NEW HIGH-QUALITY AMPLIFIER
The Research Engineer knows that the best speaker for any set is one that offers complete reliability plus true tonal fidelity. After exhaustive tests his advice is always the same —fit Rola and relax!

Rola Speakers

Their Quality Speaks For Itself

British Rola Ltd • 8 Upper Grosvenor Street • London W.1
Radio manufacturers, service engineers, workshops and laboratory technicians are familiar with the precision and dependability of "AVO" Electrical Testing Instruments. Long years of successful experience in the design and manufacture of first-grade instruments have produced a consistently high standard of accuracy which has become a tradition as well as a standard by which other instruments are frequently judged.
Series 35
MINIATURE
MOVING IRON
INSTRUMENTS
by PULLIN

Provided with clear, open scales 3½" long. Flush pattern moulded cases. Well damped; suitable for D.C. & A.C. up to 100 cycles. Readings independent of wide variations in wave form. Movement of spring-controlled, repulsion type with high torque/weight ratio. Ammeters self-contained to 50 amps; power consumption does not exceed 1VA. Voltmeters self-contained to 500 volts; power consumption 1.5VA.

MEASURING INSTRUMENTS (PULLIN) LTD
Dept. 1, Great West Road, Brentford, Middlesex. Ealing 0011

Series 35 Moving Iron Voltmeter.

Series 35 Moving Iron Ammeter.
THAT'S Fixed THAT!

Type CA 725.

Fixing knobs to shafts. Sounds simple but if you're a radio manufacturer you know what a headache is can be. The Spire fixing was designed to solve that particular problem. The CA 725 is made to measure for shafts of various diameters. Then it is snapped into position in the hub of the knob and the knob pushed straight on to the shaft.

Don't think of Spire as a 'kind of nut'. It is a great deal more than any nut. It is a simplified and sure method of fixing. Especially awkward fixings.

Every time a designer or production engineer decides to use some form of Spire fixing, he puts a few thousand (or a few million) nuts and washers out of a job. No more fumbling and holding the bits together with one hand while you get to work with the other. Spire fixing can tackle and simplify most light assembly jobs. The best thing is to send us the job—or the drawings. If a Spire fixing will improve the job we'll design it for you and show it to you in a week or two. Then you can judge for yourself.

* A BETTER way of fixing

Simmonds Aerocessories Limited
Wharfedale

NEW GOLDEN 10 inch LOUDSPEAKER...

During the last six years hundreds of Wharfedale Golden Units have been supplied, and are still being supplied, to the B.B.C. and G.P.O. It was selected by reason of its level response. The new model is fitted with precision die-cast chassis, improved spider, and Alcomax II Magnet increasing the flux density from 10,000 to 12,500. Delivery time 6/8 weeks.

Made and Guaranteed by
WHARFEDALE WIRELESS WORKS
BRADFORD ROAD, IDLE, BRADFORD
Telephone: IDLE 461. Telegrams: Wharfdel, Idle, Bradford

Speech coil
3 or 15 ohms impedance
PRICE 75/-

ISOLATION FROM VIBRATION

NEW VIBRATION ELIMINATORS

"EQUIFLEX" MOUNTINGS

AN INVENTED PRODUCT

"Equiflex" Mountings are invaluable for the mounting and suspension of machines, equipment, instruments, electrical apparatus, motors, etc., and wherever elimination of vibration and shock is required.

SPECIAL FEATURES
Flexible in all directions at an equal deflection. Can be loaded on any side, thus eliminating vibration in Vertical, Horizontal and Longitudinal planes employing best quality natural rubber spring elements and complete with snubbing device. Special Fittings made to suit customers' requirements.

Also available as previously advertised, the ALL-METAL construction comprising an ingenious Damped Spring System.

Write for illustrated brochure, and send us details of your requirements.

A. WELLS & CO. LTD. (Dept. W.W.),
STIRLING ROAD, WALTHAMSTOW, LONDON, E.17
"Phone: Larkswood 2691"

KILICK'S Sapphox REPRODUCING INSTRUMENT

Here at last! A REAL GEM

KILICK & COMPANY, 118 FLEET STREET, E.C.4
Telephone: FLEET 2929
Manufacturers of Scientific Recording Instruments, Amplifiers, Radiograms, Cutting Stylus, Discs, Playback Sapphires, etc.
The remarkable accuracy of the DUBILIER PRECISION WIRE WOUND RESISTOR is due to its scientific construction. A slotted high insulation ceramic former is wound with enameled resistance wire of not less than 0.0014" diameter. During winding the wire is subjected to tests to eliminate accidentally shorted turns and to ensure the essential high standard of insulation between turns. Contact between resistance element and terminals is by the exclusive DUBILIER moulded metal method which removes the possibility of weak, non positive or noisy connections. All units are suitable for use up to 50 Kc/s. Full technical details on request.
PRINCIPAL FEATURES

- **TUBE.** 3½ in. diam. Blue or green screen.
- **Shifts.** D.C. thus instantaneous on both axes.
- **AMPLIFIERS.** X and Y amplifiers are similar. D.C. to 3 Mc/s 24 mV. r.m.s. per cm. or D.C. to 1 Mc/s 8 mV. r.m.s. per cm.
- **TIME BASE.** 0.2 c/s to 200 Kc/s. Variable through X amplifier 0.2 to 5 screen diameters. Single sweep available.

The Type 1684B Oscilloscope has proved itself an exceptionally useful instrument in the television laboratory—it is provided with high gain, wide band amplifiers on both axes which serve to portray pulses such as those associated with television excellently and good pulse widths are obtainable on the screen.

PRICE £100

SEE THIS INSTRUMENT AT STAND No. D1679
B.I.F., OLYMPIA, MAY 5th - 16th

ALL-POWER

Constant Voltage Power Supplies

MODEL 1108-5

One of our low-priced industrial units.

LET ELECTRONIC STABILIZATION SOLVE YOUR POWER SUPPLY PROBLEMS

ALL-POWER TRANSFORMERS LTD.
8a Gladstone Rd., Wimbledon, S.W.19
Telephone: LIBerty 3303

SPHERE INSTRUMENTS

Introducing the

ALL WAVE

SIGNAL

GENERATOR

A portable Signal Generator for AC. Mains operation. Specially developed by SPHERE as a high class instrument, for general Laboratory and Workshop use, it is the ideal instrument for the aligning and testing of radio receivers and amplifiers.

This is a specially designed Generator embodying several new and unique features and improvements which radio engineers will find invaluable.

All "SPHERE" Test-instruments are entirely British made with highest quality materials and workmanship and carry a SIX Months' guarantee.

- **Continuous Frequency coverage from 100 Kilocycles to 56 Megacycles, in six bands.**
- **Exclusive "SPHERE" SEE AT A GLANCE" Band and Attenuator indicators.**
- **Built in ladder attenuator, giving 1 Volt maximum, in five steps, in multiples of 10 Microvolts.**
- **Radio and Audio Frequency Voltages can be switched via single Test-lead.**
- **Variable control of 400 C.F.S. audio, from 0 to 1 Volt.**
- **FOR RADIO SERVICE, RADIO ENGINEERING AND LABORATORY USE.**

Write for List No. 505 S.G.

SPHERE RADIO LIMITED
Radio Instrument Manufacturers
HEATH LANE, WEST BROMWICH.
POINTERS FOR DESIGNERS

THE KTW61

A screened tetrode with suppressor plates and with variable-mu characteristics, the OSRAM KTW61 is specially suitable for use as an R.F. or I.F. amplifier in superhet receivers. Its outstanding features include:

- High order of mutual conductance (2.9 mA/Volt) combined with low leakage capacitance (0.0025 μF), which facilitates high stage gain.
- Negligible distortion with the maximum signal likely to be encountered in practice. Conditions of use— as an I.F. amplifier with screen dropping resistance, and in conjunction with OSRAM frequency changer X61M.
- Marked improvement in signal to noise ratio, particularly on the short waves, when used as an R.F. amplifier with fixed screen voltage.

A detailed technical data sheet is available on request.

Osram
PHOTO CELLS

G.E.C.
CATHODE RAY TUBES

Osram
VALVES

LEWIS BERGER & SONS LTD.
(Established 1760)
35, BERKELEY SQUARE, LONDON, W.1 Telephone: MAYfair 9171

MANUFACTURERS OF INSULATING VARNISHES AND ENAMELS

FOR THE RADIO SERVICEMAN DEALER AND OWNER

The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful!

Write to the I.C.S. Advisory Dept. stating your requirements. Our advice is free and places you under no obligation.

-----------------------You may use this coupon-----------------------

INTERNATIONAL CORRESPONDENCE SCHOOLS Ltd.
DEPT. 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C.2.
Please explain fully about your Instruction in the subject marked X
Complete Radio Engineering Radio Service Engineering
Elementary Radio
And the following Radio Examinations—
British Institution of Radio Engineers.
P.M.G. Certificates for Wireless Operators.
City and Guilds Telecommunications.
Wireless Operator and Wireless Mechanics, R.A.F.

Name: ___________________________ Age: ______________________
Address: __________________________

HY-MEG
IMPREGNATED

USE HY-MEG
THE MODERN
TIME-SAVING IMPREGNATING MEDIUM

Your products, too, can be assured of a longer life under all working conditions

LEWIS BERGER & SONS LTD.
(Established 1760)
35, BERKELEY SQUARE, LONDON, W.1 Telephone: MAYfair 9171

MANUFACTURERS OF INSULATING VARNISHES AND ENAMELS

FOR THE RADIO SERVICEMAN DEALER AND OWNER

The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful!

Write to the I.C.S. Advisory Dept. stating your requirements. Our advice is free and places you under no obligation.

-----------------------You may use this coupon-----------------------

INTERNATIONAL CORRESPONDENCE SCHOOLS Ltd.
DEPT. 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C.2.
Please explain fully about your Instruction in the subject marked X
Complete Radio Engineering Radio Service Engineering
Elementary Radio
And the following Radio Examinations—
British Institution of Radio Engineers.
P.M.G. Certificates for Wireless Operators.
City and Guilds Telecommunications.
Wireless Operator and Wireless Mechanics, R.A.F.

Name: ___________________________ Age: ______________________
Address: __________________________

HY-MEG
IMPREGNATED

USE HY-MEG
THE MODERN
TIME-SAVING IMPREGNATING MEDIUM

Your products, too, can be assured of a longer life under all working conditions
METALLISED CERAMICS

There's a size for every job in the S.P. range of metallised bushes

Recent additions to the range: 10 x 4 mms. 117 x 25 mms.

For full information and prices please write to:

STEATITE & PORCELAIN PRODUCTS LTD.
STOURPORT-ON-SEVERN, WORCS. Telephone: Stourport III. Telegrams: Steatain, Stourport.
TEST INSTRUMENTS
FROM STOCK

FURZEHILL OSCILLOSCOPE MODEL 1936,
a new and useful 'scope covering many features at a reasonable price.
2 1/2" tube—Outside dimensions 6 1/2 × 9 × 14".
Instantaneous shift—Time base 5 c/s to 20 kc/s.
X gain control functions as sweep expander giving symmetrical expansion up to 5 diameters.
Symmetrical X amplifier sensitivity 120 mV r.m.s., c.m.
Symmetrical Y amplifier sensitivity 10 mV r.m.s., c.m. £37 10 0

WAYNE KERR COMPONENT BRIDGE B101.
2% accuracy for C, R & L. (using internal standards).
C = 0.5 to 500 mfd. in 8 ranges.
R = 0 to 500 megohms in 8 ranges.
L = 0 to 500 Hys. in four ranges.
(Minimum measurement 100 millihenries).
Leakage Test—Comparator by %.
Power Factor—"Q" Calibration. £27 6 0

TAYLOR "JUNIOR"
Model 120A (AC/DC—1,000 ohms per volt) £8 10 0
AVOMETER UNIVERSAL £8 10 0
AVOMETER MODEL 40 £17 10 0

BROWNS MOVING COIL TELEPHONES.
Type K.—For high fidelity reproduction.
Resistance 90 ohms Per pair £5 5 0
Matching transformer 7,000/90 ohms 7 0

L.F. INDUCTORS. Partridge Transformers,
recognised as pre-eminent in audio design, now stocked by Webb's—:
Push-pull output (PX-4's, etc.), 6,400 ohms to 15 ohms £12 6 0
Modulation transformers—:
Primary tapped 4,500-6,600-7,500 ohms plate to plate.
Secondary 3,000-4,500-6,000 ohms.
60 watts audio .. £4 6 0
30 watts audio .. £2 19 0

WELWYN WIRE WOUND RESISTORS.
Type AW311—6 watt rating each 2 9
50, 100, 250, 500, 1,000, 1,500, 2,000, 2,500, 3,000, 5,000, 7,500, 12,000 ohms.
Type AW312—12 watt rating each 2 9
250, 500, 750, 2,000, 7,500, 12,000 ohms.
Type AW312A—45 watt rating each 3 9
500, 1,000, 1,500, 2,000, 5,000, 5,000, 7,500, 10,000, 15K, 20K, 50K ohms.
Type B3141—115 watt rating each 5 9
15K, 10K, 50K, 25K, 100K ohms.
Type C3146—230 watt rating each 10 9
25K, 50K, 75K, 100K ohms.
Types AW311, 312 and AW312A are wire ended Resistors.
Types B3141 and C3146 require mounting clips, available at 1/- per pair.

WELWYN HIGH STABILITY CARBON 1 WATT RESISTORS, TYPE A344.
Tolerance ± 1%. each 10, 250, 500, 750, 900, 2,000, 2.5K, 4K, 10K, 30K, 50K, 25M, 5M, 1M ohms.
Tolerance ± 2%. each 510, 1,000, 25K ohms.
Tolerance ± 5%. each 10, 100K, 3M, 5M ohms.
FROM STOCK .. each 2 6

Write, phone or call
14 SOHO ST., OXFORD ST., LONDON, W.1.
Phone: GER 6029. Shop hours: 9 a.m.—5.30 p.m. Sats., 9 a.m.—1 p.m.
The Finest Cored Solder in the World

because

YOU AVOID WASTE. The three cores of flux in Ersin Multicore Solder ensure flux continuity, and eliminate solder lengths without flux.

YOU SAVE TIME. The three core construction of Multicore provides thinner solder walls and gives more rapid melting of the solder, thus speeding up soldering operations.

YOU ENSURE SOUND JOINTS. With correct soldering technique, Ersin Multicore Solder gives precision joints at high speed and avoids ‘dry’ or H.R. joints.

Manufacturers and service engineers are invited to write for information and samples.

Available from leading radio shops. In case of difficulty write to:

MULTICORE SOLDERS LIMITED
MELLIER HOUSE, ALBEMARLE STREET, LONDON, W.1. Tel.: REGent 1411
Taylor

for the best in test equipment

MODEL

110A

The TAYLOR A-C BRIDGE

These instruments give quick and accurate measurements of Capacity and Resistance. There are six Capacity ranges covering from .00001 to 120 mfd. and the Power factor can also be measured on each range. Six Resistance ranges are available measuring from 1 ohm to 12 megohms. This bridge is A.C. mains operated and a leakage test is also available for detecting leaky paper or mica condensers.

Six Ranges of CAPACITY
Six Ranges of RESISTANCE

PRICE £14. 14. 0

We also manufacture a complete range of Radio Test Equipment, including Multirange Instruments, Signal Generators, Valve Testers, Output Meters, Insulation Testers, Circuit Analysers, Oscilloscopes, A.C. Measuring Bridges and Ohmmeters: also Moving Coil Instruments with scale lengths from 2" to 5".

Please write for technical brochure to:

Taylor Electrical Instruments Ltd.
419-424 MONTROSE AVENUE, SLOUGH, BUCKS.
Tel: SLOUGH 21381 (4 lines) Grams: TAYLINS, SLOUGH

ROTHERMEL

HIGH FIDELITY PIEZO-ELECTRIC PRODUCTS available from stock.

- PICKUPS
- MICROPHONES
- HEADPHONES
- THE HUSHATONE
- DEAF AID MICROPHONES
- CONTACT MICROPHONES
- A.C. AMPLIFIERS

Also the new ROTHERMEL GENUINE SAPPHIRE High-Fidelity Gramophone Needle—over 2,000 playings.

Send for Informative Literature on all ROTHERMEL Products.

★ TWO NEW AMPLIFIERS

For many years R. A. ROTHERMEL has made intensive research in Amplifier design and we present with confidence two new A.C. Amplifiers, the VR/2 4½-watt and the HG/308 8-watts, which have been specially designed for use in connection with all types of Crystal Microphones and Crystal Picks. They are compact, robust, and represent the ultimate in design, workmanship, material, and quality of reproduction.

Write for Bulletin.

R. A. ROTHERMEL LTD.,
ROTHERMEL HOUSE, CANTERBURY ROAD, KILBURN, N.W.6
Telephones MAIDA VALE 6066 (6 lines).

CO-AX LOW LOS CABLES

NEW LOW LEVELS in capacity and attenuation of CO-AX Cables mean new possibilities in electronic equipment design both for the war effort and for the post-war electronic age.

Write for characteristics

BASICALLY BETTER
AIR-SPACED

TRANSPACO LTD. 16 THE HIGHWAY BEACONSFIELD-4 BUCKS
APRIL.

An attractive bakelite cabinet can be supplied at 25/-

31-watt amplifier contained in a neat leatherette-covered I. R.F. Radio operating on 200-250 v. Main.. A/C or ALL POST ORDERS to 167 LOWER CLAPTON RD., LONDON, ES. ' Phone : Amherst 4723

ing bar; 2- pole, 5- way. 1- GANG, 41- 2- GANG. 5/6 quotations for large quantities

Tope 7. - 6.3 v. 1.2 a., 4 v. 10a., 4 v. 10., 4 v. 10a., Type 6. - 15 v. at 60 amps. Tapped at 13.5 14 and 14.5 v. Type 4.-865-0-865 v. Tapped at 760 and 690 V. 500 milliamps. Complete with L.T. trans for rect. heater, Type 3. - 200-0.500, 150 mía, 4 v. 2¡ a., 4 v. 1 a., 4 v. 5 a. Type 2.-40 volte 2 amps. (Excellent for rewinding). 15'-.

20 to 250 vDC to the H.T. output side: the two low-tension windings may be used in large circuits. The 10-turn side will charge a 6-volt accumulator at 2-3 amps, the 6.5 side a 6-volt accumulator at 2.5 v. 10-turn side to 10-turn side, 180 at 30 m/s and 4 v. at 180 at 30 m/s may be obtained. With a 6-volt input to the 5.5 side, 180 at 30 m/s may be obtained. By extending the supply which is fixed with the frame and applies to 200 to 250 vDC to the 5.5 side, the unit becomes a powerful high-speed electric motor, suitable for small drilling machines. Similarly, it may be used with 6 e 2 v input, to the 6.5 v. 10 side. Each switch le 8.P.D.T. 8.P., one make, one break. Complete with push-button and Escutcheon plate. 5/-.

LOW LOSA WAVECHANGE SWITCHES. Price, £ 6 8s.

SILVER MICA CONDENSERS. Available in 2, 5, 10, 15, 22, 80, 140, 200, 1,000, 1,600, 4,000 P.F. 24. each. 25, 50, 80, 140, 200, 1,000-0-1,000 v. 200 m/a 70/-. 300-0-300 v. 60 m/a. 4 v. 2-3 a. 4 v. 3-5 a. RH/-. 7/6 dozen.

ALUMINIUM CHASSIS. Substantially made of bright aluminium, with four sides. 3-5 a. may be obtained. With a 12 volt input to the 6.5 v. 10 side, the unit becomes a powerful high-speed electric motor, imitable to the 200 v, ride, the unit

BATTERY CHARGER KITS. Input 2001250v. AC. output.

FIVE 6-VALVE SUPERHET RADIO. Employ C1135 FEP20, ERC23, EL82, UV23 valves; operate on 100-250 volts AC/DC values. Cutout 13-40, 200-250 volts, 40-120, 190-570 metres. Trim positions on wavechange switch. DXT 1.8 terminals, 8-inch energised speaker; dial aperture 13 x 4 in.; massed steel cabinets, 150-250 v. wide x 150 v. deep. Wrought by Portogram Ltd., for Navy Welfare Centre. A fortunate purchase enables us to offer these fine sets at £ 15 15s., including valves, cord, tuned cabinet, H.T. and L.T. dry batteries to last approximately 6 or 12 months. A pair of double headphones and full instructions. Price £ 2 10s. An extra coil can be supplied, covering 600-1,000 metres at 4/-.
We specialise in the production of all types of Metalised Ceramic components — Hermetic Seals, Sealed Doors, Tag Boards, Bushes, Formers, etc. These are available in soldered, coppered or silvered finish, according to requirements. The suitability of any finish is a matter which we shall be pleased to discuss.

Components made to standard design or to customers' specific requirements. Write for details.

HERMETIC SEAL TYPE HS 421

Flashover Voltage
over外面的路径
over里面路径
3.5 KVDC at 20° C.

TRUVOX HOUSE, EXHIBITION GROUNDS, WEMBLEY, MIDDX.
These robust instrument quality switches have applications in audio-frequency and small power circuits and are designed for long life and trouble-free service.

Consistent self-cleaning contact is obtained through a wiper arm comprising two or three independent laminations. The contact studs and wiper arms are made of Beryllium copper, a material which offers extreme durability and exceptionally low contact resistance of the order of 0.001 ohms.

The range is comprehensive. Units are available having up to four poles and fifty steps, either singly, or in ganged sets operating from a common shaft.

PAINTON & COMPANY LTD
KINGSTHORPE NORTHAMPTON

WESTALITE
H.T.
RECTIFIERS

FOR
A.C. Eliminators and Receivers.
A.C./D.C. Eliminators and Receivers.
Conversion of D.C. Battery Eliminators.
Conversion of D.C. Mains Receivers.
Operation of moving-coil loud-speakers.

Write to Dept. W.W. for Data Sheet No. 24.

WESTINGHOUSE BRAKE & SIGNAL CO., LTD., 82, York Way, King's Cross, London, N.1
No. 2

POINTS OF LOW CONTACT RESISTANCE IN CIRCUIT DESIGN OF MINIATURE RECEIVERS

B7G MINIATURE LAMINATED VALVEHOLDER

For use with IT4, IR5, etc.,

Designed with 7 special sockets giving extremely low contact resistance and ensuring positive location of pins. Tags and centre screen pre-tinned. Fixing centres .875, Hole Dia.: 100.

PLATE DIMENSIONS

Major axis 1.093
Minor axis .680

for mounting either above or below chassis.

BRITISH MECHANICAL PRODUCTIONS LTD.
21 BRUTON ST., LONDON, W.1
Telephone: MAYfair 5543

Foremost in Valveholder design

CLIX

RADIO & TELEVISION COMPONENTS...

...ARE USED BY ALL THE LEADING SET MANUFACTURERS

ELIMINATOR TRICKLE CHARGER

<Type M.A.C.2.>

Input: 200-250 v. A.C.

[Output: H.T. 125 v.
15 m.a. Charging. 2v. ½ Amp.

£4.12.6

R.M. ELECTRIC, LTD.,
TEAM VALLEY, GATESHEAD, 11

CLARITY

PERSONIFIED

WITH THIS SENSITIVE GRAMPIAN MIKE

The Grampian M.C.R. Type Microphone reproduces voices with crystal clearness which gives full value to every word and accentuates the "personality" of the speaker. Those who still have "make do" microphones on their P.A. Systems should take advantage of this up-to-date, highly sensitive model which Grampian are now in a position to supply. The M.C.R. is mounted in a spring suspension frame with the Unit Assembly housed in cast metal case. In crinkled black and nickel standard finish. Write for details now.

Type M.C.R. Frequency Range 60-7,500 cycles. Sensitivity Minus 45 d.b. Impedance 20 ohms. Size 2½ ins. by 3½ ins. Frame. 6 ins. square with Base Adaptor threaded ½ ins. B.S.F. weight 3 lbs. List £5 - 0 - 0

GRAMPIAN LOUDSPEAKERS

GRAMPIAN REPRODUCERS LTD. Hanworth Trading Estate, Feltham, Phone: Feltham 2657 Telegrams: R Ramp, Feltham, Middlesex

Scientific G12
April, 1947

Wireless World

THE COSSOR
HIGH VACUUM
DOUBLE BEAM OSCILLOGRAPH
giving
VISUAL TWO-DIMENSIONAL
delineation of any recurrent law.

RELATIVE TIMING OF EVENTS
and other comparative measurements
with extreme accuracy.

PHOTOGRAPHIC RECORDING
of transient phenomena

and

SIMULTANEOUS INDICATION
of two variables on a common time axis.

Completely embracing all the above
functions, of which the last is unique,
the Cossor Double Beam Oscillograph
is inherently applicable to all prob-
lems arising in

RECORDING, INDICATING & MONITORING
when the effects examined can be
made available as a voltage.

A. C. COSSOR LTD.,
INSTRUMENT DEPT.,
HIGHBURY, LONDON, N.5

Price 24 Gns., plus £5. 8. 4d. purchase tax.

Radio

TWO YEARS' FREE ALL-IN SERVICE IN THE HOME
SOBELL INDUSTRIES LTD., LANGLEY PARK, NR. SLOUGH, BUCKS.

Test Report

SOBELL Type 615
A.C. Table Model Superhet
(Five Valves + Rectifier)

The following are brief extracts from a report which
appeared in the July 1946 issue of "Wireless
World" on the Sobell 615 6-valve A.C. Table
Model Superhet:

"The quality of reproduction is decidedly above the average
for a table model... The lower register has breadth and
an extended top response gives clarity and brightness with-
out being shrill... With two I.F. stages there is no lack of
sensitivity and the selectivity is exceptionally good. The
division of the short-wave range into two parts gives a degree
of band spread which makes for ease of tuning and both
ranges provide a wide choice of stations. The sensitivity
is well maintained at the high-frequency end... The
chassis is of ample size and components are well spaced...
The finish of the cabinet work is of a high order... The set
is backed by a comprehensive free maintenance scheme for
two years. In the event of breakdown the fault will be
remedied or the chassis changed on the spot by one of the
maker's servicemen"

Price 24 Gns., plus £5. 8. 4d. purchase tax.
A WOMAN’S INTUITION IS NOT ENOUGH

A woman’s intuition will not help you to find a difficult fault in a wireless set. The easiest and quickest way to locate the trouble is to use a Weston Model E772 Analyser which is designed for systematic analysis. Its features include high sensitivity—20,000 ohms per volt on all D.C. ranges—wide range coverage, simplified controls, accuracy and robust construction. You will find this instrument universally useful—it will save you time, trouble and money and it is really reliable—it’s a Weston.

SYSTEMATIC SERVICING STARTS WITH A WESTON

SANGAMO WESTON LTD., ENFIELD, MIDDX. Telephone: Enfield 3434 & 1242

JUST RECEIVED!!!

BRAND NEW AMERICAN SINGLE BUTTON CARBON BREAST ASSEMBLY

Extra 3-position control switch with 10 ft. length. 3-core flexible T.R.S. cable for above. PRICE 3/6
Both the above items still in maker’s sealed cartons.

MOVING COIL MICROPHONE & HEADPHONE ASSEMBLY (Approx. impedance of each unit 48 ohms)
Microphone has “Press to talk” switch; worth 6/ Complete 15/6
Moving Coil Hand Mike with switch. PRICE 6/6
Moving Coil Assembly in bakelite case with 3” grill. Can be used as midget speaker. PRICE 4/6
(All above units have genuine Alni magnets.)

STRATTON MICRODENSERS (Eddystone)
Code E18. 18 mmfd triple spaced, 3/9. £4.0. 40 mmfd double spaced, 4/3
Code E60. 60 mmfd single spaced, 4/3. £2.00. 100 mmfd single spaced, 4/6

YAXLEY TYPE SWITCHES
Double pole 6-Way. Ideal meter or multi band switches - - - - 2/6
Three pole 3-Way. 2 Wafer 3/6 Double pole 4-Way. 3 Wafer 3/6

SEND S.A.E. FOR DETAILS OF NUMEROUS OTHER INTERESTING BARGAIN LINES.

BSR

SOUND SYSTEMS AT THE BIF

STAND No. C.1517, OLYMPIA HALL, LONDON

DISC RECORDING

We shall be demonstrating our new Disc Recorder and Recording Amplifier at the BIF, and the entire range of BSR sound equipments, which will include many new features, will be available for your inspection.

Home Trade and Overseas Visitors are cordially invited to our exhibit and well-informed people will make the BSR stand their rendezvous—a wise move towards “Sound Understanding.”

BIRMINGHAM SOUND REPRODUCERS LTD.
CLAREMONT WORKS, OLD HILL, STAFFS. Tel.: CRADLEY HEATH 62123
LONDON OFFICE: 115 GOWER STREET, W.C.1. Tel.: EUSTON 7215
There is a TANNOY SPEECH BROADCASTING INSTALLATION to suit your requirements

TANNOY
CALL SYSTEMS CREATE EFFICIENCY!
"Tannoy" is the registered trade mark of equipment manufactured by
GUY R. FOUNTAIN, LTD.
"THE SOUND PEOPLE"
West Norwood, S.E.27, and Branches
Gipsy Hill 1131

The largest organisation in Great Britain specialising SOLELY in Sound Equipment

SCIENTISTS DEMAND...
SCIENTISTS BUILD...

Wego CAPACITORS

No matter what your problem in Radio or Electronics, we will create the Capacitor to fulfil your exacting demands and specification. Our technical and scientific advice is at your disposal.
WEGO CONDENSER COMPANY LIMITED
BIDEFORD AVE. • PERIVALE • GREENFORD • MIDDX • Tel. PERIVALE 4277
Ball Drive

- SMOOTH, RELIABLE & VERY POWERFUL
- Epicyclic friction drive, ratio 6:1
- May be used to increase ratios on other drives or attached direct to component spindle (½" shaft).

[PRICE 3/3 RETAIL]

Jackson Bros (London) Limited
Kingsway, Waddon, Surrey
Telephone: Croydon 2754-5
Telegrams: Walfilco, Phone: London

Specialists in ‘SPECIAL’ Waxes

Most applications of wax in the manufacture of electrical components demand special characteristics which can be met from the regular range of

Okerin Waxes & Compounds

or designed to specification. Grades are available for arctic or tropical service—stable, moisture-proof—fungi-resisting.

For expert advice, samples, etc., please
Telephone Temple Bar 5927

Astor Boisselier & Lawrence Ltd.

(Sales Dept.)
Norfolk House, Norfolk St., Strand, London, W.C.2
Clear as a Crystal

AND HERE IS THE REASON . . .

. . . the answer has been found in Bullers Low Loss Ceramics to the problem of Dielectric Loss in High Frequency circuits.

Years of Laboratory research and development have brought these materials to a high degree of efficiency. Today they are in constant use for transmission and reception, and play a vital part in maintaining communications under all conditions.

BULLERS, LTD.
6, LAURENCE POUNTNEY HILL,
Telephone: Mansion House 9971 (3 lines)

Bullers
LOW LOSS CERAMICS

MADE IN THREE
PRINCIPAL MATERIALS

FREQUELEX
An Insulating material of Low Dielectric Loss, for Coil Formers, Aerial Insulators, Valve Holders, etc.

PERMALEX
A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLLEX
A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.

EX-R.A.F. R1155
COMMUNICATION RECEIVERS
—NEW PURCHASE—

These sets are equal to new need only a power pack for immediate use (see "W.W.," July, 1946). Freq. range, 7.5, 150, 1,500 kc.; complete with Mic. Headset. Enclosed in strong metal case. Each receiver is aerial tested.

Carriage and packing 7/6 extra. No C.O.D.

POWER PACK 220-250 v. AC for above is available to CALLERS ONLY

EX-R.A.F. AIRBORNE G.P.
TRANSMITTERS Type 1154
Come complete with 4 valves. Frequency coverage: 500 kc., 200 kc., 10 mca, 3 mca, 2.3 mca, 0.8 mca, 2.5 mca. Power Input 1,200 v., 200 ma, H.T. 6 v., 4 amp. L.T. Chassis size: 16 in. x 13 in. x 9 in. In metal cabinet. Supplied in strong wood case. Each is brand new. Each receiver is aerial tested.

Carriage and packing 7/6 extra. No C.O.D.

SPECIAL PURCHASE
TELEPHONE LINE or UNISELECTOR SWITCHES

2- or 3-bank, 26 constants. Have various applications including automatic tuning, circuit selection, etc. Operates on 20, 30 v.

3-bank

26 G

20 G

MIDGET CONDENSERS
50 µfd., 10 v. 2/8

BIAS CONDENSERS
50 µfd., 15 v. 8/8

MINIATURE COMMUNICATION RECEIVER and POWER PACK. Type MRCI.

5-valve superhet, using Midget valves. (1, 12A, 1X5, 1X5) for AC or DC mains, 97-250 volts 1 put. These sets are complete with aerial and earth equipment, lightweight headphones, mains lead, etc. Dimensions Receiver, 7 1/4 x 3 x 2 1/2 in. Power Pack, aerial, same size. Range 100 kc. to 30 mca in four ranges. These sets are brand new. Each set is sealed in a metal case, complete with operating instructions.

All the above are available to the Trade. Write for terms.

Closed Thursdays 1 p.m. Open all day Saturday.

23, LISLE ST. (GER 2969) LONDON, W.C.2
The Connoisseur

A HIGH FIDELITY MINIATURE MOVING IRON PICK-UP

Faithful reproduction of all recordings from 12,000 c.p.s. to 30 c.p.s. will win many new friends for the CONNOISSEUR miniature moving iron Pick-up in 1947.

The CONNOISSEUR reveals a wide range of notes and instruments that has hitherto been hidden by bass and treble resonance. The CONNOISSEUR will reproduce every sound on the record. Try it and prove it.

Note new prices. Pick-up 54/- plus 11/6 P. tax Transformer 13/- nett

Apply to
Albion Electric Stores, 125, Albion Street, Leeds 1
or to
Lawton Bros. (Sales) Ltd., Henry Square, Ashton-under-Lyne

Made by
A. R. SUGDEN & Co, (Engineers) Ltd., Brighouse, Yorks

The Complete Service for Sound Recording and Reproduction

Mobile and Static Continuous Recording Outfits.
Recording Amplifiers.
Moving Coil and Crystal Microphones.
Sapphire Cutting and Reproducing Stylites.
Blank Recording Discs from 5" to 17" Single or Double sided.
Light-weight moving iron, permanent sapphire and "Lexington" moving coil pick-ups.
Label and Envelope Service.
A comprehensive range of accessories to meet every requirement of the sound recording engineer.

Write for comprehensive lists or call at Recorder House for demonstration.

RECORDER HOUSE, 48/50 GEORGE ST., PORTMAN SQUARE, LONDON, W.I.
Telephone: WEL 2371/2 Telegrams: Simon service.

MAKE SURE YOU USE "IVALEK"
Matched T.R.F. dual range coils
WHEN SET BUILDING
200-550 metres, 1,000-2,000 metres
A fine precision job. PRICE 9/- per pair.
Sent Post Free. Complete with circuit, components for which can also be supplied.

WRITE FOR PARTICULARS OF FULL RANGE OF RADIe, TELEVISION, ELECTRONIC, ELECTRICAL INSTRUMENTS AND COMPONENTS.
Tel. : Gerrard 8734.
behind the blueprint...

lies Goodmans research, skill, craft and equipment. Goodmans take justifiable pride in a production organisation that faithfully interprets—for your service—the well-founded conclusions of their team of specialist acoustic engineers. That is why, Goodmans Loudspeaker performance is strictly "to specification," why unfailingly it conforms to published data. The 15ins. illustrated, handles 25 watts of undistorted power.

GOODMANS INDUSTRIES LIMITED, LANCELOT ROAD, WEMBLEY, MIDDX.

Red Tape...

or white or green or purple. 'Lassolastic' is the ideal self-adhesive tape for all sealing, naming and identification purposes. No tools are needed to apply 'Lassolastic'. Simply press on lightly with the fingers and it clings with a binding firmness to metal, wood, glass, plastics and any other smooth, dry material. 'Lassolastic' is resistant to water, oil and solvents. Being slightly extensible it moulds itself to hinges, seams, beadings and other irregularities. 'Lassolastic' thus forms a perfect air-tight seal for all types of food and chemical containers. It can be applied to cables and components for easy identification, or to furniture, toys and other articles as name tags.

Obtainable in a wide range of indelible colours, plain or printed to suit your own requirements. Printing cannot be erased. Further information on request.

LASSOLASTIC Self-Adhesive Tape

LASSO PRODUCTS (Proprietors HERTS PHARMACEUTICALS LTD.) Welwyn Garden City, Herts. Tel: Welwyn Garden 3333 (6 lines)
The R.S. TYPE 12 ABLY AND FAITHFULLY REPRODUCES

... what do you care whether he whispers with nervousness, or shouts with excitement into your Microphone, when you know that your R.S. Amplifier Type 12 will ably and faithfully 'put over' even the squeak of the mouse or the trumpet of the elephant, without loss of timbre or intonation. No more fearful moments for you with 'mike-unconscious' people or music which will 'blare' ... the R.S. Type 12 takes care of all that. This amplifier is only a part of the R.S. completely new series of advanced Sound Equipment which you should know about ... write to-day for full information.

PLUG-IN HEADS. Available in both Junior and De Luxe types to fit Collaro and Garrard arms, thus providing easy change-over from Magnetic types. Input conversion may be required. (See our Technical Brochure.)

Price 4/9, plus 1/- P.T. Separate Ejector for De Luxe type 3/10 plus 6/10 P.T.

PRE-AMPLIFIERS having an inverse of the recording characteristic incorporated are available for use with Pick-ups. These are necessary with some amplifiers.

Price, Complete with Valve and Input Transformer £6.1.0. Illustrated Technical Brochure upon request.

Exports and Trade Enquiries invited.

Lexington

MOVING COIL PICK-UPS

DE LUXE MODEL. Robust design. Accidental dropping on record will not damage Pick-up. Extremely low moment of inertia (80 milligrams total weight of movement). Pure sine wave with no harmonic distortion. Automatic needle or sapphire changing opens new fidelity field to the amateur. Can be used with normal record changer without fear of damage.

Price (without sapphire) £5.10.0 plus 2/-6 P.T.

JUNIOR MODEL. Identical in design and workmanship to the De Luxe, the only difference being that it is not equipped with the Automatic Sapphire needle inserter and Extractor device and metal sole plate. Made to take standard steel and fibre needles this model enables every music lover to enjoy the fine reproduction which only a moving coil pick-up can give.

Price £3.9.3 plus 1/-5 P.T.

Illustrated Technical Brochure upon request.

Lexington

THE 40 COIL PACK

Includes H.F. stage. 9 Iron-cored coils in All-wave Superhet circuit. 15-50, 200-550, 750-2000 metres. For 465 Kc/s I.F. Aligned and tested before dispatch. Id. stamp brings price list.

VARLEY

THERMAL DELAY SWITCHES

Protect Your Radio Equipment

4 VOLT • 5 VOLT • 6-3 VOLT HEATERS

OLIVER PELL CONTROL LTD

Telephone: WOOLWICH 1422
CAMBRIDGE ROW • WOOLWICH 5-E-18
Rubber-to-Metal Bonding

The "Flexilant" Mountings: Examples from the Series.

The "Flexilant" Mounting of which several varieties are illustrated here is so accurately made that its displacement under load can be calculated to within .010" of requirements. The series is designed to carry loads of from 1 to 45 lbs per mounting and these may be arranged with bolt axis at 90° to position, or the complete mounting may be inverted. The mountings can be supplied with or without holder and they can be arranged so that two utilize the same bolt.

We should appreciate the opportunity of helping with your vibration problems.

RUBBER BONDDERS Ltd.
Engineers in Rubber bonded to metal

FLEXILANT WORKS • WATLING STREET • DUNSTABLE, BEDS.

TELEPHONE: DUNSTABLE 005

MODEL T.10 AMPLIFIER
Ideal for small or medium halls, cafes, clubrooms, etc. AC or DC mains. 8/10 watts undistorted output. Separate inputs for Moving Coil microphone (matching transformer built into amplifier) and Crystal or Moving Iron gramophone pick-ups, separate MIC. and GRAM, volume controls. Overall dimensions 14½in. long, 7½in. high, 9in. wide. Guaranteed for 12 months, valves for 3 months. PRICE COMPLETE ready to operate 27 GNS.

MODEL T.40 DE LUXE AMPLIFIER
For outdoor meetings, large halls, factories, etc. Superior in appearance, design and performance. 40 watts undistorted output. 4 separate matched inputs. Separate volume controls, electronic mixing, unique treble or bass tone control system. Overall dimensions 18½in. long, 11½in. high, 8½in. wide. Guaranteed for 12 months, valves for 3 months. PRICE COMPLETE ready to operate 27 GNS.

MODEL T.25 DE LUXE AMPLIFIER
For AC mains 200/250 volts 25 watts output 22 GNS.

Available shortly
AMPLIFIERS— IN STREAMLINED CASES.
Model T.12 for AC/DC mains 12/15 watts output 19 GNS.
Model T.25 for AC mains 200/250 volts 25 watts output 18 GNS.
TABLE MODEL, RADIO RECEIVER S63 AD. for AC/DC mains 22 GNS.

CRYSSTATONE" DEAF AID UNIT
(Available Shortly)
Brings great enjoyment to those afflicted with hearing troubles. Genuine quality and value. Streamlined and pleasing in appearance, fits bag or pocket. Unbreakable plastic case. Complete ready for use 10½ GNS.

Obtainable from your local dealer and in case of difficulty direct from us. Trade Enquiries Invited.

Reynolds Universal Manufacturing Company Ltd.
410, Dudley Road, Edgbaston, Birmingham, 16.

Telephone: SMEthwick 0201
OUR FIRST POST-WAR PRODUCT
THE ROMAC 106
"Personal" RECEIVER
£14 14 0 Complete, Plus P.T. £3 6 0

This Receiver was selected as an Exhibit at the "BRITAIN CAN MAKE IT" Exhibition.

Home and Export enquiries should be directed to:
ROMAC RADIO CORPN. LTD.
THE HYDE • HENDON • LONDON, N.W.9.

THE STATIC CONDENSER Co. Ltd.
★ Manufacturers of STATIC CONDENSERS

TOUTLEY WORKS, WOKINGHAM, Berks
Telephone: WOKINGHAM 708

PYROBRAZE
has been designed to meet the increasing demand for a universal and portable electric soldering and brazing machine

It is indispensable in every Factory or workshop where soldering has to be done.
Solders heaviest gauges of all metals and even heavy castings, where every soldering iron fails.
Brazes up to 16 S.W.G.

The ACRU ELECTRIC TOOL MANUFACTURING CO. LTD.,
Manufacturers of speciality Electrical Apparatus
123 HYDE ROAD, ARDWICK, MANCHESTER, 12
Tel: ARDwick 4284

RESISTORS produced by the cracked carbon process remain stable to ± 1% of initial value.
★ Tolerances ± 1%
± 2% ± 5%
Low temperature coefficient.

WELWYN ELECTRICAL LABORATORIES LTD.
Welwyn Garden City, Herts.
Telephone: Welwyn Garden 3816-8

LUSTRAPHONE
THE MASTER MICROPHONE

The outstanding performance of these scientifically designed and precision-built instruments makes them the choice of discriminating experts. Write Dept. W. W. 4 for full descriptive leaflet.
LUSTRAPHONE LTD., 84, BELSIZE LANE, LONDON, N.W.3.
Telephone: HAMpstead 5389 and 5515.
Where strain-free metal-to-glass seals are required the TELCOSEAL range of alloys is unsurpassed. The coefficients of thermal expansion are carefully controlled and adapted to most types of glass. Available as strip, rod and wire in various sizes.

BRIEF DATA OF PHYSICAL CHARACTERISTICS.

<table>
<thead>
<tr>
<th>ALLOY</th>
<th>Expansion Coeff. $\times 10^{-7}$</th>
<th>Inflexion Temp. °C</th>
<th>Resistivity μohms/cm²</th>
<th>Density g/cm³</th>
<th>Hardness V.P.N.</th>
<th>Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>TELCOSEAL I</td>
<td>46—52</td>
<td>420—430</td>
<td>48</td>
<td>8.2</td>
<td>150</td>
<td>Borosilicate</td>
</tr>
<tr>
<td>I</td>
<td>45—53</td>
<td>360—380</td>
<td>68</td>
<td>8.1</td>
<td>120</td>
<td>Lead Borosilicate</td>
</tr>
<tr>
<td>II</td>
<td>96—103</td>
<td>440—460</td>
<td>95</td>
<td>8.0</td>
<td>—</td>
<td>Lead and Lime</td>
</tr>
<tr>
<td>III</td>
<td>95—105</td>
<td>—</td>
<td>67</td>
<td>7.6</td>
<td>160</td>
<td>Soft Lead</td>
</tr>
<tr>
<td>IV</td>
<td>89—98</td>
<td>510—520</td>
<td>50</td>
<td>8.3</td>
<td>120</td>
<td>Soft Lead & Soda Lime</td>
</tr>
</tbody>
</table>

Further details furnished on request

RADIO IN EVERY ROOM

with these

NEW & BETTER

EXTENSION SPEAKERS

Are you enjoying the pleasure and convenience of having your radio instantly available in any room? These moderately priced Stentorian extension speakers, with their handsome acoustically designed wooden cabinets, give such superb quality of reproduction that you will be amazed at the difference a Stentorian makes to your receiver.

Ask your dealer for a demonstration.

Stentorian

THE FINEST EXTRA SPEAKER FOR ANY SET

WHITELEY ELECTRICAL RADIO CO. LTD., MANSFIELD, NOTTS.
The aerial towers for the Decca Navigator transmitter were designed and constructed by B. I. Callender’s. These galvanized steel lattice-type structures, 325 feet high, insulated from earth and carrying four 75 feet long flexible horizontal booms to support vertical antenna wires, are examples of the kind of work on radio masts and towers which we undertake in all parts of the World.

BRITISH INSULATED CALLENDER’S CABLES LIMITED
NORFOLK HOUSE, NORFOLK STREET, LONDON W.C.2
DO "Hams" READ BACON?

Sir Francis Bacon, writing long before the birth of wireless, might not appeal to the "ham," but every radio enthusiast will want to read the new Wright & Weaire Components Catalogue. Giving a comprehensive description of the complete range of Wright & Weaire radio components, the easy-to-read Catalogue, illustrated with circuit blueprints, will be sent to you on receipt of the coupon below. Mail it at once and make certain of your copy.

WEARITE

VIBRATORS • VIBRAPOWER UNITS • CERAMIC SWITCHES
I.F. & A.F. TRANSFORMERS • COILS AND COIL PACKS

MAIL THIS COUPON NOW

Send me at once copy of your latest catalogue

Name..

Address..

WRIGHT & WEaire LIMITED
5 Lord North St., London, S.W.1. Tel.: Abbey 2156.
VALVES AND THEIR APPLICATIONS

By M. C. SCROGGIE, B.Sc., M.I.E.E.

No. 4: Mullard R.F. AMPLIFIER TETRODE QV04-7

The last two valves discussed in this series were particularly suitable for V.H.F. receivers, though I did mention that the EC52 triode is capable of putting out a sufficient number of watts to be useful in a transmitter. Normally, a V.H.F. transmitter is crystal-controlled via one or two frequency-multiplier stages, and it simplifies the design if back-coupling through the valves in these stages and in the output stage is minimized by using tetrodes or pentodes.

The QV04-7, shown here, is a tetrode with characteristics that fit the needs of V.H.F. transmitters very nicely. Used as a Class "C" amplifier, the R.F. output per valve is about 8 watts at frequencies up to 30 Mc/s, and at least 6 watts at 150 Mc/s. This is at the rated maximum anode voltage, 300, which incidentally seems rather conservative. G2 voltage is not critical; 150-250 is suitable, and owing to "beam" construction G2 current is low — 5-6 mA at full output. Heater current is 0.6 A at 6.3 V.

Physically, it is the same size as the EC52, and like it is mounted on the "EF50" base. The pins, being rather small, are silver plated to minimize loss at the higher frequencies. Capacitances are: input, 8.2 pF; output, 6 pF; anode to grid, 0.1 pF.

The last is small enough to give no trouble in frequency-multiplier stages, but prevention of self-oscillation needs attention in the output stage. The input circuit should be carefully screened right up to the grid pin, and have low impedance, which is the easier on account of the fact that only about 50 volts peak drive is needed, so a step-down from the driver stage is feasible. At the highest frequencies a quarter-wave coaxial line, tapped at the lowest point that gives sufficient grid drive voltage, is a convenient form of screened input circuit. If a touch of neutralization is found to be necessary, a bent wire is sufficient capacitance.

For the output stage there is little or no advantage in greatly exceeding cut-off grid bias, and with 150 volts on G2 about -30 to -35 volts is enough. The optimum for frequency-doubling is appreciably greater; and for trebling is slightly more still.

The limiting cathode current is 50 mA, which, after deducting G2 current, leaves about 44 mA for the anode. Maximum anode input at 300 volts is therefore a little over 13 watts. But as the anode is rated at 7.5 watts maximum dissipation, it is necessary to take care that the R.F. output is always at least equal to the wattage by which the input exceeds 7.5. For example, a short-circuited feeder would be rather hard on a valve receiving 13 watts input.

This is the fourth of a series of articles written by M. G. Scroggie, B.Sc., M.I.E.E., the well-known Consulting Radio Engineer. Reprints for schools and technical colleges may be obtained free of charge from:

THE MULLARD WIRELESS SERVICE CO. LTD.,
TECHNICAL PUBLICATIONS DEPARTMENT,
CENTURY HOUSE, SHAFTESBURY AVE., W.C.2

Advertisement of the Mullard Wireless Service Co. Ltd.
Classifying Frequencies and Wavelengths

A GOOD deal of unnecessary confusion is still being caused by the lack of a generally accepted classification of the wavebands, and particularly the frequency bands, used in radio communication. Without belittling the work of those standardizing bodies and others who have devoted much thought and ingenuity to devising classifications it is fair to say that none of their efforts have been accorded widespread acceptance. We think that this is because most of the classifications produced suffer to some extent from three major defects. They make use of unfamiliar terms; then fail to allow for the vagueness that is so often necessary at this stage of development of the art in speaking or writing of frequencies above 30 Mc/s, and they include arbitrary comparatives and superlatives that are not easily memorized.

Take the British Standard Glossary (BS204) classification of frequency bands in col. 3 of the table printed below. The relative highness of "very," "ultra" and "super" is by no means self-evident, and, perhaps worse still, the arbitrary assignment of precise significance to these words leaves us nothing to use when we wish to refer in general terms to all those frequencies having, say, visual-range propagation characteristics. The wave-band classification (col. 4) is rational and seemingly has all the advantages of potential international acceptance. But it has never been widely used, perhaps because it employs certain prefixes—myria-, hecto-, and deca—that are unfamiliar even to the most fervent of English-speaking advocates of the metric system. The wave-band classification (col. 4) is rational and seemingly has all the advantages of potential international acceptance. But it has never been widely used, perhaps because it employs certain prefixes—myria-, hecto-, and deca—that are unfamiliar even to the most fervent of English-speaking advocates of the metric system. The word "metric" itself, as applied to waves, seems to contain the seeds of confusion, suggesting as it might to the intelligent layman that it relates not to a band but to waves in general classified or measured according to the metric system.

Of all the systems of classification so far presented the best and most realistic seem to us to be that devised by the Inter-Services Radio Circuit Symbols Committee, and given in col. 5 below. It starts by using terms that, though vague in themselves, have acquired generally accepted meanings and relate to wavebands in easily memorized round numbers. For the shorter wavelengths, where there is no risk of running counter to accepted usage, the terms are precise. Where precision is not needed, no barrier is placed in the way of calling all waves shorter than 10 Mc/s "very short." This classification deserves wider currency.

Unfortunately the Inter-Services Committee has not produced a companion frequency classification, and here we venture to step into the breach, putting forward for consideration the very simple classification of col. 6. The only real departure from precedent is the abandonment of all attempts to sub-divide the frequency band below 30 Mc/s. When there is need for greater precision than is implied in "very high" the bands can always be defined in terms of their frequency in Mc/s, or, when dealing with the higher numbers, perhaps in kMc/s (kilo-megacycles per second). The ultra-, super- and hyper- prefixes in this context have always been a nuisance, and few will regret their loss. We find—admittedly with rather malicious pleasure—that few of those who advocate the retention of these out-dated and vague superlatives can say off-hand what is the significance officially assigned to them.

<table>
<thead>
<tr>
<th>(1) Freq. Bands</th>
<th>(2) Wavebands</th>
<th>(3) BS204 Freq. Bands</th>
<th>(4) BS204 Wavebands</th>
<th>(5) Inter-Services Wavebands</th>
<th>(6) Proposed Freq. Bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 30 kc/s</td>
<td>10,000</td>
<td>Very low</td>
<td>Myriametric</td>
<td>Long</td>
<td></td>
</tr>
<tr>
<td>30—300 kc/s</td>
<td>10,000—1,000</td>
<td>Low</td>
<td>Klometric</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>300—3,000 kc/s</td>
<td>1,000—100</td>
<td>Medium</td>
<td>Hectometric</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>30—300 Mc/s</td>
<td>100—10</td>
<td>High</td>
<td>Decametric</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>300—3,000 Mc/s</td>
<td>10—1</td>
<td>Very high</td>
<td>Metric</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>3,000—30,000 Mc/s</td>
<td>1—0.1</td>
<td>Ultra-high</td>
<td>Dicmetric</td>
<td>Metre</td>
<td></td>
</tr>
<tr>
<td>1—0.1</td>
<td>0.1—0.01</td>
<td>Super</td>
<td>Centimetric</td>
<td>Dicimetre</td>
<td></td>
</tr>
</tbody>
</table>

World Radio History
DESIGN FOR A
HIGH-QUALITY AMPLIFIER

I—Basic Requirements : Alternative Specifications

RECENT improvements in the field of commercial sound recording have made practicable the reproduction of a wider range of frequencies than hitherto. The useful range of shellac pressings has been extended from the limited 50-8,000 c/s which, with certain notable exceptions, has been standard from 1930 until the present, to a range of some 20-15,000 c/s. This increase in the frequency range has been accompanied by an overall reduction in distortion and the absence of peaks, and by the recording of a larger volume range, which combine to make possible a standard of reproduction not previously attainable from disc recordings. Further improvements, notably the substitution of low-noise plastic material for the present shellac composition, are likely to provide still further enhanced performance.

The resumption of the television service with its first-class sound quality, and the possible extension of U.H.F. high-quality transmissions, increase the available sources of high-quality sound.

Full utilization of these recordings and transmissions demands reproducing equipment with a standard of performance higher than that which has served in the past. Extension of the frequency range, involving the presence of large-amplitude low-frequency signals, gives greater likelihood of intermodulation distortion in the reproducing system, whilst the enhanced treble response makes this type of distortion more readily detectable and undesirable.

Reproduction of sound by electrical means involves the amplification of an electrical waveform which should be an exact counterpart of the air pressure waveform which constitutes the sound. The purpose of the amplifier is to produce an exact replica of the electrical input voltage waveform at a power level suitable for the operation of the loudspeaker. This in turn reconverts the electrical waveform into a corresponding sound pressure waveform, which in an ideal system would be a replica of the original.

The performance of an amplifier intended to reproduce a given waveform is usually stated in terms of its ability to reproduce accurately the frequency components of a mythical Fourier analysis of the waveform. While this method is convenient and indeed corresponds to the manner in which the mechanism of the ear analyses sound pressure waveforms into component frequencies and thereby transmits intelligence to the brain, the fact that the function of the system is to reproduce a waveform and not a band of frequencies should not be neglected. Sounds of a transient nature having identical frequency contents may yet be very different in character, the discrepancy being in the phase relationship of the component frequencies.

The requirements of such an amplifier may be listed as:

1. Negligible non-linear distortion up to the maximum rated output. (The term "non-linear distortion" includes the production of undesired harmonic frequencies and the intermodulation of component frequencies of the sound wave.) This requires that the dynamic output/input characteristic be linear within close limits up to maximum output at all frequencies within the audible range.

2. (a) Linear frequency response within the audible frequency spectrum of 10-20,000 c/s.
(b) Constant power handling capacity for negligible non-linear distortion at any frequency within the audible frequency spectrum.

This requirement is less stringent at the high-frequency end of the spectrum, but should the maximum power output/frequency response at either end of the spectrum (but especially, at the low-frequency end) be substantially less than that at medium frequencies, filters must be arranged to reduce the level of these frequencies before they reach the amplifier as otherwise severe intermodulation will occur. This is especially noticeable during the reproduction of an organ on incorrectly designed equipment where pedal notes of the order of 16-20 c/s cause bad distortion, even though they may be inaudible in the sound output.

3. Negligible phase-shift within the audible range. Although the phase relationship between the component frequencies of a complex steady-state sound does not appear to affect the audible quality of the sound, the same is not true of sounds of a transient nature, the quality of which may be profoundly altered by disturbance of the phase relationship between component frequencies.

4. Good transient response. In addition to low phase and frequency distortion, other factors which are essential for the accurate reproduction of transient waveforms are the elimination of changes in effective gain due to current and voltage cut-off in any stages, the utmost care in the design of iron-cored components, and the reduction of the number of such components to a minimum.

Changes in effective gain during "low-frequency" transients occur in amplifiers with output stages of the self-biased Class AB type, causing serious distortion which is not revealed by steady-state measurements. The transient causes the current in the output stage to rise, and this is followed, at a rate determined by the time constant of the biasing network, by a rise in bias voltage which alters the effective gain of the amplifier.

5. Low output resistance. This requirement is concerned
with the attainment of good frequency and transient response from the loudspeaker system by ensuring that it has adequate electrical damping. The cone movement of a moving-coil loudspeaker is restricted by air loading, suspension stiffness and resistance, and electromagnetic damping. In the case of a baffle-loaded loudspeaker, the efficiency is rarely higher than 5–10 per cent, and the air loading, which determines the radiation, is not high. In order to avoid a high bass-resonance frequency, the suspension stiffness in a high-grade loudspeaker is kept low, and obviously the power loss in such a suspension cannot be large. Electro-magnetic damping is therefore important in controlling the motion of the cone. This effect is proportional to the current which can be generated in the coil circuit, and is therefore proportional to the total resistance of the circuit. Maximum damping will be achieved when the coil is effectively short-circuited, hence the output resistance of the amplifier should be much lower than the coil impedance.

(6) Adequate power reserve. The realistic reproduction of orchestral music in an average room requires peak power capabilities of the order of 15–20 watts when the electro-acoustic transducer is a baffle-loaded moving-coil loudspeaker system of normal efficiency. The use of horn-loaded loudspeakers may reduce the power requirement to the region of 10 watts.

The Output Stage

An output of the order of 15–20 watts may be obtained in one of three ways, namely, push-pull triodes, push-pull triodes with negative feedback, or push-pull tetrodes with negative feedback. The salient features of these methods are of interest.

Push-pull triode valves without the refinement of negative feedback form the mainstay of present-day high fidelity equipment. A stage of this type has a number of disadvantages. With reasonable efficiency in the power stage such an arrangement cannot be made to introduce non-linearity to an extent less than that represented by about 2–3 per cent harmonic distortion. The output/input characteristic of such a stage is a gradual curve as in Fig. 1(a). With this type of characteristic distortion will be introduced at all signal levels and intermodulation of the component signal frequencies will occur at all levels. The intermodulation with such a characteristic is very considerable and is responsible for the harshness and " mushiness " which characterizes amplifiers of this type. In addition, further non-linearity and considerable intermodulation will be introduced by the output transformer core.

If the load impedance is chosen to give maximum output the load impedance/output ratio of the amplifier will be about 2, which is insufficient for good loudspeaker damping.

It is difficult to produce an adequate frequency response characteristic in a multi-stage amplifier of this type as the effect of multiple valve capacitances and output transformer primary and leakage inductances becomes serious at the ends of the A.F. spectrum.

The application of negative feedback to push-pull triodes results in the more or less complete solution of the disadvantages outlined above. Feedback should be applied over the whole amplifier, from the output transformer secondary to the initial stage as this method corrects distortion introduced by the output transformer and makes no additional demands upon the output capabilities of any stage of the amplifier. The functions of negative feedback are:

(a) To improve the linearity of the amplifier, and output transformer.
(b) To improve the frequency response of the amplifier and output transformer.
(c) To reduce the phase shift in the amplifier and output transformer within the audible frequency range.
(d) To improve the low-frequency characteristics of the output transformer, particularly defects due to the non-linear relation between flux and magnetizing force.
(e) To reduce the output resistance of the amplifier.
(f) To reduce the effect of random changes of the parameters of the amplifier and supply voltage changes, and of any spurious defects.

A stage of this type is capable of fulfilling the highest fidelity requirements in a sound reproducing system. The output/input characteristic is of the type shown in Fig. 1(b), and is virtually straight up to maximum output, when it curves sharply with the onset of grid current in the output stage. Non-linear distortion can be reduced to a degree represented by less than 0.1 per cent harmonic distortion, with no audible intermodulation. The frequency response of the whole amplifier from input to output transformer secondary can be made linear, and the power handling capacity constant over a range considerably wider than that required for sound reproduction.

The output resistance, upon which the loudspeaker usually depends for most of the damping required, can be reduced to a small fraction of the speech coil impedance. A ratio of load impedance/output resistance (sometimes known as " damping factor") of 20–30 is easily obtained.

" Kinkless " or " beam " output tetrodes used with negative feedback can, with care, be made to give a performance midway between that of triodes with and without feedback. The advantages to be gained from the use of
Design for a High Quality Amplifier—
tetrodes are increased power effi-
ciency and lower drive voltage
requirements.

It must be emphasized that the
characteristics of the stage are
dependent solely upon the char-
acter and amount of the negative
feedback used. The feedback
must remain effective at all
frequencies within the A.F.
spectrum under all operating con-
ditions, if the quality is not to,
degenerate to the level usually
associated with tetrodes without
feedback. Great care must be
taken with the design and opera-
tion of the amplifier to achieve
this, and troubles such as parasitic
oscillation and instability are
liable to be encountered.

When equipment has to be
operated from low-voltage power
supplies a tetrode stage with
negative feedback is the only
choice, but where power supplies
are not restricted, triodes are
preferable because of ease of
operation and certainty of results.

It appears then that the design
of an amplifier for sound repro-
duction to give the highest possible
fidelity should centre round a
push-pull triode output stage and
should incorporate negative feed-
back.

The most suitable types of valve
for this service are the PX25
and the KT66. Of these the KT66
is to be preferred since it is a
more modern indirectly-heated
type with a 6.3-volt heater, and
will simplify the heater supply
problem. Triode-connected it has
characteristics almost identical
with those of the PX25.

Using a supply voltage of some
440 volts a power output of 15
watts per pair may be expected.

The Output Transformer
The output transformer is proba-
ly the most critical component
in a high-fidelity amplifier. An
incorrectly designed component
is capable of producing distortion
which is often mistakenly attribu-
ted to the electronic part of the
amplifier. Distortion producible
directly or indirectly by the output
transformer may be listed as follows :

(a) Frequency distortion due
to low winding inductance, high
leakage reactance and resonance
phenomena.

(b) Distortion due to the phase
shift produced when negative
feedback is applied across the
transformer. This usually takes
the form of parasitic oscillation
due to phase shift produced in the
high frequency region by a high
leakage reactance.

(c) Intermodulation and har-
monic distortion in the output
stage caused by overloading at low
frequencies when the primary
Inductance is insufficient. This is
primarily due to a reduction in
the effective load impedance below
the safe limit, resulting in a very
reactive load at low frequencies.

(d) Harmonic and intermodula-
tion distortion produced by the
non-linear relation between flux
and magnetizing force in the core
material. This distortion is always
present but will be greatly aggra-
vated if the flux density in the
core exceeds the safe limit.

(e) Harmonic distortion intro-
duced by excessive resistance in
the primary winding.

The design of a practical trans-
former has to be a compromise
between these conflicting require-
ments.

At a low frequency \(f_b \), such that
the reactance of the output trans-
former primary is equal to the
resistance formed by the load
and valve A.C. resistances in parallel,
the output voltage will be 3db below that at
medium frequencies. At a fre-
quency \(f_b \), the response will be
well maintained, the transformer
reactance producing only 20° phase
angle. Similarly at the high
frequency end of the spectrum the
response will be 3db down at a
frequency \(f_b \) such that the leakage
reactance is equal to the sum of
the load and valve A.C. resistances.
Again at a frequency \(f_b/3 \) the
response will be well maintained.

If then the required frequency
range in the amplifier is from
10–20,000 c/s, \(f_b \) may be taken as
3.3 c/s and \(f_b \) as 60 kc/s. A trans-
former which is only 3db down at
frequencies as widely spaced as
these would be difficult to design
for some conditions of operation,
and where this is so the upper
limit may be reduced, as the
energy content of sound at these
frequencies is not usually high.
The limiting factor will be the
necessity of achieving stability
when feedback is applied across
the transformer, i.e., that the loop
gain should be less than unity at
frequencies where the phase shift
reaches 180°.

To illustrate the procedure,
consider the specification of an
output transformer coupling two
push-pull KT66 type valves to a
15 ohm loudspeaker load.

Primary load impedance = 10,000 Ω

Effective A.C. resistance of valves
= 2500 Ω

Low-frequency responses
Parallel load and valve resist-
ance = \(\frac{2500 \times 10,000}{12,500} = 2000 Ω \)

\(f_b = 1.5 \) c/s (\(\omega_b=21 \)) response
should be 3db down.

Primary incremental inductance
\(L = \frac{2000}{21} = 95 \) H.

High-frequency Response
Sum of load and A.C. resistances
= 10,000 + 2500
= 12500 Ω

At \(f_b = 60 \) kc/s (\(\omega = 376,000 \))
response should be 3db down.

Leakage reactance = \(\frac{12500}{376} = 33 \) mH.

A 20-watt transformer having to
primary and 8 secondary sections
and using one of the better grades
of core material can be made to
comply with these requirements.
Winding data will be given in an
Appendix to the second part of
this article.

Some confusion may arise when
specifying an output transformer
as the apparent inductance of the windings will vary greatly with the method of measurement. The inductance of an iron-cored component is a function of the excitation, the variation being of the form shown in Fig. 2. The exact shape of the curve is dependent on the magnetization characteristic for the core material.

The maximum inductance, corresponding to point C occurs when the core material is nearing saturation and is commonly 4-6 times the "low excitation" or "incremental" value at A, which corresponds to operation near the origin of the magnetization curve. In a correctly designed output transformer the primary inductance corresponding to the voltage swing at maximum output at 50 c/s will lie in the region of B in Fig. 2.

In specifying the component, the important value is the incremental inductance corresponding to Point A, since this value determines the frequency response at low outputs.

The reduction of phase shift in amplifiers which are to operate with negative feedback is of prime importance, as instability will result, should a phase shift of 180° occur at a frequency where the vector gain of the amplifier and feedback network is greater than unity. The introduction of more than one transformer into the feedback path is likely to give rise to trouble from instability. As it is desirable to apply feedback over the output transformer the rest of the amplifier should be R-C coupled.

Although the amplifier may contain push-pull stages it is desirable that the input and output should be "single ended" and have a common earth terminal. Three circuit arrangements suggest themselves.

The block diagram of Fig. 3 (a) shows the simplest circuit arrangement. The output valves are preceded by a phase splitter which is driven by the first stage. The feedback is taken from the output transformer secondary to the cathode of the first stage. This arrangement is advantageous in that the phase shift in the amplifier can easily be reduced to a low value as it contains the minimum number of stages. The voltage required by the phase splitter is rather more than can be obtained from the first stage for a reasonable distortion with the available HT voltage, and in addition the phase splitter is operating at an unduly high level. The gain of the circuit is low even if a pentode is used in the first stage, and where a low-impedance loudspeaker system is used insufficient feedback voltage will be available.

The addition of a push-pull driver stage to the previous arrangement as in Fig. 3 (b), provides a solution to most of the difficulties. Each stage then works well within its capabilities. The increased phase shift due to the extra stage has not been found unduly troublesome provided that suitable precautions are taken.

The functions of phase splitter and push-pull driver stage may be combined in a self-balancing "Paraphase" circuit giving the arrangement of Fig. 3 (c). The grid of one driver valve is fed directly from the first stage, the other being fed from a resistance network between the anodes of the driver valves as shown in Fig. 4. This arrangement forms a good alternative to the preceding one where it is desirable to use the minimum number of valves.

(To be concluded.)
AUTOMATIC RECEIVER PRODUCTION

Details of the E.C.M.E. System

A SYSTEM of broadcast receiver production containing a number of novel features not only in receiver design but in the method of manufacture has been evolved by John Sargrove in conjunction with Sargrove Electronics, Walton-on-Thames.

The basic idea is to eliminate conventional component assembly and wiring and to make wiring and components an integral part of a moulded panel or panels which can be brought together with the minimum of manual labour in a cabinet with loudspeaker, valves and perhaps plug-in electrolytic condensers to form a complete set. Once the moulding dies have been made, errors in wiring are impossible and manufacture is so cheap that servicing for the failure of any part consists in replacement of the entire panel rather than in the precise location of the fault. Inductances are formed by spiral grooves filled with molten metal from a spray gun and it is claimed that the repetition accuracy is ±1/2 per cent for "L" and ±25 per cent for "Q." Resistances are subjected to burnishing and ageing processes, after which they are capable of operating at a dissipation of 1 watt per sq in.

Capacitors consist of a thin web of moulded material integral with the panel and metal-sprayed on both sides. The thickness of the web is accurately controlled to 0.01 inch in moulding, and capacitances can be repeated to ±10 per cent. Normally a flat or slightly concave web (to allow for thermal expansion) is used which provides a capacitance of 30pF per cm², but this can be increased to 100pF/cm² by corrugation and by a further factor of 10 or 20 if pellets of high dielectric constant material are used in the condenser apertures when
moulding the panels. In this way capacitances up to 0.005μF can be incorporated in the panel.

A two-valve A.C./D.C. mains set has already been designed and a most ingenious electronically-controlled continuous processing plant has been built for fabricating the panels. A photograph of this machine, which has been named E.C.M.E. (Electronic Circuit Making Equipment), appears at the head of this article.

Moulded plastic plates with the required grooves and depressions are fed in vertically and conveyed through units carrying out the following sequence of operations: Sand blasting to remove surface skin; metal spraying simultaneously on both sides; face milling to remove metal on surface between indentations; electrical test; graphite resistance spraying through stencils, drying and burnishing; insertion of sockets for valves, etc.; electrical test; electrical and thermal ageing followed, while hot, by lacquer spray. The panels now pass to conventional conveyor machines for the addition of valves, loudspeaker, etc., and any other manual operations leading to the assembly of the set in its cabinet and a test on radio signals.

Many ingenious electronic control devices are incorporated in the circuit-making equipment to start up the metallizing flame spray guns, diamond high-speed cutters and other operations only when a panel arrives for treatment. Safety devices and quality control are also on an electronic basis, and one advantage of this independent stage-by-stage control is that if for any reason two successive panels are rejected for the same fault, the sections up to the point at which the fault is detected are stopped, but any sound panels which have passed this point continue through the machine until they are finished. This is a notable advance on most conveyor belt systems.

When the system gets into full production it should be possible to reduce costs to an unprecedentedly low level — at least for simple local-station receivers.

Metal spray guns for one side of panels. On the left are the relays for flame ignition and control.

There should be a wide market for these sets in Asia Minor, Africa, India, Central and South America and China, where the high cost of sets made by conventional methods has so far prevented further extension of sales.

Although this new manufacturing technique has so far been developed to the point where only the simplest of complete receivers can be said to have reached the practical production stage, there is little doubt that it could be employed with advantage for the manufacture of sub-assemblies in the more complex receivers at present wired throughout with the soldering iron. The simplification of stock-holding problems by the regulation of supply to demand, with virtually no time lag, will commend itself to production managers, while the economy of power supply and wear and tear in the circuit-making equipment, resulting from the fact that each section automatically shuts itself down until supplied with work, are particularly topical virtues.

The present maximum rate of output is three panels per minute. Quite apart from economic considerations, moulded circuit units have many technical advantages, e.g., in reducing flash-over in aircraft radio apparatus at high altitudes, ease of "tropicalization," compactness and low weight.

Manufacturers' Literature

Illustrated catalogue of "Radyne" electronic heating equipment from Radio Heaters, Toutley Works, Wokingham, Berks.

INTERLACING
Television Frame Synchronizing

By W. T. COCKING, M.I.E.E.

ONE of the most difficult problems confronting the designer of a television receiver is that of securing satisfactory interlacing. Superficially, it is a simple problem; practically, it is often hard to make a receiver give any approach to interlacing, let alone give good interlacing.

In theory interlacing is secured automatically by ensuring that the line and frame time bases are triggered regularly by the line and frame sync pulses in the transmission. There are 50 frame pulses and 405 line pulses a second and interlacing is secured because 405 is not a multiple of 50.

In odd frames, that is, in the first, third, and so on, the leading edge of the frame sync pulse does not coincide with a line pulse but occurs about half-way through a line. In even frames—the second, fourth and so on—the frame sync pulse does coincide with a line pulse. In each complete picture of two frames the synchronizing waveform as a whole is the same. It is the same in alternate frames, but not in successive frames.

The synchronizing waveform as transmitted, and as it appears in the output of the receiver sync separator, takes the familiar form shown in Fig. 1 (a). The line sync pulses proper are of 9.88μsec duration and occur regularly every 98.77 μsec. The frame pulses are broken at similar intervals to ensure that effective synchronizing of the line time base is continued during the frame flyback.

This breaking of the frame pulse gives the impression that the intervals between the onset of successive frame pulses are different in alternate frames. It does this because the two waveforms are lined up for comparison on the line pulses. It is equally correct to line them up on the leading edges of the frame pulses as in Fig. 1 (b) and it is clearer to do so when dealing with frame synchronizing problems. The interval between successive leading edges is 20 msec, and the duration of each segment of a frame pulse is 39.52 μsec and the interval between successive segments is 9.88 μsec.

The line time base runs regularly at 10,125 c/s, and there is rarely any difficulty in achieving this with sufficient accuracy. For perfect interlace the frame time base must run regularly at 50 c/s and deliver an output waveform which is exactly the same in every cycle.

Now in practice perfect timing and perfect identity of successive cycles are not possible and it is consequently important to know what variations from perfection are tolerable. Let us first of all consider timing, assuming that successive cycles are otherwise the same.

In the first place consider that the even frames are all started regularly at times coincident with the proper line pulses. All even frames are then perfectly superimposed. Consider, too, that all odd frames are started regularly, so that successive odd frames are superimposed, but at a time interval \(t_1 \) different from the correct time of 20 μsec after an even frame (49.39 μsec after a line pulse).

If this timing error \(t_1 \) is ±49.39 μsec then clearly the frame time base will be triggered coincident with the line pulses and the scanning lines of all frames will be superimposed. There will be no interlace at all.

The accuracy of timing must be considered in relation to the frame period, so that when the error reaches ±4939/20,000 = ±0.247 per cent the interlace is completely destroyed.

The error in positioning of successive frames is proportional to the timing error and it is prob-
Interlacing—posed, for clarity, in Fig. 2 (b).

Such a waveform will obviously result in perfect interlacing at the top of the picture and a progressive deterioration to a maximum error at the bottom. There are 385 active lines in a picture, or 192.5 active lines in each frame. A difference of amplitude of 0.5/192.5 between successive frames will destroy the interlace at the bottom, since it needs a change of amplitude equivalent to that normally occurring in one-half of the scanning time of one line to superimpose the lines. If an error of spacing of ±20 per cent is permissible, the percentage accuracy of amplitude must be within ±50/192.5 × 5 = ±0.052 per cent or, say, ±0.05 per cent.

A waveform like Fig. 2 is not one which is often found in practice. What can occur is a combination of timing and amplitude errors. Normally, the frame sync pulse terminates each frame scan at the correct intervals. Fly-back must occur before the start of the next scan stroke. The fly-back time, and hence, the scan-start time, depends on the circuit constants, including the voltages, so that the avoidance of variations in the timing of the start of the scan depends upon keeping the circuit "constants" sufficiently constant in successive frames. If, for any reason, fly-back is accomplished more quickly in the case of the even frames than with the odd ones, then the odd-frame scans will start a little earlier in relative time than the even. The effective scan will then be slightly longer and so the amplitude will also be greater.

This is illustrated in Fig. 3 in which two successive cycles having different fly-back times are shown at (a) and superimposed for clarity at (b).

It is now pertinent to enquire in what form the interlacing errors usually occur in practice. Sometimes the error is an obstinate refusal to interlace at all, successive frames being almost exactly superimposed. Sometimes there is a more or less regular pairing of lines, indicating a more or less constant error which, however, is less than in the superimposed case. Frequently, there is weaving. This means that the error is varying, at a rate corresponding to a few cycles per second or less. Sometimes the interlacing condition is fairly steady over periods of minutes or hours, but suddenly changes for no obvious reason. Usually, with this the interlace is very good or very bad and it jumps from one condition to the other erratically.

It is very rare indeed for the interface to vary over the picture. The condition illustrated in Fig. 2, for instance, is not often found in practice. The fact that the errors are the same at top and bottom of the picture indicates that the slope of the scanning waveform does not change appreciably in successive cycles.

The synchronizing pulses in the transmission control only the start of fly-back. They trip the time base at the end of each frame scan. For good interlacing three things are necessary: first, the sync pulses must trip the time base at as regular intervals as possible; secondly, all fly-backs must be as alike as possible in duration and amplitude; and thirdly, all scans must be as nearly as possible the same.

A good interlace is not possible if the first requirement is not met and this depends very largely upon the method adopted for separating the frame and line synchronizing pulses. The waveform in the output of the main sync separator, which removes the picture signal, is like Fig. 4 (a) and (b) for odd and even frames. It is necessary to remove the line pulses for otherwise the frame time base would almost certainly be tripped by one of the line pulses occurring a little before the frame pulse.

The usual way of doing this is by an integrator and limiter. Sometimes the limiter is dispensed with, but the circuit adjustments are then more critical. The output of the integrator has the form shown in Fig. 4 (c) and (d) and after limiting it becomes like (e) and (f).

The precise waveform depends on the time constant of the integrator, but in general it approximates to the form sketched here. The important thing to notice is that the sharp leading edges of the pulses are destroyed. Because of this any variation of amplitude of the pulses affects the times at which the time base is tripped. The outputs on alternate frames are not identical, because the interval between the last line pulse and the first frame pulse is different in successive frames with the result that the capacitor of the integrator has discharged to differing degrees at the onset of the frame pulses. This inevitably results in some variation in the timing of the frame time base. Theoretically, perfect interlacing is not possible with an integrator type of pulse separator.

In practice, however, the errors can be made quite small and it is capable of giving good enough interlace for practical needs. There is, however, an alternative which is more nearly perfect. If the pulse signal (a) and (b) of Fig. 4 is passed through a differentiator-type circuit of time constant equal to the duration of one frame pulse, some 40 µsec, the output wave has the form of (g) and (h), and subsequent limiting brings it to (i) and (j).

The important thing is that the sharp edges of the pulses are retained, so that theoretically timing errors are eliminated. The leading edges of the pulses in (i)
and (j) are really the trailing edges of the pulses in (a) and (b), so that synchronization really takes place 40 µsec late. As it is the same for all frames this is unimportant and merely reduces slightly the total time available for fly-back.

The waveforms at the beginning of the separated pulses are identical for all frames, but there is a difference at the ends. This is occasioned by the fact that the first line pulse after the frame pulses is close to them in one case and some distance away in the other. This is not usually important, but might be with some kinds of time base.

It will be observed that in Fig. 4 (i) and (j) the first separated pulse is of smaller amplitude than the others. This is not important provided that it is of sufficient amplitude reliably to trip the time base. In Fig. 4 no account has been taken of any reversals of phase caused by the limiters. Accordingly one expects that the use of such a pulse separator will result in good interlacing.

The writer's experience is that this is not the case and that more frequently than not the scanning lines of successive frames are superimposed rather than interlaced. He has investigated in some detail a typical case of this type. Careful inspection of the fly-back waveform with an oscilloscope having a greatly expanded time scale showed that the time-base was actually being tripped regularly by the sync pulses. By turning up the brightness control of the C.R. tube so that the fly-back became visible on the raster, it could be observed that an interlaced fly-back was being obtained. The correct picture is shown in Fig. 5 (a); with no interlace on the fly-back half the fly-back disappears (b), and with pairing the fly-back lines are unequally spaced (c). In spite of the inter-

Fig. 4. (a) and (b) show the waveforms of even and odd frame pulses respectively, while (c) and (d) indicate the effect of an integrator. Subsequent limiting and amplification produce (e) and (f). The effect of a differentiator on (a) and (b) is shown at (g) and (h) and subsequent limiting at (i) and (j).

Such reversals may or may not occur depending on whether diode or multi-electrode limiters are used.

Now even the differentiator type separator is no guarantee of perfect interlacing. It can and does ensure that the start of every frame fly-back is correctly timed. It does nothing to ensure that successive fly-backs and scans are themselves identical. Normally one expects that they will be and

Fig. 5. (Below) When the brightness control is turned up, the frame fly-back lines show as at (a) when the interlace is correct, but like (b) when there is no interlace. Pairing of lines gives a picture like (c).
Interlacing—
the fly-backs interlace, the waveforms on successive fly-backs must be identical over the major part of their durations, but not necessarily over the whole of them. This last proviso is made because it was possible to observe the fly-back over part of its time only.

Now ideally successive sawtooth waves are identical and if drawn graphically or observed on an oscilloscope they superimpose perfectly. The symptoms observed above lead to the conclusion that if one wave has the form sketched by the full line A in Fig. 6 the scan part of the next must lie along BC or DE and the fly-back must lie within FG and HI.

This is shown more accurately in Fig. 7.

Scan Waveform

Since the scans are displaced and the timing is the same, the amplitudes at the end of the scan and at the start of fly-back must be different. In Fig. 7 the amplitude of A is point (2) at the end of the scan and that of the next cycle must be either (1) or (3). The start of fly-back which joins A at (7) must be at (4) if it starts at (1) or at (5) if it starts at (3). The start of fly-back for this cycle BC or DE must be at the level of (2) on A; that is, at the point (6).

If BC is the correct scan curve, the path of two cycles must be 7268147, while if DE is correct it must be 7269357.

For simplicity the fly-backs are shown as linear. In practice they are exponential, which means that the lines in Fig. 7 indicating them are more nearly vertical at the start of the scan. Also, the ratio of scan to fly-back times shown is 5:1 instead of the actual 20:1. On the drawing it can be seen that for the path 7268147 there is a displacement of 0.2 on the fly-back for a horizontal timing displacement of 1 on the scan. In the real case of a 20:1 fly-back ratio this would be one quarter, or 0.05.

It is probable that this would be undetectable on the fly-back observed on the raster. This is especially so as the fly-back is actually exponential and therefore still more rapid initially, and it is only the initial part that can clearly be seen.

With the alternative path 7269357 the fly-backs actually cross, which means that the displacement errors are much smaller and almost certainly unobservable.

There is no doubt at all that waveforms varying in this general fashion do occur. Unfortunately it is quite difficult to track down precisely how and why they are produced. The variations between successive cycles are much too small to be observable on any normal oscilloscope.

The writer first noticed the effect when using a Transitron-Miller-integrator type of sawtooth oscillator. In this there are two trigger actions in each cycle. The first is initiated by the sync pulse and starts the fly-back, while the second occurs in its own time and starts the scan. Since the second is uncontrolled it is liable to be started by any spurious voltages in the circuit. It was at first thought that this second trigger was being initiated by interference voltages from the line time-base, but no amount of screening or decoupling had the slightest effect on the interlace.

It was then thought that it might be caused by a difference between the ends of the frame sync pulses in successive frames, brought about by the different intervals between the last frame pulse proper and the first line pulse. Means were adopted substantially to avoid this difference, again without any improvement.

A change was then made to an entirely different kind of sawtooth generator—the well-known form of blocking oscillator shown in Fig. 8. In this, the grid, screen and cathode form a triode block-
ing oscillator and the anode-cathode path of the valve acts to discharge C_1 on fly-back. The results, however, were no better than with the Transitron.

The next step was to simplify the circuit further by utilizing the saw-tooth voltage across C instead of that across C_1. Again there was no change in the interlacing. It was then noticed that in making the change R,C_1 had inadvertently been left connected to the anode. When these components were disconnected, however, good interlacing was at once secured.

Further extensive tests showed the simplicity of the blocking oscillator to give reliable interlacing; also another circuit in which the blocking oscillator is used to control another entirely separate valve operating to discharge a capacitor proved satisfactory. The circuit of Fig. 8 in which a separate electrode of the same value was used for discharge could not be made to perform satisfactorily.

The reason for this is not known, but it seems clear that it must be due to interaction between the anode and screen currents.

The conclusion to be drawn from all this is that while careful design of the sync separator circuits is necessary for good interlacing, that alone is not sufficient. It is also necessary to pay particular attention to the saw-tooth generator.

Fig. 8. Typical blocking oscillator saw-tooth generator in which C_1 is discharged by the anode-cathode path of the valve.

MAGNETOPHON RECORDERS

Processes Involved in Manufacturing the Tape

The principles underlying the German system of magnetic tape recording, using plastic tape impregnated with iron oxide powders, were described in an article in the June, 1946, issue of this journal. Since then a comprehensive report "The Magnetophon Sound Recording and Reproducing System" has been published by the British Intelligence Objectives Sub-Committee and is obtainable from H.M. Stationery Office, price 10s.

The report presents the findings of a team of investigators—M. J. L. Pulling (B.B.C.), E. M. Payne (Electrical and Musical Industries), and H. E. Parker (Ministry of Supply)—and includes circuit diagrams with component values, recording characteristics with and without correction and detailed descriptions with photographs of the tape-winding mechanism in the principal types of machine.

The methods of manufacturing the various types of tape are given in an appendix with descriptions of the chemical materials used. The latest type "LG" tape used in high-quality recorders consists of a backing of polyvinyl chloride coated with a layer of ferric oxide powder. The P.V.C. is mixed with titanium white and is rolled into sheets 0.05 mm thick, 60 cm wide and 400 metres long. It is then drawn under tension over electrically heated rollers until it is 0.04 mm thick, 32.5 cm wide and 1 kilometre long, which gives an appreciable increase of tensile strength in a longitudinal direction.

The ferric oxide powder is prepared by precipitating black Fe_3O_4 oxide from ferrous sulphate with ammonia and then heating the black oxide at 280-300° C to form red-brown Fe_3O_4. After milling, the powder is air-blown through a sieve to a particle size of 0.2 to 1 micron and is then mixed with an equal quantity of P.V.C. powder and a small quantity of plasticiser and solvent to form lumps $\frac{1}{2}$ to $\frac{3}{4}$ in diameter for easy handling.

At the coating factory the lumps are milled and made up into a fluid paste with 10 parts benzole and 15 parts tetrahydrofuran to 40 parts iron-oxide mixture. The paste is spread on the film base from a hopper fitted with a mixing paddle, and a bridge piece keeps the layer at the optimum thickness of 0.015 mm. It is found that thicker deposits give a shorter magnetic working range, while a thinner layer results in inadequate magnetization. After coating, the tape is dried in a tunnel through which air at 25° C is drawn, and then in a large drying chamber in which it is wound in a spiral on rollers. The tape takes about 6 minutes to pass through the drying tunnel and chamber.

The coated tape is then slit simultaneously into strips 6.5 mm wide by rotary knives, and after visual inspection electrical tests are made for low background noise and for modulation range at 1,000, 5,000 and 8,000 c/s, the waveform being reproduced on an oscilloscope. The tape can be easily joined, after removing the oxide layer, by the use of cyclohexanone as a solvent adhesive.

The report is a mine of information on this highly developed system of recording and contains a bibliography and also a list of relevant patents. There can be no doubt that the use of high-frequency biasing in conjunction with an iron-oxide dispersion as the recording medium is a notable advance in sound recording of which more is likely to be heard in the near future.

SURPLUS SCIENTIFIC GEAR

Under a scheme introduced by the Ministry of Supply some months ago, research centres, universities and educational authorities in this country and also the devastated countries abroad may purchase ex-Service scientific equipment.

Over one hundred research bodies and some 200 educational authorities regularly receive the Ministry's schedules of available equipment, which include radio and electronic gear. Whilst there is an abundance of some radio equipment such as meters and valves, there is only sufficient of the more valuable test equipment to meet a small part of the demand.
Stuck for a 12A7?

- then **BRIMARIZE**!

Any of the valve types listed below together with a metal rectifier makes a good substitution for the 12A7.

TYPE 18 One of the U.X. types which can often be obtained. Its characteristics at low voltages are identical with those of the 12A7 pentode section. The rectifier section is conveniently replaced by a small SenTerCel selenium rectifier which is easily fixed to chassis or cabinet.

TYPE 43 Another U.X. type which is still being made and whose characteristics, if self bias is employed, are similar to those of the 18. It is advisable to make a small adjustment to the line cord when using type 43.

TYPE 25A6G The International Octal version of the 43, but more readily available at the moment.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Change Socket From</th>
<th>To</th>
<th>Change Connections From Old Socket</th>
<th>To New Socket</th>
<th>Other Work Necessary</th>
<th>Rectifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>U X 7 pin</td>
<td>U X 6 pin</td>
<td>Pin No. 1</td>
<td>Pin No. 2</td>
<td>:nil</td>
<td>SenTerCel miniature, Selenium Rectifier Type H18/12/1/B2 (2½” x 1½” overall) may be fitted to chassis or cabinets in all three cases. Supplies are obtainable from S. T. & C. Ltd., Rectifier Division, Oakleigh Rd., New Southgate, N. 11.</td>
</tr>
<tr>
<td>43</td>
<td>U X 7 pin</td>
<td>U X 6 pin</td>
<td>AS ABOVE</td>
<td></td>
<td>Reduce line cord by 40 ohms</td>
<td>SEE NOTE</td>
</tr>
<tr>
<td>25A6G</td>
<td>U X 7 pin Int. Octal</td>
<td></td>
<td>Pin No. 1</td>
<td>Pin No. 2</td>
<td>Reduce line cord by 40 ohms</td>
<td>SEE NOTE</td>
</tr>
</tbody>
</table>

NOTE—When fixed Bias is used in the receiver it is necessary to insert a 33,000 ohm ½ watt resistor in series with the lead to the screen grid (Pin 3 of type 43 or Pin 4 of type 25A6G) together with a 2 mfd 150 V.W. condenser from screen grid to chassis.

BRIMARIZE—verb transitive. Employed by knowing radio dealers in reference to a BRIMAR process by which a new lease of life can be given to sets with obsolete, obsolescent or otherwise obtainable valves.
ROTARY TRANSFORMERS. Rotax offer the Radio Industry a range of Rotary transformers, invertors and convertors, from 5 to 250 watts output, D.C. to D.C. or D.C. to A.C. A series of 400 cycle machines is also available, capable of outputs up to 500 V.A. We invite you to discuss the applications of these machines with us.
CIRCUIT CONVENTIONS

The Valve "Equivalent Generator"

By "CATHODE RAY"

SOME time ago I mentioned a number of the things that give rise to confusion in talking about circuits—questions of in which direction current flows, whether a condenser is being charged or discharged, which is series and which parallel, and so on. Among them I mentioned the controversy that had been raging about the valve "equivalent generator," but on this particular ground I refused to come out into the open. Now that the big guns have been silent for some time it may be safe to do so. I have a feeling that many readers must have decided that this is quite simple; it is the H.T. supply, throws over this convention, is more likely to confuse than help. It is an undisputed fact that when the grid of a resistance-coupled or resonant amplifier is made relatively posi-

imaginary generator (Fig. 1b), giving a voltage μE_g and having an internal resistance r_a. The arguing starts when one draws arrows or $+$ and $-$ signs to show the directions of the voltages and currents.

These questions are not really matters of absolute right or wrong, any more than the question of driving to right or left of a road. The authorities can decide on either. But once it has been decided failure to conform is likely to lead to collisions and disputes. Seeing that the valve equivalent is a device intended to help the mind, it is a great advantage if the convention adopted fits the facts and also fits other, already accepted, conventions. That is why there were protests when one authority showed two equal signal currents flowing in opposite directions, and another reversed the usual convention by reckoning the cathode voltage relative to the anode, so that (contrary to what is generally understood) anode and grid signal voltages were in phase.

But why should there be any difficulty or dispute? The answer is quite simple; it is the H.T. supply. Conscious that this is really the ultimate source from which any power obtained from the valve comes, people feel they have to acknowledge the debt by using the H.T. as the standard of current and voltage direction. And to do so they may have to stand on their heads or perform other unnatural mental gymnastics. All this is quite unnecessary, and the whole thing is easy, clear, and altogether in line with the rest of simple circuit theory if we don't try to mix Fig. 1b with Fig. 1a.

You will see I have left out the H.T.B. from Fig. 1b. I have done so because it has nothing to do with the imaginary generator. Its purpose is to feed the valve shown in Fig. 1a. To decide directions of voltages and currents in Fig. 1b according to the direction of the H.T. voltage and current in Fig. 1a is like a bricklayer wanting to start at the top of a building and work downwards because that is the way his breakfast went.

A much more relevant and fundamental convention than that is to reckon voltages with respect to the earthy side. In a valve circuit of the general type under discussion, anode and grid voltages are by general acceptance reckoned with respect to their common point, the cathode, which is usually earthed. Anybody who, for the sake of appeasing the H.T. supply, throws over this convention, is more likely to confuse than help. It is an undisputed fact that when the grid of a resistance-coupled or resonant amplifier is made relatively posi-

Fig. 1. (a) shows the essentials of a triode amplifier circuit, and (b) the equivalent generator circuit. A and C mark anode and cathode points respectively.

Fig. 2. When the grid signal voltage is positive (relative to C) the result in the anode circuit can be attributed to a positive (in-phase) generator voltage relative to A or a negative (180° out-of-phase) voltage relative to C. The latter way of putting it is preferable because the accepted custom is to specify both anode and grid voltages relative to C, and to reverse this custom with one of them is to invite confusion.
Circuit Conventions—

When the imaginary generator is on its positive half-cycle, it opposes the H.T. source and reduces the steady current.

Some people have a negative voltage (−E_r), causing a current which from the point of view of the H.T. source is positive. But why drag in the H.T. source? It is merely a device for keeping the valve in working condition, and when (for purposes of theoretical calculation) we have replaced the valve, and its H.T. supply unit, and its socket, and the maker’s name on the glass, and everything else appertaining to the valve, by a generator inside a dotted line, which (within assumed limits) produces the same external effects, why display this irrational concern for the views of the H.T.?

When considering the signal voltages in an amplifier, it would be very tiresome if we had to be always thinking of the steady H.T. and G.B. voltages that happen to be necessary for the happy domestic life of the valve. The sort and quantity of food one eats admittedly has a lot to do with the efficiency of one’s work, but it would be a distraction and waste of time to keep on about it throughout the working day. Similarly, in a signal voltage diagram or discussion it clarifies matters to leave steady voltages out of it. This is so generally accepted that when a statement is made that the effect of a certain signal is to drive the anode of a valve negative it is not considered necessary to explain that the anode is not really absolutely negative, but only relative to its potential in the absence of the signal.

In this valve equivalent affair the mixing of domestic and business matters is bound to cause confusion. In Fig. 1a the source of power is a battery, and the direction of the power flow from it is right to left, and positive is anti-clockwise. In Fig. 1b the source of power is a generator, the direction of power left to right, and positive is clockwise. So, if the equivalent generator and H.T. battery are shown in the same diagram, as in Fig. 3, a positive generator voltage is seen to be in opposition to the battery. It is therefore perfectly natural for a negative generator voltage (corresponding to a positive half-cycle on the grid) to assist the battery and increase the anode current—as we know in fact it does.

The only room for question I can see is why the voltage of the fictitious generator should be assumed to be −E_r—apart, that is, from a not unnatural desire to make it fit the observed facts. D. A. Bell has given1 a logical derivation on a basis of accepted conventions, although even he—quite unnecessarily, as it turns out—includes the steady current among his Wireless Engineer basic conditions.

He points out that the valve (unlike the imaginary generator) is a passive device; it has no voltage source inside it, and any changes of anode current are caused by varying the voltages applied, from outside it, to grid and anode. In the circuit in question the only variation in anode voltage is due to the drop in the anode load, and this voltage opposes the grid voltage changes, which is how the minus sign comes in.

Any real valve is non-linear; that is to say, the changes of anode current are not exactly proportional to the changes in applied voltage. But if the changes are small compared with the steady anode current, there is not a very serious difference between the real valve and an ideal valve in which the anode current changes are proportional to the voltage changes. It is this ideal valve that is imitated by the fictitious generator. So one mustn’t expect too much of the generator idea if the signal voltage is so large that there is appreciable distortion. But until it is necessary to take account of distortion in the valve, the simple equivalent generator does help a lot—so long as one is quite clear about it.

Just one more point. For simplicity these arguments are concentrated on a circuit with a purely resistive anode load. But the generator substitute gives the right answer with any sort of load, and, in fact, it is with reactive loads that its help is most valuable.

The method of determining the value of a coupling capacitor in a resistance-capacitance coupled stage is quite well known for the usual case of a signal of sine waveform, but the method to be applied in the case of pulse and saw-tooth waves is not so generally understood.

The usual circuit is shown in Fig. 1 and its equivalent in Fig. 2. Here R_e is the A.C. resistance of the valve modified, if necessary, by any feedback. The impedance of the H.T. supply is assumed to be negligible. It is also assumed that the frequencies or the rates of change of current and voltage are low enough for the stray capacitance to have a negligible effect.

There are certain facts concealed in the formulæ which are well expressed as useful rules. They are:

1. For not more than 2 per cent distortion of a pulse or saw-tooth repetitive waveform the time constant must not be less than 50 times the pulse or saw-tooth duration. Time and time constant are to be in the same units; i.e., sec and F-Ω, msec and µF-kΩ, or µsec and pF-MΩ.

2. For a differentiating circuit the time constant should not exceed one-quarter of the pulse duration.

3. For a sine-wave input, the loss is 3 db when $T = \frac{159}{f}$ (T in µF-kΩ, f in c/s).

Symbols

- μ = amplification factor of valve
- R_e = A.C. resistance of valve (kΩ)
- R_c = coupling resistance (kΩ)
- R_g = grid leak of following valve (kΩ)
- C = coupling capacitance (µF)
- $g_m = \frac{\mu}{R_e} = \text{mutual conductance of valve (mA/V)}$
- $T = \text{circuit time constant} = C(R + R_c)$ (msec = µF - kΩ)
- $R = R_eR_g/(R_e + R_g)$ (kΩ)
- $f = \text{frequency}$ (c/s)
- $A = E_0/\varepsilon_{re}$ = voltage amplification.

Formulae

\[
\begin{align*}
A & = \frac{g_m R R_g}{R + R_g} \quad x \quad \ldots \quad \ldots \quad \ldots \quad (1) \\
A & = \frac{1}{\sqrt{1 + (150/fT)^2}} \quad x \quad \ldots \quad \ldots \quad \ldots \quad (2)
\end{align*}
\]

For a unit impulse input.

For a given response at a given frequency

\[
T = \frac{159}{f} \cdot \frac{x}{\sqrt{1 - x^2}} \quad \ldots \quad \ldots \quad (4)
\]

For a given response at a given time after the application of a pulse

\[
T = \frac{t/(2.3 \log_{10} 1/x)}{0.89} \quad \ldots \quad \ldots \quad (5)
\]

And for values of x not less than 0.95

\[
T = \frac{t/(1 - x)}{0.89} \quad \ldots \quad \ldots \quad (5a)
\]

Examples

1. If $R_e = 20’k\Omega$; $R_c = 10 k\Omega$; $\mu = 20$; $R_g = 200 k\Omega$; and a response of -1 db at 50 c/s is required, what coupling capacitance must be used, and what is the amplification at relatively high frequencies where C has a negligible effect?

We have $g_m = 2 mA/V$; $R = 10 \times 20/30 = 6.6 k\Omega$, so from (1)

\[
A = \frac{10 \times 20}{206.6} = 12.9. \text{ Then from (4)}
\]

\[
T = \frac{159}{0.89} \cdot \frac{159 \times 0.89}{795} \cdot 50 \cdot \frac{1}{0.795} = 6.22
\]

50 × 0.456 since for a response of -1 db $x = 0.89.$

Since $R_c + R = 206.6 k\Omega$, $C = 0.03 \mu F$.

2. The same amplifier is to be used for a saw-tooth wave of 50-c/s recurrence frequency, and it is necessary that the drop in output should not exceed 2 per cent. What value of C must be used? For a 2 per cent drop, $x = 0.98$ and, ignoring the fly-back time, the duration of the saw-tooth wave is $1/50 = 0.02$ sec, so $t = 20$ msec. We use (5a) since $x > 0.98$ and have $T = 20/0.02 = 1000$

for $R + R_c = 206.6 k\Omega$, $C = 0.025/206.6 = 4.82 \mu F$.

The enormously greater time constant needed for low distortion of a pulse or saw-tooth wave is apparent.

3. With the same amplifier, a pulse of duration 10 µsec is applied, and it is desired that at the end of the pulse there should be substantially no output; that is, the circuit shall act as a differentiator. What value of C is now needed?

This is most easily solved from (3), and it is necessary to assume some arbitrary small value for x—say about 0.02. A table of exponentials gives $t/T = 4$ (about) for $e^{-ut} = 0.02$. Therefore, $T = t/4 = 10/4 = 2.5$ µsec = 0.0000121 µF = 121 pF.
STANDARD FREQUENCY BROADCASTS

IMPROVEMENTS in the services broadcast by WWV are announced by the Central Radio Propagation Laboratory of the American National Bureau of Standards. Transmissions, now radiated on four additional frequencies (20, 25, 30 and 35 Mc/s), bringing the total to eight, include regular warnings of radio propagation disturbances.

To ensure reliable coverage of the United States and to extend the coverage in other parts of the world, seven or more transmitters are radiating throughout the twenty-four hours. The services provided are standard radio frequencies—listed below—time announcements (E.S.T.) in code each five minutes, standard time intervals, standard audio frequencies and radio propagation disturbance warnings.

The transmission schedule is:

<table>
<thead>
<tr>
<th>Radio Frequency (Mc/s)</th>
<th>Time (G.M.T.)</th>
<th>Power (W)</th>
<th>Audio Frequency (Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>0000-1400</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>0000-1200</td>
<td>0.1</td>
<td>440 and 4000</td>
</tr>
<tr>
<td>10</td>
<td>1200-0000</td>
<td>0.1</td>
<td>440</td>
</tr>
<tr>
<td>15</td>
<td>continuously</td>
<td>0.1</td>
<td>440</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>0.1</td>
<td>440</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>0.1</td>
<td>440</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>0.1</td>
<td>440</td>
</tr>
</tbody>
</table>

The station's call letters WWV and other 'phone announcements are given each hour and half hour.

On each carrier frequency, the accuracy of which is now better than one in fifty million, a pulse of 0.005 second duration occurs at intervals of precisely one second. It consists of five cycles, each of 0.001 second duration, and is heard as a faint tick. The pulse is omitted on the 59th second of every minute.

A warning of radio propagation conditions is broadcast in code on each of the carrier frequencies at twenty and fifty minutes past the hour. If a warning is in effect, a series of 'W's' (in morse) follows the time announcement; if no warning is in effect, a series of 'N's' (in morse) follows the time announcement.

A warning means that radio propagation disturbance is anticipated within 12 hours, or is in progress, with its most severe effects on radio transmission paths crossing the North Atlantic; i.e., those paths for which the control points of transmission lie in or near the northern polar zone. Disturbance is characterized by low intensities, accompanied by flutter or rapid fading on the normal frequencies used at the different times of the day, or by complete blackout of signals.

The warnings do not apply to sudden ionospheric disturbances which are unpredictable.

The Bureau welcomes reports on reception—particularly on the new frequencies—which should be sent to the Central Radio Propagation Laboratory, National Bureau of Standards, Washington, 25, D.C.

SERVICEMEN IN INDUSTRY

IT is announced by the Air Ministry that agreement has been reached whereby airmen who received wartime training in certain trades and completed five years' service in their trade are eligible for admission as skilled men in certain engineering trades and allied civilian occupations.

Airmen in the following trades who were not in the electrical industry before the war may now join the Resettlement Section of the Electrical Trades Union if they enter the industry on release: Radar Mechanic (Air or Ground), Wireless and Electrical Mechanic, Wireless Mechanic and Wireless Operator Mechanic (Air or Ground).

MICRO-WAVE TOWER. A reproduction of the architect's model of the Federal Telecommunications Laboratories, New Jersey, showing the 300-foot tower which will be used for U.H.F. research.

PURCHASE TAX ON KITS

WE have been asked by the Commissioners of Customs and Excise to draw attention to the fact that the sale in parts of a receiver of the domestic or portable type does not affect its liability to Purchase Tax.

Constructors' kits of components for the building of sets (including loudspeaker or cabinet supplied therewith) are accordingly chargeable with tax at the rate of 33 1/3 per cent of the wholesale value.

AUSTRALIAN AMATEURS

A NUMBER of new frequencies having recently been allocated to Australian amateurs, the most notable being an extension of the 20- and 40-metre bands, we give below a list of the bands now available.

1. 3.5-3.8 Mc/s 166-170 Mc/s
2. 7.0-7.2 Mc/s 1345-1425 Mc/s
3. 14.0-14.4 Mc/s 2500-2700 Mc/s
4. 28.0-30.0 Mc/s 5250-5650 Mc/s
5. 50.0-54.0 Mc/s 10000-10500 Mc/s

AUSTRALIAN AMATEURS

AUXILIARY AIR FORCE

FORMER members of the R.A.F., particularly those with wartime experience of raid reporting and fighter control methods, may now volunteer to join new Auxiliary Air Force units being set up in nine counties—Hampshire, Kent, Middlesex, Norfolk, Northampton, Nottingham, Suffolk, Sussex and East Riding. These units will be required to maintain Fighter Command and Fighter Group operations rooms, and radar reporting stations. Their work will be operational rather than technical.

Training will take place during the evenings, at week ends, and during 15 days' camp or exercises annually. There are allowances for training expenses and travelling and an annual bounty for airmen and a retainer for officers. Former members of the W.A.A.F. will be recruited later.

CANADIAN AMATEURS

A CHAIN of emergency amateur radio stations, for use in case of civil emergency or disaster, was recently set up across Canada. Sponsored by the Royal Canadian Air Force, the Air Force Amateur Radio System, as it is called, is open to any Canadian citizen. It does not demand Reserve or Service attachments, and places no obligation on its members to enlist in a Fighting Service at any time. Among
the aims of the organization is to provide additional channels of radio communication throughout Canada that may be used to augment or replace telephone and telegraph services in time of civil emergency or disaster and to give Canadian amateurs a knowledge of Service communication procedures and equipment.

RADAR TRAINING

ACCORDING to the latest figures given by the Radio Officers' Union, some 60 radio officers have taken the examination held at the end of each of the six-weeks' technical courses in radar arranged by the Admiralty for the Merchant Navy. In addition to the technical course there is a short radar observer course for navigation officers.

Since the introduction in December, 1945, of the scheme for instructing Merchant Navy Officers in Admiralty establishments the courses have been given in H.M.S. Collingwood but it is expected this school will soon be closed to Merchant seamen. A Radar Training Committee of the Ministry of Transport is at present investigating the whole question of training.

PERSONALITIES

Lord Trefgarne is the title adopted by G. M. Garro-Jones, chairman of the Television Advisory Board, who was created a Baron in the New Year Honours (not a Knight as stated in the February issue).

Major Edwin H. Armstrong has received the American Medal for Merit for his contributions to military communications especially in the field of frequency modulation. The citation states that he was "instrumental in influencing the Army to adopt F.M. for its mobile communications."

IN BRIEF

Amateurs' Examination.—The report on the City and Guilds examination for amateur transmitters held last November shows that 150 of the 216 candidates passed. The percentage of failures was 30.5 as compared with 22.2 at the previous examination. The only examination this year will be held on May 14th.

T.E.M.A.—As part of the celebrations to commemorate the centenary of the birth of Dr. Alexander Graham Bell, the Telecommunication Engineering and Manufacturing Association held a dinner at which Lord Listowel, the Postmaster-General, was a guest. Among the members of T.E.M.A., formed in 1943, are Marconi's, G.E.C., Plessey, Siemens and S.T.C.

The Freeze-up.—Some idea of the load imposed on the aerials of the Cable and Wireless transmitting station at Dorchester, where at one time all the arrays were on the ground, will be gained by the fact that No. 16 gauge wire was built up with ice to a circumferance of 5 inches. No damage was done to the sixteen 300ft masts because the balance weights which keep the arrays taut tripped off without failure. Six 100ft masts were, however, damaged.

Chinese Telecommunications.—A contract covering the supply of twelve telegraph/telephone transmitters—varying in power from 5 to 25 kW—30 triple-diversity high-speed receiving equipment and 150 commercial receivers to the Chinese government has been secured by Marconi's. Valued at nearly £300,000, the equipment is for the extension of China's overseas telecommunications services. Some months ago Marconi's received a similar order for the country's internal services.

"F.M. is now established on a sound, permanent post-war basis. In all, we at the F.C.C. expect some two thousand of these F.M. stations in the next few years—nearly twice as many as the present number of A.M. stations. . . . If I were buying a new radio today, I would certainly not buy one that did not include F.M.‖—E. K. Jett, U.S. Federal Communications Commissioner.

"Nation Shall Speak Peace. . . ."—Plans have been laid before the General Assembly of the United Nations Organization for the establishment of an international broadcasting and telecommunications system. This plan, which will be considered at the next meeting of the Assembly in September, provides for the expenditure of six million dollars for the equipment. It is recommended that half this amount should be spent on the headquarters station. The provision of a station in Europe and one to serve Eastern Asia and the Pacific is also included.

U.S. 'Phone Bands.—Because of the imminence of the world telecommunications conference the American Radio Relay League has withdrawn its year-old application to the U.S. Federal Communications Commission for the allocation of a 7-Mc/s 'phone band and the widening of the 14.2-14.3-Mc/s 'phone band. It will now await the result of the conference before making further application.

Athlone's new short-wave transmitter, which is now not expected to be operating until the end of the year, is to be supplied by Marconi's W.T. Co.
World of Wireless—

the recent Commonwealth Telecommunications Conference. All the assets in the United Kingdom will be transferred to the Post Office and the services integrated with those of the Post Office. The P.M.G. has taken over Ministerial responsibility for Cable and Wireless.

R.S.G.B. Council.—At the annual general meeting of the Radio Society of Great Britain, S. K. Lewer, G6LJ, was elected president, and V. M. Desmond, G5VM, vice-president.

Australia's overseas radio and cable services, which in the past were operated and controlled by Amalgamated Wireless (Australasia), have been taken over by the Australian Communications Commission which was set up in conformity with the Empire policy to place the communications services under government control.

Frequency Modulation is to be used experimentally in Australia. Two stations are being set up in Sydney and Melbourne and will soon be in operation. Transmission will be in the 88-108 Mc/s band.

INDEX TO RADIO DEPARTMENTS

A “Radio Paging” Service is planned by a New Yorker, who, according to Radio News, has been granted a construction permit by the F.C.C. for the erection of an experimental station. Clients of the service will carry a "vest pocket" pre-tuned receiver; on hearing their code number they will have to ‘phone the headquarters of the service to receive the message addressed to them.

Radar Association.—The first reunion of the Radar Association was held in January, when some 300 ex-R.A.F. and ex-W.W.A.F. members of radar commands met. Founded in 1946, the association, of which A.V.M. D. C. T. Bennett and Sir Edward Appleton are vice-presidents, aims at preserving "the comradeship founded in the radar command regardless of trade or rank."

The secretary is C. W. Knight, 31, Currey Road, Greenford, Middx.

INDUSTRIAL NEWS

Imports from U.S.—According to our New York contemporary, Tele-Tech, the Federation of Anglo-American Importers is negotiating for the inclusion of American broadcast receivers in the list of Token Imports permitted by the Board of Trade. The Federation has secured licences for some 34 importers to purchase American valves.

G.C. photo-cell equipment has been installed in H.M.S. Vanguard to give automatic indication of smoke density in the funnels.

Exide and Drydex.—A new sales depot has been opened by the Chloride Electrical Storage Co., at 89, Albion Street, Leeds, 1.

Wearite.—The whole of the production side of Wright and Wearie has been transferred to the company’s new works at Simonside Works, South Shields, Durham. The London office is now at 2, Lord North Street, S.W.1. Tel. ABB 2128.

B.I. Callender’s Cables has adopted a five-day working week. Although all the company’s works will be closed on Saturdays, the head offices and branch offices will be open for urgent business.

Marcconi’s announce that they are to supply the 25-kW F.M. transmitter ordered by the B.B.C., to which reference was made last month.

Sperry Gyroscope Co. has been given the contract to install the shore radar system at Liverpool docks, which it is planned will be in operation in the spring of 1948.

John Factor, Ltd., is the new name of Stanley Catteill, Ltd., of 9-11, East Street, Torquay.

Sussex Industries Exhibition.—The second exhibition to be promoted by the Sussex Engineers’ and Manufacturers’ Association will be held in the Dome and Corn Exchange, Brighton,
MEETINGS

Institution of Electrical Engineers

Radio Section. — Discussion on "Does Standardization Conflict with Progress?" open by J. W. Dalgleish, B.Sc., on April 15th.

"New Possibilities in Speech Transmission," by D. Gabor, Dr. Ing., on April 23rd.

The above meetings will be held at 5.30 at the I.E.E., Savoy Place, London, W.C.2.

BRITISH INDUSTRIES FAIR

Although the floor space to be occupied by the B.I.F. in London and Birmingham is slightly less than that of the last Fair (1939), the area allocated to the radio and music section at Olympia is more than twice as much—17,140 sq. ft. Sixty per cent of the exhibitors in this section are in the radio industry—the names are listed below. In addition, a number of radio manufacturers are exhibiting in the scientific and optical section.

Radio and Music Section.

AIRMEC International.

Allander Industries.

Amplion.

Associated Electronic Engineers.

BELLING & Lee.

Birmingham Sound Reproducers.

British Electronic Products.

British Bola.

ELESTON.

Central Rediffusion Services, Cosmor, A. C.

DALLAS, John E.

Dublifier.

Du Bola.

EASTICK, J. J.

GARRARD.

Gramplan Reproducers.

LABORAK.

Leyland Instruments.

MARCONI'S.

Masteradio.

Multidur.

Multidure.

Multitone.

PHILIPS.

Eye.

Radio Instruments.

Rediffusion.

Rexa Macc.

SODREL.

TAYLOR Electrical Instruments.

Telegraph Construction & Maintenance.

Telen.

Thorn Electrical Industries.

Trix Electrical.

ULTRA.

VITAVOX.

WICO Condenser.

Westinghouse.

Woden Transformer.

North-Western Radio Group. — "The Design of High-Fidelity Disc-Recording Equipment," by H. Davies, M.Eng., on April 10th, at 6.0, at the Engineers' Club, Albert Square, Manchester.

British Institution of Radio Engineers

Scottish Section. — Discussion on "Television Development in Scotland," opener A. Bogie, on April 10th, at 6.45, at the Institution of Engineers and Shipbuilders in Scotland, Elmbank Crescent, Glasgow, C.2.

North-Eastern Section. — "The Technique of Radio Design," by D. R. Parsons, on April 9th, at 6.6, at Neville Hall, Westgate Road, Newcastle-on-Tyne.

Institute of Physics

Radio Society of Great Britain

British Sound Recording Association

The British Industry Council is represented by the B.I.F. Advisory Committee of sixty-four members by W. M. York, G. J. Freshwater and H. J. Dyer.

The Radio Industry Council is represented by the B.I.F. Advisory Committee of sixty-four members by W. M. York, G. J. Freshwater and H. J. Dyer.

Admission to the Fair, which will be open from May 5th to 16th will be restricted to home and overseas buyers until 4.30 each day, when the public will be admitted. On Saturday, May 10th, when it will be open all day to the public.

Scientific and Optical Section

ALLEN & Hanbury.

Amplivox.

Ardiate.

BAIRD & Tatlock.

Baldwin Instrument.

British Physical Labs.

CAMBRIDGE Instrument.

Cinema-Television.

DAWE Instruments.

FERZEHILL Laboratories.

GAMBRELL.

HILGER, Adam.

MULLARD.

Multitone.

PARK Royal Scientific Instruments.

SALFORD Electrical Instruments.

Scre enjoy.

Sperry Gyroscope.

TAYLOR, Taylor & Hobson.
UNBIASED
By FREE GRID

The Turn and the Bar

The Turn and the Bar

Soon er or later radar was bound to be blamed for the vagaries of the weather, and the only thing that surprises me is that it has not happened before. I fully expected that it would be made the scapegoat for the great deluge of waters that assailed us last summer. But it re-

mained for the great February freeze-up of this year to supply the necessary inspiration for one of our amateur meteorologists to take up his pen and write to a Sunday newspaper with a strong indictment of radar as the cause of our faces being as blank and dismal as the screens of our television sets.

I must say that the gentleman in question dealt with his subject with great thoroughness. After pointing out that the winter following the establishment of the pioneer radar station in 1935 was marked by weather of unusual severity, he stressed the fact that the great impetus given to radar by the outbreak of war was followed by very severe wintry weather. The almost unprecedented low temperatures of January, 1940, were scarcely exceeded even in the recent cold spell, which he naively puts down to the increasing use of radar in a civilian capacity.

Now, as I have pointed out in these columns, we heard all this sort of thing in the early days of broadcasting from amateur weather wise-acres, who forgot that the radio waves which they blamed had been used for over a quarter of a century earlier in the pre-broadcasting era of wireless. This time it is "radar waves", which are the scapegoat, and it is obvious that the writer thinks that they are altogether different from ordinary radio waves.

I am not really worried about the opinion of amateur meteorologists. They and their opinions will pass into oblivion like those of earlier generations of their kind who have invariably attributed the vagaries of the weather to each new application of science.

What I am worried about, however, is the thoroughly unprofessional and technically slipshod way in which certain leading lights of the electrical industry described the public's habits of using electric fires in the days of the great freeze-up. After all, it must be remembered that the electrical industry is a poor and rather uncultured relation of our own radio industry, and any discredit its members bring upon themselves is a reflection also upon us. When, therefore, a prominent member of the electrical world publicly announces that the electric fire consumption was "up by many thousands of bars in each locality," it is time we asked ourselves whether "the bar" as a new electrical unit threatens to outstrip the old-fashioned kilowatt-hour in the same manner as "the turn" at one time threatened to rival the "microhenry" in the radio world.

How They Do It

It goes almost without saying that the Third Programme is the only one which readers of this journal can afford to have it known they listen to unless they wish to suffer a serious loss of intellectual prestige. This programme is, after all, the only one which is at all commensurate with the more rared atmosphere in which Wireless World readers have become accustomed.

At the same time it is within my knowledge that there is a considerable number of the weaker brethren among the glittering galaxy of technical talent which surrounds the Editorial throne who listen to the Home Service and even to the Light Programme. This they do without loss of prestige by the simple expedient of using head-phones and a personal portable disguised as a hearing aid while the domestic loudspeaker drives out the Third Programme unheeded.

These weaker brethren at any rate will be as familiar as I am with the fact that nearly all comedians, so-called and real, make a special feature of raising a laugh by imitating and caricaturing the efforts of other performers. In these efforts they show themselves to be so familiar with recent broadcasts of a wide variety of other performers that I have often wondered how they manage to find the necessary time to listen to them all, let alone mark, learn and inwardly digest them. Recently I put the question direct to a well-known comedian of my acquaintance. He would only let me know the secret on condition that I refrained from disclosing his identity, as he said that if there was one thing more than another that he liked to avoid it was publicity.

I gave my promise and, picking up the telephone, he dialled a certain number and requested some half-dozen recordings of recent broadcasts by certain fellow-artistes. This done he promptly placed the 'phone receiver in a special rest so constructed that the earpiece fed its output into a microphone coupled via a suitable amplifier to a loudspeaker, thus legitimately dodging the P.M.G.'s regulations about making any direct attachment to the telephone.

It appeared from subsequent explanations that there is in existence a company which makes a recording of everything broadcast by the B.B.C., and as promoters of the company are not at all sure about their legal position, both with regard to recording rights and also the various copyright acts, to say nothing of the B.B.C., they are compelled to remain underground and operate in this manner. Their telephone number is disclosed to would-be clients only after the most elaborate enquiries as to their trustworthiness.
"SUPER FIFTY WATT" AMPLIFIER

This AMPLIFIER has a response of 30 cps. to 25,000 cps., within 1/2 db, under 2 per cent. distortion at 40 watts and 1 per cent. at 15 watts, including noise and distortion of pre-amplifier and microphone transformer. Electronic mixing for microphone and gramophone of either high or low impedance with top and bass controls. Output for 15/250 ohms with generous voice coil feedback to minimise speaker distortion. New style easy access steel case gives recessed controls, making transport safe and easy. Exceedingly well ventilated for long life. Amplifier complete in steel case, with built-in 15 ohm mu-metal shielded microphone transformer, tropical finish. As illustrated. Price 36½ Gns.

C.P.20A. 15 WATT AMPLIFIER

for 12 volt battery and A.C. Mains operation. This improved version has switch change-over from A.C. to D.C. and "stand by" positions and only consumes 5½ amperes from 12 volt battery. Fitted mu-metal shielded microphone transformer for 15 ohm microphone, and provision for crystal or moving iron pick-up with tone control for bass and top and outputs for 7.5 and 15 ohms. Complete in steel case with valves. As illustrated. Price £28 0 0

RECORD REPRODUCER CHASSIS

This is a development of the A.C.20 amplifier with special attention to low noise level, good response (30—18,000 cps.) and low harmonic distortion (1 per cent. at 10 watts). Suitable for any type of pick-up with switch for record compensation, double negative feedback circuit to minimise distortion generated by speaker. Has fitted plug to supply 6.3 v. 3 amp. L.T. and 300 v. 30 m/A. H.T. to a mixer or feeder unit. Complete in metal cabinet and extra microphone stage. As illustrated. Price £21 0 0

Telephones : Liberty 2814 and 6242/3.
Telegrams : VORTEXION, WIMBLE, LONDON.
HERE IS THE WAY TO BETTER SOUND DISTRIBUTION

The Multicellular type of horn has been developed to facilitate quality sound reproduction in auditoria by providing satisfactory distribution of the higher audio frequencies essential for intelligibility. Vitavox Multicell horns are available in two types having lower cut-off frequencies of 220 and 550 c.p.s. respectively and in a wide range of cell combinations to suit particular combinations.

MULTICELL HORNS

Obtainable from your VITAVOX Dealer but do not hesitate to consult us in case of difficulty or if you require further details.

Vitavox Limited, Westmoreland Road, London, N.W.9
Telephone: Colindale 8671-3

THE GREEKS HAD A WORD FOR IT

but we prefer to call it “AUDIOSCOPE”

“Audioscope”—maybe we have invented a new word, but the meaning, when applied to WODEN AMPLIFIERS, is that their “audioscope” embraces not only perfected reproduction of any sound but such excellent amplification that it will reach the widest audience in hall or open space without the loss of the slightest undertone or the distortion of music’s highest C. Designed for a long life of trouble-free service and built in the WODEN belief that Finest Materials + Expert Craftsmanship must = Quality. Now it’s up to you to send us your name and address for further particulars... why not do so TO-DAY?

WODEN AMPLIFIERS
BUILT FOR THOSE WHO KNOW

60 WATT "CLASSIC" AMPLIFIER

20 WATT "JUNIOR" AMPLIFIER
Undistorted output of 20 watts. Transformer tapped at 0, 8 and 15 ohms. Flat from 50-10,000 cycles ± 1 db. Controls consist of Mic. and Gram. Feeders and Tone. Finished in Light Grey Stove Enamel and Chromium. Retail Price £27.10.0.

WODEN TRANSFORMER COMPANY LIMITED
Moxley Road, Bilston, Staffs.
Telephone: Bilston 41989
COMPONENTS FOR 1947
The R.C.M.F. Exhibition

NARLY 100 manufacturers of components, accessories, test gear and materials had stands at this year’s annual private exhibition of the Radio Component Manufacturers’ Federation, held March 10-13 in London. A classified list containing a selection of the principal groups of products on show is given below. The full titles of the firms appear in the list of exhibitors which follows.

A review of the exhibition will appear in our next issue.

LIST OF EXHIBITS

Aerial Equipment. Aerialite; Antiference; Belling-Lee; Labgear; Ripafula; Telephonic Construction.

Attenuators. Painton.

Bobbins. Associated Electronic Engineers; McMurdo Instrument.

Cabinets. Imhof; Stratton; Weymouth Radio.

Cables and Wires. Aerialite; Associated Electronic Engineers; B.I.-Callenders; Bulgin; Associated Technical Mfrs.; Weymouth Radio.

Capacitors, Fixed. Bulgin; British Electrolytic Condenser; B.I.-Callenders; British N.S.F.; Daly; Dubiller; Ferranti; Hunt; London Elec. Mfg.; Mfc.; Plessey; Static Condenser; T.C.C.; T.M.C.; United Insulator; Wego.

Capacitors, Variable and Pro-ssl. Sydney Bird; Bird; Dubiller; Hunt; Jackson; Labgear; Mullard; Plessey; Stratton; Walter Instruments; Wingrove & Rogers.

Ceramics. Geo. Bray; Bullers; Johnson Matthey; Steattie & Porcelain Prod.; Taylor, Tunnicliffe; United Insulator.

Chassis. Imhof; Stratton; J. & H. Walter.

Chokes. Advance Components; Associated Electronic Engineers; Automatic Coil Winder & Elec. Equip.; Bulgin; Electro Acoustic Industries; Ferranti; Goldman; Labgear; Parmeko; Partridge Transformers; Plessey; Radio Instruments; Stratton; Telelektor; Varley; Weymouth Radio Mfg.; Woden Transformer.

Cords, Advance Components; Automatic Coil Winder and Elec. Equip.; Labgear; Plessey; Radio Instruments; Stratton; Weymouth Radio Mfg.; Wright & Weaire.

Connectors. Belling-Lee; B.I.-Callenders; British Mechanical Prod.; Bulgin; Carr Fastener; Plessey; Standard Telephones; Telegraph Construction.

Crystals, Quartz. Salford Elec. Instruments; Imperial Telephone Co., Ltd.; McGill.

Duct Cores. Magnetic & Electrical Alloys; Plessey; Salford Elec. Instruments; T.M.C.

Fuses and Fuseholders. Belling-Lee; British Mechanical Prod.; Bulgin; Carr Fastener; Plessey; Standard Telephones; Telegraph Construction.

Gramophone Pick-ups. Cosmocord; Garda Steel; Garda Steel.

Gramophone Units, Record Changers. Garrard; Plessey.

Instruments, Measuring and Test. Advanced Electronic, Automatic Coil Winder & Elec. Equip.; Dawe Instruments; Ferranti; Labgear; Leduc; Mullard; Plessey; Sifam; Taylor.

Insulators. Geo. Bray; Bullers; Steattie & Porcelain Prod.; Stratton; Taylor, Tunnicliffe; United Insulator.

Insulating Materials and Slewing. Associated Technical Mfrs.; Duratube and Wire; Hellermann Elec.; Long & Hambly; Micanite & Insulators; Spicers; H. D. Symons; Telegraph Construction.

Interference Suppressors. Antiference; Belling-Lee; Dubiller; Elec.; Ferranti; Pangolin; Painton; McMurdo Instrument; Plessey; Reslo; Tannoy; Telelektor; Vitavox; Woden Transformer.

Laminations. Magnetic and Electrical Alloys; Geo. L. Scott; Telegraph Construction.

Loudspeakers. Acoustic Products; British Rola; Celestion; Electro Acoustic Industries; Ferranti; Goodmans; Plessey; Reslo; Tannoy; Telelektor; Vitasox; Woden Transformer.

Magnetic Alloys. Magnetic and Electrical Alloys; Telegraph Construction.

Microphones. Cosmocord; Film Industries; Goodmans Industries; Reso; Vitavox.

Mouldings, Plastic. British Mechanical Productions; Cosmocord; Sheffield; Standard Telephones; Telegraph Construction.

Mouldings, Rubber. Long & Hambly.

Plugs and Sockets. Antiference; Belling-Lee; British Mechanical Productions; Bulgin; Carr Fastener; Long & Hambly; Plessey; Reslo; Tannoy; Telelektor; Varley; Vitavox; Woden; Wright & Weaire.

Potentiometers. British Elec. Resistance; Bulgin; Colvern; Dubiller; Erg; Erg; Morgan Crucible; Painton; Plessey; Re- liance; Taylor Electric Instruments.

Relays. Metal. Standard Telephones; Westinghouse.

Relays. Plessey; T.M.C.; Varley.

Resistors, Fixed. Automatic Coil Winder and Elec. Equip.; British Electric Resistance; British N.S.F.; Bulgin; Dubiller; Erg; Erg; J. L. Goodmans; Morgan Crucible; Mullard; McMurdo Instrument; Varley; Welwyn Electrical Labs.

Seals, Hermetic (Ceramic). Geo. Bray; Bullers; Steattie & Porcelain Prod.; Taylor, Tunnicliffe; United Insulator.

Signal Generators. Advance Components; Taylor Electrical Instruments.

Solder, Flux Cored. B.I.-Callenders; Du Boc H. J. Enthoven; Multico.

Switches. A. B. Metal Products; British N.S.F.; British Electric Resistance; Bulgin; Colvern; Painton; Plessey; R. E. St. John; T.M.C.; Varley; Walter Instruments; Wright & Weaire.

Transformers. Acoustic Products; Advance Components; Associated Electronic Engineers; Automatic Coil Winder and Elec. Equip.; British Rola; British Electric Resistance; British Rola; Celestion; Electro Acoustic Industries; Ferranti; J. L. Goodmans; Goodmans; Labgear; Parmeko; Partridge; Plessey; Radio Instruments; Salford; Stratton; Tannoy; Telelektor; Varley; Vitavox; Woden; Wright & Weaire.

Valve Holders. Belling-Lee; British Mechanical Prod.; Bulgin; Carr Fastener; McMurdo Instrument; Plessey; Radio Instruments; E. Shipton.

Valve Retainers. Electrothermal Engineering; Long & Hambly.

Vibrators. Plessey; Wimbledon Engineering; Wright & Weaire.
GARRARD HIGH-FIDELITY PICKUP

Further details are now available of the new high-fidelity pick-up which is being fitted to Garrard record changers. A miniature moving iron movement is employed, and the coil is of the high-impedance type giving an output of the order of 0.35 volt, so that the pick-up can be connected to the input of the average amplifier without the additional expense of a transformer.

The armature measures approximately \(\frac{3}{16} \text{in} \times \frac{3}{16} \text{in} \) and is mounted on a V-section channel cut away to give torsional flexibility in the required direction of movement, limited vertical movement and high resistance to longitudinal stresses. Damping is applied as a thin sheet lying under the torsion member, but is not relied upon to supply the restoring force necessary to keep the armature central in the gap.

The pole pieces are machined from the solid and provided with interlocking grooves and spigots which ensure accurate assembly.

No needle is employed, and the sapphire stylus is fixed directly into the armature assembly. The volume of magnetic material in the armature ensures a good output, but its mass is not sufficient to cause appreciable record wear.

According to the maker's curve, the output is level from 50 to 1,000 c/s, then falls 3 db from 1,000 to 10,000 c/s. It is recommended that the coil should be shunted with 0.25 \(\Omega \) with 0.0005 \(\mu \)F in parallel. The D.C. resistance is 4,000 ohms, and the impedance at 1,000 c/s is 6,500 ohms.
Tropical Broadcasting

Notes on Proposed Use of Metre Waves

By "Radiator"

The problem of providing internal broadcast services in countries situated within or near the tropics, where the coverage attainable on medium waves is often reduced to uneconomical proportions because of the high prevailing noise level, is one which has exercised the minds of broadcast engineers for some long time past, and seems likely to continue to do so in the future.

In India—and in some of the other countries involved—the main internal coverage has, apart from that of a few of the larger towns, been given on "long-short" waves, where some allocations of wavelengths were made for this express purpose. But this is admittedly only a second-grade service, for, since the waves have first to be reflected from the ionosphere, the received signal is subject to all the deficiencies inherent in such an indirect-ray service. Some of the problems of broadcasting on the "tropical" wavelengths of 60-120 metres were discussed in Wireless World for June, 1945.

In a recent address to the Electrical Engineering Society, Indian Institute of Science, Professor S. P. Chakravarti proposed that a first-grade service should be given in India on the very short, rather than on the medium waves. After pointing out the advantages attending the use of very short waves—chief of which is that, provided the right wavelengths are employed, it should be possible to give reliable first-grade coverage at all times of the year up to 35 miles from a transmitter of only 3 kW radiated power—he went on to consider the problems involved.

Postulating that the frequencies to be used should be from 60 to 150 Mc/s he states that those higher than 60 Mc/s "are never known to be returned by the F2 region," presumably at most oblique incidence. This is true, though it is not true that they are not returned from the ionosphere at all, as it frequently happens that the M.U.F. for Sporadic E is greater than this. Above 150 Mc/s other disadvantages—such as multi-path transmission—are likely to arise. In the band proposed the atmospheric noise is negligible and that due to electrical machinery hardly appreciable.

A radiated power of 3 kW in this frequency range from an aerial 100 ft high should give reliable coverage up to 30 miles, provided the receiving aerals are at least 30 ft high. The field strength should be more or less the same at this distance for either vertically or horizontally polarized waves, but since the electrical interference would be vertically polarized, a better signal/noise ratio would result if the transmissions were horizontally polarized. The type of the transmitting aerial is most important and, in order to secure a good circular pattern, the use, at a height of 100 ft, of two half-wave horizontal radiators crossed at right angles and fed 90° out of phase is proposed. A second similar type of aerial is proposed if wide-band transmission to accommodate two programmes is undertaken. This would be a great advantage in India for, as is shown, the areas served by the transmitters are generally inhabited by people speaking two different languages, so it is proposed to transmit two programmes simultaneously from each transmitter.

The modulation preferred is A.M. rather than F.M. for the following reasons: (1) F.M. equipment is the more expensive. (2) F.M. is inconvenient for the transmission of two programmes. (3) The improved signal/noise ratio with F.M. is not sufficient on these frequencies to justify its use. (4) The bandwidth required for two programmes with F.M. is too great. (5) Reception difficulties exist with F.M. which are not present with A.M. Altogether a strong case seems to have been made out for the use of A.M.

Coming to the economics of the proposed service the use of no fewer than 70 very short-wave transmitters is proposed—in addition to the existing medium-wave stations—and even these appear to leave an enormous part of the country uncovered. A comparison is made between the approximate cost of erecting and operating very short-wave stations and medium-wave stations, with much...
advantage to the former system. But no comparison is made between the cost of providing a first-grade service by very-short-waves and a second-grade service by short-waves, and it would appear that the substitution of a first-grade for the present second-grade service over a large part of India would in any case be somewhat expensive. However, if it is to be done, the very-short rather than the medium waves certainly seem to offer the best solution to a problem that is arising in other tropical countries besides India.

SHORT-WAVE CONDITIONS

Expectations for April

By T. W. BENNINGTON (Engineering Division, B.B.C.)

During February maximum usable frequencies for this latitude increased considerably during daytime and very considerably during night-time as compared with those of January. These variations are the normal seasonal ones, but they were accentuated by the increasing sunspot activity. Long-distance communication on exceptionally high frequencies was often possible during daytime, a particularly good day being the 6th, when several U.S.A. stations on frequencies above 40 Mc/s were well received in this country and one U.S.A. harmonic on 50 Mc/s was heard.

Conditions were not unduly disturbed at any time during the month, though ionosphere storms did occur during the periods 8th-10th, 12th-14th and 16th-20th.

Forecast.— During April daytime M.U.F.s in the Northern Hemisphere are expected to begin their seasonal decrease towards the midsummer minimum, and the decrease during the month should be quite considerable. Night-time M.U.F.s, on the other hand, should continue their seasonal increase towards the midsummer maximum. Modifying these effects on most transmission paths is the fact that, since daylight will last longer, moderately high frequencies can remain in use for considerably longer periods. The net result is that during April working frequencies for most transmission paths will be somewhat lower than in March during the full daylight period, somewhat higher during the morning and evening periods, and considerably higher during the full darkness period.

Daytime communication on exceptionally high frequencies (like the 28-Mc/s band), though often still possible, is likely to be somewhat less so than of late. Over many circuits frequencies as high as 17 Mc/s should remain regularly workable till after midnight, and frequencies lower than about 11 Mc/s will seldom be required at any time during the night.

For transmission over distances between about 600 and 1,000 miles the E layer will often control transmission during the daytime, leading to somewhat higher working frequencies than could otherwise be possible. Sporadic E, though, it should begin to increase, is not likely to be very prevalent during the month.

Below are given, in terms of the broadcast bands, the working frequencies which should be regularly usable during April for four long-distance circuits running in different directions from this country. In addition a figure in brackets is given for the use of those whose primary interest is the exploitation of certain frequency bands, and this indicates the highest frequency likely to be usable for about 25 per cent of the time during the month for communication by way of the regular layers:

	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300			
Montreal	0000	16 Mc/s	(21 Mc/s)	0100	11	(17)	0200	15	(21)	0300	17	(25)	0400	21	(29)	0500	25	(30)	0600	21	(28)	0700	17	(26)	0800	15	(22)
Buenos Aires	0000	17	(23)	0100	16	(21)	0200	11	(19)	0300	16	(21)	0400	21	(28)	0500	22	(30)	0600	17	(24)	0700	17	(26)	0800	17	(29)
Cape Town	0000	17	(25)	0100	15	(21)	0200	17	(24)	0300	21	(29)	0400	26	(30)	0500	26	(30)	0600	17	(26)	0700	17	(26)	0800	26	(30)
Chungking	0000	11	(16)	0100	15	(21)	0200	17	(24)	0300	21	(28)	0400	22	(30)	0500	22	(30)	0600	17	(26)	0700	17	(26)	0800	22	(30)

During April a moderate amount of ionosphere storminess is usual. At the time of writing it would appear that ionosphere storms are more likely to occur during the periods 4th-6th, 12th-16th and 27th, than on the other days of the month.

NEW MOVING COIL MICROPHONE

The new Type C46A Lustraphone microphone is a modification of the standard type and incorporates a corrugated cone diaphragm suspended on a fine gauze surround.

The permanent magnet is of generous proportions and gives a flux density of 8,000 lines/cm². A speech coil impedance of approximately 20 ohms is used and a 1:100 ratio matching transformer in a Mumetal box can be supplied.

Lustraphone Type C46A microphone partly dismantled.

The makers state that over the range 50 to 8,000 c/s the deviation from level output does not exceed ±6db while the sensitivity is −73db for the use of those whose primary interest is the exploitation of certain frequency bands, and this indicates the highest frequency likely to be usable for about 25 per cent of the time during the month for communication by way of the regular layers:

<table>
<thead>
<tr>
<th></th>
<th>0000</th>
<th>0100</th>
<th>0200</th>
<th>0300</th>
<th>0400</th>
<th>0500</th>
<th>0600</th>
<th>0700</th>
<th>0800</th>
<th>0900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
<th>2100</th>
<th>2200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montreal</td>
<td>0000</td>
<td>15 Mc/s</td>
<td>(21 Mc/s)</td>
<td>0100</td>
<td>11</td>
<td>(17)</td>
<td>0200</td>
<td>15</td>
<td>(21)</td>
<td>0300</td>
<td>17</td>
<td>(25)</td>
<td>0400</td>
<td>21</td>
<td>(29)</td>
<td>0500</td>
<td>25</td>
<td>(30)</td>
<td>0600</td>
<td>21</td>
<td>(28)</td>
<td>0700</td>
<td>17</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>0000</td>
<td>17</td>
<td>(23)</td>
<td>0100</td>
<td>16</td>
<td>(21)</td>
<td>0200</td>
<td>11</td>
<td>(19)</td>
<td>0300</td>
<td>16</td>
<td>(21)</td>
<td>0400</td>
<td>21</td>
<td>(28)</td>
<td>0500</td>
<td>22</td>
<td>(30)</td>
<td>0600</td>
<td>17</td>
<td>(24)</td>
<td>0700</td>
<td>17</td>
</tr>
<tr>
<td>Cape Town</td>
<td>0000</td>
<td>17</td>
<td>(25)</td>
<td>0100</td>
<td>15</td>
<td>(21)</td>
<td>0200</td>
<td>17</td>
<td>(24)</td>
<td>0300</td>
<td>21</td>
<td>(29)</td>
<td>0400</td>
<td>26</td>
<td>(30)</td>
<td>0500</td>
<td>26</td>
<td>(30)</td>
<td>0600</td>
<td>17</td>
<td>(26)</td>
<td>0700</td>
<td>17</td>
</tr>
<tr>
<td>Chungking</td>
<td>0000</td>
<td>11</td>
<td>(16)</td>
<td>0100</td>
<td>15</td>
<td>(21)</td>
<td>0200</td>
<td>17</td>
<td>(24)</td>
<td>0300</td>
<td>21</td>
<td>(28)</td>
<td>0400</td>
<td>22</td>
<td>(30)</td>
<td>0500</td>
<td>22</td>
<td>(30)</td>
<td>0600</td>
<td>17</td>
<td>(26)</td>
<td>0700</td>
<td>17</td>
</tr>
</tbody>
</table>

The price is £6 16s 6d and the makers are Lustraphone, 84, Belsize Lane, London, N.W.3.
WHISTLING METEORS

Audible Radio Reflections from Shooting Stars

SHOOTING stars, or, to give them their more scientific name, meteors, have held a fascination for mankind from the earliest times and although they are no longer regarded with superstition, they still form a subject of absorbing interest. They even have their uses, for it is now known that while the ionization in the upper atmosphere which makes long-distance radio communication possible, is maintained during the daytime by ultra-violet light from the sun, it is the continuous arrival of countless millions of microscopic meteors, travelling at enormous velocities, which maintains the level of ionization throughout the hours of darkness. Meteors are thus far more than a subject of scientific curiosity.

For several years radar methods have been used for the observation of meteors, and their transient echoes will be familiar to many radar operators. With the recent discovery, however, by two engineers of All India Radio, Messrs. Chamanlal and Venkataraman, that under suitable conditions, meteors can also be “heard” on an ordinary communication receiver, a new line of research has been opened up.

Variable-pitch Whistles

The transmitters of All India Radio at Delhi are situated about 10 miles from the Receiving Centre, and while monitoring the high-power short-wave transmitters it was noticed that feeble heterodyne whistles of an unusual nature could often be heard but they could not be explained by any of the known causes. The whistles were invariably of short duration, never lasting for longer than 1½-2 seconds; they commenced as a high-pitched note of about 2-3,000 cycles, fell rapidly in pitch and usually died away before reaching zero frequency. Only in rare cases did the whistle pass through zero and reappear as an ascending note before dying away. The whistles were most frequent between 2.0 and 6.0 a.m. and were only rarely heard during the hours of daylight.

Searching to explain these unusual characteristics, Chamanlal and Venkataraman concluded that they could only be explained as a Doppler effect arising from the interference of the direct ground waves from the nearby transmitter with the waves reflected from some rapidly moving reflecting surface. Calculations showed that if this was the true explanation, the reflecting surface would have to have the initial velocity of the order of 50-80 kilometres per second. Such velocities could only be associated with meteors entering the earth’s upper atmosphere, and visual observation soon confirmed this theory by establishing a direct correlation between the arrival of a visible meteor and the occurrence of the audible whistle.

Although a visible meteor invariable produces a whistle of considerable intensity, a far greater number can be heard but not seen. In fact, at certain times of the year, the number arriving is so great as to make it impossible to maintain an accurate count.

Meteors can be broadly divided into two classes—the first being those which enter the earth’s atmosphere from random directions, and the second those which are travelling in definite orbits comparable with those of a comet. From the point of view of radio communication those arriving from random directions are by far the most important since it is these which are now known to maintain the ionization in the upper atmosphere during the night. The number of such meteors is literally astronomic and it has been computed that at least a thousand million encounter the atmosphere every 24 hours.

The vast majority of these meteors are of only microscopic size, but their very high velocities and their great number result in steady ionization of the atmosphere at high altitudes and give rise to the familiar reflecting layer. It is, of course, only the larger meteors which produce sufficient ionization to give an individual echo, and it must be a very large one to become visible to the naked eye as a “shooting star.” “Large” and “small” are comparative terms, however, so it may be as well to remark that although estimates vary, a “small” meteor can be regarded as being about the size of a grain of sand while a “large” one, visible as a bright shooting star, is no larger than the top of a black-headed pin and has a mass which seldom exceeds 10-15 milligrams.

Although less important from the point of view of radio communication, those meteors which travel in regular orbits are by far the most spectacular since they give rise at times to brilliant “showers” during which very large numbers may be seen. Such meteors are probably the remains of disintegrated comets which continue to travel in the original orbit. The fragments tend to be spread out more or less along the whole length of the orbit, and if the earth should happen to pass through the track at the time when the main bulk is passing, a most brilliant display of shooting stars may be seen by the naked eye. There are nine principal meteoric showers during the year, but really brilliant displays are of rare occurrence.

Conditions for Whistles

In order to detect the arrival of a meteor on a normal radio receiver there are a number of special conditions which must be fulfilled if success is to be achieved. First, it is necessary to have a powerful transmitter—at least 10kW and...
Whistling Meteors— preferably about 50kW, radiating an unmodulated signal on a frequency of the order of 5-15 megacycles. The receiver requires to be situated about 8-15 miles from the transmitter so that it is within the skip distance but so that only a very weak ground wave is received. It is essential that the ground wave received should be a weak one since the reflected echoes may have a strength as low as only 1 millivolt or even less, and if a strong ground wave is received, the normal A.V.C. action of the receiver will so reduce the amplification as to make the feeble echoes entirely inaudible.

It will be appreciated that a highly sensitive receiver is required for these observations. A communication receiver with two R.F. stages before the mixer is most suitable although under good conditions a few of the stronger echoes can be picked up on a high-quality broadcast receiver.

Night-time Phenomenon

A somewhat inconvenient habit of these meteors is that, like the skylark, their peak period of whistling is during the hours just before dawn. A few can be heard from midnight onwards, but a far greater number will be audible about 4 a.m. and it is rare to hear one during the hours of daylight or during the evening. The reason for this state of affairs is easily understood if we recall some of our schoolboy astronomy and remember that besides rotating on its axis once every twenty-four hours, the earth makes a journey round the sun once every year. The earth travels round its elliptical path with an average velocity of 29 kilometres per second and it is obvious that as the earth rotates on its axis there is only one part which is “facing forwards” and where the highest relative velocities will be encountered between the earth and any meteors which it happens to meet. The area facing forwards will actually lie at some point within the tropics and at any moment will be on the longitude where the solar time is 6 hours before noon, i.e., 6 a.m. local time. Various other factors combine to place the peak period rather earlier than this and in practice the highest number of meteors are encountered around 4 or 4.30 a.m.

Doppler Effect

As was mentioned earlier, the “whistle” is due to a Doppler effect produced by the beating between the ground waves and those reflected from the local area of ionization caused by the passage of the meteor through the atmosphere. The apparent frequency shift of the reflected waves is due to the component of the velocity of the reflecting surface towards the observer and it will be clear that if this velocity was constant, a whistle of constant frequency would be heard. In practice, this velocity is not constant for two reasons—first the meteor is retarded very rapidly in the earth’s atmosphere, and secondly the component of velocity towards the observer clearly varies with the instantaneous position of the meteor in its track in relation to the observer. For example, suppose that a meteor was travelling at a constant velocity on a horizontal course which passed directly over the head of the observer. Such a meteor would have a component of velocity which would first be directed towards the observer but which would fall to zero as it passed overhead and then increase in the opposite direction as it receded. Such a meteor would cause a whistle which would first fall in pitch, pass through zero frequency and then increase again before dying away at 1-2,000 cycles.

A very small proportion of such whistles can in fact be heard but they are invariably very feeble since the meteors causing them are at extreme altitudes where the retardation of the earth’s atmosphere has not entirely arrested their progress before they reach the point where the velocity towards the observer is zero.

Since the beat note is dependent on the direction of the meteor as well as its velocity, it is not possible to calculate the true velocity without simultaneous observations of its position and track. It is easy, however, to calculate the component velocity towards the observer. For example, assume that a beat note of 3 kc/s is heard using a transmission frequency of 6 Mc/s. Then the velocity \(v \) of the reflecting surface towards the observer is given by

\[
v = \frac{Ne}{2f}
\]

where \(N \) is the whistle frequency, \(e \) is the velocity of electromagnetic waves and \(f \) is the transmission frequency. In the example quoted,

\[
v = \frac{3,000 \times 3 \times 10^6}{2 \times 6 \times 10^6} \text{ cms/sec} = 75 \text{ km/sec}.
\]

Although this figure is only a component, it gives some idea of the order of the velocity which may be possessed by a meteor and it is estimated that the real velocity may range from 20-180 km/sec. It should not be difficult to develop a technique employing two receiving stations making simultaneous observations of whistle frequency from which the real velocity could readily be ascertained. In fact, it seems likely that further research on meteors will be carried out on these lines.

Acknowledgment is made to Mr. Cecil Goyder, C.B.E., lately Chief Engineer of All India Radio, by whose courtesy the writer was enabled recently to pay several visits to the transmitters and receiving centre in New Delhi and to experience a first-hand demonstration of the phenomenon described above and which, so far as is known, has not been previously reported.

LOCAL BROADCASTING

A SECTION of the report recently issued by the New Towns Committee, appointed by the Minister of Town and Country Planning, under the chairmanship of Lord Reith, deals with the facilities which it considers should be available in every new town for the reception of broadcasting.

The value of a local broadcasting service is weighed and suggestions for the conduct of the service are put forward.

Ultra-short-wave broadcasting is proposed as the best means of transmission and the report adds "if the new towns in this country were to have their own stations they might well be anticipating a national development whereby the number of available programmes increased."
Q. 38. What is the purpose of the metallised paper wrapping under the wire screen of the Belling-Lee twin feeder (Cat. No. L.1221), and is it necessary to earth this to the screen at either or both ends? (by A. G. F., Highbury, who correctly answered the question in his letter).

A. 38. (1) The purpose of the metallised paper wrapping is to maintain the characteristic impedance and attenuation loss constant over the life of the cable. It has been found that without this metallic paper the braided tinned copper shielding ultimately oxidises, causing an increased resistance at the points of intersection of the wires comprising the braid which has the effect of increasing both the characteristic impedance and the attenuation loss.

(2) There is no need to bond the metallised paper wrapping to the shield, as its capacity thereto may be regarded as the electrical connection at high radio frequencies.

This metallised paper feature is covered by a patent of Messrs. Telegraph Construction and Maintenance Co. (U.K. patent No. 559518).

The illustration above shows Belling-Lee (Catalogue No. L.1221) screened twin 70 ohms feeder discussed above and recommended as a suitable feeder for the “Eliminoise” *3 and “Skyrod” *4 anti-interference aerials. It is sometimes used as a balanced feeder for a television dipole, but is in our opinion unnecessarily extravagant used in this way, as the much cheaper L.336 *2 unscreened balanced feeder gives results so nearly comparable that a television user could not see (nor hear) the difference.

Q. 39. How can a balanced feeder remain balanced when run in a house? Is it not affected by the presence of other conductors such as water pipes, gutters, conduits, etc.?

A. 39. Theoretically there will be small changes in the characteristic impedance at various points along the line. These changes will be related to its proximity to various earthed objects, but at television frequencies the changes are so insignificant that they are immeasurable by any ordinary means. In the case of a feeder with a characteristic impedance of the order of 400 ohms and typified by a spacing of a few inches between conductors, the presence of other incidental conductors closer to the feeder than this, would result in appreciable attenuation.

In L.336 the spacing between conductor centres is nominally 0.057”. Therefore it is unlikely that outside conductors would have any practicable influence on the line characteristic.

*1. L.1221, Screened twin feeder per yard 1/9
*2. L.336, Balanced twin feeder per yard 7½d.
*3. ELIMINOISE (Reg. Trade Mark).
L.308/K. Complete aerial kit, comprising Aerial and Receiver end transformers, 60ft. Aerial wire, 50ft. of L.1221 screened feeder, earth wire, insulators and lightning arrester £6 6 0
*4 Skyrod (Reg. Trade Mark).
Type L.355/CK. 12ft. collector, downlead, 2 transformers, pole clamps and earth wire.............. £7 7 0

Chimney lashings and brackets can be supplied at additional cost.

All prices quoted are subject to alteration without notice.

Send for this booklet NOW! enclosing 2½d. stamp for postage

In presenting this catalogue we have for the first time aimed a section of our products straight at your dens. The components illustrated are, we know, used a great deal in Amateur Radio circles. They should be, because having undergone stiff electrical and mechanical tests in Service gear, they have proved to be reliable even under the most arduous conditions of modern warfare, and may therefore be used with complete confidence by the most discriminating ham.
Study television at its source! *

E.M.I. Research and Development Laboratories were largely responsible for the Marconi-E.M.I. system of television transmission used by the B.B.C. Service—the first in the world.

E.M.I. Factories produce the finest television receivers in the world.

E.M.I. Service department is the largest and most expertly equipped in the country.

NOW—E.M.I. have set up a TRAINING ORGANISATION to provide immediate courses on practical TELEVISION (Postal and College Courses.)

SOON this new Training College will extend its syllabus to cover all branches of Electronic Science.

This is your opportunity to secure a thorough training in Television from the very pioneers of the Science.

Ask your local H.M.V. dealer for further details or send for our free pamphlet which gives full details of this and other courses.

E.M.I. INSTITUTES, LTD.

Dept. 16 • 43 GROVE PARK ROAD • CHISWICK • LONDON • W.4

Associated Company of:

THE GRAMOPHONE CO. LTD.
(Master's Voice)

THE MARCONPHONE CO. LTD.
MARCONI-E.M.I. TELEVISION CO. LTD.
RADIO MOBILE LTD., ETC. ETC.
DESIGNING AN F.M. RECEIVER

1.—General Considerations

By THOMAS RODDAM

I HAVE already explained in the columns of Wireless World that I have objections to frequency modulation: for better or worse it is, however, on its way. The B.B.C. have been conducting experimental transmissions for some time, and some police authorities are using F.M. for routine communication purposes. The writer, who earns a precarious and wholly inadequate living by doing this sort of thing, has already had to construct part of an F.M. receiver. In the course of this work it became apparent that there are quite a number of things, which do not appear in the theoretical papers, which can provide some difficulties in practice. I must explain at the beginning that the receiver already constructed was for experimental work with very wide deviations at 60 Mc/s. In consequence all that this article will seek to do is to discuss the principles of design. This will not do any harm, for it is not advisable to start on an F.M. receiver unless you have a reasonable amount of measuring equipment and other facilities and can really make a job of it.

Frequency modulation, as all readers of Wireless World know, is a system of transmission in which the carrier level is kept constant and the carrier frequency wobbled about in accordance with the modulation. The maximum amount of wobble for sound broadcasting is usually 75 kc/s, so that with a nominal carrier frequency of 90 Mc/s the instantaneous frequency on the peaks of a 100 per cent modulated wave will be 90.075 Mc/s and on the troughs 89.925 Mc/s. I am not sure, here, whether pedants will not object to the terminology, but it is convenient to use the ideas already familiar in amplitude modulation. Although the deviation is only ±75 kc/s, a spacing between stations of 400 kc/s is being adopted in America, and in order to get a linear phase response, and also to allow for tuning drift and mistuning, a receiver bandwidth of 200 kc/s is normal practice. In England it will probably be some time before there are enough stations working to make selectivity a problem, and it is wise to err on the side of excessive bandwidth rather than to risk the distortion produced by the non-linear phase characteristic near the edge of the response curve.

These basic principles are quite well known, which is why they are discussed so briefly. The important features of F.M. which must constantly be kept in mind are (1) the bandwidth, and (2) the constancy of carrier level. It is these two features which result in the very low noise level obtained in the service area, and which provide almost perfect A.V.C. without any awkward time constants.

Essentially an F.M. receiver is an ordinary V.H.F. receiver with a wide-band response and a sort of detector circuit. If you already have a V.H.F. receiver for amplitude modulation it should be possible to modify it to receive F.M. The modifications will reduce its sensitivity and involve the widening of the response and the addition of a limiter and discriminator to replace the detector. The A.V.C. is not wanted, but some designs of V.H.F. receiver already include a switch for fixed gain operation. The audio-frequency circuit will also need some modification, to provide de-emphasis on the one hand, and also to give a really high-fidelity performance free from hum so that full advantage can be taken of the virtues of F.M.

The heart of an F.M. receiver is the limiter and discriminator section. The job of the limiter is to provide at its output a signal which is absolutely constant in amplitude in spite of its variation in frequency. The receiver carrier level will not be absolutely constant, because there is likely to be some fading. Most discriminator circuits are sensitive to amplitude modulation, and if the limiter does not fix the level absolutely constant the changes in level will be detected. This is a bad thing. The second cause of changes in level is noise. In Fig. 1(a) there is a sketch of a frequency-modulated carrier with noise on it. The resultant carrier level is clearly modulated by the noise, and the discriminator would detect this, and allow the noise to come through. The limiter alters the shape to that of Fig. 1(b), giving an apparently constant carrier level. Noise still has some effect, for if we try to determine the instantaneous frequency by measuring the time between an up-swing and a down-swing (Fig. 1(c)) we cannot be certain whether to take t_1 or t_2, and this
Designing an F.M. Receiver—

"uncertainty" represents a noise which appears in the output. It is, however, very much less than the noise which would be produced by amplitude modulation of the peaks. This reduction of noise when the limiter is operating is most striking, and is one of the most attractive features of F.M.

The job of discriminator is to turn the frequency-modulated signal into a variable voltage. One way of doing this, which is quite attractive at low frequencies, is to build a network having attenuation which is a function of frequency. In Fig. 2, for example, the voltage appearing across R is, neglecting the circuit to the right of R,

\[V = \frac{R}{R + j\omega C} \times E \]

In this expression, so long as CR is small, we can write

\[V = j\omega CR \times E, \]

so that the output voltage for constant carrier level E, is proportional to the frequency term \(\omega = 2\pi f \). If we rectify and allow only the modulation frequency components to pass by means of a low-pass filter, this circuit can be used as a discriminator, and in fact it has been so used. The trouble with it is that C must be very small, and R must be very small, and so the output is microscopic. It does, however, illustrate the principle very well.

The usual circuit is that known as the Foster-Seeley circuit, and this will be described in the second part of this article.

Let us now look at the receiver requirements. The limiter grid should receive about 10 volts drive under normal conditions, although less could be allowed at a pinch. For design purposes we shall take 10 volts as the level required. The input level to the receiver is very dependent on where it is to be used. Within 10 miles of Alexandra Palace the B.B.C. 1 kW test transmitter produces field strengths of more than 1 mV/metre, the provisional second class rural service is based on a field strength of 100μV/m.

The actual voltage developed at the first grid of the receiver will be very dependent on the aerial used and on the distance from the transmitter, and is a matter for individual determination. Here we shall assume that we can get 1 millivolt: the gain before the limiter grid must therefore be 10,000. If valves having mutual conductance of 5mA/volt are used, a stage gain of 50 can be obtained at an intermediate frequency of 10Mc/s. The gain of the stage before the limiter will be rather lower than this, because of the effect of the limiter grid circuit.

A mixer gain of 10 is a reasonable allowance, giving \(10 \times 40 \times (n \times 50) \) for a mixer and \((n+1) \) stages I.F. amplification. For two stages this is 20,000, which is more than we asked for so that there is some safety margin.

The basic design will therefore be a mixer, two I.F. stages, followed by a limiter, discriminator and audio-frequency amplifier. If an additional factor of about 6-8 is required, an R.F. stage should be added, as it is much easier to make the system stable when the gain is distributed between two different frequencies: stable multi-stage I.F. amplifiers can be built, as anyone who has seen a radar receiver will know, but they require very careful layout and screening.

A stage gain of 50 implies an anode load resistance of 10,000 ohms with a valve having a mutual conductance of 5mA/volt. The EF50 has been very widely used for this sort of job and it, or its successor the EF54, is an obvious choice here. The total capacity of the EF50 is about 16pF, and with an allowance for wiring and valveholder capacity will probably be about 30pF; the reactance of this at an intermediate frequency of 10Mc/s will be 500 ohms, so that without added capacity the circuit "Q" will be about 20. The bandwidth at 3db down will then be 500 kc/s. This is definitely too wide, and the circuit capacity must be increased to about 75pF for a 200 kc/s band. The additional capacity will help to hold down any changes of valve capacity.

To tune to 10 Mc/s, an inductance of 3.3 µH is needed.

The design takes more form now. The I.F. stages have EF50 (or EF54) valves, with 10,000 ohms anode load, and a capacity of 75pF tuning 3.3 µH coils. For a first model, simple tuned circuits between stages are recommended.

It is true that they do not give such good adjacent channel selectivity as tuned transformers, but
they are easier to construct and there probably will not be any adjacent channel to get rid of. The circuit of the I.F. section becomes that shown in Fig. 2. The choice of putting the coils in grids or anodes is largely one of convenience: in the form shown, there is no D.C. applied to the coils, and with some constructions this is an advantage; it does, however, require a higher H.T. supply voltage. Decoupling condensers should be 0.001 µF, and each stage should be built as a unit: that is, all the earth connections should be brought back to a common point, preferably the chassis near the cathode pin of the valve.

I have shown fixed tuning capacitances of 56 pF on the assumption that dust-cored coils with adjustable slugs will be used. One suitable former is that drawn in Fig. 4, and on this core about 16 turns of 26 S.W.G. wire wound as a single layer with turns touching will give the required inductance. The core can be screwed in and out for tuning, and the winding should begin right at the bottom to allow a maximum range of adjustment. With this pattern of coil an inductance variation of about 20% is obtained by screwing in and out the core, and this should be sufficient to allow for variations in stray capacitance: it will be enough to enable the circuit to be tuned up, for even if the capacitances are too small or too large, the change of gain as the circuit is tuned will show whether turns should be added or removed. If coupled circuits are used, they should be adjusted for “maximal flatness” and not for a wide double-humped response. The reason is that the phase characteristic is more important than the amplitude characteristic in F.M. circuits, and a gently drooping amplitude characteristic is usually associated with a good phase characteristic.

It is my personal view that care should be taken to prevent any limiting action in the I.F. amplifier proper. The reason is that the grid-current flow is accompanied by a detuning of the coupling stage, so that the overall frequency response is affected. The exact effect of this is rather difficult to predict but it seems likely to result in a lowering of the noise-reducing effect or in increased distortion.

It is preferable in building an experimental receiver to make use of a separate oscillator for the mixer circuit. A Colpitts circuit, with an EF50 valve, operating on 40 Mc/s may be used provided that the input circuit provides sufficient selectivity against 30 Mc/s. An EF50 may also be used as mixer. Whether a separate oscillator is used or whether a combined oscillator and mixer valve, the use of harmonic mixing is advisable in order that the tuning capacity of the oscillator circuit shall be mainly outside the valve. Stabilization of an 80 Mc/s oscillator is much more difficult. There would seem to be some advantage in adopting third harmonic operation, with the oscillator working on 26.7 Mc/s. The details of the mixer and input circuit are normal in V.H.F. receiver design and will not be discussed here.

There are other details which it is assumed only need recalling to the reader. Care in separating the circuits, short leads, especially for decoupling condensers, attention to the grouping of earth connections, decoupling circuits for the heater supplies; all these are points “well known in the art,” and certainly this is no place to give a full description of them.

In the mention above of the audio-frequency amplifier, nothing was said about the de-emphasis circuits. At the transmitter, pre-emphasis is used, giving an increase in the effective modulation of 14db at 16 kc/s over the modulation produced by an equal level of 1 kc/s signal. Pre-emphasis is just a highbrow way of saying top-boost. The reason for doing this is to counteract the “triangular noise distribution” associated with F.M. I am not going to explain this in more detail, but readers who understand the difference between phase and frequency modulation will realize that noise produces uniform phase modulation, and when detected as frequency modulation the noise output is proportional to frequency. By using pre-emphasis at the transmitter it is possible to use de-emphasis at the receiver; “top cut” to you, and thus avoid the high-pitched hiss effect. The amount of de-emphasis is usually given as the time constant in microseconds of a circuit having the required characteristic. Thus the proposed British standard is 50 microseconds. This is given by a resistance of 50,000 ohms in parallel with 0.001µF, or 100,000 ohms in parallel with 0.0005µF. The time-constant circuit can be used as load resistance in one stage of the audio-frequency amplifier, and the response should be 4db down at 4,000 c/s, 10db down at 10,000 c/s and 14db down at 16 kc/s. As other parts of the audio-frequency amplifier will probably make some contribution to the required response it will usually not be desirable to put a 50-microsecond circuit in by itself, but rather to put a smaller top-cut capacitance to supply what is needed.

So much for the conventional parts of a frequency-modulation receiver; as you see, they are midway between the sound and vision channels of a television receiver. In the second part of the article the design of the limiter and discriminator will be described.

OUR COVER

FEEDER LINES, switching tower and terminating rings at the B.B.C.'s short-wave station on Rampisham Down, Dorset, form the subject for our cover illustration this month. The outputs from the four 100-kW transmitters are taken to the switching tower whence they are fed to the appropriate aerial arrays. The station was originally brought into service in 1941.
SAFETY IN THE AIR
A User's Views on Radio Aids

By J. A. McGILLIVRAY

Nearly two years after the end of the European war, no agreement has been reached, even between the principal European governments concerning a standard air navigation system. Inter-continental airways are in an equally unsatisfactory position.

Several conferences on civil aviation have already been held, professedly in an effort to secure agreement on standardized aids. The various parties concerned at these conferences have usually agreed on the obvious, but elected to disagree on points that really require co-operation. To an onlooker, it appears that the conferences are convened not in an effort to decide upon the most suitable system for a specific purpose, but more to force acceptance of sponsored systems.

During the past eight years very considerable advances have been made in knowledge and application of radio and radar equipment. Much of the knowledge so gained is available for application to civil aviation, yet, in spite of this, the most generally used navigation aid is the airborne medium frequency direction finder, using a rotatable loop aerial—a device at least 25 years old. Since 1938, an automatic version has been available in the U.S.A. and this is generally fitted to American aircraft. The need for such a device for British aircraft has long been obvious, and has been stressed. As long ago as February, 1939, there appeared in Wireless World a description of a similar automatic aid to air navigation, which produced no response from the industry. But information now is that at least three British companies are developing an automatic direction finder, and may be in production this year.

With more modern devices—radar and the like—the case is that mental indigestion has prevented any general acceptance of systems. The trouble is embarrassment of riches; too many variants are available. One or other of the variants is fitted to

DANISH DECCA CHAIN. The Danish Government has authorized the Decca Navigator Company to erect a chain of stations in Denmark. The Danish system, which is expected to be in operation by the end of the year, is here shown in relationship to the existing English chain and the proposed Scottish chain—plans for which are being prepared for the consideration of the Ministry of Transport.
most transport aircraft—in some cases more than one system is necessary owing to lack of international standardization. The un-economics of carrying several heavy boxes around the world in an aircraft are obvious, and the un-economics are not confined to aircraft. In order completely to equip a first-class airport, it is necessary to cater for all potential users. At London Airport there are already four different bad-weather landing systems, and four separate short-range aids to navigation, with two more under construction. All this at the taxpayers' expense.

Most of the variants offer something useful and, almost invariably, each is backed by either a big organization or a big name, tending to over-awe potential customers, and then to overcome their sales resistance. Potential users, potential providers, and disinterested technicians (who always have something better just round the corner) cannot agree on users' requirements. Even the users cannot agree amongst themselves. So, an analysis of the pros and cons of the various alternatives, without too much detail, may be of interest. The problem is in three parts:

(1) A long-range aid to navigation.

(2) A short-range aid to navigation, with a completely reliable range of 200 miles, under any conditions commonly to be encountered.

(3) A radio aid to runway approach, for use in bad visibility, as an aid to safe landing.

It would appear obvious that any system which provides a satisfactory answer to more than one part of the problem is better than a system which satisfactorily answers one part only. Satisfactorily to answer all three would be better still. Further desiderata common to all aircraft equipment are simplicity, complete reliability, minimum of weight, minimum of volume, and provision for remote control. The manner in which the required information is presented to the crew is important. Interpretation should be patent, glaringly obvious; something like a compass or a watch.

In order to achieve a high order of accuracy, it is usually necessary to sacrifice some simplicity. Generally speaking, simplicity and reliability are closely related. Or, if you like it this way, if a very accurate result is needed, a spare set should be carried, because when the very accurate device breaks down, it's a specialist's job to mend it. Not like the loop aerial, which is as simple as can be, and reliable, within its accepted limits. That's why it is still in use, after all these years.

The systems to be analysed are put in alphabetical order (to give equal offence to everyone!). All systems to be considered are available, and all have been tried out. All have their supporters and their detractors.

Long-range Aids.—There are three long-range radio aids which are worth consideration. All three are available, and all three are in use at present. For economy's sake, let us make up our minds and concentrate on one, and say that we are going to fit it wherever we have jurisdiction.

Any long-range aid must automatically use a medium or low frequency in order to provide adequate ground-wave cover. All are subject to the well-known factors which adversely affect medium and low frequency transmission, but all are not affected to the same extent.

CONSOL is a system which uses directional transmission, described in *Wireless World* for July, 1946. The equipment required on the aircraft is nothing beyond the normal M/F communications receiver. The process of obtaining a position line is very simple; the whole process may take a minute—sometimes only thirty seconds. Then, either by simple interpolation or by use of a special chart, the observer identifies his bearing from the transmitter. Sector ambiguity is possible with this system, but should any doubt arise as to sector, a series of observations would soon resolve the ambiguity. The greater drawback back to the extended use of the system is the interference to be expected from atmospherics. An accuracy of within 2 degrees is normally obtainable by day and night, and accuracy of within one degree, at day ranges of 800 miles, is regularly obtained.

Five Cases

1. Type 1053A. 15½ w. x 8 d. x 9 h. £ 14 15 0
2. Type 1053B. 17½ w. x 9 d. x 10½ h. £ 16 15 0
3. Type 1053C. 21 w. x 10 d. x 15 h. £ 18 0 0
4. Type 1053D. 25 w. x 12 d. x 15½ h. £ 22 0 0
5. Type 1053E. 21½ w. x 10 d. x 15½ h. £ 20 0 0

All these cases are made in highest quality shom steel, strongly welded and beautifully finished in light grey, brown, yellow, red or black. Adequate ventilation, pressed feet and front panels fixed by screws in hank bushes are some of the special features. Handle from our standard range can be fitted to type 1053.
Safety in the Air—

System is exceedingly simple to use, and is economical in airborne equipment, and is generally sufficiently serviceable and accurate for its purpose. The Atlantic seaboard of Europe already has Consol cover. Cost is low.

In the DECCA system, position fixing (as distinct from line-of-position finding) is carried out continuously and automatically, by a special receiver, which works in conjunction with specific transmitters. (See Wireless World, March, 1946.) Results are presented on three meters and no skilled interpretation is needed. Decca transmitters already exist in England and are being built on the Continent and round New York. Day coverage is up to one thousand miles, and error-free night coverage is three hundred miles. The system is equally accurate at long and short distances, and can be used for homing and airdrome approach. The makers claim that the system will operate satisfactorily through interference up to twice the strength of the Decca carrier.

LORAN is a pulse system requiring, like Decca, special ground and airborne equipment. The transmitters radiate pulses and the receiver is used to measure the differences in the transit times. The measurement is done on a cathode-ray tube, and the results are plotted on a chart which is overprinted with Loran position lines, as with Decca. There is not of equal duration. Observations from the beacon is determined complete phase rotation in 360° of azimuth. Determination of bearing from the beacon may well be the bearing of a reflected signal. O.R.B.-plus is not immediately available but has been internationally preferred because of its form of presentation.

Approach and Landing Aids.—Again there are three systems which must be considered.

B.A.B.S. (Beam Approach Beacon System) is a mobile system, developed during the war. It is a special type of low-power V.H.F. beacon, operating only when correctly triggered. Then it radiates directional pulses, alternately of long and short duration. The short pulses are directed to the right of the runway and the longer pulses are directed to the left. When the receiving aircraft is approaching from the correct direction, the pulses are observed to be of equal intensity, although not of equal duration. Observation is on a cathode-ray tube, which shows distance as well as direction.

B.A.B.S., for good results, requires team work. The navigator observes the C.R.T., interprets the results, and conks the pilot on the intercom.

The ground equipment, at present in short supply, is not excessively costly, and may be mounted in a 10-cwt van for complete mobility. The system operates only in conjunction with the appropriate transmitter-receiver on the aircraft, and, operating on about 200 Mc/s, requires rather careful siting to prevent reflection interference.

S.B.A. (Standard Beam Approach) is no newcomer. It was developed originally by Lorenz in Germany for use on about 35 Mc/s and installed in this country at
April 1947 Wireless World

Heston in pre-war days. The transmitter radiates a narrow equi-signal path along the line of the main runway. The equi-signal is produced by the merging of two overlapping, interlocking morse signals. Along the line of approach, a steady note is heard, morse signals. Along the line of the main runway. The equi-signal path is indicated by short over-riding indicator sent by marker beacons, which have a specific character according to the distance from the beginning of the runway. The system is well-proven, and very reliable. It has been installed extensively all over Western Europe and it is very simple to use.

I.L.S. (Instrument Landing System) which has been given the approval stamp of P.I.C.A.O. was developed in U.S.A. during the war, when it was known as S.C.S.51. It is very similar in principle to S.B.A., but works on a higher frequency band (about 110 Mc/s) and the result is shown on a meter, instead of being presented through headphones.

The equi-signal path is produced by the overlap of two radiated signals, on the same radio-frequency, but distinctively modulated. Movement of the indicator needle is to left or right, according to which signal is more strongly received, and the needle is centrally vertical when the aircraft is approaching from the correct direction. Within the same meter casing is a second, similar movement, but with the needle horizontally disposed. This second movement is used to indicate the correct approach path in the vertical plane—the glide path indicator.

The glide path indication is from a second transmitter, similar to the approach path transmitter, but operating on a frequency of about 140 Mc/s. This transmission is modulated by two frequencies as in the approach path transmission, and deflection of the needle is similarly obtained. Distance indication is by marker beacons on 75 Mc/s.

Excellent results have been obtained from this system, in conditions of very bad visibility, but the glide path is apt to be affected by changes in soil conductivity, due to change of weather. Equipment is in very short supply.

Many pilots object to visual presentation for a landing aid. Their eyes are already fully occupied, but their ears are spare.

Having selected the above nine from the surfeit of possibilities, we are faced with the choice of three complete systems, each to provide radio aid for navigation from airport to airport.

System one—the all-pulse system—is Loran plus Gee plus B.A.B.S. Loran plus Gee, as a composite aid, using separate receivers and a common indicator, has already been proposed. It is the obvious answer to a requirement (if one exists) for comprehensive coverage of large areas by pulse transmissions.

Secondly, there emerges Consol plus O.R.B. plus I.L.S. The two latter items carry the stamp of approval of P.I.C.A.O., the international organization which has been convened to consider such things. The fact must be borne in mind that neither of them is readily available.

System three is Decca plus S.B.A. Both are easy to use, and are in general use in Europe.

All the above, and many more, have been demonstrated individually. The demonstrations generally show that the equipment can do its job, but I submit that instead of showing how several items of equipment can do the same job and leaving the choice to the bemused spectator, we demonstrate how one set of equipment can repeatedly and satisfactorily do its job, and impress on the prospective customer how good is the system of our choice.

The use of aircraft as a transport medium is extending very rapidly all over the world. For safe operation, radio aids to navigation are essential. In many of the countries concerned there is almost a radio vacuum, and for all-weather operation the vacuum must be at least partially filled.

Geographical proximity to the U.S.A. does not necessarily imply acceptance of U.S. systems. If we can demonstrate, by regular use, that we have something better for sale—immediately—we may find a ready market.

ONE LOUDSPEAKER
---360° Coverage

CIRCORN—Redc. Trade Mark

This new type, called the CIRCORN, has horn-speaker efficiency together with complete uniform distribution throughout 360°. Typical advantages:—ONE centrally placed will cover the whole of a medium-sized area; used on a moving vehicle results are equal approaching, passing or receding, thus ideal for street processions, elections, etc.

List price—Horn only £ 7 0 0.
Complete £ 14 5 0.

M.5
Moving 'Coil MICROPHONE
No polarising current, adequate frequency response, low impedance, high output due to a very efficient magneto and careful design.
List price £ 5 15 0.

L.S.7 HORN LOUDSPEAKER
Maximum sensitivity and volume. Average Impedance 12 ohms; handles 12 watts 170-10,000 c.p.s. 10 in. horn. List price £ 13 10 0.

F.I. for P.A.
FILM INDUSTRIES LTD.
60, PADDINGTON ST., W.1
Telephone: WELbeck 2385
LETTERS TO THE EDITOR

In Defence of B.B.C. Recordings → Derivation of “-tron”

B.B.C. Quality and Recordings

WITH regard to recent correspondence on the above subject, I should like to point out that the quality of a programme is not entirely a matter of frequency response and distortion. The artistic content is of infinitely greater importance, and in this respect recorded programmes must inevitably excel “live” broadcasts; production can be carried out at leisure, and the programme can be polished before actual transmission. Also, artists can be recorded when available and with no regard to time of transmission. The Third Programme probably provides the supreme example of the intelligent use of recording.

With regard to relative quality of various transmitters, an interesting phenomenon occurs in the “Monday Night at Eight” programme, which includes rapid relays from three regions outside London. Listening to the London transmitter, the technical quality of the material originating in other regions (especially Bristol) is often better than that coming from the studio nearest the transmitter.

The B.B.C. should be congratulated on its new London aerial (recently illustrated in Wireless World), which has effectively transferred the whole of Lincolnshire from the North to the London region.

Cranwell, Lincs.

“Magic Eye” as Null Indicator

YOUR contributors, Messrs. Thacker and Walker, in their article on “Magic Eye Indicators” in the January issue of the Wireless World, raise a number of points with regard to the EM1 and EM34 valves. The position regarding these valves should perhaps be clarified.

It would appear that the pre-war EM1 was quite suitable for use in the positive feed-back circuit under discussion, but restrictions on the production of valves for civilian use during the war necessitated certain modifications to the structure. These modifications did not in any way impair its efficiency as a tuning indicator, the grid base remain-

EM1 while still maintaining the sensitivity of the apparatus.

F. DUERDEN.

In Defence of B.B.C. Recordings

The -tron Family

IN your issue for February, 1947, your contributor “Free Grid” discusses the ending “-tron” which appears so frequently in the literature of electronic technique.

Reference to a Greek Lexicon will show that “-tron (-rpov) is an ending which means, roughly, “the instrument by which”.

Examples which have English derivatives are:

-θεατρον (theatron) “a place for seeing”: a theatre from θεατας (thea-mai) “I gaze at”.

-φιλτρον (philtron) “a spell to produce love”: a philtre from φιλεος (phileo) “I love.”

These examples show that there is a respectable tradition for the use of the ending.

A writer in Electronic Industries, January, 1946, collected about eighty words ending in “-tron” ranging from Alphatron to Zyklotron. This list does not include recent terms such as phantastron or sano-tron.

L.H. BAINBRIDGE-BELL.

Witley, Surrey.

The New Standard Valves

TO avoid damage valves sometimes need to be eased out of their sockets with a screwdriver. How is this possible with the new type holder?

In the present economic state of the country the set manufacturer with the largest export trade will be able to offer the best value on the home market. It is hardly likely that he will upset production making types using different valves.

I think it will be the set manufacturer, plus economics, and not the B.V.A., that will decide the future type.

Buyers are becoming more discriminating, and many are holding off. They remember having to lay up their sets during the war, while the neighbours’ sets that could use Lend-Lease and similar valves played merrily on.

Paisley. W. GALBRAITH.

UNAVOIDABLE DELAYS

Development of the television receiver that is being described month by month in Wireless World has been delayed by electricity “cuts” and suspension of transmissions. This month’s instalment must therefore be held over.

Publication of the concluding instalment of the article on “Noise Factor” must unavoidably be postponed till next month.
CAREERS IN RADIO
Advice on Technical Training

Open Letter to Would-be Engineers

Dear Jackson,

THANKS for your long letter. It is always pleasant to hear from past students, especially when they can give so many interesting details of life with the B.A.O.R. Congratulations on your appointment as an education officer to the troops in your area. I know your keen interest in training and fitting the chaps for "Civvy Street" and I am sure you will enjoy the work.

You ask if I can help in advising your men on fitting themselves for a career in radio engineering when they are demobilized. This is a big question not easy to answer, but I will try my best. Before I begin with what they should do on leaving the Army, may I suggest that you can get the keen ones started immediately by encouraging them to prepare for the City and Guilds examinations in Telecommunications Engineering. Probably none can be made ready for the examinations this year—they always take place in May—but don’t allow this to be a reason for delay. Procrastination is the greatest enemy of success in study. The syllabuses have been remodelled recently to cover post-war needs, and the course, which specializes in Telegraphy, Telephony or Radio Communication, extends over five years. It has been stiffened by including mathematics as well as by extension with Radio IV and Telecommunications Principles III, IV and V. I am delighted to see mathematics as a subject because I have always held that too many radio engineers neglect this most powerful and useful tool. An Intermediate, Final and Full Technological Certificate is issued upon the successful completion of the second, third and fifth year’s work respectively, and there are still the usual single-subject certificates.

You can obtain full details of the new course, which will, I believe, be fully operative by 1948, by writing to the City and Guilds, Department of Technology, 31, Brechin Place, South Kensington, London, S.W.7. Since there may be some delay before you get this information where you are it might help if I indicated the broad outline of the syllabuses. Mathematics I covers algebra, trigonometry and mechanics in an elementary manner, Mathematics II is a more advanced edition of I and also includes elementary calculus and complex quantities. Mathematics III deals mostly with the Binomial Theorem, more advanced calculus, and hyperbolic functions. Mathematics IV advances on III and includes differential equations, there is no City and Guilds examination in this nor in Mathematics V, which suggests a number of subjects for study. Telecommunications Principles I concerns itself with elementary electrical theory and would seem to call mainly for descriptive treatment. Principles II introduces the valve and shows the first hint of a radio bias. Magnetic circuits, calculations on A.C. problems, resonance, modulation, detection, propagation of electromagnetic waves along lines, etc., are some of the many subjects included in Principles III. Radio frequency transmission, reception and measuring instruments are covered by Principles IV, whilst Principles V introduces telephone communication theory, pulse, frequency and phase modulation.

You may be a little surprised that the radio student should be required to take Elementary Telecommunications Practice in his first year, for it is almost entirely given over to a descriptive treatment of telephone and telegraph communication, but it should not be a difficult paper and will compel the student to obtain a good grounding in communication practice. Radio I, a second-year subject, requires an elementary, broad knowledge of general principles in radio- and audio-frequency engineering. Radio II is a more advanced treatment of Radio I subjects, covering valves, transmitters, receivers and their

30-WATT AMPLIFIER T.633B

Three stage, high gain type. Push-pull output circuit with inverse feedback. Embodies all the features responsible for the success and efficiency of the original T.633, with up-to-date refinements of design and finish. The new circuit provides facilities for speech/music switching or mixing to suit all conditions of operation.

Other Models available 5-500 watts and full range of accessories.
Careers in Radio—

component parts. Propagation, aerials, power rectifiers, as well as more advanced work on transmitters and receivers are treated in Radio III. In his fifth year Radio IV requires the student to deal with short-wave propagation and reception problems, radio frequency power amplifiers, oscillator frequency stability, radio terminal equipment and measurements.

I think you would be fully competent to coach for these exams, but if you prefer not to do so there are several good correspondence courses available from England. You raise your eyebrows? Oh, I know that I have expressed disapproval of tuition by correspondence, and I still think it is a poor substitute for direct teaching, but half a loaf is better than none.

And now for the main problem; the advice to give to men returning to England and wanting to prepare for a career in radio.

I suppose broadly they will fall into four categories:

1) Those who have graduated at a university or have obtained a Higher National Certificate but have had little or no practical training.

2) Those who might qualify for a university course.

3) Those who will have to earn a living at the same time as studying, and

4) Those who have a practical bent and need some form of specialized knowledge or training.

Largely at the instigation of the Institution of Electrical Engineers, the Ministry of Labour is now prepared to consider grants to help the first type to gain practical training in industry. The period of training may last two years, a year, or six months, according to the practical experience already gained by the applicant. The six-month course is intended simply as a refresher, whilst the two-year period is for those who have had practically no experience. A letter addressed to the Regional Appointments Officer through the local Labour Exchange should bring full details and advice to anyone who is interested in this scheme.

Now for the second type of would-be radio engineers, the potential undergraduate. There are altogether eleven universities in England, four in Scotland, one in Wales and one in Northern Ireland, but none can offer a degree course specifically in radio engineering, though most provide one in Electrical Engineering or Physics, which can form a good foundation training for radio. A few do, however, specialize in Electrical Engineering with a bias to Communications, notably the City and Guilds College London, Victoria University Manchester, and Liverpool University. Personally I think there is scope for a school of radio engineering, as distinct from electrical engineering, to consist of a combination of electrical engineering, physics and mathematics in almost equal proportions. It is naturally difficult to suggest for which university the returning soldier should try; so much depends on personal circumstances and I think the best I can do is to examine the particular features of the universities as I know them. I shall try to be as unbiased as possible but you will know that this is not easy. Just one point of practical importance before I go on; see that your student puts in an application early in the year during which he is to be demobbed. Many universities require the form to be returned by May if the applicant hopes to start in October.

The universities can roughly be divided into the older residential ones like Oxford and Cambridge and the newer almost non-residential ones. London is a halfway house between these two. With all due deference to Bruce Truscott (I expect you have read his stimulating "Redbrick University") I would unhesitatingly advise a potential undergraduate to try for Oxford or Cambridge at the present moment if he can afford to spend about £300 for the 24 weeks' course per year. Costs at most other universities vary from £50 to £80 per year for tuition and incidental fees so that, with board and lodging, expenses for a 30-week year are likely to be about £200. I underline "at the present moment" because I think Redbrick University is likely to change to residential and seriously challenge the present ascendancy of Oxbridge, which is due partly to its residential character and partly to the emphasis laid on reaching one's own conclusions and not accepting ready-made ones. The position may be summed up by saying that the Oxbridge graduate is generally socially superior but technically inferior to his Redbrick brother.

It may be that your student has a bias to a certain branch of radio. If he is clearly interested in audio-frequency telephonic problems with a view to a Post Office engineering career, City and Guilds College, London, would be an excellent choice. They also give a good general training in radio and this would fit a man for work in the research, development or production department of a radio manufacturer. If he is interested in valves and high-vacuum technique, Manchester University Electrotechnics Department covers this side. Apart from Liverpool most of the other university Engineering Departments give a broad general course biased to the machine and power side. As a recruiting and training officer for a company exclusively concerned with the manufacture of radio equipment, I received engineering graduates (who subsequently became satisfactory radio engineers) from Oxford, Cambridge, London (City and Guilds, University, King's and Queen's Colleges), Birmingham, Durham (King's College, Newcastle), Edinburgh (Heriot Watt College), Glasgow, Liverpool, Manchester (Victoria University and College of Technology), Sheffield, and physics graduates from Bristol, and Wales (Cardiff University College).

To sum up I would advise Oxford or Cambridge from an educational point of view, and City and Guilds College, Manchester or Liverpool on technical grounds, but I would stress that a degree in Electrical Engineering or Physics at other universities does not preclude a man from making a success in radio.

There are also the University Colleges of Hull and Nottingham, and one must not forget the London Polytechnics, Woolwich, Northampton, Battersea and Regent Street and also provincial
Careers in Radio—technical colleges like Brighton.

For the less academic, more practically minded student I would recommend that he should consider one of the full-time Higher National Certificate Courses, lasting for 9 months. These cover Electrical Engineering principles and practice very thoroughly and exempt from the graduate examination of the Institution of Electrical Engineers; I believe that eleven colleges are operating the courses at the present time, and application for grants is made to the Ministry of Labour. To anticipate your question: there are no Higher National Certificate Courses in Radio or Communication Engineering. There should be.

And now for the third class of student who must earn a living while he is training. He will probably take up a post in a radio factory and is likely to have a technical college near at hand. Besides running Ordinary and Higher National Certificate courses in Electrical Engineering, these colleges are often operating classes specifically adapted to the needs of the locality and there is likely to be a course for the 5-year City and Guilds examination I mentioned early on in the letter. Success in this examination carries considerable weight with most employers concerned with communications equipment. If there is no technical college in his area, remind him of the correspondence course, which caters for the graduate examination of the I.E.E. as well as the City and Guilds Exam.

The fourth class of would-be radio technician should be advised to take suitable Craft courses at his nearest technical college in the evenings. One can only offer a general recommendation that he should select the most suitable practical electrical course or if there is not one try to persuade sufficient of his associates to combine to form a class. Principals of technical colleges and Local Education Authorities are generally prepared to give every assistance when a genuine need for particular instruction is shown. Those of your men who carry out radio service work can try for the City and Guilds examination in "Radio Service Work," which has the backing of the Radio Manufacturers' Association. There is also a City and Guilds examination in "Electrical Installation Work," which would be quite valuable to the practical man.

This is, I am afraid, a long screed but you wanted rather a lot of information! Possibly there may be some further questions you would like to ask, and in any case I should be delighted to hear how your work progresses.

Yours sincerely,

A. U. Thor.

"BITONE" REPRODUCER

THIS is the name which has been given to the new wide-range loudspeaker made by Vitavox, Ltd., Westmoreland Road, London, N.W.9. A 12-inch cone loudspeaker working in a vented enclosure operates in conjunction with a multi-cellular horn driven by a pressure unit with duralumin diaphragm.

The units are connected through a dividing network with a crossover frequency of 1,000 c/s and the terminal impedance is 7.5 ohms. It is stated that the frequency range is approximately 50-12,000 c/s.

Two types will be available, with power-handling capacities of 10 watts and 20 watts. Both will be housed in cabinets measuring 32in high, 20in wide and 21in deep.

Vitavox "Bitone" wide-range loudspeaker.

MULTITONE are now making—

HEARING AIDS smaller than ever.

GROUP HEARING AIDS for Schools and Churches.

TELESONIC (Inductive) Equipments for Cinemas, Theatres, Lecture Halls etc.

RADIO SETS for the Deaf.

DOMESTIC WIRELESS RECEIVERS for the overseas market.

AMPLIFIERS specially designed for Export.

AUDIOMETERS.

ELECTRO - MEDICAL APPARATUS also

OPERATION TABLES

BLEASE ANAESTHETIC EQUIPMENT

HYPODERMIC SYRINGES

MULTITONE ELECTRIC COMPANY LIMITED

Signatories to the National Institute for the Deaf Agreement.

Langham 2734
RANDOM RADIATIONS
By “DIALLIST”

Temper-saving Screws
Do you know the recess-head screw? I was presented recently with a supply of 4BAs and 6BAs and I have been blessing them daily ever since. Instead of a single nick the head bears what looks like a + sign. This is the top of a tapered recess of cruciform section. The driver bit is exactly the same, only just the opposite, if you see what I mean! It has a + shaped protrusion at its business end, also tapered. If you want to start a screw in an awkward corner you need perform none of those manual gymnastics which the ordinary screw calls for in such circumstances—nor use any of the naughty words provoked by its usual refusal to play. Simply press your recess-head screw on to the screwdriver bit and it stays put in any position. You start it and turn it home without any fuss or bother. And when it’s home the bit pulls out as easy as easy. Another joy is that the screwdriver simply cannot slip out of the nick. Now, I reckon that I can use an ordinary screwdriver with anyone. I don’t bruise nicks in the ordinary way and only once in a blue moon, when I am thinking of something else, does the screwdriver slip out of the nick. But that blue moon and that fatal skid when they do happen usually happen as a screw is being driven into a piece of work whose surface has been finished with painstaking care. It is not funny to have a job of which you were going to be rather proud made an eyesore by a cut from the blade of a slipping screwdriver. With recess-head screws that just can’t happen: the bit stays in its proper place until you remove it by a gentle pull.

Over-Standardized?
Radio manufacturers kicked heartily (and quite understandably) when the idea of the “utility” (or was it “austerity”)? I always forget) receiver was first put in any position. You start it and turn it home without any fuss or bother. And when it’s home the bit pulls out as easy as easy. Another joy is that the screwdriver simply cannot slip out of the nick. Now, I reckon that I can use an ordinary screwdriver with anyone. I don’t bruise nicks in the ordinary way and only once in a blue moon, when I am thinking of something else, does the screwdriver slip out of the nick. But that blue moon and that fatal skid when they do happen usually happen as a screw is being driven into a piece of work whose surface has been finished with painstaking care. It is not funny to have a job of which you were going to be rather proud made an eyesore by a cut from the blade of a slipping screwdriver. With recess-head screws that just can’t happen: the bit stays in its proper place until you remove it by a gentle pull.

My suggestion is to generate a long negative pulse and capacitor arrangements. Normally, V, conducts and V, is biased down. The timebase generator circuit of the occasion disclosed that it consisted of four valves plus rectifier. Some while ago the way of launching on: every maker was free to strike out on his own unfettered line. And strike it almost each and almost every one did by giving to the world his own proudly acclaimed version of its finest fifteen-guinea set—with four valves plus rectifier! Some even went further: some of the dust specks will vastly exceed that of the bigger chunks of matter which give rise to the visible shooting-star echoes. It appears that mathematical analysis shows that meteor dust should produce exactly the observed effect on entering the atmosphere. One particularly interesting point is the “settling down” of the E-layer after midnight, which every medium-wave D.X. fan must have observed time and again. Some of us, no doubt, attributed the much better reception of North and South American stations obtainable in the small hours to the closing down of European stations. But that is not the whole story. After midnight, wherever you may be, you are on the forward side of the Earth as it rolls along in its orbit. If you walk rapidly through heavy rain, the front of your macintosh (always supposing that you had the coupons to buy one and the forethought to take it with you) becomes much wetter than the back. Similarly the forward side of the Earth, advancing into the clouds of meteors and meteor dust, receives by far the greater number of meteors and meteor dust specks. Hence between midnight and dawn the E-layer over this part of the Earth is kept in a specially efficient condition as a reflector of wireless waves.

Who was Kipp?
Readers who have to do with radar must have come across the Kipp relay, which forms part of the timebase generator circuit of some equipments. It’s a lopsided multi-vibrator, whose mission in life is to generate a long negative pulse when triggered off by the arrival of a short negative sync pulse. The two valves which it contains are interconnected by ordinary resistor and capacitor arrangements. Normally, V, conducts and V, is biased back beyond cut-off. The sync pulse closes down V, with a bang, and this causes the sudden opening
of \(V_1 \). The latter valve is held open for a period depending on time constants in the resistor-capacitor criss-cross. Then it slams shut. The result is the generation of a long negative pulse at the anode of \(V_1 \). Ingenious, though nothing to make a song about. What has always puzzled me—or rather had puzzled me till recently—about this relay is its name. Kipp was always spelt with a capital K, so presumably this was the name of the circuit’s inventor. Who was he? A backroom boy? A research worker whose achievements were commemorated by the name of this one circuit? Searches high and low failed to disclose any book, paper or article from the pen of Kipp. No one seemed ever to have heard of him.

The Mystery Solved

The truth about Kipp is that “there never was no sich person,” at any rate not in the ranks of radar researchers. The mystery was cleared up the other day by O. S. Puckle, the Timebase King, when I consulted him in my quest for information. The term Kipp relay was imported from Germany, probably by a translator who, not knowing what it meant and deceived by the capital K, took Kipp for a personal name. The word in German is Kipprelais, a mongrel combination, for the relais part is French, meaning (as you may have deduced) relay. Being a noun “Kipprelais” is spelt with an initial capital, as all nouns are in German. The Kipp part is from the verb kippen, meaning to topple over. Hence the proper English translation of the term is the familiar “flip-flop.” Kipp, I fear, must take his place in the galaxy of radio and radar talent beside Professor Eddy, discoverer of eddy currents and Herr Doktor Litz, inventor of litzendraht wire.

Tailpiece

Description of electricity heard during the Great Switch-off: “Nice stuff, if you can get it!”

BOOKS RECEIVED

Service Valve Equivalents. Lists of British Service and U.S. Signal Corps valves and their commercial equivalents, including names of manufacturers where available. Valves with ratings over 150 watts, and obsolete types have been omitted. A section is devoted to the coding of Continental valves and base connections are given for representative types. Published by the Incorporated Radio Society of Gt. Britain, New Ruskin House, Little Russell Street, London, W.C.1. Pp. 25. Price, 9d, postage paid.

RESPONSIBLE MEN

CAPTAIN of Britain’s newest air liner or pilot of an air taxi, the man at the controls relies on his instruments. On their performance rests the safety of his ship. They are good instruments, precision-built by British technicians—men who have developed the latest radio, radar and electronic devices. Such men in the Bulgin Research Laboratory produce reliable components for every branch of radio and television. You will know a Bulgin component by its sterling performance.
RECENT INVENTIONS
A Selection of the More Interesting
Radio Developments

VELOCITY MODULATION

When a discharge tube embodying a hollow resonator is used for amplifying or mixing ultra-short waves, the signal-to-noise ratio is largely determined by the fact that the noise power is proportional to the impedance of the input circuit, whilst the signal modulation applied to the electron beam varies as the square root of the input impedance.

According to the invention, the tube is operated so that the impedance of the input, as presented to the electron beam, is substantially equal to the reciprocal of the mutual conductance of the tube. A mathematical analysis of the working conditions is given in the specification to establish the underlying theory.

G. S. Bull. Application date, April 11th, 1941. No. 577168.

RADAR

The duration of each exploring-pulse P is sufficient to overlap part of the resulting echo-signal P1. As the receiver is blocked for the period of each transmission, it can only respond to the residual part T of the echo, which, as will be seen from the diagram, represents the go-and-return time, and therefore the distance to be measured. The output from the receiver is passed through a limiter-rectifier to form a series of pulses S, S" which allows the "outward peaks" of the signal to be filtered out and transmitted each second.

Reflector to form a series of pulses S, S" is operated so that the impedance of the input circuit, whilst the signal modulation applied to the electron beam varies as the square root of the input impedance.

CRYSTAL MIXERS

A small amount of aluminium or beryllium, or of both these metals, is added to pure silicon by melting a mixture of the powdered ingredients in a crucible lined with beryllia, in an atmosphere of hydrogen or helium, or in vacuo. A plane surface of the cooled "melt" is polished, oxidized by exposure to air at a temperature of 1,090 deg C, and then treated with hydrofluoric acid. The metal contact is then "melted", in the shape of a tungsten wire 0.2 mm in diameter, sheared off to a point at 45 deg to the axis of the wire.

The resulting combination is stated to give a constant and optimum ratio of forward to reverse impedance at all points on the crystal surface. It deteriorates little with use, even when handling high voltages, and is particularly adapted for use as a mixer in ultra-short wave reception.

STAND-BY RECEIVERS

Mobile receivers, such as those used on police cars and aircraft, are maintained under stand-by or no-signal conditions for long periods during which current is being consumed. To cut down this waste, the noise voltages that are constantly present in the set are amplified, in the absence of a signal, to develop a control bias which automatically reduces the anode current of the F. amplifier.

The circuit includes a limiting valve which allows the "outward peaks" of the noise-voltage to pass through to a squelching valve, where they are built-up into a cut-off bias for the A.F. amplifier, thus reducing the drain on the storage battery. As soon as a signal comes in, the bias of amplification rises so that the noise voltages are swamped in the limiter, whereupon reception is restored to normal. Simultaneously a noise-suppressing circuit of known type automatically comes into action to free the speech channel from interference.

The British Thomson-Houston Co., Ltd. Convention date (U.S.A.), Jan. 22nd, 1943. No. 578201.

WAVE GUIDES

Waves of the transverse electric type are transmitted through a hollow guide, provided the wavelength does not exceed a value such that the cross-section of the guide is resonant. In the case of a rectangular guide filled with air, the maximum wave is approximately twice the length of the wider side.

Wide-band wave guide.

As shown in the diagram two internal plates A, B are supported by centre ribs from the wider walls so as to lie, parallel with each other, on opposite sides of the axial plane of the guide; the space between them may be filled with dielectric. This subdivision of the interior increases the effective electrical distance between the walls, and so allows a longer wave to be transmitted by a guide of given external dimensions. The space between the plates A, B is a critical factor, and by making it variable the guide can be adapted to accept a wide range of wavelengths, or, alternatively, to serve as a high-pass filter.

The British Thomson-Houston Co., Ltd. Convention date (U.S.A.), Aug. 16th, 1943. No. 578466.

TELEVISION RECEIVERS

To allow the picture to be seen more clearly in daylight, or under bright artificial light, a glass plate of the same monochromatic colour, say yellow, as the fluorescent image is mounted between the observer and the viewing-screen. Extraneous light passing through the coloured glass is deprived of all but the yellow rays, and so is reduced in overall intensity before reaching the viewing screen. Any yellow light that is reflected back will also be reduced in strength, because of its double passage, as compared with the fluorescent rays from the picture, which only pass through the filter once.

The plate is preferably mounted, inside the usual hood, at an angle to the line of vision, the adjacent surface of the hood being blackened to prevent glare.

The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from special abstracts made at the Patent Office, 25, Southampton Buildings, London, W.C.2, price 1/- each.
The Erie Double-Cup Ceramicon, the first of a range of new products scheduled for production in 1947, is the result of the need for a high voltage ceramic condenser that will carry appreciable current at high voltage and will retain the advantage of being a compact, single-piece unit.

As the cross sectional drawing shows, the ceramic dielectric has a centre web which is integral with the tubular casing, providing the required long creepage path. The silver plates are fired on to the ceramic on each side of the web and carried without interruption to the rim of each cup, thus greatly increasing the voltage at which corona occurs. Electrical connections are made by means of electro-silver plated metal terminals soldered to the electrodes.

This design has the necessary basic features for high voltage applications at high frequencies. The web section is sufficiently thick to prevent breakdown of the dielectric, and the design described provides adequate protection against flash-over at the rated voltage. Heavy metal terminals serve to dissipate internal heat and provide a 360° contact for the current to fan out to the electrodes. Rating is 5 KVA.

The ceramic dielectric employed is made of the same titanium dioxide series as the well-known temperature compensating tubular Ceramicons. This material plus careful control of processing operations assures stability with respect to temperature, excellent retrace, and high Q factor.

RANGE AND CHARACTERISTICS

<p>| Type 741A |</p>
<table>
<thead>
<tr>
<th>Standard Capacities</th>
<th>Temperature Coefficient</th>
<th>Peak Wkg. Volts DC at Sea Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 MMF</td>
<td>P100</td>
<td>10,000</td>
</tr>
<tr>
<td>30 MMF</td>
<td>P100</td>
<td>6,500</td>
</tr>
<tr>
<td>39 MMF</td>
<td>P100</td>
<td>5,000</td>
</tr>
<tr>
<td>61 MMF</td>
<td>N750</td>
<td>10,000</td>
</tr>
<tr>
<td>75 MMF</td>
<td>N750</td>
<td>7,500</td>
</tr>
<tr>
<td>100 MMF</td>
<td>N750</td>
<td>5,500</td>
</tr>
</tbody>
</table>

Test Voltage: 50 cycle RMS equal to peak working voltage.

Temperature Coefficient:
P100 = plus 100±30 parts/million/°C.
N750 = minus 750±120 parts/million/°C.

Watch this page for release date and for advance information on other new products.
"PETER PAN"
MIDGET ELECTRIC RADIO
YOU CAN BUILD IN THREE HOURS
The "Peter Pan" model 46IU is an entirely new conception of home constructor's kit. When completed the constructor has a receiver of the highest performance and appearance of the best factory-built model. Designed by experts for ease of assembly and wiring.

TECHNICAL SPECIFICATION:
- H.F. AMPLIFIER. A 6E70 valve is used as variable MU pentode giving maximum sensitivity.
- DETECTOR. A 6J7 or 6N356 valve being used as an anode bend triode which in conjunction with specially designed high "Q" coils gives excellent sensitivity.
- OUTPUT STAGE. A 2AX5 valve is used which with careful matching gives approximately 2 watts undistorted output.
- RECTIFIER. A half-wave rectifier is employed.
- WAVE RANGE. 200-550 metres. 1,000 to 2,000 metres. An up-to-the-minute luxury radio receiver at less than factory price.

Price 9 Guineas plus Tax (£2.0.0 - 7)

DESCRIPTIVE CATALOGUE IN COLOUR ON RECEIPT OF 2d. STAMP.

H. P. RADIO SERVICES LTD.
Tel.: Aintree 1445 55, County Road, Liverpool, 4 Estab.1935

Wireless World
April, 1947

SIFAM
RADIO SERVICING
D.C. TEST SET
Type RT.10.
- 12 D.C. Ranges.
- No switches to go wrong.
- Long clear scale.
- Positive push-button selection.
- Accurate in any position.
- Made to stand heavy overloads.
- 1,000 Ω per v.

SIFAM ELECTRICAL INSTRUMENT CO. LTD.
TORQUAY, DEVON.

THE TECHNICAL ADVISORY BUREAU
(Principal—J. Mars, B. Sc, Tech. (Hons.) A.M.I.E.E.)
Can call upon the services of over fifty engineers, each a specialist in his own branch of radio or electronics.
Let us know your technical problems, we can help you to solve them.
42, BARN LANE, GOLBORNE, Nr. WARRINGTON
Write for details of our Services to the Trade and Amateur
MARCONI INSTRUMENTS LTD
Masters of Measurement
in Communications
can now supply their
DISTORTION FACTOR
METER
TYPE TF 142E

Evolved for investigating distortion in AF amplifiers, the instrument directly measures the total harmonic content of voltage wave forms. Meticulous workmanship ensures accuracy and trouble-free performance. Full specifications available on request.

MARCONI INSTRUMENTS LTD
ST. ALBANS, HERTS. Telephone: St. Albans 43236
Northern Office: 30, ALBION STREET, HULL. Hull 16144
Western Office: 10, PORTVIEW ROAD, AVONMOUTH. Avonmouth 438.
Southern Office: 109, EATON SQUARE, S.W.1. Sloane 8615

The PIFCO
ALL-IN-ONE
RADIOMETER
tests everything electrical
RADIO, HOUSEHOLD APPLIANCES
& MOTOR CAR LIGHTING ETC!

Ask your local Factor to show you one of these remarkable instruments and to put your name down on his waiting list.
WIRELESS WORLD CLASSIFIED ADVERTISEMENTS

NEW RECEIVERS AND AMPLIFIERS

5 VALVE, 8 stage all-wave superheterodyne, crystal pick-ups; tuner unit TH2 combination super. £10/10; write for photographs.—J. Morgan.

12-WATT HiFi Fidelity amplifier; three stages of push-pull triode amplification frequency response 20,000 cycles, for A.O. only; £22/10, plus tax.

PAYING RESTAURANT; tuner unit TH2 combination super. £10/10; write for photographs.—J. Morgan.

COMMUNICATION receivers.—As soon as possible. C.O.D. allowed—Remember Dale Electronics, 75, Sussex Rd., Southport.

DORIC Trutone 5-valve A.C.D.C. 3 wave superhet, 160-660, 1,100-2,200 metres, complete in attractive oak grained polished wood cabinet, size 13in. x 8in. x 6in.; price £19/6/6 incl. tax.—Doric Radio Co., Lichfield Rd., Lichfield, Staffs.

SOUND SALES Consol radio sets, £68/16/6; Trix and B.S.R. amplifiers from £26; good stock of loudspeakers; range includes Bats Head sets (low impedance), £120 immediate sale.—Box 6303.

BUILD a.a.c./d.c. sensitive superhet giving quality reproduction; pre-sets that fit at your service.—A.C.S. Radio, 44, Widmore Rd., Bromley.

AMPLIFIERS; new 1947 model Hi-Fi units, with triple tone controls, built to Broadcast & Acoustic Equipment Co., Ltd., 105, Holloway St., W.1; Ms. 1023.

A MARKETED on behalf of HFA2 single-ended to, highest obtainable fidelity of reproduction; B.A.E.C. twin cone speaker provides the

£10/10; write for photographs.—J. Morgan.

COMPACT 28ms and 56ms transistors, HFA1 amplifiers; £14.—J. Balding, 16, Denbigh St., Bromley.

BROADCAST & ACoustic EQUIPMENT Co., Ltd., 105, Holloway St., W.1; Ms. 1023.

OMMUNICATION receivers.—As soon as possible. C.O.D. allowed—Remember Dale Electronics, 75, Sussex Rd., Southport.

OMMUNICATION receivers.—As soon as possible. C.O.D. allowed—Remember Dale Electronics, 75, Sussex Rd., Southport.

COMPACT 28ms and 56ms transistors, HFA1 amplifiers; £14.—J. Balding, 16, Denbigh St., Bromley.

COMPACT 28ms and 56ms transistors, HFA1 amplifiers; £14.—J. Balding, 16, Denbigh St., Bromley.

COMPACT 28ms and 56ms transistors, HFA1 amplifiers; £14.—J. Balding, 16, Denbigh St., Bromley.

COMPACT 28ms and 56ms transistors, HFA1 amplifiers; £14.—J. Balding, 16, Denbigh St., Bromley.

COMPACT 28ms and 56ms transistors, HFA1 amplifiers; £14.—J. Balding, 16, Denbigh St., Bromley.

COMPACT 28ms and 56ms transistors, HFA1 amplifiers; £14.—J. Balding, 16, Denbigh St., Bromley.

COMPACT 28ms and 56ms transistors, HFA1 amplifiers; £14.—J. Balding, 16, Denbigh St., Bromley.

COMPACT 28ms and 56ms transistors, HFA1 amplifiers; £14.—J. Balding, 16, Denbigh St., Bromley.

COMPACT 28ms and 56ms transistors, HFA1 amplifiers; £14.—J. Balding, 16, Denbigh St., Bromley.

COMPACT 28ms and 56ms transistors, HFA1 amplifiers; £14.—J. Balding, 16, Denbigh St., Bromley.
EXCELLENT BARGAINS!

L.T. Dynamic. Car type with circular body for direct gear tuning, 4,200 kc/s to 20 Mc/s, or the 6 and 12 v. models can be adapted for wind charging. Shunt wound, ball bearings; 10 amp 1,000 r.p.m. new, 1,000 r.p.m., £10. 24 v. 40 amps, 1,000 r.p.m., £10. 30 v. 5 amps, 1,500 r.p.m., £7. 10. 32 v. 6/8 amps, £5.—All to Box 4299.

CIRCUIT BREAKERS. N.C.S., 71 amps A.C. enclosed type, 2½½. Eilston make, mounted on base, D.P.O. £20. 250 v. A.C., £5. single-phase, £5. 250 v. new, £5. 500 v. 3 phase, £7. 1000 v. 3 phase, £10.—All to Box 6692.

MOTOR PUMPS. Pump, Turner 12 volt D.C. £8. £5 0. 250 v. A.C., £10. 120 v. £7.50. — All to Box 4299.

MOTOR. A.C. £13. £3 10. 4 tests, rev. and volts, 240 v. £10. 120 v. 50 watts. 240 v. £5. 1000 v. £10. — All to Box 4299.

HEADPHONES. Double band, £15. £10. £5. £2, to order or head- band, and cord, ex G.P.O., 12/6. £2 10. 10/g. £1. — All to Box 4299.

VARIOUS RESISTANCES. 200 ohm, 20/6, 20,000 ohm, 2/6, 5 MΩ, £1. 10 MΩ, £2. 20 MΩ, £3. — All to Box 4299.

DIMMERS. 12/6, 6/6, 3/6. £1. — All to Box 4299.

TEST EQUIPMENT.

GANGING oscillator. Cossor 3343, unused, £12. £8. £5. — All to Box 4299.

COSBOR oscilloscope: £35 or near offer. — All to Box 4299.

Burley, 60, Balaciava Rd., Derby. 110A, 1 Ekco television pattern generator £6/15, carriage paid; send for fully descriptive leaflet. — All to Box 4299.

TURBOMETER. £16/10. £6, Brecks Cres, Rotherham. — All to Box 4299.

MULLARD GMS 12 scope: £25 or offer; £5 or offer, £6/6. valve voltmeter, £15.—All to Box 4299.

EVERETT EDGEcombe portable R.F. voltmeter: £25, bargain, all exchange offer. — All to Box 4299.

MARCHVOL voltmete rm for sale, list price £50, as new.— £20.—Box 6208. — All to Box 4299.

**MULLARD C.R.T. unit, type B100, with 3in tube, unused, as new, £9/10,—Packer, Rock Hill, Bromsgrove. — All to Box 4299.

WESTON analyser, new, 20,000 v., £20; R.C.A. Junior Voltograph, electronic voltmomemeter, new, £20.—Box 5629. — All to Box 4299.

PHILLIPS oscilloscope single beam time base, £28 or offer, £10.—The former owner requests that only genuine offers are made to: BM/ANL, London, W.C.1. — All to Box 4299.

**METER rectifiers by Westinghouse, new, unused, 100 amp 1900 cycles, £6 6. £3 10. — Burley, 60, Balaclava Rd., Derby. — All to Box 4299.

SPEED up service by reading correct voltages; use the Holmer valve voltmeter, £10; £5.—Oscar, 328, London, N.W.1. — All to Box 4299.

SPECIAL bargain; Avo universal minor, in case, condition, £6/15; Canadian No. 50 Transceiver, complete with power pack, head-phones, microphone, etc., £9/10.—s.a.e for lists of other equal bargains.—Box 6529. — All to Box 4299.

**COSBOR double-range oscilloscope model 339, £20. £15.—D.C. mains magnets, £4 10. £4.—H.F., for perfect 1,000 kc signal generator; £400, 110A, 1 Ekco television pattern generator £6/15, carriage paid; send for fully descriptive leaflet. — All to Box 4299.

CASES. The famous Lesdix Bijou with Mil reduction gear on C.I. base, £1. £3 10. £5 10. each. The Lesdix Bijou with Mil reduction gear in kit form—List from MacLaclan.—All to Box 4299.

CUTOUTS. Air Ministry type with bakelite cover 4in. x 3in. x 3in., £5. £3 10. £2 6. — All to Box 4299.

MAGNETS. D.C. Electric magnets, £6 6. £4 10. £2 6. — All to Box 4299.

CIRCUIT BREAKERS. N.C.S., 7a amps A.C., £10. £9. £7 10. — All to Box 4299.

CUTOUTS. Air Ministry type with bakelite cover 4in. x 3in. x 3in., £5. £3 10. £2 6. — All to Box 4299.
EX-GOVT. SETS OFFERED AT FRACTION OF ORIGINAL COST!

1½ METRES 10 VALVE SUPERHEAT UNITS

G.N.S.
Cartridge gold. Glass with Order

IDEAL FOR CONVERSION INTO

TELEVISION RECEIVERS

CIRCUIT COMPRISES:
- Pre. amp., Osc., Mixer 1 L.F., Det., Video Amp. 1.8F. Frequency 12 Mc/s, Band-Width 4 Mc/s, Co-axial input and output sockets. External source of L.T. and H.T. supply is required. Manufacturers to Government specification by such famous makers as R.G.D., Pye and Murphy, Brand new and unused in Manufacturers' sealed cartons. Complete with 10 Mads Valves.

WIRELESS INSTRUMENTS (LEEDS) LTD.
54-56 THE HEADROW, LEEDS, I
- Tel.: 22262 -

YOU can become a first-class RADIO ENGINEER

We are specialists in Home-Study Tuition in Radio, Television and Mathematics. Post coupon now for free booklet and learn how you can qualify for well-paid employment or profitable spare-time work.

T. & C. RADIO COLLEGE
North Road, Parkstone, Dorset

PUBLIC ADDRESS by Acoustical

for the very best in REPRODUCTION DESIGN WORKMANSHIP SERVICE

We will gladly send you full details and specifications of the range of ACoustical P.A. Equipment on request.

Acoustical MANUFACTURING CO., LTD.
HUNTINGDON, TEL.: 361

G. R.

By direction of the Ministry of Supply,

at the Ministry of Supply Depot,

12-14, TOWER BRIDGE ROAD, E.81.
(Adjoining Old Kent Road and Close to the Bricklayers' Arms Station, E.R."

MISCELLANEOUS NEW & SURPLUS STORES & EQUIPMENT.

MACHINE TOOLS, CONTACTORS, COMPRESSORS, RADIO & ELECTRICAL COMPONENTS, TRANSISTORS & TUBES.

THIRTY THOUSAND CABLE DRUMS.
ONE QUARTER MILLION PINS, ANTI-GLARE GLOVES, LENSES, CIVIL DEFENCE EQUIPMENT, PLATED, ARMOURNED & WINDOW GLASS, HAND TOOLS, VARIOUS TYPES BRONZE, BRASS & DURALUMIN FITTINGS, CANVAS & TARPAULIN, SCALES & BALANCES, INSTRUMENT CASES & SUndry EQUIPMENT.

To be Sold by Auction WITHOUT RESERVE by
STOCKER & ROBERTS at the Depot as above on the THREE CONSECUTIVE DAYS, TUESDAY, 15th, 16th and 17th April, 1947, at 11 a.m. each day, with a lunch interval from 12.45 to 1.45 p.m.

The Stores will be ON VIEW on Thursday, Friday, Saturday and Monday, 10th, 11th, 12th, and 14th April, from 10 a.m. to 4.30 p.m., and on Saturday from 10 a.m. to 1.30 p.m.

Admission to view and sale will be by Catalogue only—price 6d.—obtainable from the Auctioneers' Offices, 29-31, Lewisham High St., S.E.13.

Telephone (for the Auction Stores Department) LEE GREEN 2137.
ALL-WAVE 8-VALVE SUPERHET CHASSIS

incorporating wave-band expansion. Large glass scale treble boost control, e.g. the 1914 band covers just over 20 inches on the large glass scale, treble boost control, gram. switching, all controls work on both radio and gram, high quality push-pull output giving 6 watts audio. For 200-250 v. A.C. mains.

Price 14 gns. plus tax

Provisional Price 14 gns. plus tax

* Model EXP53

ALL-WAVE 7-Stage Radiogram Chassis

This new radiogram chassis incorporates wave-band expansion on all four stages. Radiogram tone control works on both Radio and Gram. 4 watts R.C. coupled output Supplied complete with £5. 50 watt super amplifier, new, from stock; Blank discs, cutting needles, microphone, lightweight pick-ups, matching transformers, speakers, etc.; trade enquiries invited.—Sound Disc (Supply) Ltd., 85a, Bold St., Liverpool, 8.

NEW Scott Phantom ac 16-valve 4-wave-band superhet radiogram, in pale oak cabinet by Arundel Clark, with specially designed wrought iron grille, 12in speaker, out. delivery per pass. £27/10.—Telf, Little Galtun, Brooklands Rise, Wimbledon, S.W.1.

PORTABLE recording equipment: M.S.S. recording machine, new, from stock: Blank discs, cutting needles, microphone, lightweight pick-ups, matching transformers, speakers, etc.; trade enquiries invited.—Sound Disc (Supply) Ltd., 85a, Bold St., Liverpool, 8.
PORTABLE automatic radio gram, latest American, high efficiency, 5/2 watt, short and medium wave, crystal pick-up, changer, plays direct records, operating 20-10 000-250 volts, excellent volume and sensitivity, built-in frame aerial, the whole contained in neat leather suit-case, weight only 161st 75wms—Box 7022. [7178

WE have received numerous inquiries for delivery of the Sound Sales polyphonograph radiogram fitted with automatic record changer; some customers state that they have been promised seven days for delivery by radio dealers. We wish to make it perfectly clear, without prejudice to all concerned, that although we are preparing a model with automatic record changer, we have not authorized anyone in the trade to give any delivery promise; in fact, the model has not been released. The moment we are in the happy position to announce this addition to our range, all agents, appointed by Sound Sales, Ltd., will be in possession of a demonstration model. [7119

Shenley Road, Boreham Wood, Herts

The AA2 Series of Bryce Transformers have been designed to cover a very wide range of application conditions under difficult circumstances. All windings are layer wound and interleaved, and coils are finally pre-heated and thoroughly dried out before being vacuum waxed or varnish impregnated.

Send for leaflet giving full specification.

W. ANDREW BRYCE & CO. LTD.
Shenley Road, Boreham Wood, Herts
Telephone: ELStree 1873 & 1117.

R.F.
DEVELOPMENT LABORATORIES LTD
CONSULTING ENGINEERS

- TRANSFORMERS, CHOKES & COILS to your own Specification. Delivery 7 Days.
- AMPLIFIERS 14-30 watt output, DECKS and CASES to your requirements.
- Enquiries Invited.
- Telephone: Bfd. 4902.

BARNARD RD. • BRADFORD

RELIANCE POTENTIOMETERS

Type T.W. Type T.T.
Continuous Wire-Wound
Rating: 5 watts (linear)
3 watts (graded)
RANGES: 100-10,000 $ linear Max.
100-50,000 $ graded
100-10,000 $ non-inductive

Characteristics:
Linear, tapered, graded, log., semi-log., inverse log., non-inductive, etc.

Write for details to

RELIANCE
Manufacturing Co. (Southwark) Ltd.
Sutherland Road, High Hill, Walthamstow, E.17
Telephone: Larkswood 3245

LASKY'S RADIO
THIS MONTH'S SPECIAL OFFERS
MOVING COIL SPEAKERS, 2nd fresh paint coating, first grade, 0-100 mtrs. (about can be removed), £3.00. New and unused. Price 12/6 each.

EX-AM. PRESS BUTTON (JINTO GL BOXER, new and unused. Consisting of 8-way push button unit fitted with American Portomatic. £8/6 each. Price 2/6 each.

AXAYLE TYPE SWITCHES, 4-pole, 5-way momentary, Price 3/- each.

LIST PRICES.

6,000 RADIO VALVES OF ALL TYPES, AT OFFICIAL LIST PRICES.

WE have space for only a few items from our extensive range. Send 1/- for our current list and full particulars.

Terms, Pro Forma, C.O.D., or cash with order (no C.O.D. under £1).

Send copies of the catalogue.

World Radio History
BERRY'S (SHORT WAVE) LTD.

-rounded World
with the
“Q-Max"
All Day Four

A flick of the knob brings you station after station on the Short Wavebands—full of excitement, interest, pleasure and education.

BERRY'S (SHORT WAVE) LTD.

FEATURES

VALVE CIRCUIT
IN5 RF Amplifier / ICS Detector
IHS LF Amplifier / ICS Output.

Price: 12 guineas.
(Speaker, Battery and Coils extra.)

Purchase Tax £ 2.11.5.

JUST OUT!

The “Q-MAX” VHF CONVERTOR
embedding circuit refinements not found in any other make plus advantages of

MONGO-UNIT COILS
Full Vision Calibrated Scale ; One knob tuning and Extra Top Band Coil Range. Price (with
30 M/Cs or 56 M/Cs Coil Unit) 19 Guineas.
(Extra Coil Units 30/-. each.)

OTHER “Q-MAX” PRODUCTS
Chassis cutters—1/2” Octal 10/6, 1” and 11/2 6 (Post 9d. extra). Complete Slow Motion assemblies—9/6 15/-; 5/6 £ 2.4.8. “R” meters for
AR8B 9/4. Tank Coils for power up to 50 watts £ 2.15.0. Up to 150 watts £ 4.14.0.
Obligable from your local “Q-Max” dealer or direct from

BERRY'S (SHORT WAVE) LTD.
25, HIGH HOLBORN, LONDON, W.C.1

ILLUSTRATED CATALOGUE

CHARLES BRITAIN RADIO—A few selected from our latest list.
TRP coils, with reaction, medium wave, with diagram, 8/6 pr.; superhet coils, all-wave, 10/6 pr., for TRP transformers. 465 kc. 12/6 pr.; 2-gang condensers. 0.0005, less feet and trim, 9/- ea.
SPECIAL offers—Moving coil mikes, undamaged, with metal grille, 5/- ea., damaged, 2/- per pack. Pencils of new and used condensers from 0.0001 to 0.5 mfd, all new, 1/6; parcel of 72 new assorted resistors, 1/2 and 1/4 watt, from 100 ohms to 1 meg. 12/6; metal carbon resistors, 100, 150, 200, 250, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000 ohms, 12/6 each.

SPECIAL purchase of brand new ex-Government miniature radio receivers, covering 4 wavebands 20 metres to 3,000 million cic, and 2- gang or dry battery operation, supplied complete with ear handphones, power pack, instructions and accessories. 27/19 pr.; these receivers were used by the Resistance Movement; limited numbers only available. Please order c/o.
NUMEROUS other lines in stock, including amplifiers, pickups, etc.; callers always welcome; trade; supplied; terms, cash with order or c/o. 1/- over 21/-; send for latest list.

NEW METAL RECTIFIERS, guaranteed charger kits, h.t. rectifiers, no surplus.

SELENIUM metal rectifiers, dump-proof finish, best made, new and with full manufacturers' guarantee. Complete information sheet with each rectifier; 12v 1.5amp, 10/-; post 6d.; 12v 3amp, 15/-; post 6d.; 12v 5amp, 21/-, post 6d.; 12v 9amp, 35/-; post 6d.; 12v 15amp, 75/-; post 6d.; 12v 25amp, 1/6; post 6d.; 12v 40amp, 10/-; post 6d.; 12v 50amp, 15/-; post 6d.; 12v 100amp, 2/-; post 6d.

INSTRUMENT rectifiers, M.B.S.1 milliamp, 1/-; 2v to 12v charger, weight 7lb, no rheostat and ammeter needed, 4/6, post 1/-; ditto with 50watt transformer and ballast bulk for 2v to 12v charger, weight 7lb, no rheostat and ammeter needed, 4/6, post 1/-; ditto with 2amp rectifier and 75watt transformer, 6/-, post 1/-; ditto with 3amp rectifier and 100watt transformer, 7/-, post 1/-; ditto with 5amp rectifier, 12/-, post 1/-; ditto with 10amp rectifier, 15/-, post 1/6; ditto with 20amp rectifier, 21/-, post 1/6; ditto with 50amp rectifier, 35/-, post 1/6; ditto with 100amp rectifier, 75/-, post 1/6; ditto with 200amp rectifier, 150/-, post 1/6.

SELENIUM rectifiers, guaranteed charger kits, h.t. rectifiers, no surplus.

METAL rectifiers in stock for converting valve chargers to the new type: all types: charger kits, large 12v 3amp rectifier with 50watt transformer and ballast bulk for 2v to 12v charger, weight 7lb, no rheostat and ammeter needed, 4/6, post 1/-; ditto with 50watt transformer and ballast bulk for 2v to 12v charger, weight 7lb, no rheostat and ammeter needed, 4/6, post 1/-; ditto with 100watt transformer, 6/-, post 1/-; ditto with 200watt transformer, 7/-, post 1/-; ditto with 400watt transformer, 9/-, post 1/6; ditto with 1000watt transformer, 12/-, post 1/-; ditto with 2500watt transformer, 15/-, post 1/-; ditto with 5000watt transformer, 20/-, post 1/6.

ELIMINATOR kit.—Transformer, selenium h.t. rectifier, 120v, 2amp, 160watt. New nickel-plated transformer, charge rectifier, and two 6mfd condensers for selenium h.t. eliminator and trickle charger; 39/-, post 1/6; price 10/-.

QUANTITY Belling-Lee 3-pin plugs and also quantity radio 2-pin; 170/6 each.

COMPREHENSIVE SET OF JUMPERS—Terms, cash with order or c/o.

CHASSIS and panels in aluminium, from 30/6. £ 15/0. Total weight 5lbs.£ 40/0. 19/6 pair, post free; adjustable microphones, £ 44/6. Post free. £ 24/6. Post free.

GOVERNMENT surplus.—P O type carbon microphones, 2/6, post free; headband with bracket, 2/6, post free; R.A.F. throat microphones, 5/11, post free; R.C.A.F. throat microphones, 6/11, post free; mics, complete (0 to 100watts) £ 4.8. A-4 way flexible telephone leads, tagged ends, 2yds long, £ 4; for new d.t. and twin leads, 2½yds long, £ 4; ditto £ 4; ditto £ 4.

ADAMARLY surplus.—New nickel-plated telephone earphones, £ 0.75. 47 only to clear, usual price £ 8.5. Our price 29/- each, plus 1/6. £ 3. £ 3.

H & N, 29, North St., Brighton.

CHASSIS and panels in aluminium, from 30/6. £ 15/0. Total weight 5lbs.£ 40/0. 19/6 pair, post free; adjustable microphones, £ 44/6. Post free. £ 24/6. Post free.

GOVERNMENT surplus.—P O type carbon microphones, 2/6, post free; headband with bracket, 2/6, post free; R.A.F. throat microphones, 5/11, post free; R.C.A.F. throat microphones, 6/11, post free; mics, complete (0 to 100watts) £ 4.8. A-4 way flexible telephone leads, tagged ends, 2yds long, £ 4; for new d.t. and twin leads, 2½yds long, £ 4; ditto £ 4; ditto £ 4.

ADAMARLY surplus.—New nickel-plated telephone earphones, £ 0.75. 47 only to clear, usual price £ 8.5. Our price 29/- each, plus 1/6. £ 3. £ 3.
WIRELESS WORLD
April, 1947

Specialists in
HIGHER POWER - HIGHER QUALITY
PUBLIC ADDRESS SYSTEMS
AMPLIFIERS

From 150 W to 1kW

W. Bryan Savage Ltd
WESTMORELAND ROAD, LONDON, N.W.9
Telephone: Cindale 7131

RADIO CORNER

(Proprietor, T. B. WILLIAMS)

138 GRAY'S INN RD., LONDON, W.C.1
Terminus 7937

MAIL ORDER. Delivery by return. THE BANNER CHARGER, Type 1/1, 1 amp, ideally suited for Motorists, a really first-rate charger, £4 20s. v.A.C.
Output 2, 6 or 12 v.D.C., at £3. Designed for the motorist who likes to keep his batteries in top condition.

Engineers and Electricians Handbook. Price 1/-.

American Radio Valves. Types as under at controlled prices. 4527GT, 5Y9, GAGT, 18GT, 80GT, 3AGT, 12AGT, 12AFGT, 12AFGT, at 1/- each; 6GT7G, 12GT7G, 12GT7G, at 9/- each; 6GT7G, 6GT7G, 6GT7G, 42G, 43G, at 12/10 each. Postage paid.
Others as they become available for distribution.

AMERICAN RADIO SERVICE MANUALS

Volume I. Spartan Emerson.

II. Crosley Belmont. Part I.

III. Crosley Belmont. Part II.

V. Emerson. Part II.

VI. Stewart Warren FADA.

At 12/- per Volume, or complete set of six manuals £12 12s. 6d. These enable you to work on all the complete range of American Radio Receivers as they now appear and will be invaluable and contain all the technical data necessary.

Terms. Cash with Order only. We regret that we are unable to send goods C.O.D.

46 Advertisements
DROP-PLUS—Jone plugs, knobs, fixed connectors, trimmers, impulse valves and other small brass parts, other small brass parts, other small brass parts.

SLEEPING—A large quantity of new finish, price 22/6 each; 12- to- 1 dial trains, in bakelite cases, with 3M front flange;

MOVING coil headphones, P.M., energised by coil, 10/- each; throat microphones, fitted with mic. with switch in handle, 45 ohms speech mikes, miniature loudspeakers, etc., 1 each.

WTREWOUND non- inductive resistances, 2- 15 AMP mercury switches, etc., 10/- each.

OHM! Radio Heat equals complete first class 5-valve superheterodyne, positively the best of the new shortwave sets.

 בביתアップ QUINS AT WORK

Stop bowling for FLUXITE you hound! Yelled Ol, "It's down there on the ground. Fixing aerials here, is a headache—that's clear;

TO CYCLISTS! Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings and SOLDERED. This makes a much stronger wheel. It is simple—with FLUXITE—important.

The FLUXITE GUN puts FLUXITE where you want it by a simple pressure. Price 1/6, or filled. 2/6.

Advertisements
An entirely revised range of 50 power and audio transformers. Pressed steel clamps ensure silent operation. Solder tag or labelled leads. Surface or subchassis, skeleton or potted types.

Mains and outputs. Our standard style as illustrated, 250-350 v., 100 ma.

Also 50 watt types, combined speaker models, etc.

Sixpence brings you our latest catalogue, also subsequent literature for three months.

General Lamination Products LTD.
WINDER HOUSE, BEXLEYHEATH, KENT.

REWRINDS

Send your “Burn outs” to be Rewound — no technical data wanted. Post Transformer, etc., labelled with your name and address marked “for Rewind.”

OUR WINDINGS ARE LAYER WOUND & IMPREGNATED

SOUTHERN TRADE SERVICES, LTD.
297/299, HIGH ST., CROYDON

Tele.: 4870

Manufacturers of “TELECREST” PRODUCTS

LONDEX for RELAYS

AERIAL CHANGE-OVER RELAY

for Radio Frequency

Type AECO 4

1 V.A. Coil Consumption, especially designed for Transmitters, High Frequency Heating, Amateur Stations, etc.

Ask for leaflet 112W

LONDEX LTD.

SYDNEY

207 ANERLEY ROAD LONDON S.E.20

6288-8

2/6 brings you comprehensive circuit and wiring diagram of a super ac/dc quality relay, all components can be supplied from stock by return post, c.o.d.; 5½ in. p.m. speakers, 17/6; octal valve-holders, 5/—;
d Mosul coil, 2; 3-wave coil packs, 35/- 35½ in. p.m. m.o. speakers, 27/6; moving coil meters, 5½ and 5½, 5, 10, 25, 50, 100, 300v., etc., all at 50/- each, reduction for quan-
tity; all as 1,000 v., 3½; 84-Ballot 500 v., 5/6; 16mfd 500, 4/6; a.m.e. for lists of other bargains.—Brown, 63, Salisbury B.V., Farnham Rd., Slough, Bucks.

A. P. 12, 1957.

A N EXCEPTIONAL COUP, the new Summersby, Ltd. S.A. 4, is a medium in size only. Like its wound on a distrene former, adjustable iron dust core; the performance of this medium wave coil at 1,500 kcs with 70 P.I. has a Q of 90, and with 490 P.I. has a Q of 170; price 5½ each; immediate delivery; we believe that we are the first manufac-
turer to offer post-war to the trade and public a tuning coil that does not need a varicose condenser—the Summersby Perme-
tability tuning coil will be on sale in August; be up to date, use Summersby products.—A. Castle, 101, Peverel Rd., Uppingham.

2/6 SUMMERSBY LAMINATIONS

AERIAL CHANGE- OVER RELAY

48 Advertisements Wireless World April, 1947

Valuable books on RADIO

by ALFRED T. WITTS

A.M.I.E.E.

THERMIONIC VALVES IN MODERN RADIO RECEIVERS

An up-to-date book for service engineers, students and keen amateurs, and for all engaged in commercial wireless work.

THE SUPERHETERODYNE RECEIVER

Gives all the information necessary for a complete understanding of the operating and working principles of this type of receiver.

Radio upkeep and Repairs

Enables the average radio receiver owner to diagnose the ordinary troubles of his radio set and to remedy them himself. 6s. 6d. net.

Worked Radio Calculations

Contains worked examples of most of the important formulae which in radio courses are not inviable to service engineers and those studying for examinations in radio. 6s. 6d. net.

PITMAN

Parker Street, Kingsway, London, W.C.2

Radio Spares: Quality Parts

The Service Engineer's First Choice

‘Testgear’ Mains Resistance

1,000 Ω 2Ω

600 Ω 3Ω

Nickel-Chrome wire, space-wound on robust Ceramic Former only 3" x 1/4".

Heavy Brass Clips (one ad-
justable). One-hole fixing.

ROBUST COMPACT RELIABLE

Trade enquiries welcomed

Morton & Dismore 52c Oldchurch Rd., Chingford, E.4
COUPHOLE RADIO

The Return of Post Mail Order Service

F8

Eddystone Components, S.W. Manual, 2/6.

Heavy Duty Chokes, . 200 niA 150 ohms. 2/6.

Excellent range Yazley Switches : 2p., 5w., 3b1.

Octal Valve Holders Bd. All English and Ulf, Bd.

Receiver Hite. 4v. THE., £ 8 10s. ; 5v. Sal

Speakers. PM II', 215/-. ; gr. 28/6;

Aluminium chassis, 4 sides, 14" by 9' by 3',

Lue Cord. 2w.. 1/6: 3w.. 1/0 yd. Belling Leg

Tuning Condensers. 2it LfT. 11J6; W,'T,

Siminators. 120v. 25 mA, with Trickle Charger,

Everything previously advertised available.

May HAMM, 62, Frances St., 8cun-

cord radio spares service.—New goods only, regular lines; B.W. & C., eliminators, input

200-250v ac. output 60-75 and 120v at 20 ma

with trigger coil. Standard component case, with connecting wires, warn plugs and spades, ready for connecting up as needed switching on,

2.23, eqa, page 1/6.

21s. all one solo radio-

merito, tests everything electrical, 25/-;

switching condensers, 2½/-, 11½/-,

with trimmers 12/6; tuning coils, high, t.r.,

and low frequencies, 9/3; volume controls,

49; per io ft. P.P., and class B, 7/;

resistors, all values, carbon ½ and 1-watt

6d. and 1/-watt wire-wound 1d. 1/-

5/-wt. 5/- 20#: all capacities of tubular and elec-

trolytic condensers, 5/- per io. sample

enquiries; s.a.e. to be included with enquiries;

terms, cash with order or c.o.d. extra, post

4/-, 5/-, 5/- and 10/- paid orders over £10.

J HARRY JAMES PRODUCTIONS, 270,

Leith Walk, Edinburgh, 6.—Mail order only,

C.O.D. or cash with order. Loudspeakers,

5, 19/9; coils, T.R.F. with circuit M. & L.,

Wearite Standard Perm Tuned 465 kit,

Wearite Midget Perm. Tuned 465 k/c, pr. 21-

L.F. and American types in stock. Give us your

prices. Supply ½ and 1/2 watt resisters, 2/-

and 8d; wire wound I/

D.P. on-off 3/6, D.P.

wholesalers in London, E.4. (58.7)

Rollo, 22/6. 8in. Rola, 24/, 9íe. Grampian,

Made by leading mfrs., viz. :—Avo,

Goldring Magnetic Pick-ups, 30/6.

Rotholter Crystal Pick-ups—£163/.

Rotholter Soldering tags, 2/-, gr.; assorted small eyelets

and American types in stock. Give us your

H.C. Screw, 5/3, all plus carr., 1st gde. sliding resist-

1.5a 14/, 2.5a 19/6, 4a 23/- 5a 31/-, 8-10a

drive, 50-1 ratio, 12/6.

37/9, last two post 1/-• larger types for in-

30, 32g, 2/3; enamelled, same sizes, includ-

10inx8in, 3/9; 12inx8in, 4/6; ditto, ½ thick.

151/3, all plus carr., 1st gde. sliding resist-

Core Design 465 and 110 k/c, pr. 1/-.

Weymouth 3 wave Coil Pack, diagram, 36/.

40 hy. 1,250 ohm 20 m/a., 4/9.

3 in thick. 6in x 4in, 1 / 6;

20 watt. Prices 6d. to 4

3-ohm sec, 15

Terms Cash with Order or C.O.D.

3. A, H.F. and Ose.,

Goldring Dinner & Lunch., 10/0.

Warden 15 meters, A, H.F. and Ose.,

CAN SEND YOU

Advertisements 49

from the list of our Stock.

FRITH RADIOMATIC, Ltd., the Leicester

Specialists, offer, from their comprehensive

stock, these 2-wave type transformers:

for instance, 30,000G 15,000G 3000G 1000G

Matched pairs M. and L. with reac. 9.

15 meters, A, H.F. and Ose.,

Warden bulky filter, H.F. and Ose.,

Matched pairs M. and L. with reac. 9.

Warden bulky filter, H.F. and Ose.,

H.F. and Ose.,

Terms Cash with Order or C.O.D.

ENQUIRIES WELcomed !

The above represent only a few examples

in a large range of filter transformers.

STERS OF FLEET STREET

CAn SEND YOU

RADIO COMPONENTS, TEST GEAR AND INSTRUMENTS

Made by leading mfrs., viz.—Avo.

Matched pairs M. and L. with reac. 9.

Matched pairs M. and L. with reac. 9.

2-meter Crystal Pick-ups, 5/6;

sapphire needles, 12/6; B. G. Brown

lightweight headphones, 25/-, agents for

Quartz Xtras, Reynard, Woden and Labgabre.—Frith Radiocraft, Ltd., 69-71,

Church Gate, Leicester. (4701)

58, DERBY STREET. ORNISKRIG, LANCs.

NEW UNUSED 12 VALVE

TRANSMITTER-RECEIVER UNIT

(RADAR 1FF UNIT, R.A.F. TYPE R3077)

THE COMPLETE EQUIPMENT WITH

12 NEW VALVES AND POWER SUPPLY

(12v. D.C. Supply)

VALVE LINE-UP—

Price Only

£6/19/6

CARRIAGE PAID

FREE FREQUENCY COVERAGE—

BAND SWITCHING

58 - 84 Mcs.

40 - 210 Mcs.

3 Di

1 E148

SOLD SUPPLIED IN

by makers sealed cartons. Cost to Ministry of

POWER SUPPLY

12v. D.C. input Rotary Trans-

former with 480 v. 400 ma.

M. O. S. (Mail Order)

Sale

124 NEW RD., LONDON, E.I

Sand for information on the BURGOYNE

Aerial Co-axial Connector. This is what you have waited for!
THE AMERICAN POPULAR MECHANICS MAGAZINE

OVER 300 PAGES

150 ARTICLES IN EACH ISSUE

POPULAR MECHANICS the complete monthly science survey.

ORDER this famous American Magazine ONLY to be sent to you every month direct from Chicago, U.S.A. 12 months' subscription, only 17/6, Post Paid.

Send remittance of 17/6 with your order to—
DALE INTERNATIONAL Publications Ltd., 105 BOLSOVER STREET, LONDON, W.1

111 Pages PACKED WITH INTEREST

The most comprehensive Radio and Electronic Component Catalogue ever offered is yours for the asking. All lines are by well-known manufacturers including a complete valve range—No job clearance lines whatsoever. A shilling postal order will bring you this catalogue post-free.

SEND TO-DAY
BIT S
61, London Road, Brighton 1, Sussex Tel.: Brighton 1555.

POST-WAR TELEVISION

The advance in Radio Technique offers unlimited opportunities to high pay and secure posts for those Radio Engineers who have had the foresight to become technically qualified. Here is the answer—use the "Dorset" Hot Spot soldering outfit in conjunction with any car battery (hired if necessary from garage); as used during recent cuts for construction of our coil packs, etc.; makes cleaner and neater joints and avoids damage to components; complete with instructions for use. 5/6.—Weldona Radio Accessories, Ltd., Swanage.

MISCELLANEOUS

SOLDERING difficulties solved.

HAVE you been put off making a set because of soldering difficulties, either through lack of electricity or low voltage? Here is the answer—use the "Dorset" Hot Spot soldering outfit

EX-R.A.F. "Identification Friend or Foe" receiving and transmitting units, covering 155-185 mcs, complete with 10 valves and 20 watts motor generator, 12v input, 480v 40ma output, also just arrived. I.F.F. model 3003 for 24v operation, price of either 79/6, plus f.o.d. carriage. 5/-: s.a.e. for component lists and refer to our offer of ex-Army wavemeters under Test Equipment column—R.E. Corp., 32, St. Gabriel's Rd., London, N.W.2.

This phrase was used by a leading Electrical Instrument concern in connection with TRANSFORMERS and CHOKES supplied by us, and is praise to which we have become accustomed. Our modern factory is fully equipped with vacuum and pressure impregnators, and all the latest test equipment.

POWER RATINGS 8 V.A. to 8 K.V.A. AUDIO RATINGS 3 watts to 200 watts.

We shall be pleased to quote for your requirements, large or small.

PROMPT DELIVERIES

AUSTIN MILLS LTD.
LOWER CARRS, STOCKPORT
Established 20 years. Phone: S.O. 3791

MORSE CODE TRAINING

There are Candler Morse Code Courses for BEGINNERS AND OPERATORS. Send for this Free "BOOK OF FACTS" It gives full details concerning all Courses.

THE CANDLER SYSTEM CO., (Room SSW), 121 Kingsway, London, W.C.2
Candler System Co., Denver, Colorado, U.S.A.

"We were Greatly Impressed"

This phrase was used for a leading Electrical Instrument concern in connection with TRANSFORMERS and CHOKES supplied by us, and is praise to which we have become accustomed. Our modern factory is fully equipped with vacuum and pressure impregnators, and all the latest test equipment.

POWER RATINGS 8 V.A. to 8 K.V.A. AUDIO RATINGS 3 watts to 200 watts.

We shall be pleased to quote for your requirements, large or small.

PROMPT DELIVERIES

AUSTIN MILLS LTD.
LOWER CARRS, STOCKPORT
Established 20 years. Phone: S.O. 3791

MORSE CODE TRAINING

There are Candler Morse Code Courses for BEGINNERS AND OPERATORS. Send for this Free "BOOK OF FACTS" It gives full details concerning all Courses.

THE CANDLER SYSTEM CO., (Room SSW), 121 Kingsway, London, W.C.2
Candler System Co., Denver, Colorado, U.S.A.
April, 1947

WIRELESS WORLD

5-VALVE A.C. SHORT WAVE SUPERHETERODYNE CIRCUIT. Tuning from 10 to 200 metres in three wave-bands using our built-up coil unit. All low-loss H.F. components used where necessary. Very good loudspeaker performance, provision for 'phones. Valve sequence, F.C. with V.M. control 6K8 or ECH35, I.F. Amp. 6K7 or EF39, D.T.Triode with noise suppressor 6Q7 or ECC33, High Amplification Output Pentode 6L3 or EL35, Rectifier A246. Slow-motion Vernon drive.

M. WILSON LTD.
BLUE PRINT SERVICE
4-VALVE BATTERY SUPERHETERODYNE CIRCUIT BB. Full size blue prints are now available for a three wave-band superhet receiver using our three wave-band coil unit as illustrated in the September issue of Wireless World.

4-VALVE BATTERY SUPERHETERODYNE CIRCUIT BB.

WANTED, H.R.O. coils and instruction manual; state cond., freq. and price. M. A. Wilson, 83, St. James's St., Bristol, E.

SILICON steel sheet or strip mild steel sheet, annealed mild steel, AX 22 gauge, any quantity, urgently required.—H. Frost & Co., Ltd., Walsall, Staffs.

[1742]

BLUE PRINT SERVICE

April, 1947

WIRELESS WORLD

307, HIGH HOLBORN.
LONDON W.C.1.

Phone: HOLborn 4637

BROOKES CRYSTALS
EST. 1929

LTD.

MAXIMUM ACTIVITY
PRECISION BUILT UNITS
GUARANTEED ACCURACY
LABORATORY TYPES
OSCILLATORS — RESONATORS
AMATEUR RANGES
REFERENCE UNITS
MANUFACTURERS CATERED FOR

51/53 GREENWICH CHURCH ST.,
LONDON, S.E.10

Phone: GRE. 1828

J. BULL & SONS (W.W.)
246 HIGH STREET
CARLETON, W.10

MIDGET IRON CORRECTED COILS
GIVING MAXIMUM GAIN & SELECTIVITY
AERIAL AND OSCILLATOR, short, medium, or long wave, size 1½ x 1½ x 1½
DUAL WAVE COILS, medium and long wave aerial and h.f.
BALANCED COILS, Standard Frequency, size 1 x 1 x 1

MONOCHORD RADIO
240, Streatham Road, London, S.W.16

if in a hurry

RADIO VALVES. British and American from 5/1b.

POSTAGE FREE.

[Advertisements]

[Advertisements]
THESE ARE IN STOCK
Television Receiving Equipment, By W. T. Cowling. 12s. 6d., post 6d.
Wireless Service Manual, By F. J. Camm. 6s., post 6d.
Radio Tube Vade Mecum. By P. H. Brans. 12s. 6d., post 6d.
Wireless Wiring and Maintenance. By E. J. G. Lewis. 8s., post 6d.
Fundamentals of Radio. By F. E. Ferman. 20s. Postage 8d.
Wireless World Valve Data. 2s., post 2d.
The Technique of Radio Design. By E. E. Zepler. 21s, post 7d.
Practical Wireless Circuits. By F. J. Camm. 6s., post 6d.
Radio Service Test Card. By W. H. Casy. 6s., post 6d.
Luminous Tube Lighting. By H. A. Miller. 10s. 6d., post 4d.

WE HAVE THE FINEST STOCK OF BRITISH AND AMERICAN RADIO BOOKS. WRITE OR CALL FOR COMPLETE LIST
THE MODERN BOOK CO. (Dept. W.21) 19-31, Freest St., London, W.2

MIDLAND INSTRUMENT CO.
SPECIAL OFFER OF EX-00V. ALL-DRY BATTERIES
Highest grade 60 and 120 V. H.T. and 6 V. L.T. 6 1/2/-, post 2s.
C Tube; also 5 V. H.T. plus 14 V. L.T. 5/-, post 8; Sealed (Dept. W.21, 19-21, Praed St., London, W.2)

RADIO BATTERY TESTER
Use "Quixo" method of battery testing.
Reliable results Guaranteed.
Send for interesting leaflet R15 on battery testing.

RUNNAPEN : MANCHESTER 1

A.C.S. RADIO

SPECIALISTS IN SHORT WAVE and high-class broadcast equipment offer a wide range of components for the constructor and enthusiastic amateur.

We are Agents for Edystone, Raymart, Hamrad and Labgear components including Variable Condensers for receiving and transmitting, Air Transformers, plug-in coils and coil formers; valve holders; R.F. and A.F. Chokes; Motor transformers; mica, paper and electrolytic condensers; volume controls; quartz crystals; formers; valve holders; R.F. and A.F. Chokes; Trimmer condensers; plug-in coils and coil formers; Mains transformers; mica, paper and electrolytic and Labgear components including Variable and enthusiastic amateur.

SPECIALISTS IN SHORT WAVE and high-class broadcast equipment offer a wide range of components for the constructor and enthusiastic amateur.

Our new Component List "W" and list of selected items will be sent on application to A.C.S. RADIO.

44 WIDMORE R. Bromley, Kent

COMPONENTS FOR PROTOTYPES

Commercial buyers for large industrial organisations requiring components for prototypes (especially when they are in a hurry—which is mostly always) are gradually finding that the quickest way to get what they want is to phone Pad. 6116, or call at 177, Edgware Road (not far from Marble Arch) and take the goods away with them. No matter what is required, if we haven't got it in stock we always do our utmost to get it quickly, and we usually know where—and now.

OUR OWN FACTORY.—We have acquired additional space on the premises and now have our own factory—primarily engaged on communications apparatus, transmitters and U.H.F. receivers. Mind you, it is only a little factory, but it is surprising sometimes what initiative and determined effort can do. WHEN you have a minute to spare—call in and see us—you will be quite interested.

TELE-RADIO (1943) LTD.

177 EDGWARE ROAD, LONDON, W.2
Telephone : Paddington 6116

W.W. APOLOGISE to those who have been waiting months for replies. Our post-war plans have been frustrated so far. Sorry!

VOIGT PATENTS LTD.

THIS—Does these

ACCURATELY and QUICKLY
Chassis, Brackets, Shelves, Consoles, etc., transformer clips—
TREMBLANT 30, 50, 100 Watt Transformers.
(Price sixpence to 7/6.)

A. A. TOOLS, (W.), 192B, Warwick Ave., Maida Vale, N.W.8

Q = 120

WEYMOUTH MIDGET I.F.

Size 2"x1"x1" Tropicaly
Impregnated pots, cores and coils (Litz). Of outstanding efficiency and stability.

Available from your local dealer.

RETAIL PRICE 18/9 pr.

WEYMOUTH RADIO Mfg. Co. Ltd.
CRESSENT ST., WEYMOUTH

April, 1947
The page contains a mix of text and advertisements. The text appears to be an announcement for a government vacancy, requiring a keen, imaginative engineer with a sound theoretical and practical knowledge of electronic equipment. The salary is 115/- per week in London, rising to 130/- per week with experience. The advertisement also mentions other job openings, such as for a Sales Manager in West End London, a Radar Developer in Birmingham, and various electronic components for sale, including Mains Transformers, Voltage Reducers, and other electrical devices. The text is not formatted as a table and is not suitable for copying and pasting into a spreadsheet.
LABORATORY engineers are required for development work on broadcast receivers; the laboratory, South West of London, 50 minutes from Waterloo; please write, stating age, salary expected, experience and qualifications.—Box 6707.

DEVELOPMENT engineers, 22-23, with practical experience in electro-acoustic and audio-frequency work wanted for established manufacturer, full-time position.—Write giving full particulars and age preferred or whether willing to move elsewhere.—Box 6987.

CHIEF engineer required for company manufacturing radio test equipment, to take full charge of design of equipment; also responsible for testing departments and quality control.—Apply, giving age, experience, technical qualifications and salary required to—Box 6862.

ENGINEERS and technicians trained will have exp. in prod. of working drawings from data supplied by designer; (1) mech. draughtsman, 22-26; (2) elect., preferably with exp. on radio comm. equipment; workshop exp. preferred.—Apply in writing giving full details to—Philips Transmission, Ltd., Brabway Rd., S.W.18.

MANUFACTURING & REWINDING TELEPHONE: MALtien 0334
Formely Stanley Cattail Ltd.,
9-11 East Street, TORQUAY, Devon
Phone: Torquay 2183.

EX AIR MINISTRY Components

Thermo coupled RP
100 kcs. QUARTZ CRYSTAL UNIT Type Q5/100
for Secondary Frequency Standards

* Accuracy better than 0.01%.
* New angles of cut give a temperature coefficient of 2 parts in a million per degree Centigrade temperature change.
* Vitreous silver electrodes fired direct on to the faces of the crystal itself, giving permanence of calibration.
* Simple single valve circuit gives strong harmonics at 100 kcs. to 20,000 kcs.
* Octal based mount of compact dimensions.

Full details of the Q5/100, including circuit, are contained in our leaflet Q1. Send stamp to-day for your copy.

THE QUARTZ CRYSTAL Co., Ltd.,
63-71 Kingston Road,
NEW MALDEN, SURREY
Telephone: MALden 0134

TRANSFORMERS & COILS TO SPECIFICATION.

MANUFACTURED OR REWOUND COMMISSION.

JOHN FACTOR LTD.,
(formerly Stanley Castell Ltd.),
9-11 East Street, TORQUAY, Devon
Phone: Torquay 2183.

EX AMINITY Components

Thermal coupled RF
100 kcs. QUARTZ CRYSTAL UNIT Type Q5/100
for Secondary Frequency Standards

* Accuracy better than 0.01%.
* New angles of cut give a temperature coefficient of 2 parts in a million per degree Centigrade temperature change.
* Vitreous silver electrodes fired direct on to the faces of the crystal itself, giving permanence of calibration.
* Simple single valve circuit gives strong harmonics at 100 kcs. to 20,000 kcs.
* Octal based mount of compact dimensions.

Full details of the Q5/100, including circuit, are contained in our leaflet Q1. Send stamp to-day for your copy.

THE QUARTZ CRYSTAL Co., Ltd.,
63-71 Kingston Road,
NEW MALDEN, SURREY
Telephone: MALden 0134

LABORATORY engineers are required for development work on broadcast receivers; the laboratory, South West of London, 50 minutes from Waterloo; please write, stating age, salary expected, experience and qualifications.—Box 6707.

DEVELOPMENT engineers, 22-23, with practical experience in electro-acoustic and audio-frequency work wanted for established manufacturer, full-time position.—Write giving full particulars and age preferred or whether willing to move elsewhere.—Box 6987.

CHIEF engineer required for company manufacturing radio test equipment, to take full charge of design of equipment; also responsible for testing departments and quality control.—Apply, giving age, experience, technical qualifications and salary required to—Box 6862.

YOUNG, energetic man with supervisory experience and technical background in high voltage work, to train to take control of manufacturing plant employing approximately 100 females, North-east Coast.—Write, stating full details of experience.—Box 6980.

draughtsmen and technicians required with Exp. in the production of high voltage high frequency electronic equipment. State qualifications, experience, age and salary required to—Box 6862.

required by factory in London a senior radio engineer with sound technical training and experience in high voltage high frequency engineering, for development of industrial electronic equipment.—State qualifications, experience, age and salary required to—Box 6862.

CHIEF engineer required, with experience in high voltage electronic engineering, for work on prototype equipment in connection with television transmitters. Superintendence is also required for similar work.—Apply by letter only to the Research Laboratories of the General Electric Co., Ltd., N. Wembley.

ELECTRICAL draughtsman or engineer required with knowledge of public address equipment and the theoretical and practical wiring diagrams, part lists, etc., necessary for large installations; some knowledge of drawing office practice an advantage; write, stating full particulars of qualifications and experience, age and salary required.—Box 6707.

SERVICE department manager wanted for established radio manufacturers in London due to retirement of present manager; thoroughly experienced, service engineer required, with knowledge of all makes radio and television; good mechanical ability and flair for correspondence; only men who have held previous similar position need apply; good prospects and working facilities; applications treated in strict confidence; write, stating full particulars and salary required.—Box 6504.

SPECIALIST draughtsman, 22-26, with experience in high voltage electrical engineering, for work on prototype equipment in connection with television transmitters. Superintendence is also required for similar work.—Apply by letter only to the Research Laboratories of the General Electric Co., Ltd., N. Wembley.

SPECIALIST draughtsman or engineer required with knowledge of public address equipment and the theoretical and practical wiring diagrams, part lists, etc., necessary for large installations; some knowledge of drawing office practice an advantage; write, stating full particulars of qualifications and experience, age and salary required.—Box 6707.

BATTERY CHARGERS and TRICKLE CHARGERS

-runbaken manchester--
TECHNICAL TRAINING

A M.I.E.E., City and Guilds, etc., in "No Pass—No Fee" terms; over 95% successes for full details of modern courses in all branches of electrical technology send for our 12-page handbook, free and post free.—British National Radio School (Dept. 388A), 17, Stratford Place, London, W.I.

TUITION

THE British National Radio School OFFERS you a career. WRITE today for free booklet describing our wide range of training courses in radio, telecommunications, physics, mathematics, electronics, and engineering; correspondence and day classes for the new series of C. and G. examinations, 20, Fairfield Rd., Crouch End, N.8.

ENGINEERING careers and qualifications. BOTH Government and industry have announced and emphasised that young men with technical knowledge and qualifications must receive every chance to rise to the highest positions within their capacity, in post-war engineering and allied industry; write today for "The Engineer's Guide to Success"—200 courses free—which shows you how you can become A.M.I.E.E., A.M.I.A.E., A.R.P.A., A.M.E.E., etc., and covers all branches in radio, automobile, mechanical, electrical, and allied industries. THE Technological Institute of Great Britain, 22, Temple Bar House, London, E.C.4. [4516]

THE Institute of Practical Radio Engineers has available Home Study Courses covering elementary, theoretical, mathematical, practical, and laboratory tuition in radio and television engineering; the text is suitable for correspondence and progressive exams; tuition fees at pre-war rates—are moderate. The syllabus of Instructional Test may be obtained post free, from the Secretary, 20, Fairfield Rd., Crouch End, N.8.

HIGH VOLTAGE COMPONENTS

1.501 MED 5,000v. working 10,000v. Test Tubular 4/6
2.001 MED 5,000v, working 10,000v. Test Tubular 5/6
3.001 MED 5,000v, working 10,000v. Test Tubular 7/6
4.001 MED 5,000v, working 10,000v. Test Tubular 8/6
5.001 MED 5,000v, working 10,000v. Test Tubular 9/6
6.001 MED 5,000v, working 10,000v. Test Tubular 10/6

NON-MAGNETIC TURNTABLES with STROMBOSCOPIC MARKING

An essential accessory for serious PICK-UP DESIGN RESEARCH.

SOUND SALES LIMITED

57 St. Martin's Lane, London, W.1.2
Temple Bar 4284
Works: Farnham, Surrey
"EPs1=11"

Radio Engineering, Television and Wireless

Lowther House, St. Mark's Road, DUNSTABLE ROAD, LUTON, BEDS.

COVENTRY - RADIO

COMPONENT SPECIALISTS SINCE 1925.

HAVE YOU RECEIVED OUR 1947 LIST OF RADIO COMPONENTS? THE MOST COMPREHENSIVE LIST AVAILABLE TODAY.

PRICE 3d. POST PAID.

COVENTRY RADIO, DUNSTABLE ROAD, LUTON, BEDS.

"ENGINEERING OPPORTUNITIES."—Have you had your copy of this free guide to A.M.I.Mech.E., A.M.I.E.E., and all branches of engineering, building and plastics? Become technically trained on course—no fee—terms for higher pay and security.—For free copy, write B.I.E.T. (Dept. 8871B), 17, Stratford Place, London, W.1.

RADIO Engineering, Television and Wireless, comprehensive postal courses of instruction—apply British School of Telegraphy, Ltd., 179, Clapham Rd., Lon- don, S.W.1 (Dept. 9249). Also instruction at school in wireless for H.M. Merchant Navy and R.A.F.

AGENCIES

WHOLESALE1: with stores and stockrooms, West End, London, are desirous of obtaining contact manufacturers in view sole selling agency—Box 6707.

SOLE concessionaires car radio appointing agents counties North of line Severn to Wash and London area—Communicate Dis- posals, Ltd., 122, Southwark St., B.E.1.

SOUTH Africa: engineer, M.A. (Canab), wide experience of communication equipment and electronic devices, offers manufactur- ers representation in the sub-continent; installation and service facilities will be pro- vided if required; write, full particulars, to: Box 10598.

BOOKS, INSTRUCTIONS, ETC.

RADIO TUBE VADE MECUM, by P. H. Brass, 1946, an international reference-handbook for obsolete to modern types; free quarterly supplement service.

RADIUM SCINTILLOSCOPES—showing proof, and effect, of atoms continuously exploding, by numerous powerfully expelled com- plete visible alpha rays, an unceasing show of brightly flashing points of light, on hitting round luminous screen. Essentially a very simple system. Continuous action, radium remains active a thousand years: compact well-made instrument, nickel tube 2½ long x 1¼ dia. can be taken to pigeon for viewing parts, reg. post free 30/-, inc. interesting leaflet on radioactivity. Cats. Instructions. 35/- (York St., Wiesenheim, Mittel. POSTFREE.)

3 IMPORTANT AMERICAN BOOKS—

GHIRADI'S "MODERN RADIO SERVICING."

35/- (postage 1/-).

GHIRADI'S "BASE PHYSICS COURSE."

35/- (postage 1/-).

CAMERON'S "SERVICING SOUND EQUIPMENT" including Public Address, Radio, Television (1946)

PLEASE NOTE REVISED PRICES

GIRLY, 35, 171mm. x 150mm. deep 15/-

Puli, 35, 150mm. x 150mm. deep 10/-

Amber, 35, 171mm. x 200mm. deep 25/-

Cambridge, 35, 171mm. x 200mm. deep 25/-

A.M.I.E.E., City and Guilds, etc.

WE GUARANTEE—"NO PASS—NO FEE."

Details are given of over 150 Diploma courses in all branches of Civil, Mech, Elec., Motor, Aero., Radio, Television and Production Engineering, Tracing, Building, Govt. Employment, R.A.F. Maths, Matriculation, etc.

Safeguard your future; send for your copy at once—FREE. B.I.E.T., 387, SHAKESPEARE HOUSE, 17, STRATFORD PLACE, LONDON, W.1.
FOR the ever-increasing applications where the maintenance of a high value of insulation resistance is of paramount importance, the T.C.C. "METALPACK" Tropical and "METALMITE" Miniature Tropical types are indispensable. By virtue of the aluminium tube, hermetically sealed construction, the initial insulation is maintained, even under the most arduous climatic conditions.
KING OF THE SET

MAZDA

RADIO VALVES AND CATHODE RAY TUBES

THE EDISON SWAN ELECTRIC CO. LTD. 155 CHARING CROSS RD., LONDON W.C.2