"AS USUAL"

Not 'similar'; not 'something like'—but the same. Not merely the same to look at either. But the same in performance, the same in behaviour. That is what you expect from Ceramic Condensers. And you expect too, that the performance will be of a considerably high order.

The illustration shows a Ceramic Transmitting Condenser.
"AVO" Electrical Testing Instruments are actively engaged on the fighting and factory fronts, sharing a great responsibility with a proud sense of duty and high confidence in the future.

It will therefore be appreciated by our numerous trade friends that we can now only accept orders which bear a Government Contract Number and Priority Rating.
The advanced designs... the vastly improved techniques... the developments as modern as tomorrow... all these as applied to Sound Equipment will one day be available to you in their most efficient form in 194-R.S. Equipment; for although we cannot build for your customers today we are not unmindful or unaware of their needs in the future. And neither are we unprepared! We can promise that you will be as proud to sell the things to come as we are to build them.

R. S. Amplifiers, Ltd., 3-4, Highfield Road, Shepperton, Middx
Tel.: Walton-on-Thames 1019

VARLEY
TRANSFORMERS
and CHOKES
For RELIABILITY
SEND US YOUR ENQUIRIES
OLIVER PELL CONTROL LTD

SIGNALLING
EQUIPMENT
LTD.
Manufacturers of
Small Transformers, Heavy Duty Resistances, Plugs and Sockets, Fuse Holders, Electric Bells, Buzzers, and Switches. Also Plastic Mouldings, Coil Windings, Light Pressings, Turned Parts, and other components and accessories for the Wireless and Electrical Trades
Merit House, Southgate Road, Potters Bar
Phone: Potters Bar 3133.
Telegrams & Cables: Sel, Potters Bar
JUNE, 1944
WIRELESS WORLD

WORLD'S LARGEST RADIO COIL MANUFACTURERS

RADIO FREQUENCY INDUCTORS
INTERMEDIATE FREQUENCY TRANSFORMERS
RADIO FREQUENCY COIL CHOKES
MICA COMPRESSION CONDENSERS
AIR DIELECTRIC CONDENSERS
MICA MOULDED CONDENSERS
SICKLES SILVER CAP CONDENSERS
GANGED PERMEABILITY TUNING
COMMUNICATIONS EQUIPMENT
F.M. EQUIPMENT PARTS
U.H.F. RADIO EQUIPMENT
SPECIAL ELECTRONIC EQUIPMENT

The F. W. SICKLES Co.
CHICOPEE, MASS., U.S.A.

RAYTHEON

TINY
... but MIGHTY

RAYTHEON “FLAT” HEARING AID TUBES

THEY’RE tiny, but mighty when they come to dependable hearing aid performance. And mighty popular, too, because of their long life and low battery drain. That’s why RAYTHEON flat hearing aid tubes are standard equipment in leading electronic hearing aids.

Through continuous growth over these past 5 years Raytheon has become the world’s largest supplier of hearing aid tubes.

WORLD’S LARGEST EXCLUSIVE TUBE MANUFACTURERS

RAYTHEON PRODUCTION CORPORATION
NEWTON, MASS., U.S.A.

IDEAS WILL POP FOR YOU

In the crucible that is war production, ideas pop into reality in bewildering numbers. Co-operative progress in techniques in chemical, metallurgical and electrical applications of materials, has contributed astounding gains to man’s control over Nature’s resources. Comparatively few can have more than a vague notion of industrial accomplishments for the war effort. But the discoveries that have mechanised warfare and conquered the air, that have developed transportation and supplies to marvellous wartime results, represent ideas that will pop into an amazing variety of commercial contributions to post-war living standards.

P. R. MALLORY & CO. INC.
INDIANAPOLIS, INDANA,
U.S.A.

Radio and Electronics Division

ALSO
“MYKROY” CERAMIC INSULATING MATERIALS
“IDEAL” RECHARGEABLE CELLS AND CHARGERS
GENERAL ELECTRONIC VACUUM CONDENSERS

FOR THE FUTURE

These Manufacturers will help solve your post-war problems. Register your name now for full details which will be sent you when supply conditions again permit.

FRANK HEAVER LIMITED
Kingsley Road, BIDEFORD,
N. Devon

THE SEEING EAR

SYMBOLIC of modern electronic equipment—those human sense amplifications and extensions to limitless range—through fog and smoke—beyond the limits of normal sight and hearing—our fighting forces saw BIG and HVAR at distances and under conditions that amazed the unspecialized. Such are the remarkable accomplishments of a war-inspired American Electronic Industry. Censorship shrouds the Seeing Ear in secrecy, but . . . in tomorrow’s day of peacetime production G.I. will adapt its share of Seeing Ear developments to new products and to modernization of its pre-war products. Many of these new ideas will have direct applications in our Record Changers—Variable Condensers—Push Button Tuners—and other products.

P. R. MALLORY & CO. INC.
INDIANAPOLIS, INDIANA,
U.S.A.

THE GENERAL INSTRUMENT CORPORATION
ELIZABETH, N.J., U.S.A.

Frank Heaver Limited
Planners and Moulders for the Age of Plastics
DAYTON - OHIO - U.S.A.
BAIRD TELEVISION RECEIVERS MODEL T 26
A New Purchase!

Every receiver is in perfect working order. Cabinet dimensions 3ft. 4in. high, 26in. wide, 17in. deep. Picture screen size 10ins. by 8in. Pick-up sockets are fitted enabling it to be used as a Gramophone Amplifier. Extra loudspeaker sockets. 14 valves.

Simple to operate. Only two main controls, one for picture contrast and the other for sound broadcast.

Price £32.10.0
Purchaser to make arrangements for collection.

P.A. AMPLIFIERS. Output 15 v.atts, 6 valses, phonaphone and radio terminals. Multi-range output, 200-250 A.C. Pre-Amplifier for microphone, gramophone and radio terminals. Fitted two volume control, and tone control. In metal cabinet, 21 x 15 x 21ins. Powerful spring grip, 1/2 each or 12-350V.

WORKING. 2 mid., 4 x 1 x 11ins. ...

6009. WKIL 2 mfd., 2½ x 2 x 1 in. ...

MANSBRIDGE Type Metal-Cased CONDENSERS

Our goods being surplus to manufacturers' requirements cannot be repeated when stocks are sold.

ELECTROLYTIC CONDENSERS

Metal Cased. 250 mfd., 100v. working, 5 x 3 x 2 in.

12/6

MANSBRIDGE Type CONDENSERS

Metal Cased. 10 mfd., 350v. working, 4½ x 3 x 2½ in.

10/6

"MUTER" PUSH-BUTTON UNITS

12-Button Unit. Complete with buttons and escutcheon, as illustrated ...

8/6

5-Button Unit, with mains switch rated 125v. at 3 amp. and 250v. at 1 amp. Complete with knobs but no escutcheon ...

5/6

MAINS TRANSFORMERS

A special line of newly manufactured British transformers. 300-0-300v. at 80 ma., 6.3v. 2a., 5v. 2a. size ...

37/6

Post and packing, 1/3 extra.

[POLARISED] DOUBLE-ACTING RELAYS

Telephone type with polarised "differential" movement. Two 500-ohm windings. Large diameter contacts ...

17/6

23 LISLE STREET,
LONDON, W.C.2
GERard : 2969

LONDON CENTRAL RADIO
Miscellaneous Offers:

Special Offer. BRAND NEW RESISTORS

Wire ends, 1, 1 and 1 watt. Assorted and useful values. 30/- per 100 or 4/6 per doz. lots.

YAXLEY TYPE W/C SWITCHES. 2" spindles 4-way, 2 bank, with shielded osc. section, 6/3; 5-way, 3-bank, with 3 screened sections, 7/3; 6-way, 3 double banks, without shield, 4/8.

100,000 OHM POTENTIOMETERS, 1" spindle, 3/2.

VITREOUS ENAMELLED RESISTORS. 10 ohms. 3/8.

WIRE WOUND POTENTIOMETERS. 50,000 ohms. Less switch. 5/6.

LOUDSPEAKERS. Selection 6in., with transformers: 5in., 2½; 8in., 3/2. Goodmans P.M. without transformers: 5in., 2½; 8in., 3/2; Post and pack., 1/6 each extra.

OAK SWITCHES. 2½ in. spindle, complete with knobs. 4-way, 2-bank with connecting block, 4½; 4-way, 2-bank, 3/3.

PLATINUM CONTACTS. Double Spring, mounted on ebonite, 1/6.

CONDENSERS. First-class 0.1 mfd., oil-filled, 5,000 volts. Working, only 12 each.

TWIN SCREENED PICK-UP LEADS, fitted 2 plugs, 9ï½, 6in. long, 20.4.

ELECTROMAGNETIC COUNTERS. Ex-G.P.O., every one perfect, electro-magnetic, 500 ohm coil, counting to 9,999, operated from 25-50 v. D.C., many industrial and domestic applications, 6/.

SCANNING AND DEFLECTOR COILS. Ex-television receivers, assembled complete in metal frame, 7/6.

ELECTRIC SOLDERING IRONS. 200-250 v., 65/75 w., 12/6.

BRASS ROD. Screwed brass rod, 2 B.A., 4 B.A. and 6 B.A., 12 in. lengths, useful for many purposes, 5/6 each.

VALVE-HOLDERS, brand new, Mazda octal, 1/6.

EX-G.P.O. PLUGS AND JACKS, as previously advertised, sit.

METAL SCREENED ANODE VALVE-CAPS, with short screened lead, 9d.

404-400 PF., 1/8.

ELECTRIC RAZOR RESISTANCES. Universal input, in strong metal case, 10/- each.

METAL SCREENED ANODE VALVE-CAPS, with short screened lead, 9d.

BRASS ROD. Screwed brass rod, 2 B.A., 4 B.A. and 6 B.A., 12 in. lengths, useful for many purposes, 5/6 each.

TRIMMERS. Postage stamp 40 Pf., 8d. Twin formers, 2½, 4½, 1/6.

ELECTRIC RAZOR RESISTANCES. Universal input, in strong metal case, 10/- each.

VALVES. F.A.S.O. Mullards, to clear, 10/- each.

TUBULAR TRANSFORMERS: 5in., 2½; 8in., 3/2; 10 in., 4/6.

Amplifiers: 500; Mullards, to clear at 21/2 each.

YAXLEY TYPE Metal-Cased CONDENSERS

500 V. D.C., many domestic and industrial applications, 6/.

TUBULAR TRANSFORMERS: 5in., 2½; 8in., 3/2; 10 in., 4/6.

Amplifiers: 500; Mullards, to clear at 21/2 each.

TUBULAR & Wire-end tubular condensers, 0.0003 mfd., to clear at 2/3 each.

REACTION CONDENSERS. Fine quality job, 0.0003 mfd., 0.001 mfd., 0.005 mfd., 0.01 mfd., 0.05 mfd., 0.1 mfd., 0.5 mfd., 1 mfd., 1.5 mfd., 2 mfd., 3 mfd., 5 mfd., 10 mfd., each.

T.C.R. TUBULAR CONDENSERS, 0.1 mfd., 0.0001 mfd., 0.0005 mfd., 0.001 mfd., 0.005 mfd., 0.01 mfd., 0.05 mfd., 0.1 mfd., 0.5 mfd., 1 mfd., 5 mfd., 10 mfd., 50 mfd., each.

T.C.R. CONDENSERS in metal cases, special offer, much reduced to clear, 4 x 4 in., 70 v. working, 2½ each.

TUBULAR TRANSFORMERS: 5in., 2½; 8in., 3/2; 10 in., 4/6.

Amplifiers: 500; Mullards, to clear at 2½ each.

YAXLEY TYPE Metal-Cased CONDENSERS

500 V. D.C., many domestic and industrial applications, 6/.

TUBULAR TRANSFORMERS: 5in., 2½; 8in., 3/2; 10 in., 4/6.

Amplifiers: 500; Mullards, to clear at 2½ each.

YAXLEY TYPE Metal-Cased CONDENSERS

500 V. D.C., many domestic and industrial applications, 6/.

TUBULAR TRANSFORMERS: 5in., 2½; 8in., 3/2; 10 in., 4/6.

Amplifiers: 500; Mullards, to clear at 2½ each.

YAXLEY TYPE Metal-Cased CONDENSERS

500 V. D.C., many domestic and industrial applications, 6/.

TUBULAR TRANSFORMERS: 5in., 2½; 8in., 3/2; 10 in., 4/6.

Amplifiers: 500; Mullards, to clear at 2½ each.

YAXLEY TYPE Metal-Cased CONDENSERS

500 V. D.C., many domestic and industrial applications, 6/.

TUBULAR TRANSFORMERS: 5in., 2½; 8in., 3/2; 10 in., 4/6.

Amplifiers: 500; Mullards, to clear at 2½ each.
CONCENTRATING ON WAR NEEDS

Like many of our friends we are now primarily engaged in supplying the Services with those essentials needed to win the war.

It is with this in view that we, here at Diamond H, are concentrating on war requirements. Nevertheless, we have not forgotten our peace time business. On the contrary, the change over to war production has still enabled us to continue our association with most of our customers. The trust that has been placed in us is fully appreciated.

When peace comes we assure all our friends that we shall be as ready and well equipped to meet their demands as we have been in meeting the war requirements.

We have not forgotten what post-war development will mean.

DIAMOND H SWITCHES

Famous for Fifty Years
GUNNERSBURY AVENUE, CHISWICK, W.4

TAYLOR VALVE TESTER

This new and improved Taylor Valve tester measures the Mutual Conductance of all types of amplifying valves and also checks the emission of Diodes and Rectifying valves. Two ranges of Mutual Conductance measurement are available being 3 mA/V full scale and 15 mA/V respectively. Anode and Screen Volts can be adjusted to suit the valve under test and a variable supply of Grid Volts is also available. A switch gives a choice of 17 different filament Volts covering from 1.1 Volts to 117 Volts. The sixteen valve holders are provided to cover all the popular British, American and Continental types. Separate tests are available for checking Continuity, Element Shorts and Heater to Cathode Leakage. The three selector switches ensure that the correct voltage is applied to every pin of the valve under test.

A comprehensive book of instructions is issued with each instrument, complete with a valve chart giving settings for over 2,000 valves of all makes.

The instrument is operated from A.C. Mains and a mains adjustment is provided covering from 200-250 Volts at 40-100 cycles.

Model 45A/S Price £15 15 0

Taylor electrical instruments ltd.

TAYLOR ELECTRICAL INSTRUMENTS LTD.,
419-424 MONROSE AVENUE, SLough, Bucks.
Telephone: Slough 21381 (4 lines)
Grams: "Taylors, Slough"
Prices drop on these Six Eimac Valves

Vacuum valves are now being massed produced on a vast scale at Eimac. The use of new manufacturing techniques has effected great savings which Eimac is passing along to users. The new prices listed below are now in effect.

<table>
<thead>
<tr>
<th>Old Price</th>
<th>New Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>304-TH</td>
<td>$45.00</td>
</tr>
<tr>
<td>304-TL</td>
<td>$50.00</td>
</tr>
<tr>
<td>450-TH</td>
<td>$55.00</td>
</tr>
<tr>
<td>450-TL</td>
<td>$60.00</td>
</tr>
<tr>
<td>750-TL</td>
<td>$135.00</td>
</tr>
<tr>
<td>1000-T</td>
<td>$150.00</td>
</tr>
<tr>
<td>1500-T</td>
<td>$185.00</td>
</tr>
<tr>
<td>2000-T</td>
<td>$225.00</td>
</tr>
</tbody>
</table>

Write today for new price sheet which covers these changes and provides essential data on all Eimac valves. Remember Eimac valves are first choice of leading engineers throughout the world...first in the new developments in electronics.

EITEL-McCULLOUGH, INC., 205 San Mateo Ave., SAN BRUNO, CALIF.

Follow the leaders to Eimac VALVES...
The trite saying above has no connection with this advertisement except to catch the attention of hard-boiled business men. We want only to remind you that Parmeko of Leicester concentrate on the design and production of efficient TRANSFORMERS and any job we turn out (either "special" or in quantity) is just as good as a transformer can be and certainly better than most. What were you saying—something about cost? Well, we're not expensive, that is a fact, but on the other hand we ought to warn you that we are not cheap because a Parmeko transformer is made up to a standard not down to a price. How about letting us work out a price for you to judge for yourself? . . . just send it on to us because we would like to know you anyway . . . and we think it would profit you to know us.

* Problems in transformer design and construction are the constant interest of our research department—we are very busy on war work but have time for post-war planning.

PARMEKO LTD., LEICESTER MAKERS OF TRANSFORMERS
TCC
MOULDED MICA CONDENSERS
Pre-eminent in Peace—Indispensable in War

ADVERTISEMENT OF THE TELEGRAPH CONDENSER CO., LTD.
Is sure to be tough going—but the result will be decisive—we've prepared for it right down to the last detail. Masteradio electrical equipment will be in it on land, sea and air operations.

Masteradio

VIBRATORPACKS

As supplied to the WAR OFFICE, AIR MINISTRY, POST OFFICE and other GOVERNMENT DEPARTMENTS.
SIX-VALVE SUPERHET CONSTRUCTORS KIT

ALL-WAVE 18-50m., 200-560m., 1,000-2,000m.

Brief Specification: Frequency changer with two valves, separate oscillator, Six Tuned Circuit. 45 KC. Iron cored L.F.s. Separate tone and volume, 5-watt output. 8" P.M. speaker with baffle and output transformer, supplied with all valves, chassis, Practical and Theoretical wiring diagram and Parts Lists, Nuts, Bolts and Wire, ready to assemble, 200/250 volts A/C.

Carriage paid £16.16.0 including Purchase Tax

SERVICE KITS

SKF 1 b.mfd. 600-850v. Aluminium Can Electrolytic. Type: 8 each silver Mica Condensers, Resistor, Trimmers and Tubular Paper Condensers. 15/6.

SKG 1 36-mfd. 250v. Aluminium Can Electrolytic. Type: 8 each silver Mica Condensers, Resistor, Trimmers and Tubular Paper Condensers. 15/6.

SKH 1 8-mfd. 400v., 1 22-mfd. 250v. Aluminium Can Electrolytic. Type: 12 each Resistors; Silver Mica Condensers; Trimmers and Tubular Paper Condensers; 2 4-point push pull switches, tone control. 25/6.

SKL 1 8-mfd. 400v. & 13-mfd. 250v.; 16 & 265v. Electrolytic; 12 each silver Mica Condensers; Resistor; Trimmers; Tubular Paper Condensers; 2 4-point push pull switches; tone controls. 32/13.6.

MADE TRANSFORMERS 600/600, 550-650, 63.3, 3 amp., 5, 9 amp., 150 ma. shunted, 12/6; 200-300 commercially, 9, 20 amp., 200 ma.; 220-220, 9, 15 amp., 150 ma.; 465-220, 5, 3 amp., 5, 2 amp., 100 ma. 37/6; 220-115, 5, 3 amp., 6, 125 ma. 42/6.

AUTO TRANSFORMERS Step up or down, 110/220/500v.- 100-watt. 5/6.

ADJUSTABLE CAR AERIALS Chromes bar roof fixing, complete with nylon rubber, etc. 1/6.

SCREENED LEADS Mix. long, fitted 2 Wander plugs, suitable for Gram, Mix, Pick-up, etc. 4/6.

WIRE END CARBON RESISTORS New, ex television chassis, 1, 1.5, 3/6. 3 -wave 3000 variable condensers, with geared slow-motion ball drive, pointer and dial frame. Ceramic encapsulation. 15/6.

3-bay 45/6. 18/3.

UNIVERSAL 4-STOP BOARD. Cadmium plated for radio chassis mounting and many other purposes, fitted ready for use—18 in. long, 14in. with very useful for swivel frame in Radio Laboratory, 7/6 the pair.

TUBE COMP.

5-way 360 ohms, 6/6; 480 ohms, 13/2; 500 ohms, 13/2; 2-way heavy duty, 3 amp., 360 ohms, 15/6; 480 ohms, 17/6; 600 ohms, 2/3.

VALVES—AMERICAN TYPES at B.O.T

Built-in Speaker. Complete with roof-top barrier. Small and compact. 7x6 x12in. Crackle finished nationwide.

18½ gns. including P.T.

CASH WITH ORDER ONLY.
WEBB'S RADIO

INTERESTING COMPONENTS AVAILABLE FOR POST ORDERS

CONDENSERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-gang .00042 Ceramic Insulation</td>
<td></td>
<td>10 6</td>
</tr>
<tr>
<td>Three-gang .0005 Bakelite Insulation with built-in dual-ratio drive (5/1 and 80/1)</td>
<td></td>
<td>12 6</td>
</tr>
<tr>
<td>Single .0002, .00016, .0001 S.W. ceramic</td>
<td>All</td>
<td>5 0</td>
</tr>
<tr>
<td>T.C.C. Electrolytic Bias 350 mfd. 25v.</td>
<td></td>
<td>7 0</td>
</tr>
<tr>
<td>T.C.C. Paper 2 mfd. 150v, round metal can, $2^\frac{1}{2}\times\frac{3}{4}$</td>
<td></td>
<td>3 6</td>
</tr>
<tr>
<td>T.C.C. Paper 1 mfd. 250v. square metal can, $2^\frac{1}{2}\times\frac{1}{2}\times\frac{3}{4}$</td>
<td></td>
<td>3 9</td>
</tr>
<tr>
<td>T.C.C. Paper 8 mfd. 150v. Metal Can</td>
<td></td>
<td>17 6</td>
</tr>
<tr>
<td>.01 Mica Condensers 500v. D.C.</td>
<td></td>
<td>6 6</td>
</tr>
</tbody>
</table>

SWITCHES

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faxley Pattern 3 wafers, each wafer 2-pole 5-way</td>
<td>5 6</td>
</tr>
<tr>
<td>6 wafers, 3 wafers each 2-pole 4-way and 3 wafers 2-pole 3-way</td>
<td>6 6</td>
</tr>
<tr>
<td>2 wafers, each wafer 2-pole 3-way</td>
<td>4 6</td>
</tr>
<tr>
<td>1 wafer, 2-pole way</td>
<td>3 6</td>
</tr>
</tbody>
</table>

LOUDSPEAKERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celeston 8" Loudspeakers, with transformer</td>
<td>10 0</td>
</tr>
<tr>
<td>Loudspeaker output transformers, suitable mains pentode to 2k ohms</td>
<td>8 6</td>
</tr>
</tbody>
</table>

PUSH BACK WIRE

In 100-yard coils, finest quality available in eight different colours per 100 yds. 8 6

VALVEHOLDERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>British Baseboard Skeleton low loss 5- and 7-pin...</td>
<td>1 0</td>
</tr>
<tr>
<td>All types U.S. sockets...</td>
<td>1 0</td>
</tr>
</tbody>
</table>

MICROPHONE STANDS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collapsible Floor Type, suitable for Band or P.A. work...</td>
<td>2 2 0</td>
</tr>
</tbody>
</table>

CHOKES

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.F. CHOKES, 10h. 50 m/A.</td>
<td>6 0</td>
</tr>
</tbody>
</table>

FOR CONTRACT AND PRIORITY WE OFFER FROM STOCK

Amplifiers, A.C. operated, 15 and 30 watt audio output. Wide range of meters from 0/50 microamps upwards. High voltage smoothing condensers. Wire-wound volume controls from 400 to 50,000 ohms. Wire-wound resistors 50 to 200 watts, all values. 6- and 12-volt Vibrator Packs. Crystal and Moving-coil microphones.

14 Soho Street, Oxford Street, London, W.1
Telephone : Gerrard 2089

We are available 9 a.m. till 6 p.m. for OFFICIAL business, but please note our SHOP HOURS—10 a.m. to 4 p.m. (Saturdays 10 a.m. to 12 noon.)
Have 5 Inherent Advantages.

1. Completely Enclosed
2. Greater Mechanical Strength
3. More Direct and Uniform Electrical Path
4. Can be Located Anywhere in Chassis
5. Better Protection Against Humidity

What do the five advantages of Insulated Ceramicons listed here mean to you? From the standpoint of design, they mean a more compact, efficient lay-out. Insulated Ceramicons can be located anywhere in the chassis without regard to the proximity of other components. They make possible shorter leads which are musts in higher frequency circuits. They mean greater protection against humidity—so important in modern war equipment. They provide extra insurance against breakage in handling on the assembly lines or damage from shock and vibration in actual service. The method of attaching wire leads to the silver electrodes provides a more uniform and direct electrical path.

Erie Insulated Ceramicons, for temperature compensating applications, are made in three sizes and in capacities up to 360 mmf. Erie “Hi-K” Insulated Ceramicons, for by-pass and blocking condensers, are available up to 4,700 mmf.

Where your specifications call for capacities within the above ranges, specify Erie Insulated Ceramicons.

A mighty important little fellow for maintaining vital radio communications is this U.I.C. Pearl Type Ceramic Condenser.

Diameter 7 mm. max. Length 9 mm. max.
Capacity range 0.5pF—5pF. Capacity Tolerance Plus/minus 20%.
Test Voltage 1500v D.C.
Suitable for tropical and arctic conditions.

UNITED INSULATOR CO. LTD.
12-22, LAYSTALL STREET, LONDON, E.C.1
Tel.: TERMINUS 7383 (5 lines) Grams.: Colonel, Smith, London

Rectifiers

for

H.T., L.T. and G.B. supplies to amplifiers, receivers and transmitters

DETECTION & A.V.C.

OPERATION OF TELEPHONE AND TELEGRAPHSYSTEMS

In fact, whenever D.C. is required from an A.C. Supply, there is nothing more efficient or reliable than

WESTINGHOUSE METAL RECTIFIERS
WESTINGHOUSE BRAKE & SIGNAL CO. LTD.,
PEW HILL HOUSE, CHIPPENHAM, WILTS.
REPAIRING DOMESTIC RADIO

MAY NOW USE

ERSIN MULTICORE

THE SOLDER WIRE WITH 3 CORES OF NON-CORROSIVE ERSIN FLUX

- Ersin Multicore—the A.I.D. approved solder wire containing three cores of active non-corrosive Ersin flux, has been adopted by the leading makers of radio and electrical apparatus in preference to other forms of solder because it provides speedy and efficient soldering with complete immunity from corrosive or dry joints.

- Because of the economy of metals effected in using Ersin Multicore and the fact that the repair of domestic radio is now rated as an "Essential Home Civil Requirement," Service Engineers, too, can now enjoy the advantages of the finest cored solder in the world.

- Stocked by the leading radio and electric factors. There may be slight delays in delivery, but insist on Multicore, and you will receive your share in turn. In case of extreme difficulty write to Multicore Solders Ltd., giving name and address of usual factor. Firms engaged upon Government Contracts are invited to write for free technical information and samples.

Nominal 1 lb. reels

13 S.W.G. - 4/10
16 S.W.G. - 5/3

above prices subject to usual trade discount.

MULTICORE SOLDERS LTD. COMMONWEALTH HOUSE, NEW OXFORD ST., LONDON, W.C.1. Tel.: CHAncery 5171/2
IN THE DEVELOPMENT AND MANUFACTURE OF Radio Frequency CABLES B.I. HAVE PLAYED A LEADING PART

and though supplies are directed to the Services, the experience gained over a considerable manufacturing period is available for the benefit of approved users.

Note—From fundamental principles, B.I. have made outstanding contributions to design and construction of cables for radio frequency transmission and have perfected production technique.

Audio Amplifiers and Sub-assemblies to critical standards

In addition to Standard Amplifiers the activities of Acoustical include Special Amplifiers for Industrial Applications, Microphones, Transformers, Coil Winding, Sheet Metal Work, Stampings, Switch Assemblies, etc.

Lister Electronic Products Co.
CLEVELAND, OHIO

SPECIALISTS IN UHF EQUIPMENT

MULTI-CHANNEL FREQUENCY MODULATED KEYING LINKS

MULTIPLE CRYSTAL HOLDERS FOR UP TO 100 CRYSTALS

TEST GEAR:—HF AND UHF OSCILLATORS, CRYSTAL CONTROLLED MULTIVIBRATORS

AUTOMATIC ALARM SYSTEMS

INDUCTION HEATING FURNACES

PRIORITIES ONLY

For details write to:—

Electronic Engineering Services, Ltd.
SOLE BRITISH DISTRIBUTORS

24 STANLEY ROAD, HEATON MOOR, STOCKPORT

LOUDSPEAKER YOU KNOW BY EAR

BRITISH Rola LIMITED

DEVIZES · LONDON · BIDEFORD

ENGLAND
"Everything
O.K. Sir!"

Dielectric Loss problems in High Frequency
circuits have been solved by the use of Bullers
Radio-Frequency Ceramics.

Many years of research and development in our
Laboratories have brought these materials to a high
degree of efficiency.

They are in constant use for transmission and reception
and play an important part in maintaining communication
under all conditions.

Made in Three
Principal Materials

FREQUELEX
An insulating material of Low
Dielectric loss. For Coil
formers, Aerial Insulators, Valve
Holders, etc.

PERMALEX
A High Permittivity Material.
For the construction of Con-
densers of the smallest possible
dimensions.

TEMPLEX
A Condenser Material of medium
permittivity. For the construc-
tion of Condensers having a con-
stant capacity at all temperatures.

Bullers
LOW LOSS CERAMICS
They say that when the swan sings it is about to die. Our swan (which the artist has tricked up out of a Spire fixing) heralds the demise of the millions of nuts and washers that it replaces. Spire fixings take many forms. They do the job of a nut and washer, but they do it with more efficiency and less effort on the part of the operator. Many Spire fixings are integral with the component that is to be fixed so that no nut or washer at all is needed. The Spire 'idea' is not restricted to 'nut and bolt' assemblies. Whenever there is a fixing, clamping, holding job to do there is a chance that Spire could help you. So if you will tell us your immediate assembly problem — we shall gladly design yet another. It may not be as elegant as the Swan but it will do a job of work reducing your assembly time and saving material and cost for you.
MONTHLY COMMENTARY........... 161
PENTODE-DIODE VALVE VOLTMETER
By T. A. Ledward, A.M.I.E.E. 162
TELEVISION SURVEY
By R. W. Hallows, M.A., A.M.I.E.E. 166
UNIVERSAL MEASURING INSTRUMENT (concluded)
By G. A. Hay, B.Sc. 170
RADIO JUBILEE 173
SIMPLE MODULATION MEASUREMENTS
By G. S. Light, B.A.Sc. 174
HIGH SELECTIVITY AT AUDIO AND INTER-
MEDIATE FREQUENCIES
By E. Lloyd Thomas, B.Sc., A.C.G.I. 175
RADIO HEATING EQUIPMENT – III
By L. L. Langton, A.M.I.E.E. 179
RANDOM RADIATIONS. By “Diallist” 182
WORLD OF WIRELESS 184
NEWS IN ENGLISH FROM ABROAD 186
LETTERS TO THE EDITOR 187
RECENT INVENTIONS 190
UNBIASED. By Free Grid 192

As many of the circuits and apparatus described in these pages are covered by patents, readers are advised, before making use of them, to satisfy themselves that they would not be infringing patents.

WRIGHT & WEAIRE LTD.
HIGH ROAD, TOTTENHAM, N.17.

Branch Offices:
COVENTRY: 8-10, Corporation Street,
Telephone: Coventry 5210.
Telegrams: “Autocar, Coventry.”

BIRMINGHAM: Guildhall Buildings,
Navigation Street, 2.
Telephone: Midland 2971 (5 lines).
Telegrams: “Autopress, Birmingham.”

MANCHESTER: 260, Deansgate, 3.
Telephone: Blackfriars 4112 (4 lines).
Telegrams: “Hilffe, Manchester.”

GLASGOW: 266, Renfield Street, C.2.
Telephone: Central 4857.
Telegrams: “Hilffe, Glasgow.”

As many of the circuits and apparatus described in these pages are covered by patents, readers are advised, before making use of them, to satisfy themselves that they would not be infringing patents.

Wireless World
Radio • Electronics • Electro-Acoustics
34th YEAR OF PUBLICATION
JUNE 1944

MINIATURE I.F. TRANSFORMERS

DESIGNED FOR MAXIMUM
GAIN AND SELECTIVITY IN
THE SMALLEST DIMENSIONS

The coils are contained in enclosed pot-type
iron dust cores, tuning adjustments being
obtained by means of adjustable iron dust
centre cores.

Fixed tuning condensers are contained
inside the screening can.

The following frequencies are preferred
standards but others are available for
particular applications:

M.400 - 460 Kc/s.
M.411 - 2.1 Mc/s.
M.415 - 4.86 Mc/s.
M.418 - 9.72 Mc/s.

Wartime restrictions prevent our accepting orders
other than those covered by priority numbers.

The illustration shows the actual size of the
Unit which is provided with one hole
fixing, the terminal wires being fed through
insulated bushings which, in turn, prevent
movement of the transformer when
mounted in position.

Branch Offices:
COVENTRY: 8-10, Corporation Street,
Telephone: Coventry 5210.
Telegrams: “Autocar, Coventry.”

BIRMINGHAM: Guildhall Buildings,
Navigation Street, 2.
Telephone: Midland 2971 (5 lines).
Telegrams: “Autopress, Birmingham.”

MANCHESTER: 260, Deansgate, 3.
Telephone: Blackfriars 4112 (4 lines).
Telegrams: “Hilffe, Manchester.”

GLASGOW: 266, Renfield Street, C.2.
Telephone: Central 4857.
Telegrams: “Hilffe, Glasgow.”

As many of the circuits and apparatus described in these pages are covered by patents, readers are advised, before making use of them, to satisfy themselves that they would not be infringing patents.

WIRELESS WORLD
Radio • Electronics • Electro-Acoustics
34th YEAR OF PUBLICATION
JUNE 1944

MINIATURE I.F. TRANSFORMERS

DESIGNED FOR MAXIMUM
GAIN AND SELECTIVITY IN
THE SMALLEST DIMENSIONS

The coils are contained in enclosed pot-type
iron dust cores, tuning adjustments being
obtained by means of adjustable iron dust
centre cores.

Fixed tuning condensers are contained
inside the screening can.

The following frequencies are preferred
standards but others are available for
particular applications:

M.400 - 460 Kc/s.
M.411 - 2.1 Mc/s.
M.415 - 4.86 Mc/s.
M.418 - 9.72 Mc/s.

Wartime restrictions prevent our accepting orders
other than those covered by priority numbers.

The illustration shows the actual size of the
Unit which is provided with one hole
fixing, the terminal wires being fed through
insulated bushings which, in turn, prevent
movement of the transformer when
mounted in position.
Over twenty years of experience and research are behind the advanced technique of today...

MULLARD
THE MASTER VALVE
A Valve for Every Purpose

DOMESTIC • COMMERCIAL • INDUSTRIAL • SCIENTIFIC • MEDICAL • EXPERIMENTAL

THE MULLARD WIRELESS SERVICE CO. LTD., CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C.2. (77 REV.)
CONTRIBUTORS to this journal have stressed the fact that, when the war ends, a unique opportunity will arise for reducing machine-generated interference with wireless reception. When that time comes, many of the existing interfering appliances, both industrial and domestic, will be due for replacement. It behoves everyone concerned with any aspect of wireless to do what he can to ensure that these worn-out appliances are replaced by new ones embodying reasonable precautions against the generation and radiation of interference.

It is generally accepted that legislation is essential to achieving this end. That principle was supported as long ago as 1936, when a representative Committee, by no means devoted only to wireless interests, decided in favour of it. Legislation should be ready before the mass-production of electrical equipment is resumed after the war. We do not suggest that it would be practicable now to introduce a comprehensive Bill laying down precise limits for permissible interference; that might come later. What is needed is a stop-gap measure, establishing the simple principle that after the war it will be illegal to sell, install or operate electrical equipment without taking reasonable precautions against radiating interference.

We are glad to see that the urgency of anti-interference legislation is being recognised. The house journal of Murphy Radio is appealing to the firm’s dealers to use their opportunities to spread the idea among users of broadcast receivers, while Dr. R. L. Smith-Rose, in a Commemoration Meeting address before the I.E.E., recently pointed out that, if we are to gain the maximum benefit from wartime advances in short-wave technique, anti-interference legislation will be necessary.

In common justice it seems inescapable that users of wireless equipment are entitled to legal protection against avoidable interference in just the same way as the public is protected by law against other nuisances.

Combined Sound-Vision Broadcasting.—Much has been said and written during recent months on the technical aspects of our post-war television system, and many valuable suggestions have been made for re-establishing the service on the best possible lines. The other side of television—the “programme side”—is surveyed on another page, and our contributor makes the suggestion that the sharp line of demarcation hitherto drawn between sound and vision broadcasting should be removed; in a word, we should have one kind of broadcasting, using sound or vision, or both together, as appropriate for the subject to be presented. That proposal will arouse some controversy. But it must be admitted that hardly anything could do more to hasten the spread of television than the constant reminders of its existence that would thus be given to those not equipped with a “combined” receiver.

Variable-mu or Variable-μ?—Our associated journal, Wireless Engineer, in an Editorial in the May issue draws attention to yet another example of the confusing and indiscriminate use of two terms to describe one quality, namely, the special characteristics of RF and IF amplifying valves designed for control of volume by variation of grid bias.

There seems little doubt that “variable-mu” was originally intended to be an abbreviation for “variable mutual conductance,” and in any further contraction “variable-g” should logically have preference over “variable-μ,” which, although phonetically the same as “variable-mu,” implies quite another thing, namely, variable amplification factor. As our companion journal points out, “the amplification factor is also variable to some extent, but that this is merely incidental is shown by such textbooks as the ‘Admiralty Handbook of Wireless Telegraphy,’ which uses ‘m’ for amplification factor, and not ‘μ.’”

For our part we advocate the continuance of “variable-mu,” not only because it is the more firmly established but because when we draw valve curves to show variable-mu characteristics they are invariably curves of anode current against grid volts, the slope of which is an index of mutual conductance.
PENTODE-DIODE VALVE VOLTMETER

Linear Calibration Down to Less Than 0.1 Volt

By

T. A. LEDWARD,
A.M.I.E.E.

The ideal valve voltmeter would have infinite impedance at all frequencies; it would have an evenly divided instrument scale, and would be adaptable for reading either peak, mean, or RMS values. Also, the scale range would be changeable at will and supply voltage variations would not affect the accuracy. As it is not possible to obtain all these features together, it is necessary to decide which are of most importance for any particular work, and to choose the most practical and convenient instrument for the purpose in view.

The instrument to be described was designed in the first instance for experimental work with audio frequencies, and a low scale range was needed. In order, however, to extend its usefulness, provision was made for a number of voltage ranges and also for DC tests. An external RF diode may be connected, if desired, for radio frequency work, but separate calibration will then be needed.

In order that the apparatus should be fairly robust and not usually expensive, it was decided to use a type of indicator that a great many experimenters possess, namely, a 0-1 milliammeter. Further, in order that the milliammeter should not require a special scale, and to obtain good readings at the lower end of the scale, a straight line calibration was desirable with a full-scale reading of 1 volt. The advantage of straight line calibration is very great at low readings, as it is possible with a 0-1-volt range to obtain clear readings well below 0.1 volt, which would not be possible with a "square law" scale. Although it is not possible to maintain true straight line calibration right down to zero (except for DC tests), it will be seen from the curve of Fig. 1 that it is linear from full scale down to less than 0.1 volt, and is direct reading on the mA scale over this range. Even below 0.05 volt the curve is steep enough to obtain clear readings by reference to the calibration curve, or by specially marking the scale at this end.

The original circuit in its simplest form is shown in Fig. 2 (a), but the basic arrangement was subsequently altered to that of Fig. 2 (b). This modified circuit is to be preferred because it allows the negative HT and the cathode end of the valve input to be at earth potential, which is of some importance at the very high audio frequencies.

The principle will be most readily understood by reference to the equivalent circuit of Fig. 3. This is a bridge circuit which is balanced for DC, so that no current normally flows through the instrument M, the resistances R_a, R_1, R_2, and R_3 being equal. R_a is the internal resistance of the valve. The valve, when AC is applied to the grid, acts as a generator V, which injects AC into one arm of the bridge and thus produces an AC voltage across the points Y and Z, to which the instrument M is connected in series with the rectifier D. The condenser C, connected across R_3, is made large enough to offer a negligible impedance to the lowest frequency used, and thus increases the AC voltage across YZ, while not affecting the DC balance. The valve V is biased to work on the straight part of its characteristic, so that no DC component exists in the voltage across YZ except by virtue of subsequent rectification by the diode D. The AC voltage across YZ is thus proportional to the valve input voltage, and rectification gives a reading on M that is proportional to the mean value of the input voltage.

In the basic circuit of Fig. 2 (b) a triode valve is shown, but a
A pentode is to be preferred on account of the lower effective input capacitance.

An important consideration with mains-operated measuring apparatus is the effect of variations of mains voltage. Where a stabilised source is not available it is essential that supply voltage variations should affect the apparatus as little as possible. The simple form of bridge circuit can, by suitable choice of component values and by adding a series HT resistor, be made insensitive to reasonable changes in HT voltage, but cathode temperature needs to be correct for maintenance of a DC balance. Variation of the cathode temperature, and consequently of R_0, will unbalance the bridge, and the need for continual re-balancing can be quite troublesome. If, however, either R_1 or R_3 is automatically varied by the same amount as R_0, the balance will remain undisturbed.

The most satisfactory way to make either R_1 or R_3 vary in the same manner as R_0 when the supply voltage varies is to use, in place of one of these resistors, a similar valve to V. This has been done in the final circuit as shown in Fig. 4, in which V_2 replaces R, and includes the diode D. Each of the valves V_1 and V_2 is a Mullard PEN4DD, this being the most suitable standard valve available at the time the instrument was made. The diode section of V_1 is not required, but it was necessary that the cathode and heater should be the same as in V_2, hence the same type of valve was used.

Two series resistors R_{15} and R_{16} are provided for the instrument M and are adjusted to give a 1-volt full-scale reading for AC and DC respectively. A switch S_1 is used to select the appropriate resistor, and in the case of DC tests the diode is cut out, as it is not required. This allows the arrangement shown in Fig. 4 is preferred. The effective input capacitance of the valve is 31μF, measured at 18,000 c/s. This is increased by a further 8μF by switching arrangements on the input side.

If the input to V_1 is derived from a source which gives continuity across the input terminals, the grid resistor R_{10} may be disconnected by opening switch S_2—for which a plug and socket may be used—in order to give the highest possible input impedance. If the input circuit includes a series condenser, or whenever the higher voltage ranges are in use, then S_2 must be closed.

The higher voltage ranges are provided by a sectionalised grid resistor as shown; a switch S_3 selects the appropriate grid resistor tapping. A further 10:1 multiplier is provided by means of a separate 9 megohm resistor. A plug and socket switch S_4 is used for this multiplier.

Straight line calibration for DC tests right down to zero. It may be mentioned that the AC resistor may be dispensed with, if desired, and the grid bias resistor in the cathode circuit adjusted until full-scale deflection is obtained for exactly 1-volt AC. If the deflection is found to be less than full scale for 1 volt with the bias resistor value as given in Fig. 4—and this may possibly happen with a different valve—then the bias resistor must be reduced until full-scale deflection is obtained. This is because the bias resistor also gives negative feedback.

The correct values for the instrument series resistors will have to be determined by trial, but, as a guide, the following values were required in the writer's case, where the instrument M had an internal resistance of 75 ohms: $R_{15}, 135$ ohms; $R_{16}, 24,030$ ohms.

Although power valves are used, they are only lightly loaded and HT volts and current are quite low, approximately 90 volts across each valve with an anode current of 8 mA, so that the valves should have a long life.

The pentode screen resistor is connected directly to the anode, and although this is not usual the arrangement gives a much higher impedance —provided the correct value of resistance is used—than if the valve were used as a triode. In fact, the input impedance is the same as if the screen resistor were connected to HT positive, but raised in value to give the correct screen voltage, as in the normal pentode circuit. The sensitivity would be increased by this latter arrangement, but the extra sensitivity is not required in the present instance and the arrangement shown in Fig. 4 is preferred.
Pentode-Diode Valve Voltmeter—

Apart from the 1 volt range available with no shunting resistance across the input, ranges of 1, 10 and 100 volts are available with an input resistance of 1 megohm, while ranges of 10, 100 and 1,000 volts are available with an input resistance of 10 megohms. The input impedance on AC must, of course, take into account the effective grid capacitance of V1 and will depend upon the frequency.

The 100 and 1,000 volt ranges are only intended for DC and low frequencies—such as 50 c/s supply mains. Any attempt to measure high voltage AC of high audio frequency by direct connection to the instrument would probably result in considerable error due to stray fields, and due to valve capacitance altering the voltage divider ratio.

It is obvious that on any range other than 0-1, the accuracy will depend upon the correct ratio of the grid resistor sections, so that resistors must be carefully chosen. Wire-wound resistors of such high values are rather a luxury, and it should be remembered that it is the resistance ratios that matter and not the absolute values. A further consideration is that as regards bulk, self-capacitance and accuracy of indication can be checked quickly at any time by applying known values of DC voltage. This is a great convenience. It must be admitted that some patience is required in the initial construction of these voltage dividers if reasonably good accuracy is required, and it would help considerably if satisfactory variable potentiometer type resistors were available, especially as these could be readjusted from time to time if it were found necessary. The ordinary carbon volume control is too bulky for this particular purpose. The writer has made some special straight carbon potentiometers with sliders and these are no larger than fixed 1-watt resistors. They are undergoing a test in the present voltmeter and appear to be satisfactory, but it will necessarily be some months before it is possible to say whether they can be relied upon.

Wire-wound resistors should be used for the bridge arms R2, R3; cathode resistors R5, R6; screen resistors R7, R8 and instrument series resistors R15, R16. The balance adjusting potentiometer R4 should also be wire-wound.

A suitable panel layout is shown in Fig. 5. The mains supply unit is separate and is of standard form. A metal case for screening the instrument should be provided. It is an advantage to separately screen V1, and sufficient screening can be most readily provided by coating the glass bulb with "Aquadag," unless a metallised valve is available. The coating should be connected to the cathode pin. The switches, where provided, should be of a good low capacitance type, such as the "Yaxley," and the metal frames of the switches should be earthed.

The DC calibration is, of course, a simple matter, and the AC calibration may be carried out just as simply with a 50-cycle mains supply.

Fig. 4. Circuit diagram of final instrument. R15 and R16 are adjusted to give 1 volt full-scale reading for AC and DC respectively.

Wireless World

inductance, carbon resistors are better than wire-wound. Good carbon resistors will vary slightly in value with temperature change and change of applied voltage, but the ratios are not likely to alter appreciably. The ratios and

<table>
<thead>
<tr>
<th>R8</th>
<th>10,000 ohm</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10</td>
<td>10,000 ohm</td>
</tr>
<tr>
<td>S1</td>
<td>10 microfarad</td>
</tr>
<tr>
<td>R6</td>
<td>180 ohm</td>
</tr>
<tr>
<td>R15</td>
<td>AC 0-1 mA</td>
</tr>
<tr>
<td>R16</td>
<td>250 microfarad</td>
</tr>
<tr>
<td>R2</td>
<td>4,000 ohm</td>
</tr>
<tr>
<td>R3</td>
<td>4,000 ohm</td>
</tr>
<tr>
<td>R5</td>
<td>100,000 ohm</td>
</tr>
<tr>
<td>R7</td>
<td>10,000 ohm</td>
</tr>
<tr>
<td>R8</td>
<td>10,000 ohm</td>
</tr>
<tr>
<td>R9</td>
<td>10 microfarad</td>
</tr>
<tr>
<td>R10</td>
<td>10,000 ohm</td>
</tr>
<tr>
<td>S2</td>
<td>10 microfarad</td>
</tr>
<tr>
<td>S3</td>
<td>10 microfarad</td>
</tr>
<tr>
<td>S4</td>
<td>10 microfarad</td>
</tr>
</tbody>
</table>

Fig. 5. Panel layout adopted in the writer's instrument.

The satisfactory operation up to 18,000 c/s was checked by the writer by means of the oscillator described in an earlier article (W.W., Sept., 1943), and an Elliott 10 mA thermocouple. The latter was connected in series with a non-inductive resistor across the input terminals of the valve volt-
meter. The reading of a microammeter connected to the thermocouple was kept constant at different frequencies, while the reading of the valve voltmeter was noted. The test circuit is shown in Fig. 6. A constant reading was obtained on the valve voltmeter from 25 to 18,000 cycles. The thermocouple output is, of course, proportional to the RMS value of the current, which in turn is proportional to RMS voltage, but the waveform was good enough to give a constant mean value of current, and thus of resistor volts, when the RMS value was maintained constant. The valve voltmeter reading is, as previously stated, proportional to the mean value of the voltage. At 25 c/s there is noticeable vibration of the milliammeter pointer, although the instrument is shunted by a 250 µF electrolytic condenser, but the vibration disappears completely as 50 c/s is reached.

There is one point about calibration that should be carefully noted: Reference to the curve of Fig. 1 will show that the electrical zero does not coincide with the mechanical zero. This applies to AC only. The volts zero corresponds to 0.02 mA scale indication. This means that the DC balance of the bridge is deliberately upset by means of the balance adjustment R4 to give a reading of 0.02 mA with zero input. The reason for this is that the linear volts scale from under 0.1 volt to full scale then coincides with the mA scale. Another advantage is that it is much easier to set the volts zero to 0.02 mA than to set it to zero mA, because if the latter course were adopted it would be possible to carry the adjustment too far without knowing it, as the current cannot reverse. (When the diode is cut out for DC tests a true zero adjustment is, of course, possible.) The balance adjuster takes the form of a potentiometer R4.

If it is desired to obtain a full-scale reading for very much less than 1 volt, an external amplifier will be necessary. The description of a suitable amplifier is beyond the scope of the present article and will depend largely upon the frequency range desired. If, say, a full-scale reading for 100 mV or less is required at one frequency only, such as 50 c/s, then a single valve with either resistance or transformer coupling may be used before the AC input to V1. If, however, a wide frequency band is to be covered with such a low voltage range, it is suggested that the better procedure would be to use an external diode to feed V1 and a single RF pentode to feed the diode.

Low DC ranges are, of course, slightly more difficult. In conclusion it may be stated that for the general requirements mentioned in this article the arrangement described has been found to be very satisfactory and was adopted after much consideration and experimental work with different circuits.

Wireless World

POLICING THE ETHER

U.S. Monitoring Service

More than one hundred fixed stations are employed by the Radio Intelligence Division of the U.S. Federal Communications Commission for the maintenance of "law and order" in American radio traffic.

The R.I.D. maintains twelve main monitoring stations, 90 secondary stations (one or more of which are located in each of the 48 States and in the territories and possessions) and three radio intelligence centres at Honolulu, San Francisco and Washington.

In addition to these fixed stations, which are usually located in isolated places far from the nearest town in order to secure ideal listening conditions, thirty mobile units now maintain a continuous patrol of the entire 5,000-mile coast line of the Continental United States. These coastal units are particularly on the watch for any radio transmitters on shore which might be communicating with an enemy ship at sea relative to the departure, location or cargoes of departing vessels. It is claimed the system is so organised that a clandestine signal originating anywhere in American territory can be traced down.

When an introducer is detected three or more monitoring stations collaborate in getting a bearing on the signal. The final task of running down the offender is performed by monitoring officers using cars fitted with the latest type of detection equipment.

THE FIRST of the much-talked-of German radio-controlled "tanks" to fall into our hands. Having driven the vehicle, carrying an 800 lb. explosive charge, towards its objective the driver dismounts and directs it by radio for the final few hundred yards. It then drops its charge, which is fitted with a time fuse, and is backed to the driver by radio control. The vehicle, 12 ft. long, 6 ft. wide and 4 ft. high, is slightly smaller than a Bren carrier.
TELEVISION SURVEY

Plea for an "All-in" Sound Vision Service

By R. W. HALLOWS, M.A., A.M.I.E.E.

BEFORE we come to consider the future of television when peace has once more come to the world it may be well to see just what it had achieved when, on September 1st, 1939, the threat of war closed down for the time being the activities of the B.B.C.'s Television Department and hid technical progress and developments behind a veil of secrecy. We may well ask whether, at that fateful moment, television had in fact reached a point at which what it had to offer was acceptable to the public, which had for so long been clamouring for the reception of vision as well as sound broadcasts in its own homes. Was the position in the autumn of 1939 such that we could feel that television had at last found its feet? Were we working on the right lines? If, in a word, there had been no war and development had continued to follow the path that it was taking in 1939, would the television receiver be found today in the homes of the great majority of moderately well-to-do folk? Or would some radical change in technique, or in the matter broadcast, or in both, have been required to enable it to achieve the popularity which it seemed for so long to be on the point of gaining, yet never actually managed to gain?

Of one thing there can be "no possible, probable shadow of doubt": the public wanted television and was prepared to receive with open arms the kind of television that answered its requirements. The television of pre-war days cannot fully have met those requirements, or its history during the two years of broadcasting from the Alexandra Palace would have been very different. Something was amiss. If we can find what it was—what it was that deterred the man in the street from accepting the gift which he had been demanding so long and so loudly—we may be able when the war is over to give television the impetus that it lacked in the past to ensure its wide and rapid popularity. That television can and will become popular I am convinced. I am equally sure that this could not have been brought about by the methods in vogue up to 1939.

Television has a curious history in this country—and it must never be forgotten that ours was the first to develop it. And its history here has been repeated to a great extent in the United States. Sometime before the war (in 1937, I think it was) a big American firm wrote to me. They were thinking, the letter said, of taking up the manufacture on a large scale of components for television receivers. Knowing what I did of the progress of television in this country, would I advise them on the wisdom or otherwise of this course? In my reply I said that I had followed closely the infancy of television in America and, so far as I could see, its story there would be exactly parallel to its story here. It had already been boosted, boomed and baileyhooded by the American lay press. Great expectations had been aroused in the bosom of the man in the street, who was already saying in the United States, as he had said here, that he wouldn't be happy till he got it. It would be found, I predicted, that the public would eat every word that the lay press gave them on television and would ask for more; would fill the correspondence columns with letters yearning for the newest boom to mankind; would pack demonstration theatres to suffocation, loudly applauding what they were shown there. They would in fact show every sign of being ready to absorb television receivers as fast as they could be placed on the market; but when those receivers were available would be very coy indeed about buying them.

That, I foretold, would be the early history of television in the United States and I advised the firm against the line of action...
that they had in mind. "Unless," I added, "people in your country can put their finger on what is lacking here in television and can discover how we have so far failed to give the would-be viewer what he really wants." The history of television in the United States from the first broadcasts until that country came into the war was very much as I had forecast. And there is a good deal to be learned from the fact that what happened in our country happened also in the United States of America.

There were those who ascribed the slowness of our folk to acquire television receivers to the natural caution of the Briton: before buying something new he likes to make sure that this apparatus will not quickly be rendered obsolete by some new discovery. But in America, the land of constantly recurring new things, there is no such natural reluctance to take the plunge. Others, again, held that the cost of television sets put them beyond the reach of the mass of our people. But in 1938 television receivers were being offered at prices less than those of the wireless sets that sold as fast as they could be turned out in the early days of sound broadcasting. Nor would prices have deterred the American public with its higher wage-levels and its vast use of deferred payment systems. No, the peoples of both countries were of the opinion that something was lacking, and so long as that "something" remains lacking television is not going to make the strides it should make. It must be a very important "something" if the already eager public would not respond to the terrific free publicity that television received both here and in America.

Innumerable opportunities have come my way of discussing television both with owners of receiving apparatus and with people who might have become owners but didn't. Thinking over and sifting out what they have said convinces me that two cardinal mistakes, which must not be repeated when a fresh start is made, were responsible for the fact that television as a source of home entertainment has hitherto been a partial failure instead of a resounding success. The first of these was that when the technical development of television had reached a stage at which it was completely fit to provide entertainment in the homes of the people, we did not know what to do with it, and we forced it to take on roles for which it was entirely unsuited. The second vital mistake was that television broadcasting was divorced from normal sound broadcasting instead of being made part and parcel of it, a point on which more will be said in a moment. Meantime, let us consider the suggestion that we didn't know what to do with television when we had it.

"Terribly Artificial"

Just what did we do with it? Well, the B.B.C. put on special television programmes, quite separate and distinct from those of the normal sound schedule, lasting two or three hours a day. The programmes included plays, cabaret and films, the plays and the cabaret being mostly specially written and produced to suit the technical requirements of television broadcasting. There were also, if I remember rightly, attempts at some kind of newsreel, illustrated talks on such feminine matters as cooking and dress-making, visits to the Zoo in the children's hour and illustrated hints and tips on how to do this and that. There was something terribly artificial about the bulk of such televised programmes: one felt that they had been devised, produced and transmitted not because they were worth transmitting, but simply because television was in being and something had to be scratched together to show off its paces. As entertainment they had not sufficient value to induce more than a few thousand people of the ten to twelve millions living in the area served to buy television receivers; and those who did buy made less and less use of their sets for bringing in the regular programmes—once the novelty had worn off after the first fortnight or so. What they did use their sets for was the reception of television broadcasts.
Television Survey—

of big sporting and other events as these occurred. Had there been Derby Days and Boat Races, Cup Tie Finals and Lord Mayor’s Shows every day the entertainment value of television would never have been in doubt. But there weren’t and there won’t be. Also, television must surely have a wider task to perform than that. So what is to be done about it?

Vision + Sound = Broadcasting

That brings me to the second great mistake that was made—the gulf that was fixed between sound broadcasting and vision broadcasting. I do not mean that the vision broadcasts were not accompanied by sound, for of course they were. What I am driving at is that the main programmes continued to be devised with a view to their effects on the ears of listeners, and that special programmes were drawn up for television that appealed to both eye and ear. It was a major error to foster the idea that there were two kinds of broadcasting. From the very first they should have been merged into one complete whole. Broadcasting with no qualifying epithets. The sound programmes, which had amply proved their entertainment value by bringing about the annual sale in Great Britain of some nine million ten-shilling receiving licences, should have been modified gradually so as to enable them to absorb and make part of themselves the new feature, vision.

Please do not imagine that I am advocating that vision should accompany all items of all programmes. When the war is ended we shall presumably return to regional and national programmes. I would make the latter, to begin with, at any rate, the complete programme, and would have it transmitted from start to finish on very short, medium and long wavelengths. Any item that lent itself to vision as well as sound—and, as I have already suggested, programmes would be so modified from their present form as to include a considerable number of these—would be illustrated by means of television transmission and reception. Those who had not means of receiving vision, or who were receiving on the medium or long waves, would still obtain genuine entertainment from their loudspeakers; but the broadcast in its entirety would be received only by those who had both loudspeakers and viewing screens in use during the illustrated items. Careful planning and production would be needed to ensure that the illustrated items were sufficiently numerous and of the right kind. Above all, it would be essential that they should be neither incomprehensible nor just plain dull to those without vision receiving facilities. There is nothing impossible, or even very difficult in these requirements. Programmes produced on the lines indicated would make sound reception alone the “penny plain” and sound-cum-vision reception the “two-pence coloured” of broadcast entertainment.

It will be asked what kind of modified programmes I have in view. How, again, can we be sure of a supply of items free from the artificiality of so large a proportion of the pre-war television broadcasts? Certain items, such as the daily dozen, practical hints on gardening, cooking, dress-making, household jobs and the like lend themselves readily to illustration, the verbal descriptions being always such that those receiving with loudspeaker only can follow easily what is being done. The film critic and the theatre critic can show samples from the plays or films under review, again making sure that their descriptions are adequate. Undoubtedly the most popular features of our pre-war television service were “actuality” broadcasts, such as this transmission of an International professional golf match.

Wireless World

Hot News

That is a beginning: there is much more to be done. Of one thing there is no doubt, and that is that the public likes descriptions and illustrations of events of the day. It is to that liking that the daily and weekly papers owe their present enormous circulations. Hitherto the branch of broadcasting confined to sound has rather tended to limit its activities in these directions to what may be called major events, whether sporting or otherwise. But there is always plenty going on that is of general interest. Sound film recording units of the mobile type could bring in a rich harvest every day of illustrations and running commentary.

Space does not allow me to go more into detail about the make-up of programmes; but the reader will see for himself that the field is immense and the possibilities almost unlimited. And he will, I believe, be disposed to agree that with programmes of the kind suggested there would be a real inducement to everyone who could afford to become the owner (and user) of a sound and vision receiver.

I have said little about the
technical side of the matter because I do not think that shortcomings there were to any great degree responsible for the failure of television in pre-war days to achieve popularity. Enormous strides have been made during the war in both VHF and CRT techniques, so that I do not feel that we need worry unduly about the technical aspect. I do, though, very much hope that the radio manufacturers will take to heart the need to put an end to the separation of television broadcasting from what we used to regard as "normal" sound broadcasting. It is the combination of sound and vision that should be normal. To sell as "television receivers" sets capable of bringing in vision as well as sound on all the broadcasting wavelengths would be ridiculous. These should be known simply as "broadcast receivers," sets able to deal with sound alone being termed "broadcast receivers (sound only)."

VHF High Fidelity

As I see it, the rapid development of a network of VHF stations over the country is to be expected as soon as peace returns. At first these stations may relay the sound and vision components of a single programme. Later we may hope for alternative programmes: it should be but a matter of time for a selection of VHF illustrated programmes to be available in all but the most isolated places. This will mean that genuine high-fidelity reproduction of sound is possible everywhere, and it is to be hoped that the radio industry will not fling away this priceless gift, as it tried to do in the years before the war came upon us by two acts of folly. First, many television receivers were made whose AF sides were incapable of doing justice to the available high-fidelity transmissions of the sound accompaniment to television. Secondly, though the B.B.C. was willing to transmit the complete national sound programme on VHF with high fidelity, the industry would have none of it, holding that if the man in the street once heard what sound reproduction by wireless could be like, he would plague the life out of them by demanding the impossible—high-fidelity on all wavelengths and from sets at all prices. The sensible attitude would have been to welcome high-fidelity transmissions, to explain to the public that they were receivable to perfection only on the very short waves by sets that could not be sold at low prices, and to spur on the B.B.C. to establish more and more VHF transmitters.

Anti-interference Legislation

Apart from what has been said so far, there is one factor on the technical side which does not concern the VHF receiver (sound or vision) itself, but may yet be a decisive factor in the success or otherwise of VHF broadcasting—and vision can be broadcast only on the very high frequencies. This is interference, particularly that radiated by motor car ignition systems. Various kinds of anti-interference aerial systems were designed and used before the war; but they were palliatives at best and not always very effective. It is scarcely going too far to say that that VHF reception of sound-cum-vision or of sound only was too unsatisfactory to have much if any entertainment value in most houses near which there was any considerable volume of motor traffic. A particularly knowledgeable wireless dealer with much pre-war experience of television said to me recently: "If the authorities tackle the problem of motor car interference firmly, television will be a success; if they don't, it hasn't a hope."

There is a great deal in this. No matter how attractive programmes on the lines already suggested might be, nor what degree of perfection of reproduction of transmission was achieved, no one could take much pleasure in sound continually accompanied by machine-gun effects or in images marred by the "snowstorms" with which many of us were all too familiar. There is no doubt that this kind of interference can be dealt with successfully if the necessary legislation is introduced. If VHF radio is possible between plane and ground or between plane and plane, the suppression methods that have been developed must be effective and they cannot have serious effects on the all-important liveliness of aero engines. Though it employs coil and battery ignition as a rule, the car engine should be equally susceptible to effective suppression.

To sum up: television is bound, sooner or later, to come into its own. Whether it does so rapidly or only after the lapse of some considerable time will depend mainly upon the action taken as soon as the war is over. The man in the street is as eager for it as ever he was; but he will not buy it simply as a novelty. Television has long passed the stage when any kind of image on the viewing screen was enough. What the public wants from it is genuine entertainment, and that can be given only if its transmissions are merged with those of sound to form the parts of a complete whole—the broadcast programme. The public is satisfied that television is technically capable of providing what it wants, and it will be still more satisfied on that score when it knows of the improvements that are now waiting to see the light of day. On two vitally important points it has still to be satisfied: that television and sound mean better entertainment than sound alone, and that the programmes sent out can be received without frequent and disturbing interference. Once it becomes confident about these things television will not just march forward: it will gallop.

THE WIRELESS INDUSTRY

We have received an illustrated booklet giving technical details of the domestic standard fuse plug and socket made by Dorman and Smith, Ltd., Ordsall Electrical Works, Salford, Manchester, 5. The fuse takes the place of one of the pins of the plug and is easily replaceable.

A substitute for the ordinary split battery plug is now available in the Titen spring battery plug which is being distributed by London and Provincial Factors, Ltd., "Wanie House," Aylmer Parade, E. Finchley, London, N.2. The retail price is 2d. each.

W. F. Newell, B.Sc., who has been associated with Weston Instruments for more than ten years, has resigned from Sangamo Weston, Ltd., and is taking up the position of Technical Contracts Manager with the Automatic Coil Winder and Electrical Equipment Co.

COVER ILLUSTRATION

Our cover shows a group of T.C.C. small transmitting condensers, made from thimble-shaped ceramic mouldings with silvered electrodes fired on to inner and outer surfaces. Capacities of the largest size illustrated (overall length about 3½in.) range from 0.0006 to 0.00175 µF. Working voltages of this type of condenser are up to 10,000 V DC.
2—Practical Details

By G. A. HAY, B.Sc.

The basic principles involved in the design were described in the first part of this article, which now concludes with details of a practical instrument.

Fig. 1 shows the complete circuit. It is arranged round a Mullard EMI CR tuning indicator with cathode feed-back, arranged as a DC null indicator, to which can be connected by switching various filters, standard resistances, a diode rectifier, etc.

Power for the instrument is supplied from an internal power unit. The advantages of this scheme are numerous, as the power is always available so long as a 230V AC supply is at hand; the habit of batteries of being run down just when they are wanted is well known. A half-wave rectifier is used, as the current drain is only about 20 mA. Smoothing is conventional, and a supply of about 320V at 20 mA is obtained.

Since the instrument was completed, the writer's attention has been drawn to the desirability of screening the power transformer in measuring instruments.* While the absence of this has so far caused no trouble, its inclusion would no doubt be advisable.

The output from the unit is applied to a potential divider, which splits the output broadly into two parts, 200V for operation of the "magic eye," and 120V for the potentiometer giving the comparison voltage. The latter is developed across an S.130 neon stabiliser which ensures a constant reference voltage. In addition, there is a semi-variable tapping to give 100V positive to "earth" for operation of the megohm-meter.

Although a completely stabilised HT supply would be an advantage, it was felt that the extra complication was not justified, as it is unnecessary for rough measurements. When using the instrument for exact work one must also stabilise the heater supplies, and this is best done by using a 250V stabilised AC source.

The EMI is connected between earth and +200V, with an adjustable cathode resistor, 2000Ω fixed in series with 5000Ω variable. This gives variable sensitivity which is useful when rough measurements are to be made, ensuring that the settings are not too critical. The cathode return is made to a 400Ω potentiometer in the main potential divider, which acts as a zero adjuster and enables one to set the shadow to the most convenient reference position. This zero setting is constant for all DC and resistance measurements, and also constant at a different setting for all AC ranges. The exact reference setting to be used depends on a number of factors. Maximum sensitivity is obtained at a shadow angle of about 45 deg., and if there is a mark on the target here, this is best used. Sometimes pieces of dust, grit, etc., can be shaken from the base of the valve on to the target by inverting and tapping sharply. Failing that, it is quite satisfactory to adjust the shadow to zero angle. Other CR indicators than the EMI can be used, but to the writer's knowledge all have a much larger target current. This makes the initial cathode bias larger, and the backing-off bias must be greater, with a greater risk of zero shift. It seems that the type with a single shadow in place of the maltese cross pattern always suffers from this disadvantage—which, of course, does not affect the normal use of the tube.

In an earlier model the standard voltage was measured by an internal voltmeter of B.S.1 accuracy.

Ranges:

1. Alternating peak voltages from 0.1 to 100V at 20 c/s to 60 Mc/s. Input resistance 5 MΩ. Accuracy ± 5 per cent. below 1V; ± 2 per cent. up to 10V; ± 1 per cent. above 10V.
2. DC voltages from 5 mV to 100V. Input resistance practically infinite. Accuracy ± 0.5 per cent. above 1V.
3. Resistance from zero to 1 MΩ, or insulation from 1 MΩ to 1,000 MΩ.
4. Bridge indicator, AC or DC or both, with sensitivity of about 2 mV.

racy. Subsequently a Cossor S.13o neon stabiliser was used to give an output of about 115V at a tube current of 15mA. This is used as the comparison voltage, the 5000Ω voltage adjustment dropping it to 100V across the potentiometer network, which consumes 5mA. The potentiometer track, R5, consists of a 20 watt, type P.I.W. Reliance potentiometer arranged with a 6in. diameter rotating scale, viewed through a window fitted with a hair-line: for the 100V range this is connected across the whole supply, in switch position 3.

In the other two switch positions, 1 and 2, resistance networks are brought into circuit which reduce the voltage across R5 to 1V and 10V respectively. The total resistance of the whole network remains constant and equal to R5 at any switch position. The calculation of resistance values is straightforward but tedious, and only the results are given here; they are expressed as functions of R5:

\[
\begin{align*}
R6 &= 0.9R5 \\
R7 &= 0.09R5 \\
R8 &= \frac{10R5}{99} \\
R9 &= \frac{R5}{99}
\end{align*}
\]

It is suggested that these resistors be wire-wound (of the same wire as used in R5), and adjusted by comparison with R5 as standard in a conventional bridge circuit. In fact it is best for all the resistances except the megohm values to be wire-wound, as this reduces the risk of zero shift due to temperature changes. If it is desired to measure a voltage greater than 100—an either AC or DC—an external source of voltage can be connected to the terminals marked, which are normally short-circuited by a link.

The switching arrangements in the grid circuit of the EMI are necessary to connect the various filter circuits to the grid. Although it was originally thought that switches would be unsatisfactory because of low insulation resistance it has been found in practice that Yaxley wafers are satisfactory provided that points between which low leakage is desired are kept on different wafers. It is also necessary to keep the wafers clean and dry and use resin flux only in soldering.

In switch position 1 the instrument is set for use as a bridge indicator. The input is connected across terminals “High” and “Low” and the slide-back control set at zero. This use of the meter is effective throughout the audio range. In using it one must remember the extreme sensitivity of the indicator, and the difficulties which may be experienced due to external electrostatic fields. If the alternating voltage under investigation is superimposed on a DC component, the latter can either be balanced out by the slide-back voltage, or removed by a condenser-resistance filter, which can be built up as a separate unit (see Fig. 1). If the bridge does not present a complete path to DC looking from the detector terminals, a resistance must be connected across these. This can conveniently be R18 in the filter unit just mentioned.

In switch position 3, DC voltages can be measured, again using terminals “High” and “Low,” the former being positive. AC components are removed by an internal filter consisting of a 5MΩ.

TABLE

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>10Ω</td>
</tr>
<tr>
<td>R2</td>
<td>10 MΩ</td>
</tr>
<tr>
<td>R3</td>
<td>5 MΩ</td>
</tr>
<tr>
<td>R4</td>
<td>1 MΩ</td>
</tr>
<tr>
<td>R5</td>
<td>20,000Ω</td>
</tr>
<tr>
<td>R6</td>
<td>50 kΩ</td>
</tr>
<tr>
<td>R7</td>
<td>150 kΩ</td>
</tr>
<tr>
<td>R8</td>
<td>1 MΩ</td>
</tr>
<tr>
<td>R9</td>
<td>1 MΩ</td>
</tr>
<tr>
<td>R10</td>
<td>5000Ω</td>
</tr>
<tr>
<td>R11</td>
<td>5000Ω</td>
</tr>
<tr>
<td>R12</td>
<td>4000Ω</td>
</tr>
<tr>
<td>R13</td>
<td>2000Ω</td>
</tr>
<tr>
<td>R14</td>
<td>5000Ω</td>
</tr>
<tr>
<td>R15</td>
<td>5000Ω</td>
</tr>
<tr>
<td>R16</td>
<td>5000Ω</td>
</tr>
<tr>
<td>R17</td>
<td>5000Ω</td>
</tr>
<tr>
<td>R18</td>
<td>400Ω</td>
</tr>
<tr>
<td>R19</td>
<td>400Ω</td>
</tr>
<tr>
<td>C1</td>
<td>0.01 μF</td>
</tr>
<tr>
<td>C2</td>
<td>0.01 μF</td>
</tr>
<tr>
<td>C3</td>
<td>0.01 μF</td>
</tr>
<tr>
<td>C4</td>
<td>0.01 μF</td>
</tr>
<tr>
<td>C5</td>
<td>0.01 μF</td>
</tr>
<tr>
<td>C6</td>
<td>0.01 μF</td>
</tr>
</tbody>
</table>

![Fig. 1. Complete circuit diagram; see Table above for component values.](image-url)
Universal Measuring Instrument

resistance and 0.01 \(\mu F \) condenser. A DC path across the input is again necessary. Readings are taken on the main scale A (see Fig. 3), graduated from zero to 100 in 1V steps, the appropriate multiplying factors 0.1 and 0.01 being used on the 10V and 1V ranges respectively. Resistance and insulation are also measured in this position, and this is done by connecting an external 1 \(\Omega \) standard to the appropriate terminals. For resistances below 1 \(\Omega \), the standard, which is fitted with rigid spade connectors, is placed between terminals “MD” and “High,” the unknown between “High” and “Low,” and scale A used with a multiplying factor of 10,000. The range switch then operates in the same way as for DC voltage. For resistances above 1 \(\Omega \), the standard is connected between “High” and “Low,” the unknown between “High” and “ MD,” and scale D used. This scale is calibrated by calculation from the expressions given in the first part of this article. The multiplying factors on the range switch are now the reciprocal of those shown, e.g. on range 1 the scale reading is multiplied by 100.

Wireless World

“MΩ” terminal and earth of 100V, measured by a low-consumption voltmeter. Once set, the megohm adjuster need rarely be altered except for exact measurements.

In switch position 2, the diode rectifier is connected for AC voltage measurements. In all cases the peak voltage is indicated, and if RMS values are desired the form factor of the voltage waveform must be taken into consideration. The diode is made in the form of a probe, connected by a three-way screened cable. A Mullard EA50 is used, the 6.3V heater being run at 5V to reduce heater-cathode leakage and PD’s due to initial electron velocity. This voltage is adjustable by a pre-set variable resistance, and for most accurate low voltage measurements it is necessary to check this periodically. For audio- and low radio-frequency work the probe can be pushed into a housing in the body of the instrument, where the diode anode terminal makes contact with a tag connected to the terminal “AC.” The probe is thus protected from unnecessary mechanical damage. This housing can be seen on the left of the photograph with its cover alongside.

The probe is shown in section in Fig. 2. Only a 100 \(\mu F \) silvered mica bypass condenser is included in the probe, and all this is inadequate below 100 kc/s. It is supplemented by a 0.01 \(\mu F \) mica condenser in the main instrument. Essential points to watch in construction are: (1) a short path from the diode anode to its terminal and from the cathode through the condenser to the earthy terminal, (2) screening as complete as possible to minimise stray induced voltages, (3) screening and good insulation of the cable to the main instrument, (4) ceramic insulation wherever possible in the RF circuits to reduce losses at ultra-high frequencies.

The permanence of calibration of the diode voltmeter is mainly dependent on the heater current as described above; if this is adjusted when a new diode is brought into use to give the same contact potential as the old one then the calibration will alter by only a negligible amount—this being due to differing AC resistance. The meter is thus truly independent of changing valve characteristics. The theoretical value for the input resistance is of the order of 5 \(\Omega \), while approximate measurements show a value somewhat lower than this at 50 c/s and about 10V input.

Calibration of the potentiometer is done against a sub-standard voltmeter and external potentiometer. When the 100V DC range A is calibrated it serves also for the 10V and 1V DC and 100V AC ranges and also the 1 \(\Omega \) resistance range. The 10V and 1V AC ranges must be calibrated separately, however, with a known heater voltage on the diode. It is probably sufficient to use the equations given in the first part of the article to graduate the D scale by comparison with the DC voltage ranges. A section of the scale, as seen through the escutcheon, is shown in Fig. 3.

A general idea of the appearance can be gathered from the photograph: of course, considerable latitude exists in design details. On account of compensation for errors and independence of valve characteristics the meter can be relied on as an accurate standard or as a DC to AC transfer instrument against which other AC meters can be checked or calibrated.

GOODS FOR EXPORT

The fact that goods made of raw materials in short supply owing to war conditions are advertised in this journal should not be taken as an indication that they are necessarily available for export.
OF late we have had many reminders that wireless has not merely grown up, but has attained a riper maturity. The basic idea of using electromagnetic waves as a means of communication is now just over half a century old, while even relative newcomers to the art, such as the B.B.C. and several firms manufacturing broadcasting equipment have recently celebrated their coming-of-age.

The Silver Jubilee of the Wireless Section of the Institution of Electrical Engineers comes as another reminder. In the words of the President of the I.E.E., the Section was formed in 1919 "to provide a forum to present and discuss papers dealing with wireless and to recognise and provide for, within the framework of this Institution, the specialised requirements of engineers interested in wireless."

Membership, which is now over 1,900, represents all branches—industrial, academical, Armed Forces and Government departments.

One of the first superheterodyne receivers to be built in Europe; a Standard Telephones and Cables production of 1924. This and other apparatus illustrated on this page were among the historical exhibits on show at the I.E.E. Wireless Section Commemoration Meeting.

At a Commemoration Meeting, held on May 3rd, six past chairmen of the Section delivered addresses to a large and distinguished audience, which included representatives of all the wireless industrial associations and the Radio Society of Great Britain. Delegates of the Commonwealth Communications Council representing the Dominions and India were present.

Dr. W. H. Eccles surveyed the technical events that led up to the founding of the Section 25 years ago. Professor G. W. O. Howe maintained that the outstanding achievements of the early days of wireless telegraphy were accomplished in spite of principles and theories as then enunciated. Theory was revised after each successive practical step. In particular, ideas about the ionosphere and long-distance propagation were vague until well after long-distance communication had actually been achieved.

The history of wireless in the Navy was dealt with by Admiral Sir Charles Kennedy-Purvis. He recalled that the first tuned-circuit Naval apparatus, installed in about 1900, worked on wavelengths rated as 395 and 1,150 feet.

The difficult task of forecasting future developments was most capably undertaken by Dr. R. L. Smith-Rose, who stressed the possibilities of using recent developments in VHF (over 100 Mc/s) for services with ranges up to 100 miles. That would relieve congestion on bands with world-wide ranges. Increasing knowledge of ionosphere conditions will make for more economical distribution of frequencies.
SIMPLE MODULATION MEASUREMENTS

Change of RMS Value as an Indication of Modulation Depth

By G. S. LIGHT, B.A.Sc.

One of the simplest methods of modulation is applied. The increase in RF current when modulation measurement, namely, 1 to discuss the possibilities of amplitude modulated by another current is j, instantaneous value of whose sine wave whose instantaneous value is I, can be shown that the equation of the resulting wave is

\[i = I \sin 2\pi f_1 t + \frac{1}{2} I \cos 2\pi (f_1 - f_2) t - \frac{1}{2} I \cos 2\pi (f_1 + f_2) t \]

The three terms on the right-hand side are respectively carrier, lower side band and upper side band. For complete modulation I, = I, thus each side band has half the amplitude of the carrier, and therefore a quarter as much power, since all these currents are necessarily flowing through the same circuit resistance. For a modulation factor of “m” the amplitude of each side band is \(m \) times that of the carrier. Thus the RMS value of the modulated carrier is \(\sqrt{1 + (4m)^2 + (4m)^2} = \sqrt{1 + 16m^2} \) times that of the unmodulated carrier, and the relationship is worked out for typical values in the table.

A thermocouple or hot-wire meter reads RMS current values, and if one of these be connected in the tuned circuit of a modulated oscillator or amplifier or into a coupled circuit its reading will give an indication of the depth of modulation. Some standard signal generators employ this device; in one well-known make the internal modulation is set at 80 per cent., and the “Set Mod.” mark on the meter is calibrated to represent 14.9 per cent. more current than at the “Set Carrier” mark.

The aerial current of a transmitter can thus be used to indicate depth of modulation by speech or tone. In one mass production factory the percentage modulation of transmitters is rapidly determined from aerial ammeter readings. A special slide rule (see sketch) is used to save a separate calculation for each set. The “Carrier” mark is set to the unmodulated aerial current and the percentage modulation read off direct from the modulated current reading.

In order that the percentage relationship shall hold good at any part of the scale it is necessary that both RF scale and slider should be divided on a logarithmic basis. Typical figures for a scale approximately 10in. in length are given in the caption to the illustration. It happens that convenient values are obtained by multiplying the common logarithm of the RF amperemeters by 2, so that readers requiring intermediate values may obtain them in this way. In the case of the percentage modulation scale an example will make the working clear. From the table 50 per cent. modulation is equivalent to an increase of RF current of 6 per cent., i.e., multiplying by a factor of 1.06. The log of this is 0.0253, and multiplying by 2 gives 0.506in. or 0.51in. to the accuracy with which the scale can be drawn.

The above calculations hold only for a sinusoidal waveform of modulating voltage, but in practice slight departures do not make a noticeable difference and agreement to within 5 per cent. can always be obtained with oscilloscope methods.

Low modulation depths are hard to estimate, and the method should only be used for modulation factors exceeding 0.5. The upper part of the RF ammeter scale is best for observing small changes. Further, over-modulation is not shown, and must be guarded against, since for this condition the needle falls back from the 22.5 per cent. point.

Finally, results will be inaccurate if the carrier itself varies when modulation is applied; this may happen if the RF regulation is poor due to low excitation, or if there is unsymmetrical modulation.

Table:

<table>
<thead>
<tr>
<th>Modulation (per cent.)</th>
<th>(m)</th>
<th>Current Increase (per cent.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>30</td>
<td>0.3</td>
<td>2.25</td>
</tr>
<tr>
<td>40</td>
<td>0.4</td>
<td>4.0</td>
</tr>
<tr>
<td>50</td>
<td>0.5</td>
<td>6.0</td>
</tr>
<tr>
<td>60</td>
<td>0.6</td>
<td>8.0</td>
</tr>
<tr>
<td>70</td>
<td>0.7</td>
<td>11.5</td>
</tr>
<tr>
<td>80</td>
<td>0.8</td>
<td>14.9</td>
</tr>
<tr>
<td>90</td>
<td>0.9</td>
<td>18.5</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>22.5</td>
</tr>
</tbody>
</table>

Slide rule for calculating percentage modulation from change of aerial ammeter reading. Essential dimensions for a "10-inch" rule are as follows. Distance of RF amperemeters from left-hand end of scale: 0.6, 1.58in.; 0.7, 2.94in.; 0.8, 4.10in.; 0.9, 5.10in.; 1.0, 6.06in.; 1.1, 6.90in.; 1.2, 7.66in.; 1.3, 8.39in.; 1.4, 9.02in.; 1.5, 9.64in. Distance of modulation percentages from "Carrier" mark: 50, 0.5in.; 60, 0.72in.; 70, 0.95in.; 80, 1.20in.; 90, 1.48in.; 100, 1.76in.
"You wouldn't know the old radio set now, Sam. That Brimar valve has made all the difference!"

Every radio set gives its peak performance when the correct Brimar Valves are used. Engineers know how closely and unfailingly they conform to specification.

BRIMAR VALVES

STANDARD TELEPHONES AND CABLES LIMITED, FOOTSCRAY, SIDCUP, KENT.
Rotary Cutting, Filing, Grinding and Polishing - Economy and Accuracy

Use MORRISFLEX Flexible Shaft Equipment, and REX Rotary Files and Cutters for cutting, filing, grinding and polishing components of aluminium, Elektron, non-ferrous alloys and ferrous metals. For metal buffing and cleaning we supply MORREX Rotary Wire Brushes, and MORRISFLEX Rotary Polishing Mops and Felts, also Felt Cones. MORRISFLEX Rotary Rasps are ideal for woodworking, and attachments for MORRISFLEX machines include Sanders and Grinders. MORRISFLEX machines are available in overhead suspension, bench and floor types. Their use ensures speed with accuracy, and a high degree of finish. Write for Lists.

B. O. MORRIS LTD.
SHIRLEY,
BIRMINGHAM.
Shirley 1237.
*Grants:
Morriflex, Birmingham.

MORRISFLEX
FLEXIBLE SHAFT EQUIPMENT

There is more than one possible answer to the problem of the quart and pint pot, but to the question of measurement in electrical communications there must be only one answer — and it is the function of Marconi instruments to provide it. For Marconi’s have pioneered not only an ever widening range of communication equipments, but also the art of testing the many instruments in this specialised field. To-day the testing difficulties which once beset the electrical engineer are solved by the precision measuring apparatus of Marconi Instruments Limited. Their specialists are at your service for consultation on any specific problems.

MARCONI INSTRUMENTS LTD
ELECTRA HOUSE • VICTORIA EMBANKMENT • LONDON, W.C.2
HIGH SELECTIVITY
at Audio and Intermediate Frequencies

IT is often an object in the design of communications equipment to construct a circuit having a very selective characteristic which responds to a narrow band of frequencies while greatly attenuating all other frequencies outside this pass-band.

At radio frequencies it is customary to use filter circuits incorporating crystal resonators for this purpose, but at low and intermediate frequencies this method is not available and in the past it has been necessary to resort to more or less elaborate chains of tuned circuits. Such networks, for even a moderate degree of selectivity, are bulky and troublesome to adjust. Moreover, it is not usually practicable to vary the position in the frequency spectrum.

It is the purpose of this article to describe a method of obtaining high and variable selectivity at relatively low frequencies which avoids these difficulties. The resulting circuit, based on the application of controlled negative resistance to a single tuned coil, may also be used as an interstage coupling in a filter-amplifier to realise a very high stage gain.

Consider, to begin with, the factors which determine the selectivity of an isolated tuned circuit, Fig. I (a). The losses in such a circuit are mostly due to the resistance of the inductive element; and the “Q” factor, which is usually taken as a measure of the selectivity, may be written as the ratio of the reactance of the coil to its resistance.

Now, the “Q” of a coil for use at any given frequency is governed by its size, shape, and construction, and by the material of the core on which it is wound. Although some improvement can be effected by using stranded wire and a core of appropriate magnetic material, it is not possible at these frequencies to obtain a natural “Q” of more than a few hundred with a coil of reasonable size.

EFFECT

For many purposes such a value is inadequate. Moreover, a coil having a magnetic core tends to overload, owing to saturation of the core material, when the potential across it exceeds a few volts. This causes undesirable distortion which can only be avoided completely by reverting to an air-cored coil.

Even if it were possible to construct a very low loss coil, the damping imposed on it by the associated circuit and valves would limit the effective selectivity. Indeed, the higher the natural “Q” of the coil the more serious would be the damping.

In the present system these difficulties are overcome by taking a coil of normal construction and raising its “Q” by artificial means. The successive stages in the development of the circuit are set out in Fig. I, and a short mathematical analysis of the design will be found in the Appendix.

The simplest practical arrangement consists of a negative resistance device of the voltage-controlled type connected directly across a parallel-tuned circuit, Fig. I (b). The relation between the effective “Q” of the combination, which is higher than that of the tuned circuit alone, and the value of the applied negative resistance is derived in Appendix 2, and shown graphically in Fig. 2. As the negative resistance is decreased, the effective “Q” increases; slowly at first, and then more rapidly, until...
High Selectivity—
when the value of the negative resistance equals the natural dynamic resistance of the tuned circuit the "Q" is infinite. If the negative resistance is decreased still further, the circuit becomes unstable and will tend to go into oscillation.

Before any use can be made of this selective element, some means must be provided for coupling it in a circuit. For this purpose it is convenient to convert the tuned coil into a transformer by adding a coupling winding. The tuned winding then becomes the secondary and the coupling winding the primary.

The usefulness of this system depends entirely on the characteristics of the negative resistance unit. Unless the value of negative resistance applied to the tuned circuit can be varied easily and yet remain constant over a fairly wide range of applied voltage, then the method will have only a very limited field of application. Most of the simple negative resistance devices, such as the dynatron, are unsuitable because they are not very stable or flexible, and usually suffer from non-linearity. Fortunately, a negative resistance circuit that has been developed fairly recently satisfies these requirements. It is based on the fact that if the output of an amplifier is coupled regeneratively to its input, then the system may behave as a negative resistance to any circuit connected across its input terminals (Appendix 1 and Fig. 3). The value of negative resistance developed is determined by the gain of the amplifier and the amount of feedback. If the gain is stabilised by the application of negative feedback, the negative resistance may be made almost independent of valve and supply voltage variations.

Since a two-stage resistance-capacitance coupled unit of this type is only linear for inputs up to a few volts, it is unsuitable for direct connection when the voltage across the tuned winding may exceed this value. However, the difficulty may be overcome by adopting transformer coupling if a third winding, of comparatively few turns tightly coupled to the secondary, is added to the transformer and the negative resistance unit connected across this coil. The optimum number of turns for this tertiary is closely linked with the design of the negative resistance unit, and should be determined experimentally to give the best results (Appendix 3).

The final arrangement, Fig. 1(c), will function satisfactorily at any frequency at which a suitable amplifier, free from appreciable phase shift, can be constructed for the negative resistance unit. With a little care it should be possible to cover the range from 50 c/s. to at least 500 kc/s.

The circuit diagram of a practical circuit is shown in Fig. 4, the component values given being suitable for the frequency range 5—50 kc/s. It will be seen that three valves are used; two of them in the negative resistance unit.

Component Values (Fig. 4)

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1 megohm</td>
</tr>
<tr>
<td>C1</td>
<td>5,000 µµF</td>
</tr>
<tr>
<td>R2</td>
<td>1,200 ohms</td>
</tr>
<tr>
<td>C2</td>
<td>8 µµF</td>
</tr>
<tr>
<td>R3</td>
<td>4,700</td>
</tr>
<tr>
<td>C3</td>
<td>8</td>
</tr>
<tr>
<td>R4</td>
<td>390,000</td>
</tr>
<tr>
<td>C4</td>
<td>8</td>
</tr>
<tr>
<td>R5</td>
<td>100,000</td>
</tr>
<tr>
<td>C5</td>
<td>0.1</td>
</tr>
<tr>
<td>R6</td>
<td>25,000</td>
</tr>
<tr>
<td>C6</td>
<td>0.1</td>
</tr>
<tr>
<td>R7</td>
<td>2,700</td>
</tr>
<tr>
<td>C7</td>
<td>10—100 µµF</td>
</tr>
<tr>
<td>R8</td>
<td>470,000</td>
</tr>
<tr>
<td>C8</td>
<td>40 µµF</td>
</tr>
<tr>
<td>R9</td>
<td>2,200</td>
</tr>
<tr>
<td>C9</td>
<td>0.5</td>
</tr>
<tr>
<td>R10</td>
<td>100,000 (max.)</td>
</tr>
<tr>
<td>C10</td>
<td>0.5</td>
</tr>
<tr>
<td>R11</td>
<td>270</td>
</tr>
<tr>
<td>C11</td>
<td>8</td>
</tr>
<tr>
<td>R12</td>
<td>1,000</td>
</tr>
<tr>
<td>V1</td>
<td>6J7 or SP. 41</td>
</tr>
<tr>
<td>R13</td>
<td>10,000</td>
</tr>
<tr>
<td>C12</td>
<td>6J7 or SP. 41</td>
</tr>
<tr>
<td>V2</td>
<td>6V6 or PEN. 45</td>
</tr>
<tr>
<td>V3</td>
<td>6V6 or PEN. 45</td>
</tr>
</tbody>
</table>

Fig. 3. The basis of the negative resistance unit is an amplifier having its output coupled regeneratively to its input.

Fig. 4. Circuit diagram of a practical filter-amplifier based on the system of Fig. 1(c).
The signal is fed to the circuit via the amplifier valve V1, in whose anode circuit is connected the primary of the transformer, and the output is taken from the tuned secondary. Owing to the high effective “Q” of the secondary the primary impedance may be very high. Consequently a small low-slope pentode, such as the 6J7, is sufficient in this position to develop almost any output that may be required.

The negative resistance unit comprises a two-stage resistance-capacitance coupled amplifier with positive and negative feedback applied according to the principles already discussed. The first valve (V2) is a pentode of the same type as V1, connected as a voltage amplifier. The second valve (V3) supplies most of the power dissipated in the tuned circuit, and must be chosen according to the output voltage required. For outputs up to about 100 volts peak across the tuned circuit a pentode or tetrode of the medium-power output type is satisfactory. The anode of V3 is coupled back to both the grid and cathode of V2 each feedback path consisting of a resistance in series with a blocking capacitor of negligible reactance.

It is convenient to control the selectivity of the stage by choosing a suitable fixed value for the positive feedback resistance (R0) and making the negative feedback resistance (R10) variable. The latter is in effect a selectivity control, a decrease in resistance reducing the gain of the negative resistance unit and therefore the selectivity. The purpose of the small capacitor (C7) connected in parallel with R10 is to suppress parasitic oscillation by causing heavy degeneration at high frequencies.

It is advisable to use separate anode supplies for the amplifier and negative resistance valves in order to reduce the possibility of instability when working with very high selectivity.

The exact mechanical form adopted for the circuit will be determined by individual requirements. It will be sufficient here to indicate some of the more important factors governing this aspect of the design.

Owing to the high selectivity small mechanical and electrical changes are liable to have a considerable effect on the performance of the stage and every precaution should be taken to make the structure rigid and stable.

It should be noted that the negative resistance of the tuned circuit is accompanied by a corresponding rise in sensitivity. With a “Q” of 800, for example, a voltage amplification factor of 1,000 can be achieved quite easily. This is illustrated by the curves of Fig. 6.

Since the amplification of the stage depends on the dynamic resistance of the tuned circuit, which is in turn proportional to the “Q,” the enhanced selectivity due to the application of negative resistance is accompanied by a corresponding rise in sensitivity.

Experiments carried out with this circuit at a frequency of 10 kc/s showed that, with a transformer secondary having a natural “Q” of only 50, an effective “Q” of 1,500 could be realised before the system became unstable. Owing to the small frequency differences involved, the selectivity of the stage was estimated by feeding a steady signal to it, and then measuring the change in capacitance required to detune the output circuit by a given amount. It may be shown (Appendix 4) that with a “Q” of 1,000 at this frequency the bandwidth for 3 db. loss is only 10 c/s.

Since the amplification of the stage depends on the dynamic resistance of the tuned circuit, which is in turn proportional to the “Q,” the enhanced selectivity due to the application of negative resistance is accompanied by a corresponding rise in sensitivity. With a “Q” of 800, for example, a voltage amplification factor of 1,000 can be achieved quite easily. This is illustrated by the curves of Fig. 6.

It should be noted that the
Wireless World

The output resistance of the amplifier and the reactance of C impose a lower limit on the value of input resistance that can be obtained.

The natural "Q" of the tuned circuit of Fig. 1 (b) is

$$Q_0 = \frac{\omega L}{R_0}$$

where $$\omega = 2\pi \times \text{frequency}$$.

The natural dynamic resistance of the circuit is

$$R_D = \omega L \cdot Q_0 = \frac{\omega^2 L^2}{R_0}$$

and the effective dynamic resistance when a resistance $$-R_N$$ is connected in parallel with the circuit is

$$R_D' = \frac{R_N R_D}{(R_N - R_D)} = \frac{\omega^2 L^2}{(R_0 - \frac{\omega^2 L^2}{R_N})} = \omega L \cdot Q_E$$

The effective "Q" of the combination is therefore

$$Q_E = \frac{\omega L}{R_D'} = \frac{\omega L}{\left(\frac{\omega^2 L^2}{R_N} - \frac{\omega^2 L^2}{R_N} \right)}$$

which is infinite when $$R_N = R_D$$.

The complete solution of the three-winding transformer circuit (Fig. 1 (c)) is somewhat involved and unnecessary when, as is usually the case, all that is needed is a rough idea of the value of negative resistance required to realise a given "Q". However, an approximate solution can be obtained if the system is reduced to a two-winding transformer, either by neglecting the primary (only possible if the anode resistance of the amplifier valve is very high compared with the primary impedance) or by modifying the resistance of the secondary to allow for the damping effect of the amplifier valve.

If $$R_N$$ is the magnitude of the negative resistance connected across the tertiary, and $$M$$ is the mutual inductance between the secondary and tertiary, it may be shown that the effective series resistance of the secondary is approximately

$$R_E = \left(\frac{R_N}{R_N} - \frac{\omega^2 M^2}{R_N}\right)$$

The effective "Q" of the tuned winding is therefore

$$Q_E = \frac{\omega L}{R_E} = \frac{\omega L}{\left(\frac{R_0}{R_N} - \frac{\omega^2 M^2}{R_N}\right)}$$

(Compare this with the expression obtained for the direct-coupled system.)

If the difference in capacitance between the two settings of the tuning capacitor for which the voltage across the tuned winding is

$$f_0 = \frac{\delta C}{\delta C}$$

and the total tuning capacitance is $$C$$, then it may be shown that

$$Q_E \approx \frac{2C}{\delta C}$$

where $$f_0$$ is the resonant frequency.

APPENDIX

1. The Negative Resistance Unit.

If the amplifier in Fig. 3 has an infinite input impedance, a voltage amplification factor $$N$$ and negligible phase shift, then the current that will flow if a voltage $$v = V \sin \omega t$$ is impressed on the terminals AB is

$$i = \frac{V \sin \omega t}{Z} = \frac{V \sin \omega t}{(I - N) \cdot Z}$$

where $$Z$$ is the impedance of R and C in series. The input impedance of the device is therefore

$$Z_i = \frac{v}{i} = \frac{Z}{(I - N)}$$

which is negative if $$N > 1$$. If the reactance of the blocking capacitor is negligible compared with R (which includes the output resistance of the amplifier) then $$Z_i$$ is a pure negative resistance of magnitude

$$R = \frac{\text{magnitude}}{N - 1}$$
RADIO HEATING EQUIPMENT

III. High-powered Valves:
Automatic Control Devices

By L. L. LANGTON, A.M.I.E.E.

It has been indicated that it is advisable that the power capabilities of a radio heater should be sufficient to compensate for losses, which will be unavoidably large in some applications. In general use the equipment may rarely be operated at maximum efficiency, for, in seeking always to satisfy the factors governing efficiency, the industrial application will be somewhat restricted.

Valves employed for generating radio power in larger equipments are designed to facilitate dissipation of heat generated at the anode. When power of the order of kilowatts is to be dissipated the temperature rise of the anode would be very great were no measures adopted to restrict it.

The first group of larger valves is that having glass envelopes and more or less conventional internal construction. The anodes in these valves become very hot, and the envelopes are of considerable size, so that the dissipating area may be large. Their power handling capabilities are limited by the temperature at which glass softens, about 450 deg. C., and valves of this type are obtainable for powers up to about 2.5 kW. Another type of valve has an envelope of silica, which softens at a temperature of about 1,500 deg. C., the power capabilities of such valves being correspondingly greater.

For powers exceeding 2.5 kW, copper anode valves are normally employed. Fins may be fitted to the copper anode to increase the heat-dissipating area when air cooling is employed and, with forced air circulation, valves up to 5 kW are obtainable. Larger valves are normally water-cooled and are manufactured up to powers exceeding 100 kW. Even higher powers are possible with the demountable type of valve, which requires pumping equipment to maintain the vacuum.

The anode of the Osram Type ACT9 is fitted with external cooling fins and is rated for a power dissipation of 800 watts in free air or 1100 watts with forced air cooling. It is suitable for use up to at least 15 Mc/s.

(Right) Water cooling in the Osram Type CAT9 enables the valve to dissipate 18kW at the anode. The maximum operating frequency is 20 Mc/s. In this photograph the water jacket has been removed to show the cylindrical anode.

Two precautions should be particularly observed when operating large valves. It is often necessary to arrange a circulating system of soft water for cooling valves, as ordinary mains water in many districts is unsuitable. The LT voltage must be applied gradually, as the cold resistance of a tungsten filament is only about one-tenth of the resistance when up to full emission temperature. If full LT voltage is applied when starting, the reaction between the magnetic fields due to the current in each tungsten wire of the filament may bow the wires out on to the grid.

There are many factors governing the upper frequency at which a valve may be operated successfully. The electron transit time and inter-electrode capacitance are controlled by the physical dimensions and disposition of the electrodes, the position in which connections are brought out and the potentials applied to the electrodes. The leads from the electrodes have to be brought out through pinches made of glass or similar material and, in the case of copper anode valves, such material forms the seal of the anode. The loss factor of the pinch or seal material imposes a further limitation on the frequency at which power may be generated. Manufacturers usually indicate the maximum anode voltage which may be safely applied when working at given frequencies.

The normal run of transmitting valve is not designed to operate efficiently above 30 Mc/s, and at this frequency the power capability is reduced according to the type of valve to about 50 to 70 per cent. of that at 10 Mc/s. The highest frequencies commercially used in dielectric heating are around 100 Mc/s and special valves are required for their generation. High frequencies of this order must be employed when the voltage gradient through the dielectric heated is required to be low, and also when an attempt is being made to heat materials having very low loss factors. The valves needed for UHF generation are much more expensive than normal valves of equivalent power, and comprehensive precautions against loss must be taken in the whole equipment.
Radio Heating Equipment—
The capital cost of such a generator would, of course, greatly exceed that of one which operates below 30 Mc/s. The satisfactory heating of most thermosetting plastics does not, however, require frequencies in excess of 30 Mc/s.

For HT supply, the hot cathode mercury vapour valve is usually employed, and rectifies AC transformed up to the required voltage. It should be noted that it is essential, particularly in large generators, to isolate the HT transformer from RF currents. These will heat and may sometimes even burn the insulation at the ends of the transformer winding. Efficient RF chokes and by-pass condensers should be included in the HT circuit to shunt RF current from the transformer.

Apart from safeguarding the transformer against breakdown, this precaution is vital to reduce interference injected into the mains. Even with efficient RF filters preceding the transformer primary, it is better to minimise

Wireless World

RF in the HT circuit. In larger equipments, the transformer and rectifier are usually housed separately. The mercury vapour valve is a very satisfactory rectifier, provided that certain precautions are observed. In operation its resistance is very small and the voltage drop across it correspondingly low. The electron emission from the cathode will, if the anode voltage exceeds about 15, ionise the mercury vapour molecules and a blue glow permeates the tube when this occurs. The heavy ions will, if they impinge upon the cathode across a drop exceeding 20 volts, destroy the emitting surface.

If a very heavy load were imposed, the voltage drop across the rectifier would increase, and it is essential to include a choke in the output to limit the instantaneous current that may flow. With a condenser across the output and no limiting choke the instantaneous charging current of the condenser may impose a load large enough to result in the destruction of the cathode.

The first precaution is that the cathode must be given sufficient time to reach full emission tem-
perature before volts are applied to the anode. If this is not done some mercury molecules will be ionised before full emission is achieved and the voltage drop across the valve will, under these conditions, exceed 20, with the consequent destruction of the cathode. Manufacturers prescribe the peak reverse voltage at which the valve may be operated, and if this voltage is exceeded the valve will arc over. The arcing point is controlled in a given valve by the mercury vapour pressure, which is in turn dependent upon the temperature of the atmosphere surrounding the valve.

The second precaution is that there must be no large change in ambient temperature, particularly if the valve is operated nearly up to its peak reverse voltage (which it usually is).

The type of rectifier circuit used will depend to some extent upon the power of the generator. For 2 kW and below single-phase mains supply is usual, while 3-phase mains supply is customary for larger equipments. The supply to most industrial undertakings, excepting the very smallest, is 3-phase, and if a heavy load were imposed on one phase serious unbalancing would result.

An advantage obtained by the use of 3-phase rectification is a large reduction in the AC ripple imposed on the rectified DC. With single-phase full-wave rectification the RMS ripple voltage will be of twice supply frequency and will be equal to 48.3 per cent, of the DC voltage. With 3-phase full-wave rectification, the RMS ripple voltage will be of six times supply frequency and will be equal to 4.2 per cent, of the DC voltage.

The output from a single-phase rectifier must be smoothed before being applied to the generator, but in the case of 3-phase full-wave rectification this is not vital. However, if smoothing is employed the choke required will be of comparatively small inductance, as the frequency of the ripple voltage is six times that of the mains supply.

A circuit diagram of a three-phase full-wave rectifier is given in Fig. 1. The transformer has delta primary and star secondary connections, the secondary RMS voltage per leg being 0.428 of the rectified DC voltage, the secondary RMS current being 0.816 of the DC current and the average phase current 0.577 of the DC current. The peak reverse voltage will be 1.05 times the DC rectified output.

With all equipments having a high-tension supply voltage which would be dangerous to the user, safety devices must be incorporated. No portion of the equipment must be accessible when in operation, and on any door or sliding panel switches must be

Fig. 2. System of control and safety switches in a high-powered RF generator.

Wireless World
Silver Jubilee

THE Silver Jubilee celebrations of the Wireless Section of the Institution of Electrical Engineers was a great show. I don’t suppose there has ever been such a gathering of the eminent figures of the world of technical radio. Almost every well-known man of the present day seemed to be there, and the survivors of pioneer days were to be seen in strength. In fact, whilst chatting at the preliminary tea with the Editor of Wireless World and Capt. S. R. Mullard and “Cathode Ray,” I said that almost the only link with the old days that I hadn’t seen was Mrs. Raymond, of Lisle Street, who used to supply whilst chatting at the preliminary to be seen in strength. In fact, the survivors of pioneer days were ing of the eminent figures of the institution of Electrical Engineers was assigned to former Chairmen of the At the meeting itself the task of so many of us with components! I hadn’t seen was Mrs. Raymond, and did these things; then the ex- perts revised their figures.”

Theory and Practice

The trouble is, I believe that physicists and mathematicians do not always see the full implications of their calculations. Hertz wrote to an inquirer that there was no possibility of ever using electromagnetic waves for the transmission of telephony. The short waves were handed over to radio amateurs because (a) the cause was lost, then re- garded the amateurs as a nuisance, and (b) it had been proved (1) that these waves were useless for long-distance communication. The E, or Heaviside, layer had a long struggle for recognition, and only 17 years ago there were front-rank men of science who laughed out of court the suggestion that there was such a thing as an F layer—let alone two of them. The whole business reminds me of the story of a professor of mathematics who published calculations showing the impossibility of hitting a golf ball more than so many yards. His son read the paper, took driver and ball—and performed the impossible. So often there is a factor which is either overlooked or regarded as of negligible importance in the calculations; then, when what they appeared to show couldn’t be done is done, revision brings out the importance of that factor after all. Theory and practice must always go hand in hand: theories, when all is said and done, are tentative until practice has confirmed them or otherwise; practice without theory seldom leads to the best possible results.

Who Invented Radar?

A n awful lot of nonsense has been written, mainly in the lay papers, in endeavours to prove that this man or that was the inventor of what used to be known as Radio-location and is now termed Radar. Again, there have been attempts to demonstrate that if an individual cannot be given the credit, it can at all events be assigned to one country. The truth is that the basic principle on which radar is founded —the reflection of VHF radiation— was world-wide knowledge years ago. Those who visited the National Physical Laboratory’s “sideshow” at the Radio Exhibition at Olympia in 1936 or 1937 (or was it even earlier?) may re- member the film which showed how this principle was used to measure the height of the E and F layers by transmitting impulses vertically upwards and measuring the time taken for the reflections to return to earth. It was not for some time that any attempt was made to extend the idea to the pin-pointing of aircraft in flight, though the possibility of doing so was no doubt recognised in many countries by scientists working on independent lines. It is one thing to realise possibilities and quite another to produce a practical working system which gives the answers under the exacting conditions of modern warfare. I doubt whether any person can justly claim to have invented radar or whether any country can claim the honour of having been its birthplace. But, to come down to the brassiest of brass tacks, this country of ours had in operation when the war broke out real honest-to-goodness working systems which
did all that was asked of them—and I very much doubt whether radar had reached a similar state of development in any other country at that time.

Receiver Prices

The prices of both new and second-hand wireless receiving sets are fixed by regulations if they are sold by dealers in the ordinary course of business. But, as 'Free Grid' has for some time pointed out, the rules do not apply to private transactions. Nor do they to auction sales. The other day one of these was taking place at a house not far from mine, and being on leave at the time, I looked in to see whether there was anything tempting on offer. One thing I did notice was a table model receiver dating from about 1938, whose original price had been in the neighbourhood of £12. To my knowledge, it had been in regular use for all these years, so that it had certainly had plenty of wear and tear. In pre-war days the value of a six-year-old set—that is, the amount a dealer would allow for it in part exchange—was a matter of shillings. The bidding for this one started at £10 and ran briskly to £15, at which it was knocked down.

War and Progress

It is lamentable but none the less true that many departments of applied science make far greater advances in wartime than in the days of peace. Wireless, for example, was in a comparatively rudimentary state when this war broke out, whereas it is in a highly advanced state when the last war broke out, and it is now in a state of development where the only thing to do is to treat wartime development as the basis for normal development after the war. I suppose you realise, said they, that you are asking us to instal machinery and equipment for which there can be no possible use after the war! And so in wartime research and development go forward at a pace uncommonly fast, and the spectacles of the past may be repeated in the future.

Wireless World

The Ways of Neons

It hasn't come my way to make much use of neons except in HF fields. Hence I was puzzled at first over something that occurred a few days before writing this. In my home there is an upstairs corridor leading to a couple of bedrooms which had always seemed to me to need a small light of its own that could be switched on or off at either end. Being on leave and thinking of jobs to do, the one of putting in this light seemed just what I wanted to fill in a wet afternoon. I fixed it up in the normal way, with a couple of two-way switches with three wires between them. As time was short and I had some good-quality three-core flex, I used that for the job. A 15-watt lamp gave ample light, and I wondered whether as it might not possibly fill the bill. It didn't, so, preparing to replace the 15-watt, I switched off. Or, rather, I turned over first one of the switches and then the other, but the neon continued to glow—not, of course, at full brilliance, but there was a distinctly visible luminescence at the end of one of the supports. Reversing the mains leads had no effect. Disconnecting at the junction with the mains, I tested the circuit with a 500-volt megger and obtained an "infinity" reading. A capacity effect, I suppose.

Pedantic?

The other day when looking through a little book that had just come into my hands I was interested to see that the author insisted that the correct plural of radius vector was radii vectors. I wonder what readers (and particularly my old Vine Street dock-mate 'Free Grid,' who, like myself, had something of a classical upbringing) think of that. If the expression were good Latin, I'd plump for radii vectores, even though it be rather a mouthful. But it isn't good Latin. "Vector" to Cesar or Cicero would have meant a carrier and radius a rod or a spoke; neither would be able to make anything of "radius vector." As, then, it's simply a convenient expression that we have made up out of two Latin words, to which we've given specialised meanings entirely different from any that they had when Latin, I contend that the only thing to do is to treat it as English and make the plural "radius vectors." And, by the way, do let us be consistent; I don't think I have come across "vectors" as the plural of "vector in normal mathematical works. Have you?
PRESS AND RADIO
THE long-standing controversy in the United States regarding the common ownership of newspapers and broadcasting stations has been ended by the F.C.C. announcement that it will not "adopt any general rule with respect to newspaper ownership of radio stations," application for licences being considered on their individual merits.

The statement continues: 'Aside from the specific question of common ownership of newspapers and radio stations, the Commission recognises the serious problem involved in the broader field of the control of the media of mass communications and the importance of avoiding monopoly of the avenues of communicating fact and opinion to the public.'

TELEVISION IN THE STATES

The National Broadcasting Company of America has outlined its post-war television policy. In a statement to the network's affiliated stations it is predicted that an eastern network of television stations extending from Washington to Boston will be the first link in a nation-wide chain of stations.

Despite the fact that the N.B.C.'s parent company R.C.A. has carried out extensive research and development work on radio relay systems, no definite statement has been made on the means likely to be employed for linking the stations. It is, however, disclosed that plans are made for the installation of between 6,000 and 7,000 miles of coaxial cable in the next five or six years. The statement adds "the ultimate determination of which is to be used at will be governed by the relative efficiency of service they render and their comparative costs."

With regard to the present allocation of 18 channels for the use of television stations, which, it is considered, is sufficient for its present needs but may prove inadequate for future requirements, the statement concludes, "If the television [frequency] allocation now in existence were to be changed substantially and a new start in the higher frequencies were required, it would retard the establishment of television as a practical service for a period of years that cannot now be definitely forecast. It is to be hoped, therefore, that post-war television will be permitted to continue on the present frequency allocations."

The Vice-Chairman of the U.S. Radio Technical Planning Board suggests that the Federal Communications Commission should grant post-war licences to commercial television stations on pre-war standards, or with such modifications as can readily be introduced, for a period of at least six years. His point was that receiving sets at present in use would not be rendered obsolete. At the end of this period, during which experiments could continue on frequencies not at present utilised for television, transmitters would be permitted to change to a different standard if they wished to.

Our U.S. contemporary Broadcasting, referring to the post-war cost of television receivers, states that there has been a reduction of 60 per cent. to 80 per cent. in the cost of manufacturing CR tubes.

ABSIE
IT was recently announced that the B.B.C. had placed a medium-wave transmitter at the disposal of the American Office of War Information for "political warfare" purposes. The two wavelengths to be employed, 307.1 and 267.4 metres, are both allocated to the B.B.C. under the Lucerne wavelength allocation plan and up to the outbreak of war were employed, respectively, by the Lisnagarvey (N. Ireland Regional) and Stagshaw (N.E. Regional) stations.

A special studio has been equipped in London for the exclusive use of the station, which is known as A.B.S.I.E.—American Broadcasting Station in Europe. It is understood programmes from the studio will also be transmitted on short waves.

NEW U.S. STATIONS

Pursuance of the plan of the U.S. Office of War Information to increase the number of international short-wave stations in the States to 36, four 50-kW transmitters are being erected on the Pacific Coast. These transmitters, which it is hoped to have in use in October, will be operated by the N.B.C. for the Government. The call letters KNKB and KNBC have been allocated to two of the transmitters. The C.B.S. will operate a similar station to be erected at another point on the Pacific Coast in the near future.

According to Broadcasting, 21 transmitters, at present being used by the O.W.I., will be another of them having a power of 100 kW. Ten of these stations being on the West Coast, with their transmissions beamed to the Far East, their call letters, including KGWI, KWD, KWIX, KWJ, KRY, KRC and KROJ, are not well known in this country.

HEROIC RADIO OFFICERS

THE Lloyd's War Medal for bravery at sea has been awarded to three radio officers.

Senior Radio Officer C. S. Marshall received his medal for outstanding courage and devotion to duty. By employing every means and improvisation available he did all that was possible to send out a distress message when the ship in which he was sailing was torpedoed and severely damaged.

Chief Radio Officer J. F. Wilson sacrificed his life by remaining at his post after the crew were ordered to abandon the sinking ship. He managed to repair the transmitter and get a message through to one of H.M. destroyers and was not seen again.

Chief Radio Officer S. D. Haines also stayed behind after the crew had been ordered to leave in an effort to repair the wireless gear and to send out a distress message.

Chief Radio Officer R. F. Cole receives the M.B.E. Although injured and dazed by the explosion which wrecked his ship, he struggled amongst the debris in the wireless room to get away a distress message on an emergency set, and left only when ordered to his boat by the Master.

WHAT THEY SAY

RADIO is part of the heritage of the modern child, and the teacher owes a duty to his pupils to seek to train their taste in using it.

—H. C. Cameron, secretary, Central Council for School Broadcasting, in an address to the Royal Society of Arts.

I was, for a time, one of the die-hards who opposed the revolutionary introduction of short waves [into Naval communications] in about 1923.—Admiral Sir Charles Kennedy-Purvis, at I.E.F. Wireless Section Commemoration Meeting.

As to the future, Birmingham will be the first city outside London to have television, but more than that cannot at present be stated.—Percy Edgar, Midland Regional Director, B.B.C.

Television, under present standards, is not good enough. It can be good enough (and very quickly) if we do not wantonly dissipate, but use intelligently, the advantage the present hiatus affords us...—W. Miner, in "Electronics."

. We must, however, take exception to one minor point: On page 54, it is stated that the leakage resistance of an 0.14F wax-impregnated capacitor is between 5 and 50 megohms. If capacitors of
European manufacture are that bad. American manufacturers of such items need have no fear of European competition in post-war markets.—J. H. P., reviewing E. E. Zepler’s book, "The Technique of Radio * Design," in "Radio" (U.S.A.).

Has the advice of the B.B.C. technicians been sought in the matter of radio reception in the steel houses the Government propose to erect?—R. Moscrop, in a letter to "News Chronicle."

IN BRIEF

Canadian S-W Station. Priorities have now been granted American manufacturers for the provision of the equipment for the 50-kW short-wave station to be erected at Sackville, New Brunswick, by the C.B.C. It was originally expected to cost $800,000, but will now cost around $1,100,000. The station, which will be equipped with two 50-kW transmitters, is expected to be testing in October and ready for service by January 1st, 1945.

American Sets. The Board of Trade states that 36,000 American broadcast receivers have already arrived and a further 7,000 are expected shortly. 12,000 sets have already been distributed and a further 12,000 will be available soon.

Long-distance FM. A C.B.C. station on Mount Royal, Montreal, is receiving FM transmissions from a station at Mount Washington, New Hampshire, U.S.A., 170 miles away!

Sir Ernest Fisk. The recent thirty-fifth Kelvin Lecture at the Institution of Electrical Engineers was preceded by the presentation to Sir Ernest Fisk of the Certificate of Honorary Membership. He was elected an Honorary Member by the Council of the I.E.E. earlier this year.

B.B.C. Reappointment. Sir Allan Powell has been reappointed Chairman and Governor of the B.B.C. He has consented to serve in order to ensure continuity of policy for such further period as might be decided.

Radio World

Radiolocation Award. The Thomas Gray Memorial Trust Prize of £50, offered by the Royal Society of Arts for inventions connected with the improvement and encouragement of Navigation," has been awarded for 1943 to Drs. J. T. Randall and H. A. H. Boot for their valuable invention in connection with radiolocation. The citation states, "Eminent service has been rendered to the Merchant Navy by their invention for the greater safety of life at sea."

C.B.C. Expenditure. Announcing the gross annual revenue of the Canadian Broadcasting Corporation for the past year at $2,489,224, Dr. Augustus Frigon, acting general manager of C.B.C., said that expenses amounted to $1,245,879. It is noteworthy that $457,000 of this sum went to pay line rentals.

Sharing Wavelengths. The Irish invasion radio.- 800 wireless sets to be distributed and a further 12,000 will be available shortly, price 6s.

Invasion Radio. 800 wireless sets to equip a division was the recent estimate given by Lt. Gen. Sir Colville Wemyss, Colonel-Commandant of Royal Signals. "Good communications," he said, "are vital to any operations, especially those involving all the complications of an invasion."

Radio Pictures. A commercial photo-telegam service between Naples and London has been opened by Cable and Wireless, and sets will now be accepted at the rate of £1 15s. gd. up to 120 sq. cms. and £2 8s. 6d. for those over 120 sq. cms. up to 234 sq. cms. The service is at present one way only.

Photo: Odoms Press

Col. David Sarnoff, President of the Radio Corporation of America, now a member of General Eisenhower's headquarters staff, was recently a guest of the Radio Industries Club in London. With him are Sir Noel Ashbridge, Deputy Director-General of the B.B.C., who was re-elected as President of the Club for a second year, and (right) the Chairman of the Club, H. de A. Donisthorpe, whose seventh year of office was celebrated at the meeting by a presentation from the members.
Wireless World

Institute of Physics.—At a meeting of the Electronics Group of the Institute on June 10th, at 2.30, in the rooms of the Royal Society, Burlington House, London, W.1, Drs. M. Pirani and B. P. Dudding will open a discussion on "Some Aspects of High Vacuum Technique, viz.: High Vacuum Gauges and Glass Manipulation."

Scottish Branch.—At the request of physicists employed in industry in Scotland the Board of the Institute of Physics has authorised the formation of a Scottish Branch to give local opportunities for the interchange of knowledge and experience of applied physics. The inaugural meeting took place in Glasgow on April 22nd.

NEWS IN ENGLISH FROM ABROAD

<table>
<thead>
<tr>
<th>Country : Station</th>
<th>Mc/s</th>
<th>Metres</th>
<th>Daily Bulletins (BDST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>Algiers...</td>
<td>8.965</td>
<td>32.46</td>
</tr>
<tr>
<td></td>
<td>Algiers...</td>
<td>12.110</td>
<td>24.77</td>
</tr>
<tr>
<td>America</td>
<td>WBUW (Boston)</td>
<td>6.040</td>
<td>49.67</td>
</tr>
<tr>
<td></td>
<td>WCN (New York)</td>
<td>6.060</td>
<td>49.60</td>
</tr>
<tr>
<td></td>
<td>WLW (Cincinnati)</td>
<td>6.080</td>
<td>49.34</td>
</tr>
<tr>
<td></td>
<td>WSKR (New York)</td>
<td>6.100</td>
<td>49.18</td>
</tr>
<tr>
<td></td>
<td>WOOC (Wayne)</td>
<td>6.120</td>
<td>49.03</td>
</tr>
<tr>
<td></td>
<td>WBS (Boston)</td>
<td>6.140</td>
<td>48.86</td>
</tr>
<tr>
<td></td>
<td>WCBX (Brentwood)</td>
<td>6.170</td>
<td>48.62</td>
</tr>
<tr>
<td></td>
<td>WGE (Schenectady)</td>
<td>6.190</td>
<td>48.47</td>
</tr>
<tr>
<td></td>
<td>WKT (New York)</td>
<td>6.370</td>
<td>47.10</td>
</tr>
<tr>
<td></td>
<td>WGEA (Schenectady)</td>
<td>7.000</td>
<td>42.86</td>
</tr>
<tr>
<td></td>
<td>WKLJ (New York)</td>
<td>7.565</td>
<td>39.86</td>
</tr>
<tr>
<td></td>
<td>WLO (Cincinnati)</td>
<td>7.575</td>
<td>39.61</td>
</tr>
<tr>
<td></td>
<td>WOO (New York)</td>
<td>7.820</td>
<td>38.36</td>
</tr>
<tr>
<td></td>
<td>WGEA (Schenectady)</td>
<td>9.530</td>
<td>31.48</td>
</tr>
<tr>
<td></td>
<td>WRCS (New York)</td>
<td>9.550</td>
<td>31.28</td>
</tr>
<tr>
<td></td>
<td>WNB (New York)</td>
<td>9.670</td>
<td>31.02</td>
</tr>
<tr>
<td></td>
<td>WKR (New York)</td>
<td>9.870</td>
<td>30.31</td>
</tr>
<tr>
<td></td>
<td>WLO (Cincinnati)</td>
<td>11.710</td>
<td>25.52</td>
</tr>
<tr>
<td></td>
<td>WBUW (Boston)</td>
<td>11.730</td>
<td>25.57</td>
</tr>
<tr>
<td></td>
<td>WGE (Schenectady)</td>
<td>11.790</td>
<td>25.44</td>
</tr>
<tr>
<td></td>
<td>WRS (Brentwood)</td>
<td>11.830</td>
<td>25.36</td>
</tr>
<tr>
<td></td>
<td>WGE (Schenectady)</td>
<td>11.847</td>
<td>25.32</td>
</tr>
<tr>
<td></td>
<td>WGE (Waynes)</td>
<td>11.847</td>
<td>25.32</td>
</tr>
<tr>
<td></td>
<td>WOO (Waynes)</td>
<td>11.870</td>
<td>25.27</td>
</tr>
<tr>
<td></td>
<td>WBO (Boston)</td>
<td>11.970</td>
<td>25.27</td>
</tr>
<tr>
<td></td>
<td>WBC (New York)</td>
<td>11.980</td>
<td>25.22</td>
</tr>
<tr>
<td></td>
<td>WRL (Boston)</td>
<td>15.150</td>
<td>19.83</td>
</tr>
<tr>
<td></td>
<td>WOO (Waynes)</td>
<td>15.180</td>
<td>19.75</td>
</tr>
<tr>
<td></td>
<td>WBO (Boston)</td>
<td>15.210</td>
<td>19.72</td>
</tr>
<tr>
<td></td>
<td>WLB (Cincinnati)</td>
<td>15.250</td>
<td>19.67</td>
</tr>
<tr>
<td></td>
<td>WGE (Schenectady)</td>
<td>15.330</td>
<td>19.57</td>
</tr>
<tr>
<td></td>
<td>WBUW (Boston)</td>
<td>17.750</td>
<td>16.90</td>
</tr>
<tr>
<td></td>
<td>WLO (Cincinnati)</td>
<td>17.800</td>
<td>16.85</td>
</tr>
<tr>
<td></td>
<td>WCBX (New York)</td>
<td>17.830</td>
<td>16.83</td>
</tr>
<tr>
<td>Australia</td>
<td>VLI4 (Sydney)</td>
<td>7.240</td>
<td>41.45</td>
</tr>
<tr>
<td></td>
<td>VLI5 (Melbourne)</td>
<td>9.580</td>
<td>31.32</td>
</tr>
<tr>
<td>Belgian Congo</td>
<td>Leopoldville</td>
<td>15.167</td>
<td>19.78</td>
</tr>
<tr>
<td>Brazil</td>
<td>PRL8 (Rio de Janeiro)</td>
<td>11.715</td>
<td>25.61</td>
</tr>
<tr>
<td>China</td>
<td>XGOY (Chungking)</td>
<td>9.635</td>
<td>31.14</td>
</tr>
<tr>
<td>Ecuador</td>
<td>HCOJ (Quito)</td>
<td>12.455</td>
<td>24.09</td>
</tr>
<tr>
<td>Egypt</td>
<td>Cairo</td>
<td>7.510</td>
<td>39.94</td>
</tr>
</tbody>
</table>

It should be noted that the times are BDST—two hours ahead of GMT. † Sundays excepted.
Letters to the Editor

New Contrast Expansion Circuit • Cathode-Follower Output

Contrast Expansion

The article by Mr. M. O. Felix (March issue) describing a contrast expansion circuit induces me to comment on some aspects of his design.

In deducing the operating condition of the circuit Mr. Felix makes the assumption that the output resistance due to the controlled valve is much less than the resistance of the potential divider formed by R_1 and R_2. Under these conditions, however, the voltage transfer efficiency of the circuit would be very poor, and very high input levels would be necessary. It can be shown that the equation of operation of this circuit is:

$$\frac{Output}{Input} = \frac{R_2}{R_1 + R_2 + R_1 R_2 (1 + \mu)}$$

The circuit by which Mr. Felix obtains the control voltage for the variable-gain valve is open to criticism. When the slider of R_5 in circuit (a) in the accompanying diagram is at its upper end the input to the whole circuit will be shunted by the control rectifier, with consequent severe distortion of the signal.

The author states that, by the use of a diode shunting R_4, asymmetrical time-constants for charge and discharge of 0.02 and 2 seconds can be obtained. The time of charge of C_1, however, will depend on the total series impedance of the charging circuit, which will include C_2, C_3, the part of R_5 above the slider, the diode conduction resistance and the impedance of the circuit feeding the unit. This time is thus greatly dependent upon the setting of R_5 and is unlikely to be as low as 0.02 second. The charges acquired by C_2 and C_3 detract from the available control voltage and may interfere with the operation of the circuit.

To achieve very rapid charging of C_1 considerable power at low impedance is required, and as this is unlikely to be available at the input a separate control amplifier is desirable. This is an added complication, but gives increased available control voltage and freedom from input shunting.

When using asymmetrical delays the rapid rise in gain—in this case rise in output resistance—is accompanied by a correspondingly rapid rise or fall in the anode current of the controlled valve, and this causes a pulse to appear in the output, with unpleasant effects. This fault is inherent in a stage
Letters to the Editor—
whose anode current changes with change of slope, and it can only be obviated by the use of a constant-current amplifier (Wireless Engineer, January, 1944) or a balanced or push-pull system.

The inherently low output resistance of the cathode follower necessitates a potential divider R1, R2 of low value which is a considerable disadvantage, as the preceding stage must be of very low output resistance—preferably not greater than one-tenth of R1. This may be overcome by the use of an impedance-matching transformer of suitable ratio to give a secondary impedance of about 0.1MΩ. The circuit could then be fed from a triode with an AC resistance of about 10,000 ohms.

The use of a valve or valves as a variable impedance would seem to have some advantages over their use as a conventional variable-gain amplifier for the purpose of contrast expansion, in that the impedance can be inserted at a point of higher signal level without distortion and is adapted to “single-ended” connection, avoiding the necessity for phase-splitting devices.

The circuit of my own contrast expansion unit (September and December, 1943, issues) could be simplified somewhat by omitting the phase-splitter V1 and the bias network R17, R18, R19 and C10, and substituting for V2 and V3 a variable-impedance stage of the nature of that shown in diagram (b). The valves might possibly be combined in a double triode or triode-connected pentode. The bias supply is no longer necessary since this type of stage requires a control voltage which increases negatively to give increased “gain”; the control rectifiers would require rearrangement to give a voltage in this sense.

This is the simplest arrangement using asymmetrical delays which is likely to be satisfactory.

D A V I D T. N. W I L L I A M S O N.

Cathode Follower Output Stage

SOME of your readers in this part of the country have read C. J. Mitchell’s article on a “Cathode Follower Output Stage” in your April issue with considerable interest. We are afraid, however, that the author’s analysis is unsound.

After stating that in this circuit the valve is triode-connected, and that as a triode the AC2/Pen has \(R_A = 2,500 \) ohms, he nevertheless continues to talk of output powers of 3 or 3½ watts. Now it can be shown graphically that even if the valve had ideally linear characteristics only 1 watt of output power would be available without going into regions of positive grid volts, and with any real triode-connected valve an even smaller output will be obtained. Not even cathode-follower connection will do much to reduce the distortion if grid current flows. Here are figures for three typical valves:

<table>
<thead>
<tr>
<th>Valve</th>
<th>Output as Pentode</th>
<th>Output as Triode</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF6</td>
<td>3.25 watts.</td>
<td>0.85 watts.</td>
</tr>
<tr>
<td>KT83</td>
<td>3.0 "</td>
<td>2.2 "</td>
</tr>
<tr>
<td>KT106</td>
<td>3.75 "</td>
<td>2.2 "</td>
</tr>
</tbody>
</table>

These show that the output power available with triode connection is only about one-quarter that available with pentode connection.

One must conclude, therefore, that Mr. Mitchell has an efficient loudspeaker for which a maximum undistorted output power of rather less than 1 watt is sufficient. Within this limitation very good quality will, no doubt, be obtained. E. F. GOOD.

Malvern.

In his article in your April issue C. J. Mitchell quotes a result which is obscured by the usual “equivalent circuit” treatment of the cathode follower.

The equivalent circuit indicates that for a given signal input between grid and earth, maximum power output is obtained by matching the load to the output impedance (approx. \(1/\beta \)) as with my other generator. This is the usual “impedance-matching” result. But unlike a normal amplifier, the maximum input (grid-to-earth) which a cathode follower can handle is not independent of the load, so that in order to obtain maximum power output, proper choice of both load and signal input is necessary; this leads to the result obtained by your contributor, i.e., matching to twice the anode slope resistance of the valve. There is no confusion between the two cases, as he seems to imply; the difference lies merely in the operating conditions. In the first the available signal is limited by other considerations; in the second it can be chosen for maximum output.

Richmond. J. W. HUGHES.

Author’s Reply

In reply to your correspondent, E. F. Good, I agree that the claimed output of 3½ watts from a triode-connected AC2/Pen appears rather optimistic, and I must confess that I was surprised at the result myself. When the circuit was tested, the input was increased until most of the persons listening to the test programme noticed distortion; the output was then measured by observing the cathode potential fluctuations on a cathode-ray oscilloscope. The total peak-to-peak swing was found to be 375 volts (approx.), which corresponds to an output of 3½ watts. When the input was increased still more, the total peak-to-peak swing was more than 450 volts, and a considerable difference between positive and negative excursions of the cathode potential was obvious.

Characteristics of AC2/Pen when connected as a triode.

Under these conditions there is no doubt that the distortion introduced within the valve was enormous, but the large negative feed-back reduces this distortion in the same proportion as it reduces the gain of the circuit. Obviously, there are limits to the extent to which feed-back can correct distortion, but with 100 per cent. negative feed-back as much as 50 per cent. distortion can be reduced to negligible proportions. I enclose two diagrams, one showing the characteristics of the AC2/Pen, when triode connected, and the other showing the modified input waveform of a
Anti-interference Motors

Wireless World

The synchronous speed of any induction motor on any frequency is given by the expression "speed equals 60 times f divided by P," where P is the number of pairs of poles. The minimum number of poles is obviously two, which is one pair, therefore, the speed is equal to 60 times 50 divided by one, which is equal to 3,000 r.p.m. Owing to its characteristics the squirrel cage machine always has a slight amount of slip, and the actual speed would therefore be of the order of 2,950 r.p.m. With regard to the starting conditions of the induction motor, when switched on direct it takes from $\frac{4}{5}$ to 6 times full load current, depending on the design of the machine, but in the case of a toy motor, such as used for a vacuum cleaner no disturbance whatever to the domestic mains should be caused.

JOHN H. P. DE VILLIERS.

Bearsden, Dumbartonshire.

"DIALLIST" does not deal with the limitations of this type of motor.

Very large numbers of induction motors are in use where the type is applicable. The reasons that it is not even more extensively used are: (1) Separate machines are needed for AC and DC operation; an important point where the apparatus must be inexpensive or of universal application. (2) Starting torque is poor. (3) Speed is not variable over a wide range. (4) Special starting switches must be used on any but the smallest sizes. (5) Power/weight ratio is not so good as in the universal motor. (6) The ratio of the motor is inappropriate.

To obtain greater speed by means of gears is hardly practical. The gears would need to be of very high quality, pressure lubricated. Maintenance would be prohibitive. Further, as the power output of a motor depends on the speed, a geared drive would impose a very heavy load initially on a motor of poor starting characteristics.

The commutator motor can be made practically non-radiating by wiring it so that the field is electrically on both sides of the armature. The circuit is: one end of each field coil to a brush, other end of each field coil to a mains lead. The coils then act as effective chokes at the armature frequency and that reduces radiation. Condensers can be added if needed. Earth the frame and keep all condenser leads short.

H. H. JONES.

Stourbridge, Worcs.
FM RECEIVERS

Frequency-modulated signals are first passed through the initial stages A of a normal superheterodyne receiver, and are then fed in push-pull to the two inner grids of a pentode valve V, the third grid of which is biased to a slightly higher level than the other two. The result is that current through the valve is cut off, except at those times when the FM wave passes through zero. This occurs momentarily twice in each cycle, the valve V then operating to discharge a shunt condenser C, which is permanently connected to a positive source of voltage through the input transformer T of the loudspeaker.

The rate of condenser discharge thus varies with the original modulation frequency, and the corresponding charging current into the condenser will actuate the loudspeaker. For satisfactory reproduction it is necessary (a) that the valve V should be biased to ensure that its conducting periods are shorter than the time-constant of the condenser C and (b) that the time-constant of the condenser charging circuits is greater than the longest period between consecutive discharges through the valve.

The pentode valve can be replaced either by a multivibrator or by a blocking oscillator, provided the time-constants of these devices are adjusted as described above.

TELEVISION SCANNING

Because of the high self-inductance of the magnetic deflection coils and of the transformer coupling them to the saw-toothed oscillator, resonance conditions are liable to occur particularly during the fly-back period of each scanning cycle, and so give rise to undesirable oscillations.

To remedy this state of affairs a hard valve is connected between the chassis or earth and the scanning coils and transformer, including the casual capacities which tend to resonate. The valve is normally biased beyond "cut-off," so that it cannot distort the scanning stroke, but is automatically unblocked during each fly-back stroke. Any parasitic oscillations produced in this interval are thus absorbed or shunted to ground.

A Selection of the More Interesting Radio Developments

A SHORT-WAVE aerial with a broad band characteristic consists of two bow-shaped radiators which are arranged to form a loop with one end left open, the other end being "closed" through a coupling condenser. The two opposite ends are joined by two lateral wires, forming a transmission line to the centre of which the main feeders are connected.

A certain asymmetry is introduced by the insertion of a loading condenser nearer to the "open" end of each of the bow-shaped radiators. In addition, the transmission line wires are "crossed" between the centre feed-point and the same open end. The aerial impedance is thus made to appear resistive and capacitive when viewed from the main feeder in the direction of the closed end, whilst it is resistive and inductive towards the open end.

As the signal frequencies vary, the reactances alter in opposite directions, thus maintaining the effective impedance resistance over a comparatively wide operating band.

Standard Telephones and Cables, Ltd. (Assignees of A. Alford). Convention date (U.S.A.) April 12th, 1941. No. 557942.

CONTROLLING SIGNAL STRENGTH

A THERMALLY sensitive resistance is connected in series with a receiving aerial to serve as a volume control. The resistance device, known as a "Thermistor," may be designed to have either a positive or negative temperature coefficient. It is conveniently mounted inside a glass tube, with or without a separate heating filament.

In one arrangement, the "Thermistor" is shunted across the primary winding of the aerial coupling transformer and thus damps the signal input to an extent which depends upon its effective resistance, this in turn being controlled by the prevailing temperature of the heating filament. The latter may be connected to the L.T. supply through a variable resistance to give manual control, or it may be coupled to an existing source of A.V.C.

The "Thermistor" also serves to safeguard a highly sensitive set from the effect of too-powerful signals.

AC GENERATORS

Synthetic substances are known which show a marked falling off in resistance as the voltage applied to them is increased. This characteristic is applied to generate an alternating or oscillatory current from a D.C. source, without the use of electron valves or mechanically moving parts.

The principle of the invention is illustrated in diagram (a), which shows a bridge circuit with a "negative resistance" element K, of the kind mentioned, in one of the arms. One diagonal of the bridge is fed from a D.C. source, the adjustment being such that the potential of the point 2 is higher than that of the point 4, so that a current flows through 2, 4. Any increase in the D.C. input voltage will now cause the resistance of K to fall, and so reverse the direction of the current through the line 2, 4.

Diagram (b) shows a circuit arrangement in which the diagonal 2, 4 in-
cludes the primary winding \(P \) of a transformer, the secondary \(S \) being in the DC supply line. When the switch \(B \) is closed, the first surge through \(P \) induces a back EMF across \(S \) which, as it reaches \(K \), causes the primary current through \(P \) to reverse, as explained above. This in turn reduces the voltage across \(K \) and so restores the original current through \(P \). The cycle will be constantly repeated, until the switch \(B \) is opened.

VISUAL TUNING INDICATORS

"Thermistor" is the trade name of a mixture of certain metallic oxides which exhibits a marked change in electric resistance with variation of temperature. The control heat may be due to current passing directly through the mixture, or the latter may be indirectly heated by a separate filament.

According to the invention a "Thermistor" is used to increase the sensitivity of visual tuning-indicators, and, in particular, to allow an ordinary small incandescent lamp to be used.

As shown, the valve \(V \) is the last IF amplifier of the set, and its anode current is passed through the filament of a "Thermistor" tube \(T \), thereby indirectly heating the sensitive resistance \(R \). An incandescent lamp \(L \) is inserted, in parallel with the device \(T \), across the usual LT supply.

When the set is correctly tuned the anode current falls to a minimum, so that the heating effect on the element \(R \) is low and its resistance is high. The lamp \(L \) then takes maximum current and glows brightly. At any "off-tune" setting, the anode current rises, the resistance of \(R \) drops, and the indicator lamp is dimmed. Alternatively, the lamp may be connected in series with the sensitive resistance \(R \), the tuning point then being indicated by minimum instead of maximum brilliance.

The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from specifications obtainable at the Patent Office, 25, Southampton Buildings, London, W.C.2, price 1/- each.

FORWARD in time of war, to a future full of promise. The shape of things to come? Perhaps only dimly seen at present, but great things are in store. And you may be assured that in all phases and in all applications BULGIN RADIO PRODUCTS will make their contribution. Until then, we ask your kind indulgence; orders must quote Contract and Priority Nos.

"The Choice of Critics"

Forest in time of war, to a future full of promise. The shape of things to come? Perhaps only dimly seen at present, but great things are in store. And you may be assured that in all phases and in all applications BULGIN RADIO PRODUCTS will make their contribution. Until then, we ask your kind indulgence; orders must quote Contract and Priority Nos.

"The Choice of Critics"

Registered Trade Mark
A. F. BULGIN & CO. LTD., BYE PASS RD., BARKING, ESSEX
Radio and Electrical Component Manufacturers.
TEL.: RIPPLEWAY 3474 (5 lines).
Radio to the Rescue

The instinct to join a queue immediately we see one has become so strong in us that we are apt to tack ourselves on to one automatically, sometimes with extremely embarrassing results. In my own case I have not infrequently fallen in behind a queue of waiting females and wasted much valuable time before being made aware by the titters of my fellow queuers-up that it was no place for a member of my sex, with the result that I have shamefacedly away without even finding out what the queue was really for.

In pre-war days it was a frequent habit of mine to take my place in a theatre queue, not because I was unable to afford the luxury of booking a more expensive seat, but for the very simple reason that I almost invariably derived far more pleasure and aesthetic satisfaction from the efforts of the queue entertainers than I did from the far less gifted performers inside the theatre. In fact, I made it an invariable rule to leave the queue as soon as it started to enter the theatre, thereby exciting on more than one occasion the suspicions of the police, who made it their business to enquire of the remainder of the queue whether anybody had lost his wallet or other valuables.

Nowadays, owing to the drastic effects of the military and industrial call-up, more than not the queue entertainment is provided by a seedy-looking individual operating a dilapidated gramophone or wireless receiver carried in a still more dilapidated pram, notwithstanding the rights and privileges of the B.B.C. and the Performing Right Society. But the P.M.G. presumably has no objection to the practice, now that the ban on wireless in road vehicles has been lifted. In any case, is not a pram a pavement vehicle?

It was while reflecting on these matters the other evening after a damp and dismal two hours in a queue that the idea came to me of rationalising and centralising the best remaining talent among the queue entertainers and distributing it via the ether. Unfortunately, the B.B.C. refused to be interested in this idea, even when I pointed out that it was a golden opportunity for them to interlard the turns liberally with their own moral uplift stuff, since, of course, the queuers-up would be utterly at their mercy and compelled to listen unless they thought it worth while to sacrifice their places in the queue. That, I was forced to admit, a great many of them might do. My idea, if adopted in the case of all types of wartime queues, would become so popular, more especially if television were added after the armistice, that it could become an entirely new industry. Seats and other amenities would eventually have to be provided, and an entirely new industry would be born, to bring in new grist to the Chancellor of the Exchequer’s mill.
Magnets

He earns no medals; his name will never make headlines; his way of life is modest and his work unexciting.

But to us he is an individual, a personality; not just a number on the time clock. He is a skilled man — and more, because for years his skill has been allied to the Philips tradition of doing things more efficiently; of making things just that much better.

He melts metals — very special metals which are used for making 'Ticonal'* permanent magnets of unusual power and unique properties; an outstanding Philips' invention. He is one of the thousands of Philips workpeople who gave you, before the war, the Philips products you knew and trusted so well. His skill is a vital asset to the nation today.

* Registered Trade Mark.
WHARFEDALE FACTORY SPEAKERS

SIZE: 15½" by 12½" by 6½".
DELIVERY 3 to 4 WEEKS for PRIORITY ORDERS ONLY.
With 10" Bronze Unit 65/- Transformer - 7½ extra
With 10" Golden Unit 95/- Truquel Volume Control 6/6

WHARFEDALE WIRELESS WORKS
SOLE PROPRIETOR : D. E. BRIGGS
HUTCHINSON LANE, BRIGHOUSE, YORKS.
"PHONE : BRIGHOUSE 50. "GRAMS : "WHARFDEL."

FOR THE RADIO SERVICEMAN DEALER AND OWNER
The man who enrolls for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful.

Special terms for members of H.M. Forces.

INTERNATIONAL CORRESPONDENCE SCHOOLS Ltd.
DEPT. 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C.2
Please explain fully about your instruction in the subject marked X
And the following Radio Examinations:—

THE PAST—
In the past, almost a matter of more years than we care to remember, the name "RAYMART" was, to readers of this journal, synonymous with ample supplies of a very wide range of reliable and well designed radio components. Then—WAR.

THE PRESENT—
Our name is as good as ever, but our supplies for the Public are, unfortunately, at a rather low ebb: you see we, too, are now serving the SERVICES and doing our full share to help the Allied Nations along the road to Victory.

THE FUTURE—
The future, which will mean so much to you, will also mean a very great deal to us; we earnestly want to again have the pleasure of being of service to our many old friends, and to meet the needs of those who, whilst serving their country, have gained a valuable insight into the realms of radio science. Here's to the future—OURS as well as OURS.

A BRIGHT SPOT!
We are fortunate in being able to offer you English and American Valves. We have large stocks. In the case of American Valves, we are in a position to accept WHOLESALE orders. Please send stamp when enquiring about types available.

RAYMART
CRAFT A CREED
48, HOLLOWAY HEAD, BIRMINGHAM, 1.

"Plus ça change plus c'est la même chose."

SPRAGUE SPECIALTIES COMPANY
North Adams, Mass., U.S.A.

SPRAGUE CAPACITORS KOOLOHM RESISTORS
Ode

PARTRIDGE

Summer

Summer looking forward to the Autumn. Summer looking forward to next Spring. Summer saying Hitler's almost finished, Summer wonders what July will bring. Summer smiling, wise and most mysterious, Summer talking much, through back of neck. Summer wondering what July will bring, Summer feeling tired but won't give. Summer dreaming of old times so gay.

ARMSTRONG

NEW RECEIVERS AND AMPLIFIERS

W. Brushes to radio, any offers?—S. Rodley Rd., New Malden.

MYTE radio, made in 1941, £10. R. K. Wilson, Alwick.

30-WATT ac amplifiers, precision built in British-made ac transformers, output transformers, complete. Ideal for radio transmission, ready deliveries.—Below.

150-WATT transmitter. 5 amplifiers as above, intercoupled, fitted for remote control for industrial installations. Send for full details and illustrations: complete equipment, including controls, microphones, etc. available.—Below.

For 23 words, plus 1/- Deposit System: Friday, June 9th, one day earlier. ARMS, thereof, average lines 5-6 words. Each paragraph.

ARMSTRONG

WARLTERS ROAD, HOLLOWAY, LONDON, N.7

JUNE, 1944

WIRELESS WORLD

Advertisements

Come to the point, it's got to be time. That's because the beating steers, is housed inside the real thing. The real thing is Electric Soldering Iron. Soldering is easier; you can get a newer cleaner job in less time. All internal components are housed on end of handle away from heat. A robust cord grip prevents sharp bending of too flexible lead. Complete with 613. Hanley 3-contact Soldering Iron; 230 volt for 110v current. £2 20s. 250 volt supplies are, of course, only available for 250 volt work. Early orders are advisable, as demands are heavy.

Radio Spares

March 32

Illustration shows a 20-watt standard model.

W. T. HENLEY'S TELEGRAPH WORKS CO. LTD.

Radio Engineering Dept., Millpond Court, Westost, Dorking, Surrey

Radio Spares

Output Transformers. Power, Pentode 8 valve- holders (octal), one volume control, etc., £2.50.

W. T. HENLEY'S TELEGRAPH WORKS CO. LTD.

Radio Engineering Dept., Millpond Court, Westost, Dorking, Surrey

Radio Spares

Output Transformers. Power, Pentode 8 valve- holders (octal), one volume control, etc., £2.50.

W. T. HENLEY'S TELEGRAPH WORKS CO. LTD.

Radio Engineering Dept., Millpond Court, Westost, Dorking, Surrey

Radio Spares

Output Transformers. Power, Pentode 8 valve- holders (octal), one volume control, etc., £2.50.

W. T. HENLEY'S TELEGRAPH WORKS CO. LTD.

Radio Engineering Dept., Millpond Court, Westost, Dorking, Surrey

Radio Spares

Output Transformers. Power, Pentode 8 valve- holders (octal), one volume control, etc., £2.50.

W. T. HENLEY'S TELEGRAPH WORKS CO. LTD.

Radio Engineering Dept., Millpond Court, Westost, Dorking, Surrey

Radio Spares

Output Transformers. Power, Pentode 8 valve- holders (octal), one volume control, etc., £2.50.

W. T. HENLEY'S TELEGRAPH WORKS CO. LTD.

Radio Engineering Dept., Millpond Court, Westost, Dorking, Surrey

Radio Spares

Output Transformers. Power, Pentode 8 valve- holders (octal), one volume control, etc., £2.50.

W. T. HENLEY'S TELEGRAPH WORKS CO. LTD.

Radio Engineering Dept., Millpond Court, Westost, Dorking, Surrey

Radio Spares

Output Transformers. Power, Pentode 8 valve- holders (octal), one volume control, etc., £2.50.

W. T. HENLEY'S TELEGRAPH WORKS CO. LTD.

Radio Engineering Dept., Millpond Court, Westost, Dorking, Surrey

Radio Spares

Output Transformers. Power, Pentode 8 valve- holders (octal), one volume control, etc., £2.50.
Morse Code Training

There are Candler Morse Code Courses for Beginners and Operators. SEND NOW FOR THIS FREE "BOOK OF FACTS" It gives full details concerning the following Courses:—

JUNIOR: Scientific Code Course for beginners. Teaches all necessary code fundamentals scientifically.

ADVANCED: High-speed Telegraphing for operators who want to increase their w.p.m. speed and improve their technique.

TELEGRAPH: Torch Type-writing for those who wish to become expert in the use of the teleprinter for recording messages and for general commercial uses. Code Courses on Cash or Monthly Payment Terms.

IRREFUTABLE EVIDENCE

of the training and efficiency of Candler Morse Code Training is given in the "24 extracts from student's letters," included with every "Book of Facts."

COUPON

Please send me a Free Copy of Candler "Book of Facts." Name: __________________________ Address: ____________________________

1939 Devel. 7-rate superbhet, self-change radiogram, 16,000 meters, Eng. English walnut cabinet.—After 6 p.m., R.R. 3880, 2. The Candler System Co., 21 Kingway, Laddie, W.2 (2714)

QUALITY amplifier, dual output stage, 8 or 20 watt gain dual mixing input, adjustable bass boosting, nega. negative feedback, optional 20DB, contrast ex- excess, with adjustment, 100 ma. spare for other gear, large matched P.M. transformer, no radio unit, half hour, some black cranked rack and panel construction, used 26 hours, original owner sold it. Candler, 31/313

WANTED

H.F. receiver, 1-10 or similar, type wanted.—Box 3113 (2699)

WANTED

New Candler valve or whole stud midget superfhet.—Partex, to Box 3127 (2714)

WANTED

Ever-Ready all dry battery radio equipment. State what wanted—Box 3136. (2761)

STRAIGHT

STRAIGHT tester for W.W.A., or tuning components for same.—Aldridge, 38, Brook East, Herts. (2736)

WE offer cash for good modern communications receivers.—A. C. Radio, 44, Wimodere Rd., Bromley (1541)

EXPERIMENTER, in R.A.F., urgently re- requires good first rate receiver; state price and full particulars to Warrant Officer G. P. O. Trans., multi ratio, 76; 6.3 v. Transformer, 7/6. Class "13" OPP, 7/6. Pineapple, 370, II:- 470, 4:-

Loudspeakers

NEW broadcast P.M. and P.M. loudspeakers. 3 models; 12in 12watt 15,500 lines, 15in, voice coil; 12in 150 watt 16,000 lines, 15in, voice coil; 15in 40 watt 18,000 lines, 25/6, voice coil; machined and precision built die, voice coil; 25watt 18,000 lines, "Sin Audio. 45/6. (2527)

15/6 only.—Brand new Baker super power quality 120 volt AM audiometer permanent magnet speaker with triple cone, manufactured by Bakers Radio Equipment Manufacturer manufacturer manufacturers of moving coil speakers since 1925. Wide frequency range, ideal for quantity reproduction, fitted with magnet having exceptionally high flux density in the air gap, suitable for home equipment when quality reproduction is first consideration; send 1/- for list of details and illustrations of a new acoustic chassis. Send list to extend loud speaker frequency range; also constructional details of an infinite baffle cabinet; every music lover interested in realistic reproduction should write for leaflet. G 1/6 only. (2775)

275 County Radio—Newark Road, London, E.2. Sigh 4012

COVENTRY RADIO COMPONENT SPECIALISTS SINCE 1925

A FEW ITEMS FROM OUR LATEST LISTS

Oak, 2 wafers, 4 position switches. Slow Motion Dial and Drive Escutcheon 3/6

Switch Plugs, 5 amp, 2-pin. 1/-

Cabinets?

Increased production facilities enable us to give immediate attention to orders for all types of cabinets, and we are now in a position to accept further contracts or sub-contracts for Government work. We specialise in AMPLIFIER and EXTENSION SPEAKER CABINETS. All enquiries should be accompanied by Priority No. 10.

HIRSH & HYAMS, LTD.

Cabinet Manufacturers, 93, Hackney Road, London, E.2. Bish. 4012

COVENTRY COMPANY, 191, DUNSTABLE ROAD, LUTON.
ELECTRADIX

PETROL ELECTRIC PLANTS. Pelpatorn or Stuart 500-watt cyli. 2-stroke, water-cooled self-starting, £6. 150/250 cycles 25 Amp. Enamelled or varnished copper; twin 6 volt and 12 volt. £11. 0/6. Simplex Dynamo, £7 5 6. 1000 watts, 250 cycles, £5 5 0. Electric Starters for both battery or main operation.—Webb's Radio, 14, Soho St., London, W.C.2.

WANTED, high quality moving coil pick-up, £5 up and transformer.—Price, make and type, £1.5 6. Littler, 12, Pickmere Av., Blackpool.

GARDEN CULTIVATERS, for both battery or mains operation.—Smedley, North End, Yatton, dom. 3270.

WANTED, oscillograph, Model No. 3295, in trafic, £17 10. Uni., £13 10; D.C., £3 10; other makes, £17 10. £25 10, several single and double current galvanometers, £17 10, for sale. 6 clockwork morse inker, £12 6 3. Webb's Radio, 14, Soho St., London, W.C.2.

WANTED, high grade instruments available; reasonable prices, R. Clark, 30, Langland Crescent, Southsea, Hants. (2570)

WANTED, high grade instruments available; reasonable prices, R. Clark, 30, Langland Crescent, Southsea, Hants. (2570)

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.

ELECTRADIX=17X- SERVICEMAN urgently requires universal, accurate; best offer accepted.—Smedley, North End, Yatton, dom. 3270.
TRANSFORMERS

All our standard models are in production.

THIS MONTH’S ATTRACTIONS

CARBON RESISTORS

An extensive range of values are offered in colour coded, £1 and 1 watt resistors, 6/7-6, 8/6 each.

CONDENSERS

Paper tubular types, exceptionally good quality, mostly 400 volt working, all sizes up to 0.5 mfd. From 6/7 to 12/6 each.

MICA AND SILVER MICA

Eleven different capacities up to 0.1 uf. Postage stamp mica from 4/7-6, Silver mica, 2/6 each.

SPEAKERS

Eight inch P.M. with Transformers, 2/6 each. 6½ inch P.M. and Horn, Goodman, 1/7.

SPEAKER TRANSFORMERS

Ten inch 6,000 ohm fields with Transformers, 2/7½.

ENGINEERS

Metal rectifiers for enslaving and power packs, 200 volt 100 ma, 2½.

SPEAKER TRANSFORMERS

Eleven inch 3000 ohm fields with Transformers, 2/7½ each.

SPEAKER TRANSFORMERS

All these combinations, together with specifications of our range of "GL" products, are described in the latest Yellow List (Id.). Are you on our mailing list?

THE RADIO INSTRUMENT CO.

994, BROADWAY, BELFREE, KENT. (Phone: Berleyheath 3021)

FINISH

You can become a FIRST-CLASS RADIO ENGINEER

We are specialists in Home-Study Tuition in Radio, Television and Mathematics.

T. & C. RADIO COLLEGE

2 The Mall, Ealing, W.5

(Please send me free details of your Home-Study Mathematics and Radio Courses.)

NAME

ADDRESS

T. O. T. RADIO COLLEGE

fiat for the at MONTHLY MAIL (One shilling 290, BROADWAY, BEXLEYHEATH, KENT.

The price is being made to expedite orders—kind indulgence in event of delay—every effort is being made to expedite orders promptly.

L. T. O. T. RADIO COLLEGE

fiat for the at MONTHLY MAIL (One shilling 290, BROADWAY, BEXLEYHEATH, KENT.

All our standard models are in production. Please send me free details of your Home-Study Mathematics and Radio Courses.

NAME

ADDRESS

...
We're doing our best, too! And although we don't fear physical violence, we do fear your grouses when we disappoint you on Transformer delivery. But in these days of heavy priority work orders pile up fully, we must say more often than "Sorry, no transformers." So please don't shoot us—we're doing our best.

GARDNERS RADIO LIMITED
Manufacturers of Very Good Transformers
SOMERFORD • CHRISTCHURCH • HANTS
HENRY'S offer T.C.C. mfd., 1,000v wkg., 100,000 mfd. each, 1.000v+ = 25v wkg., 17/6; 1.000v wkg., 10/6; T.C.C. mfd., 200v wkg., small type, 2/-; 3in. wire wound instrument rheostats, 500ohms, $6; small 3-gang res., trim, $6; t.r.f. coils, med. and long, with res., 10/-; Midget t.r.f. coils, med. wave, with trim, 3/-; pr.; Bulgin twin fuses, 2/-; complete; twin mains b.l. sup., chokes, $6; Goodman's 3/6in. p.m. 27/6, mains to match 75/6; 0.5 line cord, 750 and 900 lengths, 2-way, 10/-; small mains trans., input 200-250, output 13y, cont. tap, 3amps, 12/6; short-wave b.l. chokes, 2/; Centralab vol. controls, 67/; long spic; 5,000, 10,000, 25,000, 100,000, $6 meg.; all types of British and American valves in stock; call or write—Henry's, Harrow Rd., Paddington, W. P. 2194. [277]

Southern Radio's wireless bargains—Standard Telephone carbon microphone inserts, 4/-; and nuts, assorted, gross of each (2 gross in 10/-); soldering tags, including spade ends, 6/- gross; 2mfd. condensers, light, paper type, used, but fully guaranteed, had working voltage, 2/6 each; Philo 3-point car sets excellent for short-wave and home aerials, 7/6; built tone arms, universal fitting, for sound boxes and pickup heads. 40/-. Acc-P-O microphones, complete with transformer, ready for use with any receiver, 7/6; Ericie resistances, brand new, wire ends, 1/4, 1/2, 1 and 2 watts, mostly low values but a very useful selection, 100 resistances for 50/-; Multicon mica mfd. condensers, 28 capacities in one. from 0.0001 to 0.08; special offer of latest radio publications: "Radio Valve Manual," equivalent American and British types, with all necessary data, 3/6; "Radio Valve Handbook," fully illustrated, recoverers test equipment, etc., $2.5/; "Services Signalling Manual," international code, Morse, etc., $2.5; "Electrical Formulas, tables, colour code, etc., 1/-; "Crystals" (Curl), published monthly. 6d.; complete crystal detectors, 2/; Telsen reaction condensers, 1/5; Telsen large disc drives, complete boxed type (W184), 2/6; 25 yards push-back insulated wire, 5/-; insulated sleeving, assorted lengths and weights, 3/-6d.; single screened wire, dozen yards, 10/-; metal cased chokes, 200ohms, 2/; 1100ohms, 3/; power rheostats, Cutler-Hammer, $500ohms, 4/6; push-button switches, 3-way 4/; 8-way 6/ (complete with knobs); bakelite escutcheon plates for 8-way p.b. switches, 1/6; knobs for p.b. switches, 6d.; coil formers, ceramic and paxolin, 12 assorted sizes, 7/6; 20 assorted tubular condensers, up to $1.00; 15/; 24 assorted mica condensers, 1/6; hundreds more bargains—Southern Radio Supply Co. 46, Lisle St., London, E.1. General 6653.

For high quality loud speakers when the good times come again.

The Courtaulds, Silverlink, London.

HILL & CHURCHILL

BOOKSELLERS

SPANAGE DORSET

ENGLISH & AMERICAN
BOOKS IN STOCK ON
RADIO AND TELECOMMUNICATION

CATALOGUE ON APPLICATION

SPEAKER REPAIRS—by Specialists
TRADE ONLY
Send trade card and Id. stamp for current list
We hold an export licence for Northern Ireland.
WANTED TO PURCHASE
Units of all types for comprehensive lists, etc., etc.
Send stamped addressed envelopes for price list.

J. E. SEXTON & CO., LTD.

164, Grey's Inn Road, London, W.C.I.
Tel.: Terminus 1294 and 4940.

100% British

British Design

Made Answers all O.R.M.'s LAW problems—for example
What will be the voltage when current I flows through resistance R?
What will be the voltage when watts W are produced?
What is the current flowing when voltage V is applied to resistance R?
What will be the resistance when voltage V is applied to current I?
What will be the resistance when current I flows through voltage V?
What is the current flowing when resistance R is connected with voltage V?
What is the power when resistance against current I is R?
What is the power when current I flows through resistance R?
What will be the voltage when current I flows through resistance R?
What is the resistance when voltage V is applied to current I?
What will be the resistance when current I flows through voltage V?
What will be the voltage when current I flows through resistance R?
What is the current flowing when voltage V is applied to resistance R?
What will be the resistance when voltage V is applied to current I?
What will be the voltage when current I flows through resistance R?

SEXTON'S

for SALES, SERVICE, SATISFACTION

"Here it is." Build the "WIZARD FOUR" radio receiver. No Value Transformer, no coils, no condensers. All components are readily obtainable from practically any radio dealer. Why wait until after the war? The "WIZARD FOUR" can be built at home by any previous knowledge of radio construction. Expeditious instructions are given, theoretical circuit, point-to-point wiring diagrams, component layout, etc., for those who prefer separate and complete sets, showing readily the necessary connections and layout fields. Each of the circuits mentioned is necessary that are necessary to construct this "WIZARD FOUR." This circuit has been tested to the full and we recom-

SCEPTIC VALVES

COUPLING HEADS, new Longton, nr. Preston.—Tungsten and B.V.A. valves, hundreds in stock, and packing free; rectifiers SY6, SY4, 80, equiv. U12, U14, etc., 10/-; really prompt service; s.a.e. for list and enquiries.

AMERICAN MIDGETS HANDBOOK—Describing with circuit diagrams the peculiarity of American American radio valves, mostly low values but a very useful value for use with any receiver, 7/6; Ericie resistances, brand new, wire ends, 1/4, 1/2, 1 and 2 watts, mostly low values but a very useful selection, 100 resistances for 50/-; Multicon mica mfd. condensers, 28 capacities in one, from 0.0001 to 0.08; special offer of latest radio publications: "Radio Valve Manual," equivalent American and British types, with all necessary data, 3/6; "Radio Valve Handbook," fully illustrated, recoverers test equipment, etc., $2.5/; "Services Signalling Manual," international code, Morse, etc., $2.5; "Electrical Formulas, tables, colour code, etc., 1/-; "Crystals" (Curl), published monthly. 6d.; complete crystal detectors, 2/; Telsen reaction condensers, 1/5; Telsen large disc drives, complete boxed type (W184), 2/6; 25 yards push-back insulated wire, 5/-; insulated sleeving, assorted lengths and weights, 3/-6d.; single screened wire, dozen yards, 10/-; metal cased chokes, 200ohms, 2/; 1100ohms, 3/; power rheostats, Cutler-Hammer, $500ohms, 4/6; push-button switches, 3-way 4/; 8-way 6/ (complete with knobs); bakelite escutcheon plates for 8-way p.b. switches, 1/6; knobs for p.b. switches, 6d.; coil formers, ceramic and paxolin, 12 assorted sizes, 7/6; 20 assorted tubular condensers, up to $1.00; 15/; 24 assorted mica condensers, 1/6; hundreds more bargains—Southern Radio Supply Co. 46, Lisle St., London, E.1. General 6653.

For high quality loud speakers when the good times come again.

The Courtaulds, Silverlink, London.
WIRELESS WORLD

ADVERTISEMENTS

PREMIER RADIO

Mains Transformers

- **Type**: Wire-wound, All L.T., Windings Cabled Tapped.
- **Voltage**: 300-350 v. 100 ma., 5 v. 3 a.
- **Price**: 25/6

Transformer

- **Type**: Mains Transformer, 500-550 v., 100 ma., 5 v. 3 a.
- **Price**: 28/6

Camera Transformer

- **Type**: Camera Transformer, 500-550 v., 100 ma., 5 v. 3 a.
- **Price**: 28/6

Auto Transformers

- **Type**: Auto Transformers, 500-550 v., 100 ma., 5 v. 3 a.
- **Price**: 28/6

S.C.H. Transformer

- **Type**: S.C.H. Transformer, 600-2400 v., 100 ma., 5 v. 3 a.
- **Price**: 28/6

Table Transformers

- **Type**: Table Transformers, 200-2000 v., 100 ma., 5 v. 3 a.
- **Price**: 28/6

ALL ENQUIRIES MUST BE ACCOMPANIED BY A 2d. STAMP.

VARIOUS ADVERTISEMENTS

JUBILEE WORKS (No. 323)

- **Address**: Jubilee Works, 160, Field Street, E.4.

JUBILEE WORKS

- **Address**: Jubilee Works, 160, Field Street, E.4.

JUBILEE WORKS

- **Address**: Jubilee Works, 160, Field Street, E.4.
Synchronous motors, “Sangamo” 200-250 h.p. 50 c, enclosed pattern, self-starting, fitted, high reduction gear. Typical movements for time switch, electric clocks, etc., motor speed 200 r.p.m., final speed of drives: size $2^\frac{3}{4} \times 2^\frac{3}{4} \frac{1}{2}$, 25/15, 60/50; wire-wound resistances; non-inductive, ideal for mean-shunts, resistance boxes, etc. 2 1/2% accuracy, wound on bakelite bobbins. Simultaneous use of each of the following ratings, 25, 50, 100, 200, 500, 1,000 and 2,000 ohms, 5/6 per lot, post paid; large quantities available; rev counters. Colored bobbins, tin finish, ideal for 9.5 or 16mm films, wound ends, etc.; untinned mountings, 12% long. F. H. Frank, Scientific Stores, 58, New Oxford St., London, W.1. Tel. Museum 9584.

Situations Vacant

Representative required by London firm of radio component manufacturers, splendid post-war opportunity: connection not essential, but one acquainted with the purchasing departments of the leading radio set manufacturers preferred. Write "Representative," c/o Alfred Bates and Son, Ltd., 120, Fleet St., E.C.4.

Radio engineer desires change, 16 years' exp. Ham, lab. or production.--Box 315.

Technical Training

A.M.I.E.E., City and Guilds, etc., on "No pass—no fee" terms; over 90% successes. For further details, modern courses in all branches of electrical technology send for 112-page handbook, free and post free.—R.J. 12 inch approx., consumption 0.5 watts. London, W.1. Tel. B.M.C. 2432.

Growth possibilities exist for technical qualified engineers, key men in wartime and afterwards. Through the home-study courses of the T.I.G.B. take a recognised engineering qualification, such as A.M.I.E.E., A.M.I.Ch.E., A.I.M.E., A.I.R.E., A.I.M.E.E., A.M.I.R.E. and G., etc., in which examinations the T.I.G.B. students have passed, places and hundreds of places. Write today for "The Engineer's Guide to Success"—free—containing the world's widest choice of engineering courses covering all branches, including aeronautical, mechanical, electrical, wireless, chemical, etc.

Learn Morse code the Candler way.—Singer, Ehlert, Stern and Co., Ltd., Telephone: E.Co. 1672.

Battery Chargers & Trickle Chargers

Trouble-free Chargers fitted with selenium all-silicon rectification. A few Chargers available. Thirty years' experience: built nearly every Radiophone product. Very strong. 15 volt type C or 24 volt type D, and determi-12 models, on request.

Londex for Relays

The wide range of Londex Relays includes a variety of Types Approved by AIR MINISTRY M.A.P. ADMIRALTY

Ask for details and leaflets SPN/WW.

Photo-Electric Cells

Be:Te on gold-alloy, super-sensitive to light, permanent, operate relay without or with Valve Amplifier, perfect reproduction of voice on sound track of films; large tube $2^\frac{1}{2}$ in. from top to valve pin base, 1 in. diam., 38/-; small tube $2^\frac{1}{2}$ in. from top to terminal base, 1 in. diam., 30/-; operate on 40-100 volts, connections blue print free. Despatch by return.

CEFA Instruments, 38a, York Street, TWICKENHAM, Middx.

Limited

The Airport, Portsmouth

Telephone: 74074.

Coaching for P.M.G. examinations: 150 typical 1st and 2nd class technical questions, price by post 5/-.—The North Eastern School of Telegraphy, Ltd., New castle-upon-Tyne.

The Tutionary Board of the Institute of Practical Radio Engineers have available home study courses covering elementary, technical, mathematical, practical and laboratory tuition in radio and telecommunications, the text is suitable coaching matter for I.P.R.E., Service-entry and progressive exams.; tuitionary fees — at pre-war rates—are moderate.—The syllabus of instruction for each course may be obtained from the Secretary, Bush House, Walton Avenue, Henley-on-Thames, Oxon.

Frequentite is the most suitable insulating material for all high frequency applications. Ten years ago we introduced the first British-made low-loss ceramic, and consultation with us before finalising the design of new components is a wise precaution.

STEATITE & PORCELAIN PRODUCTS LTD.

Head Office: Stourport-on-Severn, Worcester.
Telephone: Stourport 111.
Telegrams: Steatain, Stourport.
The G.E.C. are specialists in valves and other electronic devices which find many applications in industry and scientific research.

The following are a few of the classes of electronic tube which have already found their place in industry.

VACUUM AMPLIFYING VALVES
For all cases in which the amplification of small voltages is required, with continuous control of amplification over a wide range of frequencies.

As self-oscillators for generation of high frequency voltage and power.

VACUUM RECTIFIERS
For Extra High Tension Voltages in cable and condenser testing, etc.
For power rectification at medium and high voltages.
For radio frequency detection. In peak voltmeters.

HOT CATHODE MERCURY VAPOUR RECTIFIERS
For high current rectified outputs in radio transmitters and power circuits.

GASFILLED RELAYS (THYRATRONS)
For trigger controls and various industrial research work used where an instantaneous release of power is required from a low voltage source.

PHOTO CELLS
Vacuum or gasfilled—with various characteristics both in applied voltages and colour response.

ELECTROMETER VALVES
Used in conjunction with glass electrode for pH determination.

CATHODE RAY TUBES
For acoustic tests, sound and waveform analysis, pressure indication, chemical analysis, educational demonstrations, monitoring, laboratory instruments, electro-medical and biological investigation, navigation aids, etc.