Electronics World's renowned news section starts on page 4

ELECTRONICS

 WORLD

 WORLD
 JULY 2004 £3.25

Micromouse wall follower PART II

Class-A imagineering: PART II
Boolean castles in the air

The dummies guide to CE marking

Circuit Ideas Special

- Sub-woofer unit
- Decibel meter
- Infrared locator for orientation of the blind
- Serial port controls 16 independent output lines
- Oscillator frequency tuned with power MOSFET
- and much more ...

Telmet

ENI 550L Amplifier (1.5 to 400 MHz) 50 Watts
Hewlett Packard 3314 A Function Generator 20 M
 $\begin{array}{ll}\text { Hewlett Packard 3324A synth. function/sweep gen. (21MHz) } \\ \text { Hewlett Packard } & \begin{array}{l}\text { 3325B Synthesised Function Generator }\end{array} \\ £\end{array}$ Hewlett Packard 33258 Synthesised Function Genera
Hewett Packard 322 A Two-Channel yynthesiser
 Hewlett Packard 41933 A Vector Impedance Meter ($4-110 \mathrm{MHz}$) Hewlett Packard 4278A $1 \mathrm{kHz} /$ /n MHz Capacitance Meter
H. 53310 A Mod. H.P. 53310A Mod. Domain Analyser (opt 1/31)
Hewlett Packard 8349B (2-20 GHz) Microwave Amplifier Hewlett Packard 8508A (with 85081B plug-in) Vector Voltmeter
Hewlet Packer
Hewlett Packard 8904A Multifunction Synthesiser (opt $2+4$)
Hewlett Packard 89440A Vector Signal Analyser $(1.8 \mathrm{GHz})$
 Agilent (HP) E4432B (opt 1E5/K03/H03) or (opt 1EM/UK6/U
$(250 \mathrm{kHz}-3 \mathrm{GHz})$ $(250 \mathrm{HHz}-3 \mathrm{GHz})$
Marconi $6310-\mathrm{Pr}$
Marconi 6311 Prog'ble sig. gen. (10 MHz to 20 GHz)
Marconi 6313 Prow Marconi 6313 Prog'ble sig. gen. (10 MHz to 26.5 GHz)
R\&S SMG ($0.1-1 \mathrm{GHz}$) Sig. Generator (opts $\mathrm{Bl}+2)$ Rhode \& Schwarz UPP3A Audio Analyser
Rhode \& Shwarz UPA3 Audio Analyser hhode \& Schwarz UPA3 Audio Analyser OSCILLOSCOPES

 $2221-60 \mathrm{MHz}$ - Dar channel D.S
\qquad

SPECTRUM ANALYSERS

Tektonix 492P (opoti, 2, 3) $50 \mathrm{KHz}-21 \mathrm{GHz}$
All equipment is used - with 30 days guarantee and 90 days in Alde cases.
Add carriage and VAT to all goods.
1 Stoney Court, Hotchkiss Way, Binley Industrial Estate Coventry CV3 2RL ENGLAND

Quality second-user test \& measurement equipment

Radio Communications Test Sets
Agient (HP) 8924C (opt 601) CDMA Mobile Station T/Set

Marconi 2955 $/ 2955 \mathrm{~A}$
Marconi 2955B/60B
Marconi 2955B/60
Motorola 2 Re600B
Racal 6103 (opts
Rohde \& Schwarz SMFP2
Rohd \& Schwarz CMP 57 (opts B1, 34, 6, 19, 42, 43, 61)
Rohde \& Schwarz CMT 90 (2GSH)
Rohde \& Schwarz CMT 90 (2GHz) DE
Rohde \& Schwarz CMTA 94 (GSM)
Schlumberger Stabilock 4015
Schlumberger Stabilock 403
Schlumberger Stabilock 4031
Schlumberger Stabilock 4040
Schlumberger Stabiock 4040
Wavetek 4003 (GSMM 900) Mobile phone tester
Wavetek 4032 Stail
Wavetek 4032 Stabilock Comms Analyser
Wavetek 4105 PCS 1900 GSM Tester

3 COMMENT
Industry optimistic
4 NEWS
Topology boost AC to DC efficiency

- High energy physics saves rare vinyl
- Frequency divider circuit exceeds 150 GHz

Battery legislation gets European approval

- Government backing for processor firm

Lithium cell with no heavy metals
X-rays make taller chips
Virtual characters remember

10 MICROMOUSE WALL FOLLOWER PART II
Martin Barratt concludes his small robot project in time for the competition this month. This
month we examine some of the fundamental month we examine some of the fundamental
aspects of the software and provide details on construction, testing and sensor calibration.

16 CLASS A IMAGINEERING PART II
The quest for the truth continues with
Graham Maynard shifting from a generalised

24 THE DUMMIES GUIDE TO CE MARKING
The idea and concept that a CE mark is in some way an indicator of product quality and So what is the mark, and where did it emanate?
James Eade investigates James Eade investigates

27 BOOLEAN CASTLES IN THE AIR
Inspired by Lee Sallows' article in EW May,
Ivor Catt looks at some computing history with vor Catt looks at some computing history with respect to the missing element

34 NEW PRODUCTS
The month's top new products
37 CIRCUIT IDEAS
A collection of non-inverting logic translators

- A collection of non-inverting logic transla
- Simple infrared remote control extender
- Complementary Cascode

Serial port controls 16 ind

- Sub-woofer unit

Phase failure pro
Decibel meter
Novel PA circuit

- Novel PA circuit
- Oscillator frequency tuned with power MOSFET Vehicular traffic control based on traffic densit Infrared locator for orientation of the blind
RF constant level device
- Measuring magnetic fields

52 LETTERS

- Catt flap I \& II
- Watts wrong?
- No smoke without fire

Re: capacitance meter measuring drift

- Electron mysteries
- Ghost in the loft
- John Ellis
- "Puzzle" in April issue - Circuit ideas
- In praise of Alan Bate
- Precision rectifier circuit
- Build 'em or p
- Build 'em or print 'em
- CD-R failure
- Old hat

60 WEB DIRECTIONS
Useful web addresses for electronics engineers

EDITOR

Phil Reed
p.reed@highburybiz.com

CONSULTANT

http://homepage.ntlworld.com /d.may83
CONTRIBUTING EDITOR Martin Eccles
PRODUCTION EDITOR/DESIGNER Jane Massey
J.Massey@highburybiz.com

EDITORIAL E-MAILS
EWeditor@highburybiz.com

DITORIAL ADMINISTRATIO

Caroline Fisher
1322611274 mbiz.com
GROUP SALES
uke Baldock
01322611292
.baldock@highburybiz.com

PRODUCTION EXECUTIVE

Dean Turner
d.turner@highburybiz.com

01322611206
CLASSIFIED FAX
01322616376
MANAGING EDITOR
Bill Evett
PUBLISHING DIRECTOR
Tony Greville
ISSN 0959-8332
SUBSCRIPTION QUERİES
Tel (0) 1353654431
Fax (0) 1353654400
Disclaimer: We work hard to ensure that the
information presented in Electronics Word is accuratite Howeeverer, Electronics World's pccurate. However, Electronics World's
publisene- Highbur Business will not take
essonsibililiy for any innury or loss of earning responsibility for rany iniury or oloss of earaning
that may result form applying information
 bility to familiarise yourself with she laws
reltaning to dealing with oour customers and
supplies and with safely practice relating relating go dealing with y yur customers and
suppoiess and wivh sofery practice relating
working with electrical/electronic circuitryworking, with electricicl/elecectronic circuitryparricularly as regards ele

Electronics World is published montly by	Newstrade: Distribured by COM	USA mailing agents: Mercury Aifreight	
Highbury Business, Media House,	Tavistock Road, West Drayton, Middles	International Ltd Inc, 10(b) Englehard	
Kent, RR8 8HU	Subscriptions: Highbury Futiliment	at Rahway N Postmoster. Send oddress	
Highbury Business is a trading name of	Services, Link House, 8 Bartholomew's Wolk,	changes to above.	
		Printed by Polestor Coolc	
	change of address.	Origination Impress Repro by Design,	HIGHBURY
4189911. Regisitered Office: The Publishing	Subscription rates	${ }^{\text {Peleriborovgh, }}$ A FE2 2 YN	BUSINESS
House, 1.3 Highbury Station Road, Islington,	1 year U $£ 38.950 / 5 ¢ 64.50$		

Industry optimistic

This month is the first time since I took over this venerable tome that I've actually been reading truly optimistic reports from the electronics industry. It would appear that finally the "digital revolution' is here and has awakened the imagination of consumers, resulting in unprecedented demand for PCs, fast comms products and the software to go with it. This demand coupled with lower manufacturing costs in the Far East, in particular China, certainly looks as though things are on the mend. Even I've noticed a reduction in the price points of technically desirable items like DVD burners, LCD screens and anything WiFi, meaning that my credit card has been put to good use lately Entertainment certainly seems to be the driver of this upturn, as my colleagues in the telly programme industry can also testify. It appears that they too are coming out of recession, fuelled not only by more telly channels (courtesy of DVB) and G3 phone services, but also more excitingly High Definition TV, which despite no proper standard ratification in Europe, has started transmitting via satellite. I wonder how long it will be before HD DVDs hit the shops. That is something I've been waiting for. And my credit card is ready

But for the moment, it's digita TV that's making the high street buzz. Finally after some pretty bad marketing by 'On Digital' and poor retailer advice from the DTG, the DVB-T standard is set to take off. Nothing to do with the fact that the UK government wants to switc off analogue TV and sell the bandwidth - no, of course not. But I still find it a shame that the data rates used on DVB are so low that fast moving things and dissolves break up so badly. And why was the extension to the DVB standard that allowed set top boxes to communicate back to the transmitter (meaning two way high speed data handling from anywhere into the internet) never implemented?
In this month's issue, we can finally find out what CE marks mean and how it affects our industry, courtesy of James Eade. As I said last month, I'm trying to reduce the 'lead time' for Circuit Idea contributors - so there's a bumper crop this month. The Micromouse Robot project concludes and Mr. Maynard continues on his quest to answer some niggling audio questions. And last but not least, the nothing if not controversial Mr. Catt has a look at some computing basics.

Phil Reed

UPDATE

Topology boost AC to DC efficiency

Lambda has developed an AC to
DC power supply topology at its DC power supply topology at its
Devon labs which the firm Devon labs, which the firm
claims can boost efficiency by five per cent - a significant gain in a market where efficiency is already over 80 per cent. "Limited levels of efficiency have always meant that AC/DC power supplies come with trade
offs," said Martin Southam, Lambda's European marketing director. With the new design "we have an $\mathrm{AC} / \mathrm{DC}$ power supply technology that cuts switching losses by 50 per cent to deliver, efficiency of up to 90 per cent." Multi-Resonant-Topology (MRT). It is essentially the use
of synchronous
rectifiers in a
rectifiers
resonant
resonant
topology with
topology with
some
refinements to
allow outputs to run unloaded and to keep operation
within a 30 per within a ${ }^{\text {cent frequency }}$ band.
"MRT allows the use of smaller value inductors
and wound nd wound
small output choke reduces losses, as does a ferrite boost,
choke wound with Litz wire,"

said Lambda.
Improvements
in multilayer
in multilayer
ceapacitors and
unctional
organic
polymer
capacitors
allows the
allows the
implementation
of much
simpler
inductorless
filter circuits,
again lowering
again lowering
losses,
increasing efficie
educing size."
ircuit in higher-power variants uses a silicon carbide Schottky diode to gain another four per
cent of efficiency. A SiC cent of efficiency. A SiC ideal diode as you can get at the moment", said topology inventor Andrew Skinner. Including an 8-bit Atmel AVR microcontroller to handle housekeeping cut component
count in half compared with earlier designs, said the firm. The first two NV-Power units, as they are called, are the modular NV-350 and the multioutput NV-175, with power
densities of $6.6 \mathrm{~W} / \mathrm{in}^{3}$ for the 350 W unit and $9.36 \mathrm{~W} / \mathrm{in}^{3}$ for the 175W design.

How it works

The converter is essentially a resonant half-bridge converter - see the simplified diagram.
Output power is controlled by varying the operating frequency; with maximum power at lower frequency, just above resonance, and minimum power at high frequency.
high frequency with all three capacitors acting as $A C$ a chosen state the voltage across the transformer primary is set by the ratio of primary inductance to inductance L.
By selecting the inductance ratio and the transformer turns ratio to produce just below the no-load output voltage at a chosen frequency, the converter need never operate above that frequency stay it itional reso
cally, infinite frequency to produce no power. In practice this give them a very wide frequency range making them difficult to filter and prone to switching losses.
Power demands are greatest operating at high power, during a momentary mains power interruption.
In a simple resonant converter under these conditions, operating
frequency can drop below resonant frequency rendering control loop unstable.
The normal way around this, said Lambda's chief engineer

Andrew Skinner, is to raise the operating frequency of the converter at all loads, adding to switching losses.
By selecting the ratio of the three capacitors carefully in the Lambda design, Skinner forces the voltage at their junction to swing outside the
supply rails just before resonance is supply rails just before resonance is reached. This brings the
capacitor shorting diodes into conduction bridge capacitors and reducing resonant frequency - keeping it always below the operating frequency so instability cannot occur as the converter operates through a momentary power loss. In the real Lambda design, the secondary rectifier diodes are mosfets whose gates are driven by taps on the transformer. "Self-
drive is a very nice thing to achieve in a resonant converter. It is dirive is a very nice thing to
difficult to do," said Skinner.

High energy physics saves rare vinyl

	hig	recognition and noise
ordings on wax cylinders and	particles in conditions of high noise	suppression, could also anal
	at Fermilab and CERN has proven	grooved shapes in mecha
developed to track subatomic	useful: "We developed a way to	cordings," says Haber.
The Lawrence Berkeley	im	tology s
The Lawrence Berkeley	that is similar to measuring track	pped grooves in the recordin
ational Laboratory projec	in a particle detector," says Carl	shellac phonograph discs.
to preserve and make available	Haber, a senior scientist at LBNL.	These were then processed to
millions of old recordings in the	We thought these methods,	remove hiss and scratches and
rary of Congress.	which demand pattern	modelled to see how the stylus

would move through the groove. This data was turned into a digital audio file.
LBid: "This enabled us to develop said-contactabled us to develop a delicate samples without the need for much operator intervention. It also has the potential to digitally

Sunlight readable displays

Frequency divider circuit exceeds 150 GHz

A team led by BAE Systems has technology will enable the built static frequency divider $\begin{array}{ll}\text { buirt static frequency divider } \\ \text { circuits with a clock speed of } \\ 152 \mathrm{GHz} \text { an industry record for } & \begin{array}{l}\text { such as low cost in-combat } \\ \text { programmable electronic }\end{array}\end{array}$ 152 GHz , an industry record for announced devices.
Along with Vitesse Along with Vitesse
Semiconductor and the Semiconductor and the
University of Illinois at UrbanaChampaign, the BAE team buil circuits using indium phosphide (InP) hetero junction bipolar transistors (HBTs), BAE said it will use the technology to "develop the next-
generation of miniature digital generation of miniature digital
receivers and exciters that are needed for future strike, surveillance, and electronic attack missions", according to Frank Stroili, BAE Systems manager. "For example, th
programmable electronic warf are jammers, expendable surveillance sensors, and frequency agile software radios
for secure communications." BAE developed the devices as part of a $\$ 5.9 \mathrm{~m}$ US defence research contract. In 2002 IBM announced it had built silicon germanium
transistors with transition transistors with transition
frequencies of 350 GHz , which it said would result in circuits at 150 GHz "within two years". University of Illinois esearchers have created InP HBTs with transition 380 GHz .

Firms promise ten-fold rise in capacitor power A Japanese consortium of firms has set itself the task of developing and manufacturing supercapacitors with energy densities of $60 \mathrm{~Wh} / \mathrm{kg}$, ten times
that of today's that of today's devices. Okamura Laboratory and Powe Systems - said their electric double layer
capacitors
would would
reach
40Wh/kg $40 \mathrm{~Wh} / \mathrm{kg}$
this year and
 this year and
$60 \mathrm{~Wh} / \mathrm{kg}$ by 2005 The latter figure is better than most battery technologies can practically achieve, except perhaps for lithium-ion cell.
Supercapacitors have the added benefits of almost limitless recycling and they can be charged and discharged in seconds as no chemical to electrical conversion is needed. They should also be safer and
more environmentally friendly than rechargeable batteries. Meanwhile Maxwell Technologies from San Diego has introduced a D cell-sized supercapacitor rated at 350 Farads and 2.5 V (see picture). The energy density is
claimed to be $21 \mathrm{Joules} / \mathrm{cm}^{3}$, which corresponds to around $6 \mathrm{~Wh} / \mathrm{kg}$.
By standardising on a battery sized cell, the firm said it reduces costs.

DVD is paper

Sony and paper company oppan Printing have developed based on paper. Reading and writing of the 25 Gbyte disc is by blue laser sing the Blu-ray Disc standard - one of several proposed to
replace DVD - which allows replace DVD - which allows
more than two hours of highdefinition program recording "Since the Blu-ray Disc does not require laser light to trave hrough the substrate, we were able to develop this paper disc," general manager Masanobu Yamamoto. "By increasing the eapacity of the disc we can decrease the amount of raw material used per unit o information."
is actually 51 "Using print aper allows a high level of artistic label printing on the optical disc. Since a paper disc can be cut by scissors easily,
is simple to preserve data security when disposing of th disc," said Toppan head of R\&D Hideaki Kawai.
The worldwide production of 20 optical discs is approximately Toppan. The combination of paper material and printing technology is also expected reduce the cost per disc

Credit card goes

 wirelessVisa has launched a smartcard for debit and credit payments that contains contactless chip.
testing the card which allows the purchase of goods without signing any slips or entering any PIN numbers. In fact the car does not even need to be purse.
In order to reduce the chance of fraud, the contact less operation of the card is limited to low value trans pad is built into the cards for regular, higher value transactions.

Battery legislation gets European approval

The European Commission's proposed update to the Battery
Directive has received tentative approval from the European Parliament, a move which would place the burden of recycling onto manufacturers and loca authorities.
However, the Parliament made
87 amendments to the bill of which the EC disagrees with, it said.
The Parliament said it would like to extend the ban on mercury in batteries to include ead and cadmium. The unnecessary, as the very nature
of a recycling regime would ensure these elements did not
disappear into the environment "I maintain that our original proposal can achieve the environmental objectives we share with Parliament," said Environment Commissioner Margot Wallström. The changes to EU Direc tackling the environmental impact of 1.15 million tonnes of batteries sold in the EU each year. These should not be dumped into landfill sites or
tossed into incinerators, it said. "Due to the metals they
contain, batteries pose environmental concerns when they are incinerated or
landfilled," said the EC Recycling the metals used should also help to save resources, it said. The European Commission has estimated that the annual producers and local authorities, would be under 02 per ousehold per year. "Consumers will have to contribute to environmental protection by bringing back thei points," said the EC.

The UK's first commercial manufacturing facility for carbon nanotubes has gone online in Consett, County Durham. Commissioned by chemicals manufacturer Thomas Swan, the plant can produce single walled carbon nanotubes. The firm worked with Cambridge University to adapt and scale up a chemical vapour deposition process. It envisages uses such as oatings, electrostatic spray painting and superconductors.

Roll-up, roll-up for flexible displays

 Researchers at Paisley \qquad $£ 1.4 \mathrm{~m}$ research grant to develop flexible backplanes for polymer transistors that could ead to robust plastic displays. Paisley's Thin Film Centre will work with DuPont Teijin project, the first aim of which is o create an A4-sized flexible display."When scaled-up this will ave enormous applications in itelligent signage for upermarkets, airports, rail and elsewhere," said Professor Frank

Placido, director of the centre. Roll up colour displays are an However, Plastic Logic will need to improve its polymer transistors to create the required active matrix backplane. "If organic transistors can be made fast enough to drive a
display then they have a big display then they have a big
advantage over silicon in that they can be ink-jet printed," explained Placido. "Ink-jet printing onto a flexible substrate is the basis for still at the research stage so nothing is guaranteed."

The fridge cometh
Taking the Internet fridge concept just a little further researchers at the University of Florida have made a cooler which comes to you where Described as "a cross between R2D2 and a vending machine", Koolio, as it is called, is the brainchild o Brian Pietrodangelo and Kevin
Phillipon Phillipson
electric cool box, mounted on motorised wheels, the machine is an autonomous robot with a considerable amount of onboard intelligence. Processing power comes from an embed-
ded PC based around PC/104standard industrial card stack and an Atmel MegaAVR microcontroller.
Koolio resides at a docking station where mains power is
used to keep its interior cool used to keep its interior cool. docking station and navigates using sonar for long distance coverage, infra-red for close obstacle avoidance and shaft encoders for dead reckoning. door numbers to be read. While travelling, one battery supplies the motors and fridge while another runs the electronics.
IIt is co "It is completely autonomous accommodate even the rickiest environments," said Pietrodangelo. wuw.mil.ufl.edu/~brian/Koolio
Koolio.htm

Lithium cell with no heavy metals

NEC claims to have developed ransition-metal-free lithium-ion battery.
Called 'organic radical battery" this is a new type of lithium-ion battery which is attractive as an environmentally friendly, high power, high energy dens
rechargeable battery."
In the battery, polyradicals are used as an active material in cathodes instead of a transitionmetal oxide - usually cobalt or manganese oxides.

Gyro firm gets cash boost

European Technology For Business (ETB) has secured
funding worth $£ 250,000$ from an overseas investor to develop its miniature accelerometer.
The Hertfordshire-based firm has developed a three-axis accelerometer by micromachining into
ETB uses a mass suspended from a beam, with piezo-electric sensors measuring the strain when the beam is deflected due to an acceleration. amplifiers are used to boost the signal from the device.
Machining all three accelerometer proofmasses in the same wafer gives improved alignment, said the firm, a downsid often use three
independent mas ETB is aiming the device at the lower cost automotive markets and measuring potentially damaging vibration from strain injuries.
Working prototypes of the device can measure accelerations up to 50 g with a sensitivity of $5 \mathrm{mV} / \mathrm{g}$. The expected resolution is 0.001 g . $12 \times 7 \times 5 \mathrm{~mm}$.

The polyradical is a nitroxyl polyradical: poly $2,2,6,6-$
tetramethyl tetramethylpiperidinoxyl-4
methacrylate (PTMA) Both lithium metal and a graphite intercalation compound have been tried as anode active materials with carbonate into
which lithium salt is dissolved which lithium salt is dissolved as
the electrolyte solution "In the charge-discharge curves, there was an obvious voltage plateau. Average voltage
was 3.53 V for lithium and 3.44 V
or graphite, slightly lower than hose of normal lithium-ion
batteries," said researchers. "The nitial specific capacity of the PTMA was $60-100 \mathrm{mAh} / \mathrm{g}$." Cycle life of the PTMA electrode is claimed to be 92 per ent after 1,000 cycles - so anod material limits the cycle life
A complete prototype cell achieved a discharge of 3.5 V and over 1,000 cycles at a capacity of $0 \mathrm{Ah} / \mathrm{kg}$, said NEC

Correlation adds accuracy to antenna test

Fizzle Technologies from Formby has developed a the accuracy of antenna pattern measurements.
The technique, suited to near and far-field measurements, could extend the usefulness of
antenna tests in anechoic chambers or open range sites Key to the system is the ability to remove multipath fading from antenna measurements, developed with the Signal Theory and Communications
Department of the Technical University of Catalonia in Barcelona.
An extra signal is transmitted

Laser gets tuned up

A German firm resulting from a European-funded project is building vertical cavity surface emitting lasers (VCSELs) that are tunable over a 30 nm range.
This is probably the widest tuning range yet announced for an electrically pumped VCSEL. Such a device could reduce costs in telecoms systems compared with side emitting lasers. Moreover Two-Chip
Photonics has achieved Photonics has achieved this
range at $1,550 \mathrm{~nm}$ - an ideal frequency for long range optical communications The VCSEL uses two ICs, a
standard VCSEL made with standard VCSEL made with
InGa As quantum wells and a InGaAs quantum wells and a top mirror micromact ned wit When the top mirror's legs are heated with a current, the whole device expands, leading to a change in the resona length of the lase be $3 \mathrm{dBm}(0.5 \mathrm{~mW})$, with sideband suppression of more than 40 dB . The VCSEL is packaged in a TO-S can. The collaborators on the project are the Walter-
Schottky-Institute of TU München, the High-Frequency Institute at TU Darmstadt, and Vertilas.

Virtual characters remember

guide their movements, said Trinity computer science researcher Christopher Peters. "The memory system provides a means of storage for informatio previously perceived." Characters get synthetic vision modules that provided the sensory input to a long-term, hort-term, memory model. The set-up allowed a character to
determine whether it had seen object before. "For example, if something in our environment provokes our interests, we may orient our senses toward that stimulus in order to enhance it processing," he said. If the
stimulus proves dangerous, may behave so as to avoid it or leave the area."

Researchers from Trinity College in Ireland have added model of visual attention in or

 to generate more realisticby the main antenna to the antenna under test. This is then correle
fading
"Correlation processing effectively finds the component that arrived via the direct path the wanted component - a icluding the multipath th auses the distortion. The correlation technique works in eal time and does not require measurement data to be processed off-line," said the firm This offers significant timemethods such as lengthy computational algorithms.
animation for virtual reality characters.
The idea is The idea is to endow characters memory and attention that can

FTSE 100 companies failing to report to shareholders on major potential risk

FTSE 100 companies are failing to report on what could be a
major business risk, according to a survey conducted by the Component Obsolescence Group (COG). A review of the FTSE 100 risks associated with component obsolescence are never mentioned. However, according to COG, the issue could incur huge financial and reputational
costs for many companies whos costs for many companies whose
operations rely on long lifespan equipment, for example in the utilities, medical, defence, aerospace and rail and automotive transport sectors. This is because once a
component within a piece o component within a piece of it can be very difficult to get replacement parts quickly or at all. In extreme cases, the equipment may have to be put completely out of service or parts
of it may need to be redesigned of it may need to be redesigned.
Under the Combined Code of Corporate Governance, listed companies should review all internal controls annually, including financial, operational

Government backing for processor firm A UK firm has been awarded a
$£ 427,800$ grant by the Departmen $£ 427,800$ grant by the Department
of Trade \& Industry to develop a of Trade \& Industry to develop a 64-bit parallel processing chip.
ClearSpeed from Bristol has Clearspeed from Bristol has experts worldwide with its 32-bit device, which is capable of processing 25.6 billion floating point operations every second. "This is great news for Clearspen and the UK region and the UK
nanotechnology industry as a whole. The 64 -bit processor is a tremendous project and is typical of the hi-tech innovation for which the DTI is delighted to provide grant support, said Gove
Minister Nigel Griffiths. The Government's Exceptional Research and Development Grant will provide the seed for the 64 -bit work. The device wil use a 90 nm manufacturing process to enable more
transistors to be integrated although the increased size of
management systems, and rep done so.
In addition, draft regulations currently being proposed by Government would mean that
from next year, many of the from next year, many of the
UK's quoted companies will have to carry out an operating and financial review of factors which may affect their performance, including the business risks they face, along with their annual reports.
COG's research indicates where FTSE 100 companies do mention obsolescence in their annual reports, they only do so in relation to stock valuations. Comments Michael Trenchare Chief Executive of COG, "The
FTSE 100 is a benchmark for the est of UK plc. We are concerned that so many leading companies who should be addressing this risk, appear to be paying it so ittle attention, although clearly, not a significant issue for all "The ability infrastructure to provide key services adequately, such as tilities, transport or medical care, is already under som
egisters and arithmetic units will ounter this somewhat. rocessors on the chip is yet to b ecided, and could be more or less than the 32 -bit device's 64 A major aim will be to keep th ow power attributes of the existing CS301, which draws jus W during operation. Uses for such a chip are
varied, but ClearSpeed said expects supercomputer-type tasks to run on its devices. These include genome research, nanotechnology and atomic physics.
"This product has the potential make the UK a leading international centre of excellence in this field and will enable performance computing, such as biotechnology and the aircraft ndustry, to take science and hole new level," said Griffiths.
scrutiny. Component
obsolescence could increasingly become a factor in the equatio as the pace of technological change speeds up." COG says that the problem is likely to get worse because,
past, components within equipment designed to last f several decades have had high reliability and long life expectancy. Now, however, this equipment is becoming ever more heavily reliant on the same components used in fast-moving
consumer goods, which typically have a far shorter lifespan and become obsolete within a few years. According to COG, only 1 per cent of electronic componen demand now comes from the equipment, as opposed to 90 per cent in the 1970s.
Equipment breakdowns Says Trenchard, "Equipment breakdowns could have a serious performance and shareholder value. This is true not just in cases where the equipment is at the core of a company's
manufacturing or engineering but also where it is used to support core activities, such as in sistribution, or where a company offers after-sales care." "Companies may feel that component obsolescence is a risk hey can afford to manage as and
when it occurs, but it may not be as easy as just having to pay several times the original cost of he part once it has become bsolete, although this in itself ould involve a major outlay. With some pieces of equipment
costing millions of pounds, they have to look at the bigger picture and take a pro-active approach to maintaining their systems for heir whole life span. According to COG,
rganisations should consider issues such as equipment performance, availability of parts and maintainability as well as ost in their obsolescence management strategies. It also ays that they could benefit from upply chain and using specifically-designed obsolescence management tools to help them identify problems early and implement solution

Nanowires grow on demand

Hewlett-Packard Lab researchers have grown nanowires to order between electrodes using chemical vapour deposition and a metal catalyst. The wires grow between pair of vertical silicon electrodes, formed on the insides of silicon trenches.
Because of the high surface area to volume ratio, the wires could form
chemical sensors if coated with suitable receptor molecules, said the lab, although practical devices are five years away.

Radio Modules/Modems www.radiotelemetry.co.uk

SPECIAL OFFER Call our number below and quote "ELECTRONICS WORLD" magazine

FROM HAMEG...

HAMEG UK LIMITED 78 SINGER WAY. KEMPSTON. BEDS. MK42 7PU Tel: 01234856345 Fax: 01234856100
e-mail hameguk@bEDS. WK42 7PU

nateromouse wall follower

Part Ill - In last month's article Martin Barratt looked at the design philosophy behind the Wall Follower and described the hardware. This month he examines some of the fundamental aspects of the software and provides details on construction, testing and sensor calibration

1
n order to make comprehensio and modification as easy as possible the software has been
written for a dialect of PIC BASIC. written for a dialect of PIC BASIC.
The statement syntax conforms to that The statement sy
required by the
required by the
microEngineeringLabs PIC BASIC Pro compiler at version 2.43 or highe but, with relatively little effort, this may be edited to suit that of another compiler.
The source listing is heavily
commented and largely self commented and largely self-
explanatory, which is one of explanatory, which is one of the
benefits of using a high level language, but there are a few aspects of the code that may benefit from further explanation. In the following descriptions, which are best read in
conjunction with the source listing conjunction with the source listing
register names, where given, are placed between inverted commas in: 'LeftMotorSpeed'.
Default Operating Values The source code includes a series of listed value to be stored at the specified location in the non-vo EEPROM area of the PIC16F876 at programming time. The stored value are divided into two sections and their purpose is to provide an initial and sensor calibration values. Performing the sensor calibration procedure described later overwrites the existing sensor calibration values and, by editing the source code, the programmer may alter the locomotion control parameters to
affect the mouse behaviour in the maze. At power-up these values are copied from the EEPROM area to RAM to permit fast and easy access.

Locomotion
The speed of each motor is controlled by a numerical value, ranging from $0-255$, written to the
'LeftMotorSpeed and when in normal forward motion, is determined by the values of the variables ‘LeftFwdSpeed’ and RightFwdSpeed'. While in the maze the mouse will, at times, need to perform turns or a corrective actio o its current heading and a needed to accomplish this. This is achieved by applying a 'speed multiplier' to each motor, raising the speed of one and slowing the other, thus effecting a turn. The multiplier by 100 and so a value of 121 will raise motor speed by a factor of 1.21 while numbers less than 100
correspondingly reduce motor speed. Two pairs of multipliers are provided with one used for 'Heading Correction' and the other for 'Left Turns'. It is the result of calculations made on the sensor readings that
determines which of the multiplier pairs is used - more on this later A further single-value multiplier is provided to control the motor speed when performing a U-turn, or spin, at the end of a blind alley
Navigation
requent sensor readings are required for successful navigation but they only form part of the equation. The mouse must also be able to determine its location between the walls of a
'corridor' and apply any correction corridor and apply any correction
required to maintain an essentially central track. This is important as being equidistant from the sidewalls
gives the greatest margin for error while executing a 'manoeuvre' For a Wall Follower only two manoeuvres are necessary, a left turn
and a right turn. A U-turn, or spin, may be considered as simply an extension of the right turn or, conversely, the right turn can be viewed as a shortened U-turn, as it is in this design. Using this latter method can pr speeds.
As the mouse travels the maze it uses the sensor readings to ascertain he presence or absence of local alis. As a left-hand wall follower the absence of a wall immediately to a left turn in order to re-acquire a left wall and this may need either a 90 degree or a 180 -degree turn. If a left wall is present, a check for a wall immediately in front, thus barring further progress, has to be made and, if found, a spin must be initiated. when the front sensors can no longer see any walls and thus caters for both right turns and U-turns.
When not executing either of its manoeuvres the mouse is considered is probably the most complicated condition. It requires continual assessment of lateral position along with the application of any heading corrections and is achieved by comparing the current sensor readings with two reference values calibration data. The method employed calculates the reference values, which correspond to two imaginary 'Tracking Lines' running parallel to the walls and offset to the left and right of the central path,
according to the 'mix' determined by
nd, once separated, the individual CBs may be finished to size using a file to remove the remains of the perforations.
Component placement is next and it is generally best to start with the low roofile devices, such as resistors and
diodes, and work towards a high profile such as the con This method allows the PCB to be placed upside down on a stable base or soldering. It is important to observe the correct polarity for a few
of the components, most notably the semiconductors and electrolytic capacitors with the 'positive' end (the cathode in the case of diodes) denoted by the square PCB pad. The I.R. devices are surface mounted and, therefore, require no best performance that they are accurately located. The easiest way to achieve this is to first lightly tin one of the rectangular pads at each device ocation and, holding the device centrally on its pads with its legs he solder using the iron. This process may be repeated until satisfactory placement is achieved whereupon the other leg may be soldered. Photo A2 shows a close-up The correctly assembled detectors. teach PCB must be mounted absolutely vertically in order to easily with the corresponding connectors on the other board. This is best achieved by first soldering one pin, checking for correct alignment and adjusting if necessary, prior to
oldering the remaining pins. Note hat both J201 and J202 on the Control Board are mounted from the
anderside.
There are two dual-in-line integrated circuits in the design, positions should be fitted with IC ockets, which will allow easy emoval for replacement should a failure occur.
Note that the PIC16F876 microcontroller should not be fitted to the nitial testing.
The three power devices are each
mounted to the PCB using an M3 nut and bolt. The best way to fit these is o first bend the legs through 90 degrees such that when placed on the
board the mounting hole lines up board the mounting hole lines up
with the hole in the PCB. Prior to soldering, each device should be tightly bolted to the PCB - using an M3x 12 bolt for U101 and M3×6 bolts for Q201 and Q202 - ensuring it fits squarely within the silk-scree
dep.
Depending on the choice of or Microchip ICD or J206 for a low cost programming method. It is not possible to fit both of these plugs. The Motor Block may be supplied its wires and, if so, these must be removed and replaced. Proceed by cutting the original socket from the motor wires, leaving them as long as oossible, and then fit the crimp terminals - see Photo B2. Correct
insertion of the completed wires into the socket housing is necessary to ensure correct motor direction and is shown in Photo C2.

Final Assembly
Before beginning final assembly it is VERY important to visually inspect each PCB for poorly soldered joints and incorrectly placed components proceeding.
Prepare the Motor Block by Prepare the Motor Block by
assembling the hexagonal spacers to each of the four mounting holes, fitting the 14 mm threaded space below the mounting hole and the 10 mm male-to-female spacer above, and tighten using an M3 nut spinner The Power Board may then be fitted to the Motor Block using M3x6 bolts and then tightening them with a screwdriver. Dress the motor wiring and insert the connectors into the PCB mounted plugs, J103 and J104 hoto C2 shows the Power Board/Motor Block sub-assembly.
Note that the wire length is different for each motor and,

therefore, the orientation of the Power Board should be chosen accordingly.
Ensure that the Power switch is set to the OFF position and fit the Control Board by carefully mating the two 10 -way connectors, starting
with J201 at the rear, with those on the Power Board and gently pressing the PCB fully home. The four M3x6 bolts may be first hand inserted and then tightened as described above.
Charger Board Wiring Appropriately coloured crocodile clips should be fitted to lengths of
red and black wire and the leads twisted together prior to fitting to th "12V DC IN" side of the Charger Board. Further lengths of red and crimp terminals and inserted into socket housing prior to the free ends of the leads being twisted together and fitted to the "CHARGE OUT" side. Photo D2 shows an assembled and wired Charger Board.

PC Interface Board Wiring The PC Interface Board is wired using lengths of multi-way cable terminated on the mouse side by a 4
way socket housing and on the PC way socket housing and on the PC
side by a 9 -way ' D ' socket. Table 4 side by a 9 -way
in last month's article - gives connection details. The two cable are dressed so that they sit between the pairs of holes in the PCB and tie wraps are used to secure them and

provide a measure of strain relief Photo E2 shows the assembled and wired PC Interface Board.
Initial Testing
In the checks described in this section the two central pins of the CHRG/DATA connector J203 may be used as a 0 V reference for the negative lead of a DVM set to 20 V
FSD It is also assumed that the FSD. It is also assumed that the micro-controller, when fitted, is preprogrammed with the
Prior to purchase, the batteries will probably have been in storage for a while and will not, therefore, be at
full capacity While this means that any build errors are less likely to be catastrophic, it does mean that some of the voltage readings taken may be lower than expected.
Before powering the mouse for the first time, ensure that you have completed a careful visual inspection
as described above and also that the PIC16F876 micro-controller is NOT fitted.
Probe the anode of D201 and check for a reading of between 7 V and 8 V .
Set the Power switch SW201 to the ON position and check for a voltage Check V on U201 pin20. reading is present on the tabs Q201 and Q202.
Check for the same voltage reading on the
pin 4. pin 4. expected deove tests produced the expected results, then switch off the
mouse and fit the PIC16F876 being careful to observe the correct orientation; i.e. pin1 to the front of the mouse.
Switch th
Switch the mouse on again and
note that the RUN LED should note that the RUN LED should start Repeat tests 2 to 4 above, this time checking for a voltage of $5 \mathrm{~V} \pm 0.1 \mathrm{~V}$. Check the anode of D202 for a reading of about $5.6 \mathrm{~V} \pm 0.2 \mathrm{~V}$ U201 pin1 is about 4.25 V and that it drops to 0 V when the RESET button is pressed.
Press the RESET button and, using the FUNC pushbutton, select TEST

mode - as indicated by the TEST LED being constantly lit. Place the mouse on a floor with a hard smooth surface, for example linoleum, and press the FUNC button. It showed
travel forward at a constant speed and in a straight line but, because the two motor systems are likely to have slightly different frictional losses, it is probable that the mouse traverses an arc. Provided the arc has a metres, then navigation will not be seriously affected but, if necessary, the motor speeds may be adjusted in the MOUSEKIT.BAS source listing as described above. Should the mouse spin on the spot one of the
motors has probably been incorrectly wired and this may be rectified by swapping the leads in either J103 or J104 as appropriate.
Sensor Calibration
Although a set of default sensor calibration values is included in the mouse software, for optimum performance the infrared sensors may require calibration. The most basic requirement is to establish the signal levels corresponding to the presence of walls at the extremes of
distance and this is accomplished by stepping through a calibration sequence. The mouse is placed in a series of specified locations between a known wall pattern, a shown in the photographs, and the sensor readings are recorded at each
location. Having established the minimum signals, that is those recorded when the mouse is positioned as far from a particular wall as is possible, any lower level of measured signal may be used to infer the absence of a wall. In addition to the two extremereadings the calibration routine stores sensor readings taken when the mouse is placed in the centre of the lane and these readings are used, in conjunction with thos
taken at distance extremes, to provide navigation control as described above.
The two Control Board mounted red LEDs, labelled 'CAL LEFT and 'CAL RIGHT', are illuminated

J207/1	1	NRESET	CPU Reset signal - low when reset button SW202 is pressed
J207/2	2	SENSOOB	$\mathbf{0 - 5 V} 00$ degree Sensor signal to ADC (Both 00 sensors are paralleled)
J207/3	3	SENS45L	0-5V Left-Hand 45 degree Sensor signal to ADC
J207/4	4	SENS45R	0-5V Right- Hand 45 degree Sensor signal to ADC
J207/5	5	SENS90B	0-5V 90 degree Sensor signal to ADC (Both 90 sensors are paralleled)
J207/6	6	COMFUNC	Function push-button signal - low when pressed
$1207 / 7$	7	VBATMON	Battery voltage monitor - 5 V signal corresponds to 12.5 V battery
J207 / 8	8-19	OVL	0V power supply
J207/9	N/A	VBatsw	Switched battery voltage - nominally 7.2 V
J207 / 10	N/A	VBatsw	Switched battery voltage - nominally 7.2 V
1207/11	11	MOTDIRR	Right-Hand Motor Direction control: $\mathbf{0 = F o r w a r d}$ - 1=Reverse
J207 / 12	12	MOTDRVR	Right-Hand Motor Speed control - active high PWM signal
1207/13	13	MOTDRVL	Left-Hand Motor Speed control - active high PWM signal
J207 / 14	14	MOTDIRL	Left-Hand Motor Direction control: 0=Forward - 1=Reverse
J208 / 1	28	PROGDAT	In-Circuit Serial Programming Data signal - for PIC micro-controller
J208/2	27	PROGCLK	In-Circuit Serial Programming Clock signal - for PIC micro-controller
J208/3	26	LeDDrvR	Right-Hand I.R. Emitter Drive signal: $0=$ LEDs Off $-1=$ LEDs On
J208/4	25	LEDDRVL	Left-Hand I.R. Emitter Drive signal: $\mathbf{0}=$ LEDs Off - $1=$ LEDs On
J208/5	24	PROGLVP	Low-Voltage Programming Enable - for PIC micro-controller
J208/6	23	MODLEDT	TEST Mode LED drive: $\mathbf{0}=$ LED Off - $\mathbf{1}=$ LED On
J208/7	22	MODLEDC	CAL Mode LED drive: $\mathbf{0}=$ LED Off $-1=$ LED On
J208 / 8	21	MODLEDR	RUN Mode LED drive: $0=$ LED Off - $\mathbf{1}=$ LED On
J208/9	20	P5VL	5 V power supply
J208/10	8-19	OVL	OV power supply
J208/11	18	TTL232R	TTL level RS232 Receive signal - from PIC perspective
J208/12	17	TTL232T	TTL level RS232 Transmit signal - from PIC perspective
J208/13	16	CALLEDL	Calibrate at Left Side LED drive: $\mathbf{0}=$ LED Off $-1=$ LED On
J208 / 14	15	CALLEDR	Calibrate at Right Side LED drive: $\mathbf{0}=$ LED Off $\mathbf{- 1}=$ LED On

by the calibration software routine both in combination and singly to sequence. To perform a sensor calibration ensure that the mouse is powered-up and follow these steps: Press the RESET button and use mode and wait until the CAL LED stops flashing indicating that the calibration sequence has begun. Both of the red LEDs illuminate indicating that the first location in 'central' one.
Place the mouse centrally between the left and right walls and with the front in line with the posts, as shown in Photo F2. Pressing the
records the left and right side looking readings with the mous centrally located, the forward
looking reading for a wall at extreme distance an
on to the next step.
The CAL LEFT LED illuminates ndicating that the mouse should be shown in the Photo C2. Pressing th FUNCT button records the left and right side looking readings against he left-hand wall and steps on The CAL RIGHT LED illuminates indicating that the mouse should be placed against the
right hand wall as shown in Photo H2. Pressing the FUNCT button records the left and right side looking readings against the righthand wall and this completes the
calibration proces. calibration process.
After the calibration sequence is complete the red CAL LEDs flash ready to solve the maze and the

RESET button may be pressed to allow selection of RUN mode.
Additional Software
Three additional demonstration the same dialect of PIC BASIC Each is briefly described below and further details concerning the usage of these programs are given in the appropriate source listing

HWARETST.BAS

This test program is designed to exercise the hardware with a view to verifying its correct operation. It reassigns the normal function of the Mode LEDs as follows:-
RUN Illuminates the CAL LEDs in a binary sequence.
CAL Initially ru in the forward direction and reverses them both at every press of the

FUNCT button.
TST Takes a set of ambient light compensated sensor readings every press of the FUNCT button and outputs the values as a formatted
string, via the PC Interface Board, to a PC running a standard terminal emulator program.
CMDDEMO.BAS This demonstration program forms the shell of a possible command
interpreter that may find use in applications requiring a PC to exercise control over the mouse. The functionality is limited to responding to certain received characters with a appropriate formatted string. It and may be used with a PC running terminal emulator program.
CHRGDEMO.BAS
This program illustrates a udimentary battery charge monitoring application. Each minute sends it, along with the elapsed time,
as part of a formatted string to a PC running a terminal emulator program. The illumination state of the CAL LEDs is changed every 15
seconds to indicate continued seconds to indicate
program activity.

program activity

power-up the CPU to charge the battery pack the additional signal on $J 203$ pin1 is uncommitted in this design. As such it may be used fo any suitable purpose and one conjunction with a purpose-built external charger unit and a software routine based on the
CHRGDEMO.BAS
CHRGDEMO.BAS demonstration program, of a CPU controlled fast
charge algorithm using this pin to signal the termination of charge

Alternative Processor Interface The Alternative Processor Interface has been included to permit users to produce a mouse based on the design described here but not using the way single-in-line connectors, J207
and J 208 mounted on the Control Board, form the interface and are intended to mate with a suitably designed daughter board containing
the users choice of micro-controller. the users choice of micro-controller. brief description of its function.
Note that prior to inserting the Alternative Processor Daughter Board the PIC micro-controlle MUST be removed.

Conclusion
Although the design works satisfactorily as presented, the scope of this article goes beyond simply providing a description of the project by offering a limited amount of background information on some of
the design problems. It is hoped that the provision of this extra
information will increase the level of understanding of the challenges facing the mouse builder and encourage constructors to experiment
with possible hardware with possible hardware and/or performance and functionality.

Calculation of Tracking Lines

For straight line navigation the mouse software compares the current readings from the Left ' 45 ' degree sensor with two values representing imaginary Tracking Lines running parallel to the walls and offset to either side of the central path.
The Tracking Line positions are calculated from the ' 45 ' degree sensor calibration data according to a formula that is modified by the values stored in the 'SensorMixCentre' and 'SensorMixEdge' registers and thus they may be repositioned if desired.
The basic formulae are:
TrackingLineValueLeft $=((($ SensorMixCentre * SensCalL45Mid $)+($ SensorMixEdge * SensCalL45Near))/16)
TrackingLineValueRight $=((($ SensorMixCentre $*$ SensCalL45Mid $)+($ SensorMixEdge *SensCalL45Far) $) / 16)$
Taking typical calibration values as an example places the two Tracking Lines as follows:-
TrackingLineValueLeft: $(((14 * 92)+(2 * 252)) / 16)=112$
TrackingLineValueRight: $(((14 * 92)+(2 * 39)) / 16)=85$
From the typical calibration data given a typical ' 45^{\prime} ' degree sensor reading when located in the centre of a corridor is 92 and so in the example above, the mouse will 'wander' about the central line between ' 45 ' degree sensor readings of 85 and 112 - approximately $\pm 5 \mathrm{~mm}$.
Note that the two SensorMix values may be altered to affect performance but must total the final divisor which, in this case, is 16 .
Readers requiring software, Gerber files and Bill of Materials (.XLS format), please contact Caroine Fisher (details on page 3),
by email and she will send it out to you. Please use Micromouse in the subject line

ELECTRONICS WORLD

NEWSAGENTS ORDER FORM

Please reserve/deliver a copy of Electronics World for me each month

Name and address

Signed

Electronics World is published by Highbury Business Communications on the first Thursday each month. Photocopy this form, fill in your details and ask your newsagent to reserve a copy.

Has this copy of

ELECTRONICS WORLD

been around the circuit more than a couple of times?

Subscribe!

Delivered to your door before it hits the shops...
Be the first to read it! Call

01353654431

Highbury Fulfilment Services, Link House, 8 Bartholomew's Walk, Ely Cambridge, CB7 4ZD.

full-performance RF Generator

£2,195

The new TGR2050 is a synthesised signal generator with a requency range of 150 kHz to 2000 MHz .
Excellent frequency accuracy is matched with high stability wide dynamic range, low phase noise and low leakage. FM, phase and AM modulation modes are incorporated along RS232 and GPIB (IEEE.488.2) intraces, he TGR2050 provides the most cost effective solution ners RF source.

150kHz to 2000 MHz frequency range with 10 Hz setability - -127 dBm to +7 dBm amplitude range with 0.1 dBm setability Better than 1ppm internal accuracy, external frequency lock
FM, Phase and AM modulation, internal or external source
Direct numeric entry or rotary control with user setable
frequency and amplitude increments

- Non-volatile set-up memories for repetitive testing
- Full remote control via RS-232 and GPIB interfaces
- Unrivalled performance and features at this price level!

For applications with a narrower frequency requirement a GHz generator, he TGR1040, is avaliable for around $£ 1,200$ or full detais,

TTI

Measurably better value
Thurlby Thandar Instruments Limited
Glebe Road, Huntingdon, Cambridgeshire PE29 7DR Tel: 01480 412451, Fax: 450409 , e-mail: sales @ tti-test.com Web: www.tti-test.com
THURLBY THANDAR INSTRUMENTS

Class-A imagineering: Part2

Following part one, Graham Maynard shifts from a generalised
observation - to more specific circuit observation, this with a view to improving upon and obviating some of the distortion artefacts that are introduced by otherwise supposedly blameless and ultra-low THD amplifier circuit designs

0
course audio is foreve moving on, and I am not
suggesting that anything like he $2 \times$ PX4 push-pull chassis in the 78 rpm Dynatron radiogram I am lucky enough to own - which is older han me, has had several replacement valves but has never failed, still picks
up transatlantic MW when European up transatlantic MW when European
DRM transmitter pollution is not hissing out the channels, and still amplifies cleanly with external CD input - should be our reference - just hat some designers and engineers can suffer from tunnel vision and requirements and values as they chase and implement technologically derived 'improvements'
Those who make themselves responsible for the trend setting equipment we are subsequently
obliged to use, have occasionally lost sight of the fundamental sound qualities which once had been take for granted and been unconsciously appreciated in older designs without any need for explanation; much like the smooth, comfortable, stress free
and driver calming ride of pre-1985 designed cars that had oil filled suspension dampers and sensible aspect ratio tyres; also the old and consistently superb low distortion sound broadcasting without gushy automatic dynamic compression which meant that it once made sen buy high quality tuners for pleasure listening. Some designer's attentions seemed to have become overly focused on technically correct minutiae or commercial and thermal efficiency,
instead of them standing back from their test benches and maintaining that
maturely disparate overview of their art' which is so essential for main interface with our unapologetically human senses. In part this could have been due to a new generation of designers and engineers who have come through our modern training enough to actually live with and experience first hand all of the good qualities that had gone before, prior to hem being expected to chase, defend and extoll the manufacturing or production virtues of some progressiv subsequently has occasionally, and irreversibly, (because it must continue orely upon the cost and specification limited technology that was available during its development) altered the overall future for everyone in ways have not always been for the better, as with audio CDs which, whilst having superbly low steady state sine wave distortion specifications, are dynamically impaired by necessary The aspect of listener testing for mplifiers has been repeatedly aired $W W, E W+W W$, and $E W$ columns, yet few designers have done other than ever more diligently study their own circuits in an increasingly theoretic way using bench gear and happened to good old comparison, observation, and trial and error? Theoretical investigations are not a substitute for empirical development, both are as essential a part of ompetent design and development as There has even been a suggestion th
mplifier testing loudspeakers would not be practical because of the noise. What? We don isten to resistors!! And I'll be darned f I listen to sine waves either!! Sinusoidal waveforms are singularly boring. What inspires us is the timely and accurate rendition of change, the
presentation of harmonic relationships and asymmetrical transient responses that are not dulled by inadequate amplifier and loudspeaker dynamics. That is why we can still be enthralled by the timing of old performers who struggle to hit their notes, and why longer hear above say 10 kHz , can still be critically discerning of distortions hat test equipment is still incapable of quantify ying in isolation. The whole point is that amplifiers are supposed to rive loudspeakers with realistically dio waveforms not steady stade sine waves, so those who write such claims about testing show that they have self assumed an unproven right to discount all possibilities for loudspeaker induced amplifier-loudspeaker be any problems auditioning amplifiers, and listening tests should need to be done only once to either rove a design or send it back to the workshop: Suitable arrangements are ot impossible to make! learned that you really did need to hear an amplifier running, and if possible, driving your own known oudspeakers before you considered handing over hard earned cash to buy it, in exactly the same way that you driving it first. I also became
determined that from then on I would approach audio power amplification from a loudspeaker drive perspective, and totally inaudible amplitude distortion residuals close to maximum output would not be deemed more important than maintaining constantly correct drive fundamentals, especially with regard o waveform coherence and the signal plus loudspeaker ge
NFB loop error correction propagation delays that arise powering real-world dynamic oudspeakers. Actually, I feel sorry for people who have grown up nowing only solid-state designs, fo many modern power amplifiers do opposed to driving current through passive resistor) as realistically as the best of what went before.
A designer and owner might know hat s/he has one of the lowest THD distortion audio frequency amplifier hem also realising that there are other significant ways in which an mplifier-loudspeaker interface can induce composite sound waveform distortion. The famous Sheffield valve) equipment throughout their tudios - right up to their 24 bit digital mastering process; as a result hey produce some of the very finest CD recordings available. Now it eing reported that the latest valve mplifiers fitted with newly mesh anode output triodes, and modern push-pull input, driver and output transformers, can make the majority of real world loudspeakers eproduce sound more realistically han the most thoroughly ben gns, so is not a fashion or money thing either. Replacement is not necessarily better than refinement! I can understand why push-pull valve perceived fineties of audio perceived to go back to using transformers and although I once contemplated it, I would not want a massive directly coupled tube amplifier either.
differences in the way that inductive
loudspeaker voice coils transduce the voltage waveforms from low mpedance and NFB loop controlled solid state amplifiers, or the comparatively current generated tave but even whe hoilow system impedances have been ith like but we still comparing like design that reproduces realistically

Not quite diaphanous For almost three decades I have become increasingly concerned at seeing one after another of published low distortion' class-B amplifier ircuits that needed to have a VAS filter, sometimes labelled the C.dom or called a Miller capacitor, plus a eparate resistor paralleled output loke and of ten integral input signa iltering which ends up being in series with the audio path yet external bserved audibly deleterious veiling effects caused by the introduction of hese capacitive and inductive signal path elements, and yet they hav ppeared in recently published rcuits, and their usage is still being Kevin Aylward in his EW Letter, 54, Dec 2003.
At the outset, transistor amplifiers had slow output transistors, less NFB oop gain degeneration, and C.dom capacitors that tended to operate at resent day amplifiers intentionally have so much internal gain that C.doms now affect a closed loop ability to error correct throughout the ntire audio range, often down to -bass rumbles, and this for no upposedly impressive and ultra-low THD figures. Amplifiers always have navoidable propagation delays, and hput stages must act with a much reater speed than the incident signa ontrolled accuracy yet this is actly where the action of the M apacitor type of dominant pole filter nd an output choke can impinge pon the load based dynamics of amplifier current flow. Many designers believe that they are resistor paralleled output choke omponents and thus they perform open and closed loop examinations with a resistor load to satisfy hemselves for bandwidth, distortion nd stability. However, because they re catching only the balls that the vertically upwards, they are not ooticing any loudspeaker fired ones hat can and do fly at odd phase EMF induced instants through the back mplifier-loudspeaker interface an because they have followed
'established' rules, they end up lagiarising flawed thinking, and If we expating design errors If we examine the action of input delay at audio frequencies, and this as an increasing effect upon phase coherence at higher audio frequencies The resultant phase delay increases with frequency and this affects the karmonics of first cycles and sibilant not show up when complete sinusoid re examined in steady state isolation. A previously composite waveform can become distorted wrt source before the amplifier actually receives its inut, and we can hear the difference because our ears are sensitive to
resulting frequency dependent hanges in waveform energy. So, if input filter must be implemented in order to prevent radio frequency beakthrough or HF feedback, its mover shoula be many times highe be kept as low as is normally produced by the following hig quality amplifier itself. Also checks hould be made to ensure that input filtering does not unnecessarily degrade an amplifier's noise moments of loudspeaker induced overload.
I could imagine a few theory-based readers having the greatest difficulty in accepting my last paragraph, like hose who would choose to remin me about 'group delay'. Yes, of a relatively constant group delay, such that the time difference betwe all input and output zero voltage rossovers after the first complet cycle remains the same, whethe 20 Hz or 20 kHz . However, it is this fact gives us an ability to treat audio filter delay as if it were a waveguide delay, because our signa waveform has not been impressed upon any form of propagating carrier the very same and entirely natural exponential filter input-output settlement characteristics which giv rise to this sine wave group delay in the first place, but, and I am obliged to repeat it - we don't listen to sine waves. The sine wave group de
time period is a specifically measurable attribute that does apply to the leading edge of a first audio cycle. The time period for exponential waveform settlement with a newly generated first cycle is actually much longer than is figure, and as a result the voltage
close to its maximum at the end of that group delay time period. So, not only is the leading edge of a first cycle audio waveform distorted wrt
input after the group time delay time period has elapsed, its initial throughput potential is also at its most distorted wrt to the rest of the ongoing, but delayed, sine wave How do CD player anti-aliasing filters perform in this regard? 2, which shows a 1 kHz Hz -1Vpk signal generator input, the output from a $10 \mathrm{k} \Omega+1 \mathrm{nF}, \mathrm{R}-\mathrm{C}$ filter, and the filter output as it would be if it had the perfect $10 \mu \mathrm{~s}$ group delayed output that is so often assumed, but which is
of course an electrical impossibility. of course an electrical impossibility
It does not matter whether you examine the real output voltage eithe wrt input, starting at $\mathrm{t}=0$, or wrt output, starting at $t=g d$ (group delay time period), it is distorted wrt to both. An amplifier might be capable
of slewing at very high speed but its of slewing at very high speed but
audio input will still have been distorted before start-up if it is fitted with an input filter that causes audio frequency phase delay at highe frequencies. Input filter phase distortion can be apparent on the first error amplitude increases with frequency as the group time delay becomes a greater proportion of waveform time period, thus its worst effects are noticeable on the reproduction of vocal sibilants and percussive equipment plus other
instruments that generate higher frequency harmonics. Gently playing classical string instruments that have been input filtered might sound acceptable as they lose some of their naturally raucous harmonic content, but an impression of 'something
missing' could arise on live miked performances and modern pop. What actually is missing is their first quarter cycle (transient) reproduction accuracy - and the cure is blindingly pass fil dynamically
distorted wrt th static group delayed
output, as well as wrt input.
distortio
distortion. Exactly the same first cycle distortion problems arise with series output chokes, only here there is audible outcome is complicated by two separate first cycle responses that have different time and voltage references, from different amplifier and loudspeaker related starting points. This is why the output
waveform of an amplifier with integral output choke will not only be different at the loudspeaker terminals when compared to its output with a inear resistor, but why its output really does change when the loudspeakers are changed, and thus
why some loudspeaker types are better partners for specific amplifiers

C.doms

With regard to C.doms, the activity of say a 100 pF capacitor across a VAS stage is not just that of the current it dynamically draws from a typical high impedance differential input plus mirror stage is multiplied by the VAS stage gain, which, with a Darlington configuration, can easily be 3000 times. The result is equivalent to three thousand separate
100 pF capacitors charging from one leg of an input stage pairing, which often has low value series emitter resistors that instantaneously drop additional differential voltage due to he ninety degree leading current flow through that C.dom. No modern 0.3 uF capacitor directly between the first transistor collector and the signa ground line because of the way in which the input stage must additionally drive capacitor current
from NFB loop controlled differentia from NFB loop controlied differential
input; the NFB node error potential input; the NFB node error potential ransistor can conduct equally, and so the distortion would be increased. Yet from a charging viewpoint this is how a 100 pF C.dom reacts when it is Darlington VAS stage, and input loss it causes gives rise to a a zig zagging error potential at the NFB loop's output node as waveform polarity alternates, either with input, or with loudspeaker generated back

Charg
Chunted by what is effectively a 300 nF component, when it should have freely gone into the VAS stage o generate speedy and low distortion output stage contro. Also the to the slew rate of say a 20 kHz input
sine wave or a much sharper acting vinyl scratch or noise tick, nor the very much faster NFB loop driven requirement for error correction, but only as fast as the floating differentia inpurs stage can balance about its signal, prior to overall circuit propagation delay allowing the global NFB loop to regain overall inputoutput control! In other words the momentary NFB loop error signal
must be greater when the Miller connected VAS capacitor is used, and this means that the NFB output node error must be greater too. This capacitive shunting causes dditional differential voltage drops at the input pair and across all four because this can additionally limit the subsequent VAS driver rate of voltage change, and thus linearity, it can also limit an output stage's ability to error correct. At higher udio frequencies a differential input stage error actually builds up
between the input transistor ba before C.dom capacitor charging allows the re-establishment of relatively linear VAS transistor base current flow and thus the separately acting global NFB loop to rega
control. By then however, the induced dynamic imbalance has already forced the high gain and mirrored differential input stage into ransconductance non-linearity, such hat the NFB loop loses 'post-input stage' but 'pre-NFB loop recovery control, due to the action of that (say) 100 pF C.dom component, and all this in a manner that no amount of lobal NFB can ever correct because gain cannot overcome time delay Also, the amplifiers that have the higher value C.doms tend to be the
ones that already have the most NFB anyway, the very ones that are supposed to amplify more accurately! It is bad enough that every discrete and integrated circuit bipolar ransistor comes supplied ready made with its own inbuilt Miller apacitance, but to make this effect external component at a high slew Darlington VAS stage is sheer audio houghtlessness. See especially fig. 10a in the 'Audio power amplifier frequency compensation artucle
written by John Ellis, $E W$, Mar 2003, p10. The NFB loop induced differential input stage spiking imaged during Mr Ellis' closed loop nvestigations does not reach the output stage due to the subseque original Miller connected C.dom

TELEVISION reader offer: $\times 1$, x 10 switchable oscilloscope probes, only £21.74 a pair, fully inclusive*

*Additional pairs as part of the same order, only £19.24 each pair.

Please supply the following:

Probes

Seen on sale for $£ 20$ each, these high quality oscilloscope probe sets comprise:

- two $\times 1, \times 10$ switchable probe bodies
two insulating tips
- two IC tips and two sprung hooks - trimming tools

There's also two BNC adaptors for using the cables as 1.5 m -long BNC -oto-BNC links. Each probe has its own storage wallet
To order your pair of probes, send the coupon together with £21.74 UK/Europe to Probe Offer, Jackie Lowe, Highbury
Business Communications, Anne
Boleyn House, 9-13 Ewell Road,
Cheam, Surrey, SM3 8BZ
Readers outside Europe, please add
$£ 2.50$ to your order.

Specifications

Postcode
Telephone
Method of payment (please circle)
Cheques should be made payable to TELEVISION
Access/Mastercard/Visa/Cheque/PO

Credit card no \qquad

Card expiry date
Signed
Please allow up to 28 days for delivery

C to 10 MHz
$1 \mathrm{M} \Omega$ - i.e. oscilloscope i/p OpF+oscilloscope capacitance 600 V DC or pk-pk AC

DC to 150 MH

2.4 ns
$10 \mathrm{M} \Omega \pm 1 \%$ if oscilloscope i / p is

2 pF if oscilloscope i / p is 20 pF 10-60pF 600 V DC or pk-pk AC

Switch position

 Bandwidth Input resistanceInput capacitance Working voltage

Switch position 2

 Bandwidth Rise timeInput re
iMs
Input capacitance Compensation range Working voltage
Switch position 'Ref
Probe tip grounded via $9 \mathrm{M} \Omega$, scope i / p grounded

Total

Address
Probes
\qquad

itself, so the input induced spike is slew rate limited into a zig-zagging in harmonic distortion. This keeps the in harmonic distortion. This keeps th because the spike itself cannot actually be heard by anyone, but this C.dom activity at audio frequencies is not trivial, because the loss of linearity causes internal and thus audio frequencies until full NFB controlled signal tracking is recovered. Also, and very importantly, there is a similar input stage reaction when dynamically reactive and loudly driven real-world loudspeakers generate opposing
currents that momentarily overco C.dom delayed output stage linearity such that an output node error potential can build up, and thus a differential input stage error too, before the amplifier can properly C.dom induced propagation delay and the higher the amplitude and frequency of loudspeaker system back EMF, then the greater the magnitude of output terminal waveform error potential will become, wrt input waveform, before delayed NFB loop can fully reco closed loop control. Traditional ope and closed loop sine wave testing procedures with a resistor load are no use here because they cannot reveal is design weaknes
Loudspeaker undercurrents by Douglas Self, $E W$, Feb '98, p98 makes essential reading; note especially his illustration of the surprisingly high back EMF currents output terminal. These reverse impinging energies must not be ignored by amplifier designers, and yet normal testing procedures that use sine wave generators and resisto loads are not suitable for simulating and examining amplifir
such conditions. Clearly any amplified harmonics or treble to riding the back of a complex bass waveform are at risk of becoming seriously compromised when the b or mid-bass loudspeaker-cabinet
VAS collector to overdrive the out stage as non-linearly as is illustrated. Such reverse impinging loudspeake generated energies cannot be studied via ages old evaluation procedures that rely upon steady sine waves and loads which are incapable of invoking real-world-like dynamic loudspeaker induced amplifier behaviour. A
measurement of resistor voltage with sine wave drive fails to illustrate the way in which the Miller capacitor
C.dom can make a reverse driven amplifier itself behave like an amplifier itself behave like an
inductor, and thus allow the outp terminal to instantaneously develop tweeter driving error potential before a C.dom delayed NFB loop can reestabish control and minimise both input stage and the original input waveform. C.dom induced am inductance was concisely clarified when Peter Blomley introduced his chokeless solic state power amplifie circuit back in Feb 1971, see $W W$, issue resources but his New Approach to Class-B Amplifier Design article remains a significant reference.

'C. dev^{\prime}

The Miller type of C.dom capacitor does exactly what it says on the is high enough to take a floating, and non-linear rate of change slew charg from the input pair at audio frequencies, then it causes voltage deviation and can no longer be
C. dom becomes 'C dev'!

This is due to the input stage current which flows during the charging process being ninety degrees leading wrt to VAS collecto voltage change, as this swings through non-linear output stage base
(gate) bias and stored charges, plus load varying output stage emitter (source) resistance voltage drops. Thus the capacitor current drawn through the differential input stage by the VAS connected dominant pole component, and thus the voltages
dropped by the input stage emitter resistors, are not actually in phase with either input or output node potentials, also, they can additionally be directly affected by phase shifted loudspeaker back EMF current which cause non-linear shifts in
output stage VAS drive voltage to amplifier-loudspeaker drive that has already occurred but is no longer current. Any number of zeroes between the 'point' and the 'figure' of a 'percentage THD' figure are irrelevant here, because the output
terminal error potentials, and thus their effect upon the differential input stage, are no longer directly related to amplifier input!
When I see some class-B amplifier circuits which use emitter resistors within a mirrored differential input stage, and where the Miller VAS collector from slewing at high
speed through the output stage bias potential range in order to cope with phase shifted load current flow, I can't help comparing the C.dom's
quadrature action in audio - to the quadrature action in audio - to the
action of condoms in sex; both ar safe - both affect reproduction - both interfere with immediacy, and thus there is a sense of loss of instaneity and the direct perception of reality that is
used.
used.
Okay, so I've rattled on a bit here, but so many designers who ensure the unconditional stability of their amplifiers by implementing Miller connected C.doms, fail to realise that they are simultaneously imposing
other conditional limits upon their designs, especially with regard to internal phase changes about the VAS transistor, which leaves the entire circuit playing voltage 'catch up' when its load is not a passive resistor. If an audio frequency acting
Miller connected VAS C.dom is essential to maintain stability, the input stage non-linearity can be minimised by:
(i) increasing input stage curren flow
(ii) by not using input stage emitter resistors, and
(iii) by choosing an output stage characteristic unaffected by supply voltage, temperature and power output changes, and especially one that is capable of coping with high longer match signal voltage waveform due to dynamic
loudspeaker activity and reactivity
Also with regard to performance, I have yet to see any amplifier designer inform prospective owners that they
are inserting between their amplifier's NFB controlled node and the different output terminal that users are subsequently obliged to connect their loudspeaker cables to, a series inductor having a value that approaches the series
inductance of a ribbon tweeter module, or a high quality tweeter voice coil which transduces about a central pole piece that has copper plated induction damping. If you had gone to the trouble of locating a monoblock power amplifier directly and cable driven it from a low impedance pre-amplifier, as I do would it make sense to knowingly put an inductor in series with a very expensive loudspeaker and thus its tweeter or the satellite you rely upon
for spatial imagery, and thereby permanently impair the manufacturer's intended high
frequency characteristics and dynamics? Maybe you already are and - because these chokes have class-B amplifier designs, such that the amplifier is incapable of running correctly if it is removed - maybe
there is nothing you can do about it! Maybe that 'highly developed' and resistor tested solid state amplifier that comes with a jaw dropping
believe far exceeds hi-fi requirem to has its performance compromised the moment you connect real-world oudspeakers to its output terminal and you feed it with composite audio are thousands of 'golden ear' specified (i.e. sine wave-resistor tested) solid state, input filtered/C.dom/choke designs already in existence, but so many of them do not fully satisfy music listeners, and so it is of no old, magically photogenic and sonically unobtrusive valves hav already made their comeback. Many amplifier designers appear to assume that a $3-10 \mu \mathrm{H}$ inductor, paralleeed with say an 8.2Ω resistor amplifier's output terminal cannot possibly affect sound reproduction, but how many of them have actually listened for the changes in clarity that are introduced when a series output choke is inserted, and then switch different types of directly connected loudspeaker and a good NFB amplifier that does not need to be fitted with a series output choke in the first place? Did they ever take the trouble to properly audition a assumed that it isn't necessary because it has been 'standard prac on other class-B designs? I am no Einstein, but I do agree with his word hat "The important thing is not to stop questioning". Hence I try hard to
not make assumptions, or to guess.
Thoughtless application When a $6 \mu \mathrm{H} / / 8.2 \Omega$ series choke drives an 8Ω test resistor, the audio frequency group delay is constant a stored and thus the potential stored and thus the potential initial 750ns of waveform slew increases with frequency and current flow, but this is always relinquished and returned during the 750 ns following the cessation of amplifier repeated, we don't listen to resistors; also, as previously explained, group delay does not hold good for leading

edge first cycle reproduction. Resistors are incapable of presenting an amplifier and its series utput choke with load impedance characteristics that vary with
frequency, as all dynamic loudspeaker systems do. If we were to vary the load resistance manually we would see the choke delay varying similarly and thus when a oudspeaker system impeda frequency, so too does the cho delay and the potential it develops, or eturns, during that delay period. Thus one portion of a composite musical waveform (an harmonic) can ecome momentarily more output or speeded up and voltage advanced, wrt a whole cycle due to entirely natural loudspeaker system
impedance variation with frequency Resistors are similarly incapable of generating electrically and electrosystem back-EMFs that vary with rossover-driver-airspring excitatio in a manner that generates choke potential at the real amplifier outpu erminal, wrt the amplified signal waveform which develops at the rea
NFB loop controlled output node Thus one portion of a composite musical waveform appearing at the output terminal can momentarily receive plus or minus potential development modification wrt NFB controlled amplifier output, due not dynamic retention and release of energy that had been induced by prior driving, but to interacting crossover and impedance compensation circuit lements, both of which mechanism enerate additional back EMFs th waveform that energised them, an different to the ongoing amplifier output waveform that might be
${ }^{\text {apparent at any instant. }}$
Resistors therefore cannot be used Rindicate how much unpredictable tage stereo image shifting might cur, or how much real and ongoin mplifier might introduce as its loudspeaker load constantly modifies current flow through its integral Also note that wh Aystem has more than one channel, hese momentary choke induced berrations could become differentially significant within the pparent reproduction sound stage, mears the sound, but also blurs the mage position!
I'm only relating facts here nothing is new, and nor is there is an way of countering the entirely natura adio waveform distortion that arise due to series inductance and parall specially when the load is reactive. I am going to use the test circuit Shown in Figure 3 to illustrate what happens at real-world loudspeaker erminals relative to the proven and performance we have witnessed on the test bench.
Here I use the normally accepted inear resistor response as a reference, to show that an output terminal' potential is much more seriously affected than is realised when its load
becomes the equivalent of one of our real-world loudspeakers.
Figure 4 simulates the induction group delay in microseconds due to eparate $6 \mu \mathrm{H}$ chokes that are paralleled with 8.2Ω resistors, one quality twin mid-bass plus tweeter loudspeaker, and the other in series with a plain resistor of equivalent nominal value, which is 5.3Ω.

With respect to the near flat $1 \mu \mathrm{~s}$ chistor induced delay the imaged crossover-driver activity resulting from lagging and leading variation of current flow with frequency through loudspeaker system impedance variation plus electrical and mechanical ' Q '. Obviously some
fundamentals and harmonics are going to be affected more than others before a composite waveform actually redevelops at the loudspeaker terminals, and this shysically induced characteris physicalir-spring ' Q ' and cabinet
due to aice wave reflections etc. Many loudspeakers generate much worse group delay plots, but I am sticking to this known good design. Also 1 must mention that whilst minute time period, this is the steady state plot which arises for constant sine waves after load dynamics have settled and altered the choke delays for some, but not all, previously related waveform harmonics.

Choke smearing
Figure 5 shows the difference in output terminal potential at 1 kHz , illustration of serie output choke throughput distortion due to load circuit generated back EMF between the plain resistor loading and the twin mid-bass plus tweete

Figure 4: Group delays for a linear resistor, and a
reactive loudspe reactive loudspeaker

virtual amplifier via its integral $6 \mu \mathrm{H} / / 8 \mathrm{R} 2$ chokes.
The error due to a first cycle of frequency dependant loudspeaker system induced back EMF clearly demonstrated prior to its is ongoing erron becoming sine wave after $250 \mu \mathrm{~s}$ and mixing with original drive to become both inaudible, and immeasurable as THD at the loudspeaker terminal. Obviously though, the first cycle has been distorted, and first cycles are every and fourth cycles etc., because in audio the first cycle of every note is but an ongoing moment within a musical continuum. Our ears hear each and every first cycle as it arises in real time, and we can sense any unnatural intrusion due to this kind of
accompanying waveform change accompanying waveform change.
Just because the majority of amplif designers have not revealed the presence of first cycle distortion does not mean that it does not exist, and uch double negativity would not give them the right to denigrate those who report hearing changes that have
been introduced by the circuitry of supposedly 'ideal' products. Actually, this is the waveform distortion that the headphone monitoring of a class-B amplifier's output terminals had so clearly previously, when its termination was repeatedly switched between resistor and loudspeaker.
If we were to use a loudspeaker as the load on the test bench these differences will not be noticed or output terminal waveform will normally have already settled into steady sine wave long before it is examined using standard time delayed and phase compensated ingle frequency observation methods which null out the ongoing
fundamental. What might have happened during a first cycle due to
exponential circuit activity, i.e. settlement within capacitors and inductors combined with driver
airspring dynamics, prior to the steady waveform becoming properly developed, is neither observed nor measured, though its effects would Figure 6 shows the choke induce Figure $\mathbf{6}$ shows the choke induced
waveform distortion due to 250 mV of 1 kHz of amplifier driven choke hroughput being modified by 1 V of 4 kHz of simulated 'back EMF' through a 4Ω resistor which is used to simulate a loudspeaker impedance
dip.The bold trace illustrates, albeit dip. The bold trace illustrates, abeit amplifier output wrt to loudspeake generation, the instantaneous level and time shifting distortions that the choke's quadrature induced potentia ind conduction time delay can loudspeaker plus crossover circuitry generating currents wrt the amplifier's NFB loop controlled output node; these end up generating parasitic voltage waveform at the amplifier's choke coupled output parasitic voltage generation due to driver cone/dome, plus mounting, plus air spring resonance effects that am unable to simulate, as these react and momentarily assist or ppose back EMFs wrt the NF mpififiers ultra low output of throughput distortion could occur whether the amplifier is coincidentally generating 25 mV or 25 V of output at any given instant. Also, it is worth noting that this same can separately arise when longer lengths of loudspeaker interconnecting cable feed complex multi-way loudspeaker systems! In part three, I shall complete this short and illustrative series of amplifier
induced distortion mechanisms, and induced distortion mechanisms, and cycle distortion' amplifier circuits.

Easy-PC

Woild Bating value in PCB Design Sofitware

WE WILL BE MOVING SHORTLY - CHECK WEBSITE www.stewart-of-reading.co.uk FOR GENERAL STOCK

MISCELLANEOUS CLEARANGE STOCK

The drammies gulde
 TiD (\in marlillig

"Yeah, it's supposed to be a quality amplifier" said the caller,
"it has a CE mark, and that's why I was surprised to find it sounds like an angry wasp in a tin can when I tum it up..." A common misconception unfortunately, particularly amongst the public at large, is that the idea and concept of a CE mark is in some way an indicator of product quality and performonce. It is though, anything but. So what is the mark, and where did it emanate? James Eade investigates

$\stackrel{\text { ir }}{\mathrm{b}}$
irstly, a little history. Unsurprisingly, being a regulatory control measure, the
origins of the CE mark are to be found in Brussels, home of European dictats. Back in 1957, when the Treaty of Rome was being signed by the member states of the fledgling EEC, it meant that (amongst other things) all those members must agree to work towards and promote free trade within the Europe
Community, which is a great idea, but Community, which is a great idea, but affect this, one of the aims was for countries to discard their own regulations and standards in a number of areas from technology to oods, and adopt a set of harmonised European versions instead. 'Wouldn't it be a good idea, thought Brussels, if we
harmonise all the laws to do with prod safety so that manufacturers can export products within the EU without barriers?' Such an idea though - while a good one is a slow and evolving process and one area hat received early attention was that of pretty much anything electrical or mechanical and is thus quite broad. And so it came to be, in the early seventies with the issuing of Directives, particularly the Low Voltage and Machinery Directives which required manufacturers to comply with a was that there was no way of promoting the fact that a particular piece of equipment did conform - end customers had no idea whether the manufacturer had taken easonable steps to ensure their products we safe or not. And so in the early nineties, 'New Approach Directives' which made it all better, at least, that's what Brussels hoped.

Along with the New Approach Directives came the concept of an equipment label that all possible steps to ensure that their product met the requirements of the relevant Directive in question. The actual marking is the letters 'CE' which are an abbreviation of the French phrase 'Conformite Europeene'. Initially, the phrase was 'CE Mark', howeve CE Marking' was legislated as its
lot of debating time and effort!
Now, those who may manufacture products that don't fall under any of the directives listed will be pleased to know they have not been left out - all other consumer products re subject to the requirements of the which does not require the CE-mark. So, CE marking or otherwise, it is difficult to escape the safety directives in their various guises.

Gaining a CE mark

So, how does one go about gaining a coveted CE mark for your product? Theoretically it's as easy as 1-2-3. In fact, it's even easier; all you (as the importer/manufacturer/authorised representative) have to do is buy some nice sticky CE labels from RS or the like, and slap them on your product. Or, if you're too is scribble 'CE' in the appropriate
proportions on the packaging or just print it in the manual. And that, unfortunately, is a correctly CE marked device, suitable for sale hroughout the EU
However, such a cowboy attitude will probably end up with you resting on your are requested for a copy of said products' 'Certificate of Conformity' by the consumer
(an increasingly common occurrence) or an inspector comes knocking to see you Technical File' after your 'Widget
Amplifier' (mk1) set fire to Jo Bloggs curtains, then you will find yourself in rather a lot of deep trouble. In the case of the Low Voltage Directive for example, individuals and/or companies can face prosecutions, heavy fines, enforced recall as well as being
banned from selling products inside the EU banned from selling products inside the EU
for falsifying or just not bothering to for falsif ying or just not bothering to comply
with the Directives. It gets more complicated though, as you can face the same for getting your conformity checks wrong, which is a much, much easier - and often very innocen - mistake. It is also worth pointing out that due diligence and reasonable precautions must be carried out, i.e. you should be able to way to ensure that products are safe and that there are suitable quality control measures in place.
As mentioned, the principle behind the CE mark is compliance with the relevant Directives. This is achieved by complying in
turn with the relevant Harmonised Standard that apply to the particular product or product family, as issued by organisations such as the European Committee for Electrical Standardisation or CENELEC (who's mechanical counterpart is CEN,
reflecting ISO). CENELEC issue standards in the following forms:

- European Standard (EN) -

A complete standard that carries national status in member countries. - Harmonized Document (HD) - The preliminary version of an EN, brought out
to allow member countries to introduce a corresponding national standard and withdraw conflicting versions.

European pre-standard (ENV)Prospective standards used in areas of high innovation or where an urgent nee for guidance has come about When such standards are published, they are published accordingly - for example in the UK they become BS EN and in Germany they are published as DIN EN.
Taking the example of a computer monitor, ompliance with standards EN 60950:2000 'Safety of Information Technology Compatibility - Generic Emission Standard Part 1, Residential, commercial and light industry'; and EN 50082-1: 'Electromagnetic Compatibility - Generic Immunity Standard Part 1, Residential, commercial and light dustry' could be satisfactory for LVD) and Electro-Magnetic Compatibility Directives (EMC). However, if it had a tuner in it as well, for TV reception then EN 55020 Sound and television broadcast receivers and associated equipment - Immunity measurement' may be more appropriate instead.
Unfortunately there is no definitive list nywhere that says precisely what standards pply to particular equipment - indeed, the erson who develops a web based database soteric names such as 'DI box' or 'audio compressor' and be returned a list of
appropriate harmonised standards would be in line for a considerable chunk of cash. This probably the hardest aspect of compliance nd the easiest area to make a mistake Official Journal of the European Communities', otherwise known as In this is a complete list of current harmonised standards that can be trawled hrough to find those relevant to the product in question. If you find a product specific and good, because compliance with that standard will assume compliance with the elevant directives. However, life is never hat simple and it can be hard to find product pecific standards - particularly in the ntertainment industry for example. There is fairly tried and tested route to achievin Ascertain what direc
product (e.g. LVD, EMC, Machinery)
Search the OJ for a product specific standard, or use a generic one if appropriate (there are several 'catch-all'
standards that may apply, such as EN standards that may apply, such as
60950 - Safety requirements for information technology equipment including electrical business equipment). Note also that standards often have 'similar' product coverage e.g. EN 60335 is aimed at domestic appliances such as the 'similar' category covers commercial catering and vending machines.

If there isn't one that fits the bill, use an International (IEC) standard or failing that a relevant national standard

- Compare your product's performance against the criteria set out in the
standard(s). tandara(s).
satisfactorily, the hard work is nearly over. Each and every product though must have a 'Technical File', which describes and documents the product. Its purpose is to
demonstrate that a product does indeed comply with the relevant Directive, and what steps have been taken to get there. Where an EN standard has not been used, this document will also contain the extra detailed information of tests and inspections that hav been carried out in the process of complia information such as conceptual desig drawings, test reports, instruction and servic manuals, lists and explanations of safety critical components, and so on.
Unsurprisingly, such a document will run to good few lever arch files of paper. File will be the coveted Declaration of Conformity. This document is quite straight forward and simply gives the manufacturers details (or representatives), a description of the product and a list of relevant standards hat the product complies with. It also has and should it all go pear shaped, that individual is personally liable and could face a prison sentence. Once that is all complete, the manufacturer can safely stick a CE mark on the product.
Farm it out
While this article gives a very brief overview of the process (and is not to be used as a manua!!) it can be seen that it is quite an Those responsible for CE marking a product should seek assistance where they are unsure many trade associations have departments ecifically to help their members in such maters. There are of course Na Britis Standards Institute (BSI), VDE in Germany or the British Electrotechnical Approvals Board (BEAB) that will perform all the preferred option owing to their skill and knowledge in these areas. Testing by such bodies also allows a manufacturer to affix other relevant marks to the product, such as the BSI kite mark
There are also independent UKAS (United labs that can offer the service, such as ETL, ERA or TÜV. They will perform the tests to the appropriate Harmonized Standards and he issued test report is used for inclusion in he Technical File. Or, if a manufacturer is particularly large, they can perform testing rained personnel.
worth bearing in mind that some of the more esoteric pieces of equipment encountered may be confusing to a test house - in the realms of theatrical lighting one can't expect
them to know what a Big Ben is for, or a gobo rotator for example. Accordingly, it is definitely worth reading up on the subject and doing one's own research to ensure that products are not tested under the wrong banner - which has happened before now. The buck stops with the manufacturer, no the test house.
principles of the Nirectives based on the provide for CE marking are below. The list is not exhaustive (there are about 20 in total), but some concerned with other areas such as medical and pressure vessels have
- Council Directive 73/23/EEC of 19 February 1973 on the harmonization of the laws of Member States relating enthil equin 73/23/EEC (Amendment 93/68/EEC). Th Iow Voltage Directive)
- Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of the Member States relating to construction products 89/106/EEC (Amendments 93/68/EEC)
(The Construction Directive)
- Council Directive 89/336/EEC of 3 May 1989 on the approximation he laws of the Member States
relating to electromagnetic
compatibility 89/336/EEC
(Amendments 92/31/EEC and
- Drective 98/3//C

Drecive $98 / 37 /$ CC of the European Paliament and of the Council of 22 June 1998 on the approximation rems or Member States relating to machinery 98/37/EC (The Machinery Directiva)

- Directive 1999/5/EC of the European Parliament and of the Council of 9 March 1999 on radio equipment and telecommunications termina equipment and the mutual 1999/5/EC (The RTTE Directiv 1999/5/EC (The RTTE Directive) More information on CE marking can be gained from the website www.newapproach.org and the http://europa.eu.int/eur-lex/en/oj/

A QUANTUMLEAPIN EMBEDDED CONTROLIERS

SUPERCONTROELERS

pur range provides:6 The fastest 68000 based Core up to 66 Mhz .
Extensive 1/0:- Serial, IrDA, SPI, IRC, Analogue, Timers/Counters, RTC, etc.

Large Memory Capacity:Flash, SRAM, DRAM.
supports:
Mono \& Colour LCD's, Touch Panels \& Keypads, Very Low Power.

ALSO LOW COST

DEVELOPMENT
Marget easily \& quickly.
Fula NSI 'C' compiler, assembler
Source Level Debug. ill Driver Support with Libraries.
Real Time Multitasking OS with a free run time licence.

- Free Unlimited email support.

WWW,CmS.UK.com

see our web site for full details CAMBRIDGE MICROPROCESSOR SYSTEMS LTD

Unit 17-18 Zone 'D' Chelmsford Rd. Ind. Est. Great Dunmow, Essex CM6 1XG
Telephone: 01371875644
email: sales@cms.uk.com

WATCH SLIDES ON TV MAKE VIDEOS OF YOUR SLIDES
DIGITISE YOUR

SLIDES

using a video capture card)

in high quality colour TV camera. It has
BNC adapotors are availabe). They

 Economy C mount lenses all fixed focus \& fixed iris

 Beter quality C Mount lenses
 206 surface mount resistors $E 12$ values 10 ohm to 1 M ohm 100 of 1 value $£ 1.00+$ val 1206 surace mount resistars
000 of 1 value $5.00+$ vat

JPG
Shaws Row, Old Road, Chesterfield, S40 2RB
Tel 01246211202 Fax 01246550959 Mastercard $/$ isa/Switch Callers welcome 9:30 a.m .to 5:30 p.m. Monday to Saturday

WWW.PCB-POOL.COM
Procel 1 B orcad EDWin Grephicide

Boolean castles intheair

66...In next month's EWI hope the editor will let me tell you more... 9
Ivor Catt, Letter to the Editor, EW June 2004, p56 - he has
irst I will give a cameo to illustrate how difficult innovation is, in an attempt to get back to the kind of ambience that would have existed during earlier eras, leading to oday's multiple dysfunction in high
ir Clive Sinclair set up a company, Anamartic, to develop my Wafer Scale integration invention, 'Catt Spiral'. had previously been developed by engineer told me he used hijacked money without the permission of UNISYS HQ in the USA. Then he moved to do the same work for Sinclair. Even though he had been a maverick, he thought it important that
should not be well informed as to the should not be well informed as to
detail of the work being done to develop my invention. One day I gave him the slip, and came across a machine which could do "stitch bonding" across the face of a wafer. The engineer told me about its yield (reliability). This led later to my nex
invention, Kernel, which obsoleted Catt Spiral. The company, which had fired me, hired me back because of Kernel. This shows how important they thought it was
Without reliable enough stitch, it was current needed for distributed processing across a wafer, and the global 100 Mb serial data streams needed. The electrical resistance of the conventional Al conductors on a chip surface was too great. Decades befor
bonding, I had solved the obverse problem of heat extraction using on-
chip liquid cooling.
We can map this separation onto th situation in Bletchley and later Manchester, where there was an partheid between mathematicians and engineers. This would have made it Turin, however brilliant, to contribute the development of the general purpose computer, which was engineering hardware. The article by see Sallows, A curious new result in witching theory in EW May 2004, ogic design, the field that earned me ny salary for decades. My article in $E W$ in June 2003 is a cry over the nnwarranted limit placed on computing power by allowing only one processor per machine. Now, in restriction at a much more basic leve similarly due to temporary historical engineering tradeoffs which were thought to have permanent ignificance.
In 1959, when I graduated in University, the head-hunters from Ferranti encouraged me to try working in the new digital computer industry. I joined the late Gordon Scarrott's labs Ferranti Manchester, which was tie oo Manchester University. The other important computer place was Elliot to Cambridge University. Nowhere else mattered.
The Ferranti/Manchester team beat Cambridge, because the structure of niversity was better than the Cambridge structure. Apparently, in
the Cambridge case, the university remained too much in control, which stunted them. The Ferranti/Manchester Atlas computer sold for a couple of million pounds, and competed with th big fast IBM machine, which was boasted that all its technologies had been stretched to their limit. When it failed to function, we called it
Twang', and the world market came our Atlas.
I did not hear the name 'Turing' until lecades later, yet I now read that Alan University until he killed himself in 1954. His name was not on any of the documents I read and used, even hough I did some of the design for the Ferranti Atas. Why was there never persistently read, Turing was the genius who made massive contribution to our work designing and building computers? We did have a resident genius', but his nickname was 'Yanto E T Warburton, not Turing. I never even heard of the 'Turing Machine'
until decades later, though I worked the Ferranti labs for three years. This is a useful sidelight on the bizarre schism down the middle of the subject called logic', or 'logic design
When you do a
When you do a Google search for Turing + logic, you end up reading about
Oxford Logic, about which more later If uring was the brains behind my work, but I find Oxford logicians namedropping him, did Turing have a foot in ooth camps? The answer is probably that he had a foot in neither, but, like my hero
TE Lawrence, his history has to be falsely rewritten now for PC reasons
which will be obvious to
you. you.
The last paragraph is explained by my
journey into the journey into the past
while writing this article. In a letter dated 26 October 1948 the Ministry of Supply placed an order with Ferranti Ltd. "to
construct an electro construlat an electronic the instructions of Professor F." C.
Williams." The line between "mathematicians" and "engineers" was demarcated very clearly, and if not
quite an Iron Curtain, it was a barrie awkward as the MacMahon Act. This would never be Alan Turing's machine. This explains both why never heard of Turing the mathematician, and also why we can ignore Turing when tracing the history
of the development of logic gates. He had no access to those who were developing computer logic design. This also explains something I never before understood, which is why, when I arrived from Cambridge, I was met with such hostility by the engineers. By
ignoring the fact that my degree was in engineering, and that the Cambridge physicist Ken Johnson was already here out-performing them, they would
 have feared that I was yet another unpractical
Cambridge Cambridge
mathematician like Turing trying to do engineering
design. It also design. It also
explains why explains why
they reversed they reversed
the deflection the deflection
plates on Ken Johnson's oscilloscope,
and were osciloscope,
and were
gleeful when gleeful when
it took him a it took him a
week to find out
what was wrong. The autumn of 1949 saw Alan's only titbit of hardware design for a Ferranti machine. His own electronic knowledge stopped short of the necessary practical detail. In 1959, when I started doing logic Computer, I asked my boss, the Charlie Portman, what books I should read. He replied that there were none. He said we were doing something totally new. So much for the influence
of 'Oxford Logic' an academic of 'Oxford Logic', an academic centuries. Stargazers tell me that Sirius

is a dog's leg. Our Sirius was the size and shape of an upright piano. Total main memory was was minimal. This wasticle's text would j about fill our memory. We. had an assembler from Machine Code into Assembler, which would
then be printed onto then be printed onto punched tape, to be used
as input when the
had no (real time) interpreter. A cabinet with three times more add-on memory cost what I would earn in ten years. One logic gate cost $£ 5$, half a
week's pay. I did some of the logic design, including the 'Divide' instruction, which we added to entice

All oranges are purple.

It is purple. Therefore it is an orange. True of false?
the reluctant customer to our $£ 25,000$
machine. Start with Dividend and Divider, and end with Quotient and Remainder. I did 'divide' by successive subtraction. Take the
divider away again and again until what is left of the Dividend changes sign. Add one Divider back, and subtract one from the count of how many times, which becomes the Quotient. What is then left of the Dividend is the Remainder. You might me to look into what I call 'Oxford Logic'. I have never, ever, found useful overlap between Oxford Logic and my decades of salaried work doing logic design of digital systems.
When I do a Google search for Logic
implication, which latter is the only "function" that I remember from their world, I find hits or Turing! When I do a Google search for Turing +
Boole, I get the
Boole, I get the
book, The
Computer: The
Road from Leibniz
to Turing by
Martin Davis.
Martin Davis.
What is "The
Universal
Universal"
Computer"? Is it our kind of computer, or some confection of Oxford Logic? writes:
"The first major advance George Boole developed an algebra of ogic. His system was able to capture a
everyday reasoning, but it still had limitations. Gottlob Frege was able to address these limitations, and in so doing, created essentially the system of first-order logic which we use today.
I have never heard of "first-order ogic", although I designed compute systems for decades. "First-order logic which we use today"! Who uses it? So Turing is behind first order logic etc., and Turing is the genius behind the digital computers I helped to design.
And I never heard of Turing until years later, and I never heard of "first order logic" until today.
Mark Johnson ends:
"Read this book. Have your friends read it. And remember both the
logicians and the engineers the next time Does he mean logic designers like me who designed your computer, or he Oxford logicians who bend the brains of their students?
I outline the nature of Oxford Logic
Allows:
All oranges are purple.
It is purple.
Therefore it
True of false?
Since I usually earned my living doing logic design, or teaching it to students, my mind resists going tuff. Do the students who get sucked into their logic then run away, and become pinstripes in the City earning fat salary trading currencies? Or do hey go on to teach younger victims about purple oranges? Arnold Lynch
says that Colossus was not a computer says that Colossus was not a computer,
and it lacked memory. He also says that Turing was involved with a simpler machine and had nothing to do with Colossus.
I have concluded that since even in my time there was virtually no software memory, it followed that upuntil then

MIND
a quarterly review
PSYCHOLOGY AND PHILOSOPHY ting machinery and

although mathematicians
might have done brilliant work using their
primitive computers, they computers, they
would not have been able to influence computer hardware. In much the same way,
however brilliant roved in my use of a hand calculator in 1980, I would not have had much influence on its design, particularly if I had little knowledge of its engineering. Last week, Amold Lynch said that in the case of cracking German codes
with Colossus, 80 or 90% of the challenge was in the hardware design
nd construction. Turing, who Amold ays was probably the best nathematician at Bletchley, could only ave influenced the other 10 or 20%, hat is, developing procedures to solv roblems using any available pecified by Max Newman, who had Furing as a student in Cambridge. Amold says that Bletchley rejected Colossus because of their lack of technical knowledge about valve tiability, and it was built by Flower Bletchley. Here we see that lack of echnical knowledge caused nathematician/cryptographers to obstruct architectural advance eve wwards special purpose compute problem. As with stitch bonding, stat of the art technical knowledge is indispensable, even for apparently special purpose machines, let alone Eeneral purpose.
hen writing his article in EW May 2004, Sallows enters a murky wo ncouraged much rewriting of history aided by the heavy secrecy surrounding Bletchley Park. However, ven without the present urge to erase ny achievements by white heterosexual males from history, he
would have been misled. Sallows' 'remarkably simple, highly intriguing probably useless, but undeniably fandamental new result in switching heory" is to get two inverters, aided y numerous other Boolean logic aes, to perform the function of t erives from the era when the ansistor inverted, and the transistor was expensive. In contrast, I am oncerned about very useful but suppressed aspects of logic design
which Sallows tends to obscure even ore The reason is that Boolean functions are not fundamental, as howed in my article published in February 1968, see
www.ivorcatt.com/47.htm, where prove that the basic set of logic unctions with one or two inputs total four, the Inverter, the AND, the OR
and the Exclusive-OR. Starting with a gate with one input, we find that one ype only, the Inverter, is possible. Moving on to gates with two inputs where the inputs are treated the same, I show that the three basic gates are
AND, OR and Exclusive-OR. All
other possibilities are the inverse of my three, plus output stuck at 0 and output stuck at 1.
Lacking the Exclusive-OR, nothing which builds on Boole can be Boole, who intellectualised about his
kind of logic in 1850, not about the basics of the digital electronic computer in 1950 and 2000. Even in his own period he was at fault for missing the Exclusive OR, but not
seriously so considering his objective to clarify reasoning. In stark contrast, our billion-dollar industry wants to serve humankind without subjecting them to intellectual activity. The computer designer wants to get the hole in the wall to deliver cash to you
aided by minimal thought and action from you, and without your having to

Truth as a semantic concept

I should like to propos the name "the semantic conception of trut $h^{\prime \prime}$ for the conception of truth which has just been discussed.
consider the nature of Truth, which is irrelevant.
Computer science did not emerge into view as a separate discipline from a cluster of related topics. Logic desig emerged as part of digital hardware design when engineers strove to build hat short-term engineering hat short-term engineering fundamentals which for a tim happened to reinforce the gap
Boole's set of logic functions. T have checked back to find that ircuitry was so expensive and small in had virtually no logic design content. A few years later on, mechanical relays could most easily implement AND, OR and INVERT. The next generation of logic, using resistors and very expensive triodes, later expensive mansistors, could most economically Exclusive OR remained more expensive to build.
Although I went on a training course to programme the last machine to use triodes, the Ferranti Pegasus, I did beyond a three bit counter. My main logic design began with discrete diode and transistors. A transistor cost $£ 2$, bout a day's pay, while a diode was much cheaper at seven shillings. The uling logic gate used a bank of diodes ransistor which insisted on inverting while doing so. This series of accident caused the incompleteness of Boole's et to be overlooked. The Exclusive OR required two transistors, and so was ruled it out of the set for reasons of cost.
By 1965, the cost of transistors had
fallen enough to justify building the exclusive OR, but virtually nobody did. Its design relied on the fact that in order to conduct, a transistor's emitter
and base must be at different voltages and base must be at different voltages
One transistor would conduct for A and NOT B, while the other transistor would conduct for B and NOT A. Collector OR-ing gave the complete Exclusive OR. Only one person, the logic board designer in Data Product Corp., Culver City, noticed the very useful, and this helped me to escape from the conceptual trap everyone had fallen into, starting with Boole and deepening because of short term engineering tradeoffs with relay and valves.

Oxford Logic

Iwent to see my co-author Dr Amold Lynch this week and audiotaped him for two hours on his design work on the Bletchley Park Colossus, which Lynch said was not a computer and
had no memory. Ninety years old on June 2, 2004, he is one of only two survivors from those who helped to design and build the machine, see Electronics World, June 2004, page 16 . There were "need to know" secrecy barriers within the design
team, but after the war, Lynch heard lecture by the key designer, Thomas H Flowers. Flowers said there was no mathematical symbolism in the matter of the machine s logic, whereupon Lynch suggested to him that he read Tarski, not knowing that Tarski was
"Oxford Logic" (purple oranges). A single quote from Tarski will suffice: Truth as a semantic concept. I should like to propose the name "the semantic conception of truth" for the conception of truth which has just bee discussed.
As my web pages show, my concerned about Truth, as his article in Nature proves. Our concerns do not map onto Oxford Logic. Further, both are orthogonal to my decades of work designing computers, where true and
false are given, and never questioned. false are given, and never questioned.
Tarski and Oxford Logic, and also my own concerns about Truth, have no place in digital computer hardware as it developed, and as it is today. My own suppressed article on Truth, and also Theocharis can be found on my websites.
In your local bookstore, you can pay 40 for a book on Oxford Logic 2002, presumably used as text in college courses on "Logic" to unsuspecting student victims. This will e them access to the multi-
hardware, that my culture spawned, but which has admittedly now been driven abroad. After reading half a page of Oxford Logic, my head is spinning, and I stop. Oxford students
must be chastened, deeply impressed by the Tarski tribe standing between them and their degree.
When I was Principal Lecturer in West Herts College and a member of the County Syllabus Committee, I tried hard to get rid of magnetic core memory from our Computer Hardwa obsolete for a quarter of a century. I failed, because all the other lecturers, although junior to me in status, succeeded in stopping me from removing what little they knew from
the syllabus. he syllabus hardware bogic has no relevance to the hardware behaving the way you want le in the eage for money with a Wole in the wall. My co-author David Walton, who later specialised in problems with large, complex arrays of software, may argue that it then has when the cost of memory had fallen and made complex software possible. Sources for this article can be found at www.ivorcatt.com/47.htm

ELECTRONICS WORLD

 Back Issues WORLD IIIIIIII

Back issues of Electronics World are available priced at $£ 4$ including $p+p$ in the UK and $£ 4$ plus p+p elsewhere. Please send correct payment to:
Electronics World, Highbury Business, Media House, Azalea Drive, Swanley, Kent BR8 8HU There are a also a limited number of back issues from 2002 \& 2003

NEWS AND TECHNOLOGY \quad INSTALLATION $\simeq S E R V I C I N G ~ ■ D E V E L O P M E N T S$

Television and Consumer Electronics magazine is the only magazine for technicians who deal with consumer electronic products, in particular V , video, satellite and audio equipment.

- Launched in 1935 this respected journal is the longest established consumer electronics magazine
- Tips and guides on repairing television and electronic equipment including satellite receivers,, PCs, monitors, VCRs, DVD, audio equipment and much more
- Keep up to date with the latest information and changes affecting the industry
- Essential reference and in-depth features covered monthly
- Essential reference and in-depth features covered monthly

Make sure of your copy now...

Subscription rates for 1 year: UK $£ 33.80$ • Europe $£ 49.00$ or $€ 92$ USA $\$ 104 \bullet$ Rest of the World $£ 63.50$

Subscription rates for 2 years
UK £53 - Europe £78.40 or € 146
USA $\$ 166.65$ • Rest of the World $£ 101$

Contact
Highbury Fulfilment Services,
Link House, 8 Bartholomew's Walk, Ely, Cambridge CB7 4ZD.
Telephone 01353654431
Fax 01353654400
Email hbc.subs@highbury-wyvern.co.uk

8003

In line with our policy of producing top quality products at amazing prices we have reduced the price of our best selling items by up to 50%

DEDTUUKS NO. 1 IEC CONNECTION

CALL OUR SALES HOTLINE
050005253

24 HOUR DELIVERY SERVICE
OLSON HOUS OLSON ELECTRONICS LIMITED
 e-mail: sales@olson.co.uk web site: http://wwwolson.co.uk

Please quote Electronics World when seeking further information

New family of Pentium M processor boards
Concurrent Technologies and Concurrent Technologies
Thales Computers have undertaken joint development
of a new fanily of Pentium M of a new fanily of Pentium M
based VME processor boards based VME processor boards available in commercial, rugged versions. Under the agreement, concurrent Technologies will be responsible of the design and manufacture of the commercial product lines, an Thales Computers will be manufacture of the extended and rugged products. Both companies will sell all versions under a crossdistribution agreement. This
brings to the market a product family that will meet the needs of customers whether they are involved in commercial or defense oriented products. Customers
will be able to start will be able to start development with commercial
versions and progress to the rugged versions, safe in the knowledge that their sof tware can transfer seamlessly from one version to the other the first commercial products
are due for release during Q2, are due for release during Q2,
2004, and the rugged products will be available later this year. Concurrent Technologies www.gocct.com Thales Computer www.thalescomputers.com

New entry-level 45W battery-charger PSU
$\frac{\text { ght }}{\text { Hint }}$

New flight-deck security panel A range of flight-deck security panels incorporating an integral sunlight-readable annunciator
ensures flight crews are always able to see when a cockpit door is unlocked regardless of the prevailing lighting conditions Designed as a front end for fligh deck access control systems in commercial aircraft, the new pane
utilises high-brightness LEDs for illuminating the annunciator and illuminating the annunciator and
conventional filament lamps for the rest of the panel legends. The annunciator's 'secret till lit' legend remains hidden until illuminated by the LEDs, and at
night the panel's integral autodimming sensor reduces the ligh output from the LEDs to an appropriate level. The annunciator remains operational even in the unlikely event of an LED failure.
Paramount Panels (UK)

Amalgamotion of established component manufoctuers

Microponents Ltd and
Micro Metallic Ltd, well established manufacturers of high precision
components for
automotive,
communications,
aerospace and high tech engineering applications have amalgamated to become Precision Micro Ltd. This new company has a comprehensive
portfolio of manufacturing capabilities, providing photo etching, laser cutting, EDM, electroforming, precision stamping, forming and finishing and will meet customers
requirements for finished requirements for finished
components from a single so

Lincoln based manufacturer VxI Power has launched an entry-level 45 W switch-mode power supply unit, ideal for use as a battery
charger in cost-sensitive fire charger in cost-sensitive fire-panel
applications. Known as Oracle II45, this PSU satisfies the minimum requirements of the EN54-4 standard for local power supplies
used in fire-detection and alarm used in fire-detection and alarm systems. Operating from a
universal 90 to 260 V AC in universal 90 to 260 V AC input, the
power supply comes in 12 V and

he combination of manufacturing technologies nables Precision Micro to work including ferrous and non-ferrou metals and alloys, plastics, composites and even wood in 10μ to 16 mm thickness and to tolerances measured in microns. Precision Micro Ltd

24 V versions, providing one main output and one battery-charge output. For maximum flexibility, he total output current can be apportioned between the tw requirements. Oracle II-45 features temperature-compensated chargin to ensure maximum battery capacity at low temperatures and naximum battery life at high temperatures. Independent curren

Gedae software development chosen by Lockhead Martin Gedae, a software development productivity too has been chosen by Lockheed martin for the Non Line-ofsight - Launch system (NLOS-LS) program. After he system software developed and verified on a developed and verifie implements the application by generating an application targeted to specific embedded multiprocessor and embedded hardware. Gedae applies over 100 logarithms to achieve th implementation. the result nd quality but with nd quality but with effort. the versatility of the ool makes it available for all aspects of development including signal and data processing, application control and integration with other systems. Gedae addresses th complete problem ad so avoids
complex and costly interfaces between tools and the development methodologies it improves productivity by more that 5 x greatly reducing schedules and development and life cycle costs. Gedae Inc www.gedae.com
system against faulty batteries and ensures that the main output can function immediately on reconnection of the mains supply after a failure, regardless of the
state of charge of the battery. As state of charge of the battery. As
well as being EN54-4 compliant, well as being
the power suply also meets the requirements of the EN60950 safety standard and all relevant European EMC standards. Vxl Power Ltd,

Electronic enclosures available from HellermannTyton now range from panel instrument cases through small cases suitable for bench top use and wall mounting cabinets for Local Area Networking applications to a comprehensive range of floor mounting 1 inch rack systems. The range of bench cases provide an aesthetically modem yet functional housing with a number of innovative design features. Force ventilated and RFI shielded versions are also available.	A recently launched wall mounting cabinet, the 'VARI 2000^{\prime} is available in $3 \mathrm{U}, 4 \mathrm{U}, 6 \mathrm{U}$ and 12 U sizes featuring 19 inch mountings in the vertical plane to give a space saving design. A two piece combination door on the larger sizes means that the	cabinet can be mounted in a recess or in the comer of a room yet still provide full access for cabling and maintenance. The floor mounting enclosure range fulfils all installation requirements from single stand alone units to multiple cubicle suites. Details are given in the company's 180 page catalogue available on request, or on its website. HellermannTyton www.hellermanty yon.co.uk	
New gentic algorithm and direct search toobox for MATLAB Engineers and scientists are constantly looking for approaches to find optimal solutions, perform trade-off analysis, balance multiple design alternatives and quickly incorporate optimization methods in their algorithms and models. the Gentick Algorithm and Direct Search toolbox helps them achieve their goals by making optimization technology more accessible through graphical user interfaces and structured command line tools. The MathWorks continues to expand the range of problems MATLAB can address. The toolbox serves as a central access point for the tools required to use genetic and direct search algorithms. Users can learn from and build customised optimization routines as needed. The Genetic algorithm and direct Search toolbox requires MATLAB and the Optimization Toolbox and is available immediately for Windows, UNIX/Linux and Macintosh systems. MathWorks www.mathworks.com	Handheld oscilloscopes gai Fluke has announced new enhancements to its dual-input ScopeMeter 190 Series of hand-held oscilloscopes increasing their power to analyse signals. Idal for engineers working n service and engineering applications they now offer increased waveform resolution providing even greter signal detail to help uncover anomalies and also include Frequecy Spectrum Analysis using Fast Fourier Transformation (FFT) analysis as a standard fe ture. With safety c ertificai ion to $1,00 \mathrm{~V}$ CAT II and 600 V CAT III users can safely solve virtually all electronics mea ;urement problems encountered out in the field. The battery-powered oscilloscope of fers u.p to 200 MHz bandvidth and $2.5 \mathrm{GS} / \mathrm{s}$ real time sampi ng rates, the speed, perform nce and analysis power usually und only on high-end benc: scilloscopes. Bandwidths st: at 60 MHz for the entry leve] 2B. The waveformme ies on all models have increased by 150% allowi many as 3000	samples per channel to be acquired. The high-resolution can be transferred to a PC running optional FlukeView ScopeMeter sof tware for dicumenting, archiving and analysis. All ScopeMeter models have a large 320×240 pixel display, a fast display update rate, up to 1000 V independently floating isolated inputs, a facility for measurement of effective output voltaages of variable speed motor drives and frequency inverters and a 5000 counts truerms multimeter function. A free Fluke Scope Training CD contains self-paced oscilloscope training modules, one set based on general oscilloscope theory, the second eplains best practice in the use of Fluke ScopeMeters Fluke www.fluke.co.uk	NetTek Base analyser is the only base station to offer a toolbox feature set. This addition enables Global Systems for Mobile Communication (GSM) operators to meet the new measurement requirements presented on deployed EDGE (Enhanced Data Rates for Global Evaluation) networks. EDGE does not require a 3G license, and utilises the existing frame structures and carrier bandwidths from GSM networks. Once the EDGE network is deployed operators must ensure tat is is successfully maintained in order o retain and increase mobile subscribers and achieve return on investment. Tektronix has added EDGE support to its proven handheld NetTek analyser's portfolio of daily maintenance measurement capabilities. Tektronix is the first manufacturer to offer EDGE measurements in a handheld toolbox form factor. the instrument's window based user interface simplifies operation and minimises training needs. the compact battery-powered tool, which weighs just over 4 kg is lightweight ad rugged for transport to remote sites. Tektronix Inc www.tektronix.com

NIANI PRODUCTS

Please quote Electronics World when seeking further information

New circuit breakers improve reliability

Aerco is now stocking the ETA ange of DIN rail circuit is designed to plug into industry standard terminal blocks and replace glass fuses commonly sed in DIN rail terminal-block applications with the advantage replacement time and do not experience age degradation. They are 'hot-swoppable' and can also be used as an off/on switch to provide safe shutdown during equipment maintenance. ripping during harmless shortterm surges such as in-rush current associated with motor start-up, therefore a fuse can be eplaced by a 1180 circuit breaker or lower current rating verload protection for devices hat control factory equipment such as assembly line, robots, heaters and machine presses. Designed for voltages up to 180 series is available in current ratings ranging from 0.1 A to 10 A .

Aerco
Aerco
www.aerco.co.uk
A new website
from
Sensortechnics
details a
contact page
which lists all
of SensorTechnics technical
contacts worldwide.
www.sensortechnics.com

D-Sub filtered connector range supported by adaptor kit
Harting has upgraded its range Harting has upgraded its range
of D-Sub filtered connectors an has introduced an evaluation kit that allows users to select the optimum filter to meet their RF suppression requirements. the

kit includes 32 adaptors kit includes 32 adaptors
providing a range of filter characteristics to cover most scenarios. Selecting thee optimum filter is simply a matter of plugging in various adaptors and viewing the filtered and unfitered signalson al oscilloscope. Internal surface provide a variety of functions. The connector design allows segregation of the filtering for each contact and enables filters of different types to be
incorporated to provide a optimum solution. The D-sub filer connector family includes standard male/female, soldercup/straight/right-angle pins, plus a large range of accessories.
Harting Ltd
www.harting.com

New MPEG-4 chip inlegroles 3D Graphics

 to Toshiba's T series, T4G (part
no. TC35285XBG) supports rendering of graphics including advanced shading, texture mapping, and special effects enabling high resolution 3D

CD from National Instruments

Engineers can nowuse the resources in configuring new National Instruments $=1$ and developing system Measurement and Control 1 Designer 2004 CD to quickly select the best software and hardware for control applications, saving time control applications, saving time and

Safety across the board

For equipment designers seeking to optimise safety and reliability, Schurter has announced an extension to the FUP series of fuseholders aimed at applications including primary circuit appliances and telecomms equipment. Its high current capability makes the FUP fuseholder suitable for use in industrial power electroni equipment includin and air conditioning systems and explosion proof equipment. Schurter Electronics Equipment www.schurter.com

A low-cost special requirement test cable, Sta-Put features an armour jacket that retains its shape after bending enabling. engineers to position the devic most convenient. Two or more cables can be used to suspend the DUT in air, making it ideal for bench setups and field support. Designed to provid near zero force connector
loading on the test bed the oading on the test bed, the cad
can be bent and reshaped an unlimited number of times. Shielding is specified at greater than 60dB.
Smiths Interconnect - Florida R Labs
www.fflabs.com

Idlirdullil IDEAS

Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process
This includes the odd solution looking for a problem - provided it has a degree of ingenuity.
Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too - provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.
Don't forget to say why you think your idea is worthy.
Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best - but please label the disk clearly. Where software or files are available from us, please email Caroline Fisher with the circuit idea name as the subject.
Send your ideas to: Phil Reed, Highbury Business Communications, Nexus House, Azalea Drive, Swanley, Kent, BR8 8 HU
email ewcircuit@highburybiz.com

A collection of non-inverting logic translators

Many designers seem to be unaware of the possibility to build voltage Yranslators using only a single-stage You only have to look at the realise that whenever such a functio
is needed, as in the Vacuum Fluorescent Display drive section for xample, two common-emitter stages are generally cascaded. Although this
may be justified in some cases, when a high source-current is required, it is

The key to avoiding this wastuofur, The key to aviiding this wasteful base (or gate) configuration Of course, the current gain is reduced to unity, but in most cases, low-voltage

logic families, such as TTL, tend to have a healthy low-level output capability and do not need current
boosting boosting.
How is it
How is it done in practice? Figure signal to be translated drives the emitter of a general-purpose transistor whose base is held at mid-supply by means of the divider formed by R_{1} and R_{2}; on the collector side, a resistor pulls up the potential to the higher
voltage supply. The component value shown are typical and are suitable for general-purpose applications. If VHi exceeds 50 V , other types of transistor can be used: the 2 N 5551 withstands

160 V and the $\mathrm{BF} 422,250 \mathrm{~V}$. In its basic form, this circuit is relatively slow; adding a small capacitor between base and ground ca
reduce the switching times, and if maximum speed is needed, substitute HF type for the transistor: a BF494 for example. Note that even with these modifications, the rise time will depend essentially on the load capaciance, if it cannot be reduced, decrease R_{1}, at the expense of the current consumption.
The logic low output voltage of this level shifter will be that of the lowvoltage gate plus the saturation voltage IC, this amounts to about 600 mV . The logic high output voltage is essentially equal to VHi (unloaded of course). In practice, R_{2} can often be omitted; it is certainly the case with CMOS families, thanks to their rail-to-rail swing, but despite their theoretical
high level output voltage of only 3 V TTL families also seem to operate satisfactorily under those conditions.
When operation at really high voltages is required, it is preferable to use the circuit of Figure 1 (b) rather than simply choose a transistor having circuit has rigidly controlled operating conditions, which provide increased protection against breakdowns; in addition an active load is used instead of a simple resistor: this increases both the speed and the
no power penalty.
For applications requiring the lowest low-level output, a Schottky diode must be used between the base and emitter of the upper BUX87; in other cases, a 1 N 4148 is perfectly adequate. This circuit operates at up
to 450 V and down to DC and 1000 V under pulsed conditions; it is therefore suitable for off-line
converters, frequency variators etc.
If a small MOS transistor is
substituted for the bipolar type, the base resistors can be eliminated Figure 1(c). The main drawback of this circuit is the relatively large
drain capacitance of the MOS leadin to slow rise-times as compared with the bipolar version. You also have to make sure that the threshold voltage of the transistor is lower than the supply voltage VLo. This is not likely to be a problem in 5 V , but at concern.
The highest performance version is that of Figure 1d: not only are the bias resistors unnecessary, but the circuit also benefits from the low capacitance and high speed of the jFET. referenced to the logic supply, but relies on the depletion mode of action of the transistor.
For proper operation, you simply have to ensure that the transistor has a Vp smaller than the supply VLo (a substitute a BF245A).
Finally, why would you bother to reinvent the wheel? After all, logic translators exist in integrated form and come in many variants. Here are some reasons:
Integrated translators come in packs
of 4 or 6 ; very often, you only need of 4 or 6 , very often, you only need
one or two. Even when you can use up the whole package, it may not be practical because the four operators will be needed at the four corners of the board, making the
With home-brew translators, you can tailor the circuit to your application: if you change the resistance values from $\mathrm{k} \Omega$ to $\mathrm{M} \Omega$ in Figure 1a, the circuit operates as before, but at micropower levels. And finally when you have to are the only option.
Louis Vlemincq
Auderghem
Belgium

Simple infrared remote control extender

Many electronic equipment like TVs, CDs, etc. use an infrared remote control. Since the ange is limited, sometimes the range of the emote control needs to be extended. A purpose.
A photodiode is connected to the inverting input of an op-amp through a resistor R4 and a capacitor C 1 . The other non-inverting input of an op-amp through a resistor R4 and a capacitor C 1 . The other non-inverting input is R3 which provides the reference voltage.

The output terminal pin no. 6 is
connected to the two infrared EDs through two infrared 0k. An led is also the output of the op-amp, throu voltage dropping resistor R.5(1k). This LED indicates if the unit is working or not. VR1 is uses for setting the maximum current output Raj K. Gorkhali Nepal

A new current-mode universal filter based on CCIIs

The fad that a second generation Curren Conveyor CCII is treated as the standar continuous-time circuits is attributed to its advantages of having higher signal bandwidth, greater linearity and larger dynamic range than the conventional OTAs and OAs. These novelties have attracted the number of circuits employing CCIIs have been reported. These circuits use either excessive components or need to change circuit topology to realise additional filtering signals ${ }^{2}, 3$. Also in the recently reported rchitecture 4,5 , the capacitor at the x-terminal the CCII realising the BP filtering function high frequencies. It is worth noting that the multiple output active devices are being overwhelmingly used to simulate analogue filters and other structures for their facility of arrent output sources.
Here we are proposing a canonical
CCIIs with three outputs ${ }^{6}$, a single DO-CCII, two grounded capacitors and three grounded resistors. The circuit implements all the five generic filtering functions and can implement hree basic filtering functions viz. LP, HP, namely AP and Notch, can be realised simply by connecting appropriate nodes and for their implementation no change in circuit topology is required as no additional components are eeded
The architecture of the proposed circuit is ntegrable as it uses grounded capacitors, resistors can be replaced by OTAs configured stesistors, lending electronic tunability to filter parameters besides making the configuration resistorless, which is highly desirable in IC technology. The sensitivity performance of the circuit is very low which offers economy in chip area as it has only one hput and three outputs. The proposed circuit, besides overcoming the problems
encountered in the circuits, also negotiates most of the advantages of IC construction.
A routine analysis of the circuit in the figure yields the following current transf functions:

$\mathrm{T}_{\mathrm{HP}}=\mathrm{I}_{1} / \mathrm{I}_{\mathrm{IN}}=\mathrm{s}^{2} / \mathrm{D}(\mathrm{s})$
$\mathrm{T}_{\mathrm{BP}}=\mathrm{I} 2 / \mathrm{I}_{\mathrm{IN}}=\mathrm{s} / \mathrm{C}_{1} \mathrm{R}_{2} / \mathrm{D}(\mathrm{s})$ $\mathrm{T}_{\mathrm{LP}}=\mathrm{I} 3 / \mathrm{IN}_{\mathrm{IN}}=1 / \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{R}_{2} \mathrm{R}_{3} / \mathrm{D}(\mathrm{s})$
Where. $D(s)=s^{2}+s / C_{1} R_{2}+1 / C_{1} C_{2} R_{2} R_{3}$
The all-pass response can be obtained by adding the output currents $\mathrm{I}_{1}, \mathrm{I}_{2}$, and I_{3} and is given by
$T_{A P}=\left(s_{2}-s / C_{1} R_{2}+1 / C_{1} C_{2} R_{2} R_{3}\right) / D(s)(4)$
From equation (4) it is clear that to realise all-pass there is no need of imposing
constraints on the elemental values. The notch response is realisable by summing I_{1} nd I_{3} and is given by
$\mathrm{T}_{\mathrm{N}}=\left(\mathrm{s}^{2}+1 / \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{R}_{2} \mathrm{R}_{3}\right) / \mathrm{D}(\mathrm{s})$

References:

1. C.A Karbakas and C.A Papazoglou. Low-sensitive CCII-Based Biquadratic Filters 1996. 2. A M. Solimam Curr
2. M. T. Abuelma'atti and M H. Khan. Low component current-mode universal filter Electronics Letters. vol. 31. no. 25,pp. 2160-2 162, 1995.
3. Ali Toker and Serdar Ozoguz, Insensitive current-mode universal filter using dual output current conveyors Int. J. Electronics. Vol. 87, no. 9, pp. 667-674, 2000
4. Shahram Minaei and Sait Turkoz New current-mode, current controlled universal filter 6. Erik Bruun, A combined first- and second-seneration current conveyor structure Int. I 6. Erik Bruun, A combined first- and second-gene
Electronics. Vol. 78, no. 5, pp. 911-923, 1995

The filter performance factors ω_{0} and ω_{0} / Q are given as under
$\omega_{0}=\mathrm{v} 1 / \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{R}_{2} \mathrm{R}_{3}$
$\omega_{0} / \mathrm{Q}=1 / \mathrm{C}_{1} \mathrm{R}_{2}$
An inspection of equations (6) and (7) reveals that ω_{0} / Q can be adjusted by R_{2}, and disturbing ω_{0} / Q, thereby providing disturbing ω_{0} / Q, thereby providing
non-interactive tuning feature of filter parameters.
ies: The active and passive
$-\mathrm{S}^{\omega 0}{ }_{\mathrm{Cl} 1, \mathrm{C} 2, \mathrm{R} 2, \mathrm{R3}}=0.5 ; \quad-\mathrm{S}^{\omega / / \mathrm{P}} \mathrm{Cl}, \mathrm{R} 2=1$

N. A. Shah and S. Z. Iqbal The University of Kashmir Srinagar India

Proposed CM Universal filter

ELECTRONICS
WORLD
Please reserve/deliver a copy of Electronics World for me each month
Name and address.
\qquad

Complementary Cascode

The circuit shown in Figure 1a uses a FET to provide high input impedance and a bipolar devices the output impedance of the FET ($=1 / \mathrm{gm}$) is much greater than the input impedance of the bipolar, which here functions in the low-impedance common-base connection. Thus the FET acts as a source of
input current for the bipolar. The latter has a current gain of unity, very nearly. Hence the combined stage gain approaches gm1. R_{c} Both devices function in wide-band modes. Since the output is in phase with the input, the circuit can be turned into an oscillator b coupling Rc to the gate of the FET. If Rc frequency. No coil taps or secondary windings are needed and one side of the tuned circuit is earthed. If a resistive load. (Rc) is coupled to the gate by a capacitance the result is a relaxation oscillator. In this form the circuit has a long history. In in
fifties it appeared in an ancestral form in which the FET was a triode valve and Tr_{2} a point-contact transistor.

D.C. conditions

One way of setting-up Figure 1b uses a preset potentiometer RV_{1} to adjust the gate bias. For the bipolar, R_{b} (typical value hFE.Rc) is chosen to set the emitter-collector voltage. If Trl is a type whose gate cut-off olage is a sizable fraction of Vcc it may b possible to dispense with $R V_{1}$ return R_{g} directly to the earth line. Ir_{2} then acts like working points for both transistors.

Gain and bandwidth

With practical FETs and supply voltages the bandwidth is large but with resistance loads the voltage gain is modest An attractive

feature is that intermodulation can be kept low by choosing a suitable operating current for driven its nonlinearity is swamped. Even if Tr_{2} operated at a considerably lower current (I_{E}) than $\mathrm{Tr}_{1}\left(\mathrm{I}_{\mathrm{S}}\right)$ this would still be true. Thus if some of Tr_{1} 's source current is bled off via a bypass resistance $\left(\mathrm{R}_{\mathrm{s}}\right)$ the resulting reduced collector current enables R_{c} to be increased, so increasing the votage gain. Bandwidth is in many practical cases is still adequate. Instead of wasting current, in R_{s} it can be used Figure 2 to supply an emitter-follower Tr_{3}. To minimise bleeding off of signal current from $\operatorname{Tr}_{1}, \mathrm{R}_{\mathrm{d}}$ should be several times the input resistance of Tr_{2}. C_{d} prevents signal feedback
to Tr_{1}. This three-transistor circuit which might be called a complementary cascode follower, has the desirable qualities of high input impedance, low output impedance and useful gain. With the circuit values shown V_{cc}

At the point of clipping output was 10 V p-p.

Bipolar complementary cascode

The FET can be replaced by a suitably biased) NPN transistor. The input resistance is then comparatively low but internal eedback is reduced. The effective mutual conductance is half that of Trl. Connecting a esistance R_{e} between emitters raises input resistance to roughly hfe $1 . \mathrm{R}_{\mathrm{ee}}$ and reduce
the effective mutual conductance to about $1 / \mathrm{R}_{\mathrm{ee}}$. When connected as an LC oscillato Figure 3 the condition for oscillation is that $\mathrm{R}_{\text {ee }}$ should be less than the dynamic esistance rd of the LC. By setting $\mathrm{R}_{\text {ee }}$ just ow enough for oscillation $\mathrm{R}_{\text {ee }}$ is very nearly he same as rd and the circuit can be used to Since rd = $\omega \mathrm{LQ}$ this enables the circuit Q to be calculated.
George Shor
West Sussex
West
UK

Figure. 1: Basic
cascode follower.
Output is in phase
Output is in phase
with input and gain gml. R_{c}. $\underset{\text { Practical circuit. }}{\substack{g m i \\ N_{c}}}$
Figure.2: Gain can be increased by reducing the current in $T r_{2}$ and
increasing R_{c} The surplus source curre surplus source cur
supplies emitterfollower Tr_{3}.
Figure.3: Bipolar
cascode makes a
convenient two-
terminal oscillator

The circuit in Figure 1 allows a PC ocontrol 16 binary output lines agh R-232 serial port. A isted Visual Basic program provid grle switch buttons with 16 toggle switch buttons plus a clear click any toggle switch button to turn on and off that channel. When a channel turns on, the corresponding button changes colour from grey to ed. Click the same button again, the channel turns off and the button buttons work independently. If the clear button is clicked, all channels will turn off at once. Figure 2 shows all channels off. In Figure 3, channel 5 and 12 are on and the others are off The RS-232 port has 9 pins. For defined as in Table 1.
The status on pin 1, 6, 8 and 9 can be read directly. For pin 4 and 7 , the outputs can be written directly. Pins 3 nd 2 are used to send and receive serial communication signals and are However, pin 3 can send pulses if corresponding registers are set up properly. The minimum voltage on output pins is between -5 V and +5 V , normally is between $-8-12 \mathrm{~V}$ and +8 east several mA driving current The input level is most likely RS-232 and TTL compatible. For example, a common RS-232 driver/receive (MAX232) uses +1.4 V as logic hreshold with 0.5 V hysteresis to handle slow signals. For this
application, only output pins are used.
IC_{1} and $\mathrm{IC}_{2}(74 \mathrm{HC} 595)$ are 8 -bit erial-in parallel-out shift regist
with output latches. They are onnected as a 16 -bit shift register. hree signals are required to drive (a) 1-bit serial data signa
(b) Shift clock and
(c) Latch clock. 16 shift clocks will move data into the register serially. After that, a latch clock sends all 6 -bits to 16 channel output registers simultaneously. When a button on the
screen is clicked, the program will update the status of all 16 outputs, end the 16 outputs to IC_{1} and IC_{2} in serial and then latch them into the parallel outputs of IC_{1} and IC_{2}. The Visual Basic 6 program uses pulse. RTS line (pin 7) sends out sh clock. The DTR line (pin 4) has two usages. It provides power to IC_{1} and C_{2} through $\mathrm{D}_{6}, \mathrm{C}_{1}$ and C_{2}, so most of the time it stays high. It is also sed to send out 1 -bit serial data hrough D_{5}. Zener diodes D_{1}, D_{2} and output voltage to +5 V
Since the RS-232 serial output port has limited output current, no current limiting resistors are required. Yongping Xia
Torrance
Gorrance
U.S.A
or the listings mentioned above please email Caroline Fisher (details and she'll send them to you

Pin no	Name	Input/output	Control
1	CD	Input	Direct
2	RX	Input	Indirect
3	TX	Output	Indirect
4	DTR	Output	Direct
5	Ground	-	-
6	DSR	Input	Direct
7	RTS	Output	Direct
8	CTS	Input	Direct
9	RI	Input	Direct

Sub-woofer unit

This unit was designed as a fre standing corner sub-woofer to of a commercial domestic ' Hi - Fi ' system which was equipped with a subwoofer output at line level which had a 3 dB point of 400 Hz , but no sub-woofer. It was intended to sit
behind a bookcase which was angled across the corner. 6 A quite small and fairly cheap 6 inch polypropylene woofer is the
driver. driver.
The slightly unexpected result has a response which goes below the limit produce audible harmonics when driven at 15 Hz .
Construction is simple and it can be driven to the limit of speaker excursion by 20 Watts. At this poin it is very loud! There is little output The method
small conical triangular horn (these, unlike exponential horns, have no defined LF cut-off point) fed from the usual small air chamber by the usual 0.5 cone area port, feeds into a chamber, which in turn feeds th outside through a 0.5 throat area port. The direct sound from the back of the speaker appears to play little role in he output
The small horn has a small effective gain at LF and would not be load the cone much. It does however, give a matched feed to the large chamber which is too small to be esonant at the frequencies involved, but refle some to the outside. The pressure wave reflected back into the horn (without phase reversal) loads the cone which in turn converts more of he electrical drive into acoustic energy in real time and the process
builds without involving any true resonance. This reduces the cone movement to some extent and reduces the sound output to the speaker rear.
At about 300 Hz the output of the cone is out of phase with the which effectively eliminates the output up to and above the crossover point. This subwoofer will sound ruly horrible if fed with a full band signal.
The transient response sounds very good although I do not have the frequencies involved. A bass drum sounds like a live bass drum, which is

not the case with a number of systems I have listened to. Some of the low ootes in the audio CD can send a shiver up the spine, something normally reserved for large cinemas. Although the
corner placement is ideal, the unit does not really need it and a ectangular
ersion could easily be built by making the top and bottom covers Construction is straightforward. All joints which could provide a path from the front of the speaker to the back should be sealed. The amplifier box can be deleted, reducing the height. If this is done, then the box
can be inverted so that the floor of the room acts as a continuation of th unit. The amplifier used in the prototype has a quiescent dissipation

Section A-A
of only 6 Watts so an automatic of unction was not required. The iangular vent at the corner acts as
chimney for warm air drawing air into the vents at the bottom. I am not aware of any other speaker cabinet which uses the same principles and if there is one out ere I apologise to the originat
R.M. Catchpoole Australia

Phase failure protection for three phase

protection. When Phase R is present Relay RL-1
latches and LED, DF latches and LED, DF
glows and indicates the presence of Phase R. The normally open contact of RL-F is in series with the coil of RL-T. If Phase RL-2 latches and LED, glows and represents the presence of Phase S. Similarly the NO contact of RL-2 is in series with
the coil of the three phas
 simple and inexpensive circuit provides this latches and the three-phase supply is
connected to the load. Failure of any phase is indicated by the OFF state of the LED and three phases are present three LEDs D1, D2, D3 are ON and the load is connected to the three-phase supply.

R1, R2, R3 $=120 \mathrm{~K} \Omega, 0.5 \mathrm{~W}$
D1, D2, D3 $=$ Red LED.
RL-1, RL-2 = SPCO Relay, Coil Voltage 220 Vac , Contact Rating 1 A ac
contactor, coil voltage 220 Vac

Contact rating depends upon the load Muhammad Naheem Slamabad

Decibel meter

The decibel meter of Figure 1 comprises two \log amplifiers A1 A2 of an LM 324 The outputs of A1 and A2 are given to a differential amplifier A3 and its output forms input to a non-inverting gain amplifier A4 of amplifiers SLM 324 . The gain of this amplifier is adjusted with a positive temperature coefficient therm
and resistance to give directly the dB output. The thermistor compensates the variation in emitter saturation current IS with temperature. The standard 0 dB is taken as 0.77 v equal to dissipation of 1 mW power in 600 ohms resistor. The input of amplifier A2. The voltage to be compared forms V 1 of amplifier A 1 . The amplifier outputs are as shown in the
sample with example. The advantage of he circuit is that with a single chip of LM 324 decibel meter can be obtained

Bangalore

Bangal
India

Calculations:

Theoretical examples

Amplifier A 1 output $=-\mathrm{KT} / \mathrm{q} .1 \mathrm{n}\left(\mathrm{V}_{1} / \mathrm{R}_{1} \mathrm{I}_{\mathrm{s}}\right)$
Amp. A2 output $=-\mathrm{KT} / \mathrm{q} .1 \mathrm{n}\left(\mathrm{V}_{\text {ref }} / \mathrm{R}_{1} \mathrm{I}_{\mathrm{s}}\right)$
Amp. A 3 output $=K T / \mathrm{q} .1 \mathrm{n}\left(\mathrm{V}_{1} N_{\text {ref }}\right)$
Where $\mathrm{K}=$ Boltzmann's constant, $\mathrm{q}=$ Electronic charge, $\mathrm{T}=$ absolute temperature ${ }^{0} \mathrm{~K} ; \mathrm{I}_{\mathrm{s}}=$ Emitter saturation current $=10^{-13} \mathrm{~A}$.
The value of $\mathrm{KT} /$ q at room temperature of $300^{\circ} \mathrm{K}$ is 0.026 V Therefore $R_{1} I_{\mathrm{s}}=10 \mathrm{~K} \cdot 10^{-13} \mathrm{~A}=10^{-9} \mathrm{~V}$
Amp. A_{1} output $=-0.026 \times \ln \left(2.06 / 10^{-9}\right)=-0.56 \mathrm{~V}$ Amp. A_{2} output $=-0.026 \times \ln \left(0.77 / 10^{-9}\right)=-0.53 \mathrm{~V}$ Differential output of amp. $\mathrm{A}_{3}=0.03 \mathrm{~V}$ Amp. A_{4} output $=$ Differential output $\times\left(1+R_{X} / R_{T}\right)$ /70』)
$=9.9 \mathrm{~dB}$

Practical values:

Amp. A_{1} output $=-0.55 \mathrm{~V}$
Amp. A_{2} output $=-0.52 \mathrm{~V}$
Differential amp. A_{3} output $=0.03 \mathrm{~V}$ Amp. A 4 output $=0.03(1+23 \mathrm{~K} / 70 \mathrm{~W})^{\mathrm{a}} 10 \mathrm{~dB}$ Amplifier A_{4} 's gain is adjusted by the constants $=$ (20×0.4343/0.026) $=334$
The constants are obtained from the following standard relations.
Power in $\mathrm{dB}=10 \times \log _{10}\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)$
le: $\mathrm{dB}=20 \times \log _{10}\left(\mathrm{~V}_{1} N_{\text {ref }}\right)$ (Power in terms of voltage ratio).
$\log _{10} x=0.43431 n x$
$\mathrm{KT} / \mathrm{q}=0.026 \mathrm{~V}$
Thus practical value of dB is in agreement with the calculated theoretical value of dB .

Dynamic mark

 detectorReflective optical sensors are often used in industry to detect marks on packages and documents. Where the mark is net software and a powerful processor. If a simple bar or block is to be detected, a reflective opto-switch will suffice. The catalogues are full of such devices but
they can be tricky to set up and maintain they can be tricky to set up and maintain
if the mark is weak or the environment is dusty or grimy.
The solution offered here uses target motion to allow small changes in reflectivity to be sensed reliably, even when the optical contrast is poor or when
the target is small. The signal, which may be very brief if the target moves rapidly, is stretched beyond 10 ms to ensure capture by an industry-standard
PLC Separate PNP ('source)) and NPN ('sink') outputs are provided, active dark or active light. The amplifier is AC-coupled and can
cope with gradual degradation of the cope with gradual degradation of the optics, but it is sensitive to the 100 (120)
Hz flicker of fluorescent lighting Mount Hz flicker of fluorescent lighting. Mount
the detector within a short matte black tube to limit its angle of view. Shield the target from ambient lighting and flood it with continuous close illumination from two or more high-brightness LEDs. Choose the emission wavelength for
maximum contrast (e.g. orange if the target is blue). The phototransistor will probably have peak sensitivity at $650 \ldots 900 \mathrm{~nm}$ but can still 'see' at 500 nm . To calibrate the emitter and detector
levels, use background levels, use background material as target
and adjust VR1 for a null $\pm 1.0 \mathrm{~V}$ across the two test pins marked J4. If a null cannot be achieved, increase the lighting on the target.
Put a jumper on J 2 to select active dark or active light. R16 and R17 protect the PLCs may protest.
VR2 sets the sensitivity to marks. Since the system is capable of detecting very faint marks, setting the sensitivity
too finely may output a signal from a smudge, a crease or a sudden change in ambient illumination. Set VR2 fully clockwise (its most sensitive position) and set the target material in motion. While turning VR2 anticlockwise, note
the position at which LED D3 begins to flash consistently as the target passes the sensing head. Then note where the flashes are no longer consistent and set VR2 halfway between these positions. Jonathan Reynolds

Gerber and Exce
single-sided PCB
jonathan@valrey cla

Measuring magnetic fields

Alternating magnetic fields can disturb scientific apparatus as as audio/video equipment. area is with a search coing area is with a search-coil
connected to an oscilloscope, b a better method includes a preamp that compensates for the d $t /$ dt effect of the coil: otherwise the lower frequencies are und estimated compared with the coil senses the rate-of-change of flux rather than the flux itself.) The circuit shown in Figure 1 achieves the requisite frequency-
compensation quite simply in compensation quite simply in
fact A2 acts as an integrator, an Al a buffer with additional (suitably calibrated) gain. Thus for a coil wound on a wooden diameter and turns to be equivalent to five squar the pre-amp delivers an output of 100 mV per milliGauss. A fairly ‘quiet' room typically has 50 Hz

at this level for testing at 10 kHz in order to prevent slew-rate
limiting of the output. The residual noise with the input shorted was about 0.2 mV rms at
the output. With the coil reconnected, the ambient field gave an output signal of $\sim 100 \mathrm{mV}$ rms, placing the coil in a steel safe, the output was reduced to about 1 mV rms screening as one can get without resorting to mumetal. A proper screen must be in the form of a complete box or shell, with more than one layer if necessary. Non-
ferrous screens are effective for higher frequencies only, but for 50 Hz one needs iron or its alloys. The purpose of RICl across the input terminals is to unplugged. Of some conc the effect of strong RF fields, particularly from mobile 'phones, which might overload the input stage. For most applications this does not seer
to be a problem, since the coil appears lossy at RF, but R1 may be reduced towards 10 ohms if need be.
When monitoring the ambient with the coil's axis vertical, the dominant 50 Hz signal can vary by a factor of two up or down (i.e. $\times 4$ overall) throughout the
day. This is in the absence of day. This is in the absence of transformers. What seems to b happening is a series of step changes in waveform shape and amplitude in response to varying
distribution cables that may be >10 metres away. Another
insidious contributor is the dreaded ring-main: if the clamp screws are not equally tight on L
and N terminals of 15 A sockets, it is quite possible for the majority of the current to arrive at a load via one half of the ring and return via the other. The resuif is a current-loop enclosing
a large area - an ideal candidate for creating strong and extensive hum fields. It is very difficult to reduce these, short of converting the wiring
network.
Modern digital 'scopes often offer a Fast Fourier Transform function, which is a convenien means of extracting and displaying the spectrum of
frequencies in the waveform picked up. Some examples are shown in Fig.2. In 2a, the detected field was in the vicinity of a 100 VA laminated transformer feeding a rectifier capacitor and load. Note the
harmonics of 50 Hz . In 2 b , the coil was placed above a 14 -inch colour TV set; this time, observe the line-scan frequency of addition to the field-scan whic is at 50 Hz but not synchronised to the mains. If you do not own a fancy "scope, there are now available economical ADC gadgets which connect to
and then the FFT can be performed with a commercial o shareware software package CID Catto
Cambridge Cambrid

July 2004 ELECTRONICS WORLD

A novel circuit to energise latching relays

Latching relays would have more applications, especially in battery supplied equipment, if they didn't need direct somewhat overcome using two coil devices and some mewhat overcome using two coil devices and some here or there to make them more serviceable. Dedicated circuits are even available (for example the VS5-24V, Conrad ref $177555-17$) but they are quite expensive. The idea here proposed relies on the fact that a latching reset. So if you just insert a large electrolytic capacito reset. So if you just insert a large electrolytic capacitor in
the circuit, as in Figure $\mathbf{1}$, it works. I could have verified this, with all the relays of this species I had to hand. So two coils are no longer needed and you can drive these relays from logic circuits with totem pole outputs. The monolithic drivers for power MOSFET are peculiarly well suited for this purpose as they have logic level inputs and
high current outputs. Figure 2 shows how to drive two latching relays with the Harris ICL7667. Inputs are TTL and the Vcc voltage can vary from 4.5 to 15 volts, in accordance with the relays to be energised. The

consumption is 4 mW with inputs low, 20 mW with inputs high and the output resistance is 7Ω.
Needing higher voltages you can adopt the International Rectifier IR2110 double driver, up to 24 volts Figure 3 . For this device the static consumption on Vdd is 200 mA
typical and the output resistance is 7Ω typical and the output resistance is 7Ω,
You can also drive a 48 volt relay wi using the IR2110 as shown Figure 4. Lastly, a very cost effective solution: National Semiconductor buffers CD4050UBC, CD4050BC, CD4049BC and CD4049BM can sink 40 mA and output
12 mA when supplied with 15 volts. Each gate can 12 mA when supplied with 15 volts. Each gate can
therefore drive through his 470 F capacitor a 12 vol 960Ω latching relay with 2 Amperes DPDT (Conrad reference $0504840-30$). So a package can drive 6 relay but ; possible to wire two or more gates in parallel to
dri) driv :ore powerful relays.
Jea
Sa.
re rentassart
urent du Var
-

Oscillator frequency tuned with power MOSFET
This Hartley audio frequency oscillator uses a 32 mH ferrite core inductor or transformer in paralle with he capacitance of a MOSFET as
the resonator tank. Power mosfets such as the 3705N from www.irf.com have a Coss capacitance that varies from say 3500 pF to about volts respectively. This oscillator's frequency is thereby controlled from about 15 kHz up to 30 kHz with the output amplitude staying between 1.8 and 2 V peak to peak
The output voltage is controllable from 0 to 5 pp with the potentiometer. By varying the voltage on gate 2 of the dual gate N -ch depletion mosfet (type ECG 222) the output voltage is kept reasonably constant. Single gate n-ch depletion
junction fets such as the 2N4303 aso work quite well. Sine wave distortion is a concern of course especially when the Vds of the power mosfet approaches 0 V and with larger oscillator output voltage swings. Be sure touse a low leakage capacitor to
connect the drain of the power mosfet to contron Ceramic capacitors gave complications. Distorion can be improved by making the NI:N2 tums ratio greater (say 3:1) and using a higher valued resistorto bias the drain voltage of the power mosfet.
Adjusting the source resistor of the small signal fet also affects output voltage swing. Robert Bliek
Calgary, Alberta, Canada

Vehicular traffic control based on traffic density
a a traffic junction of n roads (four roads being controlsample, Fig. 1) the traffic is raffic from one side to the other in cyclic manner with the time of opening the traffic in ach side determined by the vehicular density block) diagram.
In each side of the junction (Fig. 1) two vehicle sensors (electromechanical or
optoelectronic) are kept at the far end and near the vehicle entering into the road and the vehicle leaving the road. The sensor produces pulse whenever a vehicle passes by it. The present density of the traffic in each road is recorded in respective UP/DOWN counter in count and the near end sensor would decrement it.

At the time of opening the traffic in one side the counter data is latched and given to PWM
(Pulse Width Modultr) to prowe a pulse whose time duration is proportional to the counter data. From this pulse the durations of glowing the green lamp, yellow lamp and red
lamp are derived in the switching system and the lamps are lit up accordingly.
Fig. 3 shows the details of the PWM circuit. The PWM pulse is produced from a flip-flop FF by controlling the asynchronous inputs
and CLR. The U/D counter data from the and CLR. The U/D counter data from the
latch is checked with another 4 -bit counter run by $1 / 4 \mathrm{~Hz}$ clock. When they are the same the CLR input of the FF is activated to mark the end of the pulse. The negative edge of the PWM is detected and is used to start the input of the flip-flop.
The switching starts always with the north
side. The manually operated switch SW presets the FF of the north PWM and clears the others. Fig. 4 shows the details of the switching system. For the sake of simplicity,
only the north side is shown nuly the north side is shown. The monost multivibrator set for two second period yellow lamp of the north side by operating the relay YNR. The remaining period of the PWM of the north side is used to derive the signal GN to switch on the green lamp of th contacts of the relay GNR (GNRI), YNR(YNRI) and RNR(RNRI) close the power supply to the respective lamps for lighting them up. Fig. 5 shows the timin iagram of various switching signals. K Balasubramanian
Turkish Republic of Mersin, Turkey

Infrared locator for orientation of the blind

The electronic circuit of the locator is represented at Fig. 1. The device generates packets of infrared light impulses. The length of each packet approx. 0.5 secs long. Each impulse approx. 0.5 secs long. Each impulse
has the length 60 ms and frequency of their generation is 2.8 kHz .
Reflected from an obstacle, the light reaches the receiver's photodiode. Electrical signals from it are amplified and they reach a
transistor-based simple thresho amplifier. The receiver is tuned to 2.8 kHz . The bandwidth at level \pm ? is 1 kHz . The blind person evaluates the distance from an object by the The locator has following
advantages over other devices:

- one battery, low voltage feeding
- low current consumed (approx.
- increas
- increased level of noise-cancelling
(for example from filament lamp radiation)
- low dependence of the device's sensitivity on batteries' voltage when discharged.
esented an of more than 2.5 m the signal is below the hearing threshold. With reducing distance the volume of sound rapidly its volume reaches the pain threshold. A.Givrilov and A.Teresk Tallim

values of elements marked by * are

RF constant level device


```
I designed this circuit to overcome the nconsistent amplitude of the output from my cheap old VHF signal generator. I through the response of high frequency amplifiers.
The circuit is based around a dual gate MOSFET (a much under-used device, in my opinion) to provide voltage controlled gain. The output amplitude is measured
using a dual Shottky diode to rectify the RF and produce a DC level that is a bit les than the peak-peak amplitude. This HP diode is available from Farnell (549-710) but, at a pinch, a pair of IN916 diodes preferable because the low volt drop allows smaller output levels to be controlled. Silicon devices mean that you will not be able to get much less than 1 V peak-peak.
The level control is performed by a 741 loop stable. A 0.5 mA meter is added to indicate if the MOSFET is working within
```

linear range (typically Vg 2 between 0 V and +5 V)
The two inductors in the source of the MOSFET are intentional. To obtain a
bandwidth of 10 MHz to $200 \mathrm{MHz}+\mathrm{a}$ single coil would not suffice. Using two means that when Ll goes past its selfresonant frequency, L2 continues to provide an inductive load. L1 is 100 turn on a 5 mm former with a dust core. L2 is Most RF dual-gate MOSFETs will work. used 3SK88 and BF964S because they were in my junk box. Likewise the double mitter-follower buffer transistors are no critical, they just need very high fT. p -p to 8 V p-p but the higher outputs are not available across the full bandwidth. Of course, the circuit could be adapted to a number of other uses such as audio companders or
Mike Arnold
Sale, Cheshire
Sale,
UK

Simple voltage monitor/alarm

colleague was having trouble with his car. Every now and then the antery would go flat, usually with ad already checked the current drain d found it to be an acceptab 100 mA . Hardly
The fault could happen several mes a day, or once a month. A new check revealed no problem, so the ollowing circuit was evolved to monitor the voltage at the battery erminals, but of course could find nany other applications where under
or over-voltage could be a problem. or over-voltage could be a problem.
This enabled him at least to know when the problem was occurring. The unit was built on Veroboard a it is quite a simple circuit. The wiring was soldered on, and the unit
fixed to convenient place. It was oated with lacquer before exposing it to the elements and enclosed in a plastic housing. It functions as ollows:
The battery is connected to $\mathrm{V}_{\text {BATT }}$ The IC supplies are derived from a
808 or 7809 regulator to give some headroom for noisy supplies.

A reference voltage is taken fro stabilised by D_{3} a 6.2 V zener. This was chosen as it is on the border between PTC zener and NTC zener
This is used to set the voltage on the -ve input of the comparator. For stability reasons, part 2 of the IC is connected as a buffer.
The monitored line is taken
directly from $\mathrm{V}_{\mathrm{BATT}}$, and applied to
the +ve input of the com the resistor chain $\mathrm{R}_{3}, \mathrm{R}_{1}, \mathrm{R}_{2} . \mathrm{R}_{1}$ is a multi-turn device and its slider is applied to the IC via $\mathrm{R}_{7}, \mathrm{R}_{7} \& \mathrm{C}_{1}$ spikes away. pikes away
e on pin 3 of U_{1} a falls below the reference voltage on pin 2 , he output on pin 1 switches low. U inverts this and enables $\mathrm{U}_{2 \mathrm{a}}$, a Schmitt oscillator with a frequency of to $U_{2 b}$ and $U_{2 c}$, but the latter section oscillates at about 2 kHz . $\mathrm{U}_{2 \mathrm{e}}$ \& f act as a buffer giving a bridged drive into he piezo sounder. Alternatively 2 V Buzzer or alarm could be This point could also be used to drive an LED were it more convenient.

It should be remembered that the zener will have some temperature co efficient and so will drift slightly. As the input is divided by 2 (roughly), to be magnified by a similar amount, thus 0.1 V drift on the zener will upset the monitor accuracy by about 0.2 V .
Set up Set up is easy. Connect a variable zener voltage then reduce the supply to the required trip level (I used 12.4 V) then set R_{1} to give about 10 mV more on pin 3 than pin 2. A drop of about the alarm. The unit will reset automatically when the voltage again.
Hysteresis may be added, if required, by connecting a 10 M resistor from pins 1 to 3 on the LM
393. This will upset the switching levels slightly, and will cause a window effect, i.e. the alarm may sound at (say) 12.0 V but not go off again until (say) 12.6 V is exceeded.
The actual window can be varied by The actual window can be varied by Michael Fallon-Williams By email

Bridge rectifier protects two op-amp inputs

Correction: In March, we ran a Circuit Idea from Allan Patrick for a battery discharger.
When the diagram got printed it was pretty illegible, as many readers pointed out.
Here is Allan's redrawn circuit, which I hope you can now read!

ELECTRONICS WORLD

The world's leading electronics magazine, Electronics World is a must read for any electronics professional or serious hobbyist.
Featuring every month most aspects of the global electronics industry, it covers research, technology, applications, products and theory in areas such as audio, RF, components, CAD design, simulation software, PC \& micro based products, test and measurement, semiconductors and much much more...

- Keep up to date with the latest information affecting the industry
- Essential reference and in-depth features covered monthly

Make sure of your copy now...

Subscription rates for 1 year:

UK $£ 38.95$ • Europe $€ 93.52$
USA $\$ 106.40 \bullet$ Rest of the World $£ 64.50$

Subscription rates for 2 years UK $£ 62$ • Europe $€ 150$
USA $\$ 170 \bullet$ Rest of the World $£ 103.20$

Contact

Highbury Fulfilment Services,
Link House, 8 Bartholomew's Walk, Ely, Cambridge CB7 4ZD
Telephone 01353654431
Fax 01353654400
Email hbc.subs@highbury-wyvern.co.uk

ムもあばは to the editor

Letters to＂Electronics World＂Highbury Business，Media House
Azalea Drive，Swanley，Kent，BR8 8HU
e－mail EWletters＠highburybiz．com using subject heading＇Letters＇

Catt flap I
Ivor Catt＇s flap about transmission lines has been rattling on for over 20 musement it has turned out to be！ The crux of his renamed＇Catt Question＇is this assertion：when a wavefront travels in a transmission ine，electric charge appearing at the t because the charge would behin ravel at the speed of light to do so． That argument only holds water if it is assumed the excess charge ppearing on one of the two onductors is the only mobile charge within it．But even at high electric
field strengths the charge surfeit or deficit on its surface is only a very mall proportion of the total number of mobile electrons available，the vast majority of them being neutralised by immobile positive nuclear char
If it really were true that the electrons have to move at the speed of light to provide the necessary charge，what happens if the amplitude of the voltage step is
reduced？Given that the number of mobile electrons is unchanged，it seems pretty obvious that their drift speed reduces in proportion．This being the case，Catt＇s argument only which would be an extremely high one indeed，vastly greater than any practical real－world transmission line nsulation could possibly tolerate． Catt is wrong about wha Conventional theory tells us．What it speed behind the wavefront is the speed of light multiplied by the ratio between the tiny excess charge and he enormous mobile charge available．On that correct reading Question＇vanishes．In practice picture is complicated by skin effec which reduces the number of mobile lectrons available at high till holds．
If Mr．Catt wants the rest of us to ake his question seriously he must
which means he must establish－ rather than merely assert－his central argument that the charge cannot have
come from behind the wavefront．To do that he must effectively counter my argument that the drift velocity need not be anywhere near as high as the speed of light．If he is unable to do that he has no case to answer，and is hardly in a position to complain about being ignored．
In the past Catt has those＇disciplined in the art＇are ＇unable to grasp＇his crucial assertion．I can only speak for myself．Being one who is to a limited extent a member of this club，I can do
without that insult．Catt＇s claim to have shown conventional theory to be false is a misrepresentation，since he is challenging not the theory， his own misinterpretation of it． Funny，that－it＇s just what I＇m doing
too．So we both agree，then？Hardly！ Alan Robinson Holgate
York

Current thinking

Ivor Catt has come back with another diatribe on＂The New Scholasticism＂ in the April edition of $E W$ ．This starts with a scathing criticism ＇displacement current＇
I personally acknowledge the action of someone with genius （Maxwell）．When faced with a subtle anomaly in some complex The resulting set of equations have been used to analyse practical problems over many decades，and no－ one has disproved them．
I have seen the so－called＇proofs＇ emanating from the Catt camp．These
start with equations picked out from transmission line theory，and end up with other equations developed by transmission line theory．The
reasoning is entirely circular reasoning is entirely circular．
However，the problem with Ivor is that he does not stick to writing nonsense． He waxes enthusiastic about the
ransverse Electromagnetic（TEM） wave and the Heaviside Step xplain in identifies the need to xplain in physical terms how a logic This is an approach wate to another oncur．
If he had thought about this froblem a little longer，he would ctually a movement of electrons is related to these movements in the ame way that a wave appears to ravel down a row of dominoes a hey topple over．The difference between the movement of electrons and dominoes is that the electrons
never touch each other．Each one is affected by the field emanating from s neighbours．
If＇current＇is thought of as a moving force field，it is possible to outh inside and outside the conductor．This field at the surface o he conductor matches the propagation of the TEM wave in the pace outside the conductor．T oncept of the TEM wave in a the formulation of the transmission ine equations．These equations effectively define how the surface charge density propagates along the The web overs this topic in more detail．Just go to the＇contents＇page and select Twin－T model＇at section 6－2． The analogy of dominoes toppling ver remains highly significant．In
ne conductor，the＇dominoes＇are toppling forward．In the othe conductor，they are toppling This picturd．
This picture is entirely in line with he teachings of electromagnetic heory．In fact，when it is applied to he propagation of energy by three parallel conductors，it provides a means of analysing that other lectromagnetic compatibility． lan Darney Kingswood

Catt flap II
I would like to point out to Mr．Cat and your readers that the subject of mains supplies is dealt with in the EMC standard IEC／EN／BS EN

61000－3－3

The subject of immunity to mains supply transients is dealt with
relevant product standards in CISPR xx and EN／BS EN 550xx EMC standards．Also see IEC／EN／B EN 61000－4－1
It would be gratifying if Mr．Catt could see his way to present his own work（some of which is undoubtedly very valuable）without insulting his professional colleagues．
John Woodgat

Watts wrong？

After reading the EWMay 04 Letter by Lesid Green C Eng MIEE，I as checks which will automatically change an author＇s intended text on grounds of technical correctness
alone．
I am sure that Mr Green knew exactly what Jeff Macaulay meant us
to understand when he wrote about his＇80W RMS＇Hybrid Amplifier． did；and it is most likely that everybody else did too，which was of course the intention when
communicating information to the powering capabilities of his audio amplifier design．
The suggestion to automatically insert＇W．mean＇in place of imply the zero phase resistor load sinewave examination that we have all come to understand as being a modern way of measuring amplifie output．Actually the term＇mean＇ exactly the same way that
＇instantaneous＇＇music＇and peak ratings already do；whereas ＇W．RMS＇cannot！
Maybe I could be more TC in my
own right by writing＇W Sine＇but own right by writing＇W ．sine＇，but
have already，quite deliberately，and knowingly incorrectly from a fundamental standpoint，chosen to continue using the term＇W．RMS＇， because it simultaneously represents
the method of measurement used when bench testing a designed－for specification．
In the valve era，when audio Watt were sinewave Watts，you knew way of power．However，much mor than amplifiers have changed since the 1960 ＇s，including－by their
dictionary definitions．
Thus I don＇t think it right that Phil and thus possibly alter the intended meaning of any author＇s text．The words must remain those of the athor，and not those of the Editor who is instrumental in offering chance to read them． Ialso believe that our Editor w oftware had changed＇micro＇an omega＇symbols to＇m＇and＇W＇ ext，then clicked for Save，Send to nd Print．Indeed any computer usin Wordpad could do the same as it re－ filed after a final Save．Considering and equipment upheavals Phil has managed to steer our magazine hrough，this was an understandable glitch．Actually he deserves our arm rs，not additional hiding
ewtownabbey
N．Ireland

No smoke without fire

would like to add a snippet of formation to Ian Hickman＇s He states correctly that some odification to a square wave is ecessary for the creation of adequat There is another issue that older equipment cannot always face when presented with the squarer waveforn oming out of Ian＇s or other similar modified sinewave commercia associated with a burning smell and he relics of a spray of electrolyte． That is that the ripple current in the within some power supply contained ay actually be high enough to boil he ẹlectrolytic mains smoothing apacitor fitted，even if the peak voltage did not exceed the 339 volts mains．
This was on an old 1970 ＇s Philips catch fire．
The near fire was caused by the fa hat the electrolyte seems still to onduct when dried out．Current flow pastic components to the point where they char and then the heating ncreases，leading to more charring nd either the surface of the PCB or connector becomes a glowing I have also experienced this effect when I knocked one of the capacitors
was＇soft－off＇which meant there wa still 12 volts on some connector
The electrolyte dribbled in the inevitable direction and the PC started smoking．The plume of smoke rose neatly to the ceiling approximately 1 metre away from the smoke detector but did not trigge

Mike James

Hamble
Hants
Re：capacitance meter

measuring drif

I just read the interesting article

 Capacitance meter in the March 2004 issue．It is indeed a well－ designed project，but by looking atthe circuit diagram，I was surprised to see the low resistance values used in the＂X oscillator＂for the microf arad range．
The Author says the total value is around 280 ohm．Even taking into
account the＂on＂resistance of the 4052 analog multiplexer（around 100 ohm at 12 V ），the current demanded to the first 40106 inverter is too high． Consider the high－to－low output transition：if the Cx capacitor was left
at 4 V by the previous half cycle initial charging current is： （ $12 \mathrm{~V}-4 \mathrm{~V}$ ）／（280 ohm $+100 \mathrm{ohm})$ $=21 \mathrm{~mA}$ ．
At 12 V ，a 40106 inverter can usually supply less than 7 mA befor So，the oscillator frequency is heavily dependent on the output sink and source current of the inver Unfortunately，this current capability is in turn dependent on the centigrade）．
If the inverter output stage were not overloaded，that would not be a problem，but in this case，it is．
So，I believe the initial drift th Author sees in the microfarad rang （which he attributes to the ＂reconditioning＂of electrolytics），is
caused instead by the＂warm－up＂of caused instead b．
he 40106 chip．
use the spare 40106 innt would be to ＂ise the spare 40106 inverters to ohm branch of the oscillator（It thin the picofarad range is best left alone
with just one inverter in the path to with just one inverter in the path，to
avoid excessive propagation delay， which would add to the＂zero reading＂）．
This would still leave the 4052 ＂on＂resistance（which is also factor
This last problem cannot be easily corrected without adding more chip
（for example，using a separate，high
power oscillator for the microfarad
range, and a simple but fast oscillato range, and a simple but fast oscillator
for the other ranges), or making the measure time for high value capacitors too long.
Paolo Palazzi
Cervignano
ITALY

Electron mysteries

David Potter's excellent discussion of electron diffraction ($E W$, April) wave-particle duality in electronics far better than any previous article. It is well researched and entertaining. I was unaware of many of the original problems of
suppression".... Born and friend suppression ... Born and friends
conducted a satiric seminar, making fun of de Broglie's idea... Schroedinger's... wave mechanics alarmed his wife... she feared for his sanity."
Heisen
deriving the "uncertainty" prin using a bogus treatment of an optical gamma ray microscope, which is impossible. We see on the internet a great welter of attacks on
Modern Physics, all of which seem to be pointing out interpretation problems, like Poppers. Sir Karl Popper, in his work "The Logic of Scientific Discovery" claimed tha Heisenberg's uncertainty principle
was a statistical scatter relationship when in fact it is really a "variation principle", since it describes the possible variation ranges of a pair of parameters (either momentum and distance, oct of each pair is
the product equivalent).
Popper and his acolytes created the quagmire by defining a scientific discovery as a speculative theory or a "falsifiable
proposition". Archimedes" of the criteria for buoyancy, derived by a combination of clearly stated facts and straightforward mathematical arguments, would be
denied by Popper's idea, as well as every mathematical theorem. Archimedes' recently restored lost work, "The Method", confirms that he first speculated, then used the hypothesis as a scaffolding for
constructing a rigorous proof. Today's Modern Physics teacher attempts to block the construction of a rigorous proof, claiming that anyone who claims to do so is charlatan, while having the the reason why apples fall is a "law" of Newton or Einstein which states that it falls. By analogy, a car goes
because it is a convenient "law" tha the accelerator pedal makes it mo
end of story. (End of science! In of story. (End of science!) same issue contains Tony
Callegari's evidence for ELF Callegari's evidence for EL signals with wavelengths
corresponding to astrono orresponding to astronomical
distances to the Moon and Mar The frequencies of his measured signals are fractions of a cycle per second. Much conventional wisdom is that nothing below 100 MHz can get through the Earth's ionosphere result from continuous energy exchange by spinning particles lik electrons ($E W$, Feb 04 , letters) This exchange of energy carrie
momentum and therefore causes accelerations and forces. Direct exchange causes repulsion; blocking of momentum exchanges from a given direction causes attraction (the oppositely charged plates of
capacitor partly block energy exchange inbetween them causing attraction by the momentum hitting hem from outside). The resulting equation gives the correct force trengths more accurately than QED
which is too high by a factor of 137 t also requires "virtual" particles to be massless, with no momentum to cause force, because if they had any mass-energy they would have a mited range on account of bein Heisenberg time! (See EW April 0 Electronic Universe part 2" Callegari's experimental bservations appear to be the effect blocking the continuous exchange f energy from different
directions, while the Earth orbits the sun at $30 \mathrm{~km} / \mathrm{sec}$ ond. These slight variations penetrate the ionosphere
because they are variations in the ackground electromagnetic field trength (normally unmeasured because there is equal positive and negative charge around us). I am also very impressed with Ivor Catt'
latest letter ($E W$ Feb) where he atest letter ($E W$, Feb) where he
directly and clearly explains, for the first time, what is wrong with the
conventional treatment of
apacitors!
It is curious that these
evelopments are being ridiculed by science funding committees paid by axpayers to be objective.
University Faculty science
University Faculty science tackle empientific problems (like shooting the messenger). Nigel Cook

Ghost in the loft

With regard to Ian Hickman's leader article, I've got another ghost for him. Until very recently I was using the Practical Wireless 'Purbeck'
oscilloscope that he designed oscilloscope that he designed in 1978. I built it when I was 16 , using
the Watford Flectronics kit the Watford Electronics kit, and apar
from one or two minor repairs it has feen working well for the past 25 years. Unfortunately the custom mains transformer went open-circuit in the high voltage secondary, and have decided to buy a commercial
scope with much better performance. I don't think I can bear to bin it though - it will probably sit in the loft for the next 25 years! Jonathan Wellingham
Broadcast Technology Engineer Bristol
UK

John Ellis
Referring to the letter by John Ellis in the April issue the correct derivation is that given below. $\underset{\text { given by }}{\text { Capaci }}$

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{(V 0-V)}{R C} \\
& \frac{d V}{(V 0-V)}=\frac{t}{R C}
\end{aligned}
$$

Integrating
$-\log _{\mathrm{e}}\left(\mathrm{V}_{0}-\mathrm{V}\right)=\frac{t}{R C}+\mathrm{k}$
(Note the appearance of the
negative sign)
$\left(\mathrm{V}_{0}-\mathrm{V}\right)=\mathrm{e}-\frac{t}{R C} \mathrm{e}^{-\mathrm{k}}$
Now, when $\mathrm{t}=0, \mathrm{~V}=0$
$\mathrm{V}_{0}=\mathrm{e}^{-\mathrm{k}}$
$(\mathrm{V} 0-\mathrm{V})=\mathrm{V}_{0} \mathrm{e}-\frac{t}{R C}$
Transposing
$\mathrm{V}=\mathrm{V}_{0}\left[1-\mathrm{e}-\frac{t}{R C}\right]$
Bryan Hart
Leigh-o
Essex,
UK

Circuit ideas
If Mr Diestlin (Letters April 2004) is
unhappy with the quality of the circuit ideas then the solution is in his
own hands, he can submit some ideas refinement and allow then to be ssessed by the rest of the reader Although many readers will be employed within the electrical an electronic professions, he must deas will be submitted by people cting in a private capacity and will ot, therefore, have been subjected to he normal peer assessment within a esign team. \qquad
It might be useful to readers
ated by their designers and the ratin published. I suggest that three
atings would be adequate.

1. This is a purely "paper",
design that looks as if it will work.
2. The design has been made
3.

to work on a "breadboard" but needs further development.
3. The idea has been built and for which it was designed.
My own submission (not yet
published) was intended to be used in a motor vehicle. As this is a quite harsh nvironment for electronic circuitry it
vehicle before making the circuit
public. However, the title "Circuit
Ideas" puts no pressure on any
contributor to build or test anything. C Gardiner

Chelm
UK
"Puzzle" in April issue
came across the same problem a few years ago. Surely, the circuit of resistors all of the same value. The method of shorting all points of the ame value is a useful concept, but limited to the one situation where th mentioned the idea of simplifying a circuit to enable it to be solved. This is what I used to stress to my studen hen lecturing on electrical the eneral problem of a "wire cube" of nequal value resistors is to use the Star to Delta" and "Delta to Star" transforms. This then enables eries to be solved step by step As a side issue, I have never sed stated in any book or article, that here can be a voltage without a arrent flow (practically) but there Cannot be a current without a voltage.
This comes from work I am involved with concerning so called "induced current" I feel that the statement
"Induced current" is incorrect. It
should be "Induced emf" and the
current that results is limited by the
equivalent resistance of the materia
Ivan Eamus (C3KLT)
By email
In praise of Alan Bate I think I bought my first edition of Wireless World (as it then was) back in 1968. I was still in school and to be honest I didn't understand half it content. The thing that grabbed me
was the technical discussions and explanations of circuit operation. It was so much better than the other publications of the day like Practical Electronics and Practical Wireless. They offered interesting designs but explanation of how things worked. I particularly remember a series of articles on the design of an
oscilloscope written by the editor the time. They were beautifully of not only of how the circuit worked, but also included some of the calculations of how he got ther thinking.
The article on Precision Rectifier Circuits by Alan Bate took me back to those early years. I have no intention of building his design (no offence but I have no need of it but magic. We are often presented with the final design but seldom see how the author got there or any of his reasoning. Thank you Alan and please mister
some more?
While I'm on my trip down memory lane, I also remember a publication called 'Radio Constructor' and the antics of Smithy. It was always the first thing
o be read. I loved the way it taught the reader some of the concepts of electronics in a style not unlike Mr. Crabtree Goes Fishing, without the pictures. Ahhh, happy days. Graham email

Precision rectifier circuits

May I congratulate your contributor Alan Bate, for the above-mentioned pplication of it will be as a precisio AM rectifier for use in vintage
communications receivers (such a my RA 17), extracting the RF from The grave piece was the abysmal quality of the circuit diagrams. Parts of them are almost impossible to read, even when

The quality contrasts vividly with hat of the reproduction of the ancien meter in Ian Hickman's excellent piece on the late Linsley Hood. I well remember (and still have) the origina article and what a model of clarity the circuit is. I appreciate that yo
were probably reproducing the author's own artwork. Dependency on a diagram largely assembled by a PC program, however, is no substitute for a diagram drawn by and
old-fashioned human draftsman. Was it not possible to transform the author's circuit into you usual cleare format? Most other journals and magazines do this.
Could I also ask you to proof read such articles with greater care. I a
intrigued as to a measurement of input impedance expressed as being 'over 50kW' (see pg 29). In my youth k o was thought to be a

Michael O'Beirne
Long Ditto

JLH - too late

As a 78 year old contemporary of J Linsey Hood, my first, and never forgotten, introduction to music reproduction was from the pre-war feeding into a home made Voigh Tractorial Corner Horn. The one with an 8 sq $\mathrm{ft} \mathrm{flare} \mathrm{opening!}$ Decca had introduced their new moving-coil pick-up the sound (in my opinion) has yet to surpassed. With my finances and prospects in those days, virtually nil, the very thought of owning such a magic became a far-off dream. Time moved
on. Service in the R.N. gave basic training as a Radio Mechanic and later I also worked at Windscale. In 1969 with a family and the Ceng achieved, the old hankering for ' various transistor horrors and longed for the good old days.
Then $W W$ to the rescue. There it was... The Linsey Hood PP Class A design. Minimal distortion, a power
bandwidth up to 100 kHz , enough to satisfy the bats and then in the following month's $W W$, an apology, due to test gear limitation and a remarkable new figure of 2.5 MHz
Never mind the bats, watch Never mind the bats, watch out for
low flying aircraft! OK so it gets hot, buy (as the saying goes) 'if you can't stand the heat'. Etc.
To try do it justice, I made up two speaker cabinets using the new KEF
flat piston drive units, based on the idea proposed by Prof. Barlow using
expanded polystyrene foam covered with aluminum foil giving low distortion with no flapping cone
break-up
That set-up has been in continuous use ever since. Its only limitation is
the signals fed into it. My wife and have enjoyed fine music over the years from our elderly (nostalgic) records the FM radio, TV Nican stereo, and latterly (with some Strangely enoug thought I would like to make some mark of thanks for the years of pleasure we have had from this superb amplifier.
cover of this months EW Theref am glad of this chance to show m m sense of gratitude..... even if it is too late!
Ron Stephenson MIEE Sculthorpe
Norfolk, UK

Build 'em or print 'em Build em or print em read, with a somewhat intel
perturbed sense of moderate perturbed sense of moderate
amusement, the amateur projects section in the recent May edition of Electronics World, which our local library seems to have received ahead of time. I was wondering if you have a
competition with a prize for the best critique, since my only claim to engineering training is that of having spent years listening to my father and uncle in techie conversation - the latter amid clouds of smoke, explaining the novel particularities of circuits and components that don't always wo
The three diagrams published The three diagrams published, unfortunately, one could see at a glance,
were ones that don't work. D. Kepple's low battery waming device diagram was incomplete - no point ' B ' to stabilise a 5 volt supply chip. Perhaps an error in printing or photocopying,
but the Traffic lights simulator was a clever spoof - not so challenging when clever spoof - not so challenging w
you find that LEDs will not pass sufficientcurrent to light when in serie especially on the microchip output, and I would not have used a 74 HC 4017 as neighbourly alternative to seasons timer using only one 555 chip seemed timer using only one 5u5, chip seem
fine except that it would not time anything at all! If the guy that sent the latter diagram wants to pay for a longer delay timer circuit, one that does n pheromenon and in which itself lasts longer, he need only check out my website and email me (note the email address if not a Yahoo or Hotmai user).
I hop
Thope you don't find this just too embarrassing to print - otherwise the $E W$ clear editorial style makes interesting reading. Having spent a few years gaining experience in various as admin for an electronics professional - but any diagra offer as useful electronics gadgetry will be of value for their accuracy and workability in solving problems of our time. Martin J. Marsh, B.A.
London, UK

No offence

My original missive was intended to My original missive was intended to
be facetious but with a small barb; "less errors" made me smile. I took no offence at your comment and it amused both my wife and my colleagues..
I seem to a chord thouge struck something of communication is importan. Paul :-).
p.s. Shouldn't that have been " letter writers' " rather than " "etter writer's " given the absence of the indefinite article?
Another five minutes wasted...
Paul Bartlett
By email

CD-R failure

Last year I completed the very lengthy task of transferring all of the music onto CD-R. I had already transferred most of the data I was holding on floppy disks, SmartMedia cards and
various hard disk drives onto CD-R in the belief that this medium was good for at least 20 years.
At about this time, I was disturbed to learn that the Dutch magazine PCActiv had published test results on 30 some had deteriorated in just 20 months. A year later, after checking my own pile of 70 CD-R's, I have discovered that about 30% have deteriorated. In my case, one make Vivastar was prone to this type of slow progressive failure. From various comments on the internet it seems many users of CD-R are having the same problems, some
having DC-R failure in months rathe han years. Perhaps one could expec the cheaper makes of $C D-R$ to fail earlier, but it seems the problem is no confined to them. Several theories have been put The upper side of the CD-R seems to be its Achilles heel. One theory is tha permeability of the upper surface of he CD-R allows atmospheric attac of the metal layer. Another some labels leads to slow contamination via the same route, yet nother blames the use of some types of pen used to write on this side. I
would have thought that it is unlikely hat the dye is a fault, but curiously in my case the older Cyanine-based CD Rs appeared to be relatively naffected.
It would be interesting to hear if any readers have had similar experiences and can throw some echnical light on the problem. Simon Wrigh
By email

Old hat

The "Floating Transducer Buffer and Amplifier" presented by Andrew S Robertson in March 2004 EW is interesting and useful, but hardly new - in fact very 'old hat'. Sorry before!
As an early example, I quote the work of George W Pierce, who patented his famous oscillator with
the same connection arrangement in
1923. I attach two examples of his work which can be found at http://www.geocities.com/neveyaako v/electro_science/pierce.html The first is his oscillator: and the second a magnetostriction amplifie with the same familiar circuitr Murray Greenman
Karaka, South Auckland, Karaza, South A,
New Zealand

$£ 11.99$
Available from Electronics World

All tracks on this CD were recorded on DAT from cylinders produced in the early 1900 s. recording techniques available at the time, these tracks are of remarkable quality, having been carefully replayed using modern electronic technology by historian Joe Pengelly.

21 tracks - 72 minutes of recordings made between 1900 and 1929. These electronically derived reproductions are no worse than - and in many cases better than - reproductions of early $78 \mathrm{rev} / \mathrm{min}$ recordings some are stunning..

```
Use this coupon to order your copy of
Pandora's drums
Please send me .......CD(s) at £11.99 each
Please send m
Cheque \square
Credit card details I tick as appropriate
I Name
Address
Phone number
Total amount
Make cheques payable to TELEVISION Or, please debit my credit card.
Card type (Master \(\mathrm{N}_{\mathrm{is} \text { a) }}\)
Card No
I Expiry date
Please mail this coupon to Electronics World, together with Address orders and all correspondence relating tottis order to Pandora's drums, Electronics World, Highbury Business
Communications, Nexus House, Azalea Drive,
```

ELECTRONICS
WORLD

The Electronics World Book Service offers access to our team of specialist publishing experts. We can order any book or CD-ROM currently in print from War And Peace to the Reference Data for Engineers. All books are delivered free of charge within the UK unless otherwise stated. Order form opposite.

RSGB RADIO \& ELECTRONICS COOKBOOK Radio Society of Great Britain	REFERENCE DATA FOR ENGINEERS: RADIO, ELECTRONICS,
Only a basic knowledge of electronicis s assumed for this collection of elactronics projects, and it is ideal for all lelectronis and DIY enthtusiasts and experimenters. Designed by the RSGB, the UK	COMMUNICATIONS Mac E Van Valkenburg; Edited by Wendy Middlefon
radio omateurs federation, the projects are clearly explained step by step.	Wirten by professionals for professionals, this is a complete reference for engineers, covering a brod range of topics. As well os oddressing rodio technology data, it toverss digitol electronics, computers and communications.
Nov $2000 \triangle 336$ poges \triangle PB \triangle llustrations	9th edition Δ Aug 2001 1568 pages \& (D-Rom A 1385 line illustrations
Publisted in UK	HB \triangle Publisher in UK
Code 0-750.5014.4 \quad ¢17.99	Code 0.7506-7291-9 $\quad £ 90.00$

ELECTRONIC CLASSICS: COLLECTING, RESTORATION AND REPAIR	
Andrew Emmerson	
This tex tencomposses all ospects of byying, collecting, restoring, repairing, sourcing ports, profossional services, clubs ond societieses. The first port covers stectnical aspectss of restoration ond second part presents useful information for collectors.	
Aug 1998 - 256 pages \triangle Index 10 halftones $\triangle 50$ line illustrations $\triangle P B$ Published in UK	
Code 0.750.-3788-9	£21.99

VIDEO AND CAMCORDER SERVICING AND TECHNOLOGY Steve Beeching	VIDEO DEMYSTIFIED Keith Jack This edition has been updated to include information on digital television, datacasting, interactive video, digital camcorders and VCRs, including European, Asian and North/South American video standards, methods and techniques	
A comprehensive guide to domestic VCR technology and repair techniques. This edition brings the information fully-up-to- date, with expanded coverage of camcorder sections on DVD equipment and the latest VCR technology.		
5th edition \triangle Apr $2001 \triangle 323$ pages Illustrations \triangle PB \triangle Published in UK	$\begin{aligned} & \begin{array}{l} \text { 3rdedition } \Delta \text { Jul } 2000 \\ \text { References } \triangle \text { Glossary } \\ \text { Published in UK } \end{array} \end{aligned}$	$\begin{aligned} & 8 \text { f pageses } 8 \text { CD.Rom } \\ & \text { dex }\langle P B \end{aligned}$
Code 0-750.6039-7 $\quad £ 20.99$	Code 1-87870.-56-6	¢50.

End

ELECTRONICS WORLD

 On CD-ROMElectronics World is enjoyed by some of the world's top circuit designers - but it's not just for professionals. Stimulating designer or almost a century. Electronics World covers analogue, RF and igital circuit technology and incorporates design information on verything from model train control to input/output via a 10baseT network.. and it's now available all on CD-ROM.

12 issues on each CD-ROM

- Full text and diagrams of all articles, circuit ideas, letters etc

Easy to browse

- Fully searchable by keywords and index

High-quality print in colour

- Full software listings included
- easy to use

CDROMS are available for 1999, 2000, 2001, 2002 and 2003. Each disk contains 12 back ssues of Electronics World in a searchable, browsable and printable format PLUS the library of software files. The CDROMS run on PCs with Windows '9x, Me, 2000 and XP equires IE4 or above and Adobe Acrobat Reader (supplied on the CD).
The CDROMs are only $£ 30$ each including VAT and UK post, add $£ 1$ extra postage for Europe, $£ 5$ extra postage for rest of the world, exclusively available from SoftCopy Limited, address below.

Limited special offer for readers of Electronics World - all five CDs for the price of four

Please send the following CD-ROMS

Order now at:

www.ewmag.co.uk

SoftCopy Limited, 1 Vineries Close, Cheltenham GL53 0NU, UK
Tel: +44 (0) $\mathbf{1 2 4 2} 241455$ Fax: +44 (0) 1242241468 sales@softcopy.co.uk

FRUSTRATED!
Looking for ICs TRANSISTORS
A phone call to us could get a A phone call to us could get a
result. We offer an extensive result. We offer an extensive
range and with a World-wide range and with a World-wide
database at our fingertips, we are able database at our fingertips, we are able
to source even more. We specialise in to source even more. We specialise
devices with the following prefix (to name but a few)

1999, 2000, 2001, 2002, and 2003

ELECTRONICS WORLD

Please ask for our Free CD Rom STOCK LIST. WE STOCK A MASSIVE RANGE OF COMPONENTS!
Mail, phone, Fax, Credit Card orders \& callers welcome.
\square

Cricklewood Electronics Ltd
 40-42 Cricklewood Broadway, London NW2 3ET
 40-42 Cricklewood Broadway, London NW2 Tel: 02084520161 Fax: 02082081441

ADVERTISERS INDEX

BETA LAYOUT .. 26 CMS ... 26
CRICKLEWOOD .. 63
HAMEG ... 9
JOHNS RADIO .. 63
JPG .. 26
LABCENTER ..OBC

OLSON .. 32 \& 33 QUASAR ... 2 STEWART OF READING............................. 23 TELNET...IFC THURLBY THANDAR 15 TIE PIE ENGINEERINGIBC WARWICK WIRELESS 9 WESTDEV.. 23 W.NAHAR.. 63

WEB SITE WWW.JOHNSRADIO-UK.COM WWW.JOHNSRADIO.CON JOHNSRADIO ELECTRONICS TEST AND COMMUNICATION EQPT MASSIVE 10,000 SQ FT
WAREHOUSE CLIARANCE SALE DC-MICROWAVETO 300 GHZ - OPTICAL - LIGHT - EQPT - PARTS TEKTRONIX - HP - AGILENT - MARCONI PHILIPS - RACAL - BRK - R\&S - WRG - ETC
Soles Worehouse, Johnsradio, smithies will, Birstol smithies Lights, 883 -885 Brodford Rd,

 Phone for appointment or to request tiem lists, photos, site map.
All welcome, Private or trade, for sales, workshop repairs or calibration.
EASE CONTACT PATRICIA AT WHITEHALLL WORRS, 84 WHITEHALL ROAD,
EAST BIRKENSHAW, BRADFORD, WEST YORKSHRE, BDII 2ER
EAST BIRKENSHAW, BRADFORD, WEST YORKSHIRE, BDII
Tel: 01274684007 Fax: 01274651160
WEB SITE WWW.JOHNSRADIO-UK.COM WWW.JOHNSRADIO.COM
This Magazine reaches over

potential customers

To advertise in this space

call tuke on
01322611289

Electrical Engineers and

 diplomats contacts wantedGraduate Engineers particularly Electrical and Electronic Engineers from different countries should write to me giving telephone numbers. Several persons should preferably write together.

Iam requesting all foreign embassies and consulates in ondon to send me free, their informative materials, dalies, weeklies, monthlies, press releases etc. I shall ever remain grateful to them for their help.

I am circulating this advertisement on the most tragic anniversary of the death of my dear son who was a student of Mechanical Engineering in the Vienna Technical University.
Persons of all other professions, of all other nationalities at home and abroad are also requested to write to me

I think IEEE spectrum can be used as a medium for ontacts and fostering friendship and co-operation among Electrical \& Electronic Engineers from all over the world.

ADVERTISER

PO BOX 97
A1202 VIENNA
AUSTRIA

Service Link

ARIICLES
WANTED

TOP PRICES PAID For all your valves, tubes, semi conductors and ICs. Langrex Supplies Limited 1 Mayo Road, Croydon, Surrey CR020P TEL: 02088841166 FAX: 0208884056

For a FREE consultation on how best to market your products/services to a professional audience ring SCOTT on 01322611292
SERVICES
POWER SUPPLY DESIGN Switched Mode PSU Power Factor Correction designed to vour specification Tel/Fax: 01243842520 Lomond Electronic Services

For a FREE

 consultation on how best to market your products/services to a professional audience ring LUKE on 01322611289

WANIED

WANTED surplus or Obsolete Electronic Components
Turn your excess stock into instant cash! SEND OR FAX YOUR LST I INTRICTEST CONFIDENCE Will collect anywhere in the UK

28 College Street, Kempston, Bedfordshire, MK42 8 LU Tel: 01234363611 Fax: 0123432661
E-mail: sales@mushroom.couk E-mail: sales@mushroom.co.uk
Internet: www.mushroom.co.uk

Service Link

Protieus

The Complete Alectronics Design System

Schematic \& PCB Layout

- Powerful \& flexible schematic capture.
- Auto-component placement and rip-up/retry PCB routing.
- Polygonal gridless ground planes.
- Libraries of over 8000 schematic and 1000 PCB parts.
- Bill of materials, DRC reports and much more.

Mixed Mode SPICE Circuit Simulation

- Berkeley SPICE3F5 simulator with custom extensions for true mixed mode and interactive simulation.
- 6 virtual instruments and 14 graph based analysis types.
- 6000 models including TTL, CMOS and PLD digital parts.
- Textual library part search.
- User defined keyboard map.
- CADCAM output to ZIP file.
- Bitmap import function.
- Truetype fonts on PCBs.
- Enhanced printer output.

Call Now for Upgrade Pricing

- Fully compatible with manufacturers' SPICE models.

Proteus VSM - Co-simulation and debugging for popular Micro-controllers

- Supports PIC, AVR, 8051, and BASIC STAMP micro-controllers.
- Co-simulate target firmware with your hardware design.
- Includes interactive peripheral models for LED and LCD displays, switches, keypads, virtual terminal and much, much more.
- Compatible with popular compilers and assemblers from Microchip, Crownhill, IAR, Keil, and others.

E I e c t r o n icces 53-55 Main Street, Grassington. BD23 5AA

Tel: 01756753440 Fax: 01756752857

Contact us for
Free Demo CD

Virtual System Modelling

New Features in Version 6.5

Auto

 Routing