The Wireless World

COVERING EVERY WIRELESS INTEREST

FEBRUARY, 1941

CHARACTERISTICS OF SHORT WAVES
Silvered Mica Fixed Condensers

Supreme for Radio Reception and Transmission and Carrier Wave Telephony

Specified for important Government contracts, U.I.C. Silvered Mica Fixed Condensers are guaranteed to give high efficiency and performance under the most exacting conditions.

Made in our own London factory from the finest materials obtainable, they are available at short notice in capacities from 7.5 up to 12,000 pF.

Write for full details and brochure.

On A.I.D. Approved List.

United Insulator Co Ltd
The Pioneers of Low Loss Ceramics
12-16 Laystall Street
London E.C.1

Tel: Terminus 4118-9
Grams: Calanel, Smith, London
Designed by technicians who have made a special study of the service and maintenance engineers' problems, the Model 7 Universal AvoMeter is acknowledged throughout the world as the one indispensable combination testing instrument. A single meter, yet at the touch of two simple switches it provides for any one of the 46 ranges of measurements for testing and tracing all electrical faults.

Entirely self-contained, the Model 7 Universal AvoMeter is essentially portable and, above all, simple to use. It is dead-beat in action, has a 5-inch hand-calibrated scale with anti-parallax mirror, and conforms to B.S. 1st Grade accuracy requirements. It is fully protected by an automatic cut-out against damage through overload.

Also available:
- Model 7 Resistance range Extension Unit (for measurements down to 1/100th ohm).
- 40-range Universal AvoMeter.

* Write for fully descriptive pamphlet.

Sole Proprietors and Manufacturers:
The Automatic Coil Winder & Electrical Equipment Co., Ltd.,
Winder House, Douglas Street, London, S.W.1. Telephone: Victoria 3604/7
Serving the National Interest -

G.E.C. Radio

Raymart Insulators and Ceramic Goods

Our illustration gives but a small indication of the wide variety of insulators and ceramic goods available from Raymart, who carry the largest range of these products in the country. There are many other Raymart lines approved and used by H.M. Services. Micro-variable condensers—precision dials and a large selection of specialties for short-wave work.

Here are the details of the 21 lines illustrated above:

1. Type TFX.—Coil form, grooved and ribbed, 1/4" dia. 3/4 of winding space with mounting holes and provision for link or inductive coupling.
2. Type BTX.—A similar coil form, 1/4" dia. x 3/8" long.
3. Type ST.—White glazed vitreous porcelain stand-off insulator fitted with nickel-plated terminals; height excluding terminals 2".
4. Type SS.—Similar in all respects; height excluding terminals 1 1/4".
5. Type SM.—The largest of this type of stand-off insulators; 1/2" excluding terminals.
6. Type SX.—Heavy stand-off insulator, 3 1/2" high, four hole fixing, no terminals supplied, but we have sockets specially made to fit.
7. Types SG and SL.—Standard beehive insulators; two versions are available—(a) Brown glazed (SG); (b) Unglazed (SL).
8. Type SP.—A special low-loss pillar insulator, produced primarily for ultra-high frequency work, the lowest loss insulator ever offered of this type. 1" long x 1/2" dia. and internally thread at both ends B3A supplied with screws and cork washers.
9. Type FTL.—Double-cone feed-through insulator for feeding H.T. or R.F. through backboard of chassis, mounting coils, etc. Height above chassis 2 1/2"; below chassis 3/8". Full insulation provided on chassis up to 1/2" thick. Supplied with two cork washers and B3A all-thread with nuts.
10. Type AT.—Aerial T piece, designed to facilitate erection of transposed or zepplin type aerials.
11. Type SCL.—Lead-in insulator or H.F. bushing, provides maximum surface leakage path, highly glazed. Rubber ring washers ensure absolute weather-proof qualities. For especially exposed positions our Type DCL insulator is identical with the SCL, but has at one end an overlapping double cone, so ensuring that no moisture shall form a path on the insulator.
12. Type AX.—1/2" glazed porcelain insulator with an exceptionally long leakage path and negligible capacity effects, used extensively for transmitting or where aerial loss must be kept to a minimum.
13. Type TB.—Transposition Block, an extremely light ceramic block for transposed feed lines. These will not slip out and are suitable for continuous exposure as supplied to the Cunard White Star Liner "Queen Mary."
14. Type FS.—Highly-glazed feeder-spreader giving a 600 ohm line. Light in weight and free from appreciable loss when exposed to atmospherical influences.
15. Type AG.—Flint-glass aerial insulator, with an excellent high frequency characteristic and long leakage path.
16 & 17. English Ceramic Valveholders with silver-plated contacts, both four- and five-pin.
20 & 21. Type FTL and FTS.—Feed-through bushes in ceramic. Type FTL passing a B3A screw; Type FTS a 4BA screw. Extremely useful for carrying high voltage or R.F. through metal panels.

Government departments—Manufacturers—Servicemen, etc., are invited to send us their inquiries.

RAYMART LTD.
44 & 48 HOLLOWAY HEAD, BIRMINGHAM, 1
Cables: Raymart, Birmingham. Telephone: Midland 3254
LOW LOSS · HIGH SURFACE RESISTIVITY · COMPLETE STABILITY · These outstanding properties of Frequentite have led to its adoption by all leading radio manufacturers. Frequentite is suitable for every type of component however intricate the design. Full details will be sent on application—ask for Catalogue S.P.10.

STEATITE & PORCELAIN PRODUCTS LTD.

Head Office and Works:

Telephone: STOURPORT III.  STOURPORT-ON-SEVERN, WORCS.  Telegrams: STEATAIN, STOURPORT.
PREMIER RADIO

PREMIER SMOOTHING CHOKES

<table>
<thead>
<tr>
<th>Type</th>
<th>Current</th>
<th>Volts</th>
<th>Res.</th>
<th>Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 10/15</td>
<td>10/15</td>
<td>10/15</td>
<td>10/15</td>
<td>£4.00</td>
</tr>
<tr>
<td>C 6/10</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
<td>£2.50</td>
</tr>
<tr>
<td>C 4/6</td>
<td>0/6</td>
<td>0/6</td>
<td>0/6</td>
<td>£1.80</td>
</tr>
</tbody>
</table>

PREMIER SPECIAL OFFER

Complete Kit, inc. coils and wiring diagrams. 3½/-

BATTERY VERSION also available. Kit £3 x 2
COMPLETE CHASSIS wired and Tested £3 18 6
EXTRA COILS 9-19, 200-2000m. supplied

"The Wireless World" said they were
"very much impressed..."

PREMIER SHORT-WAVE KITS

PREMIER SHORT-WAVE KITS for OVERSEAS NEWS

Incorporating the Premier 3-Band S.W. Coil, 1:8-M. K.W. without coil chasis. Each Kit is complete with all components, diagrams and circuits. Cost £2 3/6

DE LUXE S.W. KITS

Complete Kit. Including all Valves, coils, wiring diagrams and lucid instructions for building and working. Each Kit supplied with a steel Chassis, Panel and plug-in coils to tune from 13 to 170 metres.

SHORT-WAVE GEAR

Short-Wave Coils. 4- and 6-pin types, 13-26, 22-47, 41-94, 76-170 metres, 2½- each, with or without transformers.

SHORT-WAVE ENERGISERS


ENERGISER MODELS

Platyvox Bin. 175 ohm field, 7½ to 12½ energised, or 2,500 field, 4½, 10 in. B.T.H. 1,000 ohm field, less transformer, 11½. Magnavox 154. 2,000 ohms Universal transformer, 1½.

PREMIER MICROPHONES

Transverse Current Mikes. High grade large output units. Response 45-7500 cycles. Low hum level 100.


REPLACEMENT VALVES for ALL SETS


Mikro Call Mikes. Double Diode Triodes, Oct. Freq. and Motors...

Write for latest lists.

CALLERS to: Jubilee Works, 167, Lower Clapton Road, London, E.S. (Amberst 4723).

Advertisements

PREMIER TUBE FITTINGS

All Post Orders to:

JUBILEE WORKS, 167, LOWER
CLAPTON ROAD, LONDON, E.S.
(Admiral 4723).

Wireless World
The greatest value in Radio today!

AMBASSADOR NEW SERIES U.3540

5 valve Superhet with Mazda valves (Export Model with Mullard Type).

3 Wave Bands.

7 Energised Speaker.

A.C./D.C. Mains.

Australian Walnut Cabinet.

Price £8.15.0 tax £1.17.6.

FOR no other set gives so much in return for so little cost. It has all the finer points of a radio to ensure complete reliability, first-rate reception and natural tone—and a fine handsome appearance—all at a price which is truly reasonable. Yet nothing in the set is cheap and nothing has been omitted to make the price.

Ambassador OUT VALUES THEM ALL


M.R. SUPPLIES—guaranteed to offer from stock the following FIRST-CLASS BARGAINS IN NEW RADIO AND ELECTRO-TECHNICAL SPARES. All items actually in stock at time of going to press. Will Government Contractors please quote Priority where available.

ROTHENBERG D.104 PIEZO-CRYSTAL MICROPHONE ELEMENTS. For use with the famous 5-valve D.104 Microphone, one only genuine part but can be used just as well. R.R.P. £2.00 each. Final opportunity, 50c.

BRUSH PIEZO-CRYSTAL ELEMENTS, 50m. dia., fitted stylish. For successful concentration of microphone directional, broadcast, fidelity, photo-repeater. Many in use as Stadium Pick-ups for testing loudspeakers, etc., water wave detection, location of noise or vibration in machinery, etc. Of many applications and wonderful opportunity, 6d.

ROTHENBERG PIEZO-CRYSTAL PICKUPS, the list of the famous standard model, complete on cons. to 5/-.

PHOTO-ELECTRIC CELLS. Brand new, fully guaranteed. Battery C.C.1 polarised cells. 100 microseconds per lamp, standard U.K. noise holder supplied. Suitable for cinemas, laboratories, etc. (These would now cost over £6.00 each) also imported. Last few at 4/6 each.

SYNCHRONOUS TIME SWITCHES (200/250 v. 15 m.) blackened up to 100-horns and providing two on-off periods per 24 hours. For controlling any synchronous device, radio, domestic appliances, factory hoist, music, etc., or where a variable-time work, etc. Provision made, half price, 4/6. Also models with good 2-day timing movement, same price, 15/-.

ELECTRO-MAGNETIC COUNTERS—Colt resistance 5 ohm or 3 ohm, counting up to 5,000. Many domestic and industrial applications, checking production statistics, rates of production, rejections, percentages, use in inspection departments, checking telephone calls, etc., 4/6. In short lots, 4/6 each.

GEARED HIGH TORQUE MOTORS. Operation 11/2v. at 12/5 spins 60 r.p.m. Made for radio tuning but can be applied to many other purposes. Revolving, with automatic 2-pole move switch. Synchronous 4.00 c. making them suitable for Reel-Write Instruments, etc. Prices model imported from U.S.A., 8d. each.

LOW TENSION RECTIFIERS. Great News. Supplies again to stock! Permanent metal type by large British manufacturer. D.C. delivery 11/4 v. at 1.5 amp., 10/-.

MICROPHONE LEADS, RCAF type, 100 on cons. to 5/-.

TRANSCENDENTAL, HEADQUARTERS, U.S.A. Tapped primary and secondary and giving a ratio of 5/6. Suitable either as output or microphone input for speech units. Tapped primary and secondary and giving 8 ratios, 5/6. Suitable for the above units.

STEP-DOWN TRANSFORMERS, suitable for short intervals and for low-power audio lighting, etc. All parts 200/250 v. at 4.9 amp. 10/-.

MICROWAVE STRIPS, for use as diode rectifiers, etc., 10/6. Also special new model, constructed in the set, 4/6.

METALLIC CABLES, 1000 ft. in each 200/250 v. at 3.6 amp. 2/6.

MINIATURE F. M. MICROPHONE. Fine for use as microphone or speaker, £1.00 more.

WEIGHING SCALES, dual balances either as output or microphone input for speech units. Ideal for school or for use in commerce. For radio tuning, etc. Fine frequency response, high fine, magnet, 2/6.

WAVE-LENGTH TRANSFORMERS, suitable either as output or microphone input for speech units. Ideal for school or for use in commerce. Fine frequency response, high fine, magnet, 2/6.

ULTRASONIC CURRENT MICROPHONES. The original and most satisfactory type is still available for the discophiles buyer. Model MR/204, in black bakelite casing, 2/6. The original MR/204 (which set the standard), 5/-.

MICROPHONE FLOOR STANDS, in best quality chrome plate, 10/-.

GUARANTEED SIX MONTHS.

M/COIL UNITS.

WEIGHT-METER TRANSFORMERS, suitable either as output or microphone input for speech units. Ideal for school or for use in commerce. Fine frequency response, high fine, magnet, 2/6.

WEIGHT-METER TRANSFORMERS, suitable either as output or microphone input for speech units. Ideal for school or for use in commerce. Fine frequency response, high fine, magnet, 2/6.

镮ERED TRADE MARK.

BRITISH INSULATED CABLES LTD CABLE MAKERS AND ELECTRICAL ENGINEERS Head Office: PRESCOT, LANCS. Tel. No. PRESCOT 6571

February, 1941.
THIRTY-FIVE YEARS' SPECIALISED EXPERIENCE

T.C.C. T.C.C.

Condensers

ADVERTISEMENT OF THE TELEGRAPH CONDENSER CO. LTD.
Another famous firm specifies Simmonds Speed Nuts

Leading Manufacturers are proving the amazing efficiency and adaptability of Simmonds Speed Nuts.

In the Automobile, Electrical, Radio, Plastic, Cooker and Refrigerator Industries, to mention only a few, this modern fastening method is accelerating assembly, halving handling time and effecting considerable savings in costs and material.

There is no limit to the applications of Simmonds Speed Nuts apart from the many standard types. The unique flexibility of the Speed Nut System makes it possible for special types to be created to meet particular assembly problems. Our Engineers are constantly evolving Speed Nut designs to cope with such problems as blind locations, difficult spacing jobs, tricky Knob-to-shaft assemblies and many others which have hitherto baffled designers.

Investigate the Speed Nut System NOW. Our Development Department will be pleased to collaborate and submit suitable designs to meet your individual needs.

SIMMONDS AEROCESORIES LTD
GREAT WEST ROAD, LONDON.
FEBRUARY, 1941

Contents

EDITORIAL .................................................. 31
NOISE IN FM TRANSMISSIONS .......................... 32
PROPAGATION OF SHORT WAVES. By D. W. Heightman 36
THE FUTURE OF AMATEUR RADIO. By "Navigator" 40
BAIRD COLOUR TELEVISION .............................. 43
MOTOR CAR IGNITION INTERFERENCE .................. 45
CURRENT TOPICS .......................................... 46
NEWS IN ENGLISH FROM ABROAD ....................... 48
SHORT-WAVE PORTABLE. By W. H. Cazaly ............ 49
SHORT-WAVE RECEIVING CONDITIONS ................ 50
SPY'S TRANSMITTER ....................................... 51
RANDOM RADIATIONS. By "Dialist" ..................... 52
COSSOR MODEL 75A: Test Report ......................... 54
RESISTANCE-TUNED OSCILLATOR ......................... 56
UNBIASED. By Free Grid ................................... 58
RECENT INVENTIONS ...................................... 59

WORLD CONTACT WITH A TROPHY

In these historic times World Listening provides a never ending source of interest and entertainment.

The Trophy is specially designed for all-world reception.

Trophy 6 Valve incorporating all latest improvements. 10 to 545 metres. Built-in Speaker, A.C.
£11 11.0 or £11.14.0 deposit and 34/- monthly. Purchase Tax, £2 9.0.

Trophy 8 Valve A.C., a super communication receiver with amazing range. 7 to 550 metres.
£14 19.6 or £14.4.5 deposit and 44/- monthly. Purchase Tax, £3 4.5.

PETO SCOTT CO. LTD. Showrooms at 77, City Road, E.C.1. Send for full specification.
How much wood...?

Two years ago it was the standard practice to make Radio cabinets from Beech plywood. Cabinets built from plywood may be made with large surfaces, with curves, or with rounded corners, which cannot easily be imitated in solid board; and they may be finished with veneers of Mahogany, Rosewood, Walnut, Bubinga or any of a great variety of other woods capable of taking a high polish.

When the War began it was immediately clear that plywood could no longer be easily imported from Sweden, Poland, Finland and Russia, and that some changes in cabinet technique would be necessary if we were to have any chance of keeping up a reasonably steady supply of radio cabinets. It was with this in mind that the cabinet used for our A.90 and D.90 Table models was designed.

This cabinet is a simple design built up from a rectangular frame work, with four flat sides of solid board, stained and polished, and an inset front covered with fabric. A moulded bakelite panel surrounds the grouped controls and scale in the lower part of the front, and provides a background for the knobs which is not easily scratched or dirtied.

The plain polished sides may be made from any of a number of woods: Beech, Pine, Obechi, Mahogany, Oak and Teak have all been used as one or other became available. The fabric covering enables us to make the front itself from grades of plywood which are still obtainable, but which are not suitable for polishing or veneering. In periods of extreme shortage of wood it has been found possible to make the bottom and front of the cabinet from a very hard pressboard and tests carried out in a warm and humid atmosphere show that this has no ill effects on the strength, durability and appearance of the receiver.

As another method of saving wood we have used a moulded bakelite cabinet for the AD.94 receiver. We don't regard bakelite and the other plastics as "substitutes" for wood — materials to be finished a mottled brown and made to look vaguely like wood. They never do look like wood, and there seems to be no very good reason for trying to make them do so.

Plastics have possibilities of their own, and a bakelite cabinet should be designed to suit the material. The "94" itself is a case in point, since its shape, interesting enough and easily handled as a moulding job, is quite unsuited to woodworking technique.

It will be seen that we have met the wood shortage in two ways — by designing for one receiver a cabinet which uses the wood that is available and by using a bakelite cabinet for a second model. These changes, coupled with those in other parts of the receivers, have enabled us to make at least some of the radio sets the public needs, at a time when raw materials are very difficult to obtain.
Editorial Comment

Planning for Peacetime

A GOOD number of our readers will demand that the post-war world shall provide them, among other desirable things, with facilities for taking part in what is surely the finest of all hobbies—amateur wireless transmitting. Writing with a lively recollection of the difficulties experienced by the amateur in regaining his privileges after the end of the last war, we feel that it is not too early to begin making plans now for organising the whole matter on a satisfactory basis. One reason for doing so is that there is bound to be an enormous number of would-be recruits to the amateur movement from the ranks of Service wireless personnel.

We will not argue that, because amateur transmission has proved such a valuable training ground for entrants to the wireless branches of the fighting services, everything possible should be done to encourage it in preparations for future wars. Rather would we urge that the post-war amateur will help to forge a link in the chain of international co-operation and mutual understanding that will be so urgently needed.

It is for these reasons that we tender no apology for publishing at the present time an article, appearing elsewhere in this issue, which offers some constructive suggestions as to the conditions under which amateur licences should be granted in the future. It is evident that on one point at least our contributor takes much the same attitude as expressed in this journal in 1938, when we urged the abandonment of the condition (which had even then become farcical) that applicants for licences should prove that they had serious scientific experimental work in view. A genuine interest in wireless and the attainment of a reasonable standard of proficiency should be enough.

There must be no misunderstanding about one important matter. No reasonable person knowing anything about the subject would suggest that the ether should be thrown open to any incompetent and irresponsible applicant for a transmitting licence. In pleading for some relaxation of the official attitude we have always maintained that proof of a reasonably high standard of operating ability should be required before the granting of a full licence. If the amateur movement grows, a technical examination may also be necessary. An incompetent operator has enormous potentialities for disorganising wireless communications, and proper safeguards are essential.

Saturation Point?

It has been suggested that there is not room for many more amateur transmitters, but, given proper organisation of their activities, that attitude seems to be quite untenable. As we pointed out in 1938, some 40,000 amateurs in the U.S.A. then seemed to accommodate themselves fairly comfortably within the confines of waveband allocations very little more generous than those occupied by a mere 7,000 in the whole of Europe. In any case, the question of saturation, so far as the band of wavelengths with world-wide range is concerned, should really be considered on a world basis, and not from a local or national point of view.

The advantages of having a cut-and-dried scheme, ready for submission to the Post Office immediately war ends, is obvious, and it is hoped that readers who have alternatives to "Navigator's" suggestions will not hesitate to put them forward.
Noise in FM Transmissions

FIELD TESTS CONFIRM ADVANTAGES OVER AMPLITUDE MODULATED SYSTEMS

In view of the importance of possible future developments in frequency-modulated broadcasting, extensive calculations and experiments have been made in America to determine quantitatively the improvements which are to be expected in the service range of FM stations. This article summarises the results obtained, which show close agreement between theory and practice.

In the matter of signal-noise ratio, the superiority of frequency-modulated broadcast systems over those with amplitude modulation is not solely due to the action of the limiter stage of the receiver in "ironing out" amplitude variations. There are fundamental differences in the way in which noise voltages combine with the carrier in FM and AM receivers, and in nearly all circumstances the resultant effect is to the advantage of FM.

Random noise such as that arising from valve hiss comprises a continuous spectrum of frequencies ranging from zero upwards in which the components approximate to a constant amplitude. Mathematical analysis has shown that when the output carrier-noise ratio is limited to the area shown by the small triangle.

Fig. 1.—The frequency spectrum resulting from the combination of noise with a carrier is rectangular in the case of amplitude modulation and triangular with frequency modulation receivers.

Fig. 2.—Oscillograms from amplitude (top) and frequency modulation receivers obtained by tuning the set to a carrier and swinging a heterodyne across the carrier to simulate noise. The nick in the AM oscillogram is due to "pulling" near zero beat.

The R.M.A. and F.C.C. have standardised this practice in America for television and UHF transmissions in accordance with the impedance-frequency characteristics of a series inductance-resistance network having a time constant of 100 micro-seconds, and when the curves are analysed to find the RMS signal-noise improvement a further gain of 7.35 db. is found, giving a total of 26 db. over amplitude modulation.

All the foregoing considerations are based on the assumption of a reasonably large carrier-noise ratio, i.e., greater than unity. Below a carrier-noise ratio of unity, the signal-noise ratio at the output of the receiver ceases to be proportional to the input carrier-noise ratio. The reasons for this effect have been worked out in theory, and the curves of Fig. 4 show the calculated results obtained, which show close agreement between theory and practice. Noise is combined with a carrier the resultant spectrum in a receiver for amplitude modulation is rectangular, whereas in an FM receiver it is triangular. (See Fig. 1.) Put in another way, the audio noise at the output terminals of an AM receiver is constant at all frequencies, but in FM reception it increases proportionally to the frequency of each component of the noise. Experimental proof is furnished by the cathode-ray oscillograms of Fig. 2, obtained by swinging a heterodyne oscillator across the carrier to which the receiver was tuned.

When amplitude and frequency modulation are competing on equal terms, i.e., with 100 per cent. modulation in the case of AM, and a deviation ratio of unity in the case of FM (frequency departure equal to upper audio limit), the signal-noise ratio can be shown to be \( \sqrt{3} \) or 1.73 times better in FM than in AM reception. This is an initial gain for FM of 4.75 db.

But the deviation ratio is rarely as low as unity, and in practice is usually about 5:1 (75 kc/s frequency deviation for an upper audio limit of 15 kc/s). From Fig. 3 it will be seen that the FM noise spectrum reaches its maximum at 75 kc/s, whereas the 15 kc/s audio cut-off in the receiver or loud speaker rejects the greater part of the triangle and passes the small darkly shaded area which is only one-fifth of the whole. Thus there is in this case a gain in signal-noise ratio of 1.73 x 5 or 8.75 db.

Still further improvement is obtained by the "pre-emphasis" of high frequencies in the transmitter and a converse "de-emphasis" in the receiver. The R.M.A. and F.C.C. have standardised this practice in America for television and UHF transmissions in accordance with the impedance-frequency characteristics of a series inductance-resistance network having a time constant of 100 micro-seconds, and when the curves are analysed to find the RMS signal-noise improvement a further gain of 7.35 db. is found, giving a total of 26 db. over amplitude modulation.
Noise in FM Transmissions — magnitude of the effect. The physical process by which the signal is depressed below the "improvement threshold" or limiting carrier-noise ratio is somewhat involved and the waveform of the noise is an important factor.

Fluctuation noise due to valve and circuit hiss, which in spite of its name is of comparatively steady average amplitude, produces a greater depression than impulse noise such as that due to car ignition systems. In the latter type of noise the peaks are not only limited by the frequency characteristics of the system, but they also depress the signal and punch holes in it in a similar manner to certain noise suppression circuits which have been developed for amplitude modulation receivers. Another important point is that receivers designed for a high deviation ratio should require a higher carrier input to reach the "improvement threshold" than low deviation receivers, the reason being that the wider IF band width of the high deviation receiver accepts more noise. At certain carrier levels near the fringe of the service area of a FM station the low deviation receiver may be expected to give a better signal-noise ratio than the high deviation receiver, because one will be working above and the other below its threshold.

All these theoretical predictions have been confirmed by laboratory experiments, and more recently by field tests undertaken by the National Broadcasting Company in America. These tests were of an exceptionally thorough and painstaking character and were designed to settle once and for all the rival claims of amplitude and frequency modulation and of the relative merits of different deviation ratios in the latter system. As far as quality of reproduction was concerned it was regarded as axiomatic that there was nothing to choose between FM and AM and that the governing factors were the use of an ultra-short wavelength for transmission which permitted an extension of the 10 kc/s band width permitted on normal broadcast bands. The tests were therefore directed primarily to the evaluation of the frequency-modulated system in terms of the suppression of noise and interference, using the amplitude-modulated system as a reference standard.

To eliminate every possible disturbing factor it was decided from the start to use the same transmitter, receiver, aerial systems and measuring equipment for each system of modulation.

The transmitter was a 1 kW RCA unit designed originally for amplitude modulation and modified for alternative frequency modulation, the circuit changes being effected by a number of relays. A reactance control in the primary circuit of the
Noise in FM Transmissions—

The power delivered to the aerial was accurately measured by a GR valve voltmeter across the aerial transmission line. Modulation was effected by the reactance valve method and a crystal-controlled oscillator in conjunction with a discriminator circuit was used to keep the average carrier frequency stable. The main rectifier gave a continuously variable control of power from 1,000 watts to less than 0.1 watt during transmission with frequency modulation. The power delivered to the aerial was accurately measured by a GR valve voltmeter across the aerial transmission line. Modulation was effected by the reactance valve method and a crystal-controlled oscillator in conjunction with a discriminator circuit was used to keep the average carrier frequency stable.

The aerial system normally used was the television aerial on the top of the Empire State Building, New York, but an auxiliary folded dipole was available for periods when the main antenna was occupied for television. The station was given authority to transmit either FM or AM on 42.6 Mc/s and was licensed as W2XWG.

Four receivers were built specially for the tests, and no expense was spared to make them as nearly ideal and alike as possible. RF frequency changer and output stages were made common to both systems of reception, and the change-over was effected only in the IF and detector or discriminator sections of the chain. Parts of the same IF system were used for AM and 15 kc/s FM, but a separate IF amplifier was used for 75 kc/s FM. A single switch selected the type of modulation required.

A shielded mutual inductance type attenuator was used between the aerial and the receiver. By using this in conjunction with control of the transmitter power and of the power radiated from artificial noise sources, any combination of carrier and noise voltages could be produced. The transmitter and receiver were equipped with "pre-emphasis" and "de-emphasis" filters.

Auxiliary apparatus at the permanent receiving stations included cathode ray oscillographs, noise and distortion meters, a harmonic analyzer, disc recording equipment, noise producing devices such as diathermy machines, automobile ignition systems, etc.

The two permanent stations were situated in the NBC laboratory at a distance of one mile, and at Bellmore, Long Island, 23 miles away. Observations were also made at nine temporary stations up to distances of nearly 90 miles. The equipment of the temporary stations was built into two cars, one of which is shown on the next page. This vehicle was equipped with field intensity measuring sets mounted in aviation shock absorbers, a universally mounted diode, a broadcast loop aerial, a vernier speedometer and distance recorder, and a magnetic compass.

After a preliminary survey of the field intensity contours of the transmitter, investigations were made to determine the minimum field intensity which would provide a good service. The curve in Fig. 6 shows the results which were obtained with a signal generator feeding directly into the input terminals of the receiver. Under these conditions there was no external noise interference, and receiver hiss was the limiting factor. Measuring along the 10 microvolt vertical ordinate, it will be seen that the difference in signal-noise ratio between amplitude modulation and 75 kc/s frequency modulation is 26 db, so that the full theoretical advantage is realised.

The equipment of the Empire State Building, New York City and receiver R.C.A. special receiver at Bellmore, Long Island.

---

**Wireless World**

![Diagram](image)

**Fig. 5.—Block schematic diagram of special R.C.A. receiver for amplitude and frequency modulation.**

**Fig. 6.—Signal-noise performance with valve and circuit noise only.**

**Fig. 7.—Performance with circuit hiss and miscellaneous quiet neighbourhood noise.**
Wireless World

Noise in FM Transmissions—

The curves of Fig. 7 were taken at Bellmore under representative receiving conditions, and show the results which were obtained with a combination of circuit hiss and quiet neighbourhood noise. Noisier conditions would shift all three curves to the right without altering the vertical distances between points on the curves.

The data obtained in these tests were plotted in the form of a bar chart (Fig. 8), showing the calculated service ranges for 30 kc/s deviation and for higher transmitter powers. An interesting point is that a 30 kc/s deviation with a signal-noise ratio of 40 db, which may be regarded as a satisfactory minimum for good service, has a better range than the 75 kc/s deviation, owing to the greater limitation imposed by the greater than the undesired station. The opinion is expressed that with a reduction of this difference to 12 db the service would be still tolerable. With amplitude modulation, on the other hand, a minimum power difference of 40 db is essential.

On adjacent channels with 200 kc/s separation, tests showed that the undesired carrier should not exceed the desired carrier by more than 10 db. This was the average value obtained with two commercial FM receivers. With the R.C.A. special receiver, on the other hand, a difference of 17 db could be tolerated.

Tests for the signal-noise levels at which the "improvement threshold" begins gave levels of 60 db for 75 kc/s and 35 db for 15 kc/s.

In all the foregoing experiments the noise was predominantly of the continuous hiss type. Tests with ignition interference confirmed that for similar subjective estimates of service quality a signal-noise ratio (peak in this case) 10 db less than hiss gave equivalent results.

Diathermy interference was largely dependent on the type of HT supply; machines with raw AC were characterised by a transmission band about 15 kc/s in width. Observations made with a machine of this type with fairly weak interference centred exactly on the desired carrier showed a superiority of FM over AM of 20 to 25 db for 75 kc/s, and 10 to 12 db for 15 kc/s deviation. With the interference off the carrier frequency, conditions were quite altered, and at 5 kc/s off tune, AM was approximately equal to 15 kc/s FM, and was in some cases actually superior to 75 kc/s FM. When the diathermy interference was centred at the edge of the 15 kc/s FM and AM pass-band, the interference was highly attenuated, but with 75 kc/s FM it was extremely severe, as the interference products were well within the pass-band of the latter system. It would seem that a locality with strong diathermy interference calls for narrow band receiving systems, but the wide band is superior when interference is weak.

N.B.C. Radio Facilities engineering car equipped with field intensity measuring sets, vernier speedometer and distance recorder, compass, etc.

FEBRUARY, 1941.
Propagation of Short Waves

HOW THEY TRAVEL THROUGH SPACE

This simplified explanation of the way in which short-wave signals travel over vast distances through space is published for the benefit of the large numbers of readers who, since the war, have turned to short-wave broadcasting for information and interest.

By D. W. HEIGHTMAN

The newcomer to short-wave reception soon finds that a knowledge of fundamental matters concerning the propagation of such waves is of considerable assistance in obtaining best results with a minimum waste of time. It is our purpose here to go into such matters in a simple manner, taking little previous knowledge of the subject for granted.

We are chiefly concerned with frequencies between 5 and 30 megacycles, or wavelengths of 10 to 60 metres. Compared with long and medium waves, where the "ground wave" is of most importance, short-wave signals are received over long distances by virtue of the "sky wave." The terms ground wave and sky wave are probably self-descriptive enough, but it might be mentioned that the ground wave is propagated along the surface of the earth without any form of reflection between transmitter and receiver. On long and medium waves the ground wave is attenuated to a far less extent than on short waves, consequently the lower frequencies are more suitable for ordinary broadcasting, providing reliable signals up to a hundred miles or so. Unless the aerials are erected abnormally high (as in the case of television) the ground wave in the case of short waves is of little use over 30 miles or so. To cover long distances on the short waves we rely on the sky wave, which leaves the transmitter, travels upwards for a hundred miles or so until it reaches the ionosphere, where it is then reflected (more correctly refracted or bent) back to the receiver many miles away.

The ionosphere is that part of the earth's atmosphere, extending mainly between 25 and 250 miles above the surface of the earth, which is ionised by the sun's rays. By ionisation we infer the splitting of a gas, generally rarefied, into charged particles known as ions, by the passage of a radiation or stream of electrons through the gas. Electrons are, as it were, knocked off from their atoms or become attached to other atoms, by the radiation. Unless the gas is rarefied the free electrons soon recombine with the ions and the gas is no longer ionised. Such an ionised gas has the property of bending waves of radio frequency on the passage of such waves through the gas. The amount of bending depends on the ionisation density and the frequency of the wave. The higher the frequency of the wave the less it is bent, and also the higher the density of ionisation the higher the frequency of the wave that can be refracted. In the present instance, of course, the outer atmosphere of the earth is the rarefied gas and the ultra-violet radiation from the sun the main ionising agent.

While there is still much for the scientist to find out about the ionosphere, in recent years much data has been obtained, and the following is a brief picture of it as we understand it today. The ionisation is not evenly distributed with height, and at certain heights is considerably more intense. Thus we speak of the various layers of the ionosphere. It must be remembered, however, that the layers can be as much as one hundred miles thick and seldom exist as thin reflecting surfaces, the inner and outer boundaries of the layers being quite indefinite. There are two layers of the ionosphere which chiefly affect radio signals. These are known as the E and F layers. Their heights above the earth's surface and

WRUL, Boston, is one of the most consistently well received of American broadcasters, as the 19- and 25-metre bands, used simultaneously for transmissions beamed on Europe during the early evening, are generally suitable for propagation conditions then existing. At about midsummer and midwinter, however, waves respectively shorter and longer than either of those used would often provide better signals. The photo shows one of WRUL's curtain beam aerials at Scituate, near Boston.
Wireless World

Since the ionisation of the lower layer is sufficient to reflect a signal of low frequency, such as \( a \), this signal returns to earth at a comparatively short distance. Path \( b \), however, is that of a signal of considerably higher frequency which leaves the transmitter at the same angle as \( a \), but which passes through the first layer, where the ionisation is insufficient to return it to earth, and is reflected by the higher layer of greater ionisation, thus arriving at a point considerably farther away than \( a \).

The distance \( X - Z \) could be greater attenuation on its passage through the ionosphere. Therefore, for any signal route, strongest signals are obtained using a frequency near the highest usable frequency under any given conditions.

"Critical Frequencies"

In order to be able to forecast radio conditions and also to keep a record of them for future reference, various scientific bodies in different parts of the world carry out daily observations, by means of special apparatus, on the heights and "critical frequencies" of the various layers. Briefly, a transmitter is arranged to send waves vertically upward in a series of very short impulses. These signals, reflected by the ionosphere, are picked up on a nearby receiver, the output of which is connected to a cathode-ray tube. On the cathode-ray tube is seen a large deflection due to the impulse received directly from the transmitter and smaller deflection due to the reflected impulse. From the distance between these two impulses on the tube screen it is possible to determine the time taken by the signal to go up to the layer and back. Knowing the speed of radio waves (186,000 miles per second), it is then a fairly simple matter to arrive at the dis-
Propagation of Short Waves—

tance travelled by the signal, half the distance in this case being the approximate height of the ionised layer. Thus it is possible to measure what is known as the "virtual height" of the various layers. The virtual height obtained in this way will be somewhat greater than the actual height to which the signal travels. Since the signal is slowed down somewhat during its passage in and out of the layer.

As the frequency of the above-mentioned impulse transmitter is gradually increased, say, from 2 megacycles, it will be found that the virtual height of the layer also increases slightly and then suddenly, as the frequency reaches, say, between 3 and 4 megacycles, the virtual height jumps up to something like double the original value. This indicates that the signal of increased frequency is passing through the first or E layer, and is now being reflected by the F layer. The highest frequency of waves transmitted vertically upward and returned to earth is known as the critical frequency of the particular layer in question.

As the frequency of the transmitter is increased from, say, 4 megacycles, again there is a gradual increase of indicated virtual height until a point is reached, say 12 Mc/s, where no further reflections are indicated. This shows that the waves are now passing into outer space, and in this instance 12 Mc/s would be the critical frequency of the F layer. Fig. 2 gives typical records of virtual heights and critical frequencies for various seasons, etc.

Low-angle Transmissions

Signals of considerably higher frequency than the critical frequency will be returned to earth by the various layers if these signals are transmitted at low angles to the earth (instead of vertically upward as in the case of the critical frequency) for then a signal so transmitted will arrive at the layer at an oblique angle and its passage through the layer will be longer, also it will not require the same amount of bending to return it to earth. Generally the highest frequency of a low-angle signal which will be returned to earth (often termed upper frequency limit)

is approximately three times the critical frequency in the case of the F layer and three to five times in the case of the E layer.

Unfortunately in many respects, since the ionisation in the atmosphere is caused by the sun's radiation it is obvious that the ionisation density of the layers will vary almost continually with the earth's rotation, both hourly from day to night and with the various seasons of the year. In addition the sun's radiation is far from constant, being subject to various fluctuations and irregularities. The presence of spots on the sun affect its radiation and, therefore, the ionosphere, considerably. Generally the effect is to increase the ionising radiation and thus the critical frequencies, but the improvement is at times followed by short periods of disturbed conditions. The net result is that the average ionisation in the atmosphere is greatest in sunspot maximum years and follows the sunspot cycle of eleven years average between peaks. Hence, as the sunspots reach their maximum years, the maximum usable radio frequencies are highest, being almost double those usable at the sunspot minimum. The last sunspot maximum was 1937, and since that year conditions on the higher radio frequencies have gradually fallen off.1

The critical frequencies of the E and F layers vary as shown in Fig. 2 (b) during each 24 hours. It will

---

1 "Collecting Short Wave Data," The Wireless World, August, 1940.

FEBRUARY, 1941.
Wireless
World

Propagation of Short Waves—
critical frequencies later in the day,
an hour or two before sunset. The
F layer ionisation is greatest at the
end of February and the end of
October, reaching a minimum in
midsummer and slightly falling off
in midwinter. Thus, during the
winter months the upper frequency
limit for long-distance trans-
mission via the F layers, because the
E layer critical frequency is at a maxi-
mum and is much nearer the values
of the F layers, only a comparatively
narrow band of frequencies are suit-
able for daytime long-distance trans-
mission via the F layers, because the
higher ionisation in the E layer re-
ffects most frequencies back to earth
at short distances.

During the summer months, and
occasionally at other times, there
occurs what is known as " sporadic
E " or " intense E " layer ionisation
during which the ionisation in the E
layer is greatly increased and is
thought to be more stratified. Signals
of 60 Mc/s or more are reflected
under such conditions. Sporadic E
conditions do not, however, last for
more than an hour or two and are of
a comparatively local nature.

At night-time, both in winter and
summer, transmission on frequencies
over 1-2 Mc/s takes place via the F
layer. The summer night-time F
layer critical frequencies are gen-
erally higher than those in winter when
the lowest values for the layer are
recorded.

Occasionally conditions in the
ionosphere occur which cause com-
plete or partial fade-outs of signals
from certain directions. The first
type of fade-out is characterised by
a sudden disappearance of signals
for short periods of a few minutes
to an hour or two, only during day-
light, with a rapid return to normal
conditions. This sudden or short-
period fade-out is said to be due to
chromospheric eruptions on the
sun, causing sudden greatly in-
creased ionisation below the E
layer, which results in great attenua-
tion of short-wave signals. The
effect of this type of fade-out is
greatest where the sun's radiation is
perpendicular, i.e., in southerly
directions from this country. The
lower frequencies down to 2 Mc/s
or so are more affected by the short
period fade-out than are the higher
frequencies.

The second type of fade-out,
which is of a more serious nature,
occurrs when what it known as an
ionosphere storms takes place. Dur-
ing such a storm the ionisation in
the F layer is considerably reduced
and the virtual height is subject to
considerable variation, particularly
over parts of the world near the
polar regions. Signal routes in
sotherly directions are seldom
affected; at any rate, never so
seriously as routes north of cast or
west. The ionosphere storm is
thought to be caused by the arrival
of charged particles from the sun,
chiefly at the polar regions of the
earth. It is accompanied by a
"magnetic storm " (when the
earth's magnetic field suffers con-
siderable variation) and also often
by the Aurora Borealis. The onset
of the ionosphere storm is generally
slow, taking several hours to reach
a maximum and the fade-out lasts
with diminishing intensity for two or
three days, conditions gradually re-
turning to normal. The higher fre-
cuencies are most badly affected by
the long-period type of fade-out,
the deterioration in conditions be-
coming less the lower the frequency.
In this country we notice the effect
of ionosphere storms mostly on sig-
nals from North America, since the
signal paths pass near to the north
pole. Many signals which do not
completely fade-out during an iono-
sphere storm are subject to ex-
tremely rapid " flutter " fading.

In a subsequent article we will
consider, in relation to everyday
short-wave reception, the more prac-
tical aspects of the phenomena that
have been discussed.

From the World's Journals

The January issue of our sister jour-
nal, The Wireless Engineer, includes
nearly 300 abstracts from, and references
to, articles on wireless and allied subjects
recently published in the technical jour-
nals of America, Russia, Germany, India,
Japan, Canada, Italy and Great Britain.
The abstracts and references section is
a regular monthly feature of The Wireless
Engineer, which is published on the first
of the month, and is obtainable to order
through newsagents or direct from our
Publishers at Dorset House, Stamford
Street, London, S.E.1, at 25. 8d. post
free.

The application of the locked-in oscil-
lator to automatic tuning and modulation
is dealt with in an article in the same issue. Another article deals with
the question of interference in relation
to amplitude, phase and frequency
modulated systems.

An index to the 4,500 abstracts pub-
lished during 1940 was included in the
December issue of The Wireless Engineer.

FEBRUARY, 1941.
The Future of Amateur Radio
PLANNING FOR THE POST-WAR TRANSMITTING BOOM

NOW that, after a period of more than fifteen hectic years, all British amateurs are silent once again, it would appear to be a suitable time to review the past and to prepare plans for the future. That the "amateur spirit" in this country did not die on the outbreak of war is shown in many different ways, not the least important of which is the interest apparent amongst service operators. It may well be that, if the authorities accede to the demand that will certainly arise at the conclusion of the war, the number of transmitting licences will reach a figure undreamt of in September, 1939.

It is with these considerations in mind that the writer, an ex-amateur, will attempt to point out how beneficial modifications could be introduced into the licensing regulations. It must be obvious to all who came into contact with conditions as they existed during the last few years that, unless some alterations are made, amateur radio will probably cease to be of use to anyone, and will certainly lose those features which made it unique amongst hobbies.

The valuable nature of the part which amateurs have played in the development of world-wide short-wave communication is generally recognised. That this work, however, was not confined to the early twenties is sometimes forgotten, and it may not be out of place to recall one or two matters which apply particularly to the last few years. Outstanding has been the use made of 28 Mc/s, the result not of mere chance, but of organised and persistent effort by a small but skilled band of experimenters who were rewarded by seeing the time come when transatlantic amateur signals were being received in this country far louder than those of the high-power broadcasting stations. Again, much of the UHF equipment used by the Services of the belligerent nations is closely related to the portable amateur stations which were in vogue some time before the war. Although many other similar instances could be quoted, the writer will be content to mention only one further point; the extensive "amateur market" has been an important fac-

By "NAVIGATOR"
none too high, a fact that may lead to unpleasant consequences later. The chief reason for this was probably the state of the 7-Mc/s band, which was made hideous by a small minority of amateur telephony stations vying with each other in the use of redundant Americanisms and "baby - broadcaster" procedure. Another aspect which must be viewed with alarm by all who hope for an early resumption of activity is the suspicion with which all matters concerning amateur transmitting is viewed by the public, the Press, and possibly the authorities. The closing down of stations in a country at war is understandable, but we have now come to the stage when a country nominally at peace, the United States, has forbidden its amateurs to communicate with foreign countries. The continued operation of certain German "amateurs" must have made many persons wonder whether their peacetime activities were quite so innocuous as they sounded.

Before putting forward any suggestions, it is necessary briefly to review the regulations as they existed prior to September, 1939, and to consider the questions that arise from them. To facilitate this, the main problems have been classified under five main heads. They are: (1) Licences and Examinations, (2) Frequencies, (3) Power, (4) Telephony, and (5) Traffic Handling.

Two types of licences were issued:

KEEPING THE AMATEUR SPIRIT ALIVE.—Although there is no non-professional transmission nowadays, amateur radio is very much alive, and its adherents are actively engaged in planning their doings for after the war. Here is a group of amateurs, in and out of the fighting services and including many Canadians, who met at Farnborough to renew old friendships.
The Future of Amateur Radio

(a) The non-radiating artificial aerial licence, and (b) the full radiating licence. The AA licence, known only in this country, was, in effect, practically issued upon application, since, apart from references and a birth certificate, it was only necessary to state that some scientific object was in mind. This last point was often overcome by enlisting the aid of another amateur! Despite this, most amateurs will agree that the scheme was excellent in many ways. Its detractors made much of an occasional case of "pirating" by AA holders; but the writer is of the opinion that the AA licence did much to lessen this curse, because many who, if they had had no licence at all, would have been tempted to transmit, were restrained from so doing by the fear that they would lose what privileges they had, and they would render impossible the achievement of their ambition, a "full ticket." The obtaining of this was circumscribed by the morse test of 12 wpm; it is interesting to note that the corresponding speeds in U.S.A. and Canada were 13 wpm and 10 wpm respectively.

Deterring the Dabblers

Thus the number of amateurs was limited, since, while anyone sufficiently interested could soon reach this speed, the faint-hearted often fell by the way. The position, however, at the end of the war will be very different, as there will be hundreds of thousands of men more or less expert at morse. While many of these will, given the chance, no doubt become first-class amateurs, it will be necessary, in order to prevent overcrowding of the bands, either to raise the speed or to introduce a theoretical radio test. This second method could easily be adopted, and, in fact, has for a long time been in force in many countries. In the U.S.A., for example, an examination set by the F.C.C. must be taken. This includes transmitter theory, amateur regulations, and elementary operating procedure.

The second point that will need considerable attention before licences are reissued is the thorny problem of frequencies. No one could dispute the statement that before the war the most crowded portions of the ether were the 7-Mc/s and 14-Mc/s bands, which, although used regularly by at least 25,000 amateur stations, together covered a frequency range of only 700 k/cs. Of these 700 k/cs, 100 k/cs (7,200/7,300 k/cs) were rapidly being rendered unusable by the 7-Mc/s broadcasting stations, whose numbers have greatly increased since the outbreak of war. Knowing how in the past the broadcasting stations, once they have established a "bridgehead,"

otherwise engaged — Many hundreds of British amateurs are doing wireless work in the services, and particularly in the R.A.F. They are getting experience of apparatus of a vastly different type from that to which they have been accustomed; here, for example, is the relatively high-powered installation of a Sunderland flying boat.

More Power?

Another question which is always of importance to amateurs is that of licence power. Many regarded the G.P.O. would ever consider allowing anyone to possess transmitting equipment without the formalities connected with the ordinary licences when it is remembered that the G.P.O. would be unable to monitor these transmissions effectively.
The Future of Amateur Radio—
ing into the bitter controversy as to the merits of telephony versus telegraphy which arouses more bad feeling than any other subject. The fact remains that, while both systems are equally indispensable in their own spheres; a telephony station in the hands of a poor operator is of far more danger to the status of the amateurs than a badly operated CW station.

‘Traffic Handling’ is another question which, while arousing interest, is never likely to be translated into fact in this country where all third party communication is a monopoly of the G.P.O. The main advantage of allowing traffic handling is that it raises the standard of telegraph operating as can be seen in the difference between the standards in this country compared to that existing in the United States. As opposed to this the danger of attracting persons not interested in the radio side of their hobby must be considered; another factor is that in a small country such as Great Britain its use would be very limited.

Post-war Plan

The writer having reviewed the regulations as they were, now ventures to give a skeleton outline of those alterations which will be necessary to meet the changed situation which will exist after the war.

(1) There should be three types of licence: (a) Artificial Aerial, (b) Intermediate, and (c) Full. The issue of AA licences to be much the same as in pre-war days. A simple theoretical and procedure examination and Morse test of 12 wpm to be held before the issue of the Intermediate licence. A test of 15 wpm, more advanced procedure examination and at least six months holding of the Intermediate licence to be required for obtaining a Full licence.

(2) The Intermediate licence to be for telegraphy only and with a power not exceeding 15 watts on the 1.7-, 3.5-, 7-, 14- and 50-Mc/s bands.

(3) The Full licence to include 28 Mc/s and 112 Mc/s, a power of 50 watts with higher power only in special cases and the use of telephony on 1.7, and 3.5 Mc/s and 14,100-14,250 kc/s and on all bands above this.

(4) The system of Post Office inspectors to be regularised so that at a minimum there should be one visit a year.

In conclusion, it is suggested that, as soon as possible after the cessation of hostilities, a committee, including some pre-war active amateurs, should be set up and should be given full powers to advise the G.P.O. Such a committee might come to occupy a permanent place in the amateur sphere and could do much to prevent those abuses already mentioned. This would be in accordance with the British idea of a New Order; we all know only too well what Hitler would like to do to us and we have not forgotten the disappearance of first the Austrian and then Czechoslovakian amateur transmitters.

Correspondence

High-quality German Recordings—and an Opportunity

As I had the pleasure of originating the correspondence (The Wireless World, February 17th, 1938) may I offer a few comments on the present revival of interest in the topic?

At the risk of being suspected as a fifth columnist I suggest that the criterion for high-quality recording is the German Telefunken series, formerly available in this country. For consistently smooth recording with apparent auditory perspective, especially in orchestral recordings (e.g., Telefunken E.2868, an Overture by Auber, Berlin Philharmonic Orchestra), I have found none superior. The use of adequate reverberation contributes largely to the natural “atmosphere” of these recordings. I am glad to be able to say that a number of English recordings (e.g., Columbia LX.880, Rhapsody “España,” by Chabrier, London Philharmonic Orchestra) equals the best Telefunken, but they have to be carefully selected. In my opinion, the order in technical quality for the major record-producing countries of the world is (1) German, (2) English and (3) American.

At one time the Germans were leading the world in such fields as the manufacture of glass for lenses, certain branches of chemical science, and in night photography, but now British technology has supplanted them.

Can’t we do likewise with gramophone recording? In this connection it is pertinent to quote a few lines from a recently published statement of Mr. W. S. Purser, Technical Recording Manager, E.M.I., who said, “... the technical side of recording is not standing still; on the contrary, the research, development and trial of new ideas and improvements are continually going on, and have never been relaxed even to-day. The improvements which are wanted in recording are well known and appreciated by the technical staff, while the commercial and other limitations to their achievement, although known also, are no deterrent to our research. One of the limitations, of course, is the price at which a reproducing instrument can be sold.” Mr. Purser also mentioned that “... no reproducing machine has yet been made which gives all there is on the record.”

Lastly, I add my quota of records of outstanding quality:

“Horn Concerto” (Mozart); B.B.C. Symphony Orchestra. H.M.V. DB2034.

“Conerto Italian” (Tchaikowsky); B.B.C. Symphony Orchestra. H.M.V. DB2072.

“Largo al Factotum” (Rossini); Lawrence Tibbett (baritone). H.M.V. DB1475.

“Lute Choruses” (Sullivans); Webster Booth (tenor). Organ accompaniment. H.M.V. C3301.

Guitar Solos by Vincente Gomez. Brunswick DB228.

“Zigeunerweisen” (Sarasate); Ida Haendel (Violin). Decca DB40.


Donald W. Aldous.

Torquay, Devon.

The Wireless Industry

STANDARD TELEPHONES AND CABLES, LTD., announce the temporary withdrawal of the Brimar 2526C rectifier valve. To facilitate replacements in AC/DC receivers using this valve a new type 2524G has been introduced. The latter is a single diode rectifier, and to ensure that it will function satisfactorily in receivers with parallel anode resistors, pins 3 and 5 in the octal base have been connected internally.

A revised price list has just been issued by Taylor Electrical Instruments, Ltd., 410/422 Montrose Avenue, Slough, Bucks. The increases take effect from January 1st, 1941.

W. Edwards and Co., Southwell Road, Loughborough Junction, London, S.E.5, have just introduced a modified McLeod vacuum gauge to take the place of an expensive imported types. The new gauge, which will be known as the “Vacustat,” covers the range from 10 to 0.01 mm/Hg.
Baird Colour Television

DEVELOPMENT PROCEEDS IN SPITE OF WAR

At his laboratories in Sydenham, Mr. Baird demonstrated on December 20th, 1940, his latest contribution to the television art. He used a large-screen receiver of a type suitable for the home, capable of providing a super high-definition picture in full natural colours as well as reproducing the pre-war standard television transmission as radiated by the B.B.C. In addition to these features, the outfit also functions as an all-wave radio receiver and an automatic record-changing radiogram, all the apparatus being housed in one cabinet. Each portion of the four-in-one receiver is switched into operation by means of a push-button control.

Explaining to a Wireless World representative his reasons for continuing development work, Mr. Baird expressed the view that the television industry ought to be in a position to absorb thousands of workers at the end of the war. This would do much to tide us over the critical period that would coincide with the cessation of hostilities.

A practical television service was first achieved in Britain, and, continued Mr. Baird, it is in the national interest that this leadership should be maintained. We must not come back to television only to find, like Rip van Winkle, a world that has advanced beyond our ken.

Mr. Baird's first demonstration of television in colour was in 1928 before the British Association. This was followed, after ten years of successes and setbacks, by an 8-foot by 12-foot colour television picture being shown at the Dominion Theatre, London, to an audience of 3,000 people. The transmission was by means of wireless over a distance of eight miles, from the Crystal Palace studio. Both of the above-mentioned results were achieved with the use of all-mechanical methods of scanning at both the transmitting and receiving ends of the links employed. In 1939 a demonstration was given of a 120-line colour picture, using the same type of scanner at the transmitter as that employed at the Dominion Theatre, but making use, at the receiving end, of a cathode-ray tube in conjunction with a rotating colour filter disc. This was the forerunner of the present receiver.

Before describing the transmitter and receiver which were used in the demonstration, a short account will be given, for the benefit of readers not familiar with the three-colour process, of the principle governing the reproduction of natural colour prints. All colours are produced by mixing the three primary colours, red, green and blue, in the correct proportions. Blue and red mixed results in purple, red plus green gives us yellow, and so forth throughout the whole range of colours. In colour printing this principle is used in the following manner: three pictures are made of the coloured subject, one showing the red component of the subject, one the green component and the other the blue. Upon these three prints being superimposed, a print is obtained which has in its composi-

The transmitter control and power rack. At the centre can be seen the screen of the monitor receiver, upon which the engineer may observe a full colour picture.

View of the cathode-ray flying spot scanner, with a lay figure in position for scanning.
**Wireless World**

**Baird Colour Television** —

Baird Colour Television — tion the complete colour range of the subject, so providing a reproduction in natural colours.

Mr. Baird makes use of this principle by providing colour filters to his transmitter and receiver scanners, but uses only two colours, red and blue-green, since he has discovered that this combination gives,

![Diagram](image)

Fig. 1.—Simplified diagram showing the layout of the transmitting scanning system.

with the type of photo-electric cell used, the same results as would be obtained with the three separate filters. This results in a considerable simplification of the scanning mechanism.

Mr. Baird's original system of flying-spot scanning is employed.* That is to say, the subject is scanned by a moving spot of light which, in the case of colour television, is projected through a disc fitted with the blue-green and red colour filters so that the scene or person being televised is scanned by blue-green and red spots in rapid succession. The standard of scanning with this system is 600 lines per picture, which it should be noted is 50 per cent. greater than the B.B.C. standard.

In the flying spot system of scanning, the moving light spot is not obtained by mechanical means such as scanning discs or mirror drums as in the past, but from the exceedingly bright spot that may be obtained on the screen of a projection cathode-ray tube. The tube used is of the "teapot" type, so named by reason

of its shape, operating at a voltage in the region of thirty thousand. The spot is moved in the required scanning motion over the screen by magnetic deflector coils operated from circuits normally associated with such high-voltage tubes. Mounted in front of the tube and driven by a motor is the disc upon which are mounted the colour filters mentioned before. In front of the disc is a lens system which serves to transmit the scanning spot, after it has passed through the filter, to the subject or scene being televised, which is therefore scanned first by a blue-green and then by a red spot, the filter disc being run at the correct speed to allow full coverage for each filter colour. The light from the coloured spots covering the scene is reflected on to three large colour sensitive photoelectric cells, the current from these being amplified and passed to radio or line circuits for transmission to the receiver. In the photograph can be seen the scanning lens in the centre and one of the photoelectric cells. Fig. 1 shows in simplified diagrammatic form the layout of the scanning elements of the transmitter. Another photograph gives a view of the transmitter control and power racks, with a small monitor receiver at the centre, upon which a full colour picture is obtained. This is of use to the engineer for control purposes, and also as a guide to a person being televised, for by a glance at the monitor, he is able to maintain his correct position.

It should be pointed out that the apparatus, although it is, through restrictions of space, at the present moment set up for televising only one or two people at a time, may be readily adapted for large scenes.

All external features of the receiver may be observed in the third photograph. The screen, the largest yet produced in a home receiver, is 6 ft. 6 in. by 4 ft.

The method of reproducing the picture in colour follows the principles of colour printing already explained. The transmitted pictures corresponding to the colours described are superimposed to form the complete television picture in natural colours. The manner in

---

* See *The Wireless World*, August 17th, 1939.

---

A view of the receiver, with Mr. Baird standing at the side. To the left of the screen will be seen the all-wave radio receiver, while to the right is the automatic record-changing radiogram. The four control knobs of the television receiver are to the left and right of the central upright upon which are mounted the four push buttons which switch on the radio receiver, the radiogram, the B.B.C. standard television reception circuit, or the Baird natural colour 600-line circuit.

FEBRUARY, 1941.
Baird Colour Television—

which this is carried out is the converse of the scanning system at the transmitter, the picture being first produced in black and white on the screen of the cathode-ray tube, in front of which is rotated a filter disc identical with that at the transmitter. By means of impulses transmitted with the picture signal, the disc is kept absolutely in step with its counterpart at the transmitter.

The black and white pictures passing through the filters are coloured blue-green and red and then projected on the screen by means of an efficient optical system, at such speed that the eye sees them there together. The result of this is the same as that achieved in colour printing, namely, they blend to form a picture in natural colours. The projection cathode-ray tube in the receiver is situated at the bottom, throwing the picture upwards on to a mirror and thence to the ground glass screen. The only controls consist of the four knobs under the screen, not counting the push-button switches. For producing a black and white picture the filter disc is simply not used. This, together with the change in scanning circuit necessary to receive the different standard of transmission, is controlled by the one push-button.

The demonstration can only be described as a very considerable success. The colour picture was of more than adequate brilliance, being also both pleasing and restful to watch. The various tone values were produced with a degree of truth comparable with the "Technicolour" films which we are now used to seeing at the cinema. A notable point in connection with viewing the colour picture is an apparent stereoscopic effect which makes the picture stand out to a remarkable degree. This effect was quite apparent when still pictures were used as the subject, but became even more so when their place was taken by a girl with red hair, the tones and sheen of which were reproduced perfectly.

Mr. Baird is now working on a receiver of small cost, which will give a picture in full colours on a normal home-receiver tube, and be within the reach of the average pocket.

Motor Car Ignition Interference

RESULTS OF FIELD STRENGTH MEASUREMENTS

AT HIGH FREQUENCIES

The development of the ultra-short wavelengths for television and other services has given prominence to the interference produced by motor car ignition systems. One of the first essentials for a successful attack on this problem at the receiving end is a knowledge of the nature and magnitude of the energy radiated.

To this end observations have been made in America] to determine the average field strength, polarisation and frequency of the interference from traffic on a standard two-lane highway near Riverhead, Long Island.

The dipole receiving aerial was erected 100ft. from the road at a height of 35ft., and was connected to a double superheterodyne with IF amplifiers operating at 40 and 4.1 Mc/s. The latter was equipped with a relatively strong beat frequency oscillator, and the audio output was passed through a 5 kc/s low pass filter in order to limit the band width (10 kc/s) associated with the peak measurements. The peak indicator circuits consisted of a resistance-capacity time circuit in which the charging time was 15 micro-seconds to over 00 per cent. of the peak voltage of the impulse, and the decay time was 1 second, sufficient to take a reading on a damped meter.

The results of observations of general traffic on 40, 60, 100, 140, 180, 240 and 450 Mc/s are shown in the accompanying curves. There is no very great difference between the horizontal and vertical polarisation, and there is little doubt that the polarisation can be of all kinds. The radiation from the ignition system is modified by the body of the car, and may vary between cars of identical design. The strength of the radiation at 450 Mc/s is understandable when it is realised that the ignition leads and parts of the car which act as radiators are more comparable with the short wavelengths, and their efficiency compensates for any falling off in the power generated at the higher frequencies. Also, the propagation conditions are improved, except at short distances, due to the increased phase difference between the direct and ground-reflected waves at a given point.

**Current Topics**

**RECENT EVENTS IN THE WORLD OF WIRELESS**

**BROADCASTING STATIONS OF THE WORLD**

**Some Interesting Facts**

Details have recently been published by the Union Internationale de Radiodiffusion of the number of long-, medium-, and short-wave stations of the world, and the total power output of each country and continent at the end of 1939.

The total number of stations for the world is 2,509, which have an aggregate power of 19,623 kW. The average power is therefore 7.8 kW.

We tabulate below the total number of stations operating in each continent, and the aggregate power. The average power per station is also given.

<table>
<thead>
<tr>
<th>Continent</th>
<th>Stations</th>
<th>Aggregate Power (kW)</th>
<th>Average Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>63</td>
<td>248</td>
<td>3.95</td>
</tr>
<tr>
<td>Central America</td>
<td>105</td>
<td>527</td>
<td>4.94</td>
</tr>
<tr>
<td>North</td>
<td>1,038</td>
<td>4,783</td>
<td>4.60</td>
</tr>
<tr>
<td>South</td>
<td>296</td>
<td>1,382</td>
<td>4.65</td>
</tr>
<tr>
<td>Asia (excluding U.S.S.R.)</td>
<td>170</td>
<td>861</td>
<td>5.05</td>
</tr>
<tr>
<td>Europe (excluding U.S.S.R.)</td>
<td>463</td>
<td>11,751</td>
<td>25.40</td>
</tr>
<tr>
<td>Oceania</td>
<td>400</td>
<td>1,058</td>
<td>2.64</td>
</tr>
</tbody>
</table>

In 1926, when the Geneva Plan was brought into operation, there were 123 stations in Europe with an aggregate power of 116 kW, which corresponds roughly to an average of 1 kW per station. In the fourteen years which have elapsed, the number of transmitters has increased to 463, which is barely four-fold, whereas the aggregate power, which is now 11,751 kW, is a hundred-fold increase. The average power is now approximately 25 kW as compared with 1 kW.

The number of transmitters in the United States is 839, which is approximately the same as in 1926. The number had, however, exceeded 1,100 a year or two before. The average power in 1926 was very low, for the total power of America’s 800-odd stations was roughly the same as that of Europe’s 123 stations.

The average power of the United States transmitters is now 4.45 kW, compared with Europe’s 25.4 kW.

A tremendous increase in the aggregate power of the world’s transmitters is noticeable in the past 14 years. In the United States it is in the ratio of 37 to 1, and in Europe, where approximately 60 per cent. of the world’s total power output is concentrated, it is 100 to 1.

It is very noticeable from the figures given by the U.I.R. that in countries where broadcasting is State-controlled, and where a system of receiving licences is in force, the number of transmitters is relatively small, but their individual power is very high.

**NEW YEAR HONOURS**

**Scientific Services Rewarded**

The New Year Honours list contained a number of names well known in the world of wireless.

Dr. E. V. Appleton, LL.D., F.R.S., who is Secretary to the Committee of the Privy Council for Scientific and Industrial Research, and was recently appointed to the Government’s Scientific Advisory Committee, has been created a Knight Commander of the Order of the Bath (K.C.B.).

Mr. R. A. Watson Watt, who was until 1936 Superintendent of the Radio Department of the National Physical Laboratory and is at present Scientific Adviser on Telecommunications at the Ministry of Aircraft Production, is made a Companion of the Order of the Bath (C.B.).

The India Office list includes the name of Mr. Lionel Fielden, who was the first Controller of Broadcasting, Government of India. He has been made a Companion of the Order of the Indian Empire (C.I.E.). In 1940 he relinquished his post in India, and has since taken charge of the B.B.C.’s programmes destined for Indian listeners.

**R.S.G.B. RECORD YEAR**

In spite of prevailing conditions, the report of the Honorary Treasurer of the Radio Society of Great Britain shows that the year’s income exceeded expenditure by £345—a record in the Society’s history. This very satisfactory state of affairs is attributed, first, to the effectiveness of the economies introduced at the outbreak of war, and, secondly, to the splendid support given by members to the appeal to carry on the work of the Society.

The report was presented at the annual general meeting, following which Mr. A. D. Gay delivered his presidential address.

**RA.F. OPPORTUNITIES**

**Need for Signals Officers**

Vacancies still exist in the Royal Air Force for technical officers for signals duties. Commissions in the R.A.F.V.R. will be granted for the duration of hostilities to suitable applicants between the ages of 21 and 50 years.

Applications are invited from holders of electrical engineering or science degrees with experience of wireless, and from holders of technical college or approved institution diplomas with two years’ experience in telecommunications engineering (preferably on the radio side).

A number of posts is also available for candidates possessing a sound theoretical knowledge of elementary electricity and magnetism, of the principles of wireless telegraphy and telephony, and of transmitting and receiving circuits and HF measuring apparatus. Some practical experience is also desirable.

Candidates should apply at once in writing to the Air Ministry S.7 (c) 1, Adastral House, Kingsway, W.C.2, giving full particulars of their qualifications, training and experience. Those who are engaged on important National Work should not submit applications without first consulting their employers as to the possibility of their being spared for R.A.F. duty.

Candidates who have previously applied are requested not to renew their applications.

**BROADCASTING HOUSE**

In last month’s Editorial, tribute was paid to the B.B.C., which had maintained its service sometimes under “front-line” conditions, throughout the year. The recent announcement officially making known that Broadcasting House has twice been hit during air raids and seriously damaged shows that the commendation was more than justified. On both occasions the attacks were made during peak hours, but the transmissions in the Home, Forces, European and Overseas services were continued without interruption.

It was learned with regret that a number of the B.B.C. staff were killed and others wounded, most of the casualties being among members of the monitoring staff.

FEBRUARY, 1941.
**Wireless World**

**CANADIAN NEWS**

The Canadian Broadcasting Corporation's new 7.5-kW short-wave station, recently completed at Vercheres, Quebec, at a cost of approximately $15,000, is intended to serve the French-speaking communities in remote areas of the Quebec Province which are outside the service area of the existing network of medium-wave stations. This station is not intended, as had previously been stated, as an international station.

Licence fees provided $2,906,605 of the C.B.C.’s total income of $3,752,691 for 1939-40. Commercial broadcasting accounted for $700,867.

**O.B.E. for W/O**

In recognition of his devotion to duty when his ship was attacked by an armed raider, Mr. George W. Hackston, wireless operator of s.s. *Harby*, has been appointed an Officer of the Order of the British Empire (O.B.E.). He sent out the position of the vessel and remained at his post in the wireless room throughout the attack until it was set on fire.

**Standard Frequency Station Burned**

A temporary 1-kW transmitter is being used by the National Bureau of Standards following the destruction of its standard frequency station WWV at Washington in November. The station transmits a frequency of 5,000 kc/s from 10.0 a.m. to midnight daily except Sunday. The temporary service is CW with announcements in morse.

**N.B.C.'s European Manager**

Mr. Fred Bate, the European manager of the National Broadcasting Company of America, was recently injured when the N.B.C.'s temporary offices close to Broadcasting House, London, were damaged. He had sufficiently recovered from his injuries to sail for the States on January 8th on leave.

**French Stations**

It is learned from the U.I.R. that consequent upon the reorganisation of the French broadcasting system the names of the stations have been altered. The name of the town will in future be suffixed by "National" instead of "P.T.T.", etc.—i.e., Lyon-National, Toulouse-National, etc., instead of Lyon-P.T.T. and Toulouse-Pyrénées.

**Brit. I.R.E. North Western Section**

In accordance with a resolution of the Council of the British Institution of Radio Engineers, a meeting was recently arranged in Manchester for the purpose of forming a North Western Section of the Institution. At this meeting it was proposed to call an inaugural meeting in March.

**American Amateurs**

Seven members of the American Radio Relay League have been appointed to the Amateur Radio Committee of the U.S. Defence Communications Board. The committee is to consider all questions relating to amateur radio and its place in the national defence programme.

**British Insulated Cables**

Colonel J. Tennant, D.S.O., D.L., M.I.Mech.E., retired from his position of works manager of the Prescot works of British Insulated Cables, Ltd., on December 31st. Mr. D. W. Aldridge has been appointed in his place.

**Scott Receivers**

At the annual general meeting of E. H. Scott Radio Laboratories it was stated that, through restrictions in the supply of materials, present and future production of receivers must be greatly curtailed. A large percentage of the existing stock of component parts must

---

**FEBRUARY, 1941**

**SHORT WAVES**

The Rangoon firm of Misquith, Ltd., writing on the subject of broadcast receivers for the Burmese market, suggests that the most suitable set would cover, in addition to the normal short wavebands, wavelengths of 60-62 and 86 metres, on which the local Rangoon station and the Indian stations are operating. Long and medium waves are not required.

AC is available in the larger towns of Burma, but there is scope for AC/DC models, also for battery-operated receivers up-country and in the jungle.

**B.B.C. SHORT-WAVE NEWS**

Although there are few changes in the schedule of news bulletins broadcast in the B.B.C.'s short-wave European service, we give below the details for the convenience of readers.

The call signs and frequencies to be used during this month are:

- **GSA**, 6.050 Mc/s (4969 m);
- **GBS**, 9.570 Mc/s (31.38 m);
- **GSN**, 9.090 Mc/s (30.97 m);
- **GSX**, 11.818 Mc/s (31.38 m);
- **GSE**, 17.860 Mc/s (12.59 m);
- **GSO**, 15.180 Mc/s (19.76 m).

The times (B.S.T.) of the transmission of news and the calls used are:

- **0000** GSA
- **0900** GSA
- **1200** GSA, GSN, GSE
- **1415** GSA, GSN, GSE
- **1720** GSA, GSN, GSE, GSO
- **1720** GSA, GSN, GSE
- **2245** GSA, GSN, GSE

---

**A NEW FILM-GRAMOPHONE**, designed by Mr. E. J. Wender, of the Electro-Physical Laboratories, London. Ninety minutes' playing from four sound-tracks on one film is possible with this instrument, which is contained in a box 4in. by 9in. by 7in. Novel features are the endless strip film, i.e., the film feeds from its centre and rewinds round the periphery of the spool simultaneously, thus obviating rewinding after reproduction; also the use of separate small barrier-layer type photo-cells, made by E.P.L., for each track. The change-over of tracks is therefore entirely electrical and no change in position of either film or cells is necessary.

Key:
- **A**, film (travels anti-clockwise);
- **B**, locating pins;
- **C**, light intensity control resistance;
- **D**, track aligning screw;
- **E**, automatic track changer and push-button control;
- **F**, lever to open gate for threading film;
- **H**, automatic track number indicator;
- **J**, lamp housing;
- **K**, mains switch.
**Wireless World**

Current Topics—be reserved for replacement purposes. If frequency modulation comes after the war, the company will be able to embark at once on the manufacture of suitable receivers and adaptor units.

New M.W.T. Chairman
ADMIRAL H. W. GRANT, who is a director of Cable and Wireless, has been appointed chairman and managing director of Marcouli’s Wireless Telegraph Company.

Wireless for the Blind
In response to Mr. Ernest Bevin’s Christmas Day broadcast appeal more than 8,320 has been given by some 18,000 donors to the British Wireless for the Blind Fund.

**NEWS IN ENGLISH FROM ABROAD**

**REGULAR SHORT-WAVE TRANSMISSIONS**

<table>
<thead>
<tr>
<th>Country : Station</th>
<th>Mc/s</th>
<th>Metres</th>
<th>Daily Bulletins (B.S.T.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>America</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNB1 (Bound Brook)</td>
<td>17.780</td>
<td>16.87</td>
<td>4.0, 6.0</td>
</tr>
<tr>
<td>WPCAB (Philadelphia)</td>
<td>9.060</td>
<td>49.50</td>
<td>12:45 a.m., 1:00 a.m.</td>
</tr>
<tr>
<td>WACB</td>
<td>9.090</td>
<td>31.28</td>
<td>2.0, 3.0, 4.0, 4.15, 5.0, 7.0</td>
</tr>
<tr>
<td>WBOS (Melbourne)</td>
<td>9.570</td>
<td>31.35</td>
<td>11.45</td>
</tr>
<tr>
<td>WCBX (Wayne)</td>
<td>11.383</td>
<td>25.30</td>
<td>8.30, 11.00</td>
</tr>
<tr>
<td>WCEX</td>
<td>12.890</td>
<td>19.68</td>
<td>2.0, 4.0, 5.0, 7.0, 10.0</td>
</tr>
<tr>
<td>WGOO (Schenectady)</td>
<td>9.590</td>
<td>31.48</td>
<td>11.30, 12.00</td>
</tr>
<tr>
<td>WGEA (Schenectady)</td>
<td>12.330</td>
<td>19.07</td>
<td>1.0, 2.0, 4.0, 7.0, 10.0</td>
</tr>
<tr>
<td>WPTT (Boston)</td>
<td>15.210</td>
<td>19.72</td>
<td>30.0, 5.0, 7.0</td>
</tr>
<tr>
<td>WRUL (Boston)</td>
<td>11.790</td>
<td>25.45</td>
<td>9.30, 11.15</td>
</tr>
<tr>
<td>WRUL (New York)</td>
<td>11.620</td>
<td>19.55</td>
<td>8.15, 9.30</td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLFQ (Sydney)</td>
<td>9.015</td>
<td>31.20</td>
<td>8.0 a.m., 8.00</td>
</tr>
<tr>
<td>VLQR</td>
<td>9.080</td>
<td>30.99</td>
<td>3.0, 4.0, 10.30</td>
</tr>
<tr>
<td>VLQ2</td>
<td>11.870</td>
<td>25.27</td>
<td>6.0</td>
</tr>
<tr>
<td>VLQ7</td>
<td>11.860</td>
<td>25.25</td>
<td>8.0 a.m., 8.0, 11.00</td>
</tr>
<tr>
<td>VLQ8</td>
<td>12.800</td>
<td>19.80</td>
<td>7.0 m.</td>
</tr>
<tr>
<td>China</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XGQY (Chungking)</td>
<td>11.090</td>
<td>25.21</td>
<td>11.30 a.m., 12.10, 9.30, 10.30</td>
</tr>
<tr>
<td>Finland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPD (Lahol)</td>
<td>9.120</td>
<td>49.02</td>
<td></td>
</tr>
<tr>
<td>OE5</td>
<td>9.500</td>
<td>31.38</td>
<td></td>
</tr>
<tr>
<td>OFE</td>
<td>11.780</td>
<td>25.47</td>
<td>8.55 a.m., 7.15, 10.15, 11.15</td>
</tr>
<tr>
<td>OIB</td>
<td>15.190</td>
<td>19.75</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athens</td>
<td>7.975</td>
<td>42.30</td>
<td>11.0</td>
</tr>
<tr>
<td>Hungary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAT4 (Budapest)</td>
<td>9.125</td>
<td>32.88</td>
<td>1.30 a.m.</td>
</tr>
<tr>
<td>India</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VUD2 (Delhi)</td>
<td>9.500</td>
<td>31.38</td>
<td>9.0 a.m., 1.30, 4.30</td>
</tr>
<tr>
<td>VUD4</td>
<td>11.820</td>
<td>25.30</td>
<td>9.0 a.m., 1.30, 4.30, 6.15</td>
</tr>
<tr>
<td>VUD2</td>
<td>15.230</td>
<td>19.82</td>
<td>9.0 a.m.</td>
</tr>
<tr>
<td>Iran</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQB (Teheran)</td>
<td>6.155</td>
<td>48.74</td>
<td>7.30</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JZJ (Tokio)</td>
<td>11.800</td>
<td>25.42</td>
<td>9.5</td>
</tr>
<tr>
<td>JZK</td>
<td>15.100</td>
<td>19.70</td>
<td>9.5</td>
</tr>
</tbody>
</table>

It should be noted that at this time of the year changes of wavelength are frequently made and readers are, therefore, advised to try alternative wavelengths. The times of the transmission of news in English in the B.B.C. Short-wave European Service are given on page 47.

**REGULAR LONG- AND MEDIUM-WAVE TRANSMISSIONS**

<table>
<thead>
<tr>
<th>Country : Station</th>
<th>kc/s</th>
<th>Metres</th>
<th>Daily Bulletins (B.S.T.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sofia</td>
<td>850</td>
<td>362.9</td>
<td>9.55 (Th. and Sat.)</td>
</tr>
<tr>
<td>Hungary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budapest</td>
<td>546</td>
<td>549.5</td>
<td>11.10</td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio-Eireann</td>
<td>565</td>
<td>531</td>
<td>6.45, 10.5, 10.10</td>
</tr>
<tr>
<td>Latvia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madona</td>
<td>883</td>
<td>514.6</td>
<td>10.0 (Tu. and Fri.)</td>
</tr>
<tr>
<td>Kuldiga</td>
<td>1,104</td>
<td>271.7</td>
<td>10.0 (Tu. and Fri.)</td>
</tr>
<tr>
<td>Romania</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio-Romania</td>
<td>160</td>
<td>1,086</td>
<td>10.40, 11.00</td>
</tr>
<tr>
<td>Bucharest</td>
<td>829</td>
<td>276.2</td>
<td>10.40, 11.00</td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio-Coruna</td>
<td>968</td>
<td>546.9</td>
<td>11.0 a.m.</td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motala</td>
<td>216</td>
<td>384.6</td>
<td>10.20</td>
</tr>
<tr>
<td>Stockholm</td>
<td>704</td>
<td>426.1</td>
<td>10.20</td>
</tr>
<tr>
<td>Gotteborg</td>
<td>911</td>
<td>318.8</td>
<td></td>
</tr>
<tr>
<td>Edinburg</td>
<td>1,086</td>
<td>276.2</td>
<td>10.20</td>
</tr>
<tr>
<td>U.S.S.R.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moscow 1</td>
<td>172</td>
<td>1,744</td>
<td>11.30</td>
</tr>
</tbody>
</table>

All times are p.m. unless otherwise stated. * Saturdays only. † Saturdays excepted. ‡ Sundays only. ‡ Sundays excepted.

FEBRUARY, 1941.
Short-Wave Portable
LIGHTWEIGHT HEADPHONE SET FOR PRESENT CONDITIONS

Most of the lightweight portable sets produced for wartime conditions have been designed to cover the medium broadcast band. Here is a simple set for short waves only. It will operate with a short extemporised aerial.

The receiver to be described can be contained, together with a 45-V HT battery, a 3-V dry cell LT battery, a couple of plug-in coils and a pair of headphones, in a fibre case of the kind used to carry civilian respirators. From 4 to 10 Mc/s (about 21 to 75 metres) can be covered with suitably wound coils. Consumption is at the rate of about 4 mA for HT and 0.1 A for LT.

Construction is particularly easy, as the components are mounted on a piece of stout tin-plate which fits in the top of the fibre case and is held by angle brackets bolted to the sides. Care should be taken to leave as much clear space as possible round those parts of the circuit (see Fig. 1) drawn in thick lines; for this reason it is not advisable to enclose the whole receiver in a metal container.

The filament choke consists of a glass tube 2 in. long by ½ in. external diameter wound with No. 34 SWG enamelled wire. The 28-ohm resistance in parallel with the 0.05-amp. filament of the triode detector is a tiny home-made job consisting of No. 38 SWG resistance wire (insulated) pile-wound on a ½ in. piece of match stick.

The circuit is obviously a modification of the familiar Hartley reacting detector, followed by a transformer coupled pentode output stage. One unusual feature is the use of quite a large positive bias on the triode grid.

This serves to decrease the AC resistance of the valve sufficiently for it to develop enough power in the reaction circuit to bring about oscillation at the high-frequency end of the band covered. Rectification appears to take place fairly efficiently, though distortion is inevitably present; the only noticeable departure from normality is the increase of the anode current from less than 0.1 mA to nearly 1 mA. In the circuit diagram of Fig. 1 the bias of both detector and output stages is shown as being obtained from batteries, which need be only very small ones; but it may be obtained in each case by resistance networks, as shown in Fig. 2. Reaction is controlled by the 10,000-ohm variable resistance R3, and this component must have low self-capacity.

The circuit as given has been found to operate satisfactorily over the frequency band mentioned with 45 V HT.

The frequency of 14 Mc/s is given as the highest handled by this receiver, because above that frequency oscillation is not readily obtained. By taking more than ordinary care about layout and the efficiency of the components involved in the RF portions of the circuit, however, useful reception can be obtained in the 15 Mc/s band and even higher. Stray reactances must be kept down to a minimum; the tuning condenser should be a good SW low-loss type; the valve may be “dc-capped” (i.e., have the composition base removed and the electrode leads soldered directly in circuit); the grid may stand a little more positive bias; the optimum taps on the coil for filament and aerial may be found by experi-
Short-wave Portable—

There were no prolonged periods of "peak" conditions during December, short-wave reception being frequently subnormal, particularly on the 2nd, 20th to 23rd (inclusive) and 28th to 31st (inclusive) when ionosphere storm effects were reported.

The average Disturbance Factor (on a zero=negligible, and 9=extremely great, basis) was for the period 12th to 31st (inclusive) approximately 33 per cent. in excess of that for the first eleven days of the month. In connection with the above in the December issue of this journal, published on November 20th (see page 484) a reference was made to the probability in December of relatively disturbed conditions during the middle and latter part of that month.

There was no definite evidence of any sudden disturbance of the "Dellinger" type during December. Reception was seldom impaired by atmospherics; the general level of which was, however, appreciably above normal during the afternoon of the 10th, when thunderstorms were reported in certain parts of the country.

In high northerly latitudes such storms, whilst of much less frequent occurrence in winter than in summer, are not uncommon in North-West Europe.

Particulars of the broadcast bands which, it is considered, should prove most reliable during February under normal conditions of propagation are given below; these may serve as a guide when considering the possibilities of reception from places not too remote from those specified.

Attention is drawn to the fact that a number of factors, for example (a) transmitter power, (b) efficiency of aerials at both the transmitting and receiving end, and (c) ionosphere abnormalities, may often result in better reception being obtained on wavebands other than those quoted. (The times given in this report are GMT.)

Montreal: Midt, 31, 41 or 49 m; 0700, 4 or 30 m; 0900, 3 or 45 m; 0600, 49 m; 0900, 25 or 31 m; 1100, 19 or 25 m; 1400, 16 or 19 m; 1800, 15 or 25 m; 2100, 25 or 31 m.

Difficulties may be experienced on occasions between 0700 and 1000 and at other times should ionospheric conditions be disturbed. "Echo" signals are not unusual at this season during the period from 1300 to 1600.

Buenos Aires: Midt, 31 or 41 m; 0700, 31, 41 or 46 m; 0600, 41 or 49 m; 0900, 15 or 25 m; 1200, 16 m; 1500, 15 or 16 m; 1600, 16 or 19 m; 2100, 25 or 31 m.

Reception may prove to be difficult for a period of one or two hours centred on 0330 and 0930; with the approach of the Vernal Equinox the duration of the former will tend to increase and that of the latter to decrease.


Price (in U.S.A.) 25 cents.

To provide practical everyday information for the sound specialist is the object of this publication, states the author in his foreword. For this reason explanation of fundamentals and the theory of circuit applications have been reduced to a minimum and, bearing this in mind, it can be said that this is an interesting and useful book.

The five sections of the book are as follows: (1) Source (all types of microphone and pick-up); (2) Amplifiers (voltage amplification, power stage, power supplies and design considerations); (3) Distribution (loudspeakers, speaker baffle and housings); (4) Co-ordination (input impedance matching, phasing speakers, etc.); and (5) Public Address Data and Information (the A.B.C. of db., VU, Mu, Gm and Sin, and db. data, etc.).

Loudspeaker matching technique is clearly and fully expounded. Inverse feedback and tone compensation are briefly covered and an explanation of the Volume Unit (VU), a new standard of reference level, which is a steady state of 1 milliwatt across a 600-ohm line, recently introduced by the Bell Telephone Laboratories, is included.

D. W. A.

FEBRUARY, 1941.
Spy's Transmitter

IT was recently disclosed that three enemy agents, convicted of spying, had been executed in London. Among other things found in their possession was a complete portable short-wave transmitter, and The Wireless World has been given facilities by the authorities to prepare a detailed description of the apparatus.

Some mild disappointment will be felt that the transmitter is not of especial technical interest, either mechanically or with regard to its circuit arrangement. The circuit is, indeed, except for the use of a quartz crystal and a pentode valve, almost exactly the same as that used by a member of the staff of this journal in 1924, when everything to do with the short waves was brand new, and we were all eager to get some first-hand experience of their behaviour. In the matter of mechanical layout the set seems distinctly unhandy, at any rate if, as the fiction writers would have us believe, the enemy agent is always compelled to work his gear under the most difficult of conditions. A rather more finished job might have been expected from the best German technicians, and one is inclined to wonder whether the former owners of the set were, figuratively speaking, free lances, responsible for their own equipment, and merely paid by results.

Details of the Gear Used by Enemy Agents

As shown in the accompanying diagram, the circuit is a modified Hartley oscillator, with crystal control at the fundamental frequency of the crystal, which, in the case of the actual transmitter described, is just under 6,000 kc/s (about 50 metres). The oscillator circuit has a useful tuning range of from about 4 to 8.5 Mc/s (about 35 to 75 metres).

The valve is a Telefunken battery pentode, Type KL2, with a directly heated filament consuming 0.27 amp. at 4.25 volts. When operating with the HT batteries provided, which give 210V on load, the anode current is 8mA, rising to 29mA in the non-oscillating condition. Power is thus extremely low, but it is remembered that in 1924 with the transmitter already mentioned (which had a comparable power output and wave range coverage) ranges of several hundred miles were often worked. It must also be remembered that in those days receivers were much less sensitive.

The complete equipment is contained in two black leather carrying cases with shoulder straps. In the first case, measuring 8½in. by 7½in. by 4in. and weighing 4lb., are the transmitter unit, a spare valve, morse key and aerial equipment. The second case, which measures 11in. by 6in. by 3½in. and weighs 7lb., contains three 90-volt (nominal) HT batteries and two 4.5-volt dry-cell LT batteries, with their connecting leads. It should be observed that, before the gear can be put into operation, it must be removed from the carrying cases.

A metal box, measuring 5¼in. by 4½in. by 3in., houses the transmitter.

Complete circuit diagram of the transmitter with details of the coils. Taps are provided for aerial circuit adjustment, which is carried out with the help of an indicator lamp.
Spy’s Transmitter—

unit, which weighs about 1 lb. On the top panel are mounted an on-off filament switch, sealed plug-in crystal holder, key sockets, two tuning condenser dials, and aerial taps for adjustment. There is also a small lamp, with short-circuiting switch, to act as an indicator of current in the aerial circuit. Connections for the batteries and aerial and earth complete the external attachments. The key is provided with a 4-foot wandering lead.

Two sets of aerials are provided, and it appears that the usual practice is to use aerial and counterpoise, for which arrangement the circuit is suitable. One aerial measures 21.6 metres and the other 11.45 metres; each has a lead-in connection 1.62 metres long. Over the frequency range covered by the transmitter these aerials would work reasonably efficiently as quarter-wave current-fed radiating systems.

When crystal controlled, the set gives a pure CW note. By removing the crystal and short-circuiting the plug sockets, the transmitter may be operated without frequency control. Under these conditions stability is still of a high order, and the note, as heard on a suitable receiver with BFO, is still pure over the useful part of the tuning range.

Random Radiations

By “DIALLIST”

The Radio Missing Link

FOR a long time I’ve been pressing for ultra-short-wave radio to supplement one short but very vulnerable part of the communications of my particular bit of the war. I think I’ll get it pretty soon now, but there have been many obstacles to break down. One brass-hatted bloke told me that he might do the transmitter, but didn’t think he could lay his hands on a suitable receiver. I said that I thought that left no real difficulties. “What about the receiver? sez ’ee; you can’t do without that. What do you suggest?” “Make it.” I made bold to reply. “Make it? Oh, but you couldn’t do that. A most expert job.” He was astonished to hear that I’d made and designed scores and scores of receivers of all kinds, and that, given a pound or two to spend on parts, I could guarantee results. Eventually it turned out that receivers were available after all, and that there’d be no need for me to return to my pre-war constructional activities. My missing ultra-short-wave link is promised any day now, and you can imagine how happy I’ll be to have it.

“Apres la Guerre Fini”

SOLDIER, sailor and airman used to promise themselves all kinds of delightful things in the last war when the desirable, if ungrammatical, state of affairs described in the heading came to pass. And I suppose that all serving wireless men who have seen anything of the radio equipment of the Services have similar beautiful dreams now. What lovely things there will be to buy for a song when we’ve straightened out the present complications and returned to normal ways of life once more! Some of you will remember how we revelled in Government surplus after the last war. Wave-meters and other measuring instruments, transmitting and receiving sets—or the parts to make them with—come our way at undreamed-of prices. And the effect of amateur experimental work was just marvellous. Your brilliant man is often hampered by lack of cash to buy the expensive gear that he needs to further his work. One of the few good results of a modern war is that its aftermath may be to set him up again.

The Stimulus

It’s only natural that something of the kind should take place. Here we are now, called from our labs, and our radio dens to do willingly our jobs in the Navy, the Army, or the Air Force. But aren’t we all longing for the day when we can settle down again to the best of all hobbies? Don’t we think over ways of improving the results that we obtained in the past and promise ourselves the joys of putting them to the test when the time comes? Aren’t we thinking out the experiments that we’ll try once we have the opportunity? We are. And when peace returns we’ll get down to it with a will. Meantime, all honour to those, debarred from serving by age or other disability, who are keeping the experimenters flying. They’re seeing to it that wireless does not stand still. We’ve been able to read accounts of some of their good work, and so to keep ourselves abreast of the times. But a vast amount of what has been done can’t be revealed till the war is over. And those revelations will provide huge new fields for experimental work.

The Wireless World

Blast and Loudspeakers

IT was interesting to read in a recent issue of The Wireless World that the most common form of damage to wireless receivers subjected to the effects of blast was the destruction of the loud-speaker cone. Did you know that the waveform of a bomb-blaze pressure wave was almost exactly like that of one of the most unpleasant kinds of atmospheric in shape. It rises almost vertically to its peak, then falls almost equally steeply until the “zero” line is reached. That is the “positive” or pressure part of it. Then comes the “negative” pull or suck. This takes the form of a long, shallow curve below the zero line. The effect of blast on a building—or a loud-speaker cone—is much the same as that of an atmospheric on an aerial; vibration at the natural frequency is set up. As a rule the final damage to a building is done, not by the violent looking “positive” half of the blast wave, but by the suck of its “negative” portion. That’s why the glass from windows and the bricks from walls fall outwards rather than inwards. I haven’t examined any loud-speaker cones that have fallen victims to bomb blast, but I’m open to wager that most of them have been pulled rather than pushed out of shape. Any experiences from readers would be welcome.

Not So Easy

ALWAYS up to date, The Wireless Trader produced in its Christmas number one of those “Do You Know?” features that are so popular nowadays. One of the teasers pronounced interested me greatly—and

FEBRUARY, 1941.
Random Radiations—made me think a bit. It consisted of reproductions of the symbols used in circuit diagrams of valves and other “vacuum tubes” that aren’t really valves. There were 33 of them in all, and you were invited to give each its correct name. Easy enough, you say? So did I, till I tried! I got most of them right after puzzling out the electronic arrangements. But with some of the more complicated ones puzzling out was the operative word. What a difference from the valves of 20 years ago when no symbol contained more than a filament, a single grid and a single plate—not even the grid in the case of the diode! Even when the tetrode and the pentode came along, it was pretty plain sailing. But now that you’ve got things like the octode and the triode-heptode a little thinking plus a counting of grids has to be done ere you feel prepared to give a name to some complicated symbol. Could you draw, right off the reel—, the name to some complicated symbol. You can? Well, now try drawing, without reference to any book, of course, a diagram of its pins and their connections.

Colour Television

TELEVISION, somehow, seems little more nowadays than one of those pleasant memories of the past. It’s just about a year and a half—since I saw the Alexandra Palace transmitter closed down “for the duration.” Hence it’s refreshing to find that, despite the war, development work on television still goes forward. Mr. Baird has produced, I read, some quite noteworthy advances in colour television, and progress in this direction is being made also on the far side of the Atlantic. I’ve no doubt at all that television in natural colours will come, and a welcome improvement it will be. But what I most want to see, both in the cinema and in television, is stereoscopic projection. That, too, is only a matter of time. Much progress has been made by the movie experts; I believe that stereoscopic films have been projected experimentally with no small success. When we have television and cine pictures projected both in colour and stereoscopically each of these forms of entertainment will become inestimably more attractive. It will be an even bigger jump forward than that from the silent film to the talkie or that from sound only to sound-cum-vision by wireless. That’s my view, anyhow.

Wireless World

**The “Fluxite Quins” at work**

“There’s a mouse in the wireless,” OO pleaded; “It’s squeaking!”—to her aid the lads speeded. “That noise, I deduce,” Explained OH, “and it’s FLUXITE that’s needed.”

See that FLUXITE is always by you—in the house—garage—workshop—wherever speedy soldering is needed. Used for 30 years in Government works and by leading engineers and manufacturers. Of Ironmongers—in tins, 4d., 8d., 1/4 and 2/8.

Ask to see the FLUXITE SMALL-SPACE SOLDERING SET—compact but substantial—complete with full instructions, 7/6.

Write for Free Book on the art of “soft” soldering and ask for Leaflet ON CASE-HARDENING STEEL and TEMPERING TOOLS with FLUXITE.

**TO CYCLISTS!** Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings AND SOLDERED. This makes a much stronger wheel. It’s simple—with FLUXITE—but IMPORTANT.

**THE FLUXITE GUN**

is always ready to put Fluxite on the soldering job instantly. A little pressure places the right quantity on the right spot and one charging lasts for ages. Price 1/6, or filled 2/6.

FLUXITE LTD. (Dept. W.W.)
BERMONDSEY STREET, S.E.I

ALL MECHANICS WILL HAVE

FLUXITE

IT SIMPLIFIES ALL SOLDERING

---

**Books on Wireless**

**issued in conjunction with “The Wireless World”**

<table>
<thead>
<tr>
<th>Title</th>
<th>Net Price</th>
<th>By Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUNDATIONS OF WIRELESS</td>
<td>5/-</td>
<td>5/6</td>
</tr>
<tr>
<td>RADIO LABORATORY HANDBOOK</td>
<td>8/-</td>
<td>9/1</td>
</tr>
<tr>
<td>WIRELESS SERVICING MANUAL</td>
<td>5/-</td>
<td>5/6</td>
</tr>
<tr>
<td>HANDBOOK OF TECHNICAL INSTRUCTION FOR WIRELESS TELEGRAPHERS</td>
<td>21/-</td>
<td>21/9</td>
</tr>
<tr>
<td>WIRELESS DIRECTION FINDING</td>
<td>25/-</td>
<td>25/9</td>
</tr>
<tr>
<td>RADIO DATA CHARTS</td>
<td>6/1</td>
<td>7/-</td>
</tr>
<tr>
<td>TELEVISION RECEIVING EQUIPMENT</td>
<td>5/-</td>
<td>5/4</td>
</tr>
<tr>
<td>RADIO INTERFERENCE SUPPRESSION</td>
<td>6d.</td>
<td>7d.</td>
</tr>
<tr>
<td>LEARNING MORSE</td>
<td>7/-</td>
<td>8/1</td>
</tr>
<tr>
<td>RADIO DESIGNER’S HANDBOOK</td>
<td>2/5</td>
<td>2/7</td>
</tr>
</tbody>
</table>

Obtainable from Leading Booksellers and Railway Bookstalls or by post (remittance with order) from

ILIFFE & SONS LTD., Dorset House, Stamford Street, London, S.E.I

FEBRUARY, 1947. 53
FEW firms provide a wider choice of broadcast receivers in the medium- and low-priced categories than A. C. Cossor, Ltd. These are known and appreciated by a large section of the listening public. Not so many people realise that the Cossor range includes a number of receivers of more comprehensive specification for the discriminating listener who is prepared to pay a little more for a performance which will distinguish his set from the average.

The Model 74A is in every way a big set. It is fitted with an RF stage, and has a large triode output valve feeding a 10-inch loud speaker. The cabinet measures 22 x 17½ x 10 inches, and the performance is in every way commensurate with its appearance.

Circuit.—The aerial is transformer-coupled to the pentode RF amplifier, the long-wave coupling being provided with damping. On gramophone the input grid is earthed.

The coupling between the RF stage and the triode-hexode frequency changer is by means of transformers with tuned secondaries. Tuned-grid oscillator coils are used, and the output of the frequency changer is passed to a single variable-mu pentode IF amplifier.

Both IF transformers are permeability tuned, and the input transformer has a third winding which is always in circuit. It is centretapped to earth, and the selectivity switch reverses the sense of the coupling, thus changing the inductance of the primary and increasing the band width.

The output IF transformer is tapped down for both signal and AVC diodes. AVC is delayed, and the cathode ray tuning indicator takes its control from the signal rectifier circuits.

Resistance-capacity coupling is used between the triode amplifying portion of the second detector and the output stage.

The output valve is of the directly heated type, and the power rectifier is indirectly heated so that the smoothing condensers are adequately protected. The loud speaker field is
Cossor Model 74A—connected in the negative HT lead.

Performance.—On the radio frequency side the performance is everything one would expect from a receiver incorporating an RF stage. Sensitivity and image rejection on short waves are both good.

Selectivity on all three wave ranges is well up to the work in hand, and the extra band-width made available by the switch makes just that little difference between good and exceptionally good quality on the local station.

It is the quality of reproduction which is the outstanding feature of this set. The efficient loud speaker, in conjunction with the considerable baffle area provided by the cabinet, combines to give “console” volume in the bass. This is well able to carry the excellent high note response, and as far as frequency range is concerned the Model 74A is well in advance of most commercial receivers. The harmonic distortion is also extremely low, and the volume control can be tuned up to the maximum on any station without any apparent signs of overloading.

Another aspect of the quality which is worthy of note, and which is all too rare these days, is the wide-angle dispersion of the sound from the front of the set. There is less impression of the sound emanating from a “point source,” and a greater feeling of expansiveness which greatly enhances the reproduction of orchestral items. With AVC applied in three stages the control is very effective, and the only fault we had to find with the performance as a whole was a slight tendency to pulling in the oscillator near the bottom of the short-wave range, under the influence of wide variations of signal strength.

Constructional Features.—The chassis is divided into two parts, the output stage and power pack being fitted on the floor of the cabinet. The main chassis, which is open at the bottom, is mounted above the loud speaker and access is readily obtained to the trimmers without dismantling the set. A really substantial stiffening bar prevents flexing of the sides of the cabinet, and also serves as a support for the back of the main receiver chassis.

The controls are five in number, the main on-off switch being mounted separately in a recess at the left-hand side of the cabinet, and the remaining four—Tuning, Volume, Wavrange and Combined Selectivity and Tone—are situated just below the large rectangular tuning scale. Station names are shown on all three wavebands, and the short-wave range is calibrated in megacycles as well as metres. The scale is indirectly illuminated, and a Maltese cross wavrange indicator matches the magic eye.


---

**Wireless World**

---

**BULGIN**

**FOR SWITCHES**

The BULGIN Range of Switches is the largest and best in the British Isles. These All-British types meet every Radio Switching Requirement, and—made by experts, designed by experts—do so in the best way possible. The Best is always the Cheapest.

---

**NATIONAL EFFORT**

In these times, in many directions, needless to say, we are directing our main efforts and supplies towards the requirements of the Government Services. However, some supplies of components are still available for Radio Servicing, but should delays occur we know our friends will appreciate the difficulties which at present arise from day to day. We would point out that delays can be minimised and often avoided if alternatives are, wherever possible, specified when ordering.

Prices are being kept as low as possible despite increased costs in every direction. Meanwhile you still have the best and largest range of radio products in the United Kingdom to choose from.

---

**THANK YOU!**

**A SELECTION OF SWITCHES**

<table>
<thead>
<tr>
<th>List No.</th>
<th>V.</th>
<th>A.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.180</td>
<td>250</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>S.8181</td>
<td>230</td>
<td>2</td>
<td>1.9</td>
</tr>
<tr>
<td>S.205**</td>
<td>250</td>
<td>0.1</td>
<td>5.6</td>
</tr>
<tr>
<td>S.89</td>
<td>250</td>
<td>3</td>
<td>3.4</td>
</tr>
<tr>
<td>S.180a</td>
<td>250</td>
<td>4</td>
<td>3.3</td>
</tr>
<tr>
<td>S.88</td>
<td>250</td>
<td>3</td>
<td>3.1</td>
</tr>
<tr>
<td>S.45</td>
<td>32</td>
<td>1</td>
<td>6d.</td>
</tr>
<tr>
<td>M.P.T</td>
<td>100</td>
<td>0.1</td>
<td>1.3</td>
</tr>
</tbody>
</table>

(*=d.p., **=18-way selector.)

---

**FOR ALL RADIO COMPONENTS**

Advt. of A. F. BULGIN & CO., LTD., BYE PASS ROAD, BARKING, ESSEX. Tel.: RP/pe: 3474 (4 lines).
Resistance-tuned Oscillator
ITS APPLICATION TO AUTOMATIC FREQUENCY CONTROL

In The Wireless Engineer for September, 1937, there was described a practical form of resistance-tuned oscillator. In this type of oscillator, instead of the tuning of the circuit being achieved by varying a capacity or inductance as in ordinary oscillatory circuits, the tuning is carried out by means of a variable resistance. Such an oscillator has particular advantages when used as the local oscillator of a radio receiver. For example, in push-button receivers it is difficult to secure a stable adjustable capacity, and it is costly to secure a stable oscillator circuit by a multiplicity of adjustable inductances where the station selection is by the switching of pre-set tuned circuits. Stable adjustable resistances are, however, procurable. The resistance-tuned oscillator is also easily adapted to use in automatic frequency correction circuits as additional components are not required as in the more usual arrangements.

The following is a description of a suitable oscillator circuit as devised by D. E. Foster, an R.C.A. Engineer.

In the accompanying drawing there is shown a superheterodyne receiver system of a generally conventional type, except for the arrangement of the local oscillator network. The receiver comprises the usual signal collector, adapted to collect signals in the broadcast band of 550 to 1,500 kc/s, which feeds a tunable radio-frequency amplifier (not shown). The first detector and IF amplifier are conventional. The amplified IF energy may then be impressed upon a combined second detector-frequency discriminator network.

Briefly, it may be stated that the function of the second detector-frequency discriminator network is to derive audio energy and a frequency-dependent direct current voltage from the IF energy. The discriminator network can be entirely independent of the second detector circuit. The direct current voltage output of the discriminator varies in polarity and magnitude with the sense and amount respectively of frequency departure of the IF energy from the assigned IF value. The variable direct current voltage, or AFC bias, is passed from the discriminator to the local oscillator V.

The local oscillator comprises the valve V, which includes at least a cathode, a control grid and anode. The anode is regeneratively coupled to the grid by means of inductive coupling between the anode coil L and the grid coil L1. Direct current voltage of the proper positive value is applied to the anode through L1, whereas Lr is connected between the earthed cathode and the direct current-blocking condenser C. The anode is further connected to earth through a path which includes a frequency-dependent impedance network Cr, R, a condenser C2 and any one of a plurality of resistors R1, R2, R3. The function of the resistor may be selected by means of a push-button switch.

The local oscillation energy is impressed on the first detector network. Of course, the frequency of the local oscillations will differ from the signal frequency impressed on the first detector by the frequency value of the IF energy. It should be understood that the tunable circuits of the radio frequency and first detector may also include push-button switches, mechanically coupled to those of the local oscillator circuit, so as simultaneously to vary the signal circuits to different frequencies, so that at different adjustments of the oscillator and signal circuits the IF energy will have substantially the assigned IF value. The function of the AFC circuit is to correct for any deviation from the assigned IF value, should the oscillator or signal circuits shift in frequency. In place of the group of resistors R1, R2, R3 there may be employed a single adjustable resistor.

The AFC bias is applied to the grid of V through the grid leak resistor R4. The variation in bias of this grid is converted into a change in gain of V; the change in gain, in turn, is translated into a frequency shift of the oscillator network. The polarity of the AFC bias determines the direction in which the oscillator frequency is varied to compensate for the IF energy frequency departure. The direct current voltage output of the
Resistance-tuned Oscillator—

discriminator rectifiers arranged in opposition will be positive or negative with respect to earth depending upon whether the IF energy has shifted to one side or the other of the assigned IF carrier value.

The local oscillator network functioning will now be described. The regeneratively coupled valve V provides negative resistance; the tuning resistor R1-R3 provides positive resistance whose magnitude is adjusted to vary the oscillation frequency. By varying the gain of V the value of negative resistance can be adjusted. Hence, at selected values of positive resistance, the AFC bias can be used to secure small frequency adjustments in order accurately to tune the oscillator to that frequency which will cause the proper IF value to be produced.

The grid of V has a normal negative value by virtue of grid current flow, as the valve is in an oscillator circuit. It is desirable to maintain the grid at such a bias value as to cause the frequency shift to be substantially symmetrical with variations in applied discriminator potential about a mean value.

The Resistance Oscillator

The following detailed considerations of the functioning of the oscillator network will make the operation clearer. In a circuit consisting of a pure negative resistance which is a function of frequency, and a positive resistance in series therewith, oscillation will occur when the net resistance around the circuit is zero. The frequency of oscillation is that frequency which will make the negative resistance component equal the positive resistance component. Therefore, changing the positive resistance component will change the oscillation frequency. Now the required negative resistance which is a function of frequency can be secured by connecting across a negative resistance which is independent of frequency a reactance, and in series with that combination a resistance of opposite sign shunted by a resistance of approximately the same magnitude as the negative resistance. Therefore, small changes of the magnitude of the negative resistance will affect the oscillation frequency.

In the circuit shown inductance L is coupled to L1 and through blocking condenser C to the grid of V. The output of V is joined to L so that an oscillation circuit is formed. The anode-cathode impedance of V forms a negative resistance in shunt with L. In series with this combination is condenser C1 and positive resistance R in shunt there with, approximately equal to a negative valve resistance. This combination L-V-C1 forms a negative resistance which is a function of frequency, as resistance R and the negative resistance of V are approximately equal and each is approximately equal to \( \sqrt{L/C} \) where L is the inductance of coil L and C is the capacity of condenser C2.

Now if the tuning resistance R1-R3 is zero, the frequency is that normal to an oscillatory circuit composed of inductance L and capacity C1. If resistance R1-R3 equals resistance R, the oscillation frequency is theoretically infinite, but is actually limited to some finite value by distributed capacity of coils. Decreasing the negative resistance a small amount so that the relationship, that negative resistance is equal to resistance R and to \( \sqrt{L/C} \) still holds approximately, will likewise cause frequency increase. If the AFC bias is applied to the grid of V, through a DC amplifier if necessary to obtain a low impedance source since V, being an oscillator, will draw some grid current, it will change the operating trans-conductance of V, and hence the magnitude of negative resistance between plate and cathode. If the grid of V is made more negative its trans-conductance will decrease, and the negative resistance will increase, thereby resulting in a decrease of oscillation frequency and vice versa.

Identifying German Aircraft

NEW types of German aircraft are included in the new identification chart which has been prepared by Flight. Improvements introduced as a result of the use of many thousands of earlier editions are incorporated in the new chart which is printed on a card measuring 2x3 in. Published by the Flight Publishing Company, Dorset House, Stamford Street, London, S.E.1, the chart costs 1s., plus 6d. postage. The postage on up to six copies is 8d. and on twelve copies 1s.
Unbiased

Helping the Enemy

I LITTLE thought that I should raise such a hornet's nest about my ears when I mentioned last month that it was so difficult nowadays to distinguish between the whistle of a falling bomb and the whistle from the loud speaker due to oscillation from a neighbouring set that I frequently found myself dragging Mrs. Free Grid under the table with me when a particularly realistic howl came from the horn of the “old faithful” I am using in my refuge room.

Hows of protest have come from hordes of these oscillators who go completely beyond the bounds of decency by suggesting that I am in the pay of the wireless manufacturers and trying to help them line their pockets by compelling people to invest in new receivers of the non-radiating type. To these latter I can only say that no wireless manufacturer has yet made it worth my while to betray my trust.

There are quite a number of readers, however, who agree with me, and go even further and demand that a watch be kept not only on wireless whistlers but on all users of domestic electrical apparatus of the interference-producing kind, since it cannot be doubted that aircraft flying over a town pass through a veritable cloud of interference which readily tells them that they are no longer over the empty countryside, but on all users of domestic electrical apparatus of the interference-producing kind. Probably they were only American salesmen planning a sales campaign of suppression devices and getting the necessary data concerning the most profitable territory to operate in.

An Iron Constitution

I WAS extraordinarily interested in the report published in several newspapers about a new and homely method adopted by surgeons for finding small and elusive fragments of bombs in people’s anatomy, but I must protest strongly against the suggestion that there is any novelty in it, as I used it myself many years ago soon after de Forest put the grid in Fleming’s diode and made thermonic amplification possible. Actually it was not bomb fragments in my case, but shrapnel which I had picked up in the siege of Mafeking, way back in ’99. I still recollect that I had so many small fragments in me that the captain of the ship on which I was returning home was compelled to request me not to visit him on the bridge as I upset the ship’s compass.

It was not until many years afterwards that the final pieces of shrapnel were removed with the aid of a metal prodder attached to the aerial terminal of a home-constructed wireless set. The whole affair remains very vividly in my memory owing to a nasty passage of arms I had with Mrs. Free Grid’s mother when, through my callow ignorance of women’s attire, I foolishly imagined that I had discovered metal fragments in her daughter’s anatomy. Mrs. Free Grid was, of course, much younger then, and, being still single, was not averse to my playful prods with a metal search-rod. What was started in fun continued in deadly earnest, however, as the loud speaker protested volubly every time I penetrated her defences. It was quite a long time before I discovered that the noise was due to her metal defences which were in those days just giving place to whalebone. I suppose that I ought to have known better, but, after all, we are only young once, and I used my influence to get the aforementioned defences removed in order to continue my investigations further. I was considerably astonished to find that the loud speaker still indicated the presence of metal. It only shows how careful we scientists have to be not to allow ourselves to be led away into drawing false conclusions. For a long time I was seriously puzzled, and entertained all kinds of wild and far-fetched theories to account for the presence of metal in her body, only to discover in the end that it was all due to an iron tonic she was taking.

Incidentally, I may say that I have since discovered that this arrangement is an excellent test for the efficacy or otherwise of certain iron tonic patent medicines, and if any of you who have been taking any of these concoctions find on trying out this test that it fails to ring the bell, or, in other words, to make sounds from the loud speaker, you are justified in asking for your money back. No doubt before very long the vendors of some of these ferrous nostrums will include successful tests with this apparatus in some of their published testimonials.
Recent Inventions

Brief descriptions of the more interesting radio devices and developments disclosed in Patent Specifications will be included in these columns

TONE CONTROL
A combination of positive and negative feedback is utilised to improve the tone of a low-frequency amplifier. In a two-stage amplifier, voltage from the output transformer of the second stage is fed back through a condenser to the grid of the first stage. This applies reverse reaction, the discrimination of the condenser in favour of the higher frequencies giving the effect of a low-frequency boost.

A tapping is also taken from a resistance in the same feedback circuit to the grid of the same second stage. This gives positive reaction, and a shunt condenser is provided to by-pass the higher frequencies so that the lower tones are again favoured. Any desired range of frequencies can similarly be boosted by inserting suitable impedances in the feedback circuit.


PUSH-BUTTON TUNING
Each button on a switch-tuned set is given a multiple duty so that it can be made to select a given station on each of, say, four available wavebands without the necessity of having to operate any separate switch. As shown, the shaft of the push button P is made in two parts, which are flexibly joined at J. The outer part of the shaft is enclosed in a washer W of spongy rubber or similar yielding material, where it protects through the cabinet casing, so that, in addition to the usual direct or plunger motion, the button P can be moved slightly upwards or downwards, as indicated by the arrows A, B. It has also a similar slight freedom of movement to right or left of its centre position.

Multiple-duty push-button system.

An upward movement closes the pair of contacts C and so changes the waveband switch to a given position, whilst a downward movement will bring another waveband range into operation through the contacts C'. Other waveband changes can be effected by moving the push button against similar contacts arranged at right angles to C and C'.


INTERFERENCE FROM THE MAINS
In addition to the usual mains " hum, " a further interference is sometimes caused by the production of " harmonics " of the supply frequency in the rectifier unit. Another source of trouble, particularly in a superhet, receiver using a high intermediate frequency, is due to higher harmonics of the IF, which get through by capacity coupling into the heater circuits of the amplifying valves, and so back through the primary winding of the supply transformer into the input of the receiver. If any of these harmonics happens to lie near to the signal frequency, it will be considerably amplified.

All such types of disturbance are eliminated, according to the invention, by electrostatically screening from one another not only the primary winding and the secondary winding supplying the anode voltage, but also the secondary winding connected to the heating circuits of the amplifiers, and the primary supply winding. This prevents the transfer by capacity coupling of any of the parasitic frequencies in question.

Philips Lamps, Ltd. Convention date (Germany) June 3rd, 1938. No. 520622.

" QUIET " TUNING
There is a certain amount of difficulty in applying a clear-cut muting action to a receiver which is fitted with automatic tuning as well as automatic volume control. The object of the invention is to ensure " quiet " tuning, in such a case, when changing over from one programme to another, even when frequency separation is small.

For this purpose the normal muting bias is arranged to be opposed by a second bias, which is set up across an electrode system for producing the beam. The object of the invention is to ensure " quiet " tuning, in such a case, when changing over from one programme to another, even when frequency separation is small.

This prevents the transfer by capacity coupling of any of the parasitic frequencies in question.

Philips Lamps, Ltd. Convention date (Germany) June 3rd, 1938. No. 520622.

FILAMENT SWITCHING ARRANGEMENTS
RELATES to means for bringing the cathode of a valve more quickly than usual to the temperature at which it emits a full stream of electrons. The same idea can also be used to maintain a valve relay of the kind employed for intermittent or " watchdog " duty at a " threshold " temperature so that it can be brought into action with the least possible delay.

If the switch S is moved in an anticlockwise direction, it first makes a momentary contact at 1 and so " flicks " the full voltage of the battery A across the filament. This rapidly heats it up, but, because the contact is only momentary, no harm is done. The switch then passes on to the contact 2, where the low-voltage battery B is brought permanently into circuit.

By using a circular group of contacts, across which the switch is constantly driven by a clockwork or other motor D.

It is possible to maintain the filament normally at a point just below the temperature of full emission, and to bring it up to full activity only once per revolution. This economises battery consumption in the case of a valve relay which is only intended to keep watch for a possible emergency or " calling " signal. At the same time the relay is kept ready to respond promptly.

Circuit for quick filament heating.
Recent Inventions—
without any time-lag, when such a signal arrives.


PA LOUDSPEAKERS

In order to protect the loudspeakers, used in out-of-doors public-address systems, from the effects of bad weather, the sound-reproducing box is arranged above, and substantially at right-angles to, the taping neck of the horn, the latter being mounted horizontally. A curved tube connects the reproducer box to the throat of the horn, and is fitted with a drainage plug. The arrangement is designed to prevent rain from driving in along the horn and so damaging the delicate diaphragm of the sound-reproducing unit.


SYNCHRONISING IN TELEVISION

The line and frame scanning impulses used in television are separated by passing them through a differentiating circuit which imposes a phase difference of 180 degrees between the two sets of signals. The synchronising signals are radiated in the form shown at A, where L represents the short line-impulses and F the longer frame-impulses.

Both are applied to a condenser C in series with a diode D, the input to the latter being shunted by a resistance R.

A

B

Separating line and frame impulses.

The discharge period of the condenser C is such that it reaches a steady state corresponding to the curve M in the lower line B of the figure until the frame impulses reach it, when upon the wave front "reverses" to give out-of-phase impulses of the form shown at N. The frame pulses can now be easily separated from the line impulses by the rectifying action of the diode D, which passes them on to the time-base circuit.


Wireless World

TUNING ADJUSTMENTS

If it is desired to alter the semi-fixed tuning elements associated with one of the push-buttons on a set which, in addition to being switch-tuned, is also fitted with automatic frequency control, a certain difficulty arises. This is due to the fact that so long as the AFC is operative it tends to obscure the accuracy or otherwise of the new adjustment, since no matter what alteration is effected, it will appear to be correct. No calculated allowance can be made, since the "pull" of the AFC is variable and only ceases to act when the true adjustment has actually been made.

Such adjustments are not often necessary, and, in practice, one usually has to remove the escutcheon plate from the set in order to get access to the components concerned.

It is now arranged that the screws which fix the escutcheon plate in position normally complete the circuit of the automatic frequency control. When they are withdrawn the AFC circuit is automatically broken, and the required adjustment can then be made accurately and without trouble.


GENERATING MICRO-WAVES

CENITREME waves are generated in a magnetron valve which is stabilised by means of a Lecher-wire "resonator." The resonator consists of two strips which run the length of the tube, insulated by a glass bulb, and may be bent over to form a short-circuited "loop" at one end, the HT supply then being tapped to the mid-point of the loop.

Four anodes, arranged in two pairs, are set at right-angles to the resonator, one pair being welded to the upper strip, and the other pair to the lower strip, a gap being left at the opposite end of the welding point in both cases. The cathode is arranged in the centre of the anode system, along the line where the two pairs of anodes would normally intersect each other.

The electron-discharge path is from the cathode towards the rear edges of the four anodes. Under the influence of the applied magnetic field, oscillations build up along the Lecher-wire resonator. For a discharge path of 0.5 millimetres, the tube will generate waves from 4 to 5 centimetres long.

Telefunken Ges. für drahtlose Telegraphie m.b.H. Convention date (Germany) February 11th, 1938. No. 520522.

SCREENING

A NUMBER of insulated wires, forming, say, the RF leads or conductors of a wireless receiver, are threaded through the meshes of a wire-gauze sheet. They are thus held in any desired "run" or position, and at the same time are effectively screened from each other by the wire-gauze foundation, which can be earthed.

The combination can conveniently be used as a wiring sheet or panel, or for screening the RF cables used for remote control.


The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from specifications obtainable at the Patent Office, 25, Southampton Buildings, London, W.C.2; price 1/- each.

FEVERARY, 1941.
Correct Matching with ONE Transformer

All output valves from 2,000 to 20,000 ohms (including Q.P.P., Class B. and P.P.) and speech coils of 1 to 19 ohms can be accurately matched with this ONE transformer. Due to a unique system of windings, high efficiency is attained on all ratios. Careful selection of insulation material assures exceptional freedom from breakdown.

**This Chart makes matching with ONE transformer simplicity itself. Send for details including this chart.**

---

**GOODMANS INDUSTRIES LTD., Lancelet Rd., Wembley, Middle. Phone: Wembley 4001 (2 lines)**

**GOODMANS 101 MULTI-RANGE OUTPUT TRANSFORMER**

**Winter Boom in Extension Speaker Listening...**

**MUSIC WHILE THEY WORK & SHELTER**

This winter is introducing a rapidly increasing number of listeners to a new radio pleasure: "music where they want it!" Free from the restrictions of one-room radio, they are enjoying their favourite programmes in the Shelter, whilst working in the kitchen, or wherever it is convenient to listen; and all by the simple connection of a Stentorian Extension speaker to their existing radio. What's more, these handsome but moderately priced speakers offer an appreciable improvement in reproduction over most built-in speakers. Why not make full use of your radio this winter by installing a Stentorian?

Illustrated literature on request.

**WESTINGHOUSE BRAKE & SIGNAL CO., LTD.,**

**Pew Hill House, Chippenham, Wilts.**

Enclose 3d. in stamps. Please send me descriptive pamphlet No. 11-B.

Name

Address

W.W.241
A SELECTION OF RELAYS


K. Type 501, 1,000 ohm. "on-off" 3, 5, 7, 10, 20, 30, 50, 70, 100, 200, 300, 500, 1,000 ohms. All types shipped 10 volt. 

Telephone Type RELAYS. SINGLE BLADE RELAY. No. 14 is a new special high resistance, 45,000 ohms, working on 1 m. Price 12/6. 

R. Type 501, 1,000 ohm. "on-off" 3, 5, 7, 10, 20, 30, 50, 70, 100, 200, 300, 500, 1,000 ohms. All types shipped 10 volt.

SUPERSENSITIVE MOVING COIL RELAYS. Work on currents of as low as 0.5 micros. Price 25/-. 

B. Type 201, 1,000 ohms. "on-off" 3, 5, 7, 10, 20, 30, 50, 70, 100, 200, 300, 500, 1,000 ohms. All types shipped 10 volt.

SOLENOIDS for remote work or relay, 5 and 10 volts. Price 20/6.

L. Type 501, 1,000 ohms. "on-off" 3, 5, 7, 10, 20, 30, 50, 70, 100, 200, 300, 500, 1,000 ohms. All types shipped 10 volt.

LIGHT ALLOY SOLENOIDS for Selenium, 10/6. Electromagnetic, self-starting 120 volt. Type 501, 1,000 ohms. "on-off" 3, 5, 7, 10, 20, 30, 50, 70, 100, 200, 300, 500, 1,000 ohms. All types shipped 10 volt.

OTHER RELAYS. Voice-Recording Relay. The American Electra type works on 50 micros. with 130 mile. on main contact.

A. Type Worked on 50 micros. with 130 mile. on main contact.

B. Type Worked on 50 micros. with 130 mile. on main contact.

C. Type Works on 50 micros. with 130 mile. on main contact.

D. Type Works on 50 micros. with 130 mile. on main contact.

E. Type Works on 50 micros. with 130 mile. on main contact.

F. Type Works on 50 micros. with 130 mile. on main contact.

G. Type Works on 50 micros. with 130 mile. on main contact.

H. Type Works on 50 micros. with 130 mile. on main contact.

I. Type Works on 50 micros. with 130 mile. on main contact.

J. Type Works on 50 micros. with 130 mile. on main contact.

K. Type Works on 50 micros. with 130 mile. on main contact.

L. Type Works on 50 micros. with 130 mile. on main contact.

M. Type Works on 50 micros. with 130 mile. on main contact.

N. Type Works on 50 micros. with 130 mile. on main contact.

O. Type Works on 50 micros. with 130 mile. on main contact.

P. Type Works on 50 micros. with 130 mile. on main contact.

Q. Type Works on 50 micros. with 130 mile. on main contact.

R. Type Works on 50 micros. with 130 mile. on main contact.

S. Type Works on 50 micros. with 130 mile. on main contact.

T. Type Works on 50 micros. with 130 mile. on main contact.

U. Type Works on 50 micros. with 130 mile. on main contact.

V. Type Works on 50 micros. with 130 mile. on main contact.

W. Type Works on 50 micros. with 130 mile. on main contact.

X. Type Works on 50 micros. with 130 mile. on main contact.

Y. Type Works on 50 micros. with 130 mile. on main contact.

Z. Type Works on 50 micros. with 130 mile. on main contact.
ARMSTRONG

STRIVING

We are still striving to give our customers every satisfaction with regard to delivery and service. Actually the endeavour is greater than ever because the difficulties are greater than ever.

We know our old friends will realise that, through no fault of our own, lack of supplies have prevented us from accepting many of the orders received for various models of Armstrong chassis. As mentioned last month our Service Dept. is in full operation. This affords an opportunity for customers old type chassis to be brought up to their original efficiency.

NEW RECEIVERS AND AMPLIFIERS

A NEW 200-watt A.C. Amplifier, with provision for

transformer, S.S. chokes, new valves, 2 P.X.4s,

or similar.

Price - £18.

T挣扎

RECEIVERS AND AMPLIFIERS

SECOND-Hand, CLEARANCE, SURPLUS, ETC

PETE Scott Preselector, little used, offers; 23- or 27-

valve chassis & speaker wanted. - Box 15, c/o The
Wireless World.

£13/10/0

Only, usual price £22 - Wireless World

transformer, 8.8 ohms impedance electronic mixing for mike and pick-

up, etc., £14; C.P.20 ditto, £17/17.

BANKNESS Bargains - Genuine offer; brand

new 1939-40 fully guaranteed models, makers' sealed

carton, 23/6 to 40/- of descent prices, also port-

able, midgets; send 3d. stamp lists - Radio Bap-

gars, Dept. A, 261-5, Lichfield Rd., Aston, Bin-

ningham.

WANTED

J. M. E. and D.B. 29/1 cash. - Truegans, High Cross

WANTED, pre-owned Quality Receiver or similar Value Receiver, price; see amplifier - 3, Derby Rd., Blackpool.

SOUND SALES Tri-Channel Amp, (1939 or later),

including 1.4 amplifier and speaker. - Albright Voigt corner horn (not home constructed), excluding speaker unit - With 117, Kingfield Ave., Barnet, Middx.

AMPLIFIER, 200 volts, 50 cycles, output about

10 watts, grid and microphone switching; rate-

price - Box 2559, c/o The Wireless World

£4/10/0

WANTED, ret. with short waves, to plug into W.W. 12-watt quality amplifier - J. D. Davis, Lyth Hill, near Shrewsbury.

February 1941.

Advertisements

For the convenience of private advertisers, letters, other than circulars, etc., will be forwarded to numbers at " The Wireless World." Office. When this is done, the sum of 1/-] to defray the cost of regis-

tration and to cover postage on replies must be added to the advertisement charges, which must include the words Box 000, c/o "The Wireless World." All replies should be addressed to the Box number shown in the advertisement, c/o "The Wireless World." Dorset House, Stamford Street, London, S.E.1. Remittances should not be sent through the post to Box Numbers.

DEPOSIT SYSTEM

Readers who hesitate to send money to advertisers in these columns may deal in perfect safety by availing themselves of our Deposit System. If the article, or deposit-with-it, "The Wireless World" checks, etc., are advertised, and parties are advised of its receipt. Notes and Money Orders are accepted. Notes should be made payable to Eiffle & Sons Ltd., and are acknowledged when cleared.

The time allowed for decision is three days, counting from receipt of goods, after which period, if buyer decides not to retain goods, they must be returned to seller. If a sale is effected, buyer instructs us to remit amount to seller, but if not, seller instructs us to return amount to buyer. Carriage is paid by the buyer, but in the event of damage, or loss or damage in transit, for which we take no responsi-

bility. Details of any arrangement made between parties which does not concur with any of the above conditions must be advised to us when the deposit is made. For all transactions conducted in these columns, deposit, if not a concession of 1 per cent. is charged on and deducted from the amount deposited (minimum charge £2). All deposit matters are dealt with by Eiffle & Sons Ltd., Dorset House, Stamford Street, London, S.E.1.

NEW TRANSMITTERS AND ACCESSORIES

To readers who have a real need of a new wireless set, we have a few of our latest Exp48 chassis to favourably reviewed in the October issue of "The Wireless World.

SPECIAL OVERSEAS MODEL EXP48

8-v. 4-BAND ALL-WAVE SUPERHET CHASSIS

(13-160m. continuous & normal Broadcast bands)

6 Watts Push-Pull Output.

Send for illustrated Specification which fully describes this chassis with prices, etc.

ARMSTRONG MANUFACTURING CO.

WARTERS ROAD, HOLLOWAY, LONDON, N.7, ENGLAND

ACOUSTICAL MANUFACTURING CO.

SPECIALISTS IN

Amplifiers, Transformers, and all Sound Equipment

have (owing to enemy action) removed to:

138-140, WARDOUR STREET, LONDON, W.1.

where our full services are available.

PUBLIC ADDRESS

V

VORTEXION P.A. Equipment.

LIMITED, but unguaranteed.

We invite You to a Demonstration.

A Q 35 15-20 watt Amplifier. 28,000,000 cycles, in-

dependent mike and gram., inputs and controls.

0.05% volts required to full load, output for 4, 7.5

and 15 ohms speakers, or to specification, insuf-

ficient hum level, ready for use; 6/- complete.

C 30 12V. Battery and A.C. Mains Model, as

above, used by R.A.F., 24 gns.

A 0.5-24 in portable form, complete with microphone, Piezo pick-up, etc., £14: C.P.20 ditto, £17/17.

50 G.P. Output transformer, complete, with negative

feed back, separate rectifiers for anode screen and bias, with better than 4% regulation line, 20-25,000 cycles, excellent driver transformer and output transformer matching 200 ohms impedance electronic mixing for mike and pick-up, plus tone control, complete with valve and plugs; £22/10.

COMPLETE in Case, with portable, B.T.H. Piezo

pickup and microphone. - £32/10.

120 WATT Model, with negative feed back; £42, complete.

100 WATT Model, with negative feed back; £40.

250 VOLT 250 m.a. Full Wave Spoken, Field
supply unit: 257, with valve.

We are supplied through Rising Costs to increase all our prices by 15%.

A.C. or D.C. Accessories in Stock; trade supplied.

SEE Our Display Advertisement on page 57 (Edit.).


£528
NEW MAINS EQUIPMENT

BAKERS Brand New Surplus Speaker Bargains.

SECURE One of These Exceptional Bargains Now.

BAKERS Triple Tone Conversions Will Immensely Improve Reproduction of Your Present Speaker. Try a few shillings you have conspired a speaker scheduled for the scrap heap into one worth pounds. W. E. Darby, Grad I.E.E. 1. Write for details.

BAKERS SELLHURT RADIO, 75, Sussex Rd., 9th Crayford.

SECOND-HAND LOUD-SPEAKERS

ROLA G.12, 2,500 ohm field; £2; wanted P.M. A model—Dawson, Jeweller, Halesworth.

DOMESTIC ELECTRICAL GOODS

MORPHEU REEDED IRRONS, Antiquated Safety.

W. T. HENLEY'S TELEGRAPH WORKS CO. LTD.

(Dept. 23/E), Engineering Sales Dept., Milton Court, Westcott, Dorking, Surrey.

WORK OF NATIONAL IMPORTANCE

Skilled W/T Operators are required in practi- cally every branch of the Services—Navy, Army, Air Force as well as for the Mercantile Marine, Commercial Companies and other work of National Importance.

Many who would like to become W/T Operators are located too far away from the few schools which they might attend, whilst others cannot spare the time taken, or are too tired after a day at business to travel to and from classes.

THE CANDLER SYSTEM OF CODE TRAINING CARRIED OUT IN YOUR OWN HOME

The excellence of Candler Code Courses has accounted for the success of many thousands of present-day operators. Many readers of "The Wireless World" are taking Candler Courses. There are courses for the absolute beginner, and for those who want to improve their technique or bring up their w.p.m. speed.

If you will fill in the Coupon below and post it in an unsealed envelope (postage paid) I will as once send you a copy of the "Book of Facts," and other information. Courses supplied on Cash or Monthly Payment terms.

COUPON

Please send me a free copy of Candler "Book of Facts." NAME
ADDRESS

Post Coupon in Ltd., unsealed envelope to London Manager CANDLER SYSTEM CO. (Room 55.5.), 121, Kingsway, London, W.C.2.

Candler System Co., Ashevill North Carolina, U.S.A.

February, 1941.

TAX-FREE STOCKS

Stocks which were once "dead" are now "alive," and you may have a chance to benefit by them. List below stocks which are now "alive" and you can invest in them without paying income tax on your gains. These stocks are: MALLORY MALLORY VIBRATORS, 6% per annum.

POWER

British-made Vibrator Power Supply Units employing the WORLD-FOUR "MALLORY" VIBRATORS

OUTPUTS of up to 10 watts from either 6 volt or 12 volt battery supply

EFFICIENCY as high as 70% including specification.

LIFE, MALLORY Vibrators mean longer Life. Longer life means LOWEST COST PER UNIT ACTUAL USE.

DEPENDABILITY. In MALLORY, Vibrators are used working under ideal conditions, thus ensuring utmost dependability.

Used by the War Office, Air Ministry, G.P.O.

Let our Technical Dept. solve your porting power problem. Write for details

MALLORY VIBRATORS

VIBRPACKS

PERFECT PORTABLE POWER

MALLORY VIBRATORS

LONDON RADIO SUPPLY CO.

All communications to:—

MALLORY MALLORY VIBRATORS

WATFORD, HERTS.

25 HOT Valve.—Les, Wireless Depot, Pocklington, York. 9397

GREENWOOD

FEBRUARY, 1941.
Ode to Partridge

No. 4

A SONG

Two little peasants, Hit and Muss,
Thought they'd like to run the bus;
Raising much, and raising hands,
Caused revolutions in their lands.

Other folk looked on with smiles,
Ignorant of Dictators' wiles,
Till peaceful countries they o'erran.

Other folk looked on with smiles,
Ignorant of Dictators' wiles,
Till peaceful countries they o'erran.

What has this to do, you ask,
With Radio, our special task?
We reply to our accusers:
The answer in this little chorus:

Work a little longer,
Work a little more,
Then peaceful countries we'll o'erran.

Partridge and Staff, still battling on,
Join in the chorus of this song.

In 1940 much was done,
And 1941 must be a year.

Two little peasants, Hit and Muss,
Thought they'd like to run the bus;
Raising much, and raising hands,
Caused revolutions in their lands.

Of course we'd love to hear from you,
Whether you're Hit or Muss,
In 1940 much was done,
And 1941 must be a year.

For Gramophone or Microphone use in the Home, Office or Factory,
This Modern 5-watt, 4-Valve 220-volt A.C. AMPLIFIER CHASSIS
is an outstanding bargain.

Audpid Pick-Up Heads:
High resistance coil.

Audpid Cutting Heads
(Heavy duty), 3-ohm coil.

B.T.H. Capacitor Gramophone Motors
with 3-inch Turntable, 100-250 volts, 22/6.

SINGLE EARPIECES, with flexible metal headbands, chrome-plated, 2/6.

Electro - Magnetic Counters
Resistance 500 ohms, counting from 1 to 12,999.

SINGLE EARPIECES, with flexible metal headbands, chrome-plated, 2/6.

B.T.H. Heavy Duty Record Assembly
Including 2-gramophone, turning motor with muting switch and airmutator.

B.T.H. Heavy Duty Record Assembly
Including 2-gramophone, turning motor with muting switch and airmutator.

Ward's

WE MANUFACTURE:

Rotary Converters
DC/AC for operating P.A. amplifiers, Radio Receivers, etc.

DC/DC Rotary Converters
Formers, Small Alternators, Small DC Motors, H.T. Generators.

Main Transformers up to 10 k.v.a.

Electric Generator sets up to 50 k.v.a.

Automatic Voltage Regulators

We can also handle general small engineering work.

Full details of any of the above on request.

Chas. F. Ward
46, Farringdon St., London, E.C.4

Phone: Holborn 9703.
We train them to be successful!

RADIO SERVICE MAN, diploma, he will KNOW radio. We are completely, practically. When he earns his Course learns the subject marked X.

ELECTRICAL AND WIRELESS EQUIPMENT OF AIRCRAFT

Including Repair, Overhaul and Testing of Magneto

By S. G. Wybur. The primary object of this book is to indicate to ground engineers, in broad outline, the basic principles of design, together with notes on the care and maintenance of equipment, faults and their correct repair. A volume in the Aeronautical Engineering Series—Ground Engineers.

Fourth Edition. 5a. net.

SHORT WAVE RADIO

By J. H. Reyner, B.Sc. (Hons.). An essential handbook for those wishing to become thoroughly familiar with the subject, whether from the Services' point of view, or for experimental reasons. Covers every phase of the subject, with useful references to up-to-date books and articles on specialised branches.

Second Edition. 10s. 6d. net.

WIRELESS World

COMPONENTS—SECOND-HAND, CLEARANCE, SURPLUS, ETC.

RADIO CLEARANCE, Ltd.

PLESEXY 4-waveband Coil Units, Switching, fully screened, pre-H.F. stage, 465 k/c each; 13 metres, 5,000 metres, 217; 1-F. tran., 2/6 each extra.

2-VOLT Output Pentode Valves, 5-pin, unboxed; 27 1/2 each.

LISSEN 2-volt. Battery Pentodes, 4-pin, side terminals, P.T.2A.

LISSEN Rectifier Valve, U650; 2/11 each.

LOW-LOSS Ceramic Valve Holders, Lissem H-Q baseboard and chassis; 7-point, 1/6 each.

MANSHIRE Type Condensers, Lissem H-Q 250 D.C. working, moulded casing; with feet, 1 1/2d. each.

LOW-LOSS Short Wave Variable Condensers, ceramic insulated, brass valves; Lissem H-Q, minimum capacity, 2 micros. two types, boxed, with knobs, 160 mfd. list 7/6 each, our price 5/1 each; 20 mfd., list 5/6 each, our price 2/6 each.

ROTARY Coil Units, Lissem H-Q, 4-band from 4-61/2 metres, can be selected by turn of knob, with switch, boxed, list 15/6; our price 6/11 each.

PISTLEF Full Switch, Lissem 2-pole, 5d each; 5-point, 6d each.

YALEY Type Switches, 5-pole, 2-wav, 9d each; Yaxley switch, 6-pole, 2-wav, 2/6 each; Yaxley switches, 6-link, 3/6 each; Yaxley switches, 6-pole, 3/6 each.

AMERICAN Line Cord, with fuses, 3/6 each; 3-way American line cord, 450 ohms resistance, 3/6 each.

ROLA P.M. Speakers, latest model, 7½ in. cone, with power and pentode transformer, list 1 1/6 each.

MAGNOVOX 10H. Energised Speaker, field resistance 3,000 ohms: £3.12/6 each.

CLOCK FACED Dial, 6 in. x 5 in., with printed scale, 5-wave; 1/11 each.

STRAIGHT-LINE 3-waveband Dial; 1/11 each.


MAINS Transformers.

WEARITE R.C.1 250-525v. 80 m.s. 4-2.5 amp., 9/11 each; R.C.2 350-750v. 150 m.s. 4-2.5 amp., 4-2 amp., 1/6 each; R.C.3 500-800v. 150 m.s. 4-2.5 amp., 4-2 amp., 1/6 each; R.C.4 500-650v. 150 m.s. 4-2.5 amp., 4-2 amp., 1/6 each; R.C.5 100-watt auto transformer, 100-110 v. 20-250 v., rev. for star and delta; R.C.6 200-250v., tapped primaries; R.C.D. drop-through type, epoxied, 500, 100, 50, 25, 5, 2.5 amp., 6d. each.

CHASSIS Mounting Valve Holders, American, 4-1/2 pin, 6d each; 7-pin each; 9/11 each; 12 pin, 10d each; 18 pin, 1/6 each.

CHASSIS Mounting Valve Holders, English Cix, English 5 and 7-pin, 3d each, 6d each; valve-holders, Cixion 5 and 7-pin, chassis, 6d each; English Cix, chassis, 1/- each; Lissem Cix, chassis, 3/- each; Lissem Cix, chassis, L.C.H., 3/- each.

VOLUME Controls, Centrals, spindles length 2½in., with switch, 100, 250, 500, 1,000, 2,000, 5,000, 10,000, 100,000, 500,000 ohms, less switch, 2/6 each; 1,000, 25,000, 50,000, with switch, 2/6 each.

SPEAKER Transformers, pentode output, 2/6 each.

PRESS-BUTTON Units, size of unit 6in. x 6in. x 2in., complete with 6 press buttons and capaci tors, 4/11 each.

12-WAY Push Button Switches, 1/11 each; 11-way ditto, 1 1/2 each; 8-way ditto, 1/- each; 6-way ditto, 1/- each.

SPEAKER Cabinet, suitable for 8in. speaker; 4/6 each.

DROP Resistance, for all purposes, total resistance 550 ohms, 5 taps in steps of 500 ohms, standard for Pye, Lissen, Ever-Ready, etc.; 1/- each; Centralab Midget Volume Control, 2/6 each.

CENTRALAB Midget Volume Controls, 2,000 50,000; 50,000, 100,000, 500,000 ohms, less switch, 2/6 each; 1,000, 50,000, 100,000, with switch, 2/6 each.

SPEAKER Transformers, pentode output, 3/6 each.

PUSH Back Connecting Wire; 1d. per yard.

COIL Capacitors, 300x600; 4d. each.

T.F. Transformers, 465 k/c in 1/2; in 1/1 in. cans; 2/6 each.

CABINETS for RADIO and RADIO INSTRUMENTS

In Wood, Metal, Rexine, etc.

Details of Radio Cases for the Home will be forwarded on receipt of 2d. in stamps.

LOCKWOOD & CO. (Dept. W.)

65, LOWLANDS ROAD, HARROW, MIDDLESEX

"PHONE: BYRON 1818"

THE INSTITUTE OF WIRELESS TECHNOLOGY

(Founded in 1925. Incorporated 1932)

PROFESSIONAL MEMBERSHIP

The advantages of professional membership are open to all qualified wireless engineers.

Full information, with syllabuses, may be obtained from the Assistant Secretary, Institute of Wireless Technology, 25, Fire Drive, Palmers Green, London, N.13.

"PHONE: PALMERS GREEN 6419"
WANTED, by old-established Central London firm, a disinterested, honest and reliable man, with all makes and preferably able to cover the provinces (see 521). Apply, in writing, Applications and references by post, stating age, experience, salary, and all previous engagements, stating age, experience, salary, whether liable for military service, to the General Establishment Officer, Wellington House, Canvey Rd., Brighton. Please mark envelopes Crown St., Reading. Phone 2796.

WANTED — Civilian Morse and Procedure Instructors (male) at R.A.F. Signals School, 1/12/6 weekly, £4/12.0. to start, annually. Appointments will be given to candidates with professional experience to send and receive Morse at 25 w.p.m. essential. Experience and knowledge of Radio and telegraphy and receiving an advantage. Minimum age 30.

APPLY, in writing, Air Ministry (S.D.), W.C.2, with particulars of experience. Any third class fares repaid to candidates required to attend Selection Board.

MAN Required, to test micro telephone and valve type apparatus, works in safe area; honest and capable, available at any time, for a.m.-to-g.m. production. Call or write, 509, Oxford St., W.1, on or before 15th March 1937.

BRITISH OVERSEAS AIRWAYS CORPORATION has urgent need for skilled Radar Operators for universal service. Candidates must be British subjects by birth, or in possession of a British Passport or F.M.G.'s Marine Certificates. Preference will be given to men with any experience in radio or electrical engineering. The above posts are permanent and opportunities may become available for promotion. Write stating age, experience, etc.

BROADCASTING jobs, including Radio, Television and Telephony, with particular reference to the use of modern radio apparatus, and their application to radio and telegraphy service. These are available for engineers, key men in wartime and afterwards.

CANDIDATES are instructed to fill in forms of application and return them to the Secretary, I.P.R.E., Bush House, Walton Ave., Henley-on-Thames.

WANTED, by old-established Central London firm, disinterested, honest and reliable man, with all makes and preferably able to cover the provinces (see 521). Applications and references by post, stating age, experience, salary, and all previous engagements, stating age, experience, salary, whether liable for military service, to the General Establishment Officer, Wellington House, Canvey Rd., Brighton. Please mark envelopes Crown St., Reading. Phone 2796.

WANTED — Civilian Morse and Procedure Instructors (male) at R.A.F. Signals School, 1/12/6 weekly, £4/12.0. to start, annually. Appointments will be given to candidates with professional experience to send and receive Morse at 25 w.p.m. essential. Experience and knowledge of Radio and telegraphy and receiving an advantage. Minimum age 30.

APPLY, in writing, Air Ministry (S.D.), W.C.2, with particulars of experience. Any third class fares repaid to candidates required to attend Selection Board.

MAN Required, to test micro telephone and valve type apparatus, works in safe area; honest and capable, available at any time, for a.m.-to-g.m. production. Call or write, 509, Oxford St., W.1, on or before 15th March 1937.

BRITISH OVERSEAS AIRWAYS CORPORATION has urgent need for skilled Radar Operators for universal service. Candidates must be British subjects by birth, or in possession of a British Passport or F.M.G.'s Marine Certificates. Preference will be given to men with any experience in radio or electrical engineering. The above posts are permanent and opportunities may become available for promotion. Write stating age, experience, etc.

BROADCASTING jobs, including Radio, Television and Telephony, with particular reference to the use of modern radio apparatus, and their application to radio and telegraphy service. These are available for engineers, key men in wartime and afterwards.

CANDIDATES are instructed to fill in forms of application and return them to the Secretary, I.P.R.E., Bush House, Walton Ave., Henley-on-Thames.
MISCELLANEOUS

WANTED, in good condition, coil winder, suitable for speech coils and small transformers.—Leicester.

INDEX TO ADVERTISEMENTS

INDEX TO ADVERTISEMENTS

Classified Advertisements intended for the March Issue can be accepted up to Monday, February 10th

PRINTED IN ENGLAND FOR THE PUBLISHERS, ILIFFE AND SONS LTD., DORSET HOUSE, STAFFORD STREET, LONDON, S.E.1, BY THE CORNWALL PRESS LTD., PARIS, GIBRALTAR, MELBOURNE (VICTORIA), SYDNEY (N.S.W.), BRISBANE (QUEENSLAND), ADELAIDE (S.A.), PERTH (W.A.), AND LAUNCESTON (TASMANIA), NEW ZEALAND: GORDON & GOTCH, LTD., WELLINGTON, AUCKLAND, CHRISTCHURCH AND DUNEDIN; CANADA: THE CORNWALL PRESS LTD., MONTREAL, TORONTO, VAMBURG; UNITED STATES: THE INTERNATIONAL NEWS CO., NEW YORK.

[Telephone number: High Wycombe 1290-1]
ERIE Standard CARBON RESISTORS

(10Ω to 9.5 megΩ. Tolerance ± 10%. Wired Ends)
Type No. 4, ½ watt - 6d. Type No. 3, ¼ watt - 6d.
Type No. 2, ½ watt - 6d. Type No. 1, ½ watt - 1½d.
Type No. 0, 3-5 watt - 2½d.

The ERIE S.R.48 RESISTOR KIT
If you wish to secure the S.R.48 Resistor Kit in its original form, as illustrated, we cannot urge you too strongly to order now. It may be necessary for us at any time to substitute a cardboard carton for the pressed steel box which we are at present supplying free of charge. Remember, the S.R.48 Resistor Kit offers you the right replacement in a form equally handy for toolbag, workshop or counter display. Remember, too, that Erie S.R.48 Resistor Kit contains 48 standard carbon resistors, each ½ watt standard carbon resistors will carry a load of ½ watt respectively, allowing for a 50% overload, and in consequence this kit will cover all your requirements over the ½ watt to 2 watt range. The Erie S.R.48 Resistor Kit contains 48 standard carbon resistors, 24 each ½ watt, and 1 watt in an assortment of most used values.

ERIE REPLACEMENT VOLUME CONTROLS
Erie Replacement Volume Controls are the only fitting companions for Erie Resistors.

STANDARD CONTROLS.
Without Switch - 2½d. With S.P. Switch - 3½d.
With D.P. Switch - 3d.
Non-standard Spindles 3½d. per control extra.
Centre tap controls, dual and gang controls have been withdrawn temporarily.

ALSO Vitreous Wirewound Power Resistors.
Send for complete Price Lists.

ERIE RESISTOR LTD.
Carlisle Road, The Hyde, Hendon, N.W.9.
Telephone: Caladale 8011.

Enjoy the long evenings WITH

The VOIGT MOVING COIL PICK-UP
Output 50 m.v. Price 5/. VOIGT PATENTS LTD. Phone: STDenham 6646
Delivery 8-10 weeks. The Courts, Silverdale, B.E.50.

The Wireless World DIARY
& Reference Book for 1941
A pocket compendium for the wireless enthusiast
Price 2½/- net
By post, including Purchase Tax, 2½/
ILIFFE & SONS, LTD.,
Dorset House, Stamford Street, London, S.E.1

TRANSFORMER LAMINATIONS

EIGHT STANDARD SIZES
CORE WIDTHS ½" to 1½" (E's and I's)
AVAILABLE FROM STOCK
A Comprehensive Bulletin together with details of Associated Covers and Clamps with design data will be sent to manufacturers on request.

BRITISH ROLA LIMITED
MINERVA ROAD, PARK ROYAL, N.W.10
WILLESDEN 4322

Cheerfulness
When cheerfulness is in danger of disturbance, light a 'Player,' and with a few 'puffs' put trouble in its proper place. The friendly Sailor, as always, stands for cheery contentment and a guarantee that quality and purity remain unchanged.

KEEP THAT HAPPY EXPRESSION
Player’s Please

N.C.C.547B
If it is a matter of wireless apparatus for broadcasting or television; for naval or military purposes; for marine or air communications; for mobile or fixed aids to navigation; for any application whatever to practical requirements... ask Marconi's.

Because now, as in the earliest days of wireless experiment, Marconi's are pioneers in design and leaders in technical efficiency.