DESIGN FOR A SUPERHET TELEVISION SET
You'll need this new handbook...

because it contains additional data on the B.I.C.C. range of Radio Capacitors. It gives dimensions, methods of connection, capacitance tolerance, temperature ranges, etc., for all paper dielectric and electrolytic types. Write for your free copy today.

1. ECT (Electrolytic. Waxed carton). For domestic radio receivers—reservoir and smoothing.
2. EAC (Electrolytic. Aluminium can). For domestic radio receivers—reservoir and smoothing.
3. PTB (Paper dielectric. Steel case). For amplifiers, power-packs, etc.—reservoir and smoothing.

Tropical type † Type-approved

RADIO CAPACITORS

BRITISH INSULATED CALLENDER'S CABLES LIMITED
NORFOLK HOUSE, NORFOLK STREET, LONDON, W.C.2
Servicing MUST be done

Use this up-to-date SIGNAL TRACING method

1. Inject a signal from the "AVO" Signal Generator. This can be R.F. into the Aerial or I.F. circuits, or A.F. into the Audio Circuits.

2. Trace the signal through the set with the A.C. Voltage ranges of the "AVO" Electronic Testmeter. (Accurate Voltage measurement from 20c/s to 300 Mc/s.)

3. Having arrived at the point where the signal does not appear, then identify the nature of the fault by tests with the D.C. Voltage, resistance and capacitance ranges of the "AVO" Electronic Testmeter.

0-10,000 v. D.C.
0-1,000 megohms
100pF. — 50uF.

Time-saving & dependable

Fully descriptive leaflets available from the Manufacturers of "AVO" Electrical Testing Instruments—

THE AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO., LTD.
WINDER HOUSE • DOUGLAS STREET • LONDON • S.W.1

World Radio History
The Airmec Heat Generator embodies latest electronic practice and is available in 5kW and 2kW models for both dielectric and induction heating. They are the most compact units of their power rating.

Specification includes latest type air-blast cooled oscillator valve, electrical and mechanical interlocks, efficient protection of electrical circuits against overloads. Repetition work by unskilled workers is facilitated by an automatic control with locked settings,

Both models are clean and attractive in appearance, finished in cream enamel. List GA157 explains fully the high standards reached in our equipment—we will gladly send you a copy and follow it with advice on any production problems you may care to raise. Please do not hesitate to ask.

AIRMEC LABORATORIES LTD.
CRESSEX, HIGH WYCOMBE, BUCKS
Telephone : High Wycombe 2060

Manufacturers of all types of industrial electronic equipment and test gear.

HUNTS New Ranges of Special Replacements

These additional ranges of electrolytics have been introduced in response to repeated requests from the Trade, and will be found invaluable in servicing older types of Radio equipment. Dimensions have been reduced considerably in a representative range of popular types. Supplies should be ordered without delay: full details on request.

<table>
<thead>
<tr>
<th>“MINITUBE” TYPE L28</th>
<th>“MINITUBE MAJOR” TYPE L28</th>
</tr>
</thead>
<tbody>
<tr>
<td>J542C</td>
<td>32</td>
</tr>
<tr>
<td>J543C</td>
<td>4</td>
</tr>
<tr>
<td>J544C</td>
<td>8</td>
</tr>
<tr>
<td>J545C</td>
<td>16</td>
</tr>
<tr>
<td>J502C</td>
<td>25</td>
</tr>
<tr>
<td>J508C</td>
<td>50</td>
</tr>
<tr>
<td>J524C</td>
<td>8</td>
</tr>
<tr>
<td>J520C</td>
<td>2</td>
</tr>
<tr>
<td>J521C</td>
<td>4</td>
</tr>
<tr>
<td>J560C</td>
<td>8</td>
</tr>
</tbody>
</table>

Also available are Types L24 cardboard cartons with fixing feet and 6" wire leads, and L26 cylindrical aluminium cases with 6" leads and single hole mounting.

A. H. HUNT LTD · BENDON VALLEY · GARRATT LANE · LONDON · S.W.18
THE FOREMOST NAME
IN SOUND RECORDING

Specified and used by such leading authorities as

OXFORD UNIVERSITY
AIR MINISTRY FILM UNIT
NUFFIELD LABORATORY
PAKISTAN BROADCASTING COMMISSION
B.B.C. use B.S.R. Recordings

and in constant use by the discerning recordist in places as far apart as
ARGENTINA, MALAYA, EGYPT, SOUTH AFRICA, EIRE

★ DISK RECORDING provides permanent records which can be played back on standard gramophones. With the B.S.R. DR.33M Disk Recorder you get unequalled fidelity of tone for orchestral or vocal recordings.

★ DISK RECORDING is growing rapidly both for home and business use. Make permanent records NOW of your family and friends for an Album of Sound. Produce your own Plays and Drama—the scope is unlimited.

★ HIRE MAINTENANCE B.S.R. Recording Equipment is now available on a Hire Maintenance basis. Write for details.

You are invited to make use of our unique Advisory Service. Technical help and advice on Recording is offered free. Write now to:

B.S.R. Recording Division, 88, High Street, Stourbridge. 'Phone 5556

Designers and Manufacturers of Laboratory Equipment, Amplifiers, Supersonic and Subsonic Apparatus, Gramophone Motors and Pickups, Intercommunication Telephones, Works Call Systems, Transformers and Microphones.

Agents in leading countries abroad

"THE SUN NEVER SETS ON B.S.R. EQUIPMENT"

BIRMINGHAM SOUND REPRODUCERS LIMITED, OLD HILL, STAFFS.
KOLECTRIC

AUTOMATIC COIL WINDING MACHINE
TYPE A11

This machine is the most modern on the market and it possesses many exclusive refinements including:

- Dustproof construction throughout.
- Provision for winding up to four coils simultaneously.
- Micrometer traverse setting.
- Wire Gauge Indicator engraved with various wire gauges to which the machine can quickly be set.
- Instantaneous reset counter reading up to 100,000 Turns.
- Entirely new Wire Tensioning Stand to hold two reels of wire.

We will be pleased to send you an illustrated leaflet giving a full technical specification, on request.

KOLECTRIC LTD

20, AVONMORE RD.
LONDON - W.14
Telephone: Fulham 4211/2.
NEW

LEAK

"POINT ONE"

AMPLIFIERS

REMOTE CONTROL
PRE-AMPLIFIER RC/PA

£6 - 15 - 0 list.

An original distortionless feedback tone-control circuit which will become a standard. No resonant circuits employed.

- Switching for Pick-up, Microphone and Radio, with automatic alteration of tone-control characteristics.
- High sensitivities. Will operate from any moving-coil, moving iron or crystal P.-U.; from any moving-coil microphone; from any radio unit.
- Controls: Input Selector; Bass Gain and Loss; Treble Gain and Loss; Volume. Output Impedance: \(-0.30,000\)\(\Omega\) at 20 kc.p.s.

The unit will mount on motor-board through a cut-out of \(\frac{1}{2}\)in. \(\times\) 3\(\frac{1}{2}\)in., or it can be bolted to the power amplifier, when, with a top cover, the whole assembly becomes portable.

For use only with LEAK amplifiers.

DO YOU KNOW what these performance figures mean? —

PHASE MARGIN \(20^\circ \pm 10^\circ\)

GAIN MARGIN \(10\text{db} \pm 3\text{db}\)

YOU MOST PROBABLY DO NOT, for they are uncommon. Yet they are of vital importance, for the “goodness” of a multi-stage feedback amplifier cannot be taken for granted in the absence of this information, however impressive the rest of the specification may seem. We believe ourselves to be the only organisation advertising these figures.

If you would like to know more about amplifiers in general, and the TL/12 and RC/PA in particular,

WRITE FOR BOOKLET W/TL/12.

H. J. LEAK & CO. LTD. (Est. 1934)

BRUNEL ROAD, WESTWAY FACTORY ESTATE, ACTON, W.3.

Maximum sensitivity with uniform frequency response from a more compact speaker, appreciably reduced in weight—that is what Rola technicians have achieved with the new G.12. Special features include dust-proof suspension completely protecting coil and magnet gap and the powerful Alcomax II magnet. Write for details and also for particulars of Rola 3" and 4" P.M. models, dust-proofed and equipped with Alcomax II magnets.

The Universal Taylormeter

90 Ranges • Sensitivity

20,000 ohms per volt A.C. & D.C.

- Taylor Model 100 Meter with 1' scale and robust movement.
- Automatic Meter overload protection.
- Volt readings from .001 volt D.C. and 0.1 volt A.C. up to 5,000 volts D.C. and A.C.
- Current readings from 1 microampere to 10 amperes D.C. and A.C.
- Resistance readings from 0.1 ohm to 100 megohms in three ranges with self-contained batteries.
- Capacity readings from .0002 to 100 mfd and inductance readings from 0.2 to 1,000 Henries, with Adaptor.
- Buzzer for continuity tests.
- Size 10½" x 7½" x 4½". Weight 5 lbs.

MODEL 85A
PRICE £19 • 19 • 0

IMMEDIATE DELIVERY FOR MOST MODELS INCLUDING THE ABOVE

TAYLOR PRODUCTS INCLUDE: MULTIRANGE A.C. D.C. TEST METERS • SIGNAL GENERATORS • VALVE TESTERS • A.C. BRIDGES • CIRCUIT ANALYSERS • CATHODE RAY OSCILLOGRAPHS • HIGH AND LOW RANGE OHMMETERS • OUTPUT METERS • INSULATION TESTERS • MOVING COIL INSTRUMENTS

TAYLOR ELECTRICAL INSTRUMENTS LTD
TELEPHONE SLOUGH 21381 (4 lines)

Grams & Cables "TAYLINS" SLOUGH
CERAMICS FOR VALVE HOLDERS
and all radio components
FREQUENTITE – FARADEX – TEMPRADEX

STEATITE & PORCELAIN PRODUCTS LTD.
Stourport on Severn, Worcester
Telephone: Stourport 111
Telegrams: Steatine, Stourport
Here are sets to delight the expert

WITH 2 YEARS’ FREE
ALL-IN SERVICE IN THE HOME

Apply any test you wish to these Sobell 5-valve superhet table receivers. You will find that every component is superbly engineered. Check the circuits, the signal rectification, the I.F. selectivity, the audio sensitivity — and any other points you like. They’ll all satisfy your critical judgment.

We’ll say nothing about the obvious — the pleasing cabinets, the simple controls, the easy-to-read 3 wave band tuning dials, the special gramophone pick-up sockets with automatic switches, the provision for external loudspeakers — because these are “musts” in sets designed to the highest standards.

The two models illustrated are 519P and 519W respectively, working on 200-250 volts A.C. only. There’s a Sobell dealer in your district — he’ll be glad to arrange a thorough demonstration.

AN AUDIO-FREQUENCY D.C. OSCILLOSCOPE

DESIGNED FOR APPLICATIONS where the full facilities of the well-known 1684D are not required, this new model 1684N retains the basic advantages of the Symmetrical direct-coupled circuiting.

A high-sensitivity vertical amplifier is incorporated giving a deflection sensitivity of 1mV/cm from zero to 50kc/s.

The horizontal axis has only a simple amplifier intended primarily to provide sweep expansion for the time base, which runs from 5 to 10,000 c/s.

£75.
AVAILABLE FOR EARLY DELIVERY

For further particulars please write for our new brochure of Electronic Instruments.

Furzehill LABORATORIES LTD.

BOREHAM WOOD • HERTFORDSHIRE
TELEPHONE — ELSTREE 1137
This seamless high accuracy wave guide tubing is designed to meet the requirements of modern Navigation, Radar and communication equipment. The tubing is hard drawn, has a highly finished bore and dimensional accuracy is maintained throughout each length. Non-preferred sizes can be manufactured to specification.

Available in the following materials:
- COPPER
- BRASS
- 74% COPPER SILVER
- 10% COPPER SILVER
- SILVER LINED COPPER
- SILVER LINED BRASS

Dimensions:
- Available in 10 ft. lengths
- Rectangular tubes up to 1" x 0.5"
- Round tubes up to 1.5" dia.

Details of preferred sizes are available on request.

One of the Specialised Products of

Johnson Matthey

JOHNSON, MATTHEY & CO., LIMITED, HATTON GARDEN, LONDON, E.C.I
Telephone: HOLborn 9277
E.H.T. simplicity

E.H.T. may be obtained from the standard line scanning output transformer without any alteration whatever. Simply add three 36EHT35 rectifiers in a tripler circuit and you will obtain 6kV for your tube anode supply. Simple efficient reliable. Other sizes of rectifier available for lower or higher outputs.

LOW LOSS CERAMICS by

TAYLOR TUNNICLIFF

TAYLOR TUNNICLIFF (REFRACTORIES) LTD.

Albion Works, Longton, Staffs

Three typ.; 36EHT35 rectifiers, each orly 3" long X 1/4" dia. will, from a peak pulse input of approx. 2,500V obtained from the standard line scanning output transformer, give an output of about 6kV at 100mA. used in the tripler circuit shown on the left.

WESTALITE

36EHT METAL RECTIFIERS

Write for data sheet No. 60, to Dept. W.W.2.

FREQUENCY RESPONSE. In our last article we discussed the problems arising from the unavoidable compromise between selectivity and high audio response. Bearing in mind, therefore, this important limitation due to the radio portion of our reproducer, let us go on to the audio circuits themselves.

Perfect Reproduction?

PROBLEMS REFERRED TO IN PREVIOUS NOTES

Spatial Distribution of Sound.
Echoes in the Listening Room.
Limitations of Single Channel.
Limitations of the Human Ear.
Distortions and Faults caused by Apparatus.
The Radio Link.

As we said in our last issue, we have to maintain a level frequency response in them; they must be free from harmonic distortion and inter-modulation; they must not introduce unwanted noise or hum; and they must be capable of supplying sufficient acoustic power over the entire frequency range so that the loudness in our room is as great as we wish it to be.

Excluding the loudspeaker system — for it is here that the most severe difficulties are encountered and we shall deal with them separately — the maintenance of a level frequency response presents no great difficulty. It may not be cheap to provide the large number of component parts which will be found necessary, and there is always a temptation, for example, to cut short the high frequency response owing to difficulties with feed-back into the radio set. At the other end of the scale a good bass response may lead to sound-coupling, or "microphony", for which again the cheapest cure may be to reduce the low frequency response.

We shall have to spend money on any transformers in the chain, both in making them large enough to provide the necessary inductance at low frequencies, and maybe also in sectionalising their windings to reduce the leakage inductance, which often causes a drooping high frequency response.

Remembering our selectivity troubles it is probable that we shall require a rapid attenuation above some fixed frequency, since it is more practical to attain it in the low frequency amplifier, than it is, for example, by large numbers of intermediate frequency circuits. If, for this purpose, we use inductive filters, we shall have to be very careful that they do not "ring". It is certainly not generally recognised how difficult it is to design a multi-section filter, which is free from this defect; and one reason is that measurements with steady tones do not show up the trouble. One has to examine the behaviour of the amplifier when it is fed with pulses before the "ringing" becomes apparent.

On the whole, therefore, the frequency response to the low frequency amplifier does not give the designer any real headache.
Here is an attractively styled Extension Speaker designed to provide entertainment in any room. It incorporates a highly efficient permanent magnet chassis, 6½" diameter, having an impedance of 2½ ohms. The volume control is continuously variable.

R.M. ELECTRIC LTD., TEAM VALLEY, GATESHEAD II.

Why you should use...

Our Silvered Mica Capacitors reach the limit of accuracy which can be achieved in a mass-produced radio component. Our recognised technical standards will satisfy those set manufacturers who wish their tuning scales to be "dead on line."

1 Maximum "Wetting" Capacity.
2 Accelerated Fluidity.
3 Moderatesoldering bit temperatures.
4 Mechanical bonding and perfect Electrical conductivity ensured.
5 Minimum amount of solder used per joint.
6 Residue sets hard, is non-corrosive, and of high dielectric strength.
7 No harmful fume deposits.
8 Continuous, unvarying core.
9 Even distribution of activator in core.
10 Approved by Air Ministry and General Post Office.

Supplied in a wide range of Gauges and Alloys on 1 lb and 7 lb reels, works coils, or as required. Prices on application.

Sole Manufacturers:

NINE EXAMPLES

from the
"FLEXILANT"
(RUBBER BONDED
TO METAL)

RANGE
OF
MOUNTINGS
.

OBTAINABLE
FROM STOCK

OUR TECHNICAL STAFF investigates
all mounting problems
May it investigate yours?

RUBBER BONDERS LIMITED

ENGINEERS IN RUBBER BONDED TO METAL

FLEXILANT WORKS
DUNSTABLE · BEDS.

TELEPHONE: DUNSTABLE 803-45
THE EDDYSTONE '670' Receiver

IS NOW AVAILABLE FOR THE HOME MARKET

This interesting receiver was designed primarily for ship's cabin use, where good performance and utmost reliability is essential. Its specification will also appeal to the discriminating home user who wants a high performance receiver capable of giving first-class results from A.C. or D.C. — 110 — 200 — 230 volts.

Eddystone '670' Receiver

PRICE £37.10.

PLUS PURCHASE TAX £8.10.7d.

Frequency Coverage:—30 to 58 Mc/s and 2.75 Mc/s to 522 Kc/s (10 to 51 and 110 to 575 metres) in four bands.

INTERNAL LOUDSPEAKER — D.C. MAINS SAFETY PRECAUTIONS ADEQUATELY COVERED — THERMISTOR REGULATES INITIAL SURGE.

The '670' is not a communications receiver but nevertheless carries all the EDDYSTONE hall-marks of high grade design.

AVAILABLE EX STOCK AT WEBB'S RADIO.

Phone: GERard 2089. Shop Hours: 9 a.m.—5.30 p.m. Sat. 9 a.m.—1 p.m.

The Portable Oscilloscope with a Fine Reputation

ILLUSTRATION shows the Model 1200B Oscilloscope and the Model 1400B Visual Alignment Signal Generator.

The Oscilloscope has:

Identical high gain D.C. amplifiers on both axes linear in response from zero to radio frequency; linear time-base with perfect synchronisation at any frequency; controls which are completely independent in operation from each other.

The 1200B Unit will show the shape and characteristics of a tuned circuit response curve on the Oscilloscope screen. Thus perfect alignment of an I.F. or R.F. amplifier is easily accomplished. Overall size of combined instruments: 7½ x 11¾ x 9½ high.

Both Instruments carry a 6 months' guarantee.

Early Deliveries.

MODEL 1200B OSCILLOSCOPE £32 0 0
MODEL 1400B UNIT £13 10 0

Write for Specifications to:

INDUSTRIAL ELECTRONICS
99, Gray's Inn Road, London, W.C.1. Tel.: Holborn 9873/A.

Makers of Industrial Control Gear and Precision Instruments.

NEW MINIATURISED R.F. E.H.T UNIT

Intended specifically for television application, this unit is fed from the H.T. and L.T. lines of the receiver and will give up to 250 μA at 5.5 KV. Efficient screening is achieved by the aluminium, chassis-mounting case 4½ high x 3½ x 3½. The 5.5 KV. unit will be available from 1st February, 1949, the 8 KV. unit is now in stock. Units to give up to 28 KV. for industrial equipment can be supplied to order.

HAZLEHURST DESIGNS LTD.
186, BROMPTON ROAD, LONDON, S.W.3.
Phone KENsington 7793.
MAZDA Battery Miniatures

Here are four miniature 1.4v battery valves from the Mazda range. They are mounted on B7G bases, and their small size (54 mm x 19 mm), low filament and economical H.T. consumption make them ideal for miniature battery superheterodyne receivers.

With filaments series connected they are suitable for use in receivers of the all-mains/battery-operated type. In addition, they are suitable replacements for U.S.A. “button-base” types 1R5, 1T4, 1S5 and 3S4. Full details will be given on request.

ICI PENTAGRID FREQUENCY CHANGER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament voltage</td>
<td>Vr</td>
<td>1.4v</td>
</tr>
<tr>
<td>Filament current</td>
<td>Ir</td>
<td>0.05A</td>
</tr>
<tr>
<td>Maximum anode voltage</td>
<td>V_a(max)</td>
<td>90v</td>
</tr>
<tr>
<td>Maximum screen voltage</td>
<td>V_{2(8.4)}(max)</td>
<td>67.5v</td>
</tr>
<tr>
<td>Maximum mean cathode current</td>
<td>I_{k(avg)}(max)</td>
<td>5.5mA</td>
</tr>
</tbody>
</table>

IF3 VARIABLE-MU R.F. PENTODE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament voltage</td>
<td>Vr</td>
<td>1.4v</td>
</tr>
<tr>
<td>Filament current</td>
<td>Ir</td>
<td>0.05A</td>
</tr>
<tr>
<td>Maximum anode voltage</td>
<td>V_a(max)</td>
<td>90v</td>
</tr>
<tr>
<td>Maximum screen voltage</td>
<td>V_{2(8.4)}(max)</td>
<td>67.5v</td>
</tr>
<tr>
<td>Maximum mean cathode current</td>
<td>I_{k(avg)}(max)</td>
<td>5.5mA</td>
</tr>
</tbody>
</table>

IFD9 DIODE R.F. PENTODE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament voltage</td>
<td>Vr</td>
<td>1.4v</td>
</tr>
<tr>
<td>Filament current</td>
<td>Ir</td>
<td>0.05A</td>
</tr>
<tr>
<td>Maximum anode voltage</td>
<td>V_a(max)</td>
<td>90v</td>
</tr>
<tr>
<td>Maximum screen voltage</td>
<td>V_{2(8.4)}(max)</td>
<td>90v</td>
</tr>
<tr>
<td>Maximum mean cathode current</td>
<td>I_{k(avg)}(max)</td>
<td>3.0mA</td>
</tr>
<tr>
<td>Maximum mean diode current</td>
<td>I_{d(avg)}(max)</td>
<td>0.2mA</td>
</tr>
</tbody>
</table>

IP10 OUTPUT PENTODE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament voltage</td>
<td>Vr</td>
<td>2.8v</td>
</tr>
<tr>
<td>Filament current</td>
<td>Ir</td>
<td>0.05A</td>
</tr>
<tr>
<td>Maximum anode voltage</td>
<td>V_a(max)</td>
<td>90v</td>
</tr>
<tr>
<td>Maximum screen voltage</td>
<td>V_{2(8.4)}(max)</td>
<td>67.5v</td>
</tr>
<tr>
<td>Maximum mean cathode current</td>
<td>I_{k(avg)}(max)</td>
<td>5.5mA</td>
</tr>
</tbody>
</table>

† Series filament arrangement * Parallel filament arrangement ø For each 1.4v filament section

EDISWAN

MAZDA

RADIO VALVES AND CATHODE RAY TUBES

THE EDISON SWAN ELECTRIC CO. LTD., 155 CHARING CROSS ROAD, LONDON, W.C.2
S. G. BROWN, Type 'K'

Headphones which uphold British Prestige

Moving Coil Headphones, supply that High Fidelity Reproduction demanded for DX work, monitoring and laboratory purposes, etc.

OUTSTANDING CHARACTERISTICS.

D.C. RESISTANCE, 47 Ohms.

IMPEDANCE, 52 Ohms at 1,000 c.p.s.

SENSITIVITY, 1.2 x 10^-9 Watts at 1kz = 0.0002 Dynes/cm².

Descriptive Literature on request.

PRICE £5.5.0 PER PAIR

Your Local Dealer can supply

For details of other S. G. Brown Headphones (prices from 30/- to 63/-) write for illustrated Brochure "W.W."

HEADPHONES WHICH UPHOLD BRITISH PRESTIGE.

HEADSET ADAPTORS TYPE MC385

Light to low frequency. Jack type fitting. Price 1/3

RADIOMART'S

Special Offers

STROMBERG-CARLSON (U.S.A.) AIRCRAFT TX.CCT-5200

3-4 mc/s 1626 M.O. 1625 (in parallel) P.A. with 3.5 mc/s crystal for calibration checking in conjunction with 1629. (Valves equivalent to 618, 807, 6X5G but 12 volt) Compact unit measuring 3in. x 7in. x 1in. Make excellent E.O. units. Very stable M.O. Price £4

HIGH VOLTAGE TRANSFORMERS

Pri. 115 v. 50 cycle. Sec. 1250-0-1250V 200 m/A. Connect two of these in series for 230 V working. Secondaries in series 1250-0-1250V 400 m/A. Secondaries in series 2500-0-2500V 200 m/A tapped 1250-0-1250V or use an auto transformer. (Wt. 21 lbs.) Price 30/- plus 5/- carriage.

LARGE SLIDER TYPE POTENTIOMETERS

Wound on former 8in. x 2in. Suitable for battery charging boards, etc. 4 ohm. 25 amp. at only a fraction of original cost. Price 4/6 each, postage 1/6.

CHARGERS

Well known make) Maximum D.C. output 75V 12 amps., capacity 20 6V batteries at 6 amps. or 10 12V batteries at 3 amps. Two circuits each with M.C. Ammeter. Three charging rates may be obtained simultaneously if desired. Brand new and complete with No. 68506 Rectifier Valves. Ideal for garage use. Price 4/6 each, postage 1/6.

R.A.F. DIPOLE AERIAL

Send S.A.E. for No. 7 Special Offers list and standard Radiumart list.
Suitable for operation as relay tubes where the mean current does not exceed 5 milliamperes.

<table>
<thead>
<tr>
<th>Operating Characteristics</th>
<th>K3</th>
<th>K3A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode voltage</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>Trigger Breakdown voltage</td>
<td>79-84v.</td>
<td>85-95v.</td>
</tr>
<tr>
<td>Anode current (continuous)</td>
<td>5mA max.</td>
<td>5mA max.</td>
</tr>
<tr>
<td>Anode current (intermittent)</td>
<td>20mA peak</td>
<td>20mA peak</td>
</tr>
<tr>
<td>Trigger current</td>
<td>5mA mean</td>
<td>5mA mean</td>
</tr>
<tr>
<td>Recommended static bias</td>
<td>4/μA max.</td>
<td>4/μA max.</td>
</tr>
<tr>
<td>Gas filling</td>
<td>75 v.</td>
<td>75 v.</td>
</tr>
<tr>
<td>Gas filling</td>
<td>Neon</td>
<td>Argon</td>
</tr>
</tbody>
</table>

The K3 is supplied housed in a metal container, on an English 4 pin base. The K3A is supplied unmounted but with standard type valve caps for connecting purposes.

FERRANTI LTD

ELECTRONICS DEPT. MOSTON MANCHESTER 10
PICK-UPS for Quality Reproduction

MAGNETIC TYPES
GP 6 & GP 7

A modest priced moving-iron instrument with outstanding performance; output .36v.; range 100-4,500 c/s.; needle pressure 2 oz. (adjustable). The GP 7 head for replacing acoustic sound boxes has similar characteristics.

CRystal Type
GP 10

With an output of 1.7 v. at 1,000 c/s., range 70-8,000 c/s., this instrument combines great robustness with the enhanced performance of a well-designed crystal pick-up. The "acos" patented assembly makes the crystal unbreakable.

HIGH FIDELITY CRYSTAL TYPE
GP 12

A model of exceptional performance for the connoisseur. With permanent sapphire stylus capable of 5,000 playings; output 1 v. at 1,000 c/s., range 30-14,000 c/s., needle pressure 22 gms.

GP 10, Price 36/- plus Tax
GP 12, Price 72/- plus Tax

ELECTRONIC INSTRUMENTS LTD
17 Paradise Road, Richmond, Surrey

M. R. SUPPLIES Ltd.
February, 1949

- Advertisements

- COSMODCord LTD.
- ENFIELD MIDDLESEX

- Post this coupon for informative folders

- Electronic Instruments Ltd.
Ignoring the fact that in these days you may well have no shirt to put on my little horses, I yet make the suggestion. You may think we only supply drills, screwdrivers and nutrunners. Then you have another think coming.
If your production involves any operation that must be done by hand or with a handtool, it is likely that my little horses will enable you to produce more goods in less time. We make tools to unscrew the moulds in plastic products; to cut sheet metal, to drive woodscrews. In fact whatever your enterprise ... (No! I shouldn’t have said that) ... whatever your problem (we do still have problems, don’t we?) my little horses will come galloping to your aid.
Aerialite Television Aerials are being installed as fast as they can be produced. Good technical design, ease of fitting and robust construction, are all strong points of the entire Aerialite range. For clear, sharp, steady pictures with never a "ghost", Aerialite, the television aerial for all circumstances, is the name to remember. Send for illustrated booklet giving full details.

Tonic when you're ill!
Entertainment by your bedside relieves boredom, helps towards recovery.
How welcome is the . . .

"BAFFLETTE" EXTENSION SPEAKER
by
Richard Allan
STANDARD 4 gns. DE LUXE £4 15 0
CONSOLE £6 15 0 JUNIOR £9 6
Transformers 8/6 extra
Walnut Cabinets (Mahogany, slight extra cost, except De Luxe model)
AT ALL GOOD RADIO DEALERS
Made and Guaranteed by
RICHARD ALLAN RADIO LTD.,
Caledonia Road, Batley, Yorks.
tel. Batley 1123 Grams: Acoust-ec, Batley

- CONSTANT VOLTAGE -
POWER SUPPLY UNITS

NEW SERIES 101
Our new Laboratory Power Supplies, Series 101, are based on our well-known Model 101-A, but incorporate a number of improvements and refinements.

DETAILS ON REQUEST.

ALL-POWER TRANSFORMERS LTD.
8a, GLADSTONE ROAD, WIMBLEDON, S.W.19
Tel.: Liberty 3303.

Made by AERIALITE LTD., STALYBRIDGE, CUMBERLAND

Advertisements
OSRAM MINIATURE VALVE

TYPE Z77 HIGH-GAIN PENTODE

It is a high-gain pentode, mounted on the B7G base and is suitable for use in television, wide-band radio, amplifier and electronic instrument circuits.

INTERESTING FEATURES

Small size and rugged construction make it an eminently suitable valve for use in mobile and portable equipment.

Suitable for operation up to 100 megacycles per second.

Owing to smallness of size and low thermal capacity the valve rapidly reaches a stable operating condition.

THE GENERAL ELECTRIC CO., LTD., MAGNET HOUSE, KINGSWAY, W.C.2.
When BETTER TRANSFORMERS are made

WODEN Will make them

Until then our De-Luxe and Potted Types are the best available.

Send for Illustrated Catalogue and Price List of full range.

WODEN TRANSFORMER CO LTD
Moxley Road - Bilston • Staffs

Send for Illustrated Catalogue and Price List of full range.

WODEN TRANSFORMER CO LTD
Moxley Road - Bilston • Staffs

PLAN YOUR CAREER

RADIO • TELEVISION
and other INDUSTRIAL ELECTRONIC subjects

ELEMENTARY and ADVANCED COURSES

WRITE NOW FOR FREE BOOKLET summarising the careers available in Electronics and giving particulars of Training Courses offered by E.M.I. Institutes Ltd.

The booklet contains full details of CORRESPONDENCE COURSES in Radio, Television, Telecommunications, Mathematics and Industrial Electronics.

Daytime and Evening Attendance Courses, and Special Courses for candidates taking examinations such as those of City & Guilds, Brit.I.R.E., etc. are also available.

Payment for tuition can be made in easy instalments

E.M.I. INSTITUTES LTD.
Dept. 16, 43 Grove Park Road, Chiswick, London, W.4. Telephone Chiswick 4417/8

E.M.I. Institutes — backed by the Electronic Organisation which includes "H.M.V.", Marconiphone, Columbia, etc.
THE "SOUNDMIRROR" IS HERE. Made in England by the electronic designers and engineers of Thermionic Products Ltd., the "Soundmirror" opens up enormous fields in the development of mobile or static recording and reproducing.

RECORDING—Using reels of magnetized tape, the "Soundmirror" gives 30 mins. of high fidelity, continuous recording. Changing of reels is quickly and simply done. The hand microphone packs easily into the handsome polished cabinet.

REPRODUCTION—Life-like tonal quality of any desired volume equal to the best radio receivers. The recordings are permanent and can be played an indefinite number of times without loss of quality. The recording tape can be cut and spliced to join up short recordings or edit unwanted parts. Recordings can be erased and the reels of tape used indefinitely.

The "Soundmirror" Recorder is a complete electronic unit. Contains speaker, amplifier, microphone and is equipped with jacks for easy hook up to radio, public address and other electronic audio systems. Enquiries invited.

THERMIONIC PRODUCTS LTD.
Leaders in the Field of Magnetic Recording
Phone: WHitehall 6422/3.
Speaking of operations, a delicate but highly successful one has been carried out in striking the balance of correctly matched voice coil and curvilinear cone for our new 12" loudspeaker. By carefully suiting the weight of coil to cone we have reduced the peaks and secured a freedom from break-up, while the very high flux density of the large Alcomax magnet considerably increases the sensitivity, especially in the higher frequencies. All very worth while as you may see, or rather hear.

Grampian

12" Speaker

Type 3512/15

Grampian Reproducers Ltd

Hampson Road, Hanworth, Middx. Phone: Feltham 2657

A NEW B.P.L. INSTRUMENT

The Voltascope—A combined valve-voltmeter and oscilloscope. **Valve-Voltmeter**—Infinite Input Resistance for D.C. ranges 0 to 300 volts. A.C. ranges 0 to 150 volts in 6 ranges. 3½ inch scale meter. **Oscilloscope**—3 inch screen tube provided with balanced amplifiers for Y and X plates giving a five times trace expansion. Maximum sensitivity 150mV/cm. Response from D.C. to 100 kcs.

Limited quantity available for early delivery.

British Physical Laboratories

Houseboat Works, Radlett, Herts.

Tel: Radlett 5874-5-6
GOVERNMENT SURPLUS MAINS TRANSFORMERS.

All are for use on 230 volt 50 cycle Mains.

Type -

33 25 v. 2 A. Tapped at 25, 34, 39 v. 30/-
44 10 v. 6 A., 10 v. 5 A. 35/-
58 12 v. 3 A. 12 volt. 105x30 m.m. 30/-
67 500-0-500 V. 70 mA. 12 volt. 102x30 m.m. 35/-
83 100-250 V. 0-40 mA. 6 volt. 30/-

E.H.T. TRANSFORMERS. For 300-230 V. 50 c. input.

51 350-350 Volts. 60 mA. 6.3 volt. 1 a. 126/-
57 300-0-300 V. 71) mA. 4 volt. 2 a. 129/-

(December tax), 17/6. Complete kit of 8 valves, 23/7/6.

MULLARD PLW. 1841. New, with box, 72/6.

VO 697. New, with socket, 351-.

6 CP1, with socket, contains 1-68147, 1-68L7, 1-6116, 4-00K7, 1-VR105-30, 1-6114, 1-68A7, 400/1200 cycle 1-OU67, 4 V.11.01, 7 VR6.5, 1VU111, 1 VH22. Unit sold. 2,600- volt Condenser, 2 Relay., I Neon Lampa, or Tinne Barren Mao included are S Potentiometer, 16+16 Inf. 500 v. working, Cardimanl 4/11.

aulas excluding rubber caps. Make excellent Mikes.

A.O. 200/210 V. 8- records mixed, 218/618.

Filmed al Speakers, 2/- each. 19/- dos.

COLLAR° ELECTRIC GRAMOPHONE MOTOR with table. 200/250 V. A. C., 57/6.

Combate of a complete kit of parts to construct an H.T. ELIMINATOR AND TRICKLE CHARGER KIT. £9/1316. With crystal pick-up, 811/2,2.

provision for Trickle Charging a 2 v. Accumulator. Two Combata of Kit of Parts incorporating mains Transformer.

OSCILLOGRAPH POWER UNITS. Input 230 volts.

409 Output 1,800 v. 30/-

Type

Output 5,000 v. at 3 ma. and 4 v. 2 a. C. T. 81/-

For use with 2 or 4 c. H. Tubes 81/-.
WORKSHOP - KITCHEN - DINING ROOM - LOUNGE - BEDROOM — switch the radio on or off from wherever you are!

The 'LONG ARM' REMOTE CONTROL

The warm welcome accorded the "Long Arm" when it reappeared just before Christmas showed how much listeners need the added convenience of remote control.

Remember that this Whiteley "exclusive" operates any number of "Stentorian" speakers (Senior, Junior or Cadet models) from any radio receiver, and costs only 35/- (Suitable speakers from £4.0.0.)

Other Whiteley products include Loudspeaker Chassis Units, Microphones, Valves, Switches, Transformers and Chokes.

Stentorian

LOUDSPEAKERS & RADIO COMPONENTS
WHITELEY ELECTRICAL RADIO CO. LTD. MANSFIELD - NOTTS

Inductance Meter

This instrument has been designed to provide simple and direct reading measurement of inductance values between 0.05 microhenry and 100 millihenrys. A stable variable-frequency oscillator is used to resonate the unknown inductance with a fixed standard capacitor. Provision is made for the measurement of Q at resonance frequency. Price £38.5.0.

Wayne Kerr
WAYNE KERR LABORATORIES LIMITED, NEW MALDEN, SURREY.

Kerr WAYNE KERR LABORATORIES LIMITED, NEW MALDEN, SURREY.

In a variety of combinations from 5 to 2,000 metres with all necessary padding and trimmer condensers. Write for descriptive literature stating your problem.

LABORATORY

H. C. ATKINS Laboratories, 32, Cumberland Road, Kew, Surrey Richmond 2950

AT105

World Radio History
This "Torpedo" driver type of a new method eliminates un- driver type of and background noise. This "Torpedo" sliding resistances, etc., complete in metal coil ammeters (1,040 a., 4,000 a.). One component value, case as shown with fold-back doors. Size, moving coil voltmeter 0-40 v. Five heavy duty 24 v., 1,260 watts. Includes five lin. moving. Extra 18x17x% in. Offered at less than half the price.

Dimensions 8x 1x in.

CHARGING BOARDS
- 3-Bank, 38/-
- 5-Bank, 45/-

CHARGING BOARDS
Control Panels Only as Illustrated

METAL RECTIFIERS. 0 v. 21 amp £15
METAL RECTIFIERS. 0 v. 1A amp £20
METAL RECTIFIERS. 0 v. 5A amp £25

AERIALS, with ebonite chain 6/-
AERIALS, with plastic chain 4/-
AERIALS, with rubber chain 3/-

COAXIAL CABLE, 75 ohms, per volt, Volts A.O. or D.O. 0-10, 0-25, 0-100, 0-500.

NEW 3-VALVE AMPLIFIER PANELS
With three LT4 valves, condensers, etc. New spare valves for above 5/- each.

R.A.F. 5-VALVE SUPERHET RECEIVING UNIT No. 25
Easily adapted for short-wave reception for home use. Contains two EF34, two EF39, one EK32, one EBC33 valves, condensers, resistances etc. Free circuit diagram.

LONDON CENTRAL RADIO STORES, 23, LISLE ST. (GERard 2969) LONDON, W.C.2
Closed Thursday 1 p.m. Open all day Saturday and weekdays 9 a.m.—5 p.m.
COULPHONE MAINS TRANSFORMERS

Coulphone Mains Transformers are made to the highest electrical standards and are fully guaranteed. They are supplied to the Ministry of Supply Atomic Research Stations, so they will no doubt meet your requirements.

Terms: C.W.O. or C.O.D.

SMOOTHING CHOKES

WIRING IS EASIER AND QUicker WITH A "PYROBIT"

To the amateur assembler, the "ham," the serviceman and the manufacturer, the Special Radio "PYROBIT" Electric Soldering Iron is the first essential tool. Light weight, perfect balance and handy shape double the pleasure and speed of wiring.

See one at your Radio, Electric or Hardware Shop or write for full details.

THE NEW "75"

SIGNAL GENERATOR

Model 1

Frequency Range 110 to 50 Megacycles. With calibrated extension covering London, & Midland Television frequencies, at over 60 Megacycles.

Modulation 400 C.P.S. sinusoidal.

Attenuator 5-step ladder, with fine control.

Output Switched via single test-lead, RF, and AF. 1 volt P.M.T.

External Radiation Less than 1 micro-v.

NEW GOODS ONLY

PYROBIT is the first essential tool.

THE ACRU ELECTRIC TOOL MFG. CO. LTD.

S PHERE R A D I O L I M I T E D

HEATH LANE, WEST BROMWICH, ENGLAND
Wharfedale

NEW GOLDEN 10 inch LOUDSPEAKER...

During the last eight years hundreds of Wharfedale Golden Units have been supplied to the B.B.C. and G.P.O.

The Speaker was selected by reason of its level response, and makes an ideal Unit for reproduction free from resonance peaks. It is fitted with precision die-cast chassis, improved spider and Alcomax II Magnet, with a flux density of 12,500 lines.

Ask your dealer or send for book “Loudspeakers” by G. A. Briggs, 5/-, in which acoustic loading is fully explored.

Made and Guaranteed by

WHARFEDALE WIRELESS WORKS

BRADFORD ROAD, IDLE, BRADFORD

Telephone: IDLE 461.

Telegram: Wharfdel, Idle, Bradford

Speech coil
3 or 15 ohms
impedance
PRICE 75/-

MASTERPIECE IN MINIATURE

<table>
<thead>
<tr>
<th>WIDTH</th>
<th>2 1/2”</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEIGHT</td>
<td>6 3/4”</td>
</tr>
<tr>
<td>DEPTH</td>
<td>9 1/4”</td>
</tr>
<tr>
<td>C.R.T. DIAMETER</td>
<td>1 1/2”</td>
</tr>
<tr>
<td>NETT WEIGHT</td>
<td>7 1/2 lbs</td>
</tr>
</tbody>
</table>

Miniscope

MINIATURE CATHODE RAY OSCILLOSCOPE BY S.E.C.

Full specification from: THE GENERAL ELECTRIC CO., LTD., MAGNET HOUSE, KINGSWAY, LONDON, W.C.2
...the Paragon of Instrument Virtues

Type TF867 excels even the best of previous Marconi SIGNAL GENERATORS. Its virtues are impressive both mechanically and electrically, for design and performance are alike superlative.

The expanding wide view scale is a unique innovation. So, too, is the concentric terminating unit which serves as dummy aerial, provides source impedances of 75Ω and 131Ω and shows diagrammatically the exact conditions of circuit. Prominent among other features are freedom from unwanted frequency modulation, crystal standardisation, deep-amplitude or carrier shift modulation and stabilised output level. Over the range 15 Kc/s to 30 Mc/s, output is continuously variable from 0.4 μV to 4V; calibration indicates true artificial signal e.m.f. irrespective of load. Full technical information is freely available.

SIGNAL GENERATOR
Type TF 867

MARCONI INSTRUMENTS LIMITED
ST. ALBANS, HERTFORDSHIRE · Telephone: St. Albans 6161/5
Northern Office: 30 Albion Street, Hull. Phone: Hull 16144 Western Office: 10 Portview Road, Avonmouth Phone: Avonmouth 16144 Southern Office and Showrooms: 109 Eaton Square, London, S.W.1. Phone: Sloane 8615

“Your’re CERTAIN to get it at ARTHURS!”

VALVES: We have probably the largest Stock of valves in the Country. Send your enquiries. We will reply by return.

PICK-UPS. Decca £6 14 6. Decca head for Garrard £6 11 0. Adaptors £1 19 10. Connoisseur £4 11 0.

PERSONAL RADIO SETS IN STOCK
New Olympic Roman, Long and Medium Wave £17 16 11
Ever Ready £13 18 10
Marconi £13 18 9
New Marconi £14 14 9

REMINGTON FOURSOME SHAVERS
210-250 v, AC/DC £17 6
ALL AVO AND TAYLORS METERS. List on request.
PHILIPS CYCLE DYNAMO SET £2 1 6

ALSO STOCKISTS OF ALL DOMESTIC APPLIANCES.
London’s Oldest Leading Radio Dealers.

FOR THE RADIO SERVICEMAN DEALER AND OWNER

The man who enrolls for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful.

Write to the I.C.S. Advisory Dept. stating your requirements. Our advice is free.

INTERNATIONAL CORRESPONDENCE SCHOOL Ltd.
DEPT. 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C.2

Please explain fully about your instruction in the subject marked X.

Compulsory Radio Engineering Radio Service Engineers Advanced Short-Wave Radio
Radio Service and Sales Elementary Electronics, Radar, and Radio
Radio Examinations: British Institution of Radio Engineers P.M.G. Certificates for Wireless Engineers
City and Guilds Telecommunications Wireless Operators and Wireless Mechanics, R.A.F.

C.S. students or Examinations are coached till successful.

You may use this coupon...

Name
Address
Age

INTERNATIONAL CORRESPONDENCE SCHOOL Ltd.
DEPT. 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C.2

Please explain fully about your instruction in the subject marked X.

Compulsory Radio Engineering Radio Service Engineers Advanced Short-Wave Radio
Radio Service and Sales Elementary Electronics, Radar, and Radio
Radio Examinations: British Institution of Radio Engineers P.M.G. Certificates for Wireless Engineers
City and Guilds Telecommunications Wireless Operators and Wireless Mechanics, R.A.F.

C.S. students or Examinations are coached till successful.

You may use this coupon...

Name
Address
Age
Goodmans 12” P.M. Loudspeaker T.2 is undeniably a most successful loudspeaker. Soundly constructed in every particular, it provides radiogram manufacturers and users of P.A. equipment with a medium heavy duty reproducer that is robust yet capable of providing a very high standard of reproduction.

SPECIFICATION: TYPE T2

- Overall Diameter: 12.5/16”
- Overall Depth: 5.5/16”
- Fundamental Resonance: 78 c.p.s.
- Max. Power Capacity: 12w. peak A.C. on 46t. baffle (15w horn loaded)
- Voice Coil Impedance: 16 ohms at 400 c.p.s.
- Total Flux: 24,000 maxwells
- Nett Weight: 12 lbs.

Write for Technical Data Sheet D. 29 describing this and other loudspeakers.

The basis of world standards

Applications for copies of the Telcon R.F. Brochure should be addressed to Telcon Works, Greenwich.

THE TELEGRAPH CONSTRUCTION & MAINTENANCE CO. LTD.

Head Office: 22 OLD BROAD STREET, LONDON, E.C.2. Telephone: LONDON Wall 3141

Enquiries to TELCON WORKS, GREENWICH, S.E.10. Telephone: GREENwich 1040
It PLAYS to Advertise...

Invite your customers to hear the "De Luxe" Microgram play their favourite records — and they'll prove to you that the Microgram sells itself!

The "De Luxe" Microgram with the new Collaro Light-weight Crystal Pick-up, Automatic Stop and 6½" Speaker—complete in handsome imitation lizard-skin carrying case. Suitable for A.C. Supply 200/250 volts.

RETAIL PRICE £19.19.0
Plus Pur. Tax: £8.12.11

Trade Terms and Literature from:
COLLARO LTD., RIPPLE WORKS, BY-PASS ROAD, BARKING, ESSEX

Telephone RIPLEWAY 3333
Keeping abreast of fast-moving technical development calls for a new approach to production problems. The "WEARITE" Pressed Circuit System represents a substantial advance in production science to speed assembly and lower costs. The first of these "Wearite" New Approach Components is a Coil Pack comprising coils, switches, trimmers and padders completely wired and ready for instant incorporation into any standard Superhet circuit.

- 3 ranges
- Gram switching
- 2-hole fixing at 1½" centres
- All trimmers and adjusters conveniently placed in one surface

Manufacturers are urged to write for full technical details.

Owing to raw material restrictions supplies, for the time being, are confined to Radio Receiver Manufacturers at home and abroad.
R.F. Oscillator E.H.T. Supply* derived from AC/DC Mains

Fig. 1 shows a practical circuit of an R.F. oscillator E.H.T. supply using a PL33 as an oscillator valve and an EYS1 as a high voltage rectifying diode. The circuit is of the tuned anode oscillator type, except that the feedback winding L3 is coupled to the high voltage secondary winding L2, which in turn is coupled to the primary winding L1. The secondary high voltage winding L2 is tuned by the effective capacitance appearing across it, which comprises the diode, coil and stray capacitance. The resonant frequencies of the primary and secondary circuits are approximately equal. Class C operation of the PL33 is employed, resulting in high efficiency. The hold-off bias on the control grid is provided by the capacitor included in the grid circuit, this being charged negatively with respect to earth by the flow of grid current during the periods of positive grid excursion.

The R.F. voltage appearing across the primary winding is stepped up by the square root of the ratio of secondary to primary impedance. The resulting R.F. voltage is rectified by the EYS1 in a conventional half-wave circuit.

In an efficient design, the Q of the secondary circuit should be as high as possible. This may be achieved by \(n \)-winding in about five wave-wound sections. If the operating frequency is kept low (50 Kc/s) Litz is not necessary and single strand wire may be used with economical advantage. Due care must be exercised in winding the secondary to ensure that spacings are adequate to avoid corona and breakdown. The secondary should be wound on a low-loss former, this requirement excluding most bakelised tubing.

The primary winding may be wound on a separate former mounted inside the secondary former, thus obtaining the high coefficient of coupling necessary for the maximum transfer of energy from primary to secondary. The feedback winding is coupled to the secondary rather than the primary to avoid trouble with Ziehen Effect (or frequency jumping) which would result in the output voltage jumping between two values.

The EYS1 heater supply is derived from a further winding which should be insulated to withstand the high peak voltage appearing on it. The position, or number of turns, on this winding should be adjusted until the colour of the EYS1 heater is the same as that of a similar diode fed from a 6.3V, 50c/s supply.

In order to prevent the R.F. field interfering with the receiver, the whole coil assembly should be screened in a box of low-loss material such as brass or copper.

Fig. 2 shows the regulation curve obtained with a practical R.F. oscillator. It will be noted that the effective source impedance is about 5 MΩ over the range of load current 0—100μA. This is suitable for operation with a television picture tube.

* For an introductory article on E.H.T. supplies for Television Receivers, see "Wireless World," October, 1948.

Reprints of this report from the Mullard Laboratories, together with additional circuit notes and full coil assembly details, can be obtained free of charge from the address below.

MULLARD ELECTRONIC PRODUCTS LTD.,
TECHNICAL PUBLICATIONS DEPARTMENT,
CENTURY HOUSE, SHAFTESBURY AVE., W.C.1
LEGAL

The Wireless Telegraphy Bill has not at the time of writing become law, but even at this early stage our attention has been drawn to an apparent omission which might have embarrassing consequences. The Bill envisages only positive injections of interference from emissive or reflecting sources, whereas in fact serious interference can be caused by absorption of electromagnetic energy. Though one has every sympathy with those called upon to draft a highly technical measure like this, it does seem strange that the third fundamental property—absorption—has been overlooked.

That this is not a mere academic criticism is proved by the fact that a concrete example of absorption interference with broadcast reception has just been brought to our notice.

As the Bill stands in the stage as amended in committee, sufferers from this kind of interference would, as we see it, have no legal redress. According to the restrictive definition of Clause 18, Subsection (4.), there would seem to be no obligation to suppress interference due to absorption. It is interesting, though perhaps not very profitable, to speculate on how the absorption principle might be used—presumably with impunity—by ill-disposed persons in producing deliberate interference.

A.M. versus F.M.

We have urged for some time that this country should not be stampeded into committing itself to a large-scale f.m. broadcasting service until the alternative methods of modulating e.h.f. were fully explored. We were consequently gratified when the B.B.C. decided that the first high-power e.h.f. station should provide for experimental parallel transmissions by alternative systems. The wisdom of this decision was emphasized when the ever-recurring topic of f.m. versus a.m. was debated early in January by the Radio Section of the Institution of Electrical Engineers. The discussion of this vexed topic covered a very wide field.

H. L. Kirke (B.B.C. Research), who opened the discussion, rightly stressed from the start that this was not a matter that could be decided from severely technical considerations. He and subsequent speakers laid great stress on comparative receiver costs but, rather disappointingly, little in the nature of factual information on this highly important subject was forthcoming.

As an outcome of the meeting, we were all the more convinced that a process of trial and error is most likely to provide the right answer to the many problems involved.

ANGLO-AMERICAN TERMINOLOGY

Yet another example of the regrettable failure to achieve anything approaching uniformity in British and American radio terminology is brought to light in a pamphlet "Standards on Television; Definitions and Terms," published by the Institute of Radio Engineers.

"Tube" and "valve," "plate" and "anode," "ground" and "earth" are so well known that they cause no trouble, and none of these words are used in a conflicting sense in either country. But, in television, "frame" is defined in U.S.A. as "the total area, occupied by the picture, which is scanned while the picture is not blanked." In this country that is called a picture and frame is what the Americans call a field—"One of the two (or more) equal parts into which a frame is divided in interlaced scanning."

The dangers of misconception through errors of translation from one language to another are well known. When the same word is used technically in the same language in two countries with two different meanings the possibility of confusion is very serious.
TELEVISION IN THE CINEMA

Distribution Methods Described

Recent announcements in the Press regarding the installation by Cinema-Television of large-screen television equipment in a London cinema have focused lively attention on a conception which, in the past, has been relegated to the background because of its apparent remoteness. It has always been realized that the ability of television to give a presentation of an event simultaneously with its occurrence constitutes a formidable advantage over conventional film reproduction. Until recently, however, the disparity of quality in pictures of cinema size has been too great to justify the exploitation of this attractive feature. The implication that this disadvantage has been overcome arouses natural interest in the means whereby it has been achieved.

Before proceeding to technicalities, however, it is desirable to indicate the character of the ultimate project which Cinema-Television has in view. This is outlined in Fig. 1, a diagram which is more or less self-explanatory. It is a long-term project, embodying a very high definition system which will link up cinemas all over the country with a variety of television programmes, not necessarily associated with any B.B.C. service. A short-term project, with which we are more immediately concerned, is indicated in Fig. 2, and here it will be observed that programmes are to be received at the Crystal Palace direct from nearby studios and from the Alexandra Palace and Pinewood studios by radio link for beam radiation to a few selected London cinemas. The standard B.B.C. 405-line system will, of course, be used here and it is anticipated that this temporary service will enable a number of debatable factors to be settled and so pave the way for the detailed specification of the long-term project. We will now proceed to consider some of these factors.

With regard to picture detail and definition, much has been written from time to time on the equivalent line structure of normal film reproduction in the cinema and figures ranging from 600 to 1,200 lines per picture have been suggested. Now, as the result of extended investigations carried out by a number of observers, Cinema-Television have reached the conclusion that for direct viewing 900 lines are adequate, but for recording on film with a view to subsequent reproduction, the figure should be raised to 1,200. Such figures would at first sight appear to demand bandwidths of the order of 20 Mc/s. It is argued, however, that there is still room for considerable improvement in the B.B.C. 405-line service within the
present 3-Mc/s bandwidth. A careful study and correction throughout the whole transmission chain of such factors as response, phase and gamma* have brought about a measure of improvement beyond all expectations. Of these

characteristics, gamma is looked upon as of particular importance and it is felt that, along with the other improvements, attainment of a constant value throughout the range from black to white will so raise the standard of picture quality that, by the same token, a bandwidth of about 12 Mc/s will be found to suffice for the later higher definition system.

Interlacing

To interlace or not to interlace is another matter that has been hotly debated. Interlaced scanning at 50 frames per second has, it is true, certainly reduced "lineness" and eliminated 25-c/s flicker with an economy in bandwidth requirements. Interlacing does, however, produce a flicker of its own in addition to line crawling and a subjective stroboscopic effect, all of which are difficult, and quite impossible, to eliminate. Which, therefore, of the two scanning methods is to be preferred for the ultimate system still remains undecided. At the same time, consideration has to be given to the optimum relationship of vertical and horizontal resolution and to the desirability, or otherwise, of some form of line broadening to reduce "lineness."

As regards brightness, it is gratifying to note that, while the standard accepted high-light level for film on a 16ft by 12ft screen is 7.14ft-lamberts, a comparable figure of 8ft-lamberts is obtainable, at any rate down the centre line of the cinema, with the latest type of projection tube and optical system, as is discussed more fully below. The maintenance of a constant gamma up to maximum brightness is, however, a more difficult problem and one which has yet to be solved. On the other hand, as an alternative to the projection tube there is the intermediate-film projector. The use of this equipment involves a processing delay time of 90 seconds but brightness and gamma are, of course, comparable with those of normal film projection. Storage tubes, it is recognized have not yet reached a standard where they can be considered seriously for this purpose.

In designing the presentation system, an important factor is the choice of screen. A variety of viewing screens, superior to the normal matt-white screen, either in reflection coefficient or directional properties, or both, can be selected for use with the projector. These include beaded or silver screens, screens coated with a combination of matt white and silver and others of the lenticular type. Total vertical and horizontal reflecting angles of 40° and 104° respectively are approved.

Turning to the transmitter end, there arises immediately the question of choice of camera. All types have their weaknesses: the definition of the iconoscope is offset by spurious shading effects which, though less pronounced, still exist in the more sensitive image iconoscope. At present, the definition of the orthicon is inferior, though shading is absent, while the image orthicon, which offers higher sensitivity, is a difficult manufacturing problem. On balance, the image iconoscope and image orthicon would appear to be the preferable types.

For film scanning, the cathode-ray flying spot scanner, and the Farnsworth image-dissector are put forward as alternatives. Of these the first named is preferred on the grounds of good definition, quality and freedom from shading.

Wire v. Wireless

Interconnections and distribution requirements inevitably involve the familiar controversy of radio link versus cable. Radio has the advantage of lower cost, wider bandwidth accommodation and greater flexibility, while the use of cable ensures freedom from interference and "piracy." Furthermore, a radio link can generally be completed and established more quickly, but, to offset this, allocation of a desirable frequency band is often difficult to obtain.

Let us now turn to a consideration of the actual equipment intended for the immediate London project. At the transmitter end, either the image iconoscope or the image orthicon will be used for indoor studio or exterior

*Expresses the relationship between contrast of image and contrast of original subject.
Television in the Cinema—

scenes, while the C.R.T. flying spot scanner will be employed for films and captions.

Distribution will be effected by radio links of a few watts just above and below 480 Mc/s and these are expected to operate satisfactorily up to a distance of about 30 miles. The risk of interference, referred to above, is recognized, but it is hoped that legislation will help materially in reducing this risk.

The television projector is shown diagrammatically in Fig. 3, a photograph of the complete unit appeared on the cover of last month’s Wireless World. The C.R. tube is provided with an aluminium-backed screen and operates with a peak current of 5 mA at 50,000 V. Its optical system consists of a centre-masked mirror of 27 in diameter and an 18 in diameter plastic correcting lens of the Schmidt type. A directive type of viewing screen will, of course, be provided and one possible form of installation is indicated in Fig. 4. As an alternative to the projection tube, an intermediate-film projection unit will be included.

It is of interest to study in some detail the present capabilities of the television projector. As regards illumination, the light flux from the equipment in lumens = (luminous intensity \times solid angle) which equals (power consumption \times luminous efficiency \times solid angle) where the luminous efficiency is given in candles/watt, in this case 5, and the solid angle is derived from the expression: solid angle = (\pi/4) \times (1/aperture)^2.

Then, the light flux = 50,000 \times 5 \times 10^{-3} \times 5 \times (\pi/4) \times (1/1)^2 = 900 lumens for an effective lens aperture of f/1. Measurements of the normal screen brightness give a figure of 8 ft-lamberts, which for a 2:1 reflection factor corresponds to an illumination of 4 ft-candles. The screen dimensions are 16 ft by 12 ft so the total incident flux is 16 \times 12 \times 4 = 800 lumens, a figure in reasonable agreement with the computed value, particularly as no account has been taken of the losses in the optical system.

Turning to other factors, further brightness measurements indicate a contrast range from black to white of 50:1 with a constant gamma up to 3 maximum brightness. At an angle of 30° to the normal the maximum brightness is found to be 5 ft-lamberts, a value which admits of some improvement. On the other hand, definition leaves very little to be desired, 3 Mc/s vertical bars being resolvable without visible phase shift, indicating a standard adequate for a 405-line system.

Such then, is the scheme which is being put into operation to test public reaction and to act as a forerunner of the system whose standard of quality is intended to be on a par with that of normal film production. Apart from problems in other directions, much work remains to be done before a fully satisfactory standard of presentation is reached. This work will be directed towards the development of more efficient optical systems, the elimination of defocusing in the high lights, and the development of improved fluorescent materials.

It remains to refer briefly to the political and human considerations which, regardless of technical excellence, can make or mar this ambitious enterprise. General co-operation and the harmonious interchange of programme material between the three main interested parties, the B.B.C., the promoters of sporting events and the cinema authorities, are essential for the success of this venture. Finally there is the question of public reaction to this marriage of television and the film. Will both be accepted in the same programme or must the two techniques be separated, either in time, by providing different programme hours, or in space, by providing distinct television theatres? Perhaps the next few months will indicate the trend, at any rate, of the cinema goers and of those who join them, attracted by the additional vital and intimate element which television alone can provide.

![Fig. 4. Elevation of average theatre showing the angle required for screen reflection in the vertical plane.](image-url)
THE WARNING WINKER

Economical Indicator for Battery Sets

By "DIALLIST"

Everyone who uses a battery radio set, stationary or portable, must have had on more than one occasion the mortifying experience of finding the battery run down because the last user of the receiver had at the end of the programme inadvertently turned the switch to "L.W." or "G" instead of "OFF." The device described, though costing little to instal and placing a microscopically small extra load on the h.t. battery, gives a visual warning that the set is switched on of such a striking kind that it cannot fail to attract attention.

SOME time ago I suggested in "Random Radiations" that there was a very real need for a device which would call attention to the fact that a battery radio set was switched on, even if no sounds were coming from its loudspeaker. It is so easy—and so expensive with h.t. bs at their present price plus purchase tax—to believe that you have switched off when actually you have done nothing of the kind. This is particularly true if the set contains, as so many do, a combined on-off-wavechange switch of the continuously rotatable type. You are listening, let us say, to the home programme on the medium waves; the desired item having come to an end, you ought to turn the knob one "click" clockwise in order to switch off. In a moment of abstraction you turn anti-clockwise. The set becomes silent because, though you have actually turned to "L.W." instead of "OFF," there may happen to be no long-wave station receivable at audible strength at that setting of the tuning capacitor. Still more deceptive and costly is "G," the gramophone pickup position of the switch, for there no warning device. C must be a high-grade capacitor with negligible leakage at 100–150V or the circuit will not work.

Fig. 1. The simple circuit of the warning device. C must be a high-grade capacitor with negligible leakage at 100–150V, or the circuit will not work.

Wireless World,* who not only told me that he had acquired a large stock of apparently suitable neons, but also sent me some samples to play with.

Not knowing much of the peculiarities of low-voltage neons, I tried out the first by connecting it across an 80-V d.c. source of supply. A brief glow of typical "neon" colour was followed by the proverbial "blue flash" inside the bulb, and I realized that in less time than it takes to describe it, I had written off neon No. 1. Clearly a limiting resistor was called for, and subsequent experiments made with resistors with values of thousands of ohms showed that the current needed to produce a bright orange glow was minute.

The circuit shown in Fig. 1 was rigged up from components taken from the junk box. It did not work, and for a moment I could not quite see why. Then I tested the capacitor and found that with an applied e.m.f of 100V the leakage was some 250 μA. On substituting a high-grade capacitor rated at 1,000V d.c. working I found the neon behaving as in theory it should by "winking" at intervals of about one second.

The next step was to incorporate the "winker" in a battery receiver. Clearly it must be brought into action at any "ON" position of the switch and cut out in the "OFF" position. A small modification of the wiring of the set had to be made on the lines shown in Fig. 2. This was a fairly simple matter and, incidentally, it is about the best form of on-off switching for any kind of battery set since, if the insulation is as it should be, all components are relieved of electrical strain when the receiver is not in use. The necessary small alterations having been made, the device was found to function most satisfactorily. A ½-in hole was drilled in the panel close to the knob of the switch. The neon was then mounted inside the set with its electrodes immediately behind the hole. The effect is that brilliant orange flashes at intervals of about a second compel even the most absent-minded of users to realize that his receiver is still switched on. Not until he moves the switch to the "OFF" position do the "winks" cease to insist upon his attention.

* F. R. Lucas, 22, Hengrove Road, Knowle. Bristol, 4.

Fig. 2. In some sets minor alterations in the wiring of the on-off switch SW may be necessary. The arrangement illustrated is in every way satisfactory.
The Warning Winker—

So far so good; but what sort of price do we have to pay for this insurance against carelessness? We are putting an extra load on the h.t.b., and the h.t.b. is one of the most expensive sources of power ordinarily used by mankind. It happens seldom in wireless that any amenity can be obtained without one's having to pay handsomely for it; generally it is a case of "nothing for nothing and darned little for half a crown." In this respect the warning device is quite exceptional; it comes, in fact, nearer to giving something for nothing than any wireless gadget that I can bring to mind, except the crystal detector.

If the battery e.m.f., V_B, in Fig. 1 is 100V, the maximum current at any instant through R cannot exceed $\frac{100}{1.5 \times 10^6} = 67 \mu A$. But the time constant of CR is 1.5 seconds, and the charging current of C falls off exponentially as shown in Fig. 3. The striking and extinguishing voltages (V_s and V_E) of these little neons vary slightly; but, generally speaking, V_s is close to 73V and V_E close to 48V, if the proper connections are made. At the instant of switching on V_C (the voltage across the plates of C) may be taken as zero. I_C therefore starts at 67 µA. As current from the battery flows into the capacitor a counter-e.m.f. is built up and at any instant the e.m.f. driving current through R is $V_B - V_C$. Until the striking voltage is built up across C the neon passes no current: it may be regarded as offering infinite resistance. By the time that V_s is reached I_C has dropped to about 18 µA. At that moment the neon "fires" and the capacitor discharges through the almost negligible resistance that it now offers. Once started, the neon continues to conduct until V_C has fallen to about 48V. It then ceases to conduct until V_s is again reached.

Under working conditions I_C falls, as Fig. 3 shows, from about 34.25 µA to approximately 18 µA whilst the neon is quiescent. The average current drawn from the h.t.b. by the warning device is some $25 \mu A$—and there should be few h.t.bs that cannot stand up to such a minute extra load! When I had made the preliminary calculations I could hardly believe them, for they seemed too good to be true. A kind friend, however, who has a splendidly equipped laboratory (including a calibrated c.r.o.) at his disposal was good enough to make a series of actual measurements, and his figures confirm mine. Here they are:

<table>
<thead>
<tr>
<th>V_B (V)</th>
<th>I_C (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>83V</td>
<td>20</td>
</tr>
<tr>
<td>100V</td>
<td>25</td>
</tr>
<tr>
<td>110V</td>
<td>30</td>
</tr>
<tr>
<td>130V</td>
<td>40</td>
</tr>
<tr>
<td>150V</td>
<td>50</td>
</tr>
<tr>
<td>175V</td>
<td>70</td>
</tr>
</tbody>
</table>

All figures are approximate for several reasons:

1) V_B and V_E vary slightly with individual specimens of the same type of neon lamp.

2) The accepted tolerances mean that R is unlikely to be of precisely 1.5 MΩ or C of precisely 1.0 µF.

3) The leakage across C varies with climatic conditions and may be considerable in damp weather, even if negligible in dry air.

Several other points of interest emerged during the tests. The first concerns the way in which the neons are connected to the source of e.m.f. These particular neons are constructed in the way shown in Fig. 4. One electrode is a disc about $\frac{1}{4}$ in in diameter: the other is rather like the brim of a hat from which the crown has been removed; its overall diameter is rather less than $\frac{1}{4}$ in.

Now, which electrode is connected to + and which to — makes a great deal of difference to V_s and V_E. All the figures given so far are for the disc electrode connected to negative. If the connections are reversed V_s goes up to about 85V and V_E to 73V. Hence, if the h.t.b. is 100–120V when new, it is advisable to connect the disc electrode to negative; if, however, the nominal...
SHORT-WAVE CONDITIONS

December in Retrospect: Forecast for February

By T. W. BENNINGTON and L. J. PRECHNER (Engineering Division, B.B.C.)

February, 1949 Wireless World

Battery e.m.f. is over 120V, the opposite connection should be made in order to cut down current.

The interval between flashes grows longer as the h.t.b. runs down; it would, in fact, be possible to construct a graph from which the battery e.m.f. at any time could be read off with the aid of a stop-watch! The current drain on the battery, by the way, is easily determined from a graph such as that of Fig. 3, if this is accurately drawn on good graph paper. The area ABCDE represents microampere-seconds. Since

\[ABCDE = I_c \times t, \quad I_c = \frac{ABCDE}{t} \]

Count the small squares in the area and divide by the number of small-square divisions of the part of the time scale included.

Some may raise the objection that the device goes automatically out of action when the e.m.f. of the h.t.b. falls below about 75V. To that I can only reply that it does not go out of action: it continues to give warning—and this time its warning means that it is high time that you installed a new h.t.b.!

Forecast — The "Midwinter Effect," which in the Northern Hemisphere causes a decrease in the daytime F2 layer ionisation, usually comes to an end by February. Consequently the daytime m.u.fs may increase considerably. Owing to a seasonal trend there should also be an appreciable increase in the nighttime m.u.fs as compared with those for January.

Daytime working frequencies should thus again be very high, and of the same order as those which prevailed last November. Consequently, long-distance communication on exceptionally high frequencies should be possible quite often in all directions from this country. The 28Mc/s amateur band should be **regularly** usable for long periods over daylight paths, and considerably higher frequencies than in January may be workable over certain circuits. Night-time working frequencies will be higher than during January, though frequencies as low as 7Mc/s will still probably be necessary for many night-time circuits.

Below are given, in terms of the broadcast bands, the working frequencies which should be regularly usable during February for four long-distance circuits running in different directions from this country. (All times G.M.T.). In addition, a figure in brackets is given for the use of those whose primary interest is the exploitation of certain frequency bands, and this indicates the highest frequency likely to be usable for about 25 per cent of the time during the month, for communication by way of the regular layers.

Montreal :

<table>
<thead>
<tr>
<th>Time</th>
<th>Frequency (Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>7.09Mc/s</td>
</tr>
<tr>
<td>1000</td>
<td>11.0Mc/s</td>
</tr>
<tr>
<td>1500</td>
<td>15.0Mc/s</td>
</tr>
<tr>
<td>2000</td>
<td>21.0Mc/s</td>
</tr>
<tr>
<td>2200</td>
<td>29.0Mc/s</td>
</tr>
</tbody>
</table>

Buenos Aires :

<table>
<thead>
<tr>
<th>Time</th>
<th>Frequency (Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>11.0Mc/s</td>
</tr>
<tr>
<td>0900</td>
<td>15.0Mc/s</td>
</tr>
<tr>
<td>1000</td>
<td>21.0Mc/s</td>
</tr>
<tr>
<td>1500</td>
<td>31.0Mc/s</td>
</tr>
<tr>
<td>2000</td>
<td>41.0Mc/s</td>
</tr>
<tr>
<td>2200</td>
<td>59.0Mc/s</td>
</tr>
</tbody>
</table>

Cape Town :

<table>
<thead>
<tr>
<th>Time</th>
<th>Frequency (Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>10.0Mc/s</td>
</tr>
<tr>
<td>0900</td>
<td>14.0Mc/s</td>
</tr>
<tr>
<td>1500</td>
<td>36.0Mc/s</td>
</tr>
<tr>
<td>2000</td>
<td>46.0Mc/s</td>
</tr>
<tr>
<td>2200</td>
<td>56.0Mc/s</td>
</tr>
</tbody>
</table>

Chungking :

<table>
<thead>
<tr>
<th>Time</th>
<th>Frequency (Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>7.0Mc/s</td>
</tr>
<tr>
<td>0600</td>
<td>9.0Mc/s</td>
</tr>
<tr>
<td>0900</td>
<td>13.0Mc/s</td>
</tr>
<tr>
<td>1500</td>
<td>21.0Mc/s</td>
</tr>
<tr>
<td>2000</td>
<td>31.0Mc/s</td>
</tr>
</tbody>
</table>

February is not often a particularly bad month for ionosphere storms, though those which do occur are likely to be troublesome over dark transmission paths. At the time of writing it would appear that such disturbances are more likely to occur within the periods 7th-11th, 15th, 18th-19th and 26th-28th than on the other days of the month.

"TRANSMITTER INTERFERENCE"

This is the title of a new booklet issued by The Radio Society of Great Britain. Addressed to transmitting amateurs it gives really helpful advice on the suppression of interference with broadcast and television services.

Design data for a variety of filters and traps to cope with all foreseeable types of interference is given together with details of a useful harmonic indicator for use at the transmitter.

The list of television sets with their oscillator, intermediate and second channel frequencies provides some enlightening information and will be found invaluable when investigating reports of interference with television.

The price is 1s 3d (1s 6d by post from the R.S.G.B., New Ruskin House, Little Russell Street, London, W.C.2).
SIMPLE TONE CONTROL CIRCUIT

Bass and Treble, Cut and Lift

By E. J. JAMES, B.Sc.

The tone control system described here has the merit of requiring only resistors and capacitors. As a result it is unusually easy to fit to an existing amplifier, particularly as the absence of an inductance reduces the likelihood of trouble from hum pick-up.

While the circuit does not give the large amounts of lift which can be obtained by more complicated designs or by the use of resonating circuits, it is sufficient for normal requirements. The bass lift is not intended to compensate for the falling record characteristic below 300 c/s. This should be dealt with separately, so allowing the tone control to give extra lift for records abnormally deficient in bass or for listening at low volume. If required, however, a fair measure of compensation can be obtained.

It is not always realized that large amounts of bass lift cannot be achieved in a simple single-stage non-resonating circuit without lifting the lower middle register as well. The maximum rate of lift is fixed and it is only by starting at a higher frequency that greater lifts can be obtained. The amount of top lift which can be satisfactorily used is limited by amplitude distortion. Since this distortion consists of the introduction of frequencies 2, 3, 4, etc., times the fundamental frequency, a rising frequency characteristic emphasizes any which is present in the signal prior to the tone-control stage. The higher order harmonics, which are the most disturbing to the ear, are the ones which receive the greatest amplification. This limit to the useful degree of top lift applies to all forms of top lift circuit, and is inherent.

The basic bass-lift circuit is shown in Fig. 1(a). The capacitor C_1 has a reactance which increases as the frequency decreases, so that the output increases at lower frequencies. By shunting it with a variable resistor, Fig. 1(b), the degree of bass lift can be controlled. In the same way Fig. 2(a) shows the circuit for bass cut, and in Fig. 2(b) a variable resistor controls the amount of bass cut.

The two circuits of Figs. 1(b) and 2(b) can now be combined to give that of Fig. 3, where bass lift and cut are controlled by the potentiometer R_3.

The treble and bass controls can now be combined into the circuit shown in Fig. 7, and will normally be used as part of the coupling between two valves. For signal current the resistance, $R_1 + R_2$, is in parallel with the anode load resistance of the previous valve. R_1 and R_2 should therefore be as high as possible so that the valve does not work into too low a load. The minimum load should be about twice the valve impedance. On the other hand they must not be too high or the valve output capacitance and stray capacitances will affect response at high frequencies.

A simple method of finding
suitable values is to use an anode resistor of at least 4–5 times the valve impedance and to make the sum of R_1 and R_2 rather larger than this. A ratio for R_1/R_2 of 10/1 is suitable for normal tone control requirements. For a medium resistance triode of 7,000–10,000 ohms impedance, an anode resistor of 56,000 ohms could be used with R_1 and R_2 100,000 and 10,000 ohms respectively. The total anode load will then be about 35,000 ohms. This will vary, of course, as the controls are used to give lift or cut, but the only time any appreciable drop will occur in anode load will be at high frequencies when maximum top lift is used.

This type of tone control circuit should always be placed as far forward in the amplifier as possible so that the input to the valve preceding the control is low. There is then little chance of distortion being introduced by the valve on account of the possible low load resistance. A smaller bias voltage than that normally employed will help to reduce distortion to a minimum. If the input to the valve is x volts, the optimum bias is $(1 + x)$ volts since this is the least bias which will safeguard us from grid current. Thus, a bias of 1.3 volts is required if the input is 0.3 volts. The value of the cathode resistor required for this bias is best determined by trial and error, using a high-resistance voltmeter for measuring bias voltage, or measuring the anode current I_A and calculating the bias voltage from IR, where R is the cathode resistance. A 1,000-ohm wire-wound potentiometer of the preset type is easily and cheaply obtainable these days and would be a very suitable cathode resistor. The resistance in circuit can be estimated with sufficient accuracy from the degree of rotation.

A complete circuit suitable for feeding to a medium impedance triode such as the MHL4 is shown in Fig. 8. The values given provide a satisfactory degree of control. On test a similar circuit gave the following results:

- Bass control: $+$ 10 dB to -12 dB at 50 c/s.
- Treble control: $+$ 10 dB to -16 dB at 6,000 c/s.

If it is felt that more or less change would be an advantage, it is easy to alter the characteristics of the circuit by using different capacitor values. In increasing the values of C_2 and C_4, Fig. 7, will increase the amounts of top lift and top cut respectively, while a decrease in their values will reduce the amounts of control. Bass lift and bass cut can be increased by decreasing the values of C_1 and C_5, and vice-versa.

For example, if a greater bass lift is required, so that it can be used as compensation for the falling bass characteristic of gramophone records, the value of C_5 should be reduced from 0.02 μF to 0.01 μF. The great ease with which the circuit characteristics can be altered in this way is one of the outstanding merits of the design.

The variable cathode resistor need only be used if it is required to introduce the very minimum of distortion, such as before one of the modern low-distortion amplifiers. There is little point in reducing the distortion of the main amplifier to less than 0.1% and then introducing anything up to 0.5% or possibly more in a previous stage. In fact, some tone control stages using normal bias for the valve can introduce from 3% to 5% harmonic distortion. Where the variable re-

![Fig. 5](image)

(a) (b)

Fig. 5. Top cut is obtained from circuit (a) and controlled by a variable resistor as in (b).

![Fig. 6](image)

Fig. 6. Here the top cut and lift circuits are combined and controlled by R_4.

![Fig. 7](image)

Fig. 7. The combination of the bass and top circuits is shown here.

![Fig. 8](image)

Fig. 8. Complete circuit diagram showing how the tone control is included in an amplifier.
ELECTRONIC CIRCUITRY

Selections from a Designer’s Notebook

By J. McG. SOWERBY (Cinema Television Ltd.)

Wireless World February, 1949

Simple Tone Control Circuit—

The tone control circuit used as the coupling between the two halves of the double triode. Where 6-volt heaters are used this provides an easy method of introducing the tone control with the minimum of interference with the rest of the amplifier. If 4-volt heaters are used and there is a spare 4-volt winding on the mains transformer, it is possible to obtain a 6-volt supply by connecting half the spare winding, giving 2 volts, in series with a 4-volt winding already in use. The two must be connected so as to give 6 volts and not 2 volts, as will be the case if the extra half-secondary is connected so as to oppose the 4-volt secondary. The right connection is most easily found by trial, using the glow of the valve heater as an indicator. There is no difficulty whatsoever in determining by this means the correct coupling between the two secondaries.

If a double triode is used in place of a normal medium impedance triode it will generally be found that gain is about double that of the original.

Fig. 1. Low-noise cascode circuit.

In the July, 1948, issue some notes on the cascode circuit were presented, and as these aroused some interest it seems worthwhile to amplify the information originally given.

A recent paper has described a modification of the original cascode circuit and the elements of the new arrangement are shown in Fig. 1. This circuit was specifically designed as a low-noise r.f. amplifier, the shot noise generated being virtually that of the triode V_1. Readers will remember that the shot noise in a pentode is much greater than in a triode—largely because of the splitting of the cathode current between the anode and screen. In a triode this splitting is absent and the noise is less; but if a grounded-cathode triode is used directly as an r.f. amplifier, neutralization must be employed to ensure stability. To avoid this difficulty grounded-grid triodes have been widely used, but then the input impedance is low.

At the expense of another valve the foregoing difficulties are overcome in the circuit of Fig. 1, because (a) provided the grid of V_1 is negative with respect to its cathode, its input impedance is high; and because (b) the Miller effect on V_1 is small since the cathode of V_2 presents a low impedance to V_1. In fact if the mutual conductances of V_1 and V_2 are the same, the gain from grid to anode of V_1 is nearly unity. The second valve V_2 contributes little to the noise, because any fluctuations occurring in it are reduced by a factor approximately equal to the amplification factor of V_1 when referred to that valve's grid. The gain obtainable is approximately the product of the load (Z_L) and the working mutual conductance of V_1. There seems no reason why V_1 should not be a triode-connected variable-mu valve (to permit the application of a.v.c.) and then such a stage could be used.

Fig. 2. 6SN7.

used as the r.f. amplifier in the first stage of a normal receiver. The writer has not yet done any experimental work on these lines, however.

The usefulness of the circuit does not end here, and it will be of considerable use in d.c. amplifiers. If an attempt is made to design a high-gain d.c. amplifier, then the obvious choice of valve is a pentode. To realize the high gain the impedance of the screen-grid supply must be small, for otherwise screen feedback will be introduced. This low impedance is normally obtained with a by-pass condenser, but this becomes inoperative at zero frequency, so that some other device (cathode follower, neon stabilizer, etc.) has to be employed in a d.c. amplifier. From this point of view the circuit of Fig. 1 can be loosely regarded as a sort of pentode in which the screen grid is replaced by the grid of V_2. As it is a simple matter to arrange for this grid to take no current, the impedance of its supply circuit at r.f. is immaterial.

![Graph](image)

A clear picture of the behaviour of the circuit is perhaps best given by the characteristic valve curves of Figs. 2, 3 and 4, which have been plotted for three common double triodes. In each case the grid of the upper triode was taken to a positive supply of 100 volts, and the anode current plotted against anode voltage for various values of grid bias on the lower triode (V_2).

![Graph](image)

When using mercury vapour thyratrons and rectifiers it is necessary to apply heater or filament power to the valve(s) for a considerable period before the anode supply is switched on. For example the minimum recommended heating time for the B.T.5 thyratron, is five minutes. Consequently a relay is needed which will close five minutes after the heater supply is switched on. Furthermore—and this is perhaps controversial—it is desirable that on the removal of the supply for a few seconds the relay should be de-energized only to close again after the pre-set delay time.

A circuit which meets the foregoing requirements is shown in Fig. 5. This presupposes that sufficient power to operate one valve is available from the instant the thyatron heater is switched on—for example the circuit might obtain its power from the same transformer as that which supplies the thyatron heater. Let us now consider one cycle of operation of the circuit of Fig. 5.

Initially C is uncharged, and h.t. and heater power are applied to V. The grid is therefore at earth potential and the cathode positive with respect to earth by the drop across R_c. Consequently current flows through R, and C begins to charge up, taking the grid (and cathode) in a positive direction. Provided R_e is not too low, there will be a considerable range of grid potential for which the cathode is positive with respect to the grid, so that current continues to flow through R. As the potential across R is always small (2-10 volts with a high-slope valve), the current through it is also small and consequently the grid and cathode potentials rise slowly. As the cathode potential rises the cathode current rises with it and eventually the relay operates, applying the anode supply to the thyatron.

![Diagram](image)

A desirable but not essential feature is the inclusion of an extra pair of contacts S_1 on the relay, which on closing hold the grid potential at E as long as the supply is maintained. This
Electronic Circuitry—simply holds the valve under fixed conditions as a cathode follower. If the supply is interrupted, although the h.t. and heater supplies cease, the cathode will remain hot and emitting for several seconds by virtue of its thermal capacity. The grid-cathode path of the valve then acts as a diode and C is rapidly discharged through R, so that even if the supply is re-applied at once, almost the full delay must elapse before the relay can operate again.

The writer has found no difficulty in obtaining a delay of five minutes with \(C = 2.25 \mu F \) and \(R = 10 \text{MO} \), the valve being an EF91 (CV138). Informed readers will recognize this circuit as being but one more variant of the "bootstrap" circuit.*

Quality Appreciation

B.S.R.A. Discuss Physiological Aspects

At a London meeting of the British Sound Recording Association on December 17th, 1948, E. A. Vetter read a paper on "Some Physiological Factors in Quality Appreciation." He thought that many people engaged in the reproduction and recording of sound would agree that success resulted from a combination of 25% art and 25% science. For the purpose of his argument the measurement and interpretation of the electrical performance of amplifiers and other physical components of the recording chain, representing 25% of the problem, would be taken as read.

With the aid of diagrams he explained the structure of the ear and showed how the non-linearity of coupling between the drum and the cochlea was adapted to afford protection from shock waves of large amplitude. He also stressed the variations which exist between individuals, and differences in structure in other animals.

Not only was the perception of sound modified by physical differences, but it could also change as the result of conditioned reflexes, much in the same way as visual appreciation of colour depended on preceding stimuli. Those who had experience of flying in noisy aircraft knew that some time after landing there was an almost complete cut-off of low frequencies, though high-pitched sounds could be heard quite well. Conversely, composers often wrote pianissimo passages before a fortissimo climax to enhance the effect. Although the total dynamic range of the ear was of the order of 120 db there was reason to believe that no more than 60 db was available at any one time.

Aural appreciation of surrounds, due to coloration of reverberation by frequency discrimination in the reflecting surfaces, was a keen subconscious faculty developed against a background of conditioned reflexes which had been built up from birth. The process was similar to that by which a good craftsman performed without effort the routine skilled operations of his trade, thus leaving his conscious mind free to cope with the new or unusual in his work.

We had now reached the stage where it would be more profitable to discover the significant elements in sound than to strive for greater perfection in equipment. When we knew more about the world of sound to which our ears were accustomed and could establish standards showing how far the significant elements could be displaced, it would be a comparatively simple matter to provide apparatus which would perform within the permissible tolerances. To the pure scientist, there was no such thing as distortion; only phenomena out of place. Translating this into terms of acoustic engineering, we should say: "There is no such thing as distortion; only memory out of place."

In the discussion which followed, several speakers gave examples confirming the accommodation of the ear to its acoustic surroundings, and it was generally agreed that the "memory" of the ear was much shorter than that of the eye.

It was thought that the modern pianoforte with its equally-tempered scale had done much to destroy the appreciation of true pitch and that primitive peoples still making use of a pure or simple five-note scale had a keener sense of intonation.

Appreciation of auditory prospective was largely a matter of the different reverberation patterns associated with individual instruments and their positions relative to the microphone. Two channels, or even two ears were unnecessary to convey this quality.

"Scale distortion," which was generally discussed in relation to the balance of different parts of the frequency spectrum, had an even more important aspect. Musical instruments when played loudly gave out a much wider range of harmonics than when played softly. When reproduced at a level differing from the original, the effect would be immediately detected as untrue, however free from distortion the reproducing chain might be. Similar effects could be produced by distortion in the amplifier, or bad playing by the instrumentalist. Obviously, it was necessary to find which effect was out of place, and to resist the first impulse to reach for a soldering iron and do things to the amplifier.

Cathode Ray Tubes undergoing a 1,000-hour life test at Ediswan's Ponders End factory forms the subject for this month's cover illustration and twelve-inch tubes are here shown being tested for spot centrality, cathode emission, modulation sensitivity, heater current and heater-cathode insulation, etc. They are also subjected to an over-voltage test for possible flash-over.

* O. S. Puckle, Time Bases (Chapman and Hall), page 94.
Two valves — very rare

BRIMARIZE
— don't despair.

Types 35Z5GT and 45Z5GT are half wave rectifiers commonly used in American AC/DC receivers. Both of these valves employ tapped heaters, across a section of which the dial lamp is usually connected.

Direct substitution by type 35Z4GT will render the lamp inoperative, the rest of the set functioning as before.

If dial illumination is necessary, the lamp may be connected directly in series with the heater chain provided it is shunted with a suitable resistor.

Alternately a 0.3 amp. lamp may be employed, wired in series with the negative mains lead i.e., between mains switch and chassis.

Characteristics

<table>
<thead>
<tr>
<th>Valve</th>
<th>Heater Voltage</th>
<th>Heater Current</th>
<th>R.M.S. Input</th>
<th>Rectified Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>35Z4GT</td>
<td>35 volts</td>
<td>0.15 amp.</td>
<td>250 volts</td>
<td>100 mA</td>
</tr>
<tr>
<td>35Z5GT</td>
<td>45 volts</td>
<td>0.15 amp.</td>
<td>235 volts</td>
<td>100 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change Valve</th>
<th>Change Socket</th>
<th>Other Work Necessary</th>
<th>Performance Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM</td>
<td>TO</td>
<td>FROM</td>
<td>TO</td>
</tr>
<tr>
<td>35Z5GT</td>
<td>35Z4GT</td>
<td>Int. Octal.</td>
<td>NO CHANGE</td>
</tr>
<tr>
<td>45Z5GT</td>
<td>35Z4GT</td>
<td>AS ABOVE</td>
<td></td>
</tr>
</tbody>
</table>

Note:— A 6.3 volt 0.2 amp. lamp requires a shunt resistor of 25-50 ohms 2 watt.

BRIMAR

Reprints of these data sheets are now available.

BRIMAR

RADIO VALVES

STANDARD TELEPHONES AND CABLES LIMITED, FOOTSCRAY. SIDCUP, KENT.
Vortexion announce the

"STEREOPHONIC"
AMPLIFIER

This new amplifier with triode cathode-coupled output stage has the effect of making the reproduction more like the original than ever before. A small proportion of this improvement results from the reduction of the Doppler effect, which is achieved without lowering the damping factor on the speakers, with the consequent distortion and transient loss which would follow.

When listening to an orchestra the low frequencies are usually heard towards the right, and the high frequencies towards the left. When reproduced through the Vortexion "Stereophonic" amplifier with low and high frequency speakers suitably spaced according to required listening angle, the high and low frequencies are heard in their relative positions simulating the effect and appreciation of the original.

This speaker placing is necessary because our ears are on a horizontal plane. The effect would be lost if our ears were positioned one above the other, as can be proved by inclining the head sideways.

Our efforts to achieve "Stereophonic" results by the use of various choke and condenser cross-over networks between the amplifier and speakers were unsuccessful, due to the large variation of speaker impedance at various frequencies, unevenly loading the resonant circuits.

After many months of research we finally achieved our aim with what is basically two special low-distortion, high-damping factor amplifiers in one, each covering a portion of the audio spectrum with a 40 db cut per octave at change-over frequency. The acoustical efficiency of the bass and treble speakers may vary, so a balancing control is fitted to the amplifier. This simplifies the choice of speakers, since each speaker has only a narrow frequency coverage.

The "Stereophonic" amplifier is now in production, and we invite you to hear a demonstration of what we believe to be something new and which will add to your enjoyment of music.

Price 36½ gns

VORTEXION LIMITED, 257-261 THE BROADWAY, WIMBLEDON, LONDON, S.W.19
Telephones: LIB 2814 and 6242-3
Telegrams: "Vortexion, Wimble, London"
RADIO ARITHMETIC

How to Take Short Cuts Without Loss of Accuracy

By GEOFFREY STEDMAN, B.Sc.

The height of a cylinder is 2.1 in; the radius of the base is 3.2 in. Find its volume.

Volume = \(\pi r^2 h \)

\[= 3.1416 \times (3.2)^2 \times 2.1 \]

\[= 67.56964 \text{ cu in.} \]

This is a problem and solution which I saw recently in the exercise book of a pupil of a junior technical school. The answer was marked right and full marks awarded by the teacher, so that there was one more potentially good engineer having his taste for mathematics nipped in the bud. Intelligent approximation is based not upon the number of decimal places, but upon the number of significant figures.

The proper answer to the above problem is 68 cu in, for since the data are given only to two significant figures, there can be no knowledge of the answer beyond that degree of accuracy. If the teacher had wanted 67.6 cu in for an answer, he should have quoted 2.101 and 3.201 as the height and 3.201 as the radius. Now radio engineering is peculiar in that while its theory is very mathematical in form, arithmetical results are seldom required to within \(\pm 1 \% \); indeed, more often than not \(\pm 10 \% \) suffices, since if the value of almost any component of a receiver is altered by as much as \(10 \% \), the effect upon overall performance is imperceptible except by the use of instruments. This means that if the radio engineer will so far overcome the pernicious habits implanted in him by his mathematical miseducation as to use suitably approximate methods of calculation, his arithmetic adventures will be more efficient, more pleasant and more frequent, which will reduce the wear and tear on his slide rule. It is usually difficult to persuade a student who has been through the usual school arithmetic course to dare to make approximate calculations. He is ill at ease with arithmetic, and, instead of feeling that he is conducting the calculation himself, he feels rather as if he were invoking, by strange and imperfectly acquired magic rites, the awesome demon of mathematics to do the work for him, and that therefore the slightest variation of the rites may result in quite incalculably severe mutilations of the answer.

Let us calculate the volume of the above cylinder by approximate methods.

Volume = \(\pi r^2 h \)

\[= \frac{25}{8} \times 3.2 \times 3.2 \times 2.1 \pm 1\% \]

\[= \frac{25}{8} \times 0.4 \times 3.2 \times 2.1 \pm 1\% \]

\[= \frac{32}{2.1} \pm 1\% \]

\[= 67.2 \pm 1\% \]

\[= 67.2 \pm 0.3 = 67.5 \text{ cu in.} \]

In the second case the value of \(\pi \) is taken as \(\frac{22}{7} \pm 1\% \), which is an extremely useful alternative to \(\frac{3}{4} \) since \(\pi \) usually associates itself with even numbers in radio arithmetic, and a sufficient number of multiplications of 25/8 by 2 will cause it to assume the innocuous value of 100.

Example: Find the capacity of a parallel plate condenser whose plate area is 7.5 sq cm and whose dielectric is 0.10 mm thick, and has a dielectric constant of 4.2.

Capacity = \(\frac{k \Lambda}{4 \pi d} \)

\[= \frac{4.2 \times 7.5}{4 \pi \times 0.01} \]

\[= \frac{4.2 \times 7.5}{0.01} \]

\[= 4.2 \times 60 = 252 \text{ electrostatic units} \]

This result is correct to two significant figures; had we wanted three significant figures it would have been necessary to deduct \(0.1 \% \) (since \(\pi \) is in the denominator) and the final result would be 252 - \(\frac{1}{10} \% \) = 251 electrostatic units.

If the reader now complains that I am choosing specially simple examples to exhibit my method to advantage, I would point out that any examples may be so treated by making them simple. Thus, had the radius of the cylinder of the first problem been 3.1 in, the working would have been:

Volume = \(\pi r^2 h \)

\[= \frac{25}{8} \times 3.1 \times 3.1 \times 2.1 \pm \frac{1}{4} \% \]

\[= \frac{25}{8} \times 3.0 \times 3.0 \times 2.1 \pm \frac{1}{4} \% \]

\[= 10 \times 3.0 \times 2.1 \pm \frac{1}{4} \% \]

\[= 63 \pm \frac{1}{4} \% = 63.3 \text{ cu in.} \]

If the condenser of the last example had had an area of 73 sq cm we should have written 73 = 75 - 2 = 73 - 3%.

Efficiency in this kind of calculation depends upon a suitable modification of the actual numbers to near numbers which are easier to work with, and either noting the appropriate correction to be made to the result, or else effecting two contrary modifications whose corrections cancel each other to within the degree of accuracy aimed at. After very little practice the method has the ease of habit. Thus, \(4.4 \times 4.6 = 4.5 \times 4.5 \) less 2% = \(9 \times 2.3 \) less 2%. Also, \(4.4 \times 4.6 = 4.5 \times 4.5 = 4.2 \times 4.8 \).

Which of these or of the many other ways of writing the product, we choose, will depend upon the other factors of the calculation. Powers and roots are easily extracted on sight to 2 or 3 significant figures, by a simple application of the binomial theorem. For this purpose, all we need to know about the binomial theorem is, that if a small fractional part of a number is added to that number, approximately double that fractional part is added to its square, and half the fractional part to its square root. Three times the fractional part is added to the cube, and so on.

Readers familiar with the binomial theorem will know that we are taking the first and second terms
Radio Arithmetic—

only of the binomial expansion in this approximation. Thus—

\[10^4 = 100 \]

\[10.1^4 = 102.01 \text{i.e. } (10 + 1 \%)^4 \]

\[= 100 + 2 \% \text{ approx.} \]

\[10.2^4 = 104.04 \text{i.e. } (10 + 2 \%)^4 \]

\[= 100 + 4 \% \text{ approx.} \]

\[9.9^4 = 98.01 \text{i.e. } (10 - 1 \%)^4 \]

\[= 100 - 2 \% \text{ approx.} \]

Similarly

\[\sqrt[4]{101} = 10.0499 \text{i.e. } \sqrt[4]{100 + 1 \%} \]

\[= 10 + \frac{1}{2} \% \text{ approx.} \]

and so on. As examples.

\[\sqrt[4]{50} = \sqrt[4]{49 + 1} = \sqrt[4]{49 + 2 \%} \]

\[= 7 + 1 \% = 7.07 \]

\[\sqrt[4]{60} = \sqrt[4]{64 - 4} = \sqrt[4]{64 \text{ less } 1/16\text{th}} \]

\[= 8 \frac{1}{3}\text{rd}n = 8 - 0.25 \]

\[= 7.75 \]

Alternatively

\[\sqrt[4]{60} = \sqrt[4]{49 + 11} = \sqrt[4]{49 + 22 \%} \]

\[= 7 + 11 \% = 7.77 \]

This result is not quite so good since the correction is larger, but is still within about 1\% of the truth.

The number \(\pi \) occurs so frequently in radio calculations that a variety of ways of dealing with it are useful. We have seen that \(\pi = 25/8 \text{ plus } \frac{1}{3}\% \text{ so that } \pi = \sqrt{10} \text{ less } 2/3\% \text{ Since } \sqrt{10} \text{ is } 3.16, \text{ we have the following trio of easily remembered numbers:} \)

\[\pi = 3.14, \sqrt{10} = 3.16, \sqrt{\pi} = 3.18 \]

Multiples and Submultiples

Let us now consider a simplified way of dealing with the prefixes milli, micro, kilo and mega. When one reads "2mA" one usually makes a mental division between the "2" and the "mA"; the number 2 is the second and the units are milliamperes. This is strange, because if the quantity is written \(2 \times 10^{-3} \text{A}, \) the whole of \(2 \times 10^{-3} \text{ is } \text{usually thought of as the number. Let us, then, take 2m as the number, and amperes as the units. The advantage of this in calculating is twofold. First, the letters m, \(\mu \), k and M are more convenient to write and work with than \(10^{-3}, 10^{-6}, 10^{3} \text{ and } 10^{4}, \) and second, only one unit of any quantity can be used,—amperes for current, henrys for inductance, cycles per second for frequency and so on, so that the final business of the orthodox method of many computations, e.g.

expressing \(5.6 \times 10^{-8} \text{ amperes in terms of some more convenient submultiple, is entirely avoided. To pay for these advantages, all one needs to do is to become familiar with the following relationships which are obviously true, and place no strain on the memory as soon as one accustoms oneself to regard the symbols as numbers:} \)

\[m = 1/k, \mu = 1/M, m^2 = \mu, k^2 = M. \]

Examples:

(i) Find the resistance of one metre of wire of diameter 0.0040 cm and specific resistance 50.7 microhm-cm.

\[R = \frac{p}{\pi r^2} = \frac{50.7 \times 100}{\pi (0.0040)^2} = \frac{50.7 \times 100}{\pi (2.56 \times 10^{-3})^2} = \frac{50.7 \times 100}{\pi (6.5536 \times 10^{-6})} = \frac{50.7}{0.000628} \approx 8040 \text{ ohms.} \]

(ii) At what frequency will 50 microhenrys and 0.000030 microfarads resonate?

\[\frac{1}{\omega L} = \frac{f}{2 \pi} = \frac{1}{2 \pi \sqrt{LC}} = \frac{1}{2 \pi \sqrt{50 \times 10^{-5} \times 0.00003}} = \frac{1}{2 \pi \sqrt{1.5708 \times 10^{-9}}} = \frac{1}{2 \pi \times 1.257} = 0.078 \text{ cycles per sec.} \]

(iii) What inductance will resonate at 5.0 Mc/s with 300 micro-microfarads?

\[\frac{1}{\omega^2 L} = \frac{1}{2 \pi^2 \times 5 \times 10^6 \times 300 \times 10^{-6}} = \frac{1}{2 \pi^2 \times 5 \times 10^2 \times 300} = \frac{1}{2 \pi^2 \times 1.5708} = 0.026 \text{ cycles per sec.} \]

This needs \(\frac{1}{3}\% \text{ added to correct for writing } 10 \text{ for } \pi \text{, if, as is unusual, the value of an inductance is needed to such a degree of accuracy.} \]

(iv) What current will dissipate \(\frac{1}{4} \text{ watt in a } 250,000 \Omega \text{ resistor?} \]

Since Watts = \(\frac{I^2}{R} \),

\[I = \sqrt{\frac{W}{R}} = \sqrt{\frac{1}{4 \times 10^5 \Omega}} = \sqrt{\frac{1}{4 \times 10^5}} = \frac{1}{100} \approx 0.01 \text{ A} \]

I.E.E. Students

To provide a forum for students where they could discuss technical matters in a less formal atmosphere than that which generally prevails at meetings of learned societies, the Institution of Electrical Engineers formed a Students' Section some 60 years ago. Instead of the original small section in London there are now fourteen operating in different parts of the country with a membership of over 9,200.

Anyone up to the age of 28 who is studying or engaged in any branch of electrical engineering may become a student member of the Institution. When he has obtained academic qualifications of degree standard he may transfer to the class of Graduate, and on completing a further period of practical training followed by holding a responsible position he can apply to become an Associate Member.

One advantage of the Section is that the discussions at its meetings are not reported, so that reputations are not endangered by incautious statements. Abstracts of papers read at the meetings, which embrace the various branches of electrical engineering covered by the sections of the Institution—Radio, Utilization, Measurements and Supply—are published in the Students' Quarterly Journal.

Industrial Chokes and Transformers

A new range of totally enclosed iron-cored components has been produced by the Plessey Co., Ilford, Essex, for use in industrial control gear, test and communications equipment. Protection is provided by bitumen-filled, heavy gauge steel cases, and the electrical and material specifications are in accordance with British Standards. The range includes chokes, auto-transformers, single and multi-secondary transformers, mains and output transformers.
B.B.C. TELEVISION MAP
Service Areas of the Alexandra Palace Transmitter

This map (based by courtesy on a larger one produced by a B.B.C. survey) shows approximate field strength contours of the London vision transmitter (45Mc s). The contours give the average values in the areas concerned; probable degree of error is greatest in hilly or built-up areas and least in open flat country. A description of the map is on p. 74.
IONOSPHERE REVIEW: 1948

Sunspot Cycle and Short-wave Propagation Survey, with Forecast for 1949

By T. W. BENNINGTON (Engineering Division, B.B.C.)

In this article it is intended to review the course of the present sunspot cycle, giving special attention to the changes which took place during 1948, and to see what effects these had upon short-wave propagation during the year. We may then attempt to see how short-wave conditions are likely to vary during 1948. Since it is impossible to forecast accurately the variations in sunspot activity a long way ahead, and as the changes in short-wave conditions depend upon these variations, it follows that the prediction of a year's variations in short-wave propagation conditions is a somewhat difficult task. Nevertheless, from an examination of past and current trends, we may at least obtain an indication as to what may be like, from a short-wave propagation point of view.

Since there may be readers who are new to this subject and who have not followed these yearly Wireless World reviews of past conditions, a few brief explanatory words may not come amiss.

The ionization of the upper atmosphere—and thus the formation of the region there known as the ionosphere—is brought about in the main by the action of the sun's ultra-violet radiations, and, since the sun's activity, and hence the strength of its radiations, varies over a long period, which is the sunspot cycle, the condition of the ionosphere varies likewise. One property of the ionosphere is its ability to bend or refract radio-waves—particularly those in the short-wave range—and thus to guide them round the earth and, if its ionization level should vary over the sunspot cycle, the conditions for short-wave propagation will also change.

Among other evidence of the variations in the sun's activity are the sunspots which appear upon its surface, and these are regularly examined at the various astronomical observatories, the information there obtained being published in the form of 'sunspot relative numbers.' The observations made at the different observatories are correlated at Zurich and the final number published from there. The final numbers for 1948 are not yet available, however, so for this review we shall use the provisional sunspot numbers obtained from the Royal Observatory at Greenwich. Measurements of the atmospheric ionization are regularly made at ionospheric observatories in many parts of the world and in some cases records go back as far as 1749. The correlation between the two sets of phenomena, solar and ionospheric, has been well established and the ionosphere does, in fact, respond in a marked way to variations in the activity of its producing agent, the sun.

The critical frequency of a layer is the highest frequency returned by that layer when the radio wave is sent vertically upwards, and it is proportional to the ionization existing in the layer. For communication over a distance the corresponding value is the Maximum Usable Frequency, which depends on the critical frequency, and on the angle of incidence made on the layer in order for the wave to be returned to earth at a particular distance. The M.U.F. thus increases from the critical frequency as the distance over which it is desired to communicate increases and, as a rough guide, we could assume that the M.U.F. for the maximum distance it is possible to cover in one hop is about 3.3 times the critical frequency of the F_2 layer.

So far as radio-wave propagation is concerned 1948 was again a very interesting year during which the sunspot activity remained, on the average, at an extremely high level. As a result the useful frequencies for long-distance communication were also of an extremely high order. In fact the general sunspot activity so far as we can yet tell was slightly lower than during 1947, yet it remained at a level which has been reached only very seldom since 1749. The last year—apart from 1947—when the activity was of a comparable value to that of 1948 was in 1870. So it is obvious at once that whatever other conclusions we may arrive at—1948 was an exceptional year for short-wave propagation; a year during which the usable frequencies were higher than usual and possibly higher than they may be for many years to come. Let us now examine things in a little more detail.

Course of the Sunspot Cycle.—In Fig. 1 are plotted the mean annual values of the sunspot relative numbers for a period covering the whole of the last and present cycles, it being stressed that the values for 1948 are provisional only. It is interesting to note that the publication of the final sunspot numbers for 1947 has not altered a fact which was pointed out in last year's review, namely, that the sunspot activity during 1947 has been exceeded once only during the 199 years covered by the continuous records and that was 170 years ago, in 1778. It would appear from the curve that the year of maximum
activity in the present cycle was 1947, although the activity during 1948 was only slightly less than during the previous year. We cannot, however, be absolutely certain about this until the final sunspot numbers for 1948 are published. It does seem to be strongly indicated, however, that the maximum in the present sunspot cycle is now past and that, for some years to come, we may expect the solar activity to go on decreasing. However, even when the final numbers for 1948 are available, and even supposing they do show a decrease in activity, we still cannot be quite confident that the statement at the end of the last sentence will be true, for sometimes the activity, after decreasing for a time, unexpectedly begins to increase again so as to bring about a subsidiary maximum.

We see, from Fig. 1, that so far the present sunspot cycle has been markedly different to its predecessor, notably in the time between the epoch of maximum activity and that of the preceding minimum, and also in the magnitude of the activity at the maximum. Even if 1948 was the first year of the decreasing phase in the present cycle, we see that the general activity was nevertheless greater than that during the maximum year of the preceding cycle, which itself was higher than that reached during the five preceding cycles. So that 1948, considered over a long period of time, was a year of exceptionally high sunspot activity and, consequently, one of very high usable frequencies for long-distance radio communication. During 1949 we should, always with the reservations already alluded to, expect the usable frequencies to decrease, and perhaps to do so somewhat more rapidly than they did during 1948, but still to be, on the average, relatively high.

Ionospheric Variations.—In Fig. 2 are plotted (top curve) the monthly means of the sunspot relative numbers for each month of the years 1945-1948, and (bottom curve) the monthly means of the noon critical frequencies of the F2 layer for the same period, as measured in England.

There are some interesting things to note about these two curves and about the correlation between them, especially during 1948. The sunspot activity varied erratically month by month, of course, but showed a gradually increasing tendency from 1945—the year of minimum activity—towards 1947 and 1948. As to these two latter years it should be noted that although the general activity for the year was higher during 1947 than 1948, the actual sunspot maximum may have occurred during the latter year, for we see that the sunspot number for April, 1948, was greater than that for any previous month in the present cycle. There is, however, an element of uncertainty about this as the 1948 values arc, as yet, only provisional.

It is interesting to observe that after a very considerable decrease lasting some months towards February, 1948, the sunspot activity then increased to very high values again, and remained exceptionally high for several further months. It is to be noted that the sunspot activity during April, 1948, might well be described as being phenomenally high, for only three times before within the period covered by the continuous records (from 1749) has the monthly mean reached a value exceeding 200. These were in May, 1778, when it reached 238.9, in December, 1836, when it was 206.2, and in May, 1947, when it was 201.3.

From the bottom curve of Fig. 2 it is seen that there was a general rise in the noon F2 layer critical frequencies as the sunspot cycle progressed in its course, due of course, to the increasing power of the sun’s ultra-violet radiations in ionizing the gases of which the layer is composed. Between the epochs of minimum and maximum activity the increase in the noon critical frequency is seen to be of the order of 3 Mc/s during the summer, and of 8 Mc/s during the winter, implying increases in the M.U.F. for longest distance transmission of about 10 Mc/s in summer and no less than 25 Mc/s in winter. If we were to examine the critical frequencies of the other layers, or of the F1 layer for other times of the day, we should see that they all showed an increase in accordance with the increasing sunspot activity, although the actual degree of increase would be different for different layers and times of day. It is, in fact, greatest for the F2 layer, and at noon.

In the bottom curve of Fig. 2 there are, of course, the large seasonal variations in the noon F2 critical frequency superimposed on those due to the sunspot cycle. It is seen that, generally speaking, these are such as to cause low

![Fig. 2. (Top curve) Monthly mean values of sunspot relative numbers; (lower curve) F2 critical frequencies for the past four years.](image-url)
Ionosphere Review: 1948 —

values of critical frequency in summer, and high values in winter, except that there is a small fall in the critical frequency at the extreme mid-winter period. This mid-winter decrease in critical frequency has, in fact, occurred without exception during every year of the present cycle. Thus the highest values tend to occur each year about February and November.

It would appear, from the curve, that the highest critical frequencies — and thus the highest usable frequencies for long distance radio communication — occurred during the present cycle in November, 1947. In December there was a sharp fall in critical frequency, which would have been expected. Having regard to the mid-winter effect just mentioned, but early in 1948 there was no recovery from this depression in critical frequency values, as had been the case during each preceding year. There can be little doubt that the failure to recover from the mid-winter fall was due to the sharp decrease in sunspot activity which took place during the last few months of 1947, and which persisted during the first three months of 1948. During the summer of 1948 the sunspot activity was again at a high value, and the critical frequencies were but slightly lower than during the summer of 1947.

Towards the end of the year sunspot activity again decreased, and the critical frequencies were considerably lower than during the corresponding months of 1947. Nevertheless, the mean critical frequency for noon, which in November, 1947, was 14 Mc/s, had, by November, 1948, fallen to 12.3 Mc/s, implying a mean M.U.F. for longest distance working in these latitudes of about 41 Mc/s. Of course the M.U.F.s would have considerably exceeded this mean value on individual days, and they would, generally speaking, have been higher than this for places to the south of this country, because the ionospheric refracting point would then lie in latitudes where the critical frequency is often higher than it is in these latitudes. The above fall in critical frequency as between 1947 and 1948 was thus about what had been anticipated, for, quoting from last year’s “Ionosphere Review” (Wireless World, February, 1948, p. 47) “it would appear . . . that by November, 1948, the noon mean critical frequency would only have fallen to about 12.6 Mc/s” and the mean noon M.U.F. for longest distance working in these latitudes should be of the order of 41.6 Mc/s.

Correlation between Sunspot and Ionospheric Measurements. — In Fig. 3 are given (full line curve) the twelve-months running average value of the sunspot number during the present sunspot cycle, and (dashed line curves) the twelve-month running average of the noon and midnight F2 critical frequencies over the same period, as measured in England. The object of taking a twelve-month running average of these values is to smooth out the month-by-month fluctuations in the sunspot activity, and the seasonal variations in the critical frequencies, and thus to render more apparent the long period effects in both quantities. It is done by taking for the mean for the epoch at the centre of any month the average of the twelve monthly means having that month as the centre.

An examination of these curves shows that both the noon and the midnight critical frequencies responded to the changing sunspot activity relatively faithfully, the increase as between sunspot minimum and maximum being greater at noon — when the sun’s effect upon the ionosphere is more direct — than at midnight. Although over most of the cycle the correlation between the sunspot curve and that for the critical frequencies was remarkably good, towards the maximum the critical frequency does not appear to have increased so rapidly as the sunspot number. Also, there appears to have been a lag of about three months in the reversal tendency of both critical frequency curves as compared with that for the sunspot activity. After the maximum there apparently occurred a subsidiary maximum in the sunspot activity, and then there was a definitely decreasing tendency. We must remember that all these later values are based on provisional sunspot numbers only. These variations resulted in a flattening out of the critical frequency curves after their initial tendency to decrease, although towards the end of the period a decreasing tendency again appeared. Nevertheless there has, as yet, been a relatively small decrease in the average values of critical frequency since the sunspot maximum.

It is interesting to note that, as between sunspot minimum and maximum, the noon critical frequency increased by about 2.08 times, and that for midnight by about 1.96 times, implying increases in the actual ionization of the layer of about 4.35 times for noon, and 3.84 times for midnight. In the case of the E layer the increase in critical frequency as between sunspot minimum and maximum was about 1.26 times, implying an increase in the actual ionization of this layer of about 1.59 times.

The fact that 1948 was a year of higher critical frequencies and higher M.U.F.s for radio communication than usual justifies us in classifying it as a year of relatively good short-wave conditions, particularly on the higher frequency bands. This is so because, while the ionization of the F2 layer — the principal refracting layer for long-distance communication — was increased to an exceptional degree, that of the D layer — the principal absorbing region — would only have been increased to a moderate extent. Thus the M.U.F.s would be exceptionally high and L.U.H.F. (lowest useful high frequency) only moderately so, and the band of useful frequencies would therefore be exceptionally wide.

Practical Results. — An examination of the highest frequencies which were actually usable during 1948 shows that the high M.U.F. values indicated by the measured values of ionospheric critical frequencies were, in general, well borne out. The phenomenally high frequencies on which long-distance communication was effected in October and November of 1947 did not, apparently, again become workable, as might have been expected, during February and early March of 1948. A glance at Fig. 2 clearly shows the reason for this to have been the relatively low sunspot activity then prevailing and the failure of the critical frequency to increase as between sunspot minimum and maximum.
frequencies to rise again after the mid-winter fall. It is noteworthy that the highest frequencies usable in the early spring were lower than those which became usable in the late autumn of 1948. Nevertheless, in the early part of the year frequencies up to 35 Mc/s were occasionally propagated over long distances to this country, while communication on the amateur 28-Mc/s band was fairly common on a world-wide basis. In September communication on this band became much more extensive, and remained so throughout the remainder of the year. Reception of the Alexandra Palace television signals occurred in the West Indies during this time, and towards the end of October both sound and vision transmissions were received in South Africa. So far as is known very few (if any) long-distance contacts on the amateur 50-Mc/s band were made during October and November, although American police signals on the 40-Mc/s band were frequently received in this country. Thus, as had been indicated in last year’s review, the highest workable frequencies were somewhat below those which prevailed in the autumn of 1947. Nevertheless, as has been said, working frequencies were, on the whole, relatively high throughout the year for all circuits.

Forecast for 1949.—It is difficult to tell, from the top curve of Fig. 3, what degree of sunspot activity is likely to prevail during 1949, as towards the final months the future trend is by no means clearly indicated. Again, from Fig. 1 one cannot be certain that the decrease indicated by the 1948 annual mean will be maintained. However, all things considered, it does seem likely that during 1949 the activity will continue to decrease. We should even be justified in expecting, from an examination of past cycles, that the activity is likely to decrease somewhat more rapidly than it did during 1948, and in making an estimate for the running average sunspot number for the middle of 1949 to be about 113. It is probable that if this is the case the running average of the noon critical frequencies would only have fallen to about 9.5 Mc/s, and that for midnight frequencies to rise again after the mid-winter fall. At the same time the night-time working frequencies should be of the order of 36 Mc/s, as expected decrease in sunspot activity occurs, to become workable for long-distance communication than are generally usable at present.

Fig. 3. The full-line curve shows the twelve-month running averages of sunspot numbers over the present sunspot cycle and the dashed-line curve the noon and midnight F₂ critical frequencies in England.

The detailed specification of the predicted O.W.F.s for every direction from this country and for every month and time of day during 1949 is a very complex business, and is beyond the scope of this article. In general we should expect the daytime working frequencies for most circuits to increase somewhat from their present values towards the vernal equinox, as the daytime critical frequency is likely to rise after the mid-winter fall. At the same time the night-time working frequencies should be increasing. Then, about April, daytime working frequencies should begin to fall, rather rapidly for east-west directions, and slowly for north-south directions, and this effect should continue to about June. Night-time frequencies should continue their rise to a peak about June. From June towards November there should be a further increase in the daytime working frequencies but of a smaller order than the fall from spring to summer. There should then be a slight fall towards mid-winter. The night-time working frequencies should fall from June towards mid-winter, and the fall should be greater than the increase from winter towards June. Thus one may anticipate that the year will close with somewhat lower frequencies being effective for long-distance communication than are generally usable at present.

There may, of course, be a good deal of medium-distance communication (up to 1,400 miles) on very high frequencies during the year, by way of the Sporadic E ionization, but this is not a dependable means of propagation, and is likely to be frequent only during the months of May to September. As to the 50-Mc/s amateur band, it is unlikely, if the expected decrease in sunspot activity occurs, to become workable for long-distance communication at any season of the year. It is quite possible that frequencies around 40 Mc/s may do so, both in the spring and autumn seasons. Summing up the prospects for 1949, therefore, since the sunspot...
BOOK REVIEW

This is the Australian counterpart of the American M.I.T. Radiation Laboratory books on radar. Being in one volume, even though a substantial one, the treatment of the whole of a subject which was due to an unqualified concentration of research on an international scale might be expected to be rather superficial. And being, as it is, the collective work of many authors, there was an obvious risk of overlapping and inconsistency. A third risk, which has certainly not been avoided in all books on radar, is that an organization engaged for so long on a war effort might be unable to generalize its outlook.

But all these three risks have evidently been recognized by the un-named editor, and successfully averted. There are no recapitulations of radio engineering in general, or lengthy historical reminiscences, or details of obsolete systems—or indeed excessive details of any particular systems. Mathematics has been used as it should be, for conciseness and definiteness of treatment, and has not been misused in long theoretical by-ways. The standard of mathematics is, in fact, fairly advanced in places, but is presented very clearly. Overlapping hardly exists, and the consistency of style is remarkable when it is considered that each of the twenty chapters is the work of a different author, with collaborators.

The majority of the book is devoted to the classics of microwave radar, illustrated necessarily by war-time equipment and techniques, but not too closely bound to them. A very nice balance has been observed between theory and practice, and the faults of vagueness on the one hand and mere descriptive ness on the other have been skillfully avoided.

Judging from the fact that (except in the last chapter) none of the many references is dated later than 1945, the volume went to press some 1946. It is presumably due to this that some important British circuit techniques are either missing or rather inadequately treated. Although a chapter is given to shipboard radar, it is exclusively from the naval point of view. Use on merchant ships is briefly referred to in the last chapter, on radar navigation, but harbour radar is not. This important post-war field is still marked by a gap in radar literature.

The use of symbols and terms is notably consistent and clear. A minor exception is that “concentric” is used by one contributor instead of “coaxial”; once erroneously in referring to the resonant cavities in a magnetron. The British nomenclature for waveguide and cavity modes is not given. A commendable feature is the adoption throughout the rationalized M.K.S. system of units. Its value is particularly marked in the unified treatment of circuit and field impedance.

M.G.S.

MANUFACTURERS' LITERATURE

New catalogue of acoustic baffles from Broadcast and Acoustic Equipment Co., Tombland, Norwich.

Leaflet describing demonstration audio-amplifier for schools from A. E. Cawkeell, 7, Victory Parade, The Broadway, Southall, Middlesex.

Leaflet giving particulars of heavy-duty carbon resistors for transmitters from the Moglen Company, 55, Lower Church Road, London, S.W.11.

Brochure of electronic instruments, including c.r. oscilloscopes, valve voltmeters, a.f. oscillators and stabilized power supply units, from Furzhill Laboratories, Boreham Wood, Herts.

Catalogue of copper wire, strip and stand from E. and F. Cawkeell, Ltd., Ponders End, Enfield, Middlesex.

Illustrated leaflet describing the new Model Pzob “personal” portable from the Marconiphone Company, Hayes, Middlesex.

Leaflets describing the “Williams”-type amplifier and bass reflex loudspeaker cabinets made by the Rogers Development Co., 106, Heath Street, London, N.3.

Descriptive leaflet of magnetic-tape home projector sound conversion kit, and list of fractional-inch motions, from Scophony, Ltd., Wells, Somerset.

SUPERHETERODYNE TELEVISION UNIT

Long-range Receiver

When the Wireless World Television Receiver was described*, it was stated that it was suitable only for moderate-range reception and that a more sensitive receiver unit for long-range use would be described later. The original straight set has actually proved adequate for much greater ranges than were originally envisaged, and many reports of good reception at 30 miles and over have been received.

However, it was not intended for really long-distance reception and a great deal of time and effort has been put into the development of a suitable receiver. It is a superheterodyne. It is not the need for high sensitivity which has led to the adoption of this form of receiver, for it is easy to obtain all the gain needed from the straight set; it is the need for sound-channel rejection.

The problem of sound-channel rejection is quite a difficult one if the vision-channel response is maintained at the required value and it has been greatly increased by the standards chosen for the Birmingham station.

In this photograph the upper deck of the receiver is shown hinged up so that access to the underside can be obtained.

The receiver is shown here in the normal position alongside the cathode-ray tube.

When the design of the long-range receiver was first considered it was decided that it should be of a type which would be basically suitable for the reception of this station. This decision alone was sufficient to justify the choice of the superheterodyne, for it demands changes to three coils only to make it suitable for Birmingham, whereas a straight set would need changes to at least sixteen.

The design of the set was started before the Birmingham standards were known. From the outset the use of single-sideband reception was decided on, partly because the bandwidth is halved and the stage gain doubled. The main reason, however, was that it enormously helps sound-channel rejection. By picking the sidebands remote from the sound channel the spacing between sound and vision channels is 3.5 Mc/s instead of 0.5 Mc/s. It is then easily possible to obtain 40-db discrimination without using any rejector circuits.

When this receiver had been completed and was awaiting only final testing prior to being described, the Birmingham standards were announced and it was found that single-sideband transmission would be used, the sidebands retained being those nearer the sound channel. This is, of course, the natural choice for transmission, just as the alternative is the natural choice for reception.

The result of this choice of transmission standards was to make the receiver as developed useless for the Birmingham area. It also removed most, if not all, the advantage of single-sideband reception in easing the problem of sound-channel rejection, for it brought back the old problem of obtaining some 40-db discrimination for a 0.5-Mc/s change of frequency.

On the announcement of the Birmingham standards, therefore, it was necessary to redesign the i.f. and r.f. amplifier, and it is this which has in large measure been responsible for delaying the publication of this article beyond the date originally fixed for it. The main practical difficulty encountered in design has been that of securing adequate sound-channel rejection with the required bandwidth. In order to secure the necessary performance three rejector circuits have had to be included.

The receiver as now described is suitable for reception from Alexandra Palace. For Sutton...
Superheterodyne Television Unit—Coldfield changes to three coils—two signal and one oscillator-frequency coils—will be needed. No other changes are expected to be necessary, but as the precise single-sideband standards have not yet been announced there is a remote possibility that a modified trimming procedure for the i.f. amplifier might be required. Details of the three Birmingham coils will be given nearer the opening date of the station.

The receiver has an r.f. stage, mixer and oscillator which are common to both sound and vision signals. These signals are separated in the anode circuit of the mixer. The vision channel comprises three stages followed by a diode detector, v.f. stage, and a diode noise limiter. The sound channel has two i.f. stages followed by a diode detector and diode noise limiter; as in the previous receiver, no a.f. stages are included, since it is assumed that most people already have an a.f. amplifier, or at least a broadcast.

The oscillator operates at 32 Mc/s (= 45 - 13). This frequency was chosen instead of the alternative of 58 Mc/s since it was considered that greater oscillator stability could be achieved. The only objection to it is the fact that the second channel interference band is 16 - 19 Mc/s instead of 68 - 71 Mc/s.
Because stations in this band are generally stronger there is a greater probability of interference for the same image rejection in the receiver. However, the selectivity of tuned circuits naturally tends to be greater below than above resonance, and this, at least, partially offsets it. In practice no trouble at all from second-channel interference has been found.

Intermediate frequency enables this to be overcome for any given signal frequency, but it is impracticable to secure freedom from it in this way over the whole of the television band. For this it is necessary to use thorough screening and to include an adequate filter after the detector.

The receiver is so arranged in its mechanical form that it will fit into the space allocated to it in the original design. This has necessitated building it in two units mounted one above the other. The lower unit includes the r.f. stage, mixer and sound channel and the upper the vision channel.

The circuit diagram is shown in Fig. 1. The received signal picked up by the aerial is passed through a coaxial feeder of 72 ohms nominal impedance to the input transformer T_1. This is resonant at 45 Mc/s with the stay capacitance, namely the input capacitance of V_1. Damping is provided mainly by the feeder.

This valve is coupled to the mixer V_2 by T_2, damped by R_4. The two signal circuits give a bandwidth adequate to embrace the sound and vision channels.

A separate oscillator valve V_3 is used in the interests of stability. The coil L_1 is wound with heavy gauge wire on a polystyrene former and the turns are cemented.
Superheterodyne Television Unit—
in place. All the oscillator components are mounted on the lower chassis well away from anything hot and the H.F. supply is taken from the 480-V line via the potentiometer R_{20}, R_{23}. This is done because the direct load on this line is a stable one—the line and frame time-base valves, whereas the 250-V line varies to some degree with the gain- and focus-control settings.

The mixer output at 13-10 Mc/s for vision and 9.5 Mc/s for sound appears in the network T_2, R_{13}, C_6, L_2, C_6, T_3 is the vision coupling transformer tuned by the stay capacitance and damped by R_{13}. The coupling coil is connected to a short length of 72-ohm cable which conveys the vision signals to the upper chassis. The circuit L_2C_9 is tuned to 9.5 Mc/s and applies the used, largely because of its small physical size, but there is no objection to the thermonic diode and the EA50 is an equally good alternative. The load resistor and by-pass capacitor R_{18} and C_{32} are made smaller than usual because it is imperative that the frequency response be good enough for the peaky waveform of ignition interference to be retained.

Another diode V_7—again a crystal, but again the EA50 can be used—acts as a noise limiter. It is normally conductive and is maintained so by R_{20} returned to + h.t. If the voltage across R_{19} changes at an audio-frequency rate it appears with negligible drop across C_{28} and is passed through the filter $R_{21}C_{29}$ to the output. If the voltage changes very rapidly in the positive direction, however, as it does on an interference peak, the voltage which in this case would be 11.5 Mc/s—and the coupling and damping adjusted to give the required bandwidth. With the type of coil used, however, it has been found impracticable to obtain sufficiently tight coupling between the two windings of T_3 and T_4 for adequate overall coupling.

About 1ft. of cable is used and its main influence is its capacitance of about 25pF. It is necessary to step-down at each end sufficiently to make this capacitance of negligible importance and with this step-down the coupling in the transformers is inadequate for the required bandwidth. T_3 and T_4, therefore, have their resonance frequencies staggered somewhat. The bandwidth is obtained but the mixer—1st i.f. stage gain is reduced somewhat.

A trap circuit L_7, and C_{33} is coupled to T_3 by C_{32}. It is a sound-channel rejector and gives about 20db attenuation when adjusted so that C_{33} resonates with the combination of L_2 and C_{33} at 9.5 Mc/s. L_7, and C_{33} then exhibit parallel resonance at about 10 Mc/s and at this frequency they have negligible effect. The cut-off is thus very sharp. At higher frequencies the trap has the effect of loading the coupling capacitively so that R_{23} and T_4 must be lower than would otherwise be necessary.

The first and second and second and third i.f. stages are coupled by L_9 and L_10 respectively, the circuits being tuned by stay capacitance and the resonance frequencies staggered. Traps comprising C_{36}, C_{39}, L_9 and C_{44}, C_{25}, L_{11} are connected across the couplings. They are similar to the first trap already described but are more loosely coupled and give about 10-12-db rejection apiece. The overall sound-channel attenuation is then about 40-45db, all provided by the three traps.

A double-wound coupling T_5 is used between the last i.f. valve and the detector V_{12}. This valve has a filter choke L_{12} which is wound to be self-resonant at the intermediate frequency and the load resistor R_{34} has a compensating inductance L_{13} in series with it.

The v.f. stage is V_{12} and this part of the circuit is identical (Continued on page 65).
I was unable to receive any of the medium wave stations unless they were close and powerful.

I had tried fitting condensers to the mains without success, the roar of interference being as strong as ever. You can imagine therefore that when a radio salesman claimed that the Belling-Lee L.300 would do the trick, I was, to say the least, sceptical.

The most that I hoped for was a reduction of interference but to my surprise, the interference was completely subdued after fitting your suppressor.

What a relief to tune from one station to another without having to almost switch off the set so that I wouldn't be deafened by interstation roar and also to be able to listen to weak stations without interference.

Apart from the L.300 fulfilling the purpose for which it was designed, I am quite pleased with its compactness and workmanship. I would suggest that you could find a quick and ready sale for the L.300 to shipboard radio owners if you advertised in the appropriate publications.

Yours faithfully,
(Signed) J. Richardson,
Chief Officer.

Now in many cases the L.300 is not the most suitable suppressor to use on normal ships' mains (110 volts D.C.) due to the fact that it is designed for a maximum current loading of 1 ampere at 240 volts, and the current drawn may be such as to cause overheating or continual rupturing of fuses. For this reason we would normally recommend the L.305 suppressor which has a maximum current loading of 2 amperes.

Set Lead Suppression on Large Radiograms.

The L.305 suppressor is also generally recommended on large radiograms or any equipment which might require up to two amperes.

Veerod Television Aerial to Combat Interference.

From correspondence received, there still appears to be doubt as to when a **Veerod** inverted "V" television aerial should be used.

If reasonably well situated within 10-15 miles of a television transmitter, but in a bad location for interference, say from cars, remember that this aerial, although directional along its axis, has a polar diagram with a very well defined minima. Fig. 2 in illustration. There is an excellent example of its performance in connection with an installation carried out near the "Belling-Lee" factory at the "Half-Way House," Enfield, on the Cambridge Arterial Road. The inverted "V" dipole looks at Alexandra Palace right up the road, it is parallel to the road, but car interference is at an absolute minimum.

It is worth while remembering that a dipole and reflector looking at the transmitter, has its minima behind it, whereas in the case of the inverted "V," the minima is at right angles to its axis, but do not forget that the dipole and reflector is advantageous at long distances.

Suppression on Board Ship or elsewhere with 110 volts supply.

It is not a usual custom of ours to publish testimonials unless our readers are likely to derive some benefit therefrom. Recently we had a letter from the Chief Officer of S.S. "Empire Aldgate" as follows:

"I feel that I must write and congratulate you on your model L.300 Suppressor which I have recently fitted to my 110 V. D.C. radio. Previous to my fitting it, dynamo interference was such that..."
QUARTZ CRYSTAL UNITS

FOR STABLE FREQUENCY GENERATION

FEATURES

- Low temperature co-efficient (less than 0.5 in 10°C).
- Patented nodal suspension. Mounted in vacuum: performance independent of climatic conditions. Exceptionally high Q-value.
- High stability. Small size. 3" x 1" overall excluding pins. Fits standard miniature deaf aid valve socket.

FOR FREQUENCY SUB-STANDARDS

Type JCF/200, 100 Kc/s. Available from stock adjusted to 0-01%. Higher accuracies supplied to special order.

The type JCF/200 unit illustrated is representative of the wide range of vacuum type unit available for low and medium frequencies.

PRICE £2 - 15 - 0

SALFORD ELECTRICAL INSTRUMENTS LTD.

PEEL WORKS, SALFORD 3, LANCs. Telephone BLAcketts 6688 (6 lines) Telegrams & Cables SPARKLESS Manchester.

Proprietors THE GENERAL ELECTRIC CO., LTD., OF ENGLAND

A Happy New Year to our numerous supporters—assisted by The New Eleven Valve

Polyphonic Console

which provides coverage for the Television Sound band, in addition to two Short, Medium, and Long Wave bands.

Circuit: R.F., Oscillator, two I.F. with Variable Selectivity, Diode Detection, Magic Eye indicator, two Tone Control Valves, terminated by our latest paraphase coupled push-pull amplifier with negative feedback, driving a Phase Inverter Dual Suspension Auditorium Speaker.

A combination that not only covers the Television Sound band, but provides the best possible reproduction, compatible with transmission.

PRICE £80.2.6 including purchase tax

AGENTS: Barnes & Avis, Reading; Bowars & Wilkins, Worthing; Binns Ltd., Newcastle; Dalton & Sons Ltd., Derby; Clark & Sons, Isle of Wight; Hickie & Hickie Ltd., Reading (and branches); Holley's Radio Stores, London, S.E.5; Jewkes & Co., Birmingham; Thomas Lynn & Sons, Andover; Marriott Ltd., Bristol; Neatham Engineering Ltd., Sheffield; Pank's Radio, Norwich; Sound Ltd., Cardiff; Bernhard Smith, Barnsley; Sound Services, Jersey, C.I.; Precision Services, Edinburgh; Seals Ltd., Southsea; G. E. Samways, Hazel Grove; Weybridge Radio Electric, Weybridge; West End Radio, Farnham; Vailance & Davison Ltd., Leeds (and branches).

Overseas Stockists in Canada, South Africa, Channel Islands, etc.

Sound Sales Ltd.

WEST STREET, FARNHAM, SURREY

Telephone: Farnham 6461/2/3.

London Office: 57, St. Martin's Lane, W.C.2.

Telephone: Temple Bar 4284.
Superheterodyne Television Unit—
with that of the straight set previously described. A noise
limiter \(V'_{13} \) has been added, however. This comprises \(V'_{12} \), \(C_{44} \) and
\(R_{40} \). The output signal is negative going and the control \(R_{40} \)
is set so that over the whole range of normal output voltages the diode
is non-conductive and does

Components

The parts in this list are the ones employed in the original model. Any
components of the same electrical specification and suitable physical dimen-
sions can be used.

RESISTORS

\[
\begin{align*}
R_{1}, R_{25} & = 33 \Omega & \text{Erie} \\
R_{2}, R_{26}, R_{30}, R_{32} & = 150 \Omega & \text{Erie} \\
R_{3} & = 2 \, \text{k}\Omega, 3 \, \text{W, variable wire-wound} & \text{Reliance Type T.W.} \\
R_{4}, R_{5}, R_{31}, R_{39} & = 100 \, \text{k}\Omega & \text{Erie} \\
R_{13}, R_{27}, R_{28}, R_{33} & = 470 \, \Omega & \text{Erie} \\
R_{4} & = 2.2 \, \text{k}\Omega & \text{Erie} \\
R_{7}, R_{20} & = 2.2 \, \text{M}\Omega & \text{Erie} \\
R_{10}, R_{11}, R_{23} & = 47 \, \text{k}\Omega & \text{Erie} \\
R_{14}, R_{24}, R_{29}, R_{31} & = 3.3 \, \text{k}\Omega & \text{Erie} \\
R_{17}, R_{20} & = 33 \, \Omega & \text{Erie} \\
R_{19} & = 1 \, \text{M}\Omega & \text{Erie} \\
R_{22} & = 100 \, \text{k}\Omega, 1 \, \text{W} & \text{Erie} \\
R_{31} & = 4.7 \, \text{k}\Omega & \text{Erie} \\
R_{26}, R_{37} & = 3.5 \, \text{k}\Omega, 3 \, \text{W} & \text{Erie} \\
R_{10} & = 150 \, \text{k}\Omega, 3 \, \text{W, variable} & \text{Reliance Type S.G.}
\end{align*}
\]

CAPACITORS

\[
\begin{align*}
C_{1}, C_{2}, C_{5}, C_{9}, C_{13} & = 0.001 \, \text{mF, mica} & \text{Dubilier Type 635} \\
C_{6}, C_{10}, C_{30}, C_{31} & = 100 \, \text{pF, silvered-mica} & \text{Dubilier Type 5811W} \\
C_{33}, C_{38} & = 35 \, \text{pF, ceramic} & \text{T.C.C. Type CC3ia} \\
C_{11}, C_{15}, C_{25} & = 10 \, \text{pF, ceramic} & \text{Eddystone Type 583} \\
C_{12}, C_{14}, C_{16}, C_{17}, C_{19} & = 25 \, \text{pF, silvered-mica} & \text{Dubilier Type CTD310} \\
C_{19}, C_{21}, C_{22}, C_{23}, C_{27} & = 5 \, \text{pF, ceramic} & \text{Dubilier Type 5811W} \\
C_{24}, C_{25}, C_{26}, C_{27} & = 25 \, \text{pF, ceramic} & \text{Dubilier Type CTD310} \\
C_{28}, C_{29}, C_{30} & = 0.01 \, \text{mF, 500 V, tubular paper} & \text{Dubilier Minicap T.C.C} \\
C_{31}, C_{32} & = 0.01 \, \text{mF, tubular paper} & \text{Type 543} \\
C_{33}, C_{34} & = 8 \, \text{mF, electrolytic} & \text{Dubilier Type 635} \\
C_{35}, C_{36} & = 6 \, \text{mF, ceramic} & \text{T.C.C. Type 343} \\
C_{37}, C_{38} & = 16 \, \text{mF, electrolytic} & \text{T.C.C. Micropack} \\
C_{39}, C_{40} & = 500 \, \text{pF, mica} & \text{Dubilier Type CTS310} \\
C_{41}, C_{42} & = 8 \, \text{mF, electrolytic} & \text{Dubilier Type CT1650} \\
C_{43}, C_{44} & = 20 \, \text{pF, ceramic} & \text{Dubilier Type 635} \\
C_{45}, C_{46} & = 16 \, \text{mF, electrolytic} & \text{Dubilier Type Drillic BR850} \\
C_{47}, C_{48} & = 500 \, \text{pF, mica} & \text{Dubilier Type 635} \\
C_{49} & = 8 \, \text{mF, electrolytic} & \text{Dubilier Drillic BR850} \\
C_{50} & = 2 \, \text{mF} & \text{Mullard 8E50} \\
C_{51} & = 16 \, \text{mF} & \text{Mullard FC52} \\
C_{52} & = 500 \, \text{pF} & \text{B.T.H. CG4} \\
C_{53} & = 8 \, \text{mF} & \text{Mullard EA50}
\end{align*}
\]

VALVES

\[
\begin{align*}
V_{1}, V_{2}, V_{4}, V_{5}, V_{6}, V_{8}, V_{10}, V_{12} & \quad \text{Mullard 8E50} \\
V_{2} & \quad \text{Mullard FC52} \\
V_{8} & \quad \text{B.T.H. CG4} \\
V_{9}, \text{Germanium crystal-valves} & \quad \text{Mullard E.A50} \\
V_{11}, V_{13} & \quad \text{T.M.C. Type P.T.1.M}
\end{align*}
\]

MISCeLLAneous

Coaxial-cable plugs \hspace{1cm} \text{Belling-Lee Type L504/1} \\
Coaxial-cable sockets \hspace{1cm} \text{Belling-Lee Type L504/S} \\
Polystyrene tube, \(\frac{1}{2} \)-in outside diameter \hspace{1cm} \text{Denco} \\
Polystyrene varnish \hspace{1cm} \text{Denco} \\
Coaxial cable (for aerial lead and inter-unit con-
nection) \hspace{1cm} \text{T.M.C. Type P.T.1.M}

WORLD OF WIRELESS

Television at Home and Abroad • Ship's Radio • Components Show

Faraday Lecture

This year's I.E.E. Faraday lecture is on television, and will be given by Sir Noel Ashbridge, Director of Technical Services of the B.H.C., and H. Bishop, Chief Engineer, B.B.C. By means of demonstrations the evolution of television will be traced and the latest B.B.C. outside broadcast equipment will be used to televise from the platform to receiving sets standing amongst the audience.

The lecture will be delivered at the Central Hall, Westminster, London, S.W.1, on February 16th at 6.30 and also at various centres throughout the country. Admission will be by ticket obtainable from the I.E.E., Savoy Place, London, W.C.2, in the case of the London meeting and from I.E.E. local secretaries for other centres.

Second Thoughts in France

The French decision to adopt 819-line standards for the national television service (reported in our last issue) has not met with general and warm approval in the French technical press. Fears of long delay are commonly expressed, and one journal (La Radio Française) goes so far as to say "The premature choice . . . has been a mistake . . . We should have done what has been done in England, which has acted logically, and can boast today of having 80,000 receivers in London. I defy anyone to prove that there are more than 3,000 in Paris."

On the other hand, the journal Radio Technical Digest, after quoting the Wireless World Editorial for October in support of the British decision says, "Certainly, the arguments of our English friends are very convincing—for them. But they are hardly valid for us" The writer goes on to express the view that the problems of international programme exchanges will be overcome.

It is announced that four channels in the band 162-216 Mc/s will be used for the new system.

Marine Single Sideband

The French decision to adopt 819-line standards for the national television service (reported in our last issue) has not met with general and warm approval in the French technical press. Fears of long delay are commonly expressed, and one journal (La Radio Française) goes so far as to say "The premature choice . . . has been a mistake . . . We should have done what has been done in England, which has acted logically, and can boast today of having 80,000 receivers in London. I defy anyone to prove that there are more than 3,000 in Paris."

On the other hand, the journal Radio Technical Digest, after quoting the Wireless World Editorial for October in support of the British decision says, "Certainly, the arguments of our English friends are very convincing—for them. But they are hardly valid for us" The writer goes on to express the view that the problems of international programme exchanges will be overcome.

It is announced that four channels in the band 162-216 Mc/s will be used for the new system.

Wireless World February, 1949

R.C.M.F. Show

As already announced the annual exhibition of radio and electronic components, materials and test gear, organized by the Radio Component Manufacturers' Federation will be held at Grosvenor House, Park Lane, London, W.1, from March 1st to 3rd (10 a.m.-6 p.m.).

There will be 166 exhibitors—a slight increase on last year's total—and valve manufacturers are included for the first time this year. Admission is restricted to holders of tickets which are obtainable from the R.C.M.F., 22, Surrey Street, London, W.C.2.

R.N.V. (W.)R.

Further to our announcement in the December issue of the reform of the Royal Naval Volunteer (Wireless) Reserve, we recently had an opportunity to see over the London training centre in the Admiralty building in Whitehall.

It has a well-equipped radio station consisting of a 300-watt C.W. and R/T transmitter, several CR100 and Hallicrafters receivers and the latest Naval V.H.F. telephony transmitter-receiver.

A part of the accommodation is laid out for instruction in Morse, the wiring being arranged so that the exercises transmitted from an Admiralty station near Portsmouth especially for the R.N.V. (W.)R. on certain evenings of the week, can be relayed to all headphone points.

Reservists must attain a speed of 18 w.p.m. in sending and reading Morse in order to qualify for a home station. This comprises a 300-watt C.W. transmitter, Hallicrafter receiver and power units.

E.M.I. Report

Referring to the manufacture of magnetic-tape recorders during his address at the seventeenth
annual general meeting of Electric
and Musical Industries, Sir Ernest
Fisk stated that instruments costing
£550 have been shipped to 14
different countries including the
U.S.A. Plant has been installed by
the company for the manufacture of
magnetic tape.

He also stressed, if it needed any
emphasis, that, whilst British televi-
sion had been standardized at 405
lines, manufacturers in this country
are not limited to these standards,
and are in a position to supply
equipment to other specifications.
In the case of E.M.I., equipment of
625 lines or even higher, if desired,
can be supplied.

E.M.I. is standardizing two sizes of
tubes for its receivers—15in and
15in.

PERSONALITIES

A. J. Gill, B.Sc.Eng., engineer-in-
chief of the G.P.O., was created a
Knight Bachelor in the New Year
Honours. From 1944 until he succeeded
Sir Stanley Angwin in 1947 he was
deputy engineer-in-chief. Mr. Gill was
recently appointed a vice-president of
the I.E.E.

Hugh S. Pocock, our managing
editor, has been appointed a director
of our Publishers, Hille & Sons Ltd. He
is also managing editor of our asso-
ciated journals Wireless Engineer and
Electrical Review and managing direc-
tor of Electrical Review, Ltd.

Geoffrey Parr, who has been editor
of Electronic Engineering since its in-
ception in 1941, has resigned to join the
Board of Chapman and Hall, Ltd.,
book publishers. H. G. Foster, M.Sc.,
late of Birmingham University, has
been appointed to succeed Mr. Parr.

R. G. Clark has resigned his director-
ship of the Ferguson Radio Corporation
and is taking up an appointment in
the U.S.A.

IN BRIEF

Licences.—With television licences
totalling 22,400, the number of receiv-
ing licences in force in Great Britain
and Northern Ireland at the end of
November was 11,422,400. The month's
increase in sound and television
licences was 93,000 and 8,000, respec-
tively.

Marine Radar.—Of the 430-old
British merchant ships fitted with
garage gear for a year, about 280 were equipped with the Admiralty
Type 268 set. So far, only three civil
sets—Cossor, Metrovick and Kelvin-
Hughes—have received the Ministry of
Transport’s certificate of conformity
with the agreed performance spe-
cification.

Physical Society’s Exhibition.—The
33rd annual exhibition of scientific
instruments and apparatus organized
by the Physical Society will be held in
the Physics Department of Imperial
College, Kensington, London, S.W.7,
from April 5th to 8th. Admission will
be by ticket, valid for a specified ses-
tion, available from Fellows of the
Society, exhibitors and most of the
learned societies.

Piped Television.—It is understood
that the Westminster Council has
approved the installation of all its flats on
the Pinlino and Cambridge Street
housing estates for relaying television.
Each block of flats will be equipped
with a receiver, from which the signal
will be fed via an amplifier and
distribution units to each flat.
The weekly rent will be 5d for the
first year and subsequently 36d. The
tenants will, of course, need their own
standard television receivers.

Grad.-Brit. I.R.E. Exam.—Candidates
for the next graduateship ex-
amination for the British Institute of
Radio Engineers must make applica-
tion by April 30th. The examination
will be held in London, Manchester,
Birmingham, Glasgow, Edinburgh,
Cardiff, Bristol, Blackburn, Newcastle-
on-Tyne, Belfast and Dublin on May
19th and 20th.

Electrical Trades Union.—A radio
and electronic engineers’ branch of the
E.T.U. has been formed in Liverpool.
Details of the weekly meetings are ob-
tainable from the secretary, E. A.
Stevenson, 6, Woodhall Avenue,
Wallasey, Cheshire.

Correction.—The reference at the end
of “Electronic Circuitry” (page 24,
Jan. issue) should read “Dome, R.B.
Electronics, Dec., 1946, p. 112.”

R. T. B. Wynn, M.A., who has
been appointed a C.B.E.

Marconi V.H.F. gear was recently
used to transmit photographs from a
warship at sea to a shore station by
Kensley Newspapers as a further ex-
tension of their “Business Radio”
licence. Ten-watt transmitter recei-
vices, Type Ht6, were installed in the
1310 records were made. The arrange-
ment with the agreed performance spe-
cification.

B.S.R. Recording.—Birmingham
Sound Reproducers, in co-operation
with A. C. Parnell, Ltd., recently
undertook the recording of the whole
day’s civic functions arranged in con-
nection with the opening of Hull’s new
City Hall. It entailed the use of some
20 miles of special line and over sixty
13in records were made. The arrange-
ments included the use of a radio-
equipped car in the procession which
was granted a frequency for that occa-
sion. Standard B.S.R. recording
equipment was used throughout.

FROM ABROAD

Canada-U.S. Television.—Because of
Canada’s proximity to the United
States and the possibility of ex-
changing television programmes be-
tween the two countries, the American
standard of 525 lines is being adopted
for the Canadian television service.

S.T.C.—Sweden's new 100-kW broad-
cast transmitter at Hoby, supplied by
Standard Telephones and Cables
operates on 1,131 kc/s. It is believed
that the first medium-wave broadcast
transmitter to have incorporated a

Correction.—The reference at the end
of “Electronic Circuitry” (page 24,
Jan. issue) should read “Dome, R.B.
Electronics, Dec., 1946, p. 112.”
World of Wireless—
grounded-grid amplifier. It is claimed that the distortion products do not exceed 1 per cent up to 95 per cent modulation over the frequency range of 5 to 1,000 c/s with an average mains conversion efficiency of 38 per cent.

International Exhibition.—The French Radio Council advises us that an international exhibition of radio communication and measuring instruments will be held from February 4th to 8th at the Exposition Park, Porte de Versailles, Paris (15 eme).

Amateurs in Germany.—With the introduction of January 1st, a great many and the prefixes used are: DL2, British zone; DL4, U.S. zone; and DL5, French zone. When Germans are licensed, which is expected very soon, they will be allocated DL1, 3, 6, 7, 8, 9, 10, and so on.

Radio Seca.—The power of the Radio Seca transmitters at Colombo, which are to be taken over by the Ceylon Government, was given as 7.5 kW in the last issue; but the power of 100 kW is employed on some frequencies.

INDUSTRIAL NEWS

Test Gear Exhibition.—A two-week exhibition is being staged by Marconi Instruments at their London Showrooms, No. 37, Gloucester Place, London, W.1. Admission to the show—open Monday to Friday from February 21st to March 4th—will be by ticket obtainable either from many of the Instruments Ltd., St. Albans, Herts, or the above address.

Ekco in India.—An agreement has been concluded between E. K. Cole and B. S. A. Ltd. and the Engineering Co. of Bombay for the establishment and development of radio manufacture and distribution in India. J. D. coasters are now in production for the receivers, components and electronic equipment.

Philco.—Reference was made last month to the formation of the new company, Philco (Overseas), Ltd., which is now responsible for the design and production of British-made Philco sets. Another company has now been formed, Philco (Great Britain), Ltd., which has been granted the franchise, sales, service and advertising of Philco products in this country. These announcements have coincided with changes in the organization of the Radio and Electric Television Trust which, succeeding to the industry, Philco Radio and Television Corporation, has previously been responsible for marketing Philco products in this country. It has now discontinued the manufacture of radio and television receivers and has wound up the Philco Radio and Television Corporation.

S.T.C.—The Rectifier Division of Standard Telephones and Cables has now been established in new premises at Warick Road, Boreham Wood, Herts. The premises were used as a shadow factory for rectifier disc manufacture during the war. The sales, engineering and production sections are in adjacent buildings. A new conversion plant is now in operation with an output of 100 kW.

Changes of Address.—The Sheffield office of Wild-Barfield Electric Furnaces and G.W. Electric Furnaces is now at 4, Paradise Square, Sheffield, 1 (Tel.: 6026). The General Electrical Radio Co., manufacturers of the "Mighty Midget receiver" described on page 24 of the January issue, have moved to 21-24, Shene Street, London, E.C.1.

L.R.S.—The price of the Goodman's Standard 12in speaker was misprinted in the January issue. The correct price is £6.15s.

Wolsey Television, Ltd.—This company's telephone number has been altered to Audix, Ltd., at 116, Gloucester Place, W.1 (Tel.: Welbeck 9525).

EXTRA

B.O.T.—Organizational changes in the Board of Trade are announced. The Commercial Relations and Exports Department has been amalgamated and are now known as the Commercial Relations and Trade Promotion Dept. and the Export Promotion Dept. have been opened by Audix, Ltd., at 116, Gloucester Place, W.1 (Tel.: Welbeck 9525).

Uruguay.—Tenders are called for by the Uruguayan Director-General of Communications for the supply of two "divenry" receivers for C.W. and R.T. The specification and further particulars are obtainable from the Board of Trade (Commercial Relations and Exports Department), Room 1076, Thames House North, Millbank, London, S.W.1., quoting reference EPD.55447/48.

South Africa.—Tenders are called for by the Department of Posts and Telegraphs, Pretoria, for 12 sets of H.F. frequency-modulated equipment to be used in conjunction with a carrier telephone-teletype system. The specification is obtainable from the above address, quoting reference EPD.42664/48.

Argentina.—Agencies for radio components are required by Compania Comercial Meryland, of 1301, San Juan Street, Buenos Aires. Particulars of the company, whose activities cover Uruguay as well as the Argentine, are obtainable from the above address, quoting reference EPD.42664/48.

British Broadcasting Corporation

Institute of Navigation

A symposium of papers on operational aspects of marine radar at 2.30 on February 8th at the Royal Geographical Society, 1, Kensington Gore, London, S.W.7.

British Institution of Radio Engineers

London Section.—A discussion on "Electronic Equipment for the Engineer," opened by J. J. Bell at 5.30 on February 9th at the Royal Institution, John Adam Street, London, W.2.

South Midland Section.—"Ceramic Capacitors," by W. G. Roberts, B.Sc., at 7.00 on February 24th at the Technical College, The Butts, Coventry.
Take a look inside the ERIE Insulated High Stability RESISTOR

Ceramic Case with Insulation Resistance of more than 1000 megohms at 500 volts

Special resistor element consisting of carbon deposit on ceramic tube, spiral cut to required value and tolerance

Time-proven ceramic end seal

Colour coding bands (to R.C.S.C. standard) which retain their true colour when applied to the white ceramic case

Wire leads (1/4" x 0.032") and spring caps securely connected to resistor body thus eliminating open circuits

FULLY PROTECTED AGAINST SOLDERING AND MECHANICAL DAMAGE DURING ASSEMBLY

QUALITY IS BUILT INTO EVERY DETAIL

ERIE High Stability Resistors, besides displaying characteristics well within the limits laid down in the current R.C.S.C. Specification, are fully insulated, fully tropical and extremely robust; and are, therefore, eminently suitable for operation in restricted spaces and under the severest of conditions. Type 100, 1/2 watt, illustrated above, is the first to be released and will be followed in due course by Type 108, 1/2 watt; and Type 109, 1 watt. All standard tolerances down to ±1%. Manufacturers and Research Establishments are invited to write for full details.

ERIE Resistor Limited

Carlisle Road, The Hyde, London, N.W.9, England

Telephone: COLindale 8011
Cables: Resistor, London
Factories: London and Gt. Yarmouth; Toronto, Canada; Erie, Pa., U.S.A.
25 WATT & 50 WATT AMPLIFIERS

New high standard of stability and reproduction. Very high degree of amplification. Simplicity of operation.

EXTREME SENSITIVITY
Perhaps the most noteworthy feature of these amplifiers is their high sensitivity, which allows wide-range pick-up with low-level high fidelity microphones.

For example, the 25-watt has an overall power amplification of 133 d.b. or twenty-million-million-times. This is mainly achieved by the inclusion of a high-gain input stage completely enclosed in a rubber-mounted magnetic screening case.

OUTPUT
The output transformer of each amplifier is of generous size, and has an eight-sectioned primary in order that it can be included in the inverse feed-back loop. The following outputs are provided:

- **Max. undistorted voltage (R.M.S.)**
 - 100, 50, 25 volts.

- **Load impedance (25-watt)**
 - 400, 100, 25 ohms.

- **Load impedance (50-watt)**
 - 200, 50, 12.5 ohms.

These amplifiers are normally intended to use with the 100-volt-line system in which each loudspeaker has its own transformer. This allows simple parallel connection of the loudspeaker load, the use of long lines, and the rating of loudspeakers in terms of their actual power consumption in watts.

MICROPHONE INPUT
- Input required for full drive: 0.8 millivolts
- Impedance: 1 megohm

GRAMOPHONE INPUT
- Input required for full drive: 90 millivolts
- Impedance: 0.25 megohm

PHILIPS ELECTRICAL LIMITED

AMPLIFIER DEPARTMENT,
CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C.2

If you are after...

- **I.E.E.**
- **BRIT.I.R.E**
- **CITY & GUILDS...**

IN YOUR OWN INTERESTS

If you are considering taking a course of study in radio, television, or telecommunications engineering, it is wise to check the regulations governing the above examinations before enrolling.

We will gladly supply the necessary information together with our FREE BOOKLET which gives details of POSTAL and ATTENDANCE courses covering the above and other examinations—Postal Courses in Radio, Television, Maths, etc.—and 3 year Day Courses in Telecommunications Engineering. The booklet also contains particulars of EXEMPTIONS from I.E.E. and Brit.I.R.E. examinations to holders of C. & G. certificates covered by our courses.

Special terms for groups of five or more postal students enrolling together. Students not requiring full courses may take parts at correspondingly reduced fees.

Write for Booklet to:

E.M.I. INSTITUTES LTD.
Dept. 16a 43 Grove Park Road, Chiswick, London, W.4.
Telephone Chiswick 4417/8

E.M.I. Institutes—backed by the Electronic Organisation which includes

"H.M.T.", Marconiophone, Columbia, etc.

Wireless World
February, 1949
MAGNETIC AMPLIFIERS

Principles, Operation and Functions

By "CATHODE RAY"

SOMETIMES magnetic amplifiers are called d.c. transformers. In appearance at least they might easily be mistaken for transformers, even when examined closely, because they consist mainly of iron cores wound with two or more coils. The name is further justified to the extent that if you put d.c. through one of the windings you can get a higher voltage or current from the other. But they differ fundamentally from a.c. transformers in that it is possible—in fact quite usual—for both voltage and current to be higher at the same time. The idea of perpetual motion having been long ago abandoned, it is hardly necessary to say that the extra power thus obtained must be put into the device somewhere, in some form. In principle, therefore, it is more like the valve amplifier, in which the output power is controlled by the grid input but is actually provided by the anode supply.

That is almost as far as the resemblance to a valve amplifier goes. There are plenty of differences, besides the appearance and construction. In spite of working at zero-frequency, the control input demands appreciable current. Its action is far from instantaneous, the time lag being of the order of hundredths or even thousandths of a second. The source of power is a.c.; 50 c/s is possible but 400-1,000 c/s generally much more effective. The output is also a.c., of the same frequency (plus harmonics), which of course can be rectified if d.c. is preferred.

Although the basic principles of the magnetic amplifier are not new, they are probably unfamiliar to most Wireless World readers. And they are a little more difficult to follow than the principles of the valve amplifier. Whereas one can represent the characteristics of a valve in the form of a family of curves connecting control-grid voltage directly with anode current, and from such a diagram deduce the performance with fair accuracy, a magnetic amplifier's characteristics have an awkward middleman—the magnetic flux in the core. His relationship with current can be expressed quite directly by a curve, but his relationship with voltage is of the rate-of-change sort. Although this is familiar enough in connection with ordinary iron-core chokes and transformers, the portions of magnetization characteristics worked over in magnetic amplifiers are by comparison unorthodox, to say the least. I am reminded of the shock the distortion-hunting quality-enthusiasts received when at the outbreak of war they were obliged to study how valves were used in radar.

Fig. 1 is a typical characteristic curve for iron. By "iron" I mean any metal or alloy suitable for magnetic cores. Actually, owing to the effect called hysteresis, the upgoing and downcoming curves separate to form a loop; but that is one complication we can happily ignore for the purpose of this elementary treatise.

Consider now a simple iron-cored coil connected to an a.c. supply (Fig. 2). Assuming that the resistance is negligible, the current is limited only by the back-e.m.f. generated by the magnetic flux linking the turns of the coil, and that back-e.m.f. has to be practically equal to the applied voltage. As we know, the e.m.f. is proportional to the rate at which the flux changes, and to the number of turns. The rate at which the flux changes is proportional to the peak flux during each cycle, and to the number of cycles per second. (And to a minor extent on the waveform).

So the current that flows is the amount which is necessary to set up the right amount of flux to generate the back-e.m.f. The greater the flux per ampere-turn, the smaller the current. Air and most other substances have a very low flux per ampere-turn (i.e. low permeability), as indicated by the small slope of the dotted line in Fig. 1. The advantage of "iron" is that it has a much higher—sometimes enormously higher—permeability, and so the magnetizing current is comparatively very small and the impedance of the coil very large.

This advantage is complicated by the fact that the permeability is not constant. As shown by the slope of the curve in Fig. 1, it decreases at first gradually and then very rapidly as the flux increases to saturation. The designer of chokes and transformers generally makes sure that his core section and number of turns are sufficient to generate the required back e.m.f. without departing from the steep and comparatively straight part of the curve at any point in the cycle of current.

The other familiar fact to recall is that the lower the frequency the greater the peak flux must be to maintain the same rate of change and generated e.m.f.
Magnetic Amplifiers—

Suppose now that a type of "iron" is selected which gives an almost vertical initial slope followed by rapid and complete saturation (Fig. 3). Provided that the coil has been designed so that the flux needed to generate the back-e.m.f. is less than that saturation value, the ampere-turns required, and hence the current drawn, will be almost negligible. In other words, the impedance of the coil is nearly infinite. The working point can be pictured as moving up and down the precipitous slope in Fig. 3 at supply frequency.

Next, suppose that another coil is wound over the same core, and a small d.c. is passed through it. Except for the first few moments, when this current is growing, there is no rate of change of current and therefore no back-e.m.f. The current is limited only by the resistance of the circuit. With the Fig. 3 characteristic, anything more than a minute current must bring the working point over the upper or lower bend and into the saturation region; say to the point A.

Before we consider the obviously very upsetting effects of this on the a.c., let us dispose of the fact that, with a single core as imagined, the d.c. circuit acts as a secondary winding of a transformer and loads the a.c. supply. This effect can be avoided by splitting the system into two halves, as in Fig. 4, with one d.c. winding reversed. The alternating voltages generated in the two d.c. coils will therefore cancel one another out; and if one core works at point A (Fig. 3) the other will, from the a.c. point of view, work at B.

Now consider what happens during each cycle of the a.c. Remember that the current is still bound to make the flux vary in such a way as to generate an alternating back-e.m.f. of sine waveform (assuming a sine-wave supply). Let us start with the half-cycle in which the a.c. in coil A adds to the d.c. magnetization. This is represented by point A in Fig. 3 moving to the right. It is clear that the current can rise indefinitely without causing the flux to change very much, and no appreciable e.m.f. can be generated in this coil. But in cycle we get the same shapes upside-down; so a sequence of waves would look like Fig. 6.

What we are most interested in, however, is not the waveform but the magnitude of the a.c. Instead of being negligible, as it was when no d.c. flowed, its value is now represented by AA' or BB' in Fig. 3, divided, of course, by the number of turns. Suppose the a.c. and d.c. coils have equal numbers of turns. The strength of the d.c. is then proportional to \(oA \), and the a.c. to \(bB \), which is almost equal. But whereas quite a small voltage is likely to be sufficient to cause a d.c. to flow against only the resistance of the coil, a very much larger alternating voltage can be used without saturating the core in the no-d.c. condition. That voltage is, of course, proportional to the flux \(bB \) and to the frequency of the a.c. So to get a large step-up in voltage the iron should have a large saturation flux and the frequency should not be low. (For other reasons it should not be too high either; 400-1,000 c/s is usually recommended.)

As with a valve, the amplified voltage is not very interesting unless it is available outside the amplifier, in some sort of load. A load can be connected in series with the a.c. supply, and the a.c. will flow through it. Assuming that the supply voltage is constant, the voltage developed across the load (and hence the power in the load) must be at the expense of that across the coils. A little thought leads us to the conclusion that, with such remarkably suitable core material as...
Fig. 3 indicates, the output current is only very slightly affected by a reduction in alternating voltage; so remains nearly equal to the d.c. even when the output voltage is substantially greater. In other words, the device is a power amplifier.

It is also its own output transformer, because there is no need to stick to a one-to-one a.c./d.c. turns ratio. If desired, the input current can be stepped up (hence the term "d.c. transformer").

Reversing the direction of the d.c. makes no difference to the external results. So a graph of a.c. ampere-turns against d.c. ampere-turns looks like Fig. 7. With perfect core material, having a characteristic made up of truly vertical and horizontal portions instead of the nearly perfect Fig. 3, the lines in Fig. 7 would slope at 45° from zero, and would be independent of the voltage of the a.c. supply; but in practice some a.c. flows even with zero d.c., and the slope is less than 45° and varies with supply voltage.

The foregoing explanation is all rather idealistic, because we have neglected a very awkward complication. We have been assuming along that the balanced coil device of Fig. 4 would succeed in preventing a.c. from flowing in the d.c. circuit. To do so the alternating voltages induced in the two d.c. coils must be exactly opposite at every moment. That means that they must be identical in waveform. When no d.c. flows, the fluxes in the two cores (if they and the windings are identical) are both sinusoidal, and the supply voltage is at all times divided equally between coils A and B. But look at Fig. 6, showing the two flux waves when d.c. flows. If you invert one of them, to represent the d.c. point of view, it is very far from being equal and opposite to the other. During any half-cycle, the flux change is confined almost entirely to one of the two cores, so the alternating voltage generated by it in the d.c. winding is hardly opposed at all by the other, and, unless it were prevented by high-impedance chokes, would cause an a.c. to flow in the d.c. circuit and through the d.c. coils, upsetting our simple theory rather badly by making its own contribution to the magnetizing (or demagnetizing) of the cores.

In practice it is not usually convenient to prevent this a.c. from flowing. As a result, the waveforms actually obtained are quite different from those in Figs. 5 and 6. The results as an amplifier, which are the important thing, are not so very different, however; and this is my excuse for having led you up a rather lengthy theoretical garden. Fig. 7, modified as necessary by the imperfections of the iron used, holds more or less good.

In case any readers are tiresome enough to insist on knowing what goes on inside the amplifier when the d.c. coils provide an a.c. path, I offer the following argument.

If we are not to be allowed to assume that the a.c. impedance of the d.c. circuit is infinite, the next simplest assumption is that it is zero. That being so, any a.c. which flows cannot set up an alternating voltage between the d.c. terminals. But we know that there are alternating voltages across the separate d.c. coils, because they are close-coupled to the a.c. coils. Assuming for simplicity that the turns ratio is 1:1, and that all the flux links all of both coils (i.e., no magnetic leakage from the core), the alternating voltages across the a.c. and d.c. coils are equal. On the a.c. side they add up (assuming zero load resistance) to be equal and oppo-

![Fig. 7. Input/output characteristic of simple magnetic amplifier.](image)

TO CYCLISTS! Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings AND SOLDERED. This makes a much stronger wheel. It’s simple—with FLUXITE—but IMPORTANT.

The FLUXITE GUN puts FLUXITE where you want it by a simple pressure. Price 1/6, or filled, 2/6.

FLUXITE LTD.
(Dept. W.W.), Bermondsey Street, S.E.1
Magnetic Amplifiers—

Lyse these two current waves into d.c. coils respectively. The only waveform that can satisfy both these requirements at once is sinusoidal. To generate sinusoidal voltages in both coils, the flux waves in both cores must be sinusoidal. These flux waves are the result of the net current waves in a.c. and d.c. coils.

To generate sinusoidal flux waves from points A and B in Fig. 3 would seem to be impossible without fantastically high current peaks during the half-cycles working in the saturation region; but as you will see in a minute or two, the distortion of the current wave causes the mean flux for a given value of d.c. to be pushed round the saturation bends towards the origin.

This knowledge has been anticipated in Fig. 8, which reminds one of the diagrams used to show rectification of a signal by non-linear valve characteristics. The two current waves which this graph shows to be necessary to produce the sinusoidal flux waves are, as I have said, the net current waves acting on the two cores; that is to say, the combined effects of the currents in the a.c. and d.c. coils. But since the two a.c. coils are in series, the currents flowing through them must be identical; and similarly for the d.c. coils. The problem is to analyse these two current waves into the parts flowing in the a.c. and d.c. coils respectively.

That may sound difficult, but actually is not. Let \(x \) stand for the current in each a.c. coil, and \(y \) for the current in each d.c. coil. Because one d.c. coil is reversed, we know that current wave \(A = x + y \) and \(B = x - y \). Adding \(A \) and \(B \) together gives \(2x \), and subtracting them gives \(2y \). So we only have to add waves \(A \) and \(B \) and halve the result to get the current in the a.c. coils, and subtract \(A \) from \(B \) and have the result to get the current in the d.c. coils. This operation is performed graphically in Fig. 9.

Even this triumph of reasoning does not get us very near real practical waveforms, because we have made so many simplifying assumptions. When the impedances of control and load circuits and various other things are taken into account, the problem becomes very stiff. The amplitude of the a.c. still approximates to that of the d.c., however (for equal turns), and it can be seen that the fundamental frequency of the a.c. in the d.c. circuit is twice that of the supply.

There are many different kinds of 'irons' from which to choose for making cores; some have only very gradual bends instead of the sharp saturation knee of Fig. 3; some have their knees higher up; and some climb to saturation less steeply. How do these features affect the performance of the amplifier?

If the steep slope is not so steep (that is to say, if the permeability is low or only moderate), then a correspondingly large control d.c. is necessary before saturation sets in and causes the a.c. to begin to rise at its full rate. In other words, the amplifier is insensitive to small signals, and instead of Fig. 7 one gets a curve more like Fig. 10. The output also depends more on the supply voltage. We have already seen that the magnitude of flux at the knee determines the maximum alternating voltage (of a given frequency) that can be used. So if the core saturates at a low flux density it limits the output power.

Mumetal has a quite phenomenally steep slope, but a low saturation density; so it is particularly suitable for a low-power sensitive amplifier, but not so suitable when the power output is to be of the order of several watts, especially as it is expensive. For the higher powers it is much more economical to use Radiometal or even Stalloy, in spite of the lower gain. One can make up for the lower gain by using more than one stage of amplification.

An alloy recently developed for magnetic amplifiers and similar purposes is H.C.R. metal. Its maximum permeability is not quite so high as Mumetal's (about two-thirds) but is far ahead of most others; and in suddenness
of saturation it beats even Mumetal. Fig. 3 is, in fact, an H.C.R. metal characteristic, adapted from data supplied by the makers (Telegraph Construction and Maintenance Co., Ltd.). It has been simplified by taking a mean between the up and down tracks of the hysteresis loop. The flux scale refers to a core section of 1 sq cm, so is also a flux density scale in kilogauss, when the ampere-turn scale refers to 1 cm core length.

As I said earlier, if a d.c. output is wanted it can be obtained by rectifying the a.c. Selenium rectifiers are commonly used. If the whole or part of this d.c. is passed through coils wound on the cores, the amplifier characteristics are considerably modified. It is quite easy to find out how. Suppose PQR in Fig. 11 is the original amplifier characteristic. Now draw a curve, OS, showing rectified amp-turns (on the d.c. scale) against a.c. output. If the rectifier were perfect it would, of course, be a straight line. Now the total d.c. magnetization is equal to the input (measured along the horizontal scale) plus the rectified output (indicated by the horizontal distance of the line OS from the vertical scale).

In Fig. 11 the “feedback” characteristic starts from O on the d.c. scale, so its intersection, X, with PQR marks the working point with no input. It can be transferred to a new diagram (Fig. 12), where it appears as Q’. To find working points corresponding to positive or negative inputs, move the curve OS bodily along so that its foot marks the input, and transfer the intersections with PQR to Fig. 12. When joined up they give the new amplifier characteristic, P’Q’R’.

Its two outstanding features are its lack of symmetry, meaning that the polarity of the input now matters; and the increased steepness on one side, meaning that d.c. of that polarity is more highly amplified.

If the amount of rectified “feedback” is increased until its line OS in Fig. 11 runs nearly parallel to the simple amplifier characteristic QR, the amplification approaches infinity. But it may be inadvisable to work too close to this condition, because if the “feedback” slope cuts the other line at more than one place the amplifier becomes unstable and the working point flies suddenly to one end or the other—a condition which, however, has its uses, such as working relays. If the zero-input working point occurs in the middle of the steep part, the resulting characteristic (dotted in Fig. 12) indicates an output that corresponds to the input in polarity as well as in magnitude.

Another means of controlling the amplifier characteristics is familiar to valve users—“bias.” The only difference, of course, is that it is current instead of voltage. Bias current can be conveniently obtained by rectifying the supply a.c.

I have persistently put “feedback” in inverted commas because although this scheme bears an obvious similarity to feedback in valve amplifiers, and is often so named in connection with magnetic amplifiers, it is not on all fours with it. For one thing, there is not the same distinction between positive and negative

Fig. 11. Combination of amplifier characteristic (PQR) with “feedback” characteristic (OS) to give modified amplifier characteristic (Fig. 12).

Fig. 12. Amplifier characteristic with self-excitation.
Magnetic Amplifiers—feedback. The polarity of the current fed back depends only on the connections; not on the polarity of the input, as in valve amplifiers. If the connections are reversed, the only difference is to reverse the + and — in Fig. 12.

Fig. 13. (a) Example of self-excitation circuit. (b) Example of auto-excitation circuit.

With either connection, the effects of both positive and negative feedback can be obtained according to whether the working point is to left or right of the lowest point on the curve. So the description "self-excitation," which will be familiar to dynamo experts, is generally preferred.

One obvious way of applying it is by passing the rectified output through a third pair of coils (Fig. 13a). An advantage of this method is that the amount of self-excitation can be adjusted very precisely. But, of course, the extra windings make the whole thing larger. An alternative, shown in Fig. 13(b), and described as "auto-excitation," is to rectify the current through the a.c. coils.

A difficulty about using "feedback" to get a very high stage gain is that the amplifier is made much more sensitive to the alternating supply voltage. One way of obviating this is to connect amplifiers in push-pull.

But there is no need to go into all the possible arrangements. What is likely to be of more concern to readers new to magnetic amplifiers is whether they are likely to supersede valve amplifiers. The answer should by this time be a fairly clear negative. Owing to its sluggish response amplifiers are mainly outside the main stream of Wireless World interests, and non-competitive with valves. Whereas valves, being voltage-controlled, are at their best with high-impedance circuits, magnetic amplifiers are easier to design and make for low impedances. They are more robust and long-lived than valves, more reliable and have no socket contacts or microphony. They incorporate their own impedance-matching transformers, are more stable than valve d.c. amplifiers, generally need no power smoothing systems, and enable several separate control inputs to be combined without conductive connection.

One typical use is for enabling a robust meter movement or a relay to be operated by a light- or heat-sensitive device such as a barrier layer cell or a thermocouple. Lights can be automatically turned on when daylight fades. Servo-mechanisms and power-control systems of many kinds find magnetic amplifiers a help. The V2 rocket was a rather unhappy example of this.

Working input can be as low as 0.001 microwatt, and power gains per stage are limited mainly by the necessary stability—anything up to 10,000 is within reason. For higher gain or stability more than one stage is preferred.

B.B.C. TELEVISION MAP
(See Page 55)

The map reproduced on p. 55 shows the results of a survey recently carried out by the B.B.C. Research Department. The survey was extended well beyond the boundary of the nominal service area.

The field-strength measurements, from which the contours plotted on the map have been derived, were made at several places along eight routes radiating from Alexandra Palace, up to distances of about sixty miles. Whenever possible, places in open country were chosen, where there were no nearby hills or buildings that might produce reflected components of field strength, which could give misleading results.

In order to take account of the substantial variations in field strength that occur at these frequencies between points which are almost contiguous, a continuous record of the field strength at each place was made as the vehicle in which the measuring equipment was installed moved slowly along. The average value of field strength at each place was then determined from these records. The aerial on the vehicle was twenty feet above the ground, and as the average height of television receiving aerials is nearer thirty than twenty feet, the measured values were subsequently corrected to get the field strength at thirty feet above ground. These corrections being made on the assumption that the gain of the aerial increased linearly with height. All the measurements were made while the transmitter was radiating either normal programme or the "artificial-bars" signal, and the results were then multiplied by a factor to obtain the peak field strength, which corresponds to the white elements in the picture.

Some additional measurements were made at each of the principal towns within the area. The field strength there was usually less than in the surrounding country by between three and six decibels, and this reduction should be remembered when using the contour map, since, to avoid undue complication, closed contour loops have not been drawn around the towns.

The stippling on the map indicates the area within which considerable fading may be experienced.
LETTERS TO THE EDITOR

Higher Definition Television? • Inverted Omega for Inverted Ohm • Clearing Up Scale Distortion • Uses of Signal-strength Meters

Television Standards

MAY I make an emphatic plea in favour of an experimental high-definition television system, which I hold to be economically feasible. The gist of usual objections can be summarized as follows:

1. Higher writing speed would be necessary.
2. Present sets do not do full justice even to existing standards.
3. The cost of a very wide band amplifier would be prohibitive.
4. Scanning power for the line time base would be much increased.
5. American sets working to higher standards show disappointment performance.
6. Land lines and cables would be unable to deal with higher definition transmissions.

I shall try to show that none of the above objections are as serious as they may appear at first glance:

1. **Spot** size.—Modern transmitting and receiving tubes are capable of resolving a raster corresponding to 800 lines; the plastic lens projection system, developed by I.C.I., is capable of dealing with even more lines.
2. **Present** receivers.—In the laboratories of our leading set and valve manufacturers receivers are demonstrated which make full use of the wide band transmission from Alexandra Palace, and some manufacturers maintain their high standard in actual production. It is now up to the transmitter to establish a new lead.
3. **Wide band amplifier.**—The new B.B.C. transmitters will operate in single-sideband mode, thus resulting in substantial frequency band economy. It can be stated generally, that due to selectivity demands (avoiding sound on vision and vision on sound) the number of tuned circuits of a vision amplifier cannot be reduced safely below 7 to 8 (including wavetrap), while it is possible to obtain satisfactory gain with three valves only of the modern miniature type. With a higher definition system and hence wider carrier spacing, the selectivity problem if anything might be eased, which means that the number of valves only, and not of tuned circuits, would have to be increased and thus lead to a more balanced distribution of both. A single-sideband receiver for a 700-line system will perform adequately with five valves tuned by single staggered circuits, so that the additional complication and expense are less frightening than expected. Perhaps secondary emission valves of the E90 type will return with a more reliable performance and simplify the problems of a very wide band amplifier.

4. **Scanning power requirements.** We witnessed in recent years remarkable improvements in the design of scanning systems. By efficient use of energy recovering diodes and optimal design of scanning coils the increased demands on line timebase power can be met easily, thus an experimental R.C.A. system requires 66 watts power input for a line frequency of 31.5 kc/s and an e.h.t. of about 10 kV.

5. **American picture quality.**—The big discrepancy between the American laboratory and production performances can be explained by indifferent transmitter quality, mass production methods, etc. If we in this country can obtain good pictures with 405 lines, they will be better still with 700 lines.

6. **Losses in coaxial cables and lines;** these are serious, and the obvious answer is: do not use them, but microwave links only.

A different matter has also to be considered, the problem of the transmitting system; the high-definition transmitters of the future might use the Videosonic method. Its advantages are obvious; saving in frequency band, omission of a separate high power sound transmitter, omission of a separate sound amplifier in the receiver and sound interference suppression due to properties of pulse modulation. The audio band, rather restricted at present, will be widened considerably with an increased number of lines, and the main objection to the Videosonic system would thus disappear.

Summing up, it seems to me, that a high definition receiver is feasible both technically and economically, and that the establishment of an experimental transmitter of about 650-700 lines in the near future is desirable.
Letters to the Editor—

able. Some countries are preparing television systems with 625 and 819 lines already. In 1936 the present B.B.C. Acknowledging System was con-

sidered by many to set too high a standard; let us set a new one more to be replaced later by a colour or a stereoscopic system or both.

The Plessey Company, Ilford, Essex.

“Cathode Ray” Articles

“Admittance.”—Since I proposed, under this heading, that the symbol “ η ” would be a suitable one to fill the gap which exists alongside the term “ Mho,” my at-
tention has been drawn to the fact that it has already been used for this purpose by the Dublilier Condenser Company in a technical book-

let published some years ago. I am very glad to acknowledge this prior use, because it might suggest to the appropriate B.S.I. committee that it is about time they filled this gap in their book of standard Engineer-
ing Terms and Abbreviations. We have been writing “ mA/V ” too long and are tired of it.

“Scale Distortion.”—While mak-
ing acknowledgments I must also admit that perhaps my comments on Mr. Casey’s article were rather harsh. I still hold, however, that his references to my pre-war dicta on Scale Distortion were misleading, and that the quotations he makes from them in his letter in the January, 1949, issue are, without their context, also misleading. To avoid perpetuation of misunderstanding may I briefly sketch in that context?

In the earliest article, and ever since, I have emphasized the falla-
ciousness of the less astronomical “ bass compensation ” schemes, I suggested “ a fairly com-
prehensive system of tone control ” for intelligent listeners, so that they could get the balance of tone they liked best during each programme condition, since the setting of the volume control does not in general correspond in magnitude or even in sign with scale distortion, still less with the overall correction desirable.

“Antifence”

We should like to draw attention to the fact that the use of the word “ Antifence ” in connection with anti-static devices (which sufficiently resembles our trade name to lead me to mark “ Antifence ” to lead in-
tending purchasers to believe that we are the manufacturers) is in our view a clear infringement. Legal steps will in future be taken to deal with all such infringements.

Value of an S Meter

Your correspondent G2MC, I think, puts the case a little strongly when he questions the need for the provision of an “ S ” meter in a communications receiver on the grounds of discrepancies in reports. These discrepancies are all too familiar, of course, and for reports to be of the value they ought to be, some standard of meter calibration is required. Until such an ideal is attained we will continue to be in-
flicted with telephony reports of “ 50 db over S9 ” from DX stations or “ 100 % readable and Sr.”

However, the only alternative to an “ S ” meter is reliance on the human ear, which is far from being an accurate measuring device. All the anomalies and idiosyncracies pointed out by 2MC apply equally to reports given by ear.

Surely the two obvious advan-
tages of an “ S ” meter are (1) The ability to give accurate comparative reports on small changes of received carrier level to a station conducting tests, and (2) the giving of reports which are of the order of magnitude when it is operating properly the only marked difference to the ear between two signals of different level should be a change in back-
ground noise.

A third useful feature is in the checking of the receiver’s performance. A known signal such as that from the station’s own crystal cali-
ibrator can be used as a reference and if there is some doubt whether poor signals are due to loss of re-
ceiver performance or to “ conditions ” the “ S ” meter reading from this known source can be used as a check.

2MC is right when he says that the “ S ” meter depends on the de-
sign of the preselector. In fact, this is the commonest cause of dis-
crepancies. The usual case is that the gain, though not necessarily the sensitivity, of the “ front ” end of the receiver varied widely from the h.f. to the l.f. end of a range, and from one range to another, and thus the voltage passed to the i.f. ampli-
plier and therefrom via the a.v.c. to the “ S ” meter will vary widely for a constant input at the aerial ter-
inals.

In a receiver without constant gain the manufacturer should state what correction should be applied to the meter readings on various bands.

Questions of aerial efficiency and site conditions apply equally to aural reports; all the operator can do is to quote the aerial gain (or loss) compared to a simple dipole in its favoured direction.

For calibration, if we assume S0 to be the receiver noise level, with-

out site noise due to the aerial, and S1 to be a signal just strong enough to be audible but not to move the meter, S2 will be the value of sensitivity of the receiver—the input voltage required to produce an audio output 1db above the receiver noise. In a good receiver this would be 1μV. If “ S ” points are graded every 6db thereafter S9 would be 125μV. Someone can work out what 50db over this figure would be and then decide whether any ama-
uteur installation is likely to lay down such a signal at a great dis-
tance, whatever the conditions.

At most sites and with most aerials an S1 signal would not be audible in the practical case, and even with 100% modulation and a phenomenally low noise level only someone who would occasionally be heard though no intelligence could be conveyed. This lines up with the verbal description of St as a “ barely perceptible signal.”

Denco, Ltd., C. H. RANFT. Clacton-on-Sea, Essex.
that it surrounds our entire bodies and, moreover, we do not have to wait until we have shuffled off this mortal coil and become static, for we have it here and now.

The American savants whose writings on the subject I have just been reading do not use the term halo, but speak of the human aura. Apparently it changes in configuration according to the state of our health and would appear, therefore, to be a handy diagnostic tool for the doctor, but unfortunately its presence is only perceptible to those who are "psychogenic," whatever that may mean.

But radio science has once more come to the rescue and it is no longer necessary to be "psychogenic" or even just plain "psychic" to perceive this human aura. Some genius has found that it is more or less opaque to radio waves of the order of one millimetre. I say "more or less opaque" advisedly, for it is this feature which raises its status immediately from that of a mere laboratory phenomenon to a valuable "effect" which can be put to instant use by the medical specialist. The writers state that the ratio between the percentage of one-millimetre waves absorbed and those returned to the sender varies with the health of the individual. Furthermore, these ultissima short waves can be focused to such a fine point that the medico can pick out particular portions of our aura for diagnostic examination. He can, according to what I have been reading, not only pick out and analyse the contents of a man's stomach but determine also the degree to which the process of digestion has advanced by plotting the local aura configuration.

Now doctors in America must have their fun just as much as the Bevan boys over here, but I must confess to feeling very uneasy when I read further on that it is not necessary for the apparatus to be virtually "juxtapositional" (what philological fun these Americans have) as in the case of X-rays. It is suggested that by arrangement with a restaurant manager records of patrons' digestive processes analogous to the candid snapshots of a miniature camera may be taken from behind a screen.

This method of what I can only describe as "medical market research" has patient-getting potentialities undreamt of by the resourceful Mr. Bob Allen. Who could remain unmoved when the postman delivered a radar-graph (or should it be radar-gram) of his duodenum in action, with the simple footnote "Get it fixed before it fixes you?"

Heresy in High Places

Seldom have I been so shocked and shaken as when confronted by the banner headline in "If", last month "Distortion: Does It Matter?". I can only say that it had much the same effect on me as if one of the ecclesiastical journals came out with the headline, "Sin: does it matter?" or, to turn to the secular field, as if Pravda headed its leading article "Does Stalin Count?" or "Molotov no dobera."

It is true that Wireless World was merely reporting a discussion on this matter at one of the meetings of the I.E.E., but is not this the "Lambeth Conference" of the technical episcopacy. One might have expected it, therefore, to produce a radio Sancroft of equal stature to his ecclesiastical original who, with his six supporters, chose the Tower and the danger of corporeal schism rather than have any truck with the legal heresy which was largely responsible for costing "Dismal Jimmy" his throne in 1688.

Truth, which is science's other name, always thrives on persecution, and suppression is its life-blood.
Random Radiations

By "DIALLIST"

Portable Television

That, anyhow, is the name given to it by the American company which makes a new type of midget televison; but it isn't quite the counterpart of the portable wireless set, for its power supply is not built in and you can't therefore do a spot of viewing wherever or whenever you feel like it. In point of fact the "portable" here means just what its name implies: it can be carried easily from here to there. The set is about the size of a weekend suitcase; it has the same sort of carrying handle and it weighs only 15 lb. There is a built-in telescopic dipole (horizontal, of course), and all you need for reception is a 110-volt, 60-c/s socket—and a television station within range. A 3-inch c.r.t. is used, but magnifying lenses are available which give three times the picture area obtainable with the unaided tube. The price of the complete outfit (with magnifying lens) is $153.95 dollars, or a little less than £38 10s. Would something similar catch on here? I really don't know. I have a feeling, though, that the 7½ x 6 in image is about the smallest that is genuinely acceptable to most potential televisers. Again, we have only one transmitter in being and another coming along in the near future, whereas there are few big towns in the eastern states of America which have not at least one service available. Over these, then, there's some point in including a lightweight televiser in your luggage if you are travelling over quite large areas. There's no similar advantages yet with us, unless your movements are limited to a 10-15 mile radius (remember that built-in dipole) of A.P.

A New Menace

Writing of travelling and television brings to mind the latest short cut to eternity for members of the Suicide Club, which is described (but not recommended) in a recent issue of the New York Radio-Electronics. As a motorist of many years' experience—I wouldn't like to tell you when my first car was built—the very last thing I should want is a television receiver installed alongside the steering column at an angle which gives the driver comfortable (1) viewing as he speeds over the open road or crawls through the traffic. I sincerely hope that car television won't be permitted in this country, or if it is it will be limited to the passenger seats behind the driver.

Puzzling

This month I seem to be writing a lot about "TV" doings in the U.S.A. That's because things are developing pretty fast over there and there have been quite a few interesting innovations of late. One of these, I confess, has me completely beaten. A big American radio and television manufacturing company (Zenith) announces the appearance at an early date of a receiver with a "giant circle screen." An illustration shows a console set with a circular viewing screen which is completely occupied by the picture—there are no black borders. I'm frankly puzzled for two reasons: (1) How can you obtain a circular picture from a 5:4 aspect ratio rectangular transmission in any other way than by first cutting the received image to a 1:1 aspect ratio and then still further jettisoning part of what the transmitter sends out by limiting the picture on the receiver screen to the circle contained by the resulting square? The only other way I can think of would be deliberately to distort a 5:4 aspect ratio image into a 1:1 and then to round off the corners—but I can't think that that would give acceptable results. (2) Why should the circular image be described in the announcement as "what you have been waiting for"?

Rectangle versus Square and Circle

Think it over for a moment and I think you'll agree that the picture shape least acceptable to the human eye is the circular. Next in order of unpopularity comes the square, which the major axis is horizontal. The camera lens projects an approximately circular image, but from the very early days of photography prints have been rectangular. The square might have seemed the most likely kind of rectangle to be chosen; but it wasn't. Well, the round-picture televiser is being launched by a firm with a pretty good experience of the radio and television market. It will be interesting to see whether it catches on despite the apparent preference of the human eye for oblong images.

In Defence of Siting

At the risk of receiving a poke in the eye from "Free Grid's" gamp, I must join I. B. R. Cater (correspondence, W.W., January, 1949) in defence of the verb "to site." Actually it is a military technical word dating back to the days when home-brewed beer was tuppence a pint and half a pound of good tobacco cost less than does a packet of gaspers to-day. It has always been used with one meaning only: to place something in a position deliberately and carefully chosen for it. I don't know of any word of unquestionable lineage which has the same signification; and when the language doesn't contain a word expressing an action or an idea that he wants to describe, the technical man has always been allowed to coin one. Unfortunately his coinage is not always very beautiful or very happy; but I don't find "siting" or "sited" particularly offensive. They are at any rate better than "positioning" and "positioned." Siting is surely the only word which describes what
is (or ought to be!) done whenever ground radar equipment is brought into action. If you just place or install or locate it here or there, you are liable to find standing breaks all over the screens and to be bothered by queer errors. But if you site it by choosing its position with the greatest possible care, perhaps after trying it in two or three likely looking spots before finally deciding, you are sure that you are getting the best out of it. "Siting" was in use in Army manuals long before radar was thought of.

Four-dimensional Investigation!

A most interesting paper was read just before Christmas at the Institution of Mechanical Engineers by H. A. V. Bulleid. His subject was "Cinematography in Engineering." The author certainly has engineering in the blood, for his father, O.V.B. is chief mechanical engineer of the Southern Section of British Railways, his uncle H. G. Ivatt, C.M.E., of the Midland Section, and his grandfather H. A. Ivatt was C.M.E. of the old Great Northern Railway. We don't make anything like enough use of the cine either in the electrical research lab or in the lecture room. As Mr. Bulleid showed, it is capable of giving the research worker answers to puzzling problems which cannot be found in any other way. It enables him, for instance, to make four-dimensional investigations, for the high-speed camera and projector, with 8,000 frames a second, provide a magnification in time of 500 to 1. In one big American laboratory a speed of 40,000 frames per second has been claimed, with a corresponding time magnification of 2,500 to 1. One doesn't need to do much thinking to realize how useful the high-speed cine could be in the investigation of such things as the action of rotary switches and other moving contacts; of the filament vibrations which cause microphony in valves; of the movements of loudspeaker cones. . . . One great advantage of the cine is that it makes a permanent record, which may be referred to as often as required. It thus becomes the natural ally of the oscilloscope. From the instructional point of view the cine is invaluable. We certainly found it so during the war for teaching not only the practice, but also the theory of radar.
Recent Inventions
A Selection of the More Interesting Radio Developments

Press-button Tuning

A SWITCH-TUNED superhet is provided with an extra push-button control which is used to broaden the bandpass response of the I.F. amplifier, in order to take advantage of the high musical standard of local transmissions when circumstances permit. The drawing shows the input circuit to the I.F. stage A with the press-button control shaft K in its normal position. With this setting, the primary circuit LC is coupled directly to the secondary LiCt, the auxiliary coil L2 and condenser C2 being out of action. This arrangement gives a narrow bandpass characteristic for receiving ordinary or long-distance programmes.

By pushing in the shaft K, the contacts 1 and 2 are broken and the contact 3 connects the auxiliary coil L2 in series with the coil L1, to broaden the bandpass coupling. At the same time, the trimming condenser C2 is brought into action, to keep the new response curve symmetrical in shape.

Large-scale Television

RELATES to television receivers of the kind in which the scanning stream of a cathode-ray tube is used to vary the point-to-point transparency of a sensitive screen, so that the picture can be projected through the screen on to a viewing surface mounted outside the tube. A suitable sensitive screen consists of a thin film of oil deposited on a glass disc, which is made of larger size than the actual scanning raster, and is slowly rotated in order to present fresh areas to the stream.

The effect of the scanning is to set free small static charges, which cause local surface deformations on the film of oil. These act as small lenses to vary the initial focusing of the projection beam against a cut-off grating, and so allow modulated light to reach the viewing-screen.

According to the invention, a second stream of electrons (unmodulated) is arranged to scan the area immediately surrounding the actual raster, in order to offset certain marginal distortions observed in the projected picture, and caused by abrupt changes in the static field strength produced on the film, near the edges of the raster.

Aerial Switching

IN radar equipment it is necessary to decouple the receiving circuits from the high voltages fed to the aerial during transmission, and to restore the connection in time to accept the resulting echo signals. One form of high-speed switch used for this purpose consists of a toroidal resonator having a gas-filled discharge tube bridged across its poles. The device is located at a suitable point along the waveguide feeder, and is automatically operated as each outgoing signal produces a short circuiting flash through the discharge tube. The duration of the flash is important, since it determines the time during which the receiver is out of action, and, in practice, this tends to be unduly prolonged, owing to the slow de-ionization and recovery rate of the gases contained in the tube.

According to the invention, the discharge tube is filled with small particles of glass "shot," averaging one millimeter in diameter. By sub-dividing the discharge path into units of comparatively small volume and large surface area, the particles accelerate the "cleaning up" of the ions and electrons produced by each discharge, and increase the switching speed.

The M-0 Valve Co., Ltd., and N. L. Harris. Application date November 30th, 1945. No. 600889.

Frame Aerials

THE wire turns of a frame aerial are closely wound, and then cemented together with insulating material into the form of a flat pliable tape. This is laid, sandwich-fashion, in a shallow channel left between the two moulded halves of a frame, which is made from a synthetic resin previously impregnated with finely divided iron dust.

The high dielectric constant and magnetic permeability of the material surrounding the wire conductors is stated to increase the pick-up of an aerial of given size, the arrangement being intended for small portable sets.

Electro-Mechanical Oscillators

AN electro-mechanical resonator, suitable for developing frequencies between 3 and 10 kc/s, consists of a magnetic ring which is supported at nodal points of vibration and is coupled at anti-nodes to a valve oscillator.

As shown in the diagram, the resonator R is excited through electro-magnets M, coupled to the input and output circuits, respectively, of a valve V, for which the resonator provides a feedback path. It is supported, at the nodal points N, by upper and lower contacts K, which form pairs only as shown. Alternatively, the magnetic ring is fitted with a thin internal web to form a shallow cup-shaped resonator, which can then be supported at its centre.

For use within the specified range of frequencies, a resonator of this type can be made of more convenient size than an equivalent reed or magnetostriuctive vibrator.

PERMALLOY 'C' for highest initial permeability. Useful for wide frequency band transformers, current transformers, chokes, relays and magnetic shielding.

PERMALLOY 'B' for higher flux densities than Permalloy 'C' and high incremental permeability. Suitable for low power and inter valve transformers.

PERMALLOY 'D' for very high resistivity without undue lowering of maximum flux density or of the Curie point. Small variation of permeability with frequency. Ideal for H.F. applications.

V—PERMENDUR for high permeability with unusually high flux density. Specially applied to high quality diaphragms and pole pieces.

Standard Magnetic Materials, which have been steadily improved and extended in range over many years, are produced by a Company which has the unique advantage of being also a large scale user of these materials.

Standard Telephones and Cables Limited
(Registered Office: Connaught House, Aldwych, London, W.C.2)
(Telephone Line Division)
NORTH WOOLWICH, LONDON, E.16. Telephone: Albert Dock 1401
Stabilised Insulation

BY MODERN IMPREGNATION METHODS

HYMEG

HYMEG Synthetic Insulating Varnishes are recognised and widely used for their mechanical rigidity, improvement of electrical properties of windings; heat, moisture, oil, acid and alkali resistance as well as for the considerably reduced stoving time necessary.

Now, special methods of continuous conveyor impregnation and baking developed with the use of HYMEG have still further reduced processing times to a fraction of those previously believed necessary. Often faster than infra-red baking with none of the defects, reduced handling, absence of special jigs, with complete freedom from blistering, bubbling and porosity, are some of the advantages claimed and substantiated for HYMEG High Speed Production methods.

HYMEGLAS

GLASS FIBRE INSULATION SYSTEM

This integrated system of development is successful in enabling machines to be designed and operated without weak links in the chain of insulation below 200°C. Thus the fullest advantage is taken of modern glass fibre insulation by providing a degree of bonding and insulation at every point in which the uniting of HYMEG impregnation with the HYMEG as used for subsidiary insulations gives a solid homogeneous winding of equally efficient characteristics and heat resistance throughout.

HYMEGLAS therefore virtually eliminates any risk of insulation failure and enables motors and the like to operate under abnormal conditions for long periods without risk of electrical breakdown.

Due to the excellent space factor of glass fibre as compared with the more usual asbestos and mica Class B insulations, it is often possible to redesign with the HYMEGLAS system to employ larger copper sections with well-known advantages.

The Berger Technical Service—the research work of which produced HYMEG and HYMEGLAS—is available to advise manufacturers on all problems of insulation. Get in touch now with—

LEWIS BERGER & SONS LTD. (Est. 1760)
35, BERKELEY SQUARE, LONDON, W.1.
Telephone: MAYfair 9171.

MANUFACTURERS OF HIGH-PERFORMANCE INSULATING VARNISHES AND ENAMELS

AN ANNOUNCEMENT

OF EXCEPTIONAL INTEREST

The FOX HELICAL POTENTIOMETER type PXF 5 H10 is now available for general release to the Electronic Industry.

BRIEF SPECIFICATION

Resistance Range 20 ohms to 50 K-ohms.
Helical Turns 10. Rotation 3,600'.
No. of wire turns 2,000 to 12,000.
Wattage 5.

Write for full details to:

P. X. FOX LTD.
TOROIDAL POTENTIOMETER SPECIALISTS
HORSFORTH, YORKSHIRE, ENGLAND.
PATIENCE
NO LONGER
A VIRTUE

AMATEURS! SERVICE MEN! ENGINEERS!

Do you still wait 10 to 15 minutes for your Electric Soldering Iron to heat up, every
time you want to solder a few joints? Or do you leave it switched on all day? Then you
are not only being unnecessarily patient, but wasting fuel as well! The BURGOYNE
"INSTANT HEAT" GUN is the answer to all that nonsense. Not a welding device, not a
complicated freak, but simplicity itself. Just press the button and solder AT ONCE, using
it in the same way as an ordinary soldering iron. Bits changed in a few seconds. No other
maintenance whatsoever. Costs more than a soldering iron but lasts a lifetime, and saves
pounds otherwise lost in electricity and wasted time.

Send for fully descriptive folder free, to the sole manufacturers:
BURGOYNE ENGINEERING COMPANY LIMITED
1-3, ROBERT STREET, HAMPSTEAD ROAD, LONDON, N.W.1

PRICE COMPLETE
79'6
With Two spare Bits and 4 yards of
Flex, Model S.471 for 100-130v. A.C.
Model S.472 for 200-250v. A.C.

VIBRATORS FOR RELIABLE
REPLACEMENTS

Entirely British in design and
construction, and fully approved for
Government Service equipment, W.E. Vibrators
are ready for all your replacements. They are
fitted as standard components by leading radio
manufacturers.

WIMBLEDON ENGINEERING CO. LTD.
GARTH ROAD • LOWER MORDEN • SURREY • TELEPHONE: DERWENT 4814, 5016.
Co-axial Construction—

FOR “BETTER LISTENING”

R. & A. Reproducers are perfectly aligned about their axis. Their assembly is so arranged that the voice coil can never, except under conditions of brute force, vary from its setting in the anular gap by more than 0.001 ins. Misalignment of the voice coil and/or mechanical failure is therefore almost impossible, no matter what the volume or frequency. A co-axially constructed, distortion-free speaker is a necessity for Better Listening.

REPRODUCERS AND AMPLIFIERS LIMITED
FREDERICK ST, WOLVERHAMPTON ENGLAND

18, TOTTENHAM COURT ROAD, LONDON, W.1

Tel: MUSEUM 2453

Shop hours: Monday-Friday 9-1.30, Saturday 9-1

“"The Story of Co-axial Construction” explains how our speakers are built. We will gladly send a copy to any manufacturer or Overseas Buyer who writes for one.

RAYMART SHORT WAVE COILS. Plug-in coils wound on bobbin dielectric material. Each coil marked with wavelength coverage. 6-pin and 8-pin types are interchangeable with those of competitive makes.

4-pin coils. Primarily designed for aerial coil with reaction but they can also be used for spark-gap coupling or in oscillation circuit. Standard British 4-pin base—price 6d. extra.

Type C.C. coverage 110-250 meters 92.3 microH. Price 4½.

Type C.C.1 coverage 50-140 meters 23.9 microH. Price 3½.

Type C.A. 11 coverage 11-23 meters 7.61 microH. Price 3½.

Price postage paid.

Type C.A. 111 coverage 80-180 meters 224.7 microH. Price 4.9.

Type C.A. 1111 coverage 44-100 meters 57.35 microH. Price 4.3.

Price postage paid.

Type C.C. 11 coverage 44-100 meters 57.35 microH. Price 4.6.

Type C.C. 111 coverage 20-45 meters 16.25 microH. Price 4.3.

Price postage paid.

Type C.A. 111 coverage 11-23 meters 7.61 microH. Price 4.6.

Price postage paid.

Type C.C. 111 coverage 80-180 meters 224.7 microH. Price 4.9.

Type C.C. 1111 coverage 44-100 meters 57.35 microH. Price 4.3.

Price postage paid.

Type C.C. coverage 110-250 meters 92.3 microH. Price 4½.

Type C.C.1 coverage 50-140 meters 23.9 microH. Price 3½.

Type C.A. 11 coverage 11-23 meters 7.61 microH. Price 3½.

Price postage paid.

Type C.A. 111 coverage 80-180 meters 224.7 microH. Price 4.9.

Type C.A. 1111 coverage 44-100 meters 57.35 microH. Price 4.3.

Price postage paid.

Type C.C. 11 coverage 44-100 meters 57.35 microH. Price 4.6.

Type C.C. 111 coverage 20-45 meters 16.25 microH. Price 4.3.

Price postage paid.

Type C.A. 111 coverage 11-23 meters 7.61 microH. Price 4.6.

Price postage paid.

Type C.C. 111 coverage 80-180 meters 224.7 microH. Price 4.9.

Type C.C. 1111 coverage 44-100 meters 57.35 microH. Price 4.3.

Price postage paid.

Type C.C. coverage 110-250 meters 92.3 microH. Price 4½.

Type C.C.1 coverage 50-140 meters 23.9 microH. Price 3½.

Type C.A. 11 coverage 11-23 meters 7.61 microH. Price 3½.

Price postage paid.

Type C.A. 111 coverage 80-180 meters 224.7 microH. Price 4.9.

Type C.A. 1111 coverage 44-100 meters 57.35 microH. Price 4.3.

Price postage paid.

Type C.C. 11 coverage 44-100 meters 57.35 microH. Price 4.6.

Type C.C. 111 coverage 20-45 meters 16.25 microH. Price 4.3.

Price postage paid.

Type C.A. 111 coverage 11-23 meters 7.61 microH. Price 4.6.

Price postage paid.

Type C.C. 111 coverage 80-180 meters 224.7 microH. Price 4.9.

Type C.C. 1111 coverage 44-100 meters 57.35 microH. Price 4.3.

Price postage paid.

Type C.C. coverage 110-250 meters 92.3 microH. Price 4½.

Type C.C.1 coverage 50-140 meters 23.9 microH. Price 3½.

Type C.A. 11 coverage 11-23 meters 7.61 microH. Price 3½.

Price postage paid.

Type C.A. 111 coverage 80-180 meters 224.7 microH. Price 4.9.

Type C.A. 1111 coverage 44-100 meters 57.35 microH. Price 4.3.

Price postage paid.

Type C.C. 11 coverage 44-100 meters 57.35 microH. Price 4.6.

Type C.C. 111 coverage 20-45 meters 16.25 microH. Price 4.3.

Price postage paid.

Type C.A. 111 coverage 11-23 meters 7.61 microH. Price 4.6.

Price postage paid.

Type C.C. 111 coverage 80-180 meters 224.7 microH. Price 4.9.

Type C.C. 1111 coverage 44-100 meters 57.35 microH. Price 4.3.

Price postage paid.

Type C.C. coverage 110-250 meters 92.3 microH. Price 4½.

Type C.C.1 coverage 50-140 meters 23.9 microH. Price 3½.

Type C.A. 11 coverage 11-23 meters 7.61 microH. Price 3½.

Price postage paid.

Type C.A. 111 coverage 80-180 meters 224.7 microH. Price 4.9.

Type C.A. 1111 coverage 44-100 meters 57.35 microH. Price 4.3.

Price postage paid.

Type C.C. 11 coverage 44-100 meters 57.35 microH. Price 4.6.

Type C.C. 111 coverage 20-45 meters 16.25 microH. Price 4.3.

Price postage paid.

Type C.A. 111 coverage 11-23 meters 7.61 microH. Price 4.6.

Price postage paid.

Type C.C. 111 coverage 80-180 meters 224.7 microH. Price 4.9.

Type C.C. 1111 coverage 44-100 meters 57.35 microH. Price 4.3.
THE COMPLETE SERVICE FOR SOUND RECORDING AND REPRODUCTION

- Mobile, static and specialised recording units
- Recording amplifiers, speakers, microphones, etc
- Sapphire cutting and reproducing styli
- Blank recording discs from 5in. to 17in. Single and Double-sided
- Groove locating and cueing devices
- A comprehensive range of accessories to meet every requirement of the sound recording engineer
- A development of special interest to users of sapphire and delicate pick-ups — THE SIMITROL. This is a controlled micro-movement easily fitted for use with any type of pick-up

OUR CDR48A RECORDER UNIT complete and self-contained, measuring only 22in. x 14in. x 13/4in., incorporating 7-valve amplifiers, recorder unit, light-weight pick-up, speaker and microphone and with many exclusive features, is now ready for early delivery.

OUR WELL-EQUIPPED WORKSHOPS ARE AVAILABLE FOR THE DEVELOPMENT OF EQUIPMENT TO MEET SPECIAL NEEDS.

SIMON SOUND SERVICE, Recorder House, 48/50, George St., Portman Square, London, W.1.

CABLES: Simsole, London

TELEPHONE: Welbeck 2371 (4 lines)

Optimum Characteristics from this EFFICIENT DOUBLE-TRIODE

- Counting and Scaling
- Photocell Amplifiers
- Balanced Bridges
- Multi-Vibrators
- Motor Control Circuits
- Watt and Power Factor Meters
- Voltage Control Circuits
- Time Delay Circuits
- Relay Circuits
- R.C. Oscillators
- Coincidence Circuits
- Pulse Shaping Circuits

ECC33 VALVE DATA

- **Heater Voltage**: 6.3V
- **Heater Current**: 0.4A
- **Anode Voltage**: 250V
- **Anode Current**: 9mA
- **Anode Resistance**: 9,700 ohms.
- **Mutual Conductance**: 3.6mA/V
- **Amplification Factor**: 35

The combination of medium low anode resistance, high working current, high slope and low heater current, make this new Mullard double-triode an ideal valve for an unusually large number of functions. One practical advantage of this versatility is that it is often possible for one type of valve to be used throughout an equipment with obvious economies in design and maintenance. Manufacturers of electronic counters will especially appreciate the low heater current and G.T. size, whilst designers of industrial control equipment will welcome the series arrangement of the heaters.

Mullard

THERMIONIC VALVES & ELECTRON TUBES

MULLARD ELECTRONIC PRODUCTS LIMITED, CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C.2
H. P. RADIO SERVICES LTD.

OFFER:

76SH7 37193 36H6

Handsome metal case 12” x 12” x 8”

100’s of useful components.

A magnificent piece of apparatus, containing over £50 worth of useful components. 3 speed motor gear box. Two 3 pole relays. One 2 pole relay incorporating the most useful 7193 valves. Ideal for 145 Megacycle operation.

COMPREHENSIVE LISTS ON RECEIPT OF 2½ D. STAMP.

AVAILABLE IN BRITISH ISLES ONLY.

TRANSIT WEIGHT 40 LBS.

STATE NAME OF NEAREST RAILWAY STATION

H. P. RADIO SERVICES LTD.

BRITAIN’S LEADING RADIO MAIL ORDER HOUSE

55, COUNTY ROAD, WALTON, LIVERPOOL, 4

ESTAB. 1935

STAFF CALL SIGNS G3DLV G3DGL

Wireless World

February, 1949

Dependable Di-electrics

OKERIN waxes

and DI-JELLS

—for insulating, filling, impregnating, waterproofing, sealing and finishing radio and electrical components, cables, etc.

ALL GRADES ARE DESIGNED TO MEET DEFINITE CHEMICAL, PHYSICAL AND ELECTRICAL STANDARDS.

For technical advice and samples, phone TEMPLE BAR 5937.

Smallest — Best — Inexpensive!

OSMOR “Q” COILPACKS

One-Hole Fixing

HIGH “Q”

LOW-LOSS FORMERS

ADJUSTABLE CORES

NO WHISTLES

SIZE 3½ x 2½ x 1½

GIVES 20% IMPROVEMENT.

S’HET (465 kc) L.M.S., 33-. M.S.S. and L.M. SHIPPING, 35-. T.R.F. (L. & M.W.), 30-. BATTERY MODEL, and other types available; also ATTRACTIVE GLASS DIAL ASSEMBLY in 3 colours, 7”-7”, calibrated for L.M.S. and L.M. SHIPPING.

INDIVIDUAL COILS, S’HET and T.R.F., 3/- each.

PROGRESSIVELY WAVE-WOUND, PERMEABILITY-TUNED COILS, T.R.F.

MATCHED RADIO and TELEVISION COMPONENTS AT ATTRACTIVE PRICES.

Write for particulars (Trade enquiries invited).

OSMOR RADIO PRODUCTS LTD.

BRIDGE VIEW WORKS, BOROUGH HILL, CROYDON, SURREY

Tel. CRO. 1220.
At last a gramophone motor to match the performance of the famous Connoisseur Pick-up.

SPECIFICATION:
Voltage: 200-250 volts A.C., 50 cycles.
Rim drive with speed variation. No governors and no gearing. Heavy non-ferrous turn-table, machined to run dead true, fly-wheel action—no "WOW." Main turn-table spindle hardened, ground and lapped to mirror finish, running in special phosphor-bronze bearings. Motor runs in needle-point, self-adjusting bearing.

Board 1in. plastic. Pressure on Drive-Wheel released when not in use, to obviate forming flats and noisy action.

Retail Price, complete with Pick-up £15 19s. 0d. plus £6 18s. 2d. P.T.
" without Pick-up ... £13 5s. 0d. " £5 14s. 10d. P.T.
Coupling Transformer when required 13s. Od.

Made by
A. R. Sugden & Co. (Engineers) Ltd., Brighouse, Yorks.

One on top of the other...

Looks easy, doesn't it? But it is the 'know how,' that comes only after years of experience, that successfully overcomes the difficulties of development and production that are inseparable from the manufacture of the highest quality sound equipment.
The G.P.I. pressure type loudspeaker unit is an outstanding example of the advanced design and dependable craftsmanship, which, rising from wide experience, make certain that the reputation of Vitavox is always on top.

Write for full details.

VITAVOX
G.P.I. PRESSURE UNIT
The result of twenty years' experience

Vitavox Limited, Westmorland Road, London, N.W.9. Tel.: COLindale 8671
For all Electrical Tests

PIFCO
ALL-IN-ONE RADIOMETER

with internal battery and multi scale the PIFCO All-In-One Radiometer tests everything electrical, Radio and P.A. Equipments, Household appliances of all kinds. Car Lightings Systems, Bell and Teleprinter Circuits. May be used on AC or DC mains.

Write for full details and Export terms. Overseas Agency enquiries invited.

PIFCO LTD., PIFCO HOUSE, WATLING STREET, MANCHESTER, 4 and at PIFCO HOUSE, GT. EASTERN STREET, LONDON, E.C.2

CHARLES BRITAIN (RADIO) LTD.
11, UPPER SAINT MARTINS LANE, LONDON, W.C.2
BEST BUY AT BRITAIN'S

INEXPENSIVE TELEVISION

We now have available a descriptive and comprehensive booklet which sets forth in simple terms how to construct a 6v. Televisor from "scraps" equipment. The booklet is profusely illustrated and will prove useful village. Price 1/6, post free.

Among the Units included are "Inexpensive Television" as being of prime importance in the construction of a Televisor are the VIDEO RECEIVER H1956 and the RF UNIT TYPE 25. This R1956 is the ideal vision receiver; valve line-up: 1 250V, 1 450A, and 1 140; also incorporates 7.7 Mc (1750 p).

We supply simple modification instructions with every Unit purchased, and it can be seen in operation at our premises in London. The R1956 is used in conjunction with the R1535 which plugs into the receiver. The R1956 is offered at the absolutely low price of 30/-, plus 5/- carriage.

BRAND NEW R1956 Units are in stock at a low price of 42/6, plus 5/- carriage.

RF UNIT TYPE 25. This essential part of the Televisor is priced at 12/-, post free. For the month of February only both equipments at 37/6, plus the usual 5/- carriage charge.

BRAND NEW AMERICAN EQUIPMENT. We proudly feature this month the American Radiogram Company type 12-1255, housed in a handsome black enameled cabinet and containing 2 6L7, 1 720, 2 514, 1 112X, 1 157/1, 3 308, 1 715. The tube is a 25V CRT, 1511. A bargain at 26/-10/-, plus 5/- carriage.

RECEPTOR UNIT R746. Comprises 1 250V, 1 1450A, 1 VR150, 2 6Y6. At a price within the compass of all 50/- for 5/- carriage. AND REMEMBER! BOTH UNITS ARE BRAND NEW.

DIRECTOR UNITS. We have in stock at present a large selection of indicators for use in constructing a Televisor, and would extend it a pleasure to furnish advice and relevant details relating to the choice of suitable apparatus.

Personal shoppers will appreciate the fact that all new are demonstrated prior to purchase.

UNIT TRANSFORMERS. 1250V, 125A. at 3, 4, 5, tap 14, 15, 16. For 250V, input initial PUR VOLT TABULATION. Brand new and guaranteed at 29/- each, carriage paid.

RECEPTOR UNITS TYPES 25 as 26. Despite the consistent demand during the preceding months we can still supply from stock. These Units are actually the receiver portion of the TR1956. Among other things they contain 6 valves: 2 514, 1 1450A, 1 720, 2 RF, and one pair of 460 K. 19-V transformers, resistor and condensers. Ready converted into a modest wave superhet by replacing the two valves. Super value at 18/-, plus 5/- carriage. Suitable units are available at 6/- per pair.

UNIT RECEIVERS. Reconstructed by using your old receivers. Metalized transformer, 10 valves, a number general, panasonic condensers, potentiometer, resistor, etc. The generator is complete with all gears and other necessary parts and is readily convertible to a small motor for AC or DC operation. At the price of 18/-, plus 5/- carriage, this is indeed valuable equipment.

AMPLIFIER UNIT TYPES 18 or 165. A neat and compact Unit incorporating the following valves: 2 514, 1 1450A, and 3 953. Together with microphone transformers, inter-valve transformers, crystal diode and rectifier, etc. An experimenter's delight for 5/-, plus 5/- carriage.

Shop hours: 9 a.m. to 5 p.m. Open all day Saturday.

PARKER Radio

THE NEW S.T.7 MODEL
7-valve superhet, 4 bands, A.C. D.C. 110 or 230/250.
Alternative wave bands: —

7-30, 30-70, 70-180, 200-550
13-30, 30-70, 200-550, 800-2,000
Specify wave bands & voltage when ordering

International ocital valves—high gain R.F. stage—10" moving coil speaker. Radiogram input and extension speaker connections—all sets fully tropicalised.
CELESTION

Here are two excellent Celestion Speakers with dimensions which make them ideal for use in small domestic receivers, as extension speakers, for car radios and intercommunication sets. Model P2V can also be used as a microphone.

THE MIDGET 2 CABINET MODEL CT117 (as illustrated) uses the P2V Speaker in its bakelite cabinet of modern design which is available in a variety of pleasing colours.

CHASSIS MODEL P3C0
Dia 3½". Baffle opening 3". Voice coil impedance at 400 cps., 3 ohms. Pole dia ⅞". Flux density gauss 7,700. Total gap flux 24,000. Peak power capacity 1 watt.

Price less transformer
(Suitable for output 1-5 ohms).
WHERE TO BUY CELESTION SPEAKERS
The Public are requested to order from their local Radio Dealer.
Wholesalers are supplied by the sole Distributors: CYRIL FRENCH LTD., High Street, Hampton Wick, Middlesex.
Manufacturers should please communicate direct with

CELESTION LIMITED, SUMMER RD., THAMES DITTON, SURREY.

MIDGET 2 CABINET MODEL CT117
Size ; Height 4½" Width 6½" Depth 2½"

PRICE complete in cabinet £2 : 3 : 6

TECHNICAL DETAILS OF CHASSIS MODEL P2V
Dia 2¾" Baffle opening 2½". Voice coil impedance at 400 cps., 3 ohms. Pole dia ⅞". Flux density gauss 8,500. Total gap flux 8,000. Peak power capacity ¾ watt.

Price less transformer
(Suitable for output 1-5 ohms).

WHERE TO BUY CELESTION SPEAKERS
The Public are requested to order from their local Radio Dealer.

CHASSIS MODEL P2V
Dia 3½". Baffle opening 3". Voice coil impedance at 400 cps., 3 ohms. Pole dia ⅞". Flux density gauss 7,700. Total gap flux 24,000. Peak power capacity 1 watt.

Price less transformer
(Suitable for output 1-5 ohms).

THE MIDGET 2 CABINET MODEL CT117
Size ; Height 4½" Width 6½" Depth 2½"

PRICE complete in cabinet £2 : 3 : 6

TECHNICAL DETAILS OF CHASSIS MODEL P2V
Dia 2¾" Baffle opening 2½". Voice coil impedance at 400 cps., 3 ohms. Pole dia ⅞". Flux density gauss 8,500. Total gap flux 8,000. Peak power capacity ¾ watt.

Price less transformer
(Suitable for output 1-5 ohms).

WHERE TO BUY CELESTION SPEAKERS
The Public are requested to order from their local Radio Dealer.
Wholesalers are supplied by the sole Distributors: CYRIL FRENCH LTD., High Street, Hampton Wick, Middlesex.
Manufacturers should please communicate direct with

CELESTION LIMITED, SUMMER RD., THAMES DITTON, SURREY.

NEW DESIGNS
in the range of

U.I.C
High Stability
CAPACITORS

METALLIZED CERAMIC HERMETIC SEALS

UNITED INSULATOR CO. LTD., OAKCROFT RD., TOLWORTH, SURBITON, SURREY

Telephone : Elmbridge 5241 (6 lines) Telegrams : Cannon, Surbiton
RIBBON PICKUP, type JB/P/R/1
(TYPE JB/P/R/1m FOR FINE LINE RECORDINGS)

Frequency range, 20 c/s to 40,000 c/s.
Permanent point 6 times harder than sapphire and more robust.
Point pressure, 1/8 oz.
Output voltage, 10 to 15 mV. across 15,000 ohms approx.
"Floating Element" design prevents arm torsional resonance.
Price in U.K., including special mumetal screened transformer and Purchase Tax, £ 10/14/-.1.
Downward pressure is not just a question of counter-balancing or taking up weight by the use of a spring.
The effective mass of the moving parts at the point at medium and high frequencies with the additional impedance of the restoring force at low frequencies are the main factors governing point pressure. At the same time, "wasted" forces absorbed by the inertia of the head and arm in vertical and horizontal directions, friction in the bearings as well as other considerations must be taken into account.
Our Pickup Booklet deals with general design factors and their specialised application, and will be sent together with details of our other products, including Amplifiers, Pre-Amplifiers, Filters, Silent Turntables, etc., on request.
J. H. BRIERLEY (GRAMOPHONES & RECORDINGS), LTD.,
46, TITHEBARN STREET, LIVERPOOL

LAMINATIONS
FOR
All Radio and Electrical Uses.
In Silicon, Dynamo, Intermediate and Transformer Qualities.
Permalloy, Mumetal, Radiometal.
Screens for all Electrical Uses.
Transformer Shrouds for 35 and 74 Lams.
General Precision Engineers.
Heat Treatment.
Sheradising to the Trade.

Electrical Sound & Television Patents Ltd.
12 Pembroke Street, London, N.1. — TERMINUS 4355
2/4 Manor Way, Boreham Wood, Herts. — ELSTREE 2138

Mr. A. C. BARKER'S
NEW MODEL 148a SPEAKER
is now released and is available from stock.
Built individually with meticulous care in the laboratory this new 12in. N A T U R A L
sound reproducer approaches truth more closely than ever before.
No other speaker possesses the patented double drive and graded cone corrugations which give such mastery over transients, such smooth, clean, extended top and bass without resonance or colouration.

Musicians, technicians and ordinary mortals who take pleasure in delicate tracey of fine chamber music; prefer sopranos who do not sing through their noses and commentators who do not speak through their boots; enjoy the true rasp of a double bass, the unblurred roll of tympani and all the rich colour of massed instruments, each clearly identifiable in its context, have all contributed their mede of appreciation. Eventually you will, too!
Write for details to
BCM/AADU, LONDON, W.C.1.

POTENTIOMETERS

BY

RELIANCE

Wire-wound and Composition types. Single, Ganged, Tandem Unics.
Characteristics: linear, log., semi-log., non-inductive, etc. Full details on request.
RELIANCE MFG. CO. (SOUTHWARK), LTD.,
Sutherland Road, Higham Hill, Walthamstow, E.17.
Telephone: Larkswood 3245
WARNING

Readers are warned that Government surplus components which may be offered for sale through our columns carry no guarantee of quality. Many of these components will have been designed for special purposes making them unsuitable for civilian use, or may be conditioned as a result of the conditions under which they have been stored. The besteht undertaking to deal with any complaints regarding any such components purchased.

NEW RECEIVERS AND AMPLIFIERS

24 hr. television (no Radiator contact) uses: S.T.24, F.24. Mounted to order, small or large quantities. Write for full particulars.

Pioneer 24, 3972. St. Leonards on sea.

AL Types of receivers, P.M., A.M. and T.F. Superior range and stock. We are the world's largest manufacturers of radio and television receivers.

3199 hand-screw feeder unit with R.F. stage. Nine wavelengths. 13.5-22.0 megacycles.

AMPLIFIERS, new, 60-watt heavy duty P.A. models for 250-watt input, complete with (on black crackle steel chassis, K.T.66 and P.X.4. A.F. V.C.97) tube and complete with all valves. Including all valves, including E.H.T. rectifier, output transformer, and other quality amplifiers built strictly to specification with finest components available.

BROADCAST and ACoustic EQUIPMENT CO., Ltd., Broadcast House, London, W.C.2. Tel: Gerrard 8284. Open all day Saturday, 2742.

Universal Electronic Products, Ltd., 27-29 Farringdon Road, London, E.C.1. We specialise in the design and manufacture of civilian and military high-fidelity radio equipment. Our products are extensively used by the armed forces and other government departments. We are also manufacturers of high-fidelity audio amplifiers and other high-quality components. We are always prepared to supply any component or accessory to specifications, and we can arrange for the manufacture of complete high-fidelity systems. We welcome orders from all parts of the world.

TOLWORTH FACTORY

Our new modern transforme factory and laboratory are now in operation and equipped with up-to-date machinery for the manufacture and testing of quality components. Increased facilities have enabled us to improve our service. As well as having 100 different types of transistors and components available, we can wind to specification within 24 hours. Our range has increased to cover power transistors up to 25 watts per channel. We shall be pleased to send our catalogue and stock list upon request.

LONDON SALES OFFICE

For the benefit of our many friends we have made arrangements for the immediate sending of some of our finest quality components to our London Sales Office. We shall be pleased to send you our catalogue and stock list upon request.

NEW ADDRESS

We should like to draw attention to our new address at Tolworth (situated just off the Kingston By-pass). This is our sole factory. Callers and all correspondence should go to this address —

PARTRIDGE TRANSFORMERSONS

Roebrook Road, Tolworth, Surrey

HIGH quality amplifier and radio tuner units. 24 x 12, 25 x 12, 30 x 12, 35 x 12. Stamped for coarse adjustment. Radio tuner units with 500 ohm and 1000 ohm resistors. 1000 ohm resistors with 0-10 nuf meter. 12 watts each. Limited number available. £ 3/7/6 each, 29/6 each.

LONDON SALES OFFICE

For the benefit of our many friends we have made arrangements for the immediate sending of some of our finest quality components to our London Sales Office. We shall be pleased to send you our catalogue and stock list upon request.

NEW ADDRESS

We should like to draw attention to our new address at Tolworth (situated just off the Kingston By-pass). This is our sole factory. Callers and all correspondence should go to this address —

PARTRIDGE TRANSFORMERS

Roebrook Road, Tolworth, Surrey

High quality amplifier and radio tuner units. 12 x 12, 24 x 12, 30 x 12, 36 x 12. Stamped for coarse adjustment. Radio tuner units with 500 ohm and 1000 ohm resistors. 1000 ohm resistors with 0-10 nuf meter. 12 watts each. Limited number available. £ 3/7/6 each, 29/6 each.

FURTHER REALISATION OF PERFORMANCE

Extract from a letter received by us a fortnight ago.

...I have toured various Hi-Fi experts to be duly thrilled. I came to you last and decided that yours was the best I had heard. Incidentally you were the only people who switched on and left it—the others had various excuses that we hear so often.

H. F. S., BATH

MANY people have done the Grand Tour Hi-Fi before coming to us; "just to make sure" that Hartley-Turner reproduction was the most realistic obtainable and we undoubtedly endorse this attitude, for we are confident in what we have achieved and the question does not afterwards arise as to whether the customer made the wrong choice.

But we are surprised to find that some others, at least, do not seem to have achieved that unfailing certainty of operation we take for granted, since it is so fundamental to the listener's enjoyment. And if you want honest advice in thread-...
ELECTRACLX — 21— SPECIAL OFFER! — for a pair of P.A. MOVING COIL HEADPHONES, less headband. Here is a wonderful opportunity to secure highly sensitive headphones with magnetic circuitry of the famous ALNICO magnets. These moving coil sound units have 45 ohm coil.

They can also be used as miniature mikes, or as a miniature loudspeaker if masking is of no concern.

Price per pair £12 6

DYNAMOS, MOTORS, ETC.

I.R.E. adley, 30, Clavering Walk, Bexhill.

FREIGHT

12. 200 watt, 12 volt, multi-range dynamo, £10.

A. MacLachlan & Co., 16, Thistle St., Stirling.

MOTOR PARTS have re-opened and are ready to serve you with your needs. The CD P ADVERTISER will be pleased to advise you of the latest developments in audio equipment.

For all your requirements with modern and out-going ideas, come to see the ELECTRAUDIO—21— SPECIAL OFFER! — for a pair of P.A. MOVING COIL HEADPHONES, less headband. Here is a wonderful opportunity to secure highly sensitive headphones with magnetic circuitry of the famous ALNICO magnets. These moving coil sound units have 45 ohm coil.

They can also be used as miniature mikes, or as a miniature loudspeaker if masking is of no concern.

Price per pair £12 6

DYNAMOS, MOTORS, ETC.

I.R.E. adley, 30, Clavering Walk, Bexhill.

FREIGHT

12. 200 watt, 12 volt, multi-range dynamo, £10.

A. MacLachlan & Co., 16, Thistle St., Stirling.

MOTOR PARTS have re-opened and are ready to serve you with your needs. The CD P ADVERTISER will be pleased to advise you of the latest developments in audio equipment.

For all your requirements with modern and out-going ideas, come to see the ELECTRAUDIO—21— SPECIAL OFFER! — for a pair of P.A. MOVING COIL HEADPHONES, less headband. Here is a wonderful opportunity to secure highly sensitive headphones with magnetic circuitry of the famous ALNICO magnets. These moving coil sound units have 45 ohm coil.

They can also be used as miniature mikes, or as a miniature loudspeaker if masking is of no concern.

Price per pair £12 6

DYNAMOS, MOTORS, ETC.

I.R.E. adley, 30, Clavering Walk, Bexhill.

FREIGHT

12. 200 watt, 12 volt, multi-range dynamo, £10.

A. MacLachlan & Co., 16, Thistle St., Stirling.

MOTOR PARTS have re-opened and are ready to serve you with your needs. The CD P ADVERTISER will be pleased to advise you of the latest developments in audio equipment.

For all your requirements with modern and out-going ideas, come to see the ELECTRAUDIO—21— SPECIAL OFFER! — for a pair of P.A. MOVING COIL HEADPHONES, less headband. Here is a wonderful opportunity to secure highly sensitive headphones with magnetic circuitry of the famous ALNICO magnets. These moving coil sound units have 45 ohm coil.

They can also be used as miniature mikes, or as a miniature loudspeaker if masking is of no concern.

Price per pair £12 6

DYNAMOS, MOTORS, ETC.

I.R.E. adley, 30, Clavering Walk, Bexhill.

FREIGHT

12. 200 watt, 12 volt, multi-range dynamo, £10.

A. MacLachlan & Co., 16, Thistle St., Stirling.

MOTOR PARTS have re-opened and are ready to serve you with your needs. The CD P ADVERTISER will be pleased to advise you of the latest developments in audio equipment.

For all your requirements with modern and out-going ideas, come to see the ELECTRAUDIO—21— SPECIAL OFFER! — for a pair of P.A. MOVING COIL HEADPHONES, less headband. Here is a wonderful opportunity to secure highly sensitive headphones with magnetic circuitry of the famous ALNICO magnets. These moving coil sound units have 45 ohm coil.

They can also be used as miniature mikes, or as a miniature loudspeaker if masking is of no concern.

Price per pair £12 6

DYNAMOS, MOTORS, ETC.

I.R.E. adley, 30, Clavering Walk, Bexhill.

FREIGHT

12. 200 watt, 12 volt, multi-range dynamo, £10.

A. MacLachlan & Co., 16, Thistle St., Stirling.

MOTOR PARTS have re-opened and are ready to serve you with your needs. The CD P ADVERTISER will be pleased to advise you of the latest developments in audio equipment.

For all your requirements with modern and out-going ideas, come to see the ELECTRAUDIO—21— SPECIAL OFFER! — for a pair of P.A. MOVING COIL HEADPHONES, less headband. Here is a wonderful opportunity to secure highly sensitive headphones with magnetic circuitry of the famous ALNICO magnets. These moving coil sound units have 45 ohm coil.

They can also be used as miniature mikes, or as a miniature loudspeaker if masking is of no concern.

Price per pair £12 6

DYNAMOS, MOTORS, ETC.

I.R.E. adley, 30, Clavering Walk, Bexhill.

FREIGHT

12. 200 watt, 12 volt, multi-range dynamo, £10.

A. MacLachlan & Co., 16, Thistle St., Stirling.

MOTOR PARTS have re-opened and are ready to serve you with your needs. The CD P ADVERTISER will be pleased to advise you of the latest developments in audio equipment.

For all your requirements with modern and out-going ideas, come to see the ELECTRAUDIO—21— SPECIAL OFFER! — for a pair of P.A. MOVING COIL HEADPHONES, less headband. Here is a wonderful opportunity to secure highly sensitive headphones with magnetic circuitry of the famous ALNICO magnets. These moving coil sound units have 45 ohm coil.

They can also be used as miniature mikes, or as a miniature loudspeaker if masking is of no concern.

Price per pair £12 6

DYNAMOS, MOTORS, ETC.

I.R.E. adley, 30, Clavering Walk, Bexhill.

FREIGHT

12. 200 watt, 12 volt, multi-range dynamo, £10.

A. MacLachlan & Co., 16, Thistle St., Stirling.

MOTOR PARTS have re-opened and are ready to serve you with your needs. The CD P ADVERTISER will be pleased to advise you of the latest developments in audio equipment.

For all your requirements with modern and out-going ideas, come to see the ELECTRAUDIO—21— SPECIAL OFFER! — for a pair of P.A. MOVING COIL HEADPHONES, less headband. Here is a wonderful opportunity to secure highly sensitive headphones with magnetic circuitry of the famous ALNICO magnets. These moving coil sound units have 45 ohm coil.

They can also be used as miniature mikes, or as a miniature loudspeaker if masking is of no concern.

Price per pair £12 6

DYNAMOS, MOTORS, ETC.
TELEVISION CONSTRUCTION FROM EX-GOVT. GEAR is becoming all the rage. We can supply full constructional details for a TV Receiver using Radio Units costing £6/10/-.

The 95-inch picture area is sufficient for ranges required. ONLY 59/6 (carriage, etc., 5/-). WANTED are long life, low price, EX-G.O.V.T. tunnels and other components for the Osmor superhet available in stamps, for your copy or, better still, visit us for details.

PITMAN Electrical Books

Elementary Vectors for Electrical Engineers by G. W. STUBBINGS, B.Sc. (Lond.), F.Inst.P.

A useful guide to the fundamental principles of vector theory. With graphs and 4 diagrams.

Third Edition.

"I love electrical work. What about a pocket book?" "It must be practical."

Radio Mains Supply Equipment by E. M. SQUIRE

Surveys the principles of design of the mains supply equipment, and is invaluable in fitting. Illustrated. 12 6 net

Photoelectric Cells in Industry by R. G. WALKER, B.Sc. (Lond.), A.M.I.E.E.

A guide to the principal uses of photoelectric cells. Profusely Illustrated. 57 pages. 40/- net

Classified Examples in Electrical Engineering by S. GORDON MONK, B.Sc., B.M., B.M.I.E.

In two volumes, each containing a selection of examination questions with fully worked out answers. Vols. 1 (Direct Current) 5th Edn. 5/- net, Vol. II (Alternating Current) 5th Edn. 6/6 net.

PITMAN Parker Street, Kingsway, London, W.C.2
ARMSTRONG

Model RF103, Type 2

10-VALVE ALL-WAVE CHASSIS
WITH VARIABLE SELECTIVITY
- High Performance
- Outstanding Selectivity

The ever-increasing difficulty in separating stations after dark is apparent to all. Our redesigned Model largely solves this serious obstacle to good listening. The two stages of I.F. amplification with variable selectivity provides a maximum selectivity better than 6 Kcs. On the short wavebands the actual sensitivity is 8 microamps. It will be appreciated that this chassis has a performance of an extremely high order, and coupled with the 10 watt output makes, in our opinion, one of the most desirable musical instruments offered to the public. For 200-250 v. A.C. mains. Price 19 Gns. Plus Tax.

SPECIAL NOTICE

MODELS EXP83 and UNIB briefly described herein now incorporate a modified coil pack with permeability for use with core coils giving increased selectivity and sensitivity and a new tone compensating circuit to utilize the increased output quality of reproduction.

Model EXP83.

Model UNIB-83.

Model EXP125.

14-VALVE ALL-WAVE RADIO CHASSIS giving continuous waveband coverage from 110 M. Hz. upwards. Waveband expansion, I.F. pre-amplifier. Two I.F. stages with variable selectivity. Electronic bass and treble lift controls. 15 watt push-pull output. For 200-250 v. A.C. mains.

Kindly visit our Illustrated Catalogue
Demonstrations at our Showrooms

ARMSTRONG WIRELESS & CO. LTD.
WARLERS ROAD, HOLLOWAY, LONDON, N.I.

REMOTE position indicators, accuracy 1 degree, comprising Magnetit transmitter and receiver, as well as a method of using the radiated signal to operate the signal direct from 200-250 volt mains, few only at the end of our set. Complete instructions, send also for list with data on other models. We have available from 0.505 to 4510 p.m. per inch torque. M10 potentiometers, 1 K, 4 K, 50 K, 100 K, 1 M, then 10 M, 100 M, all 5%, 2-4-2 strain gauge, but fully guaranteed and post free.-Hopper Radio Ltd., 100, Smeth-\n
1/2

CROSS TELEVISION: 144 Mc/s tuned circuits, consisting of: common 1-2mc/s, 5-10mc/s, 10-20mc/s, 20-50mc/s. All the above products are of exceptional power and range, a.c. only or c.w.o or c.o.d.-N.R.S., 102, Parkhill Rd., London, N.W.4. 14265.

A MAZING radio surplus bargains, new, in original packing, American receivers, Home 696B or AB91, thirteen receivers, complete with control panel, handbook, genuine plus on dynamotors for BC533, etc. Non coil transformers, prices on application.

IN-HOUSE constructional manuals enable the constructor to build a 6-valve superhet of exceptionally high order. Complete all-dry battery model, £5.15s. G.D. Lee Products, 4-6 Royal Rd., W., London, 11. FREE with 9641, speaker, our price, only £5: set of valve and transformer clips, complete with handbook, £2 15s. prosperity, 23, Upper Norwood, London, S.E.19.-Tubes. Henson Littlewood & Co., 27, Ballards Lane, Finchley, N.3. Fin. 3060.

The ever-increasing difficulty in separating stations after dark is apparent to all. Our redesigned Model largely solves this serious obstacle to good listening. The two stages of I.F. amplification with variable selectivity provides a maximum selectivity better than 6 Kcs. On the short wavebands the actual sensitivity is 8 microamps. It will be appreciated that this chassis has a performance of an extremely high order, and coupled with the 10 watt output makes, in our opinion, one of the most desirable musical instruments offered to the public. For 200-250 v. A.C. mains. Price 19 Gns. Plus Tax.

SPECIAL NOTICE

MODELS EXP83 and UNIB briefly described herein now incorporate a modified coil pack with permeability for use with core coils giving increased selectivity and sensitivity and a new tone compensating circuit to utilize the increased output quality of reproduction.

Model EXP83.

Model UNIB-83.

Model EXP125.

14-VALVE ALL-WAVE RADIO CHASSIS giving continuous waveband coverage from 110 M. Hz. upwards. Waveband expansion, I.F. pre-amplifier. Two I.F. stages with variable selectivity. Electronic bass and treble lift controls. 15 watt push-pull output. For 200-250 v. A.C. mains.

Kindly visit our Illustrated Catalogue
Demonstrations at our Showrooms

ARMSTRONG WIRELESS & CO. LTD.
WARLERS ROAD, HOLLOWAY, LONDON, N.I.

REMOTE position indicators, accuracy 1 degree, comprising Magnetit transmitter and receiver, as well as a method of using the radiated signal to operate the signal direct from 200-250 volt mains, few only at the end of our set. Complete instructions, send also for list with data on other models. We have available from 0.505 to 4510 p.m. per inch torque. M10 potentiometers, 1 K, 4 K, 50 K, 100 K, 1 M, then 10 M, 100 M, all 5%, 2-4-2 strain gauge, but fully guaranteed and post free.-Hopper Radio Ltd., 100, Smeth-\n
1/2

CROSS TELEVISION: 144 Mc/s tuned circuits, consisting of: common 1-2mc/s, 5-10mc/s, 10-20mc/s, 20-50mc/s. All the above products are of exceptional power and range, a.c. only or c.w.o or c.o.d.-N.R.S., 102, Parkhill Rd., London, N.W.4. 14265.

A MAZING radio surplus bargains, new, in original packing, American receivers, Home 696B or AB91, thirteen receivers, complete with control panel, handbook, genuine plus on dynamotors for BC533, etc. Non coil transformers, prices on application.

IN-HOUSE constructional manuals enable the constructor to build a 6-valve superhet of exceptionally high order. Complete all-dry battery model, £5.15s. G.D. Lee Products, 4-6 Royal Rd., W., London, 11. FREE with 9641, speaker, our price, only £5: set of valve and transformer clips, complete with handbook, £2 15s. prosperity, 23, Upper Norwood, London, S.E.19.-Tubes. Henson Littlewood & Co., 27, Ballards Lane, Finchley, N.3. Fin. 3060.
PORTABLE TESTING INSTRUMENTS

TELEVISION! Television! Television! Still a "must" for every home. A low type 6 indicator unit complete with VX375 tube and all valves, brand new, £5 15s. 6d. Please include 10 6 for strong metal bound tool box. V.H.F. and U.F. which is refundable if returned (optional). RX TX includes all valves (11) and rotary transformers (2, 2x4G7 values 28/6, post 10/6 for metal bound tool box; 4 point 4-way Yalex to 11. 1/6 dot. Double pole 10amp switch. 2x/ 2x7/- doz. R.A.F. carbon hand microphone, 2x/ 2x7/- doz. speaker, 2x 2 point telephone jack plugs. 1/- each, 8/- doz. Q.S.O. 3 point jack plugs in pairs, 1/- each. 4/- doz. D.G. 3 position wave change switches, 6d each; micro- phone transformers for various makes; minute output transformers, 2x each, 27/- doz. ask for special condenser kit, which covers all high and low voltage receiving, transmitting and television condensers. Lowther House, St. Mark's Road, London, W.C.2. Post 10/-.
We are specialists in Home-Study Tuition in Radio, Television and Mathematics.

POST your received text, addresses and similar matter, and learn how you can qualify for well-paid employment or profitable spare-time work.

T. & C. RADIO COLLEGE
King Edward Ave., Aylesbury, Bucks.

February, 1949

Advertisements 61

THE RECORD ELECTRICAL CO. LTD., Broadheath, Altrincham, Cheshire.

T. & C. RADIO COLLEGE
King Edward Ave., Aylesbury, Bucks.

EQUIPMENT and Components

RADIO ENGINES

COMPACT and INEXPENSIVE

We are specialists in Home-Study Tuition in Radio, Television and Mathematics.

POST your received text, addresses and similar matter, and learn how you can qualify for well-paid employment or profitable spare-time work.

February, 1949

Advertisements 61

THE RECORD ELECTRICAL CO. LTD., Broadheath, Altrincham, Cheshire.

T. & C. RADIO COLLEGE
King Edward Ave., Aylesbury, Bucks.

EQUIPMENT and Components

RADIO ENGINES

COMPACT and INEXPENSIVE

We are specialists in Home-Study Tuition in Radio, Television and Mathematics.

POST your received text, addresses and similar matter, and learn how you can qualify for well-paid employment or profitable spare-time work.

February, 1949

Advertisements 61

THE RECORD ELECTRICAL CO. LTD., Broadheath, Altrincham, Cheshire.

T. & C. RADIO COLLEGE
King Edward Ave., Aylesbury, Bucks.

EQUIPMENT and Components

RADIO ENGINES

COMPACT and INEXPENSIVE

We are specialists in Home-Study Tuition in Radio, Television and Mathematics.

POST your received text, addresses and similar matter, and learn how you can qualify for well-paid employment or profitable spare-time work.

February, 1949

Advertisements 61

THE RECORD ELECTRICAL CO. LTD., Broadheath, Altrincham, Cheshire.

T. & C. RADIO COLLEGE
King Edward Ave., Aylesbury, Bucks.

EQUIPMENT and Components

RADIO ENGINES

COMPACT and INEXPENSIVE

We are specialists in Home-Study Tuition in Radio, Television and Mathematics.

POST your received text, addresses and similar matter, and learn how you can qualify for well-paid employment or profitable spare-time work.

February, 1949

Advertisements 61

THE RECORD ELECTRICAL CO. LTD., Broadheath, Altrincham, Cheshire.

T. & C. RADIO COLLEGE
King Edward Ave., Aylesbury, Bucks.

EQUIPMENT and Components

RADIO ENGINES

COMPACT and INEXPENSIVE

We are specialists in Home-Study Tuition in Radio, Television and Mathematics.

POST your received text, addresses and similar matter, and learn how you can qualify for well-paid employment or profitable spare-time work.

February, 1949

Advertisements 61

THE RECORD ELECTRICAL CO. LTD., Broadheath, Altrincham, Cheshire.

T. & C. RADIO COLLEGE
King Edward Ave., Aylesbury, Bucks.

EQUIPMENT and Components

RADIO ENGINES

COMPACT and INEXPENSIVE

We are specialists in Home-Study Tuition in Radio, Television and Mathematics.

POST your received text, addresses and similar matter, and learn how you can qualify for well-paid employment or profitable spare-time work.

February, 1949

Advertisements 61

THE RECORD ELECTRICAL CO. LTD., Broadheath, Altrincham, Cheshire.

T. & C. RADIO COLLEGE
King Edward Ave., Aylesbury, Bucks.

EQUIPMENT and Components

RADIO ENGINES

COMPACT and INEXPENSIVE

We are specialists in Home-Study Tuition in Radio, Television and Mathematics.

POST your received text, addresses and similar matter, and learn how you can qualify for well-paid employment or profitable spare-time work.

February, 1949

Advertisements 61

THE RECORD ELECTRICAL CO. LTD., Broadheath, Altrincham, Cheshire.

T. & C. RADIO COLLEGE
King Edward Ave., Aylesbury, Bucks.

EQUIPMENT and Components

RADIO ENGINES

COMPACT and INEXPENSIVE

We are specialists in Home-Study Tuition in Radio, Television and Mathematics.

POST your received text, addresses and similar matter, and learn how you can qualify for well-paid employment or profitable spare-time work.

February, 1949

Advertisements 61

THE RECORD ELECTRICAL CO. LTD., Broadheath, Altrincham, Cheshire.

T. & C. RADIO COLLEGE
King Edward Ave., Aylesbury, Bucks.

EQUIPMENT and Components

RADIO ENGINES

COMPACT and INEXPENSIVE

We are specialists in Home-Study Tuition in Radio, Television and Mathematics.

POST your received text, addresses and similar matter, and learn how you can qualify for well-paid employment or profitable spare-time work.

February, 1949

Advertisements 61

THE RECORD ELECTRICAL CO. LTD., Broadheath, Altrincham, Cheshire.

T. & C. RADIO COLLEGE
King Edward Ave., Aylesbury, Bucks.

EQUIPMENT and Components

RADIO ENGINES

COMPACT and INEXPENSIVE

We are specialists in Home-Study Tuition in Radio, Television and Mathematics.

POST your received text, addresses and similar matter, and learn how you can qualify for well-paid employment or profitable spare-time work.

February, 1949

Advertisements 61

THE RECORD ELECTRICAL CO. LTD., Broadheath, Altrincham, Cheshire.

T. & C. RADIO COLLEGE
King Edward Ave., Aylesbury, Bucks.

EQUIPMENT and Components

RADIO ENGINES

COMPACT and INEXPENSIVE

We are specialists in Home-Study Tuition in Radio, Television and Mathematics.

POST your received text, addresses and similar matter, and learn how you can qualify for well-paid employment or profitable spare-time work.

February, 1949

Advertisements 61

THE RECORD ELECTRICAL CO. LTD., Broadheath, Altrincham, Cheshire.

T. & C. RADIO COLLEGE
King Edward Ave., Aylesbury, Bucks.

EQUIPMENT and Components

RADIO ENGINES

COMPACT and INEXPENSIVE

We are specialists in Home-Study Tuition in Radio, Television and Mathematics.

POST your received text, addresses and similar matter, and learn how you can qualify for well-paid employment or profitable spare-time work.

February, 1949

Advertisements 61

THE RECORD ELECTRICAL CO. LTD., Broadheath, Altrincham, Cheshire.

T. & C. RADIO COLLEGE
King Edward Ave., Aylesbury, Bucks.
TELERADIO

Radio Equipment

MODEL A70. 6 valve all wave modern superhet chassis with tuning indicator, tone control and radiogram switch. The ideal replacement chassis. £14 14 Od. plus £3 3d. Purchase Tax.

MODEL 70 TU. As above but w 3 valve tuning unit feeding model 77 amplifier £8 O Od. Purchase Tax.

MODEL 77. 4 valve push pull amplifier with 668, High Road Tottenham, N.17 also at 224, Chingford Mount Rd., E.4 157, Fore St., Edmonton, N.18 Television and F-M Receiver Servicing.

THE MODERN BOOK CO.

(Dept. W2)

Wireless World February, 1949

Mains Transformers, Screened, Fully Interleaved and Impregnated. M.S.40. Input 200/250, Output 50/60 volt, 10A. £14 14 Od. Half Shrouded.

P.M. SPEAKERS WITH TELERADIO'S. £2, and A. £3 3d. Not repeatable at these prices. Brand new B.V.A. Valves at current D.O.T. prices

COVENTRY RADIO

DUNSTABLE ROAD, LUTON, BEDS.

Phone: Luton 2677

New 1st \& 2nd GRADE COMPONENTS

8 mfd, 450 volt Electrolytic Condensers

2 1/2- 16 mfd, 450 volt Electrolytic Condensers, metal

£9 4d, 450 volt Electrolytic Condensers, metal

£1 6d Mains Transformers, 6.3 volt, 5 volt

£2 10d Mains Transformers, 6.3 volt, 5 volt, 3 volt & 2 volt

£4 3d Mains Transformers, 6.3 volt, 5 volt, 3 volt, 2 volt, 1 volt & 1/2 volt

£6 10d Mains Transformers, 6.3 volt, 5 volt, 3 volt, 2 volt, 1 volt & 1/2 volt

£10 10d Mains Transformers, 6.3 volt, 5 volt, 3 volt, 2 volt, 1 volt & 1/2 volt, Interleaved and Impregnated.

L.T.'s.—Impregnated 250-0—.250 volt, 80 mfd, drop through 450 volt, 80 mfd, drop through

£2 1/2, 60 mfd, drop through 450 volt, 60 mfd, drop through 160 volt, 60 mfd, drop through £2 1/2, 80 mfd, drop through 450 volt, 80 mfd, drop through £1 10d, 40 mfd, drop through 450 volt, 40 mfd, drop through 160 volt, 40 mfd, drop through £1 10d, 20 mfd, drop through 450 volt, 20 mfd, drop through £1 10d, 10 mfd, drop through 450 volt, 10 mfd, drop through £1 10d, 5 mfd, drop through 450 volt, 5 mfd, drop through £1 10d, 2 mfd, drop through 450 volt, 2 mfd, drop through £1 10d, 1 mfd, drop through 450 volt, £1 10d, 1/2 mfd, drop through £1 10d, 1/4 mfd, drop through £1 10d, 1/8 mfd, drop through £1 10d, 1/16 mfd, drop through £1 10d, 1/32 mfd, drop through £1 10d, 1/64 mfd, drop through £1 10d, 1/128 mfd, drop through £1 10d, 1/256 mfd, drop through

Fuses for use in R1355 Receiver. 15/-cartridge and packing 1/6.

K.F. TRANSFORMERS. These Transformers have been specially priced for us, for use with the circuit. For R1355, Input 240v-250v-200v. Output 2.5v, 4.1v, 6.4v-9v. Only 2/-

The above transformers are of first-class manufacture, fully interfaced and guaranteed by us.

WIRELESS WORLD. February, 1949.
GALPINS

ELECTRICAL STORES

408 HIGH STREET, LEWISHAM, LONDON, S.E.13

Telephone: Lee Green 0309. Near Lewisham Hospital.

TERMS: CASH WITH ORDER. NO C.O.D.

CHARGING UNITS, Selenium Rectifiers. Input 230 volts 50 c/s, output 6 to 14 volts 50 c/s, 1 amp., complete with Meter, resistances, fuses, etc., complete in rack size 27 x 24, 16 x 16.

MAINS TRANSFORMERS. Input 230 volts 50 c/s, output 10 volts 50 c/s, 1 amp., complete with Meter, fuses, etc., condition as new, £ 6-10 each, carriage 1/-.

SWITCHBOARD METERS. 6 in. scale, 0 to 200 A.C. 50 c/s, 34 / 6 each. 0 to 50 A.C., 50 c/s. 37 / 6 each.

ELECTRIC LIGHT CHECK METERS (Watt Hour). Input 200-230 volts, output 200-235 volts. 10 amp., 21/-; 20 amp., 25/-; 25 amp., 30/-; also a few only Pre-Payment 1/- slot type, 20 amp, load, less coin box, complete with synchronous Motor, 35/- each, carriage 3/6.

EX-R.A.F. CRYSTAL MONITORS, type 2, complete in wooden carrying case, the frequency depending on crystal used, 5/- each. Short Wave Aerial Coupling Units (Watt Meters), 5/- each.

EX-R.A.F. TYPES OF RECTIFIERS, new. 100-0-100v 50 cycles, half shrouded, 100 and 110 volts at 100 watts, £ 4/15 each, carriage 3/6.

MAINS TRANSFORMERS (Auto Wound). Input 200-250 volts, output tapped 14 and 17 volts, 60 c/s, 20 amps. 19/6 each. Another, 0.4 ohms, carry 25 amps., 28/- each. Ditto, 350/0/350 volts, 65/-.

FRACTIONAL H.P. MOTORS, 230 volts, series wound with laminated fields easily convertible to work with A.C. Mains, approx. £ 3-7 each.

LARGE CONDENSERS (NEW). 80 M.F.D. at 450/0/450 volts, 90/- each. Another, 50 M.F.D. at 250/0/250 volts, 30/- each. Another, 30 M.F.D. at 125/0/125 volts, 12/- each.

LARGE TYPE RECTIFIERS. Output 50 v. at 150 ma., 8/-; 60 v. at 200 ma., 12/-; 80 v. at 300 ma., 15/-; 100 v. at 400 ma., 18/-; 120 v. at 500 ma., 20/-.

MAINS VARIABLE RESISTANCES (slider type). New, Ex-Govt., 1/4, 1/2, 1 amp. each, 3/-, 5/-, 10/- each. Another, 0.4 ohms, carry 25 amps., 15/- each.

FANS. 12 volt, A.C. laminated field, complete with motor and blower, 26/- each.

WIRELESS

CHARGING UNITS. Selenium Rectifiers. Input 110-120 volts, output 10 volts 50 c/s, 1 amp., complete with Meter, resistances, fuses, etc., condition as new, 27 1/2 x 16, £ 6-10 each, carriage 1/-.

MAINS TRANSFORMERS. Input 220 volts 50 c/s, output 10 volts 50 c/s, 1 amp., complete with Meter, resistances, fuses, etc., condition as new, £ 5-5 each, carriage 1/-.

SWITCHBOARD METERS. 6 in. scale, 0 to 200 A.C. 50 c/s, 34 / 6 each. 0 to 50 A.C., 50 c/s. 37 / 6 each.

ELECTRIC LIGHT CHECK METERS (Watt Hour). Input 200-230 volts, output 200-235 volts. 10 amp., 21/-; 20 amp., 25/-; 25 amp., 30/-; also a few only Pre-Payment 1/- slot type, 20 amp, load, less coin box, complete with synchronous Motor, 35/- each, carriage 3/6.

EX-R.A.F. CRYSTAL MONITORS, type 2, complete in wooden carrying case, the frequency depending on crystal used, 5/- each. Short Wave Aerial Coupling Units (Watt Meters), 5/- each.

EX-R.A.F. TYPES OF RECTIFIERS, new. 100-0-100v 50 cycles, half shrouded, 100 and 110 volts at 100 watts, £ 4/15 each, carriage 3/6.

MAINS TRANSFORMERS (Auto Wound). Input 200-250 volts, output tapped 14 and 17 volts, 60 c/s, 20 amps. 19/6 each. Another, 0.4 ohms, carry 25 amps., 28/- each. Ditto, 350/0/350 volts, 65/-.

FRACTIONAL H.P. MOTORS, 230 volts, series wound with laminated fields easily convertible to work with A.C. Mains, approx. £ 3-7 each.

LARGE CONDENSERS (NEW). 80 M.F.D. at 450/0/450 volts, 90/- each. Another, 50 M.F.D. at 250/0/250 volts, 30/- each. Another, 30 M.F.D. at 125/0/125 volts, 12/- each.

LARGE TYPE RECTIFIERS. Output 50 v. at 150 ma., 8/-; 60 v. at 200 ma., 12/-; 80 v. at 300 ma., 15/-; 100 v. at 400 ma., 18/-; 120 v. at 500 ma., 20/-.

MAINS VARIABLE RESISTANCES (slider type). New, Ex-Govt., 1/4, 1/2, 1 amp. each, 3/-, 5/-, 10/- each. Another, 0.4 ohms, carry 25 amps., 15/- each.

FANS. 12 volt, A.C. laminated field, complete with motor and blower, 26/- each.
EDDYSTONE

"640".... £27 10s. 9d.
H.P. Terms available.

Orders now being booked in strict rotation.

Full range of components.

All C.O.D. orders promptly executed.

Send for Catalogue, 1/- post free.

SPECIAL OFFER

P.M. Speakers

Goodman's, Truro, Rola (as available).

5 inch 13½; 6 inch 14½; 8 inch 16½
including packing and postage.

B.T.S.

The Radio firm of the South.
63. London Road, Brighton 1, Sussex.

'Phone: Brighton 1555

W.D. TELEVISER

This is the last of our listed publication giving 20 pages of photographs, wiring diagrams and construction notes of an excellent little T.V. receiver. You can make this from Government surplus equipment. The total cost should not exceed £1. Send 7½ and start right away.

A demonstration receiver can be heard operating and all parts are available ex-stock.

WHITE PLASTIC MASK for 6in. tube 7/6, eyeshades 2 6.

TEN-RED IMAGE CONVERTER. Complete with technical data Price 14 6.

E.H.T. TRANSFORMER. Prices 2 and 1½ watts hearing. 60/5.

Diode, 89/5; 2.00s 5/2; 3.50s 1/6; 5.50s 1 2s; 11.50s 5 2s; 5.00s 11 ½.

Trio, 9/6; 250ma 8/1; 10.50s 1 1½.

Electrolytic, 600ma 6½, 5.00s 1 3½.

Resistors, 1.00s 1 ½.

BULK'S EX-GOVERNMENT DEPOT

ELECTRON HOUSE, WINDMILL HILL, RUSHOLME MANOR, MIDDLESEX.

15 years. 1949 and more Supreme and radio television services for you to invest in. Television components as follows: E.H.T. 4kv or 5kv, tested at 220v, 55-60p. E.H.T. 2kv 4V c. t. 26s, 6a; scanning coil, 25/6 ea; line, 35/6 ea; sync, 5/- ea; filaments, 350-550 6V 5a, 4v, 8amp, 4V, 5amp, 0-2v 5amp, 250ma, with screen, 70,- ea; safety valve, 5/-, 12v, 2½amp, 200ma. Output choke, 80ma, 50µf, 25v. 8v, 6v. The above components have been despatched from supply stock and give maximum performance. We have found, after the result of much research. We have experienced all the usual teething troubles in television construction, and know the above components have been used in TV's which all help you. We have available Valve holders for E.F.S. valves, ceramic type, 6p; retaining ear for E.F.S. valves, ceramic type, 1/- ea; 2½k, and 5k, twin-bridge contracts, 7½p each, 2½v, 3000 v., 4½, 250mA. Choke, 4 henries. 96.

ELECTRON HOUSE, WINDMILL HILL, RUSHOLME MANOR, MIDDLESEX.

BULL'S EX-GOVERNMENT DEPOT

ELECTRON HOUSE, WINDMILL HILL, RUSHOLME MANOR, MIDDLESEX.

15 years. 1949 and more Supreme and radio television services for you to invest in. Television components as follows: E.H.T. 4kv or 5kv, tested at 220v, 55-60p. E.H.T. 2kv 4V c. t. 26s, 6a; scanning coil, 25/6 ea; line, 35/6 ea; sync, 5/- ea; filaments, 350-550 6V 5a, 4v, 8amp, 4V, 5amp, 0-2v 5amp, 250ma, with screen, 70,- ea; safety valve, 5/-, 12v, 2½amp, 200ma. Output choke, 80ma, 50µf, 25v. 8v, 6v. The above components have been despatched from supply stock and give maximum performance. We have found, after the result of much research. We have experienced all the usual teething troubles in television construction, and know the above components have been used in TV's which all help you. We have available Valve holders for E.F.S. valves, ceramic type, 6p; retaining ear for E.F.S. valves, ceramic type, 1/- ea; 2½k, and 5k, twin-bridge contracts, 7½p each, 2½v, 3000 v., 4½, 250mA. Choke, 4 henries. 96.

ELECTRON HOUSE, WINDMILL HILL, RUSHOLME MANOR, MIDDLESEX.

BULL'S EX-GOVERNMENT DEPOT

ELECTRON HOUSE, WINDMILL HILL, RUSHOLME MANOR, MIDDLESEX.

15 years. 1949 and more Supreme and radio television services for you to invest in. Television components as follows: E.H.T. 4kv or 5kv, tested at 220v, 55-60p. E.H.T. 2kv 4V c. t. 26s, 6a; scanning coil, 25/6 ea; line, 35/6 ea; sync, 5/- ea; filaments, 350-550 6V 5a, 4v, 8amp, 4V, 5amp, 0-2v 5amp, 250ma, with screen, 70,- ea; safety valve, 5/-, 12v, 2½amp, 200ma. Output choke, 80ma, 50µf, 25v. 8v, 6v. The above components have been despatched from supply stock and give maximum performance. We have found, after the result of much research. We have experienced all the usual teething troubles in television construction, and know the above components have been used in TV's which all help you. We have available Valve holders for E.F.S. valves, ceramic type, 6p; retaining ear for E.F.S. valves, ceramic type, 1/- ea; 2½k, and 5k, twin-bridge contracts, 7½p each, 2½v, 3000 v., 4½, 250mA. Choke, 4 henries. 96.
MAINS transformers re-wound, new transformers to any specification.

MOTOR rewinds and complete overhauls; first-class workmanship, fully guaranteed.

P.H. ELECTRIC LTD., Potters Bldgs., Warner Gate, Nottinham. Tel. 3505.

MAINS transformers re-wound and guaranteed to a perfection, prompt delivery.

Brown, 1, Flee Burd Rd., Jarrow. [2040]

REVINDS, vac. drill armatures, etc., 1d. per 1,000, and all work finished to suit.

Price quoted.—E. Mason, 5, Balham Grove, Balham, London, S.W.17. [2566]

ELECTRIC gram motors, auto-changers repaired, re-wound. Prompt service.

Price quoted.—E. Mason, 5, Balham Grove, Balham, London, S.W.17. [2566]

With a FAFNIR, Mains transformers, mains transformers field coil, coils, high-grade, 7-day workmanship, 7-day delivery; new transformers constructed to customer's specification, single or in quantities—Punto, Ltd., 181, Finchley Rd., London, N.W.11. Speedwell 5000. [3719]

ERWIN SCHARF
49-51a, De Beauvoir Road,
London, N.1.

Telephone: CLIsold 3434

LASKY'S RADIO
FOR TELEVISION CONSTRUCTORS

Full data for building a television set from ex-Government units. Price list. 1/- extra.

RECEIVER UNIT TYPE 3495. Brand new and unused in maker's original wood transit case. When connected in with R.F. Unit this makes the ideal vision receiver with the minimum of modification. Contains 5 valves, including one 6J4, one 6906, 1 F.P. strip and dozens of components. Size 9in. x 9in. Weight 35lb. LASKY'S PRICE 56/-, carriage extra - 5/-

As above but used LASKY'S PRICE 30/-, carriage extra - 5/-

R.F. UNIT TYPE 28 10/-, carriage 1/- extra. (Cord as sound converter).

INDICATOR UNIT TYPE 68. Contains nearly all the parts and valves, including the cathode ray tube used for the time base and associated circuits of a television set.

Containing 20 valves and a 6in. cathode ray tube type 5A94 (phosphor resonance). Values line up: 16 VR6, 2 E90, 5 6B5, 1 6L6, EHT 850, 1 650, 1600 volts. No modification. Components, 177 M.C., crystal, 61 potentiometers. Totally enclosed in metal case, size: 9in. x 9in. x 4in., channel grey or black, with coloured coated knobs.

LASKY'S PRICE 59/-, carriage 7/- extra.

HAVE YOU ALREADY BUILT A TELEVISION SET USING THE V03? OR IS IT TIME TO BUILD A V05? OR A V07 RAY TUBE? IF SO YOU NEED THE V02, LASKY'S PRICE 25/-, AND BETTER PICTURES.

MOVING COIL HEAD & MICROPHONE SETS (BRAND NEW)
Made by the same famous maker, these units must have cost £60-70. Low resistance type with earpads and finish; all units fully tested and guaranteed. You will be surprised at the results.

Price quoted.—E. Mason, 5, Balham Grove, Balham, London, S.W.17. [2566]

L.A.S.K.Y.'S PRICE 2/6, post 1/- extra.

AS YOU ARE THINKING OF BUILDING AN OSCILLOSCOPE THEN THE TEST SET TYPE 74 IS WHAT YOU NEED.

Specifications: A special purpose oscilloscope, working on a very low cost basis.

For radio and television constructors. Contains power pack with two rectifiers HVB2, and 500 volt output. Dozens of resistances, condenser, switches, valve holder, etc. Also motor generator with 12 volt input. Total unit is totally enclosed in a metal cabinet, size 16in. x 9in. x 4in. Strip and dozens of components. Size of cabinet: 16in. x 9in. x 4in. Weight of unit: 12lb. LASKY'S PRICE 12/-, carriage 2/- extra.

The whole unit is totally enclosed in a metal cabinet, convenient size for making tests on small wave length sets. Contains 12 components. Also incorporated in this set is a sender and receiver with a telephone unit. Price 12/-, carriage 8/- extra. (Can be modified to 2 meter working.)

LASKY'S PRICE 15/-, carriage 4/- extra.

BRAND NEW AND UNUSED IN MAKER'S CARTON. EX.A.M. RECEIVER TYPE 3108.

Contains 4 new valves; 4 6X5, 2 CV6, 9 E90. Quantity of resistances, controller, switches, valve holder, etc. Also motor generator with 12 volt input and 400 volt output.

LASKY'S PRICE 25/-, carriage 4/- extra.

The generator can be easily converted to a small receiver running off 200 volt batteries.

A V05 test box will bring you our budget by return. Name and address in identical style. Why not try us a visit 4? Our staff will be only too pleased to help you with your queries.

We carry a comprehensive stock of valves and other components for the experimenter, service man and radio amateur. No order too small, that we will not give our full attention to.
TELEVISION

The advance in Radio Technique offers unlimited opportunities of high pay and secure posts for those Radio Engineers who have had the foresight to become technically qualified. How can you do this quickly and easily in your spare time? Superbly explained in our City & Guilds Exams., and particulars of up-to-date Short Waves, Television, Mathematics, etc., etc. unique handbook "Engineering Opportunities." Routprlilio" by writing for your copy of this very informative 112-page guide NOW-FREE. (Dept. 388) 17, St. Pancras, London, N.W.1.

QUARTZ CRYSTAL UNITS

For - AIRCRAFT, MARINE AND COMMERCIAL USE are available in the complete range from 35 kilocycles to 15 megacycles.

Alternative mountings in standard two-pin A.M. pattern 10X, International octal and miniature type FT243, can be supplied for most frequencies.

Prices are fully competitive, and we specialise in prompt deliveries for urgent requirements.

WELCOME YOUR ENQUIRIES.

THE QUARTZ CRYSTAL Co., Ltd.
16 Kinston Road.
NEW MALDEN, SURREY

Telephone: MALden 0374
High-Power Amplifiers from 250W to 1kW

W. Bryan Savage Ltd
Westmoreland Road, London, N.W.9

The Kemel Relay Switch (45.- retail) switches any mains receiver on or off, from any point in the house. You can listen in bed, and switch off or on from your bed-side. Lists and showcard-stand available on request from A.W.F. Radio Products Ltd.

A.W.F. Replacement Loudspeaker Cone Assemblies are now available for most types of commercial loudspeakers, in cartons of 3, 6, or 12, complete assemblies.

Full Fitting Instructions Enclosed in Each Carton.

Enjoy larger profits for less outlet with the aid of these pre-fabricated units.

Bring Your Service Department Up to Date. Write Now.

Send ld. stamp for the current "Monthly Bulletin" containing full details.

BARGAIN OF THE MONTH

Brand new PAG's standard pentode output transformers, 43 each 48.- dozen.

Enjoy the speedy "Specialist" service given by A.W.F. Radio Products Ltd.

W. Bryan Savage Ltd

Power Transformers for Home & Export.

40-1000 peak. Rectifiers 50-5000 volt 50 ma. 15/6 to 250 ma. 4/6. 5 v. 3 a. c. d.c. Rectifiers 250 ma. 3/6. 50 ma. 2/6. 10 ma. 1/6. Type: P. Surface mountable. 70,000 volt 5 ma. 4/6, single aboved. 7,000 volt 500 ma. 1/6, single aboved. 1,000 volt 200 ma. 1/6, single aboved. 100 volt 100 ma. 1/6, single aboved. (Complete instructions, pictures, and data on request.)

Power units for home and export from 50 ma. to 100 ma., from 10 ma. to 50 ma. (Complete details on request.)

MERIT TRANSFORMER SUPPLIES, 294, BROADWAY, BEXLEYHEATH.
ELECTRICAL component manufacturers in West London require man for assembly and testing of test equipment. Applicants must be experienced and have knowledge of radio and valve techniques. Write stating age, experience and wages required to Box 3520. [1259]

Senior Chemist for electronic research required for the laboratory in Epsom. Applicants must have B.Sc. in Chemistry and not less than seven years experience in the field, a seat in the country will be available for the successful applicant. State full particulars to Box 3521. [1259]

TELEVISON and radio service engineers, opportunities for the permanent staff of a company with branch in Kent area, and the largest technical service (closed circuit driving licence essential); lodgings available for single men. Give full particulars, included qualifications, to Box 3425. [1259]

Senior and junior experienced development research engineers and draughtsmen required for radio television electronics, radio speakers, preference B.Sc., M.N.C.; also testers, inspectors, repairers, service engineers, etc. Technical Employment Agency, 179, Chalpam Rd., S.W.9. (Box 3487.) [1256]

G. N. PILL & PARTNERS
49, COBURG STREET, PLMOUTH
Telephone: 2339

After years of experimenting, Mr. Voigt has developed a P.M. unit of the open, low leakage type, up to the standard of his excited fields.

The West Country

This provides for future metallurgical and other developments. More expensive than an inflexible design but justified.

king blocks of varying dimensions and materials.

Anticipated prices with—

mm. gap and twin diaphragm.

(£36)

Re Horns see Nov. advt.

Voigt Patents Ltd.
LONDON, S.E.3

P.S. Mr. Voigt is not yeable to give demonstrations.

THE WISE MAN BUYS

Voigt

TRANSFORMERS & COILS TO SPECIFICATION.

MANUFACTURED OR REWOUND

Filter Coils + 1% a Speciality.

John Factor Ltd.

9811 EAST STREET, TORQUAY DEVON
Phone: Torquay 2-162

WE OFFER

A large range of used and new Test Equipment, Converters, Recorders, Amplifiers, Motors, Transformers, etc.

All guaranteed and at very attractive prices.

We buy good modern used equipment of all types for spot cash.

UNIVERSITY RADIO LTD.

Tel.: GER 4447 & 8382.

RELAYS

for A.C. and D.C.

2 VA Coil consump-
tion from 2 to 600 volts and tested to 2000 volts. Aerial Changerover Switches, Mercury Relays, Measuring Relays and Time Delay Relays.

Midget Relay MLC. As for leaflet REL/VEW

Londex Ltd

Manufacturers of Relays

207, Anley Road, London, S.E.70.

SYD.Nelson 6328

AUDI Filters

Field-free - Hi-Q. Forndal Windings, Permalloy Cores - Permanent Accuracy, Low High. Band - pass or Cross - over. Adjustable Whistle and Scratch Extracors.

Lyncar Laboratories

1, Chelsea Road, Morden, Surrey. L.C. 3 4 2 7

GODPER WIRE, Waxed, Silk, D.C.C., etc., all sizes. Transformers & Chokes made to your special requirements. SMALL MOTOR 100 to 1 H.P. COMPONENTS for the Radio and Television constructor.

Send S.A.E. for list.

STAN. HOLT,
349, HIGH ST., SMETHWICK, Staffs.

EX.R.A.F.

EQUIPMENT for REBUILDING or disassembly for parts and valves.

Type D X1103 Receiver. New type to 1936, type DP1, new K32, and one K22C of equivalents; and lots of metal parts. £2 8 0, inc. postage.

Type 2443 Transformer. Includes two type 1936, two K32, one K22C of equivalents, and lots of metal parts. £2 8 0, inc. postage.

Type KD2 picker. Includes two type DP1 and two EB101 valves, and a type Y848 (Ward-ex or equivalent) type 848 Tube, and lots of metal parts. £2 8 0, inc. postage.

Type MB type A detector Amplifier. Includes three type 201 valves for equivalents, pair of highimpedance headphones, and lots of parts. £1 7 0, inc. postage.

With all ex-R.A.F. surplus, cold without warranty, but all in apparent good condition.

WIRELESS SUPPLIES UNLIMITED

(Props. Unlimitex Radio Ltd.)

264-266, Old Christchurch Road,
BOURNEMOUTH, Hants.

INDIVIDUAL TRANSFORMER

REwINDS

SEND YOUR "BURNT OUT" TRANSFORMER TO BE REWOUND.

NO TECHNICAL DATA REQUIRED.

OUR TRANSFORMER WINDINGS ARE ONE WIND AND BACKED BY A SPECIALISED SERVICE.

LOUDSPEAKER REPAIRS, FIELD COILS.

SOUTHERN TRADE SERVICES LTD.,
297-299, HIGH STREET,
Telephone: CROYDON 4070.
THE HEART OF A FIRST-CLASS RADIO-GRAM

IARGE electrical organisation requires an assistant engineer, capable of writing specifications, dealing with tenders and contracts for sound installations, design work on special amplifier and electronic circuits; successful applicant would be required to assist the senior technical staff in the design and manufacture of radio, television and special valve sections. Applicants should be fully conversant with modern manufacturing methods and have had experience in the design and manufacture of radio, television and special valve sections.

Applications are invited for the following posts: wireless station superintendent, to help in the department workshop; experience in radio, television, etc.; age 22-28; commercial, not less than a two-year course at Burnham university; applicants should possess a good Physics or Technical Education Degree and also experience in radio, television, etc.

The Institution of Electrical Engineers, Ltd., 43, Vauxhall Bridge Road, London, S.W.1.

To apply giving full details as to age, previous experience and salary, write to Box 2251.

Electrical organisation requires an assistant engineer, capable of writing specifications, dealing with tenders and contracts for sound installations, design work on special amplifier and electronic circuits; successful applicant would be required to assist the senior technical staff in the design and manufacture of radio, television and special valve sections. Applicants should be fully conversant with modern manufacturing methods and have had experience in the design and manufacture of radio, television and special valve sections.

Applications are invited for the following posts: wireless station superintendent, to help in the department workshop; experience in radio, television, etc.; age 22-28; commercial, not less than a two-year course at Burnham university; applicants should possess a good Physics or Technical Education Degree and also experience in radio, television, etc.

The Institution of Electrical Engineers, Ltd., 43, Vauxhall Bridge Road, London, S.W.1.

To apply giving full details as to age, previous experience and salary, write to Box 2251.

Electrical organisation requires an assistant engineer, capable of writing specifications, dealing with tenders and contracts for sound installations, design work on special amplifier and electronic circuits; successful applicant would be required to assist the senior technical staff in the design and manufacture of radio, television and special valve sections. Applicants should be fully conversant with modern manufacturing methods and have had experience in the design and manufacture of radio, television and special valve sections.

Applications are invited for the following posts: wireless station superintendent, to help in the department workshop; experience in radio, television, etc.; age 22-28; commercial, not less than a two-year course at Burnham university; applicants should possess a good Physics or Technical Education Degree and also experience in radio, television, etc.

The Institution of Electrical Engineers, Ltd., 43, Vauxhall Bridge Road, London, S.W.1.

To apply giving full details as to age, previous experience and salary, write to Box 2251.

Electrical organisation requires an assistant engineer, capable of writing specifications, dealing with tenders and contracts for sound installations, design work on special amplifier and electronic circuits; successful applicant would be required to assist the senior technical staff in the design and manufacture of radio, television and special valve sections. Applicants should be fully conversant with modern manufacturing methods and have had experience in the design and manufacture of radio, television and special valve sections.

Applications are invited for the following posts: wireless station superintendent, to help in the department workshop; experience in radio, television, etc.; age 22-28; commercial, not less than a two-year course at Burnham university; applicants should possess a good Physics or Technical Education Degree and also experience in radio, television, etc.

The Institution of Electrical Engineers, Ltd., 43, Vauxhall Bridge Road, London, S.W.1.

To apply giving full details as to age, previous experience and salary, write to Box 2251.

Electrical organisation requires an assistant engineer, capable of writing specifications, dealing with tenders and contracts for sound installations, design work on special amplifier and electronic circuits; successful applicant would be required to assist the senior technical staff in the design and manufacture of radio, television and special valve sections. Applicants should be fully conversant with modern manufacturing methods and have had experience in the design and manufacture of radio, television and special valve sections.

Applications are invited for the following posts: wireless station superintendent, to help in the department workshop; experience in radio, television, etc.; age 22-28; commercial, not less than a two-year course at Burnham university; applicants should possess a good Physics or Technical Education Degree and also experience in radio, television, etc.

The Institution of Electrical Engineers, Ltd., 43, Vauxhall Bridge Road, London, S.W.1.

To apply giving full details as to age, previous experience and salary, write to Box 2251.
ENGINEERING OPPORTUNITIES

This unique handbook shows the easiest way to secure A.M.I.Mech.E., A.M.I.E.E., A.M.I.E., City and Guilds, etc.

We Guarantee—"NO PASS—NO FEE."

Details are given of over 150 Home-study Diploma courses in all branches of Civil, Mech., Elec., Motor, Avo. Radio, Television and Production Engineering, Tracking, Building, Glass, Employment, R.A.F., Maths, Matriculation, etc.

Safeguard your future and become a free B.I.E.T., 397, SHAKESPEARE HOUSE, 17, STRATFORD PLACE, LONDON, W.1.

WARD ROTARY CONVERTERS

For Radio, Neon Signs, Television, Fluorescent Lighting, X-ray, Cinema Equipment and numerous other applications.

We also manufacture:-
- Petrol Electric Generating Plants, M.T. Generators, D.C. Motors, etc., up to 15 K.V.A.

CHAS. F. WARD
LORDScroft Works, HAVENHILL, SUFFOLK
Telephone: Havenhill 253 & 4.

CRYSTALS FOR AIRCRAFT, MARINE AND AMATEUR TRANSMITTERS

ALL LOW TEMP. CO-EFF. CUTS.

BROOKES CRYSTALS LTD.
10, STOCKWELL ST., GREENWICH,
LONDON, S.E.10.

WAVE WINDINGS TO YOUR OWN SPECIFICATION

We can also offer you a standard range of adjustable iron dust cored coils of exceptional efficiency and stability, suitable for superhet and T.R.F. receivers.

MONOCHORD RADIO

(Established 1929)
17, STREETMILL ROAD, LONDON, S.W.1.
Phone: Tule Hill 1014.

Radio and allied trades

LOCKWOOD & COMPANY

Longwoods Road, Harrow, Middlesex.

Phone: BYRon 3704

TELEVISION

an essential accessory for

LONG DISTANCE VIEWING

A type AC/2 pre-amplifier.

Full particulars from SPENCER-WEST, North Quay Works, Gt. Yarmouth.

PHOTO-ELECTRIC CELLS for

Talking Picture Apparatus.

Catalogue now available

RADIO-ELECTRONICS LTD.,

RADIOMENDERS LIMITED

FOR SPECIAL TRANSFORMERS AND REWINDS

We specialise in:-

AMATEURS' WINDINGS, TRANSFORMERS, PICK-UP COILS, INSTRUMENT COILS, Etc.

LOUD SPEAKER ENGINEER

Best workmanship.

Good Delivery

RADIOMENDERS, LTD.
123-5 S. Parchmore Road,
THORNTON HEATH, SURREY
LIV 2261. Trade enquires invited. Est. 16 years

EMLSLEIGH WHISTLE FILTERS

A "ladder" type low-pass filter giving a sharp cut of approx. 30DB at 9 Kc. and less than 40DB at 8 Kc. Unbeatable back taken from O.P. Sec. Connected in speech coil leads. In steel case, 2½ in.

IAN BAILEY REPORER, SERIES 2

A horn-type speaker which superseded the original Ian Bailey C.H., but measuring only 3½ ft. high by 2½ ft. wide, without a back, giving an actual range of 20,000 c.p.s.

Transmitting range of 100 miles (fatherless finish to order), complete with L.S. unit.

PRICE: £33. Send stamp for details.

EMLSLEIGH RADIO CO.
1102 London Road, Leigh-on-Sea, Essex
Leigh-on-Sea 75168

ENGINEERING OPPORTUNITIES

This unique handbook shows the easiest way to secure A.M.I.Mech.E., A.M.I.E.E., A.M.I.E., City and Guilds, etc. We Guarantee—"NO PASS—NO FEE."

Details are given of over 150 Home-study Diploma courses in all branches of Civil, Mech., Elec., Motor, Avo. Radio, Television and Production Engineering, Tracking, Building, Glass, Employment, R.A.F., Maths, Matriculation, etc.

Safeguard your future and become a free B.I.E.T., 397, SHAKESPEARE HOUSE, 17, STRATFORD PLACE, LONDON, W.1.

ELECTRICAL

engineer required for design of high-quality, small and other equipment in incorporating metal and valve rectifiers; Higher National Certificate or equivalent with some general engineering experience, together with natural ability and work is of a design, both electrical and mechanical, estimating and investigation of customers' requirements; previous experience with rectifiers desirable, but not essential; a good opportunity for a progressive young man—Write, stating qualifications and experience, to Personnel Manager, Edison Swan Electric Co. Ltd., Ponden Road, Enden, Middlesex.

BUSINESS OPPORTUNITIES

SELECTIVE FRANKING.

Circulars, and other correspondence, to be franked at a specified rate by a provider, using a machine which will automatically feed circulars to be franked into the machine and franked, and the franked circulars removed from the machine.

PROFESSIONAL SERVICES

FOR OFFICE USE.

Telephone: Haverhill 253 & 4.

TELEVISION

an essential accessory for

LONG DISTANCE VIEWING

A type AC/2 pre-amplifier.

Full particulars from SPENCER-WEST, North Quay Works, Gt. Yarmouth.

PHOTO-ELECTRIC CELLS for

Talking Picture Apparatus.

Catalogue now available

RADIO-ELECTRONICS LTD.,

RADIOMENDERS LIMITED

FOR SPECIAL TRANSFORMERS AND REWINDS

We specialise in:-

AMATEURS' WINDINGS, TRANSFORMERS, PICK-UP COILS, INSTRUMENT COILS, Etc.

LOUD SPEAKER ENGINEER

Best workmanship.

Good Delivery

RADIOMENDERS, LTD.
123-5 S. Parchmore Road,
THORNTON HEATH, SURREY
LIV 2261. Trade enquires invited. Est. 16 years

EMLSLEIGH WHISTLE FILTERS

A "ladder" type low-pass filter giving a sharp cut of approx. 30DB at 9 Kc. and less than 40DB at 8 Kc. Unbeatable back taken from O.P. Sec. Connected in speech coil leads. In steel case, 2½ in.

IAN BAILEY REPORER, SERIES 2

A horn-type speaker which superseded the original Ian Bailey C.H., but measuring only 3½ ft. high by 2½ ft. wide, without a back, giving an actual range of 20,000 c.p.s.

Transmitting range of 100 miles (fatherless finish to order), complete with L.S. unit.

PRICE: £33. Send stamp for details.

EMLSLEIGH RADIO CO.
1102 London Road, Leigh-on-Sea, Essex
Leigh-on-Sea 75168

TELEVISION

an essential accessory for

LONG DISTANCE VIEWING

A type AC/2 pre-amplifier.

Full particulars from SPENCER-WEST, North Quay Works, Gt. Yarmouth.

PHOTO-ELECTRIC CELLS for

Talking Picture Apparatus.

Catalogue now available

RADIO-ELECTRONICS LTD.,

RADIOMENDERS LIMITED

FOR SPECIAL TRANSFORMERS AND REWINDS

We specialise in:-

AMATEURS' WINDINGS, TRANSFORMERS, PICK-UP COILS, INSTRUMENT COILS, Etc.

LOUD SPEAKER ENGINEER

Best workmanship.

Good Delivery

RADIOMENDERS, LTD.
123-5 S. Parchmore Road,
THORNTON HEATH, SURREY
LIV 2261. Trade enquires invited. Est. 16 years

EMLSLEIGH WHISTLE FILTERS

A "ladder" type low-pass filter giving a sharp cut of approx. 30DB at 9 Kc. and less than 40DB at 8 Kc. Unbeatable back taken from O.P. Sec. Connected in speech coil leads. In steel case, 2½ in.

IAN BAILEY REPORER, SERIES 2

A horn-type speaker which superseded the original Ian Bailey C.H., but measuring only 3½ ft. high by 2½ ft. wide, without a back, giving an actual range of 20,000 c.p.s.

Transmitting range of 100 miles (fatherless finish to order), complete with L.S. unit.

PRICE: £33. Send stamp for details.

EMLSLEIGH RADIO CO.
1102 London Road, Leigh-on-Sea, Essex
Leigh-on-Sea 75168

TELEVISION

an essential accessory for

LONG DISTANCE VIEWING

A type AC/2 pre-amplifier.

Full particulars from SPENCER-WEST, North Quay Works, Gt. Yarmouth.

PHOTO-ELECTRIC CELLS for

Talking Picture Apparatus.

Catalogue now available

RADIO-ELECTRONICS LTD.,

RADIOMENDERS LIMITED

FOR SPECIAL TRANSFORMERS AND REWINDS

We specialise in:-

AMATEURS' WINDINGS, TRANSFORMERS, PICK-UP COILS, INSTRUMENT COILS, Etc.

LOUD SPEAKER ENGINEER

Best workmanship.

Good Delivery

RADIOMENDERS, LTD.
123-5 S. Parchmore Road,
THORNTON HEATH, SURREY
LIV 2261. Trade enquires invited. Est. 16 years

EMLSLEIGH WHISTLE FILTERS

A "ladder" type low-pass filter giving a sharp cut of approx. 30DB at 9 Kc. and less than 40DB at 8 Kc. Unbeatable back taken from O.P. Sec. Connected in speech coil leads. In steel case, 2½ in.

IAN BAILEY REPORER, SERIES 2

A horn-type speaker which superseded the original Ian Bailey C.H., but measuring only 3½ ft. high by 2½ ft. wide, without a back, giving an actual range of 20,000 c.p.s.

Transmitting range of 100 miles (fatherless finish to order), complete with L.S. unit.

PRICE: £33. Send stamp for details.

EMLSLEIGH RADIO CO.
1102 London Road, Leigh-on-Sea, Essex
Leigh-on-Sea 75168
THE COIL PICK-UP
Gives harmonics their True Value.

WILKINS & WRIGHT LTD.
Holyhead Road, Birmingham 21.

VALRADIO
Vibrator Converters can be depended on for
TELEVISION FROM D.C.

These British designed and manufactured converters give steady A.C. at 220 volts D.C. upwards.

VALRADIO Converters are quiet in use and are built for years of
unfailing service.

VALRADIO LTD., 57 Fortress Rd., London, N.W.5
Telephones: GULiver 166

WILKINSON'S OF CROYDON

AMPLIFIER UNIT, type A 307S, employing 2 307, 1 6149, 1 6146, 2 6N0, 1 6AK. All useful values will vary with the ratio of the Unit which is 45x.

BAND, standard 1980, 6187, 8187, 4087, 6N0, 6AK, 4A3D, 100-110 v. A.C.-230 v., 100 watts, 50 or 75 c.p.s.

POWER UNIT, employing a 750w and a high voltage rectifier R12U5, together with a 1 mH condenser, to obtain various components, 18 in all, post free.

CATHERINE RAY LABS type 97, with 11 valves, C.T. tube and various condensers, resistors, etc. Our price, only 59c, carriage paid.

CATHERINE RAY Receiver Tubes, post free, Ex-4. Navy. Employing 40 useful tubes, 72 Ray Tube, power pax, motor blower, Millimeters, etc. The following are the prices: 13 159c, 2 oz., 6 6A2, 6 6L6, 3 1590-100, 1 6X2, 3 6L6, 2 6L6G, 2 6H.

SPECIAL PRICE 210/-.

MUHHEAD BLOW MOTOR DRIVES, 7-6 EACH.

VOLTMETERS, 0-300 volts A.C., moving iron, 2000, slab, flush type 176/5. A.

A.B. SARKES KIT, including valves, 13-14, 2000, 48c., etc. Our price, only 615/-, carriage paid.

CRYSTAL MULTIPLIER UNIT, 2 to 45 MHz, machined and etched type 607 oscillator and tuning control. Brand new with spare 907 valve, instruction book, etc. 65c.-EACH.

RF AMPLIFIER, iron/124 Mc. 2400-Mc. 100 watts in rack, post, standard 1986, rack mounting, ready boxed for 194 Mc. Brand new 75. List $2,2. 145 Items in all, brand new, properly packed.

CRYSTAL FILTER UNIT, 70c.-EACH.

MUIEHEAD SLOW MOTION DRIVES, 7 6 EACH.

WITH a 1 m. condenser, 2.5 kV. and other components, 18 6. post free.

145 Items in all, brand new, properly packed.

Printed in Great Britain for the Publishers, ELLEPHANT & CO LTD., Birkenhead, by W. B. METAL PRODUCTS LTD., 25, GREAT SOUTH-WEST ROAD, FELTHAM, MIDDX.

Technical Publication No. 29. Post FREE

HAYNES RADIO LTD., Queen Anne's, Embankment.
As a

SERVICE ENGINEER

I don't take risks . . .

I know what the customer wants . . . not only a rejuvenation of his set's original quality and "punch", but he wants the certainty that it will be maintained for a good long time. In other words, he wants reliability in addition to a good job.

Reliability is a question largely of dependable components. That's why I pin my faith to T.C.C. where condensers are concerned. Their range is so wide that I can find a T.C.C. for every conceivable need. Their catalogue is so clearly set out that I can find the right condenser for the job without loss of time.

Moreover, I know from long experience that I can depend unquestionably on T.C.C. condensers to live up to their rated standards for a good long life free from trouble and uncertainties.

I don't take risks

A TYPICAL EXAMPLE FROM THE T.C.C. RANGE

T.C.C. Moulded Mica Condensers have been familiar to Service men since the early days of radio. They are practically indestructible and outlast the life of most apparatus. Send for literature giving details of these and other types of T.C.C. Condensers.

IN THE BEST SETS YOU'LL SEE T.C.C.

THE TELEGRAPH CONDENSER CO., LTD.

NORTH ACTON · LONDON · W. 3 Telephone, ACORN 0061
WHY ERSIN MULTICORE SOLDER IS USED IN THE MANUFACTURE OF

Television Receivers

There are at least ten times as many opportunities for bad joints in television assemblies as there are in radio sets. Avoid H.R. trouble and get consistently good soldering joints with ERSIN MULTICORE SOLDER.

Television receivers contain from ten to fifteen times as many connections as ordinary radio sets. That means that there are at least ten times as many places where H.R. connections may occur through dry joints. H.R. joints can only be avoided by the use of Ersin Multicore Solder and correct soldering technique—that is why it is used by all the manufacturers of television receivers.

For servicing television and radio it must pay you to use only Ersin Multicore Solder—The Finest Cored Solder in the World. Size I cartons are available in the specifications shown below. Ersin Multicore Solder is supplied to manufacturers on 7-lb. reels. Quantity rates on application.

ERSIN MULTICORE SOLDER WIRE

Catalogue

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Alloy</th>
<th>S.W.G.</th>
<th>Approx. length per carton</th>
<th>List price per carton (subject)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 16014</td>
<td>60 40</td>
<td>14</td>
<td>32 feet</td>
<td>6</td>
</tr>
<tr>
<td>C 16018</td>
<td>60 40</td>
<td>18</td>
<td>84 feet</td>
<td>6</td>
</tr>
<tr>
<td>C 14013</td>
<td>40 60</td>
<td>13</td>
<td>20 feet</td>
<td>4</td>
</tr>
<tr>
<td>C 14016</td>
<td>40 60</td>
<td>16</td>
<td>44 feet</td>
<td>5</td>
</tr>
</tbody>
</table>

World Radio History