiconductors
- Transducers and pressure gauges
- Scientific books and catalogues
- Manuals and data sheets

ULTRACOM
http://www.ultracom.fi
Ultracom specializes in the design and manufacture of data radio products including Radio Modules, Radio Modems, Filters and Antennas for real-time data communication. In addition to

our standard RF products we provide tailored solutions for customers wireless communications requirements. Our wireless data radios are used in the most varied applications: transferring environmental data in tropical conditions, locating moving targets, remote-control of cranes, controlling pump stations in waterworks, monitoring real estates, transferring data in public transportation information systems. There are countless applications, what are yours?

VUTRAX PCB DESIGN SOFTWARE
http://www.vutrax.co.uk
Vutrax electronic schematic and pcb design system for Windows 95/98, ME, NT, 2000, XP and Linux. Limited Capacity FREE version downloads available, all upgradeable to various customised level.

WEB DIRECTIONS

Put your web address in front of 21,000 Electronics fanatics. Electronics World acknowledges your company's need to promote your web site, which is why we are now dedicating page's in every issue to WEB ADDRESSES.

This gives our readers the opportunity to look up your company's name, find your web address and to browse the magazine page to find new sites.

We also understand that cost is an important factor, as web sites are an added drain on budgets. I am sure you will agree these rates make all the difference

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Web address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOR 12 ISSUES:
Lineage only will cost £150 for a full year just £12.50 per month. This includes your company's name, web address and a 25 word description.
Lineage with colour screen shot will cost £350 for a full year just £29.17 per month. This will include the above plus a 3cm screen shot of your site, which we can produce if required.
To take up this offer or for more information ring on 0208 722 6028.
E-mail: j.thorpe@cumulusmedia.co.uk
The TELEBOX is an attractive fully tested mains powered unit, containing all electronics ready to plug into a host of video monitors or AV interface. Two separate outputs are fitted with a composite video or SCART input. The composite video output will also drive directly into monochrome monitors for black and white display. These channels normally are not receivable on most television receivers’ (TELEBOX MB) push buttons control on the front panel allows browse through off air UHF colour television channels. TELEBOX MB provides virtually all television program information and program documentation. Requires 110V or 220V AC to operate. (See www.distel.co.uk for full details).

NEW

State of the art PAL (UK spec) UHF TV tuner module containing all electronics necessary to capture UHF signals. Micro electronics on all one small PCB only 72 x 60 x 21 mm with built-in vertical lock. For overseas PAL versions 5.5 or 6 MHz standard specification. Comes complete with an easy to read full colour 27 page instruction manual and program documentation. Requires 110V or 220V AC to operate. (See www.distel.co.uk dataxylo.htm for picture & full details).

HARD DISK DRIVES 11" - 14"

- **256MB 11"**
- **512MB 11"**
- **1GB 11"**
- **2GB 11"**
- **4GB 11"**
- **8GB 11"**
- **16GB 11"**
- **32GB 11"**
- **64GB 11"**
- **128GB 11"**
- **256GB 11"**
- **512GB 11"**
- **1TB 11"**
- **2TB 11"**
- **4TB 11"**
- **8TB 11"**
- **16TB 11"**
- **32TB 11"**
- **64TB 11"**
- **128TB 11"**
- **256TB 11"**
- **512TB 11"**
- **1PB 11"**
- **2PB 11"**
- **4PB 11"**
- **8PB 11"**
- **16PB 11"**
- **32PB 11"**
- **64PB 11"**
- **128PB 11"**
- **256PB 11"**
- **512PB 11"**
- **1TB 12"**
- **2TB 12"**
- **4TB 12"**
- **8TB 12"**
- **16TB 12"**
- **32TB 12"**
- **64TB 12"**
- **128TB 12"**
- **256TB 12"**
- **512TB 12"**
- **1PB 12"**
- **2PB 12"**
- **4PB 12"**
- **8PB 12"**
- **16PB 12"**
- **32PB 12"**
- **64PB 12"**
- **128PB 12"**
- **256PB 12"**
- **512PB 12"**
- **1TB 13"**
- **2TB 13"**
- **4TB 13"**
- **8TB 13"**
- **16TB 13"**
- **32TB 13"**
- **64TB 13"**
- **128TB 13"**
- **256TB 13"**
- **512TB 13"**
- **1PB 13"**
- **2PB 13"**
- **4PB 13"**
- **8PB 13"**
- **16PB 13"**
- **32PB 13"**
- **64PB 13"**
- **128PB 13"**
- **256PB 13"**
- **512PB 13"**
- **1TB 14"**
- **2TB 14"**
- **4TB 14"**
- **8TB 14"**
- **16TB 14"**
- **32TB 14"**
- **64TB 14"**
- **128TB 14"**
- **256TB 14"**
- **512TB 14"**
- **1PB 14"**
- **2PB 14"**
- **4PB 14"**
- **8PB 14"**
- **16PB 14"**
- **32PB 14"**
- **64PB 14"**
- **128PB 14"**
- **256PB 14"**
- **512PB 14"**

![List of products and links](https://www.distel.co.uk/telebox.png)
PIC BASIC COMPILERS

PIC Basic Plus & PIC Basic Pro Compilers

PIC BASIC Plus, supports the popular 14 bit Microchip PIC-Microcontrollers, allowing the user to write professional programs in BASIC. The compilers produce fast, tight machine code to load directly into the PIC-Microcontroller. The Compiler produces code that is guaranteed 100% compatible with Microchips PASM assembler. The compiler allows direct comparison between the BASIC program and the assembly listing. Two compilers are available, the PIC Basic Pro, entry level compiler and PIC BASIC Plus, professional compiler. Both produce fast assembly code from BASIC. The Compilers run under Windows 95,98,NT,ME and XP and are supplied with a comprehensive, Windows based editor with Syntax highlighting and just two key clicks to compile and program and detailed manuals with worked examples. The Compilers support a range of programmers including the microchip PICStart-plus and our own development programmers. For a free demo of the Pro compiler visit our web site www.letbasic.com, or join our web based forum to hear what other users think of our compilers and supporting products... (PIC BASIC Pro is supplied with the book "Experimenting with the LET Basic Pro compiler" by Les Johnson, an invaluable guide for the beginner. See the web site for an example chapter).

Technical support is provided online via our web based forum, www.picbasic.org, or to tutors via telephone direct from the Author. Additional support can be provided to tutors using our development system for educational purposes.

Development system

Prototype PCB system

Programmers

Supplied with source code and documentation for 20 Educational projects. Supports LCD displays from 2x16 Chrs to 128x64 dot matrix Graphics panel

All supporting components stocked at competitive prices &

- PIC 16F84 04 /P - £1.80 each, PIC 16F877 04 /P £3.95 each
- LCD 2x16 Chrs £4.50 each LCD 128x64 dot matrix £15.95 each

Many more items stocked, email sales@crownhill.co.uk for prices

32, Broad Street, Ely Cambridge, CB7 4AH
Tel: +44 (0) 1353 666709
Fax: +44 (0) 1353 666710
sales@crownhill.co.uk

All prices exclude: VAT, postage and packing
If you don't see what you want, please CALL!

Prices shown are for guidance in EUR and are exclusive of VAT. Rental prices are per week for a rental period of 4 weeks. Free carriage to UK mainland addresses. This is just a selection of the equipment we have available - if you don't see what you want please call. All items supplied fully tested and refurbished. All manuals and accessories required for normal operation included. Certificate of Conformance supplied as standard; Certificate of Calibration available at additional cost. Test Equipment Solutions Terms apply. E&OE.

If you don't see what you want, please CALL!