PROGRESS IN COMPONENT DESIGN
The Model 7 Universal AvoMeter (illustrated) is a compact combination electrical measuring instrument of B.S. 1st Grade accuracy. Its 50 ranges cover A.C. and D.C. amperes and volts, resistance, capacity, audio-frequency power output and decibels. No external shunts or series resistances. Protected by automatic cut-out against damage through overload.

The world-wide use of "AVO" Instruments is striking testimony to their outstanding versatility, precision and reliability. In every sphere of electrical test work—laboratory, shop or out on a job—they are appreciated for their dependable accuracy, which is often used as a standard by which other instruments are judged. There is an "AVO" Instrument for every essential electrical test.

Orders can now only be accepted which bear a Government Contract Number and Priority Rating.

Sole Proprietors and Manufacturers:

AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT Co., Ltd., Winder House, Douglas St., London, S.W.1

Telephone: VIctoria 3404/8
VARNISHED ART SILK
0.5 to 10 mm.

VARNISHED COTTON
0.5 to 35 mm to A.M. Spec.

ROLLED SILK
0.5 to 10 mm to A.M. Spec.

DE LA RUE INSULATION LIMITED
IMPERIAL HOUSE • 84 REGENT STREET • LONDON W1 • TEL REGENT 2901

DELAFLEX SLEEVINGS
"DELAFLEx" can also be supplied with metal screening if desired

GOODMANS
New T 2-12" LOUDSPEAKER
for the Services and all including Public Address Purposes
factories, workshops, canteens, etc.

GOODMANS
INDUSTRIES, LTD.
WEMBLEY, MDX.
VOLUME CONTROL. We don't really claim that Dubilier Volume Controls will deal with that problem. Nobody's found an answer to crying babies yet. But for all radio and electronic circuits they are probably both mechanically and electrically the most reliable volume controls produced. Small but robust, they cover ratings from \( \frac{1}{2} \) to 2 watt. There is also a model TYPE CT, specially designed for tropical conditions.

The name is ... Dubilier
STATIC TWO-DIMENSIONAL visual delineation of any recurrent law.

RELATIVE TIMING OF EVENTS and other comparative measurements with extreme accuracy.

PHOTOGRAPHIC RECORDING of transient phenomena.

SIMULTANEOUS INDICATION of two variables on a common time axis.

INDUSTRIAL INDICATING and TESTING afford increasing scope for the Cathode Ray Tube as the only device with the above inherent features, of which the last is unique in the Cossor DOUBLE BEAM Tube.

The Model 339 Cossor Oscillograph thus equipped is invaluable on all problems of research, production or operational testing, when the effect examined is applied as a voltage. When recurrent the traces are studied visually and when transient are recorded photographically, using Model 427 camera.

A. C. COSSOR LTD., INSTRUMENT DEPT.
Cossor House, London, N.5
*Phone: CANonbury 1234 (33 lines).
*Grants: Amplifiers Phone London.
WORLD’S LARGEST RADIO COIL MANUFACTURERS

RADIO FREQUENCY INDUCTORS
INTERMEDIATE FREQUENCY TRANSFORMERS
RADIO FREQUENCY COIL CHOKES
MICA COMPRESSION
AIR DIELECTRIC CONDENSERS
MICA MOULDED CONDENSERS
SICKLES SILVER CAP
CONDENSERS
GANGED PERMEABILITY TUNING COMMUNICATIONS EQUIPMENT
F.M. EQUIPMENT PARTS
U.H.F. RADIO EQUIPMENT
SPECIAL ELECTRONIC EQUIPMENT

The F. W. SICKLES Co.
CHICOPEE, MASS., U.S.A.

RAYTHEON "FLAT" HEARING AID TUBES

They fit inside a delicate ring, they are so small; but they are mighty in dependable performance for hearing aid apparatus. Long lived with low battery drain, RAYTHEON Flat hearing aid tubes give quality performance for electronic hearing aids.

MALLORY VIBRATORS ARE ALWAYS DEPENDABLE

Contacts in a vibrator take a lot of punishment. They must operate under widely varying conditions of temperature and must "make and break" 115 times a second. Small wonder that alert engineers think of contacts first when selecting a vibrator!

For over 20 years, Mallory has been industrial headquarters for every type of electrical contact. It has introduced new contact compositions... formulated improved surface finishes.

As a result of this wide experience, Mallory equips its vibrators with special grade tungsten contacts which are cut in its own plant from material made to its own specifications. They give longer life, are subject to a minimum of erosion and transfer.

Mallory is ready to apply its special vibrator "know how" to your specific applications.

P. R. MALLORY & CO. INC.
INDIANAPOLIS, INDIANA, U.S.A.

Radio and Electronics Division

ALSO

"MYKROY" CERAMIC INSULATING MATERIALS
GENERAL ELECTRONIC VACUUM CONDENSERS

FOR THE FUTURE

These manufacturers will help solve your post-war problems.

Register your name now for full details which will be sent you when supply conditions again permit.

FRANK HEAVER LIMITED
Kingsley Road, BIDEFORD, N. Devon

THEMACHINE
OF QUALITY

They fit inside a delicate ring, they are so small; but they are mighty in dependable performance for hearing aid apparatus. Long lived with low battery drain, RAYTHEON Flat hearing aid tubes give quality performance for electronic hearing aids.

VICTORY PRODUCTION

TYPE 2600 MIDGET VARIABLE CONDENSER

When the mission of complete victory is accomplished, General Instrument will help "Win the Peace" by making the best use of still greater knowledge and experience in the manufacture of variable condensers and drives.

THE GENERAL INSTRUMENT CORPORATION
ELIZABETH, N.J., U.S.A.

ALSO

"MYKROY" CERAMIC INSULATING MATERIALS
GENERAL ELECTRONIC VACUUM CONDENSERS

FOR THE FUTURE

These manufacturers will help solve your post-war problems.

Register your name now for full details which will be sent you when supply conditions again permit.

FRANK HEAVER LIMITED
Kingsley Road, BIDEFORD, N. Devon

TWO-WAY radio communication systems, like the plastic-cased beauty illustrated, are one of the new developments leading industrial designers to think of to speed the work of a busy post-war world. Applications of this compact, plastic-cased "walkie-talkie" are almost unlimited. Naturally, this is only one of thousands of uses plastics will be put to after the war, but it will serve to remind you that post-war planning is being done...

KURZ-KASCH designers, engineers, toolmakers and moulders... specialists in the age of plastics... will help you with your problems.

KURZ-KASCH INC.
Planners and Moulders for the Age of Plastics
DAYTON - OHIO - U.S.A.
HE WANTS TO BE IN RADIO

Who's interested in the future of the radio industry? We are. You are. So are many hundreds of men now fighting.

And so — without thinking much about it — are the millions of listeners who will depend on the service they get when the war is over.

The policy of Ultra — and we hope of the great majority of radio manufacturers and dealers — is to equip themselves as worthy and constantly improving servants of an enlightened British public.

During the war our slogan has been “Listening Must Go On.” After the war it will survive as “ Listeners Shall Be Served,” and we are looking forward to a close cooperation with retailers, old and new, to make this materialise.

ULTRA RADIO
MORE THAN A SET — IT’S A SERVICE

Ultra Electric Limited - Western Avenue - Acton W.3
If your set is on the shelf because of valve trouble, you will be pleased to hear that in spite of heavy service demands the Government is releasing more MAZDA Valves for civilian radios. New Mazda Valves in your old set, whether it is completely out of action or only showing symptoms of wear and tear, will make all the difference. Your Dealer has details of all available types of MAZDA Valves, but in case of difficulty please write to us.

MAZDA
RADIO VALVES

THE EDISON SWAN ELECTRIC CO. LTD., 155, CHARING CROSS RD., LONDON, W.C.2.
Technical Reasons Why

★ ERSIN
MULTICORE SOLDER

Is the Finest Cored Solder in the World

Three Cores of Flux ensure flux continuity. No lengths without flux are wasted. Consistent high quality joints are obtained with comparatively unskilled labour. Exactly the correct proportions of solder to flux are provided. Separate fluxing operations are obviated and no extra flux is required. The three cores of flux being evenly distributed over the cross section of the solder provide thinner solder walls than otherwise. This gives rapid melting and speeds up soldering. The flux does not tend to run out of the cores; so there is always a supply available for the next joint. The utmost economy of solder and flux is achieved.

Ersin, contained in the three cores of Ersin Multicore Solder, is the fastest non-corrosive flux. Possessing all the non-corrosive advantages of rosin, it enables joints to be speedily made on oxidised or "difficult" surfaces such as nickel. Ersin not only avoids oxidation during soldering but removes surface oxide already present—this is particularly advantageous in respect of materials that have been in stock or apparatus that is being serviced. The use of Ersin Multicore, with correct soldering technique, avoids "HR" or dry joints.

Ersin Multicore Solder is made in most gauges between 10 and 22 S.W.G. (0.128—0.28") (3.251—7.109 ms). For general radio and electrical production and maintenance 13 and 16 S.W.G. are in most demand.

Five alloys of Ersin Multicore Solder, made from virgin metals, are available—all antimony free. Under present circumstances 45% tin and 55% lead is the most widely used alloy.

Technically, Ersin Multicore Solder is far superior to any other cored solder. A practical laboratory or production test will demonstrate this and show you that it is the most economical solder to use. The majority of British and overseas manufacturers already enjoy the advantages of Multicore. If you do not, and are engaged upon Government contracts, write for further technical information and free samples.

MULTICORE SOLDERS LTD. Commonwealth House.
New Oxford St., London, W.C.1 Tel.: CHAncery 5171-2

Looking Ahead

The day that hostilities cease may be a little late to start deciding who shall supply the Transformers and Chokes for your post-war product.

Why not let us have a rough idea NOW of what you will want, and let us submit suggestions and prototypes?

Just as the moment we are extremely busy making hundreds of thousands of transformers for the battle front, but we are able to devote a certain amount of thought and planning for post-war.

Installed in our new factory is the very latest in Coil Winding Machines, vacuum impregnating plant, test equipment, and everything necessary for the production of the finest transformers that are made.

Drop us a line and let us show you the latest fashions. You are bound to be interested!

WODEX TRANSFORMER CO. LTD.
MOXLEY ROAD, BILSTON, STAFFS.
Telephone: BILSTON 41959-0

Accuracy and Uniformity

WEKO CONDENSERS

"BUILT BY SCIENTISTS FOR SCIENTISTS"

WEKO CONDENSER CO.LTD.
BIDEFORD AVENUE—PERIVALE—GREENFORD—MIDDX.
TELEPHONE: PERIVALE 4277
Over

to you - OVER!

Intensive research and experiment by scientists and technical experts in collaboration with the service departments, have resulted in important developments in design and technique. To-day the output of Osram Valves is devoted to the war effort. But Osram Valves for maintenance of existing equipments are available. Consult your usual supplier.

One day—perhaps soon—the progress and developments that have been made will be of the greatest interest and benefit to all. Then it will be, over to you—over!

Osram
Valves
MADE IN ENGLAND

How much can you condense a condenser?

Midget Condensers

Midgets in size but giants in performance are these U.I.C. Miniature Condensers. Especially suitable for use in the latest Service type miniature radio transmitters and receivers, they are efficient and dependable under all climatic conditions. Made to specification K.110. Type approved. Full details on request.

UNITED INSULATOR CO. LTD.
12-22 LAYSTALL ST., LONDON, E.C.1
Tel: TERROR MINUS 7383 (5 lines) Grams: Colonel, Smith, London

THE PIONEERS OF LOW-LOSS CERAMICS

Something to beat the big drum about

No, we’re not at all modest about the "Universal Fifteen"... it’s a fine job—we’re proud of it—and we want you to know it. Made in the R.S. tradition of quality first, the design of the "Universal Fifteen" both electrically and physically has proved to be one of the most efficient ever produced in portable P.A. Equipment. And it is "portable" in the fullest sense of the word for it will operate on any mains, either AC or DC, and at any voltage from 200 to 250! Write now for fullest information.

R.S. Amplifiers
R.S. Amplifiers Ltd., 3-4 Highfield Road, Shepperton, Mdx.
Telephone: Walton-on-Thames 1019

ADVANCE B.3.
A Signal Generator of unusual design
RANGE: 100 Kc. to 30 mcs.
R.F. OUTPUT: 1 µV. to 100 mV.
Full details sent upon application.
T.R.F. 3-WAVEBAND 4-VALVE CONSTRUCTORS KIT, 17-2,000 m.

**UNIQUE OPPORTUNITY**
To procure pre-war stock of new Radio Components including:

- Milliammeters, Ammeters, Volt Meters, Moving Coil Type, by Watson. Precision instruments for Home, Office, Tuning, etc.
- Wire Wind Volume Controls. All above by Parmanco, B.S.R., F.R., Fyddingtons, Valley, etc. Epoch Loudspeakers. Several circuit diagrams available, does not permit full details. Please send for list.

**ELECTRIC POWER METERS**
As new, pre-war manufacture. 1/2 in. slot type, suitable for electric fuses, etc. Ideal for building houses, hotels. Complete, less locking key. Makers’ price 7/6. Each.

**WESTINGHOUSE METAL RECTIFIERS**
Type 811, 24 v. D.C, 10 m.a. Each. 38/6.

**AERIAL AND OSCILLATOR COILS.**
Best B.S.C. wire transformors above to suit. Speakers, 1,000 ohms field, 15 ohms speech, weight 28 lbs.

**WANDER PLUGS.** In 2 colours, 3/- per dozen.

**CHEERED INTERLACED FLEXIBLE MICROPHONE CABLE**
134. 3 8-mfd. 400/500 v., 3 32-mfd. 320 v., 1 16 12-mfd. 400/450 v. Electrolytic. 1/2 each assorted.

**STRIPLIGHT METAL REFLECTORS.** Made from heavy gauge steel, 14 in., long. Complete with two B.C. lamp holders, less lamps. 10/6 each.

**VARIABLE CONDENSERS.** 2-gang (small), .0005 ceramic with trimmers, individually fed, cloth frame and pointer. 17/6. 2-gang .0005 ceramic insulation with slow motion drive, pointed or for fixed. 12/6. 3-gang .0005 ceramic insulation. Special offer, 7/6 each.

**SUPERIOR QUALITY MICRO Fiber feed, slow motion drive. Suitable for radio. For tin. spindles with grub screw. 1/6 each.

**FIRE PROOF ACRYLIC BATTERIES.** Good battery type. Flax quality Piezo crystal complete with screened lead and needle screw. 35 7 6 each, including Tax.

**Synchronized Motors**
Complete with circuit frame enclosed, 240 v. A.C. 250 w. 15 7 6, 250 w. 12 10; 1/6 each. 200 w. 10 0, 120 w. 7 10.

**VIBRATORS.** 4-pin 6v, best quality American, 15/6.

**“LIBERTY SIX” ALL-WAVE 6-VALVE CONSTRUCTORS KIT**
18-50, 200-560, 1,000-2,000 metres.

**ALL-SETTING & SELECTIVE CIRCUIT**
Hundreds of satisfied users.


As above with the addition of Magic Eye Tuning Indicator and parts. 17/6, Case and packing 5/- extra.
The confidence engendered by the worth and performance of any product quickly becomes synonymous with its name. In the world of Mains Transformers for example the name Gardner has long been recognised as a symbol guaranteeing not only the intrinsic value of the component, but its fitness for purpose as well. This is possibly one reason why our whole production has already been ‘earmarked’ for vital work and supplies for ordinary purposes are not at present available.

**Raymart**

**CRAFT A CRED**

48 Holloway Head, Birmingham, 1

Telephone: Midland 3354

**Micro-variable Condensers**

Send for details of our full range.

---

**Dials and Knobs**

Raymart precision dials are noted for their accurate workmanship and non-reflecting satin finish.

**Product descriptions**

- TYPE TED: 4" companion Dial to TXD, with indicator, graduated 0-100, each 5/6
- TYPE TEW: 2½" special Dial, without knob, but having solid metal boss and intended for use with our slow motion drive and dial locking device, each 2/6
- TYPE TEO: 2½" Dial, graduated 100-0, with no skirt on knob of this dial, each 3/6

**Type TED**

- We manufacture a slow motion drive with dial cursor and locking device for use with the TXW, but it can be used with any of the other dials excepting the TXS. This drive works on the edge of the dial by friction, and there is a dial cursor and lock operating at the top of the dial. The price of the complete assembly, with Type TXJ Knob, is 3/6 per set.

**Knobs**

- 3½" black bakelite Skirt Knob, as used on TXD Dial, each 6/6
- 3½" Black bakelite Skirt Knob, as used on TXJ Dial, each 3/6
- 3½" Black bakelite Knob, similar in design to knobs used with TXD and TXJ Dials, but without skirt. Takes 5 spindle, each 6/6

**Micro-variable Condensers**

Send for details of our full range.

---

**Micro-Variable Condensers**

Send for details of our full range.

---

**Westinghouse**

**Metal Rectifiers**

Pan American Airways, which has done so much to advance the war-time goals of the nation, has just announced a plan for a new service to South America. Employing a fleet of stratosphere planes, carrying 108 passengers, flying at more than three hundred miles an hour, Pan American proposes to take travelers from New York to Rio de Janeiro in less than twenty hours instead of the present sixty-six hours, charging $175 for the trip, as against the current rate of $491.

Pan American Airways and all its associated and affiliated companies, which comprise the P. A. A. World System, have been using Eimac valves in the key sockets of all ground stations for a number of years.

Because of the extensive operations of Pan American World Airways, these valves have been subjected to about every test possible — altitudes; ground level; extremely cold climates and high temperatures found at the equator; conditions of high and low humidity; and in some instances, when new bases are being built, perhaps somewhat trying power conditions. The high regard which P. A. A. engineers have for Eimac valves is clearly evidenced by their continued and more extensive use, as the years roll by.

The fact that Eimac valves are the number one favorite of the commercial airlines is important evidence to substantiate the oft repeated statement that "Eimac valves are first choice of leading electronic engineers throughout the world."

Follow the leaders to

Eimac VALVES

Plants Located at: San Bruno, California and Salt Lake City, Utah
Export Agents:
Fraser & Hansen, 301 Clay St., San Francisco 11, California, U. S. A.
WE ALWAYS CARRY LARGE STOCKS OF METERS FROM MICROAMPS. TO AMPS., VOLTMETERS A.C. AND D.C., ETC. SOME OF THESE CAN ONLY BE SUPPLIED FOR PRIORITY PURPOSES, BUT IN ADDITION WE OFTEN HAVE INTERESTING NEW AND GUARANTEED SURPLUS MATERIAL. AS EXAMPLE:—

Howard Dutler 0/3 milliammeters, flush mounting, square face 2½" x 2½", panel hole, 2½/16" diameter. Movements are shunted, fundamentals vary between 800 and 1,200 microamps.............. each £1 2s 6d

SLOW-MOTION DRIVE
Epicyclic drive, single ratio type, reduction 6½:1. A useful component with flange for panel mounting, each 2s 9d

INDICATOR SCALES
Control indicators to cover receiver, amplifier and oscillograph requirements. Circular white ivory scales, 1½" diameter, ½" centre hole for volume controls, etc. Calibration and marking in black. Available markings:

- Volume
- Mic. Gain
- R.F. Gain
- I.F. Gain
- Hor. Shift
- Bass
- Tone
- Gram. Volume
- Brilliance
- Ver. Shift
- Treble
- "Unmarked"
- Freq. Coarse
- Focus
- Hor. Gain
- Freq. Fine
- Ver. Gain
- Sync
- "Unmarked"

Scales—each 6d
Black Pointer Knobs to match—each 6d

RELAYS
Designed for valve anode operation. D.C. resistance 15,000 ohms. Rated operating conditions 75 volts 5 mA. Lowest positive operation 45 volts 3 mA. Contacts make and break 5 amps. Suitable for carrier control relays, Morse recorders, etc. .................. each 12s 6d

14 Soho Street, Oxford Street, London, W.1
Telephone : Gerrard 2089
We are available 9 a.m. till 6 p.m. for OFFICIAL business, but please note our SHOP HOURS—10 a.m. to 4 p.m. (Saturdays 10 a.m. to 12 noon.)

THE STATIC CONDENSER Co. Ltd.

★ Manufacturers of STATIC CONDENSERS

TOUTLEY WORKS, WOKINGHAM, Berks
Telephone: WOKINGHAM 708

MINIATURE or MIDGET

We specialise in their manufacture

THE SCIENTIFIC VALVE
BRITISH MADE

HIVAC LIMITED. Greenhill Crescent, Harrow on the Hill, Middlesex.

HARROW OFL2
**PROBLEM**

The position of a switch in the layout of a certain apparatus, is such, that in order to operate it from the front panel an unusually long operating shaft becomes necessary.

In addition the special function of the switch makes it impossible to guarantee the perfect alignment of the switch centre and the operating knob during the period of operation.

**SOLUTION**

Replace the solid shaft with an S.S.W. Remote Control Flexible Shaft, capable of transmitting the required torque with a minimum deflection.

End fittings for coupling the shaft to the driven and driver connections can be supplied from the extensive S.S.W. range.

---

If your copy of this addition to the SUPPLEMENT has not yet been received, may we suggest that you cut out this page and place it in the correct position? Better still, of course, send us for the sheets to the SUPPLEMENT numbered SUPP. i, (ii), (iii), (iv). These are now in process of being distributed to holders of the TREATISE, a copy of which is still available to those who can put it to good use.

THE S.S. WHITE COMPANY LTD., BRITANNIA WORKS, ST. PANCRAS WAY, N.W.1.
That, of course, depends... Vague answers will not, however, suffice in the field of electrical measurement. In communications particularly, modern research and engineering demands of its test gear an ever-increasing exactitude—and looks to the specialists, Marconi Instruments, Ltd., to provide it.

The measurement of precise performance in communications equipment and their components is an intricate art, calling for a wide range of measuring instruments. And whatever the strides in radio technique, so too must the scope of measurement develop.

The unique experience of the Marconi organisation—gained since the very origins of radio—enables it to meet all demands, so that today, for the indispensable tools of his trade, the communications engineer confidently specifies Marconi.
Radar requires special cables

Callenders make them

Callender's Cable & Construction Co. Ltd., Hamilton House, Victoria Embankment, London, E.C.4

All over the World
WHEN the 'jaws' of a Spire Nut grip the thread of a bolt, there's no letting go. The whole assembly is held fast—as though a trap had been sprung. And indeed that is exactly what does happen. A Spire Nut tightens and locks itself, biting hard on the bolt thread. Send us along the details (parts or drawings) on any light assembly job, and we'll see if Spire could make a better, simpler, quicker job of it.

THAT'S Fixed THAT!

The NP 164 is the simplest form of plate-type Spire fixing. It looks small and slim compared with the hexagon nut and washer it replaces, but it does the work of both of them more quickly, more firmly and more permanently. In other words it saves weight and material but increases security and simplifies assembly. No wonder that it is increasingly used throughout industry.

Simmonds Aerocessories Limited · Great West Road · London · A Company of the Simmonds Group
**Wireless World**

Radio and Electronics

35th YEAR OF PUBLICATION

APRIL 1945

| MONTHLY COMMENTARY | 97 |
| TRENDS IN COMPONENT DESIGN | 98 |
| REFLECTIONS ON THE COMPONENTS SHOW | 103 |
| LIST OF EXHIBITORS | 104 |
| A NEW VERSATILE TONE CONTROL CIRCUIT — 2 | 106 |
| LETTERS TO THE EDITOR | 110 |
| WHAT'S IN A NAME? | 113 |
| By “Cathode Ray” | 118 |
| SCREENED TESTING BOOTHS | 118 |
| WAVETRAPS WITH INFINITE Q | 120 |
| WORLD OF WIRELESS | 120 |
| MAQUIS RADIO | 122 |
| By E. Aisberg | 124 |
| A SEMI-STABILISED HT SOURCE | 124 |
| By E. A. Hanney | 125 |
| VALVE STANDARDISATION: I.E.E. DISCUSSION | 125 |
| RANDOM RADIATIONS | 126 |
| By “Diallist” | 123 |
| RECENT INVENTIONS | 123 |

As many of the circuits and apparatus described in these pages are covered by patents, readers are advised, before making use of them, to satisfy themselves that they would not be infringing patents.

---

**SENSITIVE INSTRUMENTS**

Specialising in the manufacturing of robustly constructed sensitive Moving Coil and Rectifier instruments, we are regularly supplying these with sensitivities as low as 20 µA full scale in both Moving Coil and Rectifier Types.

These instruments are also available as Thermocouple types as low as 1.25 mA full scale. Spade type or Knife Edge pointers and Mirror scales are available on most instruments and illuminatred dials can be supplied on Model 400 and 500 instruments.

**TAYLOR ELECTRICAL INSTRUMENTS LTD.**

IMMEDIATE DELIVERY. For some time past we have been carrying a small varied stock of most ranges of moving coil instruments. We are able to give immediate delivery for urgent orders.

---

**Branch Offices:**

**COVENTRY:**
8-10, Corporation Street, Telephone: Coventry 5210. Telegrams: “Autocar, Coventry.”

**BIRMINGHAM:**

**MANCHESTER:**

**GLASGOW:**
268, Renfield Street, C.2. Telephone: Central 4857. Telegrams: “Iliffe, Glasgow.”

**COVENTRY:**
8-10, Corporation Street, Telephone: Coventry 5210. Telegrams: “Autocar, Coventry.”

**BIRMINGHAM:**

**MANCHESTER:**

**GLASGOW:**
268, Renfield Street, C.2. Telephone: Central 4857. Telegrams: “Iliffe, Glasgow.”

**Branch Offices:**

**COVENTRY:**
8-10, Corporation Street, Telephone: Coventry 5210. Telegrams: “Autocar, Coventry.”

**BIRMINGHAM:**

**MANCHESTER:**

**GLASGOW:**
268, Renfield Street, C.2. Telephone: Central 4857. Telegrams: “Iliffe, Glasgow.”

---

**SENSITIVE INSTRUMENTS**

Specialising in the manufacturing of robustly constructed sensitive Moving Coil and Rectifier instruments, we are regularly supplying these with sensitivities as low as 20 µA full scale in both Moving Coil and Rectifier Types.

These instruments are also available as Thermocouple types as low as 1.25 mA full scale. Spade type or Knife Edge pointers and Mirror scales are available on most instruments and illuminated dials can be supplied on Model 400 and 500 instruments.

**TAYLOR ELECTRICAL INSTRUMENTS LTD.**

IMMEDIATE DELIVERY. For some time past we have been carrying a small varied stock of most ranges of moving coil instruments. We are able to give immediate delivery for urgent orders.

---

**SENSITIVE INSTRUMENTS**

Specialising in the manufacturing of robustly constructed sensitive Moving Coil and Rectifier instruments, we are regularly supplying these with sensitivities as low as 20 µA full scale in both Moving Coil and Rectifier Types.

These instruments are also available as Thermocouple types as low as 1.25 mA full scale. Spade type or Knife Edge pointers and Mirror scales are available on most instruments and illuminated dials can be supplied on Model 400 and 500 instruments.

**TAYLOR ELECTRICAL INSTRUMENTS LTD.**

IMMEDIATE DELIVERY. For some time past we have been carrying a small varied stock of most ranges of moving coil instruments. We are able to give immediate delivery for urgent orders.

---

**SENSITIVE INSTRUMENTS**

Specialising in the manufacturing of robustly constructed sensitive Moving Coil and Rectifier instruments, we are regularly supplying these with sensitivities as low as 20 µA full scale in both Moving Coil and Rectifier Types.

These instruments are also available as Thermocouple types as low as 1.25 mA full scale. Spade type or Knife Edge pointers and Mirror scales are available on most instruments and illuminated dials can be supplied on Model 400 and 500 instruments.

**TAYLOR ELECTRICAL INSTRUMENTS LTD.**

IMMEDIATE DELIVERY. For some time past we have been carrying a small varied stock of most ranges of moving coil instruments. We are able to give immediate delivery for urgent orders.
The Isle that Grew from the Sea

A little land above the surface of the sea; white surf and leaning palms... but underneath, out of sight, the foundations go down deep and wide to the bed of the ocean.

So, too, with great industrial organisations like that of Philips. Their achievements and the high reputation of Philips products are broad-based on persistent research, skilled technicians, highly-developed factories and long-accumulated knowledge and experience of the application of electricity to the needs of the modern world.
Monthly Commentary

Competitive Broadcasting

The well-being of every branch of wireless is vitally affected by the progress of broadcasting. It represents the "big money" side of the art, contributing directly or indirectly in dozens of ways to advancement in other spheres. It provides incentive and funds for research to an extent secondary only to war; the resulting developments find applications, sooner or later, in other branches of wireless technology. No radio industrialist, technician or trader, in whatever branch he may be concerned—including the electronic offshoots of radio—can face with equanimity the possibility of a decline in the influence of broadcasting.

Before the B.B.C. Charter expires next year, decisions must be made that will profoundly affect the future of British radio. No pains should be spared to ensure that those decisions are the right ones. It is indeed gratifying that so much importance is attached to the topic that many lengthy, well-informed and serious discussions on the reorganisation of broadcasting have been published in the lay Press.

By general consent, the fundamental issue is still whether broadcasting should be conducted and financed as a monopolistic public service or as a commercial enterprise supported by advertising revenue. And, as a secondary issue, if it is to be monopolistic, how can the supposed defects of a monopoly—timidity and dullness—best be overcome? How can the spirit of competitiveness be infused into such an organisation?

Wireless World derives great satisfaction from the almost unanimous rejection, by so many organs of public opinion, of the idea of commercial advertising broadcasting in this country. That seems to be a truly representative decision, reflected in publications of such widely divergent political views as The Times and the Communist Party's booklet "The B.B.C." As The Times said (February 12th): "British listeners have become accustomed to the conception of broadcasting as a public service." Commercial broadcasting might have a temporary success through its novelty, but we are convinced that its adoption would in the long run restrict development.

But, though we emphatically reject commercial broadcasting, we hope and expect to see drastic changes in the present system. Wireless World has long held the view that the element of competitiveness is desirable, and, moreover, that it is not incompatible with a monopolistic public service. We are glad to see that view is quite widely shared.

Some of the advocates of competition, inspired probably by B.B.C. public pronouncements, seem to think that the desired aim can be achieved by encouraging "a healthy rivalry" between B.B.C. Regional organisations. That, in our view, falls far short of what is needed. Listeners in one region will know little of what is being achieved in another except when a local programme is relayed over the National service.

Independent Broadcasters

A more interesting proposal is that put forward by The Economist in a series of well-considered articles published at the end of last year. Briefly, the scheme provided for three independent broadcasting concerns: one a public corporation like the B.B.C., the second a co-operative enterprise, governed by directors elected by its staff, and the third a profit-making company providing its own capital but not broadcasting advertisements. All would derive revenue from a fixed proportion of each licence fee, and, in addition, each listener would nominate the corporation of his choice to receive a further proportion of his licence fee. The obvious objection is that the scheme would be costly, almost certainly involving an increased licence fee. Admittedly, Wireless World's own less ambitious proposal, put forward in October, 1942, was open to similar criticism. We advocated two entirely independent "Programme Boards" under directors responsible only to Parliament. It seems inescapable that the stimulus of competition must be paid for, but, in an art like broadcasting, it seems to be worth something.
ALTHOUGH the recent exhibition of components organised by the Radio Components Manufacturers Federation (under the auspices of the Radio Industry Council) was primarily for the purpose of showing what is available for designers of Service equipment, even the most superficial examination showed that many of the exhibits will be directly applicable to peacetime uses. Other components embody new manufacturing methods or techniques that are certain to find wider applications in the future. It is with these ideas in mind that this short review of the exhibition is written.

A standard moving-coil unit is used both in the microphone and the earpieces of the No. 10 headset shown by Goodmans.

Connectors and Switches.—The war has seen a wide expansion in the number and types of multiple plugs and sockets for interconnecting the various units in communication equipments, and considerable thought has been devoted to the effects of vibration. Attention has been given to the prevention of wire breakage at the point where the multiple cables leave the plugs and sockets, and many types are now shrouded in moulded rubber with a long tapered extension to distribute bending strains over several inches of the cable. In the Pye snatch plugs and sockets the contacts are solid and are bonded directly to the rubber.

So far as spring contacts are concerned the problems of the designer have been eased to some extent by the remarkable properties of beryllium copper alloy, which is the ideal non-ferrous spring material. Its resistance to bending fatigue is exceptionally high and the temper of the metal is unaffected by soldering.

The performance of switches has also been improved by the use of this new alloy. Rotary switches of the wafer type still appear to hold the field for circuit switching, but there were also many new types, including miniature snap action plunger switches for operating safety devices, temporarily inserting meters in supply lines and a score of other purposes.

Valveholders have improved considerably under the strenuous conditions of war, and particular attention has been given to the question of securing continuous contact under severe vibration. In the "Bericon" valveholder of Radio Instruments, Ltd., for instance, silver-plated beryllium copper is used for the spring sockets. The new all-glass technique in valve manufacture has also called for a revision of principles in valveholder design. Fully floating sockets which may set at different angles when wired with heavy-gauge conductors have given trouble by putting undue strains on the valve pins. This has been overcome in the Clix B9G valveholder by rigidly locating the soldering tag while leaving independent movement to the spring element of the socket. The insulated body of these holders may be either Frequentite "R" or silica-loaded polystyrene, and another interesting feature is the method of fixing the metal saddle or flange, which permits top or bottom panel fixing in the same diameter hole.

Acoustic Devices.—These were represented mainly by micro-
phones and earpieces. The moving coil principle predominates in both applications, chiefly on account of its reliability, and, in the case of the microphone, the absence of the necessity for an external source of power. Moving-coil headphones have been found to give better intelligibility through the high background noises prevailing in tanks and aircraft, possibly because of the absence of peaks in the response over the frequency range employed. Improvements in permanent magnet alloys and skill in manufacture have reduced the size of these movements to extraordinary small proportions. In the Goodman's Type 10, for instance, the moving coil is only 6in. in diameter and consists of four layers of 46 SWG in a 0.032-inch gap. The permanent magnet is less than 3in. in diameter.

Another interesting earpiece development was shown by Cosmoscopic. This consists of a piezoelectric capsule moulded in very thin plastic material and shaped to fit into the ear. There is no air passage and sound is transmitted through the thin casing so that the crystal element is completely protected against the effects of moisture.

Before leaving the subject of microphones, mention should be made of the Telephone Manufacturing Company’s 'Sound Powered Microphone.' This is a hand set and designed to work without batteries—a very desirable feature for marine use.

As far as domestic loudspeakers are concerned, manufacturers have so far formed only tentative plans for post-war models.

Thought is being given to the improvement of high-fidelity speakers for use with quality amplifiers and also to the question of providing an economical and acceptable standard of reproduction for post-war mass-produced sets. The probability that personal portables and other types of miniature receivers will figure prominently in the post-war programme has not escaped attention. The P2VO Celestion unit with 21/2in. diaphragm weighing only 3 oz. is a typical example. In the design of the Celestion P6QI 6in. loudspeaker the trend towards smaller wireless sets has been taken into account. Advances in permanent magnet alloys have enabled a much smaller magnet volume to be employed, and not only is the depth of the unit reduced but the design of the chassis is such that components can be mounted on either side much closer to the speaker axis.

Measuring Instruments. — In
Trends in Component Design—

basic design meters do not appear to have changed much, but one or two novel features were noted. The zin. Ferranti meters, for instance, have been produced in a hermetically sealed case which

The use of increasingly high radio frequencies for all purposes has stimulated the cable industry to great activity and the possibilities of new materials have been exploited to the full. The excellent dielectric properties and low water absorption of polyethylene have secured for it a dominant position as a spacing material. Some examples of terminated coaxial lines by Callender's Cable and Construction Company were noted for their

Labgear "Electronic Fault Tracer" nevertheless retains an external zero adjustment. A series of these instruments were shown working in an aquarium with tropical fish to point the moral. Even smaller types are envisaged for the post-war period, and a 1\(\frac{1}{2}\)in. model was shown with an experimental Perspex front cover designed to give a wider angle of vision. Salford Electrical instruments were showing an advanced model of a general test meter for voltage, current and resistance in which an ingenious mechanical interlocking system is provided for the range switches. An automatic cut-out, which can be reset by a press-button, affords additional protection for the meter.

A useful test instrument for the service bench was shown by Labgear. This is known as the "Electronic Fault Tracer" and comprises RF and AF oscillators which can be combined to provide a modulated signal source, and also a 1,000 c/s bridge for measurements of inductance, capacity and resistance over wide ranges. The oscillator valves can also be switched to form a simple det-AF receiver for signal tracing.

Wireless World

A neon lamp serves both as an insulation tester for condensers and as a peak voltage indicator calibrated for AC and DC above 50 volts.

Cables.—The use of increasingly high radio frequencies for all purposes has stimulated the cable industry to great activity and the possibilities of new materials have been exploited to the full. The excellent dielectric properties and low water absorption of polyethylene have secured for it a dominant position as a spacing material. Some examples of terminated coaxial lines by Callender's Cable and Construction Company were noted for their

Resistors.—Three distinct lines of development can be traced in the latest types of fixed resistors. First, there is the general one of "tropicalisation," secondly, the expansion of the midget ranges, and thirdly, the further development of the high-stability, close-tolerance types. Whilst the first-mentioned is largely a wartime measure, so many advantages attend this form of construction, not only for overseas use after the war but also for home consumption, that it is to be hoped they will survive the war period.

Protection is sometimes provided by totally enclosing the resistor in an hermetically sealed tube, as typified by the Dubilier and Mullard tropical variety, sometimes by a hard coating of a protective material, as in the Welwyn Electrical Laboratories miniature vitreous enamel type and the Bercohm series made by the British Electric Resistance Company. The alternative method of enclosing the resistor in a plastic moulding is adopted by Erie for some of their latest midget styles.

Vitreous enamel wire-wound resistors for heavy-duty purposes are now being made by quite a number of firms, prominent

Rheostats and Potentiometers.

Excluding precision and laboratory-type variable resistors in
which class abnormal values are not uncommon, the production by Reliance Manufacturing Company of a 0.5 megohm wire-wound potentiometer in a case under

Correction for non-linearity is effected at every 10 degrees of rotation in the Colvern cam-corrected 6\text{in.} diameter potentiometer. Details of the mechanism are shown in the enlarged section on the right.

3\text{in.} in diameter is a notable achievement. Although extremely fine gauge wire has to be used, precautions are taken in manufacture to prevent any lateral movement of the turns by the friction of the moving contact.

Potentiometers designed for continuous rotation, and suitable for being driven by a motor if required, were shown by P. X. Fox. Toroidal windings are employed and it is claimed that the linear accuracy is better than 0.1 per cent. for all values up to 30,000 ohms, which is the maximum in this style.

An unusual type of precision potentiometer in which any non-linearity in the winding and random variations in the resistance of the wire itself can be compensated for in individual potentiometers has been developed by Colvern. The moving contact is not driven directly by the operating spindle, but is actuated by a spring-loaded subsidiary lever, the rate of rotation of which is retarded or accelerated by the contour of a circular ramp over which it rides. The contour of this ramp is adjustable at every 10 degrees of rotation in the 6\text{in.} diameter potentiometers and at every 20 degrees in the 3\text{in.} diameter models. Resistance values up to 100,000 ohms are obtainable in this form, which is described as a cam-corrected potentiometer.

A number of laboratory-type variable resistances, potentiometers and attenuators were shown by Muirhead and Labgear.

Capacitors.—The latest improvements in fixed condensers take the form mainly of reduction in size and special methods of manufacture to withstand high ambient temperatures and excessive humidity. In some cases the condensers are impregnated with special waxes, whilst in others the units were enclosed in light metal cases hermetically sealed to exclude moisture. The main interest lies in the methods adopted to seal the container, especially as insulated terminals, or lead-out wires, have to be provided.

The Telegraph Condenser Company fit a resilient synthetic rubber end-plug in the metal cases used for their latest range of Metalmite paper condensers and Picopack and Micropack miniature dry-electrolytic condensers. Metalmite tubular paper condensers vary in size from 0.2 to 0.34\text{in.} in diameter, and in capacity from 0.001 mfd. to 0.1 mfd. at working voltages up to 500 DC. With body dimensions of 1.3\text{in.} by 0.34\text{in.} diameter the Picopack electrolytics are probably the smallest of their kind. At one end of the range is a 20-mfd. 12-volt working condenser, while at the other there is a 1-mfd. 350-volt type.

Ceramic bushings, with parts of their surfaces metallised for soldering into the container, are used by Dubilier for terminal insulation on their latest Nitrogol range of condensers. Nitrogol is a new impregnant having some of the advantages of a mineral oil, but, being less volatile, is far less prone to creepage. It possesses a high insulation resistance, especially at high temperatures, and so a considerable reduction in size of a condenser for a given set of working conditions is made possible.

The range includes large capacity as well as medium capacity condensers for operation at high and low voltages. There is also a number of sizes of flat condensers with the connections brought out through the sides to facilitate under-chassis assembly. For example, a 3 x 0.05-mfd. condenser for 600-volts DC working is assembled in a sealed metal case measuring 2\text{in.} x 2\text{in.} x 1\text{in.} approximately.

British Insulated Cables have a new range of tubular condensers assembled in ceramic tubes with soldered-on end-caps.

B.I. tropical pattern tubular condenser assembled in ceramic tube with soldered-on end-caps.

assembled in ceramic tubes with metallised ends to which are soldered metal end-caps. This exemplifies but another of the several processes now adopted for hermetically sealing condensers to comply with what is described as tropical specification.

Under chassis type Dubilier Nitrogol condensers with side contacts and ceramic insulation. This is a tropical style suitable for use under conditions of high ambient temperatures.
Trends in Component Design—
Almost all makers of fixed condensers have produced one or more series of sealed miniature condensers, some typical examples being found among the products of such firms as Bulgin, British N.S.F., Dubilier, Erie, Hunt, Mullard and T.C.C.

Variable Condensers.—These appear to have been subject to fewer changes in construction or in design than most other components. Leaving out the special patterns evolved to meet particular requirements the principal changes are in the production of some really miniature gang assemblies.

The precision assembly work needed to manufacture midget variables of large capacity when directed to the production of small UHF condensers has resulted in the appearance of some minute variables. A single bearing of generous proportions is generally used, thus avoiding loops in the framework likely to produce spurious resonant circuits.

Such condensers should find many applications in television receivers, as the extremely small dimensions will enable a really efficient layout of the RF circuits to be effected. These miniatures were shown by Cyldon, Jackson Bros., Plessey, Stratton and Win-grove and Rogers.

AF and Power Transformers.—With but a few exceptions the improvements made in the technique of transformer construction take the form of improved processes of impregnation and new methods of winding to minimise the risk of breakdown, especially in the extra-high-voltage type of transformer.

Westalite selenium HT rectifiers: both have the same voltage and current rating. The smaller is the new "double-voltage" type. The models illustrated are designed for use as bridge-connected units.

Rectifiers.—A range of HT and LT selenium-type rectifiers known as the Westalite series was introduced by Westinghouse Brake and Signal Company in 1939, since when further development has resulted in all rectifiers in this series now being capable of operation at twice the original voltage for the same current rating. In effect, this means that for a given voltage and current rating the weight and bulk are reduced to approximately half the former values.

The modification takes the form of doubling the reverse resistance of the rectifier element, which in its present form is now described as the double-voltage Westalite rectifier. It is claimed that the new type shows an efficiency of about 87 per cent. on full load. The model 15B/168, a double-voltage rectifier for bridge connection and rated at 140 volts, 125 A, measures 12 in. x 12 in. x 2 in. long. In addition to HT and LT types the double-voltage elements are now assembled in rod form for use as extra-high-voltage rectifiers for cathode-ray tube equipment.

Another innovation is the introduction of a miniature version of...
the well-known Westector. Type designations W and WX are retained, as the electrical characteristics remain unchanged; only the dimensions are affected, the new model measuring approximately ½ in. long by ¾ in. diameter. Four of these miniature type WX1, for example, used in bridge connection will form an instrument rectifier for meters having a full-scale deflection of 0.1 millamp, thus giving an AC voltmeter with a resistance of 10,000 ohms per volt.

A wide range of selenium rectifiers in improved form were shown also by Standard Telephones and Cables.

Relays.—The score or more of different types of relays shown by Relay and Key Panel exemplifies the widespread use now being made of relays, not only for remote control purposes but also as a means for simplifying the operation of quite complicated radio equipments. The Standard Telephones pulse-operated automatic keying unit, which can be used either for distress signals or as a calling device, also operates on the relay principle; further examples were found in the high-speed telegraph relays made by Telephone Manufacturing Company and by Automatic Telegraph and Transreceiver Company.

The Carpenter relay produced by T.M.C. gives absolute smooth operation up to 750 words per minute Morse, whilst even higher speeds are claimed with quite satisfactory reliability. The A.T.T.C. showed actual recordings on tape made with their high-speed keying relay at 350 w.p.m. and at 900 w.p.m. The clear-cut regularity of the Morse characters was remarkable.

**REFLECTIONS ON THE COMPONENTS SHOW**

*Ideas for the Industry*

By "RADIOPHARE"

**The most noticeable feature of** the recent Exhibition was, to my mind, the solidity of the modern component. Rationalisation and tight specifications have led to the design and production of components which appear to be "finished" and robust. Things look as though they are built to last nowadays. This was particularly noticeable on the stands showing mains transformers: too often in the past the most intimate details of a transformer's structure have been revealed to a curious world. Now we have completely enclosed and sealed transformers with smooth, clean lines. Whether these things are available in quantity is not very clear: exhibitions always tend to be optimistic. The use of ceramics and of polythene moulding techniques also show the same "solidification" tendency: more and more the component is becoming a minimum sub-assembly. Some exhibits show this development very clearly. Of course, we must bear in mind that the components shown were not designed for use in broadcast receivers, but were intended to provide the reliability demanded for Service needs.

The component makers are coming to realise that their prosperity does not depend upon themselves alone. A strong and healthy equipment manufacturing industry is needed to provide their steady basic market. While the main support must come from the broadcast receiver industry, the specialist firms making transmitters, signal generators and such things are of considerable importance in the long-term view, particularly when export trade is considered. The specialist firms have national prestige value which affects the broadcast set market, and thus the component trade. Some of the component makers realise that in the years to come they must play their part in an integrated industry. On one hand they must keep costs down by every hundredth of a penny, so that simple receivers can be made at the lowest possible prices; on the other hand, they must help the makers of transmitters to avoid every second possible of "technical hitch." In addition, the assembly of receivers in various parts of the Empire—particularly India and Australia—opens up a new market which must not be neglected. The present high standards must be maintained, and some continuance of standardisation of sizes and shapes is desirable. If there is a return to design anarchy there will be no hope of a healthy industry when the post-war boom is over. If we export rubbish we shall soon find that we have no export trade left.

Although, as I have said, components nowadays are very good, there is still not enough known about their actual properties. It is known that certain specification requirements are met, but it is very difficult to find anyone who can say just how good or how bad a particular component is. This means that an equipment designer must always use full specification limits if he is conscientious. A view expressed by some exhibitors was that the batch sampling clauses of the I.S.C.Tech.C. specifications, which are, in fact, a sort of quality control, will provide the opportunity and incentive for the continuance of research and study which so often stop when a satisfactory product has been achieved. Whether it is only the more enlightened manufacturers who will accept quality control with a good grace is not known. But it promises well for the future that these issues were clearly seen by at least some of the exhibitors.
LIST OF EXHIBITORS

The following list of exhibitors at the R.C.M.F. Components Exhibition, reviewed in the preceding pages, gives the principal classes of components shown by each manufacturer.

**Firm**

**Classes of Exhibits**

**Firm**

**Classes of Exhibits**

A.B. Metal Products, Ltd.,
Hatton Works, Great South West Road, Feltham, Middx.

Switches, sockets, stampings.

Cosmocord, Ltd.,
700, Great Cambridge Rd., Enfield, Middx.

Aeronautical & General Instruments, Ltd.,
Curlew Way, Croydon, Surrey.

RF and AF coils, chokes and transformers.

Cassor, A. C., Ltd.,

Antiference, Ltd.,

Precision instruments, dials, switches, transformers, valveholders, etc.

Daily Condensers, Ltd.,

Associated Technical Manufacturers, Ltd.,

Precision transformers.

De La Rue Insulation, Ltd.,
Imperial Hse., 84/86, Regent St., London, W.1.

British Electrolytic Condenser Co., Ltd.,

Aerial equipment, chokes, suppressors.

De La Rue Plastics, Ltd.,
Imperial Hse., 84/86, Regent St., London, W.1.

Belling & Lee, Ltd.,

Insulating sleeving.

Diamond H Switches, Ltd.,

Bird, Sydney S., & Sons, Ltd.,

Aerial equipment.

Dudhill Condenser Co. (1925), Ltd.,

Automatic Telephone & Radio Transceiver Co., Ltd.,

Duratube and Wire, Ltd.,
Fagg's Rd., Feltham, Middx.

Belling & Lee, Ltd.,

Telegraph relays.

Electrothermal Engineering, Ltd.,

Cambridge Arterial Rd., Enfield, Middx.


Ferranti, Ltd.,
Hollinwood, Lancs.

British Electric Resistance Co., Ltd.,
Queensway, Ponders End, Middx.

Chokes, transformers, etc.

British Electric Resistance Co., Ltd.,
Queensway, Ponders End, Middx.

Wire-wound resistors.

British Electronic Condenser Co., Ltd.,
Vicarage Lane, Ilford, Essex.

Condensers, carbon and wire-wound resistors.

British Insulated Cables, Ltd.,

Transformers.

British Mechanical Productions, Ltd.,
I, Church Rd., Leatherhead, Surrey.

Valve retaining devices.

British N.S.P. Co., Ltd.,
Dalton Mills, Dalton Lane, Keighley, Yorks.

Cables, wires, condensers.

British Photo Ltd.,
Georgian House, Bury St. James, W.1.

Condensers, plugs and sockets, connectors, valveholders, mouldings.

British Rola, Ltd.,
Georgian House, Bury St., St. James, W.1.

Condensers, plugs and sockets, valveholders, mouldings.

Bulgin, A. F., & Co., Ltd.,

Condensers, plugs and sockets, resistors, switches, vibrators.

Callenders Cable and Construction Co., Ltd.,
The Hall, Oatlands Drive, Weybridge, Surrey.

Loudspeakers, transformers, lamiations.

Carr Fastener Co., Ltd.,
Stapleford, Nottingham.

Loudspeakers, transformers.

Celestial Ltd.,
Kingston-on-Thames, Surrey.

Radio components of all types.

Colvern, Ltd.,
Mawneys Road, Romford, Essex.

Ceramic products.

Cordex \& Co., Ltd.,
700, Great Cambridge Rd., Enfield, Middx.

Dials, laminated plastics, sleeving, wires. Plastic mouldings.

Cosmocord, Ltd.,
104, Great Cambridge Rd., Enfield, Middx.

Cables, wires, sleeving.

Cosmocord, Ltd.,
700, Great Cambridge Rd., Enfield, Middx.

Valve retaining devices.

Cosmocord, Ltd.,
700, Great Cambridge Rd., Enfield, Middx.

Chokes, transformers, etc.

Cosmocord, Ltd.,
700, Great Cambridge Rd., Enfield, Middx.

Wire-wound resistors.

Cosmocord, Ltd.,
700, Great Cambridge Rd., Enfield, Middx.

Beryllium copper products, contacts, fuse and resistance wires, precious metal products.

Cosmocord, Ltd.,
700, Great Cambridge Rd., Enfield, Middx.

Variable condensers.

Cosmocord, Ltd.,
700, Great Cambridge Rd., Enfield, Middx.

Haynes Radio, Ltd.,
Queensway, Enfield, Middx.

Imhoff, Alfred, Ltd.,

Injection Moulders, Ltd.,

Jackson Bros. (London), Ltd.,
Kingsway, Waddon, Surrey.

Johnson Matthay & Co., Ltd.,

Imhoff, Alfred, Ltd.,

Instrument cases, panels, chasiss, terminals.

Leicester Pl., Blackman Lane, Leeds, 2, Yorks.

Loudspeakers, microphones. Potentiometers.

Loudspeakers, head phones, microphones, transformers, volume controls.

Loudspeakers, transformers.

Loudspeakers, transformers.

Meters, condensers, chokes, transformers.

Potentiometers.

Precious metal products.

Wire-wound resistors.
Wireless World

Classes of Exhibits

Test instruments, RF and IF coils, chokes, resistors, switches, transformers.
Condensers.
Rubber moudlings.
Vibrators.
Insulating materials, fabrics and sleeving.
Resistors, volume controls.
Precision instruments.
Condensers, chokes, transformers, loudspeaker magnets.
Cored solders.
Condensers, insulating material.
Valveholders.
Attenuators, resistors, switches, relays, telephone type keys.
Chokes, transformers.
Condensers, chokes, transformers, loudspeakers, vibrators, etc.
Conduit, plugs and sockets, miniature components.
Connectors, plugs, switches, transformers.
Potentiometers, resistors, volume controls.
Loudspeakers, transformers.
Aerials, cables.
Piezo-electric crystal products, volume controls.
Rubber screens, cable markers.
Insulating sleeving.
Communications equipment of all kinds.
Condensers.
Ceramic products.
Variable condensers, coils, insulators, junction boxes.
Insulating sleeving.
Condensers.

Firm

Telegraph Condenser Co., Ltd.,

United Insulator Co., Ltd.,

Varley Dry Accumulators, Ltd.,

Wallace Instruments, Ltd.,
Exhibition Buildings, Earls Court, London, S.W.5.

Walter, J. & H., Ltd.,
Farm Lane, London, S.W.6.

Wego Condenser Co., Ltd.,
Bedford Ave., Perivale, Greenford, Middx.

Weltyn Electrical Laboratories, Ltd.,
70, Bridge Road East, Weylyn Garden City, Herts.

Westminster Spark & Signal Co., Ltd.,
Chippingham, W.W.

Wimbledon Engineering Co., Ltd.,
Garth Rd., Lower Morden, Surrey.

Wingrove & Rogers Ltd.,
Polar Works, Old Swan, Liverpool, Lancs.

Wright & Worne, Ltd.,

Classes of Exhibits

Cables, sleeving, aerials, laminations, dust cores.
Relays, plugs and jacks, coils, condensers, keys.
Insulating sleeving.
Eyelets, tags, terminals.
Condensers, coil forms.
Accumulators.
Chokes, transformers, resistors, switches.
Condensers, switches, pointers.
Chassis, press work, stampings.
Carbon and wire-wound resistors.
Metal rectifiers.
Vibrators.
Variable condensers, drives.
Coils, transformers, switches, vibrators, plugs and sockets.

SERVICES COMPONENTS STANDARDISATION

A full list of the Specifications for radio components so far issued by the British Standards Institution (28, Victoria Street, London, S.W.1) on behalf of the Inter-Service Components Technical Committee is given below. The index and the first-mentioned sixteen of these BS/RC Series cost 6d. each, the remainder 3d. A scheme is available whereby newly issued specifications are posted to subscribers as soon as they are issued.

Index
BS/RC/G/1 General Guide on Radio Components.
BS/RC/G/2 General Specification for all Radio Components in the BS/RC Series.

Group Test-Specification for Fixed Resistors.
BS/RC/G/3 Test Schedule for Fixed Resistors.
BS/RC/G/5 Test Schedule for Variable Resistors.

BS/RC/G/7 Test Schedule for Paper-dielectric Fixed Capacitors.
BS/RC/G/8 Test Schedule for Mica-dielectric Fixed Capacitors.
BS/RC/G/9 Test Schedule for Ceramic-dielectric Fixed Capacitors.
BS/RC/G/10 Test Schedule for Electrolytic Capacitors.
BS/RC/G/12 Test Schedule for Miniature Variable Capacitors (High K Type).

BS/RC/G/14 Test Schedule for Mica-dielectric Fixed Capacitors.
BS/RC/G/15 Test Schedule for Ceramic-dielectric Fixed Capacitors.
BS/RC/G/16 Test Schedule for Ceramic-dielectric Fixed Capacitors (excluding metallised paper types).
BS/RC/G/17 Guide on Fixed Resistors.
A New Versatile TONE CONTROL CIRCUIT

By G. N. PATCHETT,

A COMPLETE circuit realising the objects discussed in the first part of this article is shown in Fig. 12. The input is fed into the phase-splitting valve $V_1$. If fed between A and E, $V_1$ acts as a cathode follower with an anode resistance $R_{11}$. (When $R_1 = R_{12}$ this is a well-known phase-splitting circuit used in push-pull amplifiers.) This has the advantage that the loading of the two tone control filters across the cathode resistance $R_1$ does not produce any distortion in the valve $V_1$ owing to its low output impedance, the disadvantage of this connection being that the output from across $R_1$ is only about 0.9 of the input voltage, and if $R_{12} = R_1$ the output from across $R_{12}$ is of similar magnitude. If the input is fed to A and B, as can often be done in a superhet or with a pickup, the amplification of the valve $V_1$ is obtained, but, since there is no negative feedback due the resistance $R_1$, slightly more distortion may be produced, although, as is shown later by the oscillograph record, this distortion is negligible when the values of the components are correctly chosen. The voltage across the cathode resistance $R_1$ is fed through the DC blocking condenser $C_1$ to the bass tone control filter consisting of $R_2$, $C_2$, and $R_6$, and the treble tone control filter consisting of $C_2$, $R_8$, and $R_{10}$. The output from each tone control filter is amplified by the twin triode valve $V_2$ and fed to the next audio frequency stage through the blocking condensers $C_9$ and $C_{10}$, and the isolating resistances $R_{18}$ and $R_{19}$. The purpose of the latter is to prevent the low impedance of one section of $V_2$ loading the other section. The voltage independent of frequency is obtained from the anode of $V_1$ and fed to the output through the blocking condenser $C_9$ and the isolating resistance $R_{17}$. The phase-splitting valve $V_1$ is necessary due to the 180-degree phase shift given to the output control voltages by the valve $V_2$.

Only approximately one-third of the output from the valves $V_1$ and $V_2$ is obtained across $R_{12}$ due to the use of the isolating resistances $R_{17}$, $R_{18}$, and $R_{19}$. This means that if $R_1 = R_{12}$ and terminals A and E are used, the output at the middle frequencies is only about one-third of the input. The maximum available gain under these conditions at the low and high frequencies is approximately equal to the amplification given by the valve $V_2$. If such a large increase is not required, greater gain can be obtained at the middle frequencies by decreasing the value of $R_1$. This increases the output at the middle frequencies since the ratio of the voltage across $R_{12}$ to the voltage across $R_1$ is determined by the ratio of $R_{12}$ to $R_1$, and the voltage across $R_1$ is approximately equal to the input. For example, if an increase of only three times (approx. 10 db) is required, $R_1$ may be made one-third of the resistance $R_{12}$, in which case the voltage across $R_{12}$ will be equal to approximately three times the input, thus making up for the loss in the isolating resistances, giving a final gain at the middle frequencies of unity.

By using terminals A and B an amplification of approximately one-sixth of the amplification due to $V_1$ is obtained if $R_1 = R_{12}$. (Half of the amplification is lost due to the use of the split load $R_1$ and $R_{12}$.) Some increase in the amplification may again be

Component Values (Fig. 12)

- $C_1$ - 0.5 µF.
- $C_2$ - 0.05 µF.
- $C_3$ - 0.005 µF.
- $C_4$ - 0.005 µF.
- $C_5$ - 0.001 µF.
- $C_6$ - 0.1 µF.
- $C_7$ - 0.05 µF.
- $C_9$ - 0.05 µF.
- $C_{10}$ - 0.05 µF.
- $C_{11}$ - 0.01 µF.
- $C_{12}$ - 0.05 µF.
- $C_{13}$ - 0.05 µF.
- $C_{14}$ - 0.05 µF.
- $C_{15}$ - 0.05 µF.
- $R_1$ - 50,000 Ω.
- $R_2$ - 50,000 Ω.
- $R_3$ - 50,000 Ω.
- $R_4$ - 50,000 Ω.
- $R_5$ - 1,000 Ω.
- $R_6$ - 50,000 Ω.
- $R_7$ - 1,000 Ω.
- $R_8$ - 50,000 Ω.
- $R_9$ - 50,000 Ω.
- $R_{10}$ - 1,000 Ω.
- $R_{11}$ - 100,000 Ω.
- $R_{12}$ - 100,000 Ω.
- $R_{13}$ - 100,000 Ω.
- $R_{14}$ - 100,000 Ω.
- $R_{15}$ - 100,000 Ω.
- $R_{16}$ - 100,000 Ω.
- $R_{17}$ - 100,000 Ω.
- $R_{18}$ - 100,000 Ω.
- $R_{19}$ - 100,000 Ω.
- $R_{20}$ - 100,000 Ω.

The numbering of these components is the same as that used in the basic circuits.

[Diagram of the complete tone control unit shown in Fig. 12]
obtained by increasing $R_{12}$ and decreasing $R_1$, but at the expense of the maximum increase available at the low and high frequencies.

The characteristics of the complete tone control unit, as shown in Fig. 12 ($C_5$ and $C_7$ being omitted), can be seen that these results agree closely with those calculated and shown by the curves of Figs. 6 and 11. These curves vary slightly from the calculated due to effects which were not brought into the calculations, one of these being that the voltage independent of frequency does not add directly to the "tone control voltage" due to the inevitable phase shift in the tone control filter. This phase shift occurs in practically all tone control circuits, but fortunately does not matter, since the ear does not discriminate between voltages of different phase, but only of different frequency and amplitude. The "droop" at the high-frequency end of the treble increase curves is, no doubt, due to the loss of the very high frequencies in the amplifying valve $V_2$, due to the stray capacities. This is of little practical importance since it only occurs above 10,000 c/s. It was found that the value of $R_{10}$ should not be made too large otherwise there is a considerable loss of the high frequencies due to this resistance and the input capacity of the valve $V_1$. The characteristics were also measured using terminals A and B, and found to be very similar, except for a reduction of about 20 per cent, in the maximum increase at the high frequencies, most probably due to the effect of the stray capacities across the load $R_1$ of the valve $V_1$. This capacity is not important when terminals A and E are used since the valve $V_1$ acts as a cathode follower having a low output impedance.

The tone control unit was checked for distortion by a double-beam cathode-ray oscillograph and the oscillograms taken are shown in Figs. 14, 15 and 16. On the oscillogram of Fig. 14, the top waveform is the output and the lower waveform the input, both being to the same scale. The input which was fed to the terminals A and E, was 2.5 volts at a frequency of 10,000 c/s with the treble tone control in the maximum position and the bass tone control at the minimum position. Fig. 15 was obtained with the same input to terminals A and E but at a frequency of 1,000 c/s, with both tone controls set at minimum. Both waveforms are shown to the same scale but not to the scale of Fig. 14. Fig. 16 was obtained using terminals A and B with a frequency of 50 c/s, with the bass tone control set to maximum. The actual settings of the tone control are purely arbitrary since the only "volume controls" available were of the non-linear type, these probably being an advantage in actual use. It will be seen that these results agree closely with those calculated and shown by the curves of Figs. 6 and 11. These curves vary slightly from the calculated due to effects which were not brought into the calculations, one of these being that the voltage independent of frequency does not add directly to the "tone control voltage" due to the inevitable phase shift in the tone control filter. This phase shift occurs in practically all tone control circuits, but fortunately does not matter, since the ear does not discriminate between voltages of different frequency and amplitude. The "droop" at the high-frequency end of the treble increase curves is, no doubt, due to the loss of the very high frequencies in the amplifying valve $V_2$, due to the stray capacities. This is of little practical importance since it only occurs above 10,000 c/s. It was found that the value of $R_{10}$ should not be made too large otherwise there is a considerable loss of the high frequencies due to this resistance and the input capacity of the valve $V_1$. The characteristics were also measured using terminals A and B, and found to be very similar, except for a reduction of about 20 per cent, in the maximum increase at the high frequencies, most probably due to the effect of the stray capacities across the load $R_1$ of the valve $V_1$. This capacity is not important when terminals A and E are used since the valve $V_1$ acts as a cathode follower having a low output impedance.

The tone control unit was checked for distortion by a double-beam cathode-ray oscillograph and the oscillograms taken are shown in Figs. 14, 15 and 16. On the oscillogram of Fig. 14, the top waveform is the output and the lower waveform the input, both being to the same scale. The input which was fed to the terminals A and E, was 2.5 volts at a frequency of 10,000 c/s with the treble tone control in the maximum position and the bass tone control at the minimum position. Fig. 15 was obtained with the same input to terminals A and E but at a frequency of 1,000 c/s, with both tone controls set at minimum. Both waveforms are shown to the same scale but not to the scale of Fig. 14. Fig. 16 was obtained using terminals A and B with a frequency of 50 c/s, with the bass tone control set to maximum.

---

![Oscillogram of the output (top) and input (bottom) at 10,000 c/s. with the treble tone control at maximum and the bass tone control at minimum.](image1)

![Oscillogram of the output (top) and the input (bottom) at 1,000 c/s. both tone controls set to minimum.](image2)

![Oscillogram of the output at 50 c/s. with the bass tone control at maximum and the treble tone control at minimum.](image3)
Tone Control Circuit

and the treble tone control at minimum. This record was taken with an input of 1 volt, since with this connection the amplification of the valve $V_1$ is utilised. In all cases the distortion is negligible.

In the arrangement so far described, no facility is made for the reduction of the bass or treble frequencies. This is not always required, since there is normally a reduction in the magnitude of these frequencies due to the high reactance of the condenser $C_7$ at the low frequencies preventing the loading of the output by the valve $V_1$ through the isolating resistance $R_{17}$. This method of cutting the low and high frequency response is far preferable to deliberately reducing the response of the main amplifier at the low and high frequencies as this would seriously limit the treble and bass increase available, since the increase in the output, which decreases in voltage from the valve $V_1$, starts may be altered. The selector switch, so that the frequency at which the increase took place, which is not the case with the above arrangement.

If a more versatile arrangement is desired the condensers $C_8$ and $C_3$ may be varied by means of a selector switch, so that the frequency at which the increase starts may be altered. The values given for $C_2$ and $C_3$ are suggested more as a guide rather than being the most suitable values since they are best obtained by trial, the values depending somewhat on the remainder of the apparatus in the reproducing chain and also to some extent on the individual.

The tone control unit can be modified so that it may be used as a tone-compensated volume control, as well as for tone control. As is well known, if the volume is reduced with the normal volume control the reproduction tends to be become "thin" due to the reduced sensitivity of the ear at low and high frequencies when the volume is low. In order to compensate for this, the bass and treble frequencies should be increased relative to the middle frequencies, as the volume is reduced. This may be achieved in the circuit shown in Fig. 12 by making the resistance $R_1$ in the form of a fixed resistance of say 15,000 ohms with a variable resistance of 150,000 ohms. When the terminals A and E are used, the voltage across the cathode of $V_1$ (the voltage feeding the tone control filters) is nearly independent of the value of $R_1$ and is approximately equal to the input. With the variable resistance at the minimum value the output from the anode of $V_1$ will be at a maximum since the voltage on the anode is approximately equal to $R_{16}/R_1$ of the voltage across $R_1$, which is very nearly the input voltage. This corresponds to the maximum volume position. The bass and treble may be altered by about 10db. by $R_8$ and $R_9$, and should be set for the best reproduction at this volume. As the variable resistance is increased the output from the anode will decrease since $R_{16}/R_1$ is decreased, thus reducing the volume, but since the input to the tone control filters remains the same, the bass and the treble frequencies will increase compared with the middle frequencies, i.e., at half volume they will be twice as great com-

---

**Fig. 17.** Measured characteristics of the circuit as shown in Fig. 12 with $C_2 = 0.01 \mu F$ and $C_3 = 0.003 \mu F$.

- A: Max. bass, Min. treble.
- B: Max. bass, Min. treble.
- C: Min. bass, Max. treble.
- D: Min. bass, Max. treble.
- E: Min. bass, Min. treble.
- F: Max. bass, Max. treble.

---

**Fig. 18.** The upper sketch shows the effect of a normal volume control, while the lower sketch shows the effect of the variation of the variable portion of the cathode resistance $R_1$. **PRIL, 1945**
Wireless World

As a result of conversations that have taken place between the Radio Society of Great Britain, the Post Office and other government departments, the Society recently issued a statement on questions affecting the licensing of amateur transmission after the war. Some of the principal points from the statement are given below. It should be emphasised that final decisions cannot be reached until hostilities end.

It is the intention of the G.P.O. to restore facilities to all pre-war, full-licensed amateurs who make application after a date to be announced later. The G.P.O. is likely to agree that artificial aerial licences shall be abolished, and, if so, pre-war holders of such licences would be able to obtain full licences subject to proof of Morse proficiency. Applicants for new licences will normally be required to pass a Morse test and a simple technical examination, but ex-Service applicants who can produce proof of proficiency may be excused one or both of the tests, depending on the nature of their wireless experience gained in any of the Services.

Three classes of licence are envisaged: A, 25W (telegraphy only except by special application) to all new applicants; B, 150W (telegraphy and telephony) after 12 months; C, high power, for experimental work of scientific value.

The R.S.G.B. has asked that all frequency bands allotted internationally for amateur use should be available; the G.P.O. has also been asked to support the request that, in addition to the normal bands ranging from roughly 1.7 to 60 Mc/s, permission should be given to use the 21-22 Mc/s band as well as a number of new "sample bands" in the VHF region. If it is not possible to continue the harmonic relation beyond 56-60 Mc/s, it is suggested that a new datum point be assigned at, say, 130 Mc/s, doubling to 260 Mc/s, 520 Mc/s, etc. Although it cannot yet be stated whether these requests will be granted, the Society intends to press for the most liberal treatment of British amateurs.

Books issued in conjunction with "Wireless World"

<table>
<thead>
<tr>
<th>Title</th>
<th>Net Price</th>
<th>By Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUNDATIONS OF WIRELESS. Fourth Edition, by M. G. Scroggie</td>
<td>7/6</td>
<td>7/10</td>
</tr>
<tr>
<td>TELEVISION REceiving EQUIPMENT, by W. T. Cocking</td>
<td>10/6</td>
<td>10/10</td>
</tr>
<tr>
<td>RADIO LABORATORY HANDBOOK, by M. G. Scroggie, Second Edition</td>
<td>12/6</td>
<td>12/11</td>
</tr>
<tr>
<td>WIRELESS SERVICING MANUAL, by W. T. Cocking, Sixth Edition</td>
<td>7/6</td>
<td>7/10</td>
</tr>
<tr>
<td>HANDBOOK OF TECHNICAL INSTRUCTION FOR WIRELESS TELEGRAPHISTS, by H. M. Dowsett and L. E. Q. Walker, Seventh Edition</td>
<td>30/-</td>
<td>30/7</td>
</tr>
<tr>
<td>RADIO INTERFERENCE SUPPRESSION, by G. W. Ingram</td>
<td>5/-</td>
<td>5/4</td>
</tr>
<tr>
<td>LEARNING MORSE, 335th thousand</td>
<td>6d.</td>
<td>7/4</td>
</tr>
<tr>
<td>INTRODUCTION TO VALVES, by F. E. Henderson</td>
<td>5/-</td>
<td>5/4</td>
</tr>
<tr>
<td>RADIO WAVES AND THE IONOSPHERE, by T. W. Bennington</td>
<td>6/-</td>
<td>6/3</td>
</tr>
</tbody>
</table>

Obtainable from leading bookellers or by post from

ILIFFE & SONS LTD., Dorset House, Stamford Street, London, S.E.1
Letters to the Editor

Miniature Radio + Technical Training + Television Ethics

Our New Receivers

MAY I suggest that, when post-war production of broadcast receivers gets under way, radio manufacturers call a halt to the inexplicable tendency towards producing smaller and still smaller chassis?

One expects compactness in car radios and in sets designed as midgets, but I have seen consoles and large radiograms in which the chassis has been no much bigger than a cigar box.

From a service-man's angle, apart from any technical considerations, these tiny metal trays, crammed with components and masses of wiring are nothing short of a nightmare.

Perhaps, too, with the advent of a reasonably sized chassis, the weakest link in the modern receiver—the high voltage electrolytic condenser—might give way to the larger but more reliable paper type, and so eliminate at least twenty per cent. of all breakdowns.

S. GOULD.
Swindon.

Future of Miniature Radio

HAS miniature radio any future?

If a Gallup Poll were taken on the subject the general reply would be a definite "No." General opinion seems to be that the public require nothing more than a mains broadcast receiver of a good pre-war standard at a reasonable price, and that a miniature receiver might hold a brief interest as a mere novelty.

But there is a matter of great social concern which is frequently referred to by the B.B.C. : it is the question of the over-noisy wireless set. Engineers and sociologists have sought various ways of finding an answer to noise, but they have failed to look in the right direction. Soundproof flats are not soundproof, and the turning off of receivers at 11 p.m. is only a palliative and not an answer to the problem.

Furthermore, there is an internal problem to be solved in the home. Father listens to the Brains Trust, mother listens to good music, and the children like swing. Under the present circumstances a two-thirds majority have to give way.

What a boon to the family, what a boom for the industry!

C. M. R. BALBI.

"Radio Engineering Education"

Author's Reply

THE Letters on this subject in last month's issue show a nice balance of opinion. I cannot swallow Dr. L. E. C. Hughes's statement that at 22 we are too old to learn: indeed, I now find J. M. Keynes's estimate of 30 rather harsh. I agree that continuity of education is desirable, and that the idea of a sabbatical year in industry is bad. Surely the present long-vacation courses in industry are ideal. They provide an opportunity for meeting the men at the bench, for finding out what a factory is really like, and for getting used to the idea of using the hands to control more than a slide-rule and fountain pen.

Mr. Bayliss is right: I am very impatient, because I suspect that sectional interests are trying to build vast educational empires on the wartime prestige of the older universities. His "authorised textbook" scheme is attractive, but he overlooks the endless committees which would cluster around it, and the fact that a Treasury clerk can write poetry for profit, but a scientific civil servant will get no money for a technical book.

I have left Dr. Drakeley's immoderate outburst to the last. "No case, abuse plaintiff's attorney" is the method he appears to favour. Was it wise, Dr. Drakeley? True, I did not know that "polytechnic" was Greek for "London technical college"; my remarks were intended to apply to all the technicnical colleges, and I think that his was clear in the text. Nor is the organisation of education six hundred years ago relevant. As for his statement about entirely untrained entrants, most of the young men I meet in the laboratories have had a formal training. They can't get jobs unless they have some qualifications, nor are they exempt from military service.

THOMAS RODDAM.
London, S.W.

As one who has had some ten years' experience in industrial training of radio engineering recruits of different grades, I feel that the following comments on your January editorial and Roddam's article are apposite.

The merits of the industrial pre-University year put forward by Professor Willis Jackson are counter-balanced by the disadvantage of a break in educational continuity. The 3-4-year lapse would make a return to the student stage much more difficult, and my own view is that an extension of vacation courses is a more satisfactory solution to an admittedly difficult problem. Roddam's criticism is provocative but not always justified. He ignores altogether the fact that education in its widest sense is undergoing critical examination. An investigation of the causes of failure or reasons for the successes of others should not be ignored by the prudent man, and cannot be classed as "looking over one's shoulder."

The new Education Act does not force a child to decide his
career at the post-elementary stage, though it does (wisely, I believe) guide him into either the practical or academic channel for which he may be suited, and it does not prevent him from making an interchange later if this seems desirable. A wrong attitude of according a lower social status to the technical and modern school has caused us to underrate the worth of the hand worker to the community. Roddam is unduly hard on the polytechnics—I presume he includes technical colleges as well—many of whose faults will be remedied if the McNair report is put into effect. I am glad he stresses the need for better mathematical training. Too few engineers are able to handle one of their most powerful tools.

Yes, "a change in outlook" is required; too many would-be engineers imagine that academic qualifications are all-important, whereas they are of little or no value until they are applied to the solution of practical problems.

K. R. STURLEY.

Other preoccupations have kept me from an earlier reading of Mr. Roddam's stimulating article, and I am now a little surprised to find that I agree with some of it, though not all. First, I agree that for the man who is fit to be a leader of science, engineering or anything else, nothing less than a full-time university course is good enough. Also, I agree that education should not be diverted to specialised technical training before the age of 16; I believe the system of multilateral secondary schools is the best means of avoiding an early division between vocational and liberal education and of facilitating choice of subjects at any age.

To attempt to pre-determine a career at age 11 is most undesirable.

I cannot, however, support the view that works training is necessarily or usually better than polytechnic education, particularly if the latter is part-time day rather than evening. Perhaps few realise the difficulties of the polytechnics when they are asked to cater for (a) matric. and university degree courses, (b) Ordinary and Higher National Certificates, (c) craftsmanship and workshop administration courses, to provide all these both as evening and as part-time day classes, and during the past few years to train at the same time large numbers of Service men from radio mechanics upwards. In spite of this, some polytechnics have produced useful results; apart from the obvious step of paying polytechnic lecturers more than Treasury clerks, I believe the efficiency of polytechnics could be multiplied four-fold by these three reforms:

1. Relieve them of the burden of training men for the Services. (This should happen automatically fairly soon.)
2. Make all university degree courses full-time.
3. Transfer the bulk of evening classes to part-time day. Admittedly, this would impose less full loading on laboratory equipment, but staff is probably the more serious shortage, and the rationalisation of classes which would result from points 2 and 3 would simplify organisation, and give staff a chance to keep up with out-of-class duties, not forgetting the revision of lectures and syllabuses to keep pace with industrial progress.

Polytechnics could then get on with their proper job, which is not to be the poor man's university but to provide instruction in all the arts, crafts and techniques of industry at all levels from the bench to the designs department.

Mr. Roddam's idea of instruction in the factory seems to me very optimistic. Too often the boy who starts as a messenger is left in that job not for a few months but for a year or two, becoming thoroughly bored; and since radio is largely a mass-production industry employing the minimum of skilled labour, how good are the chances that he will eventually get really thorough training in a skilled trade?

The Hankey courses in "physics with radio" at the universities are, I hope, only an emergency wartime measure. Many of the students have made themselves useful in the war effort, but it must be admitted that the time allocated is not sufficient to produce either a good scientist or a good technician, let alone a scientist with a background of radio technology. Those students who have the makings of good scientists should be sent back to the universities to finish their education. (As far back as January, 1943, the War Policy Committee of the American Institute of Physics published a recommendation that, after the war, men with a wartime training in physics who wished to make physics a permanent career should have a further "rounder and maturing" course. See Journ. Applied Physics, Vol. 14, P. 1, 1943.)

The remedy for bad education is not less education, but better education; and although my own place is in industry and not in teaching, I believe that systematic education is better provided by those who can give their full time to it, including the polytechnics, than by the amateurs in industry.

D. A. BELL.

Engineer's Conscience

From time to time great schemes are described for bigger and better television in the future. As an engineer I must agree that the television problem is an interesting one; as a citizen I am uncertain of the virtues of television. To project a sound and an image from a studio to a layman's home is a fascinating activity for the designer. But what is the image to be? No one has yet shown any reason why I should want television in my home. I do not want to see Mr. Alvar Liddell reading the news. I do not even wish to see Mr. Tommy Handley, who has devised a satisfactory technique without the help of vision. [But, surely, with its help he might evolve an even better technique?—Ed.]

Has any study been made of what programmes we can afford to see? A film costs, I believe, about a million dollars: we cannot have a new film every night. The Boat Race and the Derby take place only once a year, at an inconvenient time of day.

I am concerned, Sir, only for the reputation of my profession. If we sell television to the Great British Public because we like working on it, we shall discredit
**Letters to the Editor—**

**Brevity**

"**DIALLIST**" asks (your February issue) why "call it Radar?" I can give one good reason, and that is brevity.

L. H. KENNY.

King's Lynn, Norfolk.

**The Electro-Cardiograph**

With reference to the short article on the Cossor-Robertson Electro-cardiograph for Stalningrad Hospital which appears in the February issue of *Wireless World*, the statement relating to muscle voltage is not strictly correct; the filter circuits employed in the instrument will allow any muscle action voltage within the frequency range of the amplifier to be amplified.

It is therefore essential for the patient to be fully relaxed when taking records, as movement of the limbs will cause action voltages of a low frequency which can interfere with the electro-cardiograph.

The second point which requires correction is in the information regarding sensitivity of the amplifier. Input voltage of 1 millivolt—not 1 microvolt as stated—gives a spot excursion of 2 centimetres.

K. RICHARDS,

(A. C. Cossor, Ltd.)

**Gramophone Records**

Why must gramophone record manufacturers use a gold-coloured metallic dust with which to print the record labels?

The dust succeeds in becoming lodged in the grooves and is almost impossible to remove. The action of placing the record in its envelope is also sufficient to produce this effect.

While on this subject I should like to mention three other thoughts; first, a plea for a stroboscopic edge to all record labels. This edge should be segmented for 50 and 60 c/s. mains.

High Frequency Transmission Lines.


At the present time, when quantity rather than quality is the prevailing characteristic of radio literature, it is an unusual pleasure to read a new book that is authoritative, concise, and original, free from numerous blemishes, and that fills a sharply defined gap. Professor Willis Jackson has written such a book. It is true that many of the larger textbooks contain sections dealing more or less adequately with transmission lines up to frequencies of the order of 100 Mc/s. It is also true that for frequencies higher than about 3,000 Mc/s interest in transmission lines switches over to wave guides. But in between these limits transmission lines almost dominate radio technique, and also manifest various phenomena that can generally be neglected at the lower frequencies. Dr. Jackson's monograph not only does a valuable service in compactly presenting a subject that has hitherto been scattered among various books and papers, but approaches it in a way appropriate to the modern trend towards higher frequencies. His treatment is, in fact, analogous to that of Dr. Lamont's well-known volume in the same series on wave guides, and the two books together cover the subject of modern high-frequency guided-wave transmission systems.

The treatment is, of course, largely mathematical; but the reader whose mathematical knowledge is quite elementary and who cannot follow the derivations from fundamental wave equations will find that the argument is carried along in "plain language" sufficiently for the results and their conditions to be understood. Moreover, before plunging into abstract theory, the author, in a non-mathematical introductory chapter, briefly reviews the numerous applications of transmission lines at very high frequencies. Most of the transmission line treatments that are within the range of the less erudite readers assume (not always with due notice) that the wavelength is very large compared with the cross-sectional dimensions of the conductors, and contain no hint of the effects that become serious when this assumption is not applicable. By strict conciseness Dr. Jackson leaves himself room to deal with the problem generally before going on to offer such simplifications as are permissible under specified conditions.

The volume is valuable not only as a text for the student but also as a reference book for the engineer. It includes formulæ covering most of the cases likely to be met, and tabulated examples showing the degree of approximation on certain assumptions. Although measurement technique is not described in detail, methods are indicated; and the closing chapter and appendices provide data on circle diagrams—the valuable practical aid recently the subject of an I.E.E. paper by the author and Dr. L. C. H. Huxley.

When the book is used for reference it must be noted that the author adopts the M.K.S. system of units, and, therefore, such dimensions as the radii of coaxial conductors are in metres, not centimetres. The reviewer suggests that an index of symbols, referring to the page where each is defined, would increase its usefulness still further for reference. Some explanation might also be given of the oscillator system of Fig. 6, which is by no means obvious. There ought to be early opportunities, resulting from demands for further copies, for introducing such refinements.

M. G. S.

**BOOK REVIEWS**

**Wireless World**

Secondly, the part or side numbers should be larger and plainer and always in the same relative position on the cover.

Lastly, a plea for plain black-on-white or white-on-black labels. When properly designed I believe they would be very pleasing to the eye.

LEONARD G. WOOLLETT.

"It was valve trouble Fred, and a new Brimar valve made all the difference!"

The use of the correct Brimar Valves in a radio set is as good as a guarantee of peak performance. Valves are still in short supply, but you may be able to obtain the Brimar Valve you need.

BRIMAR VALVES

STANDARD TELEPHONES AND CABLES LIMITED, FOOTSCRAY, SIDCUP, KENT.
The right tool for each job

MORRISFLEX Equipment includes Polishing Mops, Felts and Felt Cones. Rotary Rasps for Woodworking. Mounted Points. MORREX Industrial Wire Brushes. REX Rotary Files and Cutters. Sanders & Grinders, etc.

Morrisflex Flexible Shaft Equipment gives stability in insulation. HY-MEG is the right tool for each job. Speed, accuracy and fine finish demand specialised equipment, and in MORRISFLEX Flexible Shaft Equipment you have it. For cutting, filing, grinding and polishing components of aluminium, electron, non-ferrous alloys and ferrous metals it is unrivalled, ensuring the finest results in the shortest time and at minimum cost. Use MORRISFLEX Equipment for scaling, sanding, polishing, tube brushing, removing paint and rust; for rasping woodwork, and many other operations. MORRISFLEX Equipment is available in overhead suspension, bench and floor type machines, the two latter being readily portable.

Write for Catalogue
On Air Ministry, Admiralty and War Office Lists

HY-MEG for modern impregnation gives stability in insulation. More and more leading manufacturers rely on HY-MEG . . . . . . We will gladly advise you.

A copy of the recently printed Brochure "Stability in Insulation" will gladly be sent to those applying on Business Heading or Card and enclosing 2d. to comply with the Control of Paper (No. 48) Order, 1942.

LEWIS BERGER & SONS LTD., (Established 1760) LONDON, E. 9 Phone: AMHerst 3321

Manufacturers of Insulating Varnishes and Enamels
HAD it not been for occasional references to me by my fellow scribes "Diallist" and "Free Grid," the older generation might have supposed that my heater was burnt out, while the purely wartime radio boys would not have known that I had ever excited these pages into fluorescence. The fact is, of course, that my beam has been while the purely wartime radio screen by the present regrettable international situation, which necessitates different activities for most of us. However, the sloppy technical language I see on all sides has built up such a colossal tension that it is X-shifting me back here to flicker acrimoniously for a few brief cycles before fading again from public view. [But not for long, we hope.—Ed.]

So many writers and speakers seem to think it does not very much matter about the technical terms they use being the most correct or appropriate or logical, so long as they have the blessing of custom and, therefore, are understood by the old hands. If the vastly greater number of new hands stumble over them, well, it'll just show how clever they have to be to tackle the subject that we wise old birds have mastered. So it seems.

Now if we were Members of Parliament, with long centuries of custom and tradition to bind us, there might be some excuse for being reluctant to scrap language that is no longer—if it ever was—strictly logical. No large-scale difficulty or confusion is likely to result from referring to switching on the electric lights in the House as "bringing in the candles," and it affords harmless amusement to the occupants of the public gallery. But radio technicians reckon to be among the most enlightened and up-to-date of men, dealing with matters of precision and exactitude. And just now there is strong emphasis on better training. So should we not go to some trouble to remove unnecessary difficulties from the paths of those who will have quite enough to do to enter into so rapidly expanding a field of knowledge?

A writer has recently deplored such "new-fangled terms" as capacitor. Condenser is good enough for him. Maybe it is. I for one still talk about condensers. But I am sure that capacitor is the better word and will ultimately prevail. In the meantime I try to encourage the transition by slipping in capacitor here and there. The longer a reform is delayed the more difficult it is to accomplish, because so many more people become used to the old word. An obstinate refusal to have anything to do with the new one is a drag on progress and a symptom of mental arterio-sclerosis. On the other hand, experience shows that it is generally against the interests of reform to attempt to introduce it too suddenly or too soon. Hence the policy of gradual infiltration and re-education.

Intolerant Old-timers

But why is capacitor better than condenser? As the writer already referred to points out, nobody is likely to confuse a condenser (radio) with a device for converting steam into water. So why bother to uproot a word that has served everybody in radio—or wireless—right from the start up to the present day?

Well, old-timer, try to imagine that you, like thousands of young persons, are just beginning to learn it all now. You are learning that the whole affair is founded mainly on three things—resistance, inductance, and capacitance—(?). If you have a sufficiently tidy mind for it to be worth your while embarking on the job at all you will certainly prefer -ance to -y. It will help to remind you that these three things are all in the same class, of abstract properties.

It is now an established convention in electrical terminology—not only in the radio part of it—that the suffix -or denotes an appliance for doing something, that something being indicated by the main body of the word. So without being told any more, the learner knows the names of components embodying resistance, inductance and—capacitance. At least, he thinks he does, until he is told that a thing embodying inductance is an inductance (or coil), and a thing for capacitance is called—why, heaven knows!—a condenser.

The Americans are not always to be trusted in general nomenclature; a liking for the long word, presumably, impels them (for example) to introduce a four-syllable word, elevator, when our monosyllable lift is quite as expressive (both words fail on the return journey). But in scientific matters their generally more receptive and less conservative minds are readier than ours to scrap things that have nothing better than custom or tradition to keep them going. And so in their technical literature inductor and capacitor are in general use as the names of components embodying inductance and capacitance. Credit is due largely to American example that we have already adopted resistor in place of the ambiguous use of resistance in both abstract and concrete senses. Not long ago, resistor sounded just as "new-fangled" as inductor or capacitor. But now nobody feels self-conscious saying it, and the wartime generation need never know that we old-timers used to go to a shop to buy "a resistance."

An inflexible loyalty to all three of the old words would at least be consistent, and worthy of a certain respect; but what can
What's in a Name?

one say of a state of mind that accepts one of the logical terms and spurns the other two as "new-fangled" — that sneer which has at some time or other been evoked by practically everything that is now accepted as normal and beneficial!

When discussing capacitance it is usual for reference to be made to an electrostatic field, even when it is clear that the field in question may be alternating at a very large number of cycles per second. When the field is varying at such a remarkable rate, what is the purpose of dragging in static, which means stationary? Curiously enough, the authorities who talk about electrostatic fields not uncommonly refer in the next breath—or the preceding one—to magnetic fields. Why not magneto-static? I have never seen or heard any accompanying explanation of what appears, to the open mind of the student, to be an anomaly. My sympathy is with the student. He ought not to be made to put up with this sort of thing. If the energy in an oscillating circuit cannot be referred to in terms of electric and magnetic fields, and they have to be electrostatic and magnetic, it is the duty of the exponent to supply a reason for the lopsidedness.

When two alternative technical terms are equally accurate, the shorter is generally to be preferred. That may be why frequency-changer is so rapidly giving place to mixer. Brevity, however, though it may be the soul of wit, is certainly not top priority where technical terms are concerned. If mixer were technically as good as frequency-changer, I would scrap the latter without hesitation. But here, it seems, the American influence that is so praiseworthily occupied among the -ors, is playing us false. Frequency-changer does tell us the essential purpose and function of the thing. Mixer doesn't. It is much more suggestive of the cocktail bar or building site than of radio technology. Even if it is granted that it refers to something radio, it is not at all clear what. Quite a number of radio devices might at least equally well be so called.

And no wonder. Some of the things called mixers don't even mix. Take the crystal or diode types, used for frequencies too high for hexodes and such like. The incoming signal and the local oscillation have to be added together before they are fed to the so-called mixer. The hexode type certainly seems to have more claim to the title, as it does do a bit of mixing. But there is a very good reason why, of all the varied things that might be called mixers, frequency-changers of all types should be kept out. One of the commonest radio errors is the belief that adding together, or mixing, currents or voltages of two different frequencies, results in the formation of currents or voltages of sum and difference frequencies. Actually, of course, it is necessary to do either of two things—to rectify the mixture, or to vary the amplitude of one of the component signals in proportion to the instantaneous amplitude of the other. Diodes and crystals are examples of the first kind, and hexodes of the second. Calling them mixers is about the best possible way of promoting the fallacy that mere addition of the two component frequencies gives rise to two others.

Adjectival Obscurity

Non-linear distortion is a curious expression. On the face of it, non-linear appears to be an adjective qualifying distortion. If you were to ask an intelligent non-technical man what it meant, he would say he supposed it meant distortion that was non-linear. But the unintelligent technical men who use the term mean distortion that was non-linear. Yet it would not be "non-linear distortion." I know that the habit of using nouns as adjectives may, if carried to excess, lead to dreadful things like the German language. And that non-linear distortion has precedents, such as "The Black Death." But they belong mainly to the age of superstition and inexactitude. I submit that in the interests of clear thinking non-linear distortion should be replaced by non-linearity distortion. A small point, but symptomatic.

There are two alternative words relating to transmission lines that seem to be used indiscriminately (even by the same writers) and neither to have gained the upper hand. They are concentric and coaxial. Now there are quite enough technical terms in circulation for the wretched learner to acquire, without adding to them unnecessarily by using more than one word meaning exactly the same thing. It is not just the slight extra effort of having to learn two words instead of one. It is the risk of confusion and misunderstanding when a student has been reading about concentric feeders and then (elsewhere, or in the same book) comes across coaxial feeders. Or vice versa. It is reasonable to suppose that different names are given because there is some difference, however slight or subtle, in the things named. But the way these two names are used in radio technology, there just isn't.

Obviously, then, one of them ought to be chucked out. But which? Well, by derivation, coaxial means that the axes are common; concentric means that the centres are common. Any cross-section drawing of the feeder in question is concentric, because it consists of circles having their centres at the same point. Coaxial, however, applies to the whole of the feeder itself, and therefore is more precise. The inner and outer conductors could
not be arranged coaxially in any other way than they are in a feeder, but they could be arranged concentrically (i.e., with their centres together) as shown in Fig. 1, which isn’t quite what people have in mind when they talk of concentric feeders.

It irritates me to see grounded-grid, except in American literature, where, of course, it is perfectly consistent and appropriate.

Fig. 1. This pair of feeder conductors is concentric, but not coaxial.

But people who wouldn’t dream of marking the “earth” terminal of a receiver ground, and who habitually talk about earthing this and that, seem to find something wrong with earthed-grid. Why? Just because it would be clear and straightforward and consistent, and so, of course, would never do?

These are some of my pet phobias. I confess that until I began to write this there was another, which has not been able to survive close consideration. It was the statement that the amplified voltage at the anode of a resistance-coupled valve is 180 degrees out of phase with that at the grid.

My objection was that the student, having been informed at the appropriate stage of the course that phase is a time relationship, might get into his head the idea that the process of valve amplification introduces a time delay of half a cycle between grid and anode, and so involve himself prematurely (and incorrectly) in the phenomenon of electronic transit time. And to clinch the thing, Fig. 2 (b) was to show what it meant by a 180-degree phase shift in relation to (a) (one cycle of the signal at the grid), whereas (c) is what actually does happen at the anode. Therefore (it appears) instead of talking about the signal being phase-shifted 180 degrees in the process of amplification, one should say it is inverted.

I am not at all sure that it wouldn’t be better in any case to cut out the 180-degree business in this connection (inverted or upside-down is so much easier for most people to understand), but not for the reason given above. Because, you see, there is a fallacy in it. The real nigger is the “lagging” and “leading” story that is told in lessons on phase. Although these are convenient terms for referring to the relative phases of alternating quantities, they are dangerously liable to lead one to suppose that an actual shift in time takes place. For example, in an inductive circuit the current “lags” behind the generated voltage. If this is understood to mean that, say, positive peaks of current occur at a certain fraction of a cycle later than positive peaks of voltage, well and good. What one is liable to think, however, is that each positive peak of current is related to the preceding positive voltage peak, through a sort of delaying action introduced by the inductance. This idea comes up against a horrid difficulty when leading currents are considered; the student, if bright, sees that his time-shift idea was false, or, if not so bright, decides to accept the thing as part of the general mystery of electrical science. And that is a thoroughly bad thing.

Looking again at Fig. 2, suppose (a) is an isolated cycle of voltage applied to an entirely inductive circuit in which “the current lags the voltage by 90 degrees.” Does the resulting current cycle look like (b) except for being 90 degrees behind instead of 180 degrees? Not at all. The current starts at the same time as the voltage, and its waveform is quite different from that of the voltage. It is only after a large number of similar voltage cycles have followed continuously that the current wave takes on the same shape and a 90-degree lag.

Wireless World

Our cover photograph shows stages in the construction of a Mullard “all-glass” valve. The envelope, a partially finished assembly, and a complete valve (without “getter”) are illustrated.

All-Glass Valves

Our cover photograph shows stages in the construction of a Mullard “all-glass” valve. The envelope, a partially finished assembly, and a complete valve (without “getter”) are illustrated.
SCREENED TESTING BOOTHs
Protection Against Electrical and Acoustic Interference

Freedom from electrical interference, as well as from acoustic noise, is essential for the routine factory testing of radio equipment. It is generally achieved by carrying out testing in well-screened cubicles within the factory. The design of these cubicles can present quite a problem, especially when the equipment to be tested happens to be extremely sensitive ultra-high-frequency apparatus and the nature of the tests are such that no extraneous interference whatsoever can be tolerated. Such was the problem which recently confronted the technical staff of Ultra Electric, by courtesy of which firm this description of how the problem was solved by them is published.

With the help of Post Office engineers a design was finally evolved for a screened unit comprising three separate cubicles, each measuring inside approximately 11ft. 6in. long, 6ft. wide and 6ft. 9in. high. With a 3-ft. wide bench along one side there is just sufficient room for the occupants of the cubicle to move about in comfort. As the bench runs the "long" way of the booth it accommodates quite a considerable quantity of apparatus.

Basically the electrical screening consists of a box within a box; the two are joined together at one point only and from this common connection a short stout earth lead is taken. Each of the three cubicles is constructed in this fashion and each is further enclosed in a double skin of sound-proof material. The electrical screening is carried out with 30-SWG copper sheet and all joints are soldered. The earth lead consists of a length of 2-in. X ¼-in. copper bar connected to a large copper earth plate buried beneath the concrete floor of the factory. A separate earth is used for each cubicle. Inner and outer copper skins are about 6in. apart. The general arrangement of the cubicles is shown in the accompanying drawing.

Describing the design as basically a box within a box enables the general form of construction to be visualised, but there are certain details that require amplification. For instance, means of entry capable of perfect sealing, as well as a supply of fresh air for the workers, must be provided.

Each cubicle is fitted with two sliding doors, one forming a part of the inner copper skin and the other completing the outer screen. These run on rails fixed to the floor and guides keep the door in position at the top. One face of each is covered with copper sheet,
whilst round the edges are phosphor-bronze brushes, which in the closed position ride over a copper-covered inclined ramp forming the jambs, lintel and step of the entrance. Furthermore, each door is wedge-shaped when viewed from the top or bottom, the thick end of the wedge being the trailing edge of the door. The accompanying photograph shows the entrance with the doors pushed into their recesses on the right. There can also be seen the two rails on which the doors run, the tapered copper-covered floor ramp, and the contact springs on the leading edge of the doors. There is also an outer hinged door to complete the acoustic screening.

Ventilation is provided by two apertures in the roof of the cubicle closed by two sheets of copper gauze soldered to the surrounding copper sheet of the inner and outer skins respectively. A shallow box is built above each aperture and in one are housed an electric air fan and tubular electric heaters. Both apertures are lined with sound-absorbing material.

Electrical supplies inside the cubicles comprise two separate AC sources of different frequency and one low-voltage DC circuit. These supplies are very thoroughly filtered, both inside and outside the cubicles, the filters being mounted on copper panels fixed to the inner and outer screening walls. On the outer wall is a panel similar to that shown in an accompanying photograph, but in place of switch boxes are three anti-interference suppressors.

The circular plates seen on the wall are special UHF filter condensers. Two of these are used in each input line, one on the inner wall and another on the outer. Of G.P.O. design, these filter to an insulated lead-through spindle and forms the "live" condenser plate. The "earthy" plate is the recessed container, which is bolted directly on to the copper wall of the booth.

The effectiveness of the screening system as a whole was demonstrated by operating a fairly high-power UHF transmitter immediately outside the booth and "looking" for a signal on an oscilloscope connected to a sensitive receiver inside one of the cubicles. No trace whatsoever could be found of a signal from the outside with the doors closed. Opening the doors completely filled the screen of the CR tube.
When I read S. W. Amos' article in last month's Wireless World, it brought back memories of an attractive mahogany box. The lid was hinged with a piano hinge, and on being raised revealed an ebonite panel with three, or was it four, terminals and a condenser dial. I was proud of that wavetrap, which must have cost as much as a 1939 midget receiver, and which never seemed to have much effect. It was time to be reminded that a wavetrap can be a very cheap device, and that properly designed it can be very useful.

There is one very interesting addition which can be made to the ordinary wavetrap to improve its performance. This trick is well known in some applications, but does not seem to have been generally applied. It is, in fact, regarded as a rather highbrow text-book device, although actually it is a simple and practical circuit.

The usual wavetrap circuit is shown in Fig. 1. The anti-resonant frequency of the LC circuit is rejected, as at this frequency the circuit has a very high impedance; the rejection efficiency for a given L/C is proportional to the Q of the circuit for high values of Q. In practice, no one is going to make a wavetrap unless the signal to be rejected is a serious nuisance; therefore, the design should be such that the maximum rejection is obtained. Maximum Q and maximum L/C ratio will therefore normally be adopted. Unfortunately, maximum L/C ratio broadens the rejection bandwidth and maximum Q means careful coil design. We therefore turn to the circuit of Fig. 2 (a); in this, the coil has been tapped at its centre and a resistance returned to earth from this point. This "cancellation resistance" enables an exact balance to be found at the rejection frequency and thus gives the effect of a tuned circuit of infinite Q. Of course, this improvement must be paid for somehow; at the frequency of the wanted signal there is a small loss of energy due to the presence of the short resistance. We shall see, however, that the resistance value is of the order of 10,000 to 100,000 ohms; the loss introduced is therefore very small.

For the particular circuit of Fig. 2 (a), the value of the shunt resistance is given by \( R = \frac{1}{\omega L Q} \), where \( \omega \) is \( 2\pi \times \) rejection frequency, and Q is the value of \( (\omega L/R) \) at the rejection frequency, \( R \), being the coil resistance. If we have a 200 \( \mu \)H coil, and wish to reject a frequency of 798 kc/s (\( \omega = 5 \times 10^6 \)), we find that \( R = 250 \Omega \) ohms.

A coil having a Q of 40 will therefore require a resistance of 10,000 ohms; a Q of 200 will require 50,000 ohms. Still higher values are obtained as we increase rejection frequency or inductance and a carbon track variable resistor of about 500,000 ohms maximum value will be found convenient for most medium-wave circuits.

It is much easier to set up this circuit if the adjustments are made in the right order. The resistance should be at its maximum value while the capacity is being adjusted. When a minimum output of unwanted signal is obtained, the value of \( R \) is reduced until a minimum signal variation is obtained. Often it will be found necessary to retrim the capacity when \( R \) has been adjusted, as the anti-resonant frequency is not exactly \( 1/2\pi \sqrt{LC} \). Any attempt to adjust \( R \) before \( C \) is nearly correct will lead to utter confusion.

A number of variations on this simple theme are known. For example, the centre-tap can be...
provided by a twin condenser as in Fig. 2 (b). A series-tuned shunt insertion wavetrap can be designed to have the circuit of Fig. 3 (a) or 3 (b), and in each of these two circuits the series-tuned arm appears to go down to a complete short circuit at the resonant frequency.

![Wireless World](image)

**Wireless World**

If we use the particular circuit of Fig. 2 (b), we have $Z_1 = 1/jwC$ and therefore

$$Z_B = -1/(a^2C^2(R + 2jwC))$$

Writing

$$Y_B = 1/Z_B$$

$$Y_B = -a^2C^2 + 2jwC$$

The use of resistance cancellation is not restricted to wavetraps. Any filter circuit which has as its principal function the rejection of a single frequency can be improved by this method. Two particular examples are "class" power pack design, in which an anti-resonant circuit is included as a series element in the smoothing circuit, and in home recording using a compressor with a pilot tone to drive the reproducing expander. It is rather important to notice the qualification in the second sentence of this paragraph. Only a politician will offer you something for nothing; engineers, and the statesmen of my party, never do this. The following reasoning is tempting: resistance cancellation increases the effective $Q$; the rounding of filter cut-off is the result of a bad $Q$; therefore filters can be improved at cut-off by cancellation. This is not true; cancellation works only at a single frequency; at the cut-off, frequencies the total losses are increased by the added resistor and there is, if anything, rather more rounding.

**APPENDIX**

The cancellation circuit is the bridged-T of Fig. 4 (a); this can be converted into Fig. 4 (b) by the usual star-delta transformation.

![Fig. 4](image)

**Fig. 4.** The original bridged-T circuit (a) can be rearranged to the form of (b) by the usual star-delta transformation.

The admittance, $Y_3 = 1/Z_3$ is in parallel with this, so that the total admittance of the series arm ($Z_2Z_3$) is

$$Y_3 = 1/Z_3 = R_L - a^2C^2R(R_1^2 + a^2L^2) - jwL + 2jwC(R_1^2 + a^2L^2)$$

$$R_1^2 + a^2L^2$$

and

$$R = \omega^2L^2/4R_1$$

Thus we see that the cancellation resistance is proportional to $Q$, and the rejection frequency is not exactly the $1/2W/LC$ value.

The analysis for the various other forms can be carried out in the same way, either by transforming $Z_2Z_3Z_4$ into a $\pi$ network, or $Z_2Z_3Z_4$ into a T network.

**AMATEURS' HANDBOOK**

We are informed that the Radio Amateurs' Handbook for 1945, published by the American Radio Relay League, is expected in this country in a few weeks' time.

Copies will be obtainable direct from A. F. Bird, 66, Chandos Place, London, W.C.2, price 12s. 6d., postage 7d.

The handbook can also be ordered through the Radio Society of Great Britain, New Ruskin House, Little Russell Street, London, W.C.1, for delivery from America in about three months' time, at a cost of 10s. 6d. For security reasons, the handbook cannot be sent from America to Services or Government establishment addresses.
THE long-awaited Report of the Government Television Committee, appointed under the chairmanship of Lord Hankey in September, 1943, was presented to Parliament on March 8th.

Readers of Wireless World will be familiar with many of the ideas expressed in the recommendations and conclusions, for these have been the subject of discussion in the pages of this journal for many months past. We do not, therefore, propose dealing very fully with the mass of information contained in the Report, which is obtainable from the Stationery Office, priced 6d., but to confine ourselves to the salient points.

It should be pointed out that the Report contains recommendations only and is not, therefore, conclusive.

It is recognised by the Committee that whilst the pre-war standard of definition (315 lines) gives a satisfactory picture in the home, it is inadequate for large-screen projection. It is, however, recommended that the television service should be restarted on the old standard rather than await the development of a new system. The assumption is that the two systems would be operated side by side for some time.

The opinion of the Committee is that the definition should eventually be of the order of 1,000 lines. It is understood the responsibility for the resumption of research work on the problems relative to cable and radio links between stations will be assumed by the Post Office.

The Committee recommends that the Postmaster-General should be granted the necessary powers to enforce the suppression of electrical interference.

Each of the three possible sources of revenue for the television service, namely, domestic licences, cinema licences and sponsored programmes, has been considered by the Committee. A licence fee of 4s. 6d. for domestic television reception, in addition to the existing sound broadcasting licence, is suggested. A special licence for cinemas is also recommended. Sponsored programmes could not be expected to provide a substantial contribution towards the cost of the television service in the early stages. "In these circumstances, and without prejudicing the matter for the future, we feel it would be premature to come to a conclusion on this question."

Cinemas in general are likely to await the advent of the new system before installing television projection equipment.

The co-ordination of research under Government auspices is recommended.

The Television Committee having prepared the plans for the reinstatement and development of the television service after the war, for which purpose it was appointed, recommends the setting up of a permanent Advisory Committee.

ANTI-U-BOAT RADAR

FROM an enemy spokesman—Admiral Dönitz—came the first public tribute to radiolocation as an anti-submarine weapon of the United Nations.

"At the end of 1943 and the beginning of 1944," he said, "the development became very obvious which long ago, even in peacetime, had been feared, that the enemy might deprive the U-boat of its essential feature—the element of surprise—by means of radiolocation. With these methods he has conquered the U-boat menace."

"The scientists who created radiolocation have been called the saviours of their country. So, it was not superior strategy or tactics that gave him success in the U-boat war, but superiority in scientific research."

"Germany made the great mistake of calling up her scientists into the Armed Forces instead of letting them continue their researches."

Britain did not make this grave error. Her scientists were immediately marshalled on priority research within and without the Armed Services. The Admiralty, for example.
employing over three thousand scientists in its various laboratories and departments, has gone a step further than in any other country and embodied them into the Royal Naval Scientific Service.

**Radio Repairs**

The question of licensing radio supply and repair shops was recently raised in the House of Commons. In reply, the President of the Board of Trade said that new retail shops which supply wireless goods require a licence under the Location of Retail Businesses Order. But, to ensure the widest possible facilities for repairs, a general licence has been issued enabling anyone to "carry on the business of repairing his customers' goods without requiring an individual licence."

**What They Say**

Railway Radio.—I am advised that there is as yet no wireless apparatus which would afford a satisfactory remedy for the failure to observe signals. It is not present at present to carry out the experiments required to perfect this apparatus. I hope that this work will be undertaken after the war.—Philip Noel-Baker, Parliamentary Secretary to the Ministry of War Transport, replying to a question on the possibility of engines being fitted with radio-telephony.

**Tribute to B.B.C.**—One of the great virtues of the B.B.C. is that extremists on both sides of the House dislike it so much.—Brendan Bracken, in the House.

**Rights of Man.**—All men have the inalienable right to transmit and receive free of all controls. Letters addressed to the inalienable right to transmit and receive by means of radio.—Brenden Bracken, in the House.

**Wireless World**

W.H. Nottage has retired after 34 years' service with Marconi's W.T. Co. For the past 17 years he has been Joint Chief of the Patent Department. He is succeeded by Dr. G. F. Brett.

**Personalities**

Keith Henney, editor of our New York contemporary, Electronics, has been awarded the plaque of honour for 1944 at the Rochester Fall meeting of the American Institute of Radio Engineers. The award was made for "his many years of unselfish service to the radio and electronic industry through the technical press.

**Meetings**

Institution of Electrical Engineers


*Informal Meeting*—"Electrical Aids to Public Speaking," discussion to be opened by D. G. A. H. Vaught, B.Sc., April 23rd.


British Institution of Radio Engineers

*North-Eastern Section.*—"Dielectric Heating by the Radio-Frequency Method," by L. G. Grinstead, April 18th, at 6.00 at the Neville Hall, Westgate Road, Newcastle-on-Tyne.

**Royal Society of Arts**

MAQUIS RADIO
A Personal Story from France

By E. AISBERG
(EDITOR, "TOUTE LA RADIO")

A vivid first-hand picture of the part played by wireless in the French resistance movement. Our contributor, who used to write for Wireless World before the fall of France, tells us that his own journal, Toute la Radio, and also our other French contemporary, L'Onde Electrique, are due to resume publication as soon as paper is available.

It was on August 20, 1944, that the people of Paris rose against the German oppressors. On that very day, mixed with the first rifle shots and bursts of Tommy gun fire, Parisians heard a new voice—that of free Paris Radio. Not the hated voice of German-controlled Radio-Paris and its Vichy lackeys; not even the voice of the B.B.C., which for four years had been for millions of Frenchmen a source of hope, courage and truth. The new voice came from Paris itself on a wavelength of 206 metres and with a power of 0.5 kW.

The fact that a broadcast transmitter was functioning under the very noses of the occupying forces was all the more difficult to explain as we knew that the Germans had either removed or destroyed the gear of all the six stations in the Paris district. In fact, the only one eventually found to be capable of repair was the Villebon station (24 kW, 386.6 metres) which resumed transmissions on September 2.

It was not until the final liberation of Paris that the mystery was cleared up. In preparation for the insurrection transmitters had been secretly constructed in unit form in several large radio factories. When the day came, only a few interconnections were needed to put the gear in operation. It was in this way that the station built by the Sadir firm became the first to make heard the voice of insur- gent Paris during the great days of August.

At about the same time a 200 W transmitter built by the Société des Procédés Loth started work on 41 m. Four days later, the Société Française Radioélectrique started up a 1.5-kW transmitter on 31.19 m., and a station built by L.M.T. began work on 312.8 m. with the surprisingly high power of 12 kW.

To appreciate the difficult condition under which these transmitters were set up, the reader should know that all large radio factories were, during the occupation, under the control of German supervisors. These were generally competent engineers who had formerly worked for such firms as Telefunken, Lorenz or A.E.G.; such men could not be bluffed into mistaking a master oscillator for a valve voltmeter!

Two Vital Problems. — Those who worked for the resistance movement were faced with two fundamental problems: to ensure communication with London and also between the different resistance groups and units of the Maquis. In both cases radio presented the best, and often the only, solution. To this end, the construction of clandestine transmitters was carried out by many radio firms in the face of grave difficulties at every stage.

And what difficulties there were! Components such as valves, quartz crystals, morse keys were almost unobtainable. The Germans had even seized all high-power AF output valves such as 6Lo's, in the fear that they might be used for transmission. As already stated, the factories had to submit to rigorous control. Moreover, the transport of transmitters brought about great risks. One of my friends, who bore the nom de guerre of Regenton, was aboard a tramcar at Lyons, loaded with a bulky transmitter of which the wrapping paper was torn, showing the panel with its control knobs and meters. A German officer saw the gear and, assailed by suspicion, asked what it was. With perfect imperturbability, Regenton answered: "electro-medical apparatus." Fortunately, that closed the incident.

Eluding the German DF.—It is easy to guess how assiduously the Germans hunted the clandestine transmitters. For this purpose they made use of numerous mobile DF equipments, of which some were installed in ordinary touring cars of the most innocent appearance.

Several methods were used to throw the German DF off the track. For communication with London we used fixed transmitters, generally installed in densely populated built-up areas. Three transmitters, working on the same frequency but situated at different points, divided between themselves the transmission of a single message, following a strictly observed and carefully worked-out time schedule. For example, transmitter A would stop sending in the middle of a sentence at the end of three minutes. Transmission would then be taken up by station B, which in its turn would be followed by C, and so on. The effectiveness of the method was such that the Germans were never able to trace by DF methods the source of transmission. The only
time that they succeeded in arresting (at Lyons) a resistance group
thus there arose an urgent need for a radio communication
system. With the help of a brave manufacturer at Thonon, the
author undertook the assembly of low-power transmitters. Receiver
components were the only ones available, and a thousand-and-one
difficulties had to be overcome before the desired results were
achieved. For example, receiver-type variable condensers were
found to act as spark-gaps when a voltage of 500 was applied across
them! To remove half the rotor and stator plates and then to
equalise spacing with washers is not nearly so easy as it sounds!
I am not going to boast of the modernity of the gear that we set
up. Push-pull oscillators, without frequency control . . . ; there was
nothing up-to-date about our transmitters. But they worked,
and, on wavelengths between 60 and 80 metres (which proved most
suitable for mountainous country), they proved quite reliable.
We also managed to pick up an American transmitter from a Flying
Fortress which made a forced landing near Abondance, close to
the Swiss frontier. After arranging for the safe conduct of the
crew into Switzerland, we stripped the aircraft of all its wireless and
electrical apparatus, machine guns and other useful gear. When a
German patrol arrived, an hour after the crash, nothing remained
except a useless shell. Unfortunately, we could not get the radio
gear working before the Liberation, as we lacked the necessary
high-capacity accumulator.
It will be evident that all the brutal efforts of the oppressor
failed to stop a people struggling for its liberty from displaying pro-
digies of ingenuity and perseverance to keep contact with friends,
both abroad and in the interior. In this struggle radio waves,
which ignore Gestapo barriers, played a leading part.

Wireless World

With the Maquis in Haute-Savoie. — A year after the occupa-
tion, as a result or denunciation to the Gestapo, the author of these
lines was forced hastily to leave Paris for Haute-Savoie, there to
breathe the free air of the mountains. This health trip gave him
an opportunity to take part in the formation of the first Maquis
groups and to follow the evolution of the active resistance movement.

At the beginning of 1944, the Germans, seriously perturbed by
the growth of the resistance forces, tried, with the help of bands of
traitors who formed the infamous Militia, to carry out vast mopping-
up operations. These operations were preceded by a number of
preliminary measures, which included the limitation of movement
along the roads, of movement within specified regions, and the
suppression of telephone communications.

This last-mentioned measure proved particularly troublesome,
as it deprived the Maquis of means of communication between
groups; it was no longer possible to give warnings when the enemy
was sending out punitive expedi-

"SOLON"
LOW-VOLTAGE
IRONS

Two new models have been added to the range of "Solon" electric
soldering irons made by W. T. Henley's Telegraph Works. They are
designed to work with 12 or 24 volts and the rating in each case is
65 watts. In addition to the replaceable pencil bit type shown above,
there is a model with a heavier oval tapered bit.

See that FLUXITE is always by you — in the house — garage —
workshop — wherever speedy soldering is needed. Used for
over 30 years in Government works and by leading engineers
Ask to see the FLUXITE POCKET BLOW LAMP, price 2/6.

TO CYCLISTS! Your wheels will
not keep round and true unless the
spokes are tied with fine wire at the cross-
ings and soldered. This makes
a much stronger wheel. It's simple — with
FLUXITE — but IMPORTANT.

The FLUXITE GUN puts FLUXITE
where you want it by
a simple pressure.
Price 1/6, or filled.

ALL MECHANICS WILL HAVE

FLUXITE
IT SIMPLIFIES ALL SOLDERING

Write for Book on the ART OF "SOFT"
SOLDERING and for Leaflets on CASE-
HARDENING STEEL and TEMPERING
TOOLS with FLUXITE. Price 1d. each.

FLUXITE LTD.
(Dept. W. W.), Bermontsey Street, S.E.I
The voltage of AC mains is varying all the time, by small amounts and with considerable rapidity, due to fortuitous changes in the loads connected to the system. These changes find their way to the output side of a power-pack. It is very interesting to connect a power-pack output through a blocking condenser and amplifier to a cathode-ray tube; if the amplifier has a reasonable performance down to 10 c/s or less, the output voltage will be seen to be subject to violent and random variations. It would be a bad case where the variations exceeded a fraction of a volt, but they can be a greater nuisance than slow variations of larger amount.

There are several well-known stabilising circuits, all of which are characterised by features which have disadvantages in wartime. The output current in many cases has to be passed by a large valve, or by a battery of valves in parallel; or gas-discharge stabilising tubes are needed; or the load is paralleled by a large valve so that the total current always equals the full-load rating.

The circuit to be described removes almost the last trace of ripple from the output of a power-pack. At the same time it removes all but the slowest of those variations due to mains voltage fluctuations.

The components needed are of standard type, easily procurable even in wartime. In essence the arrangement consists of a normal power-pack, with ordinary smoothing designed to reduce the ripple to a value well within the capacity of an ordinary triode. This triode has a low anode-circuit resistance, and acts as an amplifier, giving phase reversal but neither loss nor gain. By this means the normal ripple is neutralised. Simultaneously, if the time-constant of the grid circuit of the triode is large, relatively slow variations superimposed on the ripple are also neutralised.

Analysis shows that, in Fig. 1, \( R = \frac{1}{g_m} \) where \( g_m \) is the mutual conductance of the valve. \( R \) must have a value designed to give a suitable grid bias, and this value clearly depends on the fixed load current. \( C \) should have very low leakage, and should be as large as possible, say, up to 2 microfarads; \( R \) should be 1 megohm. A large condenser or a further decoupling circuit is essential, across the output terminals, to lower the impedance presented to voltages arising in the load. For an MH4, \( R \), should be about 300 ohms, and for the best results the final adjustment of value should be made with the aid of a cathode-ray oscilloscope. Due to the presence of \( R \), the voltage regulation is made worse by about 1 volt for every 3 mA in the load.

Fig. 2 shows a modification suitable for, say, a laboratory power-pack which may be used on various fixed loads without further adjustment. The performance is independent of the load, but this is at the expense of voltage regulation. \( R \) should now have a value of \( \frac{1}{g_m} + \frac{1}{R} \) \( (1 + \frac{1}{\mu}) \). Using an MH4, \( R \) can be 750 ohms, and \( R \), will have to be 1,070 ohms. But again, for best results, adjustment should be made by the use of a cathode-ray oscilloscope. The resistance \( r \) is included to limit grid current when the load is suddenly increased; it can be 50,000 ohms. The voltage regulation is here made worse by about 1 volt for every milliamperc in the load.

In both these circuits there is little objection in using output voltages up to 350. The MH4 is not likely to be damaged so long as the anode dissipation is kept below 2.5 watts, because the anode voltage variation is small.

The author's examples built to these circuits have shown a residual ripple of not more than one millivolt in 300 volts. Moreover, the random jumpiness of output voltage has completely disappeared.

The chief application has been the supply to oscillators. In this case the oscillator portion of the instrument is connected to the semi-stabilised output, whilst the anode circuit, grid circuit and cathode circuit of the power stage are connected to the unstabilised power-pack direct; the chassis and case are also, for safety, connected to the negative end of the power stage supply, and to one output terminal.

The circuit of Fig. 1, which is believed to be almost a traditional method of "electronic smoothing," was brought to the writer's attention by his colleague, Mr. C. Stokes. We have not been able to trace any actual reference to it, but the full implications brought out by this note are believed to have some novelty.
The discussion was opened by A. H. Cooper, B.Sc., who pointed out that the success of valve standardisation depended on the extent to which valves could be made interchangeable, and therefore on the stringency of current conditions of use. In about 1930, most valve applications could be met equally well by valves from different manufacturers, but since then the demand for higher performance for a given cost and the choice of operating conditions depending on parameters which the valve maker finds it uneconomical to test or control has impaired interchangeability. If valve standardisation was to work it would be necessary for valve and circuit engineers to agree not only on the types of valve required, but in reasonable ways of using them. If standardisation were not to act as a brake on progress, this "code of practice" must be kept alive and ahead of the needs of users.

In the discussion which followed several speakers underlined the danger that standardisation might act as a brake on progress, but it was pointed out that this difficulty would not arise if agreement were restricted to types performing established functions. One speaker thought that about ten types could be standardised at once and that these should be sold at a lower price. Valves outside this group could then compete for a place on the standard list on their merits.

A specific proposal for valve standardisation which had appeared recently* was criticised in detail and it was generally agreed that there was need for wider discussion between valve manufacturers and receiver designers to ensure that the types finally decided upon would be acceptable to all concerned. This was particularly necessary in the case of multiple types where the interests of the set designer and the valve manufacturer were to some extent opposed.

Standardisation of valve bases and the physical dimensions of valves presented no insuperable difficulties and it was agreed that one or at most two types of base would meet present-day requirements. It was disclosed that a committee appointed by the British Radio Valve Manufacturers' Association is already working on the question of standardising physical dimensions.

The standardisation of valve characteristics would be dependent on agreement not only on the characteristics which it was desirable to measure but also on the method of measurement. Several speakers called for an extension of standardisation to what may be called the secondary parameters of the valve. Valves with ostensibly similar main characteristics might differ widely in their secondary parameters owing to differences in the technology of manufacture. Against this it was argued that there was an economic limit to the number of tests which could be employed in each case and that in general only those characteristics related to the function for which the valve was intended could be controlled. It was not reasonable to ask the manufacturer to test for all the ways that the ingenuity of "wicked or clever people" might devise for using a valve outside the scope of its normal function.

It was pointed out that there was a brief period when we had complete valve standardisation—this was just after the first and before the second valve had been made! That ideal state would never again be approached, in the view of Mr. Cooper, who replied briefly to the discussion, for it was now clear that a valve was very like a cheese; its manufacture was a complicated blend of mechanical, physical and chemical processes. Some degree of standardisation was possible in the salient characteristics, but there would be subtle and often obscure qualities which should not be exploited because they were understood and could be brought under stable control.

The new Vortexion 50 watt amplifier is the result of over seven years' development with valves of the 6L6 type. Every part of the circuit has been carefully developed, with the result that 50 watts is obtained after the output transformer at approximately 4% total distortion. Some idea of the efficiency of the output valves can be obtained from the fact that they draw only 60 ma. per pair no load, and 160 ma. full load anode current. Separate rectifiers are employed for anode and screen and a Westinghouse for bias.

The response curve is straight from 200 to 15,000 cycles in the standard model. The low frequency response has been purposely reduced to save damage to the speakers with which it may be used, due to excessive movement of the speech coil.

A tone control is fitted, and the large eight section output transformer is available to match, 15-50-125-250 ohms. These output lines can be matched using all sections of windings, and will deliver the full response to the loud speakers with extremely low overall harmonic distortion.

**Price (with 807, etc., type valves) £18.10.0
Plus 25% War Increase**

**Many Hundreds Already in Use**
Supplied only against Government Contracts

---

* Presumably this refers to the new Dutch valves which were described in the February issue of this journal. [Ed.]

---

**Vortexion Ltd.
257, THE BROADWAY,
WIMBLEDON. — S. W. 19.
Phone: Liberty 2814**

---
A Great Man

It was with profound regret that I heard a few days before writing this of the death at the age of 72 of Dr. Charles F. Burgess, founder and president of the Burgess Battery Company of America. I had known him well for some twenty years, both from his letters and on his visits to this country. In him science in general and wireless in particular lose a great enthusiast in particular lose a great enthusiast in science in general and wireless communication.

Burgess was a very rare combination of a scholar and a big business man. His early career was academic. After brilliant years as a student and graduate, he became Professor of Metallurgy in the University of Wisconsin, and during his tenure of that office made contributions to the science of metallurgy which received wide recognition. In the course of his researches he investigated the decomposition of zinc in primary batteries and came to the conclusion that the dry cell, as it then was, was a long way from being as efficient as it could be. This led to the formation, in quite a small way, of a dry battery manufacturing company, which was destined to become one of the largest and most important in the world. Metallurgy was by no means his only subject: he was an expert in electricity and acoustics, and was responsible for many inventions and developments in both. With all his attainments he was the most modest of men. A stranger meeting him for the first time would quickly appreciate his brilliance, his strong sense of humour and his charm. I am sure that many railway travellers in this country formed such impressions of the unknown American whom they met in a third-class smoker — he liked travelling "third" because, he said, you met interesting people that way — but I am equally sure that no word of his gave any clue to his eminence or his wealth. Though I had a standing invitation to his home, I was never able to visit him there, for I was not in America between the two wars.

The graphical method of solving parallel "R" or series "C."

Vertical scale reading on the right-hand edge corresponding to X and the work goes merrily forward. With good graph paper and the kind of practice in making interpolation in scale readings that comes the way of most wireless and electrical workers, you can obtain remarkably accurate results in this way.

"Argumentum ad Feminam"

Speaking of interpolation reminds me that one of the most difficult jobs in training radiolocation girls was to teach them to read accurately the many meters that they had to use. The only dial, I suppose, that most of them had ever read before was the face of a clock, and such a thing as "ten and a half minutes to ten" was as near as any of them had previously got to the art of interpolation. As very few had even a nodding acquaintance with decimals, we had to teach them first of all something about these; this was also necessary because they had to know the meaning of a metre as a measure of wavelength. The best way, I found, was to rub into them that an inch is roughly 2.5 centimeters and a metre a yard plus ten per

Series "C" and Parallel "R"

In last month's issue of Wireless World, "H. E. S." described an interesting and useful method of working out the results of combinations of series capacitors or parallel resistors by reversing the slider of a slide rule. There's an even simpler and quicker method (see Wireless World, Sept., 1942) which answers admirably so long as round-figure answers are all that are needed. This is the graphical, illustrated in the accompanying figure. Let's suppose that we have, to take a simple example, R1 of 20,000 ohms in parallel with R2 of 30,000. On a piece of squared paper draw a base of AB of any convenient length. Draw AC 20,000 units long and BD 30,000 units long. Join CB, DA: Drop a perpendicular from X. Then XY represents the resistance of the combination, and XY measures 12,000 units. If the combination is of three resistors, say 20,000, 30,000 and 15,000 ohms, proceed as before with any two of them. Then, using YH as the lase, joining EY and py gives the answer — in this case 6,666 ohms. The proof? Here it is. From similar triangles

\[ \frac{XY}{BD} = \frac{BY}{AC} \]

Adding:

\[ \frac{XY + AC}{BY + BD} = \frac{XY + AB}{BY + BD} \]

Divide by XY

Then,

\[ \frac{BD + AC}{XY} = \frac{XY + AB}{BY + BD} \]

Or,

\[ \frac{1}{R1} + \frac{1}{R2} = \frac{1}{R} \]

The "Rescapper"

This method proved so useful that I made up a little resistance or capacitance calculator, which I call the Rescapper. It consists of a sheet of good graph paper stuck on to a piece of cardboard. The paper is marked off on the vertical edges into units suitable for resistors (right) and capacitors (left). At the points corresponding to A and B in the figure holes are pierced, and through these are passed fine silk threads. The ends on the underside of the board being knotted to prevent them from being pulled adrift. To the far end of each thread is fixed a small lead weight, or "mouse." To work out any problem concerning combinations of series capacitors or parallel resistors the simplicity itself. Instead of ruling lines you stretch the threads and read the resultant (XY) of any combination of two series capacitors or parallel resistors from the appropriate scales. If there are more than two of them, one thread is laid after the first operation from A to the
cent., and then to get them to work out their own waist measurements and heights in metres. They became very keen on the metric system when they found how much easier it was to discover the cost of 3.25 metres of material at 64.50 francs than that of 3 yards at "seven-eleven-three"! The next step was to make each draw a line exactly one inch long and then to make a dot at an estimated "point four" or "point seven," afterwards verifying with a ruler. Then they had to read large dummy dials or to set their pointers to given figures. After that they soon grew expert with voltmeters, ammeters, and so on. They were, in fact, as keen as mustard and quick to learn, and soon became good at finding rapidly and with all the accuracy called for the answers to problems such as: "A half-wave dipole is so many feet and inches long; what is the frequency of the apparatus connected to it?" Not bad for ex-shopgirls, ex-factory hands, ex-typists and ex-waitresses! A good many of them, I think, will astonish their former employers, if they return to the jobs that they had in civil life.

Protecting Joints

Some joints, as for example, those between fine wires and those where you want the end of a piece of flex soldered to a tag or a terminal to remain rigid, need rather more solid protection than that afforded by ordinary insulating tape. I had a job the other day (actually the "electrification" of a hot-plate or "sluggard's joy" previously heated by spirit lamps) where something of the kind was needed and the experiment then made proved so successful that I pass it on. As the joints in question were liable to get pretty hot, they were made with hard solder and given a preliminary binding with stranded asbestos string. Next, a two-inch plaster-of-paris bandage was bought from the chemist and about a foot of it torn into strips half an inch wide. A strip was rolled up, damped as per directions on the box, and then wrapped tightly over the asbestos. These bandages set hard in a few minutes and you then have a joint as rigid and as well protected as you could wish.

GOODS FOR EXPORT

The fact that goods made of raw materials in short supply owing to war conditions are advertised in this journal should not be taken as an indication that they are necessarily available for export.
RF COUPLINGS

The circuit shown in diagram (a) acts as a transformer coupling between the two tuned circuits A and B, giving a voltage ratio which is inversely proportional to the two capacities \( C_1, C_2 \). The arrangement is distinguished from the ordinary two-circuit type of transformer coupling by the fact that it is not subject to the stray capacity losses as the coupling is tightened. The whole network, comprising the series inductances \( L_1, L_2 \) and the shunt capacities \( C_1, C_2 \), is resonant to the working frequency; and so are the two component circuits \( L_1C_1 \) and \( L_2C_2 \). A screen \( S \) prevents stray capacity coupling between the two circuits.

<table>
<thead>
<tr>
<th>Screened RF couplings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ L_1 ]</td>
</tr>
<tr>
<td>[ C_1 ]</td>
</tr>
<tr>
<td>[ S ]</td>
</tr>
<tr>
<td>[ C_2 ]</td>
</tr>
<tr>
<td>[ L_2 ]</td>
</tr>
</tbody>
</table>

A Selection of the More Interesting Radio Developments

Imaginary cylindrical surface, being interconnected by metallic strips and, if necessary, by phasing elements to a common receiver. The spacing is such that each dipole is situated at a point of maximum pick-up from the modulated carrier. This occurs when the carrier is at its maximum frequency deviation, and is best determined in practice by making a preliminary trial with an unmodulated wave adjusted to that frequency.

**USW SETS**

The baseplate or chassis of the set also serves to provide the major part of the inductance of the circuit. As shown in diagram (a), a flat rigid plate \( A \), preferably of silver-plated brass, is made with a central aperture \( S \), having an open-ended slot, across which a variable tuning condenser \( C \) is connected in shunt, as shown in diagram (b). The plate acts as the equivalent of a single coil, its inductance depending upon the area of the cut-away parts.

**RECEIVING CENTIMETRE WAVES**

Instead of using an ordinary aerial, the incoming signals are intercepted by a slotted baffle plate. This gives rise to an interference or diffraction pattern at the rear of the slots, where one or more dipole-crystal detectors are arranged at points of maximum field strength. The system is particularly suitable for phase- or frequency-modulated signals transmitted on a carrier wave of the order of centimetres; it obviates the use of ordinary resonant circuits.

For a FM carrier of one centimetre, the baffle plate should include at least 100 slots, each 1 cm. wide and 10 cm. long, with a mutual spacing of from 1 to 10 cm. The receiving dipoles should be 0.5 cm. in overall length and may be distributed over an imaginary cylindrical surface, being interconnected by metallic strips and, if necessary, by phasing elements to a common receiver. The spacing is such that each dipole is situated at a point of maximum pick-up from the modulated carrier. This occurs when the carrier is at its maximum frequency deviation, and is best determined in practice by making a preliminary trial with an unmodulated wave adjusted to that frequency.

**PUSH-PULL AMPLIFIERS**

The two valves \( V_1, V_2 \) feed television signals to a transmission line without using a transformer. The line, or low impedance load, represented by the dotted line resistance \( R_3 \), is included in the cathode circuit of the valve \( V_1 \) and in the anode circuit of the valve \( V_2 \), the grid of the latter being coupled to the anode of the former through a condenser \( C \).
<table>
<thead>
<tr>
<th>Type</th>
<th>Screen Diameter</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECR. 60</td>
<td>6&quot;</td>
<td>£7. 7. 0</td>
</tr>
<tr>
<td>ECR. 35</td>
<td>3½&quot;</td>
<td>£6. 6. 0</td>
</tr>
<tr>
<td>ECR. 30</td>
<td>3&quot;</td>
<td>£3. 3. 0</td>
</tr>
</tbody>
</table>
Hermetically sealed to resist heat and moisture

B.I. MOULDED TUBULAR CAPACITORS

Manufactured in a wide range of capacities and for working voltages up to and including 6,000 D.C. For high-voltage operation they provide the most effective solution where size and weight are important considerations and are designed to operate continuously in extremely arduous conditions of temperature and humidity. Manufactured in three sizes and supplied with soldering tags at each end, or alternatively with one soldering tag and a stud for base fixing.

BRITISH INSULATED CABLES LTD.
Head Office • Prescot • Lancashire

FOR THE RADIO SERVICEMAN DEALER AND OWNER

The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful!

Special terms for Members of H.M. Forces and discharged disabled members of H.M. Armed Forces

You may use this Coupon

INTERNATIONAL CORRESPONDENCE SCHOOLS Ltd.
DEPT. 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C.2
Please explain fully about your Instruction in the subject marked X
And the following Radio Examinations:—
British Institution of Radio Engineers.
P.M.G. Certificates for Wireless Operators. City and Guilds Telecommunications.
Wireless Operator and Wireless Mechanic, R.A.F.

Name
Age
Address

AUDIO AMPLIFIERS & SUB-ASSEMBLIES STANDARDS

In addition to Standard Amplifiers the activities of Acoustical include Special Amplifiers for Industrial Applications, Microphones, Transformers, Coil Winding, Sheet Metal Work, Stampings, Switch Assemblies, etc.

ACOUSTICAL MANUFACTURING CO. LTD.
HUNTINGDON • TEL 361

Varley TRANSFORMERS and CHOKES
For RELIABILITY SEND US YOUR ENQUIRIES

OLIVER PELL CONTROL LTD.
CAMBRIDGE ROW, BURRAGE ROAD, WOOLWICH, LONDON S.E.

Remember-Walter
RADIO STAMPINGS • CHASSIS • PRESSINGS
FARM LANE, FULHAM, S.W.6. TELEPHONE: FULHAM 5234

C.W.C.4
POST-WAR PLANNING

Why not let us handle your transformer problems?

If transformers are employed in the equipment you manufacture, we shall be glad to give you the advantage of our experience and the same efficient service that has won the confidence of the Government Experimental Establishments and of the Leading Industrial Organisations.

The solution of individual problems has for many years formed a part of our normal day's work. The production in quantity of PARTRIDGE TRANSFORMERS has been built upon the unique knowledge thus accumulated.

Telephone: 2244

PARTRIDGE TRANSFORMERS LTD
78-80 PETTY FRANCE, LONDON W.1

Thermonic Valve Circuits

By Emrys Williams. Incorporates the theory of the operation and design of thermonic valve circuits, and constitutes a convenient text-book dealing exclusively with the subject, suitable for universities, technical colleges, etc. Second Edition. 12s. 6d. net.

Cathode Ray Oscillographs

By J. H. Reyner, B.Sc. (Hons.), A.C.G.I., D.I.C., A.M.I.E.E. An easily understood guide to the whole subject of Cathode Ray Tubes to numerous purposes, including the examination of oscillations or wave-forms. 8s. 6d. net.

Short-sweep Valve


Radio Simplified

By John Claricoats. Provides a useful background of fundamental principles. There are many clear, interesting diagrams and chapters illustrating the practical application of Cathode Ray Tubes to modern developments in the use of the short, ultra-short and micro-waves. Third Edition. 6s. net.

Books

N.B. Paper rationing means a shortage of books. Those marked * should be temporarily out of stock.

Parker Street, King's Lynn, W.C.3
A SOUND SUCCESS
Three New Constructors Kits, delivery from stock.
(A) THE BROADWAY A31 AUDIO AMPLIFIER
32 watts, two 6L6's in Push Pull with Neg. Feedback Mixer Stage for TWO INPUTS. Tone Control, smoothing throughout by Paper Condensers. A very compact, heavy duty choke and three transformers, with six condensers. A most compact assembly, heavy-duty choke and three transformers, with six valves, chassis size 16-12-4. Absolutely new design. £35.
(B) THE BROADWAY RECEIVER IN CABINET (Model G)
Four-valve AC mains, TRF receiver of most advanced design. A greatly improved version of the January model. Now fitted with specially designed RF coils, tone control, etc. A photo reproduction upon application. The complete kit ready to wire up, with four valves and speaker. £11 11s. 9d.
(C) THE BROADWAY A19 AUDIO AMPLIFIER
15 watts, two 696's in Push Pull, a most useful amplifier for gramo. and Mike. Perfectly suitable for small halls and club or factory entertainments, the complete outfit, with five valves. £4. Absolutely new design. £3.

THE BROADWAY A32 AUDIO AMPLIFIER
32 watts, two 6L6's in Push Pull with Neg. duty choke and three transformers, with six Condensers. A most compact assembly, heavy Feedback Mixer Stage for TWO INPUTS. specially designed RF coils, tone control, etc. of the January model. Now fitted with and speaker. 611 Ils. Od.

26 Advertisements

ARMSTRONG

ARMSTRONG has always had the name for Quality.
When this war has been brought to a successful conclusion our new range of ARMSTRONG CHASSIS will prove that our reputation was built on a firm foundation.

ARMSTRONG WIRELESS & ELECTRICAL CO. LTD.
WARTERS ROAD, HOLLOWAY, LONDON, N.7.
(Phone: NORth 3213)

REWARDS


A.D.S. Co. 291-3, Lichfield Road, ASTON, BIRMINGHAM, 6

TRANSFORMERS & COILS TO SPECIFICATION.

MANUFACTURED or REWRound.

STANLEY OATTELL LTD.,
1-11, East Street, TORQUAY, Devon.

Times: Torquay 3198.

SELECTTEST

is Coming

will interest every Electrical and Radio Engineer.

SALFORD ELECTRICAL INSTRUMENTS LTD. PEEL WORKS • SALFORD • 3198
C. G. RAyll, 36, Huron Rd., S.W.17—Mail order only; no c.o.d. under £5.TWO-WAY SCREENED FLEXIBLE, GOOD QUALITY, 1/4 INCH WITH 6' CONNECTION, AND COTTON OUTER COVER, 1/9 YD. 4-WAY 2-3 YD.TEN-WAY CABLE, GOOD CONDUCTORS, 1/3 YD. 2 YD.Spit, 3/9. OCTAL 8-PIN PLUGS WITH BASE, COMPLETE WITH INSTRUMENT CABLE, 1/3 GUAGE, WITH SOLDER TAGS TO TAKE HEAVY GAUGE WIRE, 1/4. 3/3.GORINAGATE LONG SPINDLE 10,000 VOLTS, CON. LESS, 2/3. DIAL PLATES, OBLONG, 5/6 2/5 APPROX. KARL 4, FOR USE IN POTS.CURTIS 4-BAND DIAPHRAGM, 8X5, A.W. ON LOWER TIER.MICROPHONE CAPACITIES BY STANDARD TELEPHONE AND TELEGRAPH BUREAU, 10,000 VOLTS, LARGE SPINDLES, 5,000 OHMS, 3,500 OHMS, 3/9 EA. INPUT STRIPS, 2B X 15 IN., 2-WAY 2-DIODE; WITH TERMINAL SCREWS, FITTED OR MOUNTING STRIPS, 2/3 DIODE, 5 SPECIES.SPEAKERS, 150 WATTS, 150 V.O.C., 1500 OHMS, ALL TYPES, 10/6 Ea. MORGANITE LONG SPINDLE 10,000 VOLTS, CON. LESS, 2/3. DIAL PLATES, OBLONG, 5/6 2/5 APPROX. KARL 4, FOR USE IN POTS.
SPECIAL OFFERS!

- D.C. MOTOR GENERATORS by E.D.C. and others, for use with Receivers to take the place of H.T. Batteries. Drives off 12-volt accumulator and gives 230 volts D.C. 30 m.s. output. Originally made for Government Radios. Two commutators, ball bearings, laminated field, insulated brush gear, covered armature and commutator. New condition. 75/-.

- MOVING COIL HEADPHONES, P.M. less headbands. Advantageous here is a wonderful opportunity to secure highly sensitive headphones with coils energised by the famous ALNI magnets. These moving sound units have 45 ohm, 3 inch coils. They can also be used as miniature mikes, or as a miniature loudspeaker if matching transformers are used. See 6” in overall, in bakelet case with 3” front grille. As new. Price each 4/- or pair 7/6.


- For other bargains see page 29 of this issue.


- MANSBRIDGE I mfd. 750 Condensers, 3/6. Hunt’s MICA 0.01 md., 1/-. 122 Pushback Wire, 250 yard coils, 30/-.

- "PREFECT" Trimmer Tool Kits. 12 tools and 2 extension handles, box spanners and screwdrivers in carrying case, 30/-. 12- volt Car Vibrator with 2 extension handles, box spanners and screwdrivers in carrying case, 30/-. 12 tools.


- "AMERICAN MIDGETS HANDBOOK." Describing with many circuit diagrams the peculiarities of small American (Midget) Radios. Especially written for service men, most likely felicitous and their readers with hints on working circuits for unattainable parts are given. The value data section gives bases of working information of the 6th or 8th midget used in midgets.

- Price 2/-

- "VIBRO-ARC" Engraving Pen

- From booksellers or by post. 2, 3.

- "W. BRYAN SAVAGE LTD.

- "HOLBOROW, 97, Boroughbridge, Yorks.

- "AFTER THE WAR!"

The advance in Radio Technique after the war will offer unlimited opportunities of high pay and secure posts for those Radio Engineers who have had the foresight to become technically qualified. How you can do this quickly and easily in your spare time is fully explained in our unique handbook.

- Full details are given of A.M.I.E.E., A.M.B.T.I.E. City & Guilds Exams, and particulars of up-to-date courses in Wireless Engineering, Short Waves, Teleprinter, Mathematics, etc. etc.

- We Guarantee "NO PASS—NO FEE"

- Prepare for this examination and obtain your comprehensive handbook by sending for one of these very informative 1½-page guides NOW FREE.

- BRITISH INSTITUTE OF ENGINEERING EDUCATION LTD. 381, Southwark Place, London, W.1
A SPECIAL!
FREQUENCY MODULATION (F.M.)

We can supply a KIT DF PARTS for con-
structional tuition and instruction and investigation of this latest
development in Radio Transmission.

A complete 4 valve stage—
valve, discriminator transformer, 
condenser, resistors, blue-print and instruc-
tions for 15/-

Price £3.10

Mains Transformers

300-200-180 ma.
L.T.: L.T. 6 3 v. 5 a.; 4 v. 4 a.; 2 v. 8 a.;
M.E.X. 250 ma., 4 v. 4 a., 2 v. 8 a.
M.E.D. EXTRACTED LANDS, with high insulation.
200/240/240/240 Volts Tappings.
45/- post 1.5.

Output Transformers

Standard Pentode, mains 7 ma. 220/-
Standard, small 8 ma. 260/-

I.F. Transformers

450 ec., with trimmers, screened.
Small, 25/-

M.G.D. H.F. Chokes
2 6.

4-VALVE, 4-WATT
GRAMOPHONE AMPLIFIER CHASSIS

Assembled on black Crackle-finished chassis.
Electro-static and S.S. Cabinet.
Control with on/off switch, sockets for micro-
phone, headphones, record changer, etc.
Hum free, good quality reproduction. A.C.
and D.C. for all uses.
Price 30/-

Theoretical and Practical Blue Printer of the
full details to W. H. Trace and Son, Ltd., 13,
Harlesden, N.W.10. (2155)

We offer cash for good modern communica-
tion receivers, is. 6d. each.

British Radio, Ltd.

Radio, 44, Widmore Rd., Bromley.

(1541)

CONTRACT ELECTRIC CO., Ltd., National
Hammarlund or Hailforster SX.28, perform-
ance & cond. as new, excel. price—Box 3581.

WANTED, semi-automatic (bug) telegraph
keyboard and accessories.

W.T.D., any cond., Avo 7, working order not
acceptable.—Box 4012.

WANTED, tetrode amplifier, latest switch 
panel type, also an all-wave oscillator.

R.D. Box 3584.

WANTED, H.M.V. or Garrard, 4 valve,
on—42, Rabbacombe Rd., L. pool, 16.

REPAIRS AND SERVICE

We temporarily be discontinued as from 15th Jan-
time to private customers must tem-
our loudspeaker repair service to
period no repairs can be accepted. (3469)

We regret that our loudspeaker repair service to
原有, new, used, radio, electri-
ship, and on electrical, assembly, wiring, soldering.

_-plus.

or 'phone to University Radio, Ltd., 22, Lisle

T.1001.-79, Allesley Old Rd., Coventry. (3637)

radio, test equinment, etc.—Par- •

FF 7 panel type, also ac all-wave oscillator.

Redlands Hotel, Sheffield, 10. (3596)

WANTED, low priced, complete, 12. 6v.

WANTED, Institution of Electrical Ro.

NATIONAL, H.R. Senior, power pack, 9.

L.pool, Liverpool.

WANTED, Institution of Electrical Engi-

NATIONAL, H.R. Senior, power pack, 9.

L. pool, Liverpool.

WANTED, Institution of Electrical Ro.

NATIONAL, H.R. Senior, power pack, 9.

L. pool, Liverpool.

WANTED, Institution of Electrical Ro.

NATIONAL, H.R. Senior, power pack, 9.
P.A. AMPLIFYERS

range output 2.5 ohms. to 15 ohms. Fitted two volume

PRODUCTION ENABLES

cabinets. for microphone, gramophone and radio terminals. Multi-

Output 15 watts, 5 valves, 200-250 A.C. Pre- Amplifier

including  lin. threaded shank. 3¡in. Supplied with nut

springs ensuring a perfect contact. Overall length, in-

The illustration shows

mechanism of syn-

range and easily re-

settable. Large selec-

tors;

connections diagrams free.

PRECISION OPTICAL SYSTEM,

accurate and inexpensive.— Details from A.A. Standards— S. Green. 44-45, Tamworth Rd.,

We have been

moving—our new

address is

No. 15, Silverdale,

Sydenham, S.E.26.

Voigt Patents

Ltd.

COVENTRY

RADIO

Component Specialists since 1925

WIRE WOUND VARIABLE RESISTORS, with knob, 10, 50, and 100 ohms.

WIRE WINDS, mains transformers, layer wound, 3/6 ; 0-10 mA, 63 -. Amplifiers, 5 w., £ 16 10s.;

BERRY'S (SHORT WAVE) LTD.— for Quality RADIO and ELECTRONIC

EQUIPMENT. C.R. Tubes, 12, 25, 31, 41, 61, 64; 8, 61-5, 71; 0-10 mA, 63 -. Amplifiers, S.w., £ 16 10s.;

15 w., 25 gns.; 30 gns., £ 30 gns. jugs, £ 13.11.6; Dual, 14,21C. Ceramic S.W., £ 0.1, £ 0.1, £ 0.1.

midget, £ 0.01, £ 0.01, £ 0.1; 15; 15-20 mA, 63 -. Amplifiers, 25 w., £ 25 mfn.;

39-40 m.f., £ 39-40 mfn.; 75 mmf., £ 75 mfn.; 15, 30, 50 and 400 ohm. 3/3

ROMAC RADIO CORP., LTD.

THE HYDE. HENDON. LONDON N.W.9

Designers and Makers of

RADIAL & ELECTRONIC DEVICES

PETROL ELECTRIC GENERATING PLANTS, H.T.

Generators, D.C. Motors, Frequency

Changers, etc., up to 25 K.V.A.

CHAS. F. WARD

37, WHITE POST LANE, HACKNEY WICK, E.9

BATTERY CHARGERS & TRICKLE CHARGERS

Telephone : Amherst 1.793

www.berry.com

30 Advertisements

WIRELESS WORLD April, 1945

25 HIGH HOLBORN, LONDON, W.C.I.

(Telephone : HOLborn 6321)
MANUFACTURERS.—Radio engineer and dealer wishes to contact component manufacturers with a view to stock their products.—Please send full particulars, Box 3399.

MODERN shop facilities made in all metals and plastics to customers' requirements; precision machining, drilling, milling, grinding, experimental work strictest confidence; quotation against sketches.—Forster, 28, Herstey Ave, D Orsay, Leicester.

SYMPHONY ENGINEERS, manga, 200-250 volts ac, 50c, self-starting, fitted reduction gears; ideal mechanisms for time switches, industrial, darkroom, electric clocks, etc; roller operate 200 and 500 series available; 1 rev 12mins; 1 rev 20mins, consumption 2/4; 1rev, 30mins, 1/8; REV, counters ex-metres drum type, 0.999, automatic zero on completion of cycle; 3/4 each.

PROJECTION lenses, In focus, ideal for 9 or 16mm films, oxidised mounts, 1/4 in long, 1/4 in diameter, 1/4 each: terminus 100 series: each with packing 1/4.—H. Franks, Scientific Stores, 58, New Oxford St., W.C.1. Mux 5994.

LEARN Morse code the Candler way—See our Classified Advertisement on page 17, Stratford Place, London, W.C.1.

Eng "In his Wireless World Advertisements 31

MAJOR-GENERAL, 504, HARLESDEN, N.W.10

246, HIGH STREET,\n
acteristics and data, AERIALS, telescopic, nickel-plated, \n
JOHN BULL & SONS, LTD., REDDITCH, WORCS.

(See our Classified Advertisement on page 31.)

TUBGEAR, 4/5, 12/10; VP2, 3X1, 29/4, 6/9.

LARGE-HANDade. 4, 9.

HARLESDEN, N.W.10

246, HIGH STREET,\n
acteristics and data, AERIALS, telescopic, nickel-plated, \n
JOHN BULL & SONS, LTD., REDDITCH, WORCS.

(See our Classified Advertisement on page 31.)

TUBGEAR, 4/5, 12/10; VP2, 3X1, 29/4, 6/9.

LARGE-HANDade. 4, 9.
Situations wanted

Merchant Marine radio officer, with 5 years' experience, interested in post-war position in Vancouver, with view to junior partnership in radio business. Box 3385

Radio engineer, 30, exempt, at present engaged in development work, would like to connect with an organization able to offer a progressive position; 8 years with present firm. Box 3386

Merchant Marine officer, technical, with production experience Australian Commercial Broadcasting Network. Would like to work in continental U.S. commercial broadcasting; also consider Australian representation of radio interests. Write Box 3396.

Technical training

A.M.E., City and Guilds, etc., on "No pass—no fee" terms; over 90% successes. For full details of post-war courses write to Mr. C. L. D. Knibbs, 32 Advertisements WIRELESS WORLD APRIL, 1945

Patent notices

Radio electric patents. Well-known London radio component manufacturers are open to consider patents or designs for post-war period. Write Progress, c/o Alfred Bates & Son, Ltd., 125, Finsbury, London, E.C.4.

Technical training

A.M.E., City and Guilds, etc., on "No pass—no fee" terms; over 90% successes. For full details of post-war courses write to Mr. C. L. D. Knibbs, 32 Advertisements WIRELESS WORLD APRIL, 1944.

Radio spares

Clear as a Crystal

AND HERE IS THE REASON...

• • • the answer has been found in Bullers Low Loss Ceramics to the problem of Dielectric Loss in High Frequency circuits.

Years of laboratory research and development have brought these materials to a high degree of efficiency. To-day they are in constant use for transmission and reception, and play a vital part in maintaining communications under all conditions.

Made in Three Principal Materials

FREQUELEX—An Insulating material of Low Dielectric Loss, for Coil Formers, Aerial Insulators, Valve Holders, etc.

PERMALEX A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLEX—A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.

Bullers
LOW LOSS CERAMICS

BULLERS, LTD., THE HALL, OATLANDS DRIVE, WEYBRIDGE, SURREY
Telephone: Walton-on-Thames 2451. Manchester Office: 196, Deansgate, Manchester
TCC MICA CONDENSERS
Pre-eminent in Peace—Indispensable in War

Advertisement of the Telegraph Condenser Co., Ltd.