Quality second-hand test & measurement equipment

Radio Communications Test Sets
Agilent (HP) 8824C (opt 601) CDMA Mobile Station T/Set £8500
Agilent (HP) E8285A CDMA Mobile Station T/Set £8600
Anritsu MT882A (opt 7) Radio Comms Analyzer (300kHz-3GHz) £8800
Hewlett Packard 8960B (opt 1, 4, 7, 11, 12) £8700
Hewlett Packard 8922M + 8322E £9200
Marconi 2955 / 2955A £1250
Marconi 2955B/60B £3500
Marconi 2955FT £1995
Motorola R260B £2500
Racial 6103 (opt 1, 2) £5000
Rohde & Schwarz SMB? £1500
Rohde & Schwarz CMD 57 (opts B1, 34, 6, 19, 42, 43, 61) £10495
Rohde & Schwarz CMZ 901 (2GHz) DECT £9395
Rohde & Schwarz CMZ MA 94 (GSM) £4500
Schlumberger Stabbin 4015 £3250
Schlumberger Stabbin 4021 £3750
Schlumberger Stabbin 4040 £1300
Vawtek 4103 (GSM 900) Mobile phone tester £1500
Vawtek 4105 (GSM 1900) GSM Tester £1750
Vawtek 4105 PCE 1900 GSM Tester £1600

MISCELLANEOUS
Agilent (HP) 8656A/8656B 100MHz-950MHz Synth. Sig. Gen. £6500
Agilent (HP) 8657A/8657B 100MHz-1.14GHz or 2060MHz £12500
Agilent (HP) 8644A (opt 1) 250kHz - 1GHz Sig. Gen £4500
Agilent (HP) 8644A (opt 1 + 4) High Perf. Sig. Gen. (0.1-3GHz) £10000
Agilent (HP) 8902A (opt 2) Measuring Filter (150kHz-27MHz) £7500
Agilent (HP) 8907B (opt 020) Noise Figure Meter £3950
Agilent (HP) EPM 441A (opt.2) Power Meter £1500
Agilent (HP) 6182A AC Power Source 750VA £2950
Agilent (HP) 6038B DC Electronic Load 250W (0-10A) £1200
Anritsu MHG708B Digital Modulation Sig. Gen. (300kHz-2250MHz) £4250
Anritsu/Willson 68348B (10MHz-20GHz) Synth. Wave Sig. Gen. £3000
EIP 654 Microwave Frequency Counter (18GHz) £1000
EIP 6434A and B 26.5GHz Frequency Counter £2500
EIP 575 Source Locking Freq.Counter (18GHz) £1200
EIP 565 Pulse Freq.Counter (18GHz) £1200
Fluke 6060A and B Signal Gen. 10kHz - 1050MHz £1750
Genrad 16571/16572/1693 LCR meters £500
Gigatronics 8541C Power Meter + 80350A Peak Power Sensor £1250
Gigatronics 8542C Dual Power Meter + 2 sensors 8041A £1995
Hewlett Packard 339A Distortion measuring set £300
Hewlett Packard 438A power meter and sensor (various) £750
Hewlett Packard 438A power meter - dual channel £1750
Hewlett Packard 3352A - synthesiser (200kHz-81MHz) £1750
Hewlett Packard 3347A - Digital Transmission Analyzer £750
Hewlett Packard 37960 - Signalising test set £2500
Hewlett Packard 4274A LCR Meter £2750
Hewlett Packard 4275A LCR Meter £2750
Hewlett Packard 8350A - Gigahertz Frequency counter £1500
Hewlett Packard 8642A - high performance RF synthesizer (0.1-1050MHz) £5500
Hewlett Packard 9011B - Modulation Analyzer £5500
Hewlett Packard 9060A, B and E - Distortion Analyzer £2500
Hewlett Packard 11725C Emitter Noise Test Set £1200
Hewlett Packard 95024A High Frequency Probe £1200
Hewlett Packard 6038A Power Supply (6-V60V-90VA) £2000
Hewlett Packard 5335B Microwave Freq. Counter (26.5GHz) £2750
Hewlett Packard 5335B Microwave Freq. Counter (40GHz) £5250
IFR (Marconi) 2051 (opt 1) 10kHz-2.7GHz Sig. Gen. £2400
Keithley 220 Programmable Current Source £1950
Keithley 2268 Progammable Voltage/Current Source IEEE £1950
Keithley 238 High Current Source £3750
Keithley 4686/4677 Picocammeter (+volt.source) £3100
Keithley 617 Electrometer/enoure £1950
Keithley 8606 Component Test Fixure £1750
Marconi 8656B/9680A/9692A/9702A Power Meters & Sensors £6500
Philips 5515 - TN - Colour TV pattern generator £4100
Philips PM 5193 - 50 MHz Function generator £1350
Rohde & Schwarz FAM (opt 4) Spectrum Analyzer £2500
Rohde & Schwarz NRV/NRVD Power meters with sensors £1000
Rohde & Schwarz AMO I/Q Modulation Generator 2 channel £7000
Rohde & Schwarz SMQ 08B I/Q Modulation £2500
Stanford Research DS360 Ultra Low Distortion Function gen. (200kHz) £1400
Teledyne AAM-03 - AAM-03A - AAM-03B Current Amps with M/F and probe £1400
Tektronix AWG 2021 Arbitrary Waveform Gen. (10Hz-250MHz) £2400
Wayne Kerr 3245 - Precision Inductance Analyser £750
Wayne Kerr 3262A - 3262A Precision Magnetics Analyzer with Bias Unit £950
Wayne Kerr 4000 - 4000B Channel measuring set £3750

All equipment is used - with 30 days guarantee and 90 days in some cases.
Add carriage and VAT to all goods.

1 Stoney Court, Hotchkins Way, Binley Industrial Estate Coventry CV3 2RL ENGLAND

tel: 0247 660 7502 Fax: 02476 650 773 Web: www.telnet.uk.com
Email: sales@telnet.uk.com
CONTENTS
JUNE 2004 VOLUME 110 NUMBER 1817

3 COMMENT
Audiotastic

4 NEWS
- Little inchworm tests friction
- Inverter is all-silicon carbide
- Keep off the Nanograss
- Desktop computer is mug-sized
- Enter the paperless book
- Electrochromic clock hits the tracks

10 FPGAS DEMYSTIFIED PART II
Following from last month's introduction to Gate Arrays, Eddie Insam shows how to get started using your own designs

16 COLOSSUS
The world's first electronic digital computer was born out of World War II. A project is running to reconstruct Colossus. Charles Coulta looks at the history and some of the electronic features of the machine

22 CLASS-A IMAGINEERING
Do valves sound better? Is a valve Watt the same as a transistor Watt? With over 30 years of audio listening under his belt, Graham Maynard has relentlessly sought answers to these questions. Some readers might not like some of his conclusions

28 CIRCUIT IDEAS
- UPS
- SSB Exciter with ladder filter

32 SPAM? Not today thank you
Most users of e-mail are troubled by SPAM, but precautions are possible, some of them very simple and cost-free. Ian Hickman explains

36 MICROMOUSE
Martin Barratt describes the design and construction of a small mobile robot capable of finding the centre of an uncharted maze and is suitable for entry into the annual Micromouse' competition

44 SIMPLE CLASS A AMPLIFIER
A reprint of the John Linsley Hood's classic class A design from Wireless World 1969

52 JLLH TRIBUTES
Tributes to the great man from around the world

54 LETTERS
- EMC
- Attracting non-readers
- Infinity
- April Fool?
- April Fool II
- Loop gain
- John Ellis replies
- Boolean Castles in the Sand
- Falling standards

57 NEW PRODUCTS
The month's top new products

60 WEB DIRECTIONS
Useful web addresses for electronics engineers

July issue on sale 3 June
In line with our policy of producing top quality products at amazing prices we have reduced the price of our best selling items by up to 50%

Don’t delay - this is for a limited period only!

<table>
<thead>
<tr>
<th>19” Horizontal 2U High</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Sockets</td>
<td>13A/4/R</td>
<td>£22.65 ea. Nett</td>
</tr>
<tr>
<td>6 Sockets</td>
<td>13A/6/R</td>
<td>£27.57 ea. Nett</td>
</tr>
<tr>
<td>7 Sockets</td>
<td>13A/7/R</td>
<td>£30.96 ea. Nett</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertical</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Sockets</td>
<td>T13A/4</td>
<td>£20.25 ea. Nett</td>
</tr>
<tr>
<td>6 Sockets</td>
<td>T13A/6</td>
<td>£24.60 ea. Nett</td>
</tr>
<tr>
<td>8 Sockets</td>
<td>T13A/8</td>
<td>£31.47 ea. Nett</td>
</tr>
<tr>
<td>10 Sockets</td>
<td>T13A/10</td>
<td>£34.95 ea. Nett</td>
</tr>
<tr>
<td>12 Sockets</td>
<td>T13A/12</td>
<td>£39.62 ea. Nett</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertical Left Hand with Switch</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Sockets</td>
<td>4LH/MS</td>
<td>£20.25 ea. Nett</td>
</tr>
<tr>
<td>5 Sockets</td>
<td>5LH/MS</td>
<td>£23.37 ea. Nett</td>
</tr>
<tr>
<td>6 Sockets</td>
<td>6LH/MS</td>
<td>£24.60 ea. Nett</td>
</tr>
<tr>
<td>8 Sockets</td>
<td>8LH/MS</td>
<td>£31.47 ea. Nett</td>
</tr>
<tr>
<td>10 Sockets</td>
<td>10LH/MS</td>
<td>£34.95 ea. Nett</td>
</tr>
<tr>
<td>12 Sockets</td>
<td>12LH/MS</td>
<td>£39.62 ea. Nett</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertical Right Hand with Switch</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Sockets</td>
<td>4RH/MS</td>
<td>£20.25 ea. Nett</td>
</tr>
<tr>
<td>5 Sockets</td>
<td>5RH/MS</td>
<td>£23.37 ea. Nett</td>
</tr>
<tr>
<td>6 Sockets</td>
<td>6RH/MS</td>
<td>£24.60 ea. Nett</td>
</tr>
<tr>
<td>8 Sockets</td>
<td>8RH/MS</td>
<td>£31.47 ea. Nett</td>
</tr>
<tr>
<td>10 Sockets</td>
<td>10RH/MS</td>
<td>£34.95 ea. Nett</td>
</tr>
<tr>
<td>12 Sockets</td>
<td>12RH/MS</td>
<td>£39.62 ea. Nett</td>
</tr>
</tbody>
</table>

CALL OUR SALES HOTLINE
020 8905 7273

This promotion cannot be used in association with any other discount or offer. Olson Electronics Ltd reserve the right to change the price without prior notice.
Audiotastic

If you are into audio – and I know a lot of you are – you will enjoy this issue. Obviously, the death of one or our major audio contributors, John Linsley Hood, means that this issue is dedicated to him. Not only have we got tributes from around the world, but also I’ve reprinted his classic class A design from Wireless World circa 1969. We have faithfully reproduced the layout, courtesy of my optical character reader – the only difference being that a couple of typos have been corrected.

Also in this issue, by pure coincidence as we had planned it ages ago, is the start of a series of articles by Graham Maynard, who has been looking for some answers to the age old questions around the ‘sounds’ of valves and transistors. His investigations (we think) will finally quantify exactly what those differences are and will culminate in a practical design in his next series, which is currently on the drawing board. I’m hoping this will be a modern classic, like JLH’s was in the seventies.

For readers who hate audio, there is much reduced audio content next month and a bumper crop of Circuit Ideas, as I’ve got a huge number ‘in stock’ and currently contributors are waiting over a year to see their designs in print, which is unacceptable. So, speed things along a bit, I’m going to increase the number ‘in stock’ and currently we are looking into the possibility of a ‘proper’ EW website. We are currently evaluating how much it will all cost and manpower requirements etc., but any input as to what you’d like to see on the site would be much appreciated. Some ideas floating around are a forum and a subscription form, along with the old article reprint service and archive CDs that are already there.

I’ve had a lot of feedback on the subject on an ‘electronic version’ of EW. And plans are afoot to do some test runs in the very near future. So all of you that have written in will be contacted shortly to join our test team. So, if anybody is interested in joining in – drop me a line and I’ll put you on the mailing list.

And apologies to our archive volunteers – the JLH tributes and recruiting a new proofreader have taken up most of my time this month. By the time you read this, I’ll have a plan that I’ll impart to you all. Thanks for your patience.

Phil Reed
Little inchworm tests friction

A miniature inchworm, moving just 40 nanometres with each hump of its body, has been micromachined out of silicon by scientists at Sandia Labs in the US.

But it's not just an engineering curiosity, as the device is giving valuable insights into how friction acts on devices at the microscale.

Sandia's project aims to study Amonton's Law - learnt by schoolchildren as frictional force equals the coefficient of friction times the normal force, or $F = \mu N$.

While the equation holds true at the macroscale - ladders against walls, for example - it does not necessarily do so at the microscale, where other forces can increase the friction. This could have bad implications for rotating or sliding Microsystems.

The inchworm is built from a suspended plate with a frictional clamp at each end. An electric field switches the clamps on or off. One end of the device is connected to a non-linear spring.

To operate the device one clamp is activated, and a voltage placed on the substrate. This attracts the connecting plate, forcing it to bend, and dragging the other clamp. The second clamp is activated, and the other relaxed, so the worm moves.

At a rate of 80kHz the inchworm can move at 3mm/s.

The worm can generate a force of 2.5 milliNewtons, about 250 times more than a conventional comb drive.

To measure friction, the worm was walked 20µm away from the spring and held by one clamp. The electric field holding the clamp was gradually reduced until the spring pulled the worm back slightly. This process could be repeated many times, measuring friction against different spring forces.

Friction was found to equal $14\mu N$ from loads of 1 mN down to 50µN, but below this the static friction increased.

Inverter is all-silicon carbide

Rutgers University in New Jersey has produced an AC to DC inverter entirely in silicon carbide (SiC).

From SiCLAB, the university's silicon carbide lab, the 20kHz, 330V, 5.5kW device has six bipolar transistors and six merged-PIN-Schottky (MPS) diodes. More conventional silicon electronics are used in the driver stage.

MPS diodes are used particularly in SiC. They combine the low forward drop of Schottky SiC diodes with the low reverse leakage of SiC PIN diodes and have the structure of a Schottky diode with many small p-n junctions embedded in its junction. The small junctions kill leakage. "When reverse-biased," said researcher Leonid Fursin, "the junctions form a depletion region within the Schottky interface." The penalty is only a small loss of Schottky junction area.

Silicon carbide can be used to make semiconducting devices with far higher breakdown voltages than silicon. At 1.7kV, the SiCLAB MPS diode leaks only 9µA.
Keep off the Nanograss

Scientists at Bell Labs have invented 'nanograss', silicon surfaces that can trap or release liquids by changing their electrical charge.

This technique for manipulating fluids could help with the cooling of ICs, allowing the system to move coolant where it is needed on a chip.

"The techniques resulting from this research might be applied to fields that range from optical networking and advanced micro-batteries to self-cleaning windshields and more streamlined boat hulls," said David Bishop, vice-president of nanotechnology at Bell Labs.

Individual 'blades' in the nanograss are just a few nanometres wide. Liquid droplets cannot form in the sides of the very thin grass and therefore sit on top.

"Physically, this technique reduces the surface area that the droplet feels, and reduces the interaction between the liquid and the substrate by a factor of a hundred to a thousand," said Tom Krupenkin, who led the research.

The grass is coated with a hydrophobic solution that has reduced water-repellant properties when a voltage is placed across the surface.

"Such behavior may be harnessed to cool computer chips," Krupenkin said. "A droplet could be sent to a hot spot on the chip, where it would sink in and absorb the heat, and then go on its way."

Novel optical components, such as filters, could be created by moving the fluid into and out of nanograss areas, he said.

In batteries the nanograss could be used to isolate electrolytes when the battery is not in use, leading to longer lifetimes through reduced self-discharge.

These boots are made for walking

Berkeley Lower Extremity Exoskeleton (BLEEX) has been designed at University of California, Berkeley to make carrying heavy loads easier.

It consists of mechanical metal leg braces connected rigidly to the user with army boots at the feet and, to prevent abrasion, more compliantly elsewhere. The power unit and load go in the attached rucksack.

"We set out to create an exoskeleton that combines a human control system with robotic muscle," said Homayoon Kazerooni, professor of mechanical engineering and director of UC Berkeley's Robotics and Human Engineering Laboratory. "We've designed it be ergonomic, manoeuvrable and technically robust so the wearer can walk, squat, bend and swing from side to side without noticeable reductions in agility. The human pilot can also step over and under obstructions while carrying equipment and supplies."

As well as military uses - the project was funded by DARPA, the US Defense Advanced Research Projects Agency - "the fundamental technology developed here can also be developed to help people with limited muscle ability to walk optimally," said Kazerooni.

In experiments, a human pilot moved about a room wearing 45kg BLEEX and a 32kg rucksack "while feeling as if he were lugging a mere five pounds [2kg]", said Berkeley.

More than 40 sensors and hydraulic actuators form a local area network (LAN) for the exoskeleton. Power comes from a petrol engine that delivers hydraulic power for locomotion and electricity for the computer. The current prototype only works on flat terrain and slopes.

The UK's Highways Agency has started trials of solar panels to reduce motorway noise and feed electricity back into the local grid.

The 50m long system, alongside the M27 in Hampshire, can generate 11kW peak, or some 9,500kWh each year. This is about five times that generated by a standard house system.

"The fences are easy on the eye; they will also help us to test safety issues and see how they affect motorists," said Les Hawker, Highways Agency project manager for the scheme.

There are two systems currently being trialled, neither of which is faced with glass. "One system uses standard modules and the is other based on unique 'peel and stick' solar technology which is simply bonded to the aluminium sound barrier, both suited to a wide range of construction applications," said Dan Davies, director of engineering at Solarcentury, the panel supplier.
Desktop computer is mug-sized

Designed as development tools for the Japanese T-Kernel real-time operating system and associated T-Engines (see box), T-Cubes are 52x52x45mm fully-functional desktop computers.

Crammed inside is a 400MHz MIPS-based NEC VR5701 processor and 128Mbyte of RAM.

Although there is no hard drive, there is 16Mbyte of flash and slots for a PC Card (PCMCIA) card and CompactFlash. Other features include audio, a real-time clock and 1,280x1,024 graphics.

The T-Engine concept has been developed for "ubiquitous computing environments" where "everything has a computer incorporated in it and is connected to a network", said the firm that developed T-Cube, Tokyo-based Personal Media Company (PMC).

As the ubiquitous environment can extend out through the Internet, a layer of security called eTRON is incorporated in the T-Engine concept "intended to prevent tapping, falsification, and disguise of malicious users so that electronic information can be safely delivered to the other party through insecure network channels", said PMC.

T-Cube due to come out in Japan in the summer, but may be re-named before then, said PMC, but don't get too excited. The user interface is in Japanese or Chinese characters, but not in English.

www.personal-media.co.jp

T-Engines

T-Engines come in several types and run the T-Kernel real-time operating system. Each is a fixed size and certain capabilities.

The Standard T-Engine is 75x120mm with an LCD and intended to be incorporated in portable information devices with comparatively advanced user interface features.

_T-Engine is 60x85mm and for home electronic appliances or instrumentation equipment with comparatively few user interface features.

_sT-Engine is coin-size, for small home electronic appliances.

_pT-Engine is tiny and designed to fit into the smallest units such as switches, lighting equipment, sensors, locks, and valves in a ubiquitous computing environment.

_T-Cube is a modified Standard T-Engine with a video interface, a super set of all T-Engine capabilities, and a non-standard PCB to fit it into the box.

IBM recently demonstrated Power5, claimed to be the world's most advanced microprocessor, running multiple operating systems in virtual micro-partitions.

The chip is IBM's own high-end server and storage system version of the Power Architecture, which also spawned the PowerPC used in Mac computers. Power5 was revealed at IBM's Power Everywhere event where it also chose to unveil several licensing deals for Power Architecture - notably one with Sony - and to give visitors a peek into the future with a 64-processor 'personal supercomputer' inspired by Blue Gene, the enormous computer IBM is building to solve biological protein-folding problems.

The photo is of a 2.8 billion transistor module including several Power5 chips.

Tags go long range

Radiofrequency ID tags, readable over a 15m range, have been developed by a group of four firms.

A chip capable of working between 1GHz and 2.45GHz was developed by EM Microelectronic and iPico. This was combined with an antenna from Graphic Solutions and a thin battery from Power Paper.

"Using battery-assisted RFID ICs, we achieve a reliability level and reading distances far beyond those attained by conventional, standard passive UHF devices," said Shalom Daskal, the chief executive of Power Paper.

The reader chip can discriminate between thousands of ID tags that might be in range at any one time, while reading up to 200 of the tags per second.
Focus moves to liquid lens

A variable focus lens with no mechanical parts, that mimics the focusing action of the eye, has been developed by Philips Research.

Called FluidFocus, the lens comprises two immiscible fluids, one a conducting aqueous solution, the other a non-conducting oil.

The two liquids are contained in a tube with transparent caps, the inside of the tube, and one end, coated with a hydrophobic material. This forces the aqueous material into a hemispherical blob at one end of the tube.

Placing an electric field across the tube causes the coating to reduce its hydrophobic properties, known as electrowetting, allowing the aqueous lens to spread as the surface tension reduces. The convex lens can actually be made to go concave.

Philips' demonstration lens has a 3mm diameter and is 2.2mm in length. It can focus from 50mm to infinity and can switch over the full range in under 10ms.

The lens uses a DC voltage, and appears in circuit as a capacitor, said the firm. Test devices have been cycled over a million times in the lab.

Such a lens could be ideal for small, low cost devices such as mobile phones. These typically use fixed focus lenses, which to gain a suitable depth of field must use a small aperture. Using a variable focus lens would enable the use of wider apertures, hence more light would enter the system and quality would improve.

Another firm working in the variable lens market is Varioptic, which is currently suing Philips for patent infringement.

Both designs use the electrowetting technique, while Varioptic's DN-1000 lens uses an AC voltage to hold the lens' focus.

Small scope from LeCroy

LeCroy has introduced a range of compact oscilloscopes for benchtop use.

Called WaveSurfer, the scopes have a 34x15cm footprint, slightly larger than Tektronix popular TDS1000 and 2000 instruments, and a huge 26cm (10.4 inch) SVGA screen.

200 MHz, 350 MHz and 500 MHz versions are available, each in both two and four channel variants. One 500MHz probe is supplied per channel.

All six models have a 1Gsamples/s ADC and 250kpoint of memory behind every input, and inputs can be paired to produce, depending on the model, one or two 2Gsamples/s channels with a 250μs capture time at full sample rate.

All six scopes are a 10/100 BaseT network port and three USB 2.0 ports.

Software includes a Windows XP operating system, maths functions and report-generating code. Reports and screenshots can be saved to the internal hard drive or USB flash dongle, or e-mailed across a network with a single button.

Options include a clip-on battery pack for portable use, more memory, an advanced maths package - including additional maths functions, chaining of math functions, and parameter math - and a specific package for mask testing of electrical telecom signals.

LeCroy has a reputation for easy-to-use scopes and after trying a prototype, Electronics World can confirm that the WaveSurfer user interface is every bit as good as the firm's other offerings. Nice touches include the ability to draw a box on the display touchscreen for zooming and separate cursor control knobs for measuring. Prices start €4,449.

www.lecroy.com/europe

A Hungarian architect has combined fibre optic cables with concrete to produce wall-making blocks that are translucent to light. The Litracon blocks contain five per cent fibre, and do not lose any structural strength, claimed Aron Losonczi. The blocks can be used in walls metres thick, or as paving with lights embedded underneath.
Electrochromic clock hits the tracks

UK transport sign company Tew Engineering has teamed up with Dublin-based display developer NTera to produce the world's first electrochromic information display - a railway station clock. NTera's non-emissive technology, which is calls NanoChromic, can produce displays with a contrast of 15:1, similar to ink on paper. Electronics World got to see a prototype several years ago and can confirm this: viewing angle is extremely wide and images are clear in a wide range of lighting conditions. In electrochromic displays, an ink changes colour under the influence of an electric field - from clear to deep blue in the NTera case. Although the displays are not strictly bi-stable, the image takes hours to fade leading to the possibility of solar-powered clocks, NTera's business development manager Dan Wood told Electronics World power consumption in the clock pictured, which has 150mm high digits, is 1.5W and no additional illumination is required provided platform illumination is above the statutory minimum.

Tew and NTera intend to offer other transport signs in addition to clocks as applications are found. Drive electronics are currently made from discrete components. NTera is expecting drive Asic silicon this summer which will cut costs enough to make NanoChromic shelf-edge signs in shops viable, said Wood.

Enter the paperless book

Sony has introduced the first commercial electronic book, with help from Philips Electronic and E Ink. Called Librie, Sony's book has a black and white display with 170pixels/inch and an eight to one contrast ratio, which is only slightly less than newsprint. E Ink provides the electrophoretic display material, formed from particles each measuring 100µm in diameter.

Face matching gets third dimension

NEC has developed a three-dimensional face recognition technology that can match faces even under poor lighting conditions, non-ideal camera angles, or when the subject is changing expression. NEC has developed a three-dimensional face recognition technology that can match faces even under poor lighting conditions, non-ideal camera angles, or when the subject is changing expression. NEC's own tests of 1,000 subjects, with 72,000 trials, the firm measured a true acceptance rate of 96.5%.

In NEC's own tests of 1,000 subjects, with 72,000 trials, the firm measured a true acceptance rate of 96.5%.

Interest in biometrics is growing, and the Internation Civil Aviation Organisation has mandated that all future passports should contain a biometric. Facial recognition is the ICAO's favourite method.

Disk drives get in a spin

Hard disk drive maker Seagate Technology has published research on heat-assisted magnetic recording (HAMR), which it says could lead to storage at densities of 50 terabit per square inch. HAMR is designed to overcome the 'superparamagnetic' limit. This limit is due to the extremely low magnetic energy contained in a stored bit, which dissipates over time due to thermal energy. Increasing the recording field can only be taken so far. A solution is to heat the recording medium as the magnetic field writes the bit of data. A laser is the best source of heat, and this reduces the field needed to write the bit. Seagate expects to see HAMR in disks by 2010. A 3.5inch internal hard drive could hold perhaps 10Tbyte of data, with a density of 1Tbit/in². The so-called 'areal density' has been increasing in the same vein as transistors on a chip. Commercially available hard drives can now exceed 50Gbit/in². Optical storage, on the other hand, such as DVDs have areal densities under 10Gbit/in². Perhaps the ultimate physical data storage, in a two-dimensional sense, could result from placing individual atoms to indicate a one or zero. One early prediction, using five atoms per bit, placed the density at 250Tbit/in². Though no doubt someone will find a way to beat this in the future.

Doping goes small scale

Buckyballs, the football-shaped carbon molecules, have been individually doped using a scanning tunneling microscope (STM) by a team from the Lawrence Berkeley National Laboratory. Michael Crommie, a staff scientist at LBNL, was able to place a single potassium atom on each buckyball (C60).

"Doping materials is a fundamental component of the entire modern electronics industry," Crommie pointed out, "but we need to take these techniques and scale them all the way down to the single-molecule level."

At the single molecule level, it might one day be necessary to dope single C60 molecules with potassium, phosphorus or boron to create n and p type materials. "With this work we've shown how to control the electron doping with absolute precision," said Crommie. His technique is to pass the tip of the STM over the material and use a small current to attract atoms of potassium. They can then be moved and placed on the C60. A buckyball with four extra potassium atoms was about nine per cent wider and three per cent shorter than an unadorned buckyball.
Radio Modules/Modems
www.radiotelemetry.co.uk

- Range up to 20Km
- Serial Data up to 115.2Kbaud
- MODBUS/TCP Server Protocol
- Visit Us Today On...
 www.radiotelemetry.co.uk
 <http://www.radiotelemetry.co.uk>

Warwick Wireless Limited . The Manor . Aston Flamville . Leicestershire . LE10 3AQ
Tel : +44 (0) 1455 233616 . Fax : +44 (0) 1455 233 179 . Email : sales@radiotelemetry.co.uk

The Professional Integrated Schematic PCB Layout Package
Free Download available from www.seetrax.com

from just £90

Tel: 01730 260062 Email: sales@seetrax.com
FPGAs demystified

Following from last month's introduction to Gate Arrays, Eddie Insam will show how to implement a cheap development kit to get started using your own designs.

Starting from the hardware point of view, the first thing to do is to decide how much of the application you have in mind is going to be implemented using GA technology. Given a large enough device, it may be theoretically possible to fit in all of your design, but this may be impractical in terms of development time, cost and power requirements. An ideal design would have a neat balance of responsibilities between microprocessors and gate array devices (there can be more than one in a design). A major decision will be whether to use CPLDs or FPGAs. This will be mainly dictated by the size and complexity of the application. As a simple rule of thumb, anything that requires less than 500 registers should be done with CPLDs. For anything that requires between 500 and 1000 registers, consider the use of more than one CPLD rather than go up to a FPGA design.

One of the most flexible parts of GA hardware design is the allocation of I/O pins. Unless you are concerned about speed, you can literally design the PCB first and dedicate any device I/O pins without giving much consideration to their function, as they are all more or less the same and can be allocated later on from the software. As most GAs have so many spare pins it is also common practice to use these as simple interconnect, i.e. connect all the pins of a micro to one side of the GA, and the rest of the circuit to the other side. This will make things like board and system level testing much easier and also reduce the probability of interconnection errors on the PCB design. GAs are in general very, very fast, and have correspondingly sharp rise times of the order of a few nanoseconds. A lot of care needs to be taken when designing PCB layouts. It is common practice to add low value series resistors on any long tracks carrying data or control signals to remote locations to control rise time problems. Do read manufacturer's recommendations on PCB layouts and tracking. Some devices have software programmable rise time control and some of the larger devices also include built in series resistors on their I/O lines.

So much for the hardware. The real effort is in the software, i.e. in the generation of the fuse files that dictate the internal interconnects. It is theoretically possible to generate these files by hand, however as one can imagine, there are software tools that can generate program files from text editors or graphical interfaces. Most manufacturers provide free integrated development environments and tools (IDEs). To somebody who may be used to programming a microprocessor such as PIC or 8051, the development procedures will look familiar; you enter some text using a text editor, you press the ‘compile’ button, and if everything is OK, you press the ‘program’ button to transfer the compiled fuse file to the target. There are of course a few more interim steps here, mainly to do with optimisations, but you will not need to know about these in depth until you move into serious development.

A typical GA design will be composed of a number of modules or ‘black boxes’ interconnected together via wires or bus lines, just like in a real hardware system. Each of these sub-modules can be designed independently, and can be tested or simulated using the various software tools provided. This makes the design approach very modular.

A pleasant surprise to those used to writing standard computer code is that GA design entry can take many different forms: you can for example draw a circuit diagram, using the mouse and a drag and drop CAD like program. You can write code in text form, much resembling traditional software listings. You can enter input in the form of tables, or state transition tables. You can even define your inputs and outputs as waveforms, inputted as timing traces using a graphics waveform editor.

They will all produce the same binary compiled output. This allows each sub-module to be written in the most suitable form for its purpose, whether in graphics or text form.

Another major time saving element is that the compiler will do all the optimisation and code reductions. No need to get involved in logic

```
IF in==H'0' THEN
ELSIF in==H'1' THEN
ELSIF in==H'2' THEN
ELSIF in==H'3' THEN
ELSIF in==H'4' THEN
ELSIF in==H'5' THEN
ELSIF in==H'6' THEN
ELSIF in==H'7' THEN
ELSIF in==H'8' THEN
ELSIF in==H'9' THEN
END IF
```

out=B'111010';
THEN
out=B'1111111';
THEN
out=B'1010010';
THEN
out=B'1101111';
THEN
out=B'1101011';
THEN
out=B'0111010';
THEN
out=B'1011011';
THEN
out=B'1011101';
THEN
out=B'0010010';
THEN
out=B'1110111';
development software comes under the general name of WEBPACK and is available either as a (pretty massive) download from the internet, or as a CD obtainable from any of their distributors. The CD also contains a full collection of data sheets and application notes, and is a must for anybody involved in Xilinx's Virtex II development. Altera also ships regular CDs containing data sheets, application notes and their main two free IDE suites: Max+Plus Baseline and Quartus II Web. Traditionally, Max is aimed at CPLDs and the lower end FPGA devices, with Quartus covering some of the high end of FPGA devices. The later version of Quartus (from version 2) covers both ranges.

All of the above free development suites are a complete integrated development environment, and are ideal for simple projects of for training purposes. The commercial versions are very similar but also cover the top range devices, access to wider libraries and comprehensive online and telephone customer support.

Unlike development suites for microprocessors, software tools for GAs are closely linked to the devices they are aimed at. Therefore it is important to obtain a tool that includes the full set of specifications (software, electrical and functional) for the device you are working on, this implies getting hold of the latest version available.

Advanced tools

As a designer moves into more advanced projects, requiring more gates, faster timing or better performance, they may begin to find that the design runs too slowly or they cannot be fitted into the device (even though there appears to be plenty of space left). This is because the simple basic tools provided by the free IDEs may not be doing their job at maximum efficiency.

At this point the designer may benefit from a number of third party tools. These replace the relatively simple intrinsic tools provided by the IDE with more sophisticated synthesis, fitting and simulation algorithms. Some of these third party tools can be rather expensive but can be worth the effort and make the difference between a fast design and one that does not work at all.

Intellectual property is the generic name given to sections of software developed by third parties and available for sale, usually on a licence basis. These take the form of modular ‘black boxes’ that can be dragged and dropped into your project. Examples include FFT modules, MPEG decoders, cryptography and of course CPU cores.

Hard core or soft core?

Most GAs are so large that it is quite feasible to include a full CPU implementation in software, and have plenty of spare space left. These are not software emulations of a CPU, but complete, full speed, bit for bit implementation of the real thing. You can embed a well known architecture such as that of a 8051, a PIC or even an Intel PC. Xilinx’s Virtex II Pro has four hard wired Power PC cores, and Altera’s Excalibur includes one 32 bit ARM processor. The reason for embedding a CPU is that some applications are better implemented using traditional Turing type computer technology, rather than by using hardwired logic. The embedded CPU is everything from a simple addition of FFs and ROM perform the work of an equivalent microcomputer, but usually much faster. Some manufacturers have developed computer architectures more specifically suited to GA implementations. For example, Altera’s NIOS, Xilinx’s Microblaze and PicoBlaze. As already mentioned, a major advantage of embedding CPUs is the ability to add your own custom instructions to the existing set. The same argument can apply to Digital Signal Processing (DSP) emulation. GAs can easily outperform DSPS for individual designs. Some tools are available to simplify design, such as Altera’s DSP builder, which converts Matlab and Simulink output directly into VHDL code.

So you want to get into GA?

So you want to have a go, but don’t want to spend a fortune getting a development kit from one of the suppliers. Or maybe you don’t mind getting one but don’t know which one to choose?

Here are the basics. For a start, avoid spending any money in software as all the tools you require initially are available for free, either as CDs or as internet downloads. Next, decide which manufacturer you are going to go for. This can be a tricky decision but not very important as the general techniques to be learnt will be the same for all manufacturers, so this will be mainly a matter of personal choice. Next stage is to obtain the IDE tools, don’t worry about hardware at the moment; you won’t need any for a while. I shall describe the general

June 2004 ELECTRONICS WORLD
procedure for the Altera IDE, as it is easier to use for the novice and the hardware parts more accessible for initial development. A similar procedure will be applicable for Xilinx.

You can download the Altera development suite from their website (www.altera.com). This will be Quartus II web version 3. Unless you have a very fast internet connection, better send away for the CD, which is always a good idea as it contains a large number of useful data sheets and application notes. You do this by filling the online application form, or by contacting any of their distributors. You will also need a free licence to operate the software. You obtain this online by filling an application form (press the licensing button on the front page). The licence lasts for six months, after which you will be requested to ask for a new one, note that no cost is involved. Why they do this I don’t know, but I suspect it provides some form of marketing feedback. Xilinx’s WEBPACK software does not require registration as such.

When you receive your CD, proceed with the installation of Quartus II, this will take a few minutes, and may require the installation of a software system driver for the parallel port. This later installation may be the hardest part for some PC configurations. You will also need to ensure the licence file ‘licences.dat’ as emailed to you by Altera is in the same directory as the program executable.

Now fire up Quartus and proceed straight to the tutorial. You will not need a device programmer or any hardware at this stage. Make sure you have gone through most of the tutorial before you even think of proceeding to the next stage. The learning curve at this point is quite steep, but definitely worth it. You will really need to know all the processes involved, so do not skip any of the sections! The tutorial basically shows you how to use the software, what all the coloured buttons do and what the pretty pictures mean. With the tutorial behind you, you will be able to enter designs, compile and simulate them and see the results on the screen (who needs hardware!).

There is a strange sense of achievement by being able to draw a circuit on a screen, press a few buttons and see the waveform they produce. But then again, there is nothing like the real thing. So at this point, you may be itching to do something with real hardware, something that flashes real lights that is. The quick way in is to purchase a development board, which can cost anything from £400. The cheap way in is to obtain your own components and design from scratch. You will need an actual device. First the bad news, soldering the SMD lights that is. The quick way in is to purchase a development board, which can cost anything from £400. The cheap way in is to obtain your own components and design from scratch. You will need an actual device. First the bad news, soldering the SMD packages can be a nightmare, so maybe the ready-made development board was not such a bad idea after all! However, there is still a way to get started with a minimum of outlay. Some of the older (mature) devices are still available in convenient 1” pitch PLCC socketed packages, and operate at 5 Volts. You will not miss anything by using semi-obsolete devices for experimenting or for learning purposes as most GAs contain more or less the same elements and work the same way.

A couple of suitable devices are shown below. These are easily available from suppliers such as Farnell and RS, and can be fitted into standard PLCC84 pin sockets.

Altera FLEX EPF10K1OLC84-4
576 register FPGA
Altera MAX EPM7128SLC84-15
128 register CPLD

Connection diagrams for both are shown in Figures 4 and 5. Note how the CPLD uses the JTAG interface and the FPGA uses the PSS interface for programming. Most devices use one or the other method, and the IDE is capable of generating programming files for either. It so happens that the MAX family can only be programmed via the JTAG interface. Both devices can take two master clock inputs, but only one is shown. Also note how all the series resistors to the 244 are not present, as the programmer will only be used on a 5 Volt device.

Although both devices feature high clock rates, it is recommended that for development a low master clock generator be used (anything below 25MHz). The reason may not be too obvious: the routings generated by the software. If the device is used near its limits, some of these paths may be too long and exceed the clock rate causing...
strange effects and faults. Seasoned programmers would use the simulator and floor-plan editor to recognise and work around these by hand, but this is an activity we will not want to get involved with at this early stage.

All pins not shown are used for general purpose I/O (i.e. for your application). Leave all unused I/O pins unconnected, as some devices have the strange habit of outputting internal node data to unprogrammed pins.

As mentioned earlier, the FPGA program will only stay as power is applied to the device. To make the program permanent, you need to attach an optional configuration device to the FPGA; this is basically a special purpose EEPROM with some extra logic bits to generate the right programming pulses. Altera's configuration devices are the EPC1, EPC1441 and EPC2. Note that the first two are one-time programmable only, and only the EPC2 can be reprogrammed in-site via its own JTAG interface. It is also possible to use a standard EPROM or flash EEPROM and use a small microcontroller to generate the right timing pulses.

Design tips and techniques
Those of you with a hardware background can quickly get started by using the schematic editor and drawing your circuits directly on the screen. Altera libraries even include old time favourites such as 7400 gates, 7493 counters and 7474 flip-flops. However, it is not a good idea to rely on these legacy components, and it pays in the end to use the more modern building blocks, which are also optimised for the devices being used. Blocks include gates, multiplexers, RAM, counters and various other basic abstract sub-modules.

It is also important to know that the logic circuitry inside GAs is built differently and behaves differently from their discrete logic counterpart. Avoid "trick" circuits using gates as delays, external RC components, and even things like ripple counters that depend on propagation delays. Although you can still use these techniques, the results may be unpredictable and difficult to debug. The reason is very simple, one compilation may assign two similar gates next to each other on the die. The next compilation may assign two similar modules. The reason is very simple, one compilation may assign two similar gates next to each other on the die. The next compilation may assign two similar modules.

End If;

This describes a synchronous divide by ten counter using four flip-flops. The first program line states that the clock of all four D flip flops is connected to the master clock line (the reverse N..0 notation is common in all HDL languages) The third line describes a data multiplexer: when the count has reached nine, the D inputs are connected to the master clock line. Otherwise they are connected back to their Q outputs arithmetically incremented by one.

The counter is toggled from the master clock, and without the second text line, it would operate at this rate. In order to clock this counter at a different rate, we use the clock enable input, which is externally derived from a source that generates one clock wide pulse in every N master clocks.

A practical example
Figure 6 shows a typical example of what can be done with a medium end FPGA costing less than 10 pounds. The circuit shows a complete teletext generator or inserter as may be used in a hotel video distribution system. The chip, in this case an Altera

Figure 5: Equivalent circuit for the Altera FPGA. An optional configuration device will be required if you want to maintain the stored program after switch off, this would be connected between the 244 and the FPGA.
1PK50, takes as input mixed video sync at logic levels. Its only output is the teletext serial stream at 7Mbps, which is inserted back into the video signal using a separate analogue mixer. An external microprocessor is used to transfer teletext page content in ASCII form, everything else is done within the chip. A serial RS232 link to a PC could have been designed in instead.

Each of the functional blocks shown in the figure were developed as separate modules in the VHDL language. The device is clocked from a single 64MHz oscillator, an internal Direct Synthesis (DDS) generator is used to synthesize the teletext basic bit rate and provide other timing pulses as needed for sync separation and line counting. The interface to the microprocessor is via a standard data bus arrangement. The FPGA looks to the microprocessor as a collection of registers and these are used to set working variables such as starting and end line number and various other options. Text data for the pages is fed via writes to a single register using an internal auto-increment counter. From this point of view, the FPGA looks no different to the microprocessor from any other parallel driven peripheral. As already mentioned, a serial UART interface could have been used instead for direct interfacing to a PC without the need for a microprocessor. The internal RAM available within the FPGA (about 5kbytes) is used to store about 100 lines of text; a dual port RAM ready-made library module was used here. The other modules perform parallel to serial conversion, parity generation, and generate the timing sequences. Placing all the fast logic in the FPGA releases the microprocessor from any timing dependent duties.

Each module was tested and debugged separately; for example, extra code was added during development to the DDS section to output some of its internal nodes to spare I/O pins, which were connected to a scope to verify timings. After the tests, the extra lines of code were simply removed from the listing. One of the major aspects of a design like this is that the format of transmission can be changed or redesigned by simply doing a software rewrite. For example a NTSC version, or for a different format of Vertical Interval insertion codes such as time-codes.

Taking it from here

Next time you are working on a project that requires a few logic packages, do seriously contemplate the option of slapping in a GA device instead. Apart from the savings in component costs, you may be saving in testing time, PCB modifications and general hassle. If your project is one of those where a microprocessor is 'not fast enough' think of using a GA as a peripheral handling the fast logic. An ideal application would be one where you need a special fast interface for a standard micro, say a very fast UART or counter, or signal generator, or something that requires fast special purpose processing. Programming a GA to behave like an add-on peripheral is a relatively easy task, with plenty of freely available module library support.

The author

Eddie Insam started his electronics career with his first two transistor radio using 2N35 and CK722 transistors. Things have come a long way since then, and he is now a consultant in innovative applications of telecommunications and signal processing. He can be reached on edinsam@elx.co.uk.

Further reading

- www.xilinx.com
- www.altera.com
- www.lattice.com
- www.atmel.com
DISTRIBUTION PANELS WITH IEC 320 SOCKETS INDIVIDUALLY FUSED

"The Rack Range" CEE22/IEC SOCKETS

THE RACK RANGE MAINS DISTRIBUTION PANELS FOR 19" RACK MOUNTING HORIZONTAL

POWER DISTRIBUTION UNITS with IEC 320 SOCKETS

19" RACK MOUNTING DISTRIBUTION PANELS WITH IEC 320 SOCKETS AND REAR CABLE MANAGEMENT

CALL OUR SALES HOTLINE

020 8905 7273

24 HOUR DELIVERY SERVICE

OLSON ELECTRONICS LIMITED
OLSON HOUSE, 490 HONEYPOT LANE, STANMORE, MIDDX HA7 1JX
TEL: 020 8905 7273 FAX: 020 8952 1232
e-mail: sales@olson.co.uk web site: http://www.olson.co.uk

ISO 9002 REGISTERED FIRM
GB 1907
World War II heralded some giant technological leaps. The world's first electronic digital computer, Colossus, was such a beast. Tony Sale (ex Museums Director of Bletchley Park) is running a project to reconstruct Colossus. Charles Coulta looks at the history and some of the electronic features of the machine. For brevity, some of the historical background has been omitted.

Colossus Mk2 was commissioned at Bletchley Park 60 years ago on June 1st 1944. It was the world's first electronic digital computer. The machine contained 2,500 valves with a paper tape reader that ran at 5,000 characters per second. It occupied a space 4.5m x 3.2m x 2.5m high and consumed around 6kW.

Enigma was considered safe enough for ground based and tactical use but the German Army High Command wanted something that was much more secure. The Lorenz SZ42 was one of the solutions they adopted. (SZ stands for Schlusselzusatz or 'key attachment'.) It was interfaced with a teleprinter, taking the characters from the keyboard and converting them to pseudo random form by adding an obscuring character, then transmitting them. The remote Lorenz machine removed the obscuring characters thus revealing the original text. (See box Operation of Lorenz Machine)

The complexity of the Lorenz machine was such that Bletchley Park stood little chance of breaking into the cipher by trial and error, and they knew it. But in 1941 a German cipher clerk in Vienna made a mistake: he sent a long message of around four thousand characters to a clerk in Athens. The response from the Athens clerk indicated that something had gone wrong and requested "please send the message again". The Vienna clerk reset his Lorenz machine to the same key and the same start position (something that is forbidden as it offers valuable clues to the underlying cipher) and sent the same message again. Being human and probably frustrated that he had to retype the long message, he started abbreviating words. A listening post at Knockholt (in Kent) spotted this and, realising that it might be essentially the same message twice, sent the two encrypted messages to Bletchley Park. Colonel John Tiltman worked out the content of the message but this didn't help to understand the nature of the enciphering machine. Bill Tutte, a brilliant Cambridge mathematician, worked at BP under Tiltman, and within four months had worked out the complete internal structure of the Lorenz machine, just from these two messages.

German teleprinter traffic was code-named Fish at Bletchley and the Lorenz system was known as Tunny. Bletchley Park now had the knowledge to attempt the breaking and decipherment of Lorenz traffic but not the equipment. Hand methods were developed but these could not match the pace at which messages were being received. When keys had been broken they were set up on the Tunny machine Figure 1 where the decrypted message would be printed. But key breaking by hand was taking far too long. Machine methods were urgently needed.

A machine known as Heath Robinson ran two five-channel paper tapes in parallel (one the encrypted message and the other a possible key) and performed Boolean logic on the data, recording the results on electronic counters, using valves. Keeping the tapes in physical synchronism proved difficult and a faster solution was needed. The answer came from the Post Office Engineering Department. Tommy Flowers and his team had been experimenting with thermionic valves for switching telephone circuits. He claimed that he could design a machine fast enough to work out the wheel settings that had been used in a Lorenz message.

Collaboration between Bletchley's Max Newman and Tommy Flowers led to Colossus Mk1. Alan Turing was involved in the statistical and mathematical part of the Fish project. The British government considered this work to be so important that Churchill made any needed resource available.

Colossus was a great success: the first machine was installed at Bletchley in January 1944 and was operational within a few weeks. This led to the immediate ordering of a MK 2 Colossus which arrived 1st June 1944. The Mk 2 was re-engineered from the Mk 1 by Allen Coombs, also from the Post Office. Eventually ten Colossi were installed in F and H blocks at Bletchley Park,
each one running 24 hours a day. A small team of Post Office Engineers lived on site to maintain the machines. Despite criticism that reliability would be a problem with so many valves, Flowers was convinced that by never switching the heaters off great reliability could be obtained.

Tony Sale (then working at the Science Museum) started to research Colossus in 1992 and found enough information to attempt a rebuild. However, at the end of the war Churchill had ordered all the machines, their circuit diagrams and photographs to be destroyed as he didn’t want the rest of the world to know what Britain knew about automatic computation and code-breaking. Thus the information was patchy, some circuit diagrams were missing but some of the photographs yielded useful details. Additional drawings and photos turned up in the American government archives, sent home by US staff working at Bletchley Park. Proper working drawings were produced for all the metalwork and tape reader mechanisms. Dr Arnold Lynch, the original designer of the paper tape reader helped in the redesign. Sponsors were obtained. (Much of the project was funded by Tony himself.) Colossus is being rebuilt in a room at Bletchley Park, fittingly, where Machine number 9 originally stood. The first phase, basically a Mk 1, was officially switched on by the Duke of Kent accompanied by Dr. Tommy Flowers in June 1996.

Colossus consists of electronic and electromechanical elements. There is no fixed clock as you might expect in a fully digital machine; the sprocket holes from the paper tape are used throughout to control the functions of the computer. Fault finding is helped by running the tape slowly; the machine will actually work with the tape crawling through the reader at a fraction of operating speed. It normally ran at 5000 characters per second, giving a clock period of 200µs. Remember this was 1943/4 and even the rather poor oscilloscopes they had were not DC coupled, you couldn’t look at static voltage levels.

The cathode follower was a recent discovery in 1943 and it allowed logic level signals to be extracted from a circuit and subsequently applied to a relay without the need for gas filled valves as had been used previously in Heath Robinson (which was named by the Wrens because of its strange appearance). The wire used would have been silk covered, in the rebuild we use plastic covered wires, and some of us reluctantly use lead-free solder.

The optical paper tape reader moves a length of five track paper tape past a photoelectric reader at high speed, a typical length is 5000 characters, a loop nearly 13 metres long. A variable speed electric motor drives the paper tape. This poses several problems: the tape must run over a pulley system; it must maintain tension to avoid coming off the pulleys and some means must be found to detect the holes in the tape. The tape runs round and round continuously. Tape breaks are spectacular, the tape flies all over the place and caused much delay when it happened in 1944. A low voltage lamp is focussed into a tight beam that illuminates the tape over a short span. A row of glass photo sensors (with octal valve bases) read the holes through a complex optical mask. There were no semiconductor photocells in 1944, cold cathode photocells intended for proximity detection on anti-aircraft shells were pressed into service. We have some of the originals in the rebuild but no spares.

From here the signals are amplified using EF36 pentode valves. Colossus makes extensive use of this valve: it has a heater current of only 0.2 amps (6.3V) which is not much less than the 0.3 amps of other suitable valves available at the time, but when there are over 1700 of them, it makes a difference to both power consumption and heat generated (2kW+). The EF36 was intended as an audio frequency amplifier but Tommy Flowers realised that it could also perform logic functions. By setting suitable voltages on the
Figure 2 left: the programming control panel for the Boolean functions.

Figure 3 right: Surface mount.

control grid, screen grid and suppressor grids, logic could be performed. For example, a bistable pair of valves could be forced into a reset state by pulsing the screen grid of one of the valves low. This would force that valve into the non-conducting state and its anode would go high, forcing its cross coupled partner to switch on.

The amplified, and squared-up signals leave the tape reader and enter a central bus. From here the signals can be processed in many ways. A delta (difference from previous) character is also available for processing. This is very important for some algorithms.

Five four-decade counters are provided. These counters are based on an earlier design by Dr. Wynn Williams of the Telecommunications Research Establishment at Malvern. A bistable divides the signals to be counted by two. The result is fed to a five-stage ring counter, thus giving division by ten. Each complete counter has four decades, allowing a maximum count of 9999. The bistables and rings use EF36 valves, 2 for the bistable and 5 for the ring. The outputs are buffered by 6J5 triodes. Each complete counter is driven by a Counter Controller Chassis which provides clock and gating signals depending on what the counter is to count. The results from any counter can be routed to the printer which is based on an electric typewriter. An example of elegant design can be found in these counters: only two valves per decade are ever on at any one time (one in the bistable and one in the 5-stage ring). This means that the electro-mechanical relay logic to drive the printer/display is simplified and power consumption is minimised.

The largest section (the twelve wheel simulators) contains 501 thyratron valves (GT1C's), one for every tab on each Lorenz code wheel. There are twelve cyclic rings, each representing one Lorenz wheel. The heater current for each thyratron is 1.4 amps at 4 volts, totalling 2.8kW. Twelve patch panels have moveable links which can be set by the operator, one link for every tab on each Lorenz wheel. Collectively these provide the 12 selectable key bit streams which can be applied to the bit stream from the paper tape. It is the Boolean processing of these bit streams that gives Colossus its unique position as the first electronic computer. The programming control panel for the Boolean functions can be seen in Figure 2, this is how Colossus is programmed. A complex set of uni-selectors shift the start point for each ring in a manner determined by the operator, a new setting is applied to any of the rings for every cycle of the tape. The actual Boolean operations required are programmed in by the operator and can be changed during a run. Colossus doesn't produce a decoded cipher-text, its function is to locate the setting, i.e. start positions and patterns of the Lorenz wheels using sophisticated algorithms. The actual decoding is done offline, using Tunny machines. Tony Sale wrote a Colossus simulator for his laptop PC. The clock frequency of his laptop is 800Mhz but it runs at about half the speed of real Colossus (whose clock speed is 5kHz, a ratio of 160,000:1).

Such is the power of parallel processing but of course this is not exactly comparing like with like. High tension power comes from seven standard Post Office DC power supplies. Each one produces 50V at up to 5 amps. They are connected in series to give: -150V, -100V, -50V, 0V, +50V, +100V and +200V. Two further supplies give -50V for the relays and uni-selectors. The original machine had a massive bank of capacitors to smooth the outputs from these supplies but the supplies we use don't need them. In fact there are virtually no smoothing capacitors in Colossus except within each power supply. This also reduces the potential danger if a person accidentally touches the DC rails. The mains supply is a single phase...
60 amp supply distributed by a household consumer unit. Because several people may be working on the machine at any one time, some unseen by the others, we have a safety convention for applying the HT. The person who is about to switch on the HT (the heaters are almost always on) shouts "HT going on....", waits for any objections then throws the switch, shouting "HT on", always being alert to the fact that a loud bang, a wisp of smoke or a strangled cry occasionally follows "HT on".

Colossus uses the following valves in the following numbers: EF36 (logic, pentode) 1731, 6J5 (buffer, triode) 494, 6V6 (logic, driver, beam tetrode) 117, 807 (driver, power tetrode) 78, 6K8 (logic) 12, GT1C (latch, thyratron) 513, VR92 (pulse shaper, diode) 36, 5U4 (rectifier) 1, photocells 9. Grand total: 2991. Two large motorised Variacs provide a nice gentle start for the heaters. The thermal shock of having full heater volts applied straight away is a common failure mode in normal valve circuits. It takes about one minute for the heaters to reach full voltage and this care is repaid by very few filament failures.

(We use EF37As in preference to EF36s; they have slightly more favourable characteristics and were easier to come by.)

They say there's nothing new in the world, and Colossus is no exception. This 1943 design uses surface mounted components, but not at all the same as we know today. The valve holders have their connecting tags sticking upwards, not through the chassis as was common, even in 1943, see Figure 3. These valve holders are mounted on one side of a steel plate, 19 or 29 inches wide. Tag-boards are fitted onto the plate followed by components and all the wiring. Everything is on the same side of the plate, see Figure 4. This has several advantages to through-chassis techniques: two plates can be mounted back-to-back on each side of a rack giving higher density, see Figure 5. Cooling is by convection, no cooling fans are used (the only area were heat build up can be a problem is above the thyratron racks, because of their 2.8kW heater dissipation). Maintenance is made easier because everything is laid out in front of the engineer, there is no reaching round the back or underneath a chassis.

In June 1944 Colossus was helping to break 300 messages per month. By October 1944 this had risen to 1200. The average time taken to break a message after a change of key was 4 days (compared to the average of 1 hour for Enigma messages). Although the outcome of the war was determined by the fighting troops, it is conservatively reckoned that the code breaking at Bletchley Park shortened the war by two years.

The rebuild has been going on now for ten years and is almost complete. Even today in 2004 with our fancy oscilloscopes and digital multimeters, we sometimes have trouble sorting out some of the problems that crop up.

Much of the credit to the rebuilt machine's success must go to the expert wiremen who painstakingly installed thousands of wires so very neatly. Credit is due to the team of dedicated volunteer engineers who gave up considerable time to make this project a success. Finally, Tony Sale who had the idea of rebuilding this magnificent British computer in the first place must have the last word: "I feel very privileged to have met Tommy Flowers before he died in 1998 and to have had the opportunity to recreate his wartime masterpiece, the Colossus computer. The rebuild was started in 1994 and phase one was completed in 1996, the 50th anniversary of the American ENIAC computer. It just made the point that Colossus was the first in 1944 and was British. Because Colossus was kept secret until the 1970s, the Americans had got away for far too long with the myth that ENIAC was the first. Now computer history has rightfully been corrected."
Structure of the Lorenz machine. Numbers below the wheel ident show number of metal tabs on that wheel.

Lorenz wheels.

Operation of Lorenz Machine

The diagram shows how the twelve code-wheels are arranged in the Lorenz machine.

A 7 bit character arrives at the K wheels. The start and stop bits pass through unchanged. Each of the 5 data bits has its own wheel, and each wheel has a different number of metal tabs which are set or not set by the operator. This is the key, 501 bits long. If a tab is not set then the bit passes through unchanged. If the tab is set then '1' is added to the data bit by modulo 2 addition (thus 1 + 1 = 0, 0 + 1 = 1, 1 + 0 = 1 and 0 + 0 = 0, where '+' means 'mod 2'). This means that if a tab is set, the data bit is inverted.

The K wheels all move on one place for each character.

The S wheels receive this encrypted character from the K wheels and the same thing happens, each data bit has 1 added mod 2 if the tab is set, else it is left alone. The S wheels do not move on every character however. The M1, motor wheel 1, moves for every input character but M2, motor wheel 2 only moves if the current tab on M1 is set. If the current tab on M2 is not set (note inversion here), then all the S wheels move on one place; if it is, they don't move. (Later Lorenz machines had a further quirk but we don't have the space to examine it here.)

The following example shows this in operation (start and stop bits not shown; the code is the International Teleprinter Code):

<table>
<thead>
<tr>
<th>Input character</th>
<th>K tabs set on K1-5 (say)</th>
<th>Result from K wheels</th>
<th>S tabs set on S1-5 (say)</th>
<th>Final result</th>
</tr>
</thead>
<tbody>
<tr>
<td>'A'</td>
<td>1 0 1 0 1</td>
<td>0 1 1 0 1</td>
<td>0 0 0 1 0</td>
<td>1 1 0 0 0</td>
</tr>
</tbody>
</table>

Which is 'P'

The actual pattern of the metal tabs was carefully worked out by German mathematicians to yield a near random result in the final output data. A new key had a new pattern of course. Had the famous pair of messages (known as ZMUG from its opening sequence of characters) never been received and decoded it is unlikely that Lorenz would ever have been broken. It is many times more secure than the Enigma system.

Note that unlike Enigma, Lorenz can encrypt a character to the same letter as it was originally. Enigma never output the same letter as was input, a fact exploited by Alan Turing in his design of the Turing Bombe, which consistently broke Enigma.

Bibliography:

- www.codesandciphers.org.uk - Tony Sale's web site.
- For details of the mathematics and theory of how Colossus was programmed see: *Codebreaking with the Colossus Computer*, Carter, F. Bletchley Park Report #1 1996; #3 1997; #4 1997.
<table>
<thead>
<tr>
<th>Product Category</th>
<th>Description</th>
<th>Sale Price (GBP)</th>
<th>Rent Price (GBP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Tektronix 15020 High Resolution Metallic TDR</td>
<td>1505</td>
<td>195</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>AT/HP J3446C LAN Fast Ethernet Internet Advisor</td>
<td>1950</td>
<td>245</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research IWI000 1GHz 10mW Amplifier</td>
<td>350</td>
<td>150</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research HW10000 1GHz 10mW Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Kalmus HBM7325 25kHz 100mV/s 8-bit Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
<tr>
<td>Oscilloscopes</td>
<td>AT/HP 54622D 2 + 16 Ch 100mHz 200MHz's Dig Scope</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>AT/HP 834913 10GHz 1GHz 300mW Amplifier</td>
<td>1505</td>
<td>195</td>
</tr>
<tr>
<td>Oscilloscopes</td>
<td>AT/HP 54622D 2 + 16 Ch 100mHz 200MHz's Dig Scope</td>
<td>1505</td>
<td>195</td>
</tr>
<tr>
<td>Oscilloscopes</td>
<td>AT/HP 54622D 2 + 16 Ch 100mHz 200MHz's Dig Scope</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td>Oscilloscopes</td>
<td>AT/HP 54622D 2 + 16 Ch 100mHz 200MHz's Dig Scope</td>
<td>300</td>
<td>245</td>
</tr>
<tr>
<td>Optical Power Meter</td>
<td>Tektronix 15020 High Resolution Metallic TDR</td>
<td>1505</td>
<td>195</td>
</tr>
<tr>
<td>Optical Power Meter</td>
<td>AT/HP J3446C LAN Fast Ethernet Internet Advisor</td>
<td>1950</td>
<td>245</td>
</tr>
<tr>
<td>Optical Power Meter</td>
<td>Amplifier Research IWI000 1GHz 10mW Amplifier</td>
<td>350</td>
<td>150</td>
</tr>
<tr>
<td>Optical Power Meter</td>
<td>Amplifier Research HW10000 1GHz 10mW Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
<tr>
<td>Optical Power Meter</td>
<td>Kalmus HBM7325 25kHz 100mV/s 8-bit Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
<tr>
<td>Optical Power Meter</td>
<td>AT/HP 54622D 2 + 16 Ch 100mHz 200MHz's Dig Scope</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td>Optical Power Meter</td>
<td>AT/HP 834913 10GHz 1GHz 300mW Amplifier</td>
<td>1505</td>
<td>195</td>
</tr>
<tr>
<td>Optical Power Meter</td>
<td>AT/HP 54622D 2 + 16 Ch 100mHz 200MHz's Dig Scope</td>
<td>1505</td>
<td>195</td>
</tr>
<tr>
<td>Optical Power Meter</td>
<td>AT/HP 54622D 2 + 16 Ch 100mHz 200MHz's Dig Scope</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td>Optical Power Meter</td>
<td>AT/HP 54622D 2 + 16 Ch 100mHz 200MHz's Dig Scope</td>
<td>300</td>
<td>245</td>
</tr>
</tbody>
</table>

Check out our LATEST 2004 Product Guide!!

Call us now for your copy.

Quality Second Use Test Equipment Rental Rates

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Description</th>
<th>Sale Price (GBP)</th>
<th>Rent Price (GBP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Equipment Rental Rates</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Industry's Most Competitive Test Equipment Rental Rates

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Description</th>
<th>Sale Price (GBP)</th>
<th>Rent Price (GBP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Equipment Rental Rates</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flexible commercial solutions available on all products

01753 596000

www.TestEquipmentHQ.com

e-mail: info@TestEquipmentHQ.com

Test Equipment Rental Rates

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Description</th>
<th>Sale Price (GBP)</th>
<th>Rent Price (GBP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Tektronix 15020 High Resolution Metallic TDR</td>
<td>1505</td>
<td>195</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>AT/HP J3446C LAN Fast Ethernet Internet Advisor</td>
<td>1950</td>
<td>245</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research IWI000 1GHz 10mW Amplifier</td>
<td>350</td>
<td>150</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research HW10000 1GHz 10mW Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Kalmus HBM7325 25kHz 100mV/s 8-bit Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
</tbody>
</table>

Test Equipment Rental Rates

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Description</th>
<th>Sale Price (GBP)</th>
<th>Rent Price (GBP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Tektronix 15020 High Resolution Metallic TDR</td>
<td>1505</td>
<td>195</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>AT/HP J3446C LAN Fast Ethernet Internet Advisor</td>
<td>1950</td>
<td>245</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research IWI000 1GHz 10mW Amplifier</td>
<td>350</td>
<td>150</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research HW10000 1GHz 10mW Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Kalmus HBM7325 25kHz 100mV/s 8-bit Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
</tbody>
</table>

Test Equipment Rental Rates

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Description</th>
<th>Sale Price (GBP)</th>
<th>Rent Price (GBP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Tektronix 15020 High Resolution Metallic TDR</td>
<td>1505</td>
<td>195</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>AT/HP J3446C LAN Fast Ethernet Internet Advisor</td>
<td>1950</td>
<td>245</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research IWI000 1GHz 10mW Amplifier</td>
<td>350</td>
<td>150</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research HW10000 1GHz 10mW Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Kalmus HBM7325 25kHz 100mV/s 8-bit Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
</tbody>
</table>

Test Equipment Rental Rates

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Description</th>
<th>Sale Price (GBP)</th>
<th>Rent Price (GBP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Tektronix 15020 High Resolution Metallic TDR</td>
<td>1505</td>
<td>195</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>AT/HP J3446C LAN Fast Ethernet Internet Advisor</td>
<td>1950</td>
<td>245</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research IWI000 1GHz 10mW Amplifier</td>
<td>350</td>
<td>150</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research HW10000 1GHz 10mW Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Kalmus HBM7325 25kHz 100mV/s 8-bit Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
</tbody>
</table>

Test Equipment Rental Rates

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Description</th>
<th>Sale Price (GBP)</th>
<th>Rent Price (GBP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Tektronix 15020 High Resolution Metallic TDR</td>
<td>1505</td>
<td>195</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>AT/HP J3446C LAN Fast Ethernet Internet Advisor</td>
<td>1950</td>
<td>245</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research IWI000 1GHz 10mW Amplifier</td>
<td>350</td>
<td>150</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research HW10000 1GHz 10mW Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Kalmus HBM7325 25kHz 100mV/s 8-bit Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
</tbody>
</table>

Test Equipment Rental Rates

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Description</th>
<th>Sale Price (GBP)</th>
<th>Rent Price (GBP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Tektronix 15020 High Resolution Metallic TDR</td>
<td>1505</td>
<td>195</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>AT/HP J3446C LAN Fast Ethernet Internet Advisor</td>
<td>1950</td>
<td>245</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research IWI000 1GHz 10mW Amplifier</td>
<td>350</td>
<td>150</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research HW10000 1GHz 10mW Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Kalmus HBM7325 25kHz 100mV/s 8-bit Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
</tbody>
</table>

Test Equipment Rental Rates

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Description</th>
<th>Sale Price (GBP)</th>
<th>Rent Price (GBP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Tektronix 15020 High Resolution Metallic TDR</td>
<td>1505</td>
<td>195</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>AT/HP J3446C LAN Fast Ethernet Internet Advisor</td>
<td>1950</td>
<td>245</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research IWI000 1GHz 10mW Amplifier</td>
<td>350</td>
<td>150</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Amplifier Research HW10000 1GHz 10mW Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Kalmus HBM7325 25kHz 100mV/s 8-bit Amplifier</td>
<td>450</td>
<td>180</td>
</tr>
</tbody>
</table>
With over 30 years of audio listening under his belt, Graham Maynard has relentlessly sought answers to questions that are still being asked, like 'do valves sound better?' 'is a valve Watt the same as a transistor Watt?' 'is there such a thing as transistor sound?' Some readers might not like some of his conclusions.

The 25W pure class-A amplifier, and the more efficient high power version I detail later in this writing could have been offered as circuit based projects, but that method of publication would not cover the formative and hands-on based observations, design pointers, and fundamentally significant contraindications that inspired their final development. Hopefully my rather lengthy and unapologetically discursive text, with its proposals for two additional audio (as opposed to conventional audio frequency amplifier) tests, will stir afresh our pool of knowledge, and provocatively inspire some quite necessary, additional, unassuming, and open minded free thinking, especially amongst a few of the past published mainstream designer-writers.

During the late sixties I did my stint with the student union music service. I also spent more time in the library studying amplifier circuitry than my tutors would have though sensible, before becoming actively involved with mobile disco productions. On the road we had record decks, cassette and microphone sources, mixers, a variety of power amplifiers, and separately boxed Wharfedale 8 inch full range drivers which were used to extend the frequency response of our main Goodmans 18 inch loudspeakers.

Whilst our equipment was not 'hi-fi', we chose each piece carefully, and took pride in providing good quality sound. The output levels at some venues were rather high, yet we did not drive into obvious distortion because additional amplifiers were slaved and 18 inch cabinets stacked as necessary. Thus we quickly learned that different types of power amplifier produced different sounds when playing the same music, above their half power levels, at the same time and equally, into identical loudspeakers. We especially noted that the newly fangled transistor amplifiers did not sound as good as established valve (vacuum tube) chassis, because these were much less easy to listen to when driving loudly. The solid state designs also sounded less clear when the loudspeaker cables were long and they made vinyl record scratches sound overly sharp, these being affectations which, when added to their unreliability both during testing and then one last time during service, meant that we would never choose to use them again.

The most highly acclaimed 'sound stage' performers were KT88 class-AB1 ultralines. These set the standard, with professional and very expensive transistorised amplifiers eventually coming close, but never quite making it. Apart from sounding different, the solid state cousins had reactive overload characteristics, which meant that they distorted badly at what should have been the tiniest degree of entirely natural and unavoidable amplitude overdriving, and thus they could not do the same job and generate the same 'volume' without sounding harsh, unless they had a much higher, but never used, power rating. Transistor amplifiers might not have had an output transformer limiting their performance, but that necessary extra power capability made them about three times more costly; whereas today it is the valve amplifiers that are so expensive.

Even plain 1% distortion tetrode and pentode chassis were more agreeable to listen to at higher volume than the most up to date of equal power, compound complementary 0.01% solid state designs, especially if the latter incorporated any form of output stage protection circuitry. The plain push-pull valve power output stages had a warm and less clear but quite comfortable sound, while the transistor types had an ice cold and 'frozen-in' response, which, whilst not especially lacking in detail on solo passages, became indistinct when driving the eighteen through louder passages. It could be loud, but what came out was heard in the loudspeakers, and it could be compensated for by tone control against the magnet, when it wasn't. Also, and this was worst of all for disco, they were devoid of atmosphere in a way that could not be compensated for by tone control adjustment - their sound could be heard in the loudspeakers, and it could be loud, but what came out was increasingly dull and fuzzy at higher volume - an empty pre-dance test was just that, empty. In the same circumstances ultralinear KT88s...
were clean, un-strained, dynamic and involving; they always made our loudspeakers project openly with a naturally free flowing and recognisably more realistic sound.

Generally a minimum 1.5 to 2 times of continuously rated and equal impedance transistor watts were (are) necessary to competently replace ultralinear KT88 beam tetrodes, and at that time there was not a solid-state substitute for the 200W 4x KT88 ultralinear Marshalls. Thus it does not surprise me that 6x KT88 ultralinear power audio designs are still commanding respect, also that Quad have quite recently reintroduced valve amplifiers to their hi-fi line-up in the form of highly creditable KT88 monoblocks. 'Watt' for 'watt', valves can run loudspeakers so much more loudly than transistor designs before audio distortion becomes noticeable.

Also back then, there were other aspects relating to treble clarity I could not understand. When you aimed an ear in line with a tweeter axis and reflected away the rest of the output from say a three way loudspeaker system, the valve amplifiers sounded quite natural, while the higher components from a 0.01% specified class-B transistor chassis seemed to be carrying lower frequency sounding definition. This was a real puzzle for me because it was as if the transistor designs were impressing lower sounding components upon the treble, than the crossover circuitry was electrically capable of passing. So I connected headphones to the transistor amplifier’s output terminals, and listened from another room as I remotely switched the output between a resistor, and the ‘hi-fi’ loudspeaker. The degradation of headphone fidelity when the loudspeaker became the load was apparent as a masking of clarity on the leading edges of higher amplitude vocal and musical notes which were rich in harmonics and sibilants, yet which did not drive the amplifier into overload.

Clearly, audio waveform amplification gives rise to observable differences in reproduction which are musically more significant than the amplitude non-linearities that induce measurable sine wave THD. These are subtle dynamic changes that affect leading edge finities and immediacy, and which alter our perception of harmonic relationships and spectral coherence, both of which are simultaneously essential and must be cleanly reproduced to recreate the ambience and spine tingling emotions we should experience without distraction via the sound playback of a recorded performance. Such are the waveform qualities that many solid-state systems, but not necessarily all, seem to either lose within complex passages, or mask at higher volume, and which no amount of additional closed loop NFB can be guaranteed to recover.

A load of old baloney? Well, we had been lucky enough to have the discs paying for our experience and in spite of hands-on test bench measurements confirming that every amplifier did actually perform exactly as was specified for frequency response, power to clipping, distortion into a resistor, etc., we were all agreed. Those 0.01% specifications were not wrong, yet nor were our ears, and this emphatically demonstrated that an amplifier’s measured capabilities for driving site waves into a dummy load were not of primary relevance. Note though, that I am not making a general statement that all 0.01% measured amplifiers are not going to sound acceptable in isolation, it is just that there was, as there still is today, much more to selecting an amplifier for sound reinforcement, power audio, or for that matter hi-fi use, than can be gleaned by checking out the manufacturers’ design specification sheets, because in spite of their super specifications, not all amplifiers are equally competent at driving real-world loudspeaker systems. Thus, whilst we cannot remain forever sceptical, we need to be unassuming and sure about fundamental circuit activity and the simultaneous internal circuit reactions that arise when amplifiers and loudspeaker systems are used together to reinforce or reproduce sound.

Loudspeakers

As for our disco loudspeakers, hi-fi driver units had also been tried on the stage, but most were inefficient and sonically uninspiring, as if no amount of amplifier power could ever put ‘life’ back into their music. Three-way domestic hi-fi loudspeakers driven by class-B transistor amplifiers were an awful combination, and yet they went on to become a marketing phenomenon. This same set-up also ruined jukebox sound in the 1970s, as they became flashy, digital and unreliable, as well as tizzy. There is little I find subjectively more objectionable than a split human voice, where deeper tones excite a hideously slow bass driver out of phase with the mid, and natural clarity in the upper range is ruined by mid-cone induced break-up which interacts with treble output and causes suckouts which vary with frequency and listening angle. These dissonances arise in a manner that does not always show up via on-axis swept sine wave frequency SPL testing, because phase shifts, resonances and suckouts can fortuitously flatten a publishable one or two metre axial response, in much the same way that sine wave driving plus resistor loading can Unfortunately exaggerate a solid state amplifier’s capabilities.

Three-ways like my then (soon to be mid-dome-ectomied) Celestion Ditton 66s, might have been capable of generating thunderously impressive bass, with mid-range and high frequency wavefronts that had been optimised for a listening room sweet spot, but they were blantly ‘total’ and ‘pas-bandy’ on an open stage when compared to less than ideal PA drivers or our eighteen inchers topped by full range eights which had no more than a simple series capacitor to limit voice coil dissipation and cone excursion. I cannot be impressed by the best of transducers within their own designated frequency range, if their sound cannot subsequently be seamlessly integrated with that from other drivers.

The complex crossed-over responses of three-ways were supposed to be flat, but you could and still can hear completely segmented reproduction qualities creating an unnatural sound integration as reactive components, voice coil inductances, cone size and shape dependent driver, radiation, lag characteristics and hard to cure break-up resonances become prominent and not only interfere at different frequencies, but generate back EMFs that cause difficulties within solid state amplifiers. Also, many loudspeakers were once supplied with an internal foam ‘damping’ which introduced a colouration that reflected its own consistency; this should of course have long ago been replaced with a properly finishing medium.

And then PA drivers with central metal ‘presence’ domes appeared. These generated intense upper mid range sound beams that further accentuated transistor amplifier distortion and the peakiness of similarly new electret microphones, the result being ringing ears and a potential for permanent hearing damage 100ft or more from the stage. Ugh! We stuck to hiess-less moving coil microphones and I ended up...
making manageably sized cabinets housing eight full range 5x9” Elacs with two 'high-fill' Fane soft dome tweeters. These were inexpensive combinations that proved to be very loud, clear, efficient, lightweight, excellent sounding (even with class-B solid state drive!), and not especially disfiguring when close up because the sound did not emenate from a single cone centre. I always thought that ellipticals sounded better because unwanted effects due to varying cone angle and radial dimension were much less sharply pronounced than with circular drivers; also when an elliptical is used with its long dimension vertical its radiation pattern is generally more useful.

A lack of competent wavefront integration can still occur today with technically impressive hi-fi or ‘time aligned’ labelled loudspeakers, in spite of being supplied with near ruler flat frequency response and impedance specifications. These sounders might well recreate an acceptable stereo image, but it does not matter how flat their on-axis SPL response is because we are still not properly free to experience different positional balances that do not change significantly as we walk through their radiation patterns as we can in front of a stage of real life musicians or sources that generate coherent wavefronts like those radiated by full size electrostatics or columns of smaller high specification full range drivers. Approximately 3dB of array gain arises for every doubling of the number of drivers in a line; i.e. 2x, 4x, 8x, 16x etc. Thus for any given amplifier power, a vertical line not only sounds louder, it reproduces with very much improved clarity and performer presence due to shared cone displacement improving transduction linearity; also the simultaneous outward extension of their combined near field at low voice frequencies is something that needs to be heard to be appreciated. A small transistor radio sized driver that sounds clear but ‘thin’ when singly mounted in a large cabinet, can delight when many are used to create a tall line source.

Piano, glockenspiel, saxophone, violin and so many other instruments as well as the human voice, all sound so much more like the real thing when their fundamentals, characteristic inflections and harmonics coherently emanate from the same transducing element(s) and are not electrically split between spatially separated drivers. And yet line sources can introduce problems too; for example, if the individual drivers are too large or their centres spaced too far apart, then a sound altering high frequency peak and trough ‘comb’ effect will develop in the vertical near field, or, when the drivers are small and close together, an inadequate length of flat line will create a beam that sounds quite different in standing and sitting positions because it cannot coherently cover both.

With loudspeakers especially, specifications alone will not guarantee a good sound for every reproducing situation, and unless you’ve won the lottery, you’ll run out of readies before the reviewers run out of enticing superlatives and suggestions that you try ever more exotic systems. Small drivers reproduce more coherently through a wider frequency range and I prefer this ability, but small drivers lack air volume displacement and cannot radiate adequately at lower frequencies, so that even when they are multiple they still need to be augmented by separate sub-bass drivers.

Small drivers might also have a high frequency response extending to 20kHz, but that will not necessarily guarantee a capability for generating realistic sounding wavefronts to the limits of audibility because their phase linearity might start to ‘roll over’ at say 10kHz. Precious few small drivers reproduce high frequencies convincingly, and these are very expensive; the rest need assistance via a 30 to 40kHz specified super-tweeter that will not roll over within the range of CD reproduced playback frequencies when it is crossed over to match the desired application. Wherever you see amplitude peaks in the upper response of a driver or system, whatever its cone, dome or ribbon size, you can be sure that its phase response is changing rapidly at that frequency, and that it started to roll over well before this, as amplifiers do. For example, an amplifier with a ±3dB response from 15Hz to 25kHz, might exhibit a flat phase characteristic between 50Hz and 7.5kHz only, whereas a three-way loudspeaker having the same amplitude response will generate additional transduction phase and side lobe incongruities about and through every crossover frequency.

I guess as individuals we each have to weigh up the increasingly significant costs of improving sound reproduction, against our personal dislikes, objections and tolerances for different kinds of amplifier and loudspeaker induced distortion. We are all different. Also, each of us knows what we like to hear, often without understanding or being able to explain why, and without others knowing what we like to hear, often without understanding or being able to explain why. It is this natural variation that makes the opinions of ‘non-techies’ and especially blind persons so profoundly relevant, and shows us that our everyday systems still have a long way to go.

Formative investigation

Whilst the loudspeakers were the weakest link within our disco chain, it was the solid state power amplifiers that sounded less convincing, so I decided to build for myself a known good transistor chassis in order to double check our witnessed
surprisingly big sound for its size because the enclosure was ported behind the tweeter; it also had a non-polarised capacitor in series with the compact mid-bass driver to tune its response and thereby optimise low frequency output by modifying the resonant peak, without leaving it vulnerable to sub-bass overdriving. A 2.5μF capacitor in series with this particular loudspeaker would have compromised the manufacturer's intended bass reproduction characteristics in a way that could have been construed as being a loudspeaker problem, and not due to the amplifier itself! By way of a separate note, I too had configured my magnetic cartridge RIAA equalisation to roll off at 25Hz as JLH had done, instead of at the more usual 50Hz; I used passive plus precision R-C filtering for the upper 2120Hz cut to simultaneously filter noise from the foregoing headroom gain stage lift below 500Hz. This sounded so much better than conventional circuitry which used only full NFB loop shaping, and the same topology remains relevant today for those wishing to transfer vinyl collections to hard drives via high quality sound processors. When disc rumble or bass feedback became a problem on loud playback (even with wall mounted turntable plinths) I used bass cut and/or switched in the primary of a miniature LT700 equivalent transformer between the pre-amp channel outputs to 'mono' the differential sub-bass without noticeably altering its overall level, or affecting other audio frequencies. Now with CDs and good spinners we can have the equivalent of kick drums, bass guitar cabinets or many cellos in our lounges without any risk of room shaking feedback. At that time my favourite power amplifier had been the competent and reliable Leak TL-50 Plus: 2x KT88 (or 6550 for USA), ultralinear, class-A/B1, and 50W RMS at 0.1% distortion over 20Hz to 20kHz. This level of distortion is higher than expected today, but don't forget that the quoted figure was for maximum output, and distortion faded down into thermionic hiss at normal listening levels. I also noted that sine wave clipping into a resistor load did not occur until 55W, which probably assisted the bandwidth specification, for there was useful power below 10Hz via its large output transformer which meant that this chasis could be, and was, used for subsonic vibration testing in civil engineering research! I ended up convincing myself that a 50W version of the JLH class-A amplifier should be able to replace the TL-50, especially as high quality plus high power valve output transformers suddenly became no longer available beyond the 1960s. Customer demand has since led to renewed manufacture, but expectant constructors really must bear in mind that only thick core transformers embodying the finest of magnetic material, plus split winding techniques are capable of reproducing sound worthy of the expenses incurred in association with hollow-state and electrostatic technology. Falling back to 'calculated' windings on mains transformer toroids really is not the best way of using valves like KT88s, which are approximately £30 each, but up to £320 per pair for unused originals!

Class-A heat 50W at 8 ohms means 57V p-p and 3.6A peak at the load. Adding 6V for transistor operation and emitter resistors, plus 10% for class-A current continuity, gives 63V @ 4.0A. However, when it comes to quiescent biasing, we have to remember that hot power transistor junctions have a higher gain at lower current than is stated in normal 25 degree specification sheets. This means that when they are hot, their gain falls much more sharply with increasing collector current, as well as with reducing Vce. Figures often approximate to an HFE reduction of 40% for every doubling of collector current between low level and maximum, plus anything up to another 40% between zero and peak output voltage conditions. Thus when the output stage base current that is necessary for 4.0A of maximum conduction in one output half is split and shared to provide the standing bias for two output halves that run in hot class-A, the resulting quiescent current ends up far exceeding the 2.0A that might simpistically be expected. Indeed, where low distortion is required from ordinary power transistors running in pure class-A push-pull, the quiescent current often ends up equalling the peak load current that is calculated as being necessary for a maximum output, even though it is rarely used during audio amplification. Due to the higher currents involved, I replaced the bootstrapped output stage biasing resistors with a constant current generator and used grounded current mirrors to maximise linearity at the first two transistors. The supply was derived...
directly from a bridge rectifier with the quiescent voltage being set via a resistor in series with the mains transformer primary winding. With its class-A biasing and additional mains transformer losses, the total heat dissipation was 300W — more than twice that from the 'old fashioned' KT88 chassis!

Well; my 50W class-A and the Leak TL-50 were test bench equals. Triple output transistors conferred an ability to drive home hi-fi loudspeakers at enthusiastic listening levels, and both amplifiers performed most satisfyingly. The extended frequency response and clean treble of the class-A design was discernible, though not especially significant during listening comparisons. I also found that it was not easy to identify sound differences between amplifiers when they were running well within their power rating in a home setting and not driving reactive or efficient loudspeakers loudly. By way of a sideshow, the loudspeaker leads from my new amplifier could be tested for output by sparking them together with full signal input; the spark noise always made observers gasp because the transistors never blew. It is likely that the short circuit zero ac voltage currents peaked at just over eight amps, but of course this was via three parallel connected output transistors and they were naturally limited to this level by the current sourced pure class-A base biasing. Also a high value output electrolytic is not quite the same as a direct current short circuit, while constant shorting of the output terminals did no more than trip the 2A thermal breaker I had in series with the mains transformer primary. Continuously sparking the loudspeaker leads at maximum input could destroy many amplifier types, yet it is theoretically and practically possible with a simple class-A amplifier running correctly chosen output transistors because it is already running close to maximum dissipation. In its day this was a party trick!

Listening tests

I was very proud of this new construction and determined that I would show it off driving our highly efficient disco speakers. And when I did, it gave me much more of a surprise than I could have expected, for it was incredibly lifeless. Yes, lifeless! There was a lack of effervescence at levels where the KT88s effortlessly breeze along. Actually, it was a very pedestrian performance. Like an immature and purely voiced choirboy wimpishly lacking the live energy, dynamic drive, raw vigour and 'Easyrider' exuberance that pop music expounds. Yet it was not bad either, because it really was clean at ordinary levels, and it ran into overload without the slightest hint of distortion. Once again the ultralin linear tetrodes sounded twice as powerful as an amplifier measured as being its equal on the test bench. Disappointed? After all my efforts I was flabbergasted. Words, thoughts and an explanation failed me, though anyone reading this who uses valve power will understand my observations. I tested again after reducing PSU series resistance. With each power transistor convectoring 50W of heat, this lifted the output to 75W into 5Ω, but the valves remained superior, and I could not see how bipolar class-A was supposed to be a positive step forwards.

Text books of the day suggested that pure class-A was the very best, and yet here I had this idealised solid state example which I had just proved to myself was not a reference audio amplifier at all. It was satisfyingly transparent and tireless for domestic use as part of the home hi-fi system and like so many other transistor amplifiers it was fine for driving audio frequency sine waves into a test bench resistor, but in spite of its heat generation, it sounded indisputably lacking beside the KT88s when being used to drive large and efficient 'pop' loudspeakers in open surroundings. Clearly, an ability to amplify audio frequencies does not automatically show that an amplifier is suitable for universal use as an audio amplifier. I could have thought I had demonstrated that a 'pure class-A' watt is unlike a 'class-AB or class-B' watt; or a 'transistor' watt is unlike a 'valve' watt; or a 'hi-fi' watt is unlike a 'PA' watt; or even that 'loudness' and 'watts' are not related at all. All the clues had been there, but it would be some time before I properly understood why solid state amplifiers performed worse than valves (most still do) relative to their power rating, and it was going to be another twenty years before better gain linear power transistors like the 2SC3281 would become available. I had grown up with, and had had my audio and radio bases founded by valves, thus I remained disappointed with solid-state offerings because they really were incapable of performing as well. Transistors were good for portable radios and low-level audio, but not for power amplifiers. Others raved about compactness, power output and convenience, but because of the way in which they altered reproduction when driving loudly, I was left most unimpressed.

Also, I don't ever remember reading anywhere that normal bipolar transistor output stages running in shared bias pure class-A are not balanced when operating in plain and ordinary push-pull; this includes hot 2SC3281 etc. Take the example of a single pair running a quiescent current of 1.5A, and powering into a low resistance. Load currents of 2A peak might reasonably be expected, but due to the hot current gain non-linearity mentioned above, one half might manage only 2.2A whilst the other drops to 0.2A. The simplistically imagined and often inferred sharing and balanced variation of ±1A about ±1.5A, i.e. equal and opposite sharing currents of ±2.5A and ±0.5A, just does not just occur. Only at low output levels is push-pull activity naturally equal and opposite and thus of very low distortion; the higher the desired output, then the more disproportionate the driving requirements, the more imbalanced the Vbe changes, the power rail current draws, and the output device storage effects become.

The same applies with bipolar push pull, for the combined gain of driver plus output devices at moments when a dynamic loudspeaker becomes reactive and draws maybe 2.5 times the nominally measured output current, could easily be one tenth of that measured at maximum on the test bench using a nominal resistor load. Negative feedback is used to subsequently reduce audio frequency distortion, but it might be only one tenth as effective through momentary reactive and distorting loads and be even less capable of improving the fundamental imbalances and internal delays due to transistor action. Valve and mosfet output stages are better than bipolar in this regard, though mosfet gates can cause additional non-linear capacitive loading problems to VAS and driver stages, and thereby alter gain and propagation characteristics within waveform time in a manner that significantly increases with signal input amplitude and frequency, also with dynamic and reactive loudspeaker output loading.

My real-world tested pure class-A biased bipolar amplifier might have sounded better than bipolar class-B, but its powering capabilities turned out to be much less than the ideal I had been expecting; thus it remained no more than a curiosity which was
then used for very many subsequent
circuit and dynamic biasing
modifications and evaluations,
including testing with and without
a series output choke.

Transistor amplifier designers
I cannot apologise in advance for
feeling the need to write this section
and I gain no satisfaction from doing
so, but it does relate to many
amplifiers that are already in
existence today, and to the use of
circuit elements that are still
being supported. Thus I trust that by
the time you have finished reading these
pages, you will properly understand
my reasons.

Over the years I have watched
amplifier designers using NFB to
reduce THD distortion below what
were already satisfyingly low 0.1%
valve levels at maximum output, as
if by meticulously doing so they
could assure music listeners that all
distortion ills had been cured, and
that their circuits really could not be
blamed for any of the perceived
inadequacies and reproduction
changes that arise within the high
fidelity playback chain. Yet many of
their ever more 'advanced' designs
appeared to have been doing no
more than moving inexorably
sideways, instead of progressing
with inspirationally audible real-
world improvements. I used to repair
top flight hi-fi amplifiers and was
amazed at hearing better than 0.01%
specified designs which really were
so obviously inferior when
compared to old 0.1% valve chassis.

Also, the more negative feedback
that has been used to 'improve' any
topology, the greater the sound
together and loss of clarity became
when the amplifier was running
loudspeakers at realistic levels. Most
definitely, the reproduced sound we
eventually hear is not always
commensurate with bench measured
amplifier distortion specifications
and I heard some relatively
expensive products that sounded
really awful. At the time I did not
express any opinion to those who
had bought on the strength of
reviews or reputation, for fear of it
affecting my income, besides, I
did not have any proof to back up my
subjective opinion. I knew that it
was not the NFB itself that was the
problem, for its considered
application can genuinely improve
sound reproduction, but all the
response and open and closed loop
analysis theory of the day was not
equalizing the changes perceived in
reproduced sound when NFB loop
controlled transistor amplifiers were
being used to drive real-world
loudspeakers loudly.

It was not the theory that was
wrong, but the way in which it was
being implemented!

Sadly, I have come across some
rather condescending and over
confident designers (plural) who
unsurprisingly believe that because
their amplifier developers less than
0.01% audio sine wave distortion at
full power into a resistor, has
>100kHz bandwidth, can run for
days at maximum output with 2µF in
parallel or into a short circuit, whilst
simultaneously passing all the
theoretical open and closed NFB
loop stability examination tests
known, that it cannot possibly distort
any audio waveform it is called upon
to regenerate at the loudspeaker
terminals. There has been no way of
penetrating their already established
mindset and because they really
cannot comprehend that others are
genuinely capable of hearing and
subjectively describing consequential
differences in reproduction which
have not (previously) been
technically founded, as can blind
persons who develop surprisingly
keen and additional hearing
capabilities plus an ability to
describe attributable characteristics
or degrees of altered transparency
which make a sighted person's
hearing seem so inadequate no
matter how experienced s/he might
have thought their own audio ears
had been, these designers then
question the technical capabilities of
such 'listeners', or label other
designers as being not quite up-to-
date or 'with it', or suggest that they
are attempting to make their mark, or
profit from heartfelt irrationality.
Even the very best of amplifiers are
dooled by 2µF loading and the
 capacitor will become hot without
telling us anything about amplifier
reproduction quality.
Not only is this a sad state of
affairs, but unfortunate too, for most
designers tend to be highly educated
people who understand theory, and
know how to use it to commercial
and executive advantage. They
produce highly professional and
thesis like presentations of
overwhelming theoretical evidence
and are occasionally published or
granted patents, which means that
they are obliged to defend their
status or might feel a need to
challenge when they believe that
'established' rules have not been
followed by lesser educated or other
designers who they feel do not have
sufficient experience. So often it is
their idea of what constitutes a
challenge that exacerbates a situation
and prevents genuine progress, for a
brusque attitude and authoritarian
proclamation of prior knowledge,
(which they believe to be of primary
importance) can so often turn into a
personally deriding and clever but
undermining word by word argument
that misses other intentionally
significant points by a mile, instead
of being genuinely helpful,
informative and explanatory to
everyone. Also others will then keep
their opinions to themselves for fear
of receiving a drenching when side
issue clouds become ominous.

The technical pen should be used
advisingly, and with carefully
considered encouragement to those
who wish to contribute; not be
wielded like a conqueror's sword
that hacks down those who do not
speak in the correct tongue or hold
similar beliefs. Yet this is what keeps
happening in the Letters pages, and
rarely do these already 'established'
theory based challengers sufficiently
inform or provide their free thinking
readers with the full unassuming
proof that is necessary not only to
prove their own case, but to give the
supposedly errant writer a basis upon
which to address challenge, and
thereby either correct or reaffirm the
stated foundation.

Thus I have long wondered
whether the designers of modern and
often more powerful solid-state
chassis have properly demonstrated
that their circuit improvements were
audibly worthwhile within real
world audio sound reproducing
systems and if they did, where were
the comparisons conducted, what
loudspeakers were being used, and
what was their reference - a good
1% distortion and non-NFB directly
heated class-A triode amplifier, or a
0.1% and limited feedback
ultralinear class-AB1 tetrode
chassis? Don't laugh, I'm actually
writing about sound reproduction -
not steady state sine wave THD
specifications. Thankfully though,
some designers do conduct tests
against a known good chassis in
order to identify and if possible
overcome any observable problems
before being satisfied that they do
indeed have conclusive reasons for
presenting a design that does drive
loudspeakers more realistically,
even if their circuit does not
measure as well on the 'established'
test bench or via computer
simulations.

In part two my writing will shift
from past observation into recent
circuit analysis and audio waveform
simulation.
Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem – provided it has a degree of ingenuity.

Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too – provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.

Clear hand-written notes on paper are a minimum requirement: but you will stand a much better chance of early publication if you supply your idea electronically, preferably by email. Any diagrams need to be in a graphic format, not a CAD/CAM or any other obscure file.

Most circuit ideas contributors are paid £35 and good ones attract £50 or even £100! If winners would prefer archive CDs or subscriptions instead of payment please let us know when you send the idea in.

Where software or files are available from us, please email Caroline Fisher with the circuit idea name as the subject.

Send your ideas to: Caroline Fisher, Highbury Business, Media House, Azalea Drive, Swanley, Kent, BR8 8HU or email to: ewcircuit@highburybiz.com

UPS

The circuit diagram presented is that of a fully automatic UPS. It can be used with PCs, TVs or any other domestic appliance (around 500W).

The output volts are typically square waves type of about 100Hz. The user can adjust the frequency with the help of R8. The UPS may be divided into three sections.

The first part is that of an automatic battery charger constructed around an op amp (CA3140). It is recommended that the charger is constructed first. A standard variable supply may be connected in place of the battery. The voltage is set to that of a fully charged battery and R2 may be set so that the output of the op amp is high and RL disconnects the charging system. Again the voltage of the variable supply is set equal to that of a drained battery and R6 may be adjusted for onset of battery charging. As the both the settings are dependent on each other, so a number of tests would be required to set the charging conditions.

The inverter is constructed around a CMOS astable multi-vibrator with Q and Q outputs. The frequency of the square wave output can be adjusted with the help of R8. The two outputs drive the two mirror image sets of

CIRCUIT IDEAS

ELECTRONICS WORLD June 2004
Motor Drivers/Controllers

DC Motor Speed Controller (5A/100V)
Control the speed of almost any common DC motor up to 100V/5A. Pulse width modulation control for maximum motor torque at all speeds. Supply: 5-15VDC. Box supplied. Dimensions (mm): 150x100x60H. Kit Order Code: 3017KT - £12.95

NEW! Bi-Polar Stepper Motor Driver

Controllers & Loggers

PC Controlled Dual Stepper Motor Driver
Independently control two unipolar stepper motors (each rated up to 3 Amps max.) using PC parallel port and software interface provided. Four digital inputs available for monitoring external switches and other inputs. Software provides three run modes and will step fast, single-step or manually. Complete unit neatly housed in an extended D-shell case. All components, case, documentation and software are supplied. 4 indicator LED's. Rx: PCB includes one Tx but more available separately. 4 indicator LED's. Rx: PCB. 4-channel temperature logger. State-of-the-Art Security. High security. Rolling Code 4-Channel UHF Remote State-of-the-Art Security. High security. Rolling Code 4-Channel UHF Remote

PIC & ATMEG Programmers

ATMEL Programmers. Complete range and documentation available from our web site.

Programmer Accessories:
- 40-pin Wide ZIF socket (ZIF40W) £15.00
- 18V DC Power supply
- Free Windows Software. ZIF Socket and USB Plug A-A lead not included. Kit Order Code: 3128KT - £39.95

Infrared RC Relay Board
Individually control 12 on-board relays with infrared remote control unit. Call your phone number and remotely turn on/off any of your relays, anywhere in the world and remotely turn on/off any of the 4 relays as desired. User settable Security Password, Anti-Tamper, Rings to Answer, Auto Hang-up and Lockout. Includes plastic case. 130x110x30mm. Power: 12VDC. Kit Order Code: 3149KT - £39.95

www.quasarelectronics.com

PIC & ATMEG Programmers

We have a wide range of low cost PIC and ATMEL Programmers. Complete range and documentation available from our web site.

NEW! USB 'All-Flash' PIC Programmer
USB PIC programmer for all 'flash' devices. No external power supply making it truly portable. Supplied with box and Windows Software. ZIF Socket and USB Plug A-A lead not incl.

www.quasarelectronics.com

Secure Online Ordering Facilities • Full Product Listing, Descriptions & Photos • Kit Documentation & Software Downloads
two transistors each, switching them in a complementary manner. The two output transistors conduct DC voltage in the two respective loops of the transformer generating 220 volts in the high voltage winding. Two diodes (D7, D8) are used to protect the output transistors from reverse high voltages produced by the inductor.

The third part is that of automatic switching. For this purpose three relays are employed in the circuit. Relay (RL1) is used in the normally closed condition. Reaching the voltage of drained battery to a limit (NC), RL1 is de-energized and thus connects the battery to the inverter.

Relay (RL3) being double pole double throw (DPDT) relay could be used instead of the two (RL2 and RL3), but I did use two separate relays in order to avoid any chance of high voltage hazard in the low voltage section of the circuit.

Ejaz ur Rehman
Islamabad, Pakistan

SSB exciter with ladder filter

The circuit which is described here has an immense use in the making of SSB transmitters. The heart of this circuit is IC1 (NE612) which works on Gilbert cell principle. This magnificent IC has a double balanced mixer, oscillator and an internal voltage regulator so there is no need of any external oscillator since this IC contains all the above parts.

For SSB production, any four crystals from the same company are necessary. The out put from pin number 5 of IC1 gives DS3 signal only when audio is applied to the IC. This is an excellent quality for generating SSB signals. Capacitor may be Styroflex or polyester to give high stability. Then wire up according to the circuit. The output can be tested by using oscilloscope align the capacitor for proper output.

Audio from the mic or amplifier is fed to the input of the IC1 in pin 6 Double side band is created in the IC. The internal transistor oscillator oscillates with the frequency which is same as the frequency of the crystals. The capacitor in series is used to increase the frequency by 0.01% or a fraction which gives the carrier volt which can be amplified by external RF amplifiers to give the required output.

There is little modification needed to convert this circuit into a receiver circuit a hand full of components are needed for this purpose. This SSB exciter can be used or modified from low frequency to 200MHz. Simply adding the required crystals and tuning. Ladder crystals can be replaced with required quartz filter and switching separate LSB and US13 instead of X5 in the circuit. The circuit described here is of general purpose which can be modified according to ones needs. This circuit is designed and tested for frequency 9MHz/14MHz/28MHz which are ham frequencies. I think that this circuit may be very useful for hams and electronics enthusiasts. This circuit can also be used for studying about SSB wave and its characters.

Components list

IC1 - NE602/NE612
XI to X5 Required frequency crystals
Capacitor C1, C2 - 0.01µF
C3, C4, C5 18pF
C6 - 10µF, 16V
C7 - 270pF
C8 - 50pF
C9 - 10pF
C10- 22pf Trimmer
P.M. Prabhu
Kerala
South India
Electronics World

Why not try us for your next project?

WE WILL BE MOVING SHORTLY - CHECK WEBSITE

www.stewart-of-reading.co.uk

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 7470A Plotter HPIB Data Acquisition DA1444 Cassette recorder 4 inputs. used with ext.mains adaptor - not supp.</td>
<td>£60</td>
</tr>
<tr>
<td>WAG PKN-1 Cable Simulation 1Khz - 10Mhz</td>
<td>£60</td>
</tr>
<tr>
<td>Kikusui AVM23 Dual Channel Millivoltmeter</td>
<td>£40</td>
</tr>
<tr>
<td>Topward TFC1201 Frequency Meter 100 Mhz</td>
<td>£25</td>
</tr>
<tr>
<td>National VP9690A Noise Meter.</td>
<td>£40</td>
</tr>
<tr>
<td>N.F. Electronics 3346A CD Evaluating Filter</td>
<td>£75</td>
</tr>
<tr>
<td>Racal 9914 Frequency Counter 200 Mhz</td>
<td>£40</td>
</tr>
<tr>
<td>Racal 9901 Counter Timer 50 Mhz</td>
<td>£30</td>
</tr>
<tr>
<td>Racal 9903 Counter Timer 50 Mhz</td>
<td>£30</td>
</tr>
<tr>
<td>AVO 8XMK3 Multimeter no batteries no leads</td>
<td>£20</td>
</tr>
<tr>
<td>HP 8405A Vector Voltmeter</td>
<td>£40</td>
</tr>
<tr>
<td>AVO 8MK2 Multimeter no batteries no leads</td>
<td>£20</td>
</tr>
<tr>
<td>Racal Dana 1500 Delay Pulse Generator (GPIB Timing Generator)</td>
<td>£150</td>
</tr>
<tr>
<td>Barr & Stroud Attenna Alignment kit. Nato Stock No 5985-99-519</td>
<td>£150</td>
</tr>
<tr>
<td>Marconi 2833A Digital Line Monitor all 300 Synthesiser 1-300MHZ 2 units...</td>
<td>£150</td>
</tr>
<tr>
<td>GB Video Link 1400AX</td>
<td>£250</td>
</tr>
<tr>
<td>VrM.</td>
<td>£250</td>
</tr>
<tr>
<td>Channel</td>
<td>£20</td>
</tr>
<tr>
<td>www.stewart-of-reading.co.uk</td>
<td>£20</td>
</tr>
<tr>
<td>New! in Easy-PC 7</td>
<td></td>
</tr>
<tr>
<td>• Library Databook</td>
<td></td>
</tr>
<tr>
<td>• Step and repeat plotting</td>
<td></td>
</tr>
<tr>
<td>• Swap Connection Mode</td>
<td></td>
</tr>
<tr>
<td>• Dimensioning</td>
<td></td>
</tr>
<tr>
<td>• Copy to Metafile plus much more....</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL OFFERS

Oak Lane, Bredon

Stewarts of Reading

Tel: 0118 9268041 **Fax:** 0118 9351696

110 WYKEHAM ROAD, READING, BERKS RG6 1PL

Telephone: 0118 9268041 **Fax:** 0118 9351696

http://www.numberone.com
SPAM? Not today thank you

Most users of e-mail are troubled by SPAM, but precautions are possible, some of them very simple and cost-free. Ian Hickman explains

Spiced ham was a great invention and is very handy if you want a quick meal on your plate. But the modern digital version, 'spam', is something no one wants on their computer. The scourge is large and growing, in every country. In May 2003 the network in the United States was burdened with amount of spam which exceeded non-spam traffic for the first time ever, and where the U.S. leads, the U.K. and the rest of the world follow, sooner or later.

It is, of course, argued by the spammer that spam is simply advertising, which may bring to your attention goods or services that you would like to know about and purchase, but of the availability of which you would otherwise have been unaware. However, the objectionable aspect of spam is its indiscriminate distribution. If you are a gardener, then you will find advertisements for seed, spades, compost, derris dust and the like in your favourite gardening magazine entirely appropriate, even if you don't want to buy any of those items just now. But you would not want, nor expect to see, adverts for spinnakers or depth-sounders. An example of just how annoying inappropriate spam can be was forced on my attention recently - an e-mail arrived in my inbox inviting me to view a pornographic movie which, to judge from the title, was singularly unpleasant and depraved. Had I installed one of the various filters available, it would have been blocked, but under my usual routine, which I possibly neglected on that occasion, and of which more later, it would probably never have reached my inbox.

The popularity of spam as a means of advertising is simply due to the economics of the game, as explained in Reference 1. In the U.S., a spammer can buy a list containing several million addresses for less than $100. Suppose he spends a couple of thousand dollars on e-mailing 20 million messages extolling his sixty-dollar product, then with a mere 34 purchases he breaks even, and thereafter is in profit. This is a response rate of less than 0.0002%, whereas a direct mail advertising campaign needs a response rate in the region of one and a half or two percent to cover its costs.

...a spammer can buy a list containing several million addresses for less than $100...

Lists
So just where do spammers get their lists of addresses from? Professional readers of this magazine will probably also receive several 'freebie' electronic magazines, ones with no cover price, being supported entirely by advertising. Like many other magazines, advertisements etc, one is encouraged to supply one's e-mail address when replying to advertisers. I know from experience that these magazines sell their address lists to one another, with the result that one can receive duplicate copies with identical address details - the other day I actually received four identical copies of one such magazine! Whether the e-mail addresses are for sale or not I cannot say, but certainly the sale of circulation lists is widespread, despite the efforts of an audit bureau. However, technology provides an alternative way of discovering email addresses*. This is the 'dictionary attack'. A spammer, or someone wishing to generate lists of e-mail addresses for sale, opens a connection to a server, and using software specially designed for the purpose, sends millions of randomly generated e-mail addresses. The vast majority are of course unknown, and - conveniently for the spammer - flagged as such by the server. Those not meeting with such a reply are added to the list.

Some modern mail servers are programmed to look for large numbers of messages to unknown e-mail addresses all from the same source, but on a large server, such a 'dictionary attack' may simply be lost in the vast amount of traffic handled. In January, attacks on two well-known servers, emanating from servers in Beijing which were being operated from the United States, were announced. These attacks had been in progress for months, and must have accumulated huge numbers of e-mail addresses. The victims will never know how their e-mail addresses were obtained.

In the past, the small amount of spam I received was easily dealt with, but that blessed state is fast disappearing. What can one do about spam, if, as in many cases, the sheer amount is an intolerable burden? The traditional approaches are to reject any messages from known spammers or the mail servers that they use, and/or to reject any messages containing words typical of spam, such as 'Viagra', 'low interest rates' etc. But these are of limited use. Spammers counter these ploys in various ways, such as changing their addresses or the servers they use. And simple keyword filters tread a fine line between letting spam through with the wanted messages if too gentle, or if more aggressive, throwing out the baby with the bathwater.

Filtering
In the last year, more sophisticated spam filter programmes have become available, based on the probability theory elaborated by the 18th century mathematician Thomas Bayes. A tabular list of open source Bayesian filtering software is given on page 42 of Ref 1, with the URL of each, details of the language in which it is written and a comment - such as 'Originally written by open-source guru Eric...
Raymond’. This type of code is being incorporated in products from Microsoft, Netscape and other sources. The URLs are given here as Appendix 1. A Bayesian filter looks at the whole message, rather than simply looking out for keywords. Following training - you go through your inbox and tell it which messages are spam and which not - it forms rules for itself, which it applies when scanning new e-mails. These rules are subsequently refined each time you rescue an e-mail the filter has wrongly assigned as spam, or tell it that something it let through is really spam after all. The great worry about spam filters is the ‘false positive’ problem: when a message you would like to receive gets discarded. One expert in the field claims that, even when set for zero false positives, the best Bayesian filters can still discard 99.5% of spam.

But filtering at the recipient’s level does not help the ISP. Spam is as unpopular with Internet Service Providers as it is with the unwilling recipients, since it uses up a lot of an ISP’s bandwidth and disk space. So most ISPs now use software to filter new e-mail before moving it around the network to individuals’ inboxes. These spam filters, of various sorts, can be quite effective. For example, AOL deletes about 2,400,000,000 items of spam daily, representing about 70 messages aimed at each of its customers’ inboxes each day. It is, of course, just possible that an e-mail you sent never arrives at its intended destination, having been erroneously classified by an ISP as spam.

Billions wasted

The financial burden on the I.T. industry is great. The EU’s Commissioner for Enterprise and the Information Society says research has shown that spam costs Europe £16 billion euros at present, while the estimated cost in 2003 to US-based ISPs and corporations is $10 billion. Part of the problem is that spammers go to great lengths to disguise their messages as legitimate traffic, and to disguise their identity and location. In the UK, the London-based non-profit anti-spam organisation Spamhaus produces an hourly updated block list of sources of spam, which is used to protect the accounts of over 140 million e-mail users. The American anti-spam organisation Brightmail runs a network of e-mail addresses as deliberate ‘victims’. When a message is caught on a number of such addresses, it is likely to be spam and filters at the server can be updated to block the source. Brightmail protects the broadband customers of BT Openworld amongst others, and updates its filtering rules every five to ten minutes. Spam is not illegal - yet, although Microsoft, amongst others, has taken legal action against specific spammers. In Europe, there is a Privacy and Electronic Communications Directive, under which governments are required to implement anti-spam legislation by 31st October 2003, and similar legislation is in the pipeline in the United States. How effective it will be, remains to be seen. In Europe, the intention is that a spammer will only be able to use e-mails for direct marketing to individuals who have signified their willingness to receive it, the ‘opt-in’ strategy. In the USA, where the direct marketing lobby is powerful, legislation will probably require individuals to ‘opt-out’ from such source, effectively still allowing bulk mailing or spam. But whether you live in the US, UK or elsewhere, never accept a spammer’s invitation to unsubscribe from his site, by replying ‘remove’ or in any other way. To do so, alerts the spammer that your e-mail address is not only ‘real’ (not rejected as unknown by your ISP’s server), but also ‘active’, i.e. visited by its owner. Lists of active e-mail addresses are much more valuable than others, and the spammer can sell such a list, at a huge profit, to other spammers, who will in turn sell it on. A real e-mail address may be inactive for many reasons. The owner may have activated a second e-mail address with the same ISP, or changed to another ISP, e.g. to upgrade to broadband, or just to get away from spammers. If you have a bad spam problem, you can always change to a new e-mail address and only notify your family and friends, legitimate business contacts and firms you want to deal with. Also, if you have your own website, consider very carefully before including your e-mail address on it. You are making a gift to spammers and sellers of lists, who have software that crawls the web, looking for ‘*@*.*’ where * is any string – almost certainly an e-mail addresses. Likewise, when contacting e-mail boards and newsgroups, use a different e-mail address from your main one. If, for business reasons, you want to advertise ‘Direct Sales’ or to an individual customer to be able to contact you, you can hire a PO Box number from the P.O. Business Sales Centre, 08457 790590. This costs £43.00 or £53.00 for six or twelve months respectively if you collect your own mail from your local Post Office, or twice that amount if you want the mail delivered. Alternatively, for people on the move, there is the free Poste Restante service, but this can only be used for up to three months, in any one town.

Don’t download

At present, my own approach is to view what e-mail that is waiting for me at my inbox at the ISP. This is done using their ‘webmail’ service, accessed over the web with Internet Explorer. ISPs provide webmail as a ‘wrapper’ around the e-mail they have for you, so you can see what there is and delete any you don’t like the sound of, before ever downloading any of it into your computer. If you cannot decide from the title whether it is a message you want or not, my ISP (like others, I guess) can make the content available as a simple text message to view on my screen, which does not entail actually running the code, even at the ISP end of the link. This prevents any undesirable item - virus, worm, trojan or just plain spam - entering my computer. Or at least, it almost always does. Immediately after ‘sieving’ the ISP-end inbox and deleting any unwanted items, I then download my email, with Outlook Express. There is, however, always the possibility that the discarded item, spam or worse, arrived in the ISP-end inbox after sieving with webmail, but before downloading with Outlook Express. This could lead to a vulnerability, if the item is opened, should it be not just spam, but an infection of some sort. Outlook Express is often set up so that below the list of the latest e-mails received, there is a ‘preview pane’. This displays the latest message received. But beware, in order to do so, it has to open the file. If the file contains a virus or somesuch, you could be in trouble. Even if you downloaded several messages, of which the infective one was not the last, accidentally clicking on its title in the inbox window will display it, and the damage is done.

Zone alarm

This danger can be prevented by going to ‘View’ in the Outlook Express toolbar, and from the dropdown menu, selecting ‘Layout’. This will bring up the ‘Windows Layout Properties’ box, and you can then unselect the ‘Show preview pane’ box. Now, just clicking on the title of an item in the inbox window (for example, to transfer it to the Deleted Items box) will not open it. But beware, double clicking the title will still open the file, but in a new window. A useful precaution is to keep your Deleted Items box empty. For further protection, the firewall ZoneAlarm can be downloaded for free from www.zonelabs.com. This has a module that stops anyone from sending you junk mail even if you accidentally click on its title. This will warn you every time someone tries to access your machine, and give you the option to allow or block the request. However, unless you have a very fast processor, it will slow down you machine noticeably if set to the highest level of protection.

This is still a downside to accidentally opening a message, even if it is only spam. Many spammers will include a ‘picture’ in the message, designed to auto-display, either in the preview pane or a new window. You usually won’t see them, as they consist of but a single pixel. These are known as a web bug, and can be found in web pages, HTML formatted e-mail messages or other web-aware documents. Although there are legitimate uses for them, they are frequently misused by spammers. The display of a web bug triggers a ‘phone home’ return message to the spammer, confirming that he has reached a real active e-mail address and providing him with statistics on who is looking at the bugged item. Not viewing the message denies him this confirmation, and he may as a result delete your address from his list. This is another reason for disabling the preview pane. Other useful steps include...
setting Outlook Express to the Restricted Zone and disabling both session- and non-session-cookies. Some firewalls usefully include advertisement-banning features. For example, ‘Outpost’ from Agnitum can be set to prevent graphics of certain sizes or from known sources being loaded.

Geeks unite
Whilst precautions of this sort suffice, in my case, at least for the moment, a spam filter will almost certainly become necessary, sooner or later. In addition to the list of filters in Ref. 1, already mentioned, Ref. 2 provoked some interesting correspondence, see Ref. 3. One of the letters recommends the SpamBayes filter, which can be found at spambayes.sourceforge.net, as very suitable for use with MS Outlook Express, stating that it appears to be about 99% accurate. Nobody likes spam, and that goes for geeks, too. They ‘fixed’ one spammer, who thoughtlessly gave away his postal address in a media interview, so that he received hundreds of pounds weight of junk mail delivered to his door daily, making it almost impossible for him to sort out his wanted post! Details at Slashdot, the world’s leading geek website. Details of some other interesting websites are given in Appendix 2.

Appendix 1
Open-source Bayesian e-mail filtering software may be found at the following sites:
http://bogofilter.sourceforge.net/
http://crm114.sourceforge.net/
www.mozilla.org/mailnews/spam.html
http://popfile.sourceforge.net/
http://sherpafilters.sourceforge.net/
http://spamassassin.org/
http://spambayes.sourceforge.net/
www.squirrelmail.org/

Acknowledgements
The author is grateful for the aid, in the preparation of this article, provided by London-based I.T. and Computing Consultant Paul D. Zambon B.Sc. (contact care of Electronics World).

References
1. Saving Private E-mail, Steven J. Vaughan-Nichols, Spectrum (Journal of the IEEE), August 2003, pp 40 – 44.

Appendix 2 – Some other useful websites:
www.bugnosis.org/
software for detecting web bugs on html pages
(however doesn’t work in an email client)
www.eff.org/Privacy/Marketing/web_bug.html
web bug info
www.leave-me-alone.com/webbugs.htm
another useful FAQ.
www.agnitum.com/products/outpost/

FRUSTRATED!
Looking for ICs TRANSISTORS?
A phone call to us could get a result. We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name but a few).

2N 2SA 2SB 2SC 2SD 2P 2SJ 3N 3SK 4N 6N 17 40 AD ADC AN AM AN AM AG BA BC BD BDT BDV BDW BXF BXF BXF BYL BLX BS BR BXO BRY BS BSS BSV BSX BT BTB BRW BU BUK BUT BUV BUW BUX BUZ CA CD DX CXA DAC DG DM DS DTA DTC GL CM HA HCF HD HEB ICL ICM IRF J KA KLA L LA LB LC LL LE LM M MEM MA MAX MB MC MDA MJF MM MN MPS MPA MPN MPSU MRE NJM NE OM OP PA PAL PIC PN RC R RAA RAS RAS S DA SDA SGA SGI SL SN SO STA STK STR STRD STRM STRS SV1 SV1 TA TAA TAG TBA TC TCA TDA TDB TBA TIC TIP TIPL TEA TEC TEC TLM TMC TM TPS TPU U UA UAA UC UDN UEN UML UPA UPC UPD VN XR Z XZ TX TZX + many others

Please ask for our Free CD Rom STOCK LIST.
WE STOCK A MASSIVE RANGE OF COMPONENTS!
Mail, phone, Fax, Credit Card orders & callers welcome.

Cricklewood Electronics Ltd
40-42 Cricklewood Broadway, London NW2 5ET
Tel: 020 8452 0161 Fax: 020 8208 1441
Visit our new www.cricklewoodelectronics.com
Email: sales@cricklewoodelectronics.com

Data Not Easily Accessible?
Radio Data Transfer
From
XL Systems.....
Don't make a mountain out of it!

remote process control,
telemetry & alarm monitoring ..
.. simple & straight forward wireless solutions!

www.xls.co.uk
Tel 01883 622778
Sales@xls.co.uk

ELECTRONICS WORLD June 2004
WATCH SLIDES ON TV
MAKE VIDEOS OF YOUR SLIDES
DIGITISE YOUR SLIDES
(using a video capture card)

"Liesgang dialy" automatic slide viewer with built-in high quality colour TV camera. It has a composite video output to a mono phono jack (SCART & BNC adaptors are available). They are in very good condition with few signs of use. For further details see www.diatv.co.uk

£91.34 vat = £108.00

Board cameras all with 512x582 pixels 8.5mm 1/3 inch sensor and composite video out. All need to be housed in your own enclosure and have fragile exposed surface mount parts. They all require a power supply of between 10 and 12v DC 150mA.

47MIR size 60x36x27mm with 6 infra red LEDs (gives the same illumination as a small torch but is not visible to the human eye) £37.00 + vat = £43.48

30MP size 35x30x14mm spy camera with a fixed focus pin hole lens for hiding behind a very small hole £35.00 + vat = £41.13

40MC size 39x38x27mm camera for C mount lens these give a much sharper image than with the smaller lenses £32.00 + vat = £37.60

VSL1220F 12mm F1.6 12x15 degrees viewing angle £15.97 + vat = £18.76

VSL4022F 4mm F1.22 63x47 degrees viewing angle £17.65 + vat = £20.74

VSL6022F 6mm F1.22 42x32 degrees viewing angle £19.05 + vat = £22.36

VSL8020F 8mm F1.22 32x24 degrees viewing angle £19.90 + vat = £23.38

Better quality C Mount lenses

VSL1614F 16mm F1.6 30x24 degrees viewing angle £26.43 + vat = £31.06

VSL813M 8mm F1.3 with iris 56x42 degrees viewing angle £77.45 + vat = £91.00

1206 surface mount resistors E12 values 10 ohm to 1M ohm £1.00 + vat £5.00 + vat

866 battery pack originally intended to be used with an Orbitel mobile telephone it contains 10 1.6Ah sub C batteries 42x22 diameter the size usually used in cordless screwdrivers etc the pack is new and unused and can be broken open quite easily £7.45 vat = £8.77

Please add 1.66 vat = £1.95 postage & packing per order

JPG ELECTRONICS
Shaws Row, Old Road, Chesterfield, S40 2RB
Tel 01246 211202 Fax 01246 550959 Mastercard/Visa/Switch
Callers welcome 9:30 a.m. to 5:30 p.m. Monday to Saturday

USB-DUX www.linux-usb-daq.com

The World's First USB based Data Acquisition Device for Linux

The USB-DUX is the perfect unit for real-time data acquisition in the lab, the plant or the home. It plugs into the USB port and works under Linux. The driver is written under the COMEDI framework, which means that it is easy to program and benefits from a growing library of open source programs. You don't even need to open your computer — just hot plug into the USB port!

At Last!
A USB data acquisition board
Designed specifically for LINUX

From £230

- USB 1.1 and USB 2.0 compatible
- 8 analogue inputs and 4 analogue outputs
- 8 bit digital inputs and outputs
- 12 bit D/A and A/D converters
- Available with 14 BNC connectors and 2 k-type thermocouples
- Hot pluggable for safe connection while running
- 1KHz real time error free data acquisition on each channel
- Electrically isolated analogue inputs and output stage
- GPL Linux driver maintained by Comedi: http://www.comedi.org
- Power supply via the USB, no external supply required

For ordering and technical specification, go to

www.linux-usb-daq.com

A QUANTUM LEAP IN EMBEDDED CONTROLLERS

QuickFIRE

SUPERCONTROLLERS

Our range provides:-
- The fastest 68000 based Core up to 66 Mhz.
- Extensive I/O:- Serial, IrDA, SPI, PC, Analogue, Timers/Counters, RTC, etc.
- Large Memory Capacity:- Flash, SRAM, DRAM.
- Supports:- Mono & Colour LCD's, Touch Panels & Keypads, Very Low Power.

ALSO LOW COST

DEVELOPMENT
- Target easily & quickly.
- Full ANSI "C" compiler, assembler & linker all Windows32 based.
- Source Level Debug.
- Full Driver Support with Libraries.
- Real Time Multitasking OS with a free run time licence.
- Free Unlimited email support.

www.cms.uk.com
see our web site for full details

CAMBRIDGE MICROPROCESSOR SYSTEMS LTD
Unit 17-18 Zone 'O' Chelmsford Rd. Ind. Est. Great Dunmow, Essex CM6 1XG
Telephone: 01371 875644
email: sales@cms.uk.com

June 2004 ELECTRONICS WORLD
This article, part one of two, describes the design and construction of a small mobile robot capable of finding the centre of an uncharted maze and is suitable for entry into the annual ‘Micromouse’ competition. Martin Barratt explains

The Micromouse competition as we know it today originated in about 1980 and is a race from one corner to the centre of a maze constructed as a 16 x 16 matrix of cells each 180mm square. Each cell is bordered by up to four white painted walls each 50mm high and 12mm thick. The maze design is determined by the placement of the walls on a matt black painted baseboard approximately 3m square. The competitors, or ‘mice’, are generally autonomous robots capable of locomotion, the detection of nearby walls and, for a ‘maze-solving’ mouse, an awareness of its location within the maze.

When the competition was originally conceived, it was intended that all mice be capable of mapping the maze, and tracking their own progress in such a way that they were aware of their arrival at the central goal. In the early days this process took place at low speeds and the entrant’s placing was determined by the duration of the search for the goal. In later years competitive mice have added a further phase to their operation – that of using knowledge of the maze wall locations to determine the shortest route to the centre and running this route at high speed after the search phase is complete.

The wall follower class
The design of a successful maze-solving mouse capable of mapping the maze, determining the optimum route and then travelling it at high speed is a considerable task involving many aspects of electronic and mechanical engineering and so, to broaden the appeal, a separate ‘Wall Follower’ class was introduced. Because these mice travel to the centre by simply tracking the left-hand wall of a suitably designed maze they are considerably simpler in design, having no need of odometry or maze mapping and solving capability. Indeed, many successful entrants make no use of microprocessors or software and are purely electro-mechanical using, sometimes rather brutal, contact with the walls to guide them.

Design history
The Wall Follower design presented here is based on a mouse designed in early 2003 as a result of running out of time during the development of a full maze solver. Mini-Mouse (it is conventional to give your mouse a name) was entered into the 2003 competition and gave a creditable performance. It did not win its class but was the fastest of the non-contact entrants.

As a fully paid-up member of the ‘quart out of a pint pot’ club, the author decided that Mini-Mouse should be a single-chip design using the smallest PIC possible, the choice being the 16C71, which offers little in the way of hardware features except a four channel 8-bit ADC. This approach was obviously going to lead to design compromises and place somewhat greater demands on the intricacies of the software (which was to be written in assembler) but that is the author’s preferred design strategy.

A primary design goal was simplicity of construction and programming ‘and to this end’ it is also a single chip design. However, it strays from the Mini-Mouse concept by utilising a generous feature set and re-programmable micro-controller, the PIC16F876. The software, which is based on that originally written in assembler, is written in a dialect of PIC BASIC and, therefore, should be...
June 2004 ELECTRONICS WORLD

difficulty and although this is not sufficient to the bolt, may also be nylon nut, because it is a nylon nut screwed onto the end. As a M3 bolt with a domed low friction chamfered to reduce the risk of becoming trapped against the outer wall of a corner should it be taken rather wide.

A further problem relates to the maze floor which because of its inconvenient size, is typically made up of smaller sections joined together and this leads to the possibility (probability) of small steps in the floor surface at the joints. In order to accommodate these imperfections a mouse must be designed to ensure that, under no circumstances, can the driving wheels lose contact with the floor and also that it cannot get caught at a rising step. The design detailed here achieves these goals by having only three points of contact with the maze floor, two of these being the driving wheels and the third a rear-mounted 'stay' formed from an M3 bolt with a domed low friction nylon nut screwed onto the end. As a bonus the nylon nut, because it is a friction fit to the bolt, may also be used to adjust the attitude of the mouse with respect to the floor. The adjusted attitude is maintained by careful placement of the components, particularly the batteries, ensuring that the centre of gravity is aft of the central axle-line and, therefore, that the stay is always under load.

Mechanical design
To minimise the mechanical engineering the mouse is designed around a commercially available motor block containing two small DC motors along with their respective gearboxes and wheels and the selected unit was chosen for its size, modest cost and the fact that it possesses a convenient set of mounting holes. The electronic circuitry is constructed on two PCBs of similar size which, when combined, can be manufactured as a single board in the popular, and hence low-cost, 160mm x 100mm Eurocard format. The detailed shape of the motor block required that two rectangular cutouts be made for the wheels and so, rather than waste these areas, a couple of useful auxiliary circuits have also been included.

When in action, one of the main problems mice are frequently seen to suffer is that of taking a less than perfect line when rounding a corner and subsequently getting caught against a wall. It is usually a protruding part that causes the difficulty and although this is not catastrophic, as the handler may nudge the mouse free, it does incur a time penalty. The design presented in this article attempts to overcome this problem by having the upper board extend slightly over the otherwise protruding wheels and thus the smooth board edge allows the mouse to 'scrape' around any corner taken rather too tightly. Additionally, the front corners of the upper board are chamfered to reduce the risk of becoming trapped against the outer wall of a corner should it be taken rather wide.

Figure 1: Block diagram
low weight but does suffer from a highish internal resistance. Therefore, in order to maintain consistent performance over a range of battery voltages, a low-dropout voltage regulator U101 is used to provide a regulated 5V supply for the majority of the electronic circuitry and motors.

A simplified schematic of a single motor drive circuit is given in Figure 3. Each of the motors is independently driven by a CPU generated pulse width modulated (PWM) signal, amplified by either MOSFET Q201 or Q202, which effectively controls the applied voltage and hence its speed. The PIC16F876 contains two independent hardware CCP (Capture/Compare/PWM) modules and, in this design, both are used in the PWM configuration. Under software control, each produces a waveform with a variable mark:space ratio at a frequency of about 250Hz for driving the motors. This frequency has been chosen as a compromise between the increased losses of a higher frequency drive and the higher peak motor currents when operating with low M:S ratios at low frequencies. To relieve the batteries of the need to supply the peak motor currents capacitors C101 and C102 provide a local reservoir of energy and their inclusion also helps to reduce interference on the 5V supply.

The direction of motor rotation is determined by a miniature DPCO relay, driven by either Q203 or Q204, under control of the CPU. A logic 1 control voltage from the CPU places the corresponding motor in reverse. Diodes D101 and D102 along with capacitors C103 and C104 provide back-EMF suppression for the right and left motors respectively. The 6-element infrared sensor array is arranged to have left and right hand sections with each section having sensors positioned at suitable angles to detect walls directly ahead and to the side and also to detect side walls slightly ahead of the current position as shown in Figure 4. The individual sensor angles are referred to as '00', '90' and '45' degrees respectively.

Each of the elements consists of an infrared LED emitter D105 to D110 mounted on the upper side of the power board with a corresponding infrared detector Q101 to Q106 on the under side.

Due to the limited number of ADC channels and the relatively low pin count of the PIC16F876, the sensor array is driven in a multiplexed fashion with all emitters in each section being simultaneously driven from a single CPU pin. Should the mouse be positioned such that it sees nearby walls to the side and to the front then all the detectors will produce a response so, in order to obtain the reading from a given sensor, the appropriate ADC channel is selected for the conversion – see Table 1.

By examining Figure 2 it will be seen that the three infrared emitters in each section are actually wired in only two circuits, driven by either MOSFET Q205 or Q206. This configuration is used to reduce the current consumption. The '00' degree sensors are driven separately and are there are two reasons for this. Firstly, each diode has a forward conduction voltage of about 1.9V and so 3 diodes cannot be driven in series from a 5V supply. Secondly, in general the forward-looking sensors need to be able to detect the presence of walls at a greater range and running the emitter at a higher current permits this. Operating the emitters at higher currents also increases the signal to noise ratio, thus improving the reliability of long range wall detection, but simply increasing the emitter operating current also leads to excessive power consumption and the risk of device destruction. The design presented here overcomes these problems by operating the emitters in a pulsed fashion under software control and this method also provides the additional benefit of being able to measure the 'dark' sensor signal - that is with no intended infrared illumination. This quiescent signal, which is dependent on ambient light, may be subtracted from all 'illuminated' readings giving rise to an improvement in accuracy - more on this below.

It was a design goal to be able to monitor the battery voltage so, as the PIC16F876 has a total of five ADC channels, a method of sharing the six sensor detector signals among the remaining four ADC channels was needed. As shown in Figure 2 the '00' degree and the '90' degree sensors from each section are 'paired' to achieve this. Intuitively it would be reasonable to think that this would cause interference between channels and to some extent it does. However, provided that the left and right hand emitters are only ever activated separately, the two '90' degree sensors operate independently as when one detector is illuminated the other is dark. In the case of the '00' degree sensors, due to their proximity, both of the detectors will be illuminated when either of the '00'

Table 1: Sensor vs ADC channel mapping

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Emitter drive</th>
<th>ADC channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEFT 90</td>
<td>LEFT</td>
<td>3</td>
</tr>
<tr>
<td>LEFT 45</td>
<td>LEFT</td>
<td>1</td>
</tr>
<tr>
<td>LEFT 00</td>
<td>LEFT</td>
<td>0</td>
</tr>
<tr>
<td>RIGHT 90</td>
<td>RIGHT</td>
<td>0</td>
</tr>
<tr>
<td>RIGHT 45</td>
<td>RIGHT</td>
<td>2</td>
</tr>
<tr>
<td>RIGHT 90</td>
<td>RIGHT</td>
<td>3</td>
</tr>
</tbody>
</table>

degree emitters is activated giving an increase in detected signal and so contributing to the increased wall detection range.

Resistors R206 to R209 provide the 0V referenced loads for the infrared detectors with their values chosen as a compromise between the conflicting requirements of fast signal rise-time, achieved with low values, and sensitivity.

Because the detectors are phototransistors the maximum emitter voltage is restricted to a level about 0.7V below its collector. Operating the devices from the 5V supply would, therefore, lead to a reduction
in dynamic range which is overcome by providing the collectors with a supply of approximately 5.7V derived direct from the battery by the network comprising R201, D202 and C202.

On power-up R204 and C205 provide a delayed reset signal to the CPU via the Schottky diode D203 which is present to isolate the incoming high level VPP voltage, at about 13V, from the rest of the system during programming.

Pushbutton switch SW202 is used to issue a CPU reset at any time which cancels the current operating mode and allows the selection of a new one (see below).

In order to permit measurement of the battery voltage a potential divider, formed from R211 and the battery voltage a potential (see below), cancels the current operating mode issue a CPU reset at any time which system during programming.

The selection made dictates the charging and RS232 communications to a PC. The first of these ports is the ICD/PROG port and the mouse programmer, the PIC-PG1, in low-cost programming method using device programming. Additionally, debugging to be accomplished along limited, but useful, level of in-circuit emulator/programmer permitting a Microchip ICD Classic low-cost emulator/programmer, the PIC-PG1, in low-cost programming method using device programming, or budget available to the constructor. The selection made dictates the fitting of either J205 or J206 and Table 2 lists the pin allocations for these connectors.

J205 is an FCC68-6/6 connector suitable for connection to the Microchip ICD Classic low-cost emulator/programmer permitting a limited, but useful, level of in-circuit debugging to be accomplished along with device programming. Fitting J206 provides for a very low-cost programming method using a PC serial-port-connected programmer, the PIC-PG1, in conjunction with the free IC-PROG device programming application. This method provides only device programming and does not permit any form of in-circuit debugging.

Figure 5 shows the schematic of the charger board that permits both fast and trickle charging of the NiMH battery pack from a nominal 12V power source. Closing switch SW401 places the charger in 'fast mode' in which the current is set at about 100mA thus fully charging the batteries from flat in about 3 hours – note that NiMH batteries have a charging efficiency of about 66%. The two test points Y401 and Y402 allow the connection of a DVM to monitor the process (see below). When set to trickle charge the current is about 8mA, a level that the batteries are able to sustain indefinitely.

Battery charging is accomplished through J203 – Table 3 lists the pin allocations – and diode D201 is included to protect the battery pack from the application of a supply with reversed polarity.

The circuit of the second auxiliary function, the PC interface board, is given in Figure 6 and is simply a TTL to RS232 level converter allowing a direct connection to a PC serial port. The design makes use of the ever-popular MAX232 chip with power being supplied via J204, which also provides the interface to the CPU's on-board UART. Table 4 gives the connector pin allocations.

Battery charging
NiMH batteries, like most rechargeable types, may be 'fast charged' to save time but the process must be carefully monitored if permanent damage to the battery pack is to be avoided, and any rate over the C/10 rate is commonly considered to be a 'fast' charge. When operated as intended the fast charge rate provided by the charger board is approximately C/2, which is low enough not to present a serious hazard if significant over-charge occurs but it will lead to a reduction in battery capacity.

On attaining full charge the chemical reaction inside the battery changes in order to 'absorb' the extra current and this leads to an increase in the battery temperature. As a NiMH cell has a negative temperature coefficient the fully charged state may be ascertainment by noting the slight reduction in battery terminal voltage or by the increase in temperature itself.

Sensor design
Of all the problems to be solved in the design of any mouse this is arguably the greatest. Many possible
solutions exist and the final selection was made on the basis of size, cost and simplicity but, of course, these benefits come at a price.

The perfect sensor would provide an output signal directly proportional to the measured distance and do it in very little time while consuming almost no power. The sensor system presented here achieves the last two of these ideals but the output signal from this type of sensor is far from linear, as shown in Figure 7. Worse still, due to the narrow beam angle of both the emitter and detector devices, it is actually non-monotonic at short distances. This is a potentially serious problem which, fortunately, may be overcome with suitable sensor arrangement. As it is generally only the '90' degree sensors that need to operate at very close range placing these sensors well within the periphery of the mouse provides the solution. This ensures that, even when the mouse is placed right against a wall, the actual sensing distance is beyond the no-go zone.

At the other end of the scale the sensing system 'noise floor' determines the reliability of long-range measurements and local 'direct illumination' is a major contributor. This problem, which is caused by stray infrared light passing from the emitter through the PCB material directly to the detector, may be largely overcome by placing a solid copper zone on both sides of the PCB between the devices, thus shielding the detectors.

An additional factor affecting long range sensing is ambient lighting – in particular daylight – and needs to be considered when designing a sensing system. Although the chosen detectors incorporate a daylight filter (as indicated by the opacity of their plastic body) and a focusing lens, stray light can still reduce the reliability of measurement. For this reason the detectors are placed on the underside of the board to be as close to the light absorbing matt black maze floor as possible. Even with these measures, ambient light can still cause an undesirably high photo-current in the detectors, giving the impression that the wall is closer than it actually is. Taking a 'dark' sensor reading immediately prior to the illuminated one and then subtracting it rectifies this and thus only the signal due to the reflected light from the wall may be determined as shown in Figure 8.

Software overview

The software is written for the microEngineeringLabs PIC BASIC Pro compiler. This compiler was chosen from the many available because it can be integrated within the Microchip MPLAB IDE providing easy editing, one touch compilation, and a measure of source level debugging using either the integrated MPLAB simulator or the ICD Classic emulator.

On initial power-up the RUN LED flashes for about three seconds during which time pressing the FUNCT button selects the next 'future mode', as indicated by the appropriate LED flashing, and restarts the three second timeout. Once the desired future mode has been selected letting the three second time out expire enters that mode, which illuminates the appropriate LED steadily and the software then waits for a further press of the FUNCT button before taking any action. Exiting any mode may only be accomplished by pressing the RESET button and re-selecting the desired mode.

The program has a total of three modes of operation as described below:

- **RUN mode:** This is the normal operating mode of the software and provides the functionality to navigate through the maze using the readings obtained from the sensors to determine the necessary corrective action for the motors.

- **CAL mode:** This mode is used to calibrate the infrared sensors to the reflectivity of the particular maze walls in use. With typical mazes this is not strictly required, as the default values defined in the original source code are suitable, but it is sometimes necessary – for best performance – to trim the standard values.

- **TEST mode:** This mode may be used at any time to verify that the mouse travels in an essentially straight line when using the normal motor speeds.

<table>
<thead>
<tr>
<th>Table 4: PC Interface Board Pin Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse Side</td>
</tr>
<tr>
<td>Wire Colour</td>
</tr>
<tr>
<td>Red</td>
</tr>
<tr>
<td>Black</td>
</tr>
<tr>
<td>Yellow</td>
</tr>
<tr>
<td>Blue</td>
</tr>
</tbody>
</table>

June 2004 ELECTRONICS WORLD
A practice maze
To verify the improvement (or otherwise!) gained by changes made during the development of a mouse it is almost essential to have a practice maze available. A full size maze is a serious undertaking and beyond the needs of most mousers. However, a viable alternative may be constructed that is neither large nor expensive. Pictured right is the author's 3 x 2 maze, measuring just 560mm x 380mm, on which most of the testing of this design was performed. It is constructed using commercially available 'walls' and 'posts' (see photograph) assembled onto an MDF baseboard drilled with holes on a 180mm grid. This method offers the greatest flexibility in wall placement but a perfectly usable 'fixed design' maze may be constructed at very low cost as detailed on the UK Micromouse Web-Site – follow the RH Design Group link.

Useful web addresses
Table 5 lists the web-sites of some organisations involved in either the selling of robotics components or promotion of the Micromouse competition. Please note that the list is far from exhaustive and that inclusion does not imply any form of endorsement by the author.

Table 5: Useful website addresses
<table>
<thead>
<tr>
<th>Organisation</th>
<th>Products</th>
<th>Web-Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK Micromouse</td>
<td>N/A</td>
<td>http://micromouse.cs.rhul.ac.uk/</td>
</tr>
<tr>
<td>Microchip Technology Inc</td>
<td>PIC Microcontrollers</td>
<td>http://www.microchip.com/1010/index.htm</td>
</tr>
<tr>
<td>Active Robots Ltd</td>
<td>Motor Block Assembly</td>
<td>http://www.active-robots.com/</td>
</tr>
<tr>
<td>Total Robots Ltd</td>
<td>Robots and Parts</td>
<td>http://www.totalrobots.com/</td>
</tr>
<tr>
<td>Microrobot North America Inc</td>
<td>Robots and Maze Parts</td>
<td>http://www.microrobotna.com</td>
</tr>
<tr>
<td>Taylec Ltd</td>
<td>PIC-PG1 Programmer</td>
<td>http://www.taylec.com/</td>
</tr>
</tbody>
</table>

Software: Please contact Caroline Fisher (preferably by e-mail) with 'Micromouse' as the subject and she'll send the software as a zip file.
Active Loudspeaker Kit

Originally featured in Electronics World, this Jeff Macaulay designed motional feedback active loudspeaker system has generated a great deal of interest from both electronics and loudspeaker hobbyists alike.

We are pleased to be able to offer all the drive units plus the amplifier component kit at this new reduced price for a limited period while stocks last.

SPECIAL OFFER PRICES £350 inc. VAT (normal price £450 inc. VAT).

Limited stocks available.

We also have a comprehensive range of drive units, components, capacitors (Ansar, SCR & Hovland), inductors, cable, damping and grille materials all available from stock.

The UK's largest supplier of kit loudspeakers - all on demonstration.

Phone today for your FREE catalogue or check out our Website.

WILMSLOW AUDIO
50 Main Street, Broughton Astley, Leicester LE9 6RD.
Tel: 01455 286603 Fax: 01455 286605
Website: www.wilmslowaudio.com
Simple Class A Amplifier

A 10-W design giving subjectively better results than class B transistor amplifiers

by J. L. Linsley Hood, M.I.E.E.

During the past few years a number of excellent designs have been published for domestic audio amplifiers. However, some of these designs are now rendered obsolete by changes in the availability of components, and others are intended to provide levels of power output which are in excess of the requirements of a normal living room. Also, most designs have tended to be rather complex. In the circumstances it seemed worth while to consider just how simple a design could be made which would give adequate output power together with a standard of performance which was beyond reproach, and this study has resulted in the present design.

Output power and distortion

In view of the enormous popularity of the Mullard '5-10' valve amplifier, it appeared that a 10-watt output would be adequate for normal use; indeed when two such amplifiers are used as a stereo pair, the total sound output at full power can be quite astonishing using reasonably sensitive speakers.

The original harmonic distortion standards for audio amplifiers were laid down by D. T. N. Williamson in a series of articles published in Wireless World in 1947 and 1949; and the standard proposed by him, for less than 0.1% total harmonic distortion at full rated power output, has been generally accepted as the target figure for high-quality audio power amplifiers. Since the major problem in the design of valve audio amplifiers lies in the difficulty in obtaining adequate performance from the output transformer, and since modern transistor circuit techniques allow the design of power amplifiers without output transformers, it seemed feasible to aim at a somewhat higher standard, 0.05% total harmonic distortion at full output power over the range 30Hz-20kHz. This also implies that the output power will be constant over this frequency range.

Circuit design

The first amplifier circuit of which the author is aware, in which a transformerless transistor design was used to give a standard of performance approaching that of the 'Williamson' amplifier, was that published in Wireless World in 1961 by Tobey and Dinsdale. This employed a class B output stage, with series connected transistors in quasi-complementary symmetry. Subsequent high quality transistor power amplifiers have largely tended to follow the design principles outlined in this article.

The major advantage of amplifiers of this type is that the normal static power dissipation is very low, and the overall power-conversion efficiency is high. Unfortunately there are also some inherent disadvantages due to the intrinsic dissimilarity in the response of the two halves of the push-pull pair (if complementary transistors are used in unsymmetrical circuit arrangement) together with some cross-over distortion due to the low current non-linearity of the I/\(V_b\) characteristics. Much has been done, particularly by Bailey1, to minimize the latter.

An additional characteristic of the class B output stage is that the current demand of the output transistors increases with the output signal, and this may reduce the output voltage and worsen the smoothing of the power supply, unless this is well designed. Also, because of the increase in current with output power, it is possible for a transient overload to drive the output transistors into a condition of thermal runaway, particularly with reactive loads, unless suitable protective circuitry is employed.

These requirements have combined to increase the complexity of the circuit arrangement, and a well designed low-distortion class B power amplifier is no longer a simple or inexpensive thing to construct.

An alternative approach to the design of a transistor power amplifier combining good performance with simple construction is to use the output transistors in a class A configuration. This avoids the problems of asymmetry in quasi-complementary circuitry, thermal runaway on transient overload, cross-over distortion and signal-dependent variations in power supply current demand. It is, however, less efficient than a class B circuit, and the output transistors must be mounted on large heat sinks.

The basic class A construction consists of a single transistor with a suitable collector load. The use of a resistor, as in Fig. 1(a), would be a practical solution, but the best power-conversion efficiency would only be about 12%. An l.f. choke, as shown in Fig. 1(b), would give much better efficiency, but a properly designed component would be bulky and expensive, and remove many of the advantages of a transformerless design. The use of a second, similar, transistor as a collector load, as shown in Fig. 1(c), would be more convenient in terms of size and cost, and would allow the load to be driven effectively in push-pull if the inputs to the two transistors were of suitable magnitude and opposite in phase. This requirement can be achieved if the driver transistor is connected as shown in Fig. 2.

This method of connection also meets one of the most important requirements of a low distortion amplifier—that the basic linearity of the amplifier should be good, even in the absence of feedback. Several factors contribute to this. There is the tendency of the l.e/vb non-linearity of the characteristics of the output transistors to cancel, because during the part of the cycle in which one transistor is approaching cut-off the other is turned full on. There is a measure of internal feedback around the loop \(T_1, T_2, T_3\) because of the effect which the base impedance characteristics of \(T_1\) have on the output current of \(T_3\). Also, the driver transistor \(T_1\), which has to deliver a large voltage swing, is operated under conditions which favour low harmonic distortion-low output load impedance, high input impedance.

A practical power amplifier circuit using this type of output stage is shown in Fig. 3.
The open loop gain of the circuit is approximately 600 with typical transistors. The closed loop gain is determined, at frequencies high enough for the impedance of C_1 to be small in comparison to R_6, by the ratio $(R_5 + R_6)/R_6$. With the values indicated in Fig. 3, this is 13. This gives a feedback factor of some 34 dB, and an output impedance of about 160 milliohms.

Since the circuit has unity gain at d.c., because of the inclusion of C_3 in the feedback loop, the output voltage, V_c, is held at the same potential as the base of Tr_4, plus the base emitter potential of Tr_2 and the small potential drop along R_3 due to the emitter current of this transistor. Since the output transistor Tr_4, will turn on as much current as is necessary to pull V_c down to this value, the resistor R_2 which together with R_1 controls the collector current of Tr_2, can be used to set the static current of the output transistor Tr_I, will turn on as much current as is necessary to pull V_c down to this value, the resistor R_2 which together with R_1 controls the collector current of Tr_2, can be used to set the static current of the amplifier output stages. It will also be apparent that V_c can be set to any desired value by small adjustments to R_5 or R_6. The optimum performance will be obtained when this is equal to half the supply voltage. (Half a volt or so either way will make only a small difference to the maximum output power obtainable, and to the other characteristics of the amplifier, so there is no need for great precision in setting this.)

Silicon planar transistors are used throughout, and this gives good thermal stability and a low noise level. Also, since there is no requirement for complementary symmetry, all the power stages can use n-p-n transistors which offer, in silicon, the best performance and lowest cost. The overall performance at an output level of 10 watts, or any lower level, must then remain the standards laid down by Williamson. The power output and gain/frequency graphs are shown in Figs. 4-6, and the relationship between output power and total harmonic distortion is shown in Fig. 7. Since the amplifier is a straightforward class A circuit, the distortion decreases linearly with output power. (This would not necessarily be the case in a class B system if any significant amount of crossover distortion was present.) The analysis of distortion components at levels of the order of 0.05% is difficult, but it appears that the residual distortion below the level at which clipping begins is predominantly second harmonic.

Stability, power output and load impedance
Silicon planar n-p-n transistors have, in general, excellent high frequency characteristics, and these contribute to the very good stability of the amplifier with reactive loads. The author has not yet found any combination of L and C which makes the system unstable, although the system will readily become oscillatory with an inductive load if R_3 is shunted by a small condenser to cause roll-off at high frequencies.

The circuit shown in Fig. 3 may be used, with very little modification to the component values, to drive load impedances in the range 3-15 ohms. However, the chosen output power is represented by a different current/voltage relationship in each case, and the current through the output transistors and the output-voltage swing will therefore also be different. The peak-voltage swing and the mean output current can be calculated quite simply from the well-known relationships $W=IR^2$ and $V=IR$, where the symbols have their customary significance. (It should be remembered, however, that the calculation of output power is based on r.m.s. values of current and voltage, that these must be multiplied by 1.414 to obtain the peak values, and that the voltage swing measured is the peak-to-peak voltage, which is twice the peak value.)

When these calculations have been made, the peak-to-peak voltage swing for 10 watts power into a 15-ohm load is found to be 34.8 volts. Since the two output transistors bottom at about 0.6 volt each, the power supply must provide a minimum of 36 volts in order to allow this output. For loads of 8 and 3 ohms, the minimum h.t. line voltage must be 27 V and 17 volts respectively. The necessary minimum currents are 0.9, 1.2 and 2.0 amps. Suggested component values for operation with these load impedances are shown in Table 1. C_3 and C_4 together influence the voltage and power roll-off at low audio frequencies. These can be increased in value if a better low-frequency performance is desired than that shown in Figs. 4-6.

Since the supply voltages and output currents involved lead to dissipations of the order of 17 watts in each output transistor, and since it is undesirable (for component longevity) to permit high operating temperatures, adequate heat sink area must be provided for each transistor. A pair of separately mounted 5in. x 4in. finned heat sinks is suggested.
This, unfortunately, the penalty which, must be paid for class A operation. For supplies above 30V Tr1 and Tr2 should be MJ481s and Tr3 a 2N1613.

If the output impedance of the pre-amplifier is more than a few thousand ohms, the input stage of the amplifier should be modified to include a simple f.e.t. source follower circuit, as shown in Fig. 8. This increases the harmonic distortion to about 0.12%, and is therefore (theoretically) a less attractive solution than a better pre-amplifier.

A high frequency roll-off can then be obtained, if necessary, by connecting a small capacitor between the gate of the f.e.t. and the negative (earthly) line.

Suitable transistors
Some experiments were made to determine the extent to which the circuit performance was influenced by the type and current gain of the transistors used. As expected the best performance was obtained when high-gain transistors were used, and when the output stage used a matched pair. No adequate substitute is known for the 2N697/2N1613 type used in the driver stage, but examples of this transistor type from three different manufacturers were used with apparently identical results.

Similarly, the use of alternative types of input transistor produced no apparent performance change, and the Texas Instruments 2N4058 is fully interchangeable with the Motorola 2N3906 used in the prototype.

The most noteworthy performance changes were found in the current gain characteristics of the output transistor pair, and for the lowest possible distortion with any pair, the voltage at the point from which the loudspeaker is fed should be adjusted so that it is within 0.25 volt of half the supply line potential. The other results are summarized in Table 2.

The transistors used in these experiments were Motorola MJ480/481, with the exception of (6), in which Texas 2S034 devices were tried. The main conclusion which can be drawn from this is that the type of transistor used may not be very important, but that if there are differences in the current gains of the output transistors, it is necessary that the device with the higher gain shall be used in the position of Trl. When distortion components were found prior to the onset of waveform clipping, these were almost wholly due to the presence of second harmonics.

Construcational notes
Amplifier. The components necessary for a 10 + 10 watt stereo amplifier pair can conveniently be assembled on a standard 'Lektrokit' 4in. x 4?in. s.r.b.p. pin board, as shown in the photographs, with the four power transistors mounted on external heat sinks. Except where noted the values of components do not appear to be particularly critical, and 10% tolerance resistors can certainly be used without ill effect. The lowest noise levels will however be obtained with good quality components, and with carbon-film, or metal-oxide, resistors. Power supply. A suggested form of power supply unit is shown in Fig. 9 (a). Since the current demand of the amplifier is substantially constant, a series transistor smoothing circuit can be used in which the power suppl-
put power or distortion characteristics. The simpler arrangement where-

<table>
<thead>
<tr>
<th>Table 2: Relation of distortion to gain-matching in the output stage.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current gain (TR1) (TR2)</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

ply output voltage may be adjusted by choice of the base current input provided by the emitter follower TR2 and the thermistor of TR4. With the values of reservoir capacitor shown in Table 3, the ripple level will be less than 10mV at the rated output current, provided that the current gain of the series transistors is greater than 40. For output currents up to 2.5amps, the series transistors indicated will be adequate, provided that they are mounted on heat sinks appropriate to their loading.

However, at the current levels necessary for operation of the 3-ohm version of the amplifier as a stereo pair, a single MJ480 will no longer be adequate, and either a more suitable series transistor must be used, such as the Mullard BDY20, with for example as 2N1711 as TR2, or with a parallel connected arrangement as shown in Fig. 9(b).

The total resistance in the rectifier 'primary' circuit, including the transformer secondary winding, must not be less than 0.25Ω. When the power supply, with or without an amplifier, is to be used with an r.f. amplifier-tuner unit, it may be necessary Output to add a 0.25µF (160 V W.) capacitor across the secondary winding of TR1 to prevent transient radiation. The rectifier diodes specified are International Rectifier potted-bridge types.

Transistor protection circuit

The current which flows in the output transistor chain (TR1, TR2) is determined by the potential across TR1 and the thermistor VR1. With the values of R1 and R2, and the current gain and collector-base leakage current of TR2, since both of these transistor characteristics are temperature dependent the output series current will increase somewhat with the temperature of TR2. If the amplifier is to be operated under conditions of high ambient temperature, or if for some reason it is not practicable to provide an area of heat sink for the output transistors, it will be desirable to provide some alternative means for the control of the output transistor circuit current. This can be done by means of the circuit shown in Fig. 10. In this, some proportion of the d.c. bias current to TR1 is shunted to the negative line through TR2 when the current flowing causes the potential applied to the base of TR2, to exceed the turn-on value (about 0.5 volt). This allows very precise control of the series current without affecting the output power or distortion characteristics. The simpler arrangement where-

by the current control potential for TR1 is obtained from a series resistor in the emitter circuit of TR1 leads, unfortunately, to a worsening of the distortion characteristics to about 0.15% at 8 watts, rising to about 0.3% at the onset of overload.

Performance under listening conditions

It would be convenient if the performance of an audio amplifier (or loudspeaker or any other similar piece of audio equipment) could be completely specified by frequency response and harmonic distortion characteristics. Unfortunately, it is not possible to simulate under laboratory conditions the complex loads or intricate waveform structures presented to the amplifier when a loudspeaker system is employed to reproduce the everyday sounds of speech and music; so that although the square wave and low-distortion sine wave oscillators, the oscilloscope, and the harmonic distortion analyser are valuable tools in the design of audio circuits, the ultimate test of the final design must be the critical judgment of the listener under the most carefully chosen conditions his facilities and environment allow.

The possession of a good standard of reference is a great help in comparative trials of this nature, and the author has been fortunate in the possession, for many years, of a carefully and expensively built 'Williamson' amplifier, the performance of which has proved, in listening trials, to equal or exceed, by greater or lesser margins, that of any other audio amplifier with which the author has been able to make comparisons.

However, in the past, when these tests were made for personal curiosity, and some few minutes could elapse in the transfer of input and output leads from one amplifier to the other, the comparative performance of some designs has been so close that the conclusion drawn was that there was really very little to choose between them. Some of the recent transistor power amplifier circuits gave a performance which seemed fully equal to that of the 'Williamson', at least so far as one could remember during the interval between one trial and the next. It was, however, appreciated that this did not really offer the best conditions for a proper appraisal of the more subtle differences in the performance of already good designs, so a changeover switch was arranged to transfer inputs and outputs between every chosen pair of amplifiers, and a total of six amplifier units was assembled, including the 'Williamson', and another popular valve unit, three class B transistor designs, including one of commercial origin, and the class A circuit described above. The frequency response, and total harmonic distortion characteristics, of the four
transistor amplifiers was tested in the laboratory prior to this trial, and all were found to have a flat frequency response through the usable audio spectrum, coupled with low harmonic distortion content (the worst-case figure was 0.15%).

In view of these prior tests, it was not expected that there would be any significant difference in the audible performance of any of the transistor designs, or between them and the valve amplifiers. It was therefore surprising to discover, in the event, that there were discernible differences between the valve and the three class B transistor units. In fact, the two valve designs and the class A transistor circuit, and the three class B designs formed two tonally distinct groups, with closely similar characteristics within each group. The 'Williamson' and the present class A design were both better than the other valve amplifier, and so close in performance that it was almost impossible to tell which of the two was in use without looking at the switch position. In the upper reaches of the treble spectrum the transistor amplifier has perhaps a slight advantage.

The performance differences between the class A and the class B groups were, however, much more prominent. Not only did the class A systems have a complete freedom from the slight 'edginess' found on some high string notes with all the class B units, but they appeared also to give a fuller, 'rounder', quality, the attractiveness of which to the author much outweighs the incidental inconvenience of the need for more substantial power supply equipment and more massive heat sinks.

Some thought, in discussions with interested friends, has been given to the implications of this unlooked-for discovery, and a tentative theory has been evolved which is offered for what it is worth. It is postulated that these tonal differences arise because the normal moving-coil loudspeaker, in its associated housing, can present a very complex reactive load at frequencies associated with structural resonances, and that this might provoke transient overshoot when used with a class B amplifier, when a point of inflection in the applied waveform coincided with the point of transistor cross-over, at which point, because of the abrupt change in the input parameters of the output transistors, the loop-stability margins and output damping will be less good. In these circumstances, the desired function of the power amplifier output circuit in damping out the cone-response irregularities of the speaker may be performed worse at the very places in the loudspeaker frequency-response curve where the damping is most needed.

It should be emphasized that the differences observed in these experiments are small, and unlikely to be noticed except in direct side-by-side comparison. The perfectionist may, however, prefer class A to class B in transistor circuitry if he can get adequate output power for his needs that way.

Listener fatigue

In the experience of the author, the performance of most well designed audio power amplifiers is really very good, and the differences between one design and another are likely to be small in comparison with the differences between alternative loudspeaker systems, for example, and of the transistor designs so far encountered, not one could be considered as unpleasing to the ear. However, with the growing use of solid-state power amplifiers, puzzling tales of 'listener fatigue' have been heard among the cognoscenti, as something which all but the most expensive transistor amplifiers will cause the listener, in contradistinction with good valve-operated amplifiers. This seemed to be worth investigation, to discover whether there was any foundation for this allegation.

In practice it was found that an amplifier with an impeccable performance on paper could be quite worrying to listen to under certain conditions. This appears to arise and be particularly associated with transistor...
power amplifiers because most of these are easily able to deliver large amounts of power at supersonic frequencies, which the speakers in a high quality system will endeavour to present to the listener. In this context it should be remembered that in an amplifier which has a flat power response from 30Hz to 180kHz, 90% of this power spectrum will be supersonic. This unwanted output can arise in two ways. It can be because of wide spectrum 'white noise' from a preamplifier with a significant amount of hiss. This can happen if a valve preamplifier is mismatched into the few thousand ohms input impedance of a transistor power amplifier, and will also cause the system performance to be unnaturally lacking in bass. Trouble of this type can also arise when transient instability or high frequency 'ringing' occurs, for example when a reactive load is used with a class B amplifier having poor cross-over point stability.

Reference

Letters to the Editor

Minimum standing current in class A

I read the article by Mr. J. L. Linsley Hood, in the April issue of W. W. with great interest, and the results he has achieved are certainly excellent for so simple a design. However I think he has done the cause of class A amplifiers a slight disservice, by the figures for minimum standing current (Table 1, P. 73) which are considerably above the true minimum figures, a fact which I have checked in practice.

The value of standing current required to just enable the output to swing to the points where one or other of the output transistors is bottomed depends on the desired output power and load impedance. These factors also dictate the minimum supply voltage. These values of voltage are $V_{supply} = +2V_{ce.sat}$ (from $P_{out} = V^2/R$ where V is the r.m.s. output). Likewise the peak current may be determined as

$$I_{peak} = \frac{2P_{out}}{R_{load}}$$

which equals

$$I_{peak} = \frac{2P_{out}}{R}$$

Now the standing current need be only half this value, since the change in load current is due to the upper transistor cutting off and the lower transistor doubling its current (or vice versa), a total change of current which must flow through the load of twice that originally flowing in the transistors, i.e. the standing current. Evaluating these for 10 watts and 8-ohm load we get (ignoring $V_{ce.sat}$) figures of 25.3 volts and 790mA giving a total dissipation of exactly 20 watts, which is in agreement with the theory for such a 'perfect' stage (i.e. 50% efficiency). In practice we must add the figure of 2 $V_{ce.sat}$ as stated by Mr. Linsley Hood. We thus get figures of 26.5V and 990mA. The corresponding figures for a 10-watt output are 16.7V at 1.29A (3 ohm), and 360V at 580mA (15 ohm). In practice we must also add an allowance to the current to provide for the variation which will take place due to temperature, etc. This excess current is especially necessary in the design described, where the only thing having any appreciable control of the standing current is the current gain of the output pair. I feel that this point was not sufficiently emphasized, or for that matter, the fact that to use any given pair of output transistors, and obtain the correct standing current needs quite a range of the total value of $R_1 + R_2$ from the values quoted of 100 + 560 ohms (for the 8-ohm case) for a high gain pair down to say 68 + 150 ohms for $H_{fe} = 40$. These lower values mean a considerable drop in loop gain, which probably accounts for much of the increased distortion, with lower gain transistors. These lower value resistors would in fact reduce the feedback by about 10dB. If the circuit of Fig. 10 is used it will also be necessary to use lower values for R_1 and R_2 to allow for an excess current which may then be controlled. I therefore question the contention of page 74 that the circuit allows for 'precise control of the series current without affecting ... the distortion characteristics'. Any reduction of loop gain must increase the distortion. I have just measured a very similar stage to that described and find that for an 8-ohm load and 10-watt output, a supply of around the 27 volts quoted and a standing current of 850 to 900mA is ideal.

L. NELSON-JONES, Bournemouth, Hants.

The author replies:

I thank Mr. Nelson-Jones for his comments. Taking his second point first, it is evident that the current gains of the output transistors (particularly T_{22}) influence the standing current through the output chain. However, due to the flattening effect of operation at high junction currents and temperatures, the current variation from transistor to transistor with a given value of $R_1 + R_2$ is much less than the manufacturer's quote range of H_{re} (30-200) would suggest. The tests which I made last year with limit-value devices gave a spread of ±150mA, when the current gains of the devices were badly matched, and rather less than this with limit-value matched pairs. It had been in my mind at the time of writing the article that the constructor of the circuit should make adjustments to the value of R_2 (not R_1 which is part of the bootstrap circuit) to obtain the correct standing current, and made the comment (p. 72) that 'the resistor R_2 can be used to set the static current of the output stages'. The use of a variable resistor, in series with some suitable fixed value, would have facilitated the setting of this, and I had from time to time wished in retrospect that I had suggested this, as an alternative. Where this arrangement is adopted, however, care must be exercised in the layout of the leads to the potentiometer to avoid undesirable output-input feedback capacitances. The potentiometer should also be at the end of R_3 nearest to R_1.

With regard to Mr. Nelson-Jones's first point (about the correct standing current for a class A stage of this type) the calculations he shows are correct, and are substantially identical to those which I made myself in the initial stages of the design of this amplifier. However, in the particular case of a class A design of this type which cannot provide a load current which increases with demand, three further points must be considered.

1. The simple calculation of the ratio of peak-to-mean currents, as in the equations above, gives an answer which is valid only for symmetrical waveforms. Most of the waveforms in speech and music, for which such an amplifier will be used, are unsymmetrical and some allowance must be made for this.

2. The calculations assume that the load is resistive. In practice, loudspeakers present reactive loads, also their impedance may fall to lower than the nominal value.

3. The optimum performance of the output stage is given when the current swing does not take either transistor into current cut-off.

Because of these considerations, which were confirmed experimentally, I suggested a value of quiescent current which was in excess of the bare minimum 'sine wave into resistive load' value, even though this involves an increase in the thermal dissipation of the system. Safety factors can always be cut down-provided that one knows the circumstances.

J. L. LINSLEY HOOD
Linsley Hood class A amplifier

Recent measurements on this amplifier have indicated that the gain and power bandwidths of this design, using the component layout shown on page 75 of your issue, are wider than indicated by the Figs. 4 and 5 of the article. The apparent fall-off in gain beyond about 100kHz was, in fact, due to shortcomings in the measurement apparatus, and measurements made with better equipment suggest that the -3dB points for voltage gain are above 1.5MHz although power output falls beyond 200kHz.

Since the output is in phase with the input, it is necessary to take care that the output leads and output capacitor are not close to the input. (A 2-inch separation will be adequate for normal lead lengths.) However, an additional point must also be noted. If a capacitative load is connected with short leads between the output and the earth line near the input, connection, the potential developed along the earth line, due to its inductance, can inject an in-phase signal, and thereby cause in stability, in the MHz region. To avoid this possibility, it is recommended that the earth lead to the loudspeaker terminal be returned to the earth line at the same point as the emitter of Tr4. The inclusion of a small r.f. choke (25 turns of 26-28 s.w.g. wire wound round the outside of a 10-ohm 1-watt resistor is ideal) between the output (point W) and C, will also prevent this possibility of trouble.

In practice, with the components and layout suggested, the inductance of the normal 12 to 18 inches (or more) of loudspeaker connecting lead prevents instability with capacitative loads, so this should be only of academic interest.

As an alternative, it is possible to reduce the r.f. response of the amplifier to give a smooth, 6dB/octave, roll-off beyond 50kHz— which removes much of the need for care in the layout of the components, without detriment to the harmonic distortion in the audible range, and without any audible alteration to the performance—by connecting a 1,000pF capacitor between the collector of Tr4 and the emitter of Tr4, a 1,000pF in series with 100 ohms between the collector of Tr4 and earth; and a 0.01µF in series with a 8 to 10 ohms between the output (‘X’) and earth. (It should be noted that either all of these components should be added or none at all, they are not alternatives.) If the r.f. response is reduced in this manner, the use of a series r.f. choke would be unnecessary.

A series of measurements has also been made, using the amplifier design exactly as described in the article (without r.f. chokes or other modifications) to determine the voltage waveform produced, actually across the loudspeaker, with a square wave input to the amplifier. It was found, in practice, with several different loudspeaker systems, that the output waveform was virtually identical to that obtained with an equivalent resistive load—photographs of which were reproduced in the April issue. It was, in fact, the discovery that a good square wave was reproduced up to the 1 MHz limit of the generator in use which prompted a reassessment of the r.f. response of the amplifier. The absence of any overshoot or significant ringing also provides confirmation of the stability of the amplifier under practical conditions.

A correspondent has reported that this design has been up-rated successfully to 15 watts into a 15-ohm load, to give a direct power equivalent to the Williamson amplifier, using 2N3055 output transistors with a 43-volt supply (1.1 amp per channel), and rather larger heat sinks. There would seem no good reason why this could not also be done using MJ481s.

J. L. LINSLEY HOOD

Mr. Linsley Hood's amended circuit of his class A amplifier originally described in the April 1969 issue.

The Art of Linear Electronics
John Linsley Hood
2nd Edition
£12.99

Now regarded as a modern classic, this book has been updated and amended to make it the leading practical source of information for those interested in linear electronics and its applications, particularly in the world of audio design.

To order this essential hi-fi design book contact Caroline Fisher on 01322 611274 or email your request to EWadmin@highburybiz.com.

Please add postage and packing: UK £2.64 Europe £5.55 US £13.17 Aust £15.64
Setting new standards in price & performance for SPICE

See what’s really going on with powerful new Dynamic Schematics.
Make changes to designs during simulation and watch the effects in real time.
More simulation options than ever before.
A massive parts database as standard.
Free telephone and on-line technical support.
Outstanding value

"We are so confident that B2 Spice Pro will impress you that we offer an unconditional 30-day evaluation of the full boxed version, complete with printed user manual. If you don’t like it, then simply return it."

Call 01603 872331
order on-line www.spice-software.com

Just some of what’s available
A whole range of new features not found in packages costing under £1000.
Advanced animated schematics.
Realtime 'live' simulation adjustments.
16 simulation options from Monte Carlo to RF.
Improved PCB export and bill of materials.
Detailed schematics with DIN and ANSI symbols.
RF simulations and network analysis.
Schematic borders and titles for professional output.
Smith and polar plots.
A massive 25,000 parts database as standard.
Powerful new graphing and plotting - display & switch between multiple graphs easily.
New "workspace" window to manage your projects.
New "parts chooser" window to easily pick and place.
Combined digital and analogue graphs.
Even faster simulations.
Unlimited undo / redo.
Many new simulation models.
Create new parts.
Create and edit symbols.
Create new PCB layout parts.
New fully featured schematic editor.

Professional version £229 ex VAT
Standard version £139 ex VAT
Upgrade from earlier versions £119 ex VAT
Postage & packing £5.00.
Education discounts and site licences available.
I only met John once, about 6 years ago at his home in Taunton, where I spent a pleasant afternoon with John and his wife drinking tea and talking about Hi-Fi and books (two of my favourite subjects). A new edition of Audio Electronics came out of that.

With Valve and Transistor Audio Amplifier Design John bridged the generations, bringing classic audio design techniques, and classic components to the attention of a new generation of designers just as valve amps were coming back in as the 'next big thing'. That was rather nice, sitting on our list between Morgan Jones, the proponent of new generation valve amp designs, and Langford-Smith's Radio Design Handbook (1967).

I recall that JLH said some nice things about Ben Duncan's book with us, resulting in a bit of a mutual admiration society, though I don't think John and Ben ever met.

Sorry this is short, but I wanted to share my appreciation of a real innovator, and true gentleman.

Matthew Deans
Publisher
Engineering & Electronics
Elsevier Science & Technology Books

I wrote an article about the 10 W class A design in a Danish magazine Ny Elektronik back in '78, and I still find, that this solid state amp is one of the best ever.

Jørn
DIYaudio.com member
Julland
Denmark

I confess to feeling deeply struck and I find it difficult to find the right words to express how big this loss is for the audio and electronics engineering community, and in particular for the old readers (and I am one of those!) of Electronics (Wireless!) World.

Surely we have lost one of the greatest pioneers and masters in the audio field. At the same time, I feel sure he will continue to live among us as a dependable guide with his brilliance and enthusiasm, as well as with all his innovative and time-proof (?!?) ideas and solutions. For sure, his many articles and books will be kept with very great care by us all.

Giovanni Stocking
EW contributor

John pursued the art of audio circuit design as a science, building on and augmenting the work of other giants in the audio design field such as Alan Blumlein and D. T. Williamson. Many of John Linley Hood's pioneering designs influenced directly the direction of the modern Hi-Fi industry throughout the world. He frequently chose to publish his work in this magazine and its forebear, Wireless World, for which all of the magazine's editors over the years have been grateful. His contributions will be greatly missed.

Frank Ogden
Editor Electronics and Wireless World
1988 to 1994

Sad to see him passing. Enjoyed very much his JLH1969 design.

Sadj indeed. His amp articles are just great. There was one particular tube amp project book he had written which is just out of this world.

Vivek
DIYaudio.com member
Bangalore
India

I was truly saddened to hear of the death of John Linley Hood. It was not very long after I had joined Wireless World that John's article on the class A amplifier landed on my desk for editing. John thought it a trifle, worthy perhaps for consideration for the Circuit Ideas feature I had recently started; but I persuaded the then editor Harold Barnard of it's greater importance, and it soon appeared (April 1969) as a feature item titled 'Simple Class A Amplifier: A 10W design giving subjectively better results than class B transistor amplifiers'.

Commercial transistor amplifiers at that time were, on the whole, harsh-sounding class B designs boasting low measurable THD. Hi-fi buffs felt in their bones that cross-over distortion was a new and horrible phenomenon however small the measured amount.

John managed neatly to bypass the problem with the 'simple' expedient of running the output NPN transistor pair in class A. It was very exciting to compare performance to that of the classic D T N Williamson valve design of the late '40s. John believed that the < 0.1% distortion in a Williamson was very much the same thing as the < 0.1% distortion in his new design - and there were no valves or expensive output transformer. Although John specified matching the gain of the two output devices to minimise the measured distortion, experimenters found to their delight (and perhaps amazement) that mismatching did not lead to any marked subjective change. I suspect that many amplifiers were built, using 'surplus' low power silicon planar devices for gain and phase-splitting, with just a couple of 2N3055s in the output stage.

On reflection now, I do believe that if John hadn't presented Wireless World with his design when he did, others would have come forward within a year or so. But his achievement was to be the first, and to change the course of hi-fi at a stroke. He continued to contribute to Wireless World - and to other publications - a wide range of audio designs that always aimed to achieve the highest musical fidelity. There can be no doubt either that the vast improvement in performance of class B design has itself been accelerated by the success of his early class A design.

John had a good sense of humour, though I never heard him laugh. For the April 1970 issue I was privileged to edit a spoof hi-power audio system design that here and there verged on the credible - though it used metal cone loudspeakers, and cast iron water radiator cooling for the amplifier. The "author" was non-other than George Izzard O'Veering, and the article's title 'Dynamic Range versus Ambient Noise'.

Just a few years ago I wrote to John asking for advice (i.e. a free circuit) to improve the front end of my own class D audio amplifier. He sent back the barest sketch with a recommendation that I buy his latest book - where I would find just what I needed!

John Greenbank
Science Subject Officer Oxford Cambridge and RSA Examinations

A mpman salutes Sir John Laurence Linley Hood for his contribution to explicit amplification systems, especially the 10W class-A amp.

Ampman prays to god that his soul may rest in peace in heaven.

A mpman
DIYaudio.com member
Punjab
India
I am saddened to hear of John’s demise. His articles helped me along quite a bit during my early learning days. Lots of our present knowledge is propped up by his numerous contributions to the subject. He belongs to an age that is responsible for what we are doing today.

Thanks JLH.
Brownlow
DIYaudio.com member

I too will miss him and the articles that he wrote. I read his amplifier articles thoroughly. He was one of the few that explained his choices as he described his design, with the result that I learned a lot from him. His designs had a “signature” about them; you could tell it was his design by his use of transistors. The VCO of his FM tuner circuit springs to mind, but there are many more that show his understanding of transistor operation. Shame that there will be no more.

JohnnyX
DIYaudio.com member

I heard of John’s passing is very sad news. After working for so many years on his 1969/96 amplifier circuit I went to bed feeling hollowed by a sense of personal loss. I was very much hoping that JLH would be able to see my upcoming article, and read of my findings as to why his designs were repeatedly being chosen by listeners in place of other circuitry that came with better specifications. I believe he knew already.

John clearly had much more knowledge and experience than most of us can ever hope to learn, and I am grateful he took the trouble to put pen to paper, providing us with solid foundations for our own future work. I did not have any direct contact with JLH, and I was not linked to his work, but he was inspirational. Even as we remember him, his circuits are still being constructed around the world - as they will be for years to come. He passed on a legacy that will long be appreciated throughout the audio world he so loved.

Graham Maynard
EW contributor

It’s sad to hear of John’s demise. His articles helped me along quite a bit during my early learning days. Lots of our present knowledge is propped up by his numerous contributions to the subject.

He belongs to an age that is responsible for what we are doing today.

GBHS.
AM
DIYaudio.com member

This too has come as a surprise to me. I had found a number of articles written by JLH very informative. He is one of the first, so the first, that I began reading, therefore this news is tinged with regret.

Thanks JLH.
Brownlow
DIYaudio.com member

I am very sad indeed!!!

Thoughts and prayers to all of JLH’s family and friends

Jay Meredith
Costa Mesa
CA
USA

Sad news indeed.

One of the greats of this industry, never to be forgotten.

Hugh R. Dean
Aspen Amplifiers P/L
Melbourne
Australia

In the early 70s we grew up learning about amplifiers from the articles of JLH in the Wireless World. Over the years we have enjoyed his vast knowledge on almost all topics in electronics, especially audio.

I have never found his photograph anywhere, nor was there much written about him. We only knew him from his designs.

By far he has been one designer who has inspired our generation the most. His contribution cannot be paralleled.

He will be dearly missed.

Anshudus
DIYaudio.com member

A gifted individual without peer.

Ian Mackenzie
DIYaudio.com member

A part from ‘The Bible’, John’s words in print are the only other written words of importance which have, in 60 years, taken hold of me. I felt that I was there with John and could sense the truth in his words.

He is a great loss to electronics and we will never see his like again – though I know his spirit lives on.

D Lucas
Anstruther
Scotland

This is very sad news... The world has lost a great talent who will be sorely missed.

I hope there will be more like him.

Prometheus
DIYaudio.com member

Very sad news... A true DIY giant who will be sadly missed but remembered very well.

Mike
DIYaudio.com member
UK

Sad news indeed.

A true DIY giant who will be sadly missed but remembered very well.

Mike
DIYaudio.com member
UK

Sad news... He gave us his designs for free and wrote some excellent books.

A true DIY giant who will be sadly missed but remembered very well.

Mike
DIYaudio.com member
UK

Sad news indeed.

One of the greats of this industry, never to be forgotten.

Hugh R. Dean
Aspen Amplifiers P/L
Melbourne
Australia

He belongs to an age that is responsible for what we are doing today.

GBHS.
AM
DIYaudio.com member

Charlie Widden
GBHS.
Australia

Very sad news... The world has lost a great talent who will be sorely missed.

I hope there will be more like him.

Prometheus
DIYaudio.com member

Very sad news.

A gifted individual without peer.

Ian Mackenzie
DIYaudio.com member

A part from ‘The Bible’, John’s words in print are the only other written words of importance which have, in 60 years, taken hold of me. I felt that I was there with John and could sense the truth in his words.

He is a great loss to electronics and we will never see his like again – though I know his spirit lives on.

D Lucas
Anstruther
Scotland
Letters to the editor

Letters to “Electronics World” Highbury Business, Media House, Azalea Drive, Swanley, Kent, BR8 8HU e-mail EWletters@highburybiz.com using subject heading ‘Letters’.

EMC

I was interested to read Ian Darney’s letter (Reflections on filters) in March’s issue of EW. However, I can only agree with it in part. He is quite correct in saying that it is not essential that a filter reflects back the rejected frequencies, it may absorb them. However, the cost of making an EMC filter that is correctly matched over the wide range of frequencies to be rejected would be prohibitive. Moreover I can’t accept his statement that any unwanted energy is either:
- absorbed by the filter.
- reflected up and down the line until it is radiated away.

There is a third possibility — it may be reflected back to the source and absorbed there. It may seem odd that source can also be a sink, but any source has measurable output impedance, and if this has a resistance component it can in fact absorb energy.

J.S. Linfoot
Oxford, UK

Attracting non-readers

Regarding the important question of Electronics World non-readingness (February 2004 Editorial), the answer is ‘They think they don’t need to read Electronics World’. In the UK, at least, electronics is a consumer technology rather than supplier. Yes, there are some specialised, but minority, component and systems builders but we import most of what we consume, and you don’t need to understand how things work, in order to use them. It is not all gloom and doom. I’m sure that, if it were left to the UK industry, I wouldn’t be able to go and buy components for the low prices currently being charged. I can buy op amps, doubled balanced mixers etc, for less than a cup of tea and that has to be good, hasn’t it? Someone can make these things and ship them from the other side of the world and, presumably, still make money at it.

As a fairly recent retiree, I spent the last twenty years of my career as a manager encouraging engineers to stay connected to the roots of electronics as companies tried to sever them. I used to try to find ‘sandwich’ students to work as electronics engineers for a year, prior to returning to university to complete their degrees. This was quite difficult; since many students opted for the ‘systems’ option, which concentrated on computer based systems design and programming, rather than electronics, transfer functions and reliability. I used to think I had struck gold, if I found someone who could work out which way the diodes pointed, in a bridge rectifier circuit! Who would blame them, when the disparate financial rewards, for the two types of qualification were considered?

In truth, the competent professional electronics engineer needs to master all disciplines, not just hardware and software, but business, management and politics, all at the same time. Over my long career, I lost count of the number of engineers who ‘escaped’ to management and took pride in claiming that they didn’t understand some basic electronic concept, often related to, oddly enough, EMC, before making decisions based upon that lack of understanding. Electronics World does play a vital part in encouraging that professionalism by giving a balanced airing to all those areas, but how many managers with an electronics qualification read it? My guess is, not many. At the other end of the educational scale, how many schoolteachers read it? My guess is, not many.

Electronic engineering is a key profession, to the continued development of civilisation. There is no branch of modern society that does not depend upon electronics for its survival. It is as vital as water, energy, law and order but where is the drive, in the UK, to encourage young people to take an interest? There isn’t one.

Engineers, not just the electronic kind, are depicted, in the media, as ‘oily rags’, ‘techies’ and general eccentrics and it’s largely our own fault. We’ve thrown our industry to the wolves and now we should make every effort to rebuild it.

We know what has to be done to achieve that. We have to make products that people will buy. That means they have to work reliably, look right and are competitively priced. When we can do that, we will have a viable industry. We have to make decisions based upon that lack of understanding.

Yes, I have found that some people did encourage young people to take an interest? There isn’t one.

Engineers, not just the electronic kind, are depicted, in the media, as ‘oily rags’, ‘techies’ and general eccentrics and it’s largely our own fault. We’ve thrown our industry to the wolves and now we should make every effort to rebuild it.

Bryce Kearey
Crowthorne, Berkshire, UK

Mr. Cat on TV, now there’s a thing! — Ed

Infinity?

While thinking on the subject of infinity I made the following postulate:-

There exists a number so large that it is one more than that number which can be formed by adding two smaller numbers using the fastest computer within the run-time-span of that computer or computers.

This number will of course change with time as computer(s) become faster or more powerful. It might be said to be infinity, but I am calling it the Harcourt Number.

April fool?

Are you sure your calendar is not off by a month? The Hybrid Audio Amplifier article in your March issue seems to have been printed a month early; it would have been ideal for April Fool’s day.

The design simply uses a valve as a bootstrapped current source as a load for the voltage gain stage and makes claims for the results which are to say the least, wild. I’m sure the given specs are ok, but the current source could be far more easily implemented using a FET.

Bootstrapping the driver transistor’s load resistor has been common practice since the days when Philips first published a complementary audio output stage using the AC127 & AC128 as a pair (if you’re old enough to remember those)! Replacing the bootstrapped load resistor with a bootstrapped current source, makes sense as it not only increases the open-loop gain, but also avoids a loss of drive current on positive output peaks and also avoids early effect problems in the current source. What doesn’t make sense is using a valve to implement one, with all the increase in cost and complexity.

I have seen many people who make all sort of wild claims for valve amplifiers, special speaker cables and the like. However, having been designing and building high quality amplifiers for over 30 years, I feel I am qualified to put in a word on the subject. I have also been working for more than 15 years with a firm selling some of the best professional and domestic audio equipment on the market, and have had the chance to carry out (informal) A/B tests on various units both with myself, and with various other listeners, including professional musicians.

Yes, I have found that some people did actually prefer the sound of valve amps, usually not because they sounded better, but because their deficiencies masked the deficiencies in the recordings used. You have to remember that even the best recordings use an analogue transducer (a microphone) that introduces various artefacts. In some cases (specially with older subjects) it was simply a preference for the kind of (distorted) sound they grew up listening to as kids.

In my experience a well designed and built solid-state amp, with good source recordings sounds infinitely better than any valve amp I’ve ever run into.

As regards TIM and other artefacts, they are occasionally audible in a poorly designed unit, but
not in any modern amplifier built to a reasonably good design. The distortion and artefacts you get from even the best speakers are far, far worse than anything an amp can do. And the 'golden ear' which can detect a 0.001% artefact, through more than 5% distortion from a well made speaker, is in my humble opinion, a figment of the imagination. My 'back of the envelope' calculations tell me that to get a speaker to reproduce the kind of transient that would induce TIM in a good amp would need a diaphragm & coil mass in the milligram range, or use superconducting magnets from a MRI machine.

I have also performed a number of A/B tests on speaker cables. True, there are marginal frequency response differences due to cable capacitance differences, which are sometimes audible. There are also differences in 'tightness' due to differences in speaker damping, but these are usually significant only in the worst cases.

I have run across one set-up where several people could consistently discern a difference caused by a cable. It turned out however, that the amplifier was distorting due to RF pick-up on the speaker cable, and that the cable geometries were sufficiently different to make the level of pick-up significantly different. This was what was causing the problem. On changing the amp to one without this problem, the audible difference between cables disappeared.

I have also run across speaker protection relays which made a difference to the sound, but on investigation these turned out to have silver contacts, which had oxidised. I have never found the problem with platinum or gold contacts.

Yes, it is a good marketing ploy (though dishonest) to convince people to shell out several times the amount to buy audio equipment that makes claims to possess superior performance (which however does not show up on measurements). But lending them credence in this journal is rather intriguing to the readership of this magazine, as most of are professionals with a solid scepticism about these immeasurable intangibles, based on our scientific education, as well as our experience of many years. I can understand magazines meant for the lay Hi-Fi customer, or the electronic hobbyist condone such claims, but Electronics World?

Joseph Carri
By email

Stand by for a very serious look into amplifiers, distortion, 'valve sound' and all those other intangibles as this month we start a series of articles that might just challenge well known theories. — Ed

April fool II

I presume that the feature Hybrid Audio Amplifier was a wind-up, so why did it not appear in the April issue? I have serviced guitar amplifiers which claimed to have a 'valve sound' channel in them, but at least the solitary 12AX7 was actually in the signal path!

Michael Hawkins
Fariborough, Hants

Loop gain

It would seem from Mr. Ellis’s letter, EW, March 2004 in response to my previous letters, indicates that he still misunderstood the point made, or misunderstands the complexities of feedback analysis. My reference to calculating the forward open loop gain and the closed loop gain was to address the fact the gain measured at one input, i.e. the signal input is not the same even remotely at the other input, i.e. the feedback input. This is very apparent when the signal input is at the base of a transistor stage, and the feedback is directly at its emitter. As for on an independent determination of A and B, as noted by Mr. Ellis’s, this is not irrelevant to the issue at all.

I apologise for not highlighting in more detail the exact paper of Dr. Middlebrook that shows a method of accurately determining the loop gain, as it would seem from Mr. Ellis’s reply, that it is precisely this knowledge that Mr. Ellis’s indicates that he lacks by the equations and figures he refers to in his letter. By reference to his figure 1, he states an equation that relates the two voltages at each side of a voltage source placed in series with the loop. This equation is one of the fundamental issues. It is incorrect, and does not give the loop gain directly as Mr. Ellis’s states. The loop gain requires that the input and output resistances at each node be included. An example of Dr. Middlebrook’s technique is shown here http://www.spectrumsoft.com/news/spring97/loopgain.shtml, http://www.spectrumworld.com/software/spring97/loopgain.shtml, and figures he refers to in his letter. By calculating the loop gain correctly and accurately, as noted by Mr. Ellis’s, this is not irrelevant to the issue at all.

I won’t comment on the other points raised in Mr. Ellis’s letter, as I am just about to pop to the bathroom to wash my hair.

Kevin Aylward

John Ellis replies:

With regard to Mr. Aylward’s response to my letter in the March edition of Electronics World, I agree with his point that the closed loop method should be used for loop analysis. However, Mr. Aylward has, in places, misrepresented, or misinterpreted, what I said.

Mr. Aylward has said that the concept of obtaining the loop gain by comparing the open loop gain with the closed loop gain “contains a well known error”. Actually there are several candidates for error, ranging from the loop gain being negative (AB rather than AB), the gains between inverters and non-inverters inputs of an amplifier can be different, the open loop gain not being calculated correctly, and lastly using only the voltage gain rather than voltage and current. They hardly amount to a single error!

The old-fashioned method of comparing open loop gain with closed loop gain may not be quite as bad as has been suggested. This is because the method involved approximations that are not unreasonable. In respect of the possible errors mentioned:

(1) The loop gain should be AB instead of AB. But, in the simple feedback diagram I gave in my previous letter, the minus sign is wrapped up in the implicit inverting feedback node and the equation for closed loop gain (A+1AB) is correct for that network.

(2) Even for different gains, the comparison works. If we assign an open loop gain Ap to the non-inverting (positive) input, and another gain An for the inverting (negative) input, then the closed loop gain is Ap(1+BA)n where B is the feedback attenuation. Mr. Aylward cites the case of a single-ended input stage where the input is fed to the base and the feedback to the
emitter. Clearly these have different gains and input impedances. The loop gain in this case is (-)B. An, but the "B" would have to take account of the input impedance of the emitter and isn't given by the feedback resistor ratio alone. Due to the effective isolation afforded by the transistor from the collector to the emitter, the input impedance can be reasonably well represented by the standard SPICE equivalent circuit. An independent assessment of B from An may not be required because the phase of the loop gain is obtained from the product. So far, the method holds.

(3) The biggest difficulty is, indeed, in breaking the loop and yet representing closed loop conditions. The open loop calculation should apply to the same circuit as the closed loop calculation. Catch 22: if you open the loop the circuit is no longer the same. What the classical method required was that the missing feedback network is duplicated, one network taken to the feedback node and one to the output. The next step was to ground the free ends. For a relatively high value of feedback resistor, noting that the input and output impedances are low, particularly on closed loop, which we are trying to emulate, an approximation is made, going from "relatively low" to "zero". For an emitter input, the "low" can indeed be low. For a differential amplifier, the feedback input acts as a virtual earth and can indeed be low. For a differential circuit rather than a single-ended loop calculation. It seems, though, that Mr. Aylward did not read my letter sufficiently carefully. Which end of the feedback resistor was disconnected in the loop was immaterial because I did not use the closed loop method. In summary, the classical method took steps to address some of the key points Mr. Aylward raised. These steps are essentially "reasonable approximations", but approximations nevertheless. They may not be applicable in all cases, and it is necessary to use great care. As the closed loop method avoids the uncertainties, I agree it should be used instead. The degree of care needed to ensure that the open loop conditions are applicable means that it may even be simpler to use the closed loop method in the first place.

Mr. Aylward continues with a discussion on the nature of breaking the feedback loop for a closed loop calculation. It seems, though, that in my haste. Apologies for that: so far, the method described is included. Mr. Aylward does not include loading effects. This has been addressed. Regarding the particular instance of the feedback resistor, I stated in my letter that I had not specifically rebalanced the loading, but that the result would have had a trivial effect on the stability calculations. If the feedback resistor were 10k ohms, and the attenuator 330 ohms, the error in not balancing the attenuator is less than 3%. It does assume a differential circuit rather than a single-ended loop. Nevertheless, in light of the previous comments, this should have been adjusted. At the output, there was an 8 ohm load attached to the amplifier. I should have mentioned this since the effect of opening the feedback loop is reduced from what might have been an enormous error to one which is less than 0.1%. The effects of internal components are of course taken into account by the simulations. So all internal loading effects such as those Mr. Aylward described are included.

The final point concerns the use of a single voltage calculation. In my diagram there was an error in my haste. Apologies for that: the load had been moved inadvertently. The implicit assumption that the classical model makes here is that because the current gain is very high, the voltage gain is dominant. In Mr. Aylward's letter, he refers to a paper explaining the closed loop method. In that paper, it is confirmed that the current gain and voltage gain are combined in parallel, so that the lower dominates. In a typical amplifier, the current gain is usually much greater than the voltage gain, and so the "voltage gain only" approximation is reasonable. I would therefore accept that the classical method is "approximate" but consider that a blanket "incorrect" is an overly harsh judgment.

Most of Mr. Aylward's other criticisms can be put into perspective from the above. Briefly, his comment that the "notion of an amplifier "incorrect" is an overly harsh judgment. "approximate" but consider that a blanket approximation is reasonable. I would therefore accept that the classical method is "approximate" but consider that a blanket "incorrect" is an overly harsh judgment. Most of Mr. Aylward's other criticisms can be put into perspective from the above. Briefly, his comment that the "notion of an amplifier not a function of feedback node impedances.

Boolean Castles in the Sand

"Come, AND, OR and NOT, our souls inspire, and lighten us with celestial fire. Enable with perpetual light the dullness of our blinded sight." - with apologies to God's double.

A typical example of the hero-worship of Boole which inhibits scepticism is at http://www.maxnon.com/1847ad.htm; "1847 AD to 1854 AD George Boole Invents Boolean Algebra". The article by Sallows, EW May 04, p32, beautifully illustrates the fact that there remain serious, debilitating structural defects in the way we digital designers go about our business. There is a missing basic function in the Boolean set, quite as important as any one of the acknowledged three, AND, OR, NOT, each taken on its own. This can be proved from first principles, as I have done. Will readers write in to say what they think it is? I have done more logic design with discrete AND, OR and Invert gates than anyone else. I never got promoted up into paper, but continued at the logic and circuit coalface for decades. Between firings, I worked for Data Products Corp., a company which, uniquely, had this usually missing function among its available set of logic boards, along with AND, OR and Invert. In 1965, the circuit cost of the gate had just dropped to little more than that of the other three. I found that I ended up using equal amounts of AND, OR and ???? gates in my extensive designs, for reasons which became obvious. At the same time, on my course on logic design at UCLA up the road under Montgomery Pfister, who wrote the standard textbook, I noticed that this function, missed by Boole, remained missing. (Actually, I went on the Pfister course to chase after another item missing from the discipline of logic design, the Glitch, which I published on later, and which is still suppressed. See IEEE Trans. Com. EC-15 No. 1, Feb. 1966).

I became very frustrated over the years, and prevailed on Ron Treadway to add this function to the Motorola TTL logic chips. He had just been stolen from Texas Instruments to help Motorola to catch up in TTL. We had fallen behind in the most popular (7400) family of logic gates because Namd, our head of R&D, had for years refused to allow his R&D team to design any TTL, the market leader. He preferred ECL, and said he would resign if forced to develop TTL. So he resigned (or rather was fired) in the course of time after Treadway appeared. I also published an article “The ??? Element”, dated February 1968, which I have in front of me. All to no avail, Lewin, who later tried to hitch a ride on my WSI bandwagon, wrote the next standard text book. He devoted a quarter of his book to the Quine-McCluskey minterm/maxterm algorithm for “minimisation” (which is not minimal because it ignores the missing logic gate), and further entrenched the myopia. I taught the latter junk, while Principal Lecturer at West Herts College. Now Sallows puts a further nail in the coffin of rationality.

In next month's EWW I hope the editor will let me tell you more. I will give references at www.ivorcat.com/47.htm

Ivor Catt
St. Albans, UK

Falling standards

I am sure that Paul Bartlett (Letters EW March) does not need to 'get out more' in order to be aware that educational standards in English have fallen in recent years. As a reader of WW/EWW for over sixty years I am disappointed that the Editor appears to be satisfied with this state of affairs. It is a pity that 'Free Grid' is no longer around.

Bertrand Russell defined a pedant as one who prefers his statements to be true. I would hope that so far as scientific statements are concerned, the Editor himself is a pedant.

Alan Granger
Warwick, UK

I certainly try to be, but being human, I don't get it right all the time — Ed
New products

Cable car-jumpers
Tycob Electronics have won a contract providing 15/25kV cable assemblies and inter-car jumpers for the new Swiss ICN2 tilting trains. Specifically designed to account for bigger movements between cars due to the vehicle geometry and tight track curves, Raychem inter-car jumpers offer low vertical profile, are fully insulated to 25kV that requires no maintenance or cleaning.

Tycob Electronics
www.tycolelectronics.com

New modules for wireless programming of robots
Programme, control and collect data from your mobile robot, without wires, using a pair of HandyPort wireless modules.
The new HandyPort HPS-120 acts as a transparent wireless replacement for an RS232 serial cable. So when you need to re-programme your robot you don’t have to stop it, pick it up and connect it to your PC, you can simply download a new programme ‘on-the-fly’.
Not only can you programme wirelessly, you can also send data to, and receive data from your robot. So if you want to take control yourself you can, or if you want to read on-board sensors you can do this as well.

New HandyPort HPS-120
www.tota I robots.com

Out of this world: probing regolith
A modified thermal analyser is to go to Mars in 2007 aboard NASA’s Phoenix Scout Mars lander. A robotic arm will push the probe into the planet’s surface to measure the thermal conductivity of the regolith, the Martian soil material, giving scientists valuable information on how much the normally cold regolith warms up when exposed to direct sunlight. Essentially the instrument, from Decagon Devices, is the same as the KD2 production units used for measuring thermal conductivity, diffusivity, resistivity and temperature, but re-specified to suit this unusual application.

KD2
Labcell Ltd
www.labcell.com

COTS tantalum capacitor for critical apps
A new range of surface mount tantalum capacitors for military and space applications has been launched from Kemet Corp. The T493 series comes in five standard EIA case sizes with a variety of options. Where surge robustness is critical the most stringent testing protocol can be selected, where ESR and response times are important, the low ESR version can be selected.

T493
TTI Europe
www.tfeurope.com

North and south - independent switching
A sensor suited to operation in battery operated, hand-held equipment requiring a contactless switch such as flip-phones, pagers, personal organisers, laptops and palmtops has been introduced by Allegro Microsystems Europe. It is a micropower omnipolar Hall-effect switch which combines ultra-sensitive, pole-independent switching with a latched digital output. With improved magnetic sensitivity, small size and low power requirement it is a cost-effective contactless replacement for mechanical or reed switches in all types of portable applications. It offers true omnipolar operation so that either south or north pole of sufficient strength with turn the output on, in the absence of a magnetic field the output is off.

Allegro Microsystems Europe Ltd
www.allegroeurope.com

High temperature resistant connection blocks
A new range of connection blocks suitable for use in applications where high temperatures are expected have been launched by Camden Electronics. The CHTB series high temperature resistant connection blocks feature a DIN 40685 porcelain insulation body capable of withstanding temperatures up to 1000°C. The nickel-plated brass inserts feature a working temperature of 350°C, maximum working voltage is 450V AC with maximum current of 24A for 3.2mm inserts and 57A for 6mm insert types (test voltage 2500V).

Camden Electronics
www.camdenedc.com

Touchscreen technology saves time and money
Using Zytronic’s Zytouch touchscreen technology, Westland Helicopters Ltd can quickly configure an entire helicopter instrument panel layout during customer trials. The aircraft’s human machine interface can now be refined during a single meeting with customer air crews and specifiers, shrinking the time taken to make adjustments from weeks to as little as an hour.

Zytronic
www.zytronic.co.uk

Please quote Electronics World when seeking further information
DIGITAL INTERFACE HANDBOOK

John Watkinson, Francis Rumsey

A detailed manual for those who need to get to grips with digital audio and video systems. It takes a fresh look at the differences between audio interfaces and shows how to make devices "talk to each other" in the digital domain. Also includes detailed coverage of all the regularly used digital video interfaces. New information included in this third edition: dedicated audio interfaces, audio over computer network interfaces and revised material on practical audio interfacing and synchronisation.

Mar 2003 ▲ 392 pages ▲ Illustrations ▲ PB
Code: 0-7506-7663-0 £29.99

TV FAULT- FINDING GUIDE

Edited by Peter Marlow

A distillation of the most-used fault reports from 11 years of television magazine. Arranged by make and model, it features over 200 reports on over 200 models of television, including diagnosis and repair advice.

Mar 2003 ▲ 387 pages ▲ Illustrations ▲ PB
Published in UK
Code: 0-7506-6633-0 £20.99

AVR: AN INTRODUCTORY COURSE

John Morton

(University of Cambridge)

AVRs have certain strengths compared to other microcontrollers but are less well-known or understood. The author wrote this guide to introduce AVRs to those who have little or no microcontroller background and to encourage them to start using these useful devices with easy projects to try.

Sep 2002 ▲ 256 pages ▲ 150 Illustrations ▲ Glossary ▲ Further reading ▲ Index ▲ PB
Published in UK
Code: 0-7506-5635-2 £16.99

BEBOP TO THE ELECTRONICS WORLD ORDER FORM

Please order or search the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
</table>

ELECTRONICS WORLD ORDER FORM

Please order or search the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
</table>

TOTAL

POSTAGE & PACKING FREE IN THE UK

Name
Daytime Tel
Address
Postcode

I enclose a cheque/postal order value £ payable to 'Boffin Books Ltd'

Please debit my Access/Visa/Switch/Delta card

Card Number
Expiry Date

Signed

*Postage charges outside the UK available upon request or email: salesteam@boffinbooks.demon.co.uk

Thea Boffin Books Ltd, 24 Walton Street, Walton-on-the-Hill, Tadworth, Surrey KT20 7RJ, UK

01737 812727 Fax 01737 813526 Email salesteam@boffinbooks.demon.co.uk
Put your web address in front of 18,000 electronic fanatics. Electronics World acknowledge your company's needs to promote your web site, which is why we are dedicating 2 pages in every issue to WEB ADDRESSES. Linage only will cost £150 + vat for a full year. Linage with colour screen shot will cost £350 + vat for a full year, this will include the above plus 3cm shot of your web site which we can produce if required. To take up this offer or for more information telephone Luke Baldock Tel 01322 611289 E-mail l.baldock@highburybiz.com

CHYGWYN www.chygwyn.com

ChyGwyn Limited offers electronic design and embedded software development for remote monitoring, embedded appliances, set-top boxes and similar devices. We are experts in customisation of Linux and write device drivers for custom hardware.

CONFORD ELECTRONICS www.confordelec.co.uk/index.shtml

Lightweight portable battery/mains audio units offering the highest technical performance. Microphone, Phantom Power and Headphone Amplifiers. Balanced/unbalanced signal lines with extensive RFI protection.

COMPONENT TECHNOLOGY www.componenttechnology.co.uk

- PIC microcontroller kits and modules for students and hobbyist.
- 18F45X,16F87X Proto-Boards for ease and fast development of project ideas.
- Infrared Illuminators for CCTVs in low ambient light security areas.
- Analogue 8-channel high voltage isolator. Data logging.
- 5% discount code 'elwwdir2004' for Electronics World readers.
- Consultancy
- TIG control systems – REIS interface.
- Real-time X-ray Imaging.

CRICKLEWOOD ELECTRONICS www.cricklewoodelectronics.co.uk

Cricklewood Electronics stock one of the widest ranges of components, especially semiconductors including ICs, transistors, capacitors, all at competitive prices.

DB TECHNOLOGY www.dbtechnology.co.uk/ EMC Testing and Consultancy.

Anechoic chamber and open area test site.
- Compliance Tests
- Rapid, accurate pre-compliance tests.
- Faxes included. FCC Listed.
- Flexible hourly booking available.

Designer Systems Co

Electronic product design company with over a decade of experience promoting its own product range and designing and manufacturing innovative products for client companies/individuals.

Future Technology Devices Intl. Ltd.

FTDI designs and sells USB-UART and USB-FIFO interface I.C.'s. Complete with PC drivers these devices simplify the task of designing or upgrading USB peripherals.

Greenweld

Whether your interest is in electronics, model engineering, audio, computer, robots or home and leisure products (to name just a few) we have a wide range of new and surplus stock available.
MCES Ltd
Web: www.mces.co.uk

MCES are a specialist electronics company providing a high quality repair, rework and re-manufacturing service to electronic modules and sub assemblies, including handling both large and small volume production and rework for major manufacturers. Established in 1972 we have continued to make large investments in specialised test equipment, surface mount technology and tooling enabling us to diagnose, repair and verify a wide range of electronic modules to a very high standard. We also operate a fitting service for surface mount multi pin IC’s and BGA’s.

QUASAR ELECTRONICS
www.QuasarElectronics.com

Over 300 electronic kits, projects and ready built units for hobby, education and industrial applications including PIC/ATMEL programming solutions. Online ordering facilities. Tel: +44 (0) 870 246 1826 Fax: +44 (0) 870 460 1045 Email: sales@QuasarElectronics.com

NORCALL Ltd
www.tetra-com.co.uk

Suppliers programmers and repairers of new and refurbished two-way radio equipment. Returning and recy-clling service available. All types of batteries chargers and aerials supplied. e-mail Norcall@aol.com

SOFTCOPY
www.softcopy.co.uk

As a PC data base or hard copy, SoftCopy can supply a complete index of Electronics World articles over the past ten years. Photo copies of articles from back issues are also available.

TELEVES
www.telev.es

Televés website was launched as an easier way to keep in contact with our World-wide Network of Subsidiaries and Clients. This site is constantly updated with useful information/news plus you can download info on our range: TV Aerials & accessories, Domestic and Distribution amplifiers, Systems Equipment for DTT and Analogue TV, Meters and much more. Tel: 44(0) 1633 875821 email hbotas@televes.com

TEST EQUIPMENT SOLUTIONS
www.TestEquipmentHQ.com

Test Equipment for rental or second user sale at the industry’s lowest prices. All types of equipment from all leading manufacturers including general purpose, communications and industrial test. Items fully refurbished with 1 year warranty. Rental rebate given on purchases.

TELONIC
www.telonic.co.uk

Telonic specialists in laboratory AC & DC Power Supplies, Electronic AC & DC Loads, Electrical Safety Testing and complete test systems. Plus RF Filters, Attenuators, Diesel Engine Smoke Measurement, Quartz Crystal Microbalances. Tel +44 (0) 118 9786911

Total Robots
www.tcontrolssolutions.com

Robot Kits and Control Technology products, including OOPic the first Object-Oriented Programmable Integrated Circuit. Secure on-line ordering and fast delivery.

ULTRA-CREA OY
www.ultra-crea.fi

Our business idea is to provide our customers complete service, i.e. design from the customer specification to the delivery of finished and tested products. Our offerings are as follows:
- RF transmission line filters from 100MHz to 3GHz
- Special antennas to frequencies as above
- Transmitter and Receiver modules
- RF-subunits such as amplifiers, oscillators, directional couplers etc.

WILMSLOW AUDIO
www.wilmslow-audio.co.uk

“Uk’s largest supplier of high quality loudspeaker kits and drive units. Comprehensive range of components and accessories, including damping products, connectors and grilles materials. Demonstration facilities available.
ELECTRONICS WORLD

On CD-ROM

Electronics World is enjoyed by some of the world's top circuit designers - but it's not just for professionals. Stimulating designers for almost a century. *Electronics World* covers analogue, RF and digital circuit technology and incorporates design information on everything from model train control to input/output via a 10baseT network... and it's now available all on CD-ROM.

- 12 issues on each CD-ROM
- Full text and diagrams of all articles, circuit ideas, letters etc
- Easy to browse
- Fully searchable by keywords and index
- High-quality print in colour
- Full software listings included
- easy to use

The CDROMs are only £30 each including VAT and UK post, add £1 extra postage for Europe, £5 extra postage for rest of the world, exclusively available from SoftCopy Limited, address below.

Limited special offer for readers of Electronics World - all five CDs for the price of four.

Please send the following CD-ROMS

____ qty 1999
____ qty 2000
____ qty 2001
____ qty 2002
____ qty 2003

NAME

Address

Card Number Expiry

Order now at:

www.ewmag.co.uk

SoftCopy Limited, 1 Vineries Close, Cheltenham GL53 0NU, UK

Tel: +44 (0) 1242 241455 Fax: +44 (0) 1242 241468 sales@softcopy.co.uk
PROTEUS
The Complete Electronics Design System

Schematic & PCB Layout
- Powerful & flexible schematic capture.
- Auto-component placement and rip-up/retry PCB routing.
- Polygonal gridless ground planes.
- Libraries of over 8000 schematic and 1000 PCB parts.
- Bill of materials, DRC reports and much more.

Mixed Mode SPICE Circuit Simulation
- Berkeley SPICE3F5 simulator with custom extensions for true mixed mode and interactive simulation.
- 6 virtual instruments and 14 graph based analysis types.
- 6000 models including TTL, CMOS and PLD digital parts.
- Fully compatible with manufacturers' SPICE models.

Proteus VSM - Co-simulation and debugging for popular Micro-controllers
- Supports PIC, AVR, 8051, HC11 and ARM micro-controllers.
- Co-simulate target firmware with your hardware design.
- Includes interactive peripheral models for LED and LCD displays, switches, keypads, virtual terminal and much, much more.
- Provides source level debugging for popular compilers and assemblers from Crownhill, IAR, Keil, and others.

Contact us for Free Demo CD
Labcenter Electronics
53-55 Main Street, Grassington. BD23 5AA

Tel: 01756 753440
Fax: 01756 752857

www.labcenter.co.uk
info@labcenter.co.uk

New Features in Version 6
- Drag and drop toolbars.
- Visual PCB packaging tool.
- Improved route editing.
- Point and click DRC report.
- Multiple design rules (per net).
- Multiple undo/redo.

Call Now for Upgrade Pricing

Works with PIC Basic Plus from Crownhill Associates
FOR SALE

PRINTED CIRCUIT BOARDS
DESIGNED & MANUFACTURED
For all your valves, tubes, semi conductors and ICs.
Langrex Supplies Limited
1 Mayo Road, Croydon, Surrey CR0 2OP
TEL: 020 8684 1166 FAX: 020 8684 3056
info@langrex.co.uk

TOP PRICES PAID
For all your valves, tubes, semi conductors and ICs.
Langrex Supplies Limited
1 Mayo Road, Croydon, Surrey CR0 2OP
TEL: 020 8684 1166 FAX: 020 8684 3056
info@langrex.co.uk

WANTED
Surplus or Obsolete Electronic Components
Turn your excess stock into instant cash!
SEND OR FAX YOUR LIST IN STRICTEST CONFIDENCE
Will collect anywhere in the UK

28 College Street, Kempston, Bedfordshire, MK42 8LU
Tel: 01234 363611 Fax: 01234 326611
E-mail: sales@mushroom.co.uk
Internet: www.mushroom.co.uk

For a FREE consultation on how best to market your products/services to a professional audience ring LUKE on 01322 611289

Service Link
THERE IS INTERESTING NEWS

PC CONTROLLED MEASURING INSTRUMENT
COMPLETE PACKAGE STARTING AT £ 435

The Handyscope 3 is a powerful and versatile two channel measuring instrument with an integrated function generator:

° USB 2.0 connection (USB 1.1 compatible)
° sample speed up to 100 MHz per channel
° 8 to 16 bit resolution (6 μV resolution)
° 50 MHz bandwidth
° input sensitivity from 200 mVolt up to 80 Volt
° large memory up to 131060 samples per channel
° four integrated measuring devices
° spectrum analyser with a dynamic range of 95 dB
° fast transient recorder up to 10 kHz
° several trigger features
° auto start/stop triggering
° auto disk function up to 1000 files
° auto setup for amplitude axis and time base
° auto trigger level and hysteresis setting
° cursor measurements with 21 read-outs
° very extensive function generator (AWG) 0-2 MHz, 0-12 Volt

for more information, demo software, source code and DLL's visit our Internet page: http://www.tiepie.nl
Special Sale of Quality Second-User Test Equipment

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Options</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amitsu</td>
<td>MP1552A/B</td>
<td>various options ATM/PDH/SDH Analyster</td>
<td>From £1400</td>
</tr>
<tr>
<td>Amitsu</td>
<td>MP1560A</td>
<td>opt 01/02/03 STM Analyster</td>
<td>£2700</td>
</tr>
<tr>
<td>Amitsu</td>
<td>MP1656A</td>
<td>opt 02 Portable STM-16 Analyster 1310/1550mm</td>
<td>£4000</td>
</tr>
<tr>
<td>Amitsu</td>
<td>MP1570A-</td>
<td>SDH/PDH/ATM Tester various</td>
<td>From £2700</td>
</tr>
<tr>
<td>Amitsu</td>
<td>M9001A</td>
<td>Optical Power Meter (Various sensors available)</td>
<td>£650</td>
</tr>
<tr>
<td>Amitsu</td>
<td>MN939A/MN939C/MN9605A/MN9610A</td>
<td>Optic. Attens.</td>
<td>From £750</td>
</tr>
<tr>
<td>Amitsu</td>
<td>ME520A</td>
<td>Digital Transmission Test Set</td>
<td>£500</td>
</tr>
<tr>
<td>Amitsu</td>
<td>ME520B</td>
<td>Digital Transmission Test Set</td>
<td>£2000</td>
</tr>
<tr>
<td>Amitsu</td>
<td>MP1520B</td>
<td>Digital Transmission Analyster</td>
<td>£1500</td>
</tr>
<tr>
<td>Amitsu</td>
<td>ME3520A</td>
<td>SDH/SONET Analyster (Tx and Rx)</td>
<td>£6000</td>
</tr>
<tr>
<td>Amitsu</td>
<td>ME3620A</td>
<td>SDH/SONET Analyster (Tx and Rx)</td>
<td>£7500</td>
</tr>
<tr>
<td>Amitsu</td>
<td>MD6430A</td>
<td>Network Data Analyster</td>
<td>£9995</td>
</tr>
<tr>
<td>Amitsu</td>
<td>Emiscan</td>
<td>EMCT Test Solution (Consists: MS2601B/ANT1/4401/MA8611)</td>
<td>£3500</td>
</tr>
<tr>
<td>Agilent</td>
<td>J2300E</td>
<td>Advisor WAN Protocol Analyster</td>
<td>£5250</td>
</tr>
<tr>
<td>Agilent</td>
<td>8753D (Opt 006)</td>
<td>Network Analyster – Colour – 6GHz</td>
<td>£12000</td>
</tr>
<tr>
<td>Agilent</td>
<td>54810A</td>
<td>Infinium 500MHz – 2 channel</td>
<td>£3000</td>
</tr>
<tr>
<td>Agilent</td>
<td>54610B</td>
<td>500MHz – 2 channel</td>
<td>£1250</td>
</tr>
<tr>
<td>Agilent</td>
<td>3325B</td>
<td>Synthesised Function Gen. (21 MHz)</td>
<td>£2000</td>
</tr>
<tr>
<td>Agilent</td>
<td>3326A (opt 001)</td>
<td>Synth. Function Gen. (13MHz)</td>
<td>£1500</td>
</tr>
<tr>
<td>Agilent</td>
<td>35656A</td>
<td>Dual Channel Dynamic Signal Analyster</td>
<td>£4000</td>
</tr>
<tr>
<td>Agilent</td>
<td>71500A</td>
<td>– 40GHz Microwave Transition Analyster (Inc 70004A/70820A)</td>
<td>£8000</td>
</tr>
<tr>
<td>Agilent</td>
<td>37717C</td>
<td>Various options available – phone for details</td>
<td>from £1000</td>
</tr>
<tr>
<td>Agilent</td>
<td>37718B</td>
<td>Comms. Perf. opts 1, 12, 106, 601, 602...</td>
<td>£9750</td>
</tr>
<tr>
<td>Agilent</td>
<td>8153A</td>
<td>Lightwave Multimeter (less I/P Module) Modules available separately</td>
<td>£650</td>
</tr>
<tr>
<td>Agilent</td>
<td>8163A</td>
<td>Lightweight Multimeter</td>
<td>£500</td>
</tr>
<tr>
<td>Agilent</td>
<td>8156A</td>
<td>Dig. Optical Attenuator – various options</td>
<td>from £750</td>
</tr>
<tr>
<td>Agilent</td>
<td>8164A</td>
<td>Lightwave Measurement Mainframe</td>
<td>£2250</td>
</tr>
<tr>
<td>Agilent</td>
<td>86120C</td>
<td>Optical Wavelength Meter</td>
<td>from £1500</td>
</tr>
<tr>
<td>Agilent</td>
<td>83480A</td>
<td>Sampling Oscilloscope Mainframe (plus ins avail)</td>
<td>£2950</td>
</tr>
<tr>
<td>Burster</td>
<td>1424</td>
<td>IEEE High Precision Decade Resistor</td>
<td>£1250</td>
</tr>
<tr>
<td>IFR</td>
<td>2031</td>
<td>2.7 GHz Signal Generator (opt 05)</td>
<td>£3500</td>
</tr>
<tr>
<td>IFR</td>
<td>2850</td>
<td>Digital Transmission Analyster</td>
<td>£900</td>
</tr>
<tr>
<td>IFR</td>
<td>2853</td>
<td>Digital Transmission Analyster (opts 14, 15, 25)</td>
<td>£1475</td>
</tr>
<tr>
<td>Tektronix</td>
<td>CSA 8000</td>
<td>Comms. Sig. An. (ring for plug-ins available)</td>
<td>from £11000</td>
</tr>
<tr>
<td>Tektronix</td>
<td>CSA 803C</td>
<td>Communications Signal Analyster Mainframe</td>
<td>£3500</td>
</tr>
<tr>
<td>Tektronix</td>
<td>MTS 100</td>
<td>MPEG Test System</td>
<td>£3000</td>
</tr>
</tbody>
</table>

Lots more equipment available.
Please call for availability and prices.

Tel: 024 7665 0702
Fax: 024 7665 0773
Email: sales@telnet.uk.com

Carriage and VAT added to all goods. See Inside Front Cover for address.