MULTI-PURPOSE TEST METER
Ten years ago we introduced the first British-made low-loss ceramic. To-day the range of Frequentite components covers more than a thousand pieces of every shape and size. With such a store of manufacturing experience we are able to offer advice backed by practical knowledge on your insulation problem. Please consult us before you finalize your design.

STEATITE & PORCELAIN PRODUCTS LTD.

Head Office: Stourport-on-Severn, Worcs. Telephone: Stourport 111.

Telegrams: Steatite, Stourport.
THE demand for "AVO" Electrical Testing Instruments for H.M. Forces is now such that we regret we can no longer accept orders for ordinary Trade or private purposes. Orders already accepted will be despatched as soon as possible.

Orders from Government Contractors or Essential Works can be accepted, but they must bear a Contract Number and Priority Rating, and even these orders will necessarily be subject to delayed delivery.

We take this opportunity of expressing to the Electrical and Radio Trades our appreciation of their co-operation and patience during the considerable and unavoidable delays that have occurred in executing their orders. We feel confident that our customers will appreciate that we, in common with other manufacturers, are prompted by the universal desire to assist towards a speedy and satisfactory termination of hostilities.
Clearing all Obstacles...

In our last announcement we emphasised our traditional caution in development.

In the early days of manufacturing Toggle Switches we were faced with many obstacles—tools, moulds, materials, production, quality, precision, price—but we surmounted them all and went right ahead.

The result is that we are in "full cry" helping many manufacturers to get their equipment on to the field in time.

Perhaps we can help you too.

4 amp. 250v. S.P. toggle switch. Also available in S.P. 2-way, D.P. on and off and 2-way. With bakelite or metal levers. Also in 6 amp. capacity.

DIAMOND SWITCHES
Famous for Fifty Years
GUNNERSBURY AVENUE, CHISWICK, W.4

Between us windings

HY-MEG
...makes Bigger & Better Production

HY-MEG IMPREGNATING VARNISH
V. 6934. Made specially for enamelled wire windings; but is equally suitable for Rayon and Glass-covered wire.

IMPREGNATORS of wire windings, especially fine wire, who are troubled with problems such as the attacking of enamelled wire or the failure of the impregnating medium under tropical service conditions, are advised to send for particulars of the new HY-MEG Process.

Briefly, HY-MEG provides complete impregnation with perfect through-drying by polymerisation even in the deepest and most complicated windings, and produces in shorter-than-usual stoving time a solid homogeneous plastic which safely withstands extreme working conditions and tropical heat. These facts are evidenced by the general Government approval of HY-MEG impregnated components.

HY-MEG can be used with confidence in the knowledge that supplies are always available; both quality and quantity of your production will be improved.

Put YOUR Problem before our BRAINS TRUST

LEWIS BERGER & SONS LTD (Established 1760) LONDON E.9 'Phone: AMHerst 3321

Manufacturers of Insulating Varnishes and Enamels.
"OUT OF RESISTANCE TO AGGRESSION
SHALL COME
LASTING BENEFIT TO MANKIND"

A great truth; and equally true in other ways for it is from the function of a resistance in an electrical circuit that millions of complex instruments, upon which we are so dependent, derive their results. It is essential however, that the quality of the resistance in all cases shall be of the highest.

In a world where the use of electrical and radio devices has reached an unprecedented peak, the many and varied conditions in which resistances are required can be but inadequately imagined. Somebody must know about such things however, and who better than we whose care and privilege it is to develop and manufacture all kinds of dependable resistances to satisfy the most exacting modern operating demands.

What a wealth of technical excellence in resistances will be available to industry when better times arrive.

DUBILIER
CONDENSER CO. (1925) LTD.
Performance in communication instruments is measured by a highly specialised range of testing apparatus. Nothing so simple as the micrometer—but just as accurate in measurement.

The production of this test gear is an art which Marconi Instruments have made their own; for within the Marconi organisation are unique facilities for the anticipation, and solution, of major testing problems.

Thus, for manifold requirements, there is today a Marconi measuring device, created and fabricated by specialists steeped in knowledge and experience since the earliest days of Radio. And in this specialised field our advisory service is both resourceful and the best informed.

MICROMETERS WONT MEASURE MICROVOLTS

MARCONI Instruments Ltd

ST. ALBANS • HERTS • TELEPHONE 4323

1916

It's happening in Radio, too!

Between Verdun and Tunisia is a great advance in weapons and technique. But while paratroopers fight in the public eye, the radio war goes on "behind the scenes." The benefits of modern development will not be seen until domestic radio sets are built again. Masteradio are looking ahead to that happy time and invite you to register NOW without obligation for post-war priority, stating home or car radio interest. Write: Masteradio, Ltd., Watford, Herts.

ROLA

LOUD SPEAKERS
THE WORLD'S FINEST REPRODUCERS
TRANSFORMER LAMINATIONS
Core Widths 3/8 to 1" (E's and I's.)
EIGHT STOCK SIZES
A Comprehensive Bulletin together with designs of Associated Covers and Clips with design data will be sent to manufacturers on request.

BRITISH ROLA LIMITED

MINERVA ROAD • PARK ROYAL • N.W.10 • W3 London 4322
October, 1943

WIRELESS WORLD

LONDON CENTRAL RADIO STORES

SPECIAL!
MANUFACTURERS’ STOCK

MAINS TRANSFORMERS
200/250 v. C.T., 200-0-200 v. C.T., 230 v. A.C., 50 v. 1 Phase. 400-0-400 v., 400 m.a. 5 v., 4 v. 2 a., C.T., 4 v. 3 a. Size 4 x 5 x 3 deep. Weight, 12 lb. Post etc., 2/. 200/250 v. C.T., 200 m.a. 4 v. 5 a., 4 v. 2 a., C.T., 4 v. 3 a. Size 4 x 4 x 3. Weight, 10 lb. Post etc., 24.5/. 108/6. 45/6. 3/6. 2/-. 15/6.

CHOKES
140 ohms 150 m.a. Size 4in. x 2in. x 3in. Weight, 4 lb. Post etc., 24.5/. 25/6. 1/6.

SPEECH TRANSFORMERS

MAINS SPEAKER TRANSFORMERS
Heavy duty for Pentori, output 1 v. 21/8.

MILLIAMMETERS

YAXLEY Type WAVE-CHARGE SWITCHES
4-way, 3-bank, with shielded oscillator section. Length from stop plate approx. 5 in., spindle 4in., 5/6. 5-way, 4-bank, with 3 screened sections, adaptable to many uses. Length from stop plate approx. 6in., spindle 4in., 6/6. 3-way, 3 double banks, without shields, 2in. spindle. Length 6in., 6/6. Post, etc., 6/6 each.

EX-BAIRD High Voltage TELEVISION TRANSFORMERS
6,000 v. approx. Fitted with porcelain insulated terminals, as illustrated. Size 8 x 4 x 3in. 4,000 v. approx. Size 4in. x 3 1/2 x 3in. 21/6. 10/6.

ELCO-MAGNETIC COUNTERS

TRIMMER CONDENSERS

CELESTION 8in. P.M. LOUD SPEAKERS

AMERICAN VIBRATOR UNITS

I.F. TRANSFORMERS, 465 kc.
Post etc., 8/. 7/6 per pair.

J.G. CONDENSERS
4-4 mfd. 70 v. D.C. wkg. 2/6. Post 3d.

7-PIN CERAMIC VALVEHOLDERS
1/6. Post, etc., 3d.

PLUGS AND JACKS.
These ex-Govt. Jacks have powerful phosphorbronze springs ensuring a perfect contact. Overall length, including 1/16 threaded shank, 3in. Supplied with nut for panel mounting. Price complete with best quality Plug (as illustrated). Post etc., 5/6.

ON-OFF TOGGLE SWITCHES
Finest quality. Turn movement. 1in. spindle. Post, etc., 3d. extra 2/6.

MERCURY SWITCHES (Brand New)
These switches are of the best manufacture and not easily obtainable today. Quick make and break and will carry 5 amps. Many hundreds of useful applications. Small quantity to clear. Price Post etc., 8/6.

YAXLEY PATTERN SWITCHES
5-way, single bank, with on-off mains switch, carrying 1 amp. at 250 v., 2in. spindle, with knob. 5/6. 3-way, single bank, 1in. spindle, with knob. 2/9. Post, etc., 6d. extra.

MAKE AND BREAK UNITS
Ex-famous manufacturer, brand new electro-magnetic make and break relays to operate on 44 volts at 15 m.a. Price Postage 4d. extra.

LONDON CENTRAL RADIO STORES, 23, LISLE ST. GERrad 2969 LONDON, W.C.2
MORSE PRACTICE EQUIPMENT FOR CLASSROOM AND INDIVIDUAL TUITION

Schools Type Oscillator, A.C. operated, 2½ watts output, tapped for varying numbers of telephones, or loudspeaker

Junior Oscillator, A.C. operated, for up to three pairs of telephones

Battery Operated Oscillator, works from G.B. battery, or 2-volt accumulator

Practice type keys:
- Metal U.S.A. Pattern
- G.P.O. Bar type on wooden base

Operating type keys:
- G.P.O. Bar type, polished lacquered brasswork on wooden base

Loudspeakers:
- Bin. P.M. Loudspeakers in polished wood cases, size 10½ in. high by 1½ in. wide by 6 in. deep, with output transformer tapped for pentode and triode
- Or in Rexine covered cabinets (same size) in grey, blue or brown

Short Wave Tuning Condensers:
- Wavemaster, ceramic insulation, 0.0001, 0.00016, 0.0016 each
- Eddystone Cat. No. 978 Trimmers
- Cyldon, ceramic insulation, 0.000025 each

Mica Trimmers:
- Mica, high-grade trimmers, in 40pf, 250pf, 450pf, 100µf + 100µf each

Crystal Filters:
- Simmonds Band Pass Crystal Filter Units for 465 Kc/s available in alternative bandwidths, 300 c/s and 1500 c/s each

Additional charge of 1/- for postage and packing on orders below 10/-

We have facilities for the Service of communication and normal broadcast receivers. Private customers must please realise that GOVERNMENT PRIORITY repairs necessarily take precedence.

14 Soho Street, Oxford Street, London, W.1
Telephone: Gerrard 2089
We are available 9 a.m. till 6 p.m. for OFFICIAL business, but please note our SHOP HOURS—10 a.m. to 4 p.m., (Saturdays 10 a.m. to 12 noon.)
Sickles Midget Transformer and Trimmer.

Our greatly increased manufacturing facilities in the War effort, coupled with our added production knowledge, will materially benefit you 'when Victory is won.' Quality has always been the dominant consideration in the design—in the choice of materials and in the method of manufacture of our products; and we look forward with confidence to the day when we shall once again continue our relationship with the Radio Industry of Great Britain with greater cordiality than ever before.

I.F. TRANSFORMERS
AERIAL AND OSCILLATOR COILS
TRIMMER AND PADDLER CONDENSERS
COIL FORMS, etc.

* The F. W. SICKLES Co.
CHICOPEE, MASS., U.S.A.

RAYTHEON - PROGRESS -

They who are fighting under every climatic condition know the superior performance qualities of RAYTHEON tubes . . . their unfailing response even under wartime rigid requirements. They will not forget that RAYTHEON tubes in war even surpassed their peacetime records for long life, trouble-free operation and high quality performance.

The RAYTHEON trade mark will be familiar to thousands of servicemen and dealers when they come back to their peacetime work . . . they will not forget that RAYTHEON tubes unfailingly performed their duty in every emergency.

WORLD'S LARGEST EXCLUSIVE TUBE MANUFACTURERS

* RAYTHEON PRODUCTION CORPORATION
NEWTON, MASS., U.S.A.

FOR THE FUTURE

These Manufacturers will help solve your post-war problems.

Register your name now for full details which will be sent you when supply conditions again permit.

Frank Heaver Ltd.
Kingsley Road
Bideford
N. Devon

P. R. MALLORY & CO. INC.
INDIANAPOLIS, INDIANA,
U.S.A.

Radio and Electronics Division

WHEN you think of plastic mouldings for post-war products we suggest you consult the Kurz-Kasch " Plastic Round Table "—a group of specialists in design, materials, tool-up and moulding. Kurz-Kasch can give you complete service under one roof, one responsibility.

KURZ-KASCH INC.
Moulders of Plastics,
DAYTON • OHIO
U.S.A.
ANNOUNCEMENT

W. M. R.

We regret that owing to pressure of Service requirements, orders for Loudspeakers and Microphones can only be accepted when accompanied by Government Contract Numbers.

A comprehensive range of Instruments is being manufactured, including Loudspeaker Units from 2½" diameter to 12" diameter; Special High Power Loudspeakers in Cabinets suitable for Tropical conditions; Hand Microphones, also Special High Sensitivity Compact Light-weight Microphones for field use; Telephone Receivers, Moving Coil Head-phones, etc.

GOODMANS
INDUSTRIES LIMITED

WEMBLEY, MIDDLESEX.

LOUDSPEAKER & TELEPHONE ENGINEERS

M.R. SUPPLIES
offer from stock the following brand new RADIO, ELECTRICAL and INDUSTRIAL EQUIPMENT of our usual dependable quality. All prices nett cash.

TOGGLE PRESSES (by S.T.C.). Senior and new Minor models here in stock. Double-acting, precise tool, suitable for all small pressing operations in many trades. Senior weight 30 lb., pressure 1 ton, £30 nett. Minor weight 20 lb., pressure ½ ton, £25 nett. (Supplied by us to many important users.)

SYNCHRONOUS TIME SWITCHES. 200/250 v. 50 c. Capacity, 10 amps. Precision made, complete movements, without housing. Fitted with removable solar device which automatically adjusts the positions of the riders to switch "on" at dusk and "off" at dawn or vice versa, with instant reset for any month and for B.S.T. and R.B.S.T. This device can be readily dispensed with if not required, using the two spare riders provided. Full instructions supplied. Self-starting, silent and brand new, 72/6. Also special model in 1½ in. by 4½ in. by 8½ in. weatherproof cast iron housing, same voltage and capacity, with fully enclosed gearing, 97/6. A real opportunity for factory, laboratory and domestic use in process timing, time signalling, blackout warning, alarm clock, switching radio, etc.

LONGER RELAYS. 330/412 v. A.C. 5-watt coil, with triple-pole change-over 6 a.m. high tension switching, 42/6. Also U.S.A. make, enclosed, with 4½ in. D.C. coil (150 m. a.) with 6-watt single-pole "make" switch, 9/6.

ROTHERRMEL-BRUSH PIEZO-CRYSTAL MICROPHONES. Continuation of our very popular offer of these specially housed 1,103 Microphones. Fitted knuckle-joiner for angle flexibility and direct-fixing mounting base (4 in. thread). Response level to about 0.000 db. Sensitivity 60 db. with about 5 ft. screened lead, 7½/-.

Suitable Floor Stands, chromium, folding to 2 ft. ext. to 5 ft. £3, 76.

ROTHERRMEL-BRUSH MINIATURE MICROPHONES (Piezo-Crystal). Only 1¼ in. dia. and capable of very high performance, in aluminium housing with short screened lead but no front grille. Made for deaf aids but perfect for all other microphone uses, cardophone, piano and guitar replier, etc., and useful in research dept., £20.

TRANSFORMER BOBBINS. Prim. 200/400 v., 250 Primary. i-350 Secondary, 75 ma., 4 v., 3 a., 4 v., 4 a. Core opening ⅛ by 1½ by 1½ in. through. Semi-standard replacement for many sets incl. Marconi, EMI, Liebig, etc. Here is the solution to re-wind problem. 18/6.

BATTERY CHARGER KITS. Comprising S.T.C. 9 v. 2-watt coil, 1½ amp. Metal Rectifier and appropriate 220/240 v. Mains Transformer, the pair, 22/6. (Or with high-grade 0.25 Ampmeter by Ferranti, Weston, etc., 39/6.) Diagram supplied.

ROTHERRMEL PIEZO-CRYSTAL PICKUPS. Limited delivery of the latent black bakelite model at pre-war price, plus P.T. total, 53.18.9. Early application advised.

PUBLIC ADDRESS SPEAKERS. Latest model G.E.C. comprising 10-watt P.M. Projector Unit (2 ohm Imp.) with built-in line transformer, and 400 c.w. round all-metal Horn, £10.6.0. (Garr. 7½ ins.) Also G.E.C. INDUSTRIAL SPEAKERS in 8 in. metal drum with front and rear grille and built-in multi-transformer, handling 5 watts, 45/6. (Packing and carriage, 9/6.)

FADE DUMMIES. Constantly rated and both with carbon break slider switch and "on" "off" "position. For controlling stated load from full brightness to blackout at 220/240 v. With screw motion drive and hand-wheel, 1,000 watts, 26/6.0, 1,000 watts, 27/10. (Fart. carr. 3/14 in returnable case).

ER OS S HED PHEN ONS. new, 5,000 ohms, with head-band. Also available, second-hand, 5,000 ohms, 3/9 each single phone.

CENTRAL VOLUME CONTROLS. Following range only: 5,000, 10,000, 50,000, 240,000, 600,000 ohms and 1 megohm. Loss switch, 2/11. With switch, 6/3.

Please include sufficient for postage and packing. Excess refunded.

(Phone: Museum 2938)

TRANSFORMERS FOR THE TROPICS

Wooen

Vacuum Impregnation ensures reliable service under most arduous conditions.

Our Tropical type Transformers are made to specifications D.T.D. 1000 or K. 110

TRANSFORMER CO.
Thorley Street, Wolverhampton
Tel.: Wolverhampton 2829

makers of transformers, power packs, & special reception & transmitting apparatus
SYMBOLS OF PRECISION

MAZDA

RADIO VALVES

THE EDISON SWAN ELECTRIC CO. LTD. 155, CHARING CROSS RD., LONDON, W.C.2

For full particulars write to Technical Service Department
Combining a very wide range of measurements—
with high sensitivity and accuracy.
Self-contained A.C. and D.C. Volt ranges available up to 5,000 volts.
A.C. and D.C. Current ranges from 50 µA to 10 Amperes full scale.
Resistance measurements from 0.1 ohms to 50 Megohms with internal batteries.
Capacity and Inductance measurements can be made with special adaptor.
Some delay in delivery is unavoidable, but every effort is being made to meet Trade requirements.

Nett Price

MODEL 83A (4,000 ohms per volt A.C. and D.C.) 15 gns.
MODEL 83C (20,000 ohms per volt A.C. and D.C.) 19 gns.

Write for complete specification to:

TAYLOR ELECTRICAL INSTRUMENTS LIMITED
MONTROSE AVENUE, SLOUGH, BUCKS

Wartime installations show more conclusively than ever that you can...
Exide
BATTERIES
FOR RADIO

are playing their part in the
great national effort. They are
as indispensable to the pur-
poses of war as to those of peace

THE CHLORIDE ELECTRICAL STORAGE COMPANY LIMITED
Grosvenor Gardens House, Grosvenor Gardens,
London, S.W.1
The outstanding characteristics of U.I.C. Ceramic Pot Condensers are their high break-down strength, low loss factor, and small dimensions. Test Voltage up to 15 KV D.C. or 10 KV R.M.S. Working Voltage up to 7.5 KV D.C. or 5 KV R.M.S. Radio Frequency Working Load from 2.5 to 15 KVA according to type. Capacity Range 20pF to 1250pF. Made to Specification K. 110. Full details on request.

UNITED INSULATOR CO. LTD.
12-22, LAYSTALL STREET, LONDON, E.C.1
Tel.: TERMINUS 7383 (5 line) Grams: Colonel, Smith, London
7-Valve Superhet Receiver

Specification:
- **WAVEBAND:** 15/22, 200/550, 800/2,000 metres. Separate tone and volume control, gramophone pickup connections.
- **Circuit in brief:** Triode Hexode Freq. Changer followed by 46K & I.F. Stage which includes High Efficiency Iron-cored 2nd I.F. Quality Diode Detector feeding Triode Amplifier followed by Phase Inverter and two 6V6 valves in Push Pull

- **Valve:** giving a Power Output of 8.5 watts. Contained in very well finished walnut veneered cabinet. 200/250 A.C.
- **Horizontal Model, illustrated (Dim. 24in. x 12in. x 11in.)** 33 guineas
- **Vertical Model (Dim. 28in. x 16in. x 11in.)** 29 guineas

These radio sets can be heard in our showrooms.

Amplifier with valves suitable for gramophone and radio inputs,

Price £35 10 0

Amplifier with valves and 20in. Horn P.A. Speaker and output transformer,

Price £45 0 0

VOLATAGE DROPPING & LINE CORD REPLACEMENT RESISTORS

suitable for every make of radio receiver, comprehensive ranges mentioned below.

- 500 ohms 2 amp. Cables mounted, heavy duty agaroo- bath former, 2 adjustable tappings, 8/6 each; as above, 600 ohms 2 amp.
- 3 amp. AG673, tapped 60, 100, 150 and 500 ohms, suitable for Ecko and other makes, 4- each.
- 3 amp. 560 ohms tapped 100, 150, 180, and 300 ohms, for Harkay, etc., 4-6.
- 3 amp. 510 ohms, tapped 100, 150, 250 and 500 ohms, for Cosmos, etc., 4-6.
- 3 amp. 720 ohms, with adjustable slider, suitable for Marconi, etc.
- 3 amp. 517 ohms, tapped 80, 200, 387 ohms, for Ferranti, etc., 7-8.
- 3 amp. 1,214 ohms, tapped 82, 92, 250 and 530 ohms, for Decca, etc., 7-8.
- 2.75 ohm, tapped 45, 45, 322, 160 and 193 ohms, for Ferguson, etc., 6-6.
- 3 amp. 822 ohms, tapped 45, 45, 220, 186 and 317 ohms for Regency, etc., 6-6.
- **SPECIAL HEAVY DUTY RESISTORS,** 5- watt, for h.t., etc., from 100 to 2,000,000 ohms, with upper clips, 1- each. Similar to above, but 10 watt, 2-3.
- 50 ohm centre tapped Resistor, tapped at 35 ohms, for pilot lamps, 2.
- **3 amp. LINE CORD RESISTOR,** with slider, any resistance obtained up to 7200, 7-8.
- **SPECIAL MULTI-CORE RESISTOR,** 5 tappings, 55 ohm, 1 tapping 760 ohm, with slider, 3-8.

RADIO MECHANIC’S TOOLS. Set of 3 screwdrivers, bright steel shaft, insulated handles, also set of 3 Box spanners, 4, 5 and 6 B.A. with Tommy Bar. 10/- complete set.

RADIO E. SCHEARIN’S ELECTRIC SOLDERING IRON, 230/250v. A.D.C. Nickel plated body, pencil holder, complete set with 5 tips.

LINE CORDS, 9 Way, 560 ohms 4-8; 480 ohms, 11-12, 1000 ohms 10-11; 2 Way heavy duty, 3-8; 560 ohms, 10-11; 480 ohms, 7-8; 600 ohms 5-1.

TUBULAR PAPER CONDEN SERS, 350-550 v. D.C. working. 5,000, 10,000, 20,000, 40,000, 60,000, 100,000, 150,000, 200,000, 300,000, 400,000, 600,000, 1,000,000, 1,500,000 etc., 10/-.

FLAT FLEX, 9-way, 14/86, 18/20 gauge, length, suitable for amplifiers, extending speakers, remote control and many other purposes. Finest quality pre-war manufacture. 7/- per coil.

L.F. CORDS, 20 b.v., 100 ma., brand new 1/6.

WALNUT VENEERED LOUDSPEAKER CABINETS. Modern design, fitted silk and bailie grata, microphone and radio inputs, with and without switch, 1 period output transformer, 1 multi-stage output transformer, 3 mini-insulating taps, 6 assorted line cord replacement resistors, 6 lengths 2-way 300 ohm line cord.

SCREWED INTERLACED FLEXIBLE MICROPHONE CABLE. Single, Special Offer, 6d. per yard. Pre-war Super Quality, 1/3 per yard.

RADIO MECHANIC’S TOOLS. Set of 3 screwdrivers, bright steel shaft, insulated handles, also set of 3 Box spanners, 4, 5 and 6 B.A. with Tommy Bar. 10/- complete set.

RADIO E. SCHEARIN’S ELECTRIC SOLDERING IRON, 230/250v. A.D.C. Nickel plated body, pencil holder, complete set with 5 tips.

LINE CORDS, 9 Way, 560 ohms 4-8; 480 ohms, 11-12, 1000 ohms 10-11; 2 Way heavy duty, 3-8; 560 ohms, 10-11; 480 ohms, 7-8; 600 ohms 5-1.

TUBULAR PAPER CONDEN SERS, 350-550 v. D.C. working. 5,000, 10,000, 20,000, 40,000, 60,000, 100,000, 150,000, 200,000, 300,000, 400,000, 600,000, 1,000,000, 1,500,000 etc., 10/-.

FLAT FLEX, 9-way, 14/86, 18/20 gauge, length, suitable for amplifiers, extending speakers, remote control and many other purposes. Finest quality pre-war manufacture. 7/- per coil.

L.F. CORDS, 20 b.v., 100 ma., brand new 1/6.

WALNUT VENEERED LOUDSPEAKER CABINETS. Modern design, fitted silk and bailie grata, microphone and radio inputs, with and without switch, 1 period output transformer, 1 multi-stage output transformer, 3 mini-insulating taps, 6 assorted line cord replacement resistors, 6 lengths 2-way 300 ohm line cord.

No pro-forma invoices.

CALLERS to Show Rooms, 61 HIGHGATE HIGH ST., N.6 Phone: MOUNTview 9432.

PLEASE NOTE

Owing to staff shortage and volume of orders we are unable to accept C.O.D. orders unless other notice.

CASH WITH ORDER ONLY.

POST ORDERS to Dept. M.O.2, 3 HAMPSTEAD LANE, N.6
"There's a gentleman here from the people who do that quick cable binding system—Hellermann—We asked him to call and demonstrate."

Our Advisory Service will be pleased to co-operate.

HELLERMANN ELECTRIC LTD. GOODTRIG WORKS, OXFORD. Oxford 2403

It's just as perplexing to choose the right type of Sound Equipment from the many that are normally available. Many P.A. Systems look the same on superficial examination. But only in actual service and performance does their true character develop. Which is, of course, one of the principal reasons why so much R•S Equipment is in demand in directions that precludes our supplying other than very small quantities of a greatly restricted range for normal purposes. If however, you would like to know just what Sound Equipment bearing the name R•S you can still offer to your customers, we'll gladly send you our latest catalogue if you'll send a penny stamp.

R • S Amplifiers, Ltd., 3-4, Highfield Road, Shepperton, Middlesex. Telephone: Walton-on-Thames 1019.

When they have finished their vital war service

DAGENITE

Pertrix

—the dependable BATTERIES will again be available to all

FOR RADIO, CARS, MOTOR CYCLES, COMMERCIAL VEHICLES, AIRCRAFT, ETC

Sales Concessionaires: HOLSun Batteries LTD.

137 Victoria Street, London, S.W.1.
To minimise the use of rubber for cable dielectrics and sheathings—a thermoplastic material (polyvinyl chloride or P.V.C.) has been approved by the Cable Planning Officer of the Ministry of Supply.

We have been prominently associated with the successful development of P.V.C. and are manufacturing all types of P.V.C. cables and flexible cords in accordance with Amendment No. 3 (June 1943) to B.S. 7: 1939.
We have had a long experience in the manufacture of all kinds of Cables and Wires, Static Condensers, Insulators and Ironwork, Telephone Cords and Copper Earthing Rods, for Radio use.

British Insulated Cables Ltd.,
Cable Makers and Electrical Engineers
Head Office: Prescot, Lancs. Tel. No: Prescot 6571

War Savings Campaign

Yes! Talkies in Daylight!

AND IN THE OPEN AIR...

The large fleet of Daylight Mobile Cinemas operated by British Films, Ltd., cover thousands of miles each year, bringing entertainment news and views to places and people so remote or so busy that "the pictures must come to the people." Naturally, in these days, such a valuable service is fully engaged on work of National Importance; but fullest information on the post-war possibilities of the Mobile Daylight Cinema as it can affect your business will gladly be sent on request.

British Films Ltd.
Head Office: 199, Piccadilly, London, W.I. Tel.: Regent 2628
Works: 260, High Rd., Balham, London, S.W. Tel.: Battersea 8506

Astor Boisssier & Lawrence Ltd.
Middlesex Oil & Chemical Works
West Drayton, Middlesex
ERSIN MULTICORE WIRE is now restricted to firms on Government Contracts and other essential Home Civil requirements. Firms not yet using Multicore Solder are invited to write for fuller technical information and samples.

WHY THEY USE CORED SOLDER
Cored solder is in the form of a wire or tube containing one or more cores of flux. Its principal advantages over stick solder and a separate flux are:

(a) it obviates need for separate fluxing
(b) if the correct proportion of flux is contained in cored solder wire the correct amount is automatically applied to the joint when the solder wire is melted. This is important in wartime when unskilled labour is employed.

WHY THEY PREFER MULTICORE SOLDER. 3 Cores—Easier Melting
Multicore Solder wire contains 3 cores of flux to ensure flux continuity. In Multicore there is always sufficient proportion of flux to solder. If only two cores were filled with flux, satisfactory joints are obtained. In practice, the care with which Multicore Solder is made means that there are always 3 cores of flux evenly distributed over the cross section of the solder, so making thinner solder walls than single cored solder, thus giving more rapid melting and speeding up soldering.

ERSIN FLUX
For soldering radio and electrical equipment non-corrosive flux should be employed. For this reason either pure resin is specified by Government Departments as the flux to be used, or the flux residue must be pure resin. Resin is a comparatively non-active flux and gives poor results on oxidised, dirty or "difficult" surfaces such as nickel. The flux in the cores of Multicore is "Ersin"—a pure, high-grade resin subjected to chemical process to increase its fluxing action without impairing its non-corrosive and protective properties. The activating agent added by this process is dissipated during the soldering operation and the flux residue is pure resin. Ersin Multicore Solder is approved by A.I.D., G.P.O., and other Ministries where resin cored solder is specified.

PRACTICAL SOLDERING TEST OF FLUXES
The illustration shows the result of a practical test made using nickel-plated spade tags and bare copper braid. The parts were heated in air to 250°C, and to identical specimens were applied 3/16" lengths of 14 S.W.G. 40/60 solder. To sample A, single cored solder with resin flux was applied. The solder fused only at point of contact without spreading. A dry joint resulted, having poor mechanical strength and high electrical resistance. To sample B, Ersin Multicore Solder was applied, and the solder spread even over both nickel and copper surfaces, giving a sound mechanical and electrical joint.

ECONOMY OF USING ERSIN MULTICORE SOLDER
The initial cost of Ersin Multicore Solder per lb. or per cwt. when compared with stick solder is greater. Ordinary solder involves only melting and casting whereas high chemical skill is required for the manufacture of the Ersin flux and engineering skill for the Multicore Solder incorporating the 3 cores of Ersin Flux. However, for the majority of soldering processes in electrical and radio equipment Multicore Solder will show a considerable saving in cost, both in material and labour time, as compared either with stick solder or single cored solder. Cored solder ensures that the solder and flux are put just where they are required, and by choice of suitable gauge, economy in use of material is obtained. The quick wetting of the Ersin flux as compared with resin flux in single core resin solder ensures that with the correct temperature and reasonably clean surface, immediate alloying will be obtained, and no portions of solder will drop off the job and be wasted. Even an unskilled worker, provided with irons of correct temperature, is able to use every inch of Multicore Solder without waste.

ALLOYS
Soft solders are made in various alloys of tin and lead, the tin content usually being specified first, i.e. 40/60 alloy means an alloy containing 40% tin and 60% lead. The need for conserving tin has led the Government to restrict the proportion of tin in solders of all kinds. Thus, the highest tin content permitted for Government contracts without a special licence is 45/55 alloy.

The radio and electrical industry previously used large quantities of 60/40 alloy, and lowering of tin content has meant that the melting point of the solder has risen. The chart below gives approximate melting points and recommended bit temperatures.

<table>
<thead>
<tr>
<th>ALLOY</th>
<th>Equivalent Solidus C°</th>
<th>Recommended bit Temperature C°</th>
</tr>
</thead>
<tbody>
<tr>
<td>45/55</td>
<td>M 183° 227° 267°</td>
<td>267°</td>
</tr>
<tr>
<td>40/60</td>
<td>C 183° 236° 278°</td>
<td>278°</td>
</tr>
<tr>
<td>30/70</td>
<td>D 183° 257° 297°</td>
<td>297°</td>
</tr>
<tr>
<td>18.5/B1.5</td>
<td>N 187° 277° 317°</td>
<td>317°</td>
</tr>
</tbody>
</table>

VIRGIN METALS—ANTIMONY FREE
The wider use of zinc plated components in radio and electrical equipment has made it advantageous to use solder which is antimony free, and thus Multicore Solder is now made from virgin metals to B.S. Specification 219/1942 but without the antimony content.

IMPORTANT OF CORRECT GAUGE
Ersin Multicore Solder Wire is made in gauges from 10 S.W.G. (.128"-3.251 m/ms) to 22 S.W.G. (.028"-.711 m/ms). The choice of a suitable gauge for the majority of the soldering undertaken by a manufacturer results in considerable saving. Many firms previously using 14 S.W.G. have found they can save approximately 33%, or even more by using 16 S.W.G. The table gives the approximate lengths per lb. in feet of Ersin Multicore Solder in a representative alloy, 40/60.

<table>
<thead>
<tr>
<th>S.W.G.</th>
<th>Feet per lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>44.5</td>
</tr>
<tr>
<td>13</td>
<td>58.9</td>
</tr>
<tr>
<td>14</td>
<td>92.1</td>
</tr>
<tr>
<td>16</td>
<td>163.5</td>
</tr>
<tr>
<td>18</td>
<td>481</td>
</tr>
</tbody>
</table>

CORRECT SOLDERING TECHNIQUE
Ersin Multicore Solder Wire should be applied simultaneously with the iron, to the component. By this means maximum efficiency will be obtained from the Ersin flux contained in the 3 cores of the Ersin Multicore Solder Wire. It should only be applied direct to the component irons to tin. The iron should not be used as a means of carrying the solder to the joint. When possible, the solder wire should be applied to the component and the bit placed on top, the solder should not be "pushed in" to the side of the bit.
No Plan

For lack of wise planning many a job starts off on the wrong foot. Man without plan gets nowhere and the first layout affects all that follows.

Simmonds AEROACCESSORIES speed up manufacture, simplify assembly and save both material and manpower. But they cannot do their best work if they are brought in belatedly, as an afterthought. To contribute most to the product, they must first figure in the plan.

In these decisive days no one can afford to be wise after the event.

SIMMONDS

In high service to
AERONAUTICAL, INDUSTRIAL & MARINE Construction

THE SIMMONDS NUT - PINNACLE NUT - SPIRE NUT - SIMMONDS INSTRUMENTS, CONTROLS AND ELECTRONIC PRODUCTS - FRAM OIL AND ENGINE CLEANER

SIMMONDS AEROACCESSORIES LTD.
GREAT WEST ROAD, LONDON
A COMPANY OF THE SIMMONDS GROUP
LONDON MELBOURNE MONTREAL PARIS NEW YORK
"HYPERLOLOY" TRANSFORMERS AND CHOKEs

A range of high-performance, space-saving Components designed to meet the most exacting requirements of modern Electronic and Communications equipments.

- Small in size
- Weighing only 2 oz.
- Meeting the most rigid Tropical Specification
- Easily mounted in any position
- Manufactured in a variety of windings to meet many diverse applications

★ Owing to wartime restrictions on supply of raw materials, it is not possible to supply Wearite Components for purposes other than those connected directly with the war effort.

WRIGHT & WEAIRE LTD.
HIGH ROAD, TOTTENHAM, N.17

Telephone: TOTTENHAM 3847-8-9
Valves and Chimneys

White vapour issuing from industrial chimney-stacks is a sign of an efficient combustion system; black smoke indicates incomplete combustion, and shows that fuel is going to waste.

Many industrial concerns now make use of an electronic device consisting of an arrangement of valves and a light sensitive cell, which is capable of giving a record of smoke density, or of regulating the combustion process to ensure maximum efficiency.

This is another example of the ever-increasing usefulness of the thermionic valve—not only contributing to greater industrial efficiency, but also foreshadowing far-reaching benefits to the community.

MULLARD
THE MASTER VALVE
A Valve for Every Purpose
DOMESTIC · COMMERCIAL · INDUSTRIAL · SCIENTIFIC · MEDICAL · EXPERIMENTAL
THE MULLARD WIRELESS SERVICE CO. LTD., CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C.2.
Wireless "Jargon"

Avoiding Misleading and Unintelligible Terms

In every rapidly developing art there is a risk that the terminology peculiar to that art will get out of hand; the hastily coined words and phrases used to describe new things and processes will lack aptness, intelligibility and elegance. That has happened more than once during the spectacular growth of wireless, particularly during the period of rapid expansion of broadcasting. One of the best—or the worst—examples of the phraseology of that period is the expression "all-mains," used to denote a broadcast receiver or other piece of apparatus that functioned without batteries of any kind. Some time before the war we reported a court case where it was ruled that the buyer of a set so described was entitled to expect something that would work on any kind of mains supply. One can imagine that the learned judge, after giving the ruling, muttered to himself, "That should show these wireless people that they must be more careful with their jargon." This legal ruling ran contrary to generally accepted usage in wireless circles, but few will deny that "all-mains" was, to say the least, an ambiguous description.

At the present time, intensive development of certain wireless techniques is going on "in the back rooms" under conditions that are likely to prove a forcing ground for the evolution of an undesirable jargon. When the developments concerned come out into the open, the new terminology may well be unintelligible, not only to the layman but also to technicians outside the inner circle. We plead with those responsible for the coining and standardisation of additions to the vocabulary of wireless to take some thought for the future, and to realise that a hastily adopted word or expression that is misleading or ambiguous may all too easily pass into the language and cause endless confusion and misunderstanding in later years.

One of the aims to strive for, when dealing with matters likely to come within the ken of layman, is to use words that will be understood by both layman and technician. It is not always necessary to have two languages, one for the inner circle and the other for the rest. Above all, one should avoid using existing words in a sense that runs contrary to the accepted usage of the language.

Another principle is that no new expression should be coined unless we are certain that it is necessary. An example of something to be avoided is to be found in "video" and "viseo," applied to television in a mistaken attempt to match up with "radio" and "audio" in the designation of frequencies. Fortunately, most of us were content to speak of "vision frequency," and the coined words never had a very wide currency.

Corrupting Our Vocabulary

Apart from the question of misleading, inapt or unnecessary new expressions, care should be taken that the meaning of clearly defined existing words of our vocabulary is not corrupted. The B.B.C. should be particularly careful to set a good example when it has occasion to refer to the means by which it distributes its programmes. Perhaps, now that we have a wireless engineer as Deputy Director-General, to say nothing of an ex-wireless man as Editor-in-Chief, we shall no longer hear announcers say, "Howard Marshall, broadcasting to us from Algiers . . ." One does not "broadcast" to an individual, or even to a great Corporation, in spite of the fact that one may be using a broadcasting station temporarily for point-to-point transmission.

In these matters we do not presume to set up as arbiters of taste, or to impose on contributors or correspondents a rigidly standardised technical vocabulary. It has always been the policy of Wireless World to conform with what it judged to be the best usage, only avoiding widely accepted expressions when they seemed to be misleading or ambiguous. In any case, complete standardisation of our terminology is quite impossible; it is always growing and under constant revision to keep pace with new developments. Given a little care on the part of those who can exert influence on the choice of words, this natural process of growth seems preferable to attempts at rigid control.
MULTI-PURPOSE TEST METER

Mains-operated Instrument Measuring
RF and AF Voltage, DC and AC
Voltage, and Current, and Resistance

By
R. F. BLACKWELL, B.Sc., and D. J. BECKER
(Murphy Radio, Ltd.)

Much routine work in the radio laboratory consists of DC and AC voltage and current measurements, rough checking of resistance, and measurement of RF and AF voltage. A unit was built covering all the above requirements, and as commercial instruments are difficult to obtain it was thought that a description of it would be of interest.

The ranges covered are:
Voltage, DC and AC: 0-10, 0-100, 0-500, 0-1,000 volts.
Current, DC: 0-1, 0-10, 0-100 mA, 0-1, 0-10 amps.
Current, AC: 0-10, 0-100mA, 0-1 amp.
Resistance: 0-10,000 ohms, 0-1 megohm.
Valve Voltmeter, RF and AF: 0-1, 0-10, 0-100 volts.
Valve Voltmeter, DC: 0-5, 0-50, 0-500 volts.

A 1mA meter is used for all measurements. There are two scales, the lower graduated for resistance ranges and the upper divided linearly and numbered 0-5 and 0-10 for all other ranges.

Two twelve-position switches are used for selecting all ranges (see Fig. 1). The other controls are two zero-setters for the resistance ranges and one for the valve voltmeter.

DC Voltmeter.—As a 1mA movement is used, all ranges have a resistance of 1,000 ohms per volt. In Fig. 2(a), if V volts produce full-scale deflection, and the resistance of the meter movement is r ohms, the required series resistance, R ohms, is given by:

\[R = \frac{V}{r} \]

In the meter used, r is 118 ohms and can be neglected on all ranges except perhaps the lowest.

DC Current Meter.—The meter movement alone is used for the 1mA range; for 10mA a shunt resistance of value \(\frac{r}{9} \) ohms is switched across the meter and on the 100mA and higher ranges a tapped shunt is used (see Fig. 2(b)). The advantage of this method is that on the high-current ranges, accuracy of calibration is not affected by variations in switch contact resistance.

Resistance values are given by *:

\[R_1 = \frac{9}{10} \times 118 = 10.62 \text{ ohms} \]
\[R_2 = \frac{9}{100} \times 118 = 1.08 \text{ ohms} \]
\[R_3 = \frac{9}{1000} \times 118 = 11.8 \text{ ohms} \]

The 10mA range shunt resistance has a value of 13.1 ohms, and is made up of 1 yard of 36 SWG DSC Eureka. Fig. 3(a) gives dimensions of a suggested former, and shows the method of twisting the tinned copper wire terminal tags.

The tapped shunt resistor R1 consists of two 5in. lengths of 10 SWG bare Eureka in parallel, mounted on the switch wafer. The resistance is adjusted by running solder along the wire. R2 (4½in. of 22 SWG DSC Eureka) and R3 (12in. of 28 SWG DSC Eureka) are mounted on the same former (Fig. 3(b)). These resistors should be adjusted by comparing the meter reading with that of an instrument that is known to be accurate, rather than adjusting to the calculated values. The lengths specified above are sufficient to allow for adjustment.

An abbreviated table of resistance wire constants is given on p. 290; more complete detail may be found in an earlier

* A general formula (see Fig. 2(c)) is

\[R_n = \frac{1}{\lambda_m - 1} \times \frac{1}{\lambda_n} \]

where \(\lambda_m \) is the total number of ranges required on tapped shunt,
\(R_n \) ohms = resistance to tap for nth range,
\(\lambda_m \) amps = current for full scale deflection on lowest range,
\(\lambda_n \) amps = current for full scale deflection on nth range,
\(\lambda \) ohms = resistance of meter.

Fig. 2. Complete circuit of test meter and schematic diagrams showing basic circuits for various functions
Multi-purpose Test Meter—

article. The resistance of Eurekawire may differ by as much as 10 per cent. from the values shown in the table. The figures given are also substantially correct for Constantan.

AC Voltmeter.—A Westinghouse 1mA meter rectifier is used (see Fig. 2(d)). The DC current output from this type of meter rectifier is proportional to the mean value of AC input. For a sinusoidal waveform, on which most measurements are made, RMS value = 1.11 x mean value. From the manufacturer’s data, the p.d. across the AC terminals of a 1mA rectifier is 0.9 volt, for a meter current of 1mA. Hence, the series resistance R ohms required for V volts RMS full-scale deflection is

\[R = \frac{V - 0.9}{0.001} \times \frac{1}{1.11} \]

\[= \frac{1,000V}{900} \text{ ohms.} \]

Therefore, R for 10 volts full scale deflection = 8,250 ohms,
R for 100 volts full scale deflection = 90,000 ohms,
R for 500 volts full scale deflection = 450,000 ohms,
R for 1,000 volts full scale deflection = 900,000 ohms.

The 0–10 volt range should be

EUREKA WIRE

<table>
<thead>
<tr>
<th>SWG</th>
<th>Ohms per Yard</th>
<th>Current Rating*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0.21</td>
<td>6.0</td>
</tr>
<tr>
<td>18</td>
<td>0.37</td>
<td>4.3</td>
</tr>
<tr>
<td>20</td>
<td>0.66</td>
<td>3.0</td>
</tr>
<tr>
<td>22</td>
<td>1.09</td>
<td>2.2</td>
</tr>
<tr>
<td>24</td>
<td>1.77</td>
<td>1.5</td>
</tr>
<tr>
<td>26</td>
<td>2.66</td>
<td>1.00</td>
</tr>
<tr>
<td>28</td>
<td>3.91</td>
<td>0.76</td>
</tr>
<tr>
<td>30</td>
<td>5.58</td>
<td>0.59</td>
</tr>
<tr>
<td>32</td>
<td>7.35</td>
<td>0.47</td>
</tr>
<tr>
<td>34</td>
<td>10.1</td>
<td>0.37</td>
</tr>
<tr>
<td>36</td>
<td>14.8</td>
<td>0.28</td>
</tr>
<tr>
<td>38</td>
<td>23.8</td>
<td>0.19</td>
</tr>
<tr>
<td>40</td>
<td>37.2</td>
<td>0.15</td>
</tr>
<tr>
<td>42</td>
<td>51.6</td>
<td>0.13</td>
</tr>
</tbody>
</table>

* Amperes for 100° C. temperature rise, wire coiled in air with free radiation.

Wireless World

calibrated against an accurate meter, as the scale is non-linear due to the measured voltage being comparable with 0.9 volt, the p.d. across the rectifier. From the maker’s data, the output of the rectifier is uniform for frequencies up to 100 kc/s.

AC Current Meter.—A current transformer is used in conjunction with the meter rectifier (Fig. 2(e)). The ranges covered are 0–10 mA, 0–100 mA and 0–1 amp. As a current of 1.11 mA is required from the secondary to give full scale deflection on the meter, the turns ratios, not allowing for losses, are as follows:

I amp. range, ratio = 1,000/1.11 : 1 = 900 : 1,
100 mA range, ratio = 100/1.11 : 1 = 90 : 1,
10 mA range, ratio = 10/1.11 : 1 = 9 : 1.

For linear scale-shape, the voltage drop in the secondary winding should not be more than 0.1 volt. Hence the maximum permissible resistance of the secondary is 0.1/1.11 x 10^{-3} = 90 ohms. To keep the secondary turns as low as possible a single turn primary winding is used on the 1-amp. range; thus the secondary turns are 900. To keep losses low the stampings must be made of a high-permeability material, such as Mumetal; a set of Mumetal stampings were available with the following dimensions:

Core, 2 in. square, Overall size of stamping, 1 1/2 in. × 2 in.,
Winding area, 1 in. deep, Weight of set of stampings, 3/16 lb. It was found that, to allow for iron loss, the secondary turns should be reduced to 880; 38 SWG ESS (enamelled and single silk) copper is used for the secondary, giving a resistance of 70 ohms. The primary windings are:

10 mA range, 100 turns 38 SWG Enam or ESS,
100 mA range, 10 turns 28 SWG Enam or ESS,
1-amp. range, 1 turn 20 SWG Enam.

The secondary is wound on first and the other windings in the order shown above. There are two layers of Empire tape between the secondary and the primaries and one layer between each primary. The stampings are interleaved.

Fig. 4 shows the frequency characteristic of the transformer on the 10 mA range.

Ohmmeter.—There are two ranges, covering resistance values from 10 ohms to 1 megohm. The fundamental circuit is shown in Fig. 2(f).

If the meter, of which the resistance and full scale deflection are r ohms and i mA respectively, is connected in series with a resistance of value R ohms across a voltage V, then, for full scale deflection (with “Test” terminals shorted)

\[R + r = 1,000V/i \ldots \ldots (1) \]

If now a resistance R' ohms is connected across “Test,” then its value for half scale deflection of the meter is given by

\[R' + R + r = 1,000V/0.5i \ldots (2) \]

From equations (1) and (2),

\[R' = R - r \]

and $V = iR' \times 10^{-3}$.

In this instrument, $r = 118$ ohms, $i = 1$ mA and the mid-scale readings are 500 ohms and 50,000 ohms; hence the values of R are 382 and 49,900 ohms respectively; the corresponding values of V are 10.5 and 50 volts. These voltages

![Frequency characteristic of AC current meter](image-url)
in this case, the internal resistances are 15 and 700 ohms respectively.

Valve Voltmeter.—A high-frequency diode rectifier of small dimensions (Mazda D1*) is housed within its associated smoothing components in a cylindrical container; this is connected to the main instrument through about a yard of 3-core cable. A 5-pin Belling-Lee plug and socket are used for the connection on the front panel, but it would be of the control valve, the value of which depends on the setting of the range switch. This would necessitate resetting the zero when the range is changed. This is automatically compensated for by shunting the lower end of the power pack voltage-divider by R_4 on the 10v. AC and 50v. DC ranges, and R_4 on the 1v. AC and 5v. DC ranges.

The DC ranges were originally the same as the AC (0–1, 0–10, 0–100 volts) but trouble was experienced when the valve volt- meter was connected across a low-resistance circuit, as this reduced the standing bias due to the diode, thus altering the zero setting. The simplest method of eliminating this effect is to use a large resistance (R_2) in series with the input; this forms a potential divider with the diode load and therefore reduces sensitivity. R_4 is chosen to give ranges to fit in with the calibrated scale, viz. 0–5, 0–50, 0–500 volts.

As the input resistance on the DC ranges is high, approximately 13 megohms, the shunting effect on a high resistance source of voltage is small.

In high-resistance circuits it is advisable to measure only voltages of which the positive side is earthy; if the negative side of the source is earthy, the leakage resistance and capacitance of the HT line to the chassis are shunted across the source, as the negative side must be connected to the “live” lead of the valve voltmeter.

The 10- and 100-volt AC, and 50- and 500-volt DC ranges are substantially linear, and no further calibration is required. For greatest accuracy on the 1-volt AC and the 5-volt DC ranges separate calibrations should be made; this is due to the non-linear characteristic of the diode.

The frequency characteristic is flat between 50 c/s and 50 Mc/s (see Fig. 5). It was not measured above 50 Mc/s, but the error is

* A similar valve is the Mullard EA50, which has a 6.3-volt heater.
Multi-purpose Test Meter—probably small up to at least 100 Mc/s.

The meter control valve is an SP41 (high-slope RF pentode) connected as a triode. Two other types were tried: the HL41 (medium-slope triode)—approximately 5 per cent. loss in sensitivity, which can be compensated for by reducing the meter series resistance, and the HP41 (high-slope triode)—sensitivity as the HL41, but in this case a 70 ohm resistance must be inserted at the point X in the voltage-divider circuit of Fig. 2 (g) to enable the zero to be set. Differences in sensitivity between individual specimens of these types were small, in all cases it was possible to allow for this by adjusting the meter series resistance R1 (Fig. 2g). The following valves would probably be suitable: 41MHL, AC2HL, 35V, MH4, HL4G, EF50 and Z62.

The following table gives some idea of the working conditions of the valves:

<table>
<thead>
<tr>
<th>Valve</th>
<th>Anode current (mA)</th>
<th>Anode voltage</th>
<th>Cathode voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP41</td>
<td>4.2</td>
<td>1.6</td>
<td>1.0</td>
</tr>
<tr>
<td>HL41</td>
<td>5.0</td>
<td>146</td>
<td>1.9</td>
</tr>
<tr>
<td>P41</td>
<td>12.2</td>
<td>148</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Valve voltmeter head with cover removed.

All measurements were made on the 0–iv. AC range, with the meter set to read zero.

If a voltage much larger than full scale is applied to the input, the current through the 1 mA meter does not exceed about 2 mA; most meters can withstand this overload without harm.

The input capacitance of the diode head is 7.5 µµF with a short flexible lead and 6.5 µµF with a rigid prod.

Adjustment of resistors is carried out as follows:

1. Meter series resistance R1 to give 1v. full scale deflection on most sensitive AC range.
2. Input resistance R2 to give 5v. full scale deflection on most sensitive DC range.
3. Compensating resistances R3 and R4 adjusted so that the zero-setting does not change on the 10v. and 1v. AC ranges respectively when switching from the 100v. range.

Power Pack.—The power requirements are 4v. 1.4A for the rectifier heater (UU6), 4v. 1.5A for the SP41 and D1 heaters and 150 volts 50 mA DC for the valve voltmeter and ohmmeter sections.

A standard type of mains transformer was available, with two 4-volt windings and an HT winding of 350–350 volts. It is necessary to reduce the rectified HT voltage by means of a series resistor. A more suitable HT secondary voltage would be 250–250, which, with a choke input filter, would give the required voltage without the series resistance. The choke must be capable of withstanding a high AC voltage across its terminals. A 150–150 volt winding with a condenser input filter would be equally suitable.

Wireless World

Switching.—The complete circuit is shown in Fig. 2. It will be seen that there are two switch-wafer banks, A and B, consisting of four single-pole, 12-way units and B of one two-pole 6-way and four single-pole 12-way units. A1 and B1 are mounted nearest the front panel. A3, A4, B4, B5 switch the various ranges, A1, A2, B2, B3 ensure that the HT supply voltage to the valve voltmeter and ohmmeter is switched on only in certain positions, and B1 selects the valve voltmeter ranges and switches the valve voltmeter set zero compensating circuit.

Constructional Notes.—The chassis is fixed to a vertical frame-mounted front panel. The front panel is 9in. by 12in. and the chassis 8in. by 10in. A detachable cover is held by two screws on the vertical frame members; examination of the photographs will make clear the layout details.

The diode head consists of two discs of insulating material of diameter 1in. held together by two 3in. brass pillars, 3in. long. A length of paxolin tube slides over this assembly, and is fixed by screws into the insulating discs. One of the discs has two wander-plug sockets, one for AC, the other for DC; either a flexible lead or a rigid prod can be plugged into these sockets, according to the type of work in hand. The earth connection is a permanent short flexible lead terminating in a crocodile clip, which can conveniently be attached to the nearest part of the chassis.

The 0.05µF diode input coupling condenser should have a high resistance and a low inductance; the tubular type with wire ends fits best into the small space available. It should be remembered that the working voltage of the condenser must be high enough to withstand the DC component when measuring an RF voltage at the anode of a valve. The condenser leads are as short as possible, and thus it is connected directly between the AC input socket and the diode anode clip.

In conclusion, we wish to express our thanks to Mr. E. A. Goldring, for the photographic illustrations, and to Murphy Radio, Ltd., for permission to describe this apparatus.
Among the many wireless badges worn by members of the British and American Forces, there are some not quite so well known as the easily recognisable R.A.F. "Sparks" or "Hand and Lightning" badge; moreover, on enquiry at the War Office, it was learned that a number of the emblems seen in some of the shops "supplying everything for the sailor, soldier and airman" are unauthorised and should not be worn by members of the Forces. It is, therefore, with the intention of facilitating the recognition of wireless personnel and of giving some facts about the duties of the wearers of wireless badges that these notes have been prepared.

ROYAL NAVY

In the Senior Service there are a number of different categories of Wireless Telegraphist. The badge for each of these is based on the same design, with additional stars or a crown to indicate the wearer's non-substantive rating. Embroidered in red on a navy blue background for working dress but in gold for No. 1 dress, the badges, with the exception of that for Chief Petty Officer Wireless Telegraphist, are worn on the right arm.

Boy Telegraphists, Ordinary Telegraphists and Telegraphists (not trained operators) wear badge (a) in the accompanying illustration. These are the junior ratings in the W/T Branch of the Royal Navy.

Trained Operators (W/T) wear badge (b) and are, as the rating infers, telegraphists who are trained to operate the W/T gear in general use on H.M. Ships.

Wireless Telegraphists 3rd Class wear badge (c), and have a higher standard of technical training. They have to be well versed in the complexities of Naval wireless procedure and may be the senior W/T rating in small ships.

Badge (d) is worn by Wireless Telegraphists 2nd Class (ratings below Petty Officer) who are in many cases the senior W/T ratings in destroyers, etc.

Wireless Telegraphists 2nd Class (Chief Petty Officer and Petty Officer Telegraphists) wear badge (e) and are usually the senior W/T ratings in large destroyers (Tribal Class), cruisers, etc.

There are comparatively few Wireless Telegraphists 1st Class (f). They are Chief Petty Officer Telegraphists, Petty Officer Telegraphists and Leading Telegraphists of not less than four years' seniority. First Class C.P.O. Tels. and P.O. Tels. usually serve in Flag Ships and Capital Ships. In the case of C.P.O.s the badge is worn on the lapels of their jackets.

NAVAL AIR ARM

The maintenance of Naval airborne radio equipment is the duty of the wireless ratings in the Naval Air Arm.

Radio Mechanics in the Naval Air Arm, who wear a peaked cap with red badge, and jacket with the distinguishing badge on the right sleeve, serve in aircraft carriers and in Naval Air Stations at home or abroad. A Radio Mechanic in the Naval Air Arm may be attached either to a squadron, for the maintenance of the squadron's equipment, or to a carrier or station for general radio maintenance duties.

On satisfactorily completing their technical and Service training, ratings in this branch are advanced to Leading Radio Mechanic and subsequently are eligible, if proficient, for advancement to the rating of Acting Petty Officer, Petty Officer and Chief Petty Officer.

The actual operation of Naval
Wireless Badges—airborne radio equipment is normally carried out by the Observer or by the Telegraphist Air Gunner of the aircrew except in single-seater fighters, where, of course, the pilot operates his own equipment. Nearly all Observers are now officers who, in common with all Naval Air Arm officers, are distinguished by the letter "A" worn in the curl of the officer's gold lace on each cuff, while on the left sleeve is worn the Observer's badge. The Telegraphist Air Gunner wears the seaman's class of uniform and has on his right arm the distinguishing badge illustrated below.

As in all branches of the Navy, Leading ratings wear a single "foul anchor" and Petty Officer ratings crossed "foul anchors" surmounted by a crown on the left sleeve. Chief Petty Officers do not normally wear sleeve badges but have on each lapel the badge of their branch and three gilt buttons on the cuff of each sleeve.

WRNS.

In the women's branch of the Senior Service there are two radio categories, viz., Wireless Telegraphists and Radio Mechanics. Both these categories wear the same design of badge on the right arm; it is identical for Petty Officers, Leading Wrens and Wrens. In the case of Chief Wrens a smaller badge with a crown above the wings is worn on each side of the collar of the jacket.

Wren Wireless Telegraphists operate, and to some extent maintain, communication apparatus at Naval shore stations in this country and overseas.

Radio Mechanics, a comparatively new W.R.N.S. category, maintain and repair radio apparatus.

ROYAL SIGNALS

No distinctive badge is worn by wireless personnel in the Royal Corps of Signals. It is, however, the "wireless corps," and it is, therefore, appropriate that the badge of the corps is reproduced in this collection of wireless emblems.

The well-known figure of Mercury—the messenger of the gods—standing on a globe is a fitting symbol for the Corps, the motto of which is "Certa Cito" (Sure and Swift). Formed in 1920, the Corps' task is to maintain the Army's lines of communication, which include wireless, through-out the widely dispersed fields of operation.

The distinguishing flash of the Corps is blue and white.

R.E.M.E.

The formation of the Corps of Royal Electrical and Mechanical Engineers a year ago has brought together in one corps the wireless personnel that were previously in various units of the Army (with the exception of Royal Signals personnel).

There are two badges worn by R.E.M.E. personnel who are responsible for the maintenance of telecommunications apparatus, which includes radar, wireless and line equipment.

Armament Artificers (Radio) and Radio Mechanics, who repair and maintain radar apparatus, wear a red embroidered wireless flash on a navy blue background.

Wireless World
Armament Artificers (Wireless) and Wireless Mechanics, who are responsible for the maintenance and repair of wireless and line communication apparatus, wear a badge of similar design to that worn by Radio Mechanics, but embroidered in white.

Both badges are worn on the right arm; in the case of Warrant Officers on the forearm below the rank badge, by N.C.O.s above the rank chevrons and by other ranks on the upper arm below the formation sign, etc.

A.T.S.

Many members of the Women's Auxiliary Territorial Service (A.T.S.) will be seen wearing the badge of Royal Signals above the left breast pocket of their tunics. These Auxiliaries are attached to the Corps, and may be carrying out the same duties as the men Operators, Wireless and Line. This means that they must have a certain amount of technical knowledge and be qualified Morse operators. They are known colloquially as "OWLS."

Members of the A.T.S. attached to R.E.M.E., who have passed the requisite trade tests for Radio Mechanic or Wireless Mechanic wear the same badge as men of the same category.

R.A.F. AND W.A.A.F.

The well-known "Hand and Lightning" badge is the only trade arm badge worn in the R.A.F. and W.A.A.F.

Wireless World

Royal Air Force and Women's Auxiliary Air Force, and is common to all signal trades. Air Radio Observer's brevet. The wing and letters are in silver and the laurel in brown.

The design of the two R.E.M.E. wireless badges.

A.T.S.

Wireless Operators in air crews are usually Air Gunners, and, therefore, wear the A.G. brevet over the left breast pocket.

A badge less frequently seen worn by members of the Royal Air Force is the Radio Observer's brevet. This is worn above the left breast pocket by commissioned and non-commissioned officers of air crews who handle the UHF gear. Although the R.O. brevet has been superseded by the navigator's 'N' brevet, men who qualified for it in the past are still permitted to wear it.

MERCHANT NAVY

There are three classes of Radio Officer in the Merchant Navy and they are distinguished by waved lines of gold braid worn on the cuffs of their blue jackets.

First Radio Officers wear three lines of braid, Second Officers—two, and Third Officers—one.

U.S. NAVY

There is one design of badge for the three radio categories in the Artificer Branch of the United States Navy.

Radiomen, Radio Technicians and Telegraphers in the U.S. Navy wear this badge.

Ciphering is also undertaken by Radiomen.

The general maintenance of
Radio equipment in the U.S. Navy is the duty of another category, that of Radio Technician.

A category authorised only in time of war is that of Telegrapher. Men of this grade are telegraph operators at Naval cable stations.

There is one radio category in the Aviation Branch, which is equivalent to the British Naval Air Arm. Designated Aviation Radiomen, their qualifications are very similar to their counterparts in the Artificer Branch. Their duties are, however, mainly associated with aircraft radio equipment.

In each of the above specialist grades there are four ratings: 3rd Class, 2nd Class, 1st Class and Chief. The radio badge is worn by each grade between the American eagle and chevrons on the left sleeve. The number of chevrons indicates the rating; one being worn by 3rd Class, two by 2nd Class, and three by 1st Class and Chief ratings. In the case of the latter a fourth semi-circular braid surrounds the chevrons.

U.S. Signal Corps

| Radiomen in the Aviation Branch of the U.S. Navy are identified by this badge. |

Operators at Naval cable stations.

There is one radio category in the Aviation Branch, which is equivalent to the British Naval Air Arm. Designated Aviation Radiomen, their qualifications are very similar to their counterparts in the Artificer Branch. Their duties are, however, mainly associated with aircraft radio equipment.

In each of the above specialist grades there are four ratings: 3rd Class, 2nd Class, 1st Class and Chief. The radio badge is worn by each grade between the American eagle and chevrons on the left sleeve. The number of chevrons indicates the rating; one being worn by 3rd Class, two by 2nd Class, and three by 1st Class and Chief ratings. In the case of the latter a fourth semi-circular braid surrounds the chevrons.

U.S. Signal Corps

Like our own Royal Signals, the United States Signal Corps is responsible for the Army's communication systems and, in addition, for ground communications of the U.S. Army Air Force. Many members of the Corps are now in this country and can be recognised by the Corps distinguishing badge of crossed signalling flags. The badge is gilt and is worn on the lapels of their jackets.

U.S. Army Air Force

Radio operators in U.S. Air Crews do not wear a distinctive badge. The metal wings they wear above the left breast tunic pocket are the same as those worn by all N.C.O. combat crew men.

Of the ten members of a Fortress crew four normally hold commissions—pilot, co-pilot, navigator and bombardier; whilst the remainder, including the radio operator, are sergeants.

It is perhaps noteworthy that men of the U.S. Air Force crews who are currently engaged in operations wear a patch of blue cloth behind the metal wings.

Wireless World

A badge that is not very common but might be seen in theatres of operation in which there are units of the U.S. Army Air Force, is that shown above. Civilian communications technicians attached to the Air Force wear this gold emblem symbolising radio on a blue triangular base on the sleeve of their service uniforms. The wearer is a specialist who, because of his physical disability, age, or the importance of his civil occupation, cannot be called to the colours and is, therefore, temporarily attached to the Air Force.

Service-Men's Exam.

In last month's Wireless World a draft syllabus of the examination to be conducted by the Radio Trades Examination Board was published. Since then, the Board has made slight modifications and added a few extra subjects; the final syllabus is printed below.

The first examination will be held on Saturday, May 20th, and thereafter in May of each year. It will be conducted in principal technical schools throughout Great Britain, and will comprise a three-hour written paper and a three-hour practical test.

Candidates must have been fully engaged in wireless service work for not less than three years, but a full-time course in servicing or radio engineering at a recognised technical school will count as one year towards the required period. The examination fee is two guineas.

The Secretary of the Board (address: 9, Bedford Square, London, W.C.1) will be pleased to give any further information required.

Part 1.—Fundamental Principles of Radio.—(1) Current/voltage relationships in AC and DC circuits. (2) Primary and secondary cells: tests; charging; battery charging plants. (3) Permanent and electro-magnets, and their uses. (4) Transformers; RF, IF, AF and mains. (5) Condensers, fixed and variable. (6) Tuned circuits and alignment. (7) Diode, triode, tetrode, pentode and frequency-changing valves; gas-filled tubes. (8) Copper-oxide and selenium rectifiers; methods of rectification; simple filters. (9) Rectifier power supplies; AC/DC, rotary and vibratory converters. (10) Wave propagation; interference and its suppression. (11) Aerial and earth installation; earthed transformers; devices. (12) RF, IF, and AF amplifier circuits; degeneration and regeneration; negative feed-back; oscillators; distortion and instability. (13) Sound amplification and relay practice; methods of mixing; reflexed circuits. (14) Receivers; TRF, superhet heterodyne and super-regenerative. (15) Automatic gain control; tuning indicators; automatic frequency control; automatic tuning devices. (16) Tone control and correction circuits; noise suppression circuits. (17) Loudspeakers, microphones and gramophone pick-ups; methods of matching. (18) Practical safety precautions.

Part 2.—Practical Applications.—(1) Principles and uses of test meters; resistors; rating and coding. (2) Primary and secondary cells: tests; charging; battery charging plants. (3) Permanent and electro-magnets, and their uses. (4) Transformers; RF, IF, AF and mains. (5) Condensers, fixed and variable. (6) Tuned circuits and alignment. (7) Diode, triode, tetrode, pentode and frequency-changing valves; gas-filled tubes. (8) Copper-oxide and selenium rectifiers; methods of rectification; simple filters. (9) Rectifier power supplies; AC/DC, rotary and vibratory converters. (10) Wave propagation; interference and its suppression. (11) Aerial and earth installation; earthed transformers; devices. (12) RF, IF, and AF amplifier circuits; degeneration and regeneration; negative feed-back; oscillators; distortion and instability. (13) Sound amplification and relay practice; methods of mixing; reflexed circuits. (14) Receivers; TRF, superhet heterodyne and super-regenerative. (15) Automatic gain control; tuning indicators; automatic frequency control; automatic tuning devices. (16) Tone control and correction circuits; noise suppression circuits. (17) Loudspeakers, microphones and gramophone pick-ups; methods of matching. (18) Practical safety precautions.

Part 3.—Practical Examination.—(1) Soldering techniques. (2) Use and maintenance of test equipment and tools. (3) Valve testing (HT, LT and GB batteries supplied). (4) Correction of typical receiver faults, which may include realignment (circuit diagrams, chassis layouts and oscillators supplied). (5) Testing components. (6) Loudspeaker and pick-up adjustment.
Long-distance

SHORT-WAVE TRANSMISSION

Simplified Explanation of the Behaviour of Obliquely Incident Waves

By T. W. BENNINGTON

In a previous article¹ the behaviour of radio waves in the ionosphere was discussed in as simple language as possible, in the hope that such treatment of the subject would render some of its points understandable to the non-mathematical reader. The article confined itself almost exclusively to the behaviour of a wave when sent vertically upwards. Dr. Martin Johnson, in his July articles dealt with some of the more complicated phenomena in greater detail, while in a previous article² he had something to say on the subjects of 'refraction' and 'total reflection' of radio waves.

A wave or 'ray' of radio energy which is sent vertically upwards will, if it is of such a frequency as to be reflected from the ionosphere, return to earth at a point immediately beneath that where it is reflected. Rays which are intended to return to earth at points far distant from the transmitter must go upwards obliquely, so as to enter the ionosphere at a smaller angle to its lower boundary than did the vertical ray. It is the purpose of this article to explain—so far as is possible in the same simple language as was used in the former article—how the behaviour of the wave in the ionosphere is modified by the obliquity of its upward path.

Let us, first of all, recall one or two points pertaining to the behaviour of the vertically travelling ray. We remember that it travels through the ordinary air towards the ionosphere with a velocity of 300,000,000 metres per second, but, on entering the region where the air is 'ionised,' its wave velocity increases. But because the ionosphere is what Dr. Martin Johnson calls a 'dispersive' medium, i.e. because its effects upon the wave vary with the wave frequency, the signal as a whole travels slower in the ionosphere than in ordinary air—its 'group velocity' is less. Eventually it comes to a complete stop, is 'reflected' and then sent travelling downwards again. As we increase the frequency of the wave the effect of the ionosphere upon it gets less and less, so that it penetrates further and further into the region before undergoing 'reflection.' Continuing to increase the frequency eventually results in the wave penetrating the ionosphere altogether, and the frequency just below that at which the penetration of any ionosphere much for the vertical ray. Let us now digress for a moment and consider some points from what—so far as the obliquely travelling radio ray is concerned—is a closely analogous case, i.e. the behaviour of a ray of light when it passes from a dense into a less dense medium. Those who have done any school 'physics' may recognise the diagram of Fig. 1; it illustrates what happens to the light ray under these conditions. So long as it is moving through a uniform medium, light travels in a straight line, but as soon as it enters a medium of different optical density it is deflected from the straight path and continues on in a new direction; the phenomenon is known as 'refraction.'

In Fig. 1 the shaded area represents the dense medium and the unshaded area that which is less dense, while AB is the surface of separation between the two. A line drawn at right angles to this surface—as at CD—is called the 'normal' to this surface or boundary. IO is the light ray approaching the surface obliquely so as to reach O—the point of 'incidence'—at an angle to the normal. The angle which it makes with the normal at the point of incidence is called the 'angle of incidence.' Instead of continuing its course in a straight line in the new medium—as shown by the dotted line—the ray is refracted or bent, so as to travel along the line OQ, and it is because the new medium is less dense than the other that the direction of the bending is away from the normal. The angle made with the normal in the new medium is called the 'angle of refraction.' The amount of bending to which the ray is subject will depend on the relation between the densities of the two media.

Refraction of a light ray.—So

¹ "Radio Waves in the Ionosphere," Wireless World, April, 1943.
Short-wave Transmission— media, and, if we compare the angle of refraction with the angle of incidence, we shall obviously obtain some information on this point. Suppose we describe a circle about the point of incidence and then drop perpendiculars to the normal from the points where it cuts the incident and refracted rays—as at EF and GH in Fig. 1—then the ratio of EF to GH is a measure of the bending to which the ray has been subject, and hence of the relative densities of the two media. This ratio is called the "refractive index," and a little thought will show that, if we consider this ratio as the refractive index of the less dense medium, then it will always be less than unity. The relation between the angle of incidence and the angle of refraction is such that the sine of the angle of incidence is equal to the sine of the angle of refraction multiplied by the refractive index.

If we increase the angle of incidence—by making the ray path more oblique—then the angle of refraction will increase also, and if this process is continued we eventually get an angle of refraction of 90°, when the path of the refracted ray is exactly along the surface of separation. A further increase in the angle of incidence leads to the result shown in Fig. 2. The angle of incidence has been so increased that the angle of refraction is greater than 90°—the light ray cannot penetrate into the new medium at all, but is "totally reflected" at its surface. This will occur when the sine of the angle of incidence is equal to the refractive index of the new medium—the sine of an angle of refraction of 90° being, of course, 1.0.

Rays of Radio Energy.—Now we can return to our ray of radio energy, which is approaching an ionosphere layer where it will undergo refraction in a somewhat similar manner to that in which the light ray was deflected from its course.

It will be clear that there is, for a given height at which the ionosphere refracting layer may lie, a different angle at which the radio wave must enter the layer for every distance outwards from the transmitter. For a given layer height the greater the distance the greater will be this angle of incidence at the layer be. Also for a given distance, the lower the layer the greater will the angle be.

We have been talking about a "ray" of radio energy as though there were only one such ray to be considered. But we must always remember that in practical cases, even with an aerial system which narrows the radiated energy into a "beam" in the vertical plane, there will really be a whole "pencil" of such rays going up side by side, and making a number of different angles of incidence at the layer boundary.

Now such obliquely incident rays can be returned from the ionosphere with a far lower ionisation in the layer than is necessary to return a vertically incident ray. Or—another way of looking at it—with a given ionisation density in the layer the greater the angle of incidence the higher the frequency which will be refracted. The highest frequency which will be refracted so as to come down at any particular distance thus depends on the critical frequency at vertical incidence and the angle of incidence appropriate to that distance. It is called the "maximum usable frequency" (MUF) for that distance.

The full theory concerning obliquely incident rays and relating the critical frequency at vertical incidence to the MUF at oblique incidence is very complicated, and we cannot go into it in any detail in this article. But we can, perhaps, briefly consider its main implications.

Refraction of the Radio Ray.—Let us start off by supposing that both the earth and the ionosphere are flat. The ionosphere behaves to the radio ray entering it from ordinary air like the rare medium behaves to the light ray entering it from the dense medium. The wave path is bent away from the normal to the lower boundary of the ionosphere layer, so that the wave path makes a smaller angle with the lower boundary than it would have done had it not been refracted at the point of incidence.

The refracting properties of the layer upon the radio wave are due to the presence of the free electrons within it, and the electron concentration is not constant throughout the medium. Fig. 3 gives an idea as to how the electron concentration is assumed to vary with height in one of the ionosphere layers, and it will be seen that, looked at from the ground, it increases with height within the layer up to the point of maximum concentration, i.e. at the centre of the layer. So that the refracting properties of the layer upon the radio wave constantly increase as the wave penetrates further into the layer.

Still imagining that the ionosphere is flat, let us try and sort things out so that the effect of this increasing free electron density upon the wave becomes clearer.

Fig. 2. How "total reflection" is obtained by increasing the angle of incidence of the ray.

Fig. 3. How electron density varies with height in an ionosphere layer.
Suppose that, instead of increasing constantly with height, the electron density within the layer were itself in a series of thin "layers," as shown in Fig. 4, each thin "layer" having a constant electron density which was greater than that of the "layer" next below it. Then we should get the effect shown in the figure—an effect similar to that shown by the light ray we have just been discussing. The radio ray would be refracted away from the normal each time it came to the boundary of one of the thin layers, and it is easily seen that its path would become more and more oblique until eventually the angle of refraction would exceed 90° and the ray would then start travelling downwards again. This occurs at the point X in Fig. 4.

With the continuously increasing electron density that does in fact exist it means that the wave path is gradually bent round so that it travels in a wide sweep and thus eventually arrives at the lower surface of the ionosphere layer again, whence it continues in a straight line towards the ground. Perhaps a good way to picture the effect is to imagine that the top part of the wave as being further into the ionosphere than the bottom part, as is pictured in Fig. 5. Then, because it is in a region where the free electrons are denser, it travels with a greater velocity than does the bottom part of the wave. If the top of the wave travels faster than the bottom the wave direction cannot be in a straight line, but will bend away from the regions of high electron density to those where it is low, and the ray is therefore bent away from the normal to the lower boundary.

In order to understand the relation between the critical frequency at vertical incidence and the M.U.F. at oblique incidence it is best to look upon the ionosphere as having a refractive index which gets smaller as the electron density gets greater. The relation between the wave's angle of incidence and its angle of refraction is the same as in the case of the light ray entering the rare medium; namely, that the sine of the angle of incidence is equal to the sine of the angle of refraction multiplied by the refractive index. So when the wave is at the top of its trajectory and the angle of refraction is thus 90 deg.—whose sine is 1.0—the angle of incidence is equal to the refractive index. The wave will therefore penetrate into the layer until the refractive index is reduced to a value equal to the sine of the angle of incidence, and will thereafter be travelling downwards again. This means that it must penetrate furthest into the layer when the angle of incidence is 0 deg. (vertical incidence) and least when it is 90 deg.

Thus with a given refractive index (given electron density) the wave will penetrate less and less far as the angle of incidence is increased, or, if it is allowed in each case to penetrate to the point of maximum electron density, then higher and higher frequencies can be used as the angle of incidence s increased. The MUF for any distance is this related to the critical frequency and to the angle of incidence occasioned by that distance and the height at which the refracting layer lies. The MUF for a flat ionosphere is in fact equal to the critical frequency multiplied by the secant of the angle of incidence (the secant is 1.0 at 0 deg. and infinity at 90 deg.).

Effect of Ionosphere Curvature.

The curvature of the ionosphere is responsible for some modification to this law. Because of the curvature the angle between the wave path and the thin "layers" of electron density which we used in our illustration would alter with increasing height. The result of this is that the wave path is completely turned round in a region where the refractive index is higher (the electron density is lower) than would be the case if the ionosphere were flat. There are other results of the curvature which we need not go into here, but, summing up its effect, it may be said: (a) That it results in higher frequencies being returned for any angle of incidence than would be the case if the ionosphere were flat; (b) the modification to the flat ionosphere case which it introduces is least when there is a thin, sharp reflecting layer of ionisation and greatest when the ionosphere gradient is low; i.e. when the electron density increases only slowly with height.

In the curved ionosphere, then, the highest frequency returned (MUF) for a given maximum density of electrons in the layer will increase as the angle of inci-
Short-wave Transmission—
predictions of what their values will be we can calculate the MUF appropriate to any distance by multiplying the critical frequency by a factor which has been worked out on the basis of the theory just mentioned. We can then work on this MUF or on any frequency below it, though we should endeavour to work as near to it as possible, because otherwise our wave will be heavily "absorbed" in the ionosphere. We must not work on a higher frequency than the MUF, for if we do the rays of energy, which we want to come down near to it as possible, because should endeavour to work as frequency below it, though we will be accurate enough for most purposes—it will at least enable us to estimate our working frequency with some degree of precision. This MUF factor will obviously be greater for the E layer than for the F, because of the greater height at which the latter lies. Also, for the F layer, it will vary considerably with time of day and season of year because the height at which the F lies varies diurnally and seasonally.

Table I is a set of typical MUF factors which was published some time ago by the National Bureau of Standards of Washington (with a few additional values inserted) and gives these for various distances, times of day and seasons, and for communication via different layers. A little intelligent interpolation will yield values suitable for intermediate distances and for other seasons and times of day.

<table>
<thead>
<tr>
<th>Transmission Distance in Miles</th>
<th>310</th>
<th>620</th>
<th>930</th>
<th>1250</th>
<th>1550</th>
<th>1850</th>
<th>2200</th>
</tr>
</thead>
<tbody>
<tr>
<td>E layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midnight</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>2.2</td>
<td>2.8</td>
<td>2.85</td>
<td>2.9</td>
</tr>
<tr>
<td>Noon</td>
<td>1.2</td>
<td>1.6</td>
<td>2.1</td>
<td>2.6</td>
<td>2.9</td>
<td>2.1</td>
<td>3.4</td>
</tr>
<tr>
<td>Summer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midnight</td>
<td>1.2</td>
<td>1.4</td>
<td>1.7</td>
<td>2.1</td>
<td>2.5</td>
<td>2.7</td>
<td>2.8</td>
</tr>
<tr>
<td>Noon</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>2.2</td>
<td>2.5</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>F layer</td>
<td>2.0</td>
<td>3.4</td>
<td>4.4</td>
<td>4.8</td>
<td>5.0</td>
<td>5.2</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Finding the MUF.—As has been said, the accurate calculation of the MUF is complicated, because of the complexity of the theory, but if we multiply the critical frequency by an MUF factor which is typical of the time of day and season of year this will be accurate enough for most purposes—it will at least enable us to estimate our working frequency with some degree of precision. This MUF factor will obviously be greater for the E layer than for the F, because of the greater height at which the latter lies. Also, for the F layer, it will vary considerably with time of day and season of year because the height at which the F lies varies diurnally and seasonally.

Transmission on short waves is usually by way of the F or F2 layers, though we should always bear in mind the fact that if during the day we use a frequency far below the F2 MUF appropriate to the distance over which we are transmitting, the wave may be refracted at the E, and not reach the F at all. During summer day, however, the E layer ionisation does reach a high enough value for the layer to "blot out" the F2 entirely for transmission at certain angles, during which time the E is the controlling layer for short-wave transmission. What this means is that, at the elevation angles for which it occurs, the E layer critical frequency and the angle of incidence the ray makes at the E determine the MUF, and any frequency which is high enough to penetrate the E at this elevation angle will also penetrate the F. It will not occur for the shortest distances because in this case the angle of incidence at the E is small and there is thus more tendency for a wave to penetrate the layer. Then at a certain angle it will occur and will continue out to the maximum distance possible for transmission by the E. Beyond this distance the F2 layer MUF will still continue to rise with increasing angle of incidence at that layer, and so the MUF is again controlled by the F2.

In calculating the MUF for any distance from the measured critical frequency by the use of such factors as those in Table I it is merely necessary, during the summer day, to multiply the critical frequency of each layer by the factor appropriate to the distance and layer. Then, whichever calculation yields the highest MUF indicates which of the layers will control the transmission over that distance.
Inspection...

By means of the epidiascope accurate and speedy inspection is facilitated. Our illustration shows greatly enlarged images of a top mica and partially assembled beam tetrode. Another example of the care which characterises every phase in the manufacture of Brimar Valves.
Practically all waxes are used to "separate or isolate," but the degree of insulation provided by the different types of waxes varies enormously. There is obviously no higher degree of insulation required than that of electrical components and apparatus in intense electrical fields, especially in the extremes of conditions to which they are subjected to-day.

CLAUD CAMPBELL & CO. LTD.

4, LLOYDS AVENUE—LONDON—E.C.3

Telephone Nos.:—ROYAL 5403/5.

We specialise in the supply of WAXES for all purposes—under all conditions

Our technical advice is at your disposal. If you have any problem of IMPREGNATING—DIPPING—FILLING we, as consultants to the Industry, shall be glad to offer you a solution.

CLAUD CAMPBELL & CO. LTD.

4, LLOYDS AVENUE—LONDON—E.C.3

Telephone Nos.:—ROYAL 5403/5.

Rotary Cutting, Filing, Grinding and Polishing—Economy and Accuracy

Use MORRISFLEX Flexible Shaft Equipment, and REX Rotary Files and Cutters for cutting, filing, grinding and polishing components of aluminium, Elektron, non-ferrous alloys and ferrous metals. For metal buffing and cleaning we supply MORREX Rotary Wire Brushes, and MORRISFLEX Rotary Polishing Mops and Felts, also Felt Cones. MORRISFLEX Rotary Rasps are ideal for woodworking, and attachments for MORRISFLEX machines include Sanders and Grinders. MORRISFLEX machines are available in overhead suspension, bench and floor types. Their use ensures speed with accuracy, and a high degree of finish. Write for Lists.

B. O. MORRIS LTD.

SHIRLEY, BIRMINGHAM.

Shirley 1237.

Grams: Morrisflex, Birmingham.
MORE VIEWS ON QUESTION
No. 12. Is wired broadcasting wanted and would it be in the best public interest to adopt it as the main means of distribution?
O. S. PUCKLE, best known for his work in the advancement of cathode-ray technique, considers this question largely in relation to the parallel problem of television distribution. He writes:—

BEFORE the question of wired broadcasting can be adequately discussed it is essential to have experience of a regular television transmission covering large areas of the country. We do not know what the public reaction to television will be: it may be that a television programme will replace one sound programme and not be required to be additional thereto. In any case few will deny that the television service must be installed before wired broadcasting policies are decided upon.

With regard to the discussion in Wireless World I cannot “go all the way” with any of those who have expressed views on the subject. My reasons for my present opinions, which are of course liable to modification with later experience, are as follows:—

(a) I have had considerable experience in broadcast listening, in common with most people in this country, but I have had no experience with wire broadcasting. I am, however, prepared to admit (for the sake of this argument only) that wired broadcasting can be perfectly free from interference and would in this sense be preferable to radio broadcasting on the present wavelengths. I am however, inclined to think that FM broadcasting would be very little different from wire broadcasting in this respect, and USW broadcasting may bring about similar results if the frequency be chosen at a sufficiently high value.

(b) The B.B.C. provides, in wartime, two alternative programmes, and I think it is true to say that, in many cases, there were three available B.B.C. programmes during peacetime. For many people this is quite sufficient, but it is not sufficient for everybody, as is apparent from the fact that Luxembourg had a tremendous number of listeners before the war. Although I personally did not appreciate either the quality or the material of these transmissions, there is no doubt whatever that it was much appreciated by the majority of the people in this country. This must therefore be taken to prove either that the type of programme or the way in which it was “put over” appealed to a greater extent than the B.B.C. programmes. On the other hand it may just have been the result of a desire to be able to change over to something different.

These remarks are intended to convey that the public requires more than two or three varied programmes, and I believe the wire broadcasting people state that they could produce six different programmes. If, however, six programmes were produced by one organisation, I do not think the public would be any more satisfied than they are as at present; in other words, I believe that it is not so much the number of programmes as the variety of treatment which the public desires, and this variety of treatment is not likely to be provided by any one organisation.

(c) The great value of radio broadcasting over wire broadcasting is, of course, the fact that no site is inaccessible to radio broadcasting, but there are many houses in this country where wire broadcasting could be received only at considerable expense for the installation of the necessary service. The residents in these houses must not be denied the right to receive news and entertainment and, therefore, broadcasting must remain, apart from the necessity for providing programmes for English-speaking persons outside this country. This means that any wired broadcasting service must be an additional service.

(d) There is an extremely important political aspect of broadcasting. If it were possible for people in this country to receive only wired programmes, I should consider it absolutely essential that rival concerns should be permitted to provide alternative services. Since, however, we have wireless sets which are capable of receiving B.B.C. programmes, and which can also receive those of other countries, some of which are in the English language, this political difficulty does not arise. If, however, a single wire broadcasting system were to provide a substantial portion of the news and entertainment of this country it would, in my opinion, create the possibility of an extremely dangerous political situation.

Safeguards Needed

I have no doubt whatever about the honesty of the present Government or of its desire to tell the truth, but we are living in difficult times, when holders of strong opinions desire to enforce their will and their opinions on large numbers of their fellow citizens and even on those of other countries. It is thus supremely important that it should not be possible for any body of opinion, by control of the dissemination of news and information throughout the country, to impress its will upon large sections of the public.

For this reason alone, and quite apart from the fact that a number of programmes would not, in my opinion, satisfy the public if they came from one source, it appears to me that the existence of wire broadcasting alone in any section of the community is quite unthinkable unless rival organisations have equal facilities for providing a service to every house. Furthermore, the broadcasting lines must be free from Government or other sequestration.

I have no objection to wire broadcasting so far as its effect on the public is concerned, except for the reasons given above, but it should be arranged that the
Wireless World

MORE VIEWS ON QUESTION No. 14. Why was the "odd" voltage of 132,000 adopted for the main transmission lines of the Grid System?

J. S. FORREST, of the Central Electricity Board, sums up on this question and also touches on the related one of the general "oddness" of supply voltages.

This question may most conveniently be considered in two parts (a) Why are high-tension voltages multiples of 11?, and (b) Why was the voltage of 132 kV adopted for the main Grid system?

(a) Last month C. R. Cosens made the interesting suggestion that the multiples of 11 arise from the fact that the voltage of the Daniell cell is roughly 1.1 V. This may have had something to do with the use of 110 V and 220 V for the early DC supplies, but it is noteworthy that the pioneer and historic Deptford installation (1890) operated at 10,000 V AC. In the case of high-voltage systems, there seems to be no doubt that the factor of 11 results from the practice of allowing for a 10 per cent. voltage drop in the transmission line. In fact, a document on Standard Voltages issued by the International Electrotechnical Commission (Publication No. 38-1938) specifies a series of "maximum voltages," multiples of 11, and "receiving-end voltages," multiples of 10. Similarly, British Standard Specification No. 77-1932, now superseded, gives figures of 3,000, 10,000 and 30,000 for the "declared voltages," and 3,300, 11,000 and 33,000 for the corresponding "station voltages." It should be noted that the 10 per cent. voltage drop is an internal drop in the transmission system, and must not be confused with the voltage variation at the consumer's terminals.

Many modern high-voltage systems, however, take the form of networks and interconnectors through which power may flow in either direction. The conception of "sending-end" and "receiving-end" voltages therefore no longer applies, and must be replaced by that of the "system voltage." It has happened that the former "sending-end" or "maximum voltages," i.e., the multiples of 11, have been generally adopted for the standard system voltages. Thus, at the present time, the most widely used system voltages are 11, 33, 66, 110, 132 and 220 kV. Those interested will find the present standard system voltages in the revised British Standard Specification No. 77, published in 1939. This Specification also defines the standard AC distribution voltage as 230 V (equivalent to 400 V between lines).

(b) For any given power transmission system there is a most economical voltage which is determined by the transmission distance, the characteristics of the load, and the cost of plant (not only the line but also the terminal switchgear and transformers). The determination of the economic voltage is not a simple matter, largely owing to the fact that the characteristics of the load may be variable or not accurately known. For the present purpose, however, it may be sufficient to note that a voltage of the order of 1 kV per mile is usually found to be satisfactory. Bearing in mind the transmission distances encountered in Great Britain it is seen that a voltage of 100-200 kV would be required for the main Grid lines. Further, well-established power systems working at 33 kV and 66 kV were in operation in this country in pre-Grid days so that 132 kV is seen to be a logical value for the main Grid voltage. There would have been no great technical difficulty in adopting a higher voltage, as 220 kV lines were in service in the United States in 1923. Twelve years' operating experience, however, have confirmed the correctness of the original decision. Thus, the "odd" value of 132 kV when considered against its proper background is seen to be almost the obvious choice!

Wireless World

Increase in Price

It is regretted that rising costs of production compel our Publishers to increase the price of this journal from 1s. 3d. to 1s. 6d. The increase takes effect with the present issue.
SUNSPOTS: Close of the Present Cycle

Dr. Seth B. Nicholson, of the Mount Wilson Observatory, recently announced that a sunspot group has been observed in the relatively high solar latitude of 32 deg. North. This may have been the first sunspot belonging to a new cycle of solar activity, and its appearance is therefore, evidence that the present cycle is coming to an end. This event was, in fact, expected to occur about 1944.

The cycles of solar activity are of significance in radio in that the amount of ionisation produced by the sun in the upper atmosphere varies in phase with them. Thus the critical frequency of the ionosphere layers is much higher at sunspot maximum than at the minimum, and consequently higher working frequencies must be used for short-wave transmission at the former period than at the latter.

The present solar cycle commenced in 1933, and its progress—in terms of the annual means of the sunspot relative numbers—is shown in the graph of Fig. 1. An inspection of this would seem to indicate that the cycle would come to an end about 1944, but precision on this point is by no means easy, since the cycles vary considerably in length.

Besides varying in size, and in the frequency of their appearance— which is what is indicated in Fig. 1—the sunspots also change their latitude as the cycle progresses. At the beginning of a cycle they occur on the solar surface in two belts which are situated in about 30 deg. North and South latitude. As the cycle progresses these belts gradually drift towards the solar equator, and, towards the end of the cycle, they are situated in about 8 deg. North and South latitude. But, some time before the sunspots finally cease to appear in these regions, a fresh phase of activity gives rise to sunspots which appear in the high latitudes again, and then a new cycle commences. So that, at the minimum of the cycle, there are four belts in which the sunspots occur, two in high and two in low latitudes, on either side of the solar equator. The appearance of a sunspot in a high latitude is, therefore, a sign that the current cycle is coming to an end. Fig. 2 is a graph on the shift in the mean latitude of the sunspots during the cycle which began in 1913 and came to an end in 1923, and serves to illustrate this point. The solar activity increased rapidly from 1924 onwards.

The New Cycle

It is not a necessary implication, however, that, as soon as the minimum is passed, there will be a great decrease in solar activity and a consequent big increase in the working frequencies for short-wave transmission. Although this does occur sometimes, an examination of former sunspot cycles shows that, more often than not, there is, during the first year after the minimum period, very little increase in the solar activity. It is during the second year of the new cycle that the big increases most often occur.

There is one other interesting change in sunspot phenomena which takes place at the end of a cycle. The sunspots most often appear in pairs, the one which lies in the forward position with regard to the direction of the sun's rotation being known as the "leader" spot, and its companion as the "follower." These sunspots have opposite magnetic polarity, and during any one cycle the relative polarity of the leader is, for example, always of North magnetic polarity, and the follower always of South polarity. At the end of a cycle this polarity is reversed, so that the leader and follower sunspots of the new cycles are reversed in magnetic polarity compared with those of the old cycle. In the case of the group observed at Mount Wilson the leader spot was so little in advance of the follower that it was hard to say whether it had a different polarity to the leader spots of the present cycle or not.

T. W. B.

"Design of Simple Ohmmeters"

The mathematical expression (15) on page 269 of the previous issue was incomplete. It should have been an equation reading $R = \frac{R}{2n}$ (divided by the expression given).

GOODS FOR EXPORT

The fact that goods made of raw materials in short supply owing to war conditions are advertised in this journal should not be taken as an indication that they are necessarily available for export.
RADIO DATA CHARTS—11

Frequency and Wavelength

There has been some discussion in recent months concerning the most desirable nomenclature for frequency and wavebands; but before coming to this, let us get one or two fundamental ideas straight. The very simple equation connecting frequency and wavelength is

\[
\text{Frequency} \times \text{Wavelength} = \text{Velocity of propagation.}
\]

The frequency \(f \) of the wave is the number of complete alternations per second, and since the wave is travelling with velocity \(v \), \(f \) alternations will pass a given point in one second. In the same time one wave will have travelled a distance numerically equal to \(v \), and so \(f \) waves will occupy this same distance. From this the length (\(\lambda \)) of one wave may be found by dividing \(v \) by \(f \), and the equation above is simply a more convenient way of writing the same thing.

It will be realised at once that the fundamental quantity in the equation is the frequency. The wavelength is, so to speak, merely a by-product of the velocity, which in turn depends on the medium in which the wave is being propagated. For example, suppose we have an oscillator working at a fixed frequency and this is coupled to an aerial. Then the wavelength of the alternations in space may be found from the equation by putting 300,000,000 metres per sec. for the velocity. This is the velocity of propagation of wireless waves in free space and is equal to the velocity of light; this is hardly surprising since the only material difference between a beam of wireless waves and a beam of light is the frequency—that of light being enormously the higher.

We have now a wavelength associated with our fixed frequency oscillator, but this is not unique. To see the truth of this we may couple our oscillator to a transmission line loaded by inductances (such lines are used in telegraphic work). Under these conditions the velocity of propagation may fall to a tenth of its previous value (i.e. to 30,000,000 metres/sec.) and the wavelength on the line will be correspondingly shortened. Now we have two different wavelengths associated with our oscillator, and of course there can be innumerable others in between. Thus, academically we should always think in terms of frequency, since it is fixed, and never in terms of wavelength, which is variable.

However, things are not quite as bad as this, for it is fortunate that in most radio work the velocity of propagation differs from the velocity of light by only a very small percentage, so for practical purposes we may regard this as our standard velocity and compute all wavelengths on this assumption.

In the early days of wireless it was the custom to use wavelengths almost exclusively; later there was a tendency to use frequency—modern communication sets are calibrated in terms of frequency, for example. Nowadays, measurements at frequencies of the order of 100 to 1000 Mc/s are carried out with transmission line sections, lecher wire systems, or other methods where a length is measured; so it is natural to think in terms of wavelength. At higher frequencies still cavity resonators are used, and here it becomes natural to think in terms of frequency again as the system is analogous to the Helmholtz resonator. Hence there will be points in the radio spectrum where it will be convenient to think in terms of frequency and others where wavelength will be the better viewpoint. The moral is for the radio engineer to have equal facility in the use of either. This is, perhaps, a counsel of perfection, but it is hoped that this chart may be of some help.

As mentioned above there has recently been some discussion as to the best method of dividing the radio spectrum into various bands. We cannot repeat here all the arguments for and against the various schemes, but in the author's opinion the best yet put forward appeared in Wireless World (Feb. 1943, p. 51). A table which was published then is repeated here with some minor modifications.

The chart is based on the equation \(f (\text{kc/s}) \times \lambda (\text{metres}) = 300,000 \), and it is labelled to correspond with the table. Band 1 is omitted from the chart as the wavelength at these frequencies is seldom required, being of the order of miles. Band 7 is at present of interest only to a very few and so is also omitted. Bands 2 to 5 inclusive appear on the chart which, it should be noted, is not a proper abac at all in so far as no ruler or straight-edge is required for its use. It is only necessary to find by inspection the appropriate band on which the required frequency (or wavelength) appears, when the corresponding wavelength (or frequency) can be read opposite it on the adjacent scale.

Example

What is the wavelength corresponding to 400 kc/s (0.4 Mc/s)?
Find the right band by inspection——in this case band 3. Opposite 400 kc/s on the frequency scale appears 750 metres on the wavelength scale. This is the required figure.

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency</th>
<th>Frequency Name</th>
<th>(\lambda) in Metres</th>
<th>Waveband Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Below 30 kc/s</td>
<td>Very low</td>
<td>Above 10^4</td>
<td>Myriametre</td>
</tr>
<tr>
<td>2</td>
<td>30-300 kc/s</td>
<td>Low</td>
<td>10^-1 to 10^2</td>
<td>Kilometre</td>
</tr>
<tr>
<td>3</td>
<td>300 kc/s-2 Mc/s</td>
<td>Medium</td>
<td>10^-3 to 10^8</td>
<td>Hectometre</td>
</tr>
<tr>
<td>4</td>
<td>3-30 Mc/s</td>
<td>Medium high</td>
<td>10^-4 to 10^-1</td>
<td>Decametre</td>
</tr>
<tr>
<td>5</td>
<td>30-300 Mc/s</td>
<td>High</td>
<td>10^-5</td>
<td>Decimetre</td>
</tr>
<tr>
<td>6</td>
<td>300-3000 Mc/s</td>
<td>Very high</td>
<td>1-0.1</td>
<td>Centimetre</td>
</tr>
<tr>
<td>7</td>
<td>3000-30,000 Mc/s</td>
<td>Ultra high</td>
<td>0.1-0.01</td>
<td></td>
</tr>
</tbody>
</table>
Wireless World

<table>
<thead>
<tr>
<th>BAND 2</th>
<th>BAND 3</th>
<th>BAND 4</th>
<th>BAND 5</th>
<th>BAND 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>100</td>
<td>10</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>200 k/s</td>
<td>300 k/s</td>
<td>30 k/s</td>
<td>3 k/s</td>
<td>2,000 k/s</td>
</tr>
<tr>
<td>2,000</td>
<td>200</td>
<td>20</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>3,000</td>
<td>300</td>
<td>30</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>100 kc/s</td>
<td>1 Mc/s</td>
<td>10 Mc/s</td>
<td>100 Mc/s</td>
<td>1,000 Mc/s</td>
</tr>
<tr>
<td>90</td>
<td>900</td>
<td>90</td>
<td>90</td>
<td>900</td>
</tr>
<tr>
<td>80</td>
<td>800</td>
<td>80</td>
<td>80</td>
<td>800</td>
</tr>
<tr>
<td>70</td>
<td>700</td>
<td>70</td>
<td>70</td>
<td>700</td>
</tr>
<tr>
<td>60</td>
<td>600</td>
<td>60</td>
<td>60</td>
<td>600</td>
</tr>
<tr>
<td>50</td>
<td>500</td>
<td>50</td>
<td>50</td>
<td>500</td>
</tr>
<tr>
<td>40</td>
<td>400</td>
<td>40</td>
<td>40</td>
<td>400</td>
</tr>
<tr>
<td>80</td>
<td>800</td>
<td>80</td>
<td>80</td>
<td>800</td>
</tr>
<tr>
<td>90</td>
<td>900</td>
<td>90</td>
<td>90</td>
<td>900</td>
</tr>
<tr>
<td>30 k/s</td>
<td>300 k/s</td>
<td>3 Mc/s</td>
<td>3 Mc/s</td>
<td>300 Mc/s</td>
</tr>
</tbody>
</table>

RADIO FREQUENCY AND WAVELENGTH
GRID emission of a thermionic nature was considered in the preceding section of this article. It is necessary to consider a further effect which may occur when a valve is used under conditions where grid positive current is flowing. For example, grid positive current will flow to the control grid of a valve operating under "positive drive Class B" conditions or, momentarily due to overload, in the case of a valve which is nominally working under Class A conditions. The flow of electrons to the grid in such cases as have been mentioned may result in electrons being released by impact from the grid material. This form of grid emission, arising from electron bombardment, is known as grid secondary emission and will result in the grid losing electrons, probably to the anode. Thus the flow of electrons from the grid, by secondary emission, offsets the arrival of electrons to the grid from the cathode. This phenomenon is illustrated in Fig. 1.

Starting at a point in the neighbourhood of $V_g = 0$, the grid current is zero. If the grid is made more positive, electrons are attracted to it, thus constituting a grid positive current. This current rises to a maximum at a point shown on the diagram where $V_g = A$, and subsequently it begins to fall because of the increasing loss of electrons from the grid arising from the resultant grid secondary emission. As the positive grid voltage is still further increased and the bombardment of the grid becomes greater, the secondary emission increases and the grid negative current will eventually attain the same numerical value as the grid positive current which is causing it. At this point, $V_g = B$, the total external grid current is zero. Beyond this point the value of the grid negative current becomes numerically greater than the grid positive current, and thus the resultant grid current is negative. At a still higher value of positive grid voltage, a further effect becomes apparent when the potential gradient around the grid is such that the secondary electrons move back to the grid itself rather than to the anode. This, of course, results in a drop of the grid negative current and at the point $V_g = C$ the total external grid current once more becomes zero. From here on, the grid current is increasingly positive.

It will be apparent from the above that there are three sets of conditions under which the external grid current can be zero and that the corresponding grid voltage can be either $V_g = 0$, $V_g = B$ or $V_g = C$.

If the grid of a valve has no DC connection to the cathode the external grid current is evidently zero. It may be, however, that the valve is operating at the point C on its grid characteristic and that the grid, consequently, is at a large positive potential. Under these conditions a considerable electron current will be flowing to the grid and an equally considerable electron current flowing from the grid as a result of secondary emission. The condition is a stable one and the valve may remain in this state indefinitely. Obviously, since the grid potential is large and positive the anode current of the valve will be considerably higher than the normal and the effect of this will be to increase the anode dissipation and thus damage the valve.

This is one very important reason for the insistence in the Code of Practice that "... in no circumstances should valves be operated without a DC connection between each electrode and the cathode..."

Mention is also made in BS. 1106 of the practice of "keying" by opening the screen circuit of a valve whilst the normal anode and grid voltages are maintained. This is another example of the operation of a valve without a DC connection between each electrode and the cathode.

The phenomenon of grid secondary emission, moreover, is of importance even if the grid has a DC connection to the cathode. Referring again to Fig. 1, it will be seen that two dotted lines are included, marked R_1 and R_2. These are simply the current/voltage characteristics for two values of resistance, drawn on the same co-ordinates as the grid current curve. The flow of grid negative current in a valve circuit where a DC connection exists between the grid and the cathode gives rise to a voltage drop down the DC resistance of such polarity that the grid becomes positive with respect to the cathode. R_1 and R_2 are assumed to be two values of external grid resistance where, of course, R_2 is greater than R_1.

Considering first the operation of the valve with an external grid connection having a resistance R_1, it will be observed that the grid current curve and the B, characteristic intersect at the two points D and E. These two intersections are conditions of equilibrium which, once established, may be maintained without the application of any external EMF to the grid. At D the equilibrium is unstable, but if a positive potential having a value greater than E is applied to the valve grid and then removed, the grid voltage falls towards zero until the stable point of equilibrium E is reached. Thus a momentary application to the valve grid of a positive potential greater than E (as, for example, by a condition of overload) may result in the phenomenon known as "grid-locking".

On the other hand grid locking is impossible in the case of the same valve operating with the smaller value of external grid resistance R_2 because that dotted line nowhere intersects the grid current characteristic.

This argument further emphasises the requirement that the DC connection between each electrode and the cathode should have the minimum practicable resistance. The Code of Practice in fact states "... the apparent advantage of an 'open-circuitcd' elec-
trode, or of a high resistance path, may be defeated by the valve's secondary emission characteristics."

Grid Rectification Biasing.

The very common use of grid rectification to obtain a bias voltage, particularly in cases of valves used as oscillators or RF power amplifiers, is the subject of another publication covered by BS.1106. This type of circuit is no doubt well known and consists of a condenser and resistance used in conjunction with a valve which is being driven into grid positive current on part of each cycle. This grid positive current produces an accumulation of electrons in the grid condenser and the mean charge potential is adjusted to the desired value by an appropriate choice of condenser capacity and grid-leak resistance.

In the event that the valve drive is cut off for any reason, the flow of electrons to the condenser every cycle will cease whilst the leakage of electrons through the grid-leak resistance will continue until, finally, the potential across the condenser will fall to zero. As the biasing potential drops the anode current will rise and may very greatly exceed the rated anode current. To avoid the damage to the valve which can arise in these circumstances the Code of Practice recommends that grid rectification biasing should never be used alone. It mentions one of the possible methods of avoiding the risk described, by recommending that some of the desired bias potential should be secured in the normal manner by a resistance in the cathode lead. Thus if the grid rectification bias fails the increasing anode current will produce an increasing cathode bias and thus can save the valve from damage. For any particular application it is very desirable that the valve manufacturer's advice should be taken as to the minimum cathode bias which will ensure a reasonable security against damage.

Miscellaneous.—It will be of interest to consider briefly two lesser known miscellaneous points which are covered by the Code of Practice.

The first reads: "It is, in general, undesirable that valves should be operated in such circuit conditions that the cathode current is normally cut off." This practice, which is often adopted in equipments which are required intermittently but at short notice, may be permissible with some valves but it should not be adopted without first taking the advice of the valve manufacturer. When a valve is operated in a normal manner the cathode emission carries with it minute quantities of impurities in the cathode coating. These impurities are deposited elsewhere in the valve and have only a negligible effect upon the useful life. On the other hand, if the cathode is maintained at operating temperature but the cathode current is cut off as, for example, by cutting off the anode voltage, these minute quantities of impurities fall back on to the cathode itself with the result that the cathode surface is slowly "poisoned" and its emissivity decreased.

A further cause of cathode "poisoning" may arise from the presence in the bulb of very small quantities of residual gas. Under the operating conditions the residual gas is ionised by collision as has already been discussed, whereas this will not be the case if the cathode current is cut off. It can be shown that un-ionised residual gas is less rapidly reabsorbed than when ionised and accordingly, in the absence of space current, residual gas may remain and result in cathode "poisoning."

The second of the two miscellaneous points referred to is concerned with contact potential.

The contact potential between any two electrodes in a valve is defined very simply in the Code of Practice as the "voltage corresponding to start of positive current to any electrode." Evidently, the assessment of the voltage at which a current starts to flow between two electrodes is dependent upon the sensitivity of the method used to detect the current and it is therefore usual in practice to define the contact potential as the potential at which the positive current reaches some small arbitrary value. The value of the contact potential is dependent upon the two surfaces under consideration and any variation in either of the surfaces will produce a change of contact potential.

The question of contact potential is of importance in a number of cases, but particular mention might be made of the case of the cathode/grid potential in high-gain triodes. With these valves, where the contact potential may easily be of the same order as the bias voltage, it is obviously important that due regard should be paid to it.

The Code of Practice emphasises that "circuits which are critical as regards control of contact potential should be avoided..." This condition must be observed because, as has been stated, the contact potential is dependent in any given case upon the electrode surfaces. Contact potential therefore changes with temperature and throughout the life of the valve and cannot be regarded as a stable or constant quantity.

Mercury Vapour Rectifiers.—A far smaller number of valve users is concerned with mercury vapour rectifiers than with "hard" valves of one sort or another. Partly because of this but partly because each mercury vapour application tends to be regarded as an individual engineering problem in itself, mercury vapour rectifiers are not taken quite so much for granted as are "hard" valves. Nevertheless BS.1106 does include a short section dealing with this subject.
Use of Valves—

The essential difference between a vacuum rectifier and a mercury vapour rectifier is that the latter contains a certain amount of mercury, partly in liquid form and partly vapour, depending upon the temperature conditions. When a potential difference is applied between the anode and the heated cathode an electron stream flows in the normal manner, and in their passage from the cathode to the anode electrons will collide with mercury vapour molecules and produce a state of ionisation. The positive ions on account of their high mass and the low potential gradient move towards the cathode at a relatively low velocity, and will neutralise the space charge existing between the cathode and the anode.

In a vacuum valve the presence of the space charge has the effect of reducing the space current and of necessitating the use of relatively high anode potentials. To remove the space charge entirely in a vacuum rectifier would require the application of very high anode voltages which might damage the valve by excessive anode dissipation and liberation of gas. The cathode, moreover, would be rapidly destroyed by the bombardment of positive ions which would be travelling at an extremely high velocity on account of the large potential between the anode and the cathode.

The introduction of mercury vapour into the valve and the consequent neutralisation of the space charge without the need for very great anode potentials, permits the anode current of the mercury vapour valve to approach the total emission of the cathode, whilst avoiding the risk of cathode damage from high-velocity bombardment.

The potential difference which is necessary between the anode and the cathode in a mercury vapour rectifier in order to produce a satisfactory ionisation of the vapour is usually less than 20 V. Thus, provided the anode voltage is of that order, the anode current will be unrestricted by the presence of a space charge and will only be limited by the emission available from the cathode.

The principal property of the mercury vapour rectifier therefore is that it will pass a relatively large current with only a very small potential difference across it. The very low value of the rectifier's resistance and its practically constant voltage drop require the use in practice of a limiting resistance in series with the rectifier.

If it should happen that the anode voltage were applied to the rectifier, before an adequate amount of mercury had been vaporised, the flow of electrons from the cathode to the anode would result in an insufficient number of positive ions to neutralise the space charge. The internal resistance would be excessively high and the voltage drop across the rectifier would accordingly be high also. Under these conditions, the velocity of such positive ions as did exist would be sufficient to cause cathode damage by bombardment, and partly for this reason a preheating time is always specified in the case of mercury vapour rectifier.

By preheating time is meant the period during which the cathode is heated before the application of the anode voltage. Mercury vapour rectifier cathodes are normally of the high current low voltage type having a considerable thermal capacity, and an appreciable time is required for the cathode to reach its operating temperature. Subsequent to this the heated cathode will cause the evaporation of a certain amount of mercury until a new state of equilibrium exists inside the bulb. If the valve has not been recently used, or if it has been disturbed so that the mercury may have splashed on to the emissive coating of the cathode, it will be necessary to take still greater care that an adequate preheating time is allowed. In the latter event, for instance, the presence of liquid mercury actually on the cathode will result in very rapid evaporation and an excessive mercury vapour pressure around the cathode.

If the anode voltage were applied whilst this condition persisted, arcing would take place between the electrodes and the valve would be damaged. In these exceptional cases it will generally be found that the manufacturer recommends the preheating time of between 15 and 30 minutes but for the routine starting of valves in regular use, the preheating time is less than this and may even be as short as a minute. In either case the length of the preheating time depends upon the size of the valve and upon the room temperature and it is safest to make sure that the recommended times for any particular type are known.

It is a common practice, and a very good practice, to make use of automatic time delay switches to take care of the necessity for a preheating time. These switches are generally thermal in principle and their release time, which is obviously determined by the rate of cooling of the bi-metal element, is far from negligible. It can happen, therefore, that the rectifier might be switched on again, soon after switching it off, before the delay switch has had time to return to the unoperated condition. If this should happen it is obvious that the anode voltage and the filament voltage will be applied to the rectifier simultaneously. The chance of this occurring is, no doubt, small, but it is a point well worth remembering.
Wireless World

The factor of temperature is always of considerable importance in the operation of mercury vapour rectifiers. The degree of ionisation of the mercury is dependent upon the pressure, and hence upon the temperature of the gas, as is also the rate of de-ionisation. If in any mercury vapour rectifier the temperature of the condensed mercury is too low, vapourisation and subsequent ionisation will be insufficient to bring about the desired condition of low voltage drop across the valve. If, on the other hand, the temperature is too high, then de-ionisation will be retarded. It will be remembered that the process of ionisation is effected by the flow of electrons from the cathode to the anode on each half-cycle when the anode is positive with respect to the cathode, and it is, therefore, evident that ionisation is required to take place in a time short compared with the length of one half-cycle. Similarly, the vapour must de-ionise at the beginning of each succeeding half-cycle rapidly enough to ensure that de-ionisation is sufficiently complete to enable the rectifier to withstand the peak inverse voltage. If the process of de-ionisation is retarded, the internal resistance of the rectifier will be too low to withstand the peak inverse voltage and breakdown and destruction of the cathode surface will result. It is, therefore, necessary to control the operating temperatures of mercury vapour rectifiers and with large valves of this class, when normal ambient temperatures are likely to vary unduly, some form of forced air temperature control must be employed.

The published data covering mercury vapour rectifiers always specifies a limiting range of condensed mercury temperature, and due attention must be paid to this if reliable service is to be expected from the valve.

The very high current-carrying capacity of mercury vapour rectifiers, as compared with vacuum rectifiers, gives rise to the need for a special precaution in the case of the larger directly heated types. With these it may well happen that the anode current is of the same order as the filament-heating current. Moreover, as has already been stated, the voltage drop across the rectifier is so low that it may be of the same order as the filament-heating voltage. If the anode and filament voltages are connected in phase or 180 deg. out of phase, as would be the case in a normal bi-phase half-wave circuit, maximum current to the anode will coincide with each half-cycle with peak positive voltage at one or other end of the filament. This will tend to draw more emission from one end of the filament than from the other, and will also result in unequal amplitude of current in the two halves of the filament. For this reason the Code of Practice lays down that with large directly heated mercury vapour rectifiers, the anode voltage and the filament voltage should be arranged to be substantially 90 deg. out of phase. If this is inconvenient, steps may be taken to reverse the filament terminals at regular intervals, but if this is not possible, the rectifier will usually have to be operated with reduced ratings.

"INTRODUCTION TO VALVES"

THIS popular book, of which a second edition has just been issued, was originally written for those who, with little or no previous experience, are called upon to handle valves, CR tubes and allied devices. Though the introductory chapters cover valve theory, it deals largely with practical circuit applications of valves.

A new chapter describing specialised valves, such as those for very high frequencies, including the magnetron, has been added. Electrolyte multipliers, "magic eye" tuning indicators and cold cathode rectifiers are also dealt with. Minor revisions have also been made.

"Introduction to Valves" is by F. E. Henderson, A.M.I.E.E., of the G.E.C., and is issued by our publishers at £5. (By post, 5s. 3d.)

ELECTRICAL INDUSTRIES RED CROSS FUND

The total of covenanted subscriptions and donations to this Fund now amounts to over £17,000. Among the names of firms with wireless interests which appear in the latest lists issued are Ferranti, Ltd. (£200), and Kolster-Braudies. Ltd. These sums given represent covenanted annual subscriptions for seven years or for the duration of war.

Information can be obtained from the Joint Secretaries of the Fund, c/o The E.D.A., 2, Savoy Hill, London, W.C.2. Contributions should be sent direct to the Electrical Industries' Red Cross Fund, St. James's Palace, London, S.W.1.
Do You Know?

IN pre-war days to be a regular reader of Wireless World always tended to set a man somewhat apart from his fellows as being one possessed of superior knowledge and intelligence, and this was true even of the man who bought it solely for the purpose of wrapping up his fish and chips; it at least showed that he appreciated the fact that the good quality of the paper on which it was printed rendered it more greaseproof than lesser journals.

In fact, it is true even to-day, as a "Waaf" of my acquaintance tells me, that he always carries a copy because it creates a good impression among those in authority, thereby opening the gateway to certain privileges denied to the less wise virgins in her unit.

However, Wireless World readers, like other great men of science, appear to be somewhat shaky where the more elementary facts of their chosen subject are concerned, judging by a recent experiment which I carried out in London. It is, I think, betraying no secrets to the enemy when I say that the attention-compelling cover of this journal is to be seen everywhere nowadays in tubes, buses and other public places, being pored over by studious young men in uniform, muttering angry disagreement to themselves as they peruse its pages.

I have, for some weeks past, made it my business to get into conversation with them by using my own copy of the journal as a medium of introduction and have been truly astonished at the amount of ignorance they have displayed concerning the veriest elements of radio and electrical science, whilst at the same time being on terms of the greatest familiarity with abstruse aspects of it, which would be not unworthy of my own attention.

"A Waaf of my acquaintance"

My stock question to them has been the seemingly simple and elementary one: "What is the speed of electricity?" In the past I have received the instantaneous and unthinking reply: "186,000 miles per second," and have had quite a task explaining that I am not seeking their opinion on the speed of ether waves but of the humble electron moving round a simple DC circuit like that of an electric torch.

I am wondering if I was singularly unfortunate in my choice of questionees (Government-sponsored word) or whether the majority of you are equally ignorant. Please let me know on a postcard. The Editor's decision will be final, even if he doesn't know the proper answer himself.

"All for Adolf"

I AM particularly glad to see that the Editor is taking a firm line on the question of wire or wireless broadcasting, since it is a course which I have been urging on him for a long time. It is quite evident, however, that neither he nor his Brains Trustees are as well informed as myself regarding the true extent of the underground preparations that are being made to deprive us of our ethereal freedom.

I can scarcely believe that such normally well-informed people as those whose views on the subject have been published in the Wireless World Brains Trust—D. A. Bell in particular—can be unacquainted with the latest developments in "conducted carrier" technique as their remarks would lead me to believe, and I can only assume that the grim jest contained in the use by the "All-Metal" protagonists of the expressions "piped transmissions" must have escaped their notice.

The truth of the matter is, of course, that the programmes are to be distributed to us along the gas mains—suredly a very appropriate medium for them—for the very simple reason that in our larger cities with their huge preponderance of gaunt pre-war houses, mostly occupied by the less fortunate section of the community, gas is still the only illuminant available—and this in spite of the much-vaunted "grid."

With modern "conducted-carrier" high-frequency technique the absence of ordinary electrical insulators is no disadvantage as very little energy will be dispersed in the surrounding soil. Actually, gas pipes possess the very great advantage that there is no noisy and troublesome AC or DC to filter out. Naturally a certain amount of interference will travel along the pipe, but it can easily be "choked off" by winding the mains in the form of an inductance at the point where it enters the house, an arrangement which I myself first brought to notice in these pages in the case of water pipes as long ago as September 18th, 1934. The original sketch is reproduced herewith.

There does, of course, remain the problem of the dwellers in our ancient villages who still pig-headedly prefer the tangible light of oil lamps to the "flowing" promises of the Central Electricity Board. This is, however, to be solved by the use of helicopters (now being developed at the taxpayers' expense for alleged war purposes) to hover over the villages and distribute broadcasting communally by giant loud speakers. The programmes will be beamed to the helicopters direct from London. In this manner it is hoped to get the inhabitants of each village to club together and pay for mains to be laid on to their locality in order to stop the infernal racket overhead, thus saving the lighting and heating authorities a lot of expense.

Personally speaking, Adolf's "New Order" seems to me by far the lesser evil of the two, and I am seriously thinking of rousing the masses to support him with the stirring slogan of "All for Adolf." After all, even a Volksempflanger is preferable to no wireless at all.
WORLD OF WIRELESS

B.B.C. DIRECTORS

Following the resignation through ill-health of Sir Cecil Graves, Joint Director-General of the B.B.C., the Board of Governors have appointed the remaining Joint Director-General, Robert Foot, as sole Director-General and executive officer of the Corporation.

Sir Noel Ashbridge.

The Governors have also made a new appointment, that of Editor-in-Chief, and have chosen W. J. Haley, who, with the D.G., will be jointly responsible for the character and quality of the Corporation's output. Mr. Haley, who served as a wireless operator at sea during the latter part of the Great War, is joint managing director of the Manchester Guardian and Evening News, Ltd., and a director of Reuters and of the Press Association.

General approbation will be felt in wireless circles by the appointment of a technician to the important post of Deputy Director-General. Sir Noel Ashbridge, who has been appointed to this office, joined the B.B.C. in 1926 as Assistant Chief Engineer, becoming Chief Engineer in September, 1929. For six years prior to joining the B.B.C. he was with Marconi's at the experimental station at Writtle, Chelmsford. He is a member of the Radio Research Board and Past-President of the I.E.E.

Sir Noel's successor as Controller of Engineering Division is H. Bishop, at present Assistant Controller. He came to the B.B.C. from the Marconi Company just after the first Chief Engineer, P. P. Eckersley, early in 1923. Previously he had worked on the original 2LO transmitter at Marconi House, London. In 1929 he was appointed Assistant Chief Engineer.

R. T. B. Wynn, who has been appointed Assistant Controller, Engineering Division, also came to the B.B.C. from the Marconi Company in 1926 as head of the Technical Correspondence Department, becoming Senior Superintendent (Engineering) in 1935.

I.E.E. PRESIDENT

The first meeting of the 1943-44 Session of the Institution of Electrical Engineers will be held on Thursday, October 7th, at 5.30, when Col. Sir A. Stanley Angwin, who takes up his appointment as President on September 30th, gives his inaugural address.

Sir Stanley, who was created a Knight-Bachelor in June, 1941, has been Post Office Engineer-in-Chief for the past four years, having previously been Deputy Engineer-in-Chief. He joined the Post Office in 1906 and has contributed largely to the design of the Post Office transmitting stations and the introduction of the coaxial cable for the television service.

Sir Stanley has represented the Post Office at many international telecommunications conferences and is a member of the Television Advisory Committee.

AUSTRALIAN RADIO

Sir Ernest Fisk, chairman of Amalgamated Wireless (Australia), was the guest of honour at
World of Wireless

312

the August luncheon of the Radio Industries Club. Speaking of the development of beam transmission between Great Britain and Australia, he stressed the need for the development of communication systems within the British Empire.

Australia's two broadcasting systems, the National Service, based on the B.B.C., and the Commercial Service, operated by private enterprise and financed by advertisement revenue, include 140 comparatively low-powered transmitters. Sir Ernest gave the latest figure of Australia's licence holders as 1,500,000, each of whom pays £1 per annum.

NEWS IN MORSE

A REVISED schedule of transmissions of official news bulletins radiated in Morse from the G.P.O. stations has been received since that published last month. Although intended for overseas listeners, the transmissions may be heard in this country.

The call signs and wavelengths employed are:

- GAA 14.72 Mc/s GCP
- GAO 14.92 Mc/s
- GAD 15.40 Mc/s
- GID 22.13 Mc/s GAA
- GIM 23.13 Mc/s GID
- GGO 42.56 Mc/s

The times (GMT) of the broadcasts and the call signs of the transmitters radiating them are:

*0045: GBC5, GJH
*0930: GIA, GID, GIH
*1300: GAD, GIA, GID
*1800: GIM, GCP, GAA
*2300: GAY, GIH

Transmissions marked with an asterisk are continuations of the preceding broadcasts. The B.B.C.'s Morse transmissions of news in English are now radiated from 0045 to 0100 (GMT) on seven wavelengths in the 49- and 41-metre bands.

RADIO OFFICERS' BRAVERY

THE Lloyd's Medal for bravery at sea has been awarded to Radio Officer George Kenmure Garstin. Although it was obviously only a matter of minutes before his ship, which was torpedoed whilst sailing in convoy to Russia, would sink, Radio Officer Garstin, having heard the order to abandon ship, refused to leave the wireless cabin until he was satisfied that the messages he had sent out for help had been received. The Medal was also awarded posthumously to Third Radio Officer Richard Phillips, who lost his life in rescue attempts after he had succeeded in getting a portable transmitter into a lifeboat.

BRIT. I.R.E.

SIR LOUIS STERLING presided at the annual general meeting of the British Institution of Radio Engineers held on September 3rd.

Wireless World

(not 16th, as stated last month).

At the conclusion of the business Sir Ernest Fisk, first president and immediate past-president of the Institution of Radio Engineers of Australia, addressed the meeting. He gave an interesting survey of the history of wireless telegraphy and broadcasting from the beginning of the century, describing some of the technical and prejudicial difficulties that had to be overcome before direct Empire communication, so essential to Australia, could become an accomplished fact.

He said he looked forward to the time when the two Institutions could work in co-operation.

U.S. SHORT-WAVE STATIONS

PERMISSION has been granted the World Wide Broadcasting Foundation of Boston, Mass., to erect two new short-wave transmitters at Scituate, Mass. Like the existing World Wide transmitters WRL, WRRW and WRUS and, in fact, all short-wave stations in the States, the new transmitters will be operated by the owners, but the programmes will be supervised by the Office of War Information.

Call signs have not yet been allocated to these latest outlets for the "Voice of America," which will operate on 0.64, 9.70, 15.35, 17.75 and 21.46 Mc/s.

New Radio-phototelegraphic Service.

It is announced by Cable and Wireless that a phototelegraph service between London and Sweden commenced on August 21st last.

B.B.C. Short-wave Bulletins.—Various short-wave services of the B.B.C. are being increased as the terms of the war change. The latest list includes transmissions in 49 languages. The following schedule of transmissions of news in English on short waves will be in use from September 26th. Times are given in BST.

<table>
<thead>
<tr>
<th>Time</th>
<th>GAY</th>
<th>GBC5</th>
<th>GCP</th>
<th>GAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.00</td>
<td>27.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.15</td>
<td>27.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.30</td>
<td>27.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.45</td>
<td>27.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td>27.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.15</td>
<td>27.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.30</td>
<td>27.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.45</td>
<td>27.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td>27.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.15</td>
<td>27.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.30</td>
<td>27.86</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Waste Paper.—The salvaging of waste paper is still a national necessity. During the first six months of this year fifty-seven tons of waste paper have been salvaged by the main branches of the B.B.C. The strict economy by the Corporation in the use of new paper has resulted in a substantial saving of £9,250,000. Waste paper is still a national necessity. The salvaging of waste paper is still a national necessity. During the first six months of this year fifty-seven tons of waste paper have been salvaged by the main branches of the B.B.C. The strict economy by the Corporation in the use of new paper has resulted in a substantial saving of £9,250,000.

R. T. B. Wynn, the new Assistant Controller (Engineering Division) of the B.B.C.

IN BRIEF

Receiving Licences.—In Great Britain and Northern Ireland the total number of receiving licences is now well over 9,250,000.

In Sweden the number of wireless licences at the end of June was 1,676,188, that is, 259 licences per 1,000 inhabitants.

ERRATUM

"Wide-range R.C. Oscillator"; September issue.

The expression \(\sqrt[2]{2.3} \) (p. 263, 9th line from bottom of col. 3) should read \(\sqrt[2]{2.8} \); the square root sign applies only to the figure 2 and not to R.
Letters to the Editor

Contrast Expansion and Distortion. Pick-up “Tracking Arms”

Contrast Expansion

In discussions of the objects and drawbacks of automatic compression followed by expansion, it is desirable to distinguish between two classes of communication systems.

In one class, any transgression of a certain output level incurs the immediate penalty of non-linear distortion. This class includes amplitude-modulated carrier systems, and systems in which one link, such as a power valve may overpass the limits of its linear action.

In a second class, a level exists, below the distortion level, which may be exceeded occasionally without penalty, provided that the practice does not, so to speak, become a habit.

This earlier restriction may be imposed by cross-talk into adjacent lines, or by the heat dissipation of valves. In frequency-modulated carriers, an occasional splash into a neighbouring frequency band may be permitted, provided that it occurs rarely. In lateral gramophone recording, a rather wider swing is permissible to the groove, if the chance of a wide swing on the neighbouring grooves is small. It is in systems of the latter class that distortion -less ‘compansion’ becomes possible and useful. If the compressor and expander circuits have equal responses both in phase and amplitude, they will together introduce no distortion of any sort into the system, and will escape the objections of Mr. Hughes in his letter of July, 1943.

I have had experience of such a system in a gramophone recorder and reproducer. I found a short time-constant of the order of 30 milliseconds suitable both for onset and recovery.

As a footnote, I would like to express my disillusionment with automatic contrast expansion used otherwise than with a few selected records, or with records made with a compressor the inverse of the expander. The most unhappy results are obtained when attempting to undo the work of a control engineer who has brought up the gain during a quiet passage to unity signal/cou gh ratio.

C. E. G. BAILEY.

It seems rather regrettable that the present correspondence on volume expansion has produced so little “meat,” while the letter from J. R. Hughes only serves to increase the confusion. It is accepted that a good volume expander greatly enhances the dramatic appeal of a suitable recording and that surface noise is considerably reduced, but Mr. Hughes appears to believe that the distortion introduced on transients is such a disadvantage that volume expanders are not worth while.

Mr. Hughes does not produce any data to support this last point (in fact such data is not available), but attempts to decry the value of judgment tests with a lot of vague statements that listening tests of this type are unsatisfactory. Judgment tests form the backbone of any method of assessing sound quality and are in widespread use by all the research laboratories engaged on acoustical development. When put to critical test they have shown surprising agreement. With five minutes’ thought, I found it possible to write down twelve different types of distortion that an electro-acoustical system might introduce. Quantitative data on the quality deterioration introduced is available on only three of the twelve. In the present stage of the art there is therefore no means of assessing quality other than the use of judgment tests.

The ideal is well known (Mr. Hughes, paragraph 5) but it cannot and never will be obtained, and it becomes necessary to find out what departures from perfection are permissible before the ear detects the departure. This is plain common sense.

Regarding transient distortion.

THE “FLUXITE QUINS” AT WORK

One day young 00 had a fright.
Thought the radio set was alright,
With unerring aim
She extinguished the flame
(And old EH—mending wires—with Fluxite.)

See that FLUXITE is always by you—in the house—garage—workshop—wherever speedy soldering is needed. Used for over 30 years in Government works and by leading engineers and manufacturers. Of all Ironmongers in tins, 8d., 1/4 and 2/8.

Ask to see the FLUXITE SMALL-SPACE SOLDERING SET—compact but substantial—complete with full instructions, 7/6.

TO CYCLISTS! Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings AND SOLDERED. This makes a much stronger wheel. It’s simple—with FLUXITE—but IMPORTANT.

The FLUXITE GUN puts FLUXITE where you want it by a simple pressure Price 1/6, or filled, 2/6.

ALL MEASANIES WILL HAVE

FLUXITE IT SIMPLIFIES ALL SOLDERING

Write for Book on the ART OF “SOFT” SOLDERING and for Leaflets on CASE-HARDENING STEEL and TEMPERING TOOLS with FLUXITE. Price 1d. each

FLUXITE LTD.
(Dept. W.W.), Bermondsey Street, S.E.1.
Letters to the Editor—

I have said that the distortion may be there, but is so small that it is absolutely indistinguishable on the vast majority (99 percent.) of records. The surface noise reduction is a real advantage and is clearly apparent on every record, and the distortion is a real advantage and is of records. The surface noise reduction is a real advantage and is clearly apparent on every record, while the increase in dynamic range is surprising on at least 50 per cent. of the records.

Complete quantitative data on the effect of small transient distortions is lacking but the following items are of some value. On looking back over my prewar results I note that on a volume expander designed in 1936, I found that at 400 cycles the 2nd harmonic was 52 db. and the 3rd harmonic 40 db. down on the fundamental. To express the transient distortion is more difficult. One might express this mathematically as the output voltage obtained from an input Heaviside function, or one might portray the output wave graphically, but there is no method of correlating this with "how does it sound." Regrettable, but that is the present position. Judgment tests were very favourable, as mentioned in my first letter.

Volume expanders can be built with an "opening time" of 10 milliseconds and a "closing time" of 1 to 2 seconds without any particular difficulty, and I am afraid that it never occurred to me to design expanders with other than unequal opening and closing times.

Wireless World

Wire or Wireless?

In your September issue, under the heading "Against Wired Broadcasting," you state that "most wireless men object to a system that threatens the expansion of their technique." Surely this statement cannot be applied to wired broadcasting.

In the system of wired broadcasting developed by the G.P.O. and described by Dr. Walmsley in the Journal of the Institution of Electrical Engineers, provision was made in the design of the apparatus used at the subscribers' end for the receiving of programmes sent out by means of wired broadcast and also for the reception of radiated programmes. The inference is that wired broadcast is not intended to replace radiated programmes, but is there as an alternative, to be
used at the discretion of the subscriber.

It appears, therefore, that far from threatening the expansion of wireless technique, wired broadcasting opens up opportunities for the expansion of development in existing fields, and also opens new fields for the research into and development of wired broadcast systems.

The set manufacturers who, as stated, represent 80 per cent. of the wireless industry, would be called upon to develop receivers capable of receiving both radiated and wired broadcast programmes.

The firms representing the other 20 per cent. would have, in addition to their existing work, the development and manufacture of the apparatus required for wired broadcasting, i.e., transmitters, carrier frequency amplifiers, etc.

RALPH T. LAKIN.

Mansfield, Notts.

As a keen radio man—but not at all interested in the economic welfare of the radio manufacturer—I feel the point of view of the quality enthusiast has not been sufficiently stressed in the "wire versus wireless" controversy.

A wired carrier-current system would seem definitely to offer the ideal means of meeting our requirements for modulation frequencies up to at least 15 kc/s with high signal/noise ratio and freedom from the defects and irritations of the purely radio path—interference, heterodynes, selective fading, etc.

The one danger with wired broadcasting seems to be the attempt to provide too many channels. Eckersley has proposed six—surely unnecessary!—with modulation frequencies up to 8 kc/s; while admitting that the quality would be as good, probably better, than most commercial receivers provide at present, I should be dead against such a limitation of frequency range. Reduce the number of channels and allow us at least one high quality signal covering programmes free of recorded matter and bad land lines.

That high quality is appreciated even by the uninitiated is easily shown, and I think that on this score alone, a special service of a single channel of this nature is worthy of consideration and the

Wireless World

results, provided always, of course, that the terminations did it justice, would be a self-advertisement.

R. W. BATT.

Cosham, Hants.

"CONTRAST EXPANSION UNIT"

IN the article under this title by D. T. N. Williamson in the last issue the diagram (Fig. 4) showing the waveform of a struck string was inadvertently reversed; the maximum amplitude should have appeared at the left of the diagram, thus:

![Diagram of waveform](image1)

At the same time we are taking the opportunity of redrawing Figs. 2 and 3 to bring out the essential points of the author's original drawings more clearly. Fig. 2 (b) should have shown the original contrast of (a) at the instant of amplitude increase (the expansion being additional to this).

![Diagram of waveform](image2)

Similarly, Fig. 3 should show the initial change in amplitude followed by a further reduction under the influence of a long time constant.

![Diagram of waveform](image3)

In Fig. 7 the electrolytic condenser C10 should be connected with its positive terminal to chassis and negative to the junction of R17 and R18. Also the resistance next to the cathode of V1 should be R2 and not R4.

The Improved

VORTEXION

50 WATT

AMPLIFIER CHASSIS

The new Vortexion 50 watt amplifier is the result of over seven years' development with valves of the 6L6 type. Every part of the circuit has been carefully developed, with the result that 50 watts is obtained after the output transformer at approximately 4% total distortion. Some idea of the efficiency of the output valves can be obtained from the fact that they draw only 60 ma. per pair no load, and 160 ma. full load anode current. Separate rectifiers are employed for anode and screen and a Westinghouse for bias.

The response curve is straight from 200 to 15,000 cycles. In the standard model the low frequency response has been purposely reduced to save damage to the speakers with which it may be used, due to excessive movement of the speech coil. Non-standard models should not be obtained unless used with special speakers loaded to three or four watts each.

A tone control is fitted, and the large eight-section output transformer is available in three types: 2-8-15-30 ohms; 4-15-30-60 ohms or 15-60-125-250 ohms. These output lines can be matched using all sections of windings and will deliver the full response to the loud speakers with extremely low overall harmonic distortion.

PRICE (with 807 etc. type valves) £18.10.0

Plus 25% War Increase

MANY HUNDREDS ALREADY IN USE

Supplied only against Government Contracts

VORTEXION LTD.

257, The Broadway, Wimbledon, S.W.19

Phone: Liberty 2814
The Daniell

THE suggestion made by a Wireless World Brains Trustee that the factor eleven in the 132 kV of the grid power lines can be traced back to the 1.1-volt EMF of the Daniell cell is interesting and I have an inward feeling that he may be right. Only one thing is against it and that is that 132 kV is the voltage of power lines in one or two other countries. Had this figure been used in Britain alone, I’d have swallowed the Daniell explanation hook, line and sinker. The Daniell certainly was in use before the volt came along and persisted for some time afterwards. I’m sure I can remember seeing it in old books on electricity. It may well have lingered on even amongst technicians, for we have a national fondness for retaining weird, out-of-date units such as “hand,” “cram,” “sitting,” “chaldron,” “leash” and “square.” Even the “league” as a measure of distance remained in regular use until comparatively recent times. Do you remember Jules Verne’s Journey to the Centre of the Earth? I seem to recall that the professor in that highly imaginative work made electrical apparatus, containing a Rumkoff coil, which produced a pressure of a vast number of Daniells. If the Daniell was an accepted measure of EMF in Jules Verne’s time, it might well have been used in the calculations of those who designed and laid out the earliest electricity supply systems. On this hypothesis our Grid voltage is really 120 kilodaniells (help!) and the round figures of which we are all so fond are preserved beneath the overlying crust of the volt.

And the Hertz

What has happened to the Hertz, meaning a cycle-per-second? It seems to have dropped out of use altogether. When the first of the great Plans (the Geneva, wasn’t it?) for ending Europe’s broadcasting chaos was adopted, the ultra-correct B.B.C. always gave the frequencies in kilohertz in all the station-lists that it published. The man-in-the-street much preferred the wavelengths, in which he had been brought up to the (to him) new-fangled frequencies. So far as he swallowed the latter at all, he swallowed them in kilocycles and would have nothing to do with kilohertz. Some rather pedantic technical authors strove to uphold the Hertz and its various compounds, but others were content with kilocycles-per-second. Nowadays most people say and write just kilocycles or megacycles, though the “per-second” part is retained in the written abbreviations always used, kc/s and Mc/s.

Hertz did such wonderful pioneer work in wireless that it seems a pity that his name cannot be commemorated by a wireless unit of measurement. Curious—isn’t it?—that to achieve the spelling of your name with a small letter is one of the highest pinnacles of scientific fame?

Utility Sets

ONE correspondent writes that he couldn’t disagree with me more over what I wrote recently on the subject of utility sets. After reading his letter carefully I can’t quite make out why! He is a quality enthusiast; so am I. He feels that the manufacturers have in the past taken the wrong line by emphasising the station-getting powers of their sets in their advertisements and so on; so do I. He wants an adequate number of new receivers to be available as soon as possible to the public; I want the same thing. Where, perhaps, we do differ is in two points, not so far as I can recall, mentioned in my notes, but stressed in his letter. My correspondent thinks that (a) now is the time to educate the public up to high-quality reception, and (b) that it is possible to produce low-priced utility receivers that will give such quality. I can’t see eye to eye with him in either of those contentions. At the moment the majority of listeners seem to desire two things mainly from their wireless sets: news and light entertainment. And for neither of these is high-quality reception of paramount importance. If you want proof that quality doesn’t matter—that it is actually repugnant to the tastes of most of those who listen to dance bands and such-like, observe the setting of their tone controls when modern music is coming in. In an least eight cases out of ten you’ll find that such “tops” as the set may have have that often isn’t much—has been removed in order to produce the mellow (i.e., topless) reproduction that seems essential to palliate the horrid noises made by muted trumpets, jazz clarinets and other queer instruments, including the strident female crooner.

In Self-defence

Speaking of crooners reminds me that that eminent critic Mr. James Agate has offered an explanation of the reason why they use microphones when performing on the stage before an audience. I’d always thought that it was due to the fact that their bleating voices were too feeble to fill an auditorium of any size. Mr. Agate has come to a different conclusion. Most of them, says he, become known to the great mass of the people by their broadcasting. Those who hear them use receiving sets either inherently incapable of good quality, or so “toned down” that the reproduction is queerly distorted. Having heard crooners and other alleged singers under these conditions, they conclude that this is what their efforts really sound like. If they went to theatres and heard their favourites performing without distortion introduced, wilfully or incidentally, by microphone, amplifier and loudspeaker, they would feel that something was lacking and would be disappointed. In other words, they have come to prefer the distorted sounds associated with “canned” music to the real thing.

The Price of Quality

Few, I think, will agree with my correspondent’s second contention: that you can mass-produce quality receivers at a low price under wartime conditions. The average purchaser doesn’t realise that whilst it is a comparatively inexpensive business to turn out sets that will bring in lots of stations, the hits and pieces necessary for good-quality reproduction are far from being cheap or easy to make. It’s the AF side of the set that eats up the money, unless you are content to put up with a fair amount of distortion. My own feeling is that whilst the war is on it is best to accept moderate quality of reproduction—just as we accept moderate quality in so many other things—in order to be able to satisfy the big demand for new sets to replace those that are worn out and beyond repair. Broadcast reception is a necessity rather than a luxury in the wartime home, and the only way to enable as many as possible of our nine million licensed listeners to have it is to ensure a regular supply of new sets, sufficient to replace the old ones that pass out. In present circumstances there would seem to be no means
Post-war Channels

WHETHER or not wired broadcasting is developed as a competitor of the existing wireless variety, there is little doubt that the medium- and long-wave stations of Europe will continue their activities for some time after the blessed return of peace. And what a grand opportunity there will be to settle the allocation of broadcasting channels on a rational basis. The last pre-war plan continued the 9-kilocycle separation between channels on the medium-wave band and adopted something even smaller on the long waves, if my memory isn’t at fault. Now a separation of 9 kc/s is not enough if receiving sets are to reproduce speech and particularly music with good quality. We can’t do with less than 10 kc/s, and we must see that it is adopted. The 9-ke/s basis was agreed upon because in those rather turbulent times nothing better could be done.

What Separation?

As I’ve said, 10 kc/s is the smallest channel separation that is going to be satisfactory from the quality point of view. We know that it is possible to fit in large numbers of stations on a 10-ke/s basis if there is a supervising authority armed with real powers, for it has been done with most satisfactory results in the U.S.A., where the Federal Communications Commission can and does enforce its decisions, banishing recalcitrant stations from the ether if need be. And there is another reason why the 10-ke/s separation is so much to be desired. The broadcasting bands divide themselves automatically in the most convenient way. On the medium-wave band we have channels on 550, 560, 570 kc/s and so on up to 1,500: there are no odd kilocycles or decimal parts of kilocycles to remember. And we can leave out the final nought in every case, calling them simply channels 55, 56, 57 and so on. Not only are these easy to remember, but they also make the calibration of broadcast receiver dials simplicity itself. American receivers made for home use are often calibrated in this way. It is rare to hear wavelengths mentioned by Americans when speaking of their broadcasting stations: they find channel No. 72 much easier to remember than 416.6 metres.
HEARING-AID AMPLIFIERS

The diagram shows a portable microphone set in which negative feedback is used to ensure fidelity, and positive feedback to counteract the loss in gain as the battery runs down. Provision is also made to adapt the tonal response of the microphone to meet high or low levels of local noise.

Both the microphone M and the receiver Q are preferably of the piezoelectric type. A tapping P from a resistance shunting the output transformer T applies negative feedback (a) through a resistance R, condenser C and resistance R1 to the grid of the last amplifier V3, and (b) through the resistances R2, R3 and a condenser C1 to the screen grid of the first amplifier V1. As the resistance of battery HT increases, a proportional positive feedback is applied to the grid of the valve V2 through a resistance R4 and the condenser C2. It will be observed that the resistance R4 is in the anode circuit of V1, and is also in series with the normal decoupling circuit R5, C3 of the battery. A switch S allows the frequency response of the microphonic input to be varied to suit the personal needs of the user or to counteract abnormal local conditions.

Western Electric Co., Inc. Convention date (U.S.A.) December 24th, 1940. No. 552331.

ELECTRO-MECHANICAL METERS

Variations of mechanical force are converted into equivalent voltages and are measured by a valve市 the gain of which is automatically controlled to give a straight-line law as between the mechanical and electrical values.

For instance, the pressure inside the cylinder of an internal combustion engine is applied to a diaphragm forming one plate of a variable condenser, which, in turn, constitutes one of the terms of a capacity bridge. High-frequency oscillations are applied to one diagonal of the bridge, and a voltage-modulated in accordance with the pressure variations is taken from the other diagonal and applied to the grid of a pentode amplifier. The output from the amplifier is fed to a diode from which a negative feedback is applied to control the gain of the amplifier so that the original non-linearity of the condenser response is corrected.

Philips Lamps, Ltd. Application date September 19th, 1941. No. 552098.

RADIO ALTIMETERS

The distance of a reflecting body can be measured by noting the time taken by a reflected radio wave to return to its point of origin. One known method of ascertaining the required time interval, which is of the order of microseconds, is to vary the frequency of the outgoing wave over a constantly repeated cycle, and to measure the beat-frequency set up between the outgoing and returning waves. Usually the same aerial serves both for transmission and reception.

In practice, the aerial tuning is fixed to coincide with the middle frequency of the repeated cycle. This means that the system necessarily falls off towards both extremes of the frequency sweep.

In the present arrangement the tuning of the aerial is linked through ganged condensers with the circuits of the carrier-wave generator, so that the exploring wave is radiated at maximum efficiency at all times. Since the difference between the highest and lowest operating frequencies is only a small percentage of the carrier frequency, the small amount of detuning experienced by the incoming reflected wave is immaterial.

SIGNAL-TO-NOISE RATIO

The total "noise energy" in the circuits of a receiver is proportional to the product of the power of the noise and time during which it persists. Accordingly if a receiver is made active only at intervals of, say, 1/5,000 of a second, repeated 500 times a second the resulting noise will be reduced by approximately ten-to-one in power. This will not, of course, improve the signal-to-noise ratio when receiving continuous signals.

If the outgoing signal is radiated in intermittent pulses, it can be transmitted at a much higher level of instantaneous or "peak" power than is possible for sustained or continuous operation. If the intermittent activities of the transmitter and receiver are synchronised a considerable improvement in signal-to-noise ratio is achieved, and this can be still further improved by the use of directive aerials.

The specification describes a system of pulsed transmission and reception which embodies the above-mentioned principle.

The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office from specifications obtainable at the Patent Office, 28, Southampton Buildings, London, W.C.2, price 1/- each.
Outwardly, he is just an ordinary sort of man, doing his job in a quiet, unassuming way. But we know his history and his background, and can appraise the highly specialised skill which has been traditional in his family for generations. There are not very many like him in this country to-day.

He is a diamond driller; the products of his craftsmanship go into the thousands of diamond dies required every year by industry for producing the delicate wires for the filaments of electric lamps and radio valves; for high precision scientific instruments and a host of other specialised purposes. He is one of the thousands of Philips workpeople who gave you, before the war, the Philips products you knew and trusted so well. His skill is a vital asset to the nation to-day.

Diamonds

PHILIPS
RADIO * LAMPS
AND ALLIED ELECTRICAL PRODUCTS
Audio Amplifiers & Sub-Assemblies to Critical Standards

In addition to Standard Amplifiers the activities of Acoustical include Special Amplifiers for Industrial Applications, Microphones, Transformers, Coil Winding, Sheet Metal Work, Stampings, Switch Assemblies, etc.

Acoustical Manufacturing Co. Ltd.
Huntingdon - Tel: 361

FOR THE RADIO SERVICEMAN DEALER AND OWNER

The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply training in practical, every-day radio service work. We train them to be successful!

Special terms for members of H.M. Forces.

MUSIC WHILE YOU WORK

For buildings up to 5,000 sq. ft.
EARLY DELIVERY

For full details of equipment please write:

R. M. ELECTRIC LTD.
TEAM VALLEY
GATESHEAD, 11

M.O.R.S.E.
COMPLETE PRACTICE UNIT

as supplied to many branches of H.M. Services

No. 1281. Complete M.O.R.S.E Practice Unit. Heavy commercial key with nickel silver contacts and sensitive triple adjustment. High-tune buzzer with silver contacts, mounted on bakelite base with cover. Battery holder, complete with 6.6 Ever Ready battery. All metal parts heavily nickel plated, and the whole mid. on polished Mahogany Base. 6in. x 6in. Post paid,

Send 1d. stamp for Illustrated List
SIGNALLING EQUIPMENT LTD. (Dept. 8)
Merit House, Southgate Road, Potters Bar. "Phone: Potters Bar 3133

INTERNATIONAL CORRESPONDENCE SCHOOLS Ltd.
DEPT. 38, INTERNATIONAL BUILDINGS, KING'SWAY, LONDON, W.C.1

Please explain fully about your instruction in the subject marked X

And the following Radio Examinations —

Name. Age
Address.

Enquiries to:
Solo Manufacturers: ROLLINS & SONS (Ldn.) LTD.
Trade Distributors: A. S. BOYLE CO. LTD.
Chenies Street, London, W.C.1
107 Fleet Street, London, E.C.4

THREE-IN-ONE OIL

is 'on the job'. 301 uses in Factory, Workshop and Office.

Sole Manufacturers:...

M.O.R.S.E
COMPLETE PRACTICE UNIT

as supplied to many branches of H.M. Services

No. 1281. Complete M.O.R.S.E Practice Unit. Heavy commercial key with nickel silver contacts and sensitive triple adjustment. High-tune buzzer with silver contacts, mounted on bakelite base with cover. Battery holder, complete with 6.6 Ever Ready battery. All metal parts heavily nickel plated, and the whole mid. on polished Mahogany Base. 6in. x 6in. Post paid,

Send 1d. stamp for Illustrated List
SIGNALLING EQUIPMENT LTD. (Dept. 8)
Merit House, Southgate Road, Potters Bar. "Phone: Potters Bar 3133

M.O.R.S.E
COMPLETE PRACTICE UNIT

as supplied to many branches of H.M. Services

No. 1281. Complete M.O.R.S.E Practice Unit. Heavy commercial key with nickel silver contacts and sensitive triple adjustment. High-tune buzzer with silver contacts, mounted on bakelite base with cover. Battery holder, complete with 6.6 Ever Ready battery. All metal parts heavily nickel plated, and the whole mid. on polished Mahogany Base. 6in. x 6in. Post paid,

Send 1d. stamp for Illustrated List
SIGNALLING EQUIPMENT LTD. (Dept. 8)
Merit House, Southgate Road, Potters Bar. "Phone: Potters Bar 3133
WIRELESS WORLD

CLASSIFIED ADVERTISEMENTS. Rate 1/3 for 2 lines or less and 3/- for every additional line or part thereof, average lines 5-8 words. Each paragraph or entry charged separately. From now: November 1st, free Sunday, November 11th, one day earlier at branch offices. Bon Marche: 5 words, plus 1/-. Deposit System: particulars on request. No responsibility accepted for errors.

NEW RECEIVERS AND AMPLIFIERS

30 WATT ac/dc amplifiers, precision built into instruments, input and output channels to requirements; early deliveries. Below.

160 TOWARD 450A, 12-valve, 10w, 0.5-65 Mc., perfect condition; Edinburgh district; offers.

100 WATT ac/dc amplifiers, mixing input channel, tone controls, input and output transformers; 108/-. Below.

DANCE and stage transportable equipment, comprising 18-watt amplifier as above, q.c.m., adj. stand, 2 speakers, cable 35/-.

Ode Partridge

"Where are we?"
The phone directory does not give our newest number and abode.

If you wonder where we live, Tinit not in Street or Lane or any other, but at seventy-six, stroke-eight.

Nor yet King's Buildings as before
Nor Park or Crescent, Drive or Hill,
Tinit not in Gardens or The Gore
Where you are to find us in due time.

If still you speak our new address
These rhyming lines may serve perchance,
On your taxed mem'ry to impress
That we are now in Petty France.

We hope you'll call around one day
At seventy-six, stroke-eight,
"Gimme Abbey Two-two-four-four."

PARTRIDGE
Transformer Manufacturers,
76-78, PETTY FRANCE, LONDON, W.C.2.
Phone: Abbey 7444.

ARMSTRONG SERVICE

Our Service Department is still at your service.

Despite the many changes caused by over 100 years of our existence, we have managed to maintain a very large proportion of Armstrong Chassis in good working order.

IN ADDITION to practically all Armstrong Chassis, including very old models, we can now undertake the repair and overhaul of mass quantities of receivers, including American types.

ARMSTRONG MANUFACTURING CO.
WARLTERS ROAD, HOLLOWAY, LONDON, N.7.

Phone: NOB 2213

LASKY'S RADIO

OFFER FOR SALE the FOLLOWING

LIST OF COMPONENTS:

- U.S.A. Octal Base Valve Holders 9d. each 7/6 doz.
- Wander Plugs, assorted 3d. each 2/6 doz.
- Tube Corer, Less Covers, less 3/- each 2/6 doz.
- Volume Controls, j. & 8 meg., less 3/- each 2/6 doz.
- Volume Controls, less 6/- each 3/- each
- Mains Chokes, 70 ohms 6/- each

SPEAKERS:

- Rolia Sin., 6in., 8in., and 10in. in stock, with or without transformer, P.M. 3 doz.
- Speakers, 6v operated output, 30w undistorted, 150. Lewis, 235. Tenter, 7/- each 5/-.

WANTED:

- L.C. 1250, 2w, 0.5-65 Mc., used under certain electrical and wireless apparatus, particularly such valves and apparatus as are applicable to wireless transmission.

Advertisers and buyers are reminded that under Defence Regulations 1937, Statutory Rules and Orders 1940, Number 1689, a permit (199 G) must be obtained before sale or purchase of certain electrical and wireless apparatus, particularly such valves and apparatus as are applicable to wireless transmission.

LONDON RADIO SUPPLY CO.

STUART PUMPS

As supplied to Gect. Dept. & County Councils

These Centrifugal Pumps are ideal for Machine Tool Cooling and all pumping purposes—hot or cold water. Complete with foot-valve, strainer and base union. Suitable rubber hose available from stock.

No. 10. 100 gals. per hour. 4 Imp. 20. 2/6
No. 11. 200 gals. per hour. 4 Imp. 2-8. 3/6
No. 12. 500 gals. per hour. 4 Imp. 3-8. 7/-

The STUART AUTOMATIC FLOAT SWITCH is the best method of controlling water. Post Paid orders complete with all fittings. ... £ 0 0

LONDON RADIO SUPPLY CO.
WE Offer Cash for Good Modern Communication and All-Wave Receivers.—A.G.B. Radio, 48, Wightmore Rd., Bromley.

LATEST Model G.E.C. No. 4018 radio-granophone, 250 volt a.c. and hypersensitive H.M.V. or Marconi pick-up and arm; scratch filters; state model, price, see etc.—Box 473, Wireless World, [1931]

NEW LOUDSPEAKERS £1 9 6

2 permanent magnet loudspeakers delivered from stock.—Electric Co., 3, Treilaw Gardens, London, N.W.7 [2016]

BROADCAST high quality, big speakers, precision built instruments to lab. standards and micrometer accuracy. Tironails magnets, demountable & detachable magnet assemblies, perfect and permanent alignment, extended frequency range, uniform response, superior acoustical characteristics, maximum sensitivity, highest quality equipment.—Broadcast & Acoustic Equipment Co., Ltd., Tombluck, Nor wich, 26970. [2005]

315 only.—Brand new Super Quality triple cone permanent magnet speaker, made by Baker's Selhurst, Radio, the pioneer manufacturers of moving-coil speakers since 1925; wide frequency range. Ideal for ideal for quality reproduction; limited num-
erable available under list price; send 25d. stamp for leaflet above and giving

cost data, etc. £.0.D.D., ideal for quality pa-
uipment.—Hackett, 7, Sussex Rd., South Croydon. [2004]

SECOND-HAND LOUDSPEAKERS

H.M.V. elliptic, large plot.; offers.—146, Sir Alan "A" Worth, Surbiton. [2003]

HARTLEY-TURNER duode, 2,500ohm.
Gold, 6ohm speech; £2 10.—17, Newlay Rd., Welling, Kent. [2008]

Wanted

V.O.M. unit, with or without field supply, urgently required.—Hig, 100, Dudley Port, Staffs. [2004]

MORSE EQUIPMENT

FULL range of transmitters, practice sets, etc., for Morse Training.—Webb's Radio, 14, Soho St., London, W.1. [2009]

MORSE tape recorder, P.O. type with key.

R.F. 120 4 volt rectifier

Sonol iron. are made for the following

Land Radio; Valves. [1942]

Oils for filters, tone controls,

etc., are supplied to G.P.O., B.B.C.,

etc., are equalled; orders can only be accepted against

our displayed advertisement, pap 32.

We Guarantee "NO PASS—NO FEE"

Prepare for to-morrow's opportunities and post-war competition by sending for your copy of this very

adequate 115-page guide NOW—FREE.

COVENTRY CO.

191, DUNTABLE ROAD, LUTON.

"SYSTEMATIC RADIO SERVICING"

A method for organising the repair-shop, devised

and employed by J. Ball. Also a catalogue of many Radio Service Aids including

fault finding books and other. [1933]

Coventry—Radio

Dubliner 75,000 ohm 3-watt resistors

R.G. 30 assorted, 1, 10, 100 ohm.

Condensers, 20 assorted, 0001-1 mvud.—10.—100.

Wigs, Tunes, G.M.B. P.T.

L.B. Transformers, Power-Periods

I.F. Transformers, 650 kc., screened —61, 6—120.

Microphone Transformers, 1st grade

Bola P.M. Speakers, 4in., 6in., 8in., from

13—150.

5,000 B.V.A. VALVES always in Stock.

V.E.S.

(Telephone, Mission House Drives, Rubislip, Mdx.)

"GECALLOY RADIO VALVES"

"GECALLOY RADIO VALVES"

MAIN DUALAGES

Cost, maximally attained.

High selectivity.

Small size.

Reduced costs.

Robust construction.

Simple adjustment.

Non-fading.

After the War!

The advance in Radio Technique after the war will offer unlimited opportunities of high pay and secure

posts for those Radio Engineers who have had the foresight to become technically qualified. How you can

do this quickly and easily in your spare time is fully explained in our unique handbook.

Details are given of A.M.R.P. A.M.R.I.B.E.,

City & Guilds Exams, and particulars of up-to-date courses in Wireless Engineering, Radio Servicing, Short

Wave, Television, Mathematics, etc. etc.

We Guarantee "NO PASS—NO FEE"

Prepare for to-morrow's opportunities and post-war competition by sending for your copy of this very

adequate 115-page guide NOW—FREE.

British Institute of Engineering

Technology (Dept. 388)

17, Stratford Place, London, W.1
METERS
5-1000s. Moving Iron AC or DC, Bakelite Case, flush mounting, 3½ins. diameter. Price 1½ each.

CHASSIS
Lead coated steel, undrilled.
Price 2½ each.
1½ x 2½ each.

I.F. TRANSFORMERS, IRON CORED
40-60 turns per inch, 2, 3, 4, 5, 6, 10, 15, 20, 30, 50, 60, 100, 150, 200, 300, 600, 1000, 1500, 2000, 4000 turns. Price 1½ each.

NEW PREMIER S.W. COILS
4- and 6-pin types, now have oval pin spacing and will fit all International or October types. Table for Type Price Range Price
4-pin range 0.5mm, Price Range 0.5mm
5⁾ 6-⁵⁰ mm. 6 5 6-⁵⁰ mm. 6 5
15 mm. 5 15 mm. 5 15 mm. 5
25 mm. 5 25 mm. 5 25 mm. 5
40 mm. 5 40 mm. 5 40 mm. 5
60 mm. 5 60 mm. 5 60 mm. 5
80 mm. 5 80 mm. 5 80 mm. 5
120 mm. 5 120 mm. 5 120 mm. 5
200 mm. 5 200 mm. 5 200 mm. 5

RESISTANCES
Main Resistances, 650 ohms 2A Tapped. 300 x 200, 400, 600, 800, 1000, 1500, 2000, 4000, 6000, 10,000, 15,000, 20,000, 30,000, 40,000, 60,000, 80,000, 100,000 ohms.
50 ohm, 60 ohm, 75 ohm, 100 ohm, 150 ohm, 250 ohm, 500 ohm, 1000 ohm.
10,000 ohm, 100,000 ohm.
1 megohm, 10 megohm, 100 megohm, 1 kohm, 10 kohm, 100 kohm, 1 Mf, 10 Mf.
100 Mf, 1 Mf, 10 Mf.

SHORT WAVE CONDENSERS
Type Range Price
4. and 6-pin types, now have octal pin spacing
4- pin range 0.5mm, Price Range 0.5mm
5⁾ 6-⁵⁰ mm. 6 5 6-⁵⁰ mm. 6 5
15 mm. 5 15 mm. 5 15 mm. 5
25 mm. 5 25 mm. 5 25 mm. 5
40 mm. 5 40 mm. 5 40 mm. 5
60 mm. 5 60 mm. 5 60 mm. 5
80 mm. 5 80 mm. 5 80 mm. 5
120 mm. 5 120 mm. 5 120 mm. 5
200 mm. 5 200 mm. 5 200 mm. 5

VOLUME CONTROLS
Carbon type, 20,000, 50,000, 1 meg., 1 meg. and 2 meg., 3⁹ each. 5,000, 10,000 and 1 meg., 41 3A Tapped. 360 o 7- pin Ceramic Chassis mtg. English fitting Valve Twin, 16 per yard.

SWITCHES
QNB panel mounting, split knob type, I point mains Resistant**, 660 ohme . 3A Tapped. 360 o 7- pin Ceramic Chassis mtg. English fitting Valve Twin, 16 per yard.

F.W. CHOKE
S.W. F.H. Chokes, 100 m. each.

SHORT WAVE CHASSIS
Metal coated steel, undrilled. 2½ each.

SPEAKER OUTPUT TRANSFORMER
Heavy duty Pentode, 16 each.

T.C.C. AIR-SPACED TRIMMERS, 5 to 50 muf., 1 each.

CONSTRUCTORS’ KITS
SPEAKER outputs, 16.000v, 120 watts, 250 volts, 250 watts, 500 volts, 500 watts

COMPONENTS-SECONDHAND, SURPLUS
A demonstration receiver incorporating the above can be heard at our address.

CONSTRUCTORS’ KITS

COTTON BALL PLUG AND SOCKET, 8 eac.

R.F. TRANSFORMERS with reaction, medium and long wave. Imperfections are inevitable, loading coil on long waves. 16- per pair.

SHORT-WAVE COILS
Tapped 18.000 metres approx. 1½ each. Midget Medium Wave Oscillator only, 1½ each.

MAINS VOLT DROPPING RESISTORS, 2 amm., 1,000 ohms, 2 variable sliders, 6; 3, 15, 700 ohms, 5 variable sliders, 7; 10, WATT-WIRELESS WINDS.-Wireless Winds, 1,000, 1,500, 3000, 6000, 9000, 10,000, 12,000, 15,000, 20,000, 30,000.

PADDERS
Tin, copper, 2/- each.

CHASSIS
Undrilled steel, painted, new, 10/- 8 x 2½ in. 6, 6/- 6 x 2½ in. 6.

WESTECTORS.
Type W6, 5½ each.

SWITCHES.
New, Vaster type midget, single bank, 4½ each; 5½ each; single bank, 6½ each; 9½ each.

SHORT-WAVE CONDENSERS
10 mmtd. 3/3 250 mmfd. 5/1 100 mmtd. 10/3 2,000v at 1/. each, 0.23mfd 2,000v at 1/6 each.

F.L. TRANSMISTORS
2,000v at 1/. each, 0.23mfd 2,000v at 1/6 each.

PULLAR, 360/200, 360/200, 360/200, 360/200, 360/200, 360/200.

SPEAKER OUTPUT TRANSFORMER
Heavy duty Pentode, 16 each.

T.C.C. AIR-SPACED TRIMMERS, 5 to 50 muf., 1 each.

CONSTRUCTION KITS
Tubular, .0005 mfd. to 5 muf., 6 each; .001 mfd. to .005 mfd., 12 each; .005 mfd. to .02 muf., 6 each; .02 muf. to .05 muf., 6 each; .05 muf. to 1 muf., 6 each; .1 muf. to 1.5 muf., 6 each.

VOLUME CONTROLS
1 and 2 muf. with switch. 6½ each. 25,000 and 50,000 ohms, 6 each.

VARIABLE CONDENSERS
Single .0005 mfd., 6 each; .001 mfd., 6 each; .005 muf., 6 each; .01 muf., 6 each; .05 muf., 6 each; 1 muf., 6 each.

SPEAKER OUTPUT TRANSFORMER
Heavy duty Pentode, 16 each.

PAULIN, Polished, flat, strong, 1 8 21 3.32ohms approx. 36 each; electing Tape ED j lock. Converse, Tipton, 32c from 9d. to 5/-, 12 to 11½ grove dials, 6 each; back, 6½ each; 9½ each.

FLEXIBLE COUPLINGS, 6-in turntables, supersensitive pick-ups, scratch and other faults, 6 each.

JUBILEE WORKS or 186, FLEET STREET, L.C.C. (Central 2833.)
GARDNERS RADIO LIMITED
SOMERFORD • CHRISTCHURCH HANTS
2, THE MALL, EALING, W.5

Transformed men get GOOD JOBS

Now is the time to prepare yourself for the future. There will be splendid opportunities for technically trained men to secure well-paid employment, or start radio businesses of their own.

Even if you know nothing about radio, we can train you. Our specialised method of Home-Study Tuition is proved successful. Hundreds of our students now doing important work owe their progress solely to our training.

Post coupon now for free details of our Home-Study Courses in :

- Radio Reception
- Transmission
- Servicing
- Television
- Radio Calculations
- Mathematics

T. & C. RADIO COLLEGE,
2, THE MALL, EALING, W.5

(Please send me free details of your Home-Study Mathematics and Radio Courses.)

NAME
ADDRESS

Please find enclosed 1d. stamped envelope for your copy at once—FREE

HILL AND CHURCHILL
BOOKSELLERS
SWANAGE DORSET

ENGLISH & AMERICAN BOOKS IN STOCK ON RADIO AND TELECOMMUNICATION

CATALOGUE ON APPLICATION

Cabinets?

Increased production facilities enable us to give immediate attention to orders for urgent requirements and we are now in a position to offer large contracts or sub-contracts for Government work.

We specialise in AMPLIFIER and EXTENSION SPEAKER CABINETS, METAL BOXES & CHASSIS.

All enquiries should be accompanied by Priority No.

HIRSH & HYAMS, LTD.
Cabinet Manufacturers,
93, Hackney Road, London, E.2.

ENGINEERING OPPORTUNITIES

This unique handbook shows the easy way to secure A.I.R., M.I.E.E., A.M.I.H.I.R.E., A.M.E.E., etc.

E.I.E.I.E. GUARANTEE—
"NO PASS—NO FEE."

Details are given of over 150 Diploma Courses in all branches of C.E., Elec., Motor, Aero, Radio, Television and Production and Training for Civil, Gvt. Employment, R.A.F., Matha., Mistr., etc.

Think of the future and send for your copy at once—FREE

B.I.E.E., 387, SHAKESPEARE HOUSE
17, STRATFORD PLACE, LONDON, W.1.
IREFFUTABLE EVIDENCE!

Readers of this journal will have noted that advertisements relating to the Candler System of Morse Code Training often contain extracts from letters sent in by Candler students. Their opinions are all unsolicited and their original letters may be inspected at the Candler System Co., Room 55W, 1024 Green Park Hotel, Aston Clinton, Bucks.

Read these extracts from letters received:

"I am making more progress than I ever anticipated. I am now doing over 20 w.p.m., thanks to the course. Ref. 7838. W. P.

"I have improved beyond all my wildest expectations and in a recent test under R.A.F. conditions and supervision, I passed 100 per cent., sending and receiving 35 w.p.m. receiving ditto. I have worked entirely on my own. Ref. 2948, T. D.

"My progress at present is fine. Slight difficulties are occurring with some signals, but these are gradually clearing. May I congratulate you on such a first course.

P.S.—Have been accepted as W/T operator in the Royal Navy."

"I have obtained an appointment with Marconi's thanks partly to the course," Ref. 9247, G. P.

"I had no knowledge of Code before taking the Candler Junior Course, now I have a perfectly spaced sending speed of 25 w.p.m., and a receiving speed of 26 w.p.m., I think this proves to the full the absolute value of Candler training—I obtain Certificate of Code A in going to sea very shortly as second Radio Officer on a large ship, and can recommend it for anyone who wants to learn Morse correctly." Ref. 3962, A. P. C.

There are Candler Morse Code Courses for Beginners and Operators.

SEND NOW FOR THIS FREE "BOOK OF FACTS"
It gives full details concerning the following:

JUNIOR Scientific Code Course for beginners. Teaches all the necessary code fundamentals scientifically.

ADVANCED High-speed Code Course for students who want to increase their w.p.m. speed and improve their technique.

TELEGRAPH Punctuation Type-writing for those who want to become expert in the use of the teleprinter. Includes sending messages and press as received.

Code Courses on Cassette or Manuscript Material Terms.

- ELECTRADIX -

We suggest you carefully read this list of bargains, it contains many unusual ones and supplies of some are very limited.

SURVEYING THEODOLITE, by E. R. Watts; Director 5, Mark I, No. 3,959, in new condition with tripod and telescopic level staff, £3 10s. 6d. Ref. 2948. G. P.

B.T.H. Electric double gramo. turntables, A.D.C. standard, with E.D.C. cabinets, 31in. x 31in. x 10in. For entertainment, work, or canteen. £3 10s. 6d. Ref. 2948. G. P.

G.E.C. Radiograph—5-valve, A.M. mains, complete in walnut case, in good order, £14 10s. 6d. Ref. 2948. G. P.

HUN Ships Wireless, ex Admiral Prize.

8-valve Telefunken ship wall Receiver, in large cast aluminium-water-tight case, complete with valves, £17 10s. 6d. A ditto set at £15. One 5-valve Telefunken three-valve S.W. Radio Receiver, £15 10s. 6d. Ref. 2948. G. P.

MOTOR AIR COMPRESSORS, Michelin, direct-connected to motor, on wheeled trolley, with shut-off valve, £15. New 3-valve radio compressor, multi-blade, new, £5 10s. 6d. Ref. 2948. G. P.

HACKENBY W. E. Tel. Amherst 1393. [1988]

ROGERS valves and parts, pair 2x6. 68M., single—A.G.M., 109, St. William's Way, Rochester, Kent. [2052]

500 series valves, including output, rectifiers, etc., etc.—Davies, 23, Rose Crescent, Harrow. [1840]

HUNDRED+ in stock, rotary converters, dynamos, motors a.c. and d.c., lighting sets, switchboards, meters and wiring accessories—-Hammond and Berks. [2294]

WIRELESS WORLD Advertisements

For the QUICKEST WAY to ELECTRADIX HOUSE, see MAP on page 32 September issue of this journal.
I Also Components for Service Men at keenest
or American Best Service

44, Kyle C South, Whitchurch, Glam.

speaker pot, Audio- transformer or choke, con-

control, HT smoothing choke or energised

valve- holders, 6 insulators, 3 switches, volume-

6 real , 6- grid- leaks, 6 fixed condensers, 6

and twin- gang variable condensers, tuning coil,

Any make, British

E. H. ROBINS TRADING CO., LTD.,

knobs, dials, screws and nuts, wood- screws.

Each parcel containing all the following : Single

SPEAKER REPAIRS by I

8, Cranbourne Terrace, Salt Rill. SLOUGH. BUCKS, ENG.

FULL INSTRUCTIONS WITH EACH INSTRUMENT

eamperee. From one- tenth of a milliwatt to 10,000

The scalee read front 1 millivolt to 1,000 volte. From

What will be the wattage of lament at E voltage P

What is Me wattage of current I through resistance B P

What is the wattage at voltage E through resistance B P

What will be the resistance where watts W is at

What will be the resistance where current I flows at

What will be the resistance where watts W is at

What will be the voltage with watts value W and I

Design Made

Order at once whilst deliveries are good

prices. List Id. Holders of Export License

A. W. F. RADIO PRODUCTS 'Phone: D 6666.

- Paramount transformers service, repairs, re-

lows, or construction to specification of

any type, competitive prices and prompt ser-

vice.--Studly Electric Co., Ltd., Dinton, New-

castle-upon-Tyne. Retailers not supplied.

WANTED

A Cohn penotdes, three 954 type urgently

required.—Bigg, 100, Dudley Port, Staffs.

WANTED, 2 Oster Ganz valves, No. 8997, in good condition.

IONIC COMPONENTS LABORATORIES LTD.

6, Cranbourne Terrace, Salt Hill, SLough, Bucks. ENG.

FOR SERVICE ENGINEERS,

Set Constructors, Radio Students, etc.

ASSORTED, NEW AND SECOND-HAND

COMPONENTS, £1 PER PARCEL.

Each parcel containing all the following : Single

and twin-gang variable condensers, tuning coil,

6 resistors, 6-grid-leaks, 6 fixed condensers, 6

valve-holders, 6 insulators, 3 switches, volume-

control, any smoothing choke or energised

speaker pot, Audio-transformer or chokes, con-

necting wire, fuse wire, terminals, tags, name-

plates, insulated hooks, earth-clips, bulb-holders,

knobs, dials, screws and nuts, wood-screws. Wood

waxen value. Satisfaction Guaranteed.

Terms : Cash on order. Postage and packing 3d. extra.

STEM with any order. Pamphlet and packing guide free.

E. H. ROBINS TRADING CO., LTD.,

44, Kyle Crescent South, Whitchurch, Glam.
neither let you down

CLASSIFIED RADIO RECEIVER DIAGRAMS

By E. M. Squire. This work gives a didactic survey of modern radio receivers, and provides the reader with a ready reference to the types of the various circuits commonly used in radio receivers. This book sets out a number of experiments and methods of measurement suitable for a three or four years' course in radio engineering at a technical college. 8s. 6d. net.

EXPERIMENTAL RADIO ENGINEERING

By T. A. Ranson. Assembled by G. E. Ackermann. This book sets out a number of experiments and methods of measurement suitable for a three or four years' course in radio engineering at a technical college. 8s. 6d. net.

SHORT-WAVE RADIO

By J. M. Rogers. An invaluable volume, recommended to all students of radio engineering as a reliable textbook on modern developments in the use of short, ultra-short, and micro-waves. 10s. 6d. net.

TUITION

PERSONAL tuition required, practical and theoretical radio; N.W. district.—B.E.I.T. (Dept. 338A).

EAR training.—P.M.G. exams. and L.R.E. Diploma; prospectus free.

SHORT course for 1st or 2nd class radiotelephone operator.

RADIO training.—P.M.G. exams. and L.R.E. Diploma; prospectus free.

TUITION for all purposes

BATTERY CHARGERS & TRICKLE CHARGERS

For all purposes "QUICK-CHARGE" chargers well known for reliability.

Serviceing. Publisher desires articles (approx. 3,000 words) relating to the following:—Test equipment, operating instructions, and aligning. Valves and transformer equivalents to numerous valves not mentioned; a stamped envelope will bring you all the information about any other particular valve you may desire.

VALVES

This is part of our current stock list of equipment. Full information and transformer equivalents to numerous valves not mentioned: a stamped envelope will bring you all the information about any other particular valve you may desire. If out of stock we may send equivalents. All orders of Trade controlled prices.

J. BULL & SONS

246. HIGH ST., HARLESDEN, N.W.10.

WARD ROTARY CONVERTERS

Petrol Electric Generating Plants, H.T. Generators, D.C. Motors, Frequency Changers, etc., etc., etc.

Advertisements 41
Remember, just as "Grampian" products are giving the Nation essentially efficient service in wartime, so will they serve you when peace permits.

HEN HAPPY DAYS ARE HERE AGAIN

GRAMPIAN REPRODUCERS LTD. HAMPTON ROAD, HANWORTH, MIDDLESEX. Telephone: FELtham 2657-B.

IF ITS TRANSFORMERS or CHOKES
Let the manufacturers of VARLEY products assist you.
SEND US YOUR ENQUIRIES.
Standard units available up to 1/2 K.W. or to your specification.

OLIVER PELL CONTROL LTD.
CAMBRIDGE ROW, BURRAGE ROAD, WOOLWICH, LONDON.

Resistors
MANUFACTURED BY
ERG RESISTORS LIMITED
1021a, FINCHLEY ROAD, LONDON, N.W.11
PHONE: SPEEDWELL 6967

MARTIN'S HAVE IT— IN STOCK:
Mains Transformers. Well made Standard Replacements, 4 v. and 6.3 v. 37/8 each.
.01 and .02 Tubular Fixed Condensers, 1,000 V.D.C., 86 each.
.06 Tubular Fixed Condensers, 1,000 V.D.C., 2/3 each.
.0001 Resistor Condensers, 1/4 each.

York Switches, 4 way, 1 bank.

3-point, 85 each.

Resistors, 1 watt, 100 ohms to 2 meg., mixed, 73/8 each.
Resistors, 1 watt, 100 ohms to 2 meg., mixed, 86/2 each.

Dropper Resistors, wire wound 1,000 ohms, variable, 8.6/9 each.
10-watt Resistors, 800 ohms, wire wound, 86/9 each.
50-gang Condensers, .0005, with slow motion drive. Brand new. Boxed, 10 each.
5-Gang Condensers, .0005, new, 75 each.

Volume Controls and Tone Controls, all values, with switch, 85 each; without switch, 8.6 each.

Valve Holders, 7- pin, British, 85 each.

Replacement Valves for American Midgets, and British receivers, nearly all types in stock—all at controlled prices.

MARTIN'S (Edmonton) LTD.

INVENTORS
We invite new inventions which, guided by the technical knowledge, manufacturing facilities and world-wide marketing organisation of the Simmonds Group, may be developed to play vital parts in modern industry.

ALL COMMUNICATIONS MUST BE IN WRITING IN FIRST INSTANCE TO—

SIMMONDS DEVELOPMENT CORPORATION LTD. 2-3 NORFOLK ST. W.C.2

To-day, wherever Bullers Low Loss Ceramics are used, reception is clearer and better than ever before.

Years of research in Bullers Laboratories have developed these materials to such a high level of efficiency that Dielectric Loss is virtually eliminated. Bullers Ceramics are now playing a vital part in maintaining communications under all conditions.

BULLERS LIMITED
THE HALL, OATLANDS DRIVE, WEYBRIDGE, SURREY
Telephone: Walton-on-Thames 2451
Manchester Office: 196 Deansgate, Manchester

Made in Three Principal Materials:

FREQUELEX. An Insulating Material of Low Dielectric Loss For Coil Formers, Aerial Insulators, Valve Holders, etc.

PERMALEX. A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLEX. A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.
TCC

CERAMIC CONDENSERS
Pre-eminent in Peace—Indispensable in War

ADVERTISEMENT OF THE TELEGRAPH CONDENSER CO., LTD