SPECIAL REPORT: USB Design

Closer look at the slew rate criterion

- Astable multivibrator
- Universal MP3 player
- LED driver
- 2nd order, multi-function, voltage-mode filter
NETCOM Ethernet- Serial Servers
NetCom are industrial strength, network based serial device servers for connecting RS232, RS422 and RS485 serial devices directly to a 10/100Mbps Ethernet network running TCP/IP. Netcom can control 1 or more serial devices located virtually anywhere (via Ethernet or internet). NetCom can be configured over Driver Panels, WEB Browser, Serial Port, Telnet or SNMP and serves as a transparent serial channel without platform and distance limitation. Housed in a sturdy metal enclosure including DIN rail mount, one to eight port models are available. 19” rack-mount versions with internal switch mode PSU can also be supplied.
priced from £85 (NetCom 111)

USB Instruments - PC Oscilloscopes & Logic Analyzers
Our range of PC Instruments may be budget priced but have a wealth of features normally only found in more expensive instrumentation. Our DS1M12 and PS40M10 oscilloscopes have sophisticated digital triggering including delayed timebase and come with our EasyScope oscilloscope / spectrum analyzer / voltage and frequency display application software and our EasyLogger data logging software. We also provide Windows DLLs and code examples for 3rd party software interfacing to our scopes. Our ANTS and ANTV Logic Analyzers feature 8/16 capture channels of data at a blazing 50MS/S sample rate in a compact enclosure.
priced from £125 (DS1M12 & ANTV)

1 to 16 port USB to Serial Adapters
With over 16 different models available, we probably stock the widest range of USB Serial Adapters available anywhere. We offer converter cables, multi-port enclosure style models in metal and plastic, also rack mount units such as the USB-16COM-RM opposite. Serial interfaces supported include RS232, RS422 and RS485. We also supply opto-isolated RS422 and RS485 versions for reliable long distance communications. All our USB Serial products are based on the premium chipssets and drivers from UK company FTDI for superior compatibility, performance and technical support across Windows, MAC-OS and Linux platforms.
priced from £20 (USB232/4LC laptop Companion)

PCI Serial Cards
Discover our great value for money range of multi-port PCI serial cards. Supporting from two to eight ports, the range includes RS232, RS422, RS485 and opto-isolated versions. Our 4 port and 8 port models can connect through external cables or the innovative wall mounting COMBOX.

EasySync Ltd
373 Scotland Street, Glasgow G5 8QB, United Kingdom
Tel: 0141 410 1081 / Fax: 0141 418 0110
Web: http://www.easysync.co.uk
E-Mail: sales@easysync.co.uk
*Prices shown exclude PP and VAT where applicable
Contents

June 2005
Volume 111
Number 1830

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editor's Comment</td>
<td>3</td>
</tr>
<tr>
<td>The analogue/digital divide</td>
<td></td>
</tr>
<tr>
<td>News</td>
<td>4</td>
</tr>
<tr>
<td>Top Ten Tips</td>
<td>8</td>
</tr>
<tr>
<td>Insight</td>
<td>11</td>
</tr>
<tr>
<td>The future of embedded speech</td>
<td></td>
</tr>
<tr>
<td>Focus</td>
<td>12</td>
</tr>
<tr>
<td>Despite manufacturers' efforts to migrate designs on to 32-bit MCUs, 8-bit still proves a firm favourite with designers</td>
<td></td>
</tr>
<tr>
<td>Slew rate criterion</td>
<td>14</td>
</tr>
<tr>
<td>Hugo Coolens takes a closer look</td>
<td></td>
</tr>
<tr>
<td>Design of a USB interface</td>
<td>18</td>
</tr>
<tr>
<td>Qian Xie and Wuqiang Yang present their own design for a USB interface for a data acquisition system</td>
<td></td>
</tr>
<tr>
<td>Creating USB device drivers</td>
<td>29</td>
</tr>
<tr>
<td>Mark Schultz is clearing up some of the mysteries of USB plug-and-play</td>
<td></td>
</tr>
<tr>
<td>USB device access in C#</td>
<td>32</td>
</tr>
<tr>
<td>Greg Nalder explains the way to access USB devices from C# applications</td>
<td></td>
</tr>
<tr>
<td>Catching the USB wave</td>
<td>42</td>
</tr>
<tr>
<td>Tackling USB design, by Adrian Brain and Martin Dennet</td>
<td></td>
</tr>
<tr>
<td>Wireless</td>
<td>47</td>
</tr>
<tr>
<td>Let's fight the traffic jams, says Mike Brookes</td>
<td></td>
</tr>
<tr>
<td>Circuit Ideas</td>
<td>48</td>
</tr>
<tr>
<td>• Multi-function voltage-mode filter</td>
<td></td>
</tr>
<tr>
<td>• Astable multivibrator</td>
<td></td>
</tr>
<tr>
<td>• Almost universal MP3 player</td>
<td></td>
</tr>
<tr>
<td>• Novel LED driver</td>
<td></td>
</tr>
<tr>
<td>Letters</td>
<td>53</td>
</tr>
<tr>
<td>Products</td>
<td>54</td>
</tr>
</tbody>
</table>

Front cover image supplied by Oxford Semiconductor

Nanometre-scale designs tested in the Alps — p5

Serial USB dangle — p12

The BP 4710 automated programming system — p57
Motor Drivers/Controllers

Here are just a few of our controller and driver modules for AC, DC, unipolar/bipolar stepper motors and servo motors. See website for full details.

NEW! Bidirectional DC Motor Controller
Controls the speed of most common DC motors (rated up to 32VDC/5A) in both the forward and reverse direction. The range of control is from fully OFF to fully ON in both directions. The direction and speed are controlled using a single potentiometer. Screw terminals for connections.

Kit Order Code: 3166KT - £14.95
Assembled Order Code: AS3166 - £24.95

DC Motor Speed Controller (5A/100V)
Control the speed of any common DC motor rated up to 100V/5A. Pulse width modulation output for maximum motor torque at all speeds. Supply: 5-15VDC. Box supplied. Dimensions (mm): 60Wx130Lx80H.
Kit Order Code: 3067KT - £11.95
Assembled Order Code: AS3067 - £19.95

NEW! PC/Standalone Unipolar Stepper Motor Driver
Drives any 5, 6 or 8 lead unipolar stepper motor rated up to 6 Amps max. Provides speed and direction control. Operates in stand-alone or PC-controlled mode. Up to six 3170 driver boards can be connected to a single parallel port.
Supply: 6V DC. PCB: 95x65mm.
Kit Order Code: 3179KT - £9.95
Assembled Order Code: AS3179 - £16.95

Assembled Order Code: AS3113 - £24.95

NEW! Bi-Polar Stepper Motor Driver
Drive any bi-polar stepper motor using externally supplied 5V levels for stepping and direction control. These usually come from software running on a computer.
Supply: 8-30V DC. PCB: 75x85mm.
Kit Order Code: 3158KT - £12.95
Assembled Order Code: AS3158 - £26.95

Controllers & Loggers

Here are just a few of the controller and data acquisition and control units we have. See website for full details. Suitable PSU for all units: Order Code PSU445 - £8.95

Infrared RC Relay Board
Individually control 12 on-board relays with infrared remote control unit. Toggles or momentary. 15m+ range. 112x122mm. Supply: 12VDC/0.5A.
Kit Order Code: 3142KT - £41.95
Assembled Order Code: AS3142 - £51.95

Computer Temperature Data Logger
4-channel temperature logger for serial port. "C or °F. Continuously logs up to 4 separate sensors located 200m+ from board. Wide range of free software applications for storing data. PCB: 38x38mm. Powered by PC. Includes one DS1820 sensor and four header cables.
Kit Order Code: 3145KT - £19.95
Assembled Order Code: AS3145 - £26.95
Additional DS1820 Sensors: £3.95 each

NEW! DTMF Telephone Relay Switcher
Call your phone number using a DTMF phone from anywhere in the world and remotely turn on/off any of the 4 relays as desired.
Kit Order Code: 3140KT - £39.95
Assembled Order Code: AS3140 - £49.95

Serial Isolated I/O Module

Computer controlled 8-channel relay board. 5A mains rated relay outputs. 4 isolated digital inputs. Useful in a variety of control and sensing applications. Controlled via serial port for programming (using our new Windows interface, terminal emulator or batch files). Includes plastic case 130x100x30mm. Power Supply: 12VDC/500mA.
Kit Order Code: 3108KT - £54.95
Assembled Order Code: AS3108 - £64.95

PIC & ATMEG Programmers

We have a wide range of low cost PIC and ATMEG Programmers. Complete range and documentation available from our web site.

Programmer Accessories:

- 40-pin Wide ZIF socket (ZIF040W) £16.00
- 18V DC Power supply (PSU010) £19.95
- Leads: Parallel (LDC136) £4.95 / Serial (LDC441) £4.95 / USB (LDC844) £2.95

NEW! USB 'All-Flash' PIC Programmer
USB PIC programmer for all 'Flash' devices. No external power supply making it truly portable. Supplied with box and Windows Software. ZIF Socket and USB Plug A-B Lead not included.
Kit Order Code: 3128KT - £34.95
Assembled Order Code: AS3128 - £44.95

Enhanced "PICAL" ISP PIC Programmer
Will program virtually ALL 8, 16 and 32 bit PICs from our web site. ISP programmer supports ATMEG and ATMEL AVR PICs. Free software. Blank chip auto detect for super fast bulk programming. Available in assembled format with ZIF socket only.
Assembled Order Code: AS3144ZF - £64.95

ATMEG 89xxxx Programmer
Uses serial port and any standard terminal comms program. 4 LED's display the status. ZIF sockets not included. Supply: 18-18VDC.
Kit Order Code: 3123KT - £29.95
Assembled Order Code: AS3123 - £34.95

NEW! USB & Serial Port PIC Programmer
USB/Serial connection. Header cable for ICSP. Free Windows software. See website for PICs supported. ZIF Socket/USB Plug A-B lead extra. Supply: 18VDC.
Kit Order Code: 3149KT - £34.95
Assembled Order Code: AS3149C - £49.95

www.quasarelectronics.com

Secure Online Ordering Facilities - Full Product Listing, Descriptions & Photos - Kit Documentation & Software Downloads

June 2005 ■ ELECTRONICS WORLD
The analogue/digital divide

At a recent press briefing, National Semiconductor’s product manager Uwe Kopp said that we are standing in front of a gap between analogue and digital. Interestingly, that gap seems to be shrinking as more and more digital replacements of analogue functions make their way onto the market. Some very old analogue circuits are being replaced with digital solutions. On-chip peripherals, such as timers, comparators and PWMs, are helping this migration.

Analogue has been critical in the signal chain, where it's the interface to the real world. But, companies are developing chips for the areas where analogue has traditionally reigned supreme, such as in conventional analogue-to-digital converters (ADCs) supported by many discrete components. For example, Analog Devices’s (ADI’s) new capacitance-to-digital converter (CDC) and impedance-to-digital converter (IDC) do away with up to nine discrete components, whilst taking the input directly from sensors. These new devices are totally integrated solutions, requiring only a few external components.

Silicon Labs is another example. Recently (see Technology in Electronics World, May 2005), Silicon Labs announced a direct interface for sensors for its 8-bit 8051-based microcontrollers. The controller includes an on-chip programmable gain amplifier, an offset digital-to-analogue converter and a 24-bit sigma delta analogue-to-digital converter. Low voltage sensors can be attached directly to the microcontroller.

However, despite all these advancements, digital circuitry will not replace all of the analogue circuits just yet. According to National Semiconductor’s European marketing director Robert Hinke, the world of analogue has for the first time superseded the growth of microprocessors. The total available market for analogue components by 2007 will be worth some $40bn, whilst that for microprocessors will be at least $55bn lower, at $35bn (source: SIA November 2004 forecast). Last year, the standard linear business (including data conversion, interfaces, amplifiers and power markets) grew to $12bn. Analogue companies have already been heavily investing in this business, including National Semiconductor, which declares that up to 19% of its total sales have been ploughed back into investment for analogue R&D. Areas of growth for analogue devices are in high-speed communication, telecom infrastructure, automotive applications, printers, copiers, fax machines and medical applications, especially in portable medical equipment, which tends to require high-precision amplifiers, data converters and power management systems. Hinke believes that analogue will remain the differentiating factor and that there will be a gap between analogue and digital for some time to come.

When I was at university, every student in my year wanted to design digital circuits – it was considered easier and sexier. I found this trend continued during my work in industry, to the detriment of the firms concerned. We can see, with increasing frequency, that it is getting tougher for firms to recruit experienced analogue design engineers. So, it is certainly nice to see analogue design getting back the attention it deserves.

Svetlana Josifovska
Editor
Synopsys IC Complier sees all

In the quest to ease the transition of semiconductor makers to process geometries of 90nm and below, leading EDA tool supplier Synopsys has announced a dramatic approach to physical implementation in its new tool – IC Complier. Built from the ground up, the IC Complier’s architecture handles physical synthesis and place and routing, including clock trees synthesis, in a single step rather than a series of separate processes as before.

Following logic synthesis, all of the device parameters and exact measurement data are processed at the outset of the design flow to allow the tool to allocate the routing and the clock trees optimally, earlier. The company says that this method will help tackle device complexities and the growing number of problems such as defects, leakage and signal integrity issues, hence improving yields and cutting the time to sign-off.

“In IC Complier, we extended synthesis to placement and to clock trees and routing. This offers reduced congestion, better timing predictability, and timing and signal integrity closure,” said Bijan Kiani, marketing vice-president for the implementation group at Synopsys. “IC Complier optimises for timing, area, power and yield – concurrently. By allowing common libraries, constraints, delay calculations, extraction and regressions to work together, we’ve been able to close that correlation gap.”

Heading toward smaller geometries, the semiconductor industry is adding more than 8m gates per design, over 100 macros, between eight and nine routing layers, bringing a whole set of aggravating complexities with it, including increased congestion, increased impedance in the design, such as the resistance of the vias, signal integrity problems and so on. Synopsys believes that, going forward, only by solving these issues concurrently, would yields be improved.

According to Synopsys’s executives, one of its customers validated IC Complier on a 110,000-gate, 250MHz design in 90nm technology, showing improvements of 10% in area and 40% in time in the completion of both physical synthesis and routing, compared with the traditional Synopsys flow, which consists of Physical Compiler (PC) physical-synthesis tool and the Astro router.

A single annual licence for IC Complier costs $735,000 and will be available from June.

UK’s electronics sector weaker than Europe’s

The annual DTI Value Scoreboard has found that the UK electronics industry is weaker than that of Europe. The DTI has used seven measures including the relative size of the UK sector by value added (VA), the growth rate of VA and wealth creation. It has found that the UK sector is proportionately less than one third the size of the European sector and has lower average figures for VA growth and wealth generation.

In addition, there are 11 foreign-owned electronic companies in the UK 800, but eight companies in the electronics sector of the European 600 of which only one – Invensys – is from the UK.

Synopsys simplifies DFT

The challenges of testing devices built with 90nm and 65nm process technologies are giving test engineers a headache, says Synopsys. No longer is a relatively simple ‘stick at’ fault test sufficient, as faults such as weak bridges, partial vias and transition faults mean a chip can pass the test but fail in use. But ‘at speed’ tests dramatically increase the number of test vectors, the time taken and the need for the expertise of a test engineer.

To tackle these problems, Synopsys has developed logic that can be easily integrated into the design flow by the design engineer at the synthesis stage to multiplex shorter scan chains in a design. All the test data generated through the design flow can then be carried through to the test stage for automatic test pattern generation (ATPG).

The adaptive scan module is a block of combinatorial logic that distributes the test vectors to all the scan chains, controlled by the input of two test pins. "There are multiple fan-out networks that are controlled adaptively," said Tom W. Williams, who at IBM published the essential paper on scan test in 1977 and is now an Engineering Fellow at Synopsys.

The results of the scan chains are combined at the end to reduce the complexity of the test system, and the vectors are generated automatically by the test tool. "We want to simplify test," said Williams. "When the test was used by Micronas it gave a reduction in test time of ten times compared to what would have been needed for ‘at-speed’ testing. STMicroelectronics is also standardising on the tool, called DFT compiler MAX."
New software will combat soft errors

As process technologies move to 90nm and 65nm, soft errors become increasingly important, not only for memory subsystems but for the logic too. The smaller size of the transistors make the logic more vulnerable to strikes by alpha particles, and French company iRoC Technologies has developed several techniques to tackle the problem.

It uses a modelling tool to predict the effect of soft errors on memory and logic at the Spice and netlist levels, and tests customers’ custom chips at an accelerator at Sandia National Labs in the US. Full-scale tests are also carried out, high up in the Alps where there’s a greater incidence of alpha particles. “For nanometre designs, reliability and, in particular, soft error analysis are no longer just a process issue,” said Jim Hogan, general partner of Telos Venture Partners in the US. “The growth in the amount of embedded memory and the lower activation energies of nanometre processes increase the risk of system reliability issues due to soft error strikes. And because soft errors can’t be eliminated using classic reliability techniques, they must be addressed during the design phase.”

The company has just introduced a new 3D modelling tool to quickly analyse the impact of soft errors on a design. The TFIT (transistor failure in time) tool simulates a strike on a block of IP and runs an analysis on an area in seconds, rather than overnight with Spice, and analyses a full IP block in a few days, rather than weeks.

As well as modelling a design, the company helps developers design for soft errors with three different approaches – triple redundancy of the logic, using a voting system to determine the best answer, hardening the cell by adding an extra transistor to the cell in vulnerable areas and using time redundancy. Time redundancy adds extra logic that is not sampled on the leading clock edge to see if there is any difference in the logic result, and uses combinatorial logic to give a ‘go’/‘no go’ result.

iRoC has tested 500 devices in real time, 11,000ft up in the Alps. This showed the first failure in three days and three in the first two weeks, which was consistent with the modelling and the accelerated tests. These accelerated tests are cheaper because they use mixed lots, and are used by companies such as LSI Logic and Cisco.

City analysts don’t feature obsolescence

The Component Obsolescence Group (COG) states that some 55% of the City analysts who monitor the ‘at risk’ sectors it polled recently recognise the issue of obsolescence but less than a third (30%) of them factor it into their analyses.

Only a quarter said that companies give them any information on the obsolescence problems they face and how they manage those. “While it is encouraging to see that component obsolescence is featuring on so many analysts’ radars, it’s disappointing that many organisations still do not seem to be actively volunteering information about this issue,” said Michael Trenchard, COG’s chief executive.

Yorkshire Forward is investing £9.65m in the region’s Advanced Engineering and Metals (AEM) industry to help researchers and businesses develop, exploit and commercialise new technologies. A further £3.1m of private sector funding will also be ploughed into the programme, which is predicted to create more than 500 jobs.

Universities and businesses will be able to bid for funding to develop projects in four preferred areas: near net shape processing, surface engineering, powder metallurgy and design modelling and simulation. The tenders will require that the work should be undertaken in the Yorkshire and Humber region.

Ω

The number of USB-enabled devices will rise from 708.7m in 2004 to 2.1bn in 2009, says market research organisation In-Stat. Growth will continue in all categories – PCs, PC peripherals, consumer electronics and communications devices – with the fastest growth to be seen in the communications category. “In the PC business in 2004, high-speed USB has nearly saturated the desktop market and now comprises over three-quarters of the notebook market, whose slower design cycles mean less rapid adoption,” says Brian O’Rourke, In-Stat analyst.

Ω

Tournez Technology and Advance Nanotech have joined forces in the effort to bridge the gap between nanosystems and the macroscopic world. They are naming the joint venture Bio-Nano Sensium Technologies, which will focus on intelligent, ultra-low power sensor interfaces, using wireless communication, to create bio-nano sensors that can be implanted within the body to diagnose and treat a wide variety of medical conditions. The development effort will focus on the information and communication technology systems, necessary for these sensors to interact with their surrounding environment.

Ω
Predictive analysis moves to the architectural level

Arenta is moving its predictive analysis tools up from the RTL level to tackle high-level design issues. The rule-based tools capture best design practice — particularly in the physical implementation of RTL in sub-90nm designs — and applies it as high-speed, batch-operated analysis that also corrects errors in a design. The tools are used by nine out of ten of the largest semiconductor makers and 70 others, including companies such as Broadcom, Conexant and STMicroelectronics.

The move to high-level design is significant as it will allow analysis not only of floor-planning options and what they mean for implementation further down the design chain, but also the partitioning and analysis of hardware and software. This will allow different options at the architectural design level to be analysed for power consumption, area, cost and manufacturability, and the tools plug into the existing design flow via an Open Access database.

The first parts of the tool, called 1Team, are for silicon design issues. The 1Team Impelment allows automatic placement of mixed-size, multi-million instance designs with hundreds of hard macros in hours, rather than days.

In June, it is launching tools for system analysis and building embedded software that runs on processors embedded in a system-on-a-chip, says Ajoy Bose, chairman, president and CEO. 1Architect will allow partial RTL, Verilog, VHDL, hard and soft IP and chip specifications to be analysed for timing, hierarchy, area, row utilisation, I/O pad placement and metal layers, and produces partitioned RTL and constraints that are carried through the rest of the design.

UWB proves a threat to Bluetooth’s reign

UltraWideband (UWB) technology’s superior technical capabilities may curtail the reign of Bluetooth in consumer electronics. So says Mike Brookes, the chairman of the Low Power Radio Association (LPRA).

Current versions of Bluetooth provide data rates of around 500kbit/s, but future versions will support rates of above 10Mbit/s. “UWB will create radical changes in the Internet access, video and other data hungry applications. Its real potential is in consumer products, where Bluetooth is today. Major players, including Intel and Motorola, are working hard on the first generation of UWB chips,” said Brookes.

All of these UWB benefits will be offered in same cost range as Bluetooth devices. “You’ll get the same pence per unit [for UWB, as for Bluetooth], but you’ll have a much wider bandwidth, better data rates and rapid access over longer distances,” said Brookes.

Both standards are low-power RF technologies, suitable for multi-user environments, and can work up to 20m. UWB is spread spectrum based technology that works in the 3GHz to 10GHz band, whilst Bluetooth is frequency hopping technology covering the 2.4GHz range, soon to be also in the 5.7GHz range.

There are two types of UWB applied techniques. The first is pulse-based, where information is transmitted with a very short burst (ps to ns) of energy. The second technique is frequency hopping, where the UWB operating band is divided into groups of 500MHz sub-bands and then frequency-hopping protocol is applied within those sub-bands.

The US and some Far East countries are already conducting UWB trials. Europe, however, is slightly behind, since service operators like Vodafone and Orange are currently at loggerheads with the EC over UWB’s operational frequency – UWB works near the 3G spectrum’s noise floor. “They have paid an enormous amount of money for 3G licenses in the spectrum where UWB lives and are concerned that aggregation of ubiquitous UWB products will cause interference. They are keen not to allow UWB into that area. But if Europe doesn’t get its act together on this one, it’ll become backwater,” said Brookes.

“The EC, though, is keen to get it allowed,” he added.

HDTV grows stronger

As of March 2005, 10 million homes around the world were watching HDTV programming on a high-definition TV set. By the end of 2005, this total is projected to reach 15.5 million, reports market research organisation InStat, with that figure rising to 52 million by the end of 2009.

“Even with the rise in the number of HDTV households, there are still challenges slowing the spread of HDTV service,” said Mike Paxton, In-Stat analyst. “Foremost among these are: the need for more HDTV content, continuing the education of the public about the benefits of HDTV and widening the geographic availability of HDTV services, especially in Europe.”

HDTV services are widely available in five countries: Australia, Canada, Japan, the US and South Korea.
Sensors get wired directly into digital devices

Chipmakers are looking closely at linking directly to sensors as a way of reducing the complexity of measurement systems.

Silicon Labs has developed a direct interface for sensors for its 8-bit 8051-based microcontrollers. The controller includes an on-chip programmable gain amplifier, an offset digital-to-analog converter and a 24-bit sigma delta analogue-to-digital converter. Low voltage sensors, such as magnetoresistive sensors in the 100mV to 1mV range, can be attached directly to the microcontroller. This will open up new areas for sensing, particularly in chemical sensors that previously needed conditioning electronics, making them bulky and expensive.

The controller can be used to handle an interface, for signal pre-processing or for proprietary communications protocols.

The limit is the micromachined (MEMS) sensors where there are very low currents, and the company is looking at adding a current DAC to use as a controller to support these applications.

Meanwhile Analog Devices Inc (ADI) has developed its first families of capacitance and impedance ADCs. The AD7745 capacitance converter replaces up to nine discrete devices, taking the input directly from a capacitive sensor. It uses an external capacitive bias to provide the offset levels in the same way that electrical bias is used in a traditional converter. Capacitive sensors are used in pressure sensors in industrial applications, blood pressure monitors and automotive applications, such as in position or level sensing and occupancy detection.

Internally, the capacitative ADC uses an op-amp to provide a capacitance-to-digital converter (or CDC, as Analog Devices is calling it) with a resolution of 20fF at 16.6Hz, feeding into a 24-bit sigma delta ADC and programmable gain amplifier, giving a measurement accuracy of 2fF and a linearity of ±15ppm at Full Scale Reference (FSR).

ADI has done the same thing for impedance sensors. The AD5933 impedance ADC combines direct digital synthesis, analogue-to-digital conversion and hardwired digital signal processing for applications such as Electro Impedance Spectrometry and high-end medical equipment.

The sensor uses an internal DAC, coupled to the digital signal processing, to output a set of frequencies to excite the impedance sensor, while a 12-bit, 1Msample/s ADC is used to capture the output of the sensor. The output of the ADC is then processed via a 1024-point Discrete Fourier Transform (DFT) to give the result.

Two companies debut new parametric tester options

Agilent Technologies and Keithley Instruments have both announced DC/RF/pulse parametric testers last month, used for characterising devices built with 65nm process technology nodes and below. The instruments support short, 10ns pulsed IV measurements needed for extremely thermally- or charge-sensitive devices, including silicon-on-insulator (SOI) transistors or high-k transistors in high-speed logic applications. There are two instruments in the Agilent series of parametric testers – the 4075 and 4076. The 4076 tester supports measurements for currents of down to 1nA. Both of them support high-frequency and radio-frequency capacitance versus voltage (CV) behaviour, particularly important for ultrathin gate MOSFETs, which are susceptible to electron tunneling.

Keithley, on the other hand, has added the third generation RF option to its testers. It offers an automated RF probe card changing, which removes the need for a lengthy, manual process as done previously.

Among its other benefits is the automatic continuous monitoring of measurement integrity, which detects events that would invalidate the RF calibration and triggers a corrective action.
M-Systems takes on SanDisk in embedded designs

Israeli flash memory company M-Systems is looking to replace the industrial CompactFlash market currently dominated by SanDisk. M-Systems has launched a USB 2.0 version of its uDiskonChip that can boot Windows XP directly, which occur when the has been another fixed, limited area of interface as part of an SD product marketing at M- This comes as San Disk is removable, or a 9-pin fixed, making the technology portable between designs. pared to uDiskonChip that can boot problems. These format.

For M-Systems, the higher speeds of USB 2.0 support higher density memories (up to 4GBit) with boot times comparable to a hard disk drive. It is almost twice as fast as an IDE module. Data access times of 3ms are achieved by interleaving blocks on two chips through a removable, or a 9-pin fixed, USB2 interface.

Magma targets designs of 90nm and below

Magma Design Automation is targeting sub-90nm designers with new tools that consolidate a number of technologies acquired over the last twelve months. The Cobra development has been key for the future of the company, says CEO Rajeev Madhavan. "The 18-plus months that have gone into this effort have delivered products that will significantly expand design options available to our customers as they no more and more design work at 90 and 65nm," he said.

There are nine new tools in the Cobra release, including a synthesis engine that can output to standard cell, ASIC or FPGA, and focusing on reducing the impact of synthesis on the design. Now the layout, routing and timing is analysed and optimised for signal integrity issues before synthesis to reduce the timing and area problems often faced in the logic synthesis stage. This ‘interconnect synthesis’ is vital at 90nm and 65nm, says Madhavan, balancing cell delays and wire delays with the shapes of the wires and the switching of neighbouring wires.

Although all the tools can operate from a single unified database for the Blastfusion and Blastcreate design flows, Magma has also added a standalone timing sign-off tool called Quartz Time/RC for timing and RC analysis and parasitic extraction in the design loop, rather than as a batch process that needs multiple iterations. This uses core algorithms developed at startup Random Logic.

Coming from Magma’s acquisition of Mojave Design, the Quartz DRC and LVS tools give a fast turnaround for physical verification, using the core algorithms developed at Mojave. These provide verification of any chip in under two hours.

It has also added a statistical timing tool for manufacturability analysis, Quartz SSTA, that accounts for process variations and provides a parametric yield analysis for the design. This comes from the acquisition of Silicon Metrics. It provides the parametric extraction and timing, using the statistical library models from Magma’s Silicon Correlation Division.
NEW version
B² Spice
v5

PROFESSIONAL SOFTWARE
AT AN UNBELIEVABLE PRICE

New powerful functions

- Virtual instruments – meters, scopes, transient recorder, function generator, power supplies and more
- Test mode, equivalent to the standard SPICE analyses and a separate continuous transient simulation mode that allows you to alter device and circuit parameters and examine the results immediately
- Layered sweeps, meaning you can step almost any device or circuit parameter on top of any test
- Monte Carlo analysis available for all tests including expanded Monte Carlo
- Easy part selection, including a customisable parts palette
- User-friendly interface with buttons and control tabs
- Live updating in simulation mode
- Circuit wizard makes it easy to generate standard circuits including attenuators, power supplies, filters, op-amp and tube-based circuits
- Over 25 thousand parts, unlimited circuit size
- Highly flexible 3D graphing
- NEW “realistic” models for caps, resistors, inductors
- Interactive parts including switches, fuses, LEDs, etc.
- Layered sweep tests (expanded)

B² SPICE is backed by comprehensive free technical support both local rate telephone and online, full user manuals and tutorials and a NO QUIBBLE, FREE 30 DAY EVALUATION OFFER

ONLY £229 p&p
Ex VAT

FREE 30 DAY TRIAL

FULL - OPERATIONAL SINGLE USER VERSION

Used worldwide by higher education, research and industrial professionals B² SPICE is a powerful and most importantly, ACCURATE software package for professional design engineers.

CALL 0845 6017242
www.spice-software.com

Visa MasterCard
The entire range of the 2005 Skytronic catalogue available from Cricklewood Electronics

This, Dutch Wholesaler's Catalogue, is now available to UK retail customers via Cricklewood Electronics and includes thousands of electronic items and components at bargain prices. The 432 Catalogue pages includes:

- Plugs, Sockets, Cables, Switches, Speakers, Microphones, Components, Car Audio, Disco & PA & HiFi Equipment, CCTV Cameras & Recorders, Tools, Test Equipment, Inverters, Power Supplies, Electrical, Multimedia, Computer accessories, etc etc.

Catalogue & Price List free to shop-callers. To have it posted - please send £2.00 towards postage costs. (UK only).

Cricklewood Electronics Ltd
40-42 Cricklewood Broadway, London NW2 3ET. Tel: 020 8452 452 0161, Fax 020 8208 1441
email: sales@cricklewoodelectronics.co.uk
Visit our website @ www.cricklewoodelectronics.com
The future of embedded speech

Embedded speech technologies are improving at a dramatic pace, whilst entering a wide range of applications, says Arnd Weil.

Embedded speech applications share a common denominator - they take the "pain" out of using cumbersome applications by enhancing the interface experience between the device and the user. Entering a destination into a car navigation system, dialling a phone book entry on a mobile device, or selecting a new song while driving, are all applications that speech technology makes much easier and safer.

Speech can greatly enhance the user experience also in other applications such as gaming, where certain commands and actions can be voice activated, or SMS reading. Removing that "pain" in the user interface is the key driver for embedded speech technologies today. This will continue to motivate future applications like mobile dictation and others.

Recently, a strong focus for embedded speech has been set in enhancing the vocabulary for destination-entry applications in automotive navigation systems. In the case of satellite navigation, original equipment manufacturers (OEMs) are demanding larger vocabularies such as all 70,000 cities in Germany or all 150,000 streets of California.

Speech companies have defined different strategies to reach that goal. Some of the progress is being made in improving the quality of embedded recogniser engines. One reason for that is successful integration of different embedded speech technologies (L&H, Philips, SpeechWorks) by combining and leveraging the best modules and in-car speech databases from all parties. Another important factor is to have an impressive network of partners, such as map data suppliers and platform manufacturers, to closely co-operate with car manufacturers.

But what about other applications and market segments like mobile devices? Here too advancements have been made. For example, a screen reader for mobile handsets is designed to be usable by a blind person. It includes a parametric text-to-speech system with very low response time and high intelligibility. Although such voices are easy to understand, they sound distinctively robotic. For that reason, natural sounding text-to-speech systems are being introduced to the mobile market for applications like SMS and e-mail reading.

While most of these applications can fit even on low-end feature phones, the handset evolution will open a world of new opportunities for speech-enabled applications, for example embedded SMS dictation. In parallel, the introduction of network-based services will be pushed by mobile operators, which will open new possibilities. The voice destination entry for Wayfinder's off-board navigation system is a good example of the convergence of the network and embedded speech business.

Wireless type telematic systems enable users to access live data and services that are relevant to specific localities - an example being the identification of the most popular Chinese restaurant in the immediate area by using a convenient speech interface.

In the near future, embedded speech engines will be able to recognise multi-lingual speech and understand more freely structured dialogues.

Embedded speech recognition and text-to-speech engines will continue to develop, aided by the evolution of processor hardware. In the near future, they will be able to recognise multi-lingual speech and understand more freely structured dialogues that will allow users to make enquiries in day-to-day terms, such as, "I want to go to Edinburgh, what's the best route?"

Speech will also continue to enhance niche markets, including language learning and assistive technologies, warehousing systems, and gaming on both, mobile handsets and home entertainment platforms. One thing is certain, though, wherever there is a user interface that causes unnecessary "pain", speech will almost certainly be the solution that alleviates it.

Arnd Weil is senior manager for the Embedded Product Line at ScanSoft.
The 8-bit MCU is dead

By Nick Flaherty

With a set of new launches of 8-bit microcontrollers, nothing seems to shake this device’s design dominance.

Despite efforts to encourage designers to move from 8-bit directly to 32-bit microcontrollers, the 8-bit market continues to flourish, with several launches at the recent Embedded World show. Reducing the pin-count for smaller designs while keeping the same range of peripherals, and increasing the performance to full USB2 support are continuing to boost 8-pin controllers.

In a bid to challenge Microchip on its home ground, Zilog has launched an 8-pin, small footprint version of its Z8 Encore! XP microcontroller. This offers exactly the same on-chip functions as the larger devices through pin multiplexing, as well as a full-range temperature sensor, single pin debugger and trans-impedance amplifier.

“We are extremely excited about the numerous possibilities the Z8 Encore! XP 8-pin brings to the market, and we have already secured several design wins, receiving very positive, initial feedback from the design engineering community,” said Ramesh Ramchandani, executive vice president of sales and marketing. “We are also optimistic about demand for this product from new sectors such as health and fitness, remote transmitters and receivers, smartcard readers and battery charger markets, among others.”

At the same time, Infineon Technologies has launched an 8-bit 8051 controller with 12kB of program flash and 4kB of data flash for less than a euro. The 25MHz XC866 includes an 8-channel, 10-bit ADC and three 16-bit timers.

Atmel has also launched three new tinyAVR 8-bit controllers with internal temperature sensors. The ATiny25 has 2kB of flash memory, the 45 model has 4kB and the 85 has 8kB.

And STMicroelectronics (ST) has launched a 10MIPS 8-bit CPU, the uPSD3400 Turbo Plus, with a full speed USB2.0 interface. The 40MHz 8032-based core uses an internal 16-bit wide instruction path to handle two instructions at a time to meet the performance requirements of the 480Mbit/s USB2.0 bus. Using an 8-bit controller for a USB2.0 hub keeps the power consumption and the code size down.

Motorola launched an 8-bit controller particularly suitable for energy-efficient lighting systems. The HC908L8B HC08-based controller includes power factor correction, two PWEM outputs and a 7-channel 8-bit ADC.

Despite a strong attempt to move designers to 32-bit microcontrollers, particularly the ARM architecture, there are still significant developments in 16-bit controllers, especially for low power.

In a bid to reduce the time taken to develop with a new processor, UK chip designer Cyan Technology has launched a new version of its ultra low power uCOG16-bit controller with a key new development tool. The Version 1.1 of the CyanIDE development tool has automated the configuration of the peripherals, caches and memory management unit, reducing initial development times from weeks to a few days.

The new chip, the 25MHz uCOG1m, is also based on the low power XAP Harvard architecture core developed by Cambridge Consultants and provides a current consumption of 400nA in standby mode (CPU stopped) and 10.1μA when continuously clocked at 16kHz. This makes it ideal for portable and handheld devices as it includes an MMU and vectored interrupts to support major operating systems. This increased complexity makes the drag-and-drop approach of IDE for configuring the device even more vital.

The 8mm square, 81-pin chip is electrically equivalent to Cyan’s 128-pin eCOG1k with a range of serial interfaces (dual UARTs, dual USARTs, SPI and IrDA), timers, 16-bit clock generator timers, general-purpose event counter timers, an A to D...
long live 8-bit MCU!

The basic technology was licensed from Cambridge Consultants in 2000, but the company was resurrected two years ago with a new set of tools. Last year it sold one million units. Other manufacturers are also extending their 16-bit range, and some are even moving into 16-bit for the first time. German chip designer Micronas has developed low power 8/16-bit controller for automotive instrumentation, steering columns and smart junction boxes. The CDC16xxF family includes an EMI reduction module that smooths the clock and so reduces the size of the capacitors and even the number of PCB layers needed to meet EMC emission requirements. It also adds three CAN controllers, a power saving module that shuts down the different peripherals when not in use and an LCD controller.

Some controller designers are even moving down from 32-bit. Processor core designer Imagination Technologies is developing a new embedded microcontroller core that uses a 16-bit version of the instructions already used in its META multithreaded processor. META is used in DAB digital radio and digital TV, handling four separate threads. In contrast, the new MTC controller core will handle one thread with a 16-bit instruction set which reduces the core size to 0.26mm² on a 0.13nm process and gives a power consumption of 0.09mW/MHz. It also includes the same co-processor interface, so chip developers can have a range of products from a low-end controller to a high-performance multimedia engine, all using the same CodeScape development tools and thread linker. An early version is currently being used by Renesas in its 7770 multimedia accelerator, but it is also being offered to other chip makers to include in system-on-a-chip devices, which will come onto the market early next year.

This is part of a strategy to expand the META range both up and down, as Imagination is also developing new versions of its 32-bit META core, with a high-speed 250MHz version being developed for the end of this year and a low power version in the first half of 2006. A new architecture called META2 running at up to 500MHz is also due at the end of this year.

New process technologies mean that the core itself is an increasingly small component of the chip, and many more peripherals are being added to make these controllers even more cost-effective. Keeping the power consumption low and the memory size down helps to keep the system costs low. The increasing integration also helps to mop up more of the system cost into the controller. New software to configure the devices such as Cyan’s IDE, coupled with free software such as TCP/IP stacks, can only help bring more designers into using such devices and keep the 8-bit and 16-bit controllers alive and healthy. In applications where the memory space is restricted and 32-bit is not necessary, both 8-bit and 16-bit controllers are continuing to thrive. In August last year, market research company Semico predicted that the total value of the 8-bit microcontroller market will grow by 8% a year, from $4bn in 2002 to $5.8bn in 2008.
Closers look at the slew rate criterion

Even though the slew rate criterion is well known, failing to apply it to a circuit as simple as a standard inverting op-amp amplifier can lead to wrong measurements and false conclusions.

By Hugo Coolens

When one has designed a linear op-amp circuit, it is a good idea to check its performance by real measurements. Care should be taken to avoid non-linear distortion when comparing measured results with design predictions. For an op-amp circuit the most important mechanisms that could cause non-linear operation are saturation and slewing.

Consider the simple inverting op-amp amplifier in Figure 1. When we try to measure the frequency response of this amplifier, we should apply at the input a sinusoidal signal whose amplitude is large enough, since a large signal to noise ratio will be beneficial for the measurement. However, we should not make the amplitude too large to avoid saturation or slewing of the op-amp.

The amplitude of our sinusoidal input signal will be called hereafter V_I and the maximum value which does not cause non-linear distortion $V_{\text{P,MAX}}$. If we assume the saturation voltage of our op-amp is 2V less than the power supply voltage, which we take to be 15V, then $V_{\text{P,MAX}}=130mV$ will not cause saturation. Let us calculate this value for slewing using inequality (1), the well-known slew rate criterion:

$$\omega \cdot V_{O,P} < S_R$$ \hspace{1cm} (1)

Let us check for slewing in the passband of our amplifier (e.g. for $f=100Hz$; $2\pi \cdot 100Hz \cdot 13V$/816V/s < 500000V/s. This result is satisfactory.

For typical parameters 1 of a 741, the circuit has a DC-gain $A_{CL,0}=100$ and a closed loop bandwidth $BW_{CL}=9901Hz$. 2, As we want to measure the frequency response, also in the roll-off region of the amplifier, let us check it there too, e.g. for $f=100kHz$. At this frequency, $A_{CL}=9.85$, thus the left hand side of inequality (1) becomes $2\pi \cdot 100kHz \cdot 1.28V = 804000V/s$, In this case, the slew rate criterion is clearly not met. Thus we should choose a smaller value for V_{P}. Instead of using a trial and error method, we can rewrite equation (1) which, as such, is not very useful for our purpose as it applies to the output of the amplifier:

$$2\pi f \cdot V_{I,P} \cdot |A_{CL}| < S_R$$ \hspace{1cm} (2)

Rearranging inequality (2) and using

$$A_{CL} = \frac{1}{\pi f BW_{CL}}$$

brings the slew rate criterion back to the input of the amplifier:

$$V_{I,P} < \frac{S_R (1 + \frac{BW_{CL}}{100kHz})^2}{2\pi f A_{CL,0}} = V_{I,P,MAX}$$ \hspace{1cm} (3)

One could be tempted to try to solve this inequality, which essentially would mean to solve a quadratic inequality. If you look, however, at the right hand side of it, you can see in Figure 2 this function has a horizontal asymptote for $f \rightarrow \infty$. In fact, this result could be expected from inequality (1) too, as the left hand side of it has both a factor which increases linearly with frequency and one which decreases linearly proportional to frequency (assuming first order behaviour).

Determining the above mentioned asymptote gives:

$$V_{I,P,MAX,\infty} = \frac{S_R}{2\pi A_{CL,0}BW_{CL}}$$ \hspace{1cm} (4)

Equation (4) can also be rewritten as:

$$V_{I,P,MAX} = \frac{S_R}{\pi f A_{CL,0}BW_{CL}} = \frac{\pi f}{A_{CL,0}} + \frac{1}{1 + \frac{BW_{CL}}{100kHz}} - \frac{A_{CL,0}}{1 + A_{CL,0}}$$ \hspace{1cm} (5)

Equation (5) has the advantage that it uses op-amp parameters directly. It can also be used for the standard non-inverting amplifier, in which case $\alpha = 1$.

From equation (5) it is clear that for two op-amps with the same slew rate, the one with the higher

References

1 unity gain frequency \approx1MHz and $S_R=0.5V/\mu s$

2 $0=A_{CL,0}BW_{CL}=A_{CL}BW_{CL}$
bandwidth will yield the worst value for $V_{P,\text{MAX}}$. Equations (4) and (5) show that $V_{P,\text{MAX},\infty}$ is dependent on $A_{CL,0}$ for the inverting amplifier, whereas for the non-inverting amplifier it is not. For a unity gain amplifier $V_{P,\text{MAX},\infty}$ may be twice as large for an inverting amplifier than for a non inverting one. Of course, the closed loop bandwidth will also be halved in that case. A more "physical" explanation is that for an inverting amplifier the input signal is attenuated by R_1 before reaching the actual input of the op-amp.

Notice also that the graph in Figure 2 has a "corner frequency" equal to BW_{CL}. This means you can apply a $V_{P,\text{MAX}}$ that is 2 times $V_{P,\text{MAX},\infty}$ at a frequency equal to BW_{CL} without causing slew rate distortion.

Using typical values for a 741, we can conclude from equation (4) that we should limit the amplitude of our sinusoidal input signal to $V_{P,\text{MAX}} = 80 \text{mV}$ to avoid slew rate distortion for whatever frequency.

Using a unity gain frequency of 1.2MHz and a worst case slew rate of 0.3V/\mu s, this value is even further reduced to slightly less than 40mV, which is more than three times less our initial value based on the saturation criterion, but will yield an acceptable signal to noise ratio for most measurement setups.

This does not conclude our story yet. Real op-amps are higher order systems. This phenomenon will also be noticeable in the closed loop system response. Calculations for higher order op-amp models may become rather tedious. However, simulation programs like Spice can come in handy for this purpose. When we apply an AC-source of 1V at the input of our circuit and perform an AC-analysis, we obtain an output voltage $V_{(\text{OUT})}$ which is numerically equal to A_{CL}.

Performing some postprocessing on $V_{(\text{OUT})}$ gives us

$$V_{P,\text{MAX}} = \frac{S_B}{2\pi f V_{(\text{OUT})}}$$

The result is shown in Figure 3.
An AC-analysis with Spice, followed by a little post-processing, is sufficient to calculate \(V_{I.P.MAX} \):

\[
V_{I.P.MAX} = \frac{V_{OS.SAT}}{V_{OUT}}
\]

It is not always obvious which of the two criteria will be the dominant one, therefore, you should plot both graphs to determine the maximum amplitude that you can apply to your circuit without causing slew rate distortion or saturation. An example of such graphs is shown in Figure 4 for the op-amp band pass filter shown in Figure 5. It is clear that, in this case, the saturation criterion is the dominant one.

I hope this article shows that there is more behind the standard slew rate criterion than inequality (1) or what standard handbooks of electronics usually tell.
THERE IS INTERESTING NEWS

PC CONTROLLED MEASURING INSTRUMENT
COMPLETE PACKAGE STARTING AT £ 435

The Handyscope 3 is a powerful and versatile two channel measuring instrument with an integrated function generator.

- USB 2.0 connection (USB 1.1 compatible)
- sample speed up to 100 MHz per channel
- 8 to 16 bit resolution (6 μVolt resolution)
- 50 MHz bandwidth
- input sensitivity from 200 mVolt up to 80 Volt
- large memory up to 131060 samples per channel
- four integrated measuring devices
- spectrum analyser with a dynamic range of 95 dB
- fast transient recorder up to 10 kHz
- several trigger features
- auto start/stop triggering
- auto disk function up to 1000 files
- auto setup for amplitude axis and time base
- auto trigger level and hysteresis setting
- cursor measurements with 21 read-outs
- very extensive function generator (AWG) 0-2 MHz, 0-12 Volt

for more information, demo software, software, source code and DLL’s visit our internet page: http://www.tiepie.nl

© Copyright 2002 TiePie engineering. All rights reserved.
Design of a USB interface
...for a data acquisition system

By Qian Xie and Wuqiang Yang

In terms of hardware, an electrical capacitance tomography (ECT) system is a typical data acquisition system, although its software is complicated. The basic function of ECT is to reconstruct permittivity distribution of a cross section, based on capacitance measurements. An ECT system has been developed at the University of Manchester (formerly UMIST) with a PCI data acquisition board from Arcom Ltd of Cambridge. One difficulty is that the system cannot be operated by a laptop.

To enhance portability, a USB-based data acquisition card has been recently developed, based on a USB interface module (USB-IFM) MOD2 with a FT809245AM IC on it from Future Technology Devices International (FTDI) Ltd of Scotland. USB-IFM was selected because it provides an easy and cost-effective way of transferring data between peripheral devices and a PC at up to 8Mbits (1Mbyte) per second and also its simple FIFO structure. The accompanying software makes it easy for the users, who may not be familiar with the protocols of USB, to control other devices via I/O ports.

Figures 1 and 2 show the module and the block diagram of USB-IFM.

USB-IFM communicates with a PC via a USB link and with the peripheral devices via an 8-bit parallel data port (D0-D7). All low level operations involved in transmitting data between the USB-IFM and the PC, including the transitions between serial and parallel data, are handled internally by USB-IFM. When the PC sends data to USB-IFM, the data is stored in the FIFO Receive Buffer and can be read by the peripheral from the data port one byte at a time. Each rising edge of the RD# signal sent to USB-IFM causes a new byte to be transferred to the data port (see Figure 3 (a)). The peripheral sends data to the USB-IFM for transmission to the PC by writing one byte at a time onto the data port. Each falling edge of the WR signal sent to USB-IFM causes the byte to be transferred to the FIFO Transmit Buffer (see Figure 3 (b)).

The RD# and WR signals must be generated by the peripheral. Two signals, RXF# and TXE#, are automatically generated by USB-IFM to control the data flow. When the TXE# flag is "1", data cannot be written onto the USB-IFM data port. Similarly, when the RXF# flag is "1", data cannot be read from USB-IFM data port.

Data acquisition system

The overall data acquisition system is shown in Figure 4. It includes the USB-based data acquisition card, a signal generator card and up to six capacitance measurement cards, providing 12 capacitance measuring channels, one for each capacitance electrode. Two direct digital synthesiser (DDS) IC chips (AD7008) are used to generate two synchronised 500kHz sine-wave signals of 18V peak to peak, one as the excitation source and the other as the reference signal for phase sensitive demodulation (PSD). The analogue multiplexer (MUX) (ADG526) is used to select the DC signal from each capacitance measurement channel in sequence. A differential amplifier (INA105) subtracts the appropriate voltage produced by a 12-bit digital-to-analogue converter (DAC) to cancel the standing capacitance. The signal now represents the measured change in capacitance and is further amplified. A DC PGA with selectable gains of 1, 2, 4, 8 and 16 is required to deal with a large dynamic measurement range. The analogue signal is finally converted to a 12-bit digital signal by an analogue-to-digital converter (ADC) and then transmitted to the PC in two bytes.

The offset signal, which is used to balance the standing capacitance, comes from the DAC, which is on the data acquisition card. The offset signal can vary from 0 to 5V in 4096 steps, and is expressed as:

\[V = -V_{ref} \frac{D}{2^{12}} \]

where Vref is the reference voltage for the DAC and D is the digital input.

The ADC is configured for offset bipolar operation and operates over the range Vin = -1V to 4V. The digital reading is given by:

\[E = -\frac{V_{in} + 4}{F} 2^{12} \]
where F is the full measurement range of the ADC.

The system operation is controlled by the digital outputs port on the data acquisition card and provides the following functions:

> Control of CMOS switches to select the excitation and detection electrodes;
> Control of the amplitude and frequency of the excitation and the reference signals and the phase difference between them;
> Control of the MUX to select the DC signals in turn, from the capacitance measuring circuits;
> Control of the PGA gain to make full use of the measurement range of the ADC.

USB-IFM logic interface circuit

The basic logic circuit for interfacing USB-IFM to the electronic units in the data acquisition system is shown in Figure 5. This circuit enables the PC to select any unit and to transmit data to or receive data from any unit. The USB-IFM output RXF# is connected to the RD# input via an inverter. The 8-bit I/O port (D0-D7) of USB-IFM is taken to Latch (1) (74LS273), which is activated when the RD# signal goes high. The output of Latch (1) is divided into two parts, bits D0-D3 as a 4-bit Read Data Bus for all electronic units, and bits D4-D7 as a Control Bus to be taken to a 4-16 decoder chip (74LS154), whose 16 outputs are used as Control Lines to select individual units.
Figure 3 (a) and (b): USB-IFM timing diagram. Left (a): Read cycle Right (b): Write cycle.

Figure 4: Data acquisition system showing the USB interface card.

Figure 5: USB-IFM logic interface circuit.
The operation is as follows: Initially the USB-IFM Receive Buffer is empty and so the output RXF# is "0". The PC sends a data byte to the USB-IFM Receive Buffer and RXF# is automatically set to "0". After a short delay, RD# and CLK of Latch (1) become "1" via the inverter. The data byte is latched into the Latch (1) and this also causes RXF# to become "1", indicating no more data is available to be read, which in turn sets RD# to low after short delay. The system is now ready to receive more data from the PC or to transmit data to the PC.

Control instructions and operations

The PC receives data one byte at a time from the USB-IFM Transmit Buffer using the instruction FT_Read. Similarly, it transmits data to the USB-IFM Receive Buffer one byte at a time using instruction FT_Write. Any data byte received by USB-IFM is divided by the logic circuit into two parts, the 4 least significant bits (LSBs) as the Read Data Bus and the 4 most significant bits (MSBs) as the Control Bus.

The Control Bus is taken to the 4-16 decoder to select one of 16 Control Lines, which activates 16 different ICs in the data acquisition and measurement circuits as listed in Table 1.

The full logic circuit for interfacing USB-IFM to the DAC is shown in Figure 6. The 4-bit Read Data Bus and 3 Control Lines of the basic USB logic interface circuit (see Figure 5) are used. The main consideration is to supply the 12-bit data input from the 4-bit Read Data Bus.

The 4-bit Read Data Bus is extended to give a 12-bit input signal to the DAC by two additional latches, Latch (2) and Latch (3). The 4-bit Read Data Bus is connected directly to input bus D8-D11 of the DAC, to Latch (2), which outputs go to input bus D4-D7, and to Latch (3), which outputs go to input bus D0-D3. A mono-stable chip (74HC123) is inserted in the Control Line (3) to ensure that the control signal width is adjusted for correct DAC operation. Control Lines 1, 2 and 3 activate Latches (2) and (3) and the DAC, respectively.

The method of loading a 12-bit signal into the DAC is as follows: The PC sends a byte containing bits D0-D3 of the signal plus binary 2 (the Control Line for Latch (3)). Latch (3) is activated and bits D0-D3 appear at the corresponding inputs of the DAC. The PC sends a second byte containing bits D4-D7 of the signal plus binary 1 (the Control Line for Latch (2)). Latch (2) is activated and bits D4-D7 appear at the corresponding inputs of the DAC. The PC sends a third byte containing bits D8-D11 of the signal plus binary 3 (the Control Line for the DAC). Bits D8-D11 of the signal appear at the corresponding inputs of the DAC so that the complete 12-bit signal now appears at the DAC inputs bus. The Control Line (3) signal now locks out the DAC inputs, so that the analogue output is held at the value sent by the PC.

The first FT_Write instruction sends data bits D0-D3 to Latch (3) and the second instruction sends data bits D4-D7 to Latch (2). The third instruction sends the data bits D8-D11 and activates the DAC with the complete data bits D0-D11. The final instruction does not activate a unit, but is used to reset the active Control Line to "1". It is used after all operations. The DAC operation is summarised in Table 2.

Logic circuit for interfacing ADC

The full logic circuit design for interfacing the USB-IFM to the ADC is shown in Figure 7. The 8-bit I/O Data Bus and Control Line (5) of the basic USB logic interface circuit (see Figure 5) are used. The 8 ADC output data lines D0-D3 (or D6-D11) and D4-D7 are connected to the 8-bit I/O Data Bus. The Control Line (5) is taken to the /RD input of the ADC via a flip-flop (74LS74) and an AND gate.

The method of obtaining the 12-bit signal from the ADC is as follows: The PC sends a byte to USB-IFM containing binary 5 (the Control Line for the ADC) to activate the ADC conversion and the

Table 1: Control line connections

<table>
<thead>
<tr>
<th>Control lines</th>
<th>Activated unit</th>
<th>Board location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Data acquisition Latch (4)</td>
<td>Data acquisition card</td>
</tr>
<tr>
<td>1</td>
<td>Data acquisition Latch (2)</td>
<td>Data acquisition card</td>
</tr>
<tr>
<td>2</td>
<td>Data acquisition Latch (3)</td>
<td>Data acquisition card</td>
</tr>
<tr>
<td>3</td>
<td>DAC</td>
<td>Data acquisition card</td>
</tr>
<tr>
<td>4</td>
<td>MUX-DC PGA</td>
<td>Data acquisition card</td>
</tr>
<tr>
<td>5</td>
<td>ADC</td>
<td>Data acquisition card</td>
</tr>
<tr>
<td>6</td>
<td>Measurement Latch (5)</td>
<td>Measurement channel PCB (6)</td>
</tr>
<tr>
<td>7</td>
<td>Measurement Latch (7)</td>
<td>Measurement channel PCB (7)</td>
</tr>
<tr>
<td>8</td>
<td>Measurement Latch (8)</td>
<td>Measurement channel PCB (8)</td>
</tr>
<tr>
<td>9</td>
<td>DDS Latch (1)</td>
<td>Signal generator PCB</td>
</tr>
<tr>
<td>10</td>
<td>DDS Latch (2)</td>
<td>Signal generator PCB</td>
</tr>
<tr>
<td>11</td>
<td>Measurement Latch (5)</td>
<td>Measurement channel PCB (6)</td>
</tr>
<tr>
<td>12</td>
<td>Measurement Latch (4)</td>
<td>Measurement channel PCB (4)</td>
</tr>
<tr>
<td>13</td>
<td>Measurement Latch (3)</td>
<td>Measurement channel PCB (3)</td>
</tr>
<tr>
<td>14</td>
<td>Measurement Latch (2)</td>
<td>Measurement channel PCB (2)</td>
</tr>
<tr>
<td>15</td>
<td>Measurement Latch (1)</td>
<td>Measurement channel PCB (1)</td>
</tr>
</tbody>
</table>

Table 2: DAC operation

<table>
<thead>
<tr>
<th>USB-IFM instruction</th>
<th>Activated unit</th>
<th>Control bus code</th>
<th>Read data bus code</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT_Write</td>
<td>Latch (5)</td>
<td>2</td>
<td>Bits 0-3 DAC input</td>
</tr>
<tr>
<td>FT_Write</td>
<td>Latch (2)</td>
<td>1</td>
<td>Bits 4-7 DAC input</td>
</tr>
<tr>
<td>FT_Write</td>
<td>DAC</td>
<td>3</td>
<td>Bits 8-11 DAC input</td>
</tr>
<tr>
<td>FT_Write (Reset)</td>
<td></td>
<td>8</td>
<td>Any data</td>
</tr>
</tbody>
</table>

Figure 6: Interfacing USB-IFM to DAC

Figure 7: Interfacing USB-IFM to ADC
/BUSY signal goes low. At the end of conversion /BUSY goes high new data DB0-DB7 appear on the output lines of the ADC (since HBEN is low) and a sequence of three delay timers is initiated by using three delay chips (74HC123). After the first delay a WR signal is generated, which writes data DB0-DB7 into the USB-IFM Transmit Buffer. After the second delay HBEN is set high, the data DB8-DB11 plus four zeros appear on the ADC data output. After the third delay, a second WR signal is generated, which writes this data DB8-DB11 into the USB-IFM Transmit Buffer. The PC can now read the ADC conversion result from the USB-IFM Transmit Buffer in two bytes. The FT_Write instruction activates the ADC and also sends the result as two bytes to the USB-IFM Transmit Buffer via the logic circuits. The FT_Read instructions send these two bytes to the PC. They do not activate any unit or put any data on the Read Data Bus. The ADC operation is summarised in Table 3.

Table 3: ADC operation

<table>
<thead>
<tr>
<th>USB-IFM instruction</th>
<th>Activated unit</th>
<th>Control bus code</th>
<th>Read data bus code</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT_Write</td>
<td>ADC</td>
<td>5</td>
<td>Any data</td>
</tr>
<tr>
<td>FT_Write</td>
<td>(Reset)</td>
<td>8</td>
<td>Any data</td>
</tr>
<tr>
<td>FT_Read</td>
<td>USB-IFM</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FT_Read</td>
<td>USB-IFM</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 4: MUX and DC PGA operation

<table>
<thead>
<tr>
<th>USB-IFM instruction</th>
<th>Activated unit</th>
<th>Control bus code</th>
<th>Read data bus code</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT_Write</td>
<td>Latch (3)</td>
<td>2</td>
<td>Bits 0-3 MUX select</td>
</tr>
<tr>
<td>FT_Write</td>
<td>Latch (2)</td>
<td>1</td>
<td>Bits 1-3 DC PGA gain select</td>
</tr>
<tr>
<td>FT_Write</td>
<td>DC PGA and MUX</td>
<td>4</td>
<td>Any data</td>
</tr>
<tr>
<td>FT_Write</td>
<td>(Reset)</td>
<td>8</td>
<td>Any data</td>
</tr>
</tbody>
</table>

Table 5: Control lines operations of AD7008

<table>
<thead>
<tr>
<th>USB-IFM instruction</th>
<th>Activated unit</th>
<th>Control bus code</th>
<th>Read data bus code</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT_Write</td>
<td>Data acquisition Latch (4)</td>
<td>0</td>
<td>3 (0011) activating RESET of AD7008</td>
</tr>
<tr>
<td>FT_Write</td>
<td>Data acquisition Latch (4)</td>
<td>0</td>
<td>0 (0000) activating AVR of AD7008</td>
</tr>
<tr>
<td>FT_Write</td>
<td>Data acquisition Latch (4)</td>
<td>0</td>
<td>6 (0110) activating LOAD of AD7008</td>
</tr>
</tbody>
</table>

Table 6: Data lines operation of AD7008

<table>
<thead>
<tr>
<th>USB-IFM instruction</th>
<th>Activated unit</th>
<th>Control bus code</th>
<th>Read data bus code</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT_Write</td>
<td>Data acquisition Latch (3)</td>
<td>2</td>
<td>Bits 0-3 for DDS data lines</td>
</tr>
<tr>
<td>FT_Write</td>
<td>(DDS 1 only) DDS Latch (1)</td>
<td>9</td>
<td>Bits 4-7 for DDS data lines</td>
</tr>
<tr>
<td>FT_Write</td>
<td>(DDS 2 only) DDS Latch (2)</td>
<td>1</td>
<td>Bits 4-7 for DDS data lines</td>
</tr>
<tr>
<td>FT_Write</td>
<td>Reset</td>
<td>8</td>
<td>Any data</td>
</tr>
</tbody>
</table>

The full logic circuit design for interfacing USB-IFM to the MUX is shown in Figure 8. The 4-bit Read Data Bus and two Control Lines of the basic USB logic interface circuit (see Figure 5) are used. The 4-bit Read Data Bus is connected to Latch (3), whose outputs go to the input bus A0-A3 of the MUX. Control Lines (2) and (4) activate Latch (3) and the MUX, respectively.

The method of operating the MUX is as follows: The PC sends a byte to USB-IFM containing binary 2 (the Control Line for Latch (3)). Latch (3) is activated and the Read Data Bus data appear at the corresponding inputs of the MUX. The PC sends a second byte to USB-IFM containing binary 4 (the control line for the MUX). The MUX is activated, whose outputs select one channel according to the 4-bit Read Data Bus data.

The full logic circuit design for interfacing USB-IFM to the DC PGA is shown in Figure 9. The 4-bit Read Data Bus and two Control Lines of the basic USB logic interface circuit (see Figure 5) are used. The 4-bit Read Data Bus is connected to Latch (2), whose last three outputs go to input bus A1-A3 of the DC PGA. The Control Lines (1) and (4) activate Latch (2) and the DC PGA, respectively.

The method of operating the DC PGA is as follows: The PC sends a byte to USB-IFM containing binary 1 (the Control Line for Latch (2)). Latch (2) is activated and the Read Data Bus data appear at the corresponding inputs of the DC PGA. The PC sends a second byte to USB-IFM containing binary 4 (the Control Line for the DC PGA). The DC PGA is activated, whose outputs select a gain according to the last 3-bit Read data Bus data. Note that the Control Line (4) activates both the MUX and the DC PGA.

Interfacing USB-IFM to MUX and DC PGA

The operation of the MUX and the DC PGA is summarised in Table 4.

The first instruction sends data bits D0-D3 to the 4-input channel select bits of the MUX via Latch (3). The second instruction sends data bits D1-D3 to the three gain select bits of the DC PGA via Latch (2). The third instruction activates both the MUX and the DC PGA.

Implementing DDS signal generators

The DDS chip AD7008 is a complex device and its control is more complicated than other units in the data acquisition system. A schematic diagram of the DDS signal generator board controlled by the USB data acquisition card is shown in Figure 10.
USB

Figure 8: Interfacing USB-IFM to MUX

Figure 9: Interfacing USB-IFM to DC PGA

Figure 10: DDS signal generator board
The frequency, amplitude and phase of the DDS output sine waves are set by three internal registers, which must be loaded externally via the data inputs (D0 and D7) and a Parallel Assembly Register. The data inputs (D0-D7) of the DDS chips are supplied via the DDS latches. The input to these latches comes from data lines on the USB data acquisition card (4-bit Read Data Bus plus Latch (3)). The four LSBs of the DDS latch outputs are also connected to the DDS transfer logic inputs TCO-TC3. Once data has been written into the Parallel Assembly Register, these bits can be loaded into the appropriate internal register, according to the contents of TCO-TC3.

Control Lines (9) and (10) from the USB data acquisition card are used to set the DDS latches, but the control signals for the two DDS chips (i.e. RESET, I/WR, and LOAD) are taken from the USB data acquisition card data lines to Latch (4) (bits 8 to 10).

The operation to set up the two DDS chips involves sending data to each chip via its individual latch and setting the three DDS control inputs via Latch (4) (on the USB data acquisition card) as listed in Tables 5 and 6. All control signals to AD7008 are connected to Latch (4) of the USB data acquisition card via a 64-connector. When the AD7008 is operated, the Control Bus is set to “0” and the Read Data Bus is set to activate the appropriate control input. The data lines of AD7008 are controlled by the USB data acquisition card through two latches DDS Latch (1) and DDS Latch (2). The first FT_Write instruction sends data bits D0-D3 to Latch (3) of the USB data acquisition card. The second instruction sends data bits D4-D7 and activates one of the DDS latches with the complete data bits D0-D7.

The software for the USB data acquisition card was written in Visual C++ 6.0, which is convenient for interfacing peripheral devices, display and design of user interface. Figure 11 shows the Windows user interface. It has following functions:

- Control of the signal generator board;
- Management of the menu and setting of the system parameter and initialisation of the system;
- Control of the capacitance measurement boards and acquisition of the capacitance data;
- Control of the DAC and ADC to obtain the automatic DC offsets and gains functions;
- Real-time data acquisition.

Experimental results

Figure 12 shows the test results of the DAC, showing the relationship between the input code and analogue output of the unipolar circuit. The test results show a maximum error of 0.03V (0.6% Full Scale) between the theoretical and actually DAC output.

Figure 13 shows the test results of the ADC, showing the relationship between the testing input voltages and the computer readings. The test results reveal that the computer reading has a maximum error 0.014V (0.35% Full Scale).

The generated sine-wave signals were examined using an oscilloscope as shown in Figure 14. Signal (1) was generated by DDS1 and signal (2) by DDS2. The results show that the signals are generated accu-
rately in amplitude, frequency and phase difference, according to the values entered. With this generator, it is now possible to produce fully adjustable signals in terms of frequency, amplitude and phase difference.

The work described in this article was aimed at providing a high-speed USB data acquisition card for the new ECT system. The scope of the work included the design of the hardware of the card and the supporting software. The electronic circuits have been designed and a PCB has been made complying with the Eurocard standards. The card can support up to 12 capacitance measurement channels and has been successfully incorporated into the system. The software includes automatic calibration for obtaining the DC offsets to cancel the standing capacitance and the DC amplifier gain settings, and the collection of the measurement data for image reconstruction and analysis, together with a user friendly Windows interface.

The experimental results demonstrated that all functions designed are working satisfactorily. In principle, this design can be further developed to be a universal standalone data acquisition and signal generation unit.

NEWSAGENTS ORDER FORM

Please reserve/deliver a copy of *Electronics World* for me each month.

Name and address

Signed

Electronics World is published by Highbury Business Communications on the first Thursday each month. Photocopy this form, fill in your details and ask your newsagent to reserve a copy.
In line with our policy of producing top quality products at amazing prices we have reduced the price of our best selling items by up to 50%.

Don’t delay - this is for a limited period only!

19” Horizontal 2U High

<table>
<thead>
<tr>
<th>Sockets</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>£22.65 ea. Nett</td>
</tr>
<tr>
<td>5</td>
<td>£24.99 ea. Nett</td>
</tr>
<tr>
<td>6</td>
<td>£27.57 ea. Nett</td>
</tr>
<tr>
<td>7</td>
<td>£30.96 ea. Nett</td>
</tr>
</tbody>
</table>

Vertical

<table>
<thead>
<tr>
<th>Sockets</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>£20.25 ea. Nett</td>
</tr>
<tr>
<td>6</td>
<td>£24.60 ea. Nett</td>
</tr>
<tr>
<td>8</td>
<td>£31.47 ea. Nett</td>
</tr>
<tr>
<td>10</td>
<td>£34.95 ea. Nett</td>
</tr>
<tr>
<td>12</td>
<td>£39.62 ea. Nett</td>
</tr>
</tbody>
</table>

Vertical Left Hand with Switch

<table>
<thead>
<tr>
<th>Sockets</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>£20.25 ea. Nett</td>
</tr>
<tr>
<td>5</td>
<td>£23.37 ea. Nett</td>
</tr>
<tr>
<td>6</td>
<td>£24.60 ea. Nett</td>
</tr>
<tr>
<td>8</td>
<td>£31.47 ea. Nett</td>
</tr>
<tr>
<td>10</td>
<td>£34.95 ea. Nett</td>
</tr>
<tr>
<td>12</td>
<td>£39.62 ea. Nett</td>
</tr>
</tbody>
</table>

Vertical Right Hand with Switch

<table>
<thead>
<tr>
<th>Sockets</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>£20.25 ea. Nett</td>
</tr>
<tr>
<td>5</td>
<td>£23.37 ea. Nett</td>
</tr>
<tr>
<td>6</td>
<td>£24.60 ea. Nett</td>
</tr>
<tr>
<td>8</td>
<td>£31.47 ea. Nett</td>
</tr>
<tr>
<td>10</td>
<td>£34.95 ea. Nett</td>
</tr>
<tr>
<td>12</td>
<td>£39.62 ea. Nett</td>
</tr>
</tbody>
</table>

CALL OUR SALES HOTLINE

020 8905 7273

This promotion cannot be used in association with any other discount or offer. Olson Electronics Ltd reserve the right to change the price without prior notice.
Take advantage of the low Dollar!

OSCILLOSCOPE

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Depth</td>
<td>32KB/Ch</td>
</tr>
<tr>
<td>Single Frequency</td>
<td>DC to 30MHz (DSO-2100 USB)</td>
</tr>
<tr>
<td></td>
<td>DC to 5MHz (DSO-220 USB)</td>
</tr>
<tr>
<td>Max Sampling Rate</td>
<td>100MS/s (DSO-2100 USB)</td>
</tr>
<tr>
<td></td>
<td>20MS/s (DSO-220 USB)</td>
</tr>
<tr>
<td>Sample Rate Selection</td>
<td>Yes</td>
</tr>
<tr>
<td>Trace Display</td>
<td>Point/Line</td>
</tr>
<tr>
<td>Grid</td>
<td>On/Off</td>
</tr>
<tr>
<td>Vertical Mode</td>
<td>CH1, CH2, Dual, ADD</td>
</tr>
</tbody>
</table>

SPECTRUM ANALYZER

2-channel, Fast-Fourier Transform, Range: 0Hz-50MHz (DSO-2100USB), 0Hz-10MHz (DSO-220), Cursor: Frequency, Data Point: 32K/chan

Unbeatable Price: **DSO-2100 (30MHz): $350.00, DSO-220 (5MHz): $250.00**

ORDER VIA: www.pc-instrumentmart.biz
Creating USB device drivers from scratch

Mark Schultz, Staff Applications Engineer at Cypress Semiconductor, analyses in-depth the relationship between PC application software and the hardware that it controls. This article clears up some of the mysteries of Plug and Play and how the PC-based application software accesses a USB device.

...
output pipes that can be used by the application.

All of our descriptor information is stored in a file called dscr.a51. By viewing this file, we can see the same information that Windows will see after the Plug and Play process. To make our design unique, we will need to substitute in our own VID and PID. Note that the VID and PID are 16-bit values that must be obtained from the USB Interface Group. These numbers will be unique to your design. Information about how to obtain a VID and PID can be found at www.usb.org/developers/vendor/

For this particular example, I have created arbitrary VID and PID values. Please note that this is not an accepted practice. In an actual design, you will need to obtain a VID and PID using the URL listed above. We will also need to edit the endpoint information for our design.

As previously mentioned, all of the descriptor information for our design will be stored in one file. Portions of this file are shown in the following section. These descriptors will be used the Plug and Play subsystem to determine the characteristics of our USB device.

First, we start off by replacing the VID and PID fields in the Device Descriptor with our particular values. Here we can see that I have used a 1234 for the VID and a 5678 for the PID. Note that since our USB microcontroller contains an 8-bit CPU, we need to represent our VID and PID in Little Endian format. Thus, 1234 will be represented as 3412 and 5678 will be represented as 7856.

```
DeviceDescr:
    db DSCR_DEVICE_LEN  ;; Descriptor length
    db DSCR_DEVICE     ;; Descriptor type
    dw 0002H            ;; Specification Version (BCD)
    db 00H              ;; Device class
    db 00H              ;; Device sub-class
    db 00H              ;; Device sub-sub-class
    db 64               ;; Maximum packet size
    dw 3412H            ;; Vendor ID
    dw 7856H            ;; Product ID (Sample Device)
    dw 0000H            ;; Product version ID
    db 1                ;; Manufacturer string index
    db 2                ;; Product string index
    db 0                ;; Serial number string index
    db 1                ;; Number of configurations
```

Next, we need to modify the endpoint descriptors. The only field that needs to be modified here is the "Endpoint number". USB allows seven bits for endpoint addressing. Thus, there can be a maximum of 128 endpoints connected to a USB port. The eight bit is used to determine the direction of communication. If this bit is set, then the direction is IN – from the peripheral to the PC. If this bit is cleared, then the direction is set to OUT.

```
;; Endpoint Descriptor
    db DSCR_ENDPOINT_LEN ;; Descriptor length
    db DSCR_ENDPOINT    ;; Descriptor type
    db 04H              ;; Endpoint number, and direction
    db ET_BULK          ;; Endpoint type
    db 00H              ;; Max packet size (LSB)
    db 02H              ;; Max packet size (MSB)
    db 00H              ;; Polling interval
```

Reference to our device driver, or cyusb.sys. This is the information that Windows uses to load the driver associated with the device. Figure 2 shows the driver properties of our device.

ServiceBinary = %10\System32\Drivers\cyusb.sys

Hardward support for Plug and Play

USB communication occurs over logical pipes called endpoints. Each device endpoint has an associated descriptor. So, when Windows gathers all of a device's descriptors, there should be one or more endpoint descriptors used to specify input and/or
The first thing we need to do is to obtain a "handle" to the driver. A handle is nothing more than a 32-bit value, which is returned by Windows that can be used from here on out to access the device driver. You may have seen code similar to what is shown below. This is how one would access a PC COM port:

```c
comOneHandle = CreateFile( "COM1", GENERIC_READ|GENERIC_WRITE, 0, 0, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);
```

Our case is not that different except that our filename will be "\cyusb-0". So, our code will be:

```c
DeviceHandle = CreateFile( "\cyusb-0", GENERIC_WRITE, FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
```

Next, we want to get the descriptor information for the device. To do this, we can use a DeviceIoControl call as follows:

```c
bResult = DeviceIoControl( DeviceHandle, IOCTL_Ezusb_GET_DEVICE_DESCRIPTOR, NULL, 0, pvBuffer, sizeof(USB_DEVICE_DESCRIPTOR), &nBytes, NULL);
```

Using the information found in the descriptor, we can check the VID and PID to ensure that the handle that we have acquired is for a driver that is truly bound to our devices as follows:

```c
UsbDesc = (PUSB_DEVICE_DESCRIPTOR)pvBuffer;
if ( (UsbDesc->idVendor == 0xf29a) && (UsbDesc->idProduct == 0x5679) )
{
    bDeviceFound = 1;
}
```

To write to our device, we can use the following code:

```c
Status = DeviceIoControl( DeviceHandle, IOCTL_Ezusb_BULK_WRITE, pBuffer,
sizeof(BULKTRANSFERCONTROL), CfgData, count, &nBytes, NULL);
```

Note that CfgData is a data structure containing endpoint information that we had previously obtained from one of the USB descriptors.

Further enhancements

Now that we are familiar with using CreateFile to access the device handle and DeviceIoControl to perform input and output to the device, I should mention some new developments that have yielded a product, which is much friendlier to the application writer. The Cypress CyAPI is a C++ wrapper over the device interface discussed in the previous sections. With one line of C++ code, the device handle can be obtained as well as all descriptor information. The format of this new API is shown below:

```c
USBDevice = new CCyUSBDevice();
```

To write to the peripheral device:

```c
if(USBDevice->BulkOutEndPt)
    USBDevice->BulkOutEndPt->XferData(OutBuf, Size);
```

where OutBuf is a pointer to an array of bytes to write and Size is the number of bytes.

To read from the peripheral device:

```c
if(USBDevice->BulkInEndPt)
    USBDevice->BulkInEndPt->XferData(OutBuf, Size);
```

where OutBuf is a pointer to an array of bytes that will be returned by the USB peripheral and Size is the number of bytes.

The new and improved driver API has a number of advanced methods as well, but using just these three, I have been able to create numerous applications.

Summary

In this article, we have seen the relationship between PC application software and the hardware that it controls. We have seen how to access a device driver from a PC application and how the device driver is matched to the hardware device via the inf file. Using a couple of simple techniques, we can easily create USB communication pipes for various applications. Further advancements have been made to streamline this process on both, software and hardware ends.

DESIGNERS NOTE: On the hardware side, Cypress provides a number of design templates, which can be easily adapted to meet the requirements of a particular application. These include examples of various types of USB transfers as well as various reference designs.
USB device access in C#

By Greg Nalder
Cypress Semiconductor

C# is a great language for quickly developing attractive Graphical User Interface (GUI) applications for Windows. However, the managed Common Language Runtime, on which C# programs depend, does not provide easy direct access to the Win32 Device I/O APIs (application programming interfaces). Consequently, programmers requiring low-level access to device drivers are confronted with a major obstacle when attempting to implement their applications in C#.

A common example of this is the need for the designer of a new USB device to whip up a little Windows utility program that can send the device a vendor-specific control endpoint command. Quickly creating the GUI for the utility is the strength of the C# environment. Unfortunately, when it's time to establish the actual communication path to the prototype device, the project becomes exponentially more complex.

This article will pursue the task of sending a control-endpoint request to a USB device that is served by Cypress Semiconductor’s CyUSB.sys device driver.

Accessing the Win32 APIs
The Win32 API provides libraries of functions that are needed to access USB devices via their device driver. These functions are collected in the Windows files, kernel32.dll and setupapi.dll. The most used of these functions is the one that actually sends commands to the device driver, DeviceIoControl. This function, however, takes as its first parameter, a handle to the device. So, our first major task is to get a handle to the device.

Obtaining a handle to our USB device requires calling several other setupapi.dll functions. Here's a list of the Win32 API functions that are needed:

- SetupDiGetClassDevsA
- SetupDiEnumDeviceInterfaces
- SetupDiGetDeviceInterfaceDetail
- SetupDiDestroyDeviceInfoList
- CreateFile
- CloseHandle
- DeviceIoControl

Accessing these Win32 functions from C# requires using what is called Platform Invoke (or PInvoke, for short). PInvoke involves declaring each function with a special C# attribute to indicate that the function will be imported from a Win32 DLL. In addition, it is extremely important to declare the external functions with a C# parameter list that will conform to the parameter list actually expected by the function in the DLL.

Table 1 opposite shows these seven functions with their normal C prototypes and their new, PInvoke prototypes. These PInvoke prototypes also refer to three new user-defined classes, which are defined as:

```csharp
[StructLayout(LayoutKind.Sequential, Pack=1)]
public class SP_DEVINFO_DATA
{
    public int cbSize;
    public Guid ClassGuid;
    public uint Devinst;
    public uint Reserved;
}
```

Table 1
<table>
<thead>
<tr>
<th>Win32 C Prototype</th>
<th>C# Pinvoke Prototype</th>
</tr>
</thead>
</table>
| **HDEVINFO SetupDiGetClassDevs** (| [DllImport("setupapi.dll", SetLastError=true)]
| const GUID* ClassGuid, | public static extern IntPtr SetupDiGetClassDevs (|
| PCTSTR Enumerator, | ref Guid ClassGuid, |
| HWND hwndParent, | uint Enumerator, |
| DWORD Flags); | IntPtr hwndParent, |
| | uint Flags); |
| **BOOL SetupDiEnumDeviceInterfaces** (| [DllImport("setupapi.dll", SetLastError=true)]
| HDEVINFO DevicelnfoList, | public static extern bool SetupDiEnumDeviceInterfaces (|
| PSP_DEVICE_INTERFACE_DATA DeviceinfoData, | IntPtr DevicelnfoList, |
| const GUID* InterfaceClassGuid, | uint DeviceinfoData, |
| DWORD MemberIndex, | ref Guid InterfaceClassGuid, |
| PSP_DEVICE_INTERFACE_DATA DevinterfaceData); | uint MemberIndex, |
| | SP_DEVICE_INTERFACE_DATA DevinterfaceData); |
| **BOOL SetupDiGetDeviceInterfaceDetail** (| [DllImport("setupapi.dll", SetLastError=true)]
| HDEVINFO DevicelnfoSet, | public static extern bool SetupDiGetDeviceInterfaceDetail (|
| PSP_DEVICE_INTERFACE_DATA DevinterfaceData, | IntPtr DevicelnfoSet, |
| PSP_DEVICE_INTERFACE_DETAIL_DATA DetailData, | SP_DEVICE_INTERFACE_DATA DevinterfaceData, |
| DWORD DataSize, | byte[] DetailData, |
| PDWORD RequiredSize, | int DataSize, |
| PSP_DEVINFO_DATA DeviceinfoData); | ref int RequiredSize, |
| | SP_DEVINFO_DATA DeviceinfoData); |
| **BOOL SetupDiDestroyDeviceInfoList** (| [DllImport("setupapi.dll", SetLastError=true)]
| HDEVINFO DevicelnfoSet); | public static extern bool SetupDiDestroyDeviceInfoList (|
| | IntPtr DevicelnfoSet); |
| **HANDLE CreateFile** (| [DllImport("kernel32.dll", SetLastError=true)]
| LPCTSTR IpFileName, | public static extern IntPtr CreateFile (|
| DWORD desiredAccess, | byte[] filename, |
| DWORD shareMode, | [MarshalAs(UnmanagedType.U4)] FileAccess fAccess, |
| LPSECURITY_ATTRIBUTES securityAttributes, | [MarshalAs(UnmanagedType.U4)] FileShare fShare, |
| DWORD createDisposition, | int securityAttributes, |
| DWORD Flags, | [MarshalAs(UnmanagedType.U4)] FileMode fMode, |
| HANDLE hTemplateFile); | int flags, |
| | IntPtr template); |
| **BOOL CloseHandle** (HANDLE hObject); | [DllImport("kernel32.dll", SetLastError=true)]
| | public static extern bool CloseHandle (IntPtr hObject); |
| **BOOL DeviceIoControl** (| [DllImport("kernel32.dll", SetLastError=true)]
| HANDLE hDevice, | public static extern bool DeviceIoControl (|
| DWORD IoControlCode, | IntPtr hDevice, |
| LPVOID InBuffer, | uint IoControlCode, |
| DWORD InBufSize, | byte[] InBuffer, |
| LPVOID OutBuffer, | int InBufSize, |
| DWORD OutBufSize, | byte[] OutBuffer, |
| LPDWORD BytesReturned, | int OutBufSize, |
| LPOVERLAPPED Overlapped); | ref int BytesReturned, |
| | OVERLAPPED Overlapped); |
[StructLayout(LayoutKind.Sequential, Pack = 1)]
public class SP_DEVICE_INTERFACE_DATA
{
 public int cbSize;
 public Guid InterfaceClassGuid;
 public uint Flags;
 public uint Reserved;
}

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public class OVERLAPPED
{
 public uint Internal;
 public uint InternalHigh;
 public uint Offset;
 public uint OffsetHigh;
 public IntPtr hEvent;
}

Notice that these three new datatypes have been defined as classes and not as structs. This will prove a prudent choice when we get ready to pass instances of these classes in the actual calls to the setupapi.dll functions. Once all the Win32 APIs have been given C# PInvoke declarations and the needed parameter classes have been defined, as shown above, we are finally ready to obtain a handle to a device.

Below is an important code snippet that demonstrates this process in C#. Those familiar with this process, from C or C++ programming, will recognize the five SetupDiXxxx function calls required. Rather than focus on the purpose of those calls, let's examine some C# nuances pertaining to them.

```csharp
public const uint DIGCF_PRESENT = 0x00000002;
public const uint DIGCF_INTERFACEDEVICE = 0x00000010;
public const int FILE_FLAG_OVERLAPPED = 0x40000000;
public static IntPtr INVALID_HANDLE = new IntPtr(-1);

// This is the GUID for the CyUSB.sys driver
public static Guid DrvGuid = new Guid("{Oxe18aeeb0, 0x7f6a, 0x11d4, {0x97, 0xdd, 0x00, 0x1, 0x2, 0x29, 0xb9, 0x59}"");

private void GetDeviceHandle(uint dev)
{
    int predictedLength = 0;
    int actualLength = 0;

    IntPtr hwDeviceInfo = SetupDiGetClassDevs(ref DrvGuid, 0, IntPtr.Zero, DIGCF_PRESENT | DIGCF_INTERFACEDEVICE);
    if (hwDeviceInfo.ToInt32() == -1) return;

    SP_DEVICE_INTERFACE_DATA devInterfaceData = new SP_DEVICE_INTERFACE_DATA();
    devInterfaceData.cbSize = Marshal.SizeOf(devInterfaceData);
    if (!SetupDiEnumDeviceInterfaces(hwDeviceInfo, 0, ref DrvGuid, dev, devInterfaceData)) return;

    SetupDiGetDeviceInterfaceDetail(hwDeviceInfo, 0, ref dev, dp, (byte[]) detailData, null, 0, 0, predictedLength, null);

    byte[] detailData = new byte[predictedLength];
    detailData[0] = 5; // Set the cbSize field of what would be a SP_DEVICE_INTERFACE_DETAIL_DATA struct
    if (!SetupDiGetDeviceInterfaceDetail(hwDeviceInfo, devInterfaceData, detailData, predictedLength, ref actualLength, null)) return;

    // Move the chars of the DevicePath field to the front of the array.
```
Radio Modules/Modems
www.radiotelemetry.co.uk

- Range 100m to 20Km
- Data rates from 10kbps to 1 Mbps
- RS232/485, MODBUS/TCP, Video
- Visit Us Today On...
 www.radiotelemetry.co.uk
 <http://www.radiotelemetry.co.uk>

Warwick Wireless Limited. The Manor. Aston Flamville. Leicestershire. LE10 3AQ
Tel: +44 (0) 1455 233636. Fax: +44 (0) 1455 233179. Email: sales@radiotelemetry.co.uk

PLEASE ENSURE YOU TELEPHONE TO CHECK AVAILABILITY OF EQUIPMENT BEFORE ORDERING OR CALLING MISCELLANEOUS CLEARANCE STOCK

DEALER OFFERS
Tennant 440 Dual Trace 100MHz Delay fitted into 12" rack
HP 3438A Dual Trace 100MHz (array of 5) £40
HP 1411A Dual Trace 100MHz (array of 2) £80
HP 3458A Dual Trace 100MHz (array of 3) £120
Philips PM6444 C 100MHz £295
Philips PM6244 C 50MHz £150
Simrad OCM1200 C 100MHz £140
Simrad OCM1200 C 200MHz £240

POWER STATIONS
Tennant 1325S 12V 6-9A £120

COMMUNICATIONS
Simrad SLE 4-8 40/2000 £24

SPECIAL OFFERS
Hewlett Packard 33120A Synthesised Source £250
Kensington 1317A 15MSPS/25MHz £120

ORDERING OR CALLING
0118 941 5535

STEWART OF READING
17A KING STREET, MORTIMER, NR. READING RG7 3R5
Telephone: 0118 941 5535 Fax: 0118 933 02375
www.stewartofreading.co.uk
Open 9am-5pm Monday to Friday (other times by arrangement)

USED EQUIPMENT - GUARANTEED. Manuals supplied.
This is a VERY SMALL SAMPLE OF STOCK. See in telephone for lists. Please check availability before ordering. CARRIAGE all units £16. VAT to be added to total of goods and carriage.

hp 3438a
hp 1411a
hp 3458a
simrad

hp 3438a
hp 1411a
hp 3458a
simrad
for (int i=0; i<actualLength-4; i++) detailData[i] = detailData[i+4];

hDevice = CreateFile (detailData, FileAccess.ReadWrite, FileShare.ReadWrite, 0, FileMode.Open, FILE_FLAG_OVERLAPPED, IntPtr.Zero);

SetupDiDestroyDeviceInfoList(hwDeviceInfo);
}

In the above code snippet, let’s first consider the call to SetupDiEnumDeviceInterfaces. You’ll notice that, for the last parameter, the Win32 setupapi.dll is actually expecting a pointer to an SP_DEVICE_INTERFACE_DATA object. Since our variable, devInterfaceData, was defined as a class, rather than a struct, a pointer to our object actually gets passed without using the ref keyword in the parameter list. In contrast, the DLL expects a pointer to a GUID as the second parameter. Here, we must explicitly cause a pointer to be passed by qualifying the DrvGuid parameter with the ref keyword.

Even more interesting are the next two calls to SetupDiGetDeviceInterfaceDetail. Both take our devInterfaceData variable (now filled with valid data from the previous SetupDiEnumDevice Interfaces call) as the second parameter. And, as in the previous call, we just pass the variable, not a ref to it, even though the DLL is expecting a pointer.

SetupDiGetDeviceInterfaceDetail (hwDeviceInfo, devInterfaceData, null, 0, ref predictedLength, null);

The first call to SetupDiGetDeviceInterfaceDetail is made to find out the size of buffer we need to pass in the second call. For this call we just pass null for the third parameter and 0 for the fourth. These values tell the function that we’re really just asking for the buffer size required.

byte[] detailData = new byte[predictedLength];
detailData[0] = 5; // Set the cbSize field of what would be a SP_DEVICE_INTERFACE_DETAIL_DATA struct
if (!SetupDiGetDeviceInterfaceDetail (hwDeviceInfo, devInterfaceData, detailData, predictedLength, ref actualLength, null)) return;

The second call to SetupDiGetDeviceInterfaceDetail is where things get dicey. Consider the third parameter in the call. The setupapi DLL expects a pointer to an SP_DEVICE_INTERFACE_DETAIL_DATA structure. However, in reality, it just wants a pointer to a block of contiguous bytes that we allocate before making the call. The SP_DEVICE_INTERFACE_DETAIL_DATA structure declaration is simply an access mechanism into the block of bytes, making it simpler to access the DevicePath field within the block.

The SP_DEVICE_INTERFACE_DETAIL_DATA structure is defined, in C, as:

typedef struct _SP_DEVICE_INTERFACE_DETAIL_DATA {
 DWORD cbSize;
 TCHAR DevicePath [ANYSIZE_ARRAY];
} SP_DEVICE_INTERFACE_DETAIL_DATA;

So, just as we would do in C or C++, an array of bytes is allocated. In C or C++, we would then assign a pointer to a SP_DEVICE_INTERFACE_DETAIL_DATA structure to the beginning of the allocated buffer. This would allow us to conform to the function prototype syntax and pass a pointer to the right type of structure. C#, however, doesn’t accommodate this structure imposition. So, instead, we just pass the block of bytes and manipulate it explicitly, given our knowledge of the SP_DEVICE_INTERFACE_DETAIL_DATA structure. Again, even though the setupapi DLL expects a pointer for the third parameter, we just pass the name of our byte array (detailData) and C# supplies a pointer when the call is made.

// Move the chars of the DevicePath field to the front of the array.
for (int i=0; i<actualLength-4; i++) detailData[i] = detailData[i+4];

hDevice = CreateFile (detailData, FileAccess.ReadWrite, FileShare.ReadWrite, 0, FileMode.Open, FILE_FLAG_OVERLAPPED, IntPtr.Zero);

Finally, we are ready to call CreateFile to get the handle to the device. The first parameter is supposed to be the DevicePath field from the SP_DEVICE_INTERFACE_DETAIL_DATA structure. As seen in the declaration above, this is really just an array of characters (C# bytes). The cleanest thing to do, at this point, is just to re-use our already declared detailData array of bytes, moving the DevicePath field to the front of the array, overwriting the cbSize field.
One last point of interest is that the kernel32 DLL wants a handle as the last parameter to CreateFile. We just want to pass a null handle. C#'s IntPtr class facilitates this with a member called Zero.

Data buffers and pointers

The DeviceIoControl function is designed to allow passing of a buffer of bytes whose content is specific to the servicing driver. That is, each driver will interpret the byte-buffer in its own way. It is common for this buffer to include some sort of protocol or parameter header, followed by a section of data bytes (or empty bytes ready to receive data).

Rather than configure the parameter header of the transfer buffer one byte at a time, it is much more convenient to use a data structure, with named fields, for the buffer. Unfortunately, since the data portion of the structure is not constant, it is not desirable to statically define such a structure. Rather, the common practice is to dynamically allocate a raw buffer of bytes. Then, declare a pointer to a structure representing the transfer block (including header fields and data section). The structure pointer is then assigned to point to the allocated array of bytes.

In C++, the header structure needed by the CyUSB.sys driver looks like this:

```c
typedef struct _SINGLE_TRANSFER {
    unsigned char bmRequest; // 1 byte
    unsigned char bRequest;    // 1 byte
    unsigned short wValue;     // 2 bytes
    unsigned short wIndex;     // 2 bytes
    unsigned short wLength;    // 2 bytes
    unsigned long uTimeout;    // 4 bytes
    bool bWaitForever;         // 1 byte
    unsigned char EpAddress;   // 1 byte
    unsigned long NtStatus;    // 4 bytes
    unsigned long UsbCtrlStatus; // 4 bytes
    unsigned long IsoPacketOffset; // 4 bytes
    unsigned long IsoPacketLength; // 4 bytes
    unsigned long BufferOffset; // 4 bytes
    unsigned long BufferLength; // 4 bytes
} SINGLE_TRANSFER;
```

And, we map it onto a data buffer like this:

```c
unsigned char * buffer;
unsigned char * dataBlock;
int dataBufLen = 1024;

// Allocate a buffer large enough for the data and the SINGLE_TRANSFER header
dataBlock = new unsigned char [dataBufLen + sizeof(SINGLE_TRANSFER)];

SINGLE_TRANSFER *xferBloc = (SINGLE_TRANSFER *) buffer;
xferBloc->BufferOffset = sizeof(SINGLE_TRANSFER); // Tells where the actual buffer data bytes begin
dataBlock = buffer + xferBloc->BufferOffset;
```

We want to do something like this in C#, but, the above operation is pointer-intensive and C# requires some special constructs and constraints if we want to use pointers. First, in order for our structure mapping to work, the structure must be declared as a C# struct (not a class) and must not include any 'managed' datatypes such as arrays or strings. The SINGLE_TRANSFER structure, declared in C# for use in our pointer mapping would look like this:

```c
[StructLayout(LayoutKind.Sequential, Pack=1)]
public struct SINGLE_TRANSFER
{
    public byte bmRequest; // 1 byte
    public byte bRequest;  // 1 byte
    public ushort wValue;  // 2 bytes
}
```
unsafe

Any C# context that wants to use pointers must be declared with the unsafe designator. This designator can be applied to a method or to an entire class.

When the unsafe designator is used, the C# compiler must be instructed to allow unsafe blocks of code. In the Microsoft Visual Studio.NET environment bring up the Project Property Pages dialog by selecting the Project | Properties menu item. In the dialog, select the Configuration Properties folder and the Build subitem. In the Code Generation section, set the ‘Allow Unsafe Code Blocks’ to true.

fixed

In order to map a structure onto an array of bytes, we need to employ the C# fixed construct. The fixed construct essentially pins a block of memory to a fixed location for the duration of the fixed context.

The following function calls DeviceIoControl to perform a control endpoint data transfer via the CyUSB.sys driver. The function maps our new C# SINGLE_TRANSFER structure onto a byte buffer that was passed-in as a parameter.

```csharp
public unsafe override bool BeginDataXfer(ref byte[] buffer, ref int len, ref OVERLAPPED ov)
{
    fixed (byte *buf = buffer)
    {
        SINGLE_TRANSFER *transfer
           = (SINGLE_TRANSFER*) buf;

        transfer->SetupPacket.bmRequest
           = (byte)(Target | ReqType | Direction);
        transfer->SetupPacket.bRequest
           = ReqCode;
        transfer->SetupPacket.wValue
           = Value;
        transfer->SetupPacket.wLength
           = (ushort) len;
        transfer->SetupPacket.wLength
           = Index;
        transfer->SetupPacket.dwTimeOut
           = tmo;
        transfer->WaitForever
           = 0;
        transfer->ucEndpointAddress
           = 0x00;
        transfer->IsPacketLength
           = 0;

        transfer->BufferOffset
           = SINGLE_XFER_LEN;  // size of the SINGLE_TRANSFER part
        transfer->BufferLength
           = (uint) len;

        int Xferred = 0;
        bRetVal = DeviceIoControl(hDevice, IOCTL_ADAPT_SEND_EPO_CONTROL_TRANSFER,
                                buffer, len, buffer, len, ref Xferred, ov);

        len = Xferred;
        UsbdStatus = transfer->UsbdStatus;
        NtStatus = transfer->NtStatus;
    }

    LastError = (uint) Marshal.GetLastWin32ErrorO;
}
```
It is important that the variables buf and buffer, in the fixed construct, are of the same base type (i.e. byte).
The C# method, Marshal.SizeOf() requires an object as its argument, not a data type. So, rather than always having to
create an instance of SINGLE_TRANSFER, just to take its size, I chose to create a constant, SINGLE_XFER_LEN.
Notice, also, that the ability to get the last Win32 error, using the Marshal.GetLastWin32Error() method, is enabled by
the SetLastError=true statement in the function attribute for DeviceloControl (see the PInvoke declaration in Table 1).

Conclusion
The ability to access USB devices from C# applications consists of two primary tasks. First, we must obtain a handle
to the target device, then, we need to be able to manipulate and pass data buffers to the device driver. The problem
solution is also twofold. First, we must declare the necessary data structures and function prototypes needed to
access the Win32 APIs and, second, we need to map data structures onto a data buffer to easily manipulate the con­
tents of the buffer.
The sample code presented in this article derives from a port of the Cypress CyAPI.lib file from C++ to C# . CyAPI.lib
is part of the Cypress USB Developers’ uStudio. The resulting .net class library, CyUSB.dll, has been exercised from
C#, VB.net and managed C++ applications.

DESIGNERS NOTE: This driver is a free download from Cypress’s website. It can be matched to any
USB 2.0 – compliant device. www.cypress.com
Would you like to work in a dynamic industry at the leading edge of technology?

Does a challenging well-paid job spark your interest?

Then why not find out how Bell College can launch your career or advance your existing qualifications.

Full time and part time study opportunities are available in:

- BEng Applied Electronic Design
- HND Electronic Engineering
- HNC Electronic Engineering

The courses are linked together to provide continuous progression with entry & exit routes at each stage.

Rechargeable batteries with solder tags.

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIMH</td>
<td>2000mah</td>
<td>£2.82</td>
</tr>
<tr>
<td>C4Ah</td>
<td>700mah</td>
<td>£2.50</td>
</tr>
<tr>
<td>D9Ah</td>
<td>1500mah</td>
<td>£2.95</td>
</tr>
<tr>
<td>PP3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instrument case with edge connector and screw terminals

Size: 113mm x 52mm x 105mm tall

This box consists of a cream base with a PCB slot, a cover plate to protect your circuit, a black lid with a 12 way edge connector and 12 screw terminals built in (8mm pitch) and 2 screws to hold the lid on. The cream bases have minor marks from dust and handling. Price: £2.00 + VAT (≈ £2.35) for a sample or £4.00 + VAT (≈ £4.60) for a box.

866 battery pack originally intended to be used with an Orbitel mobile telephone it contains 10 1.6Ah sub C batteries (42x22 dia the size usually used in cordless screwdrivers etc.) the pack is new and unused and can be broken open quite easily.

Price: £6.46 + VAT (≈ £8.77) for a pack.

Please add £1.66 + VAT (≈ £1.95) postage and packing per order.

Subscription Order Form

Yes - I would like to subscribe to Electronics World for:

- 1 year at: £38.95 (UK) €95 (Europe) US$125 (Worldwide)
- 2 years at: £70 (UK) €170 (Europe) US$225 (Worldwide) save 10%
- 3 years at: £94 (UK) €225 (Europe) US$295 (Worldwide) save 20%

Three Ways to Pay:

- Invoice my company
- I enclose a cheque payable to Electronics World

Charge my: [] Visa [] Mastercard [] Amex [] Switch [] Delta

Issue No. (Switch/Delta) [] Expiry date []

Name: []

Company name: []

Address: []

Telephone Number: []

Fax Number: []

Email: []

If you prefer not to receive promotional mailings from other companies, please tick box

Post to: Debbie Jenner, Freepost SEA 11435, Electronics World, Media House, Swanley, Kent BR8 8BR (no stamp required) UK only

OVERSEAS SUBSCRIBERS please send to: Debbie Jenner, Electronics World, Media House, Swanley, Kent BR8 8BR, UK.

SUBSCRIBE NOW!

COMPLETE AND RETURN THE FORM OPPOSITE
Forest Electronics – PIC and AVR C Compiler Products

- Fully integrated editor with syntax highlighting, multiple pages etc.
- Full project support - include and manage multiple source files, simulator, assembler files and notes/comments within one project.
- Fully integrated simulator and waveform analyser step from C line to C line, or examine code in assembler form. View device pins using a logic analyser.
- Simulator supports LCD modules, keypad, buttons, LED's, displays, analogue inputs, serial and asynchronous data and more.
- Designed to ANSI C standards.
- PIC - Supports 18xxx, 16xxx, 12xxx series 14 and 16 bit core processors
- AVR - Supports standard and MEGA core processors
- Generates MPLAB/AVR Studio projects and source files and completely standard hex output files.

WIZ/C / AVIDICY
Drag and Drop rapid application development using ANSI C for PIC and AVR

- Rapid Application Development for the PIC or AVR microcontroller using the C language (WIZ-C for the PIC, AVIDICY for the AVR)
- Drag and drop your software component selections on to your design
- Included components support timers, serial interfaces, I2C, LCD, 7 seg displays, keypads, switches, port controls, many bus interaces including IIC and Dallas iButton. AVR/PIC Hardware, and more.
- Connect software components to MCU pins by point & click
- Parameters set from drop down list boxes, check boxes, or text entry
- Links your code automatically into library events (e.g. Button Pressed, Byte Received etc.)

Includes free book – Learn to Program in C with FED

Prices from £45.00 - details & demo from www.forede.co.uk

Also programmers, ICE, & development systems

Forest Electronic Developments
01590-681511 (Voice/Fax)

Quality second-user test & measurement equipment
Tel: 02476 650 702 Fax: 02476 650 773
Web: www.telnet.uk.com Email: sales@telnet.uk.com

All equipment is used – with 30 days guarantee and 90 days in some cases. Add carriage and VAT to all goods.

<table>
<thead>
<tr>
<th>Equipment Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent (HP) 3914A Function Generator 20 MHz</td>
<td>£550</td>
</tr>
<tr>
<td>Agilent (HP) 3254A and B Function gen. from 2 MHz</td>
<td>£550</td>
</tr>
<tr>
<td>Agilent (HP) 4359A, 4368, 4637B, 459A Power Meters from 0.1μV</td>
<td>£1000</td>
</tr>
<tr>
<td>Agilent (HP) 3561A Dynamic Signal Analyzer</td>
<td>£2950</td>
</tr>
<tr>
<td>Agilent (HP) 3562A Dual Ch. Dynamic Sig. Analyser</td>
<td>£3000</td>
</tr>
<tr>
<td>Agilent (HP) 3562A Spectrum Analyzer Dual Channel</td>
<td>£1200</td>
</tr>
<tr>
<td>Agilent (HP) 3565A and B Spec. An. (40MHz) from 100kHz</td>
<td>£2950</td>
</tr>
<tr>
<td>Agilent (HP) 3560A Dynamic Sig. An.</td>
<td>£2950</td>
</tr>
<tr>
<td>Agilent (HP) 4191A P/F Impedance analyzer (1GHz)</td>
<td>£4000</td>
</tr>
<tr>
<td>Agilent (HP) 4192A LF Impedance Analyzer (19MHz)</td>
<td>£2750</td>
</tr>
<tr>
<td>Agilent (HP) 4193A Vector Impedance Meter</td>
<td>£1750</td>
</tr>
<tr>
<td>Agilent (HP) 247A LCR Meter</td>
<td>£750</td>
</tr>
<tr>
<td>Agilent (HP) 247B LCR Meter</td>
<td>£2750</td>
</tr>
<tr>
<td>Agilent (HP) 2478A Capacitance Meter (1kHz / 1MHz)</td>
<td>£1400</td>
</tr>
<tr>
<td>Agilent (HP) 5342A Frequency Counter (18GHz)</td>
<td>£850</td>
</tr>
<tr>
<td>Agilent (HP) 5351B Frequency Counter (26.5GHz)</td>
<td>£2750</td>
</tr>
<tr>
<td>Agilent (HP) 5352B Frequency Counter (40GHz)</td>
<td>£4950</td>
</tr>
<tr>
<td>Agilent (HP) 5330A Mod. Domain An. (opt 1/31)</td>
<td>£3450</td>
</tr>
<tr>
<td>Agilent (HP) 1161A B 100MHz Scopes from 0.1μV</td>
<td>£700</td>
</tr>
<tr>
<td>Agilent (HP) 54180A Infinium Scope 500MHz</td>
<td>£2995</td>
</tr>
<tr>
<td>Agilent (HP) 8116A Function Gen. (50MHz)</td>
<td>£1750</td>
</tr>
<tr>
<td>Agilent (HP) 8349B (2-20GHz) Amplifier</td>
<td>£1950</td>
</tr>
<tr>
<td>Agilent (HP) 6268B Mainframe sweeper (plug-ins avail)</td>
<td>£750</td>
</tr>
<tr>
<td>Agilent (HP) 6269A High Frequency Probe</td>
<td>£1000</td>
</tr>
<tr>
<td>Agilent (HP) 8594E Spec. An. (2.9GHz) opt 41,101,105,130</td>
<td>£3995</td>
</tr>
<tr>
<td>Agilent (HP) 8958E Spec. An. (12.8GHz) opt various</td>
<td>£8000</td>
</tr>
<tr>
<td>Agilent (HP) 89410A Vector Sig. An. DC to 10MHz</td>
<td>£7500</td>
</tr>
<tr>
<td>Agilent (HP) 89410A Vector Signal Analyser 2MHz – 1.8GHz</td>
<td>£9500</td>
</tr>
<tr>
<td>Agilent (HP) 35120A Function/Arbitrary Waveform Generator 15MHz</td>
<td>£6950</td>
</tr>
<tr>
<td>Agilent (HP) 53181A Frequency Counter</td>
<td>£750</td>
</tr>
<tr>
<td>Agilent (HP) 4284A Precision LCR Meter</td>
<td>£750</td>
</tr>
<tr>
<td>Agilent (HP) 8031A Power Supply (20V – 120A)</td>
<td>£1250</td>
</tr>
<tr>
<td>Agilent (HP) 6032A Power Supply (60V – 50A)</td>
<td>£2000</td>
</tr>
<tr>
<td>Agilent (HP) 6671A Power Supply (8V – 200A)</td>
<td>£1350</td>
</tr>
<tr>
<td>Agilent (HP) 5461S CDMA Mobile Station Test Set</td>
<td>£6000</td>
</tr>
<tr>
<td>Agilent (HP) 6285SMA Mobile Station Test Set</td>
<td>£6000</td>
</tr>
<tr>
<td>Agilent (HP) 54620A 500MHz 2 Channel Oscilloscope</td>
<td>£1000</td>
</tr>
<tr>
<td>Agilent (HP) 54645D 100MHz Mixed Signal Oscilloscope</td>
<td>£3000</td>
</tr>
<tr>
<td>Agilent (HP) 8713B 300MHz – 3GHz Network Analyzer</td>
<td>£4500</td>
</tr>
<tr>
<td>Agilent (HP) 8566B 100MHz – 22GHz High Performance Spec. An.</td>
<td>£7000</td>
</tr>
<tr>
<td>Agilent (HP) 8592B 9kHz – 22GHz Spectrum Analyzer</td>
<td>£7500</td>
</tr>
<tr>
<td>Rohde & Schwarz SMV919 9kHz – 100MHz Signal Generator</td>
<td>£1750</td>
</tr>
<tr>
<td>Rohde & Schwarz CMD 57 Digital Radio Comms Test Set</td>
<td>£4250</td>
</tr>
<tr>
<td>Rohde & Schwarz CMD 80 Digital Radio Comms Test Set</td>
<td>£3500</td>
</tr>
<tr>
<td>R&S SMO-33B Vector Sig. Gen. (3 GHz)</td>
<td>£7000</td>
</tr>
<tr>
<td>R&S SMO-33B (3 GHz)</td>
<td>£1750</td>
</tr>
<tr>
<td>Tektronix THS 720A 100MHz/2 Channel Hand-held Oscilloscope</td>
<td>£1250</td>
</tr>
<tr>
<td>W&G PJF 8 Error & Jitter Test Set</td>
<td>£5500</td>
</tr>
<tr>
<td>IRA (Marconi) 2051 10kHz-2.7GHz Mag. Mag.</td>
<td>£5000</td>
</tr>
<tr>
<td>Anritsu ML 2438A Power Meter</td>
<td>£1400</td>
</tr>
<tr>
<td>Wavetek 3050A 10kHz-2.7GHz Frequency Standard</td>
<td>£3500</td>
</tr>
<tr>
<td>Anritsu ML 2438A Power Meter</td>
<td>£750</td>
</tr>
<tr>
<td>R&S SMO-33B (1 GHz)</td>
<td>£3750</td>
</tr>
<tr>
<td>Tektronix TDS 720A 100MHz/2 Channel Hand-held Oscilloscope</td>
<td>£1250</td>
</tr>
<tr>
<td>W&G PJF 8 Error & Jitter Test Set</td>
<td>£5500</td>
</tr>
<tr>
<td>IRA (Marconi) 2051 10kHz-2.7GHz Mag. Mag.</td>
<td>£5000</td>
</tr>
<tr>
<td>Anritsu ML 2438A Power Meter</td>
<td>£1400</td>
</tr>
<tr>
<td>Wavetek 3050A 10kHz-2.7GHz Frequency Standard</td>
<td>£3500</td>
</tr>
<tr>
<td>Anritsu ML 2438A Power Meter</td>
<td>£750</td>
</tr>
<tr>
<td>R&S SMO-33B (1 GHz)</td>
<td>£3750</td>
</tr>
<tr>
<td>Tektronix TDS 720A 100MHz/2 Channel Hand-held Oscilloscope</td>
<td>£1250</td>
</tr>
<tr>
<td>W&G PJF 8 Error & Jitter Test Set</td>
<td>£5500</td>
</tr>
<tr>
<td>IRA (Marconi) 2051 10kHz-2.7GHz Mag. Mag.</td>
<td>£5000</td>
</tr>
<tr>
<td>Anritsu ML 2438A Power Meter</td>
<td>£1400</td>
</tr>
<tr>
<td>Wavetek 3050A 10kHz-2.7GHz Frequency Standard</td>
<td>£3500</td>
</tr>
</tbody>
</table>

Various other calibrators in stock. Call for stock / prices
The Universal Serial Bus (USB) is doing a good job of living up to its name. The four-pin connector is turning up everywhere, from the humble memory stick to musical instruments. USB’s rapid growth has led PC makers to question whether they need to support serial or parallel ports at all. Many have taken the decision to drop them entirely from their products, leaving makers of devices that support serial ports with nothing to plug into, unless the user buys a PCI card to add them.

There are good reasons for moving to USB. PC users find it much easier to deal with than the old world of serial ports with interrupts, COM ports and DIP switches to set in their peripherals. ‘Plug and play’, offered by USB, has become the expected norm for PC users.

The problem is many embedded devices still have serial ports on them to attach to PCs and other hosts. Although a growing number of mobile phones now use Bluetooth, many still have serial connections to work with desktop computers that are not fitted with the wireless communications standard. In the industrial and instrumentation fields, the serial port remains the standard in wide use today, thanks to the reach of a serial cable and because it is easy to work with. A data logger may need nothing more than a simple 8-bit microcontroller to run its software. This level of microcontroller has no problem dealing with a UART, which will often be integrated, but USB is a much more complicated proposition.

Where has the complexity gone?
Migrating to USB means more than simply changing a connector. Although both have ‘serial’ in their names, USB behaves much more like a network than a traditional serial bus.

USB was designed to make life easier for the end user of the equipment. The move to USB removed the burden of setting interrupts and addresses. However, the complexity now lies in the hands of the peripheral equipment or embedded systems designer. That designer has to come up with software that does what the user used to and, also, auto-configures the device. And that is not all. The device has to manage a much larger array of data structures than it would with a simple UART.

Dealing with a UART at the software level is a simple process. There’s very little overhead in terms of memory, as the interrupt handlers that send and receive data are dealing with just a byte at a time, and maybe some routines for flow control when dealing with a host that can sustain high transfer rates. USB is a different matter – it involves a less direct process.

With USB, communication takes place between software-defined endpoints. An embedded system attached to USB will often have more than one endpoint, each with its own 4-bit address. Endpoint 0 has to be used for control information. For data, you have to use Endpoints 1 to 15.

For complex peripherals, such as scanners or digital scanners, this is not a bad thing. It lets the designer construct different virtual pipes for different tasks. For example, one virtual pipe may relay commands to the camera to let a PC act as a remote control. Another pipe might be used for retrieving the pictures it takes.

Table 1: Serial bus comparison

<table>
<thead>
<tr>
<th>Interface</th>
<th>Signaling</th>
<th>Max Data rate</th>
<th>Reach (m)</th>
<th>Nodes</th>
<th>Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232</td>
<td>Single ended</td>
<td>20 Kbps</td>
<td>15</td>
<td>1 transmitter, 1 receiver</td>
<td>Point to point</td>
</tr>
<tr>
<td>RS-422</td>
<td>Differential</td>
<td>10 Mbps</td>
<td>1200</td>
<td>1 transmitter, 10 receivers</td>
<td>Multi-drop</td>
</tr>
<tr>
<td>RS-485</td>
<td>Differential</td>
<td>10 Mbps</td>
<td>1200</td>
<td>32 transmitters, 32 receivers</td>
<td>Multi-point star</td>
</tr>
<tr>
<td>USB@ULS</td>
<td>Differential</td>
<td>1.5 Mbps</td>
<td>3</td>
<td>1 transmitter, 1 host, 127 devices</td>
<td>Tied star with hubs</td>
</tr>
<tr>
<td>USB@HS</td>
<td>Differential</td>
<td>12 Mbps</td>
<td>5</td>
<td>1 transmitter, 1 host, 127 devices</td>
<td>Tied star with hubs</td>
</tr>
<tr>
<td>USB@HS</td>
<td>Differential</td>
<td>480 Mbps</td>
<td>5</td>
<td>1 transmitter, 1 host, 127 devices</td>
<td>Tied star with hubs</td>
</tr>
</tbody>
</table>
The intricacies of USB operation
Unlike a serial port, USB does not transfer bytes one at a time. Everything has to be put into a packet, given a destination address and sent on its way. Equally, the USB peripheral cannot send packets when it has something to send. The USB host has to poll it first, a process that happens roughly every millisecond. USB interfaces carry out error checks as well, generating control messages that should result in a retransmission if there should be an error.

Getting the endpoints into place is not a trivial exercise. When the user plugs in a USB device to a computer's port, there is an enumeration phase. This is when the PC tries to work out what has just been plugged in, what address to give it and which types of transfer the device will support. Your embedded device has to be able to come up with the right answers to the questions that the host asks.

Although it behaves more like a network with its ability to be configured dynamically, USB is no Ethernet. It has a severely limited reach that is fine for a home or office PC but cannot support the long cable runs used in more industrial environments. As you can see in Table 1, USB's maximum cable length is three times lower than what is possible with an RS232 connection. The differential serial links, such as RS422, provide much greater cable lengths. More than 1km in total is possible. For those wondering why the low speed version of USB, running at 1.5Mbit/s, only has a maximum cable length of 3m, but the full- or high-speed versions can handle 5m, this is to do with cable quality rather than protocol issues. Low-speed peripherals, which will be devices such as keyboards and mice, are assumed to use low-quality cables that would degrade the signal too much to support the full 5m length.

Tackling USB design
Even if starting a new design from scratch, providing USB instead of a serial port is a formidable task unless your system is large enough to use a real-time operating system that has USB support already built in. For many 8-bit and 16-bit designs, this is not going to be the case. And, the chances are that you are not starting from scratch. You probably already have a design that works perfectly well with a serial interface. You may not have time or budget to design a new board with built-in USB and the firmware to go with it. It takes less than a day to come up with a serial driver and several weeks to implement basic USB support on a microcontroller. Or you may have a microcontroller with enough headroom to run its core software but not the memory to handle USB as well. What do you do then?

As illustrated in Figure 1, there's a number of options available, from buying a completely new microcontroller through to component choices that let you keep both your existing board and, perhaps more importantly, all of your existing software.

The biggest change is to replace your main microcontroller with one that has built-in support for USB. There are a number of problems with this approach. You will still have to produce new software to support the USB protocol stack - these microcontrollers have specific hardware support but the manufacturers cannot provide software for them that covers the range of possibilities that USB offers. Perhaps the biggest problem with this approach is that you may have to rewrite your application. There are very few microcontroller architectures, if any, that do not have a family member with an integrated UART. The choice of microcontroller architectures with integrated USBs is very much smaller. A few vendors have made a point of providing USB-enabled microcontrollers but most have stuck with more traditional peripherals. In principle, this approach should have the lowest hardware cost but will, generally, work out to have the highest design cost.
costs. The question is, can you be sure to sell that many extra devices now that they have USB to justify the design cost?

If you want to keep your old microcontroller, you could just add one that does support USB to the board and then use bus transfers between two to pass data. This will involve rewriting some of the core software to support bus transfers rather than serial transfers, as well as the USB protocol software for the second microcontroller. This approach will command a higher hardware cost than the first option but will mean you get to keep most of your core software intact.

The third option is to have two microcontrollers as before but connect them through their integrated serial ports, assuming that both have them. Many dedicated USB microcontrollers do not have UARTs as well, which will restrict the choice you have for this option. There is a class of device that exists that not only provides a microcontroller with both USB and serial-port support but that implements the USB stack as well. This is the USB-serial bridge IC. An example is the Oxford Semiconductor OXUSB950 detailed in Figure 2. This type of device has the advantage of not demanding any changes to the device software. The microcontroller transfers bytes though the serial port as before. They are converted into a USB-friendly form by firmware running on the bridge on the other side of the serial interface. The main change to the design for this approach is to simply replace the old serial port connector and transceiver with the USB connector and bridge chip, which includes an integral PHY.

It is possible to add USB to a serial design without any design changes at all. This works by putting a USB-serial bridge into a cable or dongle and using that to map communications between the two protocols. This can work out to be the most expensive in terms of production costs, as you have to bear the cost of buying an off-the-shelf cable or dongle if you do not want to design this additional product using a USB-serial bridge.

However, in markets where any hardware or software redesign will involve an expensive requalification process, this can be a cost-effective approach. The schematic of Figure 3 shows a USB dongle implementation.

Great advantages?
The cable approach may have an advantage over integrating USB into the embedded device as it could allow the use of a longer serial cable on the device side, with a comparatively short connection to the PC. This way, you can get the reach of a serial standard such as RS422 and still work with USB-only PCs. The bridge chips generally have low enough power requirements to allow the dongle to be powered from the USB port. However, if cable length is not a consideration, the on-board use of a USB-serial bridge will often provide the best trade-off between redesign and production costs for moderate to high-volume products.

For certain high-volume applications with occasional interface requirements, the USB dongle might actually represent the optimum solution, as in mobile phones, for example. When there’s no room for integrating the interface into the product and, in any case, not every user wants the facility, it makes perfect sense to provide an interface cable as an accessory.

There is no need to be left off the USB bandwagon. The embedded systems designer has a number of ways of adding USB to an existing system and the arrival of dedicated bridge chips means that the burden of redesign can be reduced to a minimum.
The new TGR2050 is a synthesised signal generator with a frequency range of 150kHz to 2000MHz. Excellent frequency accuracy is matched with high stability, wide dynamic range, low phase noise and low leakage.

FM, phase and AM modulation modes are incorporated along with RS232 and GPIB (IEEE.488.2) interfaces.

The TGR2050 provides the most cost effective solution available for engineers needing a wide range high performance RF source.

- 150kHz to 2000MHz frequency range with 10Hz setability
- -127dBm to +7dBm amplitude range with 0.1dBm setability
- Better than 1ppm internal accuracy; external frequency lock
- FM, Phase and AM modulation, internal or external source
- Direct numeric entry or rotary control with user setable frequency and amplitude increments
- Non-volatile set-up memories for repetitive testing
- Full remote control via RS-232 and GPIB interfaces
- Unrivalled performance and features at this price level!

For applications with a narrower frequency requirement a 1GHz generator, the TGR1040, is available for around £1,200.

For full details of both generators, please contact us directly, visit our website, or circle the reply number below.

£2,195

Measurably better value

Thurlby Thandar Instruments Limited
Globe Road, Huntingdon, Cambridgeshire PE29 7DR
Tel: 01480 412451, Fax: 450409, e-mail: sales@tti-test.com
Web: www.tti-test.com

THURLBY THANDAR INSTRUMENTS
Let’s fight the traffic jams

By Mike Brookes

The Short Range Radio industry is all set for an expansion supernova as unit prices fall and functionality improves. This is going to require careful management by suppliers and regulators to avoid massive ‘traffic jams’ – or mutual interference.

The prototype examples of this are WiFi and Bluetooth. Both use the universal licence-free 2.4GHz band and both have taken off in a big way, meaning that some organisations have to decide a radio usage policy – Bluetooth or WiFi – to avoid catastrophic mutual interference. Both are looking at the 5GHz spectrum for phase II residency.

And this is only the beginning. Wireless connectivity is set to explode for a whole range of consumer products – there are serious estimates of 1000 million devices in use throughout Europe in five years’ time. This is matched by ever-greater numbers of RFID tags, automated metering and asset tracking – to say nothing of Zigbee and building automation.

Radio Administrations are being urged to examine the deepest entrails of their spectrum allocations and licences to identify bands that could accommodate SRDs physically and politically.

The problem is: how are they all going to work together? They all need radio spectrum in which to work and, historically, this has been in licence-free bands. Given government enthusiasm for ‘selling’ spectrum, probability of giving ‘free’ access to new spectrum is questionable.

Nevertheless, the European Commission (EC) is gingerly grasping the nettle in the form of a strategy for the future of Short Range Devices (SRDs). Industry has been called together in an ECC (European Communications Committee) project team PT43, to match anticipated market demand to spectrum availability as back-ground to the formulation of a pan-European policy – with a wary eye on the ultimate goal of worldwide compatibility. After all, it would be nice to believe that your SRD-based personal body monitor and systems built into your car work – legally – when you go abroad on holiday.

Radio Administrations are being urged to examine the deepest entrails of their spectrum allocations and licences to identify bands that could accommodate SRDs physically and politically.

Industry has to do its bit – by progressive adoption of spectral sharing techniques (LBT/AFA etc), by providing realistic market predictions, not just global guesses. It cannot expect regulators to cough up jealously guarded spectrum without real justification.

PT43 is in action right now. Focal points for Industry are LPRA, ETSI and EICTA. The PT43 Report and Recommendation is due at the EC in September 2005. This is a once in 10 years opportunity to get your industry sector needs registered as soon as possible.

The LPRA (Low Power Radio Association) is a European trade body that represents manufacturers and users of short range devices (SRDs). It is active in the production of SRD Radio standards and regulations.

Mike Brookes is LPRA’s chairman.

Wireless Software Solutions
Firmware revision 2.1
Jan 05

Designed and manufactured in the UK by LPRA Limited, Witney, OX28 4BH
Tel: 01993 779418
Email: info@lprs.co.uk

If Bluetooth, 802.11, Zigbee, UWB etc don’t suit your wireless application – “easy-Radio” will.

ER modules are embedded with all the wireless software you will need to achieve a short range wireless link over several hundred metres at speeds up to 19.2K over air.

New robust software ensures stability of user selected frequency, data rates and output power, configurable via Windows based software.

Go to our website to order an evaluation/programming kit and use our online calculator to see how time is saved and revenue returned faster with “easy-Radio” software solutions.

www.easy-radio.com/ew1
Multifunction voltage-mode filter, employing minimum number of active and passive elements

Voltage-mode filters employing current conveyors (CCs) have been receiving considerable attention nowadays. A great number of studies have been devoted to build multi-input single-output voltage-mode filters employing CCs. However, these filters employ excessive number of active and/or passive elements. Here we propose a new second-order multifunction voltage-mode filter with three inputs and one output. The proposed filter uses a novel current conveyor called balanced dual input-dual output current conveyor (BDI-DOCC) and minimum number of passive elements (two resistors and two capacitors). The filter can create low-pass, band-pass, high-pass, and all-pass responses, depending on the applied input signals.

Also, the presented filter does not require passive element matching. The parameters angular resonance frequency (\(\omega_0\)) and quality factor (Q) of the filter can be adjusted by changing the values of the resistors orthogonally. On the other hand, only resistors and no capacitors are connected to the X-terminals of the BDI-DOCC, which makes the proposed circuit suitable for operation at higher frequencies. To confirm the theoretical analysis, the filter is simulated using the Spice program.

Using standard notation for port relations of the CCs, the BDI-DOCC can be characterised as in the following matrix form (see below), where \(\alpha_k\) and \(\beta_k\) (\(k=1, 2\)) are the frequency dependent current and voltage gains of the converter respectively, which, ideally, are equal to unity. Current convention is such that all currents flow into the BDI-DOCC. The proposed multifunction filter is shown in Figure 1. Routine analysis of this circuit, gives the following output voltage.

From Equation 2, it can be seen that:
- The low-pass response can be realised with \(V_1 = V_2 = 0\) and \(V_3 = V_{in}\).
- The band-pass response can be realised with \(V_1 = V_3 = 0\) and \(V_2 = V_{in}\).
- The high-pass response can be realised with \(V_2 = V_3 = 0\) and \(V_1 = V_{in}\).
- The notch response can be realised with \(V_2 = V_3 = 0\) and \(V_1 = V_{in}\).
- The all-pass response can be realised with \(V_1 = V_3 = V_{in}\) and \(V_2 = -V_{in}\).

From this equation, the parameters \(\omega_0\) and Q of the filter are computed as Equation 3.

It should be noted that \(\omega_0\) and Q are orthogonal controllable. It means that \(\omega_0\) can be adjusted without disturbing the Q by changing \(R_1\) and \(R_2\) simultaneously, keeping \(R_1/R_2\) constant. Also, one can tune the parameter Q without disturbing the parameter \(\omega_0\) by increasing \(R_1\) and decreasing \(R_2\) (or decreasing \(R_1\) and increasing \(R_2\)) simultaneously, keeping \(R_1/R_2\) constant.

Sensitivity analysis of the filter gives Equation 4. Consequently, all of the passive and active elements sensitivities of the filter are low.

Simulations
The BDI-DOCC is constructed using the schematic implementation as depicted in Figure 2 with DC supply voltages of ±5V and bias voltages of \(V_{DD} = 1V\) and \(V_{SS} = -1V\). Moreover, the bias currents \(I_{f1}\) and \(I_{f2}\) are set to 50\(\mu\)A. All MOS transistors are operated in the saturation region. The simulations are performed using Spice program, based on 0.35\(\mu\)m TSMC CMOS technology tabulated in Table 1. The dimensions of the MOS transistors used in the BDI-DOCC implementation are given in Table 2.

The filter is simulated using the MOS implementation of the BDI-DOCC given in Figure 2. The frequency domain performance of the proposed filter is tested. The following settings have been selected to obtain the low-pass, band-pass and high-pass responses with pole resonance frequency of \(f_0 = 318.3kHz\) and quality factor of Q = 1: \(R_1 = R_2 = 1k\Omega\) and \(C_1 = C_2 = 0.5nF\). The frequency responses of the filter are shown in Figure 3. It can be seen that the simulation and theoretical results are in good agreement.

Also, the large signal behaviour of the circuit in Figure 1 is tested by investigating the dependence of the output harmonic distortion of the band-pass response on the amplitude of the sinusoidal input signal. The obtained results are given in Table 3. As it can be seen from Table 3, the total harmonic distortion (THD) of the filter for a sinusoidal input voltage with peak value of 100mV at 318.3kHz (resonance frequency) is obtained as 2.59%. The total power dissipation of the filter is found to be 25.4mW.

Erkan Yuce, Shahram Mineai, Levent Oner and Oguzhan Cicekoglu
Yuce, Oner and Cicekoglu are from Bogazici University, Istanbul, Turkey. Mineai is from Dogus University, Istanbul, Turkey.
Table 1: Parameters of the CMOS transistors used in Spice simulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{TH})</td>
<td>0.5445549</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.5827871</td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.7</td>
</tr>
<tr>
<td>(U_0)</td>
<td>212.2319801</td>
</tr>
<tr>
<td>(\eta)</td>
<td>9.999762E-4</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.2020774</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>1.181551E5</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.2020774</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>1.181551E5</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.2020774</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>1.181551E5</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.2020774</td>
</tr>
</tbody>
</table>

Table 2: Dimensions of the MOS transistors

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Width ((\mu m))</th>
<th>Length ((\mu m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMOS</td>
<td>140.35</td>
<td>140.35</td>
</tr>
<tr>
<td>NMOS</td>
<td>140.35</td>
<td>140.35</td>
</tr>
</tbody>
</table>

Table 3: Dependence of output harmonic distortion of the band-pass response on input signal amplitude

<table>
<thead>
<tr>
<th>Amplitude (mV)</th>
<th>Total Harmonic Distortion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.82</td>
</tr>
<tr>
<td>5</td>
<td>3.42</td>
</tr>
<tr>
<td>10</td>
<td>3.47</td>
</tr>
<tr>
<td>20</td>
<td>3.50</td>
</tr>
<tr>
<td>40</td>
<td>3.02</td>
</tr>
<tr>
<td>60</td>
<td>3.69</td>
</tr>
<tr>
<td>80</td>
<td>3.06</td>
</tr>
<tr>
<td>100</td>
<td>2.59</td>
</tr>
<tr>
<td>150</td>
<td>5.40</td>
</tr>
<tr>
<td>200</td>
<td>9.47</td>
</tr>
</tbody>
</table>
A novel approach to voltage-controlled astable multivibrator

An astable multivibrator is a rectangular wave-generating circuit. The astable multivibrator makes successive transitions from one quasi-state to another after a predetermined time interval, without the aid of an external triggering signal. The periodic time depends upon circuit time constants and parameters. Thus, it is just an oscillator, as it does not need any external pulse for its operation. Since its output oscillates in between 'on' and 'off' states freely, it is called free-running multivibrator. It is also named as square-wave generator based upon its application.

An astable multivibrator is used in a variety of electronic subjects. It may also be used as a synchronised oscillator and for driving sweep generators. However, conventional astable multivibrators, realised using a 555 timer, suffer from various limitations, such as, frequency of oscillations cannot be controlled without changing component values, first cycle timing errors, non-realisation of 50% duty cycle and noise problems.

In the recent past, many circuits for controlling the output frequency with the voltage have been proposed, but suffer from limitation that the change in the output frequency is the non-linear function of the input voltage. In these circuits, the voltage is used to control the charging of capacitor, which is exponential in nature. However, in real-time applications, a linear control of voltage-to-frequency is highly desirable. Fortuitously, a number of passive and active components in the astable multivibrator circuit can eliminate most of these problems.

Figure 1 shows a voltage-controlled astable multivibrator.
The circuit comprises two operational amplifiers, a 555 timer IC, resistors and capacitors. An external voltage V_c can be used to control the frequency of generation of square waves' 50% duty cycle. Hence, the circuit is that of a linear voltage-controlled square wave oscillator. A complete analysis of the circuit proves frequency to be directly proportional to V_c and inversely proportional to R_o, C_0 and V_{ee}.

An appropriate selection of V_{ee}, R_o, and C_0 can be used to obtain a frequency variation in desired range.

Figure 2 is a modification of the previous circuit – it uses a lesser number of components. In addition to frequency being controlled by external voltage, the duty cycle of the output rectangular wave can also be varied using a potentiometer. The duty cycle in this case is the ratio of R_A and R_s. The frequency, as before, is directly proportional to V_c.

Figure 3 is another modification to the circuit in Figure 1. The advantage of this circuit is that it is free from first cycle timing error. But the drawback is, neither the frequency nor the duty cycle of the output square-wave can be controlled. One advantage that is common to all the circuits is that a triangular wave can also be obtained at the shorted pins 2 and 6 of the 555 timer. The general output waveforms are shown in **Figure 4**. The 555 timer as a voltage-controlled oscillator circuit is sometimes called a voltage-to-frequency converter as the output frequency can be changed by changing the input voltage.

Although the 555 timer has been used in a variety of unique applications, it is very hard on power supply lines, requiring quite a bit of current and injecting many noise transients. This noise will often be coupled into adjacent ICs, falsely triggering them. The 7555 is a CMOS version of the 555. Its quiescent current requirements are considerably lower than that of the 555, and the 7555 does not contaminate the power supply lines. It is pin-compatible with 555. So this CMOS version of 555 should be the first choice when a 555 timer IC is to be used.

Jivesh Govil
New Delhi, India

Almost universal MP3 player

By using a compact cassette (CC) box and a standard MP3 player, we can build an MP3 to be used on any CC player.

Two Hall Effect cells, combined with rotating magnetic discs, are used as SW1 SW2 for wind/rewind functions.

Logic circuit can discriminate SW2 between winding and playing. Bat1 + Bat2 supply the player and K is a standard stereo head that works as the audio coupling to the CC player.

Rui Figueiredo
Lisboa, Portugal

Little Doctor

Student Data Logger

Simple, Powerful, Affordable

Finally... a versatile 15-channel data logger at a price that anyone can afford. The “Little Doctor” comes packed with features including:

- USB Connectivity
- Screw Terminal Connections
- 10-bit Voltage Resolution
- 1% Basic Voltage Accuracy
- Up to Almost 5000 Samples/sec.
- 8 Analogue Voltage Inputs
- x10 Amplifier on 2 Inputs
- 2 Microphone Input Jacks
- Internal Temperature Monitor
- Internal Light Monitor
- 3 Digital on/off Inputs
- Frequency Counter Digital Input
- Time-Interval Digital Input
- Analogue Output (e.g. Sine Wave)
- Variable Frequency Digital Output
- On-off Power Output with LED
- Graphs any Inputs Simultaneously
- Print Graphs or Copy to Clipboard
- Export Data as CSV File

Ideal for Science Experiments!

From Only
€79.99

Call 00353 (0)45 867267

Microlite Electronics
Humphrystown House
Blessington, Co Wicklow, Ireland
littledoctor@iol.ie
www.iol.ie/-microlit

June 2005 • ELECTRONICS WORLD
An improved LED driver

Recently, many LED drivers using single battery (1.5V) have received great attention. The idea is to obtain high voltage generator from low power supply by the nature of both, the inductor and the oscillator.

Figure 1 is one example where the oscillator is an LC tank circuit with negative resistance, inductor and capacitor. Three transistors (Q1, Q2 and Q3) and two resistors of Figure 1 create this negative resistance described with the following equation:

\[I = \beta \left(\frac{V_{dd} - V_{be}}{R_1} + \frac{\beta V_{be}}{R_2} - \frac{\beta V}{R_2} \right) \]

Assume all transistors have the same gain

\[(\beta_{FE} = \beta) \]

and the leakage current of the transistor is neglected.

We should choose the value of the negative resistance, which is determined by the bias resistors \((R_1\&R_2) \) in Figure 1, to cancel the positive residual impedance and create an LC resonator.

Figure 2 is an improved LED driver. The inductor in Figure 2 is set in printed circuit bread, where there is a stray capacitance of about 3-10pF. Therefore, there is no need for an actual capacitor in Figure 2. Then, there is a high oscillating voltage \((V_{pk}) \) at the terminal of the inductor, as well as the collector of the transistor.

Note that the anode of the LED is connected to the positive terminal of the power supply, and its cathode is connected to the terminal of the Q3's collector as well as the inductor. The induced voltage is \(V_{pk} \) at the inductor. Therefore, across the LED, there will be the combination of the voltages

\[(|V_{dd}| + |V_{pk}|) \]

that will turn it on with a 1V power supply \((V_{dd}) \).

It is clear that there're less than two components and much more current is driving the combination of positive and negative voltage. The intensity of the white LED driver in Figure 2 is 20% higher than any LED driver, without the combination of the positive voltage and negative voltage at the same power supply.

This circuit can also be widely used in many applications at low power supply such as a laser diode, for example.

Tai-Shan Liao
National Applied Research Laboratories - Precision Instrument Development Center
Taiwan

Send new circuit ideas to:
The Editor, Nexus Media Communications, Media House, Azalea Drive, Swanley, Kent BR8 8HU
or email to: ewcircuit@highburybiz.com
For clocks and EM radiation

In reply to two letters in the January 2005 copy of Electronics World – Pendulum Conundrum on p63 and Unmentionable hazard on p61.

My father built an electric pendulum grandfather clock in the 1940s. The mechanism was purely mechanical i.e. hand filed cogs. The pendulum was driven by an electromagnet (two coils approximately three inches long by one inch in diameter) with a switch assembly about half way up the pendulum rod (using a piece of old spring as a 'hinge'). The switch was on one side of the swing (of the pendulum) and made contact only on the inbound stroke, and operated for a short time. It was powered by two PMG No 6 cells and these lasted many years (I only remember them being replaced once). The original 'design' probably came from Wireless World or Popular Mechanics.

As for electromagnetic radiation, this subject is still bouncing around. During the early 1960s, I was asked to find information on 'radio and light' radiation. I had access to all libraries and 'establishments' and a lot of unpublished data from all around the world, including Russia. There appears to be many spot frequencies and small bands, and power levels that have been extensively and accidentally explored by many people. My brief was to start at Rugby (16kHz) and stop at the then maximum frequency of 26kHz, and from the turn of the century (1900) to then in 1964. The symptoms ranged from headaches, body warming, to mood/character changes: these must have been obvious as the comments were made at times incidental to the main script. All this information was whisked away rather abruptly. All I am saying is, 'Be careful, the jury is still out'. If there are no adverse results after five generations (order of 150 years), only then can you say there is no effect. There is much more study needed to be done by responsible people.

John Ingram
South Australia

Clear statements

Ian Hickman (EW October 2004, p38) discusses where the electric charge that appears on the more negative conductor of a transmission line comes from. Ray G. Lee's comment (EW April 2005 on p49) that we have a model, not a theory, is irrelevant.

A model has to be clearly stated: if experts contradict each other, then we have two models, not one. This should be made clear to students, who will be examined on models as well as on theories.

Jane Lynx
Walsall
UK

Battling it out with Eircom

I hope you can help a struggling novice with the following problem.

After a six-months' running battle, I finally got the Eircom technicians to come and install the Internet connection to my mini-tower PC that I'd been waiting for. It turned out to be an Airspan Type 42 S.T. Service Interface Unit, connected to a small dish on an outside wall mounting and also running through a mains CPU. I then almost immediately discovered that the 56k external modem I'd bought in anticipation months before wouldn't work at all with this system.

Acting on advice from one of the many Eircom contact numbers, I then bought a LAN card and RJ-45 cable, installed the card and then realised that the RJ-45 socket on the Airspan machine was empty and closed with a removable plate. I have two other occupied sockets; the one labelled 'Home Network' is active and the one marked with a phone icon is not, but both of them are for ordinary phone plugs anyway and so not much use to me.

Can you please give me some pointers as to what parts I need to install to make the RJ-45 socket active (obviously apart from the socket itself), good places to order them from (could be more than one of those listed in magazines or elsewhere) and, possibly even, how to install them when they arrive?

I hope the page of details about the Airspan machine's mainboard will be of some use:

Empty chip space for 10BaseT connection from front to back, inside the board.
P29. Square. Two round solder spots and one round connecting hole on each side; these spots are presumably just for fixing RJ-45 socket. Row of one square and three round solder spots, row of four round above.

U5. Oblong. Row of eight oblong solder spots at the top and bottom. Spaces for pins of some sort at left-hand two spots both rows, pin-space centre right.

Y6. Square and small with square solder spot at each corner. Space for pin at top left, bottom right. Putting into:

Y4. Oblong. At its right, long oblong solder spot top and bottom center. Eight pin spaces inside, cluster of 13 at top left-hand corner.
U30. Square. Row of line solder spots each side, too many to distinguish.

Cluster of five pin-spaces in centre, two outside/six inside bottom edge, five inside and outside left edge, six inside/eight outside/right edge (I think), six inside/outside top edge.

C282 and C517. Small oblong, filled by two oblong solder spots each. Four pin spaces in various places.

L87. Small and oblong. Oblong solder spot on each side, row of six pin-spaces left of right solder, one pin-space outside the bottom left corner.

J2. Long and narrow, 32 large pin-spaces. Smaller pin-space at bottom-left, another low on the left side, cluster of three higher up, two above top left edge, cluster of five low on the right.

Details given on the bottom of the machine's case are: V2, config. No. 616-0202-010 Rev; Hardware part no. 503-0025-102 Rev; Mainboard part no. 303-110-A02 Rev B. POV2 hardware platform, with both voice ports enabled. Preloaded with software on 10/12/2003, main bank code: 1.7.15.0205. back-up bank code: 2.7.11.020.

MAC address: 00.01.aa.00.90.39 Serial no. S00031800T0348D

Just for the sake of completeness, my operating system is a version of Debian GNU/Linux.

John Verrill
Bantry
Ireland

Letters

Please send your letters to:
"Electronics World" Nexus
Media Communications
Media House, Azalea Drive
Swanley, Kent BR8 8LU
electronicsworld@highburybiz.com
MEMprogL arrives

Slovakia-based device programming firm Elnec has introduced a new, simple and low-cost programmer for memory chips. MEMprogL is the next member of Windows 95/98/ME/NT2000/XP based Elnec specialised programmers. It is built to meet the demands of development labs and field engineers for a specialised low-cost memory programmer. MEMprogL supports memory types up to 32 pins - EPROM, EEPROM, NVRAM, Flash EPROM and serial EEPROM, including low voltage types. In addition, MEMprogL also doubles up as a static RAM tester. MEMprogL interfaces with the IBM PC compatible, portable or desktop personal computers through any parallel (printer) port. Performance, dimensions and speed of MEMprogL can be used mainly in the maintenance. Important feature is the extensive MEMprog's device library which covers almost 6000 devices. This library can be downloaded free from the manufacturer's home page.

www.elnec.com

1812 common mode chokes operate to 10A

Steward's new CM1812x330R monolithic surface mount common mode chokes are designed for power and data line EMI filtering where high current, small size or high frequency performance is required. This new family of compact ferrite parts includes versions rated at 5A and 10A. All of the family members feature very low DC resistance to minimise signal distortion and low common mode impedance of 100MHz. The devices are smaller, lighter and less susceptible to vibration than older-style wire-wound chokes, making them ideal for use in harsh environments and portable equipment. All of them are available in lead-free. RoHS-compliant variants exhibit DC resistance of 3W and 5W respectively. The new series is suitable for a variety of applications, including EMI suppression on the DC power trances of PCBs, especially in applications greater than 3A. High-speed I/O circuitry such as network and storage subsystems also need such common-mode EMI suppression, as do USB power lines, PCMCIA products, disk drives and others.

www.steward.com

Pressure sensor with media compatibility

Sensortech's new piezoresistive 40PC series from Honeywell offers gage pressure measurement in a wide pressure range from 67mbar to 35bar and is suitable for use in extreme temperature conditions. The sensors feature 0.5-4.5V amplified output signal, providing a direct interface to an A/D input of a controller. The fully calibrated and temperature compensated sensor is very robust, built in a miniature 6-pin DIP package and is covering a wide range of temperature extremes from -45°C to 125°C. Additionally, the 40PC series is compatible with a broad array of gaseous and liquid media, from dry air to engine fuel and oil. Typical applications include level control, environmental and medical applications and industrial and analytical instrumentation.

www.sensortech.com

WiMax gets its own antenna range

European Antennas has designed the Vector series of 20 sector and omni antennas specifically for WiMax applications. The range meets the WiMax Forum's performance and interoperability requirements. The vector series can also be used for Fixed Radio Access (FRAU) and broadband networks. It is easy to install and features a wide range of operating bands (3.30-3.80GHz and 4.9GHz - 5.9GHz), effectively reducing the need to maintain a large variety of narrow band antennas. Vector base station sector antennas are available with 600, 900, 1200 and 1800 azimuth beam-widths and feature built-in electrical down-till to benefit installation and operation. While sector antennas provide up to 19dBi gain, European Antennas also offer 8dBi and 11dBi gain omni antennas in both, the 3.5GHz and 5.5GHz bands.

www.european-antennas.co.uk
Module with metric connectors

The latest addition to Harting’s HM range of hard metric connectors, in accordance with the IEC 61076-4-101 standard, is the Har-bus HM combined module. This new product integrates different HM female connectors in a single unit and allows any combination of HM types A, B, AB and C to be assembled up to a maximum length of 6U.

The combined module is particularly suited to use on boards such as the CompactPCI 6U Eurocard, where it replaces five separate connectors on the daughtercard or three connectors on the rear I/O board. As a result, it will greatly speed manufacturing operations by reducing the number of press-in operations from five to one.

In addition to the resulting benefits in terms of reduction in manufacturing costs, it also offers additional process optimisation in the logistics area because only one part number is involved.

The connector consists of five signal contact rows and provides a maximum of 535 contacts. It is available in both shielded and unshielded versions and is fitted with press-in contacts.

KTL now tests smartcards

KTL has added an extra capability to its portfolio of services – the testing of interoperability between smartcards and readers to EMV Level 1 standard as well as the full range of test scenarios for EMV Level 2.

“Level 1 is targeted at applications such as set-top boxes, security and vending machines,” said Karim Sharf, KTL’s telecoms group manager. “It defines physical size, electrical performance, chip location etc. Level 2 is targeted more at financial transactions – such as EPOS.”

In addition to this new service, KTL provides complete test solutions, making the firm’s lab a one-stop shop, says Sharf.

EMV is the globally recognised standard for JCB, MasterCard and Visa. The joint founders have developed the specification to define a set of requirements for interoperability between chip cards and terminals on a global basis, irrespective of the manufacturer, financial institution or geographical region.

www.ktl.com

Solving power issues with Dialog Plus

Riello Galatrek’s new Dialog Plus is an on-line uninterruptible power supply (UPS), specifically designed to solve the power protection problems of Voice over IP (VoIP) telephony and Power over Ethernet (PoE) technologies. Both have capabilities that power disruptions can tamper with.

PoE is a way of providing electrical power to network ports along existing category 5 10BaseT and 100BaseT-TX Ethernet cabling. From the ports compatible equipment, such as PoE-compatible telephone handsets, cameras and security devices, can be powered, managed and controlled. VoIP telephony is a way of providing unified messaging and communication over remote IP addresses with greater cost savings and efficiencies over traditional telephony.

The new Dialog Plus is available in 700VA to 3000VA power modules and both are floor standing and 19” rack mount formats to offer the maximum number of installation options. Each UPS has a number of output sockets from which uninterruptible power can be drawn continuously. To provide failure protection, Dialog Plus is available with a standard internal battery that can typically run for 13 minutes at full load. The range starts from £499 plus delivery and VAT.

www.riello-ups.co.uk

New member joins the thermal team

DED Limited’s Axiohm selection of thermal printers – the A600 series – has just received a new addition in the A632 system. Being made with vehicle space constraints in mind and a power supply of 12VDC, this device has already been awarded the ‘e’ approval for in-vehicle use. The device is only 108x147x72mm in size, has a 12VDC battery, 9-12VDC converter, supports the Windows drivers for 98/2000/XP and Pocket PC, and it can be used with a PDA as well.

The system’s printing time is 59mms, supporting paper width of 58mm and offering battery life of up to 170 hours. The system weighs some 330 grams and it offers an RS232 interface and a choice of 24 or 40 column print widths.

www.ded.co.uk

InstaPin offers low cost SoC testing

Agilent Technologies announced the InstaPin test programme for the Agilent 93000 system-on-a-chip (SoC) testers. InstaPin offers per-pin licenses that can be shared across pins of testers, testers on a test floor and production facilities anywhere in the world. InstaPin promises to deliver lower costs and yet a highly evolved testing for SOC devices. “InstaPin is a radical approach – nobody has thought of this before in the industry. It builds on the pin-scale technology, it is done with a high level of granularity which will also keep test costs in check,” said Cristof Baeschang, Agilent product manager.

The InstaPin test programme figures out automatically how many pins need testing and where, and asks for those licenses to run the test. Each pin of the 93000 pin scale digital cards can be software-scaled over a wide memory depth and speed range, allowing test systems to be configured to match device requirements, pin by pin.

www.agilent.com
VME64x bus mechanical switching connector

Harting has just launched the new Har-bus 64S, which is a passive mechanical switching connector for use in VME64x bus systems.

The 5-row, 160-way connector offers automatic daisy-chain functionality, with the mechanical switching elements guaranteeing the reliable switching of the daisy chain without contact losses. The switching elements close the daisy chain when no daughter card is inserted, eliminating the need for active components or jumpers on VME64x backplanes. Five pairs of switching contacts – in positions a21-a22, b4-b5, b6-b7, b8-b9 and b10-b11 – short-circuit the VME interrupt lines when the daughter card is removed, preserving the integrity of the entire system.

The new connector is an addition to Harting’s Har-bus connector range and is fully compatible with Har-bus 64 daughter card connectors. It also offers full backward compatibility with existing standard VME systems based on 3-row Type C daughter card connectors on a 2.54mm pitch according to DIN 41612.

The Har-bus 64S connector uses the same PCB layout and hole configuration as existing Har-bus 64 connectors, and is pressed in with the same ‘flat rock’ press-in tools.

www.harting.com

Compact digital oscilloscope

The new SignalXplorer DL900 series of digital oscilloscopes from Yokogawa combines high-performance waveform display and analysis functions with a very compact and lightweight design.

The instrument features maximum frequency bandwidth of 1.5GHz, maximum sampling rate of 10GS/s and maximum memory length of 6.25MW.

It’s a four-channel system that also features an enhanced waveform accumulation function for the acquisition and display of up to 450 million digitised points every second.

In addition, the oscilloscope offers a reduced power consumption, based on an AD conversion section where cascade-type 2.5GS/s 8-bit ADCs are run in parallel.

As for the signal-processing section, a proprietary advanced data stream engine (ADSE) has been implemented in a 0.13µm CMOS process, with the memory being integrated into the chip itself.

This section generates display information from the AD-converted data and carries out the processing for waveform and parameter calculations.

The DL9000 measures 350x200x178mm and weighs 6.5kg. It incorporates an 8.4-inch LCD screen. The series consists of four instruments. Prices start from £10,995.

www.yokogawa.com/eu

Allegro sensor for automotive applications

The ATS625 from Allegro Microsystems Europe is a zero-speed differential gear-tooth sensor that is optimised for automotive engine control, especially crank speed and position sensing.

By means of differential threshold detection and algorithms such as automatic gain control and automatic offset adjustment, the ATS625 offers very high levels of relative edge accuracy and switching, independently of the air gap. The combination of low jitter and edge repeatability is ideally suited to targets that have signature tooth or valley regions, which are common to engineering crank-speed sensing.

To meet the demanding environmental requirements of engine-control applications, the ATS625 also has enhanced EMC protection to reduce the effects of electrical transients on the input and output of the device.

An on-chip voltage regulator permits operation over a wide supply voltage range, while undervoltage lockout eliminates false switching during undervoltage conditions.

www.allegromicro.com
Adaptaflex's price list expands

Adaptaflex has just made available its latest price list of flexible conduit systems and accessories. The price list – Issue 6 – includes the company's latest product offerings in ranges of non-metallic and metallic flexible conduit systems, but also it covers the complete Elkay range of wiring accessories, terminals, connectors, cable glands and energy management systems.

Also included are the newly introduced pipe protection conduit, Big bore metric Adaptolok, underground service warning tape, safety site fencing, terminal strips, cable jackets, retrofit conduit and smooth inner and outer PVC conduit systems. These are in addition to the range of six Contractor Packs, including the new time-saving Installer Packs.

The products are cross-referenced throughout the Adaptalox and Elkay catalogues and new products leaflet.

Copies of the new price list are available direct from Adaptalox on telephone 01675 468222 or by email at sales@adaptaflex.co.uk www.adaptaflex.com

New set of integrated power modules

International Rectifier (IR) has expanded its iMotion series of integrated power modules (IPMs) with parameters of 600V, 16A and 20A. They are expected to simplify the design of compact, high-performance variable-speed motion control power stages for air conditioners and commercial freezer, for example.

Designed specifically for 85V to 253V AC variable speed motor drives for energy efficient appliances, these new IPMs integrate IR's proprietary high voltage integrated circuit (HVIC) with a three-phase inverter power stage. The 16A device addresses the 750W to 1.2kW power range, while the 20A devices can accommodate 750W to 2.2kW. All of the new IPMs are packaged in efficient, single in-line packages (SIP) with improved thermal characteristics.

IR's iMotion integrated design platform consists of a development system, mixed-signal analogue chipset and power stage, which, when co-designed together, simplify motion control designs and bring energy-efficient, cost-effective solutions to market faster.

www.irf.com

Nepcon debut for Adaptsys BP 4710

Adaptsys Limited will use the Nepcon (Stand U401) show as a vehicle to showcase the new programming, marking and handling solutions system, the BP 4710. In addition, among its other products, it will also exhibit the Adaptsys LCMP Laser Component Marking System, not seen in the UK before.

The 4710 Automated Programming System from BP Micro Systems is claimed to be one of the most advanced around. Designed specifically for the latest high-density devices and their longer programming times, it is one of the fastest for programming Flash, while still offering the versatility to program FPGAs, antifuse FPGA, PLDs and microcontrollers, including MCUs with embedded Flash memory. It will handle all package types from DIP to µBGA.

The BP 4710 system provides the capability of programming devices with densities of up to 4Gbits. It incorporates the globally accepted high-speed USB 2.0 standard bus for communications and, by combining the industry's fastest universal programming technology with BP Micro's FX4 socket modules, the system can program up to 44 devices at the same time, resulting in four times the throughput. The fast programming times (up to 0.24s/Mbit) and exceptional throughput (up to 1400 devices per hour) translates to a very low programming cost per device.

www.adaptsys.com

LIF crimp terminal receptacles

Wieland Electric's Stocko range has gained a new range of low insertion force (LIF) – LIF 6.3 – receptacles for the crimp terminals. As well as increasing productivity through faster assembly, these crimp terminals reduce the risk of repetitive strain injury in users.

This range requires only 40% of the insertion force of conventional terminals and provides the same reliability and integrity of connection, with the same withdrawal force. The integrity of the terminals has been fully tested and verified in live tests under a range of conditions.

The Wieland Electric's Stocko range encompasses a wide choice of wire sizes.

www.wieland-electric.com
HANDBOOK OF RF AND WIRELESS TECHNOLOGIES
Erald Dowle
(Lawrence Livermore National Laboratory, University of California-Davis, USA)
Subjects covered include third-generation wireless, wireless sensor networks, RF power amplifiers, spread spectrum modulation, signal propagation, and antennas. This is far more than just a tutorial or reference guide—it is a "guided tour" through the world of cutting-edge RF and wireless design, combining theory, applications, and philosophies behind the RF/wireless design process.
November 2003 • 720 pages • PB
Code 0-7506-7859-7 • £99.99

DIGITAL INTERFACE HANDBOOK
John Watkinson, Francis Romsey
A detailed manual for those who need to get to grips with digital audio and video systems. It sheds light on the differences between audio interfaces and shows how to make devices "talk" to each other in the digital domain. Also includes integrated coverage of all the regularly used digital video interfaces. New information included in this third edition: dedicated audio interfaces, codecs over computer network interfaces and revised material on practical audio interfacing and synchronisation.
3rd edition • September 2003 • 397 pages
Code 0-240-1909-4 • £29.99

VCR FAULT-FINDING GUIDE
Edited by Peter Marlow
A distillation of the most useful fault reports from 11 years of television magazines. Arranged by make and model. It features over 200 reports on over 200 models of VCR, including diagnosis and repair advice.
Mar 2000 • 447 pages • PB
Published in UK
Code 0-7506-4634-9 • £20.99

DESIGNING AUTONOMOUS MOBILE ROBOTS
John Hollwand
Covering topics such as advanced sensor fusion, control systems for a wide array of application sensors and instrumentation, and fuzzy logic applications, this volume is essential reading for engineers undertaking robotics projects as well as for undergraduate and graduate students. By looking at robots' physical design and the way they sense the world, this book demystifies the art of analogue circuit design and analysis. The content meets the requirements of first and second year electronic engineering courses.
January 2004 • 381 illus. • PB
Code 0-7506-7683-8 • £35.00

ANALOG ELECTRONICS: CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
D. Craik (formerly Open University/S. Burgess (formerly University of Coventry))
Designed to complement the digital system modules and develop the essential skills required for RF circuit design, this book demystifies the art of analogue circuit design and analysis. The content meets the requirements of first and second year electronic engineering courses.
May 2002 • 455 pages • 150 illus. • PB
Published in UK
Code 0-7506-5095-B • £19.99

AUDIO POWER AMPLIFIER DESIGN HANDBOOK
Douglas Self
This text on the design of audio amplifiers is based on Douglas Self's work in Electronic World magazine and a career at the cutting-edge of audio design. This handbook aims to provide a practical guide to the state of the art, and includes detailed design and construction information.
3rd edition • May 2002 • 446 pages
Code 0-7506-5836-0 • £24.99

AVR: AN INTRODUCTION COURSE
John Morton (University of Cambridge)
AVRs have certain strengths compared to other microcontrollers but are less well-known or understood. The author wrote this guide to introduce AVR to those who have little or no microcontroller background and to encourage them to start using these useful devices with very little effort.
Sep 2002 • 255 pages • 150 illus.
Code 0-7506-5635-2 • £16.99

BEBOP TO THE BOOLEAN BOOGIE: AN UNCONVENTIONAL GUIDE TO ELECTRONICS
Clive Maxfield
The second edition of this comprehensive introduction to contemporary electronics now has added material. It is written for the engineer, hobbyist or student who wants a thorough electronics reference, as well as for non-technical people, and is accompanied by a CD-ROM.
2nd edition • Jan 2002 • 516 pages • CD-ROM
Code 1-84184-187 • £27.50

TV FAULT-FINDING GUIDE
Edited by Peter Marlow
A distillation of the most-useful fault reports from 11 years of television magazines. Arranged by make and model, it features over 200 reports on over 300 models of television, including diagnosis and repair advice.
Mar 2000 • 187 pages • PB
Published in UK
Code 0-7506-4633-0 • £20.99

VALVE AMPLIFIERS
Morgan Jones
This edition has been updated to include information on digital television, datcasting, interactive video, digital camcorders and VCRs, and video interfacing. Coverage is international, including European, Asian and North/South American video standards, methods and techniques.
3rd edition • Jul 2001 • 784 pages • PB
Code 0-7506-5644-8 • £29.99

VIDEO AND CAMCORDER SERVICING AND TECHNOLOGY
Steve Backing
A comprehensive guide to domestic stereo equipment and the latest VCR technology. This book contains the information needed to upgrade and repair VCRs of the latest technology. The author's straightforward approach, using as little maths as possible, should be of use to those with only a limited knowledge of the field as well as the standard reference for experts in video design. Design principles and construction techniques are also provided.
5th edition • Apr 2001 • 323 pages
Code 0-7506-5097-X • £20.99

POSTAGE & PACKING FREE IN THE UK
TOTAL

печатית

Name ____________________________

Address ____________________________

Postcode __________

Expiry Date __________

Please debit my Access/Visa/Switch/Delta card __________

Card Number __________

Signed ____________________________

*Postage charges outside the UK available upon request or email: salessteam@boffinbooks.demon.co.uk

Pan Boffin Books Ltd, 24 Walton Street, Walton-on-the-Hill, Tadworth, Surrey KT20 7RT, UK

01737 812727 Fax 01737 813526 Email salessteam@boffinbooks.demon.co.uk
CHYGWYN
www.chygwyn.com

ChyGwyn Limited offers electronic design and embedded software development for remote monitoring, embedded appliances, set-top boxes and similar devices. We are experts in customisation of Linux and write device drivers for custom hardware.

COMPONENT TECHNOLOGY
www.component-technology.co.uk

- PIC microcontroller kits and modules for students and hobbyist.
- 18F45X, 16F87X Proto-Boards for ease and fast development of project ideas.
- Infrared illuminators for CCTVs in low ambient light security areas.
- Analogue 8-channel high voltage isolator. Data logging.
- 5% discount code ‘elwwdir2004’ for Electronics World readers.
- Consultancy
- TIG control systems – RES interface.
- Real-time X-ray Imaging.

DB TECHNOLOGY
www.dbtechnology.co.uk

Anechoic chamber and open area test site.
- Compliance Tests
- Fixes included.
- FCC Listed.
- Flexible hourly booking available.
- Rapid, accurate pre-compliance tests.

DESIGNER SYSTEMS CO
www.designersystems.co.uk

Electronic product design company with over a decade of experience promoting it's own product range and designing and manufacturing innovative products for client companies/individuals.

IPEVA
www.ipeva.com

IPEVA sell FPGA platforms and provide Design Services for Embedded Systems, OpenCores IP, Analogue, Digital, FPGA, ASIC, HDL Translations (e.g. Schematics/Verilog) and Migrations. Altimus Nexus and Protel Bureaux.

MCES LTD
Web: www.mces.co.uk

MCES are a specialist electronics company providing a high quality repair, rework and re-manufacturing service to electronic modules and sub assemblies, including handling both large and small volume production and rework for major manufacturers. Established in 1972 we have continued to make large investments in specialised test equipment, surface mount technology and tooling enabling us to diagnose repair and verify a wide range of electronic modules to a very high standard. We also operate a fitting service for surface mount multi pin IC’s and BGA’s.

Redrat
Tel: +44 (0) 1189 986 911

Telenic specialists in laboratory AC & DC Power Supplies, Electronic AC & DC Loads, Electrical Safety Testing and complete test systems. Plus RF Filters, Attenuators, Diesel Engine Smoke Measurement, Quartz Crystal Microbalances. Tel +44 (0) 118 978 6911

Linage only will cost £150 + vat for a full year. Linage with colour screen shot will cost £350 + vat for a full year
The new GV 998 is a digital pattern generator offering more advanced features at again a realistic price. Those features include:

- MPEG-2 format Transport Stream generation
- Video and audio included in the TS
- Video and audio inputs
- Generation of a variable frequency sound carrier for decoding verification
- Multistandard and multisystem analogue TV signal generation
- Possibility to edit different fields of the TS database to present the name of the service provider
- Remote control via a personal computer
- Moving video patterns to check MPEG-2 decoders

IDEAL FOR PLASMA DISPLAYS

IDEAL FOR WIDE SCREEN

PROMAX GV SERIES
- Choice of 12 instruments
- NICAM and Teletext
- 4:3 and 16:9 Formats
- Full field and VITS
- Computer Controlled
- Front panel memories
- Own Company Logo
- Computer Monitor testers
- Hand Held Models
- Multi Standard, PAL, NTSC, SECAM
- High Quality Construction
- Attractive Price Levels
- Full After Sales Service
- Available from Stock

FOR TELEVISION PATTERN GENERATORS, THERE'S NO WIDER CHOICE THAN WITH PROMAX

PROMAX

AA 930
AUDIO ANALYSER

TA 903B
CRT REJUVENATOR

Alban ELECTRONICS LIMITED
THE PROMAX SERVICE CENTRE
6 Caxton Centre, Porters Wood, St. Albans, Hertfordshire, AL3 6XT.
TEL: 01727 832266 FAX: 01727 810546
WEB: www.albanelectronics.co.uk
EMAIL: info@albanelectronics.co.uk
SALES + SERVICE + CALIBRATION
Electronics World magazine is enjoyed by some of the world's top circuit designers - but it's not just for professionals. Stimulating designers for almost a century, Electronics World covers analogue, RF and digital circuit technology and incorporates design information on everything from model train control to input/output via a 10baseT network... and it's now available all on CD-ROM.

- 12 issues on each CD-ROM
- full text and diagrams of all articles, circuit ideas, letters etc
- easy to browse
- fully searchable by keywords and index
- high-quality print in colour
- full software listings included
- easy to use

only £30 each including VAT and UK post, add £1 extra postage for Europe, £5 extra postage for Rest of the World, exclusively available from SoftCopy Limited, address below.

Limited special offer for readers of Electronics World and libraries - all six CDs for the price of five.

OFFICIAL ORDERS ACCEPTED

Order now at:
www.ewmag.co.uk

Please send the following CD-ROMs
- qty 1999
- qty 2000
- qty 2001
- qty 2002
- qty 2003
- qty 2004

Name ________________________________
Address ________________________________
Card Number ___________________________ Expiry ______

SoftCopy Limited, 1 Vineries Close, Cheltenham GL53 0NU, UK
Tel: +44 (0) 1242 241455 Fax: +44 (0) 1242 241468 sales@softcopy.co.uk

by permission of Highbury Business, Electronics World magazine's publishers
In 1945 a man declared that one side of the earth could communicate with the other via the use of satellite technology. At the time it was not possible – now – 60 years later, his vision has been realised. The man? Arthur C Clarke.

To celebrate this anniversary, Electronics World, in collaboration with the Arthur C Clarke Foundation, is publishing a supplement dedicated to modern communications.
ARTICLES WANTED

TOP PRICES PAID

For all your valves, tubes, semi conductors and ICs.

Langrex Supplies Limited
1 Mayo Road, Croydon, Surrey CR9 2GP
TEL: 020 8684 1166 FAX: 020 8684 3036

FOR SALE

PRINTED CIRCUIT BOARDS

DESIGNED & MANUFACTURED

• Prototypes or production quantities
• Fast turn-round available
• PCBs designed from component lists
• Almost any computer file accepted
• PCB assembly - mechanical assembly
• Full product design-manufacture-test-repair

Unit 5, East Desert Enterprise Park
26A AirtPEAT, Bally et A745X
TEL: 028 9073 4897 FAX: 028 9073 1402
info@agarcircuits.com

TECHNICAL SERVICES

Technical Advice From Service-Link.co.uk

Missing Part? Burnt Out Part??
No Service Manual??
No Problem. Call Us Today.

We Have A Huge Database.
Most Consumer Electronics Covered.

Want To Diagnose Fault?
Parts Hard To Find?

Call Us Now For Assistance.
Available Seven Days A Week.
9:00AM---11:00PM

See Website For Details
PD Box 7453 L82 3XR

WANTED

BEST CASH PRICES PAID

FOR VALVES KT88, PX4 AND MOST
AUDIO/OTHER TYPES.

Tel: 01403 784961

Billington Export Ltd
Sussex RH14 9EZ
Fax 01403 783519
Email: sales@bel-tubes.co.uk
Visitors by appointment

For a FREE consultation on how best to market your products/services to a professional audience ringing ED on 01322 611260

ELECTRONICS WORLD • June 2005
PTH PCBs with solder resist and legend from just £30.00 lot price.

Deliveries from 24 Hrs

Visit WWW.pcbtrain.com for full details.

▲ NEWBURY ELECTRONICS, the home of PCBTrain, the UK market leader for low-cost prototype PCBs
▲ Exclusive UK representatives for Circuit Mission Ltd (China) - manufacturers of low-cost high quality rigid PCBs
▲ Exclusive UK representatives for Sunflex Ltd (Taiwan & China) - manufacturers of flexible circuits

+44 (0) 1635 40347

NEWBURY ELECTRONICS LTD
Faraday Road Newbury Berkshire RG14 2AD UK
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>A038A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A038B</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A039B</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A041A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A041B</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A042A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A043A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A044A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A045A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A046A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A047A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A048A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A049A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A050A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A051A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A052A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A053A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A054A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A055A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A056A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A057A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A058A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A059A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A060A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A061A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A062A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A063A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A064A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A065A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A066A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A067A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A068A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A069A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A070A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A071A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A072A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A073A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A074A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A075A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A076A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A077A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A078A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A079A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A080A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A081A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A082A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A083A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A084A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A085A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A086A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A087A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A088A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A089A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A090A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A091A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A092A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A093A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A094A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A095A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A096A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A097A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A098A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
<tr>
<td>A099A</td>
<td>60MHz Oscilloscope</td>
<td>3,650</td>
<td>London</td>
</tr>
</tbody>
</table>