NEW EUROPEAN FREQUENCIES: FULL LIST
Noises "off" are kept off and man-made static is silenced by B. I. Callender's Anti-Interference Aerial when properly installed. Sizzling, crackling background noises caused by electric vehicles, motor car ignition systems and industrial or medical high frequency equipment—all these are suppressed and a quiet background established for radio programmes. Reception is improved, for a maximum number of programmes can be enjoyed on all wavelengths.

The aerial is a 60 ft. polyethylene insulated dipole type, with suspension insulators and matching transformer. The 80 ft. down lead is a fully screened coaxial cable with polyethylene plugs moulded to each end and is matched to the receiver by a transformer with easily fixed suction mounting.

B. I. Callender's All-Wave Anti-Interference Aerial will give you better listening and reveal many stations you never heard before. Write to-day for the descriptive folder No. 221S on the Anti-Interference Aerial.

Licensed under Amy Aceves & King, Inc. Patents Nos. 413917, 424239 and 491220.
A comprehensive instrument built into one compact and convenient case, which will test any standard receiving or small power transmitting valve on any of its normal characteristics under conditions corresponding to any desired set of D.C. electrode voltages. A patented method enables A.C. voltages of suitable magnitude to be used throughout the Tester, thus eliminating the costly regulation problems associated with D.C. testing methods.

A specially developed polarised relay protects the instrument against misuse or incorrect adjustment. This relay also affords a high measure of protection to the valve under test. Successive settings of the Main Selector Switch enable the following to be determined:

- Complete Valve Characteristics including I_a/V_g, I_a/V_a, I_s/V_g, I_s/V_a, Amplification Factor, Anode A.C. Resistance, 4 ranges of Mutual Conductance covering mA/V figures up to 25 mA/V at bias values up to $-50V$.
- Together with “Good/Bad” comparison test on coloured scale against rated figures.
- "Gas" test for indicating presence and magnitude of grid current, inter-electrode insulation hot and cold directly indicated in megohms, separate cathode-to-heater insulation with valve hot. Tests Rectifying and Signal Diode Valves under reservoir load conditions, and covers all the heater voltages up to 126 volts.

The AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO., LTD.
WINDER HOUSE, DOUGLAS STREET, LONDON, S.W.1. Phone: VICTORIA 3404-9
STABILISED POWER SUPPLY UNITS TYPES 1930 & 1931

These instruments are invaluable in the electronics circuit laboratory. The availability of these types of supply unit can often save days of preliminary work by avoiding the wasteful necessity of an engineer to produce special power packs.

The Type 1931 delivers 280 to 420 volts, 250mA and a series of negative supply voltages, whilst the Type 1930 provides 260-340 volts, 100mA and a stabilised negative output of 150 volts but has additional L.T. heater supplies.

Both models are provided with facilities for measuring current and voltage on the principal outputs. Only high grade components are used and there are no electrolytic condensers.

AVAILABLE FOR IMMEDIATE DELIVERY

For further particulars please write for our new brochure of Electronic Instruments.

PARMEKO of LEICESTER

MAKERS OF TRANSFORMERS FOR THE ELECTRONIC, SIGNAL, LUMINOUS TUBE, OIL IGNITION INDUSTRIES, ETC.

BOREHAM WOOD • HERTFORDSHIRE
TELEPHONE—ELSTREE 1137
TYPE Z77 HIGH-GAIN PENTODE
MOUNTED ON B7G GLASS BASE

THE Z77 is the first of a new range of OSRAM miniatures. It is a high-gain pentode, mounted on the B7G base and is suitable for use in television, wide-band radio, amplifier and electronic instrument circuits.

INTERESTING FEATURES
Small size and rugged construction make it an eminently suitable valve for use in mobile and portable equipment.
Suitable for operation up to 100 megacycles per second.
Owing to smallness of size and low thermal capacity the valve rapidly reaches a stable operating condition.

Osram
PHOTO CELLS

G.E.C.
CATHODE RAY TUBES

Osram
VALVES

THE GENERAL ELECTRIC CO., LTD., MAGNET HOUSE, KINGSWAY, W.C.2.
The better they are made
the more outstanding the results

MADE IN THREE PRINCIPAL MATERIALS.

FREQUELEX. An insulating material of low Dielectric Loss, for Coil Formers, Aerial Insulators, Valve Holders, etc.

PERMALEX. A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLEX. A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.

Bullers

BULLERS LOW LOSS CERAMICS

BULLERS LTD., 6, Laurence Pountney Hill, London, E.C.4. Phone: Mansion House 9971 (3 lines)
Telegrams: "Bullers, Cannon, London."

Features of the
'SENIOR' MODEL

P.M. Unit: 9. diameter.
Capacity: 7 watts.
Magnet flux density: 12,000 gauss,
total flux 47,000 lines.
Magnet in Alcomax, one of the most efficient permanent magnet alloys yet produced.
Volume controls: constant-impedance type.
Basins: die-cast in non-ferrous alloy.
Cabinet in polished walnut veneer,
size 13.4" x 12.6" x 7."

Price £5. 15. 6.
(without transformer). £5. 2. 6.

'CADET' MODEL

Cabinet size: 12.4" x 10.6" x 5.2".
P.M. Unit: 7 diameter.
Capacity: 3 watts.
Magnet flux density: 8,000 gauss, total flux 31,600 lines.
Price £4. 10. 6.
(without transformer) £4. 8. 6.

Stentorian
The finest EXTRA Speaker for any set

Compare Quality & Price in
EXTENSION SPEAKERS

W H I T E L E Y E L E C T R I C A L R A D I O C O L T D • M A N S F I E L D • N O T T S
“NILO K” — the alloy for sealing glass to metal

Nilo K, the alloy designed for sealing to medium hard boro-silicate glasses, is used most successfully by Associated Electronic Engineers Ltd., in their hermetically-sealed equipment. This alloy makes possible the easy manufacture of vacuum-tight glass-to-metal seals. Write to us for further information about this interesting sealing alloy and for a copy of our publication giving the expansion properties.

HENRY WIGGIN & COMPANY LTD
WIGGIN STREET • BIRMINGHAM 16

Nilo is a registered trade mark
FOR THE
RADIO SERVICEMAN
DEALER AND OWNER

The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful.

Write to the I.C.S. Advisory Dept. stating your requirements. Our advice is free.

INTERNATIONAL CORRESPONDENCE SCHOOL Ltd.
DEPT. 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C.2

Please explain fully about your instruction in the subject marked X.

Complete Radio Engineering Radio Service Engineers
Radio Service and Sales Audio and Short-Wave Radio
Elementary Electronics, Radar, and Radio

And the following Radio Examinations:

British Institution of Radio Engineers
P.M.G. Certificates for Wireless Operators
City and Guilds Telecommunications
Wireless Operators and Wireless Mechanics, R.A.F.

I.C.S. students for Examinations are coached till successful.

Name.. Age...........

Address..

INTERNATIONAL CORRESPONDENCE SCHOOL Ltd.
DEPT. 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C.2

Please explain fully about your instruction in the subject marked X.

Complete Radio Engineering Radio Service Engineers
Radio Service and Sales Audio and Short-Wave Radio
Elementary Electronics, Radar, and Radio

And the following Radio Examinations:

British Institution of Radio Engineers
P.M.G. Certificates for Wireless Operators
City and Guilds Telecommunications
Wireless Operators and Wireless Mechanics, R.A.F.

I.C.S. students for Examinations are coached till successful.

Name.. Age...........

Address..

AN OUTSTANDING ACHIEVEMENT

THE
SHEFI
MOVING-COIL
PICK-UP

Licensed under Voigt's Patent No. 538058.

It uses miniature needles suitable for modern full range recordings. A ferrous coil former concentrates the flux on the coil and also adds armature effect, thus increasing output voltage sufficiently to operate direct into a normal radio set. Free needle movement and low downward pressure ensure long record life. The fundamental simplicity of this robust design keeps down manufacturing costs.

PRICES

Model "R" £2 0 0 Output .4 volts.
Model "R" de luxe £2 11 0 with spring counter balance.
Model "S" £2 6 0 Output 1.5 volts. Plus Purchase Tax, including transformer.

EXPORT ENQUIRIES INVITED

BROOKS & BOHM LTD
90, Victoria Street, London, S.W.1.

Phone : VIctoria 9550/441
Ignoring the fact that in these days you may well have no shirt to put on my little horses, I yet make the suggestion. You may think we only supply drills, screwdrivers and nutrunners. Then you have another think coming. If your production involves any operation that must be done by hand or with a handtool, it is likely that my little horses will enable you to produce more goods in less time. We make tools to unscrew the moulds in plastic products; to cut sheet metal, to drive woodscrews. In fact whatever your enterprise... (No! I shouldn’t have said that)... whatever your problem (we do still have problems, don’t we?) my little horses will come galloping to your aid.
COMMUNICATIONS RECEIVER

This high-grade communications receiver incorporates the most highly developed techniques in modern receiver design. Five degrees of selectivity, including a crystal gate and crystal filter are provided, and the sensitivity is such that an input of between 1-5 microvolts gives a signal/noise ratio of at least 10 dB over the entire frequency range of 13.5 to 26 kc/s and 95 kc/s to 32 Me/s. Separate power units for A.C. or D.C. operations are available.

REDDIFFUSION LIMITED, BROOMHILL ROAD, WANDSWORTH, S.W.18
DESIGNERS & MANUFACTURERS OF RADIO COMMUNICATION & INDUSTRIAL ELECTRONIC EQUIPMENT Phone PUTney 5691

- AUTOMATIC COIL WINDING MACHINES
- AND HAND WINDING MACHINES

M. R. SUPPLIES Ltd., 68, New Oxford Street, London, W.C.1
Telephone: MUSEum 2958

MODEL WX
AUTOMATIC COIL WINDING MACHINES
AND HAND WINDING MACHINES

Machines supplied complete with stand motor and Two-Speed Friction Clutch

AGENTS ABROAD

ETA TOOL CO
(LEICESTER) LTD.
161 METCALF STREET, LEICESTER.

Phone—5386.
FOR TRIMMER CONDENSERS
and all radio components
FREQUENTITE-FARADEX-TEMPRADEX

STEATITE & PORCELAIN PRODUCTS LTD.
Stourport on Severn, Worcester. Telephone: Stourport III. Telegrams: Steatin, Stourport
Plans for a neighbourly world

Marconi’s first wireless messages did more than enable nation to speak to nation. They drew closer the world’s boundaries, quickened the tempo of existence and turned distant acquaintances into next-door neighbours. Broadcasting has helped still further to increase our knowledge of our neighbours; wireless navigational aids and radar have brought greater safety and faster travel between Continents. And so Marconi’s will continue to pioneer. Their engineers are busy today on developments which will make the world a closer community tomorrow.

Marconi

the greatest name in wireless

MARCONI’S WIRELESS TELEGRAPH COMPANY LTD.,
MARCONI HOUSE, CHELMSFORD, ESSEX.

“20 QUESTIONS”
for the backroom boys...

THE ANSWER IS... Seamless, one-piece, metal bellows combining the properties of a compression spring able to withstand repeated flexing, a packless gland and a container which can be hermetically sealed. Made by a process unique in this country; no thicker than paper (the walls range from 4 \(1000\) to 7 \(1000\)) they are tough, resilient, with a uniformity of life, performance and reliability in operation unobtainable by any other method.

Write for List No. N 800—1

Drayton Hydroflex METAL BELLOWS

Drayton Regulator & Instrument Co. Ltd., West Drayton, Middx.
Webb's Radio Globe of the World

Whether you are a Short-Wave Listener, or an active transmitter, this globe will give added interest to your hobby, lending a touch of romance as you locate on the globe remote calls such as ZD9—Tristan da Cunha, VP8—Falkland Islands, VR6—Pitcairn. This is a new and improved edition of our famous pre-war globe. The larger diameter of 13½” gives considerably greater area and the compass fitted in the base allows correct orientation. New Continental boundaries and 1948 Amateur Radio prefixes are embodied.

A REALLY HANDSOME AND USEFUL ADDITION TO ANY OPERATING SHACK

Webb's Radio Map

A new printing with revised amateur call signs, prefixes, coded to country and time-zone. The azimuthal projection is based on the Great Circle or shortest distance projection centred on London, and distances can be approximated in all directions by radial lines from that point to the circumference. The alphabetical list of prefixes is useful to listener and transmitter alike and the time-zone instructions are clearly indicated also on the margin. Printed in full colours on heavy white paper, size 40” x 30”.

PRICE 47/6 TO CALLERS. 50/- BY RAIL

TRANSMITTING AND EXPERIMENTAL U.H.F. VALVES — SPECIAL OFFER

We offer well-known transmitting and experimental types at rock-bottom prices. — YOU WILL NEVER BUY THEM CHEAPER.

Webb’s are not “surplus dealers,” but this offer is too good to miss. All the valves are in makers’ boxes, tested and brand new. They are not unboxed valves culled from broken-down equipment. (Please add 1/- for all post orders).

<table>
<thead>
<tr>
<th>Valve Type</th>
<th>Price</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>955</td>
<td>4/-</td>
<td>ACORN TRIODE. 6.3v-0.15A. 180v-8 m/A. 250 Mc/s.</td>
</tr>
<tr>
<td>808</td>
<td>15/-</td>
<td>TRIODE. 7.5v-4.0A. 1500v-300 m/A. 30 Mc/s. Dissipation 50 watts.</td>
</tr>
<tr>
<td>832A</td>
<td>25/-</td>
<td>DOUBLE PENTODE. 6.3v-1.6A. 12.6v-0.8A. 750v-48 m/A. 200 Mc/s. Dissipation 15 watts.</td>
</tr>
<tr>
<td>807</td>
<td>7/3</td>
<td>TETRODE. 6.3v-0.9. Well-known general purpose R.F. and audio “bottle.”</td>
</tr>
<tr>
<td>100TH</td>
<td>35/-</td>
<td>TRIODE. 5v-7.1A. 3000v-225 m/A. 40 Mc/s.</td>
</tr>
<tr>
<td>250TH</td>
<td>45/-</td>
<td>TRIODE. 5v-10.5A. 4000v-350 m/A. 40 Mc/s.</td>
</tr>
<tr>
<td>832</td>
<td>25/-</td>
<td>DOUBLE PENTODE. 6.3v-1.6A. 12.6v-0.8A. 500v-72 m/A. 200 Mc/s. Dissipation 15 watts.</td>
</tr>
</tbody>
</table>
Measuring Inductance of choke and transformer windings under working conditions

Windings having inductances between 100 mHys. and 5,000 Hys. can be measured when carrying D.C. up to 100 milliamps by using an external source and connecting as shown. The use of a high impedance choke in series with the source is necessary to avoid short circuiting the detector input.

Wayne Kerr

THE WAYNE KERR LABORATORIES LIMITED, NEW MALDEN, SURREY. • PHONE MALDEN 2202

AMPLIFIERS

DEFERRED TERMS are now available

1e, PALACE GATE
KENSINGTON
LONDON . W.8
Telephone : WESTERN 3350

Wireless World November, 1948

COMPONENT BRIDGE B 101
Capacity: 5 pfd. to 500 mfd. in eight ranges
Resistance: 5 ohms to 500 MΩ in eight ranges
Inductance: 0.1 Hys. to 500 Hys. in four ranges
Leakage 0 to 1-5 m/a
Q: 0 to 30
Precision Comparator Price 26 Guineas

The KI Kit is undoubtedly the best high fidelity amplifier kit available at the price. Absolutely complete, very simple to construct, the performance matches up to the high standard reached by moving coil pickups. We recommend either moving coil pickups or miniature moving iron types, such as the Connoisseur, which may be used without the transformer. 7 valves are used to ensure a very low distortion level, the output stage being tetrodes with negative feedback.

Price 13 guineas.

Blueprint separately 2 6d.

Our new 16 page catalogue “Living Music”—fully illustrated and showing our complete range of amplifiers and tuning units, and the new Corner Cabinet (which is available without the loudspeaker) is now ready. Write today (enclosing 5d. in stamps—a copy should be in the hands of every music lover.

Varley

Products of Quality & Reliability

MAINS TRANSFORMERS
A.F. TRANSFORMERS
SMOOTHING CHOKES
THERMAL DELAY SWITCHES
POWER RESISTANCES

Made by
OLIVER PELL CONTROL LTD
Telephone: WOOLWICH 1422
CAMBRIDGE ROW · WOOLWICH S.E.18

Varley REGD. TRADE MARK

AMPLIFIERS
DUBILIER HIGH STABILITY Resistors 1/8th Watt

- Absolutely stable in operation.
- Lowest noise level.
- Maximum resistance to moisture in all operating conditions.
- Eminently suitable for use in all circuits where high stability characteristics are essential.

RESISTANCE RANGE

<table>
<thead>
<tr>
<th>Resistance Range</th>
<th>Resistance Value</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Ω to 0.75MΩ</td>
<td>± 5%</td>
<td></td>
</tr>
<tr>
<td>50Ω to 0.5MΩ</td>
<td>± 2%</td>
<td></td>
</tr>
<tr>
<td>100Ω to 0.5MΩ</td>
<td>± 1%</td>
<td></td>
</tr>
</tbody>
</table>

DUBILIER CONDENSER CO. (1925) LTD., DUCON WORKS, VICTORIA ROAD, NORTH ACTON, W.3

Telephone: Acorn 2241 (5 lines)
Telegrams: Hilvoltcon, Phone London
Cables: Hilvoltcon, London
Marconi International Code D.178
"Advance" Signal Generator type D.1.

This "ADVANCE" Signal Generator is of entirely new design and embodies many novel constructional features. It is compact in size, light in weight, and can be operated either from A.C. Power Supply or low-voltage high-frequency supplies.

An RL18 valve is employed as a colpitts oscillator, which may be plate modulated by a 1,000-cycle sine wave oscillator, or grid modulated by a 50/50 square wave. Both types of modulation are internal, and selected by a switch. The oscillator section is triple shielded and external stray magnetic and electrostatic fields are negligible. Six coils are used to cover the range, and they are mounted in a coil turret of special design. The output from the R.F. oscillator is fed to an inductive slide wire, where it is monitored by an EA50 diode. The slide wire feeds a 75-ohm 5-step decade attenuator of new design. The output voltage is taken from the end of a 75-ohm matched transmission line.

The instrument is totally enclosed in a grey enameled steel case with a detachable hinged lid for use during transport.

Price £80
Delivery ex Stock.

Write for descriptive Leaflet.

ADVANCE COMPONENTS, LTD.
BACK ROAD, SHERNHALL STREET,
WALTHAMSTOW, LONDON, E.17.
Telephone: Larkwood 4366-7.
A 10-valve, all-wave auto-radio-gramophone with 12 inch duplex cone moving coil loudspeaker having substantial level response from 40-10,000 cycles is an outstanding feature of this superheterodyne model. Five wave bands individually illuminated on the 10 inch vertical dial. Cathode ray tuning indicator and variable selectivity control, lightweight high fidelity pick-up. The automatic record changer plays eight 10 or 12 inch records mixed in any order. Cabinet of figured walnut with cross banding and ebonised sound louvres and base.

R·G·D The Aristocrat of Radio

SALES & SERVICE DEPOTS:

LONDON
3-4, Hampton Court Parade,
East Molesey, Surrey.
Tel.: Molesey 4357-8.

BIRMINGHAM
187, Corporation Street, 4.
Tel.: CENTral 2403.

MANCHESTER
12, Cateaton Street, 3,
Tel.: BLackfriars 1951.

RADIO GRAMOPHONE DEVELOPMENT CO. LTD.
BRIDGNORTH SHROPSHIRE
Today's outstanding development - a mains operated record player with built-in 3 watt amplifier, speaker and new fool-proof sure-stop motor. The "Recordmaster" sells on first sight of its attractively styled case - it can be played anywhere, anytime. Send for details now.

Price £11.11.0 list.

BIRMINGHAM SOUND REPRODUCERS LIMITED, OLD HILL, STAFFS.

AMBASSADOR 4756 Chassis

SPECIFICATION:
5 valve A.C. or A.C./D.C. Super-Het. 6 wave bands covering from 9.6 to 1940 metres. (Electrical Band Spreading.) 10" P.M. Speaker. £22.8.2 TAX PAID. Immediate Delivery can be given.

WRITE FOR FULL DETAILS TO:— R. N. FITTON LTD.

AMBASSADOR RADIO WORKS
HUTCHINSON LANE, BRIGHOUSE, YORKS.
Designed to suit the circuit

No. 1 COUPLING CAPACITORS

Capacitors with high insulation resistance are required to link circuits with widely differing D.C. potentials, such as the output and A.F. amplifier circuits in receivers. The insulation resistance of U.I.C. Silvered Mica Capacitors is many times greater than required for satisfactory operation, and the test voltage is six times the normal working voltage used in radio receivers. U.I.C. Silvered Mica Capacitors used as coupling capacitors ensure long, trouble-free life in new designs and reliable performance after servicing.

Build and Service the set with...

U.I.C HIGH STABILITY CAPACITORS

UNITED INSULATOR CO. LTD. OAKCROFT RD. TOLWORTH SURBITON SURREY
The best—

HIGH and LOW

Exide
L.T. ACCUMULATORS
and
Drydex
H.T. BATTERIES

for better
battery radio reception

ISSUED BY THE CHLORIDE ELECTRICAL STORAGE COMPANY LIMITED

For precision alignment of Tuned Circuits
and visual observation of Electrical
Phenomena.

Illustrated are the latest models of the
12008 Oscilloscope and the 14008 Visual
Alignment Signal Generator.

Special features of the Oscilloscope and
High gain D.C. amplifiers on both axis,
these time base will
perfect synchronisation
at any frequency. Complete
independence of all controls from each
other.

The 14008 Unit will show the shape and
current characteristics of a tuned circuit response curve
on the Oscillograph screen. Thus perfect
alignment of an I.F. or
R.F. Amplifier is easily
accomplished. Overall
size of combined instru-
ments: 17" wide, 11"
high, 9" long.

We also make elec-
tronic equipment for
special purposes. If you
have any problems in this
field we will be pleased
to assist.

Early Deliveries.

Model 12008 Oscilloscope, £32 0 0
Model 14008 Unit, £8 10 6

Write for Specifications to—

INDUSTRIAL ELECTRONICS
229, Hale Lane, Edgware, Middx. Tel.: EDG. 7312

Makers of Industrial Controls and Precision Instruments.
Make calls from any point with the Hadley MULTICOM...

The first system of its kind to provide complete loudspeaker intercommunication between all points. Up to seven Departments are instantly in touch with one another by the flick of a switch. All stations are identical. Priority of call is provided on the principal unit.

Other Hadley Products

THE HADLEY INTERCOMMUNICATOR
designed for personal communication between master unit and any or all of the sub-stations and also incorporates the novel feature of a desk radio which can be relayed to the sub-stations. An inexpensive aid to efficiency.

THE HADLEY INDUSTRIAL UNIT
proved to be well in advance of any similar equipment. Provides all facilities for 'Staff Location,' 'Music for the Workers,' 'Time Signals,' etc.

All Hadley Equipments are available on Cash Purchase or Rental Maintenance terms.

All export enquiries to be addressed to our export agent:

CHARLES BAGLIN,
411 COVENTRY ROAD, BIRMINGHAM, 10
Telegrams: Pentagonos, Birmingham.
RESISTOR NOISE METER

Manufactured to an approved Ministry of Supply specification for the measurement of inherent noise above one microvolt in fixed and variable resistors.

PLEASE WRITE FOR FULL DETAILS TO
ERSKINE LABORATORIES LTD—SCALBY, SCARBOROUGH, YORKS.

"You're CERTAIN to get it at ARTHURS!"

★ VALVES: We have probably the largest Stock of valves in the Country, including :-

<table>
<thead>
<tr>
<th>Type</th>
<th>2526GT</th>
<th>2566GT</th>
<th>2A3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>12</td>
<td>11</td>
</tr>
</tbody>
</table>

All guaranteed.

Ex-Govt. brand new A.C. TEST BOARD approx.
12 in. x 6 in., completely wired comprising:—
A.C. voltmeter, 300 v., 15 amp. bridges and fuses, 15 amp. 2-pin surface sockets, 2 fuse wire holders. Complete £12 10 0

PERSONAL RADIO SETS IN STOCK
New Olympic Romac, Long and Medium Wave £17 16 11
Ever Ready £12 18 10
Marconi £15 19 5

REMINGTON FOURSOME SHAVERS
210-250 v. A.C./D.C. £7 17 6

ALL AVO AND TAYLORS METERS. List on request.

ALSO STOCKISTS OF ALL DOMESTIC APPLIANCES.

Arthurs

PROPS: ARTHUR GRAY LTD. Terms C.O.D. or cash with order.

Our Only Address: Gray House, 150, Charing Cross Rd.,
London, W.C.2

ELECTRICAL, TELEVISION & RADIO ENGINEERS.

Which switch is the right switch?

... is it Rotary or Pushbutton or Slider? Is it wanted for circuit selection, band selection, tap switching? Is it for a new design or in quantities for a well-proved circuit?

Whatever it is—the answer is always OAK!

The basic design of all Oak switches is one of strength and efficient functioning, including such exclusive features as the double-contact clip and the float-rotor, ensuring self-alignment of each section.

OAK SWITCHES

BRITISH N.S.F. CO. LTD., Keighley, Yorkshire
(Sole Licensees of OAK Manufacturing Co., Chicago)
DRY ELECTROLYTIC CONDENSERS

"PICO PACK"

The small dimensions, wide temperature range (−30°C to 71°C), and robustness of these fully tropicalised condensers have proved invaluable to designers of the most compact types of portable apparatus. Like the popular T.C.C. “Micropack” range, they are of all-Aluminium plain foil construction and are hermetically sealed into aluminium tubes by means of neoprene rubber bungs.

Full details are available on request.

IN THE BEST SETS YOU’LL SEE TCC

TROPICAL MINIATURES

<table>
<thead>
<tr>
<th>Capacity (µF)</th>
<th>Peak W/kg Volts</th>
<th>Dimensions (INCHES)</th>
<th>Type Number</th>
<th>List Price EACH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Body Length</td>
<td>Diameter</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>1.9/16</td>
<td>0.34</td>
<td>CE30B</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>1.5/16</td>
<td>7/16</td>
<td>CE70B</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>1.9/16</td>
<td>0.34</td>
<td>CE30C</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>1.9/16</td>
<td>0.34</td>
<td>CE30D</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>1.9/16</td>
<td>0.34</td>
<td>CE30E</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>1.9/16</td>
<td>0.34</td>
<td>CE30G</td>
</tr>
<tr>
<td>1</td>
<td>350</td>
<td>1.9/16</td>
<td>0.34</td>
<td>CE30N</td>
</tr>
</tbody>
</table>

THE TELEGRAPH CONDENSER CO., LTD.

NORTH ACTON - LONDON - W.3 Telephone. ACORN 0061
The S.S. White Company of Great Britain Ltd

Britannia Works, Saint Pancras Way, Camden Town, London N.W.1

Stewart Transformers Ltd.
1021 Finchley Rd., London, N.W.11

Tel.: SpEdwell 3000 and 3533

Stewart Transformers
Reliable Transformers and Chokes for Continuous Service. Open and Totally Enclosed Types.

- EHT Transformers for Television. Medium and Low Voltage Types for Radio and Industrial Use.
- Ex Stock: Transformers and Chokes for "Electronic Engineering" Televisor.

Transradio Ltd.

Cables

Only with CO-AX R.F. Cables

The Lowest Ever Capacitance or Attenuation

Immediate Deliveries for Home & Export

- High Power Flexible Cables
- Protocell Cables
- Very Low Capacitance
The SS10A 12-inch Heavy Duty Speaker, illustrated, offering a frequency response from 55 to 11,000 c.p.s. and handling 10 watts is a typical example of TRUVOX workmanship.

Fidelity of response speaks for itself to the discriminating ear. Precision manufacture is no less eloquent to the trained engineer. These qualities are making TRUVOX speakers famous.

TRUVOX

TRUVOX ENGINEERING CO. LTD • EXHIBITION GDS • WEMBLEY • ENG
Remember, Saturday, November 6th
PLEASE GIVE GENEROUSLY
NINE EXAMPLES

from the
"FLEXILANT"
(RUBBER BONDED TO METAL)

RANGE OF MOUNTINGS

OBTAINABLE FROM STOCK

OUR TECHNICAL STAFF investigates all mounting problems
May it investigate yours?

RUBBER BONDERS LIMITED
ENGINEERS IN RUBBER BONDED TO METAL
FLEXILANT WORKS
DUNSTABLE • BEDS
TELEPHONE: DUNSTABLE 60343
FOR PRECISION-BUILT

TELEVISION AND RADIO COMPONENTS

5-VALVE SUPERHET RADIO CHASSIS

Drilled and fitted with 5 Amphenol Octal valve holders, aerial, earth and gramophone sockets, necessary cut-outs for all aerial mountings, mains transformer and tuning gang condenser, complete with 2 steel fixing feet. Retail 11.

Can be used in conjunction with our

Full Vision
Drive Unit

Insulated Universal flexible drive coupling for direct mounting to condenser shaft (1/2" diameter). Provision for internal illumination. Unbreakable Perspex coloured scale, long, medium and short bands. Calibrated in metres, kilocycles and station names.

Waveband 800-2,000 m., 200-580 m., 16-50 m.

Dimensions—Maximum scale opening 10"×4". Distance between centres 10". Retail 22/6, (2 4BA holes fixing). Total depth of unit 12". Pointer travel 7".

If you are unable to obtain A.M.C. units from your dealer, kindly communicate with us and we will put you in touch with our nearest Agent.

MINIATURE METERS

Our stocks of meters are the largest in the U.K. Herewith are listed our main types:

Please add postage and packing according to quantity required.

<table>
<thead>
<tr>
<th>SCALE</th>
<th>TYPE</th>
<th>SHAPE</th>
<th>SIZE</th>
<th>MOUNTING</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>Moving Coil D.C.</td>
<td>Square</td>
<td>2"</td>
<td>Flush</td>
<td>5.6</td>
</tr>
<tr>
<td>0-40/100</td>
<td>Moving Coil D.C.</td>
<td>Round</td>
<td>4"</td>
<td></td>
<td>10.0</td>
</tr>
<tr>
<td>0-0.5</td>
<td>Moving Coil D.C.</td>
<td>Round</td>
<td>2"</td>
<td>Proj.</td>
<td>3.7</td>
</tr>
<tr>
<td>0-1</td>
<td>Moving Coil D.C.</td>
<td>Rectangular with shorting switch</td>
<td>3"×2 1/2"</td>
<td>Flush</td>
<td>8.8</td>
</tr>
<tr>
<td>0-2</td>
<td>E.F Thermocouple</td>
<td>Square</td>
<td>3"</td>
<td>Proj.</td>
<td>5.6</td>
</tr>
<tr>
<td>0-3</td>
<td>Moving Coil D.C.</td>
<td>Round</td>
<td>2"</td>
<td>Proj.</td>
<td>7.7</td>
</tr>
<tr>
<td>0-6</td>
<td>Moving Coil D.C.</td>
<td>Rectangular with shorting switch</td>
<td>2"×2 1/2"</td>
<td>Flush</td>
<td>12.6</td>
</tr>
<tr>
<td>0-150</td>
<td>Moving Coil D.C.</td>
<td>Round</td>
<td>2"</td>
<td>Proj.</td>
<td>7.3</td>
</tr>
<tr>
<td>0-3</td>
<td>Moving Coil D.C.</td>
<td>Round</td>
<td>2"</td>
<td>Proj.</td>
<td>7.3</td>
</tr>
<tr>
<td>0-6</td>
<td>Moving Coil D.C.</td>
<td>Rectangular with shorting switch</td>
<td>2"×2 1/2"</td>
<td>Flush</td>
<td>12.6</td>
</tr>
<tr>
<td>0-12</td>
<td>Moving Coil D.C.</td>
<td>Round</td>
<td>2"</td>
<td>Proj.</td>
<td>7.3</td>
</tr>
<tr>
<td>0-20</td>
<td>Moving Coil D.C.</td>
<td>Square</td>
<td>2"</td>
<td>Proj.</td>
<td>7.3</td>
</tr>
<tr>
<td>0-26</td>
<td>Moving Iron</td>
<td>Square</td>
<td>3"</td>
<td>Proj.</td>
<td>7.3</td>
</tr>
<tr>
<td>0-33</td>
<td>Moving Iron</td>
<td>Round</td>
<td>2"</td>
<td>Proj.</td>
<td>7.3</td>
</tr>
<tr>
<td>0-40</td>
<td>Moving Iron</td>
<td>Rectangular</td>
<td>2"</td>
<td>Proj.</td>
<td>7.3</td>
</tr>
<tr>
<td>0-65</td>
<td>Moving Iron</td>
<td>Round</td>
<td>2"</td>
<td>Proj.</td>
<td>7.3</td>
</tr>
<tr>
<td>0-70</td>
<td>Moving Iron</td>
<td>Square</td>
<td>2"</td>
<td>Proj.</td>
<td>7.3</td>
</tr>
<tr>
<td>0-90</td>
<td>Moving Iron</td>
<td>Round</td>
<td>2"</td>
<td>Proj.</td>
<td>7.3</td>
</tr>
<tr>
<td>0-100</td>
<td>Moving Iron</td>
<td>Rectangular</td>
<td>2"</td>
<td>Proj.</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Terms: C.W.O. Remittances payable to E. & J. Redistribution Corporation Ltd.

M.O.S. 1, Robert St., Hampstead, London, N.W.1.

J. H. BRIERLEY (GRAMOPHONES & RECORDINGS), LTD., 46, TITHEBARN STREET, LIVERPOOL.
Mazda AC/DC Miniatures

IO LD II
Double-Diode Triode

<table>
<thead>
<tr>
<th>RATING</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Current (amps)</td>
<td>I_h</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater Voltage (volts)</td>
<td>V_h</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Anode Voltage (volts)</td>
<td>$V_a(max)$</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Cathode Current (mA)</td>
<td>$I_{k(max)}$</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutual Conductance (mA/V)</td>
<td>g_m</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anode Impedance (ohms)</td>
<td>r_a</td>
<td>9.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplification Factor</td>
<td>μ</td>
<td>31.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Mean Diode Current per diode (mA)</td>
<td>$I_{d(max)}$</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Potential Heater/Cathode (volts rms)</td>
<td>$V_{h-k(max)}$</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Taken at $V_a=100v$; $V_g=0v$.

IO P 14
Output Tetrode

<table>
<thead>
<tr>
<th>RATING</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Current (amps)</td>
<td>I_h</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater Voltage (volts)</td>
<td>V_h</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Anode Voltage (volts)</td>
<td>$V_a(max)$</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Screen Voltage (volts)</td>
<td>$V_{g2(max)}$</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Anode Dissipation (watts)</td>
<td>$W_a(max)$</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Screen Dissipation (watts)</td>
<td>$W_{g2(max)}$</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutual Conductance (mA/V)</td>
<td>g_m</td>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner μ</td>
<td>$*g_{1,2}$</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Potential Heater/Cathode (volts RMS)</td>
<td>$V_{h-k(max)}$</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Taken at $V_a=175v$; $V_{g2}=175v$; $V_{g1}=-9,4$.

IO P 13
Output Tetrode

<table>
<thead>
<tr>
<th>RATING</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Current (amps)</td>
<td>I_h</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater Voltage (volts)</td>
<td>V_h</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Anode Voltage (volts)</td>
<td>$V_a(max)$</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Screen Voltage (volts)</td>
<td>$V_{g2(max)}$</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Anode Dissipation (watts)</td>
<td>$W_a(max)$</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Screen Dissipation (watts)</td>
<td>$W_{g2(max)}$</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutual Conductance (mA/V)</td>
<td>g_m</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner μ</td>
<td>$\mu_{g1,2}$</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Potential Heater/Cathode (volts rms)</td>
<td>$V_{h-k(max)}$</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Taken at $V_a=V_{g2}=150v$; $I_a=30mA$.

U404
Half-Wave Rectifier

<table>
<thead>
<tr>
<th>RATING</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Current (amps)</td>
<td>I_h</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater Voltage (volts)</td>
<td>V_h</td>
<td>40.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Anode Voltage (volts RMS)</td>
<td>$V_a(rms)_{max}$</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Peak Inverse Anode Voltage (volts)</td>
<td>$P.I.V.(_{max})$</td>
<td>750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Mean Anode Current (mA)</td>
<td>$I_{a(max)}$</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Peak Anode Current (mA)</td>
<td>$I_{a(pk)}_{max}$</td>
<td>700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Peak Potential Heater/Cathode with Heater negative (volts)</td>
<td>$V_{h-k(max)}$</td>
<td>550</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Taken at $V_a=V_{g2}=150v$; $I_a=30mA$.

Other valves in the AC/DC Range-10CI FREQ, CH.—10F9 VAR. y H.F. PEN. Further details on application.
THE SIMPLEST WAY to obtain E.H.T.
is to connect a

Westinghouse Brake & Signal Co., Ltd., 82, York Way, King's Cross, London, N.1

Wireless World November, 1948

28 Advertisements

12:58

PLAN YOUR CAREER

WRITE NOW FOR FREE BOOKLET summarising the careers available in Electronics and giving particulars of Training Courses offered by E.M.I. Institutes, Ltd.

The booklet contains full details of Correspondence Courses in Radio, Television, Telecommunications and Industrial Electronics.

Daytime and Evening Attendance Courses, and Special Courses for candidates taking I.E.E., Brit. I.R.E., and City & Guilds examinations are also available.

Payment for tuition can be made in easy instalments if required.

E.M.I. INSTITUTES LTD.

22 Ranges.
Long-life batteries.
VHF probe and 5000v. D.C. multiplier optional.

22 Ranges.

A multi-range meter that will measure A.F. & R.F. signal voltages!

ELECTRONIC INSTRUMENTS LTD

17 Paradise Road, Richmond, Surrey
Wireless World

November, 1948

PREMIER RADO COMPANY

MORRIS & CO. (RADIO) LTD.

NOW OPEN—COMMODORE NEW PREMISES AT
152-153, FLEET STREET, E.C.4

(No. 169 will remain open as usual).

ALL POST ORDERS to 167, LOWER CLAPTON ROAD, LONDON, E.S.

Terms of Business : Cash with order or C.O.D. over £1. Send 2 d. Stamp for list.

November 1, 1948

New 1948 MIDGET T.R.F. RADIO KITS with illuminated dial. All parts including Valves, M/C & Speaker and instructions. 3 valves plus Metal Rectifier. 200-250 volt. £2 50 to 320 v. A.C. or A.C./D.C. mains. Price includes 14 volt. 25/-.

New 1948 MID-VENTURE T.R.F. RADIO KITS with illuminated dial. All parts including Valves, M/C & Speaker and instructions. 3 valves plus Metal Rectifier. 30-250 volt. £2 50 to 320 v. A.C. or A.C./D.C. mains. Price which includes 14 volt. 25/-. (Similar to above except smaller.)

NEW PREMIER KITS AT REDUCED PRICES

Price with circuit diagram £2 10/-. Pop. 200.250 or 250-350 volt. £2 10/-. Pop. 200-250 volt. £2 50. Also included are 3 pots, 1 neon lamp, and rubber bases to fit. Suitable loudspeakers are the 000D31ANS 10in. 6-watt earphones, or for superlative reproduction, the Supreme 722 10in. 12.5-watt earphones at £3 10/-.

MOBILE CUBES KITS

E.H.T. Transformers. For 200-250 or 250 volt. Input Half Wave. For use with Valve or Metal Rectifier. Used in a Voltage Doubling Circuit. These will give slightly over double the half wave output. We can supply suitable rectifiers.

E.H.T. Transformers. £1 7/6.

TANK AERIALS. Seven 24 in. lengths of steel tube which fit into each other, making a very efficient aerial. £3 5/-. Each

LOUDSPEAKERS BY FAMOUS MAKER

5in. P.M. 2-3 ohms £10 11/.-
6in. 3-5 ohms £16 15/.-
10in. 3-5 ohms £22 18/.-
12in. 3-5 ohms £29 6/-.

METERS. All meters are by the best makers and are contained in bakelite cases. Prices are about one-quarter the original cost.

R107. ONE OF THE ARMY’S FINEST COMMUNICATION RECEIVERS. (See “W.W.”, August 1942.) 9 valves. 12 volt A.C. or a.c./d.c. Frequency Changer, 3 L.F. transformers (25 kc.), 2nd Detector, A.V.C. A.F. ampl. B.F.O. A.C. mains. 6 volt D.C. in 12 volt D.C. supply. Frequency range 17.5 to 7 m.c., 2.75 m.c. to 2.0 m.c., 3.0 to 1.5 m.c. MORRIS & CO. (RADIO) LTD.

SP.352 325-250 to 150 m.c., 5 v. 3-2 a., 6.3 v. 3-2 a. 4/6.

SP.301A 350-425 v. 250 m.c., 6.3 v. 2-3 a. 47/-

SP.301B 350-600 v. 150 m.c., 5 v. 2-3 a., 6.3 v. 2-3 a. 47/-

INDICATOR UNIT TYPE 174 contains 1 C.B. Tube V204, 1 C.T. Tube V203, 1 Metal Detector V202, 1 V201, 1 V206, 6 V203, 14 Potentiometers, 8 Relays, 2,500 m.c. working Condensers, over 50 resistors, 1 switch 5-pole 2-way, 1 switch 4-pole Transmitting, Changing, etc. A remarkable radio receiver at 82/6.

NEW 2-VALVE ALL WAVE KIT. 16 to 2,000 metres. £2 10/-. 16 to 250 volts, £2 50. Suitable loudspeakers are the 000D31ANS 10in. 6-watt earphones, or for superlative reproduction, the Supreme 722 10in. 12.5-watt earphones at £3 10/-.

NEW 1948 MIDGET T.R.F. RADIO KITS with illuminated dial. All parts including Valves, M/C & Speaker and instructions. 3 valves plus Metal Rectifier. 200-250 volt. £2 50 to 320 v. A.C. or A.C./D.C. mains. Price includes 14 volt. 25/-.

ALL-WAVE SUPERHET KIT. A Kit of Parts to build a 6-valve (plus rectifier) receiver, covering 18-50 metres. Mediums and Low-frequency (r.f.) or i.f. in-line circuit. Suitable for use in 200-250 or 250-350 volt. 40-60 cycle. £2 10/-.

NEW 1948 MIDGET SUPERHET RADIO KIT, with illuminated Glass Dial. All parts including Valves, M/C & Speaker and instructions. 4 valves plus Metal Rectifier. 15-50 metres and 200-255 volt. £2 50 to 320 volts. A.C. or A.C./D.C. mains. Price which includes 14 volt.

THE FAMOUS R1155 RECEIVER. One of the Army’s finest communication receivers. 10 valves. 12 volt A.C. or a.c./d.c. Frequency Changer, 1 I.F. and 1 V.F. Transformer, 29 valves, plus Metal Rectifiers, Heater Chokes, Transformers and 100 mfd. 50 volt working Condensers. Complete Kit of Parts Including valves and Complete Illuminated Glass Dial in colour.

E.H.T. Transformers, £1 7/6.

TANK AERIALS. Seven 24 in. lengths of steel tube which fit into each other, making a very efficient aerial. £3 5/-. Each

MOBILE CUBES KITS

E.H.T. Transformers. For 200-250 or 250 volt. Input Half Wave. For use with Valve or Metal Rectifier. Used in a Voltage Doubling Circuit. These will give slightly over double the half wave output. We can supply suitable rectifiers.

E.H.T. Transformers. £1 7/6.

TANK AERIALS. Seven 24 in. lengths of steel tube which fit into each other, making a very efficient aerial. £3 5/-. Each

LOUDSPEAKERS BY FAMOUS MAKER

5in. P.M. 2-3 ohms £10 11/.-
6in. 3-5 ohms £16 15/.-
10in. 3-5 ohms £22 18/.-
12in. 3-5 ohms £29 6/-.

METERS. All meters are by the best makers and are contained in bakelite cases. Prices are about one-quarter the original cost.

TEST UNIT TYPE 73 consists of a special porpoise for testing 000D31ANS 10in. 6-watt earphones, or for superlative reproduction, the Supreme 722 10in. 12.5-watt earphones at £3 10/-.

NEW PREMIER KITS AT REDUCED PRICES

Price with circuit diagram £2 10/-. Pop. 200.250 or 250-350 volt. £2 10/-. Pop. 200-250 volt. £2 50. Also included are 3 pots, 1 neon lamp, and rubber bases to fit. Suitable loudspeakers are the 000D31ANS 10in. 6-watt earphones, or for superlative reproduction, the Supreme 722 10in. 12.5-watt earphones at £3 10/-.

MOBILE CUBES KITS

E.H.T. Transformers. For 200-250 or 250 volt. Input Half Wave. For use with Valve or Metal Rectifier. Used in a Voltage Doubling Circuit. These will give slightly over double the half wave output. We can supply suitable rectifiers.

E.H.T. Transformers. £1 7/6.

TANK AERIALS. Seven 24 in. lengths of steel tube which fit into each other, making a very efficient aerial. £3 5/-. Each

LOUDSPEAKERS BY FAMOUS MAKER

5in. P.M. 2-3 ohms £10 11/.-
6in. 3-5 ohms £16 15/.-
10in. 3-5 ohms £22 18/.-
12in. 3-5 ohms £29 6/-.

METERS. All meters are by the best makers and are contained in bakelite cases. Prices are about one-quarter the original cost.
CONSISTENTLY Accurate

PULLIN 'S' METER

The Pullin 'S' Meter has been designed for use on amateur band communication receivers. The meter is mounted in a bench stand with terminals on top. Two scales are printed on the dial, thus serving as a dual purpose meter. An instructional leaflet is supplied with each meter. This gives the user full instructions for wiring up and explains in detail the value of the resistors and potentiometer to be used in the circuit.

Price, £ 3. 6. 0.

We can give early deliveries — write for full details —

MEASURING INSTRUMENTS (PULLIN) LTD.
Dept. J. Electrin Works, Winchester St., London, W.3. Phone ACOrn 4651/4

THREE FINE OFFERS ! !

FREQUENCY METER LM7

NAVY VERSION OF BC221. 198 kc's-20,000 kc's. Black crackle case on Lord mounting base. 1,000 kc's crystal check points, hand calibrated log book, super vernier drive, internal modulation, stabilised H.T. line.

Power requirements — 250 v. or 350 v. H.T. with internal adjustment for difference. Heaters 12 v. easily modified to 6.3 v. Brand new. PRICE £ 10 including waterproof dust cover.

KITS OF SPARES including set of 3 valves and neon signal limiter, 1,000 kc's crystal, transformer, resistance, potentiometers, etc. PRICE £ 2.

VIBRATOR PACKS

Mallory Vibrapacks. Brand new in black crackle case, 6 in. x 6 in. x 6 in. Sek-rectifying type, 12 v. input, 300 v. at 100 m/A output. (Built-in noise suppression, includes efficient low frequency hum filter.) PRICE 16/6. Postage 1/6.

TRANSMITTING VALVES

Ex-Government, brand new in original cartons. 807, 8/6 ; 832, 25/- ; 832A, 25/- ; 100TH, 35/- ; 250TH, 45/-.

Also 808, 30/- ; 845/865, 25/- ; 813, 3/-10/- ; 866/866A, 25/-, and many other odd Transmitting Valves too numerous to mention.

Send S.A.E. for Standard Raymart and No. 7 Special Offers List

48, HOLLOWAY HEAD, BIRMINGHAM, 1.

A Definite Advance in TUNING UNITS for high-grade COMMUNICATION RECEIVERS

DENCO (CLACTON) LTD., OLD ROAD, CLACTON, ESSEX
Telephones : Clacton 807-8
Telegrams : Denco, Clacton
Invite your customers to hear the "De Luxe" Microgram play their favourite records and let its superb reproduction prove to them that there's no finer portable electric gramophone.

The "De Luxe" Microgram with the new Collaro lightweight Crystal Pickup, Automatic Stop and 6-inch Speaker—complete in handsome imitation lizard-skin carrying case. A.C. Supply 200/250 volts.

Retail Price £19 19 0
Plus Purchase Tax, £8 12 11

Trade Terms and Literature from:
COLLARO LTD., RIPPLE WORKS, BY-PASS ROAD, BARKING, ESSEX
Telephone: RIPPLEWAY 3333
Popular Models from a FAMOUS RANGE

SIGNAL GENERATOR, MODEL 65B
For testing audio/receivers and for gauging and alignment adjustments on tuned circuits. Mains operated. Frequency range: 100 Kc/s to 46 Mc/s. Power consumption approximately 15 watts. A 400 c/s audio signal available for testing audio amplifiers.

PRICE £15. 10. 0.
H.P. TERMS: £11.10.2 deposit and 11 monthly payments of £1. 9. 8.

CIRCUIT ANALYSER, MODEL 20A
For checking on receivers, radiograms, audio and radio frequency amplifiers. Incorporates a "Magic Eye" indicator and an audio-amplifier and loudspeaker. Units can be used independently.

PRICE £15. 15. 0.
H.P. TERMS: £11. 10. 5 deposit and 11 monthly payments of £1. 10. 2.

UNIVERSAL TAYLOR-METER, MODEL 75A
This instrument has a sensitivity of 20,000 ohms per volt on both D.C. and A.C. 50 ranges cover all A.C., D.C. and resistance measurements.

H.P. TERMS: £1. 8. 3 deposit and 11 monthly payments of £1. 8. 2.

CATHODE RAY OSCILLOGRAPH, MODEL 30A
This oscillograph incorporates a 3½ inch electrostatic tube operating from A.C. mains; power consumption 20 watts; provision made for a time base generator, a vertical amplifier and external coupling to both sets of deflection plates.

PRICE £29. 10. 0.
H.P. TERMS: £2. 17. 0 deposit and 11 monthly payments of £2. 16. 6.

VALVE TESTER AND UNIVERAL METER MODEL 47A
Similar to Model 45A, but an extra panel has been fitted at the bottom enabling the meter to be used for measurements of A.C. and D.C. volts, D.C. current and ohms.

PRICE £27. 0. 0.
H.P. TERMS: £2. 11. 9 deposit and 11 monthly payments of £2. 11. 9.

VALVE TESTER, MODEL 45A
Available as bench or portable instrument giving correct measurements for the mutual conductance of amplifying valves. Sixteen valve holders supplied with each instrument. Bench instrument shown is housed in a strong steel case; the portable is supplied in a strong oak case.

PRICE £22. 0. 0.
H.P. TERMS: £2. 2. 2 deposit and 11 monthly payments of £2. 2. 2.

Further information gladly supplied on request

IMMEDIATE DELIVERY ON ALL THE ABOVE MODELS

TAYLOR PRODUCTS INCLUDE: MULTIRANGE A.C.D.C. TEST METERS • SIGNAL GENERATORS • VALVE TESTERS • A.C. BRIDGES • CIRCUIT ANALYSERS • CATHODE RAY OSCILLOGRAPHS • HIGH AND LOW RANGE OHMMETERS • OUTPUT METERS • INSULATION TESTERS • MOVING COIL INSTRUMENTS

TAYLOR ELECTRICAL INSTRUMENTS LTD • 419-424 MONROSE AVENUE, SLOUGH, BUCKS, ENGLAND

TESTED ★
TRIED ★
APPROVED ★

Telephone SLOUGH 11381 (4 lines)
Grams & Cables "TAYLINS" SLOUGH

World Radio History
Keeping abreast of fast-moving technical development calls for a new approach to production problems. The "WEARITE" Pressed Circuit System represents a substantial advance in production science to speed assembly and lower costs. The first of these "Wearite" New Approach Components is a Coil Pack comprising coils, switches, trimmers and padders completely wired and ready for instant incorporation into any standard Superhet circuit.

- 3 ranges
- Gram switching
- 2-hole fixing at 1½" centres
- All trimmers and adjusters conveniently placed in one surface

Manufacturers are urged to write for full technical details.

Owing to raw material restrictions, supplies, for the time being, are confined to Radio Receiver Manufacturers at home and abroad.

Wright and Weaire Limited
138, SLOANE ST. LONDON · S.W.1 TEL SLOANE 22145 FACTORY: SOUTH SHIELDS, CO. DURHAM
Valves and their applications

THE RINGING CHOKE CIRCUIT
FOR E.H.T. GENERATION

When the current through a coil is suddenly interrupted, the oscillatory circuit formed by the coil (L) and its associated capacitance \(C_s \) will "ring" at a frequency determined by L and \(C_s \) and the resulting voltage waveform will be as shown in Fig. 1 (a). This principle is utilised in what is commonly called the Ringing Choke method of E.H.T. generation.

![Fig. 1](https://via.placeholder.com/150)

Fig. 1

(a) CUT-OFF

(b) Fig. 2 shows a practical circuit in which an EL38 operates as a switch which periodically interrupts the current through L. The switching voltage which is applied to the grid of the EL38 may be as shown in Fig. 1 (b).

![Fig. 2](https://via.placeholder.com/150)

Fig. 2

In the choice of a valve for the circuit, two factors are of primary importance: the valve must be able (a) to supply large peak currents at low anode voltages and (b) to withstand large pulse voltages on its anode; the EL38 fulfils both these requirements adequately.

The mode of operation of the circuit is as follows:—during the period when the EL38 (V1) is conducting, magnetic energy is stored in L; when V1 is cut off, the oscillation which results may be regarded as an interchange of energy between L and \(C_s \). At the end of the first quarter cycle, the energy stored in L (less the loss due to circuit resistance) has been transferred to \(C_s \) and the high voltage produced is rectified by the EY51 diode. The open circuit D.C. output voltage at the cathode of the EY51 will be approximately equal to the peak voltage and will leak away, at a rate determined by the time constant of the external circuit, as shown dotted in Fig. 1 (a). By connecting the anode of V1 to a tap on L, the output capacitance of V1 is transformed into a smaller equivalent capacitance, the contribution to \(C_s \) is reduced and the peak voltage will be increased \(V_2 \) peak proportional to \(1/C_s \).

It will be noted that the EY51 heater supply is derived from a subsidiary winding coupled with L; the coupling should be adjusted until the colour of the EY51 heater is the same as that of a similar diode fed from a 6.3 V. 50 c/s supply.

The energy loss to the EY51 heater adds to the resistive losses associated with L and \(C_s \) and reduces the effective Q of the oscillatory circuit; with a circuit Q as low as 16, however, the peak voltage is reduced by only 5% below that voltage which would result from a loss-free circuit. Since a high Q is, therefore, not of great importance, the physical dimensions of L may be reduced considerably by the use of a high permeability iron-dust core.

The source impedance \(R_s \) of an E.H.T. supply of this type is approximately equal to \(1/(C_s f) \) ohms where f is the repetition frequency of the waveform fed to the grid of V1 (10,125 c/s when this is derived from the line time base generator). The power \(P \) drawn from the H.T. line for both anode and screen supply may be estimated from the expression \(P = V_0^2/R_s \) watts where \(V_0 \) is the open-circuit E.H.T. voltage.

Reprints of this report from the Mullard Laboratories can be obtained free of charge from the address below:

MULLARD ELECTRONIC PRODUCTS LTD.,
TECHNICAL PUBLICATIONS DEPARTMENT,
CENTURY HOUSE, SHAFTESBURY AVE., W.C.2

MVM75
Europe's New Broadcasting Frequencies

After deliberations lasting some ten weeks the delegates of twenty-five of the thirty-two nations participating in the European Broadcasting Conference at Copenhagen have signed the Convention which provides for the reallocation of frequencies to broadcasting stations in what is now known as the European Broadcasting Area.

The Copenhagen Plan, 1948, as it is called, is largely the work of a committee led by H. Faulkner, Deputy Engineer-in-Chief of the British Post Office. The committee, on which L. W. Hayes, B.B.C., also sat, is to be congratulated on producing a plan which, in spite of the prevailing international unrest and rivalry, proved acceptable to the majority of the delegates. The gargantuan task of accommodating in 139 channels some 340 stations and synchronized networks and in addition providing for numerous low-powered stations on two international common frequencies having been completed, it now remains for the governments of the countries concerned to ratify the Convention. Provided this is done the Copenhagen Plan will come into operation on March 15th, 1950—just ten years after the still-born Montreux Plan would have been implemented, had it not been for the outbreak of World War II.

In order to accommodate all the stations within the two bands (long and medium wave), both of which have been extended in accordance with the provisions of the recent Atlantic City Convention, it has again been necessary to allow only 9 kc/s for each channel. There will be general regret that it was found impracticable to increase channel width to 10 kc/s, as is done in the United States, but the alternative plan providing for this was rejected. Its introduction, with the resulting simplification of dial markings, would have been welcomed by both manufacturers and listeners. However, as will be seen from the full list of allocations printed elsewhere in this issue, channels have been numbered arbitrarily, but it seems doubtful in any case if the American practice of marking channel numbers on receiver dials will become general in Europe.

On paper the Plan appears to be perfectly satisfactory but its implementation bristles with difficulties. The major trouble is the appointment of an organization to supervise its continued operation. When the Lucerne Plan was introduced in 1933 there was one international organization—the Union Internationale de Radiodiffusion—which could and did undertake this formidable task. Since 1946, however, a second body—the Organisation Internationale de Radiodiffusion—set up originally under Belgian sponsorship has sought recognition. Both organizations were represented at Copenhagen, yet neither is in a position to act as the mouthpiece of all European countries; in fact, some countries, including Great Britain, are not members of either organization. It will be seen, therefore, that the provision of the Convention for the appointment of an international organization to "facilitate the entry into force of the Plan and to supervise its effective and regular implementation" is of paramount importance. The fact that the nomination of this organization by the International Telecommunication Union has to be approved by twenty-eight of the participating governments is likely to create an impasse.

Commenting on the Plan, Sir William Haley, B.B.C. Director General, recently told manufacturers: "It will need both statesmanship and technical skill to bring the Plan into operation. Then it should last five years. Whether at the end of that time the answer to Europe's wavelength problems will be F.M. no one can quite say. But at all events Europe by that time should be in a better state to put it into operation if F.M. does prove to be the answer. It is no answer to-day. Not a nation in Europe could face the vast changeover its adoption would demand." Wireless World is not at all sure that F.M. will be the answer, but we are certain that Europe will need some form of E.H.F. if it is to have high-quality broadcasting with a wide choice of local programmes.
SCALE DISTORTION
Clarifying Some Recent Misinterpretations

It is notoriously difficult to find anyone who can repeat with perfect accuracy what Gladstone said in eighteen hundred and whatever-it-was. So perhaps it is only to be expected that what the obscure 'Cathode Ray' said about scale distortion in 1937 has, with the passage of time, become corrupted. Seeing that my term 'scale distortion' seems to have been widely adopted—in fact I have heard of no rival to it—perhaps I may be allowed a post-war say on the subject.

By scale distortion I mean the way in which adjusting the loudness of a sound programme alters the balance of tone. Its most noticeable feature is that when the loudness is reduced the bass diminishes much more than the higher tones. Various schemes of 'bass compensation' have been devised for counteracting this effect. The whole subject seems to be a perpetual source of controversy among sound-quality enthusiasts, much of it springing from misunderstandings of one kind or another.

Definitions

First of all one has to be perfectly clear about the distinctions between sound power, intensity, and loudness. Hapiness here has led to my being accused of wanting to get as many watts of sound out of my home loudspeaker as the B.B.C. Symphony Orchestra get out of their instruments. What I do claim is that in order to hear a programme reproduced with the same balance of high and low tone as in the original it is necessary that the sound entering the ears should have the same intensity as when listening to the original. How much sound power is necessary for this purpose depends on circumstances. If the reproducer is a pair of headphones a fraction of a milliwatt may be enough. A loudspeaker playing at the far end of a large well-upholstered hall may have to be emitting several watts of sound and need dozens or scores of electrical watts to drive it. The amount of water needed to flood a room to the same depth as a swimming bath is not necessarily as much as is in the swimming bath. It all depends on the size of the room.

How about loudness? Some people speak as if an intense sound and a loud sound were the same thing. That may be all right in ordinary conversation, where 'intense' seems a bit pedantic and 'loud' is generally used instead. But this must never be done in a technical or scientific context. Intensity refers to the sound itself; loudness to the effect on the listener. To a literally stone-deaf person no sound, however intense, has any loudness whatever. To people who can hear, however, sound faithfully reproduced at the same intensity at the ear as the original is equally loud. But it is a great mistake to conclude that loudness is directly proportional to intensity. It is surprising that the Americans, who have studied acoustics more than anybody, should have practically guaranteed this particular confusion by reckoning both intensity and loudness in terms of the same unit, already a somewhat overworked one—the decibel. It is just about as muddling as it would be to specify the speed of a car in horse-power.

For one thing, although sound intensity can be measured fairly accurately, nobody can tell precisely when one sound is twice as loud as another. My estimate might be quite different from yours, and who could prove which was right? By averaging many people's estimates of how much the intensity of a sound has to be increased to make it twice as loud, a result in the region of eight times has been obtained; but individual figures differ widely. Even if everyone could agree on the same figure, it wouldn't hold good at every level of sound. For suppose the intensity of a sound that is just too weak to be heard at all is increased eight times (or whatever the agreed ratio might be). Assuming the sound is thereby made audible, the increase in loudness (i.e. from nothing to something) is not twofold, because twice zero is zero.

Another thing; experiments show that whereas a sound that is strong enough to seem very loud at one frequency is about equally loud at all audio frequencies, one that sounds soft at high frequencies is entirely inaudible at low frequencies. So when they do become audible, low notes must increase in loudness more steeply than high notes.

Practical Measurements

Evidently there is no hope of any simple formula for connecting intensity and loudness. What has been done is to take as a starting point the intensity of sound that is on the 'threshold of audibility'; that is to say, the dividing line between being heard and not heard by people with normal hearing in perfectly quiet surroundings. And since the intensity at this point depends so much on frequency, 1,000 c/s has been chosen, being a good round
reckoned on a decibel scale, number somewhere near the middle of the scale. Intensity is reckoned on a decibel scale, because the zero can be put anywhere that is convenient—in this case at the threshold of audibility at 1,000 c/s. Every 10 db above this represents a 10-fold increase in intensity (20 db is 100-fold, 30 db is 1,000-fold and so on).

Loudness is reckoned in phons. The threshold of audibility is the obvious starting point for a loudness scale, so is marked 0 phons—at all frequencies. Zero phons coincides with 0 db at 1,000 c/s, because 0 db was defined in such a way as to make it so; but sounds of lower frequency have to be made much stronger than 0 db to be heard. That experimental fact is shown by the lowest curve in Fig. 1. A 36 c/s sound has to be about 60 db—a million times stronger than 1,000 c/s to make itself just heard. We already know that it appears futile to try to make a distance on the phon scale mean any definite number of times louder. So the whole problem of “How much louder?” has been bypassed by an arbitrary decision to make the phon scale coincide with the decibel scale at 1,000 c/s. Note that although a 60 db sound is 10 times stronger (i.e. more intense) than a 50 db sound, a 60 phon sound is not necessarily 10 times (or any other definite number of times) louder than a 50 phon sound. Nor is the increase from 50 to 60 phons necessarily the same amount of loudness increase as one from 20 to 30 or 100 to 110. In other words, whereas a decibel is a certain definite intensity ratio anywhere on the diagram, a phon has no exact meaning by itself. So nothing could be more confusing than to call these loudness units decibels. Saying that the loudness of a sound is, for example, 60 phons means no more than that it is the same loudness as that experienced by a person with normal hearing when a 1,000 c/s sound is raised 60 db in intensity from the threshold of audibility.

By noting the intensities of sounds of other frequencies that are judged to be equal in loudness to the 60 phon 1,000 c/s sound, the 60 phon curve in Fig. 1 was plotted, and similarly for the others. These curves are known, after the investigators who compiled them, as the Fletcher-Munson curves.

Suppose, then, that a certain programme includes (in succession) sounds of 100 c/s, 1,000 c/s and 6,000 c/s, all at 100 db at the listener’s ear. According to Fig. 1 they should all sound, as nearly as he can tell, equally loud, that loudness being denoted by 100 phons. Incidentally, that is about the loudest sound likely to be heard when listening to a large symphony orchestra. Now suppose that the intensity of the whole programme is reduced by 60 db. The loudness of the 1,000 c/s note is now, by definition, what is called 40 phons. But the curves indicate that the 100 c/s will have faded out almost entirely, while the 6,000 c/s is 36 phons. Instead of the loudnesses of all the sounds being reduced equally, as were the intensities, the balance of tone has been radically altered.

![Equal loudness curves](After Fletcher and Munson.)

The truth of this is borne out by experience. When the volume control is turned down, the bass more or less disappears. If the original programme were at a low level, enlarging it would cause the loudness of low notes to increase much more than the middle and top. This effect is painfully noticeable when the voice of an announcer speaking quietly in the News studio is, by turning up the volume control, literally made to shout from the housetops. His crisp tones become throaty and bellowing.

Unless sound is reproduced at the same level as the original, the balance of tone cannot be the same as in the original, no matter how “high-fidelity” the equipment. Altering the scale of the reproduction does more than merely making it louder or softer. It has been pointed out to me that as this effect is not necessarily connected with reproduced sound, but occurs just the same when one moves towards or away from the orchestra itself, it is wrong to call it distortion. If distortion of a sound is taken to mean some change that cannot occur naturally, in direct listening, that is fair enough. It raises an interesting question, too; one that sound-quality enthusiasts always come round to sooner or later—should the aim be the most natural sound or the most pleasing sound?
Scale Distortion—

reproducer, however pleasing, to be a sin, then "distortion" is not the right word. But if you hold that the job of the sound reproducer is to reproduce the original as heard at the optimum position (and still more if you are so heretical as to believe that the object is to emit the most pleasing sound, regardless of what the original is like) then you will probably accept the term "scale distortion."

Another thing I have been accused of doing is advocating "bass compensation" as a remedy for scale distortion. If the charge had been one of taking every opportunity to discredit bass compensation it would have been nearer the truth. By bass compensation I mean any attempt to counteract the relative loss of low tones when the volume is turned down, especially when such a device is linked with the volume control. From Fig. 1 it is an easy matter to draw a curve showing how the frequency characteristic is modified by a given change of intensity. Suppose, for example, that normal listening loudness is assumed to be 80 phons at all frequencies. The sound intensities required to produce this loudness at various frequencies have been entered on line a of the Table. Now suppose that the volume control is adjusted successively to -20 db, -40 db, and +20 db relative to the original setting. The resulting loudnesses are tabulated on entered the volume control adjustments that would be necessary at each separate frequency if the original uniformity of loudness were to be preserved at levels of 60, 40, and 100 phons respectively. These are plotted as Fig. 3, and show the combined volume and tone control characteristics required for the specified conditions, according to the calculations of bass compensation exponents.

The next objection is, I think, more serious. The Fig. 1 curves apply only to comparisons between steady pure tones heard one at a time. Programmes of that character are also rare; unaccompanied flute solos are about the only ones I can think of that come anywhere near qualifying. When two or more sounds are heard together, each tends to "mask" or suppress the other, and the extent to which they do so depends on frequency and intensity in an even more complicated way than loudness in Fig. 1. So with most programmes, which contain many constantly changing sounds, it is impossible to tell theoretically how far Fig. 1 is a guide to scale distortion. Listening tests indicate that even in complex sound patterns the broad result is something like what one would expect if Fig. 1 were valid. But it is a shaky proceeding to base design figures on Fig. 1.

Granting, however, that one is justified in boosting the bass whenever it is necessary for any reason to reproduce sound programmes much below their normal intensity, what is one to say about bass compensation as usually understood, which links the boosting device with the volume control so that the job is done automatically?

It is founded on the assumption that the amount of bass correction required is a function of the

<table>
<thead>
<tr>
<th>Line</th>
<th>db for 80 phons</th>
<th>db for 60 phons</th>
<th>Compensation at 60 phons setting (from e)</th>
<th>Phons with (h + i) db</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>88</td>
<td>12</td>
<td>13</td>
<td>91</td>
</tr>
<tr>
<td>b</td>
<td>85</td>
<td>15</td>
<td>10</td>
<td>79</td>
</tr>
<tr>
<td>c</td>
<td>83</td>
<td>17</td>
<td>7</td>
<td>61</td>
</tr>
<tr>
<td>d</td>
<td>81</td>
<td>21</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>e</td>
<td>80</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>f</td>
<td>76</td>
<td>18</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>g</td>
<td>55</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>h</td>
<td>40</td>
<td>16</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>i</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>j</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>k</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>l</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>m</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>n</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>o</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>p</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>q</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>r</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>s</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>t</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>u</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>v</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>w</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>x</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>y</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>z</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
</tbody>
</table>

The next objection is, I think, more serious. The Fig. 1 curves apply only to comparisons between steady pure tones heard one at a time. Programmes of that character are also rare; unaccompanied flute solos are about the only ones I can think of that come anywhere near qualifying. When two or more sounds are heard together, each tends to "mask" or suppress the other, and the extent to which they do so depends on frequency and intensity in an even more complicated way than loudness in Fig. 1. So with most programmes, which contain many constantly changing sounds, it is impossible to tell theoretically how far Fig. 1 is a guide to scale distortion. Listening tests indicate that even in complex sound patterns the broad result is something like what one would expect if Fig. 1 were valid. But it is a shaky proceeding to base design figures on Fig. 1.

Granting, however, that one is justified in boosting the bass whenever it is necessary for any reason to reproduce sound programmes much below their normal intensity, what is one to say about bass compensation as usually understood, which links the boosting device with the volume control so that the job is done automatically?

It is founded on the assumption that the amount of bass correction required is a function of the

The next objection is, I think, more serious. The Fig. 1 curves apply only to comparisons between steady pure tones heard one at a time. Programmes of that character are also rare; unaccompanied flute solos are about the only ones I can think of that come anywhere near qualifying. When two or more sounds are heard together, each tends to "mask" or suppress the other, and the extent to which they do so depends on frequency and intensity in an even more complicated way than loudness in Fig. 1. So with most programmes, which contain many constantly changing sounds, it is impossible to tell theoretically how far Fig. 1 is a guide to scale distortion. Listening tests indicate that even in complex sound patterns the broad result is something like what one would expect if Fig. 1 were valid. But it is a shaky proceeding to base design figures on Fig. 1.

Granting, however, that one is justified in boosting the bass whenever it is necessary for any reason to reproduce sound programmes much below their normal intensity, what is one to say about bass compensation as usually understood, which links the boosting device with the volume control so that the job is done automatically?

It is founded on the assumption that the amount of bass correction required is a function of the

Fig. 2. Scale distortion when 80-phon sound is reproduced at various volume-control settings, derived from Fig. 1.
volume control setting. But the amount of correction required is actually, as we have seen, a function of the amount of enlargement or reduction in scale of the original sound (presumably at the best position for listening). So, for automatic bass compensation to do what it is meant to do, this change in scale must be a function of the volume control setting.

But is it? Consider an evening’s broadcasting. When first switched on we hear, shall we say, a band concert, with announcements on we hear, shall we say, a band taking of the volume control setting. But if now the programme material changes so that “life-size” is a level 60 phs, and we turn the volume control down by 20 db in the attempt to reproduce it so (which should require the values given on line h of the Table), it automatically introduces compensation to the extent shown on line i (difference between -20 and e), giving the loudness/ frequency characteristic on line j, plotted as Fig. 4. Instead of being level, as it should be, it has a rise of over 30 phs at 50 c/s!

There are other things that affect the scale of reproduction at a given volume control setting. Such things as a small aerial, a distant station, an insensitive loudspeaker, and a large well-upholstered listening room tend to reduce the scale, quite independently of the bass compensation if it is linked to the volume control. Tying volume and tone control up together, therefore, is founded on a fallacy.

But, after all, is it often necessary to reduce or enlarge sound? Except in special circumstances, such as the need to avoid disturbing other people, surely it oughtn’t to be? A debatable exception is when music is used as a background. One may retort that that isn’t listening at all, so refinements of tonal balance need not be considered. But whether we approve of it or not, a lot of people do like musical backgrounds, and most of them prefer at least as large a proportion of bass as when the music is full-size. For one thing, low tones are less distracting than high.

Life-sized Intensity

But when programmes are listened to, and circumstances allow, surely the whole purpose of a volume control is to allow one to adjust the sound intensity always to optimum, which is presumably life-size as heard from the best seat in the hall. That is the moment at which some people say “How can you expect to be able to hear a full symphony orchestra at its loudest in an ordinary room at home?” I hope my remarks about intensity and loudness have disposed of the idea that there is necessarily any difficulty about that; but if not I would say that in 1938 I made tests with a sound level meter during a concert rehearsal in the old Queen’s Hall in the morning, comparing them with the same music as heard at home in the evening. The general conclusion can be summed up by saying that a receiver capable of giving only 1½ watts maximum output to a loudspeaker in a typical living room was fully capable of giving the same sound level as was experienced in a favourable seat in the concert hall, notwithstanding that some exceptionally heavy music was played.

So, it seems to me, the proper use of the volume control is to set the sound always to the level at which it is intended to be heard. When that is done, there is no scale distortion, so the

Fig. 3. Modified frequency characteristics necessary to level out the curves of Fig. 2; also derived from Fig. 1.

Fig. 4. If the compensated 60-phon characteristic of Fig. 3 were used, instead of a level one, to reproduce sound life-size at 60 phs, the result would be excessive bass as shown here.

Wireless World, March 10th, 1938.
Scale Distortion—

volume control ought not to be tied up with any sort of tone compensation.

But what if there are special occasions when the level at which the programme is intended to be heard differs substantially from the level at which one wants to or is obliged to hear it? What is the correct policy when the scale is reduced? If the tone is left unaltered, then presumably the result will be the same as if the programme were heard at a distance; that is to say, it will be a natural result. (That is not necessarily quite so, because retroverting to a distance usually introduces echo effects and unequal attenuation, which are not reproduced by turning down the volume control; but let us ignore them.) Boosting the bass may restore the balance of tone, but it will be an unnatural result because it is in the nature of things for the bass to become less prominent when the sound is diminished. Here is the old controversy of Perfect v. Pleasing Sound Reproduction.

If when I go to a piano recital I am unlucky enough to get a seat bang up against the piano, the thought that the bass-heavy music I am hearing sounds exactly like natural piano music as heard bang up against the piano and therefore a perfectly true and natural article is no consolation to me, and I would grateful accept some device which would introduce a certain amount of bass cut. If, on the other hand, my ill luck takes me to the back of the hall under the gallery, and all I can hear is a distant tinkling, I would have no conscientious scruples against availing myself of a spot of bass boost.

As for using music as a background to work, persons who do this are so depraved that obviously the finer questions of audio ethics hardly enter into it. I myself favour some bass boost.

Photographic Analogy

One thing more I have been taken to task about was using photographic enlargement and reduction as an analogy to explain scale distortion. I likened it to an imaginary and deplorable process of photographic reduction which resulted in a man's feet being reduced 100 times when his body was reduced 10 times. I did not intend this analogy to be scrutinized minutely—few analogies can stand up to that—but only as a rough illustration to introduce the subject. To have gone into the finer points in detail would have involved perspective, orthography, and such matters which would probably have required even more explanation than scale distortion itself. But since Mr. Patric Stevenson has raised some interesting points, and since I myself have recently

gone fairly fully into the subject of perspective in another connection, it may be worth discussing now as a sort of tailpiece.

Imagine a sphere about the same diameter as one's height. Viewing it from a distance, one can see practically half its surface—the whole of a hemisphere, in fact. But viewed close up, as at A in Fig. 5, the visible surface is reduced to what lies between B and C. Parts near C, which at a distance can be seen clearly spaced out, appear relatively small or even vanish. Except that it is when the view as a whole is made larger that the bottom part of the view suffers a proportionate loss, and it is a direct view and not a reproduction, this is quite a good analogy of scale distortion, though it is not the same as my earlier one or Mr. Stevenson's.

The visible proportions of the sphere, then, depend on the distance at which it is viewed. If it is photographed by a distortionless camera, the proportions disclosed by the photograph are, of course, the same as those seen from the point of taking. And if the photo is viewed at such a distance as to make the angle of view the same as the sphere itself makes at that point (e.g., B in Fig. 5), the reproduction is perfectly natural, in that it appears the same size as a whole and in all its separate parts as does the original from the direct viewpoint. If the photographic reproduction of the "scene" is regarded as analogous to the loudspeaker reproduction of a programme, then this would correspond to hearing the programme at the correct intensity (angle of view) albeit using a smaller amount of sound power (picture smaller than the original). Ideally one should always look at a picture so as to make the angle subtended by it at the eye the same as the scene did at the camera; then and only then is it in correct perspective.

Out of Focus

But if the photo is taken close up and is printed small, it is generally impossible to view correctly, because it would be too close to the eye to be seen in focus. The ordinary contact print viewed at a comfortable distance therefore makes the size of the scene correspond to a more distant view than at the camera position, yet gives it the same proportions as if viewed close up, and is, therefore, unnatural—something that could not be seen at all without optical intervention. It corresponds to a sound programme that must perforce be heard at a reduced intensity, but has been compensated to give the same tone proportions as if heard close up. We are familiar with the type of snapshot in which the unnaturalness is only too obvious, especially when the nearest objects to the wide-angle camera were feet. That corresponds to a broadcast in which the microphone is too close to the source of sound, with the result that the sound picture is bass-heavy.

If sound were always reproduced at the original loudness and pictures were always viewed at the correct distance to subtend the same angle as the original, what a lot of argument it would save!

ALTHOUGH the European Broadcasting Convention signed at Copenhagen last month is not yet generally available, we are able to give below, by courtesy of the Secretariat of the Conference, the frequency allocation plan agreed by the majority of delegates. The signatories were: Albania, Belgium, Byelorussia, Bulgaria, Czechoslovakia, Denmark, Finland, France, Great Britain, Greece, Hungary, Ireland, Italy, Monaco, Netherlands, Norway, Poland, Portugal, Morocco and Tunisia, Rumania, Switzerland, Ukraine, U.S.S.R., Vatican City, and Yugoslavia. Objections were raised by Austria, Egypt, Iceland, Luxembourg, Sweden, and Turkey, whose delegates did not therefore sign the Convention.

The Plan provides for the re-allocation of wavelengths in the long-wave and medium-wave bands to all broadcasting stations in the European Broadcasting Area—that is, to both the contracting countries and the non-signatories. This area is bounded on the South by parallel 30° N; on the West by a line extending from the North Pole along meridian 72° W, to its intersection with parallel 72° N, thence by great circle arc to the point of intersection of meridian 50° W and parallel 40° N, and thence by a line leading to the point of intersection of meridian 40° W and parallel 40° N; on the East by meridian 40° E, so that it includes the western part of the U.S.S.R. and the territories bordering on the Mediterranean Sea.

It will be seen from the footnotes that provision has been made for the use of directional aerials by a number of stations. Except in cases where a definite power is specified directional aerials must give a reduction in the radiated power in the direction to be protected of approximately 10db relative to that of a non-directional aerial.

In the last column we have added the frequency at present used by the stations. Space does not permit the inclusion of the present power, but in general this is lower than the maximum prescribed in the Plan. The power of stations operating in the two international common frequencies is limited in some cases to 2 kW and in others to 0.25 kW. Whilst on the question of power, it is noteworthy that, whereas the Montreux Plan prescribed maximum day and night powers, the present Plan makes no such differentiation.

Provision is made for a number of stations not yet in operation, among them eight in this country. They are a third transmitter at each of the following stations: Burghfield, Stagshaw and Westminster; and new stations at Aberystwyth, Hartland Point (N. Devon), Carlisle, Ayr and Dundee.

So far as broadcasting in this country is concerned, the Plan provides for one long and thirteen medium wavelengths. This is three more than allocated in the Lucerne Plan, although at present the B.B.C. is making use of three "borrowed" wavelengths—one long and two medium. Of the fourteen wavelengths allotted to the B.B.C. three of them (one long and two medium) are exclusive. It is learned from the B.B.C. that the frequencies will be utilized as follows:—The Light Programme will be radiated on 200 kc/s and 1,214 kc/s. Eight frequencies in the medium band, 692, 809, 881, 908, 1,058, 1,052, 1,151, 1,457 kc/s, will be used for the Home Service.

The Third Programme will be radiated on 647 kc/s, where provision is made for three new transmitters, and on 1,546 kc/s by the existing twenty-two low-powered synchronized stations. Incidentally, the power of Droitwich (647 kc/s) may be increased to 150 kW if the three new synchronized transmitters are not in use. The two remaining frequencies (1,295 and 1,340 kc/s) will be used for the European Service.

For ease of reference stations sharing the same frequency are given in the lists in alphabetical order of the countries.

LONG WAVES (150 to 285 kc/s)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Freq. (kc/s)</th>
<th>Power (kW)</th>
<th>Station</th>
<th>Pres. Freq. (kc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>155</td>
<td>10</td>
<td>Tromso (Norway)</td>
<td>291</td>
</tr>
<tr>
<td>2</td>
<td>164</td>
<td>450</td>
<td>Allouis (France)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>173</td>
<td>500</td>
<td>Moscow I, Russia (U.S.S.R.)</td>
<td>140</td>
</tr>
<tr>
<td>4</td>
<td>182</td>
<td>100</td>
<td>Reykjavik (Iceland)</td>
<td>271</td>
</tr>
<tr>
<td>5</td>
<td>191</td>
<td>200</td>
<td>Helsinki (Finland)</td>
<td>392</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>400</td>
<td>Droitwich (Great Britain)</td>
<td>182</td>
</tr>
<tr>
<td>7</td>
<td>209</td>
<td>150</td>
<td>Kiev I, Ukraine (U.S.S.R.)</td>
<td>216</td>
</tr>
<tr>
<td>8</td>
<td>218</td>
<td>200</td>
<td>Oslo (Norway)</td>
<td>200 (167)</td>
</tr>
<tr>
<td>9</td>
<td>227</td>
<td>200</td>
<td>Warsaw I (Poland)</td>
<td>182 (167)</td>
</tr>
<tr>
<td>10</td>
<td>236</td>
<td>100</td>
<td>Leningrad I, Russia (U.S.S.R.)</td>
<td>208</td>
</tr>
<tr>
<td>11</td>
<td>245</td>
<td>150</td>
<td>Kalundborg (Denmark)</td>
<td>240</td>
</tr>
</tbody>
</table>

Intermediates (415 to 490 kc/s and 510 to 525 kc/s)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Freq. (kc/s)</th>
<th>Power (kW)</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>254</td>
<td>200</td>
<td>Lahti (Finland)</td>
</tr>
<tr>
<td>13</td>
<td>263</td>
<td>150</td>
<td>Moscow II, Russia (U.S.S.R.)</td>
</tr>
<tr>
<td>14</td>
<td>272</td>
<td>200</td>
<td>Ceskoslovensko (Czechoslovakia)</td>
</tr>
<tr>
<td>15</td>
<td>281</td>
<td>100</td>
<td>Minsk, Byelorussia (U.S.S.R.)</td>
</tr>
</tbody>
</table>

Directional aerial protecting S.W.

For Medium Waves see next page.
MEDIUM WAVES (525 to 1605 kc's)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Freq. (kc's)</th>
<th>Power (kW)</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>529</td>
<td>150</td>
<td>Beromunster (Switzerland)</td>
</tr>
<tr>
<td>2</td>
<td>539</td>
<td>150</td>
<td>Budapest I (Hungary)</td>
</tr>
<tr>
<td>3</td>
<td>548</td>
<td>20</td>
<td>Ouiktha, Finno-Karelia (U.S.S.R.)</td>
</tr>
<tr>
<td>4</td>
<td>557</td>
<td>100</td>
<td>Simferopol, Russia (U.S.S.R.)</td>
</tr>
<tr>
<td>5</td>
<td>566</td>
<td>100</td>
<td>Helsinki (Finland)</td>
</tr>
<tr>
<td>6</td>
<td>575</td>
<td>100</td>
<td>Riga, Latvia (U.S.S.R.)</td>
</tr>
<tr>
<td>7</td>
<td>584</td>
<td>120</td>
<td>Vienna I (Austria)</td>
</tr>
<tr>
<td>8</td>
<td>593</td>
<td>60</td>
<td>Sofia II (Bulgaria)</td>
</tr>
<tr>
<td>9</td>
<td>602</td>
<td>150</td>
<td>Lyon (France)</td>
</tr>
<tr>
<td>10</td>
<td>611</td>
<td>5</td>
<td>Eidar (Iceland)</td>
</tr>
<tr>
<td>11</td>
<td>620</td>
<td>150</td>
<td>Brussels I (Belgium)</td>
</tr>
<tr>
<td>12</td>
<td>629</td>
<td>100</td>
<td>Viga (Norway)</td>
</tr>
<tr>
<td>13</td>
<td>638</td>
<td>150</td>
<td>Prague I (Czechoslovakia)</td>
</tr>
<tr>
<td>14</td>
<td>647</td>
<td>15</td>
<td>Brandt (Great Britain)</td>
</tr>
<tr>
<td>15</td>
<td>656</td>
<td>120</td>
<td>Droitwich (Great Britain)</td>
</tr>
<tr>
<td>16</td>
<td>665</td>
<td>20</td>
<td>Kharkov, Ukraine (U.S.S.R.)</td>
</tr>
<tr>
<td>17</td>
<td>674</td>
<td>100</td>
<td>Vlina, Luthuania (U.S.S.R.)</td>
</tr>
<tr>
<td>18</td>
<td>683</td>
<td>100</td>
<td>Marsseilles (France)</td>
</tr>
<tr>
<td>19</td>
<td>692</td>
<td>10</td>
<td>Bodo (Norway)</td>
</tr>
<tr>
<td>20</td>
<td>701</td>
<td>100</td>
<td>Kazan-Bystrica (Czechoslovakia)</td>
</tr>
<tr>
<td>21</td>
<td>710</td>
<td>150</td>
<td>Rabat II (Morocco)</td>
</tr>
<tr>
<td>22</td>
<td>719</td>
<td>120</td>
<td>Finnmor (Norway)</td>
</tr>
<tr>
<td>23</td>
<td>728</td>
<td>100</td>
<td>Athens (Greece)</td>
</tr>
<tr>
<td>24</td>
<td>737</td>
<td>10</td>
<td>Akureyri (Iceland)</td>
</tr>
<tr>
<td>25</td>
<td>746</td>
<td>120</td>
<td>Stalingrad, Ukraine (U.S.S.R.)</td>
</tr>
<tr>
<td>26</td>
<td>755</td>
<td>20</td>
<td>Kupio (Finland)</td>
</tr>
<tr>
<td>27</td>
<td>764</td>
<td>150</td>
<td>Stockholm (Sweden)*</td>
</tr>
<tr>
<td>28</td>
<td>773</td>
<td>50</td>
<td>Kiev II, Ukraine (U.S.S.R.)</td>
</tr>
<tr>
<td>29</td>
<td>782</td>
<td>70</td>
<td>Soviet troops in Germany</td>
</tr>
<tr>
<td>30</td>
<td>791</td>
<td>10</td>
<td>Rennes (France)</td>
</tr>
<tr>
<td>31</td>
<td>800</td>
<td>100</td>
<td>Saloumik (Greece)</td>
</tr>
<tr>
<td>32</td>
<td>809</td>
<td>100</td>
<td>Leningrad II, Russia (U.S.S.R.)</td>
</tr>
<tr>
<td>33</td>
<td>818</td>
<td>100</td>
<td>Berghed (Great Britain)</td>
</tr>
<tr>
<td>34</td>
<td>827</td>
<td>100</td>
<td>Dresden (Great Britain)</td>
</tr>
<tr>
<td>35</td>
<td>836</td>
<td>150</td>
<td>Nancy (France)</td>
</tr>
<tr>
<td>36</td>
<td>845</td>
<td>100</td>
<td>Beirut (Lebanon)</td>
</tr>
<tr>
<td>37</td>
<td>854</td>
<td>150</td>
<td>Bucharest (Romania)</td>
</tr>
<tr>
<td>38</td>
<td>863</td>
<td>10</td>
<td>Paris I (France)</td>
</tr>
<tr>
<td>39</td>
<td>872</td>
<td>150</td>
<td>Moscow III, Russia (U.S.S.R.)</td>
</tr>
<tr>
<td>40</td>
<td>881</td>
<td>20</td>
<td>Penman (Great Britain)</td>
</tr>
</tbody>
</table>

* Directional aerial. Apparent power towards Sweden 10 kW.
* Directional aerial. Apparent power towards Bulgaria 20 kW.
* Directional aerial. Power to be reduced to 20 kW if directional aerial protecting Portugal is not used.

Power Freq.

<table>
<thead>
<tr>
<th>Power</th>
<th>Freq. (kc's)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>1,104</td>
</tr>
<tr>
<td>100</td>
<td>42</td>
</tr>
<tr>
<td>150</td>
<td>583</td>
</tr>
<tr>
<td>150</td>
<td>952</td>
</tr>
<tr>
<td>150</td>
<td>767</td>
</tr>
<tr>
<td>100</td>
<td>48</td>
</tr>
<tr>
<td>150</td>
<td>601</td>
</tr>
<tr>
<td>150</td>
<td>895</td>
</tr>
<tr>
<td>5</td>
<td>43</td>
</tr>
<tr>
<td>150</td>
<td>592</td>
</tr>
<tr>
<td>150</td>
<td>46</td>
</tr>
<tr>
<td>150</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>89</td>
</tr>
<tr>
<td>100</td>
<td>48</td>
</tr>
<tr>
<td>150</td>
<td>49</td>
</tr>
<tr>
<td>150</td>
<td>619</td>
</tr>
<tr>
<td>100</td>
<td>51</td>
</tr>
<tr>
<td>150</td>
<td>53</td>
</tr>
<tr>
<td>150</td>
<td>52</td>
</tr>
<tr>
<td>150</td>
<td>54</td>
</tr>
<tr>
<td>150</td>
<td>55</td>
</tr>
<tr>
<td>150</td>
<td>56</td>
</tr>
<tr>
<td>150</td>
<td>57</td>
</tr>
<tr>
<td>150</td>
<td>73</td>
</tr>
<tr>
<td>150</td>
<td>58</td>
</tr>
<tr>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>150</td>
<td>59</td>
</tr>
<tr>
<td>150</td>
<td>60</td>
</tr>
<tr>
<td>150</td>
<td>61</td>
</tr>
<tr>
<td>150</td>
<td>62</td>
</tr>
<tr>
<td>150</td>
<td>63</td>
</tr>
<tr>
<td>150</td>
<td>64</td>
</tr>
<tr>
<td>150</td>
<td>65</td>
</tr>
<tr>
<td>150</td>
<td>66</td>
</tr>
<tr>
<td>150</td>
<td>67</td>
</tr>
<tr>
<td>150</td>
<td>68</td>
</tr>
<tr>
<td>150</td>
<td>69</td>
</tr>
<tr>
<td>150</td>
<td>70</td>
</tr>
</tbody>
</table>

Station

- **Washford (Great Britain)**
- **Mras (Great Britain)**
- **Cetics (Yugoslavia)**
- **Algeria I (Algeria)**
- **Berger (Norway)**
- **Kristiansand (Norway)**
- **Trondheim (Great Britain)**
- **Nepropetrovsk, Ukraine (U.S.S.R.)**
- **Helsinki (Finland)**
- **Riga, Latvia (U.S.S.R.)**
- **Vienna I (Austria)**
- **Helsinki (Finland)**
- **Turin I (Italy)**
- **Austria I (Yugoslavia)**
- **Westergren (Great Britain)**
- **Helsinki (Finland)**
- **Turin II (Italy)**
- **Turku (Finland)**
- **Turku (Finland)**
- **British Zone (Germany)**
- **Izmir (Turkey)**
- **Kalinin, Russia (U.S.S.R.)**
- **Smolensk, Russia (U.S.S.R.)**
- **Algeria II (Algeria)**
- **Goteborg (Sweden)**
- **Rovaniemi (Finland)**
- **American Zone (Germany)**
- **Beirut II (Lebanon)**
- **Kishinev, Moldavia (U.S.S.R.)**
- **Hilversum II (Netherlands)**
- **Aleppo I (Syria)**
- **Istanbul (Turkey)**
- **Grdez-Dobi (Austria)**
- **Jerusalem I (Palestine)**
- **Turin II (Italy)**
- **Lisbon (Portugal)**
- **Tallinn, Estonia (U.S.S.R.)**
- **U.S.S.R. Zone (Germany)**
- **Kalamata (Greece)**
- **Asyad (Morocco)**
- **Marrakesh I (Morocco)**
- **Udi (Morocco)**
- **Hartland Point (Great Britain)**
- **Start Point (Great Britain)**
- **Tripoli (Libya)**
- **Jassi (Rumania)**
- **Focsani (Rumania)**
- **Eastern Denmark**
- **Cagliari (Italy)**
- **Paris II (France)**
- **Krasnodar, Russia (U.S.S.R.)**
- **Brestlau (Poland)**
- **Korca (Albania)**
- **Shkodra (Albania)**
- **Droitwich (Great Britain)**
- **Norwich (Great Britain)**
- **Bratislava (Czechoslovakia)**
- **Mohgilev, Byelorussia (U.S.S.R.)**
- **Bari I (Italy)**
- **Bologna I (Italy)**
- **S. Remo (Italy)**
- **Norwegian sync. network**
- **Brussels II (Belgium)**
- **Varna (Bulgaria)**
- **Viborg, Sweden (U.S.S.R.)**
- **Zagreb (Yugoslavia)**
- **Constantine I (Algeria)**
- **Marsaglia (Great Britain)**
- **Londonderry (Great Britain)**
- **Stagshaw (Great Britain)**
- **Blali Mare (Rumania)**
- **Cluj (Rumania)**
- **Oradea (Rumania)**
- **Strasburg I (France)**
- **Odessa, Ukraine (U.S.S.R.)**
- **Hoby (Sweden)**
- **Worthing (Great Britain)**

Note: This table and the accompanying text are from the November 1948 issue of *Wireless World*. The data includes frequency ranges, power levels, and the corresponding stations or cities receiving those signals.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>1,187</td>
<td>135</td>
<td>Budapest II (Hungary)</td>
<td>1,040</td>
<td>98</td>
<td>1,403</td>
<td>10</td>
<td>Paris (France)</td>
<td>592</td>
</tr>
<tr>
<td>75</td>
<td>1,196</td>
<td>70</td>
<td>French Zone (Germany)</td>
<td>1,031</td>
<td>99</td>
<td>1,412</td>
<td>20</td>
<td>Quimper (France)</td>
<td>1,393</td>
</tr>
<tr>
<td>15</td>
<td>Keryka (Greece)</td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>1,373</td>
<td>10</td>
<td>Montpellier (France)</td>
<td>1,393</td>
</tr>
<tr>
<td>20</td>
<td>Azadil (Morocco)</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>1,430</td>
<td>20</td>
<td>Nice (France)</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>Marrakesh II (Morocco)</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1,403</td>
<td>20</td>
<td>French troops in Germany</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>Uja II (Morocco)</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1,402</td>
<td>20</td>
<td>Komotini (Greece)</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Halifa (Palestine)</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1,402</td>
<td>20</td>
<td>Baranovichi, Byelorussia (U.S.S.R.)</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>Lublin (Poland)</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1,402</td>
<td>20</td>
<td>Banja Luka (Yugoslavia)</td>
<td>20</td>
</tr>
<tr>
<td>77</td>
<td>214</td>
<td>1,217</td>
<td>Zagreb (Yugoslavia)</td>
<td>1,412</td>
<td>20</td>
<td>1,403</td>
<td>20</td>
<td>Bitola (Yugoslavia)</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>Ujda</td>
<td>1,040</td>
<td>Marrakesh II (Morocco)</td>
<td>1,412</td>
<td>20</td>
<td>1,403</td>
<td>20</td>
<td>Maribor (Yugoslavia)</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>Burghead (Great Britain)</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>1,430</td>
<td>20</td>
<td>Pritisch (Yugoslavia)</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>French troops in Germany</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1,439</td>
<td>20</td>
<td>Rijeka (Yugoslavia)</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Slovakia</td>
<td>1,402</td>
<td>Sarrebrucken (Germany : French Zone)</td>
<td>1,403</td>
<td>20</td>
<td>1,430</td>
<td>20</td>
<td>Split (Yugoslavia)</td>
<td>10</td>
</tr>
</tbody>
</table>

* Shared by: Albania, Austria, Belgium, Cyprus, Czechoslovakia, Denmark, Finland, France, Germany: British Zone, Greenland, Great Britain, Greece, Hungary, Ireland, Italy, Lithuania, Malta, Morocco, Norway, Poland, Portugal, Rumania, Russia, San Marino, Spain, Syria, Trieste, Tunisia, Ukraine, and Yugoslavia. Vatican City is permitted to use this frequency with a power of 5 kW until receivers covering 1,529 kc/s are more generally in use.

‡ Shared by: Andorra, Austria, Belgium, Bulgaria, Cyrenaica, Czechoslovakia, Denmark, Finland, France, Great Britain, Greece, Ireland, Latvia, Madeira Is., Morocco (Tanger), Netherlands, Poland, Portugal, Spain, Switzerland, Syria, Trieste, Yugoslavia.
FREQUENCY SHIFT KEYING

It is not very often that the problems of radio telegraphy are the subject of technical papers. Many readers, especially those with the pile of radar papers which make up the report of the I.E.E. Radiolocation Convention before them, may think that this is because there are no problems in transmitting what someone or other called "those damned dots." Others, more cynical, may suggest that the problems are there, but that no one tries to solve them. The real reason is probably that the main problems of radio telegraphy nowadays are those of high-speed long-distance transmission, which is very largely an affair for a limited number of large administrations whose work is co-ordinated by the International Telegraph Consultative Committee (C.C.I.T.). Improved systems are introduced only gradually, and after long periods of service tests. The most recent development has been a tendency to change over from on-off keying to frequency shift keying, which is really a change over from amplitude modulation to frequency modulation. An intermediate system, double-frequency keying, was tried at one stage, but this, for reasons which are fairly clear from our modern knowledge of F.M. theory, was not successful.

Telegraph transmission involves the sending of "mark" and "space" signals. The marks may be the dots and dashes of the Morse code or the dots which are used in teleprinter working. A group of 5 dots can be used to indicate any one of 31 different characters. If 7 dots are used, or rather, if 3 dots which may appear in any combination of 7 positions are used the number of combinations is 35, although only 31 are used and the receiver can check that it has 3 and only 3 dots and thus can reject any false signals due to atmospherics or other disturbances. All these types of signal, however, have only two possible levels of modulation: zero and 100 per cent. For low telegraphic speeds the radio-frequency carrier may be modulated by a tone which is keyed on and off. This is called "modulated continuous wave" transmission, usually abbreviated to M.C.W. M.C.W. is wasteful in bandwidth and for high-speed commercial circuits C.W. is used. M.C.W. has certain advantages under multipath transmission conditions, as it provides a sort of frequency diversity. An "on-off" C.W. circuit operates simply by switching the carrier off when a mark is to be transmitted: in early systems the carrier was switched on, but fast-operating A.G.C. circuits are then left without any signal during pauses, and the gain rises to its full value, giving a large noise output.

The earliest circuits of all, with arc transmitters, were operated on a frequency shift basis. The carrier frequency was changed during a mark by short-circuiting part of the tuned circuit inductance. It was sometimes found convenient to listen to the space frequency rather than the mark frequency when jamming was bad, but there was no attempt to make a deliberate use of both frequencies in receiving the message. The only reason why this method of operation was adopted was that the arc could not be keyed on and off: as soon as valve circuits became available on-off keying, which corresponds to the keying of D.C. on a line, was adopted.

In 1928 Armstrong demonstrated a circuit in which the marks and spaces were transmitted on two frequencies separated by about 100c/s. This system gave a considerable improvement over on-off keying, because it used both signals at the receiver. Unfortunately, Armstrong had done the right thing for the wrong reason, and the fact that the system gave an improved performance was overlooked in the triumphant demonstration that he had given the wrong explanation.

The next report of work in this field came in 1939, when K. L. Wood, of Cable and Wireless, described a system then under development. During the war considerable advances have been made, and the system has also been widely applied to multi-channel voice-frequency telegraphy systems on wires.

The important thing about F.S. keying is that it is a coherent carrier system, that is, there is no discontinuity in the carrier when the circuit is switched from mark to space. In double-frequency...
keying one oscillator is switched off and another switched on, so that there is no phase relationship during the transition period. This produces a strong disturbing signal and the system is inefficient. A frequency shift exciter is simply a frequency modulation exciter, driven from 0 to 100 per cent modulation, and there is a smooth transition from one to the other.

Two circuits have been used. The simplest is arranged to connect a capacitance across the controlling crystal of the master oscillator. The circuit is shown in Fig. 1 (reproduced from the paper by Ruddlesden, Forster and Jelonek, J.I.E.E., Vol. 94, Part IIIA, No. 12, p. 380). The control valve is normally held beyond cut-off by the negative bias, and as there is no current through the control triode the keying diode is an open circuit. The crystal oscillator operates at its normal frequency. When the triode grid is driven positive, the current through the keying diode makes it a low resistance, bringing into circuit the shift-control capacitor in series with the blocking capacitor from the diode cathode to earth. The frequency of the crystal oscillator is lowered by an amount which depends on the size of the shift control capacitor. The output valve acts as a limiter to prevent any amplitude modulation of the output.

The second circuit is shown in Fig. 2 (loc. cit.). This circuit is self-explanatory, the only difference between it and a frequency-modulated transmitter for telephony being that the full frequency shift is produced at 200 kc/s and a modulation operation is used to produce the final carrier frequency, instead of producing only a small frequency shift and then multiplying up. As the shift is only 850 kc/s, instead of the ±75 kc/s of broadcast F.M., this difference is quite a logical one.

Two types of receiver circuits have been used. One is simply an ordinary discriminator type, using either the well-known Foster-Seeley discriminator or the double anti-resonant circuit type. The other receiver circuit uses two separate bandpass filters to separate the mark and space signals, and then rectifies the two separate filter outputs. The discriminator circuit is much more tolerant of frequency drift, but it involves a capacitance coupling in the output circuit, and during long periods without any traffic there is a D.C. drift which produces a "bias" in the receiver. Elaboration of the circuit is required to offset this.

This illustrates an important difference between telephony and telegraphy: a telegraph signal is essentially unbalanced, consisting of applied voltages in one direction only. There is no mean level, any more than there is in a television signal, and D.C. restoration is essential to prevent the floating mean level produced by the A.C. couplings in the receiver, which results in a bias in the recording relays.

Tests made by the Radio Corporation of America gave the results shown in Figs. 3 and 4 (reproduced from R.C.A. Review, Vol. 7, March, 1946, pp. 19, 20). These curves show the number of errors during tests involving the transmission of over a million characters from California to New York, using a frequency of about 10 Mc/s and powers of 200 and 800 watts. The improvement due to the use of F.S. keying is about 10 db. About the same improvement was obtained in British tests between Ascension Island and London. Later tests between Melbourne and London gave a better performance for an F.S. channel than for an on-off channel using 2.5 times the power. Here again the improvement must have been of the order of 10 db.

According to Smale, F.S. keying will not give its full advantage when multi-path transmission conditions are encountered. This may be offset in practical operation by the use of space diversity reception, which is claimed by

Fig. 2. Mixer-oscillator frequency-shift exciter.

Fig. 3. Field strength/ error curve for frequency-shift keying. Two-receiver diversity reception, I.F. bandwidth 1 kc/s. Frequency shift 850 c/s. o db = 10 µV/m.

Fig. 4. Field strength/ error curve for on-off keying. Three-receiver diversity reception, 1 kc/s I.F. bandwidth. o db = 10 µV/m.

R.C.A. to give a considerable improvement for F.S. keying under multi-path conditions.
Frequency Shift Keying—

All the discussion above relates to ordinary telegraphy. An intermediate field in which the frequency-shift technique may have considerable advantages is facsimile, both for the transmission of illustrations and for the sending of pages of typescript. For illustrations, especially, the method would appear to have all the advantages of frequency modulation in the transmission of speech. Multi-path distortion is always troublesome in F.M. problems, but it is also a serious problem in telegraphy and facsimile transmission: most readers will have seen examples of the displaced "ghosts" produced in television by indirect transmission paths.

Apart from the special modulating and demodulating arrangements for F.S. keying, there are some other points of interest in the design of the equipment. One point not immediately realized is that if a transmitter is converted from on-off to F.S. keying the power must be reduced. A transmitter sending "reversals," that is, a steady stream of dots with equal spaces, is actually operating for 50 per cent of the time. In radar language the duty factor is 0.5. When converted to F.S. keying, the carrier is kept on continuously, so that for the same heating in the line the circuit the power must be lowered from, say, 10 kW to 5 kW. This gives the F.S. system a 3 db handicap, which must not be forgotten in assessing the performance of the system. As far as bandwidth is concerned, there can be a small gain. It is usual to shape the signals in an on-off system so that only the fundamental and third harmonic are transmitted, instead of the infinite number of sidebands corresponding to a square wave. In facsimile telegraphy the signals are rounded even more than this, and on long-distance circuits even squarer waveforms are preferred. Smale described a system using 500 c/s deviation, while the S.R.D.E. system described by Ruddlesden, Forster and Jelonek uses 850 c/s, which is the same as the R.C.A. value. In the S.R.D.E. system the bandwidth for an on-off channel is given as 1,200 c/s, and for the 850 c/s F.S. channel as 1,100 c/s, but it is pointed out that by operating with a 300 c/s shift the bandwidth can be reduced to 500 c/s. These figures correspond to rather high keying speeds and are therefore very sensitive to multiple-path effects: by using lower speeds and multiplexing a more convenient arrangement is often obtained.

It may appear to the reader that this recent advance in telegraph technique is a rather obvious one, considering how much is now known about frequency modulation. It must never be overlooked, however, that telegraph circuits are highly efficient circuits from the point of view of the transmission of intelligence. They work at relatively loud signal-to-noise ratios if they don't, someone is wasting power, and the cost will be increased. On the other hand, if a false signal is recorded, code messages will be mutilated, and the message may be unintelligible. Each dot has a meaning in a telegraph message, while in telephony the circuit is invaluable even if only 80 per cent of the syllables are correctly heard. A telegraph engineer is really not satisfied about a new system until it has been tested over a whole sunspot cycle.

References

NEWS FROM THE CLUBS

Belfast.—The City of Belfast Y.M.C.A. Radio Club (G8YXM) celebrates its twenty-fifth anniversary this year. With the exception of the war years, the club transmitter has been on the air every week since 1926. Meetings continue to be held on Wednesdays at 8.00 at the Y.M.C.A., Wellington Place, Belfast. Sec.: F. A. Robb, 60, Victoria Avenue, Sydenham, Belfast, N. Ireland.

Bradford.—A demonstration lecture on disc recording will be given by A. R. Land, G6UY, to the members of the Bradford Amateur Radio Society on November 2nd. At the November 16th meeting Gordon Pratley will talk on the transmission of signals through lines and filters. Meetings are held on alternate Tuesdays at 7.30 at Cambridge House, 66, Little Horton Lane, Bradford. Sec.: W. S. Sykes, G2DJ, 287, Poplar Grove, Great Horton, Yorks.

Cambridge.—The president of the Cambridge University Wireless Society (G6UW) for the 1948-49 academic year is J. A. Ratcliffe, O.B.E., M.A., of the Cavendish Laboratory. Sec.: F. W. Williamson, 42, South Road, Histon, Cambs.

Darlington.—Meetings of the Darlington and District Amateur Radio Society are held on alternate Thursdays at 7.30 at Cambridge House, 66, Little Horton Lane, Bradford. Sec.: W. S. Sykes, G2DJ, 287, Poplar Grove, Great Horton, Yorks.

Beverley.—The City of Beverley Y.M.C.A. Radio Club (G6YXM) celebrates its twenty-fifth anniversary this year. With the exception of the war years, the club transmitter has been on the air every week since 1926. Meetings continue to be held on Wednesdays at 8.00 at the Y.M.C.A., Wellington Place, Belfast. Sec.: F. A. Robb, 60, Victoria Avenue, Sydenham, Belfast, N. Ireland.

Bradford.—A demonstration lecture on disc recording will be given by A. R. Land, G6UY, to the members of the Bradford Amateur Radio Society on November 2nd. At the November 16th meeting Gordon Pratley will talk on the transmission of signals through lines and filters. Meetings are held on alternate Tuesdays at 7.30 at Cambridge House, 66, Little Horton Lane, Bradford. Sec.: W. S. Sykes, G2DJ, 287, Poplar Grove, Great Horton, Yorks.

Cambridge.—The president of the Cambridge University Wireless Society (G6UW) for the 1948-49 academic year is J. A. Ratcliffe, O.B.E., M.A., of the Cavendish Laboratory. Sec.: F. W. Williamson, 42, South Road, Histon, Cambs.

Darlington.—Meetings of the Darlington and District Amateur Radio Society are held on alternate Thursdays at 7.30 at Cambridge House, 66, Little Horton Lane, Bradford. Sec.: W. S. Sykes, G2DJ, 287, Poplar Grove, Great Horton, Yorks.

Cambridge.—The president of the Cambridge University Wireless Society (G6UW) for the 1948-99 academic year is J. A. Ratcliffe, O.B.E., M.A., of the Cavendish Laboratory. Sec.: F. W. Williamson, 42, South Road, Histon, Cambs.

Warrington and District Radio Society meets on alternate Mondays at 7.30 at the Sea Cadet Headquarters, Warrington. Next meeting, November 3rd. Sec.: W. R. Cuthbert, G7UB, 59, Crow Wood Lane, Widnes, Lancs.

Workshop.—Although called the Swedish DX-fan Club the activities of this organization, which has its headquarters in Workshop, Notts, are not exclusively devoted to reports on Swedish stations. Particulars are obtainable from Eric Good, 9, Aldred Street, Workshop, Notts.

Worthington.—The Worthing Group of the R.S.G.B. has been reformed into a listening and District Amateur Radio Club and thereby overcomes the limitation of its membership to R.S.G.B. members. Meetings are held on the first Thursday of each month at 7.30 at Oliver's Café, South Farm Road, Worthing. Sec.: F. T. Tookey, 62, Becket Road, Worthing, Sussex.
BETTER LISTENING BETTER BRIMARIZE!

TYPES 7A8 and 7B8 are frequency changers of similar classes, the former being an octode and the latter a heptode. The suppressor grid (G6) fitted to the 7A8 results in higher anode impedance and increased gain.

In A.C. and car radio receivers both valves may be replaced by the 7S7, whilst in A.C./D.C. receivers the 7A8 must be replaced by the 14S7 owing to its low heater current of 0.15 amp.

In 12 volt car radios using the 7A8, replacement by type 7S7 will necessitate the fitting of a balancing resistor in the heater circuit.

<table>
<thead>
<tr>
<th>VALVE TYPE</th>
<th>CHANGE SOCKET</th>
<th>CHANGE CONNECTIONS</th>
<th>OTHER WORK NECESSARY</th>
<th>PERFORMANCE CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM</td>
<td>TO</td>
<td>LOCTRAL (BBG)</td>
<td>NO CHANGE</td>
<td>NEGLIGIBLE</td>
</tr>
<tr>
<td>7A8</td>
<td>14S7 (in AC/D.C sets)</td>
<td>NO CHANGE</td>
<td>1. Re-align Receiver. 2. 12-Volt car radios—fit balancing resistor in heater circuit. See note.</td>
<td>NEGLIGIBLE</td>
</tr>
<tr>
<td>7B8</td>
<td>7S7</td>
<td>NO CHANGE</td>
<td>Re-align Receiver.</td>
<td>NEGLIGIBLE</td>
</tr>
</tbody>
</table>

CHARACTERISTICS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>7A8</th>
<th>7B8</th>
<th>7S7*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3 volts</td>
</tr>
<tr>
<td>Heater Current</td>
<td>0.15</td>
<td>0.3</td>
<td>0.3 amp.</td>
</tr>
<tr>
<td>Anode Voltage</td>
<td>250</td>
<td>250</td>
<td>250 volts</td>
</tr>
<tr>
<td>Screen Voltage</td>
<td>100</td>
<td>100</td>
<td>100 volts</td>
</tr>
<tr>
<td>Osc. Anode Resistor</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000 ohms</td>
</tr>
<tr>
<td>Bias Resistor</td>
<td>300</td>
<td>300</td>
<td>200 ohms</td>
</tr>
<tr>
<td>Impedance</td>
<td>0.7</td>
<td>0.36</td>
<td>1.25 Meg.</td>
</tr>
<tr>
<td>Conversion Cond.</td>
<td>0.6</td>
<td>0.55</td>
<td>0.53 mA/s</td>
</tr>
</tbody>
</table>

*Type 14S7 is identical to type 7S7 except for its heater ratings of 12.6 volts, 0.15 amp.

Brimar says...

TYPE 7S7 CAN SUCCESSFULLY REPLACE TYPES X81M & X148

In 12-volt receivers where pairs of valves are connected across the 12-volt supply, the valve connected in series with the 7S7 must be fitted with a 40 ohm 2 watt resistor across its heater terminals.

Standard Telephones and Cables Limited, Footscray, Sidcup, Kent.
MARCONIPHONE "Companion" RECEIVER

Five-valve, two waveband DC/AC "Companion" receiver T15DA. Weighing only 7½lb. and small enough to stand on the smallest "occasional" or bedside table, this transportable incorporates an inbuilt high "Q" frame aerial and needs only connection to the mains to be immediately ready for operation. Its excellent performance is enhanced by the use of all-glass valves throughout. The consumption figure is low, a mere 35 watts.

An internal dropping resistor besides eliminating the resistance type of mains lead has three voltage tappings which enable the optimum performance to be obtained on any voltage supply between 195-255 volts DC or AC (25-100 cycles). Hear Model T15DA at your local Marconiphone Dealer.

SEE THE SIGNATURE ON EVERY SET

The Marconiphone Company Limited, Hayes, Middlesex
ELECTRONIC CIRCUITRY

Selection from a Designer’s Notebook

By J. McG. SOWERBY (Cinema Television, Ltd.)

As most readers will be aware, a beam switch is a device for allowing two or more waveforms to be displayed simultaneously on a single cathode ray tube. In the simplest case of a two-beam switch the two signals are accepted by two amplifier channels, and these are connected alternately (switched) to the deflection plates of the C.R.T. This switching is commonly carried out by means of “gate” circuits under the control of a square wave generator of some sort, and the focal point of the device, on which its success depends, is the development of a satisfactory switching or gate circuit. As these gate circuits have other applications as well, it is proposed to devote a few paragraphs to descriptions of some of them.

Probably the simplest of the gate circuits is the pentode arrangement of Fig. 1. Here the signal is applied to the suppressor grid, and the switching waveform to the control grid. The switching waveform must be of sufficient amplitude to cut the valve off during the negative half-cycle, and must allow the valve to conduct—and hence amplify—during the positive half-cycle. Obviously, two such valves may be used, their anodes connected in parallel, and then, if the switching square wave is applied in anti-phase to the two control grids, only one valve will be conducting at any instant. If, in an attempt to overcome these difficulties, the roles of the two grids are interchanged, the output waveform across R_L can feed back into the square wave generator. Also, since both valves are always conducting to their screens, very thorough screen decoupling is needed, for otherwise the signal from one channel can feed across into the other. As before the positive “flat” of the switching waveform may have no irregularities, or these will be amplified and become superimposed on the signals. Generally speaking, this circuit, though often useful, is only suitable for relatively low switching rates.

Fig. 1. A simple pentode “gate” circuit.

An alternative is the use of a hexode or other valve with two control grids, but here the designer is rather limited, as most available valves have an undesirable variable-mu characteristic on one of the grids.

An alternative and rather better arrangement—which uses two valves—is shown in Fig. 2. Here the signal is applied to the pentode and appears across R_L, provided the triode is cut off by the negative half-cycle of the switching waveform. On the positive half-cycle the pentode is cut off by the consequent positive excursion of the common cathode, and the signal disappears. The pentode is only necessary if it is desired to prevent feedback of the output across R_L back into the signal source via the grid-anode capacitance.

Fig. 2. Cathode-coupled two valve “gate.”

There are several disadvantages in this circuit; first, that as R_C has to be relatively large—comparable with R_L—considerable negative feedback is developed and the gain is severely limited. Secondly, every time the stage is switched, the pentode grid-cathode capacitance has to be charged or discharged through the signal source, so that for high switching rates a low-impedance driver (cathode follower) for the signal is essential. Nevertheless, the writer has succeeded in switching this circuit, using EF50 valves at 5-10 kc/s with a turnover time so short that the “haze” between two traces is practically invisible.
Electronic Circuitry

A constant example is the so-called constant voltage transformer of which various types are currently available commercially.

A "Constant Current" Circuit

The Plessey Company have introduced a range of concentric-type connectors which have been designed primarily for use at the extra high frequencies up to 15,000 Mc/s. These connectors, which are mainly for joining and terminating coaxial cables of between 70 and 80 ohms impedance, are available in two styles, major and minor.

Each series contains four types, described as free straight, free right-angle, bulkhead mounting and panel mounting. Male and female versions are available in each type, and to avoid confusion both inner and outer conductors of a particular connector assembly are either both male or both female and both patterns are interchangeable.

An adaptor is available to permit intercoupling between the major and minor series and, like the actual connectors, this coupler is designed to maintain the correct impedance of 70 to 80 ohms at the junction.

The major series, which are suitable for use up to 5,000 Mc/s, take B.I.C.C. Types CWF8r and SAF78, also Uniradio 18 cables, while the minor range take the Type 1B1/75C/21-4M cable in the same make and are intended for use at frequencies up to 15,000 Mc/s.

Adaptors to junction cables to waveguides are included and all connectors and adaptors are precision machined from brass and given a burnished silver finish.

A "Constant-current" bridge circuit.

MANUFACTURERS' PRODUCTS

E.H.F. Co-axial Connectors

The Plessey Company have introduced a range of concentric-type connectors which have been designed primarily for use at the extra high frequencies up to 15,000 Mc/s. These connectors, which are mainly for joining and terminating coaxial cables of between 70 and 80 ohms impedance, are available in two styles, major and minor.

Each series contains four types, described as free straight, free right-angle, bulkhead mounting and panel mounting. Male and female versions are available in each type, and to avoid confusion both inner and outer conductors of a particular connector assembly are either both male or both female and both patterns are interchangeable.

An adaptor is available to permit intercoupling between the major and minor series and, like the actual connectors, this coupler is designed to maintain the correct impedance of 70 to 80 ohms at the junction.

The major series, which are suitable for use up to 5,000 Mc/s, take B.I.C.C. Types CWF8r and SAF78, also Uniradio 18 cables, while the minor range take the Type 1B1/75C/21-4M cable in the same make and are intended for use at frequencies up to 15,000 Mc/s.

Adaptors to junction cables to waveguides are included and all connectors and adaptors are precision machined from brass and given a burnished silver finish.

Coaxial cables of between 70 and 80 ohms impedance, are available in extra high frequencies up to 15,000 Mc/s. These connectors, which are described as free straight, free right-angle, bulkhead mounting and panel mounting. Male and female versions are available in each type, and to avoid confusion both inner and outer conductors of a particular connector assembly are either both male or both female and both patterns are interchangeable.

An adaptor is available to permit intercoupling between the major and minor series and, like the actual connectors, this coupler is designed to maintain the correct impedance of 70 to 80 ohms at the junction.

The major series, which are suitable for use up to 5,000 Mc/s, take B.I.C.C. Types CWF8r and SAF78, also Uniradio 18 cables, while the minor range take the Type 1B1/75C/21-4M cable in the same make and are intended for use at frequencies up to 15,000 Mc/s.

Adaptors to junction cables to waveguides are included and all connectors and adaptors are precision machined from brass and given a burnished silver finish.

A "Constant-current" bridge circuit.

MANUFACTURERS' PRODUCTS

E.H.F. Co-axial Connectors

The Plessey Company have introduced a range of concentric-type connectors which have been designed primarily for use at the extra high frequencies up to 15,000 Mc/s. These connectors, which are mainly for joining and terminating coaxial cables of between 70 and 80 ohms impedance, are available in two styles, major and minor.

Each series contains four types, described as free straight, free right-angle, bulkhead mounting and panel mounting. Male and female versions are available in each type, and to avoid confusion both inner and outer conductors of a particular connector assembly are either both male or both female and both patterns are interchangeable.

An adaptor is available to permit intercoupling between the major and minor series and, like the actual connectors, this coupler is designed to maintain the correct impedance of 70 to 80 ohms at the junction.

The major series, which are suitable for use up to 5,000 Mc/s, take B.I.C.C. Types CWF8r and SAF78, also Uniradio 18 cables, while the minor range take the Type 1B1/75C/21-4M cable in the same make and are intended for use at frequencies up to 15,000 Mc/s.

Adaptors to junction cables to waveguides are included and all connectors and adaptors are precision machined from brass and given a burnished silver finish.

A "Constant-current" bridge circuit.

MANUFACTURERS' PRODUCTS

E.H.F. Co-axial Connectors

The Plessey Company have introduced a range of concentric-type connectors which have been designed primarily for use at the extra high frequencies up to 15,000 Mc/s. These connectors, which are mainly for joining and terminating coaxial cables of between 70 and 80 ohms impedance, are available in two styles, major and minor.

Each series contains four types, described as free straight, free right-angle, bulkhead mounting and panel mounting. Male and female versions are available in each type, and to avoid confusion both inner and outer conductors of a particular connector assembly are either both male or both female and both patterns are interchangeable.

An adaptor is available to permit intercoupling between the major and minor series and, like the actual connectors, this coupler is designed to maintain the correct impedance of 70 to 80 ohms at the junction.

The major series, which are suitable for use up to 5,000 Mc/s, take B.I.C.C. Types CWF8r and SAF78, also Uniradio 18 cables, while the minor range take the Type 1B1/75C/21-4M cable in the same make and are intended for use at frequencies up to 15,000 Mc/s.

Adaptors to junction cables to waveguides are included and all connectors and adaptors are precision machined from brass and given a burnished silver finish.

A "Constant-current" bridge circuit.

MANUFACTURERS' PRODUCTS

E.H.F. Co-axial Connectors

The Plessey Company have introduced a range of concentric-type connectors which have been designed primarily for use at the extra high frequencies up to 15,000 Mc/s. These connectors, which are mainly for joining and terminating coaxial cables of between 70 and 80 ohms impedance, are available in two styles, major and minor.

Each series contains four types, described as free straight, free right-angle, bulkhead mounting and panel mounting. Male and female versions are available in each type, and to avoid confusion both inner and outer conductors of a particular connector assembly are either both male or both female and both patterns are interchangeable.

An adaptor is available to permit intercoupling between the major and minor series and, like the actual connectors, this coupler is designed to maintain the correct impedance of 70 to 80 ohms at the junction.

The major series, which are suitable for use up to 5,000 Mc/s, take B.I.C.C. Types CWF8r and SAF78, also Uniradio 18 cables, while the minor range take the Type 1B1/75C/21-4M cable in the same make and are intended for use at frequencies up to 15,000 Mc/s.

Adaptors to junction cables to waveguides are included and all connectors and adaptors are precision machined from brass and given a burnished silver finish.

A "Constant-current" bridge circuit.
Contact is made by means of split Bucks.

A 12-way plate can be assembled to give combinations of from 1-pole 12-way to 4-pole 3-way and any number up to four plates can be built up as a ganged assembly.

A range of combinations up to 3-pole 6-way or 4-pole 4-way is available with the 18-contact plates. All contacts are of generous size and silver plated to ensure a low contact resistance.

Television Scanning Equipment

COMPONENTS for the Wireless World Television Receiver have been submitted by Handy-Parts, of 226 - 228, Merton Road, South Wimbledon, London, S.W.19. They comprise a line-scanning transformer and a deflector - and focus - coil assembly. The latter consists of Handy-Parts line-scanning transformer and focus - and deflector - coil assembly.

The fixed plates measure about \(\frac{1}{8} \) in in diameter and have contacts arranged in two rings, the outer being the point contacts and the inner the selector pole, or poles.

The parts are made to the published specification, with the exception of the focus coil which is of different construction. They have all been tried in the original model of the receiver, however, and were found to be entirely satisfactory.

The line-scanning transformer is priced at £3 10s and the focus- and deflector-coil assembly at £6 6s. The focus coil is available separately at 37s 6d, the line coils at 25s and the frame coils at 30s.

New Plastic E.H.F. Insulator

POLYTETRAFLUOROETHYLENE, or P.T.F.E., as it will doubtlessly be known, is a new plastic material having exceptionally good R.F. properties, especially at the extremely high frequencies. It is virtually non-hygroscopic, unaffected by the common corrosive acids, alkalis and oils, and does not soften with application of heat. It has a low coefficient of expansion.

When moulded it has a whitish opaque appearance, feels slightly waxy and possesses considerable flexibility, especially in thin strips or film.

Radio components having P.T.F.E. as the insulation are being made by British Mechanical Productions, Ltd., 27, Bruton Street, London, W.1. They consist principally of miniature valve holders such as the 157G, C.R. tube holders, co-axial cable connectors and various types of insulating connectors for hermetically sealed components. In the last-mentioned category are included the line- and frame-deflector coil yoke and the focus coil mounted on a bracket. The focus coil is spring-mounted for ready adjustment.

The parts are made to the published specification, with the exception of the focus coil which is of different construction. They have all been tried in the original model of the receiver, however, and were found to be entirely satisfactory.

The line-scanning transformer is priced at £3 10s and the focus- and deflector-coil assembly at £6 6s. The focus coil is available separately at 37s 6d, the line coils at 25s and the frame coils at 30s.

145-Mc/S Tuning Unit

THIS unit consists of a small butterfly-type variable capacitor, a hairpin-shaped single-turn coil and a coupling loop assembled on a single bracket. It is intended for the new amateur band of 145-146 Mc/s and can be used as a local oscillator circuit for a V.H.F. heter or converter, as an inter-stage R.F. coupling or as the tank circuit in a 145-Mc/s transmitter.

When used in an oscillator it would seem advisable to anchor the far end of the hairpin inductor to an insulator, as at these very high frequencies the slightest vibration can cause very bad frequency flutter.

The hairpin loop fitted is 6in long and spaced \(\frac{1}{8} \) in. It is secured to the capacitor by small clamps which allow easy adjustment for length.

The coupling loop is supported on a sub-bracket which can be removed from the main bracket and mounted separately if required. Adjustment of the coupling can be made by bending the loop towards or away from the tuned hairpin.

Wide spacing (0.052in) is used in the capacitor and as the flashover voltage exceeds 1,500 R.M.S. no special precautions are needed when the unit is used as the tank circuit in a 145-Mc/s transmitter with anode modulation. The maximum capacitance is about 4pF, but this is more than sufficient to cover the full 145-Mc/s band when it becomes available.

All the metal work, except the bracket, is heavily silver plated and ceramic insulation is used throughout.

The makers are Stratton and Co., Ltd., Eddystone Works, Alvechurch Road, West Heath, Birmingham, 31, and the price is 17s 6d.

"Radio Valve Practice"

THIS booklet is intended to act as a link between the valve maker and the valve user: It is specially addressed to designers.

The contents comprise largely categorical information on subjects about which most of us are somewhat vague. For instance, what is the permissible variation in heater or filament voltage in relation to the rated voltage? Why is it considered undesirable to mount a valve upside down? What are the appropriate precautions against microphony?

The answers to these and many other questions are given in "Radio Valve Practice," copies of which are obtainable free by bona fide valve users from The British Radio Valve Manufacturers' Association, 16, Jermyn Street, London, S.W.1.
ELECTROMAGNETIC UNITS

Reasons Underlying Recent Changes in Accepted Standards

By GEOFFREY STEMAN, B.Sc.

The decision of the National Physical Laboratory to implement on January 1st, 1948, the recommendation of the International Committee of Weights and Measures of 1946, by reverting from the so-called “international” electrical units to units based on the absolute system, brings to the foreground the question of the units and definitions of the electrical quantities. But apart from this topical interest, a knowledge of the history of the electrical units is important in understanding electrical theory. The logical interdependence of the definitions forms a kind of skeleton work upon which electrical theory can be supposed to depend. More than one of the issues which provide perennial difficulty and discussion among students are settled unequivocally by referring to the definitions of electrical quantities. An example of this is given at the end of this article.

The relation between the electrical units is complex, partly because they were originally framed by physicists whose needs in this respect were different from the needs of engineers, and partly because the modifications imposed by engineers have not always been happy ones. In fact, it is difficult, even for those who have the will to do so, to absolve the engineers completely from the charge of short sight or of haziness about fundamental theory in the establishment and use of the practical units.

Unit of Current

The relations between the units are displayed in the diagram opposite. The starting point is the absolute electromagnetic unit of current, placed in a double border at the top left-hand corner of the diagram. This is defined as the current which, flowing in a circular coil of one turn and of one centimetre radius, exerts a force of 2π dynes on a unit magnetic pole placed at the centre, or as the current which, flowing in one centimetre of the arc of such a coil, exerts a force of one dyne on a unit pole placed at the centre. There are other ways of framing this definition to avoid the objection to the above forms that they rely upon unrealizable circuits. One such form is that unit current is the current which, flowing in any circuit, produces the same magnetic field as a magnetic shell of unit strength and whose contour is the circuit. All these forms, and others to be met with in the textbooks, can be shown to be mere mathematical variants of the same definition.

Having fixed in this way the size of the absolute unit of current, all the other absolute quantities are defined in terms of it and of familiar mechanical quantities. Thus there need be, and in fact is in the absolute system of units, only one primary electrical quantity. The way in which the other absolute quantities are derived from the unit of current is indicated in the diagram by the notes on the links connecting them to the unit of current. Thus an absolute unit of charge is connected by one absolute unit of current in one second, and one absolute unit of potential difference exists between two points if one erg of work is done by or against the electrical forces when one absolute unit of charge is conveyed from the one point to the other. The absolute unit of resistance is defined from the familiar relation “resistance is the ratio of potential difference to current” which is often referred to as Ohm’s Law. The statement is not a law, but a definition of resistance, and one absolute unit of resistance requires one absolute unit of potential difference to pass one absolute unit of current through it. Ohm’s Law specifies the conditions (nature of conductor, temperature, etc.) under which the resistance, defined in this manner, is independent of the current through it. All the other absolute units (of capacitance, inductance, etc.) are derived similarly from the absolute unit of current, but as the relations between the various systems of units can be displayed without considering these, the diagram has been extended no farther vertically.

It is important to notice that nearly all the precision measurements of electrical technology, with potentiometers and bridges, are methods of comparing currents or potential differences or resistance. To find the absolute value of any electrical quantity involves measuring it in terms of the absolute unit of current, or comparing its magnitude with a standard whose value has been so measured. It is by way of a reminder of the fundamental position of the absolute unit of current in this respect, that the tangent galvanometer and the Kelvin ampere balance figure so largely in a course of academic physics. In practice, the accurate measurement of a magnetic field presented formidable difficulties up to a few years ago. The British Association, therefore, sought to set up material standards of current and resistance which would be more convenient to realize, and also to measure these standards in terms of the absolute units. While they were doing so they decided to allocate special names, derived from the names of illustrious scientists, to multiples or submultiples by certain powers of ten, of the absolute units. The reason for the last decision was certainly inadequate, and one can only suppose that it was the prestige of the British Association that was responsible for an International Conference in 1881 in Paris adopting the B.A. nomenclature, and adding other names derived in the same way for the so-called practical units. The multiples of the absolute units are given in the second column of the
AND DEFINITIONS

Diagram. It was further decided to construct and measure a column of mercury which, under specified conditions, should have a resistance of one ohm, and to determine what weight of silver one ampere would deposit on a cathode in one second from a solution of its nitrate in water, also under specified conditions.

These measurements were made, and in a series of Conferences, culminating in one at London in 1908, the "international" ampere and ohm were set up, defining the ampere as the current which deposits silver at the rate of 0.00113860 grams per second, and the ohm as the resistance of 14.452 grams of mercury of uniform cross section and of length 106.300 cm, at 0° C. These are known as the International or Legal units, having been made legal by enactments of the United Kingdom and of the other member nations of the Conferences. They are placed in the third column of the diagram, and the nature of the observations which link them to the corresponding absolute units are indicated on the connecting links. The "international" units were defined to be as near as possible identical in magnitude to the absolute ampere and the absolute ohm, and the name "practical units" dates from before any discrepancies had been observed between them. It is now therefore doubtful whether the adjective "practical" refers to the replacement of the absolute units by the multiples by powers of ten of those units, or whether to their replacement by the chemically defined ampere and ohm. Since by modern measurements these units are perceptibly different, it would seem best to abandon the use of the term "practical" and to use the adjective "absolute" for the one system, and the adjective "international" (or "legal") for the other, although in view of the almost certain loss of legality of the international units in the near future, the terms chemical ampere and mercury ohm may be appropriate.

The change from the absolute units to the international units has an almost exact parallel in the establishment of the metric standard of length. The French Government originally took the length of the quadrant of the earth as the standard of length, and defined a metre as a convenient submultiple (10^-7) of this length. A French Commission then prepared a bar of platinum-iridium to be as near as possible to one metre between the fiducial marks on it. Following the discovery of an error in the original measurement, the metre was re-defined as the distance between the fiducial marks on the bar. It is, of course, unlikely that the metric system will revert to the earth's quadrant as a basis, as the electrical system has reverted to its absolute basis.

There are two interesting consequences of the fact that only one electrical quantity is required to furnish a system of units, whereas the "international" system supplies two independent units. The first is that by the "Ohm's Law" relation a legal volt is obtained as the product of a legal ampere and a legal ohm. This legal volt is of very nearly the same magnitude as the absolute volt, but is quite distantly related to it, as is indicated by the diagram. On the other hand, the legal ampere and absolute ampere, like the legal ohm and the absolute ohm, are directly related, each by a single measurement. The second consequence is that from the legal ampere and volt, a new unit of energy is obtained, called the joule, but which is only approximately 101 ergs. To define a joule as 101 ergs, as some writers have done, is wrong, for the Paris Convention of 1881 initiated the term joule, and defined it as the international unit of electrical energy. By analogy with the absolute ohm and the absolute ampere, 101 ergs should be called one absolute joule.

Commissions and Conferences

We have stated that the reason for the introduction of the international units was to provide more easily realized standards of electrical quantities. At an International Conference of 1928 it was agreed that electrical quantities could now be measured in terms of the absolute units as accurately as in terms of the international units, so that the primary need for these latter units no longer
Electromagnetic Units and Definitions—

existed. It was therefore resolved that the numerical relations between these units should be measured with all attainable accuracy, and that a later Commission should effect a formal reversion to the absolute system for technical purposes. Accordingly, the American Bureau of Standards published these results of comparisons:

1934.—One international ampere = 0.999928 ± 0.000020 absolute ampere.

1938.—One international ohm = 1.000468 ± 0.000020 absolute ohm.

A Commission in 1933 implemented the decision of the 1928 Conference by resolving that the change-over should take place on January 1st, 1940, and in the absence of the war, that would, presumably, have been decreed in this country. A Conference of 1946 resolved that the change-over should take place on January 1st, 1948, and in accordance with this, the National Physical Laboratory has announced that it will implement the decision in its measurements from that date. The most recent comparisons are:

One international ampere = 0.99985 absolute ampere.

One international ohm = 1.00049 absolute ohm.

These figures are of interest to compare with the American estimates of a few years ago to observe the order of accuracy of recent determinations.

In setting up the international units, two changes were made: first, the difficult absolute measurements were replaced by the then simpler ones of the chemical ampere and the mercury ohm, and, second, more convenient multiples by ten of the fundamental units were adopted.

The M.K.S. system of units has been proposed to achieve identity of electromagnetic and practical systems. This system takes the metre, the kilogram and the second as the fundamental units of length, mass and time. If the system is adopted, it is to be hoped that a new name will be substituted for the "kilogram," and so the anomaly avoided of having a fundamental unit named in terms of another, a thousand times smaller. The new name should also, of course, be derived from the name of a scientist, following the avowed practice for the technical units.

"Practical" Units

It may be worth while clarifying here a common misapprehension among engineers in connection with the practical units. If an engineer is asked why powers of ten appear in so many of his formulæ, e.g., the field of a solenoid is \(4\pi i/10 \), and the induced E.M.F. in a circuit: \(10^{-9} \text{V} \times \text{dt} \), the writer's experience is that he will generally be told that this is due to the use of practical, instead of absolute, units. This, in fact, is not true. A consistent system of units must give the same formula for any consistent system. These powers of ten arise in all engineers' formulæ which give the field of a current, and are due to the use of a mixed system of units, viz., practical units for the electrical quantities and absolute units for the magnetic quantities. There is no reason whatever why practical units of field and flux should not be used by engineers, and they would then have formulæ of the same form as those used by physicists, without the powers of ten. To call these formulæ "practical formulæ" is about as near the truth as to call the formulæ "circumference of a circle = 79.8 x diameter" a practical formula, for this is the measurement formulæ which must be used by one who measures circumferences in millimetres and diameters in inches. The matter was made more difficult by the allocation of the name gauss to the absolute unit of magnetic field, thereby violating the explicit international resolution to use proper names for the "practical" units. But perhaps the limit of culpability in this matter was achieved when a later International Conference, having noted that the name gauss was being used in different senses by different writers, decided to abandon the term, and the new name oersted was allocated to the absolute unit of field, thereby repeating the same error after having been provided with a remarkably lucky opportunity to right it.

Another interesting light on electrical theory is given by a consideration of units. In the absolute system, the first quantity defined is current, and all the others are derived from it through mechanical relationships. Thus potential difference is the work done per unit charge, or the power per unit current, and resistance is the potential difference per unit current. We can, therefore, express resistance directly in terms of current and power, and the result is that resistance is the power per unit current squared. Thus the relation \(R = W/I^2 \) is the true definition of resistance. It is logically incorrect to regard this as a result which can be deduced from Ohm's Law, however convenient that viewpoint may be for the purposes of elementary teaching.

The definition of resistance in terms of power and current at once answers the question of the reality of the radiation resistance of an aerial, or of iron-loss resistance in iron-cored coils. These are often thought of as in some way unreal resistances; in fact, some text-books go so far as to distinguish between "ohmic resistance" and "fictitious resistance." The argument appears to run in some such way as this: In the case of an aerial, power is radiated when current flows in it; now, in a direct current circuit, power is developed when current flows, the amount being \(P = I^2 R \). Let us, therefore, pretend that \(P \) is an "operational" resistance which has a resistance in iron-cored coils. These are often thought of as in some way unreal resistances; in fact, as to make the relation \(W = P \) true. This value of \(R \) is called the radiation resistance of the aerial and is a fictitious resistance introduced to make our equations "come out right." It is, perhaps, unnecessary to say that an equation which needs such pretences to make it come out right is not worth having, and, in fact, the reality of radiation resistance is seen at once from the fact that whenever current supplies power, the circuit has a resistance of \(R = W/I^2 \) by definition. Any other meaning which the term resistance may acquire by habit is to be regarded with suspicion. It appears that engineers generally acquire another view of resistance which associates it with the fric-
tional forces between molecules and electrons. This point of view was not inconvenient until technical apparatus appeared in which the chief forces on electrons in a wire were not the frictional molecular forces, but the fields in the wire. The work done against the molecular forces is turned into heat in the wire, while the work done against the field forces is radiated away in the case of the aerial, and transferred to the core in the case of the iron-cored coil.

The distinction between ohmic and fictitious resistance would be justified if the definition of potential difference were the heat produced (instead of the work done) when unit charge passes from one place to the other.

"PERSONAL" RADIO TELEPHONES

Lightweight Economical "Walkie-Talkies"

We had an opportunity recently to test and examine two very interesting portable radio telephones of the type often referred to as "walkie-talkies." These are sets of practical utility, not merely experimental models and, moreover, they are actually being produced on a moderate scale by British Communication Corporation, Gordon Avenue, Stanmore, Middlesex.

Such sets have numerous possibilities and those we saw were of a kind that would serve for the police and fire services, for newspaper reporting, for dispatching trains and, among other applications, for forestry patrol and even for ship to shore communications where a fixed installation is not convenient.

The range of the sets will be more than adequate for these and similar purposes as although up to 10 miles, according to prevailing conditions, is claimed, from the results obtained during our tests we think this figure is a little conservative.

Tests were made from a mobile installation in a car and although no great range was attempted communication was maintained under widely different conditions: for example, on one occasion from a road passing through dense woodland, then in the midst of houses, and finally in the open country.

Under all conditions the reception in the car was perfect. Some flutter due to reflections from trees and buildings when on the move was noticeable, but this is quite common with most single-channel transmission systems using V.H.F. Substituting for the normal "whip" aerial a one-inch length of wire enabled communication to be maintained over about half a mile. During transmission the set takes about 30 mA from a 135-volt battery, but when receiving the consumption is reduced to about 20 mA at 90 volts.

Two models of this radio telephone are available but both contain the same chassis. The only differences are that one is designed for carrying by hand and is about the size of a G.P.O. desk telephone with the hand set resting in a cradle on the top. It weighs about 10 lb and is described as the model L59. The other is a pack-type set (Model L45) with webbing harness slung over the shoulder. It has larger capacity batteries than the hand-
BOOK REVIEWS

Both by W. H. Miller, A.M.I.E.E.

Classifax Publications, 9, White Moss Avenue, Manchester, 21.

These two booklets are the first in a new series intended to provide students with the essential information on specific subjects without their having to buy large and expensive works containing much that may be unnecessary to them. The titles are perhaps rather alarming to the student who is not strong in mathematics, and a glance at the interiors might confirm the fear that they are too advanced. Actually, however, only very elementary algebra and a mere smattering of trigonometry are required, and the abundance of equations is at least partly a result of the author's care to place his stepping stones so close together that his weakest followers are not likely to fall down between them.

The first booklet is, as the subtitle says, a simple explanation of the "j" operator. The author dismisses the terms "imaginary" and "complex," which suggest something difficult, and starts from the idea that it is just as easy and logical to use the symbol \(\sqrt{-1} \) to mean a 90-degree change in direction as it is to use \(-1 \) to mean a change in direction of 180°. From this he goes on to explain the "general number," \(a+jb \), and how it is subject to ordinary simple algebra. Each stage is illustrated by diagrams and numerical examples. The "scalar product," which experience shows is a difficulty to some students, is not introduced.

In the second booklet he shows how to apply the "j" technique to the calculation of A.C. circuits. The principles are general to all branches of electrical engineering. Thus, although the book is devoted to star-delta conversion and the detailed working out of an example of electrical power distribution network, this example can be regarded equally as a solution of the unbalanced bridge. And although resonance is not specifically mentioned, the principles are all there. It is notable that admittance is given equal status with impedance. The distinction between a rotating vector and the vector operator is clearly pointed out.

There are a few misprints, especially in the first booklet. The nomenclature and symbols are on the whole well chosen; an exception is that instead of the standard alternative to heavy type for indicating vector quantities—a bar overhead—a dot is used, which more usually signifies a. And a very strange and unexplained symbol appears on pages 10 and 11.

Readers may be confused by the misuse of the symbol \(\pm \) in connection with expressions for admittance (but not in the corresponding expressions for impedance). In general, however, the teaching is clear, simple, and painstaking. It is recommended to everyone who has need to make A.C. calculations and is not entirely happy about using "j" for the purpose.

Two commendable features are the Dewey classification numbers on the front covers, and the repeating of diagrams where necessary to ensure that they are always to be seen at the same opening as the related text.

M. G. S.

BOOKS RECEIVED

B.B.C. Television

The frequencies to be employed on a Sutton Coldfield television station have at last been announced by the B.B.C. They are: vision 61.75 Mc/s and sound 58.25 Mc/s. Asymmetric sideband transmission, in which the upper sideband of the vision transmitter will be partially suppressed, is to be used to reduce the bandwidth required. The sound channel will be A.M.

The output of both the 35-kW vision transmitter and the 12-kW sound transmitter will be radiated from a single aerial supported by a steel lattice mast, 750 feet high. This mast, which is being erected by B.I. Callender's Cables, is of novel design. The main triangular support mast will be 600 feet high, at this level the cross section changes to circular, and for the next 110 feet the mast resembles a steel chimney. Above this will stand a short, square tower carrying eight dipoles.

When reviewing the progress of the B.B.C. television service recently the Director-General remarked: "Exactly what is the right order of priority for television in our British economy at present no one can say dogmatically. There is no simple or easy answer. . . . All I would dare to say is this. Television is a permanent addition to the twentieth-century way of life. Its extension to cover the whole country and its eventual marriage with sound broadcasting, once the two coverages are approximately similar, will overshadow all other broadcasting problems in importance during the next few years."

French High-Definition Television

We learn from a correspondent that if present plans materialize, Parisians will have a normal television service of 819 lines by the end of the year. This will operate simultaneously with the existing 455-line system. The picture signal (interlaced) will have a waveform which does not differ greatly in shape from the existing systems in Paris and London. A three-vehicle mobile unit which will be used for O.B.s will operate on either standard by a simple switching arrangement. For O.B.s at too great a distance from existing aerials cables are being suspended from a balloon and using decimetric waves will be used. The actual transmitter for the 819-line system is in the Eiffel Tower and will operate on about 200 Mc/s.

A particularly interesting point is that the new system is stereoscopic. The projected images appear on the screen, one above the other and are separated by a horizontal line. The aspect ratio per picture being 8:3. By viewing the screen with a piece of equipment resembling a pair of opera glasses, the normal aspect ratio of 4:3 is restored and the two images combined stereoscopically.

Better Listening

Some interesting facts were revealed during the recent "Better Listening" campaign organized jointly by the R.I.C. and the B.B.C.

From a review of sales figures during the past few years it is apparent that 5.5 million households—43.5 per cent of the country's licence holders—are using sets which are more than ten years old. An investigation by leading dealers in various parts of the country reveals that the average annual cost of repairs to these old sets is between £2 and £3 10s.

Sir Noel Ashbridge, B.B.C. Director of Technical Services, has expressed the view that listeners "drugged with bad quality" to such an extent that the high-fidelity reproduction of a modern set is disliked. A pamphlet giving hints on better reception has been issued by the B.B.C.

Radio Recruiting

RADAR operators, supervisors and mechanics, R/T operators and wireless mechanics are urgently needed by the Air Defence Units of the Royal Auxiliary Air Force. These units, manned by 20,000 men and women volunteers, will form part of the Fighter Command raid reporting and control system covering the whole country.

Among the ground trades in the R.A.F. Volunteer Reserve for which recruitment has re-opened is that of radio servicing. At present only men who have served in the R.A.F. will be accepted.

Details regarding both of these Services are obtainable from R.A.F. Recruiting Centres or from the Inspector of Recruiting, Victoria House, Kingsway, London, W.C.2. Special units of the Territorial Army are said to be very short of radio technicians, especially those who served as officers and N.C.O.s during the war. They are required as instructors. Particulars regarding recruitment are obtainable from Territorial Centres.

TELEVISION

This sketch gives some idea of the construction of the Birmingham mast. The slots in the upper section are for a "slot" aerial for sound broadcasting, probably F.M. A similar mast will be used at Wrotham, Kent.

F.M. or — ?

We recently put forward the plea that before embarking on a nation-wide F.M. service the B.B.C. should try another parallel experiment — amplitude modulated E.H.F. It was, therefore, gratifying to learn from a recent B.B.C. statement that a second transmitter, "which can work on A.M. or some other method of modulation" is being installed at the Wrotham (Kent) station where work on the erection of Europe's first high-power F.M. transmitter has begun. By installing the second transmitter the engineers will be able to compare results side by side.

Army Signals

The Signals Research and Development Establishment of the Ministry of Supply at Christchurch was open for inspection by representatives of industry, the Services and the Press during September. Visitors were shown the various
World of Wireless—

activities of the Establishment ranging from pure scientific research through design and development of communication apparatus to final extensive testing under the equivalent climatic and rough handling conditions likely to be encountered in the field.

The principal Army wireless sets were displayed and a mock battle involving infantry, tanks and aircraft was staged to demonstrate the scope of radio communication in the modern army. The No. 10 set for multichannel pulse communication and the lightweight No. 88 set, which, together with its batteries, stows easily in an infantryman's ammunition pouch, were highlights of the demonstration.

25 Years of Metal Rectifiers

THE Westinghouse Brake and Signal Company recently celebrated a quarter of a century of manufacture of metal rectifiers. It was in 1923 that the first copper-oxide rectifier was evolved and two years later applied to railway signalling. It was not until 1927 that it made its first appearance in a trickle charger and H.T. battery eliminator for radio sets. Subsequent developments produced the bridge-type instrument rectifier and Westector for use at radio frequencies. It was not until 1927 that it made its first appearance in a trickle charger and H.T. battery eliminator for radio sets. Subsequent developments produced the bridge-type instrument rectifier and Westector for use at radio frequencies.

Whilst the copper-oxide type still finds many applications as low-power rectifiers the introduction of the selenium rectifier a few years ago largely displaced the earlier pattern in the field of power rectification.

Improvements still continue to be made, the most recent being the double-voltage rectifier which has enabled the size and weight to be considerably reduced. This is manifest in the extremely small size of some of the Westinghouse E.H.T. rectifiers now being produced for use in television sets. For example, a rectifier 8in long and 7/16in diameter gives an output of 10kV.

OBITUARY

It is with regret we record the death of K. B. Warner, WIEH, the managing secretary of the American Amateur Radio Relay League and secretary of the International Amateur Radio Relay League.

PERSONALITIES

Sir Noel Ashbridge, B.B.C. Director of Technical Services, has accepted the invitation to become president of the Junior Institution of Engineers for the 1948-49 session.

Dr. R. L. Smith Rose, D.S.I.R., director of radio research, gave two lectures under the auspices of the British Council on radar and navigational aids during the period of the British radio components exhibition organized by the R.C.M.P. in Stockholm.

Prof. Balth. van der Pol, D.Phys., the new director of the C.C.I.R., was inadvertently referred to as "of Germany" in our last issue. He is, of course, the well-known and highly esteemed member of the board of management of the Physics Laboratory of the Philips organization in Eindhoven, Holland.

Leslie McMichael, director of McMichael Radio, has been made a Fellow of the Institute of Radio Engineers of Australia. He has recently been on a visit to Australasia.

Sydney C. Shaw, who from 1916-1941 was in the Engineering Division of the B.B.C. and from 1914-1947 in Royal Signals, has joined R.C.A. Communications, Inc., and is at Tangier, Morocco.

H. A. Lewis, M.B.E., T.D., B.Sc.(Eng.), who served in R.E.M.E. during the war with the rank of lieutenant colonel, has relinquished his appointment with the B.B.C. Engineering Division to join Marconi's W.T. Co., where he is taking charge of the Broadcasting Division, which includes television.

W. J. Lloyd, B.Sc., who resigned his position as chief engineer of Guy R. Fountain Ltd., in March, has joined Philips Electrical as chief engineer of the company's Amplifier and Public Address Department. During the war he was in the B.B.C. Recording Department, where he worked on the development of the War Correspondents' miniature recorder.

25 Years of Metal Rectifiers

The Westinghouse Brake and Signal Company recently celebrated a quarter of a century of manufacture of metal rectifiers. It was in 1923 that the first copper-oxide rectifier was evolved and two years later applied to railway signalling. It was not until 1927 that it made its first appearance in a trickle charger and H.T. battery eliminator for radio sets. Subsequent developments produced the bridge-type instrument rectifier and Westector for use at radio frequencies.

Whilst the copper-oxide type still finds many applications as low-power rectifiers the introduction of the selenium rectifier a few years ago largely displaced the earlier pattern in the field of power rectification.

Improvements still continue to be made, the most recent being the double-voltage rectifier which has enabled the size and weight to be considerably reduced. This is manifest in the extremely small size of some of the Westinghouse E.H.T. rectifiers now being produced for use in television sets. For example, a rectifier 8in long and 7/16in diameter gives an output of 10kV.

OBITUARY

It is with regret we record the death of K. B. Warner, WIEH, the managing secretary of the American Amateur Radio Relay League and secretary of the International Amateur Radio Relay League.

PERSONALITIES

Sir Noel Ashbridge, B.B.C. Director of Technical Services, has accepted the invitation to become president of the Junior Institution of Engineers for the 1948-49 session.

Dr. R. L. Smith Rose, D.S.I.R., director of radio research, gave two lectures under the auspices of the British Council on radar and navigational aids during the period of the British radio components exhibition organized by the R.C.M.P. in Stockholm.

Prof. Balth. van der Pol, D.Phys., the new director of the C.C.I.R., was inadvertently referred to as "of Germany" in our last issue. He is, of course, the well-known and highly esteemed member of the board of management of the Physics Laboratory of the Philips organization in Eindhoven, Holland.

Leslie McMichael, director of McMichael Radio, has been made a Fellow of the Institute of Radio Engineers of Australia. He has recently been on a visit to Australasia.

Sydney C. Shaw, who from 1916-1941 was in the Engineering Division of the B.B.C. and from 1914-1947 in Royal Signals, has joined R.C.A. Communications, Inc., and is at Tangier, Morocco.

H. A. Lewis, M.B.E., T.D., B.Sc.(Eng.), who served in R.E.M.E. during the war with the rank of lieutenant colonel, has relinquished his appointment with the B.B.C. Engineering Division to join Marconi's W.T. Co., where he is taking charge of the Broadcasting Division, which includes television.

W. J. Lloyd, B.Sc., who resigned his position as chief engineer of Guy R. Fountain Ltd., in March, has joined Philips Electrical as chief engineer of the company's Amplifier and Public Address Department. During the war he was in the B.B.C. Recording Department, where he worked on the development of the War Correspondents' miniature recorder.

IN BRIEF

Licences.—Over eleven per cent of the month's increase of 31,750 in the number of receiving licences in Great Britain and Northern Ireland was for television receivers. The total number of licences at the end of August was 11,324,000, of which 61,700 were for television.

Licence Fees.—In response to a question in the House, the P.M.G. stated that during the 1947-48 financial year the Exchequer received £1,575,417 and the Post Office £170,050 from broadcast receiving licences. As stated in the last issue, the B.B.C. received £5,927,353 from the same source during the same period.

Amateur Exhibition.—Twenty-seven exhibitors have taken space at the R.S.G.B.'s annual amateur radio exhibition which is to be opened at the Royal Hotel, Woburn Place, London, W.C.1, on November 17th at 2.30 by Dr. Smith Rose. Admission to the exhibition, which will continue until the 20th (hours 11.0 a.m. to 9.0 p.m.), is by catalogue, price 1s.

E.H.F. Record?—What is claimed to be an amateur record for E.H.F. two-way communication was set up when a frequency of 2,350 Mc/s was successfully used over a distance of 13 miles. The stations were situated at Brighton Racehill and Salvington Hill, Worthing.

Air-Ground communication channels for civilian aircraft are being moved progressively from the M.F. band to the E.H.F. band. The freed medium frequencies will then be used for essential radio-navigational services. The change-over has been necessary because of the reduced number of medium frequencies available to aeronautical telecommunications at last year's Atlantic City Conference.

Radar Course.—Among the full-time courses in electronics, telecommunications and radio engineering offered by University College, Southampton, during the coming months is one on radar. This eight-week course, which costs...
5, plus one guinea enrolment fee, embraces the full requirements for the Minor examination and entitles the candidate to the certificate in radar maintenance. The college is equipped with two radar sets, the Admiralty Type 265-3 cm, and the Type 205-15 cm, which are obtainable from A. Orba, B.Sc., University College, Southampton. Information on the M.C.T. certificate is obtainable from the Secretary, M.C.T., Berkeley Square House, London, W.I.

City and Guilds. — Regulations and syllabuses for examinations in telecommunications and electrical engineering, radio servicing and for the radio amateurs' licence are given in a booklet issued by the City and Guilds of London Institute. Obtainable from the Department of Technology, 31, Brechin Place, London, S.W.7, priced is 3d by post, it sets forth in considerable detail the courses available.

Radio and Television Courses, including circuit theory and workshop practice, have been arranged by the Sydney General Evening Institute. Particulars are available from the principal of the Institute at Sydenham Secondary (Central) School, Kirkdale, London, E.2.

I.E.E. Publications. — From January 1st changes are being made by the I.E.E. in the publication of its Journal, which has for some time been issued in three parts. In future the Journal will contain information intended for members only and will continue to be issued monthly. In addition, the institution will issue in three parts the Proceedings of the I.E.E.: Part I (General) will be devoted to papers and proceedings of Ordinary Meetings; Part II (Power Engineering) to the activities of the Utilization, Measurements and Supply Sections; and Part III (Radio and Communication Engineering) to the activities of the Radio Section. Each part will be issued in alternate months. Subscription rates will be £1 15s. 6d. and £1 11s. 6d., respectively.

School Broadcasting. — In reply to a question in the House the Minister of Education answered that, according to an estimate made by the School Broadcasting Council, reception in 30 per cent of schools equipped with radio was unsatisfactory.

I.P.R.E. — The South-West Section of the Institute of Practical Radio Engineers was formed at an inaugural meeting in Newton Abbot, Devon. The secretary is F. C. Roberts, "Inglisook," South Brent, Devon.

FROM ABROAD

Citizens' Radio. — New rules have been proposed by the U.S. Federal Communications Commission for the operation of transmitter-receivers for private communication purposes. The recommendation proposes two types of station, one operating within the band 400-470 Mc/s with a power of 50 watts and another limited to 10 watts on 45 Mc/s. Until the proposals are adopted, only experimental licences are being issued.

South Africa is to have sponsored broadcasting. The South African Broadcasting Corporation, which is modelled on the lines of the B.B.C., has been established by the Government to provide for commercial programmes as soon as possible. The service will be in addition to the bilingual service in English and Afrikaans operated by the Corporation.

Radio New Zealand, the short-wave station of the New Zealand Broadcasting Service, started overseas transmissions on Dominion Day, September 27th. The 7.5-kw transmitter, which at present radiates from 0700 to 0900 G.M.T. on 9.54 Mc/s (ZL2), and 11.78 (ZL3) and 15.28 (ZL4), is situated at Tiriti Bay, some 17 miles from Wellington. Reports on the transmissions, which are at present primarily for the New Zealand Dependencies in the Pacific, will be welcomed by the Director, Radio New Zealand, P.O. Box 3045, Wellington, N.Z.

"Radio Craft," our twenty-year-old American contemporary, has changed its name to Radio Electronics, as the old title no longer reflects the editorial content of the magazine.

Swiss Broadcasting. — A copy of the annual report of the Swiss broadcasting authority, Societe Suisse de Radiodiffusion, has been received. It deals with the activities of the country's three main broadcasting stations which provide a trilingual service. The report on each station is printed in the language used by the station—Sottens (French), Monte Ceneri (Italian), Bernmunster (German).

Walkie-Talkie sets are being supplied to the Ceylon wireless staff on the Cocos Islands to provide communication between Home and Direction Islands, which has hitherto been maintained by irregular sailings by the islanders.

I.R.E. (India). — At a recent meeting of the Institute of Engineers (India) in Bombay it was decided to form an independent Institute of Radio Engineers (India).

Brazil's first television station, which is to be erected in Rio de Janeiro, is being equipped with American gear.

Hungary.—A three-year production plan for the Hungarian telecommunication industry aims at increasing production to 150 per cent of the pre-war total. The target for broadcast receivers is 155,000.

MOBILE USER

MOBILE USER received by G.E.C. research engineers for measuring the atmospheric absorption of millimetre waves over paths of up to 15 miles. Above the aluminium paraboloidal aerial is the telescope used for aligning the aerials. The region investigated was between 4.5 and 6.5 mm.

EXPORT

Scandinavian Television.—A total of 117,000 people attended the television demonstrations given by British radio manufacturers during the British Exhibition which was held in Copenhagen from September 18th to October 3rd. Some leaving Copenhagen the cameras and mobile transmitting equipment have been used for a week in Stockholm, Sweden, where a demonstration of receivers has been arranged by Pye Ltd., the manufacturers of the transmitter. For the demonstrations in Copenhagen over twenty receivers, provided by twelve British manufacturers, were used.

Competition between American and British manufacturers in the television export market was discussed at the autumn meeting of the American Radio Manufacturers' Association. It is understood that American producers are planning a campaign to persuade other countries to adopt their higher definition system (525 lines) and are endeavouring to keep export markets open until they have met the present demand in the States.

Components in Stockholm.—Thirty-six member firms of the Radio Component Manufacturers' Federation had stands at the exhibition of components, accessories and materials organized by the Federation in Stockholm from October 18th-22nd. Although Sweden is now making nearly all its own receivers, she has imported over a million pounds' worth of British radio gear so far this year.

Whiteley Electrical Radio Co. reports that their exports of Stentorian loudspeakers have shown a marked increase during the past year. Recent shipments were consigned to Argentina, Malta, India and Trinidad.

INDUSTRIAL NEWS

Marconi communication and D.F. equipment is to be installed in Britain's latest airliner—the Handley Page Hermes IV. The transmitter, which operates on both 'phone and C.W., covers the frequency range 2 to 18.5 Mc/s and stand-by 2 to 18 Mc/s. Twenty pre-selected crystal-controlled frequencies are pro-
World of Wireless—
vided in the H.F. band and ten in the M.F. band. On H.F. the maximum power is 150 watts and on M.F. 120 watts.

G.E.C.'s recently conducted tests with F.M. equipment on the Thames showed that one low-power transmitter, situated at Canary Wharf, gave optimum signal strength for radio-telephone communication with ships along the entire length of the river which comes within the jurisdiction of the Port of London Authority—some sixty miles.

"Production Engineering," a new 280-page book produced by our associated journal Machine Shop Magazine, gives an insight into the various systems of production planning and control. The author, J. S. Murphy, deals with the basic principles and the treatment of the subject is general rather than particular. The book is published by The Louis Cassier Co. and costs 12s. 6d.

F. C. Robinson, who some time ago resigned from the managing directorship of Cossor Radar, Ltd., has set up an engineering establishment to be known as F. C. Robinson and Partners, to act as consultants on industrial electronic applications and for the supply and maintenance of electronic equipment. The firm's head office is at Dalton House, Harrogate Drive, Hale, Cheshire, and the showroom and service depot at 308, Deansgate, Manchester, 3.

B.E.A.M.A. Catalogue.—The Directory Publications Department of our publishers has undertaken the production of the 1949-50 catalogue and directory of the products of the members of the British Electrical and Allied Manufacturers' Association. This 700-page reference book, which will be published early next year, will include the manufacturers' guide and a trade directory.

Blind Operatives.—One of the best sources of employment for blind persons is the radio industry, according to a brochure, "Skilled Hands," issued by the National Institute for the Blind.

S. Spencer-West, of Quay Works, North Quay, Grt. Yarmouth, has started a specialist business in the manufacture and maintenance of radio-telephone equipment and is developing industrial electronic equipment.

Charles Britain (Radio), Ltd., has moved from Wilson Street, London, E.C.2, to 11, Upper St. Martins Lane, London, W.C.2 (Tel.: Temple Bar 0545).

MANUFACTURERS' LITERATURE

LITERATURE

Descriptive leaflet dealing with the Type 1200 "Strobophash" and accessories from Dawe Instruments, Harlequin Avenue, Great West Road, Brentford, Middlesex.

Technical Bulletin D.T.B. dealing with Type 16 and Type 17, and giving complete data and recommended circuits from Denco (Clacton), 355-9, Old Road, Clacton-on-Sea. Price 3s.

Illustrated leaflet describing the "Motavia" car radio - transportable, from The Motavia Co., Timperley, Cheshire.

CHAIRSIDE RADIOGRAM made by Telefunken which is an example of the few "special" receivers seen at the Leipzig and Hannover Exhibitions. Four-valve "Standard Super" costs RM 475—three months' wages of the average worker in the British Zone.

MEETINGS

The above meetings will be held at 5.30 at the I.E.E., Savoy Place, London, W.C.2.

Cambridge Radio Group.—Discussion on "To what Extent does Distortion really matter in the Transmission of Speech and Music?" opened by P. F. Eckersley, at 8.15, on November 2nd, at the Cavendish Laboratory, Cambridge.

Address of the chairman of the Radio Section, F. Smith, O.B.E., at 6.0, on November 16th, at the Cambridgeshire Technical College, Cambridge.

"Moseley Centre.—"Analysis-Synthesis Telephony, with special reference to the Vocoder," by R. J. Halsey, B.Sc. (Eng.), and H. Swaffield, Ph.D., at 6.30, on November 15th, at the Liverpool Royal Institution, Colquitt Street, Liverpool.

North-Western Radio and Measurements Group.—Discussion on "To what Extent does Distortion really matter in the Transmission of Speech and Music?" opened by P. P. Eckersley, at 6.15, on November 15th, at King's College, Newcastle-on-Tyne.

Sheffield Sub-Centre.—"The Design and Construction of a New Electron Microscope," by M. E. Haine, B.Sc., at 6.15, on October 27th, at the Scunthorpe Technical School.

"Printed Circuits, including Miniature Components and Sub-Miniature Valves," by J. E. Rhys-Jones, M.B.E., on November 2nd, at the Electricity Showrooms, Rugby.

British Institute of Radio Engineers London Section.—"Modern Equipment for Mobile Services," by D. H. Hughes, at 6.0, on November 18th at the London School of Hygiene and Tropical Medicine, Keppel Street, London, W.C.1.

South Midlands Section.—"Measurement and Suppression of Radio Interference," by J. H. Evans, at 7.0, on November 25th at the Technical College (Building A), The Dutts, Coventry.

Moseley Centre.—"Television Receiver Design Technique," by P. Jones, at 6.45, on November 17th at the Incorporation of Engineers' Hall, Derby Square, Liverpool, 2.

"Moseley Centre.—"Radio Transmitting Materials for Cathode-Ray Tubes," by Dr. G. F. J. Garlick, at 7.0, on November 24th, in Room 6, Chamber of Commerce, New Street, Birmingham, Sec.: R. T. Baxendale, 50, Alcester Road, Moseley, Birmingham.

Institute of Physics Electronics Group.—Discussion on "Valves for Low-Noise Wide-Band Radiophones," opened by W. J. Ballantine, M.Sc., and P. E. Williams, Ph.D., at 5.30, on October 8th, at the Institution's House, 47, Belgrave Square, London, S.W.1.

Junior Institution of Engineers North-Western Section.—"The Electron Microscope," by M. Venner, B.Sc. (Eng.), at 2.30 on November 17th, at the Manchester Geographical Society, 16, St. Mary's Parsonage, Manchester.
Suppression of Small Rotary Converters.

We receive, by almost every post, requests for advice on the suppression of electrical interference caused by small rotary convertors, and we can therefore appreciate the motives behind "DIALIST "'s remarks on the subject, in the "Wireless World" July issue.

Filtering of all leads will probably be necessary, and this is preferably carried out at the point of entry into the screening box (L.300/3, L.305*, according to rating).

Although the filters do not cover frequencies above 30 Mc/s, this treatment will normally be effective against interference at T.V. frequencies, provided that the screening is adequate, since T.V. interference is almost entirely radiated.

In the many thousands of cases of T.V. interference which have passed through our hands, only twice have we encountered instances of such interference being mains borne. If any reader has such a case, we should be glad to hear about it, but we do ask that the nature of the interference shall be confirmed beforehand.

"Flutter" in a Television picture.

It is very gratifying to have received a batch of letters from retailers telling us that our 16 aerials stand up well to severe weather conditions. They are designed with a generous margin of safety which, although contributing somewhat to the overall weight, has from our long experience justified our policy. Of the willow it has been said "it will bend but it will not break." Of the oak, "it will break but it will not bend." A good television aerial must do neither.

A television aerial that flaps about in wind, one that "flutters" will give a picture that flutters and may give a great deal of annoyance. This effect may only manifest itself on a windy day or night. If the elements are whippy the effect is more pronounced when eighth wave spacing is employed than with quarter wave spacing.

At the present stage of the television studio art, lighting variations at that end may tend to mask the effect of flutter due to lack of rigidity in an aerial, but as the studio technique is continually improving it is better to be on the safe side and be sure to insist on a rigid, robust aerial, one preferably with quarter wave spacing.

In Praise of Paint.

The great trouble with a steel aerial is the protection of the paint. Plating is unsuitable. Continuous exposure to sulphurous fumes in chimney locations, sometimes salt spray as well, all call for paint. Our standard finish is aluminium paint, but we recommend an additional coat at the time of erection. And we have to remind customers and readers that even bridges, iron lamp-posts, park railings, etc., are painted again and again. Yet many people are surprised that a slender "Skyrod" or television aerial will not stand year after year submitted to far worse conditions, and without any attention, just because it is difficult to get at it.

1.* Condenser suppressor for fitting at the source. L.1118 CT. 27/6.
2.* Set lead suppressors L.300/3 (1 amp.) all-wave 59/6. L.305 (2 amp.). Short and medium wave 63/-.
3.* "Viewrod" television aerial for London frequencies L.502/1, for Birmingham frequencies L.634, each 6/6. Both types include dipole reflector and chimney lashings (less mast). Required length of feeder extra.
4.* "Skyrod" 18ft. vertical aerial with "Eliminoise" transformers, screened feeder and earth wire, etc., L.638/K for chimney mounting £10-10-0. L.638/CK for mast mounting £8-15-0. The words "Viewrod," "Skyrod" and " Eliminoise" are regd. trade marks.
The "Voxmobile" Amplifier

Type 2856R

Mobile — Indoor — Outdoor

Operates from A.C. Mains or 12-volt battery

Output:— 12-watts. Self-contained

The Voxmobile is a really versatile amplifier. While it produces excellent quality, it is light, quickly connected, and operated equally as well either from A.C. mains 250 volts or a 12-volt car battery.

One of the outstanding features of this amplifier is the high sensitivity; only 3.5 mV being required into 1 megohm to produce the full output, thus allowing wide pick-up and the use of high quality microphones.

List Price: £38.0.0

Loudspeaker

Type 9816T

Excellent reproduction and wide angle distribution. Weatherproof — light — robust.

For use Outdoors, Indoors, or on a Vehicle.

No back radiation and therefore minimum feed-back.

The ideal "general-purpose" quality P.A. Speaker.

Complete with line transformer tapped at either 1, 3 or 6 watts.

List Price: £8.0.0

Complete Voxmobile "All-Purpose" Equipment

The ideal general-purpose equipment for Dealers and for Religious, Political, Social and Sporting Organisations.

Comprises:— Amplifier, high fidelity moving-coil microphone, substantial stage-type microphone stand and two type 9816T speakers.

List Price: £70.0.0. Available to all bona fide Traders

TELCON'S LATEST MAGNETIC DEVELOPMENT

H.C.R. ALLOY

is now available in commercial quantities

The magnetic properties of this alloy are such that it is invaluable in the design and construction of improved types of mechanical rectifiers, magnetic amplifiers and special forms of reactors.

Full technical details on request from:

THE TELEGRAPH CONSTRUCTION & MAINTENANCE CO. LTD. Founded 1864

Head Office: 22 Old Broad St, London, E.C.2. Tel: London Wall 3141

Established in 1864

Enquiries to TELCON WORKS, GREENWICH, S.E.10. Tel: Greenwich 1040
2. Some Refinements and Modifications

By M. G. SCROGGIE, B.Sc., M.I.E.E.

In Part I we discussed the design of series-valve units, illustrating it with an example for providing an output voltage adjustable from 200 to 400 V, stabilized against mains fluctuations of +4% to -8% and load fluctuations between zero and maximum, 100 mA. Using a high-gain pentode for output feedback, we found such a unit to be capable of a basic mains-voltage stabilization, even with a source resistance as high as 1000Ω, of around 280:1, and an internal resistance of a few ohms. By the use of properly adjusted input feedback via the screen-grid, we found it possible not only to neutralize the bad effects of the stabilizing tube resistance, but also to neutralize the source resistance (giving theoretically infinite mains voltage stabilization), or both source resistance and series-valve resistance (giving zero internal resistance), or a compromise between the two.

In relation to its performance, which is amply good for most purposes, the arrangement arrived at so far is quite a simple one. Most of the component values have already been calculated, but there are a few practical details still to be noted.

Applying output feedback by a simple potential divider, ripple in the unstabilized source is reduced in the same ratio as slow mains fluctuations. It can, as already mentioned, be reduced still more by means of a capacitor across R1. The value is not critical; 0.25 or 0.5 µF is generally satisfactory.

We have a considerable gain in the output feedback loop, and as usual must look out for spurious oscillation. A check on this, and on residual hum, can be made with an oscilloscope connected (with a good blocking capacitor) across the output terminals, using sufficient wide-band amplification to show 1 mV. Stray capacitances that would tend to cause phase shift or positive feedback should be avoided; and it is wise to screen everything connected to the control grid of V2, especially if the A.C. power section is on the same chassis. If, in spite of precautions, high-frequency oscillation starts up, add enough capacitance from grid to anode of V2 to stop it; 20 pF should be ample, assuming a grid stopper of about 100 kΩ. The gain is thereby considerably reduced at high frequencies, and the internal impedance of the unit correspondingly increased; so it is advisable to provide a H.F. bypass capacitor across the output terminals, say 0.5 µF.

The heaters of V1 and V2 should be connected to their cathodes and fed from separate well-insulated transformer windings. It will be noted that in the example the maximum Vg rating for V2 is liable to be considerably exceeded. In a stabilizer with a high voltage output this is almost inevitable, and does not seem to be a cause of trouble.

For close adjustment of Vg, it is a good idea to divide R1b into coarse and fine controls, say 50 kΩ and 5 kΩ respectively.

Gathering all our results together we arrive at the complete circuit diagram, Fig. 7. The rectifier and smoother may be on conventional lines. In this design, little margin has been allowed for

Stabilized Power Supplies—

tolerances in valves and other components. If it were necessary to ensure effective control over the full working ranges without laboratory checks after renewing valve and neon tubes, and to meet "commercial" conditions generally, it would be desirable to design rather more conservatively. The rather abnormally high source resistance assumed—1000 ohms—leaves considerable scope for this, by reducing it.

The observed performance of a unit similar to this one agreed well with expectations. In fact, as regards absence of transients in V_a on suddenly switching the load on and off, it exceeded the highest hopes. With R_{th} critically adjusted, switching 70 mV or so on and off caused only a flicker of the order of 10 mV, or say 1 in 30,000, corresponding to a mean resistance of 4Ω. Larger or smaller load changes, or the same change at a different V_0, without readjustment of R_{th}, naturally gave less remarkable results, owing to inconstancy of r_{th} and m, and the reduction of mains fluctuations was only slightly better than "basic"—but that itself was very good.

With R_{th} critically adjusted for mains stabilization, a sudden mains change of 10% caused only a momentary flicker of about 15 mV; but that was followed by a slower drift of as much as 0.8 V due to valve heaters. Where large fluctuations in mains voltage are liable to occur, a high degree of stabilization can be obtained only by stabilizing the heater supplies too, as described for example in reference 1 (in Part 1).

Without any exceptional smoothing in the filter, hum was about 11 mV in amplitude; mainly 100 c/s. It depended largely on the layout of the grid circuit of V_2. Random noise of relatively high frequency and about 2 mV peak was reduced to a negligible level by 2 µF across N1. The performance of the unit depends largely on this, the voltage standard. Some tubes are liable to "flicker" every few seconds, as can be seen on the oscilloscope; or they have discontinuities in the characteristics, and may even set up oscillation. The 85.A6 has been designed to avoid these defects, and certainly seems very satisfactory.

Incidentally, the method of observing such small V_a fluctuations as 1 in 30,000 may be of interest. A bank of paper capacitors totalling 60 µF, selected for low leakage, was connected across the output as in Fig. 8, in series with a current-limiting resistance R_1 and a high resistance R_2. The voltage across R_2, being the difference between V_a and the practically steady capacitor charge, was observed by a twin-triode Z.F. voltmeter. Except when actually noting the effects of mains and load changes, R_2 was kept shorted by a switch to set the capacitor charge quickly to equality with V_a and to protect the valve voltmeter.

With a fixed compromise setting of R_{th}, the type of circuit described gives a performance which preserves and to a varying extent improves on the basic stabilization conferred by a large amount of output feedback. It is particularly suitable for variable-output units, because the input feedback is independent of the setting of the output voltage control. But some alternatives and refinements may fit certain circumstances better.

If N1 can be fed from the stabilized output, there are no appreciable voltage changes across its resistance to be neutralized, assuming the variations in R_{th} are very small. To retain the use of g_2, for neutralizing source resistance, it can still be fed from V_f, but the required value of resistance may be too small by itself to drop the required V_{set} without drawing excessive bleeder current. In such a case it may be supplemented by a neon tube.

Alternatively, g_2 can be fed at constant voltage from V_0 and input voltage feedback applied to g_1, in a method already well known, by means of a high resistance R_6, as in Fig. 9. If V_a is to be kept constant when V_0 varies, the whole of the variation must occur in V_1a. Assuming constant current, this can be brought about by a voltage change μ times smaller at the grid of V_1, and μ times smaller at the grid of V_2. So the required condition is that μ μ = 1, where p is the fraction of the V_a change applied to the grid of V_2. Since V_0 is constant, R_1 and R_2 are in parallel as regards current via R_a, so—

\[P_i = \frac{R_1 R_2}{R_1 + R_2} \left(\frac{R_1 R_2}{R_1 + R_2} + R_6 \right) \]

From this, neglecting in comparison with μ, μ =

\[R_6 = \frac{R_1 R_2}{R_1 + R_2} = \mu m p R_1, \]

where p is the fraction of V_a applied to the grid of V_2.

In the example we have been considering, μ_1 m p_1 has been of the order of 50%, so if R_1 were, say, 50 kΩ, the value of R_6 required to
balance out input fluctuations completely would be of the order of 30 MΩ.

Just as with the feedback via \(g_b \), the optimum adjustment of \(R_b \) for mains variations is not the same as that for load variations. For when \(I_b \) changes there is not only a change in \(V_i \) due to source resistance \(R_i \), which is neutralized, but in addition a component of change in \(V_{ta} \) due to valve resistance \(r_{va} \) which is not neutralized, but can be by reducing \(R_b \). The system is then somewhat over-stabilized for mains variations (see Appendix, Eqn. 14c in final instalment), so that changes in \(V_i \) cause small changes in \(V_o \) of opposite sign.

Unlike feedback via \(g_b \), feedback via \(R_b \) varies when \(V_o \) is adjusted, because \(p_i \) is a function of \(R_i \). Optimum \(R_b \), as we have seen, is proportional to \(p_b R_i \), which is \(R_1 \) and \(R_2 \) in parallel. In our example, provision for varying \(V_o \) from 200 to 400 V necessitates varying \(p_b R_i \) in the ratio 1 : 1.4. The effect of this can be completely avoided by splitting \(R_b \) into two, \(R_{6a} \) and \(R_{6b} \) as in Fig. 10. Suppose \(V_o \) is at its minimum, with \(R_{6b} \) at zero. Then \(R_{6a} \) and \(R_{6b} \) are directly in parallel, and if their combined value is the same as optimum \(R_b \) in Fig. 9, their effect is obviously the same. Also if \(R_{6a} \) and \(R_{6b} \) are respectively

proportional to \(R_{1a} \) and \(R_2 \), these four form a balanced Wheatstone bridge, completed via the negli-

gibly low \(R_2 \). So both ends of \(R_{1b} \) are at the same potential as regard input feedback current, and its resistance can therefore be raised to any extent without upsetting the optimum feedback adjustment.

Fulfilling the conditions just stated gives the following values of \(R_{6a} \) and \(R_{6b} \) for perfect input voltage stabilization:

\[
R_{6a} = \mu m R_{1a} \\
R_{6b} = \mu m R_2
\]

If it is inconvenient to provide such large values of adjustable resistance (of the order of 60 MΩ in our example), they can be stepped down by taking the feedback voltages from an adjustable tapping on \(R_5 \). Such a tapping also avoids the difficulty of having to vary \(R_{6a} \) and \(R_{6b} \) simultaneously. But if the latter are below, say, 5 MΩ, it may be necessary to modify the values of \(R_1 \) and \(R_2 \) to allow for the current coming from \(R_5 \).

All the methods of input feedback described so far have the disadvantage that although they can be adjusted to cancel the residual effects of input voltage changes, or output current changes, they cannot do both completely at the same setting. The former necessitates cancelling the source resistance, \(R_i \), whereas the latter necessitates cancelling the valve resistance, \(r_{va} \), also.

The two settings, therefore, are in the ratio \(R_{1i} : (R_i + r_{va}) \). If input feedback is set to cancel \(R_i \), then it is completely effective against mains fluctuations, and also against that part of the effect of load current fluctuations due to \(R_i \). The effect of \(r_{va} \) can be cancelled by feedback from a low resistance, \(R_2 \), carrying the load current. This device, also described by Lindenhovius and Kinia, is shown in Fig. 11. The voltage change across it, due to changes in load current, when multiplied by \(R_{1f}(R_i + R_2) \), \(m \), and \(\mu_1 \), must be equal and opposite to the voltage change across \(r_{va} \) due to approximately the same current. So

\[
R_7 = \frac{g_{1a}(R_1 + R_2)}{\mu_1 m R_i} = R_1 + R_2
\]

In our example \(R_1 = 60 \, k\Omega \), \(R_2 = 21 \, k\Omega \), \(g_{1a} = 0.012 \, A/V \) and \(m = 275 \), the optimum \(R_i \) is 0.41 Ω. If input feedback is not used it should be greater, in the ratio \((R_i + r_{1a}) : r_{1a} \).

To render such feedback independent of \(R_{1b} \), adjustments, the analogous arrangement to Fig. 10 is shown in Fig. 12. It will be shown (Appendix, Eqn. 18) that the appropriate values for \(R_{6a} \) and \(R_{6b} \) are:

\[
R_{6a} = g_{1a} m R_i R_{1a} \\
R_{6b} = g_{1a} m R_i R_2
\]

To avoid upsetting the \(R_i R_2 \)

potential divider unduly, \(R_7 \) should be as large as can be tolerated, say 100 Ω.
Stabilised Power Supplies—

Fig. 10 and Fig. 12 can be combined. In seeking thus for more and more perfect stabilization, the fact that these critical balances depend on other variable factors must not be forgotten. We saw from Fig. 5 how the gain, m, can not only be much increased (giving greater basic stabilization) but also made far more constant (which we now see enables “perfecting” feedback to be applied more effectively over a wide range of output voltage) by the use of N_2. Most of the optimum values for supplementary feedbacks depend on g_{18m} or r_{18m}. This is fortunate, because the remaining inequality in m tends to be offset by simultaneous changes in g_{18} or r_{18}. So although it is possible to render m practically constant over a wide range of g_{2a} by using a suitable non-linear resistor for R_a, the overall result is likely to be worse, especially as m is inevitably less with such a resistor owing to its A.C. resistance being lower than the D.C.

For a flexible-output unit such as Fig. 7, input feedback would conveniently be via g_2, rather than R_3; but if it were important to stabilize very thoroughly against both mains and load fluctuations it might be well worth while to add Fig. 12, and, if mains fluctuations were large and more than momentary, to stabilize the heater voltages.

(To be continued.)

RADIO DEVELOPMENTS IN FRANCE

Precision Frequency Meter and Aircraft Sets

Equipment exemplifying the latest radio technique in France was shown at a recent display arranged by Cossor Radar of the products of the Laboratories Radio-électrique of Paris.

A superhet frequency meter (type 924A) covering 550 to 5 Mc/s attracted considerable interest. The instrument contains two distinct R.F. channels, one is a sensitive superhet which receives the unknown frequency and the other accepts the harmonic output from a crystal-controlled multi-vibrator.

The superhet local oscillator is common to both channels and the circuit arrangement is such that its own variations cancel out in the final determination of the frequency. The accuracy of the meter is the sum of two independent errors, one being the accuracy of the crystal oscillator, in this case of part in a million, and the other the error due to the direct-reading frequency meter which measures the beat with the selected standard harmonic. It is claimed that with the aid of a special adaptor this error can be reduced to a few cycles.

Included in the display was a V.H.F. transmitter-receiver measuring 17.9 x 13.6 x 7.5ins and weighing about 44lb for use in aircraft. It covers 116 to 126 Mc/s and provides 20 crystal-controlled channels, 10 each for send and receive. Amplitude modulated telephony or M.C.W. telegraphy can be employed with a carrier output of 3 watts and giving an operational range of about 100 miles at 6,000ft.

Power for the set is obtained from a regulated dynamotor supplying 300 volts D.C. at 300mA and 210 volts A.C. at 50 VA. The latter is stepped down in a transformer and provides 6.3 volts L.T. for the valves, 50 volts D.C. rectified for grid bias and the D.C. regulating voltage for the dynamotor.

One other interesting feature is that when using telegraphy the change over to receive is automatically effected after a brief break in the transmission.

There was also an H.F. transmitter-receiver covering 5 to 10 Mc/s for light aircraft and giving a radio telephone range of about 30 miles. Incorporated in the set is a broadcast receiver with a wave range of 205 to 1,850 metres and having a self-contained loop aerial and a “left-right” pointer-type indicator which gives the approximate bearing of a ground station. It can also be used for “homing” and is a simple form of radio compass for private aircraft.

Frequency meter type 924A.
Vortexion

"SUPER FIFTY WATT" AMPLIFIER

This AMPLIFIER has a response of 30 cps. to 25,000 cps. within ¼ db, under 2 per cent. distortion at 40 watts and 1 per cent. at 15 watts, including noise and distortion of pre-amplifier and microphone transformer. Electronic mixing for microphone and gramophone of either high or low impedance with top and bass controls. Output for 15/250 ohms with generous voice coil feedback to minimise speaker distortion. New style easy access steel case gives recessed controls, making transport safe and easy. Exceedingly well ventilated for long life. Amplifier complete in steel case, with built-in 15 ohm mu-metal shielded microphone transformer, tropical finish. As illustrated Price 36½ Gns.

FOUR-WAY ELECTRONIC MIXER

This unit with 4 built-in, balanced and screened microphone transformers, normally of 15-30 ohms impedance. Has 5 valves and selenium rectifier supplied by its own built-in screened power pack: consumption 20 watts.

Suitable for recording and dubbing, or large P.A. Installations since it will drive up to six of our 50 watt amplifiers, whose base dimensions it matches, normally for output line of 20,000 or less load since ample feedback is used.

Price in case with valves, etc., £24 0 0

ALL TYPES OF MICROPHONES, STANDS AND SPEAKERS AVAILABLE FROM STOCK INCLUDING 12in. GOODMAN P.M. SPEAKER.

30 WATT RECORD REPRODUCER IN CASE PRICE 30½ Gns.

10 WATT RECORD REPRODUCER WITH MICROPHONE STAGE, IN CASE PRICE 25½ Gns.

SUPER FIFTY-WATT AMPLIFIER PRICE 36½ Gns.

CP20A FOR A.C. MAINS and 12 VOLT BATTERY PRICE £28

Vortexion LIMITED

257-261, THE BROADWAY, WIMBLEDON, LONDON, S.W.19

TELEPHONES: LIBerty 2814 and 6242-3.

TELEGRAMS: "VORTEXION, WIMBLE, LONDON."
THE NEW VITAVOX

G.P.1 PRESSURE UNIT

(1) Forged magnet housing. Bonderized and finished in a wear resistant thermo-setting plastic enamel.
(2) Centre pole Ticonal G magnet giving a total useful flux of 80,000 lines and a flux density of 16,500 lines per sq. cm with no external field.
(3) Locator registering pole with relation to top plate and maintaining gap width within .001".
(4) Pole cap machined to a tolerance of +.000" - .001" to ensure accuracy of assembly.
(5) One-piece diaphragm of non-corrodible Duralumin with tangential surround. Voice coil wound directly on to diaphragm to ensure strength and reliability. Phosphor bronze lead out strips.
(6) Satin Chromed top plate secured to magnet housing with socket headed screws and providing accurate registration for throat and pole locator.
(7) Rubber gasket to prevent ingress of dust and moisture.
(8) Non-rotating terminals.
(9) Die-cast throat incorporating phase correction device to ensure maximum H.F. response. Plated and finished as magnet housing.
(10) Dust cap to protect unit when not in use.

VITAVOX LIMITED,
Westmorland Road, London, N.W.9.
Tel.: COLindale 8671.

Impedance 15 ohms. Peak Power Handling Capacity 20 watts. List Price £.10.0. (Complete in felt-lined wooden storage box.)

GARDNERS

"AVON"
"BURLEY"
"HENGIST"
"SOMERFORD"

The illustration shows our hermetically sealed transformer, which together with "Hengist," "Avon," "Burley," and the "Somerford" range of transformers and chokes adequately fulfils the requirements of the Electronic Industries and National Research establishments.

The "Somerford" range comprises some 141 types of transformers and chokes, most of which are available for immediate or prompt delivery.

Full details will gladly be sent upon request.

GARDNERS
TRANSFORMERS

GARDNERS RADIO LIMITED
SOMERFORD - CHRISTCHURCH - HANTS
Telephone: Christch'urch 1035.
Prior to the invention of the triode and the start of the radio industry the electrical engineer was seldom concerned with the use of non-metallic resistors. He rarely wanted values so high that they could not be obtained from resistance wire; nor did he need really low time constants, except in the instrument field, where wire had to be used anyway. He already had the carbon brush, the carbon pile and the carbon microphone. He was well content to leave it at that.

It was in the early Twenties that a widespread demand for a non-wire-wound resistor arose. It was wanted for use as a grid leak; consequently no exacting specification was implied. If it had been written down, it would probably have read as follows: Resistance—to be within the limits 1 to 5 MΩ; maximum applied voltage—5 V; maximum frequency, 2 Mc/s. Carbon was the obvious material to use for this purpose, and it is hardly surprising that manufacturers met this specification requirement without any great difficulty. 1-MΩ carbon resistors led to 0.1-MΩ and then to 10,000-Ω carbon resistors, and these, too, were generally quite satisfactory provided they were not called upon to carry more than a fraction of a milliampere. If they were, they usually sank to zero or rose to infinite resistance immediately.

As a result, a considerable amount of research took place and in the late Twenties carbon resistors of all values, with ratings of \(\frac{1}{2} \) and 1 watt, appeared on the market. Considering the short development time they were remarkably good, standing up to their full loads, and sometimes appreciably more, with a good heart. The next few years saw a steady improvement and no particular setbacks.

During the early days of television development, however, a new application of these resistors was attempted, namely, in the H.T. circuits feeding the C.R. tube. Under any circumstances some permanent leak of the order of 10 MΩ was needed to prevent the smoothing capacitor from retaining its charge unduly long after switching off. Apart from this, though, the early C.R. tubes generally had up to three auxiliary electrodes requiring intermediate voltages which could not economically be provided except by dropping down from the full H.T. potential. Such values as 1 MΩ, 1 watt, carrying current of about 0.8 mA (0.64 W) were chosen, but after a short time the intermediate voltages were found to be quite incorrect. Examination invariably showed that the 1-MΩ resistors had dropped in value some 30-50 per cent, and since this was constantly occurring and the resistors were obviously not being overloaded as regards current, it was finally concluded that the high voltage was responsible. On the manufacturers' advice 700 volts was accepted as the maximum permissible voltage, regardless of loading, for a 1-W resistor and from then on no further trouble of this kind was experienced.

The next event was the drafting, during the war, of the stringent Service requirements as regards ambient temperatures. This brought home forcibly the realization that final temperature, and not temperature rise, was the essential factor determining the satisfactory operation of resistors as of many other components.

Today a much healthier state of affairs exist, with the appreciation that these two parameters must be taken into account. Their consideration may be an annoyance, but it is the safer course.

Resistors now commonly used fall into two main categories: general purpose and high stability types. Their characteristics and the significance of their ratings are not as widely understood as they should be. In particular, it is not always realized that the "wattage rating" is a purely "wattage rating" is a purely...
Resistor Ratings—

45° and 55° C approximately for the three sizes in order. The second curve, Fig. 2, is a plot of the maximum permissible percentage of rated load against ambient temperature. The interesting features of this curve are: (1) it is common to all three sizes; (2) it is a straight line; (3) as the ambient temperature falls below 40° C a slight increase over full rated load becomes permissible; and (4) at 100° C and above these resistors cannot be used at all.

These clear-cut restrictions provide salutary safeguards on the life and stability of the resistor, which is quite likely to be surrounded by other heat-dissipating components and may possibly be introduced into equipment intended for the tropics. Thus a $\frac{1}{2}$-watt resistor will be rated down to 68 per cent of its nominal full load for an ambient temperature of 60° C. Under these conditions the resistor temperature, from Figs. 1 and 2, will be $27^\circ + 68^\circ = 95^\circ$ C. If the resistor were subjected to its full watt load, its temperature would rise to 103° C, which is above the permissible maximum given by Fig. 2. If a watt load is essential, a nominal $\frac{1}{2}$-watt resistor must be employed and its temperature will be 91° C. Should an ambient temperature of 60° C appear excessive, outside the tropics, it would be worth while to attempt to envisage conditions in the space between the mains transformer and the rectifiers in a television receiver on a hot day!

Fig. 3 shows the resistance-temperature coefficients for this type. These figures are given on a statistical basis for 99 per cent of a batch. Little comment is necessary except to state that the coefficient is always negative and reasonably small. As an example, consider a 0.1-MΩ 1-watt resistor. Its temperature coefficient will lie between -0.025 and -0.075 per cent/degree Centigrade. Hence from no load to full load, a temperature rise of 55° C, the resistance change will be from -1.38 to -4.1 per cent.

The high stability and Service type is made up of five different-sized units, which are deliberately designated by symbol and not by rating. Two distinct conditions of operation are recognized: (1) general industrial and radio uses wherein the maximum stability is desired over long periods of continuous use, with operating temperatures normally below 40° C; and (2) use in Service equipment where ambient conditions up to 71° C must be covered.

Once again maximum voltage limits are given for each size, ranging from 150 volts for a resistor of length about 0.5in to 750 volts for one of about 2in long, and here it is clearly stated that over-voltages are liable to lead to burning or sparking of both.

Consistent with the principle of omitting precise ratings for the various sizes, no curves are provided to show temperature rise against load. On the other hand, two sets of ambient-temperature permissible-loading curves, Figs.
4 and 5 are given, these relating to the different conditions of use. Under conditions (1), Fig. 4 shows that up to $30^\circ - 45^\circ C$, depending upon size, these resistors are capable of carrying constant specific loads from 1/4 to 2 watt. Above, the permissible load falls linearly with temperature to zero at approximately 100°-115° C. Thus to ensure high stability and long life the size for a 1/4-watt load will have to be increased three times if the ambient temperature is raised from 50° C to 75° C. Fig. 5, which relates to Service use, is similar but shows a common maximum limiting ambient temperature of 71° C for constant maximum loading, above which all sizes are derated linearly to zero loading at 100°-115° C. Not unnaturally the constant loads are not in all cases the same for conditions (1) and (2) while a penalty has to be paid for the severer demands of the latter, this penalty taking the form of a shorter expectation of life for the resistor. Again, at the higher ambient temperatures a slight increase in temperature calls for an increase in size.

As might be expected, the temperature coefficient of this class of resistor is somewhat lower than that of the general-purpose type. It lies approximately between -0.02 and -0.06 per cent/degree Centigrade. Thus the resistance value of any resistor of this type would be expected to drop 1.1-3.3 per cent for a temperature rise of 55° C or 1.42-4.25 per cent for a temperature rise of 71° C.

One added advantage arising from the form of construction and the conservative ratings is the fact that short-period overloads of 50 per cent or even 100 per cent will not damage the resistor, though it may cause a permanent change in value of 1-2 per cent. This is a marked improvement over resistor performance in the past. The same two factors contribute to a low voltage coefficient and a low noise level. The former is defined as the instantaneous change in resistance value which takes place with a change in the applied voltage and which is quite independent of the change brought about by temperature.
Resistor Ratings—rise. It is customary to measure it in parts per million per volt applied and the curves in Fig. 6 show the limits, again on a statistical basis, within which the coefficient will lie for this type of resistor. Consider a 500,000-Ω 1-watt resistor. Its full-load voltage is 224 volts and its voltage coefficient, according to the curves, lies between -2×10^{-4} and -31×10^{-4} parts per volt.

50,000-Ω 1-watt resistor would be expected to have a noise level of $0.3 \mu V/V$ or $67 \mu V$ at full load. Let us consider a case where noise is likely to be of greater interest, say a 1,000-Ω resistor with 20 volts across it. The noise level here will not exceed $0.15 \times 20 \mu V = 3.0 \mu V$, an amount which could in most cases be ignored.

In this type of resistor, the resistance path through the element is of a spiral form. As a result, the trend towards more compact radar equipments for merchant ships is illustrated by this picture of a Kelvin-Hughes installation fitted on a bracket from the mast. The rotating scanner, which has a span of 5ft., is mounted directly on top of the transmitter-receiver unit, which is housed in a weatherproof steel case. This method of construction reduces the length of the vulnerable waveguide to a minimum and eases the problem of excluding moisture.
DURING September, in accordance with the seasonal trend for these latitudes, the average daytime maximum usable frequencies were much higher than in August, and the average night-time M.U.F.s were considerably lower. It may be expected that the M.U.F.s will continue to vary in that manner for the next two months or so.

Owing to the increase in the average maximum usable frequencies the communication on the 28-Mc/s amateur band was much more extensive than in August, contacts having been made as far as New Zealand. Frequencies below 11 Mc/s for distances exceeding 3,000 miles were not often usable at night.

The rate of incidence of Sporadic E was less than in August, and decreased sharply towards the end of the month. This was in accordance with the seasonal trend, and thus rather few contacts were made using this medium on the higher frequencies. Long-range tropospheric propagation was observed, sometimes over almost record distances, on many occasions towards the end of the month. This may have been perhaps due to favourable weather conditions.

Sunspot activity in September was somewhat less than in August. Two fairly large groups were observed which crossed the central meridian of the sun on the 3rd and 17th. Ionospheric storms were observed on 1st-7th, 13th, 25th-27th and 30th, those occurring on the 1st, 2nd, 4th, 5th and 25th being particularly violent.

Relatively few "Dellinger" fadeouts have been recorded in September, none of which were really severe.

Forecast. — Daytime M.U.F.s during November should reach very high values which, although exceeding those for October, will be probably below the sunset maximum values obtained in November, 1947. Long-distance communication on very high frequencies should be therefore possible in all directions from this country. The 28-Mc/s amateur band should be regularly usable at suitable times of day, and considerably higher frequencies than in October may be workable over certain circuits. It is even possible that a long-distance contact or two may take place on 50 Mc/s, though this is not very likely. Night-time M.U.F.s will, on the other hand, be considerably lower than in October, frequencies as low as 9 and even 7 Mc/s probably being necessary for many night-time circuits.

Below are given, in terms of the broadcast bands, the working frequencies which should be regularly usable during November for long-distance circuits running in different directions from this country. (All times G.M.T.) In addition, a figure in brackets is given for the use of those whose primary interest is the exploitation of certain frequency bands, and this indicates the highest frequency likely to be usable for about 25 per cent of the time during the month for communication by way of the regular layers:

<table>
<thead>
<tr>
<th>Location</th>
<th>Frequency (Mc/s)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montreal</td>
<td>0000 7 Mc/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1100 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1300 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1400 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1600 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1700 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1800 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1900 27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2100 31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2200 33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2300 35</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Frequency (Mc/s)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buenos Aires</td>
<td>0000 11 Mc/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0500 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3500 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4500 27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5000 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5500 31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6000 33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6500 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7000 37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7500 39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8000 41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8500 43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9000 45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9500 47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10000 49</td>
<td></td>
</tr>
</tbody>
</table>

Though ionosphere storms are not particularly prevalent during November, those which do occur are likely to be troublesome over the night paths. At the time of writing it would appear that such disturbances are more likely to occur within the periods 10th-11th, 19th-20th, 22nd-25th than on the other days of the month.
Rationed Radio

It is astonishing what a lack of elementary psychology is shown by government officials when they express surprise that their repeated exhortations to smoke fewer cigarettes or drink less beer leads forthwith to a still greater consumption. They don't seem to grasp the fact that the way to make people want a thing, and to want it badly, is to tell them they can't have it. II, for instance, they told the world in general that British goods would not be exported as they were for home consumption only they would be staggered at the demand created in foreign countries. Even Wigan could command an unheard-of influx of foreign tourists by merely taking a leaf out of the book of the Lhasa borough council and calling itself "the forbidden city." I suppose everybody knows that prohibition was introduced into the U.S.A. in the early twenties by the brewing and distilling interests as a sales boosting stunt.

I should, however, have expected a little more common sense from members of the radio industry. Some of them are still naively complaining that in spite of reduced purchase tax and the recent "better listening" campaign, many listeners still seem reluctant to invest in a new set. Surely the reason is obvious and the remedy also. They should get Sir Stafford Cripps to make a speech telling people that they must on no account buy new wireless sets or, better still, get Mr. Wilson to ration them and make it as difficult as possible to get a permit to buy an extra one.

I know of at least one dealer who has followed the broad outlines of this scheme by putting his sets under the counter and letting it be known that they are only available to those who come clandestinely to the door after dark. The result is that he has made enough to set up his own factory and be independent of manufacturers. Success breeds success, as it always does. He has been able to get rid of several hopelessly out-of-date sets to credulous American tourists by representing them to have been used by Queen Elizabeth when listening in one of the innumerable beds up and down the country which were put at the disposal of that formidable female.

I don't want to seem harsh in my judgment of the radio industry, but it is absolutely no use trying to sell sets on their results after the public has been educated for nearly a decade to assess the value or desirability of goods solely by their scarcity. If cars became plentiful tomorrow fully fifty per cent of the people on the dealers' waiting lists would cancel their orders straight away and look about for something else with a healthy waiting list.

What About It, Mr. Bevan?

There is a striking similarity between a hospital and a prison; the latter being primarily intended to bring that balm and healing to our erring souls which the former brings to our broken bodies. Moreover, men often find themselves on the wrong side of the entrance gates of both those places through their own indiscretions and not infrequently their maladies of body or of morals become chronic, with the result that their first visit is not the last.

But here the comparison ends. Prisons set out to effect their moral cures by stern disciplinary measures in which bodily comfort is at a discount. Hospitals, however, endeavoured to offset the unpleasant effects of their nosious healing draughts by providing lily-handed houris to soothe our fevered brows and apply the balm of Gilead to our troubled spirits as they adjust our headphones so that we can listen to the psychotherapeutic symphonies of the Third Programme. Unfortunately, things are not in this ideal state, as not only are hospital hours in short supply—as our non-English-speaking Whitehall bureaucrats call it—but headphones are in a similar plight, though I can see no reason for the latter shortage.

Maybe I am wrong to generalize from a particular case, but recently having occasion to visit a casualty in one of the largest hospitals in the country I was astonished to find that many patients were unable to listen, solely because it appeared to be nobody's business to see to the replacement or repair of damaged headphones. It could scarcely have been a question of financial stringency, as the hospital I visited was never dependent on voluntary contributions but was run by the county council before Mr. Bevan took the burden of it on to his broad Christopher-like shoulders. As it was, when I had supplied headphones to my friend I was met with eager requests from other patients to be told where their relatives could obtain suitable phones, for which they were more than willing to pay. Fortunately, phones are available in plenty for a few shillings a pair, at any rate in the London area.

I cannot help thinking that the matter is one which might well be ventilated by means of a question in the House addressed to Mr. Bevan.

There is also another matter which concerns the radio industry and that is the designing of special headphones and earpieces giving the minimum of discomfort to sick persons and also a special type of flat reproducer for slipping under the pillow of those whose particular malady renders the ordinary headphones difficult to use. I believe one of these has recently been produced. It seems high time, too, that hospital beds were wired so that alternative programmes are on tap to each patient. After all, the musical tastes of gentlemen of the road may be expected to differ from that of Vermin in Ermine from the Upper Chamber who are henceforth to be bedfellows.
LETTERS TO THE EDITOR

Stabilized V.H.F. Broadcasting ♦ Aligning F.M. Receivers ♦ Television Topics

A.M.—V.H.F.

In recent editorials you have urged that before the B.B.C. committed itself finally to an F.M. broadcasting service it should set up an experimental A.M. station. With both systems there is the problem of maintaining local oscillator frequency stability. In the case of A.M. this difficulty could be overcome quite simply by having the transmitting station send out not only the normal carrier wave but also a frequency conversion wave. This would, of course, be an unmodulated signal at a suitable difference frequency, such that, when mixed with the modulated signal a suitable I.F. would result. At the frequencies now being considered the band width required cannot be considered great, and the two signals could be easily received, amplified and converted in the usual way. The cost of a receiving set would be low, and it would be free from complications.

E. C. NEATE.

Winchester.

Direct-coupled Amplifiers

The letter from E. Jeffery (your Sept. issue) seems to provoke a reply. In estimating the relative merits and demerits of rival A.F. amplifying systems one should bear in mind how far the aural results are tolerable after listening to the reproduced sounds for more than ten minutes. The problem of problems is to obtain a really faithful and acceptable reproduction of the sound-patterns consisting of massed frequencies simultaneously and consequently generated in the studio. The chief difficulty is to secure a satisfactory reproduction of the 1,000- to 4,300-cycle band in such circumstances. Experiments conducted for a period of twenty years have convinced me that the introduction of the blocking condenser in the inter-stage couplings of an A.F. amplifier constitutes an insuperable obstacle to the achievement of the highest standard of upper audio-frequency reproduction. Whatever the snags associated with direct coupling they are quite insignificant compared with this major problem which resistance-capacity coupling is unable to solve. Those who have achieved success by means of a recently developed method of direct coupling will not lightly abandon it for any other method till a better

has been found. The introduction of tone correction has no bearing on the question, since the filters are not an integral factor in the essential coupling circuit and are usually regarded as optional adjuncts.

NOEL BONAVIA HUNT.

Stagsden, Bedford.

F. M. Alignment

A. G. CROCKER and I have gone on record (Wireless World, July and September, 1948) with rather different views about the alignment of F.M. receivers. I agree that with the facilities available to Mr. Crocker satisfactory performance can be obtained, and indeed I have no reason to doubt that the -60 db distortion figure needed for multi-channel telephony can be maintained. I agree also that Sturley’s alignment procedure is impracticable.

A feature not discussed, however, is the protection afforded against impulsive noise. A single noise peak will set the I.F. circuit ringing, and unless the response is symmetrical and the discriminator is accurately centred on the I.F. mid-band frequency, the noise-reducing properties of F.M. are not realized. This is discussed by Landon (Electronics, February, 1941, and “Frequency Modulation,” Vol. I, R.C.A.). The oscillograms (Fig. 1 of this paper) show, at I, the effect of a 10-pF unbalance across the 100-kO diode loads.

Failure to take account of the special problems of impulsive noise reduction may lead to dissatisfaction with F.M., in view of the general belief that F.M. solves all noise problems.

THOMAS RODDAM.

Aircraft and Television

During the war an attempt to “blind with science” on the subject of radar was not unusual, but it is with some surprise that I read “Diallist” in your September number.

Probably the most common form of interference with television from an aircraft is a rhythmic quick fade of the signal, which is surely due to the relative phase of the direct and reflected rays which is changing at a frequency dependent on the speed at which the aircraft is approaching or going away from the receiving station. This is very noticeable with aircraft nearby when the fre-
Letters to the Editor—

Frequency of fluctuation slows down as the aircraft is heard to pass (i.e., when it is neither coming towards nor going away from the receiving station at any great speed).

The explanation of a flutter on radar when an aircraft is turning is presumably similar in that separate signals are being received from two or more parts of the aircraft and the relative distance these signals have to cover is varying as the aircraft turns, thus causing large fluctuations of the resultant signal as its two or more components come in and out of phase.

I feel that "Free Grid's" excellent column could well have dealt with the explanation which "Dialist" credits to the pundits (we did not call them that in the Navy!), and it could be elaborated to allow for a four-bladed propeller with each blade 1/2 in length.

From experience I can assure you no matter whether the aircraft was working or not, the effect of a turning aircraft was always the same.

G. C. TURNER.

I FOUND R. M. Staunton-Lambert's letter in the August issue, regarding aircraft interference with television very interesting as I live in the same locality and have experienced similar trouble.

There does not seem to be much purpose in using the usual directional arrays as the aircraft's course is in line between the transmitter and receiver and it is on this line that the bent or refracted signal needs to be eliminated.

Experiments to minimize the trouble seem to prove that providing the receiver is close enough to A.P. an "H" installation with the reflector facing the station (i.e., 180 degrees out of phase) is a great improvement.

For distances greater than this I think the cure will prove to be the use of diversity reception.

Two dipoles mounted at opposite extremes of the house feeding a T joint and thence to the set should prove to be a definite advance, as, at the frequency used, an anti-phase on one aerial would be counterbalanced by a correct signal on the other.

Electronic switching between the two aerials would be the best solution but is likely to be an expensive refinement.

M. A. SALTER.

"High-level Detection"

W. MacLANACHAN evidently believes (your September issue) that his third R.F. stage, consisting of a KT6r and untuned R.F. transformer, can deliver to the diode detector signals up to 120 V R.F. without distorting the modulation. But has he proof of this? The net load on the diode circuit on the secondary of the R.F. transformer will be a resistance of value little greater than 10 kΩ, and therefore the power consumed at 120 volts will be nearly 1.5 watts. Also the KT6r will probably have to supply quite a lot of wattless current into the shunt reactances present, whilst it is not very likely that a L.W. R.F. transformer will give an optimum impedance match. It seems to me, therefore, that quite careful design is needed if the third R.F. stage is not to overload on modulation peaks, and I should like to suggest that better coupling could be obtained between the third R.F. amplifier and the detector with the accompanying circuit.

I think better screening and stability would be obtained if an EF55 (CV73) were used in place of the KT6r.

Mr. MacLanachan does not give the ratio of primary turns to feedback turns for the output transformer used in his set, but I guess it is not less than five or ten. The feedback volts are then again reduced in the ratio R2/1 R4/1 R3 (approx.). It seems unlikely, therefore, that any useful amount of negative feedback is obtained. On the other hand, the effect of such feedback as there is will be to reduce the apparent values of R10 and R9, so that the A.C. loading of the diodes will be increased. It seems quite possible, therefore, that the feedback will increase distortion rather than reduce it.

E. F. GOOD.

"Series-capacitor Heater Circuits"

I HAVE a receiver which I built over three years ago incorporating a capacitor in the heater circuit in the way described in your September issue. The two original dial lamps are still in use and I have not had one breakdown, although the set is in daily use.

The 6-volt 0.06-amp. dial lamps are shunted across two of the 6-volt 0.3-amp. heaters. I know this is not very good practice since the lamps shunt part of the heater current, but it certainly is trouble-free.

As regards the breakdown voltage of the capacitors: I tested mine first by wiring them in series with a choke and connecting directly across the mains. The voltage across the capacitors was about 600 V R.M.S. during the test. The choke got rather hot after a time, but the capacitors stood up to the test.

S. V. STEPHENS.

"Television Standards"

I WOULD like to draw your attention to an inaccuracy in the above article (October Wireless World). The writer states that it has been found and is capable to equalize ordinary telephone lines up to some 1.5-2 Mc/s provided only a very few miles is involved.

In actual fact, the average circuit supplied to the B.T.C. under "ordinary telephone lines" has a response of +2 db from 50 c/s to 2.5 Mc/s, falling to some -6 db at 3 Mc/s, the reference level being 10 c/s.

GEORGE LEES.

Better Listening

THE radio industry, in conducting its recent "Better Listening" campaign, might have combined it with a war against man-made interference. Unfortunately, high-fidelity listening is not just a function of the receiving equipment. Listening can be intolerable with a high-quality R.F. unit in a district where interference is prevalent.

It is my lot to live in such a district and no amount of aerial gear, mains suppressors and help from the Post Office engineers has so far been able to make fidelity listening a practical proposition for me.

RAYMOND E. COOKE.

Doncaster.

Long-range Television

In your June issue a correspondent gave a detailed report of reception of Alexandra Palace television in Bristol.

My own experiences at a con-
ABATEMENT OF INTERFERENCE

TWO "Codes of Practice" on reduction of interference to radio reception are not quite so well known as their importance would justify.

The first (No. CP1001; 1947) deals with interference arising from motor vehicle I.C. engines, explaining its nature and describing how it can be suppressed, or at least minimized, by suitable design and also by the user.

The other code (No. CP1002; 1947) is concerned with interference generated by electro-medical and industrial R.F. equipment. Guidance is given as to means of suppressing it in design and manufacture as well as by the user.

The codes, which were prepared jointly by the Institution of Electrical Engineers and the British Standards Institution, cost 2s each by post from B.S.I., 28, Victoria Street, London, S.W.1.
Television Interference

You may recall that not long ago I made a suggestion in these notes about a possible cause of the unpleasant flopping from good to bad and back to good which occurs in the television image when an aircraft flies more or less on an imaginary straight line joining transmitter and receiver, or its prolongation. "Beating," a similar flopping in the break on the C.R.T. trace, was a fairly common phenomenon in wartime radar sets. We were told by the pundits who conducted the strenuous radar courses during the war that this was due to the fact that the number of r.p.m. of the rotary, aerial switch of GL2 was just about that of an aircraft's propeller. At certain angles this produced a beating effect. Ours not to reason why—and, even if we'd wanted to, the speed of those courses was so breathtaking that there wasn't much time for thinking things out. It was reckoned that the wartime "long" radar course got through in five crowded months what should normally have taken at least two years! Anyhow, the suggestion that in television receivers some form of beating might take place in certain circumstances because the frame sync time base has a frequency of 50 x 60 = 3,000 per minute and a common speed for aircraft propellers is 1,500 r.p.m. just wasn't wash. Reason? Well, several readers have written to say that the same flopping occurs when the aircraft overhead is a jet. And that rules out completely all the propeller r.p.m. business for the very good reason that there's no propeller and no revolutions.

Doppler Effect

This type of interference is undoubtedly due to the arrival of the signal by direct and reflected paths at the receiving aerial. The flopping is caused by the constantly changing phase relationship of the two signals. There would be no variation in this relationship, were the aircraft stationary. But, of course, it isn't. If it's more or less on a straight line between your aerial and that of the transmitter, it must be either approaching or receding. Hence the reflected signals are as effectively "dopplered" as the sound waves from the whistle of an express locomotive approaching, passing and receding from the station platform on which you may be standing. What all this comes to is that if you're receiving a television signal by the direct path and by reflection from a moving object, the image will flop in queer ways. All of which, though interesting to the physicist, doesn't vastly help the fellow who lives somewhere near an aerodrome and has installed a television in his home. Perhaps the back-room boys of Belling and Lee or Antiference will be able to evolve some solution. What seems to be needed is an aerial so screened that it cannot receive signals arriving at vertical angles greater than that of the direct wave.

"Wireless" or "Radio"?

In the last few days I've been severely taken to task by a friend for talking about "wireless." That, he contends, is an obsolete term. In his view "radio" is the word that is used by all up-to-date people when they are referring to communications of any kind made by means of electro-magnetic waves. "Could there be anything more ridiculous than to describe as a wireless receiving set a piece of apparatus which may contain hundreds of yards of wire?" He contends further that it was just as antiquated and absurd to call the equipment which disseminates broadcast a wireless transmitter as to dub the normal conveyance of to-day a horseless carriage. "Wireless," he maintained, was a term crystallizing the amazement of the 1890s that a communication could be sent from here to there without intervening wires, just as "horseless carriage" summed up the amazement of the 1890s that a vehicle could move without the aid of a horse. We'd long ago got over any feeling of surprise about either: this age of progress demanded matter-of-fact terms like motor car, motoring and radio. I was so flabbergasted by this sudden fierce onslaught that I couldn't think of half the crashing retorts that have since come to mind. I did, however, mention that a certain periodical of world-wide standing was content to retain "wireless" as a part of its title and that the word had, anyhow, the advantage of being exclusively English. Interestingly enough, both the French sans fil and the German drahtlose are literal translations of wire-less.

Unit of Sales Resistance

In view of the Better Listening campaign I made a kind of minor Gallup Poll amongst friends who live near by, asking in rather more tactful form the question: Why on earth do you go on enduring the unspeakable reproduction of that awful blaring sound of yours (whose loudspeakers I hear blaring—no matter what time I pass their homes) replied that as there was never anything worth listening to on the wireless nowadays, they made hardly any use of their sets, so that the odd chunk of distortion was neither here nor there. The rest were singularly unanimous in the reason they gave. Almost without exception, they said that they'd go in for new sets at once, if only it wasn't for that etc., etc., etc., purchase tax. From which I gather that sales resistance to-day is to be measured in O.H.M.S. I understand their feelings perfectly.

New Works

Lately I've given quite a bit of thought to the question of worn-out broadcast receivers and their periodic replacement. Apart from the purchase tax snag of to-day, what sticks in the gizzards of many people is that they will have to dispose for a song not only of the innards of the old set but also of its cabinet. The cabinet, particularly if it is that of a console or a radio-graph, may represent no small part of the price of the set. And if, as is likely, it has received the same good treatment as the rest of your furniture, it may well be almost new when its contents have seen their best days. The lady of the house chose that cabinet to fit in with the other bits and pieces; you both like it; you haven't seen a set in the shops with a cabinet you like so much. So perhaps you go on
putting up with poor performances on the part of the set because you can't bring yourselves to "trade in" cabinet and contents for what seems an absurdly small sum. I wonder if those set makers who go in for really good cabinet work wouldn't be well advised to offer complete chassis replacements after, say, two years, to those who have purchased their wares.

Wider Coverage Needed

We'll have, I feel, to revise a bit our present ideas about the frequency range covered by the preset signal-frequency tuning stages of television receivers. It seems all wrong from both the manufacturers' and the users' point of view that it shouldn't be possible to adjust any given receiver to any frequency required within the twenty-odd megacycle limits of the metre-frequency television band. From the manufacturers' angle it would surely be sound policy to design and market models which can be adjusted to any vision and speech range between 40 and 65 Mc/s; it seems absurd that different components will have to be used in the S.F. stages of London and Birmingham sets. Good profits and low prices are best assured by the biggest possible runs in the factory of identical apparatus. Further, if televisors have to be specially made to suit particular areas, it's inevitable that mistakes exasperating to the purchaser will be made. He'll wait, maybe, for weeks for a receiver of the type to which he has pinned his faith, only to find when it's delivered that it won't tune to the frequency of his station. Surely, too, the man who invests quite a bit in a television set should have some guarantee that it will tune to the frequency of another transmitting centre, in case he has to move.

Ultrasonics

My note last month, must, I fear, have given a totally misleading impression of J. M. M. Pinkerton's work on ultrasonics at the Cavendish Laboratory, Cambridge. Pinkerton did not, as I stated, discover the existence of cavitation: that was known to be one of the snags by ASDIC workers in World War I. His work is concerned with the absorption of ultrasonic waves in certain liquids; here it is most important to avoid cavitation at all costs.
RECENT INVENTIONS

A Selection of the More Interesting Radio Developments

Short-wave Aerials

An elongated slot, in the shape of a flattened Z, is cut in the side of a closed metal tube, each of the upper and lower limbs of the opening being substantially a quarter wave-length. The inner and outer conductors of a coaxial feeder are connected to the opposite sides of the comparatively short transverse slot connecting the two horizontal limbs.

In effect, the feeder is thus coupled across the two metal parts of the tube defined by the upper and lower edges respectively, of the elongated opening, and since the two parts in question have, at any given moment, different capacities to earth, they can oscillate as dipoles. At the same time, the system is electrically balanced about the transverse slot containing the feed point. The construction provides a robust form of aerial, which is particularly suitable for use on aircraft, or where high mechanical strength is required.

Tone Control

A FREQUENCY-DISCRIMINATING circuit applies tone control in the form of negative feedback between the grid of the valve V2 through resistance R, capacitance C1, and resistances R4, R5, in phase-opposition, so that their reaction can be rejected. On the other hand, frequencies below 150 cycles pass through resistances R1 and R6 to the grid of V1 in phase to apply positive reaction, the nett result being maximum base response. The right-hand setting of the control S produces no appreciable reaction through either of the above-mentioned paths, though frequencies above 1,000 c/s are boosted by being fed back through C2 and R3 to the grid of the amplifier V1.

Receiving F.M. Signals

A FREQUENCY-MODULATED carrier is liable for various reasons to develop disturbing fluctuations in amplitude. A limiter valve can be used to smooth these out, prior to detection, provided a high level of signal input is available, since to be effective the limiter must be operated at saturation point.

As an alternative, according to the present invention, the I.F. pentode amplifier immediately preceding the discriminator stage is arranged to operate also as a grid-leak detector. The rectified voltage built up across the leak resistance, as a result of any amplitude variations that may be present, is tapped off to an auxiliary amplifier, located outside the normal signal channel and from there is fed back to an earlier I.F. amplifier, in the phase required to eliminate or offset the original irregularity. The required correction is thus applied automatically, and without affecting the normal amplification of the F.M. signal.

The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from specifications obtainable at the Patent Office, 25, Southampton Buildings, London, W.C.2, price 1/- each.
Quality
ACKNOWLEDGED
THROUGHOUT
THE WORLD

ERIE
Radio & Electronic Components

RESISTORS • CERAMICONS • Hi-K CERAMICONS • POTENTIOMETERS • SUPPRESSORS • VITREOUS ENAMELLED WIRE-WOUND RESISTORS

Erie Resistor Ltd., The Hyde, London, N.W.9, England
Telephone: COLindale 8011-4. Cables: RESISTOR, LONDON.
Factories: London & Gt. Yarmouth, England, Toronto, Canada, Erie, Pa., U.S.A.
Stabilized Insulation
By Modern Impregnation Methods

HYMEG Synthetic Insulating Varnishes are recognized and widely used for their mechanical rigidity, improvement of electrical properties of windings, heat, moisture, oil, acid and alkali resistance as well as for the considerably reduced stroving time necessary.

Now, special methods of continuous conveyor impregnation and baking developed with the use of HYMEG have still further reduced processing times to a fraction of those previously believed necessary.

Often faster than infra-red baking with none of the defects, reduced handling, absence of special jigs, with complete freedom from blistering, bubbling and porosity, are some of the advantages claimed and substantiated for HYMEG High Speed Production methods.

HYMEGLAS Glass Fibre Insulation System

This integrated system of development is successful in enabling machines to be designed and operated without weak links in the chain of insulation below 200°C. Thus the fullest advantage is taken of modern glass fibre insulation by providing a degree of bonding and insulation at every point in which the uniting of HYMEG impregnation with the HYMEG as used for subsidiary insulations gives a solid homogeneous winding of equally efficient characteristics and heat resistance throughout.

HYMEGLAS therefore virtually eliminates any risk of insulation failure and enables motors and the like to operate under abnormal conditions for long periods without risk of electrical breakdown.

Due to the excellent space factor of glass fibre as compared with the more usual asbestos and mica Class B insulations, it is often possible in redesigning with the HYMEGLAS system to employ larger copper sections with well-known advantages.

LEWIS BERGER & SONS LTD. (Est. 1760)
35, BERKELEY SQUARE, LONDON, W.I.
MANUFACTURERS OF HIGH-PERFORMANCE INSULATING VARNISHES AND ENAMELS

RHO-METAL SCRATCH FILTER CHoke

Typical Response Curves

WHERE SURFACE NOISE IS THE LIMITING FACTOR TO SUPREME QUALITY OF REPRODUCTION, fit a Sound Sales alloy cored steel trough tunable filter. We know the problem of removing Surface Noise or Heterodyne whistle is not easy to solve, but the steep trough filter has so far produced the most encouraging results we have encountered when using a compact component which can be incorporated in existing apparatus.

CHoke TYPE. C SF. Dia. 2", length 3". PRICE £1.8.9 each.

SOUND SALES LIMITED
Specialist manufacturers of Transformers and Chokes of all types since 1930
WEST STREET, FARHAM
and S7 ST. MARTIN’S LANE, W.C.2.

Headphones which uphold British Prestige

S. G. BROWN, Type 'K'
Moving Coil Headphones, supply that High Fidelity Reproduction demanded for DX work, monitoring and laboratory purposes, etc.

OUTSTANDING CHARACTERISTICS.
G. C. RESISTANCE, 47 Ohms.
IMPEdANCE, 52 Ohms at 1,000 c.p.s.
SENSITIVITY, 1.2 x 10^-7 Watts at 1 kv. No. 0002 Dyne/cm^2.

PRICE £5.5.0 PER PAIR

For details of other S. G. Brown Headphones (prices from 30/- to 63/-) write for illustrated Brochure "W.W."

HEADPHONES WHICH UPHOLD BRITISH PRESTIGE.

S. G. Brown, Ltd.
SHAKESPEARE STREET, WATFORD, HERTS.
Specially Designed for Personal Cabin Use

The Eddystone "670" receiver is primarily intended for personal use on board ship and in view of this has been designed for operation on either A.C. or D.C. supplies from 100 to 110 volts or 200 to 250 volts. Particular attention has been given to the performance of the Receiver on the short waves as for long periods these will often be the sole medium for broadcast reception. The "670" complies with safety regulations and careful attention has been paid to the insulation throughout. The circuit is a 7 valve superheterodyne, tuning from 10 to 315 metres and 110 to 675 metres. A high grade internal speaker is used, which can be disconnected and headphones substituted to avoid disturbing sleeping personnel. The receiver is robustly constructed and suited for service in the tropics. A mains filter (Cat. No. 732) is available for reducing interference from ship's electrical plant. The Eddystone special ship's aerial (Cat. No. 731) ensures high efficiency and this together with the mains filter are valuable accessories. The Eddystone "670" Receiver is at present available for Marine Export and Overseas Markets only.

PRICE: £37 10s. 0d. (ex Works)

Main Filter - £2 10 0 Aerial - £2 12 6

Send for illustrated brochure and name and address of nearest supplier to

STRATTON & CO. LTD., ALVECHURCH ROAD, WEST HEATH, BIRMINGHAM 31

The 'CINTEL' Universal Oscilloscope

A highly versatile laboratory instrument of outstanding performance

Designed on the unit principle the 'Cintel' Universal Oscilloscope offers a basic instrument which is expandable at will to meet your requirements. Units now available include:

- Basic unit, comprising console, Cathode Ray Tube and power pack and calibration device
- Simple time Base with frequency range from 5c/s to 200 Ka/s.
- Amplitude Stabilised Time Base with calibrated frequency range from 5c/s to 120 Ka/s.
- A.C. Amplifier with frequency range from 5c/s to 1.5 Mc/s.
- D.C. Amplifier with frequency range from 0c/s to 5 Mc/s.
- Double Beam Switch Unit.
- Five Beam Switch Unit.

A series of technical papers on the application of electronics in Industry & Research will be read at the York Room, Caxton Hall, Westminster, S.W.1., November 18 & 19th, 1948, under the auspices of the Scientific Instrument Manufacturers' Association of Great Britain Limited. Apply for tickets to The Secretary, S.I.M.A., 26 Russell Square, London, W.C.1

CINEMA - TELEVISION Ltd.
WORSLEY BRIDGE ROAD,
LONDON, S.E.26
Telephone: Hith Green 4600

Manufacturers of Scientific Instruments and Photo-electric Cells

REGISTERED TRADE MARK
BARGAINS FROM VALLANCE'S
DELIVERY FROM STOCK OF SOUND SALES MAINS TRANSFORMERS.
Suitable for upright, inverted or horizontal mounting, which is facilitated
by interchangeable brackets. Double shrouds are provided, thus ensur-
ing a very neat appearance. All primaries wound to suit 50/100
CPS A.C. Mains from 210/250 V. by means of suitable tappings. Earthen
static shield between primary and secondary provided.
X250 Octal. 250-0-250 V. 80 mA 5 V. 2 a. 6.3 v. 2 a. C.T., £17/4.
X250. 250-0-250 V. 80 mA 5 V. 2 a. 6.4-6/4 a. C.T., £17/4.
X2/75. 275-0-275 V. 120 mA 5 V. 2 a. 6.3 v. 1.5 a. C.T., £18/2.
X2/125. 275-0-275 V. 125 mA 4 V. 2 a. 4 a. C.T., £2/12.
X2/250 Octal. 275-0-275 V. 120 mA 4 V. 2 a. 4 a. C.T., £2/2.
X2/300 Octal. 300-0-300 V. 70 mA 5 V. 2 a. 6.3 v. 2.5 a. C.T., £18/6.
X2/300. 300-0-300 V. 70 mA 4 V. 2 a. 4 a. 4 a. C.T., £18/6.
X2/350 Octal. 350-0-350 V. 120 mA 5 V. 3 a. 5.3 a. 3 a. C.T., £2/14/6.

AUTO TYPE
SK/75 Aero. 75 watts. 0.32 amps. at 250 V. max. Available tappings
100 V., 110 V., 210 V., 230 V., 250V., £1/10.
The following are specially designed for Westinghouse L.T. Rectifiers.
LT41. 17-18.25-22 v. suitable for charging 6 v., 8 v., 10 v., 12 v.,
batteries, at 1 amp. with LT41 rectifier, £1/8.
LT42. 8.5-10-11 v. suitable for charging 2 v. 4 v. 6 v. batteries at
1 amp. with LT42 rectifier, £1/8.

OUTPUT TRANSFORMERS
Designed expressly for high quality reproduction (see Wireless World
test report on the type 036). The latest model is totally enclosed and
metal shrouded.
Type 034 X. Wound to suit two type PX4 valves in push-pull, with
tapping for PX5 valves. Primary inductance 77 henries. Primary
impedance 10,000 ohms, tapped at 6,400 thus rendering the components
suitable for use with PX4 valves, working 10,000 ohms anode-anode
with 200 v. H.T. or 6, 400 anode-anode with 300 v. H.T. Standard
impedance 15 ohms tapped 6 ohm. £2 8/10.

SOUND REPRODUCERS
For Concert and Domestic Use
Bass and Treble Lift: Tri-channel Tone. GP/15w. 16 gns.
G/P5w. 19 gns. G/Q5w. 15½ gns. Amplifiers from
8½ gns. to 30 gns. described in latest brochure with basic
circuits, 6d. Blue Prints 2/6. Transformer Lists 2d.
Chassis work for "Electronic Televisor" 75/- set.
EVERYTHING FOR SOUND AND SCREEN

GENERAL LAMINATION PRODUCTS LTD.
294, Broadway, Bexleyheath, Kent.
LIFT TO ALL FLAWS!

In the hands of the radio engineer this universal "Measurtest" instrument will detect and locate the slightest flaw in receiver performance. Yet, weighing only 20 lb. and operated from either mains or batteries, it can be lifted with ease for use anywhere, any time.

The PORTABLE RECEIVER TESTER is ideal also for complete tests on audio amplifiers. In one compact assembly it incorporates the facilities of signal generator, output power meter and crystal calibrator—three instruments, in fact, for the price of one. And many novel features contribute to the attainment of unique standards in both performance and operational convenience. Your enquiries are invited and a demonstration can be arranged.

HIRE PURCHASE TERMS AVAILABLE

PORTABLE RECEIVER TESTER (TYPE TF 888)

3 Instruments-in-One
SIGNAL GENERATOR
A Combined
OUTPUT POWER METER
CRYSTAL CALIBRATOR

COMPACT • PORTABLE • ROBUST
Mains or Battery Operated—
ACCURATE AND RELIABLE

MARCONI INSTRUMENTS LTD

ST. ALBANS, HERTS. Telephone: St. Albans 6161 S.
Northern Office: 30 ALBION STREET, HULL. Tel.: Hull 16144.
Southern Office & Showrooms: 109 EATON SQUARE, S.W.1. Tel.: Sloane 8616. Western Office: 10 PORTVIEW ROAD, AVONMOUTH. Tel.: Avonmouth 438.

PRECISION COMPONENTS

CORD DRIVES
Now available in five types as illustrated (left to right) Standard, R/V, Reverse, " D " type and " A " type.

GANG CONDENSERS
A wide range is now available in 1, 2, 3 or 4 gang types of various capacities.

Write for Catalogue No. (W.W.1.)

JACKSON
BROS (LONDON) LIMITED
KINGSWAY • WADDON • SURREY
TELEPHONE: CROYDON 2754 S
TELEGRAMS: WALFILCO.

KINGSWAY • WADDON • SURREY
PHONE: LONDON

World Radio History
You get years of faultless service because they are:

- **INDIVIDUALLY DESIGNED**
- **Rigorously Tested**
- **Mechanically Sound**
- **Electrically Perfect**

Savage Transformers Ltd.
51, Northgate Street, Devizes.
Phone 336

A NEW B.P.L. INSTRUMENT

THE VOLTASCOPE—A combined valve-voltmeter and oscilloscope.

VALVE-VOLTMETER—Infinite Input Resistance for D.C. ranges 0 to 300 volts. A.C. ranges 0 to 150 volts in 5 ranges. 3½ inch scale meter.

OSCILLOSCOPE—3 inch screen tube provided with balanced amplifiers for Y and X plates giving a 5 times trace expansion. Maximum sensitivity 150mV cm.

Response from D.C. to 100 kcs.

Limited quantity available for early delivery.

BRITISH PHYSICAL LABORATORIES

Houseboat Works, Radlett, Herts.

Tel: Radlett 5674-56

COILS & PACKS

A LARGE variety of Adjustable Iron Dust Core Coils and Packs ranging from 5 to 2,000 metres, in suitable combinations and including high frequency stages together with all necessary padding and trimmer condensers, are available for most needs. Write for descriptive literature stating your particular problem.

LABORATORY

H. C. ATKINS Laboratories, 33, Cumberland Road, Kew, Surrey
Richmond 2950

SILVERED MICA CAPACITORS

Extremely Stable

TROPICALLY IMPREGNATED RANGE OF 7 SMALL SIZES INDIVIDUALLY POWERFACTOR TESTED.

STABILITY RADIO COMPONENTS

14, Norman's Buildings, Central Street, London, E.C.I
Phone: Clerkenwell 5977
co-axial construction' ensures longer life...

The greatly advanced design and production methods employed in the manufacture of the "Series 700" Reproducer ensures long trouble-free life under all climatic conditions. Special purpose machines, tools and jigs ensure mechanically accurate co-axial alignment of all component parts. The magnet assembly is shock proof with virtually no external field. The voice coil and centring member assembly is of moulded Bakelised linen with integral beryllium copper leads. All types are completely dust proof. Each speaker and transformer passes Air Ministry K.110 tropical tests and is made to exacting limits with 100% inspection at all stages.

Reproducers & Amplifiers Ltd., Wolverhampton.

BRITAIN'S FOREMOST REPRODUCERS

Simon

SOUND SERVICE

THE COMPLETE SERVICE FOR SOUND RECORDING AND REPRODUCTION

* Mobile, static and specialised recording units
* Recording amplifiers, speakers, microphones, etc.
* Sapphire cutting and reproducing stylii
* Blank recording discs from 5in. to 17in. Single and Double sided
* Groove locating and cueing devices
* A comprehensive range of accessories to meet every requirement of the sound recording engineer
* A development of special interest to users of sapphire and delicate pick-ups—THE SIMTROL. This is a controlled micro-movement easily fitted for use with any type of pick-up

OUR CDR48A RECORDER UNIT complete and self-contained, measuring only 22in. x 14in. x 13in., incorporating 7-valve amplifier, recorder unit, light-weight pick-up, speaker and microphone and with many exclusive features, is now ready for early delivery

OUR WELL-EQUIPPED WORKSHOPS ARE AVAILABLE FOR THE DEVELOPMENT OF EQUIPMENT TO MEET SPECIAL NEEDS.

CABLES: Simesale, London.
TELEPHONE: Welbeck 2371 (4 lines).
The "L.S.L." Servicing Method is a combined fault analyser and circuit tester; simultaneously capable of indicating all voltage, current and resistance on each valve electrode without removing the chassis from the cabinet. Readings can be taken whilst the set is under actual operating conditions. The "L.S.L." Analyser is a combination of multi-range instrument and valve tester. PRICE: £18. 18. 0 Subject.

THE "LSL" PORTABLE ANALYSER

* Saves time and trouble. * Greatly increases Profit in the Service Department. * Is portable, can be used on the bench or in the home. * Is simple to operate.

Send for further particulars from the sole distributors.
BRIERLEY ribbon and armature pick-ups, amplifiers, and pre-amplifiers. Arrangements are being made for the demonstration of these products by agents throughout the British Isles. Where arrangements for this have not so far been completed it is possible for sales representatives to demonstrate in your own home when next in your district.

B. J. Brierley. Ltd., 46, 7th Street, Liverpool, 2.

The Enoch amplifier is especially designed to obtain the highest standard of performance with regard to first-class reproduction, including noise, less than 0.1 of 1% at 12 watts output, from level less than -75db, frequency response practically flat from 20 to 30,000 c.p.s., no output to 800 microvolts, input for radio and gram type of pick-up, the pre-amplifier is a separate unit designed to work on the control panel or motor-board and contains all controls, it is impendence coupled to the main amplifier, thus flexible couplings and hum troubles due to long leads are eliminated; price 30/- net, or write for price list.

The now famous Williamson amplifier as manufactured by Neek Co. (Ealing), Ltd., is definitely acknowledged as the world's most powerful amplifier at a reasonable price (vide numerous testimonials from famous concert halls), built to specification from high quality components on extra heavy gauge chassis with this amplifier constitutes the practical equipment for the trade for every music dealer searching for quality reproduction your search is ended; we can supply what you want; price complete with cover £27/10; gram, motors, louthers, transformers, etc., are guaranteed; box supplied; trade enquiries invited.-Write or call.

R. S. L., Fulwood, Preston.

Edgworth Lane, W.5. Eal. 6962.

For the present all correspondence should be addressed to.

M. E. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test: 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.

1155, receiver; 10 valves, new condition, aerial test: £7.-J. A. France, 58yn, Croydon St., Halifax, 5.

H. S. Senior, recent model, new condition. £350 a.c. power pack 7 coils, 5-metre aerial test; 35; bargain.-40. Hills Ave., Cambridge.
THE WORLD-WIDE FAMILY OF HARTLEY-TURNER ENTHUSIASTS

Two years ago the post-war Hartley-Turner 215 speaker was introduced to the world. Outside the iron curtain it has been accepted as a well-spoken ambassador of British technical skill and craftsmanship. In every country where the truth frees from distortion is demanded it fills the need with satisfaction to its owners.

But in its train has come the desire for information and equipment to equal its performance and this we try to meet by supplying technical brochures and apparatus—subsidiary activities forced on us because, so we are told, the correct results cannot be obtained elsewhere.

This has surprised us, but we suppose it results from never sacrificing performance to expediency and never departing from our self-imposed standards of technical exactitude. The reward is great—complete confidence in us on the part of our customers, but it leaves us with a terrific responsibility. We can’t afford to take chances. This should be of interest to overseas high-fidelity enthusiasts.

PRESENT PRODUCTS

Home construction of the T.R.F. unit and amplifier is quite easy with the aid of our Technical Bulletins (10 each) and amplifier is quite easy with the aid of our Technical Bulletins (10 each) and amplifier is quite easy with the aid of our Technical Bulletins (10 each). The complete catalogue of data sheets free of charge is now available at 2 8, post free anywhere.

READY SHORTLY

The Hartley-Turner Selected Record Catalogue, the final answer to the problem “Which records shall I buy?”

The whole world of recorded music examined with minute care to save you disappointment and loss through blind buying. The first issue of lists contains thousands of purchasers will tell you, in every country where the truth frees from distortion is demanded it fills the need with satisfaction to its owners.

In a permanent loose-leaf binder. Price about 25/-.

The whole world of recorded music: over 250 major works and a series of classical and symphonic music in 1000 albums. Overseas packing, etc., about £2 10.

The reward is great—complete confidence in us on the part of our customers, but it leaves us with a terrific responsibility. We can’t afford to take chances. This should be of interest to overseas high-fidelity enthusiasts.

THE WORLD-WIDE FAMILY OF HARTLEY-TURNER ENTHUSIASTS

Two years ago the post-war Hartley-Turner 215 speaker was introduced to the world. Outside the iron curtain it has been accepted as a well-spoken ambassador of British technical skill and craftsmanship. In every country where the truth frees from distortion is demanded it fills the need with satisfaction to its owners.

But in its train has come the desire for information and equipment to equal its performance and this we try to meet by supplying technical brochures and apparatus—subsidiary activities forced on us because, so we are told, the correct results cannot be obtained elsewhere.

This has surprised us, but we suppose it results from never sacrificing performance to expediency and never departing from our self-imposed standards of technical exactitude. The reward is great—complete confidence in us on the part of our customers, but it leaves us with a terrific responsibility. We can’t afford to take chances. This should be of interest to overseas high-fidelity enthusiasts.

PRESENT PRODUCTS

Home construction of the T.R.F. unit and amplifier is quite easy with the aid of our Technical Bulletins (10 each) and amplifier is quite easy with the aid of our Technical Bulletins (10 each). The complete catalogue of data sheets free of charge is now available at 2 8, post free anywhere.

READY SHORTLY

The Hartley-Turner Selected Record Catalogue, the final answer to the problem “Which records shall I buy?”

The whole world of recorded music examined with minute care to save you disappointment and loss through blind buying. The first issue of lists contains thousands of purchasers will tell you, in every country where the truth frees from distortion is demanded it fills the need with satisfaction to its owners.

In a permanent loose-leaf binder. Price about 25/-.

The whole world of recorded music: over 250 major works and a series of classical and symphonic music in 1000 albums. Overseas packing, etc., about £2 10.

The reward is great—complete confidence in us on the part of our customers, but it leaves us with a terrific responsibility. We can’t afford to take chances. This should be of interest to overseas high-fidelity enthusiasts.

THE WORLD-WIDE FAMILY OF HARTLEY-TURNER ENTHUSIASTS

Two years ago the post-war Hartley-Turner 215 speaker was introduced to the world. Outside the iron curtain it has been accepted as a well-spoken ambassador of British technical skill and craftsmanship. In every country where the truth frees from distortion is demanded it fills the need with satisfaction to its owners.

But in its train has come the desire for information and equipment to equal its performance and this we try to meet by supplying technical brochures and apparatus—subsidiary activities forced on us because, so we are told, the correct results cannot be obtained elsewhere.

This has surprised us, but we suppose it results from never sacrificing performance to expediency and never departing from our self-imposed standards of technical exactitude. The reward is great—complete confidence in us on the part of our customers, but it leaves us with a terrific responsibility. We can’t afford to take chances. This should be of interest to overseas high-fidelity enthusiasts.

PRESENT PRODUCTS

Home construction of the T.R.F. unit and amplifier is quite easy with the aid of our Technical Bulletin (10 each) and amplifier is quite easy with the aid of our Technical Bulletin (10 each). The complete catalogue of data sheets free of charge is now available at 2 8, post free anywhere.

READY SHORTLY

The Hartley-Turner Selected Record Catalogue, the final answer to the problem “Which records shall I buy?”

The whole world of recorded music examined with minute care to save you disappointment and loss through blind buying. The first issue of lists contains thousands of purchasers will tell you, in every country where the truth frees from distortion is demanded it fills the need with satisfaction to its owners.

In a permanent loose-leaf binder. Price about 25/-.

The whole world of recorded music: over 250 major works and a series of classical and symphonic music in 1000 albums. Overseas packing, etc., about £2 10.

The reward is great—complete confidence in us on the part of our customers, but it leaves us with a terrific responsibility. We can’t afford to take chances. This should be of interest to overseas high-fidelity enthusiasts.

THE WORLD-WIDE FAMILY OF HARTLEY-TURNER ENTHUSIASTS

Two years ago the post-war Hartley-Turner 215 speaker was introduced to the world. Outside the iron curtain it has been accepted as a well-spoken ambassador of British technical skill and craftsmanship. In every country where the truth frees from distortion is demanded it fills the need with satisfaction to its owners.

But in its train has come the desire for information and equipment to equal its performance and this we try to meet by supplying technical brochures and apparatus—subsidiary activities forced on us because, so we are told, the correct results cannot be obtained elsewhere.

This has surprised us, but we suppose it results from never sacrificing performance to expediency and never departing from our self-imposed standards of technical exactitude. The reward is great—complete confidence in us on the part of our customers, but it leaves us with a terrific responsibility. We can’t afford to take chances. This should be of interest to overseas high-fidelity enthusiasts.
BARGAINS FOR
Constructors & Experimenter

METERS. Frequency meters, panel mounting.
- **Coxen**-Nagler 6 in. d.c. 2-scale, 200 cycles.
- **Mollard** 1050 12-volt 5 amp. rectifier.

SOLENOIDS. Powerful electro-magnetic
- **Mollard** 100 (oscilloscope foundation unit).
- **Ford**-Mollard 2.100 1200 V.

CUTOUTS. Auto non-recouping
- **Mollard** 250 A.C. 24 volt, 1000 volts.

SOLENOIDS. Powerful electro-magnetic
- **Mollard** 1060 1200 V.

VARIABLE RESISTANCES
- **Mollard** 2300 1200 V.
- **Mollard** 2300 1200 V.

TELEPHONES for House or Office
- **Constructors** for your own equipment.

CRYSTAL MULTIPLIER with 807 oscillator, spare
- **Mollard** B.100 A.C. oscilloscope.

CIRCUIT TESTER. Self-contained G.V.T.
- **Mollard** 100 transformer.

PRESSURE GAUGES. Miniature, vacuum, pressure
- **Mollard** 100 transformer.

MAGNETS. D.C. Electric magnets, weight
- **Mollard** 100 transformer.

TRANSMITTERS. Wireless, S.W.8, 1:8 QFN
- **Mollard** 100 transformer.

CRYSTAL SETS. Famous
- **Mollard** 100 transformer.

CIRCUIT METER. Type 204.
- **Mollard** 2.100 1200 V.

TEST SET. Type 204.
- **Mollard** 100 transformer.

METERS. Frequency meters, panel mounting.
- **Coxen**-Nagler 6 in. d.c. 2-scale, 200 cycles.
- **Mollard** 1050 12-volt 5 amp. rectifier.

SOLENOIDS. Powerful electro-magnetic
- **Mollard** 100 (oscilloscope foundation unit).
- **Ford**-Mollard 2.100 1200 V.

CUTOUTS. Auto non-recouping
- **Mollard** 250 A.C. 24 volt, 1000 volts.

SOLENOIDS. Powerful electro-magnetic
- **Mollard** 1060 1200 V.

VARIABLE RESISTANCES
- **Mollard** 2300 1200 V.
- **Mollard** 2300 1200 V.

TELEPHONES for House or Office
- **Constructors** for your own equipment.

CRYSTAL MULTIPLIER with 807 oscillator, spare
- **Mollard** B.100 A.C. oscilloscope.

CIRCUIT TESTER. Self-contained G.V.T.
- **Mollard** 100 transformer.

PRESSURE GAUGES. Miniature, vacuum, pressure
- **Mollard** 100 transformer.

MAGNETS. D.C. Electric magnets, weight
- **Mollard** 100 transformer.

TRANSMITTERS. Wireless, S.W.8, 1:8 QFN
- **Mollard** 100 transformer.
WIRELESS WORLD
November, 1948

Advertisement:

THE A.C.R.ISS COMMUNICATIONS RECEIVER. This superb A.C.R.ISS 10-valve superhet covering 75-185 mc's and easily convertible for Amateur use. One of the most used & popular Receiver in any radio store. Complete with speaker in attractive cabinet. Now available at only £18 10s. Send for fully illustrated descriptive leaflet.

EX-R.A.F. 10 VALVE TX RX. Operates between 155-185 mc's and easily convertible for Amateur use. Contains valves as per spec. 25 - (carriage etc. 26). Complete with speaker in attractive cabinet. £210 14s. Operating voltages 2 v. LT and 120 v., fully illustrated descriptive leaflet.

AMMETERS & VOLTMETERS 5 - £3, or the V.P.U. only at £2.00, (carriage 22s). At over £12, our price only £8 10s. We supply by famous makers such as Ferranti, Pullin, Smith, etc. Complete with valves types QP21 and QP22, an ideal pre amp stage for gramophone pick-up. £1.10 o-40 volt gin. Flush, 2in. 1j. ph011 2in.

COMPLETE transmitter-receiver assembly in rack, details and photographs from Bretholck, 37, Hillcrest Rd., Romford. £20

TRANSMITTER-Receiver. Type T.R.9's with valves QP21 and QP22, without valves 50/-, carriage 5/-, Smith, Highworth Rd., Farleigh, Berks. We have a new range of tuning units. £25 00 and T.R.20B. In stock; ready to go with different prices. 175-65 mc's each 14/-; prices include carriage - Simcock. Beachfield Rd. Grapenhall Chester. £21 2s.

SCR-522, £9 10s. each; SCR21, SCR22, low cost, etc. TX-RX A set of 220 ohm 220v. 110 mA, 6.3v d.c. at 15 amps, new - £10 0s. nod units. £1.9 2s. 1 MM1, 2 ND1. 25s. etc., for details - Hughes. Toning St. Lowestoft. 1155

**EVRASPA relay units. BS642, include change-over relay (12-24v), 0.75 amp thermocouple meter, 500v-Fundamental, spring terminals, etc., new boxed, 6 each; items separate, relay 4/-, meter 5/-, vacuum condenser 2/-, spring terminals 5/- each, send for kit transmitting equipment at reasonable prices. Box 1478.

**MERCIAN power packs for QRO A at the turn of a single knob. Input 100-250v. A.C. 50, output 12V 1A. 12V 2A. 1200v H.T. constantly variable between 1v and 120v, output 24v. Power pack controlled from front panel. Flamelent and H.T. power packs. £11 10s. We supply a complete range of units, for Amateur use. Includes 2x power pack, staves, and meters each £3.00. Send for complete list of units and component parts.

GATE, LEICESTER. 21 14 grim. plus P.T. £3.3 3s. or as kit for parts of home construction from £3.8. 10s. Set of constructional blueprints 4/-; Also available as unit for self-feeding push-pull amplifier. Special Offer. Few only DENCO four wave-band 5-4 wave radio receivers available at each, 14/-; including tax. Cabinet to suit, £16.6.6.

TELEVISION. Send for 70-page booklet on television construction 2d. Price includes all components and chassis available. Focus coil assemblies 30/- Combined EHT and LHT transformers £6.15. Illustrated leaflet gladly sent upon receipt of postage from THE TELERADIO CO., 157, Fore St., Edmonton, N.18

THE TELERADIO. MODEL A70. Replacement chassis fitted with new dial.

14 gns.

W. Bryan Savage Ltd.

WESTMORELAND ROAD, LONDON, N.W.9.

Telephone : Colindale 7131

Specialists in

HIGH POWER HIGH QUALITY PUBLIC ADDRESS SYSTEMS from 150 W to 1 kW

W. Bryan Savage Ltd.

WHISTLER.

54 Advertisements

MOVING COIL

AMMETERS & VOLTMETERS

EXGOVT., NEW, UNUSED & BOXED

Offered at a fraction of original cost

FINESHEST QUALITY PRECISION INSTRUMENTS

by famous makers such as Ferranti, Pullin, Metropolitan Vickers, Sagnuso Weston, etc.

AMMETERS

sin. Flush, 50-0-50 amp. All at 31 14s.1 Carriage paid.

VOLTMETERS

sin. Flush, 0-10 volt sin. Flush, 0-20 volt sin. Flush, 0-50 volt

Cash with order only. Secure yours now—limited quantity.

H. H. LINTON & CO., LTD.
34 Osnaburgh St., London, N.W.1

Telephone : E.Uston 4068
BETTER LISTENING

Armstrong have always made "better listening" a first consideration, and for over 12 years have fitted high quality push-pull output to practically all models.

Armstrong chassis described below come in this category.

Model EXP125. 14-VALVE ALL-WAVE RADIOGRAM CHASSIS

Giving continuous waveband coverage from 1.9 m. upwards. Waveways expansion 4 to 1, R.F. Pre-amplifier. Two I.F. stages with variable selectivity. Electronic bass treble lift controls. 15 watt push-pull output. For 200-250 v. A.C. mains.

Model RF103. 10-VALVE ALL-WAVE RADIOGRAM CHASSIS

Model EXP83. 8-VALVE ALL-WAVE RADIOGRAM CHASSIS

Model UNI-83. 8-VALVE ALL-WAVE RADIOGRAM CHASSIS

Incorporating waveband expansion, e.g. the large glass scale, treble boost control, gramophone. Switching, all control: on both radio and gram. High quality push-pull output giving 6 watts audio. For 200-250 v. D.C. or A.C. mains. Price £15 8s. B. Plus Tax.

HOME MARKET

A limited quota of the above is available to our friends at home, and we shall be glad to send details and to give demonstrations at our showroom.

ARMSTRONG WIRELESS & ELECTRIC CO. LTD.

WARLERS ROAD, HOLLWOOD, LONDON, N. 7

"Phone: NORh 321 J"
OPPORTUNITIES IN RADIO

Get this Free Book!

"ENGINEERING OPPORTUNITIES"

reveals how you can become technically-qualified at home for a highly-paid key-appointment in the vast Radio and Television industry. In 10 pages of intensely interesting matter, it includes full details of our up-to-the-minute home study courses in all branches of Radio and Television, including Wireless, Television, Sound Film Projection, Short Wave, Telephony, Electronics, and General Wireless Courses.

We Definitely Guarantee

"NO PASS—NO FEE"

If you’re earning less than £10 a week, this enlightening book is for you. Write for your copy today. It will be sent free and without obligation.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

298b, Shakespeare House, 17/19, Stratford Place, London, W.1.
GALPINS ELECTRICAL STORES 409, HIGH ST., LEWISHAM, LONDON, 13.
Telephone Lee Green 0309. Near Lewisham Hospital.

November, 1948 Wireless World

Magazine's 40th Birthday celebrations lead to the following:
- High Voltage Condensers, Chokes, 4/6 each. C
- Components: High Voltage Condensers. Chokes, toroidal type, 12 volts input 450 volts, 40 milliamp output.
- Wave complete with Valves and Motor Generators, 100 watt output, approx. weight 15 lbs., as shown.
- Telephone Lee Green 0309. Near Lewisham Hospital.
- 400, HIGH ST., LEWISHAM, LONDON, 13.
- Output Superheterodyne Receiver

M.WILSON LTD.
Still satisfying customers at Home and Abroad.
Our Circuit No. 20
- 10-valve, 50 watt Amplifier of Distortion (undistorted)

Output Superheterodyne Receiver

A.V.C. is used on all wavebands with a switch to cut out when not required. The circuit is completely screened by 100 gauge aluminium. Special attention has been paid to the design of the circuit to eliminate any possibility of multi-ratio type mounted under the chassis. Australia and America have been particularly interested in this receiver.

A.V.C. on/off radio-gram switch, noise limiter, tone-control. Audio gain and mains on wavebands. A three gang tuning condenser Ceramic insulation, rubber mounted. All H.F. valves screened by diode to suppress radio-activity and 6 watt filter diode and 6 wave band dial glass covered

Chassis 16 watt. Aluminium, ready drilled. 12 volt.

3 Fuses fitted 1 in mains supply and 1 in receiver. Provision for dipole Aerial and extension speaker P.U. sockets.

This unit is made for its fine quality of reproduction on radio and gram. We have received much appreciation and congratulation from customers on its performance.

A demonstration model is available at our showroom. The FULL SIZE BLUE PRINTS (2 practical and 1 theoretical) and priced list of components are £4.25 per set.

A less expensive set which is still pleasing the most critical. Our

6-VALVE SUPERHETERODYNE CIRCUIT

This circuit has been designed to cover the ordinary wireless receptions on the medium waveband (200-540 metres) with a high fidelity output. The Wave No. 20 (10 valves) are as good as obtained on some purely short-wave receivers. Australia and America have been particularly interested in this receiver, owing to our customers at loudspeaker strength. Long Wave: The few stations now operating are well received.

Blue Prints. 2 practical and 1 theoretical with detailed priced list of components. £4 per set.

10 MCiS I.F. TRANSFORMERS, small, 4 per box. Available in 465 kc's and 100 kc's.

MIDGET COIL UNIT (size 2 x 1 x 1/2). Aerial and Oscillator, complete, with paddles. Priced £1. Each.

200, HIGH STREET, LONDON, 307.

'Hot' & garden prices. As used on our world-wide No. 20 circuit. Will fit into almost any chassis.

307, HIGH HOLBORN, LONDON, W.C. 1. Phone Holborn 463/1

Terms c.w.o. for goods post free, others c.o.d. Price £7.50 per pair.

MAGSLIPS from 20", special selection, send for photo.

B.T.H. type SM1406.

- Signal meters, 0 to 1000 microamps, 50 c.p.s., type 1.9, £1.91 for Interesting leaflet; B.T.H. type SM1406.

These unit costs of 18 high Q"Q" iron cored coils, 6 each in R.F., H.F. and Osc. stages, all midger type, especially designed for use.

20 ceramic trimmers and 3 bank switches, with shorting plates.

A.V.C. is used on all wavebands with a switch for cutting out when not required. The circuit is completely screened by 100 gauge aluminium. Special attention has been paid to the design of the circuit to eliminate any possibility of multi-ratio type mounted under the chassis. Australia and America have been particularly interested in this receiver.

A.V.C. on/off radio-gram switch, noise limiter, tone-control. Audio gain and mains on wavebands. A three gang tuning condenser Ceramic insulation, rubber mounted. All H.F. valves screened by diode to suppress radio-activity and 6 watt filter diode and 6 wave band dial glass covered

Chassis 16 watt. Aluminium, ready drilled.

3 Fuses fitted 1 in mains supply and 1 in receiver. Provision for dipole Aerial and extension speaker P.U. sockets.

This unit is made for its fine quality of reproduction on radio and gram. We have received much appreciation and congratulation from customers on its performance.

A demonstration model is available at our showroom. The FULL SIZE BLUE PRINTS (2 practical and 1 theoretical) and priced list of components are £4.25 per set.

A less expensive set which is still pleasing the most critical. Our

6-VALVE SUPERHETERODYNE CIRCUIT

This circuit has been designed to cover the ordinary wireless receptions on the medium waveband (200-540 metres) with a high fidelity output. The Wave No. 20 (10 valves) are as good as obtained on some purely short-wave receivers. Australia and America have been particularly interested in this receiver, owing to our customers at loudspeaker strength. Long Wave: The few stations now operating are well received.

Blue Prints. 2 practical and 1 theoretical with detailed priced list of components. £4 per set.

10 MCiS I.F. TRANSFORMERS, small, 4 per box. Available in 465 kc's and 100 kc's.

MIDGET COIL UNIT (size 2 x 1 x 1/2). Aerial and Oscillator, complete, with paddles. Priced £1. Each.

200, HIGH STREET, LONDON, 307.

'Hot' & garden prices. As used on our world-wide No. 20 circuit. Will fit into almost any chassis.

307, HIGH HOLBORN, LONDON, W.C. 1. Phone Holborn 463/1

Terms c.w.o. for goods post free, others c.o.d. Price £7.50 per pair.
THESE ARE IN STOCK

- Neuwav Television Manual, By F. J. Cannm, 7s. 6d. Postage 3d.
- Ultra and Short Wave Space Reading, By N. J. O. 4s. 3d. Postage 3d.

The Amplification and Distribution of Sound. By A. T. 7s. 6d. Postage 3d.

- The Short Wave Listeners’ Annual, 1938, 3s. 6d. Postage 3d.
- Wireless Servicing Manual, By W. H. Cocking, 10s. 6d. Postage 4d.
- Positioning of Wires, By M. T. S. Comings, 7s. 6d. Postage 4d.
- Transmitters, By K. R. Spangenberg, 45s. Postage 11d.
- Telephone, Volume I. By J. Atkison, 35s. Postage 3d.
- Vacuum Tubes, By K. R. Spangenberg, 45s. Postage 11d.
- Television Receiver Construction (articles on W.W.T.) 25s. 6d. Postage 3d.
- Ultra-High Precisions Training, By Richardson, etc. 21s. Postage 3d.

Communications Recevere, Telev.s.on, High Quality Amplifier% Speakers, Aerials, Recevier and Transmitting

SPECIALTS IN AMATEUR AND EXPERIMENTAL SHORT-WAVE EQUIPMENT, who appreciate NATURAL sound...THESE ARE IN STOCK

- Complete High Vacuum Technique, By J. Yang, in. 12s. 6d.
- Television Receiver Construction (articles on W.W.T.) 25s. 6d. Postage 3d.
- Telephony, Volume I. By J. Atkinson. 35s.
- Foundations of Wireless. By S. S. Serzgie, 15s. 6d.

- Ultra and Extreme Short Wave Reception. By M. J., 15s. Postage 7d.

THE MODERN BOOK CO.

- 19-23, Praed Street, London, W.2

A.C.S. RADIO

SPECIALISTS IN AMATEUR AND EXPERIMENTAL SHORT-WAVE EQUIPMENT.

Communications Receivers, High Quality Amplifiers, Speakers, Aerials, Receivers and Transmitting Valves and Motors, etc.

- Litt "V.**" free on request.

A.C.S. RADIO, 44, Widmore Rd., Bromley, Kent.

Phone: RAV 0156

Mr. A. C. BARKER’S MODEL 148 SPEAKER

Is unique in two respects, illustrated in this sketch is the patented coil former, latex sleeve and coil which provide the perfectly graded dual drive and highly efficient dumping. This construction is exclusive to Mr. Barker’s speakers.

The second basic feature is its logarithmically corrugated cone, treated with thermo-setting resin. Model 148 is now to be heard as a number of progressive retailers who appreciate NATURAL sound reproduction and have chosen it as their standard of BETTER LISTENING. Write for details to:

- B.C.M. AADU, LONDON, W. C.1

POTENTIOMETERS

- Type T.W. Wire Wound
 - Rating RANGES
 - 5 Watt Max.
 - 1-10,000, 11 Max. (linear)
 - 50-50,000, 11 Max. (graded)
 - 3 Watt Max.
 - 10,000-1,000,000, 11 Max. (graded)
 - 1 Watt Max.
 - 10,000,000, 11 Max. (graded)

CHARACTERISTICS: (both types) linear, semi-log., inverse log., non-inductive, etc.

FULL DATA FROM

- RELIANCE
 - 7, 110v 60ma 7s. 6d.
 - 35v 60ma 3s. 6d.
 - 12v 1.5 amp 10/-.
 - 12v 1.5 amp 10/-.

- *****************

G & G QUARTZ CRYSTAL UNITS FOR AMATEURS

- BRASS, COPPER, DURAL, ALUMINIUM, BRONZE
- RAD. BAR. SHEET TUBE, STICK WIRE.
- 3,000 STANDARD STOCK SIZES

No Quantity too Small

- List on application

London: H. ROLLET & Co. Ltd., 6, Cheapside Place, S.W.1

SIMONS OOD 32713

Advertisements

- November, 1948

- Wireless World

SALFORD ELECTRICAL INSTRUMENTS LTD.

- 75, Salford, Lancs.

Preparers THE GENERAL ELECTRIC CO. LTD. England
Wireless World

YOU DON'T NEED TEST GEAR!

Many constructors have told us they spend far too many of their valuable time in trying to achieve a given specification. The E.R.S 4.5 watt at 10gns. and the E.R.10 10 watt amplifier at £15, cost the constructor more than the retail price of the components, and each one is tested in the laboratory before despatch, to ensure that it conforms to the specification. A post card will bring you details. We regret that due to heavy demand delivery on the E.R.10.1 will be 7-10 days.

ELMSLEIGH RADIO CO.,
1102 LONDON RD., LEIGH-ON-SEA, ESSEX
LEIGH 75168.

ANNOUNCING stocktaking sale now in progress, the finest value at the lowest prices ever! Send for 10-day for our current catalogue and ask what we pay all carriage! Here are a few items picked at random from our stocked stock: 6 selection of 4 meters, including volt-meter, milliamper, microamper, etc. of normal list price: 23.6, special price 12.6 (the 4: a selection of 6 different flying instruments); B-C959-A, contains 5-watt push-button switch, 1 lead and fuse, fuse switch, etc. only 5: a fresh convulsion of rotary transformers enables us to repeat this popular item; special post orders to Waltons Wireless Stores, 203, St. Mary Axe. We regret that due to heavy demand, we cannot comply to your request. We are very proud of our ware house at 65, Tryull Rd., Bradford, Wolverhampton. Over 2,000 bargains for £1.00 each.

1001 WIRELESS LTD.

See that FLUXITE is always by you — in the house — garage — workshop — wherever speedy soldering is needed. Used for over 40 years in Government workshops and by leading engineers and manufacturers. Of all Ironmongers—in tens, 1/6 & 3/-,

WF 2799.

FLUXITE IT SIMPLIFIES ALL SOLDERING

Write for Book on the ART OF SOFT SOLDERING and for Leaflets on HARDENING STEEL and TEMPERING TOOLS with FLUXITE. Price 1d. each.

FLUXITE LTD.
(Dept. V.V.V.), Bermondsey Street, S.E.1
for
New World Ideas and Old World Ideals !

The Urge to Serve and the Know-
ledge How !

Home Study Specialists with the
Personal Touch.

Radio, Radar, Maths., Physics.
The B.M.R.S. FOUR YEAR PLAN
covers the full syllabus of:

A.M.I.E.E., A.M. Brit.I.R.E. and
CITY and GUILDS Radio and
Telecommunications Exams.

Six months’ trial period without
obligation to continue.

Send for free booklet to —

STUDIES DIRECTOR
BRITISH NATIONAL RADIO SCHOOL
65, ADDISSOMBE ROAD, CROYDON
Phone: Addiscombe 334F

CUTRUDDY rewinds, mains transformers, chokes
and fields; we give prompt delivery and
guarantee satisfaction; 14 years’ experience.
prices on request.—Sturdy Electric Co., Ltd.
DUPON, Newcastle-on-Tyne.

LOUDSPEAKER repairs, any make, reasonable
prices, expert workmanship; all types of—

Home Service.—S. F. 516.

COIL specialising.—Tuning and oscillator coils,
L.F., H.F. and mains transformers rewound and
wound to specification; waveshaping specialists;
1,2, repairs, new cones, speech coil rewinds,
Testing.—Rytonford Instruments, Ltd.

RE WINDS, mains transformers, speaker field
coils, chokes, high-grade workmanship. Day
delivery, new transformers constructed to cus-
tomers’ specification, singly or in quantities.—

First Spalding Radio Repair Co., Ltd., Fircroft
Road, N.W.1. Speedwell 3000.

24-HOUR service, 6 months’ guarantee, any
transformer rewind, mains outputs and
transistors, etc., all types.—Ref.: 3/2.

SUPPLIED to specification: business heading or ser-
vice card for trade prices.—Majestic Winding Co.,
180, Windham Rd., Bournemouthe.

HILL & CHURCHILL LTD.
Radio, Radar, Maths., Physics.

THE WISE MAN BUYS
H.C. Type Horns with Bass
Chambers 619-10-0, Reflec-
tory type CORNER HORNS,
price £47-10-0, prices in the white and ex-works.
Order as soon as possible; a gap in
Horn production impedes
P.M. Units available soon.

VOIGT PATENTS LTD.
S. & G. Mr. Voigt is not yet fit.

NEW G.P.12 CRYSTAL PICK-UP
with permanent sapphire stylus

— was fully described in The Wireless
World’s recent article “Crystal Pick-
ups—Basis of Design for Fidelity
Reproduction.”

This remarkable pick-up, which rep-
resents the ultimate in high-fidelity
reproduction, is now available
in limited quantities through your radio
dealer, price 104/- incl. P.T.

FREE ILLUSTRATED
FOLDER describing this new pick-up may be
obtained by returning the coupon below.

TO COSMOCORD LTD.,
53, WIGMORE ST., LONDON, W.I.
Please send folder of ACOS Pick-ups.

NAME ...
ADDRESS ...

PHOTO-ELECTRIC CELLS
for
Talking Picture Apparatus.
Catalogue now available

RADIO-ELECTRONICS LTD.,
St. George’s Works, South Norwood,
London, S.E. 25.

HILL & CHURCHILL LTD.
BOOKSELLERS
SWANAGE, DORSET
Available from Stock:

- Radio Engineers’ Handbook" * Term 42.
- Principles of Television Engineering " Fink ...
- " 33.
- Radar Engineering " Fink ...
- " 42.
- Principles of Radar " M.I.T. Radar School ...
- " 30.
- " 25.
- " 32.
- Electronics " Millman & Seely ...
- " 33.
- " 27.
- Radio Engineering " Vol. I Sandeman ...
- " 45.
- Television Simplified " M. S. Kiver ...
- " 27.

Postage extra.

CATALOGUE ON APPLICATION

58 Advertisements Wireless World November, 1948

THE BRITISH NATIONAL RADIO SCHOOL
ESTD. 1940

TURDY rewinds, mains transformers, chokes
and fields; we give prompt delivery and
guarantee satisfaction; 14 years’ experience.
prices on request.—Sturdy Electric Co., Ltd.
DUPON, Newcastle-on-Tyne.

LOUDSPEAKER repairs, any make, reasonable
prices, expert workmanship; all types of—

Home Service.—S. F. 516.

COIL specialising.—Tuning and oscillator coils,
L.F., H.F. and mains transformers rewound and
wound to specification; waveshaping specialists;
1,2, repairs, new cones, speech coil rewinds,
Testing.—Rytonford Instruments, Ltd.

RE WINDS, mains transformers, speaker field
coils, chokes, high-grade workmanship. Day
delivery, new transformers constructed to cus-
tomers’ specification, singly or in quantities.—

First Spalding Radio Repair Co., Ltd., Fircroft
Road, N.W.1. Speedwell 3000.

24-HOUR service, 6 months’ guarantee, any
transformer rewind, mains outputs and
transistors, etc., all types.—Ref.: 3/2.

SUPPLIED to specification: business heading or ser-
vice card for trade prices.—Majestic Winding Co.,
180, Windham Rd., Bournemouthe.

HILL & CHURCHILL LTD.
Radio, Radar, Maths., Physics.

THE WISE MAN BUYS
H.C. Type Horns with Bass
Chambers 619-10-0, Reflec-
tory type CORNER HORNS,
price £47-10-0, prices in the white and ex-works.
Order as soon as possible; a gap in
Horn production impedes
P.M. Units available soon.

VOIGT PATENTS LTD.
S. & G. Mr. Voigt is not yet fit.

NEW G.P.12 CRYSTAL PICK-UP
with permanent sapphire stylus

— was fully described in The Wireless
World’s recent article “Crystal Pick-
ups—Basis of Design for Fidelity
Reproduction.”

This remarkable pick-up, which rep-
resents the ultimate in high-fidelity
reproduction, is now available
in limited quantities through your radio
dealer, price 104/- incl. P.T.

FREE ILLUSTRATED
FOLDER describing this new pick-up may be
obtained by returning the coupon below.

TO COSMOCORD LTD.,
53, WIGMORE ST., LONDON, W.I.
Please send folder of ACOS Pick-ups.

NAME ...
ADDRESS ...

PHOTO-ELECTRIC CELLS
for
Talking Picture Apparatus.
Catalogue now available

RADIO-ELECTRONICS LTD.,
St. George’s Works, South Norwood,
London, S.E. 25.

HILL & CHURCHILL LTD.
BOOKSELLERS
SWANAGE, DORSET
Available from Stock:

- Radio Engineers’ Handbook" * Term 42.
- Principles of Television Engineering " Fink ...
- " 33.
- Radar Engineering " Fink ...
- " 42.
- Principles of Radar " M.I.T. Radar School ...
- " 30.
- " 25.
- " 32.
- Electronics " Millman & Seely ...
- " 33.
- " 27.
- Radio Engineering " Vol. I Sandeman ...
- " 45.
- Television Simplified " M. S. Kiver ...
- " 27.

Postage extra.

CATALOGUE ON APPLICATION

58 Advertisements Wireless World November, 1948

THE BRITISH NATIONAL RADIO SCHOOL
ESTD. 1940

TURDY rewinds, mains transformers, chokes
and fields; we give prompt delivery and
guarantee satisfaction; 14 years’ experience.
prices on request.—Sturdy Electric Co., Ltd.
DUPON, Newcastle-on-Tyne.

LOUDSPEAKER repairs, any make, reasonable
prices, expert workmanship; all types of—

Home Service.—S. F. 516.

COIL specialising.—Tuning and oscillator coils,
L.F., H.F. and mains transformers rewound and
wound to specification; waveshaping specialists;
1,2, repairs, new cones, speech coil rewinds,
Testing.—Rytonford Instruments, Ltd.

RE WINDS, mains transformers, speaker field
coils, chokes, high-grade workmanship. Day
delivery, new transformers constructed to cus-
tomers’ specification, singly or in quantities.—

First Spalding Radio Repair Co., Ltd., Fircroft
Road, N.W.1. Speedwell 3000.

24-HOUR service, 6 months’ guarantee, any
transformer rewind, mains outputs and
transistors, etc., all types.—Ref.: 3/2.

SUPPLIED to specification: business heading or ser-
vice card for trade prices.—Majestic Winding Co.,
180, Windham Rd., Bournemouthe.

HILL & CHURCHILL LTD.
Radio, Radar, Maths., Physics.

THE WISE MAN BUYS
H.C. Type Horns with Bass
Chambers 619-10-0, Reflec-
tory type CORNER HORNS,
price £47-10-0, prices in the white and ex-works.
Order as soon as possible; a gap in
Horn production impedes
P.M. Units available soon.

VOIGT PATENTS LTD.
S. & G. Mr. Voigt is not yet fit.
HENRY'S

TRANSMITTING VALVES, TYPE S12, by Canadian Westinghouse. Brand new and boxed in original carton, tested, £ 3 10s. each.

ELECTRIC VOLTMETER. 0-2000 v., 3 mm. scale, panel mounting, by leading manufacturer. Brand new.

6 volt VIBRATORPACK. Output 180 v. 40 A. completely smoothed, synchronous, size 6 in. 6 mm. 21 in. 21 mm. 6 in. only.

SPECIAL OFFER P.M.S. SPEAKERS. 8 in. ROLA, with transformer. 221. - 3. TRIVU, less transformer. 125.

SPECIAL OFFER MIDGET ELECTRICALS: 2 valves E8114, 24 volt Rotary generator, relays, and hundreds of condensers and resistors. £ 1 6.; condensers, £ 1 6. only.

MIDGET F.P. UNIT. Aluminium can 4 5 in. x 6 in. comprising 1 valve, 224, midget, iron-covered I.P. transformer 225, W 8, and a midget relay and condensers 12. 6 only.

MIDGET B.P. UNIT. As above, but complete and ready for use in a low voltage circuit 226, only.

THE E.T.A. FOUR-STATION SUPERBET TUNER. A ceramic type self-governing, completely self-contained, complete lead and plug. Brand new, £ 12 6 each only.

B.E.C.1 FREQUENCY METER. American crystal controlled. 227, and complete set spare valves. Coverage 125,20,000 kc. Complete with full instructions and suitable A.C. and D.C. circuit only.

TELEPHONE HANDSETS. E.P.O. type self-governing, complete lead and plug. Brand new, £ 6 each only.

ADDITIONAL Coil Formers. Complete with iron cores, 8d. ea. only.

ALADDIN Coil Formers. Complete with iron cores, 8d. ea. only.

B.R.O. MOVING COIL Meters. 228, 6 in. panel mounting, complete 121 each.

VACATIONS VACANT

Vacancies are advertised in the above position. To be filled as soon as possible. Good salaries and conditions of employment will be offered to the successful candidates, and a position is available immediately.

MRS. PLANT. 31, Avesbury Road, London, N.W.5. Urgent. Tel. 1275.

HENRY'S
5, HARROW ROAD, W.2
PaDDington 1008 9

WARD

ROTOR CONVERTERS

For Radio, Neon Signs, Television, Fluorescent Lighting, X-ray, Cinema Equipment and numerous other applications.

We also manufacture:—

Petrol Electric Generating Plants, H.T. Generators, D.C. Motors, etc. up to 15 K.V.A.

CHAS. F. WARD
LORDCROFT WORKS, HAVENHILL, SUFFOLK
Telephone: Havenhill 263 & 4.

-TOWARDS PERFECTION-

LOWTHER TUNERS

D.T./4 famous 'dual.'
D.T./5 details shortly.
L.E./1 T.R.F. unit.
L.E.S. Superhet unit.
F.M.! Experimental.

LOWTHER AMPLIFIERS

B.S.F. 5 watts, f.35—30 Ke.
A.10.F. 8 watts, f.35—40 Ke.
A.15.F. 15 watts, f.35—32 Ke.
A.50. 45 watts, f.35—30 Ke.

LOWTHER P.M.1 UNIT

High flux, 19,800 — 19,900 gauss (average) drive unit fitted with Voigt light coil diphragm.

LOWTHER—VOIGIT

Corner reflector type speaker P.W.I. white wood or veneered.

LOWTHER PICK-UP

Moving Coil (licensed under Voigt's Patent) fitted with Tungsten - Carbide or Diamond Styli.

VOIGT CORNER REFLECTOR

Type horn in white wood, veneered or de luxe finishes.

MORDAUNT

Duplicated Reproducer.

LOWTHER

Bass and Treble Corrector, Pre-Amplifiers, Hot-Whistle Filters, etc.

EXHIBITION

daily at

LOWTHER MANUFACTURING CO.
KENT

MORSE CODE TRAINING

There are Candler Morse Code Courses for BEGINNERS and OPERATORS.

Send for this Free "BOOK OF FACTS" which gives full details concerning all Courses.

THE CANDLER SYSTEM CO.
(Room SS5), 121 Kingsway, London, W.C.1
Candler System Co., Denver, Colorado, U.S.A.
3 AMPLIFIERS that meet all needs

3 WATT 11 Gns.

P.14.—A highly portable amplifier—it weighs only 10 lbs. and is suitable for outdoor use. Works from a low power supply of 2 amps. at 6 volts. Built into case 13in. x 6in. x 4in. with controls and sockets at one end.

15 WATT 66 Gns.

P.10.—A quality amplifier in which the HT supply is carefully filtered and all components conservatively rated. No electrolytic condensers are used in any part of the circuit. Switch correction is provided for Decca and HMV recordings. Placed on polished chromium plated chassis.

20 WATT 26 Gns.

P.16.—Designed for universal mains supply, its output of 20 watts is exceptionally high. Total harmonic distortion at full output is only 4 per cent. and hum level is unusually low. Weight, 17 lbs. Overall size 15in. x 7in. x 8in.

Write for leaflets giving full details.

Mc MURDO

INSTRUMENT CO. LTD.

Victoria Works, Ashtead, Surrey

FOR SPEEDY LOUDSPEAKER REPAIRS & TRANSFORMER REWINDS at economical prices

TRANSFORMERS

built to your own specifications, contact

A.W.F. Radio Products Ltd.,

Borough Mills, Bradford, Yorks.

Tel.: 22a B. 8

Factors' Terms on Request

ALL NEW GOODS

E.H.T. Input 250-320. Outputs 2,500 v. 3 m.a., 450-520, 250 m.a., L.F. 6.3 v. 5-4 v. 0-4 v. 2 amp., 6.3-4-0 v. 2 amp., 6-3-4-0 v. 2 amp., fully impregnated, at 90°. Q4M input 100-320. Outputs 450-520, 250 m.a., L.T. 6.3-4-0, R.T. 8-0-8 v. 2 amp., 6.3-4-0 v. 2 amp., 6-3-4-0 v. 2 amp., fully impregnated, at 90°.

F6 Filament Transformer, 200-250 in 6.3 v. 2 amp. out, at 75°. F6 320-350 in 4 v. 2 amp. out, at 75°.

F8 6.3 v. in 4 v. 2 amp. out, at 75°.

FF 9 v. in 6 v. 2 amp. out, at 75°.

Terms: C.W.O. (add 1¼ carriage and packing for orders under £2).
TECHNICAL assistant for automobile radio work, minimum of three years' industrial experience essential. Consider preference as officer in the Forces. London area: five-day week; salary according to experience. Full details to Box 941.
L•R•S IN STOCK
CASH OR EASY TERMS

Co”cman’s "Axion Twelve" Speaker Unit (one of the finest quality sizes, £8 8 0)
Vice Model 70—cash price £ 9 10 0
Volta Tester, complete — £6 10 0
and practically the whole 3V0 range.
Elmectric A.0. or O. O. Spray Unit for spraying Paint, Dintemper, Cre-o-tete, Insecticides, etc.,
Most- efficient. Complete outfit £8 10
Specifications of the above on request.

We can supply on convenient terms
much of the Radio and Electrical
Equipment at present available, all
transactions being strictly between
customers and ourselves.
Please let us know your requirements
and whether for cash or on easy terms.

The London Radio Supply Co.,
Est. 1925
Balgombe, Sussex

£15 TELEVISION RECEIVER
This is the title of our latest publication giving
wiring diagrams and constructional notes of
an excellent little T.V. receiver. You can make
this from Government surplus equipment and
the total cost should not exceed £15. A
Demonstration receiver can be seen at our
address. To avoid disappointment order your
copy immediately, the price is 7s.6d. post free.
Bull's Ex-Government Depot.
42-46 Windmill Hill, Ruislip, Middlesex.

THE COIL PICK-UP
"Is Outstandingly Good" according to users.
We mean to keep it so.

WILKINS & WRIGHT LTD.,

100 kcs.
QUARTZ CRYSTAL UNIT
Type Q/100

For Secondary Frequency Standards
Accuracy better than 0.01%.
New angles included, giving perman-
cence of calibration.
Single valve circuit gives
strong harmonics at 100 kcs. intervals up to
50 M.cs.
Octal mounted bases of compact dimen-
sions.
Full details of the Q/100, including circuit are
contained in our leaflet Q1. Send stamp
today for your copy.

THE QUARTZ CRYSTAL Co., Ltd.
Bull's Ex-Government Depot.
91, Kingston Road, New Malden, Surrey.

SENIOR mechanical draughtsman.—The South-western division of a leading com-
pany in the electronic industry, held require a
 draughtsman with experience for work in their de-
velopment drawing office. Applicants should have
had experience of working on detailed engineer-
ing electronic equipment, be capable of preparing quickly and accurately drawings for develop-
ment stage, and of making, with a minimum of super-
vision, full manufacturing drawings for produc-
tion runs; salary according to qualifications and
experience. Full particulars to Box 1993.

ELECTRICAL engineer with factory and de-
velopment experience who will accept re-
ponsibility and design of television apparatus;
experience will be expected to be of 20 years and
over with 1st or 2nd class honours degree and with
experience of television receiver design; salary will be accord-
ing to qualifications and experience. Apply in
the first instance for a position of an engineer
with the Radio and Radar Development Depart-
ment, Ministry of Supply, London. Principal
scientific officer to control research and develop-
ment of radio and radar navigation devices and
radio guidance; special test equipment for
service use and special radio and elec-
tronic test equipment for research purposes.
Senior scientific officer for the development of
components for new radio equipment; a good
knowledge of the radio component industry is
essential. Experience of chemical and physical
processes is required. Applicants must have
been born on or before 1st August, 1917, and
must possess 1st or 2nd Class Honours degree in
physics or electrical engineering. Their ex-
perience should cover a field of work appro-
priate to one of the posts; inclusive salary scales:
Principal scientific officer: £600-£800; senior
scientific officer: £500-£700; scientific officer:
£400-£600. Separate details to Box 1993.

VACANCIES exist for technically qualified
staff in the development, manufacture and
research and development section handling
the testing of new equipment, the maintenance
of existing stock, technical investigations, liaison
with the scientific staff and designers, and the
design and development of radio communications
systems, airborne and ground, electro-acoustic
and sound-recording equipment, special test equip-
ment for such devices. A, B, and C ground staff
scientists and engineers will be required for
caretaking, scientific and technical work.
Applications for these positions should be
sent to the Ministry of Supply, London.

To avoid disappointment order your copy
immediately, the price is 7s.6d. post free.

THE LONDON RADIO SUPPLY CO.,
Est. 1925
Balgombe, Sussex

FOR WESTERN GATEWAY HEADQUARTERS FOR RADIO EQUIPMENT AND COMPONENTS
VIBRATOR PASTES suitable for battery sets or Car Radios. 1000 units at 30% off. Cash price £19 10 0
In Black or white case, size 7in. x 6in. x 8in. 100 each plus 10%.
L.T. TRANSFORMERS for use as soil heating, pipe-
driving, and low voltage lighting. Frank 300-0
50 cash, price £2 6 0. Also available tapped primary transformer 220v, input, 11-12-14-15 output, 0.75-1.0-1.5-4.0, 10, 10, 100 each plus 10% carriage.

R.C.A. PLATE TRANSFORMER, input 160-140v
30, price, 9,000,000-5,000,000-2,000,000 at 800 m. A.
output 600-400-200. 150 each plus 10% carriage.
B.C. MODULATION TRANSFORMER, input 14.000,000, suitable for 805, E.C.T, 913 valves in 110-220-380, secondary secondary 200-500, 100 each plus 10% carriage.

PERMADUR MODULATION TRANSFORMER.
Primary, 6,700 volts, 4,000-2,000-1,000 mono
channel, 150 each plus 10% carriage.

Arthur H. Radford (GSYA), A.M.I.E.E.
28, Beominster Parade, Bristol, J.
Tel.: 4314.

Arthur H. Radford
(EST. 1922)
FOR TRANSFORMERS
FOR CHOKES, ETC.
RE WINDS (all makes)
Shirley, Birmingham.

CYLDESDALE
For Ex-Service Electronic Bargains.
Brand new, in maker's original packing.
R.E.U.A.P. Portable Current Transformer,
MARK: 1438: Capacity: 38 mm. ©ound Film Projector, soundfoil phonos. E.C. 4,000-4,000,000, etc., Coated Amplifier, 4
valves, 249, G19, 60, 0, etc., Coated Amplifier, 4
valves, 8W20, 8W23, 8S7, 301, etc., in photographic
units, 200-200, etc., in wood cabinet 49 x 14 x Ul金字.
Idem.- NOT 110 to 220, 400 watts. Operating Manual plus A red safety Film, spare's kit, with 8 each lamps,
photo-cell, 12 valves, etc. CYLDESDALE'S PRICE ONLY 45/- each. CARRIAGE PAID.

Clydesdale Supply Co., Ltd.
1, Weymouth Bay Avenue, Weymouth.

Situations WANTED
EMIGRANTS WANTED
For Secondary Frequency Standards
Accuracy better than 0.01%.
New angles include a temperature coefficient of 2 parts in a million per degree Centigrade temperature change.
Vitreous silver electrodes fired directly on to the faces of the crystal itself, giving perman-
cence of calibration.
Simple single valve circuit gives strong harmonics at 100 kcs. intervals up to
50 M.cs.
Octal mounted bases of compact dimen-
sions.
Full details of the Q/100, including circuit are
contained in our leaflet Q1. Send stamp
today for your copy.

THE QUARTZ CRYSTAL Co., Ltd.
91, Kingston Road, New Malden, Surrey.

Another 30% off
WIRELESS World
November, 1948
THE HEART OF A FIRST-CLASS RADIO-GRAM

Developed from the popular type 1047, this receiver will form the basis for a Radio-gram of unsurpassed performance, and at great saving in cost. Principal features include:

- 12-stage superhet circuit
- 11 valves with magnetic indicator
- 4 wavebands (11,000-2440 m)
- R.F. Amplifier
- 2 I.F. stages
- 4 stages AVC
- 2 channel push-pull output
- Separate treble and bass controls
- Tropicalised components

Other worthwhile equipment of interest to the enthusiast includes:

- 16-valve Communications Receiver Type 1148
- Type 1047 Receiver
- A.F. Unit and Power Pack Type 1

All details on request.

PEERSLESS RADIO LIMITED
374 KENSINGTON HIGH STREET, LONDON W.14
Telephone: WEStern 1281

LASKY'S RADIOMATIC LEAD WITH THE BIGGEST BARGAINS

EX-CHIEF Radio Officer, M.N., 29, 1st-class P.M.G., O. & O. (Int.), air licence, fitting British I.R.E., trained on commercial broadcasting, HF/DF, motion picture service radio, engineering, anything connected U.K. or abroad.

AGENTS WANTED

REPRESENTATIVES calling on radio dealers, offered additional advertised line, attractive, quick turnover, repeat orders assured; generous commission basis. Write for details, asking for appointment, 6th May, 1948.

TECHNICAL TRAINING

SPECIAL OFFER—ANATOMY

Both Government and industry have announced training schemes with technical qualifications and knowledge and qualifications must receive every encouragement to rise to positions within their career, in post-war engineering and radio. The Engineer's Guide to Success—200 courses free—which knowledge to impart to your men. A.M.I.E.E., C.I.E., A.M.I.E. Mech., A.F.R.A.S., etc., and covers all branches in the fields of chemical, electrical, production, aeronautical, etc.

THE VIBRATOR POWER UNITS

E.M.T. training.—P.M.G, exams. and I.E.E. exams. metric and special entrance; in- dustrial, production, aeronautical, etc. for M.C.A. and G telecommunications or Brit. I.R.E. exams. as preferred; tuition also available to M.C.A. apprentices in the retail trade: enrolments every phase of radio and television engineering, courses: Radio training.—P.M.G. exams. and I.E.E.

ELECTRICAL and eng. common practice tests.国安 exams. matric and special entrance; in- dustrial, production, aeronautical, etc. for M.C.A. and G telecommunications or Brit. I.R.E. exams. as preferred; tuition also available to M.C.A. apprentices in the retail trade: enrolments every phase of radio and television engineering, courses: Radio training.—P.M.G. exams. and I.E.E.

BUSINESS AND PROPERTY

RADIO training.—P.M.G, exams. and I.E.E. exams. metric and special entrance; in- dustrial, production, aeronautical, etc. for M.C.A. and G telecommunications or Brit. I.R.E. exams. as preferred; tuition also available to M.C.A. apprentices in the retail trade: enrolments every phase of radio and television engineering, courses: Radio training.—P.M.G. exams. and I.E.E.

BARGAINS

LASKY'S PRICE 90s.

LASKY'S PRICE 10/-.

LASKY'S PRICE 15/-.

LASKY'S PRICE 20/-.

LASKY'S PRICE 25/-.

LASKY'S PRICE 30/-.

LASKY'S PRICE 35/-.

LASKY'S PRICE 40/-.

LASKY'S PRICE 50/-.

LASKY'S PRICE 60/-.

LASKY'S PRICE 70/-.

LASKY'S PRICE 80/-.

LASKY'S PRICE 90/-.

LASKY'S PRICE 10/-.

LASKY'S PRICE 15/-.

LASKY'S PRICE 20/-.

LASKY'S PRICE 25/-.

LASKY'S PRICE 30/-.

LASKY'S PRICE 35/-.

LASKY'S PRICE 40/-.

LASKY'S PRICE 50/-.

LASKY'S PRICE 60/-.

LASKY'S PRICE 70/-.

LASKY'S PRICE 80/-.

LASKY'S PRICE 90/-.

LASKY'S PRICE 10/-.

LASKY'S PRICE 15/-.

LASKY'S PRICE 20/-.

LASKY'S PRICE 25/-.

LASKY'S PRICE 30/-.

LASKY'S PRICE 35/-.

LASKY'S PRICE 40/-.

LASKY'S PRICE 50/-.

LASKY'S PRICE 60/-.

LASKY'S PRICE 70/-.

LASKY'S PRICE 80/-.

LASKY'S PRICE 90/-.

LASKY'S PRICE 10/-.

LASKY'S PRICE 15/-.

LASKY'S PRICE 20/-.

LASKY'S PRICE 25/-.

LASKY'S PRICE 30/-.

LASKY'S PRICE 35/-.

LASKY'S PRICE 40/-.

LASKY'S PRICE 50/-.

LASKY'S PRICE 60/-.

LASKY'S PRICE 70/-.

LASKY'S PRICE 80/-.

LASKY'S PRICE 90/-.

LASKY'S PRICE 10/-.

LASKY'S PRICE 15/-.

LASKY'S PRICE 20/-.

LASKY'S PRICE 25/-.

LASKY'S PRICE 30/-.

LASKY'S PRICE 35/-.

LASKY'S PRICE 40/-.

LASKY'S PRICE 50/-.

LASKY'S PRICE 60/-.

LASKY'S PRICE 70/-.

LASKY'S PRICE 80/-.

LASKY'S PRICE 90/-.

LASKY'S PRICE 10/-.

LASKY'S PRICE 15/-.

LASKY'S PRICE 20/-.

LASKY'S PRICE 25/-.

LASKY'S PRICE 30/-.

LASKY'S PRICE 35/-.

LASKY'S PRICE 40/-.

LASKY'S PRICE 50/-.

LASKY'S PRICE 60/-.

LASKY'S PRICE 70/-.

LASKY'S PRICE 80/-.

LASKY'S PRICE 90/-.

LASKY'S PRICE 10/-.

LASKY'S PRICE 15/-.

LASKY'S PRICE 20/-.

LASKY'S PRICE 25/-.

LASKY'S PRICE 30/-.

LASKY'S PRICE 35/-.

LASKY'S PRICE 40/-.

LASKY'S PRICE 50/-.

LASKY'S PRICE 60/-.

LASKY'S PRICE 70/-.

LASKY'S PRICE 80/-.

LASKY'S PRICE 90/-.

LASKY'S PRICE 10/-.

LASKY'S PRICE 15/-.

LASKY'S PRICE 20/-.

LASKY'S PRICE 25/-.

LASKY'S PRICE 30/-.

LASKY'S PRICE 35/-.

LASKY'S PRICE 40/-.

LASKY'S PRICE 50/-.

LASKY'S PRICE 60/-.
The "ADCOLA" Soldering Instrument

Designed for Wireless Assembly and Maintenance.

3 1/2" diam., Copper Bit, working temperature reached in 1 min., consumption 25 watts, weight 23 ozs.

Supplied in voltage ranges from 6-7v. to 230-250v.

Weight 2.5 oz.

A.M. and F.M. Tubular Condensers...

The "ADCOLA" Soldering Instrument reached in 1 min., consumption 25 watts, weight 23 ozs.

The "ADCOLA" Soldering Instrument reached in 1 min., consumption 25 watts, weight 23 ozs.

ADCOLA PRODUCTS LIMITED

Alliance House, Caxton Street, London S.W.1

Write or Phone: WHI 0030.

Coventry Radio

COMPONENT SPECIALISTS SINCE 1925

A FEW ITEMS FROM OUR 1948-9 COMPONENT CATALOGUE—ALL NEW, NO SURPLUS.

Metal 8-BMFD 450 Volt Condensers...

Metal 30-BMFD 310 Volt Condensers...

Tubular 22-MFSD 350 Volt Condensers...

100 Assorted 4 watt Resistors...

300 Assorted 4 watt Resistors...

15/6

Hundreds of bargains in our new list; do not fail to send for your copy now, 3d. post paid.

Promote Service, Complete Satisfaction.

Coventry Radio

DUNSTABLE ROAD, LUTON, BEDS.

The "ADCOLA" Soldering Instrument

Designed for Wireless Assembly and Maintenance.

3 1/2" diam., Copper Bit, working temperature reached in 1 min., consumption 25 watts, weight 23 ozs.

Supplied in voltage ranges from 6-7v. to 230-250v.

Weight 2.5 oz.

A.M. and F.M. Tubular Condensers...

The "ADCOLA" Soldering Instrument reached in 1 min., consumption 25 watts, weight 23 ozs.

The "ADCOLA" Soldering Instrument reached in 1 min., consumption 25 watts, weight 23 ozs.

ADCOLA PRODUCTS LIMITED

Alliance House, Caxton Street, London S.W.1

Write or Phone: WHI 0030.

Coventry Radio

COMPONENT SPECIALISTS SINCE 1925

A FEW ITEMS FROM OUR 1948-9 COMPONENT CATALOGUE—ALL NEW, NO SURPLUS.

Metal 8-BMFD 450 Volt Condensers...

Metal 30-BMFD 310 Volt Condensers...

Tubular 22-MFSD 350 Volt Condensers...

100 Assorted 4 watt Resistors...

300 Assorted 4 watt Resistors...

15/6

Hundreds of bargains in our new list; do not fail to send for your copy now, 3d. post paid.

Promote Service, Complete Satisfaction.

Coventry Radio

DUNSTABLE ROAD, LUTON, BEDS.

Critical Announcement

WE OFFER

A large range of used and new Test Equipment, Converters, Recorders, Amplifiers, Motors, Transformers, etc.

All guaranteed and at very attractive prices.

We buy good modern used equipment of all types for spot cash.

University Radio Ltd.

22 LIsle Street, London, w.c.2.

Tel.: GER 4447 & 8582.
WHAT’S BEHIND IT ALL?

Extensive research laboratories, special design and development departments, wide manufacturing resources—all at your service, but not on your overheads! When you use any Hunt Capacitor, whether a normal type or as advanced as the Hunts exclusive Metallised Paper series, you are benefiting from everything that Hunt’s have achieved in many years of whole-hearted specialisation in capacitor design and manufacture. To specify Hunts as standard, to choose Hunts for replacements, to decide on Hunts for special purposes—all are the wise actions of people who demand nothing but complete reliability.

A. H. HUNT LTD • LONDON • S.W.18
Established 1901
1. QUALITY
Ersin Multicore Solder is made to an accuracy of 0.002 of an inch. Only the purest tin and lead are used. Every stage of production is precision controlled. The flux contained in the three cores is Ersin, a high grade rosin subjected to a complex chemical process to increase its fluxing action.

2. STANDARD ALLOYS
Ersin Multicore Solder is supplied in Size 1 cartons for service and maintenance purposes in two standard alloys: 60/40 Tin Lead is in most demand for general maintenance work, while for precision soldering on radio and telephone equipment, 60/40 Tin Lead is recommended.

3. CORES
The three cores of flux in Ersin Multicore provide thinner solder walls and ensure rapid melting thus speeding up soldering operations. The three cores also ensure flux continuity so that there is always a supply of flux available.

4. SPECIFICATIONS
Size 1 cartons for Service Engineers are available in the four specifications shown below. Manufacturers are supplied on 7 lb. reels in five alloys and nine gauges. Prices of bulk supplies on application:

<table>
<thead>
<tr>
<th>Catalogue</th>
<th>Alloy</th>
<th>S.W.G</th>
<th>Approx. Length</th>
<th>Unit Price per</th>
<th>(pieces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. No.</td>
<td>60 40</td>
<td>14</td>
<td>37 feet</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>C 16014</td>
<td>60 40</td>
<td>18</td>
<td>33 feet</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>C 16012</td>
<td>40 60</td>
<td>12</td>
<td>50 feet</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>C 16013</td>
<td>40 60</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 14018</td>
<td>40 60</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YOUR INSURANCE
Whether you are manufacturing 10,000 radio receivers or repairing one, you can be sure of getting sound soldered joints when you use Ersin Multicore, "the Finest Cored Solder in the World."

MULTICORE SOLDERS LTD., MELLIER HOUSE, ALBEMARLE ST., LONDON, W.1. Tel: REgent 1411