Noises "off" are kept off and man-made static is silenced by B. I. Callender's Anti-Interference Aerial when properly installed. Sizzling, crackling background noises caused by electric vehicles, motor car ignition systems and industrial or medical high frequency equipment—all these are suppressed and a quiet background established for radio programmes. Reception is improved, for a maximum number of programmes can be enjoyed on all wavelengths.

The aerial is a 60 ft. polyethylene insulated dipole type, with suspension insulators and matching transformer. The 80 ft. down lead is a fully screened coaxial cable with polyethylene plugs moulded to each end and is matched to the receiver by a transformer with easily fixed suction mounting.

B. I. Callender's All-Wave Anti-Interference Aerial will give you better listening and reveal many stations you never heard before. Write to-day for the descriptive folder No. 221s on the Anti-Interference Aerial.

Licensed under Amy Acves & King, Inc. Patents Nos. 413917, 424239 and 491220.
Servicing MUST be done

Use this up-to-date SIGNAL TRACING method

1. Inject a signal from the "AVO" Signal Generator. This can be R.F. into the Aerial or I.F. circuits, or A.F. into the Audio circuits.

2. Trace the signal through the set with the A.C. Voltage ranges of the "AVO" Electronic Testmeter. (Accurate Voltage measurement from 20 c/s to 300 Mc/s.)

3. Having arrived at the point where the signal does not appear, then identify the nature of the fault by tests with the D.C. Voltage, resistance and capacitance ranges of the "AVO" Electronic Testmeter.

0-10,000 v. D.C.
0-1,000 megohms
100pF. — 50uF.

Time-saving & dependable

Fully descriptive leaflets available from the Manufacturers of "AVO" Electrical Testing Instruments——

THE AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO., LTD.
WINDER HOUSE • DOUGLAS STREET • LONDON • S.W.1 • TELEPHONE: VICTORIA 4049
Advertisements

Wireless World
September, 1948

Simon
SOUND SERVICE

THE COMPLETE SERVICE FOR SOUND RECORDING AND REPRODUCTION

★ Mobile, static and specialised recording units.
★ Complete Wire Recorders, Recording and Wipe-off Units.
★ Recording Amplifiers.
★ Moving Coil and Crystal Microphones.
★ Sapphire cutting and reproducing stylii.
★ Blank recording discs from 5in. to 17in., Single or Double sided.
★ Lightweight, moving iron, permanent sapphire and moving coil pick-ups.
★ A comprehensive range of accessories to meet every requirement of the sound recording engineer.
★★ And our latest development (of special interest to users of sapphire and delicate pick-ups)—THE SIMTROL. This is a controlled micro-movement easily fitted for use with any type of pick-up.

OUR WELL-EQUIPPED WORKSHOPS ARE AVAILABLE FOR THE DEVELOPMENT OF EQUIPMENT TO MEET SPECIAL NEEDS.

CABLES: Simsale, London.
TELEPHONE: Welbeck 2371/2.

The SS White Company of Great Britain Ltd
BRITANNIA WORKS · SAINT PANCRAS WAY
CAMDEN TOWN · LONDON · N·W·1 TELEPHONE: EUSTON 5293

The LARGEST PRODUCERS of FLEXIBLE SHAFTING

TORSIONAL REMOTE CONTROL and FLEXIBLE SHAFT ASSEMBLIES for DEFLECTIONLESS SLOW SPEED OPERATION ... car radio etc.
POWER SHAFTS FOR HIGH SPEED OPERATION ... speedometers ... tachometers
PULL-PULL OPERATIONS ... clutches ... starters
TENSION OPERATION ... brakes
TECHNICAL TOPICS
for Amplifier designers

HIGH QUALITY AMPLIFIERS

In the design for a high quality amplifier to take full advantages of modern wide range gramophone recordings, and broadcast transmissions, the ideal is to produce an exact replica of the electrical input voltage at a power level suitable for the operation of any given loud speaker system, although in gramophone reproduction some bass lift should be introduced prior to the main amplifier.

There are several essential features, including:—

1. Linear frequency response at maximum output.
2. Absence of intermodulation in the amplifier.

These requirements call for adequate power reserve in the output stage, and adequate voltage handling capacity of each valve stage in the amplifier.

In addition, negative feedback is often applied to reduce the output resistance and damp loudspeaker resonance, while also improving the linearity of the amplifier.

Osram Power Valves, including such well-known types as PX4, PX25 and KT66 have established standards of performance recognised by all designers and users of power amplifiers who require High Quality and Reliability.

Full Technical and operating data are available on request to:

Osram Valve Technical Section,
The General Electric Co., Ltd.,
Magnet House, Kingsway,

Osram PHOTO CELLS

G.E.C. CATHODE RAY TUBES

Osram VALVES

WEBB'S TYPE "D2" CALIBRATED WAVEMETER

This is essentially a Crystal Calibrator giving markers at every 100 Kc/s and also discriminating markers at 1,000 Kc/s, combined with continuous calibration on dial-scale reading single kilocycles between each 100 Kc/s. It is applicable for both Receiver calibration or Transmitting monitoring and for the latter purpose a telephone jack is incorporated. It is exceptionally well made with such details as temperature compensating Condensers, and separate 100 Kc/s and 1,000 Kc/s Crystals, which feature gives a greater accuracy and reliability than the dual type Crystal. Incidentally the Crystals alone would cost more than our price. Contained in neat metal case with hinged top lid, overall size 7\text{in.} \times 7\text{in.} \times 6\text{in.} high, and with stout outer wooden case for rough transport use. Each instrument has been tested and adapted by Webb’s for either operation of 6.2 volts A.C. or 6 volts battery. The Wavemeter comes to you ready for immediate operation from 6.2 volts A.C. with easy internal provision for changeover to 6 volts D.C. The original Army Service Manual of 26 pages, with full circuit diagram, is included, also a copy of Webb’s “Simplified Instructions.”

PRICE £ 6 17 6

WEBB’S “D2T” TRANSFORMER.
For external connections from 210, 230, 250 volts A.C.

PRICE 14 0

EDDYSTONE SEMI-AUTOMATIC MORSE KEY.
At long last we have a British made “bug” key, capable of high speed and easy adjustment. It is totally enclosed in a streamlined diecast housing, with rubber feet on heavy base. No. 689.

PRICE £ 3 17 6

EDDYSTONE “640” Communications Receiver
This popular general-purpose short-wave receiver is reduced in price to

£27 10 0

Why buy a second-hand “disposals” receiver?—the “640” carries Twelve Months’ Guarantee. We shall shortly announce very attractive Hire Purchase facilities for the “640”—if you are interested, may we have your name and address?

*Have you had Webb’s new 1948 Illustrated Catalogue? Now available, 6d. to callers, 7½d. post free.

Webb’s Radio, 14, Soho St., Oxford St., London, W.1
Phone: GERraid 2089. Shop Hours: 9 a.m.—5.30 p.m. Sats. 9 a.m.—1 p.m.
Designed to suit the circuit

No. 4 SMALL COUPLING CAPACITORS

Capacitors of high stability, maximum insulation resistance and small dimensions, are required for "Top-end" coupling in R.F. bandpass-filters and in the R.F. amplifiers of television receivers. U.I.C Silvered ceramic pearl and disc capacitors require very little space, can easily be soldered into position and conform to the most rigorous standards of inspection for stability and insulation resistance. U.I.C Ceramic pearl and disc capacitors ensure long trouble-free life in new designs and reliable performance after servicing.

Build and Service the set with . . .

U.I.C HIGH STABILITY CAPACITORS

UNITED INSULATOR CO. LTD. OAKCROFT RD. TOLWORTH SURBITON SURREY
THE SIMPLEST WAY to obtain E.H.T. is to connect a Westinghouse E.H.T. to the 350-0-350 volts winding of the normal mains transformer and obtain a 5.5kV DC output without using an E.H.T. transformer and valve rectifier.

Write for data sheet No. 52 to Dept. W.W.9.

Westinghouse Brake & Signal Co., Ltd., 82, York Way, King's Cross, London, N.I
"Monobolt" speakers are now available from all radio dealers at these very attractive prices. Quality enthusiasts, and all those who want "the best," will welcome this news. If you require fuller details than are given below—a postcard will bring them.

<table>
<thead>
<tr>
<th>Model</th>
<th>Size</th>
<th>Lines</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BX 50</td>
<td>5in.</td>
<td>8,500</td>
<td>17/6</td>
</tr>
<tr>
<td>BX 52</td>
<td>5in.</td>
<td>10,000</td>
<td>19/-</td>
</tr>
<tr>
<td>BX 60</td>
<td>6½in.</td>
<td>8,500</td>
<td>18/6</td>
</tr>
<tr>
<td>BX 62</td>
<td>6½in.</td>
<td>10,000</td>
<td>20/-</td>
</tr>
<tr>
<td>BX 80</td>
<td>8in.</td>
<td>8,000</td>
<td>19/6</td>
</tr>
<tr>
<td>BX 82</td>
<td>8in.</td>
<td>10,500</td>
<td>22/6</td>
</tr>
<tr>
<td>BX 100</td>
<td>10in.</td>
<td>8,000</td>
<td>22/6</td>
</tr>
<tr>
<td>BX 102</td>
<td>10in.</td>
<td>10,500</td>
<td>25/-</td>
</tr>
</tbody>
</table>

TRUVOX

TRUVOX ENGINEERING CO., LTD., EXHIBITION GROUNDS, WEMBLEY, MIDDLESEX.

New products, as illustrated above, are well under way. Full details will be announced as they become available.
For clean, crisp reception a silent source of power is essential. Pertrix Radio Batteries give silent power.

HOLSUN BATTERIES LIMITED
137 Victoria Street • London • S.W.1
Now available

THE ‘CINTEL’
LABORATORY OSCILLOSCOPE

- 6" Cathode Ray Tube.
- Individual power packs for units to eliminate interaction between controls.
- Separate ‘X’ and ‘Y’ Symmetrical amplifiers.
- Facilities for expansion of any portion of the waveform to permit detailed examination.
- Frequency range of amplifier 2 c/s to 3 Mc/s.
- Standard 19" rack mounting.
- Available with special cupboard and trolley if required.

LABORATORY OSCILLOSCOPE £98.0.0
TROLLEY & CUPBOARD - - - £17.10.0
(Covered by the ‘CINTEL’ free service guarantee)

CINEMA-TELEVISION LTD.,
WORSLEY BRIDGE RD., LONDON, S.E.26

Telephone: HiTher Green 4600.

Manufacturers of Scientific Instruments and Photo-electric Cells.
PATTERN COMPONENTS

CORD DRIVES
Now available in five types as illustrated (left to right) Standard, R/V, Reverse, "D" type and "A" type.

GANG CONDENSERS
A wide range is now available in 1, 2, 3 or 4 gang types of various capacities.

Write for Catalogue No. (W.W.I.)

JACKSON
BROS (LONDON) LIMITED
KINGSWAY • WADDON • SURREY
TELEPHONE: TELEGRAMS: WALFILCO.
CROYDON 2754-S PHONE. LONDON

Wharfedale
OUTPUT TRANSFORMERS

Wharfedale Transformers have been in steady demand since their introduction 14 years ago, and have built up a high reputation for reliability. Returns from all causes are less than 4%.

LIST PRICES

<table>
<thead>
<tr>
<th>Type</th>
<th>P Type, 4 ratios with C.T.</th>
<th>G.P.B, 4 ratios with C.T.</th>
<th>Universal, 6 ratios with C.T.</th>
<th>De Luxe, 6 ratios with C.T.</th>
<th>W.12, 3 ratios with C.T.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.P. 3, 3 ratios</td>
<td>6/9</td>
<td>8/-</td>
<td>11/6</td>
<td>13/6</td>
<td>22/6</td>
</tr>
<tr>
<td>W.12—Any ratio to order</td>
<td>25/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WHARFEDALE WIRELESS WORKS
BRADFORD ROAD, IDLE. BRADFORD
Telephone: Idle 461 Telegram: Wharfdel, Idle, Bradford

M. R. SUPPLIES Ltd.
88, New Oxford Street, London, W.C.I
Telephone: MISeum 2956

It is universally known that we only supply material ready to do its "job of work." Whether Government surplus or commercial products, the utmost reliance can be placed on our offers. All prices nett.

HI-FI SPEAKERS (by S.T.O.). Wharfdale Wire-Wound type with standard thread for all projector bases. £2- (not sold separately).

P.A. SPEAKER UNITS. Meas. pressure type with standard thread for all projector bases. £5 6/6. (b).

TRIPODS for P.A. SPEAKERS (all steel), extending to 12 ft. Sturdy type, rigid under all weather conditions. £8 6/6.- (des. 6).
DISTRIBUTION POLICY

LIMITED WHOLESALE DISTRIBUTION

REGISTERED RETAIL DEALERSHIP

LIST OF AUTHORISED WHOLESALERS

<table>
<thead>
<tr>
<th>Location</th>
<th>Name</th>
<th>Address</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONDON</td>
<td>JOHN E. DALLAS & SONS LTD.</td>
<td>Clifton Street, E.C.2.</td>
<td>Bishopsgate 9981-90</td>
</tr>
<tr>
<td></td>
<td>E. R. HARVEYSON & CO., LTD.</td>
<td>Albert Place, Finchley, N.3.</td>
<td>Finchley 1121-2-3-4</td>
</tr>
<tr>
<td></td>
<td>SELECTA GRAMOPHONES LTD.</td>
<td>50 Southwark Bridge Road, S.E.1</td>
<td>Waterloo 7601</td>
</tr>
<tr>
<td></td>
<td>THE SUN ELECTRICAL CO., LTD.</td>
<td>118-120 Charing Cross Rd., W.C.2</td>
<td>Temple Bar 3500</td>
</tr>
<tr>
<td></td>
<td>THOMPSON, DIAMOND & BUTCHER</td>
<td>34 Farringdon Rd., E.C.1.</td>
<td>Clerkenwell 5492</td>
</tr>
<tr>
<td></td>
<td>Z ELECTRIC LAMP & SUPPLIES CO., LTD.</td>
<td>21 Newman St., W.1.</td>
<td>Museum 8531</td>
</tr>
<tr>
<td>LONDON</td>
<td>HIRST, IBBETSON & TAYLOR LTD.</td>
<td>47-55 Chapel Street, Salford 3.</td>
<td>Blackfriars 9581-6</td>
</tr>
<tr>
<td></td>
<td>GLASGOW</td>
<td>MICHAEL BLACK LTD., 138 West George Street, C.2.</td>
<td>Douglas 6681</td>
</tr>
<tr>
<td></td>
<td>JAMES ROBERTSON</td>
<td>95 West Nile Street, C.1.</td>
<td>Douglas 6611</td>
</tr>
<tr>
<td></td>
<td>JAMES WHITEFORD & CO.</td>
<td>176 West Regent Street.</td>
<td>Douglas 2761-2</td>
</tr>
<tr>
<td>LONDON</td>
<td>LIVERPOOL</td>
<td>DOWNES & DAVIES LTD., 1-9 Stanley Street, 1</td>
<td>Central 5491</td>
</tr>
<tr>
<td></td>
<td>THOMPSON, DIAMOND & BUTCHER</td>
<td>34 Farringdon Rd., E.C.1.</td>
<td>Clerkenwell 5492</td>
</tr>
<tr>
<td></td>
<td>BIRMINGHAM ELECTRICAL COMPONENTS LTD.</td>
<td>102 Snow Hill, 4.</td>
<td>Central 3081</td>
</tr>
<tr>
<td></td>
<td>E. A. WOOD LIMITED</td>
<td>100 Aston Road, 6.</td>
<td>Central 5266-7</td>
</tr>
<tr>
<td>BIRMINGHAM</td>
<td>RIVERCO WHOLESALE LTD.</td>
<td>29 Wellington Place.</td>
<td>Central 2133</td>
</tr>
<tr>
<td>BIRMINGHAM</td>
<td>ALBION ELECTRIC STORES, 46-54 Trafalgar Street.</td>
<td>46-54 Trafalgar Street.</td>
<td>Central 2133</td>
</tr>
<tr>
<td>BIRMINGHAM</td>
<td>J. GLEDSON & CO., LTD.</td>
<td>48-50 Blackett Street.</td>
<td>Central 24137</td>
</tr>
<tr>
<td>LONDON</td>
<td>LEICESTER</td>
<td>W. MARKHAM & CO.</td>
<td>3 Campbell Street.</td>
</tr>
<tr>
<td></td>
<td>LEEDS</td>
<td>ALBION ELECTRIC STORES, 125 Albion Street, 1</td>
<td>Leeds 20196-7-8-9</td>
</tr>
<tr>
<td>MIDDLESBROUGH</td>
<td>ARTHUR JONES & CO. (ELECTRIC WHOLESALERS)</td>
<td>21-25 Norton Street.</td>
<td>Middlesbrough 3223-4</td>
</tr>
<tr>
<td>NEWCASTLE-ON-TYNE</td>
<td>J. BEAUMONT & SON LTD.</td>
<td>46-54 Trafalgar Street.</td>
<td>Newcastle 21083-4</td>
</tr>
<tr>
<td>NEWCASTLE-ON-TYNE</td>
<td>J. GLEDSON & CO., LTD.</td>
<td>48-50 Blackett Street.</td>
<td>Newcastle 24137</td>
</tr>
<tr>
<td>NEWCASTLE-ON-TYNE</td>
<td>ALGERS WHOLESALE SUPPLIES LTD.</td>
<td>46 Dock Street.</td>
<td>Newport 4431</td>
</tr>
<tr>
<td>PLYMOUTH</td>
<td>T. BRAND</td>
<td>56-57 Treville Street.</td>
<td>Plymouth 3181-3009</td>
</tr>
<tr>
<td>SHEFFIELD</td>
<td>ROBERT NEILL & CO. (SHEFFIELD), LTD.</td>
<td>28-30 Trippet Lane.</td>
<td>Sheffield 23519, 21707</td>
</tr>
<tr>
<td>STOKE-ON-TRENT</td>
<td>R.J.S. SERVICES LTD.</td>
<td>1 Richmond Terrace, Shelton.</td>
<td>Stoke 29603-4</td>
</tr>
</tbody>
</table>

RADIO GRAMOPHONE DEVELOPMENT CO. LTD.

BRIDGNORTH, SHROPSHIRE
AN ANNOUNCEMENT CONCERNING

Bendix Radio

The Plessey Company Limited announce a patent arrangement with the Bendix Corporation of America whereby the internationally famous Bendix aircraft, mobile and ground radio communication systems, including navigational aids, become available in Great Britain. Manufactured at Ilford, the equipment will be completely interchangeable with the many Bendix installations already successfully operating in this country. An introductory publication giving detailed information on the initial range of units to be manufactured is now in course of preparation. A copy will gladly be forwarded to you when published, on receipt of your business card or letterhead, attached to this announcement.

• • •

RADIO EQUIPMENT & COMPONENTS
ELECTRICAL & MECHANICAL PRODUCTS
AIRCRAFT ACCESSORIES

AN ANNOUNCEMENT OF THE
PLESSEY COMPANY LIMITED, ILFORD, ESSEX
RATED FOR DEPENDABILITY

The MAZDA 10Cl

Here, at last, is a miniature AC/DC Frequency Changer with a superior performance. As the first valve link between the Transmitter Aerial and Listener this compact Triode Heptode makes an excellent All Wave Mixer stage. Furthermore, the outstanding electrical characteristics of this valve are backed with the assurance of the new trouble-free B8A base.

RATING

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Heptode</th>
<th>Triode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage (volts)</td>
<td>28</td>
<td>0.1</td>
</tr>
<tr>
<td>Heater Current (amps)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Anode Voltage (volts)</td>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td>Maximum Screen Voltage (volts)</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Mutual Conductance (MA/V)</td>
<td>*2.5</td>
<td>†4.0</td>
</tr>
<tr>
<td>Amplification Factor</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

*Va=175v Vg=0 †Va=100v Vg=0

LIST PRICE 14/-
(Plus Purchase Tax)

Other Valves in the AC/DC Range include:

10F9 V/M HF. Pen.
10LD11 D.D. Triode
10P13 Output Pen.
U404 H.W. Rect.

EDISWAN RADIO

RADIO VALVES AND CATHODE RAY TUBES

THE EDISON SWAN ELECTRIC CO. LTD., 155 CHARING CROSS ROAD, LONDON, W.C.2
This outstanding instrument marks a further important stage in the development of faithful sound reproduction. The patented twin diaphragm assembly* and high magnetic flux together account for the excellent overall frequency and transient response. Provided that the electrical input is faultless, every inflexion of the human voice is rendered with startling realism, and the natural range and contrast of the orchestra are strikingly re-created. It is absolutely essential to use this Loudspeaker with equipment which has been specifically designed for High Fidelity reproduction, as it will reproduce everything fed to it, including any distortion that may be present. For all normal requirements we recommend our standard 12in. model T2.

Please send for illustrated folder D98 giving full technical details.

NOTE. To obtain the best results from the Axiom Twelve Loudspeaker it is important to use a first class output transformer, correctly designed to match the equipment. Goodmans type Hz Transformers fulfil these conditions, being wound to individual load requirements. They can be supplied at short notice.

Precision Transformers.

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>Current</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-0-350 v. 100 mA.</td>
<td>5 v. 2 A., 5 v. 2 A., 6.3 v. 2 A., 6.3 v. 2 A., 4 A.</td>
<td>82/6</td>
</tr>
<tr>
<td>750-650-550-0-350 v. 150 mA.</td>
<td>5 v. 2 A., 5 v. 2 A., 6.3 v. 2 A., 6.3 v. 2 A., 4 A.</td>
<td>80/10</td>
</tr>
<tr>
<td>1,000-850-650-550-1,000 v. 120 mA.</td>
<td>0-2.5-5 v. 5 A.</td>
<td>80/10</td>
</tr>
<tr>
<td>6.3 v. 4 A.</td>
<td>1,750-1,500-1,250-0-1,750-1,750 v. 200 mA.</td>
<td>82/6</td>
</tr>
<tr>
<td>0-2.5 v. 4 A.</td>
<td>127/-</td>
<td></td>
</tr>
</tbody>
</table>

Television Transformers.

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>Current</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-0-350 v. 60 mA.</td>
<td>2 v. 2 A., 4 v. 2 A.</td>
<td>35/6</td>
</tr>
<tr>
<td>1,000-850-650-550-1,000 v. 120 mA.</td>
<td>0-2.5-5 v. 5 A.</td>
<td>87/6</td>
</tr>
<tr>
<td>6.3 v. 2 A.</td>
<td>350-0-350 v. 60 mA.</td>
<td>87/6</td>
</tr>
<tr>
<td>0-2.4-6.3 v. 2 A.</td>
<td>87/6</td>
<td></td>
</tr>
</tbody>
</table>

Standard Transformers.

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>Current</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>250-0-250 v. 80 mA.</td>
<td>6.3 v. 3 A., 5 v. 2 A.</td>
<td>32/6</td>
</tr>
<tr>
<td>350-0-350 v. 80 mA.</td>
<td>6.3 v. 3 A., 5 v. 2 A.</td>
<td>32/6</td>
</tr>
<tr>
<td>350-0-350 v. 120 mA.</td>
<td>6.3 v. 3 A., 6 A.</td>
<td>49/6</td>
</tr>
<tr>
<td>or 4 v. 2 A., 5 v. 4 A., 4 A.</td>
<td>6.3 v. 2 A.</td>
<td>49/6</td>
</tr>
</tbody>
</table>

Filament and Output Transformers—all ratings

Full list in catalogue, 3d., post free.

BERRY'S

25, HIGH HOLBORN, LONDON, W.C.1.

(Opp. CHANCERY LANE) Tel.: HOL 4231

TRY THE SHEFI MOVING COIL PICK-UP

Licensed under Voigt's Patent No. 538896.

It uses miniature needles suitable for modern full range recordings. A ferrous coil former concentrates the flux on the coil and also adds armature effect, thus increasing output voltage sufficiently to operate directly into a normal radio set.

Free needle movement and low down-load pressure ensure long record life.

The fundamental simplicity of this robust design keeps down manufacturing costs. Price including transformer £2 plus P.T. De Luxe model, with spring counter balance £2.11.0 plus P.T.

EXPORT ENQUIRIES INVITED.

BROOKS & BOHM LTD.

90, Victoria Street, London, S.W.1. Phone: VICToria 9550/1441.
Many applications for these condensers will be found in rectifier smoothing and filter circuits, relay slugging, etc. The interiors are of all-aluminium construction assembled and hermetically sealed into the outer rectangular metal boxes. Send 2½d. stamp for Lists No. 123 and 132 showing full range of Paper, Mica, Ceramic and Electrolytic Condensers.

THE TELEGRAPH CONDENSER CO., LTD.

NORTH ACTON · LONDON · W·3

Telephone: ACORN 0061
Advance SUB-STANDARD Signal Generator

Features

- CALIBRATION ACCURACY: ± 1% Directly Calibrated.
- OUTPUT VOLTAGE: ±8V—150 mV up to 30 Mc/s, ±100 mV above 30 Mc/s. Monitored by crystal voltmeter.
- OUTPUT IMPEDANCE: 75 ohms, terminated by 75 ohms terminating pad type TP3A, providing impedance of 37 ohms, 10 ohms, and 10 ohms standard dummy aerial.
- MODULATION: Internal: 400 c/s, 0-50% External: 100-10,000 c/s ± 6db, 0-80%.
- AUDIO-OUTPUT: 0-15 volts at approximately 400 c/s into a load not less than 5,000 ohms.
- R.F. LEAKAGE: Negligible—less than 1pV.
- DIMENSIONS: 13ins. x 12ins. x 6ins. deep.
- WEIGHT: 25 lbs.

ADVANCE COMPONENTS LTD., Back Rd., Shernhall St., Walthamstow, E17. Phone: Larkswood 4366-7-8

FOR THE RADIO SERVICEMAN DEALER AND OWNER

The man who enrols for an I.C.S. RadioCourse learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful.

Write to the I.C.S. Advisory Dept. stating your requirements. Our advice is free.

INTERNATIONAL CORRESPONDENCE SCHOOL Ltd.

DEPT. 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C.2

Please explain fully about your instruction in the subject marked X.

- Complete Radio Engineerin:
- Radio Service Engineers Radio Service and Sales
- Advanced Short-Wave Radio
- Elementary Electronics, Radar, and Radio
- Radio and the following Radio Examinations:
 - British Institution of Radio Engineers
 - P.M.G. Certificates for Wireless Operators
 - City and Guilds Telecommunications
 - Wireless Operators and Wireless Mechanics, R.A.F.

C.S. students for Examinations are coached till successful.

Name: ___________________________ Age: ________

Address: ___________________________

BAIRD TELEVISION

Radio-Television De-Luxe

- 12" Cathode Ray Tube giving brilliant picture 101 x 87, with exceptionally sharp definition.
- Automatic focusing stabilizer.
- Vision unit of advanced design applying principle of push-pull output, utilizing high frequency valves.
- Pre-set picture hold, Picture modulated to full brilliance and frequency range.
- Push button selector switches.

Send for further details of this and other models.

GARRICK

12 months' generous guarantees backed by unsurpassed service.

Wholesale Distributors

53 FARRINGDON RD., LONDON, E.C.1
Tel. HOLborn 2053

JOHN LOGIE-BAIRD LTD., Rayners Lane, Middlesex.

ZELCO LIMITED

16 Advertisements Wireless World September, 1948
Moulded in special bakelite and treated to resist humidity.

Exceptional stability is obtained by the design and method of manufacture of the silvered mica plates.

Engineering features provide for compactness, robustness and lightness of weight.

These capacitors are available in two types, in compact form, and cover the capacitance ranges detailed below.

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Capacitance Range</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>S635</td>
<td>5 pF to 1,500 pF</td>
<td>350 V.D.C. Wkg.</td>
</tr>
<tr>
<td>S625</td>
<td>50 pF to 300 pF</td>
<td>750 V.D.C. Wkg.</td>
</tr>
<tr>
<td>S672</td>
<td>1,800 pF to 10,000 pF</td>
<td>350 V.D.C. Wkg.</td>
</tr>
</tbody>
</table>

DUBILIER CONDENSER CO. (1925) LTD., DUCON WORKS, VICTORIA ROAD, NORTH ACTON, W.3
Advertisements

Wireless World September, 1948

Your designs
LET US BRING THEM TO LIFE!

Made in Three Principal Materials

FREQUELEX
An insulating material of low Di-electric Loss, for Coil Formers, Aerial Insulators, Valve Holders, etc.

PERMALEX
A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLLEX
A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.

the most difficult problems solved by . . .

Bullers
BULLERS LOW LOSS CERAMICS

BULLERS LTD., 6, LAURENCE POUNTNEY HILL, LONDON, E.C.4
Telephone: Mansion House 9971 (3 lines) Telegrams: "Bullers, Cannon, London"

AMBASSADOR
4756 Chassis

SPECIFICATION:
5 valve A.C. or A.C./D.C. Super-Het. 6 wave bands covering from 9.4 to 1940 metres. (Electrical Band Spreading.) 10" P.M. Speaker. £22. 8. 2 TAX PAID. Immediate Delivery can be given.
WRITE FOR FULL DETAILS TO:—R. N. FITTON LTD.
AMBASSADOR RADIO WORKS
HUTCHINSON LANE, BRIGHOUSE, YORKS.

SILVERED MICA CAPACITORS
Extremely Stable
TROPICALLY IMPREGNATED RANGE OF 7 SMALL SIZES INDIVIDUALLY POWERFACTOR TESTED.
STABILITY RADIO COMPONENTS LTD
4, NORMAN'S BUILDINGS, CENTRAL STREET, LONDON, E.C.I
TELEPHONE: CLERKENWELL 9977
Popular Models
from a
FAMOUS RANGE

SIGNAL GENERATOR, MODEL 55B
For testing audio receivers and for ganging and alignment adjustments on tuned circuits. Mains operated. Frequency range: 100 Kc/s to 46 M/s. Power consumption approximately 15 watts. A 400 c/s audio signal available for testing audio amplifiers.

PRICE £15. 10. 0.
H.P. TERMS: £1. 10. 0 deposit and 11 monthly payments of £1. 9. 8.

CIRCUIT ANALYSER, MODEL 20A
For checking on receivers, radiograms, audio and radio frequency amplifiers. Incorporates a "Magic Eye" Indicator and an audio-amplifier and loudspeaker. Units can be used independently.

PRICE £15. 15. 0.
H.P. TERMS: £1. 10. 0 deposit and 11 monthly payments of £1. 10. 2.

UNIVERSAL TAYLOR-METER, MODEL 75A
This instrument has a sensitivity of 20,000 ohms per volt on both D.C. and A.C. 50 ranges cover all A.C., D.C. and resistance measurements.

H.P. TERMS: £1. 8. 3 deposit and 11 monthly payments of £1. 8. 2.

TESTER AND UNIVERSAL METER
MODEL 47A
Similar to Model 45A, but an extra panel has been fitted at the bottom enabling the meter to be used for measurements of A.C. and D.C. values, D.C. current and ohms.

PRICE £27. 0. 0.
H.P. TERMS: £2. 11. 9 deposit and 11 monthly payments of £2. 11. 9.

VALVE TESTER, MODEL 45A
Available as bench or portable instrument giving correct measurements for the mutual conductance of amplifying valves. Sixteen valve holders supplied with each instrument. Bench instrument shown is housed in a strong steel case. Portable is supplied in strong oak case.

PRICE £22. 0. 0.
H.P. TERMS: £2. 2. 2 deposit and 11 monthly payments of £2. 2. 2.

Immediate Delivery on all the above models.

TAYLOR PRODUCTS INCLUDE:
- Multirange A.C. D.C. Test Meters
- Signal Generators
- Valve Testers
- A.C. Bridges
- Circuit Analysers
- Cathode Ray Oscilloscopes
- High and Low Range Ohmmeters
- Output Meters
- Insulation Testers
- Moving Coil Instruments

TAYLOR ELECTRICAL INSTRUMENTS LTD
419-424 MONROSE AVENUE, SLOUGH, BUCKS, ENGLAND

* Tested *
* Tried *
* Approved *

Telephone SLOUGH 21381 (4 lines)
Grams & Cables "TAYLINS" SLOUGH
In the new Marconi SIGNAL GENERATOR, TF 867, measurement facilities are on a generous scale — including the frequency scale itself! In this one instrument such features are incorporated as crystal standardisation, freedom from unwanted frequency modulation, deep amplitude or carrier shift modulation and stabilised output level. Range is 15 kc/s to 30 Mc/s, and output variable from 4v to 0.4μV; calibration indicates true artificial signal e.m.f. irrespective of load.

An integral terminating unit offers source impedances of 75Ω or 13Ω and provides a dummy aerial; it also shows, on an animated diagram, the exact conditions of circuit. In all, and judged by any standard, Type TF 867 is demonstrably the very paragon of signal generators. Full particulars are freely available.

G2—Good Quality!

The GQ/Plus for HIGH FIDELITY

Three sound channels, top, middle and bass, with cathode follower, separate amplifiers for bass and treble.

Electronic mixing of tone control circuits to self balance distortionless phase changer. Applied negative feedback. A six valve eight stage circuit, with two 6L6's triode connected for 6 watts at 0.6 per cent.

High quality from radio and records with wide range tone control. 30-20,000 cps.

THE GQ/Plus chassis complete with valves. 15 gns. Ready for use. Cover optional 15/- extra.

READY FOR THE AUTUMN SEASON.

THE CONSTRUCTOR'S 15 watt P.P. KIT. £10.

TRF TUNERS. SUPERHET TUNERS. Radio feeder units for any amplifier from 5 gns., plus tax.

For specification of the new wonder amplifier or Autumn Catalogue, write enclosing stamp Dept. GS. Dealers: Become a G.L. Stockist and take your share of the DOMESTIC AMPLIFIER TRADING.

AN Announcement by CHARLES BRITAIN (RADIO) LTD.

ON SEPTEMBER 1st we are opening more spacious premises at:

11, UPPER ST. MARTINS LANE, LONDON, W.C.1

(One minute from Leicester Square Tube Station. Up Cranbourne Street.)

A cordial invitation is extended to old and new friends to call and inspect the VERY SPECIAL ‘OPENING’ BARGAINS.

BEST BUY AT BRITAIN’S

RECEIVER R.1134

Contains the following useful valves:—3 607G, 2 617G, 1 VR16, 1 VR54, 6 VR65, 2 VR136, 1 VR137, 1 5Z4, 1 Metal Rectifier, 3 Pots, various resistors and condensers. Housed in metal cabinet. PRICE £2/15/-, plus 5/- carriage.

INDICATOR UNITS. A choice of three types.

TYPE 230. This unit works from A.C. mains 50 cycles. Contains mains transformer giving 350-0-350, 100 milliamps, two 6.3 windings, one 6.3 v., 2 amp., and the following valves: 2 3Z4, 1 Y63, 1 E.A.50, 4 E.F.50, brand new in metal case, made by G.E.C. PRICE £2/5/-, Callers only.

TYPE 176. This unit also works direct from the mains, contains mains transformer giving 350-0-350, 120 milliamps, one 6.3 v., 2 amp., one 2 v. 1 amp. windings, and the following valves: 2 5Z4, 1 Y63, 2 E.F.50, brand new in metal case, size 18 x 12 x 5 in., complete with all cables and connectors. PRICE £2/5/-, Callers only.

TYPE 182. Contains tube No. V.C.R.817, and 8 valves as follows:—3 EF50, 1 5U4, 4 SP61, 11 pots, numerous condensers and resistors. Case size, 18 in. x 12 in. x 5 in. The tube used in this unit has the same case connections as the V.C.R.81 and if the E.H.T. is kept fairly low will operate perfectly well for both television and scope work. Brand new in crates, PRICE £1/10/-, plus 1/- deposit on crate (refundable upon return) and 15/- carriage.

TUNED CONVERTORS. Type 26 R.F. UNITS.

These well-known units do not require any technical description. Brand new in manufacturer’s cartons. PRICE only 27/6, post free.

Many other useful bargains (some for callers only), Wave-meters, I.F. Strips, Indicator Units, Receivers, numerous types of small components, large range of valves. (All tubes are demonstrated.)

IT WILL PAY YOU TO PAY US A VISIT
Anything you can do I can do faster

I can do anything faster than you...

Annie — get your drill gun
and show this big palooka.

Specialists in Lightweight Pneumatic and Electric Portable Tools

DESOUTTER
At last a gramophone motor to match the performance of the famous Connoisseur Pick-up.

Specification:

- Voltage: 200-250 volts A.C., 50 cycles.
- Him drive with speed variation. No governors and no gearing. Heavy non-ferrous turn-table, machined to run dead true. Fly-wheel action — no "WOW."
- Main turn-table spindle hardened, ground and lapped to mirror finish, running in special phosphor-bronze bearings. Motor runs in needle-point, self-adjusting bearing. Motor board in plastic. Pressure on Drive-Wheel released when not in use, to obviate forming flats and noisy action.

Made by:

A. R. SUGDEN & CO. (ENGINEERS) LTD., BRIGHOUSE, YORKS.

RAYTHEON CONTRIBUTIONS to development of Hearing Aids

Little value outlasts big one...

5 TO 1

Pictured above is the latest Raytheon Flat Hearing Aid Valve — the CK512AX...

Apart from the improvement in hearing qualities, just look at the difference in size! Though less in height and of much smaller cross section, the present Raytheon Flat Valve provides five times the life.

This is but one of many developments which have made Raytheon the leading Hearing Aid Valve...outnumbering all other makes combined by nine to one!

Ask for complete information. Address your inquiry to Submarine Signal Company (London) Ltd., Artillery House, Artillery Row, London, S.W.1 England, or to:

RAYTHEON

MODERN SERVICING METHOD

The "L.S.L." Servicing Method is a combined fault analyser and circuit tester; simultaneously capable of indicating all voltage, current and resistance on each valve electrode without removing the chassis from the cabinet. Readings can be taken whilst the set is under actual operating conditions. The "L.S.L." Analyser is a combination of multi-range instrument and valve tester. PRICE: £18. 18. 0 Subject.

THE "L.S.L." PORTABLE ANALYSER

* Saves time and trouble. * Greatly increases Profit in the Service Department. * Is portable, can be used on the bench or in the home. * Is simple to operate.

Send for further particulars from the sole distributors:
Fifteen years ago we introduced the first British-made low-loss ceramic. To-day the range of FREQUENTITE components covers more than a thousand pieces of every shape and size. With such a store of manufacturing experience we are able to offer advice backed by practical knowledge on your insulation problem. Please consult us before you finalise your design.

STEATITE & PORCELAIN PRODUCTS LTD.

We can now put our best FOOT forward

12" SPEAKER CHASSIS Type S12135

It may be news to you that we make a chassis of this size, and we admit that we've kept rather quiet about it until now. The reason? — simply that our output has been fully taken up by Public and Educational Authorities. Now, reorganisation of our manufacturing programme enables us to offer this magnificent example of Whiteley skill to a wider field of users.

PRICE £6.6.0 (without transformer)
£7.7.0 (with transformer)

LOUDSPEAKERS AND
RADIO EQUIPMENT

WHITELEY ELECTRICAL RADIO CO • LTD • MANSFIELD • NOTTS

Small Geared MOTOR UNITS

for

OPERATING VALVES,
_HAMMERS OR RELAYS,
ROTATING SCREENS,
_CINEMA PROJECTORS,
_LUMINISED SIGNS,
_SMALL WORKING MODELS,
_CENTRE MovEMENTS,
_DARK-TYPE SWITCHES,
_MOTION, SOLDERING
_AND WELDING FIXTURES,
_CONTINUOUS TURNING
_UNDER LIGHT STRIP

Drayton "R.Q." Motors are supplied reversing or continuous running, with or without self-switching for 100/110 or 200/250 volts A.C.

Final Shaft Speeds: 600 r.p.m./27 min. per rev.
Torque: 60 in. lbs. Consumption: 25 W.

Send for List N 302-1

The DRAYTON 'R.Q.'

Drayton Regulator and Instrument Co. Ltd.,
West Drayton (West Drayton 2611) Middx.

UNREPEATABLE!!!

TRIPLETT
LATEST
MULTI-RANGE
METER

The Finest 'Ham' Meter made

Designed exclusively for Amateur use. Supplied Complete with black hide carrying case, at less than to-day's price for a meter without any of the following features:

1. The Meter is 1,000 ohms per volt.
2. Its self-contained batteries allow of accurate measuring from as low as 1 ohm to 1 megohm. Even higher ranges can be obtained with the use of external batteries.
3. Current ranges are 10,100 and 500 m.A.
4. Volt ranges are 10, 50, 250, 1,000 and 5,000 volts at 1,000 ohms per volt, both A.C. and D.C.

Many other bargains too numerous to mention here, also full range of Raymart standard components.

With this Meter there is no metering problem that you cannot tackle on the spot and with one instrument. It is complete with test leads, fine black hide carrying case and in its makers' original carton. Supplies are limited.

OUR PRICE WHILE THEY LAST IS

ONLY 8 GUINEAS

Send S.A.E. for Raymart Current List and No. 7 "W.W." Special Offers List.

48, HOLLOWAY HEAD,
BIRMINGHAM, 1

World Radio History
From every angle, the finest...

Oscilloscope 1684 D

CHECK THESE FEATURES

✓ D.C. amplifiers on X and Y axes
✓ Symmetrical or Asymmetrical Input
✓ Instantaneous Shifts
✓ Expansion of Time Base
✓ Video Frequency Response
✓ Automatic Synch
✓ Green, Blue, after-glow Screens
✓ Time Base 0.2 c/s - 150 Kc/s.

Furzehill Laboratories Ltd

Boreham Wood, Herts
Telephone Elstree 1137
Stabilised Insulation
BY MODERN IMPREGNATION METHODS

HYMEG

HIGH-SPEED PRODUCTION

HYMEG Synthetic Insulating Varnishes are recognized and widely used for their mechanical rigidity, improvement of electrical properties of windings; heat, moisture, oil, acid and alkali resistance as well as for the considerably reduced staving time necessary.

Now, special methods of continuous conveyor impregnation and baking developed with the use of HYMEG have still further reduced processing times to a fraction of those previously believed necessary.

Often faster than infra-red baking with none of the defects, reduced handling, absence of special jigs, with complete freedom from blistering, bubbling and porosity, are some of the advantages claimed and substantiated for HYMEG High Speed Production methods.

HYMEGLAS

GLASS FIBRE INSULATION SYSTEM

After much research in our laboratories and in conjunction with many well-known specialist manufacturers, we have now evolved the Hymeglas system of insulation which comprises modifications of Hymeg as used for coil impregnation to meet the varying conditions applying to each field of manufacture.

Hymeglas therefore virtually eliminates any risk of insulation failure and enables motors and the like to operate under abnormal conditions for long periods without risk of electrical breakdown.

Due to the excellent space factor of glass fibre as compared with the more usual asbestos and mica Class B insulations, it is often possible in redesigning with the Hymeglas system to employ larger copper sections with well-known advantages.

The Berger Technical Service—the research work of which produced "HYMEG" and "HYMEGLAS"—is available to advise manufacturers on all problems of insulation. Get in touch now with—

LEWIS BERGER & SONS LTD. (Est. 1760)
35, BERKELEY SQUARE, LONDON, W.1.
Telephone: MAYfair 9171.

MANUFACTURERS OF HIGH-PERFORMANCE INSULATING VARNISHES AND ENAMELS
Demonstrate the "De Luxe" Microgram and let its handsome appearance and superb reproduction provide your customers with "living proof" that there's no finer portable electric gramophone.

"It sells itself"

The **Collaro** "DE LUXE" Microgram Portable Electric Gramophone

Trade Terms and Literature from:

COLLARO LTD., RIPPLE WORKS, BY-PASS ROAD, BARKING, ESSEX
A new chapter in a great adventure

From the first great adventure of wireless communication half a century ago, the story of Marconi has been one of successive achievement. Wireless telegraphy, wireless telephony, broadcasting, television, radar, wireless navigational aids at sea, on land, and in the air — Marconi’s have played a pioneer part in their development. With a vast accumulation of knowledge and experience behind them, Marconi’s are now engaged on new developments which will more than maintain their shining reputation.

Marconi
THE GREATEST NAME IN WIRELESS

MARCONI’S WIRELESS TELEGRAPH COMPANY LIMITED, MARCONI HOUSE, CHELMSFORD, ESSEX

AUTOMATIC COIL WINDING MACHINES
FOR PILE OR WEAVE WOUND COILS
ALSO HAND WINDING MACHINES
COMPLETELY NEW REDESIGNED REEL CARRIER
SPECIAL REPAIR AND OVERHAUL SERVICE
MACHINES MADE TO CUSTOMERS’ SPECIFICATIONS

Full particulars on application

ETA TOOL CO
(LEICESTER) LTD.
16½ METCALF STREET, LEICESTER.
Phone—5386.

You get years of faultless service from...

because they are:
INDIVIDUALLY DESIGNED
RIGOROUSLY TESTED
MECHANICALLY SOUND
ELECTRICALLY PERFECT

Savage TRANSFORMERS LTD.
51, NORTHGATE STREET, DEVIZES.
Phone 536
"NILO K"—the alloy for sealing glass to metal

The thermal coefficient of expansion of Nilo K is uniform with that of medium hard boro-silicate glasses over the range 20°-500°C.

Nilo K, the alloy designed for sealing to medium hard boro-silicate glasses, is used most successfully by Associated Electronic Engineers Ltd., in their hermetically-sealed equipment.

This alloy makes possible the easy manufacture of vacuum-tight glass-to-metal seals.

Write to us for further information about this interesting sealing alloy and for a copy of our publication giving the expansion properties.

HENRY WIGGIN & COMPANY LTD

WIGGIN STREET • BIRMINGHAM 16

Nilo is a registered trade mark
Radio
Frequency
Bridge
15 Kc/s. to 5 Mc/s.

This instrument measures a wide range of capacity, resistance, and inductance, as well as impedances, such as lines, which may be floating, unbalanced or balanced with the centre point earthed. It is capable of selecting the capacity between any pair of electrodes in a three-electrode condenser. Capacity and resistance are examined as a parallel combination and, as the C and R multipliers are selected by separate switches, the loss factor for coils and condensers can be determined over a wide range. The circuit is a development by Wayne Kerr of an original design by the B.B.C. Research Department.

Wayne Kerr

H. P. RADIO SERVICES LTD.

offer
THE MOST OUTSTANDING BARGAIN
OF THE YEAR

NEW BC453B
6-Valve Superhet, complete with valves. Line-up, three 12SK7's, one 125R5, one 12X8, one 12A6, all GT types. Frequency range 190-350 kc, IF value 85kc.

NEW BC454B
Exactly the same but frequency range 3-6mc, IF value 141.5kc.

NEW BC455B
The same but frequency range 6-9mc, IF 281kc.

All 25/- each
POST PAID
Or the Set of 3 Receivers
70/- CARR. PAID.

Plan of connections showing extremely simple operation from 230v mains, free with each order.
Immediate Delivery and Satisfaction Guaranteed, or money returned within seven days.

H. P. RADIO SERVICES LTD.
55, COUNTY ROAD, WALTON, LIVERPOOL, 4
Estab. 1935.
Tel.: Aintree 1445,
Staff Call Signs, G3DLV, G3DGL.

A NEW B.P.L. INSTRUMENT

THE VOLTASCOPE—A combined valve-voltmeter and oscilloscope. VALVE-VOLTMETER—Infinite Input Resistance for D.C. ranges 0 to 300 volts, A.C. ranges 0 to 150 volts in 5 ranges. 3½ inch scale meter. OSCILLOSCOPE—3 inch screen tube provided with balanced amplifiers for Y and X plates giving a 5 times trace expansion. Maximum sensitivity 150mV/cm. Response from D.C. to 100 kcs.

Limited quantity available for early delivery.

BRITISH PHYSICAL LABORATORIES
HOUSEBOAT WORKS, RADLETT, HERTS.
Tel: Radlett 5674-5-6
INDICAT0
UNIT TYPE 174 contains 1 C.R. Tube
ambled and tested with Long Wave Loading Coil,
with trimmers, ready to fit on the chased».
Detector. A.V.C. and let L.F. Amplifier), 3D6/1299
(Output Pentode) Lit:Wound I.F. Transfornners (465 kcis)
Pentode 1.0. Amplifier), 1 LD5 (Diode Pentode, 2nd
Valves used. 11436 (Pentogrld Converter), 1LE5 (RS.

ALL DRY BATTERY PORTABLE. A kit of parts to
or complete with coloured glass dial. backplate, pointer,
tuned Litz windings of high " Q" 3- gang condenser,
Also included pair IF. Transformers with permeability
metres. Air Dielectric Trimmers on all Short Wave Colle.
drive spindle, drive wheel.

Dimensions of Pack, 611e. x 4Iin. x 211n.
Oscillator.

5 position switch Includes a gram. position.
wired and calibrated Coil Pack of the latest type.

Typee-100/A. 100/250 v. with output stage £ 3 15 0

BR BROADWAVES. A Kit of Parts to build a
wave-changes switch and plck-up terminals is pro-
and alignment extremely simple. A pick-up position on
Whitfield transformer 9-10 v. A.C. or A.C. D.C.

20 cycle mains, or 12 v. D.C.

NEW 1848 MIDGET SUPERILET RADIO KIT, with

A. 25 cycle mains. State which Is required. Size, 101n. w

40 v. 21in. Flush M.C. D.C. 5/9

-priced War

Terms of Business: Cash with order or C.O.D. over £1. Send 2/- Stamp for list.

2.50 v. A.C. or A.C. D.C. mains. State which Is required. Size, 10M. w

FOR 100.250 v., 50 cycle input.

New 1948 MIDGET T.R.F. RADIO KITS with Illuminated

Range Dises. Fitting Type Price
30 mi. 311n. Flush MC. D.C. 10/6
40 mi. 21in. Flush MC. D.C. 7/8
40 v. 21in. Flush M.C. D.C. 5/9

New 1948 MIDGET SUPERILET RADIO KIT, with Illuminated Glass Dial. All parts including Valves, Mic. Speaker and Instructions. 4 valves plus K.t. Rectifier. 16:50 metres and 200-527 metres. 500 to 350 v. A.C. or D.C. D.G. State which is required. Size, 100n. x 6n. x 8n. \£ 8 5 0, including Purchase Tax.

NEW 1945 MIDGET SUPERILET RADIO KIT, with Illuminated Glass Dial. All parts including Valves, Mic. Speaker and Instructions. 4 valves plus K.t. Rectifier. 16:50 metres and 200-527 metres. 500 to 350 v. A.C. or D.C. D.G. State which is required. Size, 100n. x 6n. x 8n. \£ 8 5 0, including Purchase Tax.

MIDGET RADIO CABINETS In Brown Bakelite. Can
be supplied with 10in. Loudspeakers. The following K.et Kits #25-£2
including F.C.

MIDGET ELECTRORADIO CHARGERS with Magnetic Pickup
A.C. only, 100-250 v., £2 2 0.

DIRT WILA Crystal Pickup, £2 13 0.

COLLAR AUTO CHARGERS with Magnetic Pickup
A.C. only, 100-250 v., £2 2 0.

DIRT WILA Crystal Pickup, £2 13 0.

COLLAR ELECTRIC RADIOMATIC MOTORS with 12v. turntable. A.C. only, 100-250 v., £5 10 0.

COLLAR ELECTRIC UNIT with Magnetic Pickup and Auto Stop. A.C. only, 100-250 v., £9 13 6.

LOUDSPEAKERS BY FAMOUS MAKER
500, 250, 150 w. input. £7 8 0.

CONRAD RIM DRIVEN ELECTRIC GRAMOPHONE
MOTORS with 5 in. Turntable. Fixed Speed (78 r.p.m.)
for 200-250 v. A.C. only, in closed frame, including F.C.

Price with circuit diagram .\£ 25 0

Price with 10in. Loudspeaker \£ 45 0

E.R.T.3. Output 2,500 v. and 2-0-2 v. 2 s. \£ 45 0

E.H.T. TRANSFORMERS. For 200-250 v. D.C. only, to clear 57/6. Including ET.

E.M.T. Output 800 v. £11 2 2.

E.R.T. Output 9,000 v. and 2-0-2 v. 2s. \£ 35 0

TANK AERIALS. Serve 25 lengths of steel tube which fit into each other, making a very efficient aerial.

2/6 each

Rubber Base to £1 12 0 each

PORTABLE LOUDSPEAKER CABINETS. Strong wood Cabinets to take 10in. Speaker, 14in. x 12in. x 4in. with handle. There is ample room to build a Portable Amplifier into the Cabinet and a Chassis can be supplied to fit into £1 4 5. Finished in Brown Celulose.

Cabinets only £2 16 0

With 10in. Loudspeaker £4 35 0

MOUNTING BRACKETS. A kit of parts to build your

the original cost.

'Phone: AM4Herst 4723.
THIS LITTLE UNIT BEATS THEM ALL!

The Hadley MULTICOM for COMPLETE INTERNAL COMMUNICATION

HADLEY engineers "scoop" the trade with this new intercom, the first of its kind to provide complete intercommunication between all points.

Secret is the new design auto-control unit, housed out of sight, which cuts the size of the desk unit down to a 6" x 4" cabinet—a marvel in miniature.

Every desk unit has direct contact with all other units while executives can have priority.

Other HADLEY Products
THE HADLEY INTERCOMMUNICATOR provides for two-way calling and communication between master unit and any or all of the sub-stations and also incorporates the novel feature of a desk radio which can be relayed to the sub-stations.

THE HADLEY INDUSTRIAL UNIT proved to be well in advance of any similar equipment. Provides all facilities for "Staff Location," "Music for the Workers," "Time Signals," etc.

All Hadley Equipments are available on Cash Purchase or Rental Maintenance terms.

*Write for agency details and literature. All export enquiries to be addressed to our export agent:—Charles Baglin, 411 Coventry Rd., BIRMINGHAM, 10. Telegrams: Pentagons, B'ham.

Hadley Sound Equipments
Phone: BEArwood 2575/6 BEARWOOD ROAD, SMETHWICK, STAFFS.
Sound Recording on Magnetic-Coated Tapes

TYPE TL/7 — a recording and reproducing head from amongst the components shortly to be made separately available for this specific branch of electronics.

Others include Erasing Heads, Combination Heads, Supersonic Oscillator Coils and Drives in addition to the normal range of Transformers, Switches, etc., which have served the industry so well for the past three decades.
A diode is frequently used as the detector in a valve voltmeter and has the advantage over a triode detector that the input capacitance will generally be less. Many low capacitance diodes give a satisfactory performance with input voltages up to 100 volts but for higher voltages it is necessary to precede the diode by a suitable attenuator. In order that the attenuator shall have a flat frequency characteristic, the effect of diode and stray capacitances must be eliminated.

Fig. 1 (a) shows a frequency balanced attenuator in which the component values are related by $R_1 = \frac{C_2}{R_2}$, where R_2 includes the diode damping resistance and C_2 is the parallel combination of diode capacitance and strays; in practice a flat characteristic can be achieved over the audio range but at higher frequencies, diode damping and inductive effects in the components and wiring may give rise to appreciable errors.

For the measurement of high voltages over a wide frequency range it will therefore be preferable to use a high voltage diode such as the EY51 since in this case no input attenuator will be necessary.

A diode voltmeter may use either a series or parallel circuit as shown in Fig 1 (b) and (c); a major disadvantage of the series circuit is that the cathode is at high potential and a heater transformer with high voltage insulation between primary and secondary must be used. Fig. 2 shows a practical parallel circuit in which the cathode is at earth potential.

A balanced metering circuit using an ECC32 double triode has the advantages that drift will be low and a nearly linear voltage scale will result provided the voltage change on the input grid is small (0.75 volt for full scale meter deflection).

The number of resistors and their values in the 12.5 Megohm potentiometer chain P_2 will be determined by the number of voltage ranges and their full scale voltages. If $R_2 = 8$ Megohms, the most sensitive voltage range will give full scale deflection for approximately 3 volts input with the component values indicated in the diagram.

P_1 serves to balance out the "no-signal" diode current and is a preset control which should require readjustment only when the diode is changed.

The value of R_1 will depend on the H.T. voltage and will be of the order of 1000 ohms for a 200 volt D.C. supply.

The lower frequency limit of the voltmeter will be determined by C_1 and the higher frequency limit by the resonant frequency of C_1 (since every capacitor has associated inductance); the probe construction; or transit time effects in the EY51; for $C_1 = 0.02 \mu F$ and small stray capacitance in the probe, the error should be less than 3% between 20 c/s and 10 Mc/s.

Satisfactory operation will result with inputs of 1000 volts R.M.S.; C_1 must then be able to withstand 3.5 kV.

Reprints of this report from the Mullard Laboratories, together with additional circuit notes, can be obtained free of charge from the address below.

MULLARD ELECTRONIC PRODUCTS LTD., TECHNICAL PUBLICATIONS DEPARTMENT, CENTURY HOUSE, SHAFTESBURY AVE., W.C.2

(M.V.M.73)
The marine applications of radar are rapidly being extended in a most interesting and promising manner. Apart from the more normal use as a shipborne aid to navigation, shore-based radar is being installed to give aid and guidance to the mariner in several highly specialized circumstances. A station for guiding the Wallasey ferries was installed some time ago, and later equipment was fitted at Douglas, Isle of Man, to help in the handling of exceptional volumes of traffic in bad visibility. In this issue we publish a short description of a more complex system, fitted by the Mersey Harbour Board for the benefit of ships making or leaving the port of Liverpool. Here the designers of the system have had to cope with special difficulties, on account of the length, narrowness and tortuous nature of the entrance channel. Another interesting scheme is also under way: British Railways propose to fit shore-based radar for guiding ferry boats crossing the Thames estuary from Tilbury to Gravesend.

Technically speaking, there seems to be no problem that radar cannot solve at short notice. Its steady growth is much more likely to be slowed down by non-technical considerations, not the least of which is the need for convincing the marine user of the value and reliability of the apparatus.

In the early days there was much distrust of wireless in marine circles, but radar does not seem to suffer from this disadvantage; indeed, potential users are ready to welcome it, provided that it is offered to them in an acceptable form.

A good example of the practical and psychological considerations involved in the planning of shore-based radar systems is afforded by the projected Tilbury-Gravesend scheme. It is understood that the installation is to be operated by masters and mates of the service who, being accustomed to the problems of navigating the estuary, are able to give their colleagues making the crossing the kind of information of which they stand in need when visibility is bad. It is by attention to such factors as these, quite as much as to purely technical developments, that radar will be made into one of the greatest of modern aids to navigation and pilotage.

Nomenclature

It is a good sign that the confusing and often illogical jargon of radio seems to be causing, to an increasing extent, searchings of heart among practitioners in the art. In this issue contributors and correspondents touch on various aspects of this subject, in particular on the question of units. We suppose it is inevitable in any quickly developing branch of technology that we should outgrow our system of units: the need for greater and greater multiples or for smaller and smaller sub-multiples constantly makes itself felt, until ultimately a new system, based on convenient quantities, is evolved. And then, presumably, the process repeats itself—that is, unless development comes to a standstill.

Be that as it may, it is hardly reasonable or just to blame those who devised electrical units for failing to provide us with ready-made units convenient for our present-day practice. No one could be expected to have foreseen the directions in which development would proceed. But it is permissible to blame those who take a word of which the meaning is known to all versed in the art and to give it an entirely different meaning. We recently came across an instance where a good deal of confusion was caused by the use—or misuse—of the word “relay.” To all wireless men of the older school that expression connotes only one thing: the passing on of a message between two radio stations, out of range of each other, through the intermediary of one or more other stations. By quite legitimate extension, the word was later applied to a station intended solely for the passing-on of messages. It is a great pity that, soon after broadcasting started, the word “relay” was taken into service to describe systems for distributing speech and music at A.F. by wire.
Is Discriminator Alignment

A FREQUENCY-MODULATION receiver differs in two fundamental ways from the more ordinary set designed only for the reception of amplitude-modulated signals. First, the circuits up to and including the demodulator are of greater bandwidth, and secondly, the demodulator itself comprises an amplitude limiter and discriminator. So long as the design parameters are properly chosen, the greater bandwidth of the amplifier stages presents no difficulty; indeed, for equal performance, there are wider tolerances in the F.M. case. Nor does the design of a limiter involve any critical adjustments. Good limiting is readily achieved if the anode and screen volts are kept sufficiently low.

The problem presented by the F.M. receiver centres on the discriminator, its design, alignment and performance. This problem is capable of an orthodox and simple solution, and, as will be shown, need cause no anxiety to the listener or service technician.

The discriminator of the F.M. receiver is of the utmost importance, as performance depends very largely upon it. Its function is to convert the frequency variations of the carrier to amplitude changes which subsequent diodes can convert to audio-frequency signals in the usual way. It is highly important that this frequency-to-amplitude converter be effected in a linear manner, for if it is not amplitude distortion will be introduced. Non-linearity of the discriminator characteristic causes very similar effects to non-linearity of a valve in an A.M. set.

Without making an exhaustive study of the numerous new circuits which have been suggested in recent years, there are three possible designs to be considered. These are (a) the Amplitude Discriminator with its two secondaries tuned to different frequencies, (b) the Ratio Discriminator which operates as a combined limiter and frequency-to-amplitude converter, and (c) the conventional Phase Discriminator, usually associated with the names of Foster and Seeley. Of these (c) is preferred by the present writer. The Amplitude Discriminator is difficult to align, and linearity over a wide frequency band is hard to achieve. The Ratio Discriminator, which has had much publicity in the U.S.A., is even more sensitive to misalignment and the half-secondary windings cannot be well balanced for all values of the input voltage. On the other hand, the Phase Discriminator, if properly designed, is a stable unit in which each variable is under exact control. Only this type will be dealt with in the present article.

Design Parameters.—The frequency deviation (which will be taken as 75 kc/s throughout) and the carrier frequency (taken as 90 Mc/s) determine between them the discriminator design, for the unit must be linear over the whole range of modulation-frequency excursions plus the acceptable tolerance to take account of receiver mistuning and misalignment of the discriminator. Having determined the range over which the latter must be linear,
So Difficult?

By A. G. CROCKER (Royal Naval Scientific Service)

over a given band, and so the bandwidth at least suggests the intermediate frequency.

Applying the above considerations to our problem, experience has shown that a tolerance of ±30 kc/s must be allowed for receiver mistuning at 90 Mc/s under the conditions of broadcast listening. The misalignment of the discriminator will never be greater than ±20 kc/s at any reasonable intermediate frequency, and so the total tolerances are ±50 kc/s. Adding this to the modulation bandwidth leads to the result that the discriminator should be linear over a range of ±125 kc/s. This makes it necessary for the peaks of the discriminator response curve to be separated from the cross-over point by about ±175 kc/s and therefore the overall I.F. bandwidth must be ±250 kc/s. To obtain this bandwidth and this linearity of discriminator characteristic an I.F. at about 15 Mc/s is required. This allows the pass-band to be achieved with discriminator inductances of reasonably high Q. A higher intermediate frequency would introduce the usual difficulties due to stray capacitances and would affect the overall stability. It should be noted in passing that the I.F. bandwidth does not have any direct effect on the signal/noise ratio in a broadcast receiver.

Summary of Results.—In order to test the effects of non-linearity and misalignment, and the relation of these to the factors (a), (b), (c) and (d) above, a complete I.F. amplifier with limiter and a discriminator were built according to the preceding specification. Measurements then showed that

Naturally, these effects are inter-related and successive approximations to the ideal can be made.

Summary of Results.—In order to test the effects of non-linearity and misalignment, and the relation of these to the factors (a), (b), (c) and (d) above, a complete I.F. amplifier with limiter and a discriminator were built according to the preceding specification. Measurements then showed that

at the outset, however, that these test instruments are not necessary for the serviceman, but only for the factory. Since most sweep generators have a sinusoidal sweep, the C.R.O. should have a sinusoidal time base in phase with the sweep so that a linear frequency scale is obtained on the display unit. Otherwise a distorted picture will be obtained even when the discriminator characteristic is linear.

These two instruments are essential for rapid approximate alignment in the factory, but to obtain the maximum linearity in the characteristic the C.R. oscilloscope is inadequate as a test instrument. Static measurements

This photograph shows the I.F. unit with the discriminator can removed.

the mid-band frequency was 14.5 Mc/s and the frequency interval between the peaks of the discriminator was 350 kc/s. It was found to be impracticable to carry out the alignment procedure suggested by Sturley, which requires the coupling capacitor C to be disconnected while the secondary is being tuned, because its reconnection completely detunes the secondary. Alignment can be rapidly obtained to a condition approximating to the required characteristic by means of a frequency generator (wobbulator) and C.R. oscilloscope. It should be stated that the curve is reasonably linear, to ±125 kc/s, but with visible kinks. For this curve the

Is Discriminator Alignment So Difficult?

distortion of a 1-kc/s note was measured. The results, shown in Table I, include the distortion in the audio source and in the F.M. generator as well as that due to the discriminator. In all cases a 75-kc/s deviation was employed. Since 2% distortion is approxi-
mately equivalent to —34 db, the discriminator with its visible kinks is satisfactory over a carrier range of ±50 kc/s, which was the design figure. This 2% includes all distortions in the system, and those not due to the discriminator probably amounted to about 1%. Only the wobbulator and C.R.O. were used for alignment.

Detail of the Design and Alignment.—The major part of the circuit design was carried out according to the procedure outlined by Sturley.

The ratio E_2/E_1 of the secondary/primary voltages should be high: a value of 2 was adopted. If the working Qs of the primary and secondary are made equal, and if the coupling factor between the inductances is k, the product Qk should be as high as possible to give the maximum range of linearity, but should be low for maximum slope at the cross-over. Sturley suggests $Qk = 1.5$ as a suitable compromise and this was adopted. These data give the value 1.77 to the inductance ratio L_2/L_1, where L_1 is the total secondary inductance.

The working Qs were determined by the peak to cross-over separation $\Delta f_0 = 175$ kc/s. For $Q_k = 1.5$ and $f_0 = 14.5$ Mc/s, since $2\Delta f_0/Q_k = 1.44$, $Q = 60$ and $k = 2.5\%$. These values are reasonable. The total secondary tuning capacitance was chosen to be 50 pF, giving $C_1 = 87.5$ pF, $C_2 = 50$ pF, $L_1 = 1.375 \mu H$ and $L_2 = 2.4 \mu H$. The secondary inductance L_2 was made up of the two separate half-secondaries, placed symmetrically at opposite ends of an axis with the primary at the centre. The mutual-inductance coupling between the two half-secondaries was negligible, so that each coil had an inductance of $1.2 \mu H$.

As may be seen from Fig. 1, the

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonic distortion in db below the 1-kc/s output</td>
<td>1.53</td>
<td>1.34</td>
<td>1.34</td>
<td>1.35</td>
<td>1.36</td>
<td>1.37</td>
</tr>
<tr>
<td>Harmonic distortion in db below the 1-kc/s output</td>
<td>38</td>
<td>39</td>
<td>31</td>
<td>24</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

The major part of the audio output was taken from the load centre-tap via C_4, too great, and so a resistance of 10 kΩ was inserted between the centre-tap and the capacitor. The effect on the detection efficiency is not serious. The valve used was a 6AL5 double diode and the audio output was taken from the load via a filter network $C_1R_1C_2R_2$ with the values shown in the figure.

Components and Layout.—The most important components are the coils. Air-core coils are too bulky and there are certain mechanical difficulties. Direct winding on individual dust-iron slugs was therefore adopted, the two half-secondaries having threaded brass inserts to allow adjustment of the coupling, which is independent of the primary. Standard G.E.C. Type 81 dust-iron slugs were employed. Approximately 8 turns of No. 30 S.W.G. s.s. enamelled wire were wave-wound and cemented in position with trolitul solution. The measured unloaded Qs were 100 and the inductances were balanced to better than 1%, adjustment being made by moving the wire away from the slug and re-fixing. The arrangement of the coils can be seen in some of the photographs. The overall diameter of each coil was just over 1 in, so with metal screen could be made 1-1/4 in deep and 3 in high, having negligible effect on the Qs of the coils.

* Alignment was purposely curtailed to obtain these.
The inner frame-work, comprising the top, bottom and back, was made from Tufnol, the components being mounted directly on this. The important wiring (and, in particular, the lead from the primary through C, to the secondary, and to the load) was screened to allow for slight adjustments with the screen removed. The brass stems of the slugs were also earthed. The variable parts of the primary and secondary tuning capacitors were air-spaced trimmers and each had a maximum of 20 pF. Compression type trimmers are unsuitable from the point of view of temperature coefficient, and a 10-pF trimmer would be less critical to adjust than a 20-pF. No particular care was taken with the fixed capacitors, although, if these had negative temperature coefficients, the overall stability would be improved. This does not, however, appear to be necessary. Quarter-watt resistors were used throughout and the values were found to be non-critical so that 10% tolerance components could be used. The filter capacitors C, and C, were T.C.C. silvered-ceramic components.

During preliminary testing some asymmetry of the characteristic was observed. This was found to be due to capacitive coupling between primary and secondaries. An electrostatic screen was fitted round the primary. It consisted of a number of U-sections of 24 S.W.G. silvered-copper wire joined externally at their centre points to earth. The long sides of the Us were fitted so that they were interposed between the primary and secondary windings, the common earth-strip being parallel to the primary winding. This screen can be seen in the photographs.

The primary coil was placed in position and the unit was wired. One half of the secondary was then fitted and the coupling was adjusted by means of a Q-meter to the required value. The other half of the secondary, wired in the correct sense, was secured in position at the same distance as the first from the primary. From the curves subsequently taken it would seem that small differences in the distance between the two half-secondaries and the primary do not seriously affect the characteristic. Provided the usual checks are made on the uniformity of the dust-iron cores, and provided that the inductances are matched to 1% before fitting, it should be possible to set the coupling in each case by distance and to avoid the need for measuring the coupling factors.

Alignment Procedure. — After the I.F. amplifier and limiter had been adjusted for correct operation, the alignment of the discriminator was performed by

- Using a C.R.O. and F.M. sweep generator, the deviation being 200-300 kc/s, the primary was adjusted by means of its trimmer to give equal peak amplitudes, positively and negatively. The secondary trimmer was then varied to give the correct cross-over point. To facilitate this adjustment the mid-frequency of the I.F. amplifier (14.5 Mc/s) was centred on the C.R.O., using a signal generator. Primary and secondary were then alternately readjusted to give the most symmetrical characteristic.

C.R.O. is essential for the rapid adjustment of the three variables. If extreme linearity of the characteristic is sought, static measurements must be made, using the incremental scale of a signal generator. But if the C.R.O. does not show up the non-linearity, the distortion will be less than 2%, always assuming that the design procedure has been carried out intelligently.

Factory and Servicing Procedure.—After the adjustments detailed above have been made, the coupling should be locked and throughout the life of the discriminator unit it should not require further adjustment. The primary and secondary trimming capacitors should be accessible to the serviceman, although the writer believes that these too will require little attention. The stability of the coupling is due to the symmetry of the unit. Only dif-

Another view of the discriminator. The U wires forming the electrostatic screen can be seen over the primary coil.
Is Discriminator Alignment So Difficult?

differential changes can upset the balance and these changes are negligible. Re-tuning the primary and secondary circuits does not require the use of a sweep generator or a C.R.O., much less a signal generator with an accurate incremental scale, for primary tuning is done by adjusting for equal positive and negative peaks when the receiver is tuned through resonance; and the secondary tuning is made by adjusting to zero output using a simple signal generator or even the B.B.C. signal itself.

Test Results.—The following quantitative results of tests give the performance of the unit.

Sensitivity.—The limiter operated satisfactorily with an R.M.S. signal of 2 volts. For 75-kc/s deviation this gave an audio output of 1.1 volts R.M.S.

Linearity.—The characteristic (Fig. 2) is linear up to ±125 kc/s, if linear means that the distortion effect is less than 2%.

The distortion measurements were made with a G.R. audio oscillator, used to modulate a 14.5 Mc/s oscillator, the discriminator output being fed into a Hewlett-Packard analyser. The modulating frequency used was 1,000 c/s.

Carrier Deluning.—The net effect of detuning the carrier is exhibited in Table I, showing that ± 50 kc/s is tolerable.

Temperature Changes.—Using the construction detailed above and without temperature-compensated components, the cross-over point drift never exceeded 12 kc/s from “cold.” This is only an indication of order of magnitude.

Effect of Incorrect Secondary Tuning.—The secondary was deliberately mis-tuned, until the cross-over point was 40 kc/s too high. The discriminator characteristic was then accurately measured. It is shown in Fig. 2. As was to be expected, the peaks move in the same direction as the cross-over, and, although there is a slight difference in amplitude between the two peaks, the linearity is not affected. The distortion was again measured, and is shown in Table II.

Receiver mis-tuning over a range of 100 kc/s is still possible without distortion.

Effect of Unsymmetrical Coupling.—A very serious misalignment was simulated by reducing the coupling of one half-secondary to the lowest possible value, which was one-half of the original, maintaining the other at its correct value. This reduced the peak separation to about 240 kc/s, as compared with the previous value of 350 kc/s. The cross-over was raised in frequency some 30 kc/s and the peaks were unequal in amplitude.

The amplitudes of the peaks were then restored to equality by retuning the primary. The result is shown in Fig. 2, as an example of very severe misalignment and wrong compensation. The linear range is severely contracted, and distortion will be great unless the carrier is near the cross-over. But even with this gross maladjustment, the figures for distortion given in Table III were obtained.

Effect of Value Change.—Six valves were tried and no variations beyond a ±6 kc/s change in cross-over were found. Valve change will therefore never necessitate retimming.

Overall Effects.—With normal mis-alignments of discriminator tuning up to ±20 kc/s and receiver oscillator tuning up to ±30 kc/s, the total harmonic distortion with full 75-kc/s deviation should never exceed 2 per cent. In general it should be much less. The same variations have no influence on signal/noise ratio, since the triangulation of the noise is independent of the cross-over point, so long as the carrier is on the linear part of the characteristic.

Conclusions.—A successful discriminator for F.M. is entirely feasible without any critical components. Inductances must be well balanced and an electrostatic screen between the primary and the secondaries is essential. Leads inside the discriminator box must be well screened. When coupling is adjusted to give the desired peak separation, close balance in coupling is not necessary.

Secondary tuning should be as accurate as possible, and should be done with a valve voltmeter across the discriminator output.

Factory alignment should be made using an F.M. sweep oscillator and C.R.O. Accurate final adjustment may be done using a signal generator and valve voltmeter, but this is not essential.

Servicing Alignment.—So long as the coupling factor between the primary and the secondary remains stable, the retuning of primary and secondary presents no difficulty, if it should be necessary. The unit should therefore be sealed so that coupling adjustment cannot be altered. For primary tuning a valve voltmeter is the only necessity, assuming that the receiver can be tuned, and that a B.B.C. signal is available. For secondary tuning even the voltmeter is unnecessary.

Finally it is emphasized that

Table II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonic Distortion (db)</td>
<td>-23.5</td>
<td>-30.5</td>
<td>-33</td>
<td>-35</td>
<td>-35</td>
</tr>
</tbody>
</table>

Table III

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonic Distortion (db)</td>
<td>-11</td>
<td>-13.5</td>
<td>-18</td>
<td>-18</td>
</tr>
<tr>
<td>Harmonic Distortion (db)</td>
<td>-25</td>
<td>-32</td>
<td>-30</td>
<td>-24</td>
</tr>
</tbody>
</table>

The purpose of this article is to examine the problem of discriminator alignment. With regard to the noise-reducing properties of the detector it has been amply demonstrated in recent years that the predicted F.M. performance can be achieved.

I am greatly indebted to my colleague P. E. Trier, M.A., for many helpful discussions regarding the design.
A LARGE number of ships now carry navigational radar, and this new aid to navigation is doing much to reduce delays and hazards due to fog.

It has recently been realized that there is a need for shore-based radar to assist in the efficient running of a modern harbour in conditions of bad visibility. A ship approaching a harbour, particularly one which has a long approach channel, will be able to identify buoys and ships at the entrance to the channel up to a range of two or three miles, but, through lack of resolving power or because of obstacles, may not be able to see whether the channel is blocked at the far end by anchored vessels. The situation is beginning to arise where masters of incoming vessels contact the shore authority by radio and ask for a report of the state of the channel; this the shore authority is unable to provide in bad visibility without the help of radar. A similar situation arises in the case of a vessel wishing to sail and unable to observe the seaward end of the channel on her own radar, due either to distance or screening. A further use for shore-based radar is that it allows the shore authority to maintain a reliable check on the position of all the navigational buoys for which it is responsible.

In a large harbour the requirements which such a shore radar installation must meet are extremely stringent; often the width of the channel is only some thousand yards, and it will be required to observe with clarity ships at the end of this channel which may be 10 to 20 miles distant. This means that the radar must be capable of giving a very high degree of bearing discrimination, and that special large-scale displays will be needed. Factors such as ease of operation, accuracy, reliability and ease of maintenance are vital considerations which must be taken into account when the equipment is being planned.

In 1945 the Mersey Docks and Harbour Board discussed with the Admiralty Signal Establishment the possibilities of developing equipment to meet their needs. To assist in these discussions the Admiralty lent the latest version of their high-discrimination radar equipment and arranged a temporary installation on top of a warehouse at the north-west corner of Gladstone Dock. Trials with this equipment were carried out, and although it was realized before the trials began that the performance of the equipment would not be up to the standard required by this particular task, very valuable information was given, and it was clearly seen that radar of the right characteristics could do the job. Eventually the Sperry Gyroscope Company were given a contract for the development and construction of the equipment required.

In the space available it is impossible to describe in detail the functioning of the whole equipment, but it may be of interest to describe briefly the broad outlines of the system, and this may best be understood by reference to the block schematic diagram, Fig. 1.

The Master Timer Unit contains a crystal oscillator which produces range calibrator pips at half nautical mile intervals, and, after frequency division, a firing pulse at 1,000 times per second for triggering the modulator. The modulator, in addition to pulsing the...
Harbour Radar—
transmitter after a 30-μm sec delay,
provides a zero time pulse which is fed back through the Master Timer Unit, and gives a zero time clamp signal which is used to release the display sweep circuits at the correct instant. Also within the Master Timer Unit a circuit amplifies a bearing mark signal generated at the aerial at 5-degree intervals, which is then mixed with the range calibration signals and used to drive a 45-Mc/s oscillator so that the calibration signals can be fed into the I.F. chain. The transmitter-receiver is connected by waveguide to the components of the aerial bearing. These are then fed into the X and Y integrators which convert them into saw-toothed time-base voltages which are then applied through amplifiers to the horizontal and vertical deflector coils of the display tubes. Whereas in normal P.P.I. practice the rotating time-base line is centred on the middle of the tube, in this case the centre is offset or in some cases is off the tube altogether, so that a distant section may be displayed on an enlarged scale. This is effected by passing the saw-toothed time-base voltages through voltage "gates" which of the input to the amplifier then allows the mean position of the gate to be set at any desired point. Also included in each display unit are the last three stages of the I.F. amplifier chain and the detector and video amplifier for feeding the echoes and calibration marks to the grid of the cathode-ray tube.

The various power packs in the equipment all run from a 500-c/s supply, and their outputs are electronically stabilized. The stabilizers are all referred to a single reference voltage pack of high stability, so that any small changes which may occur in the output of this power pack are precisely repeated by the remainder. Thus all voltages vary together and provide a degree of compensation.

To achieve a high bearing accuracy a large "cheese" aerial fifteen feet wide, two feet high

Fig. 1. Block schematic diagram of the shore-based radar installation at Liverpool, showing main divisions of the equipment.
Main transmitter-receiver unit, with which is incorporated test equipment for monitoring the whole installation.

and weighing three-quarters of a ton has been constructed. (See front cover, Wireless World, July issue.) On test this aerial gave a beam width (total) of 0.7 degrees to 6 db points in the horizontal plane, and a vertical beam width (total) of 5 degrees. The aerial has been designed to very tight tolerances in order to keep down the side-lobe radiation. Test showed that a side-lobe value of 24 db down (48 db overall on echoes) has been achieved. One of the major tasks that was set in the design of this aerial was that its tolerances should be maintained despite wind velocities up to 100 miles per hour and despite changes of temperature. This aerial is rotated at 10 r.p.m. by a turning mechanism driven by a 6-h.p. electric motor and mounted in a completely closed room at the top of an 80-ft ferro-concrete tower, so that the mechanism is adequately protected, and can be worked on in comfort for the normal tasks of routine maintenance. The aerial contains a number of heater elements of 25 kW total dissipation, thermostatically controlled for de-icing in cold weather.

The transmitter consists of a 3-cm unit radiating a 0.25-µ sec pulse with a peak power of 30 kW; the same unit also contains the receiver circuits. This unit, together with the modulator, pulse generator, servo system, power packs, and control gear is mounted in a framework in the radar room adjacent to the base of the tower. This framework, in addition to the above main units, contains built-in items of test equipment for monitoring the whole installation.

The development and construction of the highly specialized display system for the installation was sub-contracted to A. C. Coscor, Ltd. The equipment comprises a large semi-circular console containing six plan-position indicators. The first display shows a small scale general view of the whole of Liverpool Bay, four more show large-scale off-centre true plan views of particular sectors of the approach channels, so that a large-scale mosaic is built up (Fig. 2).

The sixth display shows a large-scale plan which can be varied at will to cover any desired part of the Liverpool Bay. In all cases the large-scale displays are to the same scale to facilitate cross reference. They are all of true-plan shape to aid recognition, and each has in front of it a reproduction of the chart, with a standard grid superimposed, so that echoes may easily be identified and their position rapidly fixed in terms of the standard grid, which is the normal method of measurement employed by radar operators. For test purposes the range and bearing markers may be switched on, and by pulling out the bezel containing the grid a number of range and bearing marks on a ring surrounding the C.R. tube can be observed. A check is then made for adjustment between the electronic and mechanical marks. When the bezel is replaced these marks are obscured and the electronic mark can be switched off, so that the operator is not confused by them. The display console also contains a set of controls by means of which the whole installation can be switched on and off and operated. To aid maintenance work, each of the six display units is mounted in a steel framework on wheels. In the event of one of these displays developing trouble it can be rapidly wheeled out and a complete display unit wheeled in to replace it. All sub-units of the display can be drawn out sideways on to a servicing tray for test or adjustment.

With the exception of the aerial and turning unit, all equipment, including a 50-kW diesel generator,
Harbour Radar—
is installed in a building at the base of the ferro-concrete tower. All cables and ventilating ducts for cooling the display and transmitter units are carried below floor level so that a neat appearance is maintained.

Further rooms in this building contain the Harbour Board’s R/T and W/T communication equipment and a rest room for the operating crew.

The communication room contains two telephone lines connected to the Harbour Board Automatic Exchange, two direct lines to the Marine Dept. Office, a line to Post Office Telegrams, a teleprinter, and a land telegraph line to Point Lynas Signal Station, and the equipment for two radiotelephone links to ships at sea. The other radiotelephone operates on 8 Mc/s for communication with midget transmitter-receiver units carried aboard incoming and outgoing vessels by the Liverpool Pilots. On this latter system, in order to receive the signals from the very low power transmitter in the portable equipment through the heavy interference at Gladstone Dock, a remote aerial 400 yards outside the dock has been installed with a two-valve wide-band booster at the aerial position.

A future development for Liverpool which has been seriously considered is the possibility of relaying the radar information by a radio link to a display console situated in the Harbour Board’s offices.

Whilst the equipment has been designed specifically to meet the needs of Liverpool, there are many other large ports which present similar problems. Every port requires individual consideration and has individual requirements. The units designed for Liverpool have, however, been planned in a flexible manner, so that it should prove possible to use many of the existing units in future installations.

OUR COVER—New

THIS month’s cover illustration shows one of the three C.P.S. Emitron television cameras supplied, together with the associated O.B. equipment seen in these two photographs, to the B.B.C. by E.M.I. The camera, an experimental model of which was used at the Royal Wedding, has a rotatable triple-lens turret. Electronic view finding is provided and the picture is seen by the operator on a miniature C.R.T. In the semi-trailer transmitting van there are four rack-mounted monitors, one for each of the three cameras and one for monitoring the outgoing picture. Above the racks is a receiver on which appears the picture received from Alexandra Palace—hence the dipole. The console receiver in the cover illustration is used to assist the commentator by displaying the scene being transmitted.

Part of the equipment installed in the van (right) is shown in the lower photograph.

New Domestic Receivers

A TABLE model battery receiver (Model BC4056) with push-pull KT2s in the output stage is among sets recently introduced by the General Electric Company, Magnet House, Kingsway, London, W.C.2. The superheterodyne circuit operates on long, medium and short waves (16-5-50 metres) and requires a 2-volt L.T. and 135-volt H.T. supply. Pianoket controls are used for wave-range and on-off switching. The price is £20 7s 6d including tax, but excluding batteries. Another new G.E.C. set is the Model BT7094 radio-television receiver which is a console version of the Model BT7092 shown at Radiolympia last year. A flat-ended cathode ray tube is employed with a picture size of 8in x 6ft. The price is £12 12s 6d.

Murphy Radio, Welwyn Garden City, Herts, have produced a new "baffle-type" receiver to be known as the "A124." Although it includes a short-wave range, the set has been designed primarily with an eye to high-quality reception from local stations, and particular attention has been given to the elimination of distortions associated with the A.V.C. circuits. The suppressor grid of the I.F. amplifier functions as an auxiliary diode for the delayed application of D.C. to the A.V.C. line. The price of the A124, which measures 20in x 12in x 8in, is £20 3s 4d., including tax.
TYPE 32L7GT is a tetrode-rectifier usually employed in conjunction with type 12B8GT in midget American receivers. It may be replaced satisfactorily by a Brimar 25L6GT together with a rectifier type SB2 or SB3.

The SB2 may be employed where the current drain does not exceed 40mA and the supply voltage of 120 volts maximum is taken from a tapping on the line cord which also carries the heater current of the valves.

Where space permits, the SB3 may be employed. The SB3 permits a current drain of 65 mA and may be supplied from 250 volt mains via a suitable dropping resistor.

<table>
<thead>
<tr>
<th>TYPE SOCKET CHANGE</th>
<th>CHANGE SOCKET CONNECTIONS</th>
<th>OTHER WORK NECESSARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>25L6GT International Octal NO CHANGE</td>
<td>Pin No. 1: 2; 4; 5; 7</td>
<td>+ve. Rectifier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO CHANGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—ve. Rectifier</td>
</tr>
</tbody>
</table>

If type SB2 is employed, the current must be limited to 40 mA by means of a suitable resistor inserted in the H.T. circuit.

BRIMARIZING ... A scheme devised by BRIMAR for keeping repair lines on the move, a means whereby radio sets may be kept working happily in the home and not waiting on the shelf.

32L7GT

RADIO VALVES

SUPPLIES OF 25L6GT NOW AVAILABLE
MARCONIPHONE "Companion" RECEIVER

Five-valve, two waveband DC/AC "Companion" receiver T15DA 14½ gns. (plus pur. tax). Weighing only 7½ lb. and small enough to stand on the smallest "occasional" or bedside table, the T15DA incorporates an inbuilt high "Q" frame aerial and needs only connection to the mains to be immediately ready for operation. Its excellent performance is enhanced by the use of all-glass valves throughout. The consumption figure is low - a mere 35 watts.

An internal dropping resistor besides eliminating the resistance type of mains lead has three voltage tappings which enable the optimum performance to be obtained on any voltage supply between 195-225 volts DC or AC (25-100 cycles).

SEE THE SIGNATURE

G. Marconi

ON EVERY SET

The Marconiphone Company Limited, Hayes, Middlesex.
READERS are now quite familiar with the cathode follower, and it has come to be used for a wide variety of purposes. There are, however, various "snags" attached to its use, and these are not always realized.

One of these results from the fact that the cathode follower as described in textbooks, and the cathode follower as used in practice are not always quite the same thing, and in consequence the output resistance of the circuit is partially dependent on the input conditions—even at low frequencies.

The cathode follower as usually described is shown in Fig. 1, and the output resistance is usually taken to be $\frac{1}{g\text{_m}}$ ($g\text{_m}$ being the mutual conductance of the valve), and this is usually a fair approximation to the truth which is $R_o = \frac{1}{g\text{_m} + 1/r_a + 1/R_s}$ (1)

where r_a = anode resistance of the valve. Unfortunately the cathode follower as used in practice is seldom as simple as that shown in Fig. 1, and is more usually connected as shown in Fig. 2. Because the lower end of the grid leak is now taken to a tapping on the cathode load the output resistance will be found to vary with the input conditions. If the equivalent circuit of Fig. 2 is drawn and solved, one finds that

$$R_o = \frac{1}{g\text{_m}} \left[\frac{1 - R_s}{R_s + 1/r_a + R + r} \right] + \frac{1}{R_s + 1/r_a + R + r} \quad \text{** (2)}$$

and this obviously reduces to equation (1) when $R_s = 0$; in other words, when the input is short-circuited, amplifier—which may receive its signal from almost any source of supply—the variation of output resistance may have harmful effects.

The magnitude of the effect is best shown by means of a practical example. If we assume $g\text{_m} = 2.5 \text{ mA/V}$, $r = 2k\Omega$, $R = 10k\Omega$, $r_a = 10k\Omega$, and $R_s = 4M\Omega$, and calculate R_o for various values of R_s up to $10M\Omega$, we obtain the curve of Fig. 3. When the input is open-circuited R_o rises to 1.67Ω—or more than four times the figure given by the usual approximation of $R_o = 1/g\text{_m}$.

If this were the only difficulty it would not be so bad. But when the cathode follower is the first stage in an amplifier one often relies for decoupling on the fact that any voltage change at its anode is considerably reduced at its cathode—by a factor which

$$S = \frac{r_a}{R_o} \quad \text{** (3)}$$

we may call the decoupling factor, S, which is given by.

If, as in the foregoing example, R_o increases by a factor of more than four when the input is open-circuited, then it is only too clear that there will be an unfortunate drop in the decoupling factor of four times. Thus it is quite possible to have an amplifier (for an oscilloscope, for example) with a cathode follower input stage, which is quite stable when a megohm is placed across the input terminals, and yet which "motorboats" violently with the input open-circuited.

The foregoing difficulties can be overcome by the adoption of the circuit of Fig. 4, in which the cathode follower grid is biased positively by a potentiometer network across the H.T. supply. In the absence of grid current the output resistance will be constant whatever the internal resistance of the source of signal. Of course some of the H.T. fluctuations will be fed down the potentiometer network and will affect the decoupling; but this can be allowed for in the usual way.

The cathode follower is usually
Electronic Circuitry—
thought of as a constant voltage device (low internal resistance), and as long as attention is confined to the grid and cathode terminals, this is true. However, it presents a very large resistance, \(r'_a \), at its anode:

\[
r'_a = r_a + (\mu + 1)R_e
\]

where \(\mu \) = amplification factor of the valve and under proper conditions, \(r'_a \), can compare favourably with the anode resistance of a pentode. Thus we may use the cathode follower for various purposes for which a pentode is normally used with resultant freedom from dependence on valve characteristics.

An obvious application is its use as a charging valve in a linear time base as indicated in Fig. 5. If \(\mu = 80 \), \(r_a = 10k \Omega \), \(E_g = 100 \) volts, and \(R_e = 100k \Omega \), so that the charging current is about \(1 \) mA, \(C \) will appear to be charged from a source of about 8 kV through a resistance of about 8 MΩ. If the amplitude of sawtooth across \(C \) is 200 volts, it will be linear within a little over 1 per cent. The charging current can be controlled by variation of a part of \(R_e \) and will be nearly independent of the valve characteristics.

Another application of the circuit is the stabilization of the current in a focus coil for a television C.R. tube. Here \(E_g \) is made 50–100 volts and is preferably stabilized with a neon tube. \(R_e \) is adjusted for the correct operating current, and the focus coil is placed in the anode lead. The valve should have the largest possible value of \(\mu \) compatible with the ability to pass the required current for the focus coil. The current will then be largely independent of the resistance of the focus coil—which may well vary with temperature—and will depend chiefly on the voltage across the neon tube, and on \(R_e \).

\[\text{Lockhart, C. E., Electronic Engineering, Dec., 1944.}\]

Standard Frequency Transmissions

Present Position in this Country

It will be recalled that at last year's meeting of the International Telecommunications Union at Atlantic City, it was agreed that the frequencies 2.5, 5, 10, 15, 20, and 25 Mc/s should be allocated on a world-wide basis for all future standard frequency transmissions. If, therefore, interference between such transmissions in various parts of the world is to be avoided, all new services of standard frequency broadcasts will require very careful co-ordination. At present standard frequency transmissions of guaranteed accuracy are continuously emitted by the U.S.A. National Bureau of Standards station, WWV, on all the above frequencies, and in addition on 30 and 35 Mc/s. A summary of these transmissions was given last month on p. 293.

In a recent communication from the Department of Scientific and Industrial Research it is pointed out that unfortunately, on account of radio propagation conditions, it is often difficult to make use of the U.S.A. transmissions in Europe and farther east. The question of radiating standard frequency transmissions from this country has there-
The technique of research into the problems of nuclear physics is dependent to a considerable extent on the application of electronic methods, not only for the generation of high particle energies and bare facts with some details gleaned at first-hand during a recent visit to the Atomic Energy Research Establishment at Harwell.

Construction of the 700-ton electromagnet for the Harwell cyclotron is nearing completion and it is expected that the machine will be running at the end of this year. The pole diameter is 110 inches and the final gap 12 inches. Oil cooling is provided for the field windings, which carry 600 A at 500 V. A self-oscillating R.F. generator rated at 150 kW supplies the potential difference to the D-shaped box electrodes in which the particles are accelerated in vacuo in a spiral path. To secure effective bunching and to maintain acceleration against the relativistic increase of mass, as the particle velocity approaches the speed of light, the frequency is modulated between 19 and 27 Mc/s. The repetition rate is 200 per second. With this machine heavy particles such as protons or deuterons will be given energies of the order of 200 Mev and will enable nuclear transformations to be made which are beyond the capabilities even of the atomic piles.

A Van de Graaff electrostatic generator with pressure container removed. The generator runs in an atmosphere of nitrogen or sulphur hexafluoride, a gas of high dielectric strength, at pressures up to 400 lb/in².

Van de Graaff five-million-volt generator with pressure container removed. The generator runs in an atmosphere of nitrogen or sulphur hexafluoride, a gas of high dielectric strength, at pressures up to 400 lb/in².
Electronics at Harwell—

Operator for 5 MV is under test and will be used with a linear accelerator tube for the precise measurement of nuclear reaction energy levels. Although less powerful than the cyclotron, the advantage of the electrostatic generator is that the voltage can be held steady by electronic servo control to any required value with an accuracy better than 1 per cent.

Other accelerators under development at the Telecommunications Research Establishment at Malvern include a synchrotron in which particles are accelerated in a fixed circular orbit under the influence of a varying magnetic field and an auxiliary R.F. electric field, and a waveguide linear accelerator in which electrons are carried, as it were, on the crest of a travelling wave.

The two atomic piles—"Gleep" (graphite low-energy experimental pile) of 100 kW and "Bepo" (British experimental pile) of 6,000 kW—rely extensively on electronic monitoring of temperature and neutron density for their safe operation. An elaborate system of relays is arranged to shut down the pile in the event of excessive temperature rise or external radioactivity. The cadmium rods which absorb neutrons and damp down the basic reactions are suspended from magnetic clutches, which automatically release and allow the rods to fall into the pile in the event of failure of the power supply. Ionization chambers, containing boron trifluoride gas, are embedded in the pile, and, as an indirect result of nuclear reaction, produce ionization pulses which can be counted electronically to indicate the neutron density.

For the detection and measurement of harmful radiations there are a variety of relatively simple electronic instruments. The most commonly used "health monitor" consists of an ionization chamber connected to an amplifier and a microammeter. It is battery operated and housed in an aluminium box approximately 9 in cube; an alternative design is in the form of a pistol. This type of instrument gives an indication of the instantaneous radiation.

Where a knowledge of the integrated dose over a period is required, workers carry a small condenser capsule having a capacitance of a few pF and very high insulation resistance. This is charged to a fixed value (say 100 V) and after exposure to radiation, the drop in voltage due to ionization is measured in a valve electrometer circuit. Thus workers can satisfy themselves of the safety of local working conditions without having to wait for the processing and measurement of the X-ray test film which all employees must carry, and which is collected periodically for development and routine examination for evidence of excessive exposure to radiation.

Also under development for carrying in the pocket is a miniature quartz-fibre electrometer working on the principle of the gold-leaf electrometer—one of the earliest methods of detecting radioactivity. The instrument is rather like a pocket telescope, and by holding it to the light the precise setting of the fine quartz fibre can be read off against a graticule scale.

Electronic techniques have been developed for controlling the operations of radio-chemical analysis, for checking that chemists have washed their hands properly before leaving the building and for testing the effluent from the Establishment before it is returned to the Thames. In fact, the outstanding impression of the visit to Harwell is that electronics is accepted there not merely as a name to conjure with, but as a most effective tool which is made to work hard and has already paid handsome dividends in the technological progress so far achieved.

News from the Clubs

Derby.—A series of lectures and demonstrations on television home construction is being given at the fortnightly meetings of the Derby and District Amateur Radio Society held on alternate Wednesdays at 67B, London Road, Derby. Sec.: F. C. Ward, G2CCV, 5, Uplands Avenue, Littleover, Derby.

Grimsby.—For the benefit of beginners a series of lectures on basic theory is to be given at the weekly meetings of the Grimsby Amateur Radio Society, which are held on Thursdays at 7.30 at 115, Garden Street, Grimsby. Sec.: R. F. Borrill, G3TZ, address as above.

Oldham.—Meetings of the Oldham Radio Society, which has been reformed, are held on the second and fourth Wednesdays of the month at 7.30 at the Civic Centre, Clegg Street, Oldham. Particulars are available from E. Hulme, G1BOT, 20, Parkway, Chadderton, Nr. Oldham, Lancs.

Peterborough.—An exhibition is being held by the Peterborough and District Radio and Scientific Society in the Town Hall, Peterborough, on September 18th from 10 a.m. to 10 p.m. In addition to the society's exhibits the G.P.O. and some local dealers are exhibiting. Meetings of the society are held at 61, Padholme Road, on Tuesdays and Thursdays at 7.30 and on Sundays at 10.45 a.m. The Tuesday evening meetings are devoted to instruction for those taking the City and Guilds amateurs' exam. Sec.: S. Woodward, 72, Priory Road, Peterborough, Northants.

Romford.—At the September 14th meeting of the Romford and District Amateur Radio Society a demonstration lecture from television will be given. Meetings are held each Tuesday at 8.00 at the Y.M.C.A., Western Road, Romford. Sec.: R. C. Barford, G3FT, 3, Geneva Gardens, Whalebone Lane North, Chadwell Heath, Essex.

Solihull.—Meetings of the Solihull Amateur Radio Society are held on alternate Wednesdays at the club H.Q., The Old Manor House, Solihull, where visitors are welcome. Sec.: H. C. Holloway, 20, Danford Lane, Solihull, Warwick.

Southall.—Among the facilities provided by the West Middlesex Amateur Radio Club is a library of technical books donated by members. The club has taken out subscriptions for some hard-to-come-by journals, which are circulated among members at a nominal fee. Meetings are held on the second and fourth Wednesdays of each month at 7.30 at the Labour Hall, Uxbridge Road, Southall. Sec.: C. Alabaster, 34, Lothian Avenue, Hayes, Middx.

Thames Valley.—An 80-metre field day is being held by the Thames Valley Amateur Radio Transmitters' Society on August 29th from 11.0 a.m. to 7.0 p.m. for a challenge cup. Meetings are held on the first Wednesday of each month at 8.0 at the Carnarvon Castle Hotel, Hampton Court. Sec.: A. Mears, GSSM, Broadfields, East Molesey, Surrey.

West Cornwall.—Meetings of the West Cornwall Radio Club are held on alternate Wednesdays at 7.30 at the PENZANCE Electronic Methods Ltd., Penzance. Meetings are devoted to instruction for those taking the City and Guilds amateurs' exam. Sec.: S. Woodward, 72, Priory Road, Peterborough, Northants.
Manufacturers’ Products

Auto-switch
Permeability Tuner

The Weymouth tuner illustrated is the type B3S, intended for use in the construction of a domestic broadcast superhet receiver. It has the advantage of being very compact as the whole unit, which covers 200 to 540 and 1000 to 2000 metres, measures only 4\(\times \)2\(\times \)3\(\text{\textquoteleft\textquoteright} \)in.

Tuning is effected by means of dust-iron cores sliding in and out of long small-diameter coils and each circuit—there are four in all—is shunted by a small fixed capacitance and a variable trimmer.

A feature of no little interest is that at appropriate positions of the tuning spindle cam-operated switches automatically change from one waveband to the other, so a 360-degree rotation of the spindle gives continuous tuning over the whole of the medium and long waves, or in the case of the export model, of the United and short (18 to 45 metres).

Accompanying each unit is a circuit giving the appropriate values of the few additional parts needed for the frequency changer with an I.F. of 470 kc/s.

The makers are Weymouth Radio Manufacturing Co., Ltd., Crescent Works, Weymouth, Dorset, and the price is 45s.

Ceramic Capacitors

Two new models have recently been added to the range of capacitors embodying “Hi-K” ceramic material made by the United Insulator Co., Ltd., Oakcroft Road, Tolworth, Surrey.

One is a 1,000-pF model for operation up to 10 kV, intended for use in television and C.R. equipment as a smoothing, or H.T., by-pass capacitor. It measures approximately 2\(\text{in} \)

long and 4\(\text{in} \)diameter at the base.

The other new item is a heavy-current lead-through capacitor for use in radio heating apparatus and high-power transmitters. It, also, has a capacitance of 1,000 pF and is rated to carry 200 amperes of radio frequency. This model is fitted with heavy-duty panel bushes and a large diameter centre spindle.

Varley Output Transformer

A heavy-duty universal output transformer (Model DP61) capable of handling 20 watts of audio with minimum distortion has been introduced by Oliver Pell Control, Ltd., Cambridge Road, Woolwich, London, S.E.18.

It can be used with either push-pull or single valve output stages and provides the choice of eleven ratios of from 13 to 1 to 100 to 1.

The primary resistance is about 300 ohms each side of the centre tap and the overall inductance is 45 henrys. Sectionalized and inter-leaved windings are used to ensure a level response over a wide frequency range. The primary will carry 200 mA when the transformer is used in a push-pull circuit. The price is 45s.

Communal Hearing Aid

A versatile sound reinforcement system installed recently by N. Miers and Company, of Epping, Essex, in the Leo Bonn Memorial Hall of the National Institute for the Deaf provides for the use of three microphone inputs, for gramophone reproduction, for amplifying the sound track of cinema films and for radio reception.

Amplification and frequency compensation are effected by a Model R1 recording amplifier made by Birmingham Sound Reproducers and the output is distributed between a few specially designed loudspeakers and from 40 to 50 headphones and bone-conduction receivers. Each of the last-mentioned includes a small control unit incorporated in the lead for individual adjustment of volume.

The amplifier has a push-pull output stage with negative feedback and is capable of giving up to 20 watts output with negligible distortion.

Four input circuits feeding into two separate pre-amplifiers with independent volume controls are provided and common to all input channels is a very wide range tone control with separate adjustments for bass and treble.
Negative Feedback

The use of negative feedback in A.F. amplifiers is now firmly established and many good designs have been published in Wireless World and elsewhere. The application of feedback to an existing amplifier involves a certain amount of calculation, however, and the methods to be adopted do not seem to be as well-known as they should be. While exact formulae, which take everything into account, are apt to be rather cumbersome for the layman to handle, it is possible to use very simple approximate expressions which are sufficiently accurate for most ordinary purposes. These, together with a few elementary rules which should be observed when using feedback, enable the person with little mathematical skill or knowledge to design a feedback circuit suitable to his amplifier and his requirements.

It is proposed to show in detail the use of these formulae, giving numerical examples in each case. The actual calculations can often be simplified by using the data lists or abacs which can be found in reference books such as Langford Smith’s “Radio Designer’s Handbook.” Even the small abacs printed in the Wireless World Diary can aid evaluation considerably and are of sufficient accuracy.

Stage Gain

The first formula we require is the well-known one for the gain of a single RC-coupled valve, Fig. 1, and is,

$$A = \frac{\mu}{1 + \beta R_a} \ldots \ldots (1)$$

Where $A =$ gain from grid of V_1 to grid of V_2.

$\mu =$ amplification factor of valve.

$R_a =$ anode A.C. resistance of valve.

$R_L =$ anode resistor.

It should be realized that this is not strictly accurate since it does not take into account the following grid resistor, R_G, which, as far as the valve is concerned, is in parallel with the anode resistor. As the grid resistor generally has a value of five or more times the value of R_a, the error is not great, and the formula is greatly simplified by the omission of the shunting effect. There is little need for extreme accuracy in working out our results. Indeed it is foolish to attempt it, since the figures given by the valve manufacturer are average values for a large number of samples and there may be appreciable differences in individual cases. The valve constants are by no means constant over the range of possible working voltages but only approximately so. The gain obtained in practice leads one to assume that the values given are the optimum ones, since the calculated gain is rarely achieved. Similarly the resistor values may vary by \pm 20 per cent, and sometimes even more.

The formula therefore, gives a value for the gain which is approximate only, the approximation being generally too large.

Example 1. Find the gain of a single stage using one 6J5 valve and a 50-kΩ anode resistor. From the manufacturer’s published data we find that $\mu = 20$, $r_a = 7,700$ kΩ.

Using formula (1),

$$A = \frac{20}{1 + \frac{7,700}{50,000}} = \frac{20}{1.15} = 17$$

In the R.C.A. valve manual the gain for a 6J5 with a 50-kΩ anode resistor is given as 14, the anode supply being 300 volts and the following stage grid resistor 100 kΩ. This is 82 per cent of the calculated gain and serves as a useful guide to the degree of error.

If we have two such stages of amplification the resultant total gain will be $14 \times 14 = 196$.

Some manufacturers give the valve constants in terms of the mutual conductance, g_m in mA/N and either the amplification factor, μ, or the anode A.C. resistance r_a. The three quantities are related by the equation,

$$\mu = \frac{g_m r_a}{1,000} \ldots \ldots (2)$$

so that any one can be found if the other two are known. Thus, for a Tungsram HL4+, the manufacturers give $r_a = 10,000$ Ω and $g_m = 3.5$ mA/V, so that the amplification factor,

$$\mu = \frac{3.5 \times 10,000}{1,000} = 35.$$

Current Feedback

There are two types of feedback, current feedback and voltage feedback. In the first the amount of feedback depends on the current in the output load. Current feedback is generally applied to one stage only and common examples are (a) the omission of the bias resistor by-pass capacitor, (b) the cathode-follower type phase-splitter which has equal loads in anode and cathode circuits, and (c) the cathode-follower detector, also known as the infinite impedance detector. Current feedback causes a rise in the output resistance of the valve and should therefore not be used in an output stage, where, as explained later, a lowering of the resistance is much to be preferred.

In voltage feedback the amount of feedback depends on the voltage across the output load. It is the type most commonly used when feedback is taken from the output stage and applied over one or more stages of an amplifier.

Probably the simplest way of applying feedback is by omitting
Calculations

Simplified Design Formulae

By E. J. JAMES, B.Sc.

the bias resistor by-pass capacitor, as shown in Fig. 2, so giving current feedback. The gain, from input at grid to output at anode is, in this case, given by

\[A' = \frac{\mu R_A}{\mu R_A + r_p + R_L} \]

where \(R_A \) = cathode resistor.

Example 2. Find the gain of a 6J5 with a 50-kΩ anode resistor and an unbypassed cathode resistor of 2kΩ.

Using the valve constants as given in Example 1, the gain,

\[A' = \frac{20 \times 50,000}{21 \times 2,000 + 7,700 + 50,000} = \frac{10,000}{997} \approx 10 \]

Comparing this with Example 1 we see that the calculated gain is reduced from 17 to 10, and harmonic distortion generated in the valve will be reduced in the same ratio.

Fig. 2. Illustrating feedback from a cathode resistor.

In a phase-splitter there are, of course, two outputs. Equation (3) gives the gain from grid input to anode output. The cathode output will be equal to that of the anode but in opposite phase.

Example 3. Find the gain of a phase-splitting stage, Fig. 3, using an MHL4 with anode and cathode resistors of 25kΩ, the bias resistor being 1kΩ, unby-passed.

The total resistance in the cathode circuit is 26kΩ. The gain is given by,

\[A' = \frac{20 \times 25,000}{21 \times 26,000 + 8,000 + 25,000} = \frac{500}{579} \approx 0.9 \]

The values for the valve constants, \(\mu \) and \(r_p \), are taken from the manufacturer's literature as before.

The voltage fed to each side of the first push-pull stage will therefore be 0.9 times the input voltage to the phase-splitter and so the total gain of the stage is 1.8. The gain of this type of phase-splitter is fairly constant regardless of the values of resistors and of the valve employed, and rarely differs much from 1.8-1.9. Incidentally, an easy way of obtaining balance in the amplifier is by substituting a variable resistor for the 25-kΩ resistor in the cathode circuit. A 50-kΩ potentiometer, which should be of adequate wattage, provides a more than sufficient range of control.

Amplifier Gain

We are now in a position to calculate the overall gain of an amplifier. Generally we only need to find the gain as far as the input grids of the last stage so that the amplifier input necessary for maximum power output can be stated. But feedback is often taken from the anodes of the output valves or from the speaker-transformer secondary, so that we must be able to find the gain at both these points as well. The gain of the output stage depends, as in other stages, on the load in the anode circuit. The load in this case is the speaker impedance reflected into the transformer primary and so depends on the transformer ratio. The relationship between these quantities is expressed by the equation,

\[n = \sqrt{Z_L/Z_s} \]

\[Z_L = n^2 Z_s \]

where \(n \) = transformer ratio

\[Z_L = \text{load impedance in anode circuit} \]

\[Z_s = \text{speaker impedance} \]

Example 4. Find the gain of the amplifier shown in Fig. 4 calculated from input to (a) output anodes, (b) output transformer secondary. Also find the input required for full output. All essential values are shown in the diagram, and only those parts which are necessary for the calculation are shown.

1st Stage. The valve constants for the MHL4 are \(\mu = 40, \quad r_A = 11,100\Omega \). Using formula (1), the gain =

\[\frac{1 + 11,100/50,000}{40} \approx 32 \]

2nd Stage. We may assume the gain of the phase-splitter to be 1.8; the variation is so small that there is little point in evaluating it.

3rd Stage. For a PX25, \(\mu = 9.5, \quad r_A = 1,265\Omega \); with 400 volts on the anodes the grid swing required for the maximum output of 15.5 watts is 76 volts, grid-to-grid.

The load reflected by the speaker to the transformer primary is \(Z_L = 18^2 \times 15 = 4,860\Omega \). This is the load for both valves, so for one it is 2,430Ω.

\[\text{Gain} = \frac{9.5}{1 + 1,265/2,430} \approx 6 \]

\[\text{Gain (input to anodes of output valves)} = 32 \times 1.8 \times 6 \approx 346 \]

If we include the output transformer, the gain from the input to transformer secondary becomes 346/18 \approx 19.

The gain up to the grids of the output valves is 32 \times 1.8, so that the input voltage required at the PX25 grids is,

\[\frac{76}{32 \times 1.8} \approx 1.3\text{V} \]

Fig. 3. Typical phase-splitter.
Wireless World

September, 1948

Negative Feedback Calculations—

Since the required data is more readily available. The peak voltage across the secondary of the output transformer is given by

\[V_s = 1.414 \sqrt{W/Z_L} \] \hspace{1cm} (5)

Where \(W \) = output power in watts

\(Z_L \) = speaker impedance.

while the primary voltage is,

\[V_p = nV_s = 1.414 \sqrt{W/Z_s} \] \hspace{1cm} (5a)

Using the figures given for the output stage above,

\[V_s = 1.414 \sqrt{15.5 \times 15} \approx 22 \text{ V} \]

This voltage across the speaker transformer secondary is developed by an input to the grids of the PX25 valves of 76V, so that the gain of the last stage, including the speaker transformer is \(\frac{22}{76} = 0.29 \). Notice that here again there is a discrepancy between the results obtained by the two methods, this time of approximately 12 per cent.

The value of the transformer ratio is determined by the load required by the output valves and the speaker impedance. The optimum load for an output valve is given in the manufacturer's data and the transformer ratio is then chosen so that the speaker presents this load to the valve. Equation (4) is the one to use for this calculation.

Feedback Factor

When voltage feedback is applied to an amplifier both gain and distortion are divided by an amount

\[F = 1 + A\beta \] \hspace{1cm} (6)

Where \(A \) = normal gain without feedback. \(\beta \) = fraction of output voltage fed back. (Negative feedback is assumed wherever feedback is mentioned in this article.) This reduction refers, of course, to that part of an amplifier in which feedback is used. The reduction factor, \(1 + A\beta \), is conveniently known as the feedback factor.

The calculation of \(\beta \) is generally a simple matter since the voltage is fed back through resistors which form a potentiometer. Two typical examples of feedback lines are shown in Fig. 5 and it will be seen that the output voltage is across \(R + r \), while the feedback voltage is applied across \(r \). The feedback factor \(\beta \) is conveniently known as the feedback factor.

The equation of \(\beta \) is generally

\[\beta = \frac{r}{R + r} \] \hspace{1cm} (7)

Equation 5. An amplifier has a normal gain, without feedback of 40. Feedback is applied through resistors of 1kΩ \((R)\) and 9kΩ \((r)\). Find the gain with feedback.

Using equation (7)

\[\beta = \frac{1,000}{9,000 + 1,000} = \frac{1}{10} \]

This is sometimes referred to as 10 per cent feedback.

The feedback factor is then obtained by means of equation (6) and is

\[1 + \frac{40}{10} = 5 \]

Gain (with feedback) = \(\frac{40}{5} = 8 \).

Distortion will also be reduced by the same amount, so that if 5 per cent was present originally, the distortion with feedback would be 1 per cent.

To avoid undue waste of power the feedback resistances should not be too small; if possible, not less than 10 to 20 times the output-circuit impedance. Thus, if feedback is taken from a speaker-transformer secondary of impedance 15Ω, the feedback resistances should have a minimum value of 150–200Ω.

The blocking capacitor \(C \) of Fig. 5(a) should be chosen so that its reactance in ohms at the lowest frequency required is small, about \(\frac{1}{10} \) or less, compared to its associated resistance \(R \). The reactance may be found in the data lists or can be calculated from

\[X_C = \frac{159,000}{fC} \] \hspace{1cm} (8)

Where \(X_C \) = reactance of capacitor in ohms,

\(f \) = frequency in c/s,

\(C \) = capacitance in \(\mu \)F.

Taking 30 c/s as the lowest frequency required, equation (8) may be rearranged in the form

\[C = \frac{53,000}{f} \] \hspace{1cm} (8a)

To give us an approximate value required for \(C \) in \(\mu \)F when \(f \) is known. For example, the capacitance to be used with a 20-kΩ resistor should be 53/20 \(\mu \)F, or about 2.65\(\mu \)F. An electrolytic capacitor may be used as a polarizing voltage is provided by the anode supply.

When feedback is taken to a cathode-bias resistor its by-pass capacitor is, of course, omitted. This introduces current feedback in the first stage of the feedback loop and gain must be calculated accordingly.

To avoid possible trouble from oscillation at very high and low frequencies the value of the feedback factor should not exceed a certain maximum dependant on circumstances. The trouble arises from the fact that some phase shift occurs at each stage of amplification and in the output transformer, this phase shift being greater at high and low frequencies, so that the feedback may become positive at these ends of the scale. To ensure stability the following general rules should be obeyed:

(a) Do not feed back over more than one transformer.

(b) An interstage transformer should have a resistance shunted across the secondary.

(c) The feedback factor for a loop covering output transformer and two stages should not be greater than 10.

(d) Feedback should not be applied over more than three stages plus output transformer, and the maximum value for the
feedback factor in this case is 5. These figures apply to the average amplifier and may be greatly exceeded in specialized designs such as the Quality Amplifier described in the May issue of Wireless World. In this circuit a carefully-designed output transformer and the use of direct coupling in one stage reduce phase shift to a minimum so that the feedback loop covers four stages and the feedback factor is 10.

The absurdity of feeding back over a tone control stage or one incorporating a volume control might be mentioned here also as it is sometimes overlooked. The feedback will obviously try to cancel the changes in tone or volume one is trying to obtain. If an amplifier already exists in which a certain reduction in gain is permissible, then the value of β is determined by the size of this reduction fraction. If the original gain is A, which can be reduced to A' by feedback, then the required value of β is $\beta = \frac{A - A'}{AA'}$. (9)

Example 6. An amplifier has a gain of 120 which is to be reduced to 30 by feedback. Find the required value of β and the ratio of the resistances needed.

$$\beta = \frac{120 - 30}{120 	imes 30} = 0.04$$

The absurdity of feeding back over a tone control stage or one incorporating a volume control might be mentioned here also as it is sometimes overlooked. The feedback will obviously try to cancel the changes in tone or volume one is trying to obtain. If an amplifier already exists in which a certain reduction in gain is permissible, then the value of β is determined by the size of this reduction fraction. If the original gain is A, which can be reduced to A' by feedback, then the required value of β is $\beta = \frac{A - A'}{AA'}$. (9)

$$\beta = \frac{120 - 30}{120 	imes 30} = 0.04$$

Output Resistance

Another result produced by voltage feedback is the reduction of the apparent output resistance of the last stage. The actual resistance of the valve does not alter, of course, but feedback acts in such a way as to make it appear to the output circuit, which is the loudspeaker, that the valve has a much lower anode resistance. This improves the loudspeaker damping in a manner which is most noticeable in the case of pentodes where the anode resistance is high. When voltage feedback is used the apparent output resistance is

$$R_o = \frac{r_A}{\mu + \beta a}$$

where $r_A = \text{anode resistance of output valve}$

$\mu = \text{amplification factor of output valve}$

$a = \text{normal gain, without feedback, up to grid of output valve}$

$\beta = \text{fraction of output voltage fed back.}$

When feedback is taken from the output transformer secondary, the output voltage is already reduced by the transformer ratio and this must be taken into consideration. In the last example, if the feedback had been taken from the secondary of an output transformer of ratio 14:1 then the value of β would be given by

$$\beta = \frac{1}{14} \frac{33,000 + 750}{33,000 + 750} \approx 0.07$$

Example 7. Find the output resistance of a PX25 when used in the circuit shown in Fig. 6. The valve constants for the MH4 are

$$\mu = 40, r_A = 11,100 \Omega.$$ Since the bias capacitor of the first stage is omitted current feedback takes place, so that we must use equation (3) to find the gain up to the PX25 grid.

i.e.,

$$a = \frac{40 \times 100,000}{41 \times 750 + 11,100 + 100,000} \approx 28.$$

$$b = \frac{750}{33,000 + 750},$$ using equation (7).

For a PX25, $\mu = 9.5, r_A = 1,265 \Omega$, so that the output resistance,

$$R_o = \frac{1,265}{1 + 9.5 \times 28 \times \frac{1}{45}} \approx 183 \Omega.$$ When feedback is taken from the output transformer secondary, the output voltage is already reduced by the transformer ratio and this must be taken into consideration. In the last example, if the feedback had been taken from the secondary of an output transformer of ratio 14:1 then the value of β would be given by

$$\beta = \frac{1}{14} \frac{33,000 + 750}{33,000 + 750} = \frac{1}{14} \times \frac{1}{45} = \frac{1}{630}$$

Cathode-Follower Output Stage

The cathode-follower output stage is a special case of feedback. Here the load is placed in the cathode circuit so that all the output voltage is fed back giving $\beta = 1$ in this stage. The feedback factor is thus $1 + A$, where A is the normal gain of the valve. The gain now becomes $\frac{A}{1 + A'}$, which means that the stage gives no gain, but a slight loss. The grid input voltage must therefore be increased by $(1 + A)$ times so as to make up for the loss of gain in the output valve.

Example 7. Find the output resistance of a PX25 when used in the circuit shown in Fig. 6. The valve constants for the MH4 are

$$\mu = 40, r_A = 11,100 \Omega.$$ Since the bias capacitor of the first stage is omitted current feedback takes place, so that we must use equation (3) to find the gain up to the PX25 grid.

i.e.,

$$a = \frac{40 \times 100,000}{41 \times 750 + 11,100 + 100,000} \approx 28.$$

$$b = \frac{750}{33,000 + 750},$$ using equation (7).

For a PX25, $\mu = 9.5, r_A = 1,265 \Omega$, so that the output resistance,
Negative Feedback Calculations—output resistance is reduced by the factor \((1 + \mu)\).

Example 8. A PX25 is used in a cathode-follower output stage. Find the peak input voltage required, and the output resistance. The supply voltage is 440 V. From the manufacturer’s data for the PX25, anode voltage \(400\); \(\mu = 9.5\), \(r_A = 1,265\) \(\Omega\), optimum load \(3,200\) \(\Omega\). Using equation (5a), the peak voltage across the output load, \(V_P = 1.4 \sqrt{6} \times 3,200 = 196\) V.

Notice that here we are using the load at the transformer primary, not the secondary.

The stage gain, \(A = \frac{196}{33} \approx 6\).

Feedback factor \(\frac{1}{1 + A} = 7\).

Gain is thus reduced 7 times so that the input must be \(33 \times 7 = 231\) V.

The output resistance \(R_0 = \frac{1,265}{1 + 9.5} \approx 120\) \(\Omega\).

This example emphasizes the one great difficulty of this design, the very large input voltage required at the grid of the output stage.

High-level Detection

Quality Receiver Without A.F. Stage

By W. MacLANACHAN

As a result of a "Letter to the Editor" published in Wireless World for May, 1948, I have had many requests for further information. In that letter I dealt with the use of a diode detector, operated as high up on its characteristic as possible, feeding directly into a push-pull output stage.

My present set puts these principles into practice. As shown in the diagram, it comprises three low-gain R.F. stages with pre-set tuned transformers and one semi-apertiodic coupling feeding a high-voltage diode. This acts as phase splitter and feeds two push-pull output valves through resistance couplings. A wide frequency response is obtained by staggering the R.F. tuned circuits, which incidentally assists in stability. To load fully the PX25s in the output stage the diode has to handle inputs up to about 120 V R.F. and, as the load resistance has to be of low value because of the necessity of maintaining the correct relationship between it and the grid leaks of the PX25s, must deal with a comparatively heavy current. Fortunately the D63, with anodes and cathodes in parallel, can stand up to 4 mA.

The PX25s are biased to their correct operating point with maximum voltage on the anodes. Negative feed-back is taken from an extra secondary winding on the special Partridge output transformer and is fed to the grid cir-

Circuit diagram of the receiver, in which a diode detector feeds the push-pull output stage without intermediate amplification.
The main trouble in a set of this type is R.F. instability. With such a large output from V3 almost complete screening of the leads is necessary, but, owing to the need for adequate ventilation of the valve (a KT6r output tetrode) only a two-sided screen is used between the valve and the remainder of the set. Grid, screen, and anode stabilising resistances were included in the leads to the valve-holder. The first two valves are SP615 (VR65), which have separately earthed metallising.

The coupling between the KT61 and the D63 is untuned with a very flat characteristic, and is actually the L.W. portion of an R.F. transformer. It is totally screened and the leads to the diode are also enclosed in metalised sleeving.

The aerial and first two R.F. transformers are home-made, but in another unit which has proved satisfactory for the same purpose Wearite M.W. transformers are used with damping resistances of 20 to 40 kilohms across the secondaries. The unit used for the modification is one of the R.A.F. RF24 and 25, widely available as Government surplus. As these units contain three VR65s and many of them have only one easily screened hole for the switch spindle between the compartments they lend themselves admirably for adaptation for high-level detection, but part of the case must be cut away for ventilation of V3.

The circuit diagram omits such unessential features as heaters and mains equipment. This latter consists of a mains transformer giving 500-650V at 180mA, 4V at 3A for the U18/20 rectifier, 6V at 4.5A for the R.F. stages, and two 4V 2A windings for the PX25s. It is preferable to have a separate 6V, 3A winding for the D63, and for the PX25s. The windings naturally depend on the types of valves chosen or available. Sputtering is by choke filter with 4-μF condensers.

Practically all the components are Government surplus, as may be seen from the values of the resistances actually used. Some latitude can be allowed in most of the circuits except in the A.F. couplings.

One refinement incorporated is a 10mA meter connected at the low-potential end of one of the halves of the diode and resistor and by-passed by a value capacitor. This not only indicates the voltage across the 30-kΩ load (30V per mA), but also assists in the staggering of the tuned circuits.

BOOK REVIEW

The authors' background in T.R.E. provided an unusually favourable combination for the purpose of a book such as this; it was authoritative, it was practical, and at the same time it was an important teaching centre. So it is not surprising that the book is accurate, clear and specific. Some of the books that have been published on the subject are so detailed that the reader is likely to miss the wood for the trees; this one keeps firmly to essentials and does not get entangled in a maze of engineering and circuitry. References are given to detailed treatment in Journal I.E.E., Part IIIA and elsewhere.

The disadvantage of the background is that the examples are drawn preponderantly from systems developed at T.R.E.; and especially the metre-wave types which had little or no future even in 1945. Among wartime systems, the rocket-detector and proximity-fuse radars, which might be expected to have most post-war military significance, are not mentioned; and ship-borne radar, which is the most important at the present day, is summarily dismissed. This backward-looking tendency is regrettable in an otherwise excellent book, because much of the space devoted to historical types might more profitably have been used to bring out the tendencies most likely to be prominent in post-war developments.

Nevertheless, matters such as noise factor, perception factor, aerial gain and equivalent area, which determine performance, are clearly and concisely explained, and illustrated by numerical examples. The measurement of range, azimuth and elevation is discussed in three chapters, and a fourth is devoted to systems in which measurement of azimuth and elevation are combined. The radar properties of targets, and their separation from unwanted echoes, are considered more thoroughly than usual. Except for the last chapter, on secondary or responder systems, "radar" is confined to its strict sense, involving echoes.

It cannot be denied that the term "radar" and "radio-location" have been, as the authors say, interchangeable; but seeing that "radio-location" was never used by those closely concerned with radar (or R.D.F.) it is a pity that there is not more support for the proposal made by the present Chairman of the I.E.E. Radio Section in his Address, that "radio-location" should be used, in distinction from "radiocommunication," to refer to all systems of location by radio, of which radar is one.

With regard to terms, it should be noted that "V.E.B." is not the common dipole referred to elsewhere. Some readers, too, might not realize that receiver "output" noise or signal, involved in noise factor, must be measured before the detector.

M. G. S.

Books Received

Radio Receivers and Transmitters. By S. W. Amos and F. W. Kellaway (second edition; first edition reviewed in Wireless World, Feb., 1943). Deals with principles and practice, the aim being to provide a link between pure science and applied radio. This edition includes extra material on negative feedback, microphones and grid detection. Pp. 356; 210 figures. Chapman and Hall, 37, Essex Street, London, W.C.2. Price 25s. Second Year Radio Technology. By W. H. Date. Written for engineering students who have already acquired a basic knowledge of electricity and magnetism. The book covers the syllabus of City and Guilds radio communication examination Grade 1. Price 15s. This backward-looking tendency is regrettable in an otherwise excellent book, because much of the space devoted to historical types might more profitably have been used to bring out the tendencies most likely to be prominent in post-war developments.
Series Capacitor Heater Circuits
Negligible Power Loss and Better Regulation
By A. W. STANLEY

Two ways of supplying valve heaters with power from the mains are shown in Fig. 1. The more usual method using a series resistor is shown in (a) and an alternative method using a series capacitor in (b). It is the purpose of this article to compare the performance of these two circuits, particularly with regard to their regulation, and to deduce graphical methods of determining the values of R and C to suit particular circuits.

Perhaps the most obvious difference between the circuits is that (a) will operate equally well from A.C. or D.C. mains whereas (b) can only be used on A.C. mains. But (b) has the advantage over (a) that there is no power waste in the capacitor and the only power taken from the source is that required by the heaters. Circuit (b) is thus more economical than (a), in which the power wasted in the series resistor sometimes exceeds that supplied to the heaters. Another advantage of (b) is that the regulation is better; i.e., the change in current caused by a given change in heater resistance is less in (b) than in (a).

A property of the series capacitor circuit is that the valve heaters warm up under practically constant current conditions and there is no prolonged initial surge of current as with a series resistor. Thus the time taken for the heaters to reach the working temperature is longer in (b) than in (a). To offset this disadvantage of (b), however, there is less risk of burning out dial lights when these are connected in series with the heaters. After a circuit such as (b) is switched on, the dial lights gradually attain their full brilliance, taking several seconds in the process. In (a), after switching on, there is usually a brief period when the heater current is greater than normal; whilst this is useful in accelerating the warming-up process it has the disadvantage that the life of the dial lights, and perhaps the valves too, is shortened.

In circuit (b) the heaters should be protected from damage in the event of a short-circuit in the capacitor by the inclusion of fuses in the circuit. The resistor indicated in dotted lines in (b) has a very high value, such as 1 MΩ, and plays no part in feeding the heaters; it discharges the capacitor when the heater circuit is disconnected from the mains.

Fig. 1. Methods of feeding heaters from the mains.

\[
\begin{align*}
I_H & = \frac{V_{min}}{R + R_H} \quad \ldots \quad (2)
\end{align*}
\]

where \(R_H \) is the total resistance of all the heaters, when hot, and is assumed constant. From (2)

\[
\begin{align*}
\delta I_H & = -\frac{V_M}{(R + R_H)^2} \\
\delta R_H & = \frac{V_M}{R^2_{total}} \quad \ldots \quad (3)
\end{align*}
\]

This result shows that the change in current for a given change in heater resistance depends only on the mains voltage and the resistance, \(R_{total} \), of the circuit. To illustrate this by a numerical example, let \(V_M = 230 \text{ volts} \), \(I_H = 0.2 \text{ A} \) and \(V_H = 100 \text{ volts} \). As shown above the series resistor is 650 Ω and the total resistance is 1150 Ω. Now suppose that an additional valve, of heater resistance 50 Ω when hot, is inserted in the circuit. From (3) the change in heater current per ohm change in heater resistance is given by

\[
230 \times \frac{50}{1150^2} = 0.0087 \text{ A}
\]

The new heater current is thus roughly 4.5 per cent low.

The capacitance needed in cir-
circuit (b) may be calculated in the following way. The p.d. across C is given by
\[V_C = \sqrt{V_H^2 - V_m^2} \quad (4) \]
and since \(I_H \) is the current in the capacitor
\[I_H X_0 = V_C \quad \ldots \quad (5) \]
where \(X_0 \) is the reactance of the capacitor at the mains frequency.
Combining (4) and (5)
\[X_0 = \frac{V_C}{I_H} = \sqrt{V_H^2 - V_m^2} \]
Since \(X_0 = \frac{1}{2 \pi f C} \) the final expression for \(C \) is
\[C = \frac{I_H}{2 \pi f \sqrt{V_H^2 - V_m^2}} \quad \ldots \quad (6) \]

In Fig. 3, values of \(C \) are plotted against \(V_H \) for values of \(I_H \) between 0.1 and 0.3A, \(V_m \) and \(f \) being taken as 230 volts and 50 c/s respectively.

As an example of the use of Fig. 3, suppose the heaters consume 0.2A and that the voltage ratings of the heaters total 90 volts. From Fig. 3 the series capacitor should be 3\(\mu \)F. The p.d. across the capacitor is \(\sqrt{230^2 - 90^2} = 212 \) volts R.M.S., roughly 300 volts peak, practically equal to the full mains voltage. The capacitor should thus have a working rating appreciably greater than 300 volts.

The low slope of the curves in Fig. 3 at low values of \(V_H \) implies that there is some latitude in the value of \(C \) corresponding to a given value of \(V_H \). From this it follows that a particular value of \(C \) will be suitable for an appreciable range of values of \(V_H \) i.e., the also because large values of \(C \) are necessary at these values of \(V_H \), it is recommended that \(V_H \) be kept as small as possible. For example is \(V_H = 180 \) volts and \(I_H = 0.2A \) in a particular circuit, it might be preferable to arrange the heaters in a series-parallel combination for which \(V_H = 90 \) volts and \(I_H = 0.4A \). The capacitance necessary would be 6\(\mu \)F, double that necessary when \(V_H = 90 \) volts and \(I_H = 0.2A \).

The current in the circuit of Fig. 1(b) is given by
\[I_H = \frac{V_M}{\sqrt{R_H^2 + X_0^2}} \]
and from this the regulation of the circuit is expressed by
\[\frac{\delta I_H}{\delta R_H} = \frac{V_M R_H}{(R_H^2 + X_0^2)^{3/2}} = -\frac{V_M R_H}{Z^3} \quad \ldots \quad (7) \]
where \(Z \) is the impedance of the circuit and equals \(\sqrt{R_H^2 + X_0^2} \). For a given value of \(V_M \) the regulation depends on the value of \(R_H \) and the change in \(I_H \) for a given change in \(R_H \) is less when \(R_H \) is small than when \(R_H \) is large this agreeing with the conclusions drawn from the curves of Fig. 3.
Series Capacitor Heater Circuits—
calculation made above assuming,
this time, that a series capacitor
is used.

If \(V_M = 230 \text{ volts}, \quad I_H = 0.2 \text{A} \)
and \(V_H = 100 \text{ volts C is just over} \)
\(3\mu F \) and \(Z = 1150 \Omega \). Substitution
in (7) shows that the change in
heater current per ohm change in
heater resistance is given by \(230 \times \)
\(100/1150^3 \) A and the change in
current brought about by inserting
an additional value of \(50 \Omega \) resis-
tance is hence \(230 \times 100 \times \)
\(50/1150^3 = 0.000756 \) A. Thus
the new heater current is less
than in June, but two moderately
large groups were observed, which
the central meridian of the

more than 10 times better than
that of circuit (a). By dividing
(3) by (7) and re-
membering that \(Z \) and \(R \) are
numerically equal for equal mains
voltages and equal heater currents, it is
seen that, in general, the regulation of the series capacitor

Fig. 4. Vector impedance diagram for the circuit of Fig.
1 (b),
circuit is \(Z/R_H \) times better than
that of the series resistor circuit. In the example \(Z = 1150 \Omega \) and \(R_H \)
= \(100 \Omega \) and thus the regulation
of circuit (b) is 11.5 times better
than that of circuit (a), this
confirming the numerical results
obtained.

The reason for the superior
regulation of (b) is easy to see from
a vector diagram of impedance. In circuit (a) any change in \(R_H \)
causes an equal change in \(R \) total
and the new heater current is
inversely proportional to \(R \) total
In circuit (b) the current is
inversely proportional to \(Z \) and
\(Z \) is obtained by vectoral addition
of \(R_H \) and \(X_c \), as illustrated in Fig.
4. From this it can be seen that
if \(R_H \) is small compared with \(X_c \),
any change in the value of \(R_H \)
causes only a very small change in
\(Z \) and hence in the heater current.

Wireless World
September, 1948

Short-wave Conditions
July in Retrospect: Forecast for September
By T. W. Bennington and L. J. Prechner (Engineering Division, B.B.C.)

During July the average maxi-
num usable frequencies for
these latitudes decreased somewhat
during the day and night instead of
remaining at about the same level
as in June in accordance with the
seasonal trend. This may have
been due to lower sunspot activity
as compared with June. There was
very little difference between the
day and night values of M.U.F.S.

Communication on frequencies
higher than 35 Mc/s was very in-
significant, although regular
contact was maintained with South
America and South Africa on the 28-Mc/s
band. Signals from the South
Pacific area have been also received
on that band on one or two occa-
sions. Frequencies below 14 Mc/s
for distances exceeding 3,000 miles
were not practicable at night and
conditions on the lower frequencies
were still poor.

The rate of incidence of sporadic
e was very high, in accordance
with the seasonal trend, and, as in
June, many contacts were made
with the Continent, as, for example,
with Scandinavia and Italy. Long-
range tropospheric propagation was
again observed, reception of fre-
quencies as high as 58 Mc/s being
reported by amateurs quite fre-
quently during the spell of fine
weather even at distances of the
order of 200 miles.

Sunspot activity in July was less
than in June, but two moderately
large groups were observed, which
crossed the central meridian of the
sun on 11th and 26th. On the
whole, July was a quiet month
and, although ionosphere storms
occurred on 1st, 6th, 10th-11th,
14th-17th and 31st, none of them
was very severe.

Relatively few Dellinger fadeouts
have been observed, but those re-
corded on 29th were fairly severe.

Forecast. — In September the sea-
sonal effect in the Northern Hemi-
sphere is such as usually to cause a
considerable increase in the day-
time M.U.F.'s and a slight decrease
in the night-time M.U.F.'s.

Daytime working frequencies for
long-distance transmission paths
should, therefore, be much higher
than in August and, for example,
the 28-Mc/s band should be usable
in far more directions and for longer
periods than in August. Fre-
quencies as high as 17 Mc/s should
remain practicable till after mid-
night on many circuits and those
below 11 Mc/s should seldom be
necessary at any time during the
night.

The E and F, control of transmis-
sion over medium distances should
be much less marked than during
the past few months, and extend to
only an hour or two around noon.

Sporadic E usually occurs less
often in September, and not much
communication over medium dis-
tances is likely to take place by way
of this region as compared with
August.

Below are given, in terms of the
broadcast bands, the working fre-
quencies which should be regularly
usable during September for four
long-distance circuits running in
different directions from this
country. (All times G.M.T.) In
addition, a figure in brackets is
given for the use of those whose
primary interest is the exploitation
of certain frequency bands, and this
indicates the highest frequency likely
to be usable for about 25 per cent
of the time during the month for
communication by way of one or two
layers:—

<table>
<thead>
<tr>
<th>City</th>
<th>11 Mc/s</th>
<th>15 Mc/s</th>
<th>16 Mc/s</th>
<th>17 Mc/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montreal</td>
<td>(18)</td>
<td>(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>19</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape Town</td>
<td>(23)</td>
<td></td>
<td>(19)</td>
<td></td>
</tr>
<tr>
<td>Chungking</td>
<td>15</td>
<td>10</td>
<td>(18)</td>
<td>(15)</td>
</tr>
</tbody>
</table>

There is often an increase in iono-
sphere storminess in September,
and periods of poor short-wave
communication may occur at times.
At the time of writing it would
appear that disturbances are more
likely to take place during the
periods 1st/2nd, 4th/6th, 18th/21st,
and 23rd/25th than in the other
days of the month.
Providing technical information, service and advice in relation to our products and the suppression of electrical interference

A balanced aerial system has a technical advantage, and an increasing number of set manufacturers will be found to change over.

How to use a Television Aerial for Broadcast reception.

The cross arm and reflector of a Belling-Lee "Viewrod" television aerial may be used as a collector for a standard broadcast receiver. This application is covered by patent No. 520628. In the case of the "inverted V" type of aerial the metal pole can serve to take the place of the cross arm. Where interference is present on the broadcast frequencies, the "Eliminoise" anti-interference transformers L.300 may be fitted to the cross arm (or the metal pole on L.600) just as it may be fitted to the base of a "Skyrod". Many listeners with really good receivers have never heard them at their best through dispensing with an aerial. It is not fair to the set. At the present stage of the art in most cases, a dipole is essential for the reception of television, and there is every reason for making the dipole do both jobs, i.e. receive the television transmission and rejuvenate the broadcast receiver. This thought is passed particularly to those within range of the Birmingham television transmitter. To encourage them to have their dipole erected now, before the rush comes and at the same time avail themselves of really good broadcast reception.

"Winrod" Window Mounting Aerial

Having touched on the question of the rejuvenation of broadcast receivers by use of an aerial—outside for preference—we do not overlook the listener who will not become a television viewer for some time. Where it is not desirable or practicable to erect a full blooded aerial, we thoroughly recommend him to consider screwing a "Winrod" on his windowframe (with two screws). In many cases this will give an increase of signal to noise of 20 db, which being interpreted broadly means that the original signal to noise voltage ratio has been improved ten times. This is a big claim and it is as well to define the basis of comparison. The tests were carried out in a steel framed building. The indoor aerial being a twelve feet length of wire disposed along the picture rail.

Untidy Television Installations

We have noticed a number of Belling-Lee "Viewrod" television aerials that are fitted badly. These are invariably fixed to the top of "austerity" poles that do not offer a parallel fit to the pole cap on the cross bar. We appreciate that the pole situation has been terribly difficult and in most instances, for months now, we have had to ask dealers to find their own poles. When our installation department fit a dipole on a pole, great care is taken to ensure a parallel fit. The top may have to be wedged to prevent movement, and of course the top of the pole should be slotted in accordance with the instructions.

1. Balanced 80 ohm feeder L.336 for T.V. aerials, per yard 7/-d.
2. Co-axial feeder L.600 for T.V. aerials, per yard 1/6.
5. "Skyrod" vertical, chimney fixing, 18ft. spike with "Elimi-noise" transformers, screened downlead and earth wire etc. L.638K. £10/-.
6. "Winrod" window mounting aerial L.581. 19/-.

The words "Viewrod," "Skyrod," "Winrod" and "Eliminoise" are registered trade marks.

BELLING & LEE LTD
CAMBRIDGE ARTERIAL ROAD, ENFIELD, MIDDX.
AT THE WEDDING OF PARMeko TO INDUSTRY . . .

This happy day is the culmination of many troubles — as schoolboy and girl they hated each other like poison. As they grew into the teenage they took more notice of one another — flirted a little and then fell out. Grew up a little more and their feelings developed with purpose and they were constantly seen about together.

When times of trouble and war came they plighted their troth and resolved to work together hand in hand.

This has now developed further into a sense of mutual trust and respect where each recognises the other as a partner, where . . . Oh, let's stop talking in riddles. Just think of us at Parmeko as a wife and partner in your Transformer troubles, we are there to help in times of difficulty. Use us and don't worry . . . let's live happily ever after.

Makers of Transformers for the Electronic, Signal, Luminous Tube, Oil Ignition Industries, etc.

THE "VOXMOBILE" AMPLIFIER

Type 2856R

Mobile — Indoor — Outdoor
Operates from A.C. Mains or 12-volt battery
Output:—12-watts. Self-contained

The Voxmobile is a really versatile amplifier. While it produces excellent quality, it is light, quickly connected, and operated equally as well either from A.C. mains 250 volts or a 12-volt car battery.

One of the outstanding features of this amplifier is the high sensitivity; only 3.5 mV being required into 1 megohm to produce the full output, thus allowing wide pick-up and the use of high quality microphones.

List Price: £38.0.0

Loudspeaker

Type 9816T

Excellent reproduction and wide angle distribution. Weatherproof — light — robust.
For use Outdoors, Indoors, or on a Vehicle.
No back radiation and therefore minimum feed-back.
The ideal "general-purpose" quality P.A. Speaker. Complete with line transformer tapped at either 1, 3 or 6 watts.

List Price: £8.0.0

Complete Voxmobile "All-Purpose" Equipment

The ideal general-purpose equipment for Dealers and for Religious, Political, Social and Sporting Organisations.
Comprises:—Amplifier, high fidelity moving-coil microphone, substantial stage-type microphone stand and two 9816T speakers.
List Price: £70.0.0. Available to all bona fide Traders
WORLD OF WIRELESS

Overseas B.B.C. • Two-Metre Amateurs • British Components in Sweden

B.B.C. IN THE FAR EAST

For some time it has been known that negotiations were being made for the B.B.C. to take over the station in Singapore which has, since the end of the war, been operated by the British Far Eastern Broadcasting Service under the auspices of the Foreign Office.

The B.B.C. has, at the request of the Government, now assumed responsibility for the service which is radiated by a 7.5-kW transmitter operating on 6.770, 9.690, 11.730, 15.300 and 21.720 Mc/s.

It is stated in the lay press that this is the first time the B.B.C. has operated a station outside the U.K. It has been forgotten that one of the transmitters used for the B.B.C. European Service is in Germany—at Norden, operating on 658 kc/s.

NEW NORWICH STATION

A site has been chosen for a new B.B.C. transmitter near Norwich, and the construction of the station has begun.

This new 5-kW station, which will supersede the existing one-kW transmitter in Norwich, will radiate the Midland Home Service on 1013 kc/s (296.2 m). The site is 4½ miles east of Norwich, on the Acle-Great Yarmouth road.

A directional aerial system will be used consisting of two mast radiators, each 126 ft high. It is understood the transmitter is being built from equipment which was in stock in the Engineering Dept.

It is not yet possible to give the date on which the station will come into service.

NEW AMATEUR BAND

Among a number of additional bands allocated to amateurs at the Atlantic City international conference was that of 144-146 Mc/s. Although the provisions of the convention have not yet come into force the G.P.O. has notified British amateurs that from Sept. 1st they may operate in the top half of this band—145-146 Mc/s. Operation on both 'phone and key is limited to 25 watts input to the last valve.

In the Atlantic City allocations the band (144-146 Mc/s) is for the exclusive use of amateurs throughout the world, but at the moment, in this country, some 'vital services' are operating in the lower half.

It was rumoured that the 420-460 Mc/s band was also to be made available but, according to the R.S.G.B., negotiations are still proceeding.

INTERNATIONAL TELEVISION

Three of the eleven main lectures to be given at the forthcoming International Television Conference to be held in Zurich will be given by British engineers.

The conference, organized by the

Swiss National Television Committee and the Swiss Federal Institute of Technology, will be held from September 6th to 10th. The British contributions will be on "Studio and O.B. Television Practice in Great Britain," by T. H. Bridgewater (B.B.C.), "Distribution Network for Television Signals," by D. C. Espley (G.E.C.); and "Certain Aspects of Circuit Design in Television Transmission," by T. C. Nuttall (Cinema-Television). Dr. Zworykin (U.S.A.) will deal with electronics in television and R. Barthelemy (France) with the international aspects of television.

All papers read at the conference will be reprinted in the Bulletin de l'Association suisse des électriciens.

R.C.M.F. STOCKHOLM SHOW

A private exhibition of British radio components and test gear is being organized by the Radio Component Manufacturers Association in the Kungshallen, Kungs- gatan, Stockholm, Sweden, from October 18th to 22nd.

The exhibition, which is promoted with the object of acquainting radio and electronic manufacturers and engineers with the most recent advances in the design and development of British components and accessories and in the materials employed in their manufacture, will be open to visitors bearing invitation cards. These are obtainable by bona fide manufacturers and engineers from the Radio Component Manufacturers' Federation, 22, Surrey Street, Strand, London, W.C.2.

R.S.G.B. TRANSMITTER

The headquarters station of the R.S.G.B., which it was anticipated would be radiating early this year, will start operating as a

NERVE CENTRE. Part of the central control room set up by the B.B.C. at Wembley for the Olympic Games. Lines from the 121 microphone points at the various centres where events were held converged on this point. The Wembley radio centre included eight studios each equipped with twin gramophone turntables, twenty disc recorders and twelve mobile recording cars.
World of Wireless—

frequency marker on 3500.25 kc/s at 8 p.m., on September 1st. Thereafter, the station, GBIRS, will radiate a short automatically transmitted message at 12 w.p.m. during the first two minutes of each hour from 0600 to 2400.

The 300-watt transmitter, which can be operated on any frequency between 1.5 and 20 Mc/s, was presented to the society by E.M.I. some time ago.

P.T. ON RECORDS

GRAMOPHONE records of a kind not produced in quantity for general sale are now exempt from Purchase Tax. The exemption includes: records produced without a matrix, that is "direct recordings"; records produced from a matrix in cases where not more than 100 pressing will be made; and those made for a single client or organization in which the copyright will be retained by them. The Order is entitled "The Purchase Tax (No. 2) Order, 1948," and came into operation on August 10th.

OBITUARY

It is with regret we record that Sir Clifford Paterson, O.B.E., D.Sc., F.R.S., died on July 26th at the age of 75. He was, until 1941, chairman of S. G. Brown, Ltd., and the Institute of Physics, was past president of both the I.E.E. and the Institute of Navigation in conjunction with the Royal Geographical Society on December 17th at 1.30. A lecture on radar navigation will be given by Sir Robert Watson-Watt at 5.0. It will be open to the public, and further particulars are obtainable from the Institute, 1, Kensington Gore, London, S.W.7.

In brief:

Licences.—At the end of June the approximate number of broadcast receiving licences in force in Gt. Britain and N. Ireland was 11,290,350. This number includes 54,850 television licences, an increase of 2,590 in the month.

"Navigation through the Ages" is to be the title of an exhibition to be held at the end of the year by the Institute of Navigation in conjunction with the Royal Geographical Society. It will be opened at the Royal Geographical Society on December 17th at 1.30. A lecture on radar navigation will be given by Sir Robert Watson-Watt at 5.0. It will be open to the public, and further particulars are obtainable from the Institute, 1, Kensington Gore, London, S.W.7.

The late S. G. BROWN, F.R.S.

U.S.W. provided two-way communication between officials in a launch and those on shore during the recent Maidenhead Regatta. Special permission was obtained from the P.M.G. to use 465 Mc/s, with a power of 250 W. Col. P. Northev (G6FQ) and two fellow R.S.G.B. members provided the gear.

New Zealand.—Twenty-one of New Zealand's twenty-three medium-wave broadcasting stations will change their wavelengths, and in some cases their call signs, on September 1st. The changes in frequency have been found necessary to avoid interference between N.Z. and Australian stations. Coincident with these changes five new transmitters will be brought into service. At present, the Dominion has eighteen national and five commercial broadcasting stations, all of which are operated by the New Zealand National Broadcasting Service.

Business Radio.—It is learned from the G.P.O. that approximately 110 licences have now been issued to operators of "business radio" transmitters. A recent application of "business radio" was the shepherding through London of a convoy of lorries carrying an exceptionally bulky load of scaffolding for the Olympic Games. The manufacturers, Scaffolding (Great Britain), Ltd., have a fleet of radio-equipped cars and a transmitter at their head office for such occasions.

Noisy Loudspeakers.—A useful part in the anti-noise campaign could be played by the Post Office if it adopted the scheme used in some foreign countries of including an injunction to "turn down the radio" in the cancelation mark on letters. Both the Swiss and Danish authorities have introduced a specially designed cancelling mark. The Danish stamp includes a cartoon showing a disturbed sleeper putting his hands to his ears while musical notes are dancing around the room. The drawing is accompanied by the slogan Damp Radioen. (It means pretty much what you think, reader.)

German Amateurs in the British and American Zones—excluding Berlin—have now been granted transmitting licences.

Last Month's Cover.—In the note on the cover illustration of our August issue reference was made to the twelve 100-kW Marconi transmitters. This is incorrect; actually six of the transmitters at Skelton were made by Marconi's; the others were supplied by Standard Telephones and Cables.

I.S.W.C. informs us that a special broadcast for S.W. listeners will be radiated by Radio Leopoldville, Belgian Congo, on 9,765 Mc/s at 1900 hrs.
East London Course—Provision is made in the prospectus of evening classes sponsored by the Ilford Literary Institute for a radio amateurs' course in preparation for the City and Guilds radio amateurs' exam. The classes will be held at the County High School for Girls, Cranbrook Road, Ilford, on Wednesdays from 7.0-9.0. Enrolments will be taken from September 6th to 9th from 7.13-8.30 p.m. The fee for the session, which is from September 13th to April 16th, is 5s.

Engineering Courses. The 1948-49 prospectus of the Electrical Engineering Department of the Polytechnic, Regent Street, London, W.1, includes a number of evening courses in telecommunications, television and servicing. Enrolment forms and the prospectus are obtainable from the Principal of the Department. Enrolments will be taken on September 15th and 16th from 6.0 to 8.0 p.m.

Ferry Radar.—So that a better ferry service can be provided at Tilbury during foggy weather radar equipment is to be installed at the Riverside Station by the London Midland Region of British Railways.

B.S.R.A.—The lecture season of the British Sound Recording Association commences on September 23rd, when the new president, W. S. Barrell, B.Sc., technical director of E.M.I. Studios, Ltd., will give his presidential address. The meeting will be held at the Royal Society of Arts, John Adam Street, Adelphi, London, W.C.2, at 7.0. The association's new vice-president is M. J. L. Pulling, M.A. (B.B.C.).

I.E.E. Students.—The committee of the London Students' Section of the I.E.E. has appointed the following officers to serve during the 1948-49 session: chairman, A. Mason, B.Sc.; and secretary, D. R. A. Mellis—both S.T.C. men.

SUPPRESSED.—Copies of this sticker, prepared by the R.S.G.B., are available gratis from the society at New Ruskin House, Little Russell Street, London, W.C.1.
Transformerless Television Receiver

DESIGNED on the familiar lines of the A.C./D.C. broadcast receiver, with series-connected valve heaters and a half-wave rectifier for the H.T. supply, the Pye Bi8T television receiver has no mains transformer. The set is the first on the market in which this technique has been applied to television.

The makers state that the set is designed for use on A.C. mains of 230-250 V, 50 c/s, and that for supplies of 190-220 V an auto-transformer is necessary. They make no mention of the possibility of operating the set from D.C. mains. However, there is no obvious reason why this should not be practicable and, in fact, a model has been seen operating satisfactorily from a 240-V D.C. supply. Presumably, however, D.C. operation would be limited to supplies of not less than 2.3 V.

The advantages of doing away with a mains transformer are chiefly the reduced weight and size of the equipment. The dimensions of the set have been brought down to 171/4 in wide by 121/2 in high by 123/8 in deep and the weight to only 30 lb. This is a considerable achievement for a set with a 9-in tube (picture 71/2 in by 6 in).

The major difficulties in design with an H.T. supply of the order of 200 V only obviously lie in the line-scan circuits. The circuit is a more-or-less conventional blocking oscillator feeding a pentode valve which in turn feeds the deflector coils through a transformer. A ‘damping diode’ is connected across the secondary and results in a considerable increase of efficiency. The primary is arranged as a step-up auto-transformer to increase the magnitude of the high-voltage pulse on fly-back. This is fed through a half-wave valve rectifier for E.H.T., the filament of the rectifier being fed from a winding on the line-scan transformer. As the current in this transformer must be kept constant if the filament of this valve is to be kept operating under proper conditions, the usual picture-width control by valve input is impracticable. A variable inductance in series with the deflector coil is used instead.

A permanent magnet is used for focusing. It has an adjustable shunt, but as there is no temperature drift, focus is no longer a panel control. It also needs no current. The frame scan is produced by a blocking oscillator feeding a pentode which is transformer coupled to the deflector coils. Sync separation is effected by a pentode and two diodes.

The receiver portion comprises a straight vision channel with four R.F. stages, diode detector and one V.F. stage. A second diode across the V.F. input acts as a noise limiter. The sound signal is picked out of the cathode of the third R.F. stage and after amplification in two further stages is fed to a diode detector and thence through a diode noise limiter to the pentode output valve. A.G.C. is provided on the sound channel, delay being obtained with the aid of a metal rectifier.

The H.T. circuit comprises a half-wave rectifier with a 50-μF reservoir capacitor and smoothing is effected by a single choke followed by a 100-μF capacitor. The valve heaters are series connected, including the C.R. tube heater; a tapped resistor is included for adjustments between 230 and 250 V and there is also a Thermistor in circuit as a regulator.

The set has 19 valves and the tube and costs 38 gns, plus purchase tax. The panel controls are sound volume, on-off and picture brightness only. The usual pre-set controls for line and frame hold, contrast and noise limiter among others are accessible at the rear of the cabinet.
This is a 10-valve amplifier for recording and play-back purposes for which we claim an overall distortion of only 0.01 per cent., as measured on a distortion factor meter at middle frequencies for a 10-watt output.

The internal noise and amplitude distortion are thus negligible and the response is flat plus or minus nothing from 50 to 20,000 c/s and a maximum of .5 db down at 20 c/s.

A triple-screened input transformer for 7½ to 15 ohms is provided and the amplifier is push-pull throughout, terminating in cathode-follower triodes with additional feedback. The input needed for 15 watts output is only 0.7 millivolt on microphone and 7 millivolts on gramophone. The output transformer can be switched from 15 ohms to 2,000 ohms, for recording purposes, the measured damping factor being 40 times in each case.

Built-in switched record compensation networks are provided for each listening level on the front panel, together with overload indicator switch, scratch compensation control and fuse. All inputs and outputs are at the rear of the chassis.

Send for full details of Amplifier type AD/47

Telephones: LiBerty 2814 and 6242/4.
Telegrams: "VORTEXION, WIMBLE, LONDON."
Price Reductions

From the 1st August, 1948, our one and only price increase, since the war, of 15% will be cancelled in respect of the famous "POLYPHONIC ELECTROGRAM," the New Price being £87, plus 66 2/3% Purchase Tax.

The Quality of the Electrogram has not been impaired to facilitate price reduction; it is still a nine valve (including rectifier) all-wave Radio Unit and Amplifier with balanced paraphase output, electronic tone control and Phase Inverter Speaker.

SPECIAL NOTICE

In view of the high Purchase Tax levied on Radiograms, we are prepared to supply the Polyphonic Electrogram, less Motor and Pick-up, as a HIGH QUALITY RADIO SET only, for £80, plus 33 1/3% P.T.

Stocked by the Agents of "SOUND SALES" Limited.

Sound Sales Ltd.

Once again
CHosen for RELIABILITY

FOR THE "ELECTRONIC ENGINEERING" TELEVISOR

In their aim for quality and reliability the designers of this Home Built Televisor chose Gardners chokes and transformers. Here once again, is proof that when only the best is good enough, Gardners components meet every need.

Extensive research, modern design and efficient manufacturing methods all combine to ensure a performance that is unsurpassed.

GARDNERS

"SOMERFORD"

TRANSFORMERS AND CHOKES

full details on request

GARDNERS RADIO LIMITED

Som er ford, Christchurch, Hants.
Frequency Modulation

Some Comparisons with A.M.

Most of the subjects I have discussed lately have been more or less related to modulation—amplitude modulation, to be precise. But nowadays frequency modulation is supposed to be "the thing," so I need not apologize for returning to it.

There are already several large books devoted exclusively to F.M., so the next page or two cannot be expected to provide a complete education in the subject, but perhaps (shall we say?) a basis for intelligent interest.

The difference between amplitude modulation and frequency modulation is just what the names say—in A.M. the "information" (speech, music, code, etc.) is conveyed by varying the amplitude of a carrier wave; in F.M. it is conveyed by varying the frequency. If you had a transmitter you could A.M. it (at a rather low frequency!) by turning the anode voltage control up and down. Or you could F.M. it by turning the oscillator tuning control to and fro.

In practical A.M. the anode voltage is turned alternately up and down at any desired modulation frequencies by means of the voltage developed across a choke in series with the H.T. supply, this choke forming the output coupling of a M.F. power amplifier.

There are various ways of frequency-modulating, some of which are rather complicated. Many use a reactance valve—a valve in which the oscillatory voltage is applied to the input 90° out of phase, so that the output current (which is also in the oscillatory circuit) leads or lags, just as it does in an inductive or capacitative reactance. The amount of this synthetic reactance, and hence the frequency of the oscillator, is controlled by varying the slope of the valve at modulation frequency by means of the M.F. amplifier.

In A.M. the intensity or volume of the signal or programme being carried is represented by the amount of variation in amplitude of the radiated wave, called the deviation; and to modulate 100 per cent one would have to make the frequency fluctuate between zero and twice the unmodulated carrier frequency. That, needless to say, would be quite absurd. In practice, the maximum depth of modulation in this sense is generally not more than 0.1 per cent, and is often much less. A standard deviation for broadcasting is ± 75kc/s, and the carrier frequency is usually over 75 Mc/s. For communications, ± 15 kc/s or less is commonly used.

This brings us to the important matter of bandwidth. In A.M. the bandwidth is twice the highest modulation frequency. In F.M. it seems obvious that the bandwidth is twice the deviation.

Fig. 2. A carrier wave and the pair of side waves caused by amplitude modulation at a single frequency are represented by the 3-vector diagram (a). The two side vectors alone are shown at successive stages during one modulation cycle at (b); their resultant (dotted vector) is always in line with the carrier vector, so can be directly added or subtracted from it, as at (c), which shows that the net effect of the sidebands is to vary the amplitude of the carrier wave at modulation frequency.

Working on that assumption, inventors have from time to time hit on the bright idea of making the deviation very small, with the praiseworthy object of occupying a much narrower channel than would be possible with A.M. Alas for their young hopes, their assumption is wrong!
Frequency Modulation—

It certainly does sound reasonable to argue that if the frequency of the carrier wave is varied by, say, only ± 100 c/s, a 200-c/s band is all that is required for speech, music . . . television, even. But in disconcerting fact, the bandwidth is at least as great as with A.M., and in general is greater.

This seems an even more difficult statement to swallow than the one about amplitude modulation creating sidebands; and it is certainly more difficult to prove mathematically. But I hope that during the last few months (especially in Sidebands Again, December, 1947), I was able to convince any doubters that A.M. does generate sidebands. The clearest way of visualizing them, I think, is with the help of a vector diagram. If you will agree that the A.M. vector diagram gives a correct analysis of A.M., I think I can undertake to show how F.M. spreads its sidebands to an equal or greater extent.

![Diagram](wirelessworld.png)

Fig. 3. Restoring the twin side vectors of Fig. 1, but reversing one of them, as at (a), makes their resultant always at right angles to the carrier, as shown stage by stage at (b). (Compare with Fig. 1). Adding this resultant to the carrier (c) yields approximately pure F.M., provided that the "angle of wag" is kept small.

Going back to the A.M. vector diagram, Fig. 1(a), you may remember that the trick is to climb on to the carrier-wave vector which is rotating at carrier frequency, and move with it, so that relative to us it is stationary, and the two sideband vectors required for any one modulation frequency the remaining one on its own will continue to vary the amplitude of the carrier. In fact, if its length is doubled, to be the same as the carrier's, as in Fig. 2(a) (instead of the half-carrier-length that is

![Diagram](wirelessworld_2.png)

Fig. 2. If one side vector in Fig. 1 is omitted, and the other doubled (a), the amplitude modulation is distorted and becomes mixed with frequency modulation (indicated by the resultant of carrier and side vector wagging from side to side). Reducing the depth of modulation reduces the distortion (b).

It is worth noting that if one side vector is abolished (to represent single-sideband transmission) the limit when there are two sidebands) the amplitude modulation is 100 per cent. But there are two complications. One is that the resultant of the carrier and single-side-wave gives a distorted modulation. For example, when the side-vectors in Fig. 1 are at right-angles to the carrier vector they cancel one another out and the carrier is for an instant at its unmodulated amplitude; whereas with a full-length single-side wave, as in Fig. 2(a), the resultant when they are at right-angles is 40.7 per cent longer than the unmodulated carrier. If the depth of modulation is sufficiently small, as in Fig. 2(b), this distortion is negligible. The other complication is that the resultant no longer keeps directly in line with the carrier vector; it wags to and fro like an inverted pendulum. So instead of rotating at a uniform speed, representing a constant frequency, the radiated wave alternately speeds up and

Wireless World

September, 1948
slows down at the modulation frequency. In other words, frequency modulation!

So we see that while three constant-frequency waves, as in Fig. 1, add up to give A.M., a combination of two waves, as in Fig. 2 (which can be called either single-sideband transmission or heterodyning, according to circumstances) yields a mixture of A.M. and F.M., both somewhat distorted.

Pure undistorted F.M. would be represented by a vector that maintained a constant length and wagged to and fro about its unmodulated position in time with the modulation. Can we find out what side waves must be added to the carrier wave to give this result?

We can, perhaps, if we are mathematicians of such a high order as would be ashamed to be seen reading "Cathode Ray." If we are not, we can quite easily build up a simple approximation which will at least explode the narrow-waveband fallacy.

The clue is in Fig. 2. Here a single side-wave produces F.M., but unluckily it is mixed with a lot of A.M. We have seen that a second side wave such that the vector resultant of the two is always in line with the carrier vector (as in Fig. 1) stops the F.M. wag and gives pure A.M. What we want is to keep the wag and stop the variation in carrier amplitude. Putting it like this, it is easy to see that a good step in the right direction can be achieved simply by rearranging the two side vectors so that their resultant is always at right-angles to the carrier vector instead of being in line with it. The combination with the carrier, as Fig. 3 shows, is a vector that wags in time with the side vectors, and keeps a tolerably constant length provided that the side vectors are very much shorter than the carrier vector. From this we conclude that A.M. can be converted into a nearly pure F.M. merely by shifting the phase of the sidebands by 90° (or, what comes to the same thing, reversing one of them), provided that the depth of modulation is small, as it necessarily is with F.M.

The important point to notice is that in order to make the carrier wave frequency vary at modulation frequency, it is necessary to add side waves whose frequencies are the same as in A.M.

For example, to vary a 1,000-kc/s carrier wave between 999.9 kc/s and 1,000.1 kc/s 2,000 times a second (i.e., at 2 kc/s) it is necessary to generate frequencies, not of 999.9 and 1,000.1 kc/s, but 998.0 and 1,002.0 kc/s, making the bandwidth actually 20 times the deviation.

That may seem very surprising—almost incredible—but so at one time seemed the statement that varying the amplitude of a carrier wave necessarily brings into existence waves of different frequency. In both cases the vector diagram is the clearest way of visualizing the process.

For example, Fig. 3 has made it clear that if the "wag" is very small, the combination of a carrier wave and a pair of sidebands (just as in A.M. except for the 90° phase shift) is practically perfect F.M.; but if the wag were large the simple pair of side frequencies for each modulation frequency would not be enough to make pure F.M.; there would have to be other vectors to neutralize the progressive lengthening of the combined vector towards the extremes of its wag. So one would (quite rightly) expect the sidebands to be more complicated than with A.M. The important quantity, evidently, is what might be called the "angle of wag." Comparing Fig. 3 with Fig. 1, it seems to be the F.M. equivalent of depth of modulation; a more sensible one, anyway, than our previous idea of depth of frequency modulation as deviation. To understand carrier frequency clearly what this important "angle of wag" in the vector diagram corresponds to in real life may demand rather close attention.

Obviously, the size of the angle depends on the lengths of the side vectors relative to the length of the carrier vector. Yes, but what decides the lengths of the side vectors? In A.M. it is easy—the amount by which the carrier amplitude increases and decreases as a result of modulation. In F.M. it presumably has something to do with the deviation.

Suppose you have a clock that always keeps perfect time, and...
Frequency Modulation—also an electric clock driven from the public supply. Suppose that the hour hand of the perfect clock is removed, and the minute hand of the electric clock coupled up in its place. Then if the supply mains were always exactly on frequency the minute hands of the perfect clock goes round relative to the clock. What decides the angle of wag? Obviously two things—the rate of decrease and increase in the minute-hand frequency of the electric clock, and the modulation frequency. If the E.B. kept up their go-slow policy for a week on end, the divergence between the two minute hands would clearly be 14 times as great as for the 12-hour period imagined above. So in F.M. the angle of wag is inversely proportional to the modulation frequency. Its relationship to the rate of losing and gaining is slightly complicated by the question of how the rate occurs. The easiest case to consider would be the one in which the slowing was applied suddenly and maintained at a constant rate all day, followed by a sudden speeding up maintained steadily all night. Suppose the deviation were half the modulation frequency, that is to say, 1 cycle per 4 days. Then in 12 hours (one quarter of a M.F. cycle) the divergence would amount to one-eighth of a revolution of the minute hand, or 45°.

This would be too large an angle of wag to be represented with reasonable accuracy by Fig. 3 (one pair of M.F. vectors). Either the frequency deviation would have to be reduced, or the period of the modulation cycle reduced (M.F. increased).

The above method of applying the frequency modulation is what we would call modulating by a square wave. The angle of divergence increases steadily throughout one quarter of a modulation cycle, so the lower the M.F. the greater the angle of wag. A little consideration of the above example shows it to be 360° × \(\frac{f_d}{f_m} \) × 90° \(\frac{f_d}{f_m} \) degrees, where \(f_d \) is the frequency deviation and \(f_m \) the modulation frequency.

In radio one is generally more interested in sine-wave modulation, in which the frequency is varied gradually, and the full frequency deviation occurs only at the peaks of modulation. Obviously the angle of wag will be less than for square wave modulation, because the average rate of losing and gaining is less than the peak rate. It is a simple problem in integral calculus to show that the average value over each half-cycle of a sine wave is \(\frac{2}{\pi} \) times the peak value. So with this sort of modulation the angle of wag (call it \(\theta \)) is

\[
\theta = \frac{90° \times \frac{f_d}{f_m}}{\frac{180°}{\pi}} \quad \frac{f_d}{f_m}\ 	ext{degrees.}
\]

Expressing \(\theta \) in radians instead of degrees we have the simple formula

\[
\theta = \frac{f_d}{f_m}
\]

So our angle of wag in radians with sinusoidal modulating wave-

![Fig. 4. When the "angle of wag" or modulation index, \(M \), is small, the only appreciable sideband frequencies in F.M. are the same as those for A.M. (a). As \(M \) is increased, more side frequencies are generated, so that the bandwidth needed is always more than double either the modulation frequency or the frequency deviation.](image-url)
useful way of reckoning depth of frequency modulation, is usually called the modulation index and denoted by M.

When M is much less than 1, as in Fig. 3, the modulated wave is very nearly the same as if it consisted of a carrier and two side waves, as shown by Fig. 4 (a) for a single \(f_m \). When it is increased, the first thing that is necessary to add to the simple vector diagram is something that will subtract from the length of the resultant vector at the extremes of its wag; that is to say, twice during every modulation cycle. That again is only an approximation; for greater accuracy, frequencies spaced 3, 4, 5 etc., times as far from the carrier are needed. It is difficult to calculate their amplitudes, but they can be derived from Bessel functions. If you understand Bessel functions you would hardly be reading this, but fortunately it is not necessary to understand them, because most radio engineering books, and certainly all books on F.M., give tables or curves of Bessel functions from which the amplitudes can be read off. Fig. 4(b-e) shows how they build up as M is raised. Notice how, unlike A.M., the carrier amplitude varies and may even disappear.

The thing to remember is a rough rule that the total bandwidth needed in an F.M. system is equal to \(2(f_m + f_d) \) (compared with \(2f_m \) in A.M.). Amplitudes outside those limits are so small that loss of them causes negligible distortion.

Seeing that the last thing one generally wants is to spread the bandwidth of a transmission wider than necessary for the modulation frequency to be carried, why use large deviations? Why (since, with the smallest \(f_d \), \(2(f_m + f_d) \) must be greater than \(4f_m \)) use F.M. at all?

That is too long a story to start at this stage, and has been pretty fully argued in the technical press. But briefly—

The F.M. transmitter does not have to handle 100 per cent. increases in carrier amplitude as in A.M., so can be smaller. The modulator can also be much smaller than is generally needed for high-quality A.M. It has often been said that better quality can be obtained from F.M., but there is no foundation for that, except in so far as reduced liability to noise may be said to give an improvement in quality.

It is this noise reduction that is the main argument for F.M., and very shaky argument some of it often is. There are two main sorts of noise: the general rushing sound (fluctuation noise) that is inevitable whenever a signal is so weak that amplification has to be pushed to the limit, and the clicks due to motor ignition and the like. In any reception that is worth while, the amplitude of the first sort of noise is much less than that of the signal; and in this case F.M. gives a better signal-to-noise ration than A.M., especially if M is made large, and pre-emphasis is used (see "Cathode Ray" for May, 1947). A large M means a large bandwidth, for which there is no room except at very high carrier frequencies. On such frequencies the usual sources of non-fluctuation noise generally cause little disturbance, with the important exception of ignition. This consists of brief pulses usually many times greater in amplitude than the signal. So naturally they sound like machine guns in the ordinary A.M. receiver, especially as its high selectivity prolongs the duration of each pulse. The F.M. receiver, with a constant-amplitude signal to work on, is fitted with a limiter which cuts all the peaks down to signal level, and its wide bandwidth preserves their brevity. What F.M. enthusiasts usually ignore in their comparisons is that A.M. receivers, too, can be given wide bandwidths, and de-emphasis, and limiters that follow the modulation. When the comparison is fair there is little difference between A.M. and F.M. in regard to impulsive noise, or to fluctuation noise that is either negligible or comparable with the signal. At receiver sites where fluctuation noise is appreciable (for example, beyond the range of quiet A.M. reception), F.M. is beneficial. But only so long as the receiver is accurately tuned.

There are many other things to take account of in a comparison, and I have only hinted at F.M. receiver technique; but being limited for space I have picked out the points that seem to cause most confusion. I leave the rest to the copious literature of F.M.
Unbiased

By FREE GRID

\(\lambda \) and ~

It seems a great pity that we cannot get rid of wavelengths altogether and concentrate on frequencies but if we must retain, for the sake of the weaker brethren, the easily visualized idea of curves, let us at least make the conversion of frequencies to wavelengths vice versa an easy and straightforward see-at-a-glance business. It certainly is not very easy at present owing to the awkwardness of the factor 3.

Justifying her household accounts.

The Moguls of Broadcasting House, who ought to know better, still put the frequency half apologetically in brackets following the wavelength in the Radio Times. Judging by the dial calibrations of their products, most set manufacturers don’t seem to have heard of frequencies, and it is very irritating to have to convert 216.8 metres to 1384 kc/s when tuning in.

It has always been a matter of great difficulty to get the public to abandon or correct obsolete and obsolescent methods of measuring time and space. One of my ancestors, writing in September, 1752, complained bitterly about the trouble which the government of the day was having to convince the unlettered masses that the Julian system of celestial chronometry had become sadly out of step with actuality.

If, therefore, we must continue to dabble in wavelengths let us at least make their relationship to frequency an easily calculable one. This we could very well do by abandoning the metre and returning to the foot as the unit of \(\lambda \) measurement. Those of you who, like myself, have been associated with wireless since the ’nineties will hardly need reminding that in those stirring days \(\lambda \) was invariably expressed in feet. If my memory serves me right, sets used in the Boer War were so calibrated.

The advantage of returning to feet is obvious since 1 Mc/s = 1,000 ft, 10 Mc/s = 100 ft and so on. Admittedly the relationship between Mc/s and feet is not quite as exact as I have made it out to be, but by a little permissible jugglery, of far less magnitude than that which a woman uses to justify her housekeeping accounts or a politician his statistics, this can be rectified. All that is necessary is to adopt a “New Look” foot which instead of being equivalent to 30.48 cm, has a value of 29.9793 cm. This latter value is based on the latest measurement of the velocity of propagation by means of the cavity resonator method which, according to the N.P.L., is 299,793 ± 9 km/sec.

This new “foot” linked as it would be to something unalterable like radio propagation might well be used as the basis of a new British Decimal “Metric” system, the advantage of which would readily be seen and eagerly adopted by the whole world. It would thus be up to the President of the Board of Trade to seize the opportunity of redressing our trade balance by arranging for the manufacture and export of countless millions of the “New-foot” rules and in his honour I think we might well call the new unit the “Barefoot.”

The Cosmetometer

People have often asked me who can legitimately be termed the inventor of what has come to be called radar. If I suppose that the correct answer is Prometheus, for, prior to his daring fifth column activities in the celestial spheres, man did not possess any means of generating electro-magnetic waves. It is fairly safe to say that after using his new possession to cook his morning kipper Mr. Everyman was quick to notice that he was able to come into the house after nightfall without tripping over the mat, thereby laying himself open to a barrage of questions from his better half about the way he had been spending his evening. This undoubtedly constituted true radar since Mr. Everyman’s ability to see the mat was due to U.S.W. generated by himself and not by the moon.

Prometheus could not, however, have foreseen the manner in which the fruits of his kleptopyretic activities were to be used countless centuries hence by Watson Watt and others any more than Watson Watt could have foreseen to what base ends his pioneer work of the middle thirties would be put in 1948. I myself would scarcely have credited it had I not had the good fortune to pick up a bundle of typewritten papers in a taxi. They had apparently been left there with all the careless abandon with which people seem to leave their pheno-barbitone tablets lying about. The fact that the papers were tucked into a heavily thumbed copy of Wireless World led me to glance at them. I was astonished to find a complete specification of an invention prepared for submitting to the Patent Office in the joint names of a very well-known radio engineer and an equally famous women’s beauty specialist.

The basic idea of this so-called cosmetometer was that the radar echo from the actual skin on the face of the female being “made up” in a beauty parlour would arrive back a split micro-second later than the echo from the surface of the make-up paint, the time difference being used to indicate the thickness of the make-up on her face and lips. Apparently it is of the utmost importance that some women should have a greater thickness of “coverage” than others. Speaking as a family man used to sitting round a breakfast table with a varied collection of women in the raw, I can very well believe that, and the inventors have my heartiest good wishes for the success of the idea.
LETTERS TO THE EDITOR

Reducing Televisor Noise • Shortcomings of Direct Coupling • Functional Circuit
Diagrams • Radio Jargon

Long-range Television

I AM interested in H. W. N. Long’s letter (your June issue) and the limitation in television reception due to noise which he has experienced.

I have not for some years experienced television reception on very low field strengths but I would suggest that, if the noise he refers to is receiver noise and not local interference, the “Cascade” circuit might be of interest as a possible means of improvement.

The circuit consists of two triodes, the first grounded-cathode, the second grounded-grid, and the gain is about the same as that of one pentode of comparable slope. Design and adjustment do not appear to be particularly critical and for 6 Mc/s bandwidth at 45 Mc/s the noise factor should be about 1.75 db.

H. G. M. SPRATT.
Enfield, Middx.
*Proc. I.R.E., June, 1948, p. 700;

Direct-coupled Amplifiers

THERE has been a noticeable trend during the last year or so to regard direct coupling (your July issue, p. 266) as the apogee of refinement in audio-frequency amplifiers, conferring untold (and usually unspecified) benefits on the ultimate performance. Since this form of coupling normally involves sacrifices in other directions it is worth while examining the basis of the claims somewhat critically.

The following are the chief advantages adduced by the advocates of directly coupled amplifiers:—

(i) the gain/frequency response can be effectively maintained to a very low frequency;
(ii) the phase shift at low frequencies can be reduced to a low value;
(iii) the small phase shift at low frequencies permits the application of a large amount of negative feedback;
(iv) the small phase shift produces a corresponding improvement in transient response.

Let us examine these claims individually and collectively.

With a normal type of resistance-capacitance coupling using typical values, say a 0.02-μF condenser and \(\frac{70-102}{2} \) resistor, the drop in response at 20 c/s is only 1 db, while if 0.1μF and \(\frac{70-102}{2} \) are used the drop is only 0.05 db. The corresponding phase shifts are 28° and 6°. In other words, the fall in response and phase shift, even with the smaller value of coupling, are completely negligible at the lowest frequencies in the audible range.

The next argument presupposes that when negative feedback is applied the stability limit is set by the phase rotation at low frequencies.

This high-frequency instability is, in turn, largely determined by the gain and phase characteristics at the higher frequencies. Now if direct coupling is used we are immediately circumscribed in our choice of coupling methods, since the satisfying of the D.C. conditions must be our prime consideration. As a result normal directly coupled amplifiers tend to be of low gain and consequently, for a given total gain, a large number of stages is required.

It is easy to show that the permissible degree of negative feedback is determined by the number of stages (see Dr. Buss’ equation given in Terman’s “Radio Engineering Handbook”); this evolves from the fact that, at high frequencies, each stage is, effectively, a resistance and capacitance in parallel.

It is therefore true to say, in general, that a greater degree of feed-back can be applied to an amplifier consisting of a small number of high-gain stages than one with a large number of low-gain stages, even where these are directly coupled.

Finally, the transient response of the system will be determined, largely, by the high-frequency gain and phase characteristics; it has just been shown that, owing to the concomitant circuitry limitations imposed by direct coupling, the transient response may, in fact, be rather poorer than with normal conditions.

The disadvantages of direct coupling, difficulties in initial setting, variation of conditions with ageing valves and dependence on the sta-
Letters to the Editor

The writer has noted that the devotees of direct coupling are not above using C networks, for equalization of recording characteristics, tone controls, or decoupling of screen and cathode circuits, any of which may produce its own phase shift. There are, of course, certain specialized requirements where direct coupling is essential; e.g., in video amplifiers and electronic control equipment; for normal audio-frequency use, however, it is not worth while sacrificing the freedom of action which normal coupling affords for the illusory advantages of direct coupling.

E. JEFFERY.

Arborfield, Berks.

"Quality in the Home"

To say, as you do, Sir, that you are not entirely convinced by all the arguments adduced by H. S. Casey in your August issue is, I should imagine, an example of the masterly understatement for which we British are famous. So many fallacies gathered together in one place should provide fair shares for all readers in the sound-quality section to discuss, so I will confine my comments to the account of my alleged activities in 1938, which is a complete misrepresentation. In the article referred to by Mr. Casey (March 10th, 1938), so far from advocating scale-distortion remedies, such as a weighting network, as a result of the great difference between actual and reproduced levels of sound disclosed by tests in the Queen’s Hall, I showed that under the quite typical conditions described there was no substantial difference, and where, for various reasons, sound reproduced in the home has to be at a much lower or higher level than the original, I have insisted from the start (Sept. 24th, 1937) that the remedies commonly proposed—"bass compensation," etc.—are usually fallacious and may sometimes even make matters worse.

Mr. Casey has confirmed my impression that after all these years the "Cathode Ray" picture of this subject has faded or become defocused in many minds, or perhaps was insufficiently clear in the first place, and ought to be rescanned. This, if you were to agree, and to reserve the necessary area of screen in a future issue, I would be very ready to do.

"CATHODE RAY."

Directional Arrows

In your April issue, I dealt with directional arrows in a frivolous manner; here is a serious suggestion.

In your July issue a circuit diagram on page 266 contains a two-way switch for feeding the grid of a valve from "Radio" or "Pick-up." The switch is shown as at (a) in my diagram. Since the direction of cause-to-effect is from the pick-up to the valve, I suggest that the circuit would have been better drawn as at (b). This way of drawing the arrows corresponds to the verbal explanation "The output of the (pick-up) is fed to the grid."

L. H. BAINBRIDGE-BELL.

Haslemere, Surrey.

Superlatives

As technical librarian in an engineering organization I should like to endorse heartily all you say about the use of superlatives in your July editorial of Wireless World. I think, however, that the situation is even worse than you have suggested. For instance, the words "super" and "ultra," have come to indicate even a difference in kind—"supersonic" embracing velocities higher than sound, and "ultrasonics" frequencies above the audible range. This would be all very well if it was adhered to strictly, but we find at least one manufacturer marketing apparatus labelled "supersonic" when it uses high frequency, not high speed, sound waves.

The professional institutions or the standards institutions should make some effort in this matter quickly or technicians and librarians alike will be lost in ultra confusion!

A. L. VINYCOMB.

Clacton-on-Sea.

"Meaningless Misnomers"

"FREE GRID" has taken me to task for suggesting, in Wireless Engineer, that certain prefixes should be used. In part, his objection is that I have seen these prefixes in print, I can only confess meekly that it was the best print; these prefixes are recommended by the International Standards Authority (I.S.A.), and as the W.E. correspondence was about standardization, it seemed to be no place for unconventional suggestions. The real trouble is that the Greeks never needed to refer to 10¹⁴ or 10⁻¹⁴. "Free Grid's" suggestions appear to me to be quite unsuitable: hexagon and sextet are...
Tax on Valves

This tax on valves (although reduced) is still beyond a joke. If through unhappy accident a valve goes up in smoke a proportion of the cost involved goes up in purchase tax. We don't destroy our valves for fun. Our Chancellor should relax. It's hard to have to suffer from the output valve distortion because we simply can't afford this Government extortion.

Transformers and capacitors are both exempt from tax; why should valves be singled out? is a question we all ask. We listeners have almost reached the limit of our tether: we all ask. We listeners have almost reached the limit of our tether. The root of teratology, meant a miracle, or a portent. This is just the prefix for 10^9, and I never regarded Jack the Giant-killer as a cure for school-girl laughter.

Ambleside.

* and H.T.B.s.

Feedback and Distortion

The letter from Howard Booth in your June issue on the subject of overload distortion in amplifiers with negative feedback calls attention to the possibility of distortion confusion widened by frequencies outside the normal desired pass band or within the extended range of the amplifier due to f-b.

I would like to add some remarks covering the more general case of frequency selective f-b, whether introduced by a selective network as tone control or present as the result of deficiencies in the amplifier itself.

Where there is a level frequency input to the amplifier, any increase in gain in a range of frequencies, brought about by reduced negative f-b, at those frequencies, must result in overload unless the general output level is reduced. This effect is noticeable in amplifiers where bass boost has been obtained by selective f-b to compensate for deficiencies in the loudspeaker system, occurring in the bass well below the amplifier is fully loaded at other frequencies. It can also take place where the amplifier itself introduces frequency distortion and where no elaborate selective f-b is employed, as a smaller degree of f-b automatically takes place for those frequencies which are subject to less amplification (without f-b), thus increasing the effective input. This could be tolerated if the lower normal gain were spread evenly over the various stages or possibly if it were confined to the first stage. Unfortunately such deficiencies are usually only encountered in the output stage and either this stage or an earlier one will be overloaded if considerable f-b is employed.

The above argument applies where there is a level frequency input. Where the input is deficient in a certain range of frequencies it is quite possible to use selective f-b to boost them to the general level, without distortion. Tone control in the form of attenuation by selective f-b is, of course, also quite harmless.

It will be seen, therefore, that if it is desired to straighten out the response curve of an imperfect amplifier by means of negative f-b a lower output level must be accepted if distortion is to be avoided. This may be somewhat offset by the larger apparent output in the bass. Treble boost by selective f-b is not likely to introduce trouble if careful attention is paid to phase shift in the network, but it is best, in my opinion, to confine the use of bass boost to cases where the input is lacking in the low notes, such as with the modern types of pickups, unless a lower general output level can be tolerated.

Newquay. C. C. GERRY.

Surgeless Volume Expansion—Correction

In this "Letter to the Editor" (our June issue) the double diode valve type should have been given as 2D4B. The cathode resistor of the "signal" AC/SP1 valve is 680 ohms.—EDITOR.
Random Radiations

By "DIALLIST"

Aircraft and Television

Several curious instances of interference into television reception by aircraft have been reported at intervals in Wireless World. What one may call the normal type is that due to the arrival of the signal direct and also by reflection from the aircraft. The effect of this is to produce a "ghost" image, the displacement of which from the original depends on the difference between the lengths of the two paths. Another phenomenon reported is the appearance of vertical light and dark stripes over the image. That, I believe, may be due to the reception of radar pulses reflected from the aircraft. In last month's issue R. M. Staunton-Lambert briefly described what seems to be a different form again. What he finds is that, though sync is more or less unaffected, the light density of the image fluctuates. This set me thinking of the effect we used to call "beating" which was often seen on G.L.I and the television receiver at the present time in the way of research and development in ultrasonics. Ultrasound is concerned with vibrations at frequencies between 20 kc/s and 2 Mc/s. Some super-enthusiasts see in it the answer to half the problems with which mankind is faced to-day. Others, taking a more realistic and sensible view, believe that in ultrasonics we have, if not a universal panacea, at least something with great possibilities. So far, only two types of ultrasonic generators have been evolved, the magnetostriction and the piezo-crystal. Each has its pros and its cons. The magnetostriction type can develop useful amounts of power; but it becomes very hot in operation and liquids to which it is applied boil. In the piezo-crystal generator the power is developed at the surface of the crystal. Crystals are fragile and delicate and you might hardly associate their physical vibrations with kilowatts of power. Yet at least two British concerns have got far enough already with crystal generators to be talking in terms of at least half-kilowatts of mechanical energy. The practical applications? They're legion. The lay papers have already given some account of the success in laundering operations (the dirt is literally shaken out of soiled clothes) obtained by the Mullard Electronics people, who are concentrating on magnetostriction generators—it's all to the good if the water does boil when you're using it for washing. Non-destructive tests of materials is another big field.

Wide Fields

In the old days the only known way of obtaining an idea of the quality of castings, forgings, steel ingots and so on was to cut up a certain percentage of each batch in order to discover whether or not they contained flaws, air holes or "pipes." Then came the X-ray method, which has the great advantage (particularly in the case of expensive finished articles such as aeroplane propellers or gun barrels) that none of a batch is destroyed during the tests. Further, the destruction method is not a certain one; faults may be present in just those pieces which escape being tested. Ultrasonics already provides a means of making the tests previously carried out by X-rays. The generator is far less expensive and the results are more promising. In some of the tests radar methods are employed. Take the testing of a casting in the form of an armchair. Vibrations are applied at the circumference and are normally reflected back to a receiver, also at the circumference, from the boundary of the central hole. By means of a C.R.T. display the normal time for the out-and-home journey is measured. Should there be a flaw, reflection will take place from its boundary and the shorter travel time will be shown up by a displacement of the break on the timebase trace. Castings of irregular shapes may be tested in the same way, and as many reflections occur here, a skilled operator is needed to interpret them correctly.

Spelling Bee?

My old colleague Free Grid appears to be suffering from a bee in his bowler. Why, in view of that profound knowledge of the classics that he sometimes displays, he should imagine that ter- is the Latin prefix meaning threefold and tri- its Greek equivalent I don't know. The
truth is, of course, that tri- is common to both ancient tongues, as you may see in “triangle,” which is pure Latin, and in the “trigon” of trigonometry which is equally pure Greek for the same thing. If Free Grid really wants to rechristen all the multiples and submultiples of our electrical units on the index system why doesn’t he adopt the method invented by (I think) Johnstone Stoney? Johnstone Stoney called 4.5×10^{-3} four point five eighthet metres. On those lines a microfarad would become a sixheth farad and a picofarad a twelfthet farad. So far as I remember, the plain ordinals were used for numbers with positive indices, which would make the kilocycle into a third cycle and the megohm into a sixth ohm. The trouble about such a system is that it would not be international. As the metric system is so firmly established, it’s not likely to be ousted and we shall go on using deka-, hecto-, kilo- and mega- for the multiples of units and the Latin deci-, centi-, milli-, for the submultiples. Mega-, micro- and pico- also seem to have come to stay. The real bother is that nowadays we want to go many steps further upwards than the to’ of mega- and many further down than the 10^{-12} of pico.

Manufacturers' Literature

Illustrated leaflet describing neon indicator lamps, from Acru Electric Tool Manufacturing Co., 123, Hyde Road, Ardwick, Manchester, 12.

The following additions have been made to the illustrated leaflets issued by Marconi's Wireless Telegraph Co., Chelmsford: “Marconi Broadcasting” (Ref. SP12), “V.H.F. Direction Finder” (Ref. SL34) and “Type ACP78 Transmitting Valve” (Ref. B41).

Illustrated leaflet describing the “Universal Dial and Drive System” made by the Plessey Company, Ilford, Essex.

List of A.C. and D.C. solenoids made by Westool, Ltd., St. Helen's Auckland, Bishop Auckland, Durham.

Leaflets describing Type P4 I.R. transformers and Series B coil packs made by Weymouth Radio Manufacturing Co., Crescent Street, Weymouth.

Indicators

Bulgin

Registered Trade Mark

Signal Fittings

In All Colours

Universally used by reason of their complete reliability, these signal fittings are found on all types of electronic and domestic electrical apparatus. The types illustrated are for low-voltage use, and are designed for M.E.S.-cap and similar lamp bulbs. Models are available with one pole to “live” frame, or with frame “dead” (when max. [peak] wkg. V. to E. = 250, 500 V. peak test). Internal lamp-holding arrangements ensure permanent trouble-free contacting. Types also manufactured suitable for M.B.C. and S.E.S lamps.

Enquiries for direct—and indirect—export are particularly invited.

The Choice of Critics

Bulgin

Registered Trade Mark

A. F. Bulgin & Co. Ltd. • Bye Pass Rd. • Barking

Telephone: Rippleway 3474 (5 lines)
DIRECTIONAL F.M. SYSTEMS

In directional systems where the critical signal strength is caused by changes in the amplitude of the carrier, due to the relative orientation of receiver and transmitter, it is not possible to use frequency-modulated signals alone, because the strength of such signals is independent of wave amplitude, and would therefore be the same for all directions in space.

According to the invention, the difficulty is overcome by introducing an auxiliary phase modulation between the transmitter and receiver, from which the desired directional information is derived. A spaced arrangement of aerials is used, either at the transmitter or receiver, and these are successively switched into circuit in cyclic order, thereby imposing a phase sweep which depends upon the relative orientation of the spaced aerials, and is therefore a function of changing direction.

The use of frequency modulation permits several different beacons to be operated on the same carrier, so that each dominates a given area. It also simplifies the problem of eliminating interference.

A PASSIVE network of inductance and capacitance is used to superpose speech or other signals on a train of pulses, normally of equal spacing. The modulating circuit M includes a series of iron-cored inductances shunted by condensers. It is fed with pulses of constant repetition frequency from a source S, and simultaneously with signals from a microphone amplifier A. The fluctuating signal current varies the permeability of the inductance cores, and so alters the retardation curve of the network.

In the diagram showing the resulting time modulation of the pulses, P represents its original spacing, and Pt the relative displacements produced under the influence of an audio signal V. The system is particularly suitable for multiplex signalling, because the time displacements are small enough to permit the use of a relatively large number of separate channels.

TWO-WAY SIGNALLING

Signals are sent from point to point, in both directions, by amplitude-modulating two interlaced trains of pulses, both on the same carrier wave, so that no change-over switch is required for sending and receiving.

Each of the stations is provided with a pulse generator which is coupled to the local transmitter through a gate valve, so that transmission from that station occurs only during the positive half-cycle of each pulse. The local receiver is then automatically muted, but is made operative during each of the negative half-cycles.

The pulse generators at the two stations are interlocked in such a way that the cessation of the first pulse received from the distant station triggers a response pulse from the local station; and so on, until the two stations are connected by two interlaced trains of pulses, both having a repetition frequency determined by the transit time between the stations, plus the time constant of the local generator. The modulating signal is not allowed at any time to reduce the pulse amplitude to zero.

The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from specifications obtainable at the Patent Office, 25, Southampton Buildings, London, W.C.2, price 1/- each.
ACKNOWLEDGED THROUGHOUT THE WORLD

EREIE Radio & Electronic Components

RESISTORS • CERAMICONS • HI-K CERAMICONS • POTENTIOMETERS
SUPPRESSORS • VITREOUS ENAMELLED WIRE-WOUND RESISTORS

Erie Resistor Ltd., The Hyde, London, N.W.9, England
Telephone: COLindale 8011-4. Cables: RESISTOR, LONDON.
Factories: London & Gt. Yarmouth, England • Toronto, Canada • Erie, Pa., U.S.A.
Evidence of PROGRESS

The illustration above shows an ACOUSTICAL product of ten years ago—an amplifier designed for high quality reproduction of records and radio programmes. Using push-pull triodes throughout—RC coupled throughout—independent treble, middle and bass controls etc., it was considered about the best that could then be obtained. Indeed the circuit is often specified today for high quality reproduction.

A comparison of the performance with that of the QA12/P reveals the extent of recent developments.

<table>
<thead>
<tr>
<th></th>
<th>Pre-War</th>
<th>QA12/P</th>
<th>Improvement achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output deviation</td>
<td>3 db</td>
<td>0.3 db</td>
<td>7 times better (%</td>
</tr>
<tr>
<td>within 20-20,000</td>
<td></td>
<td></td>
<td>power change)</td>
</tr>
<tr>
<td>c.p.s. range ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>30-15,000</td>
<td>15-30,000</td>
<td>Increase of two</td>
</tr>
<tr>
<td>within ± 1 db ...</td>
<td></td>
<td>c.p.s.</td>
<td>octaves.</td>
</tr>
<tr>
<td>Total distortion at 10</td>
<td>2%</td>
<td>0.1%</td>
<td>20 times less</td>
</tr>
<tr>
<td>watts (Both models</td>
<td></td>
<td></td>
<td>distortion.</td>
</tr>
<tr>
<td>rated 10-12 watts),</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity (r.m.s.</td>
<td>0.2 v</td>
<td>0.0015 v</td>
<td>120 times more gain</td>
</tr>
<tr>
<td>for full output) ...</td>
<td></td>
<td></td>
<td>with no background</td>
</tr>
<tr>
<td>Background noise</td>
<td>120</td>
<td>1</td>
<td>15 db lower back-</td>
</tr>
<tr>
<td>(equivalent r.m.s.</td>
<td>microvolts</td>
<td>microvolt</td>
<td>ground.</td>
</tr>
<tr>
<td>at input) ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Background for equal</td>
<td>-65 db</td>
<td>-80 db</td>
<td></td>
</tr>
<tr>
<td>(low) gain ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load impedance</td>
<td>2</td>
<td>12</td>
<td>Better damping.</td>
</tr>
<tr>
<td>Internal Impedance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treble and bass</td>
<td>variable</td>
<td>variable</td>
<td>Wider range of</td>
</tr>
<tr>
<td>controls ...</td>
<td>extent of</td>
<td>slope of</td>
<td>control and slopes of</td>
</tr>
<tr>
<td></td>
<td>boosts and</td>
<td>boosts and</td>
<td>controls more ac-</td>
</tr>
<tr>
<td></td>
<td>cuts.</td>
<td>cuts.</td>
<td>curately designed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for small room</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>listening conditions.</td>
</tr>
<tr>
<td>PRICE</td>
<td>£60</td>
<td>£50</td>
<td>50% less cost.</td>
</tr>
</tbody>
</table>

ACOUSTICAL

Acoustical Manufacturing Co., Ltd.,
HUNTINGDON.

Wireless World September, 1948

Varley

Products of Quality & Reliability

Mains Transformers
A.F. Transformers
Smoothing Chokes
Thermal Delay Switches
Power Resistances

Oxiver Pell Control Ltd

MICA DIELECTRIC TRIMMER Capacitors

Sydney S. Bird & Sons Ltd.

CAMBRIDGE ARTERIAL ROAD, ENFIELD, MIDDX.

Today's outstanding development - a mains operated record player with inbuilt 3-watt amplifier, speaker and new fool-proof auto-stop motor.

The 'Recordmaster' sells on first sight of its attractively styled case - it can be played anywhere, anytime. Send for details now.

Price £11.11-0 list.

BIRMINGHAM SOUND REPRODUCERS LIMITED, OLD HILL, STAFFS.
For precision alignment of Tuned Circuits and visual observation of Electrical Phenomena.

Illustrated are the latest models of the 12008 Oscilloscope and the 1400B Visual Alignment Signal Generator.

Special features of the Oscilloscope are:
- High gain D.C. amplifiers on both axes
- Linear time base with perfect synchronisation at any frequency
- Complete independence of all controls from each other.

The 1400B Unit will show the shape and characteristics of a tuned circuit response curve on the oscillograph screen. Thus perfect alignment of an I.F. or R.F. amplifier is easily accomplished. General size of combined instruments: 7" wide, 11" high, 9" long.

- It's also made electronic equipment for special purposes. If you have a problem in this field we will be pleased to cooperate.

Early Deliveries.

ON THE WAY

2 IMPORTANT ADDITIONS to the range of DENCO COIL TURRETS

CT4. A complete tuning unit of advanced design for use in communication receivers, having one high gain R.F. stage, mixed and separate oscillator. Covers in six ranges 175 kc/s to 36 Mc/s with 1.6 Mc I.F. Calibrated Band Spread tuning of 5 amateur bands plus logging scale for other frequencies. Many other important features.

CT7. The important addition of an R.F. stage to our well-known CT.6 general coverage turret, plus other refinements has evolved the CT.7, which is designed more particularly for world-wide broadcast reception. For 465 Kc I.F. covering in five ranges 150 kc/s—30 mc/s.

DENCO (CLACTON) LTD., OLD ROAD, CLACTON, ESSEX

For full particulars ask your stockist or write:

DENCO (CLACTON) LTD., OLD ROAD, CLACTON, ESSEX
Telephones: Clacton 807-8
Telegram: Denco, Clacton

STEWART TRANSFORMERS

LIMITED

We manufacture High Grade Transformers and Chokes for Industrial and Laboratory use.

APPLICATIONS

Illustrated Brochure sent on request.

1021, Finchley Road, London, N.W.11
Tel : SPEedwell 3000 and 3533
THE NEW VITAVOX

G.P.1 PRESSURE UNIT

(1) Forged magnet housing. Bonderized and finished in a wear resistant thermo-setting plastic enamel.
(2) Centre pole Ticonal G magnet giving a total useful flux of 80,000 lines and a flux density of 16,000 lines per sq. cm with no external field.
(3) Locator registering pole with relation to top plate and maintaining gap width within .001".
(4) Pole cap machined to a tolerance of +.000" —.001" to ensure accuracy of assembly.
(5) One-piece diaphragm of non-corrodible Duralumin with tangential surround. Voice coil wound directly on to diaphragm to ensure strength and reliability. Phosphor bronze lead out strips.
(6) Satin Chromed top plate secured to magnet housing with socket headed screws and providing accurate registration for throat and pole locator.
(7) Rubber gasket to prevent ingress of dust and moisture.
(8) Non-rotating terminals.
(9) Die-cast throat incorporating phase correction device to ensure maximum H.F. response. Plated and finished as magnet housing.
(10) Dust cap to protect unit when not in use.

Impedance 15 ohms. Peak Power Handling Capacity 20 watts. List Price £9.10.0. (Complete in felt-lined wooden stowage box.)

TEST IT FOR YOURSELF

at STAND 137, WEST HALL, FARNBOROUGH

This super-grade communications receiver incorporates the most highly developed techniques in modern receiver design. Five degrees of selectivity, including a crystal gate and crystal filter are provided, and the sensitivity is such that an input of between 1—5 microvolts gives a signal/noise ratio of at least 10 dB over the entire frequency range of 13.5 to 26 kc/s and 95 kc/s to 32 Mc/s. Separate power units for A.C. or D.C. operation are available.

REDIFFUSION LIMITED, BROOMHILL ROAD, WANDSWORTH, S.W.18

DESIGNERS & MANUFACTURERS OF RADIO COMMUNICATION & INDUSTRIAL ELECTRONIC EQUIPMENT Phone: PUTney 5691
SOUTHERN RADIO’S WIRELESS BARGAINS

BENDIX BC453 RECEIVERS (190-550 kcs.) SIX VALVES, 12SK7 (3), 12A6 (1), 12K8 (1), and 125K7 (1). 85 kcs. Us. Ideal for Q Fiver (See Jan. QST) or can be converted to car or portable radio. 35/- plus 1/6 postage.

BENDIX BC454 RECEIVERS (3-6 megs.) SIX VALVES, 12SK7GT (3), VTI32 (1), 12A6GT (1), and 12SR7GT (1). 1415 kcs. £5封锁. Easily converted to S. wave set. 35/- plus 1/6 post.

BENDIX BC455 RECEIVERS. (6-9 megs.). SIX VALVES, 12SK7GT (3), VTI32 (1), 12SR7GT (1), 12A6GT (1). 2830 kcs. IFs. 35/- plus 1/6 post.

ALL ABOVE RECEIVERS IN ORIGINAL SEALED CARTONS.

BENDIX RADIO COMPASS RECEIVERS. MN26Y, 150-325 kcs., 325-695 kcs. and 3.4-7 meg. VALVES : 6N7 (2), 6K7 (5), 688 (1), 6F6 (1) 635 (2) and 617 (1). 28 volt Generator.
EASILY CONVERTED TO VERY SELECTIVE RECEIVER. BRAND NEW. £ 5. Packing and Carriage 10/- extra.

CONTACT OR TIME SWITCHES. Beautiful clockwork mechanism made by Venners or Smiths. Gives two impulses per second. 10 hour movement. Useful for Time switches, etc. In shockproof (rubber lined) case, 15/- post 1/- extra.

"DELCO" HAND GENERATORS, 6 volts, 4 amps. With spare brushes, 1/6 post free.

THROAT MICROPHONES, Magnetic, with lead and plug, 5/- post 6d.

MOVING COIL MIKE AND HEADPHONE SETS, Brand new, with lead and plug. 12'6 per set.

R.A.F. BOMBSIGHT COMPUTERS. With Sperry Gyro. 3-28-volt motors, gearing, barometric bellows and counters, ideal for experimenters. Brand new, £5/-, Carriage £5/- extra.

R.A.F. MORSE KEYS, 1/6 each, post 4d. £5/- per dozen, post free.

INSPECTION LAMPS, with two foot lead and Lucas plug, 3/6.

"COLLARO" GRAM UNITS. Motor, Turntable, Auto stop, magnetic swivel head pick-up and speed regulator. A.C. only. 100-250 volts, 50 c.p.s., £ 9 carr. paid.

BATTERIES. M.C.R.I. type, 90 volts, H.T. and 7½ volts L.T., 6/6 each, post 9d. 67½ volts (for personal sets, etc.), 5/6 each. Sealed carton of 4, 20/-, post 9d.

A LARGE variety of Adjustable Iron Dust Core Coils and Packs ranging from 5 to 2,000 metres, in suitable combinations and including high frequency stages together with all necessary padding and trimmer condensers, are available for most needs. Write for descriptive literature stating your particular problem.

LABORATORY TESTED

H. C. ATKINS Laboratories, 32 Cumberland Road, Kew, Surrey Richmond 2950

RIBBON PICKUP, type JB/P/R'1

Frequency range, 20 c/s to 40,000 c/s.
Permanent point 6 times harder than sapphire and more robust. Point pressure, 1/8 oz.
Point out voltage, 10 to 15 mV, across 15,000 ohms approx. "Floating Element" design prevents arm torsional resonance.
Price in U.K., including special mumetal screened transformer and Purchase Tax, £10/14/11.

This autumn we are starting a number of demonstration tours. In this way we shall be able to make many new friends and become better acquainted with our old friends, and here and there, we trust, give practical assistance on the spot where doubts or difficulties exist. Our aim is not only to popularise wide range high quality reproduction but also to help in making it more widely appreciated—since after all this must be the starting point. You and your society can probably help ; if you can, or are in any way interested, please write.

Details of Pickups, Pre-amplifiers, Amplifiers, Filters, Silent Turntables, Needles, on request.

J. H. BRIERLEY (GRAMOPHONES & RECORDINGS), LTD., 4, TITHEBARN STREET LIVERPOOL.
RESISTOR NOISE METER

Manufactured to an approved Ministry of Supply specification for the measurement of inherent noise above one microvolt in fixed and variable resistors.

PLEASE WRITE FOR FULL DETAILS TO
ERSKINE LABORATORIES LTD—SCALBY, SCARBOROUGH, YORKS.
WE ARE NOT INCREASING PRICES of the
COIL PICKUP
even though recent modifications
make it better value than ever.

Our products now include:
Type N (Moving Coil) and Arma
(Moving Iron) Pickups.
Type N and Arma heads for record
changer arms.
Straight and Equalized Transformers.
Scratch Filters
and the
Record Groove Indicator.

Full details on request.

WILKINS & WRIGHT LTD.
Utility Works, Holyhead Road,
Birmingham, 21

Resistors produced
by the cracked car-
bon process remain
stable to ± 1% of
initial value.

;± Tolerance ± 1%
± 2% ± 5%
Low temperature
co-efficient.

TELE-RADIO (1943) LTD.
Have available the following Partridge Transformers

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage</th>
<th>Current</th>
<th>Power Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans 375</td>
<td>0-375 V</td>
<td>3A</td>
<td>230 Watt</td>
</tr>
<tr>
<td>Trans 800</td>
<td>0-500 V</td>
<td>3A</td>
<td>375 Watt</td>
</tr>
<tr>
<td>Swinging Choke</td>
<td>5-15H</td>
<td>3A</td>
<td>5KVA</td>
</tr>
<tr>
<td>Auto Heater Trans</td>
<td>6.3V</td>
<td>3A</td>
<td>5KVA</td>
</tr>
<tr>
<td>Heater Trans</td>
<td>5V, 3A</td>
<td>2KVA</td>
<td>5KVA</td>
</tr>
<tr>
<td>Modulation Trans</td>
<td>50 watt</td>
<td>225 Watt</td>
<td></td>
</tr>
<tr>
<td>T.A. Microphone</td>
<td>10 watt</td>
<td>225 Watt</td>
<td></td>
</tr>
</tbody>
</table>

Please post extra for postage and packing.
(Closed 1 p.m. Thursday)

177a EDGWARE ROAD, LONDON, W.2
AMB. 6116.

TECHNICAL EXCELLENCE
—combines with beauty
and soundness of DESIGN
in the
OXLEY
AIR DIELECTRIC TRIMMER

Width : 16.5 m/m. Length : 22 m/m. Height : 1.5 to 8F—7.5 m/m.
1.8 to 20F—10 m/m. 2 to 26F—11 m/m. 2 to 32F—12 m/m. Law :
Straight line capacity. Power Factor : Less than .001. Insulation : Over
2,000 megohms. Voltage : 500 D.C.

OXLEY DEVELOPMENTS CO. LTD.
ULVERSTON NORTH LANCS. TELEPHONE: ULVERSTON 3306

Most People Stop
at PALACE GATE!

Many people, on buying an Amplifier, make a tour
from manufacturer to manufacturer. But most
people stop at Palace Gate, where the Concerto
and the KI are demonstrated. There must be a
reason! Write today for illustrated leaflet and
interesting information on the complete range of
Amplifiers and Tuning Units, in kits or complete
form.

Charles

AMPLIFIERS

le Palace Gate
Kensington, W.8
Telephone WESTern 3330
NEW RECEIVERS AND AMPLIFIERS

HARLES AMPLIFIERS, Ltd., will be happy to demonstrate in your local store the following, sound and perfect:-

Television: Ex R.A.F. type 3585 receivers. 8-in. Picture tube, 3 stages. 0.25 volt, 750 ohms, and 2500 ohms resist.ance; ideal for short-distance reception.

R. A. P., I.F.P. type 3585 receivers, complete with turntable. £35 or best offer. Other makes available.

R. A. P., I.F.P. type 3585 receivers, complete with turntable. £35 or best offer. Other makes available.

For the present all correspondence to Brixton address as below:

Telegram: Brixton 6506
PARTRIDGE TRANSFORMERS LTD
PECKFORD PLACE, LONDON, S.W.9

Phone: Brixton 6506
THE SUMMER SALE

In pre-war days our Annual Sale of odds and ends was very popular. The growth of our business makes it imperative that we clear the shelves for what we must carry in stock, and so offer you our post-war accumulation of components and instruments not of immediate use to us AT BARGAIN PRICES for the sake of the space they occupy. "We don't want to lose them but we think they ought to go." Included are:

All kinds of components slightly used in development but in excellent condition and invaluable for the home constructor.

Zeiss Microscope. Gerstling Balance and Weights. High grade Projection Lantern and available in our catalogue (post free) and "New when you call. Complete information on this is Notes in Radio" (3/6d. and 2d. postage).

152, HAMMERSMITH RD., LONDON, W.6

NO lists and first come first served, and the sooner the better.

BARGAIN PRICES for the sake of the space they and instruments not of immediate use to us AT OFFERS.- Radio Constructors, 28, Spital Hill.

E.T.A. FOUR STATION SUPERSET TUNER

Completely self-contained, may be set to any 3 medium and 1 long-wave stations. No tuning condenser or dial required. Tuning by high permeability cores. Each coil tunable over whole band. Litz wound coils for maximum gain. Once set, requires no further adjustment. Height, 24in., base 3in., by 3in. Only four connections. Price 31/- only, supplied complete with foolproof instructions, and suitable A.C. and A.C./D.C. circuit.

B.E.A. FOUR STATION SUPERHET TUNER

Completely self-contained, may be set to select any 3 medium and 1 long-wave stations. No tuning condenser or dial required. Tuning by high permeability cores. Each coil tunable over whole band. Litz wound coils for maximum gain. Once set, requires no further adjustment. Height, 24in., base 3in., by 3in. Only four connections. Price 31/- only, supplied complete with foolproof instructions, and suitable A.C. and A.C./D.C. circuit.

SPECIAL OFFER.- Ex-Govt. Multi-Range, Moving Coil Meter, 2½in. panel-mounting. 3in. by 3m. Only four connections. For maximum gain. Once set, requires no proof instructions, and suitable A.C. and D.C. circuit. Price 33/- only, supplied complete with fool-proof instructions, and suitable A.C. and D.C. circuit.

NEW LOUDSPEAKERS

R.T. in help you design your ideal "High Fidelity" reproduction; hear our comparison tests between leading makers including Barker Concert, Sound Sales Phase Inverter, Goodman's A.T. Amplifiers, Whirlpool, Panther, Lafayette, and dozens, and many others also following Pickwick, 451 North Tyne, Mariposa, Lexington, Wilkins & Wright, Marconi 14—Bolton's Radio Stores, 469, Cambridge Rd., S.D.C., Tel. Rodney 4966.
September, 1948 Wireless World

Bargains Worth Buying!

CIRCUIT TESTER. Self-contained Govt. model unused 6J x34 x24 almost pocket size, useful for all electrical circuits, totally enclosed in polished wood box with carrying strap and contact switch. 1/2, with battery.

WIRELESS Valve test unit B.T.H. 200/230/50 volts 50 series, 12 vats 20 amps, and 75 volt series, 15 vats 10 amps. 7/6.

TRANSFORMERS. B.T.H. 200/230/50 volts 50 amperes, output 20 volts 20 amps, and 75 volt series, 15 vats 10 amps. 7/6.

DIMMER RESISTANCES. Totally enclosed panel type, 100 ohms 1 amp. 5/- each; 250 ohms 1 amp, £ 1 each, type wire wound, porcelain base, 10 ohms 1/2.

TERMINAL BOXES. Bakelite box, 3 x 3 x 32. £ 2 highly polished black with fantastic centre fillet and screwed in 2-6插 volt lamps and studs. 2/- each. Wall or ceiling fixing, 2/6, 20 per dozen. Special quotations on request.

POWER METERS. 2 scale 45/55 and 300/400 volt, 4 dial, panel mounting, by Crompton.

WATT METERS. M. Vic. Wattmeter, range 5 to 30 kw., 3 volt series, £ 3 5/-, 6 volt series, £ 3 9/-, 9 volt series, £ 3 15/- each. 7/6.

METERS. 1/C switchboard type, 4 in. G.E.C., £ 1 each. C.Z. 100-0-100 v., 10,- each. 0-30 volts, £ 1 0,- each. D.C. Moving dial A.G. ammeter, £ 1 25/- each. Panel type, 0-3,500 volts, £ 1 each. Coil ammeters, central zero 0-50 amp., £ 1 15/- each, £ 1 30/- each, £ 1 50/- each, £ 1 75/- each.

ELECTROSTATIC VOLTMETERS. Panel type, 0-3,500 volts, £ 1 each. Volt-ohm-ammeter, £ 25; O. C. A. "Volt-ohm-ammeter, £ 15 each. Linear condenser variable 0-1 meg., £ 15 each. All with instruction booklets as new.

ENERGY TEST SET. Contents 1 comb tracer, £ 2 6/-, 2-6L6s in P.P. with N.F.B., 30w.

DIMENSION METERS. £ 80 or near offer; 2 Cossor electrostatic C.R. analyser, 5 ranges D.C. V., 5-A.C.V. and 1 tube tester, £ 25; Espey valve tester, £ 10 0/-.

TRANSMITTERS. 3 tubes, £ 5 10/-; BPL a.c./d.c. meters. £ 5 10/-; 100 copies of the "Wireless World." £ 5 with instruction book, £ 4 6/- and tube tester, £ 25; Espey sig. gen., £ 10 0/-.

MONOPOLY METERS. £ 35 to 100. 0-20 volts, £ 1 each.

FREE PRIZE. Dancing Dogs. 2 strips, £ 1 10/-, £ 1 15/- each.

DIMMER RESISTANCES. Totally enclosed panel type, 100 ohms 1 amp. 5/- each; 250 ohms 1 amp, £ 1 each, type wire wound, porcelain base, 10 ohms 1/2.

TERMINAL BOXES. Bakelite box, 3 x 3 x 32. £ 2 highly polished black with fantastic centre fillet and screwed in 2-6 plug volt lamps and studs. 2/- each. Wall or ceiling fixing, 2/6, 20 per dozen. Special quotations on request.

POWER METERS. 2 scale 45/55 and 300/400 volt, 4 dial, panel mounting, by Crompton.

WATT METERS. M. Vic. Wattmeter, range 5 to 30 kw., 3 volt series, £ 3 5/-, 6 volt series, £ 3 9/-, 9 volt series, £ 3 15/- each. 7/6.

METERS. 1/C switchboard type, 4 in. G.E.C., £ 1 each. C.Z. 100-0-100 v., 10,- each. 0-30 volts, £ 1 0,- each. D.C. Moving dial A.G. ammeter, £ 1 25/- each. Panel type, 0-3,500 volts, £ 1 each. Coil ammeters, central zero 0-50 amp., £ 1 15/- each, £ 1 30/- each, £ 1 50/- each, £ 1 75/- each.

ELECTROSTATIC VOLTMETERS. Panel type, 0-3,500 volts, £ 1 each. Volt-ohm-ammeter, £ 25; O. C. A. "Volt-ohm-ammeter, £ 15 each. Linear condenser variable 0-1 meg., £ 15 each. All with instruction booklets as new.

ENERGY TEST SET. Contents 1 comb tracer, £ 2 6/-, 2-6L6s in P.P. with N.F.B., 30w.

DIMENSION METERS. £ 80 or near offer; 2 Cossor electrostatic C.R. analyser, 5 ranges D.C. V., 5-A.C.V. and 1 tube tester, £ 25; Espey sig. gen., £ 10 0/-.

MONOPOLY METERS. £ 35 to 100. 0-20 volts, £ 1 each.

FREE PRIZE. Dancing Dogs. 2 strips, £ 1 10/-, £ 1 15/- each.
POTENTIOMETERS

by RELIANCE

Manufacturing Co. (Southwark) Ltd.

S. T. C. ball type microphones, new, 20/-; unused, 15/-; letters only.

LIMITED EDITION Battle corner deflectors, scientific instruments, as used in plane inter-com., In self-contained metal case, can be used to make up a deaf aid output, intercommunication system, or with crystal set, complete with valves (also dimmed) 20/-.

HIGHSOUND UTILITIES, 58, New Wanstead, E.11.

TRANSMITTING EQUIPMENT

SALE of equipment, comprising complete transmitting station.

BXR200 50 stereo transistor masts, in ten, £25 each; 20, £15 each; £60, £35 each; £200, £100 each; £500, £200 each.

EAL bargains—new American transmitter tuning units, U.T.E., in black crackle cabinets, m.c. 57/6; 3.500y. 3in. m.c. 25/-: post extra.

SIMON SOUND SERVICE have recorders in stock—Barrad auto change unit, 7in. or 12in. £5. 3.35; £5. 335.

DEAL bargain.—Brand new American transistor tuner, £15; G.R. signal generator, type 605B.

WESELSON broadcast Acoustical Equipment Co., Ltd., Broadcast House, Tomblanci, Norwich 26970.

9235—write for details to Erskine Laboratories, Ltd., Scalby, Scarborough.

CHARACTERISTICS: (both types) linear. log., semi-log., inverse log., non-inductive, etc.

FULL DATA FROM:

RELIANCE

Type T.W. Wire Wound

Rating

Ranges

5 Watt Max. (linear)

50-100,000 Li Max.

3 Watt Max. (graded)

100-100,000 Li Non-inductive

WAVE, High Frequency, and Special Television, Servicing, Short Wave, High Frequency, and General Wireless Courses.

Opinions in radio

Get this FREE Book!

"ENGINEERING OPPORTUNITIES" reveals how you can become technically-qualified at home for a highly-paid key-appointment in the vast Radio and Television Industry. In 108 pages of intensely-interesting matter, it includes full details of our up-to-the-minute home study courses in all branches of TELEVISION and RADIO, A.M. B.I.E., A.M.I.E.E., City & Guilds, Special Television, Servicing, Sound Film Projection, Short Waves, High Frequency, and General Wireless Courses.

We Definitely Guarantee

"NO PASS—NO FEE"

If you're earning less than £10 a week, this enlightening book is for you. Write for your copy today. It will be sent FREE and without obligation.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

380b, Shakespeare House, 17/19, Stratford Place, London, W. I.

NEW G.P.12 CRYSTAL PICK-UP with permanent sapphire stylus

—was fully described in The Wireless World's recent article "Crystal Pick-ups—Basis of Design for Fidelity Reproduction."

This remarkable pick-up, which represents the ultimate in high-fidelity reproduction, is now available in limited quantities through your radio dealer, price 10/- incl. P.T. FREE ILLUSTRATED FOLDER describing this new pick-up may be obtained by returning the coupon below.

To COSMOCORD LTD., ENFIELD, MIDDX.

Please send folder of ACOS Pick-ups.

NAME

ADDRESS

W.W.
ARMSTRONG

OVERSEAS BUYERS are cordially invited to send for prices and particulars of the following:

Model EXP125. 14-VOLT ALL-WAVE RADIOGRAM CHASSIS

- giving continuous waveband coverage from 1.19 m. upwards. Waveband. R.F. pre-amplifier.
- 10 stages with variable selectivity. Electronic bass and treble life control. 15 watt push-pull output. For 200-250 v. A.C. mains.

<table>
<thead>
<tr>
<th>Valve</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>115D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
<tr>
<td>116D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
<tr>
<td>115D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
<tr>
<td>116D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
</tbody>
</table>

Model RF103. 10-VOLT ALL-WAVE RADIOGRAM CHASSIS

<table>
<thead>
<tr>
<th>Valve</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>115D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
<tr>
<td>116D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
<tr>
<td>115D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
<tr>
<td>116D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
</tbody>
</table>

Model UNI-103. 10-VOLT ALL-WAVE RADIOGRAM CHASSIS FOR D-C. A.C. MAINS

<table>
<thead>
<tr>
<th>Valve</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>115D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
<tr>
<td>116D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
<tr>
<td>115D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
<tr>
<td>116D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
</tbody>
</table>

Model EXP33. 8-VOLT ALL-WAVE RADIOGRAM CHASSIS

<table>
<thead>
<tr>
<th>Valve</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>115D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
<tr>
<td>116D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
<tr>
<td>115D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
<tr>
<td>116D</td>
<td>14-valve all- bothers, 4-way, 550 v.</td>
<td>£12 10/6</td>
</tr>
</tbody>
</table>

Model UNI-83. 8-VOLT ALL-WAVE RADIOGRAM CHASSIS

- incorporating waveband expansion. e.g. the 16-50 m. band covers over 20 inches on the large glass scale, treble boost control, gram. switching, all controls work on both radio and gram.,, high quality push-pull output giving 6 watts audio. For 200-250 v. D.C. or A.C. mains.

HOMESTORE

A limited quota of the above is available to our friends at home, and we shall be glad to send details and to give demonstrations at our showrooms.

World Radio History

Advertisements

- COULPHERE Radio, 56, Derby St., Ormskirk, for new valves, maker's prices, all reduced p. r. t. postage and packing free. (emergencies: send for catalogue at 1s. 6d. and valve list.

Components—Second-hand, Surplus

NEW

- American valve, 10/-, 32, 136, 115, 105, 800, 500, 100, 75, 50, 25, 10.

Radio Transformers, P.220, 8.110v. 10 amps.

Radio and Musical Instruments

Wireless World

- September, 1948
LASKY'S RADIARIO
SEPTEMBER SPECIALS

MODULATOR UNIT TYPE 94. Containing 7 valves 2 EP60 (CYK), 2 CV74 (high voltage rectifiers) 1 filter transformer, 1 V.S.O. and parts of various components, oil-filled condensers, 20 rose type contacts, 11 multi-contact switches, metal rectifiers, relays etc. Wholesale, 34s.

LASKY'S PRICE, 25s., carriage 5s. extra.

ENGRAVING. Containing large motor generator, 12 condenser relays, 200 rose type contacts, 11 multi-contact switches, metal rectifiers, relays etc. Wholesale, 34s.

LASKY'S PRICE, 25s., carriage 5s. extra.

E.A.M. WAVE-POTentiOMETER. Containing 13 valves; 7 804, 3 805, 3 816, 2 806, 2 multi-contact relays. Hundreds of components, condensers, resistances, group boards, variable units etc. Wholesale, 100s.

LASKY'S PRICE, all types, 12s. 6d. each, carriage 6d. extra.

E.H.T. transformers, mains transformers and chokes for electronic engineering home-built television. CARRIAGE PAID.

LASKY'S RADIO
370, Harrow Road, Paddington, London, W.1
(Opposite Paddington Hospital)

Telephone: GLoucester 1779 Hours: Main to 8.10 a.m. to 6 p.m., half day.

LASKY'S RADIARIO
SEPTEMBER SPECIALS

ENGRAVING. Containing large motor generator, 12 condenser relays, 200 rose type contacts, 11 multi-contact switches, metal rectifiers, relays etc. Wholesale, 34s.

LASKY'S PRICE, 25s., carriage 5s. extra.

E.A.M. WAVE-POTentiOMETER. Containing 13 valves; 7 804, 3 805, 3 816, 2 806, 2 multi-contact relays. Hundreds of components, condensers, resistances, group boards, variable units etc. Wholesale, 100s.

LASKY'S PRICE, all types, 12s. 6d. each, carriage 6d. extra.

E.H.T. transformers, mains transformers and chokes for electronic engineering home-built television. CARRIAGE PAID.
See that FLUXITE is always by you — in the house — garage — workshop — wherever speedy soldering is needed. Used for over 40 years in Government and leading engineers and manufacturers. Of all ironmongers — in tons, 10d. 1/6 & 3/-.

TO CYCLISTS! Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings AND FLEXITE — but IMPORTANT.

The FLUXITE GUN puts FLUXITE where you want it by a simple pressure. Price 1/6, or filled, 2/6.

IT SIMPLIFIES ALL SOLDERING

Write for Back on the ART OF "SOFT" SOLDERING and for Leaflets on CASE-HARDENING STEEL and TEMPERING TOOLS with FLUXITE. Price 1d. each.
BOURNE INSTRUMENTS
BOURNE, LINCS. Tel. 224

Range of C.D.P. Recording Equipment
£32 C.D.P. Standard machine
equal to any, irrespective of price.

£40 C.D.P. Standard machine
with the following additions:
Modulation meter, speaker plug and socket, switch for cut or speaker, jack for microphone leads and run-out scrolling mechanism.
This machine used with any standard amplifier forms a complete recording unit.

£95 Complete self contained unit
for professional or amateur use comprising:
Recorder, 15 watt amplifier (push-pull throughout), pick-up and loudspeaker, and high fidelity moving coil microphone of new design.
Cabinet size 19in. X 16in. X 12in. deep.

ANY OF THE ABOVE WILL PRODUCE TRUE TO LIFE RECORDINGS OF THE HIGHEST QUALITY

BOURNE INSTRUMENTS
BOURNE, LINCS. Tel. 224

BOURNE INSTRUMENTS
BOURNE, LINCS. Tel. 224
Slightly faded, but legible text from the page:

- Bulbs, 1/-; 4BA flexible box wrenches.
- Transformer, 3/9; Willard unspillable 2051 battery, charge and discharge.
- 0-3-0, 0-30-0 double-dial bulbs, 5d; 12 or 24v 3 to 80watt M.B.C. release panel light holders, 9d; 6 or 12v M.E.S. charger.
- L.T. mains transformers up to 300 watts to ammeters.
- 12/6; switch cleaner fluid, correct.
- Radio store, 1 to 20 cell one amp kit £ 4/15, ea p.f.; H.W. 16v 95, North St., Keighley. [1616 N.21. Tel. Lab. 4457. [1670 (168)]
- Crystal diodes, 3/9; Rola 8in P.M. speakers, formers: 110v output, 1.400 watts, in steel case. weight 1113. guaranteed 2 years. Auto Transformer. 2 amp Ea, ditto 12 cell 2 amp £ 4/15; kit, 12v 2 amp rectifier, 45 watt trans. ballast duty car battery kit. — 75 watt trans with 12v 80 ma 13/6. for eliminators 120v 20 ma 7/-, 21/-, 4 amp 25/-, 5 amp 28/-, giant 6 amp sheet, 12v- 15v 1 amp 10/6, 2 amp 12/6, 3 amp 17/6.
- 12/6; 0-5a 62/c 2 , 24v 6 amp, 52/-; small space selenium rectifiers, all goods new with full guarantee. M.I.E.R.M 11.T. and L.T. rectifiers, charger, range available from 3/9 each. 2 amp 18/6, 1a 21/3, 1.5a 28/-, 2a 32/6.
- Potentiometer.. Centralab. 5K. 10K, 25K, 50K, 100K... range available from 3/9 each. 1N 4659. P.M., 2/3 ohms, 16/6; 51N. P.M., 2/3 ohms, 1 ohm. 1//watt type 11,6 per 100 (Trade enquiries invited). 10/6 and 11/8 pair. All Wearite “P” Cons, 3/. 5, or with
- L.T. mains transformers up to 300 watts to ammeters.
- 12/6; 0-5a 62/c 2 , 24v 6 amp, 52/-; small space selenium rectifiers, all goods new with full guarantee. M.I.E.R.M 11.T. and L.T. rectifiers, charger, range available from 3/9 each. 2 amp 18/6, 1a 21/3, 1.5a 28/-, 2a 32/6.
- Potentiometer.. Centralab. 5K. 10K, 25K, 50K, 100K... range available from 3/9 each. 1N 4659. P.M., 2/3 ohms, 16/6; 51N. P.M., 2/3 ohms, 1 ohm. 1//watt type 11,6 per 100 (Trade enquiries invited). 10/6 and 11/8 pair. All Wearite “P” Cons, 3/. 5, or with
- L.T. mains transformers up to 300 watts to ammeters.
- 12/6; 0-5a 62/c 2 , 24v 6 amp, 52/-; small space selenium rectifiers, all goods new with full guarantee. M.I.E.R.M 11.T. and L.T. rectifiers, charger, range available from 3/9 each. 2 amp 18/6, 1a 21/3, 1.5a 28/-, 2a 32/6.
TELEVISION R.F.2 are amplifier for long-range reception, 4 miniature 6 6L7P valves, 5 tuned stages, compact chassis, co-axial coupling links aligned, and mounted on Perspex, 45, 50 cm. single valve 2-stage R.F.1 as above, both for 6.3 volt 200 m.t. with R.F. 6L10, R.F. 6M, 42/10, cash on order. new goods, not ex- Government and Electric & Allied Co., Church St., Bexmoor, Birmingham.

CLYDESDALE 58 Advertisements Wireless World

Ireland. Visit our branches in Scotland. England and Northern also large selection components, transformers, etc.

QUALITY for

REPAIRS AND SERVICE

WANTED, EXCHANGE, ETC.

FOR

- TRANSFORMERS
- CHOKES, ETC.
- REWINDS (all makes)

SPECIALISTS IN AMATEUR AND EXPERIMENTAL SHORT-WAVE EQUIPMENT.

- Communications Receivers.
- Telechron, High Quality Amplifiers, Speakers, Aircooled, Enclosing and Transmitting Transformers, and Motors.
- E.W. MENTY required. 500 Santon switchers, for High Fidelity reproduction in the average room. We feel strongly that 4-5 watts is ample for High Fidelity Amplifier, but that money doesn't go far these days.

COPPER WIRE.

- Enamelled, nickel, etc., 14-42 S.W.G. TRANSFORMERS & CHOKES.
- Standards or specials supplied. A.C.S. TURNABLE UNITS. Now in stock. ALL COMPONENTS for the Radio and Television Constructor.

STAN. HOLT.

- 394, HIGH ST., SMETHWICK, STAFFS.

AMPLIFIER 25 WATTS OUTPUT

Ex. U.S. Army Kever, TG. 10, Input 100v 50/60 cp. Output 4, 8 and 15 ohms, Valves, 2-6L7.

AMPLIFIER 6 1-5 1-6.

- 3460, Usable immediately, use 6L7 as further.
- With minor modifications can be used as mike and gram amplifier and incorporate wide range tone control. (Details available from Mr. Kaye.

ARThUR H. RAdFORD

- 28, Bedminster Parade Bristol, 3. Tel. 4201
STURDY trains, mains transformers, chokes and fields; we give prompt delivery and guarantee satisfaction to those who use our experience, knowledge.-Sturdy Electric Co., Ltd., Ipswich, New-Isle-On-Y-Tyne.

LONG SPLENDID TRAINING in any make, reasonable prices, prompt delivery, to the trade or to any 24 years' experience. 25% units combined experience with Bola, Magnavox, Goodmans. Celebration.-Sound Service Radios, Ltd., 59, King's Norton Rd., King's-inton-Thames, Kin. R.089.

R EWINDS and repairs, transformer field coil, chokes, high-grade workmanship, 7-day delivery: new and repaired to customer's specification, singly or in quantities.- Metropolitan Electrics Co., Ltd., 79, Finsbury St., Finchley Rd., N.1 W. Speedwell 3000.

R EWINDS and repairs, any transformer rewind, mains outputs and a.c. or d.c. work also done, etc., supplied to specification; business handling & service.-Western Electric, 180, Wigan Rd., Bournemouth.

O utside specialists.-Tuning and oscillator coils, t.l.f. and mains transformers rewind and wound to specification; wavewinding specialists.-L. & R. Repairs, new cones, speech coil re-winders, etc.-Rynford Industries, Ltd. (formerly Electric- tronic Services. 17, Arwenack St., Falmouth.

A.F.W's TRADE OFFERS you speedy service on components, small or large quantities; transformers rewind from 15/- to 90/-, we keep advance trade prices; transformers built to our own specifications: standard.-Radio Products, Ltd., Borough Hall, Bradford, 10/2.

N ational Radio Service & Television Components Ltd. Immediate immediate service any district; re-winds to all types transformers, armatures, pick up coils, speech cones fabricated, British and American components to specification, singly or contract trade service; multiple transformer winding.-65, Brockley Rd., London, S.E.4. G.000.

National TRADING CO. offers high quality workmanship, 10/- new transformers at keenest trade prices; transformers made to your specifications, singly or in quantities.-Ickneild Port Rd., B'ham. 16. [1482]

M ake-up transformers for all assemblies at reasonable prices; transformers we make new and slightly used from 2/6 to 10/-; transformers built to your specification, singly or in quantities.-Stansfield, Aireworth Terr., Huddersfield.

M ake-up transformers for all assemblies, new and slightly used from 2/6 to 10/-; transformers built to your specification, singly or in quantities.-Stansfield, Aireworth Terr., Huddersfield.

M anufacturers of telephone, radio, and television transformers to specification, singly or in quantities.-Mullard Ltd., 180, Windham Rd., Bournemouth.

M anufacturers of telephone, radio, and television transformers to specification, singly or in quantities.-Mullard Ltd., 180, Windham Rd., Bournemouth.

M axwell's data sheets provide complete couplings, transformers designed for particular conditions, have a large number of data sheets on hand, as well as data sheets for other applications.-Waldorf Transformers, Ltd., Dorking.

W alnut radiogram and television cabinets, manufacturer's samples, few only, stamp desires.-Waldorf Transformers, Ltd., Dorking.

S parks' data sheets provide complete coupling transformers designed for particular conditions, have a large number of data sheets on hand, as well as data sheets for other applications.-L. Ormond Sparks, Wynscoke, Wilburton, Ely, Cambs. [1667]

P impressor 1300, 400-0-400 v. Sec. 750-0-750 v. 50 mA.-Stewart Pri. 230/500; 16gns, new.-Box 707.

P ick-a-pipe and capillary tubing, with sphals and other components. All items at wholesale prices.-Stansfield, Aireworth Terr., Huddersfield.

O rder C.O.D. above listed numbers or equivalents (subject to stock). These compete for any valve price you may have. We may have it. Old and new types are arriving daily.-Parker Spark Supply Co., 121, Keighley Rd., Brighouse.

L ow competitive prices on ac/dc transformers, new and slightly used from 2/6 to 10/-; transformers built to your specification, singly or in quantities.-Spark Supplies Ltd., 79, Finsbury St., Finchley Rd., N.1 W.

H igh quality light weight pick-up coil. Coil impedance 1,300, 000 ohms. Direct output approx: 0.1 volt. Output from sec. of transformer approx. 0.5 volt, which is quite suitable for use with the normal radio receiver. Frequency response 25-8,500 cps.-Stansfield, Aireworth Terr., Huddersfield.

P e derived from transformer. £2 5 0. Complete with transformer and frame.-£2 13 9.

S tockists of BVA valves, batteries, test equipment and components for radio and television construction.

A lice Davis Supplies Ltd., 18 Tottenham Court Rd., London, W.1. Tel. MUS. 4539 and MUS. 2453.

S pecial offer! 14ft. AERIAL MAST. Carriage paid 7/6. Special offer! 3/4" dia. aluminum ferrule. Consists of two lengths of aluminum tubing 25cm. and 35cm. dia., respectively, with 3/16" dia. wall. The smaller tube fits tightly into the larger and both have metal ends. When fitted the aerial has an over-all length of 14ft. Ideal for a transmitting or receiving aerial, but has many other uses also. May be fitted to one or two pieces of tubing for a fixture such as a chimney, etc. Very sturdy, fully adjustable.-Alice Davis Supplies Ltd., 18 Tottenham Court Rd., London, W.1. Tel. MUS. 4539 and MUS. 2453.

T RANSFORMERS

Varley EPS4, Prl. 200/250 v., Sec. 500-0-500 v.

We can supply on convenient terms much of the Radio and Electrical Equipment at present available, all transactions being strictly between customers and ourselves.

Please let us know your requirements and whether for cash or on easy terms.

The LONDON RADIO SUPPLY CO.

TELEVISION SCANNING COILS

B RASS, COPPER, DURAL, ALUMINIUM, BRONZE

Rod, Bar, Sheet Tube, Strip Wire.

No Quantity too Small

List on application

No. Date: 1942

SIMMONDS-1921/3

Mr. A. C. BARKER'S MODEL 148 SPEAKER

satisfies the most critical ear because it is the one reproducer combining an extended frequency response with adequate damping throughout. The reasons for these

widely confirmed advances over some other forms of construction are explained in the leaflet which everyone concerned with NATURAL sound reproduction should read, whether buying anew speaker now, or planning improvements for this winter.

Mr. Barker also invites enquiries from professional users, builders, designers and retailers of the highest quality sound equipment who may be interested in making limited numbers of his Model 148.

Write for details to

BCM/AADU, LONDON, W.C.1
SITUATIONS VACANT

SITUATIONS VACANT

Vacancies advertised are restricted to persons or establishments erected from the provisions of the Control of Employment Order, 1947.

AMPLIFIERS

- Required by large oil company for shore duties in Middle East areas.
 - Wireless officers, qualified to 1st class P.M.O., certification and with sound practical experience in installation and maintenance of equipment; quayside experience. £460; free furnished quarters; messings; ages 21-50, dependent on number of children; service is pensionable; married applicants must be willing to serve singly for first three years. Write, quoting No. 169, to Box 2262, c/o Charles Barker & Sons, Lid., 51, Budge Row, London, E.C.4.
 - Assistant required for packing and general duties for N.W. London radio component warehouse. — Box 849.
 - REQUIREMENTS of television engineers to represent valuable equipment in North Surrey for applicant, preferably with previous experience. — Write Box 710.
 - Engineering positions required by expanding London company: working knowledge of equipment, good head for heights, and able to drive; good wages and bonuses. — Box 1556.
 - Engineers required for work overseas on installation of microwave wave ground radar equipment and instruction of local staff; good experience in this type of work essential. — Apply, quoting Ref. No. 127, to Box 702.
 - Trade representative with first-class retail connections required for Scotland, to represent nationally known manufacturers of radio and domestic sound equipment; own car essential; salary, commission and expenses. — Apply Box 718.
 - Trade representative with first-class retail connections required for Southern England to represent nationally known manufacturers of radio and domestic sound equipment; own car essential; salary, commission and expenses. — Apply Box 722.
 - Trade representative with first-class retail connections required for Southern England to represent nationally known manufacturers of radio and domestic sound equipment; own car essential; salary, commission and expenses. — Apply Box 722.
 - Three jobs open. — Applications are invited from suitably qualified men for the positions of chief technician, production manager and production foreman in a new factory in India scheduled to commence production in the autumn of 1948. — Box 715.
 - Senior engineer required to take charge of department engaged on the practical development of microwave radio; technical qualifications to degree standard and previous experience are essential. — State full details of qualifications, experience, age and salary required to Box 704.
 - South-West London company require an experienced radio station installation engineer, chiefly for service overseas; must be able to organize and control entire works, including local labour and contractors. — Reply giving full details of past experience, in confidence, to Box 839.
 - Radio engineer required as foreman of service department. Must have first-class technical qualifications and practical experience in modern radio, television, telephony and electronic instruments; reply giving particulars of qualifications and salary required to — Box G579, A. K. Adv., 212a. Shaftesbury Ave., W.C.2.
 - Electro-Mechanical designer. An interesting vacancy exists in Midlands for experienced man to work on the design of electronic equipment attached to research laboratory: salary up to £500; every assistance given to find suitable accommodation; secure staff appointment on establishment. — Write Box 172, giving reference D.O.16.
 - Development engineer required for work on experimental types of cathode ray tubes; applicants should possess a physics degree and have had practical experience in the design, development and manufacture of cathode ray tubes. — Box 1554. Applications should include details of education, experience, and salary required and to be addressed to Box 684.

FRONTAL H.P. A.C. M.O.N.S.

Converted from ex-Govt. Generators

B.R. & H. RADIO

- Huntley St., Darlington
- To the enthusiast and Experimenters here are two 465 K. C.G.E. Transformers
 - V.S.I. Variable Selectivity 3 Postn. 12.

To the Dealer: — These and all your service requirements from stock.

SMALL SLIDING RESISTANCES

Suitable for Voltage Controls. Speed Regulators.

LONDON CENTRAL RADIO STORES

R1155 10-VALVE COMMUNICATIONS RECEIVER

These sets are as new. Freq. range 7.5 m/days to 75 kc/s in 6-w wavebands. Complete with all valves including magic eye. Enclosed in metal case. Every receiver is serial tested. Complete with Power Pack and Loudspeaker, for A.M. mains 200-250 v. (Carr. and Pkg. 10/6)

£14.10.0

FREE with each receiver Complete circuit, description and modifications for civil use, reprinted from "V.W." July, 1946.
THE QUARTZ CRYSTAL Co., Ltd.
3-71 Kingston Road
NEW MALDEN, SURREY

THE QUARTZ CRYSTAL Co., Ltd.
3-71 Kingston Road
NEW MALDEN, SURREY

A few Domestic Cornet
Reflectors type Horns at
nearly three times pre-war
price should be available
soon. Additional names
will now be entered on our
waiting list.

VOIGT PATENTS LTD.
(Dept. W.8)
6-71 Kingston Road
NEW MALDEN, SURREY

for Secondary Frequency Standards

- Accuracy better than 0.01%.
- New angles of cut, temperature coefficient of 2 parts in a
 million per degree Centigrade temperature change.
- Viscous silver electrodes fired direct on to the faces of the crystal itself, giving perman-
 ent calibration.
- Simple single valve circuit gives strong harmonics at 100 kcs. intervals up to 20 Mc.
- Octal based mousetrap control with three elements.

Full details of the Q5/100, including circuit diagrams and our leaflet Q1. Send stamp
to-day for your copy.

THE QUARTZ CRYSTAL Co., Ltd.
3-71 Kingston Road
NEW MALDEN, SURREY

OPPORTUNITY for young men, preferably
22-25, wishing to travel; good pay and
allowances; attractive service; experience
Army and Navy radio and radar essential.
- Apply, Box 840.

G. L. SLAVKO.-Research laboratories;
must have good all round experi-
ence-in electronic and electrical fields.
- Apply in person, or write to
Perceval Recruitment, E.M.I., Ltd.,
Bryht Rd, Hayes, Middlesex.

S E R V I C I N G J O B S

HIGH frequency engineer urgently required,
control and buying to a budget; commencing salary
about 30 to 35 years old and possess the per-
ience Army and Navy radio experience in vacuum tube manufacture, includ-
good prospects; salary according to age

FUNDAMENTALS OF RADAR. By S. A. Knight.

OFFICE PERSONNEL.-Applicants should have
interest in short waves, television, mathematics, etc.

INTELEPHONE ENGINEERING FOR THE THREE YEAR

B.T.H. "SELSEY" MOTORS,
of all types for spot cash.

available for 1.6 pence per year.

WIRELESS SUPPLIES UNLIMITED
(Dept. 386)
18-20, PRAD STREET, LONDON, W.2

THE MODERN BOOK CO.
(Dept. W.8)
19-23, PRAD STREET, LONDON, W.2

The Wireless World Valve Data. 2s.

A few Domestic Cornet Reflectors type Horns at
nearly three times pre-war price should be available
soon. Additional names will now be entered on our
waiting list.

100 kcs. QUARTZ CRYSTAL UNIT

for Secondary Frequency Standards

- Accuracy better than 0.01%.
- New angles of cut, temperature coefficient of 2 parts in a
 million per degree Centigrade temperature change.
- Viscous silver electrodes fired direct on to the faces of the crystal itself, giving perman-
 ent calibration.
- Simple single valve circuit gives strong harmonics at 100 kcs. intervals up to 20 Mc.
- Octal based mousetrap control with three elements.

Full details of the Q5/100, including circuit diagrams and our leaflet Q1. Send stamp
to-day for your copy.

THE QUARTZ CRYSTAL Co., Ltd.
3-71 Kingston Road
NEW MALDEN, SURREY

OPPORTUNITY for young men, preferably
22-25, wishing to travel; good pay and
allowances; attractive service; experience
Army and Navy radio and radar essential.
- Apply, Box 840.

G. L. SLAVKO.-Research laboratories;
must have good all round experi-
ence-in electronic and electrical fields.
- Apply in person, or write to
Perceval Recruitment, E.M.I., Ltd.,
Bryht Rd, Hayes, Middlesex.

S E R V I C I N G J O B S

HIGH frequency engineer urgently required,
control and buying to a budget; commencing salary
about 30 to 35 years old and possess the per-
ience Army and Navy radio experience in vacuum tube manufacture, includ-
good prospects; salary according to age

FUNDAMENTALS OF RADAR. By S. A. Knight.

OFFICE PERSONNEL.-Applicants should have
interest in short waves, television, mathematics, etc.

INTELEPHONE ENGINEERING FOR THE THREE YEAR

B.T.H. "SELSEY" MOTORS,
of all types for spot cash.

available for 1.6 pence per year.
M ICROWAVE radio development.—A senior
RF microphone engineer, with background in
microwave, has recently joined our team.
Application welcomed by companies in London.

LANCELOT RD., WEMBLEY, MIDDLESEX, W2.

This high-quality ELECTRICAL VALVE CO.
offers applications for a valve engineer for the research laboratory: this is an exciting position for an
experienced engineer with good experience in the design and
manu facturing of various types of valves and tubes. A candidate
ought be familiar with the design, operation, and
application of valves, and have a good working knowledge of
the latest developments in the field.

EX-RAF CRYSTAL CALIBRATORS
Units, Type B, R.A.F. serial No. 10/1537.
These units contain 100 kcs. crystal, 2x-50 volts and
multiple voltage items all new and unused,
35¢ each.

EX-R.A.F. CRYSTAL INDICATORS
type 4R, new, boxed, consisting of 3, 25, 5, tubes,
35¢ each.

MOTOR ALTERNATORS, EX-R.A.F.,
as new, 230 volts 50 c/s, phase input, 250 volts 60 c/s,
50 amp., post 10¢. Ditto, 1,725 c/s, output, 65¢ each, CIP.

EX-NAVAL 3in. SPARK COILS, approx.
3,000 volts from 6 volts supply, 8/6. G.P.O.
12 volt, new, ex-Govt., 230 volts 50 c/s,
10 amp., 230 volts 50 c/s, 20 amp., post 10¢. Ditto, 1,725 c/s,
output, 65¢ each. EX-R.A.F. Impulse Transformers
(Magnetron), output believed to be approx 15,000
volts, 12 loops, 50 c/s. Ditto, 1,725 c/s, output,
65¢ each. EX-R.A.F. Variable Inductances for
Varivators for No. 19 Mk. II Receivers, 4/6 each.

EX-NAVAL (CROMPTON PARKINSON)
PROBE TESTERS, 100 and 200 amp.,
new, in leather carrying case, 90¢ each. A.C.
Meters, 0 to 300 min, scale, calibrated 50 c/s.
35¢ each.

EX-R.A.F. CRYSTAL MONITORS, type 2,
complete in wooden carrying case, the frequency
depending on crystal used, 5¢ each. Short Wave
Reception Units (U.Wentimeters), 5¢ each.

FRACTIONAL H.P. MOTORS, 110 volts
with LAMINATED Fields (EX-NAVAL Fans),
425 c/s, output believed to be approx. 15,000
c/s. Ditto, 1,750 c/s, output, 65¢ each.

LARGE TYPE RECTIFIERS. Output 50 volts
at 1 amp, 5 wave, input voltage 70/75 c/s. 17/6.
Diode, 200,000, 525 c/s, 10 amp., 21/6, post 10¢.

M AINS TRANSFORMERS, by well-known
makers, input 200-250 volts, output 0.0001,000 volt
500 m/w, 85¢. Another, with two 7.5, two 6.3,
and one 4 v. winding all at 10 amps., 37/6.
Ditto, 1,500 m/w, 150 c/s, 10 amp., 37/6.

ESSENTIAL LIFE OVERJEANS
MAINS TRANSFORMERS (A.W.D.),
in good condition, 170 volts 100 amps., 55¢ each,
100 volts 100 c/s, 20 amp., 525 c/s, 10 amp., 21/6.

EX-NAVAL CATHODE RAY DEFLECTORS
with the following components, High Voltage Condensers,
Cokes, approx. 150 assor- ed Resistances, and Condensers.
Solid brass Chassis, 425 each. CIF.

EX-NAVAL TEST SETS, type (211)
consisting of 4 EF 50, etc., new, 27/6 each, post 2¢.
EX-R.A.F. Crystal Monitors, frequency depending
on unit used, 6¢ each. Very useful for
components, post 2¢.

EX-NAVAL CRYSTAL RECTIFIERS
with the following components, High Voltage Condensers,
Cokes, approx. 150 assorted Resistances, and Condensers.
Solid brass Chassis, 425 each. CIF.

EX-NAVAL (CROMPTON PARKINSON)
PROBE TESTERS, 100 and 200 amp.,
new, in leather carrying case, 90¢ each. A.C.
Meters, 0 to 300 min, scale, calibrated 50 c/s.
35¢ each.

EX-R.A.F. CRYSTAL MONITORS, type 2,
complete in wooden carrying case, the frequency
depending on crystal used, 5¢ each. Short Wave
Reception Units (U.Wentimeters), 5¢ each.

FRACTIONAL H.P. MOTORS, 110 volts
with LAMINATED Fields (EX-NAVAL Fans),
425 c/s, output believed to be approx. 15,000
c/s. Ditto, 1,750 c/s, output, 65¢ each.

LARGE TYPE RECTIFIERS. Output 50 volts
at 1 amp, 5 wave, input voltage 70/75 c/s. 17/6.
Diode, 200,000, 525 c/s, 10 amp., 21/6, post 10¢.

M AINS TRANSFORMERS, by well-known
makers, input 200-250 volts, output 0.0001,000 volt
500 m/w, 85¢. Another, with two 7.5, two 6.3,
and one 4 v. winding all at 10 amps., 37/6.
Ditto, 1,500 m/w, 150 c/s, 10 amp., 37/6.

ESSENTIAL LIFE OVERJEANS
MAINS TRANSFORMERS (A.W.D.),
in good condition, 170 volts 100 amps., 55¢ each,
100 volts 100 c/s, 20 amp., 525 c/s, 10 amp., 21/6.

EX-NAVAL CATHODE RAY DEFLECTORS
with the following components, High Voltage Condensers,
Cokes, approx. 150 assor- ed Resistances, and Condensers.
Solid brass Chassis, 425 each. CIF.

EX-NAVAL TEST SETS, type (211)
consisting of 4 EF 50, etc., new, 27/6 each, post 2¢.
EX-R.A.F. Crystal Monitors, frequency depending
on unit used, 6¢ each. Very useful for
components, post 2¢.
MORSE CODE TRAINING

There are Candler Morse Code courses for beginners and operators. Send for this Free "BOOK OF FACTS" which gives full details concerning all courses.

THE CANDLER SYSTEM CO.,
(801 S. 17th St.), Denver, Colorado, U.S.A.

COVENTRY RADIO

COMPONENT SPECIALISTS SINCE 1925.

Now ready: 1948 9 Radio Component Catalogue. Details of thousands of Radio and Television components, from a washer to complete test gear. All constructors, experimenters, service engineers, dealers and manufacturers, should send for the most comprehensive catalogue published today. Send 3d. in stamps.

COVENTRY RADIO
DUNSTABLE ROAD, LUTON.

VIBRO-ARC ELECTRIC METAL ENGRAVING TOOL

Engraves, etches, marks etc.
BHASS, COPPER, SILVER, WICKEL, ALUMINIUM, CHROMIUM, Hardened Blue.

SCRATCH SUPPRESSION

Now available: A variable tuned filter, comprising a muntaz cored and shrouded inductance, with a variable air dielectric capacitor covering 4 to 11 kc's. Mounted in a small metal case with input jack and jack plug output. Suitable for connection between feeder and amplifier. Provided with switch for isolation. Price 5s. "Williamson" amplifier, wired and tested £25, or as a kit £20. 10s. 0d.

ROGERS DEVELOPMENTS CO.,
106 HEATH STREET, HAMPSTEAD, LONDON, N.3.
Telephone: HAMpstead 6901.

TECHNICAL TRAINING

A M.I.E.E. City and Guilds, etc., on "No Pass No Fee" courses. For full details of modern courses in all branches of electrical engineering, etc., send for our 12-page handbook, free and post free. B.E.T. (Dept. 398A), Stockport Place, London, W.1.

EDDYSTONE

-504- -640- -680-

and full range of S.W. components.

Also:
Valves, condensers, transformers, resistances, etc.

All C.O.D. orders promptly executed.

52 page catalogue 1/- post free.

B.T.S.

THE Radio firm of the South.
63, London Road, Brighton, 1, Sussex.
Phone Brighton 1555.

E15 TELEVISION RECEIVER

This is the title of our latest publication giving wiring diagrams and construction notes of an excellent little T.V. receiver. You can make this from Government surplus equipment and the total cost should not exceed £15. A demonstration receiver can be seen at our address. To avoid disappointment order your copy immediately. The price is 7s. 6d. post free.

BULL'S EX-GOVERNMENT DEPOT

42-46 Windmill Hill, Ruislip, Middlesex.

INDIVIDUAL TRANSFORMER REWINDS

SEND YOUR "BURN'T OUT" TRANSFORMERS TO BE REWOUND.
NO TECHNICAL DATA REQUIRED.
OUR TRANSFORMERS ARE DOUBLE WOUND AND BACKED BY A SPECIALISED SERVICE.

SOUTHERN TRADE SERVICES LTD.,
297-299, HIGH STREET,
Telephone: CROYDON 4870.

A.B. DAXER wafer switches

The wave-change switch with silver-plated double contacts.

A.B. METAL PRODUCTS LTD.,
Great South-West Road, Feltham, Middx.
APPLICATIONS

Measures Capacitance
Measures Power Factor
Measures Resistance
Measures Insulation Resistance
Detects Defective Capacitors
Tests Circuit Continuity

SPECIFICATION

Capacitance: 0.00001 mfd. to 50 mfd.
Resistance: 50 ohms to 5 megohms.
Power Factor: Scale calibrated zero to 50% power factor.
Complete and extremely portable.
210 - 250v. A.C. 50 cycles.
Dimensions: 6½" x 9½" x 5½".
List Price - - - - £18.18.0

Hunts Analyser provides a welcome contrast to current complexity. Straightforward presentation of facts is given by only one dial reading without charts or graphs. A high grade instrument, Hunts Analyser is backed by long experience of specialisation in capacitor manufacture. Its versatility makes it essential for every Radio Engineer.

CAPACITORS ANALYSER & RESISTANCE BRIDGE

A. H. HUNT LTD - LONDON - S.W.18 - ESTABLISHED 1901
At "His Master's Voice" (E.M.I.) factories at Hayes, Middlesex, Ersin Multicore Solder is used in the manufacture of television and radio receivers and radio gramophones.

The extra speed of Ersin Flux enables less to be incorporated in all three cores than in the one core of most single-core solders. Thus you obtain more solder for a specific weight and save money.

The easiest way in which to see the three cores in Ersin Multicore Solder is to hold a length over a flame, and, when the solder is heated slightly, pull sharply.

The apparatus illustrated here is used in Multicore Research Laboratories to pass A.C. and D.C. currents through fine wires and soldered joints whilst they are subjected to climatic conditions equivalent to the Arctic or the Tropics.

Ersin Multicore Solder is supplied as standard in 5 alloys and 9 gauges in Size I cartons or 7lb reels.

Above are seen soldered joints being made on Automatic Telephone Exchange Equipment at Siemens Brothers & Co. Ltd. Woolwich Works, where many millions of Ersin Multicore Solder joints are made per week.

Ersin Multicore Solder is supplied as standard in 5 alloys and 9 gauges in Size I cartons or 7lb reels.

The apparatus illustrated here is used in Multicore Research Laboratories to pass A.C. and D.C. currents through fine wires and soldered joints whilst they are subjected to climatic conditions equivalent to the Arctic or the Tropics.

Ersin Multicore Solder is supplied as standard in 5 alloys and 9 gauges in Size I cartons or 7lb reels.

Unit price per carton

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Alloy</th>
<th>S.W.G.</th>
<th>Approx. Length</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 16014</td>
<td>60 40</td>
<td>14</td>
<td>37 feet</td>
<td>6 0</td>
</tr>
<tr>
<td>C 16018</td>
<td>60 40</td>
<td>14</td>
<td>95 feet</td>
<td>6 9</td>
</tr>
<tr>
<td>C 14013</td>
<td>60 40</td>
<td>13</td>
<td>23 feet</td>
<td>4 10</td>
</tr>
<tr>
<td>C 14016</td>
<td>60 40</td>
<td>16</td>
<td>50 feet</td>
<td>5 3</td>
</tr>
</tbody>
</table>