U E''s SIMPLE WOBBLULATOR DESIGN
All Wave Anti-Interference Aerial

There's a name behind it!

What it does
It has been specially designed to alleviate interference caused by radiation from electrically-operated transport, vehicle ignition systems, electrical appliances using commutator motors, lighting systems, etc. A high signal level is obtained and this ensures better listening on all broadcast wavelengths, giving maximum choice of programmes against a quiet background.

What it is
A 60-ft. polythene-protected dipole complete with insulators and matching transformer, 80-ft. coaxial screened downlead with polythene plug moulded to each end, and a receiver transformer. All the necessary components for the Aerial are included in the complete kit.

Write for Publication No. 221S giving further information.

Obtainable only from recognised dealers. **£6.18.0**

British Insulated Callender's Cables Limited

Norfolk House, Norfolk Street, London, W.C.2
This instrument, which is an up-to-date example of current instrument practice, has been developed to meet the growing demand for an instrument of laboratory sensitivity built in a robust and portable form, for use in conjunction with electronic and other apparatus where it is imperative that the instrument should present a negligible loading factor upon the circuit under test.

The instrument consists basically of a balanced bridge voltmeter. It incorporates many unique features and a wide set of ranges so that in operation it is as simple to use as a normal multi-range testmeter.

The instrument gives 49 ranges of readings as follows:

- **D.C. VOLTS**: 2.5mV. to 10,000V. (Input Resistance 111.1 megohms).
- **D.C. CURRENT**: 0.25µA. to 1 Amp. (150mV. drop on all ranges).
- **A.C. VOLTS**: 0.1V. to 2,500 V. R.M.S. up to 1 Mc's. With external diode probe 0.1V. to 250V. up to 200 Mc's.
- **A.C. OUTPUT POWER**: 5mW. to 5 watts in 6 different load resistances from 5 to 5,000 ohms.
- **DECIBELS**: -10db. to +20db.
- **CAPACITANCE**: .0001µF. to 50µF.
- **RESISTANCE**: 0.2 ohms to 10 megohms.
- **INSULATION**: 0.1 megohm to 1,000 megohms.

The thermionic circuit gives delicate galvanometer sensitivity to a robust moving coil movement. It is almost impossible to damage by overload. The instrument is quickly set up for any of the various tests to be undertaken, a single circuit selector switch automatically removing from the circuit any voltages and controls which are not required for the test in question.

Fully descriptive pamphlet available on application.
Advertisements

There need never be any serious need for scratching over capacitors for service replacements. Follow the leading set manufacturers in their original choice — rely on Hunts. For the standard or the special job there's always the right Hunts capacitor type — with every advantage of design, long-lasting performance, and price, that comes from absolute specialisation in nothing but capacitors.

HUNTS CAPACITORS

The TRADE MARK of Reliability

A. H. HUNT LTD • WANDSWORTH • LONDON, S.W.18 • Tel.: Battersea 3131 • EST. 1901

Dual and Triple Units

DRY ELECTROLYTICS

(A small selection)

<table>
<thead>
<tr>
<th>Cap. uf.</th>
<th>D.C. Wkgs.</th>
<th>Type</th>
<th>List No. L. D.</th>
<th>List Price</th>
<th>D.C. Volts</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>20+20</td>
<td>150</td>
<td>L31A</td>
<td>J74 41 1 5 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40+40</td>
<td>150</td>
<td>L31A</td>
<td>J75 42 1 5 7 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32+32</td>
<td>250</td>
<td>L31A</td>
<td>J49 43 1 7 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16+16</td>
<td>350</td>
<td>L31A</td>
<td>J47 44 1 7 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16+32</td>
<td>350</td>
<td>L33</td>
<td>K47 45 1 7 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32+32</td>
<td>350</td>
<td>L33</td>
<td>K49 46 1 7 11 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8+8</td>
<td>450</td>
<td>L31A</td>
<td>J50 47 1 6 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8+16</td>
<td>450</td>
<td>L33</td>
<td>K10 48 1 6 9 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16+16</td>
<td>450</td>
<td>L33</td>
<td>K11 49 1 8 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16+32</td>
<td>450</td>
<td>L33</td>
<td>K61 50 1 8 12 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8+8+8+8</td>
<td>450</td>
<td>L34</td>
<td>K70 51 2 8 9 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8+8</td>
<td>500</td>
<td>L33</td>
<td>K54 52 2 8 9 6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Supplied with plastic insulating sleeve when this is ordered by adding "P" to list number.

Single Unit

DRY ELECTROLYTICS

(A small selection)

<table>
<thead>
<tr>
<th>Cap. uf.</th>
<th>D.C. Wkgs.</th>
<th>Type</th>
<th>List No. L. D.</th>
<th>List Price</th>
<th>D.C. Volts</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>12</td>
<td>L31</td>
<td>J1 3 1 3 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>L31</td>
<td>J3 3 1 3 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>L31</td>
<td>J8 3 1 3 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>150</td>
<td>L31</td>
<td>J24 4 1 3 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>150</td>
<td>L32</td>
<td>K122 4 1 3 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>350</td>
<td>L31</td>
<td>J22 4 1 3 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>350</td>
<td>L32</td>
<td>K65 4 1 3 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>450</td>
<td>L31</td>
<td>J40 4 1 3 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>450</td>
<td>L31</td>
<td>J44 4 1 3 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>450</td>
<td>L31</td>
<td>J45 4 1 3 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>500</td>
<td>L32</td>
<td>K3 4 1 3 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>500</td>
<td>L32</td>
<td>K4 4 1 3 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Supplied with plastic insulating sleeve when this is ordered by adding "P" to list number.

The Radio Critic

No radio set can hope to hide its faults from the Portable Receiver Tester, the severest critic of technical efficiency. Before or after servicing, this Marconi instrument goes beyond the purely relative checks applied by ordinary test gear. It measures each aspect of receiver performance in the manner adopted by the actual manufacturer. It does so because it incorporates the threefold facilities of signal generator, output power meter and crystal calibrator — all in one compact assembly made at a price to suit the radio engineer. Additionally, as the Receiver Tester can be mains or battery operated, it is independent of power supplies. Ask for a demonstration or descriptive leaflet.

The MARCONI PORTABLE RECEIVER TESTER

TYPE

TF 888

Marconi Instruments Limited

ST. ALBANS, HERTFORDSHIRE • Telephone: St. Albans 6161/5

Selling Agents: SIMPSON, BAKER & CO. LTD., AT BRISTOL, LONDON, BIRMINGHAM, EXETER, SWANSEA, CARDIFF, SOUTHAMPTON
The Mazda 6F13 is a High Slope Screened R.F. Pentode suitable for use in R.F., I.F., and Video stages of a Television Receiver. It may also be used as a Mixer in a two-valve Frequency Changer Circuit.

LIST PRICE 15/6

Further details will be supplied on application to the Radio Division.

RATING

- Heater Voltage (volts) \(V_h \) 6.3
- Heater Current (amps) \(I_h \) 0.35
- Maximum Anode Voltage (volts) \(V_a \) 250
- Maximum Screen Voltage (volts) \(V_{g2} \) 250
- Mutual Conductance (mA V) \(g_m \) **9.0**
- Maximum Anode Dissipation (Watts) \(P_a \) † 3.5
- Maximum Screen Dissipation (Watts) \(P_{g2} \) † 1.0
- Maximum Potential Heater/Cathode (volts DC) \(V_{h-k(max)} \) 150

* Taken at \(V_a = V_{g2} = 200v \); \(V_{g1} = -1.8v \).
† With grid cathode resistance not exceeding 10,000 ohms.
The best—
HIGH and LOW

Exide
L.T. ACCUMULATORS
and
Drydex
H.T. BATTERIES

for better
battery radio reception

ISSUED BY THE CHLORIDE ELECTRICAL STORAGE COMPANY LIMITED

10 to 300 mcs.

Light Weight:
36 lbs.

Negligible Stray Field.

Frequency Calibration 1%

Modulation 30% sine wave
1,000— and pulsed 50/50 square wave at 1,000—

Attenuation Max. error at 300 mcs. ± 2dB

Precision Slow-Motion Dial.

Wide Range, 10-300 mcs.

Compact 12¼in. x 1½in. x 7½in.

Dual-Power Supply
200-250v., 40-100
80v., 40-2000

"Advance" Signal Generator
Type D.1.

This "ADVANCE" Signal Generator is of entirely new design
and embodies many novel constructional features. It is compact
in size, light in weight, and can be operated either from A.C. Power
Supply or low-voltage high-frequency supplies.

An EL15 valve is employed as a colpits oscillator, which may
be Plate modulated by a 1,000-cycle sine wave oscillator, or grid
modulated by a 50/50 square wave. Both types of modulation are
internal, and selected by a switch. The oscillator section is triple
shielded and external stray magnetic and electrostatic fields are
negligible. Six coils are used to cover the range, and they are
mounted in a coil turret of special design. The output from the R.F.
oscillator is fed to an inductive slide wire, where it is monitored by
an EA50 diode. The slide wire feeds a 75-ohm 5-step decade
attenuator of new design. The output voltage is taken from the
end of a 75-ohm matched transmission line.

The instrument is totally enclosed in a grey enamelled steel case
with a detachable hinged lid for use during transport.

Price £80
Delivery ex Stock.

Write for descriptive Leaflet.

ADVANCE COMPONENTS, LTD.
BACK ROAD, SHERNHALL STREET,
WALTHAMSTOW, LONDON, E.17.
Telephone: Larkswood 4366-7-8
They speak for themselves...

The SS 10A 12-inch Heavy Duty Speaker, illustrated, offering a frequency response from 55 to 11,000 c.p.s. and handling 10 watts is a typical example of TRUVOX workmanship.

TRUVOX ENGINEERING CO. LTD • EXHIBITION GDS • WEMBLEY • ENGLAND
INTRODUCING THE R22/12
20-WATT, 12" P.M. LOUDSPEAKER
MORE POWER—STILL GREATER EFFICIENCY—
the ultimate development of the famous T2.
Available with two types of Cones:—
CONE TYPE “1205”
Fundamental Resonance 75 c.p.s.
(Designed for PUBLIC ADDRESS)
CONE TYPE “1206”
Fundamental Resonance 55 c.p.s.
(Designed for BASS REPRODUCTION)
Write for descriptive leaflet.

Eliminate Positive Feedback

(Mechanical) “EQUIFLEX” PATENT MOUNTINGS will eliminate Mechanical and acoustic Vibration from being amplified and a Black Spot on Quality Reproduction. Call at your Dealers to see a complete set of special “EQUIFLEX.” Damped units with all fittings and assembly chart suitable for the GARRARD R C 60 Turntable.

GARRARD RC 60 UNIT
Price 21/6 Per Complete Boxed set of 4 Mountings and all fittings.

“EQUIFLEX” special Damped Mountings as illustrated for Chassis Suspension can be obtained from your Radio Dealer. Loadings of these units are from 2 lb. to 12 lbs. Giving a choice of distributed loadding of from 8 lbs. to 50 lbs. where a four Point-Suspension is used.
Ask to see these special Units at your Dealers.

TYPICAL RADIO CHASSIS
Wholesale Distributors and Dealers write for Terms and Particulars. Export Enquiries Welcomed. Illustrated Brochure upon request.

Sole Manufacturers:
A. WELLS & CO. LTD.,
PROGRESS WORKS, STIRLING RD., LONDON, E.17
PHONE : LARKswood 2691-4
The New Windsor Electronic Testmeter

A highly stable D.C. Valve Voltmeter using an external diode probe for R.F. and A.C. measurements. Stability and freedom from zero drift are ensured by careful design and the simplified controls make for ease in handling. For A.C. mains operation, 110-120V and 200-250V 40/100c/s.

Ranges

- **D.C. Volts.** 0-2.5-10-25-100-250-1,000.
- **D.C. Volts x 10.** 0-25-100-250-1,000-2,500-10,000 (with adaptor).
- **R.F., A.F. & A.C. Volts.** 0-2.5-10-25-100-250.
- **A.C. Volts x 10.** 0-25-100-250-1,000-2,500 (with adaptor).
- **D.C. Current.** 0-100μA-1mA-10mA-100mA-1 Amp-10 Amps.
- **Resistance.** 0.5 ohm-1000 megohms in 6 ranges using internal battery.
- **Decibels.** -22db to +43db in 5 ranges.

List Price £22.10.0

Descriptive leaflet and details of H.P. terms sent on request.

Windsor and Taylor

Best for Test Equipment

Taylor Electrical Instruments Ltd

419-424 Montrose Avenue, Slough, Bucks, England

Tel.: Slough 21381 (4 lines)

Grams & Cables: Taylins, Slough
Mullard take pleasure in announcing....

an extension of their activities in the field of industrial electronic equipment. The Company are devoting particular attention to the many aspects of vibration diagnosis and measurement by electronic and other means, and now offer a wide range of apparatus.

* * *

This includes, by agreement, specialised equipment developed by de Havilland Propellers Limited.

Mullard

ELECTRONIC PRODUCTS LTD.

Electronic Equipment Division

ABOYNE WORKS, ABOYNE ROAD, LONDON, S.W.17

Mullard take pleasure in announcing....

... an extension of their activities in the field of industrial electronic equipment. The Company are devoting particular attention to the many aspects of vibration diagnosis and measurement by electronic and other means, and now offer a wide range of apparatus.

* * *

This includes, by agreement, specialised equipment developed by de Havilland Propellers Limited.

Mullard

ELECTRONIC PRODUCTS LTD.

Electronic Equipment Division

ABOYNE WORKS, ABOYNE ROAD, LONDON, S.W.17
I did feel a fool!

There I was busy as a little bee, twiddling the old brace and shoving on the nuts like nobody's business and so pleased with myself. When in walked this Man, see, with long moustachios and a row of little horses. Well, you never did! Before I could say Hee the tiny little chaps had simply cleared the bench and were looking round for more work. Power Tools! I should say! You could have knocked me down with a carrot!

Call up DESOUTTER's little horses

Specialists in Lightweight Pneumatic and Electric Portable Tools.

DESOUTTER BROS. LTD., THE HYDE, HENDON, LONDON, N.W.9
Telephone : COLINDELE 6346-7-8-9. Telegrams : DESPNUCO, HYDE, LONDON
The most outstanding value ever offered!

Stentorian

with a unique combination of features never before possible

In this new range of best-sellers, we have utilised to the full our 25 years' experience of radio reproduction. After twelve months of intensive experiment, we proudly present the finest speaker value ever offered — made possible only by the fact that every operation is carried out in the one organisation. Compare these baffle speakers with any other make on the market; compare their reproduction — their appearance — their price. There can be only one verdict, and we are confident of what that verdict will be.

INTEGRATING REMOTE CONTROL

These speakers are identical in appearance, but "Beaufort" and "Bristol" have push-button remote control, which, in conjunction with the exclusive Whiteley "Long Arm" enables radio to be switched on or off from the speaker. All are finished in highly polished walnut veneer.

- **BEAUFORT**
 - Size 12½" x 10½" x 3½". Permanent magnet type speaker (die-cast unit). 6" diameter. Capacity 3 watts. Constant impedance volume control.
 - Without Transformer: 67/6
 - With Transformer: 75/-

- **BRISTOL**
 - Size 10½" x 9½" x 3½". P.M. Unit 6". Capacity 3 watts. Constant impedance volume control.
 - 53/6

- **BEDFORD**
 - Size 9½" x 8½" x 3¼". P.M. Unit 5". Capacity 2½ watts. Complete with volume control.
 - 39/6

ASK YOUR LOCAL DEALER TO DEMONSTRATE

OSRAM MINIATURE VALVE

TYPE Z77 HIGH-GAIN PENTODE

It is a high-gain pentode, mounted on the B7G base and is suitable for use in television, wide-band radio, amplifier and electronic instrument circuits.

INTERESTING FEATURES

Small size and rugged construction make it an eminently suitable valve for use in mobile and portable equipment. Suitable for operation up to 100 megacycles per second. Owing to smallness of size and low thermal capacity the valve rapidly reaches a stable operating condition.

List Price 17.6. Purchase Tax extra.

THE GENERAL ELECTRIC CO., LTD., MAGNET HOUSE, KINGSWAY, W.C.2.
OF GREAT INTEREST TO ALL TRADERS
The Makers of the MIGHTY MIDGET Radio Set announce that their NEW TRADING TITLE is now

GENERAL SONIC INDUSTRIES
(Formerly General Electrical Radio)

to whom all valued orders should in future be addressed.

THE ADDRESS IS STILL THE SAME
21-24 SHENE ST., BATH ST., LONDON, E.C.1
Telephone: CLErkenwell 4966

M.R. SUPPLIES Ltd.
offer the following reliable Public Address and Laboratory equipment for immediate delivery from stock. All prices nett.

P.A. SPEAKERS, multi-cell pressure Type P.M., Units, 15 ohms coil, with 600-ohm line matching transformer, in weatherproof housing, handling 10 watts, standard P.A. thread, (18 t.p.i.). Best makers, reconditioned as new, £9.50. Projector Horns, in melt-<84> grid, square type Development Horns, all metal, £5.50, simple-2 3/4 or the Unit and Horn complete for £8.50. (1) (N.B. 10), All metal exponential Horns, brand new Granton, £5 (unmounted) and £5.50 (mounted grey) (ex. 2/3). These will also fit above units, STEEL TRIPODS for P.A. Speakers, extending to 12ft., adjustable height, sturdy rigid type for all weather conditions, £5-50 (ex. 5/6).

FRACTIONAL MAINS MOTORS. 200/250 v. A.C. Brand new, shaded pole. Running torque 400 grams, 1,200 r.p.m., 100% starting torque, silent in operation. Shaft 1 1/2 in. long by 1 in. Frame 3 1/2 in. by 3 1/2 in. (It should be noted that these are motors designed for mains use, not the inefficient "convention" types generally offered).

AIR COMPRESSORS, the best type with 12 steel cooling fins, total length 8 in. 400 l.e., per sq. in. 5-5 k.p.s. with德尔-heat, 25/- (ex. 15/6).

AC. MAINS CONTACTORS. Coil 230 v. 50 c. Contacts 3-pole each 10 amps. supplied with these wired in parallel for 30-amp switching. Smart action, silent in use. On panel 11 in., by 6 in., with cover, 17/-.

OPERATION COUNTERS, mechanical type, counting up to 99,999. In die-cast housing 8 in. square, new, £8.50.

VARIABLE RESISTANCES. (Admiralty 74A), 0/300 ohms, current taper 1/80/20 ohms. Fine action, with 20 stud taps, fully enclosed, ventilated, 5 1/2 in. by 6 in., with central knob, 15/- (ex. 10/-).

THERMOSTATS (by British Thermostat Co.). Two well-made, useful models. (A) Range 40/80 deg. F, (diff. 4 deg F), capacity 10 amperes A.C., with manual on-off switch, Size 6 in. by 2 in. by 2 1/2 in. £6-50. (B) Range 45/75 deg F (diff. 2 deg F) with 25-amper mercury switch. Size 7 1/2 in. by 4 1/2 in. by 2 in. £8. Both models suitable for Laboratories, Living Rooms, Greenhouses, Workshops, etc., using circuit on fall in temperature.

BLOWERS, 12/24 A.C./D.C. (tapped). Inlet and outlet approx. 1 1/2 in. dia. Overall length 20 in. Very powerful blast. With mounting bracket, 27/-6. Transformers specially made for use with the blowers, enabling them to be used on 200/220/240 v. A.C. mains, 29/-6.

MICRO-AMMETERS. Very interesting offer of precision miniature type, deflection 0/500 microamps, only 1 in. diameter, with back terminals. Black dial with neat calibre in white, 12/6.

SYNCHRONOUS ELECTRIC CLOCK MOVEMENTS, 200/250 v. 50 c. Spindles for hours, minutes and seconds hands. Single-needle mount, silent running. Supplied with plastic dust cover, 5 1/2 in., 6 1/2 in., deep, and flat, ready for use, 37/-6. Also three hands at 50p, suits clock 5 1/2 in. dia., £2- (Not sold separately). Please include sufficient for packing/destination. New List of Variable Resistance and Dimmers is now ready.

THE HEIGHT OF EFFICIENCY
WOLSEY TELEVISION AERIALS AND INSTALLATION SERVICE

The remarkable technical efficiency of WOLSEY Television Aerials is the outcome of many years specialisation, and there are types suitable for all makes of receivers and all local conditions, including new models for the BIRMINGHAM transmission. Also, a very efficient Installation Service is provided if required.

Illustrated is the WOLSEY Model TR/M1—the first and most successful Triple Reflector Aerial, giving increased gain for fringe areas.

Send for Illus. Brochures

One of our fully equipped Installation Vans

WOLSEY TELEVISION LTD,
75, GRESHAM RD., BRIXTON, LONDON, S.W.9
Phone: BRIxton 6651/2
Established 1926

WORLD RADIO HISTORY
SEE and HEAR the Leader in the Field of Magnetic Recording

AT THE B.I.F.
STAND NO. E 66
OLYMPIA

- 30 minutes' continuous recording
- Highest fidelity reproduction without scratch or extraneous noises
- One single finger tip control provides for play — record — rewind — or fast forward requirements
- Automatic erasure as each new recording is made
- Recordings are permanent — can be played an indefinite number of times
- Uses reels of "Magic Tape" — easily handled, easily stored
- Short recordings can be joined up — unwanted parts cut out
- "Soundmirror" is the complete recorder — fills every requirement of sound recording

Made by the makers of
THE FAMOUS
Recordon
LOW COST DICTATING MACHINE
The "Recordon" can also be seen and demonstrated at our Stand at the B.I.F.

THERMIONIC PRODUCTS Ltd.
LEADERS IN THE FIELD OF MAGNETIC RECORDING
MORRIS HOUSE, JERMYN STREET, HAYMARKET, LONDON, S.W.1. WHITEHALL 6422/3/4

Protected by British & Foreign Patents and Patents pending
B. I. F.
OLYMPIA
STAND G.17

This new Mullard 1267 will be welcomed by all users of cold cathode thy- ratrons. A replacement for, and an improvement upon, the OA4G, it has the following outstanding advantages:—

1. High continuous and instantaneous cathode current.
2. Consistent striking characteristics.
3. Higher stability and freedom from photoelectric and temperature effects.
4. Reliability and long life resulting from improved cathode activation.

These features make the 1267 ideal for a great number of industrial electronic applications, the more important of which include:—

- Welding and industrial
- Alarm, fault and protective systems.
- Sequential process timers.
- Remote-controlled power switching.

Principal Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Operating Anode Voltage</td>
<td>225V peak</td>
</tr>
<tr>
<td>Trigger Voltage for Firing (Pos.)</td>
<td>70V, min. to 90V, max.</td>
</tr>
<tr>
<td>Trigger Current at Striking Point (Vg = 140)</td>
<td>100mA max.</td>
</tr>
<tr>
<td>Valve Voltage Drop</td>
<td>70V, approx.</td>
</tr>
<tr>
<td>Max. Continuous Cathode Current</td>
<td>25 mA</td>
</tr>
<tr>
<td>Max. Peak Cathode Current</td>
<td>100 mA</td>
</tr>
</tbody>
</table>

Above this voltage the valve may break down at Vg = 0.

Mullard thermionic valves and electron tubes

Industrial Power Valves - Thytratrons - Industrial Rectifiers - Photocells - Flash Tubes - Accelerometers
Cathode Ray Tubes - Stabilisers and Reference Level Tubes - Cold Cathode Tubes - Electrometers, etc.

MULLARD ELECTRONIC PRODUCTS LTD., CENTURY HOUSE SHAFTESBURY AVENUE, W.C.2

CONSISTENTLY Accurate

ANOTHER "OSMOR" WINNER!

GLASS DIAL ASSEMBLY, TYPE A

3-colour
- J-wave
- Plus Trawler Band
- For use with any type of tuning drive

MAY BE MOUNTED IN ANY POSITION ON OR ABOVE CHASSIS. COMPLETE (less bulbs) 22/6

PULLEY ASSEMBLY (for horizontal mounting) 1/6

OSMOR "Q" COIL PACKS, size 3½" x 2½" x 1½". The most efficient available. One-hole fixing, only 5 connections.

S'HET (L.M.S.) 3½" T.R.F. (M. & L.) 30-

Other ranges available, also high-gain midget coils, 3/- each.

Send for details of these and other Radio and Television components, also latest Bargain List.

TRADE ENQUIRIES INVITED.

OSMOR RADIO PRODUCTS LTD.
BOROUGH HILL, CROYDON

CONSISTENTLY Accurate

PULLIN INDUSTRIAL SWITCHBOARD INSTRUMENTS

PULLIN Type S Industrial Switchboard Instruments are completely new in design. The 4" and 6" Round Projecting Type case is of pressed steel, has a full open dial, and can be converted easily to flush type by using a separate fitting. The 6" dial rectangular pattern has a clean open scale. All types are available in Moving Iron, Moving Coil or Dynamometer Pattern.

We can give early deliveries—write for details.

MEASURING INSTRUMENTS (PULLIN) LTD
Telephone: ACorn 4651 and 4995.
The 48A series disk recording equipment has been designed to meet the demand for a rugged and versatile system for combined mobile and studio use. Distinctive styling and exceptional performance make these units outstanding in their class.

- **RESPONSE**
 - Cutter head: ± 2.5 db. from 500 c/s to 12 k.c.s.
 - Pick-up: ± 2 db. from 50 c/s to 9 k.c.s.
 - Amplifier and Mixer: ± 1 db. from 50 c/s to 20 k.c.s.

- **DRIVE**
 - A patented turn-table drive system is employed which gives ample torque and reduces "wow" and vibration to an "absolute minimum."

- **FEATURES**
 - Many refinements are incorporated including variable groove pitch, depth of cut and stylus rake, provision for inside or outside start, scrolling control with automatic closure of initial groove, etc.

- **FINISH**
 - Cases finished blue leatherette. All metal parts in chrome or electric blue stove enamel.

THE COMPLETE SERVICE FOR SOUND RECORDING AND REPRODUCTION

Enquiries invited for the development of special electronic or mechanical equipment

SIMON SOUND SERVICE

Design for purpose is as important in radio servicing as in nature. The Weston Model E772 Analyser has been designed to make the detection of electrical faults as simple and speedy as possible. Its features include high sensitivity (20,000 ohms per volt on all D.C. ranges), wide range coverage and robust construction—its quality is unsurpassed. Please write for details.

WESTON E 772 Analyser

SANGAMO WESTON LTD., ENFIELD, MIDDX.

WHY PAY MORE?
THE "RD JUNIOR" AT
£19.10.0

provides the answer to those seeking High Fidelity reproduction at a reasonable price.

Note these outstanding features:
Frequency response flat within .5DB from 20-20,000 cps.
Output 8-10 watts.
Total harmonic distortion better than 1 per cent. at 8 watts output, measured at 100 cps. Completely independent bass and treble tone controls.
Provision for small radio feeder, compensated pick-up, and microphone inputs.
13.5 DB negative feedback applied over 3 stages, including output transformer.
Due to very low phase shift the amplifier is unconditionally stable.
Compare these figures with any similarly priced amplifier on the market to-day.
For the home constructor a complete set of drawings will be available, including circuit, layout diagram, and component list. Price 7/6.
An illustrated leaflet describing this amplifier in detail will be forwarded on request.

ROGERS DEVELOPMENTS CO.
106, Heath Street, Hampstead, London, N.W.3
HAMpstead 6921

Wharfedale LOUDSPEAKER W.12

Die Cast Non-resonant Chassis with accurate rear suspension.
Impedance, 15 ohms. Diameter 12". Weight, 11½ lbs. Peak input, 15 watts.

13,000 LINES FLUX DENSITY Price 135/-
Now fitted with new type of cone with improved H.F response.

Made and Guaranteed by
WHARFEDALE WIRELESS WORKS
BRADFORD ROAD, IDLE, BRADFORD.
Telephone: Idle 461
Telegrams: Wharfdel, Idle, Bradford
As an
AMATEUR
I rely on my experience

Experience is the best teacher, especially when it's bought with hard-earned cash! As an 'old hand' I've experimented with pretty well every type of gear and, if there's one thing I've learned, it's that you can't bring in results on second-rate stuff.

My rig is home designed and built, but what's there is there because it's the best obtainable. It does the job the way I want it and I don't have to worry about break-downs due to some "bargain" item not coming up to scratch or a condenser from a pal's junk-box letting me down.

Where condensers are concerned I stick to T.C.C. I know they live up to rated performance — and keep on living up to it. One of their old "green cans" that's been with me since early in my radio career is still going strong.

Where condensers are concerned,

I back my experience of

A TYPICAL EXAMPLE FROM THE T.C.C. RANGE.
T.C.C. Mica Transmitting Condensers in Moulded Bakelite cases, types 1039-1042, are ideal for the lower power transmitter. Amongst their advantages are Low Power Factor, High Voltage Rating and flexibility of mounting.
Send for literature giving full details of these and other types of condenser.

IN THE BEST SETS YOU'LL SEE T.C.C.

THE TELEGRAPH CONDENSER CO., LTD.
NORTH ACTON • LONDON • W. 3
Telephone, ACORN 0061
MARCONI MADE THIS POSSIBLE...

Marconi light-weight portable television equipment made possible for the first time, the B.B.C.'s televising of the boat race from start to finish.

Marconi—THE WORLD'S FINEST TELEVISION

MARCONI'S WIRELESS TELEGRAPH COMPANY LTD., MARCONI HOUSE, CHELMSFORD, ESSEX

BRIERLEY RIBBON PICKUP

This pickup is a development of the JB/P/R/1 and the following are a few of its advantages:

(1) The Ribbon is (a) .12in. long and the total mass is between 2 and 3 milligrams. (b) is curved about its long axis. (c) is constructed from thinner material. (d) is pre-formed and becomes an integral part of its support. (2) The low restoring force is obtained without resorting to the tapering of the ribbon. (3) The Ribbon movements are obtainable with either an improved standard point or a diamond point and will operate with 2 grams point pressure on flat turntables and records. Normal point pressure is 3.5 grams. Arising from (1) and (2), a much greater damping factor/restoring force factor is realised and in addition the movement is much more robust—in two ways in particular:—(a) The ribbon not being tapered, cannot be torn by misuse or accidents. (b) The ribbon, being an integral part of its support cannot fall till it is forcibly removed.

The performance of these new Ribbon movements is noticeably a considerable advance on the previous type. The consistently "clean" response, better transient response and lower scratch level combine to give a performance nearer to the ideal for which we all strive.

Details of the JB/P/R/2 Pickup, the Microarmature Pickup and other products will be sent on request.

B. H. BRIERLEY (GRAMOPHONES & RECORDINGS), LTD., 46, TITHEBARN STREET, LIVERPOOL.

Service for

THE WEST COUNTRY

Amateur

EDDYSTONE 670. The Seafarer. A personal Receiver designed expressly for use in cabins. 10-51 and 110-575 m., 2 bands, A.C.-D.C., 110-230 v., internal speaker. This Receiver will shortly be available for trawler, coastal and ocean-going personnel. Details are available on application.

1132A. A bargain for the 2-metre enthusiast. A very fine communication circuit designed for the adjacent band, 100-124 m/c/s now available for conversion to 144 m/c/s. 11 valves; H.F., SP61; Mixer, SP61; Stabiliser 7475; Oscillator P61; I.F., 3-EF39; BFO EF39; Dec., and AVC EB34; AF Amp. EK32; Output 6JSG. Excellent controls. Slow motion drive tuning meter. Unused. In spotless condition, in maker's cartons or transit cases. £4 19s. 6d., packing and carriage £3 10s.

3084A. A Gee Receiver offered for its exceptional component value. 7 EF50, 2 EF54, 1 EC52, 1 EA50, 1 Spark Gap, 1 R3 rectifier, 1 HVR2, 1 H.V. do., Pye socket, plugs, motor, W/W resistors, etc. Unused, very clean, excellent value, in maker's cartons or cases. £4 2s. 6d., carriage and packing free.

COMPONENTS. Everything the amateur constructor needs. Eddystone, Denco, Bulgin, Clix, Woden, Partridge, Mullard, Rola, Belling Lee—we have them all and others, too.

BARGAINS. Send for our X.S. list.

G. N. PILL & PARTNERS

49, COBOURG STREET,PLYMOUTH

Telephone: 2239
NOTICE

"POINT ONE" is the Trade Mark of H. J. Leak & Co., Ltd. It was originally applied to the first power amplifiers having a total distortion as low as point one of one percent, when in June, 1945, H. J. Leak, M. Brit. I.R.E., revolutionised the performance standards for audio amplifiers by designing the original "POINT ONE" series.

NEW LEAK "POINT ONE" AMPLIFIERS

REMOTE CONTROL PRE-AMPLIFIER RC/PA
£6 - 15 - 0 list.

An original feedback tone-control circuit which will become a standard.

No resonant circuits employed.

- Distortion: Less than 0.05%.
- Switching for Pick-up, Microphone and Radio, with automatic alteration of tone-control characteristics.
- High sensitivities. Will operate from any moving-coil, moving iron or crystal P.-U.; from any moving-coil microphone; from any radio unit.
- Controls: Input Selector; Bass Gain and Loss; Treble Gain and Loss; Volume.
- Output Impedance: 0-30,000Ω at 20 kc.p.s.

The unit will mount on motor-board through a cut-out of 10in. x 3½in., or it can be bolted to the power amplifier, when, with a top cover, the whole assembly becomes portable.

For use only with LEAK amplifiers.

Used with the RC/PA pre-amplifier and the best complementary equipment the TL/12 power amplifier gives to the music-lover a quality of reproduction unsurpassed by any equipment at any price. It is designed in a form so that the power amplifier can be housed in the base of a cabinet and the small pre-amplifier mounted in a position best suited to the user.

DO YOU KNOW what these performance figures mean?:—

PHASE MARGIN 20° ± 10°
GAIN MARGIN 10db ± 0db

YOU MOST PROBABLY DO NOT, for they are uncommon. Yet they are of vital importance, for the "goodness" of a multi-stage feedback amplifier cannot be taken for granted in the absence of this information, however impressive the rest of the specification may seem. We believe ourselves to be the only organisation advertising these figures. If you would like to know more about amplifiers in general, and the TL/12 and RC/PA in particular,

WRITE FOR BOOKLET W/TL/12.

H. J. LEAK & CO. LTD. (Est. 1934)
BRUNEL ROAD, WESTWAY FACTORY ESTATE, ACTON, W.3

COULPHONE RADIO PRODUCTS
Mains Transformers
16/6 Post Paid

COULPHONE Mains Transformers are made to the highest electrical standards and are fully guaranteed. We supply them to the Ministry of Supply Atomic Research Stations, so they will no doubt meet your requirements.

Special quotations for quantities and types to order.

SELECTED EX-GOVERNMENT SURPLUS

In response to numerous requests from clients in all parts of the U.K., I have decided to stock carefully selected ex-government Radio Transformers—only equipment in sound condition being considered. If interested kindly send an extra 2d. stamp for separate 16-page illustrated catalogue—the prices are the lowest in the country—so that we will send you one.

C. Conhorn, G3AJM

EXAMPLE

ROThERNEEL TORPEDO CRYSTAL MICROPHONE. Brand new in Maker's carton. £1.5.6. Post paid, is £1.5.6.

Valves required, 16X5, 6HK7, 6K70, 6Q7G, 61C70. Price for set of four valves, £3.11.6.

MODEL A. A first class feeder unit with R.F. stage operating on all wavebands, 16/145, 190/560, 300/2800 metres. Switched pickup sockets. Volume control. Metal dial. 5 in aperture. Price less valves £6.8.0.

Price: £4.11.6.

A.P. AMPLIFIER POWER UNIT. Speciﬁcally designed for use with above units. Employed G140 output. £1.11.6. Price line valves £3.10.0.

DEALER'S REQUIRED £4.11.6.

WILLIAMSON OUTPUT TRANSFORMER

A super job exactly to author's speciﬁcation.

Service Tel., Ormskirk 496.

TAYLOR SWITCHES

MODEL 950

This switch is designed for Radio, Electronic or Instrument use. It is robust, reliable and will give a long trouble-free life. Available as non-shorting or shorting type in many combinations up to 8 deacks per spindle.

- COMPACTNESS Occupies space 1½ sq.

- CURRENT RATING Shorting type, 10 Amperes continuous. Contact resistance approximately 0.003 ohm.

Non-shorting type: 8 Amperes Contact resistance approximately 0.008 ohm.

- CONTACTS Contacts are of large area, and both brushes and contacts are heavily silver-plated.

TAYLOR ELECTRICAL INSTRUMENTS LTD.
419-424 MONTROSE AVENUE, SLOUGH, BUCKS, ENGLAND
Telephone Slough 21381 (4 lines)

FROM ALL POINTS OF VIEW...

... the Nagard Universal Mounting is a "must" for Oscillograph users. With it, there are no parallax errors when viewing the CRT screen since easy vertical and horizontal movements bring the axis of the CRT to your viewing position. No need to improve tilts and no straining to lift the Oscillograph.

The Nagard Universal Mounting increases accuracy of observations and adds comfort to working conditions. Suitable for all makes of portable oscillographs.

NAGARD

UNIVERSAL OSCILLOGRAPH MOUNTING

(Work of the World)
METALLIZED CERAMICS

TECHNICAL INFORMATION BULLETIN

Type Number
17055 27075 39105 45130

Flashover KV DC (Top) 9 12 13 21
Maximum Amps. 5 12 23 26

Metallized Ceramic Hermetic Seals
The new range of U.I.C Hermetic Seals guarantees air and moisture-tight sealing even with permanent pressure differences of up to 20 lbs. A specially developed metallizing technique ensures excellent adhesion between metal coating and ceramic body and permits soldering at temperatures between 220°C and 310°C. Full particulars of flashover voltages, current carrying capacity and behaviour at reduced pressure are available on request.
MASTERPIECE IN MINIATURE

<table>
<thead>
<tr>
<th>WIDTH</th>
<th>2 1/2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEIGHT</td>
<td>6 3/4"</td>
</tr>
<tr>
<td>DEPTH</td>
<td>9 1/4"</td>
</tr>
<tr>
<td>C.R.T. DIAMETER</td>
<td>1 1/2"</td>
</tr>
<tr>
<td>NETT WEIGHT</td>
<td>7 1/2 lbs</td>
</tr>
</tbody>
</table>

Miniscope
MINIATURE CATHODE RAY OSCILLOSCOPE BY G.E.C.

Full specification from: THE GENERAL ELECTRIC CO., LTD., MAGNET HOUSE, KINGSWAY, LONDON, W.C.2

SMALL GEARED MOTOR UNITS

The Drayton "R.Q." is a 25-watt motor unit geared to a final shaft, to which may be fitted eccentrics, arms or cranks, gearing, links or pulleys for actuating valves or dampers, movements, switchgear or other devices.

Supplied continuous running or reversing, with or without self-switching, for 110 or 200/250 volts A.C.

Both types are fitted with an auxiliary two-way switch actuated by movement of the final shaft, for operating auxiliary gear such as fan motors, pumps, interlocking devices, etc.

Final Shaft Speeds:
- 600 r.p.m., 27 min. per rev.
- Torque: 60 in. lbs. Consumption: 25 W.

DRAYTON 'R.Q.'

The Drayton "R.Q." is undoubtedly the best high fidelity amplifier kit available at the price. Absolutely complete, very simple to construct, the performance matches up to the high standard reached by moving coil pickups. We recommend either moving coil pickups or miniature moving iron types, such as the Connoisseur, which may be used without the transformer. 7 valves are used to ensure a very low distortion level, the output stage being tetrodes with negative feedback.

Price 13 gns.
Blueprint separately 2/6d.

CHARLES AMPLIFIERS LTD.

Deferred terms are now available

Our units can only be seen at UNIVERSITY RECORDING CO., 16, Burleigh Place, Cambridge
10-VALVE RECEIVER Type R. 3586. Containing 8 EF36, 1 VR30 and 1 5U4G valves, complete with 3-valve R.F. unit.

25-VALVE RECEIVER Type No. 555. Includes strip suitable for Televsion sound or vision when used in conjunction with R.F. Unit Type 25. Contains the following valves: 10 EF3, 5 FP36, 3 ER32, 3 ER34, 1 Manada SE2, relay', condenser, resistances, etc. Brand new in metal case and supplied in wood transit case.

The R.F. Unit Type 25 suitable for use with the above and for other television purposes in 24.5 extra.

AZIMUTH RELEASE RELAY. In glass-fronted, cast aluminium case with fold-back doors. Complete with A.F. Relay, D.C. Relay, Alarm Relay, etc. £25.6

TELEPHONE LINE OR UNIT SELECTOR SWITCHES. Brand New. 3-bank £14. 6-bank £25.6

METAL RECTIFIERS, 6 v. 2.5 amp. Dimensions 6in. x 2in. high. Carriage £21.6

FIVE WAY RUBBER COVERED CABLE. Suitable for oil purposes. Per doz. £6.00. £17.60. £25.60.

WESTINGHOUSE METAL RECVERERCS. Style Line. Brand New. 3-bank £8.6. 6-bank £12.6. £19.60. £29.60.

Photo-Electric Cells Type G516. These cells are the gas-filled type with cesium Cathode. Made by Cintel. Minimum sensitivity 100 A.lumen, working volts 100 D.C. or peak A.C. Projected cathode area 16 sq. cm. Suitable for 16 mm. Home Cinema Take-up equipment, Safety Devices, Colour and Photo Matching, Burglar Alarms, Automatic Counting, Door Opening, etc. Brand new in original cartons... £42.6

Photo- Electric Cells Type 11145. AIRBORNE G.P. TRANSISTORS

Easily adapted for shore-wave reception for home use. Contains two EF36, two EF39, one ER32, one ER33 valves, condensers, resistances, etc. Free circuit diagram, 9in. x 12in., showing all components, supplied with each set. Diagram free with each set.

R.A.F. 6-VALVE SUPERBET RECEIVING UNIT No. 25

6-VOLT SPARES. In original cartons... £29.6.
Transformers

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Dimensions</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stewart</td>
<td>All primaries, except where otherwise stated</td>
<td>210-230-250</td>
<td>£5.00</td>
</tr>
<tr>
<td>350-0-350 V</td>
<td>Size: 2 x 2 x 4.5</td>
<td>Unshrouded</td>
<td>£10.00</td>
</tr>
<tr>
<td>Stewart</td>
<td>R.M.S. 4 mA, 4 V, LACT (Rectifier)</td>
<td>4 V, LACT (CRT heater)</td>
<td>£17.00</td>
</tr>
<tr>
<td>Elston</td>
<td>All primaries 200/230/250 V and screened</td>
<td>350-350 V</td>
<td>£30.00</td>
</tr>
<tr>
<td>Elston</td>
<td>500-0-500 V</td>
<td>Size: 4 x 2 x 4</td>
<td>£40.00</td>
</tr>
</tbody>
</table>

Resistors

- Our normal stock of E.R. & Morgan resistors includes the following values:
- £1.16.0 - 5 and 1 watt rating, 20% Tol., 44. = 10% Tol., 64. = 8% Tol., 84. = 1% Tol., 10, 27, 33, 47, 51, 56, 69, 75, 91 ohms.
- £3.76.0 - 1 Meg, 1.5 Meg, 2.2 Meg, 3.3 Meg, 5.1 Meg, 10 Meg.

Pushbutton?
- Whatever it is—the answer is always OAK! Equalised pressure, double contact clips and floating rotors are exclusive features embodied in all special or standard type OAK switches.
INTRODUCING a new conception of size in mobile two-way communications equipment, the B.C.C. L67 Amplitude Modulated Transceiver has been developed as an associated unit to the already well-proven L45 Walkie-Talkie Packset, and linking it to the B.C.C. Fixed Station Transceiver. Transmitter, receiver, loudspeaker and control panel are all incorporated in an overall case size of 12½in. x 8¾in. x 3½in. This remarkable achievement permits the installation of the unit below the instrument panel of a car without hindrance to normal passenger comfort, and it may be quickly removed from its suspension mountings if desired. A small, separate, high-efficiency power pack, which is readily accommodated behind the dash-board, is fed from the 6 or 12 volt car batteries, the current consumption approximating to that of an ordinary car broadcast receiver.

Installation is, therefore, very simple, long and awkward cable runs being unnecessary, and the usual occupation of useful luggage space in the boot of the car by auxiliary batteries and equipment is obviated.

The equipment is of attractive appearance and operates on any spot frequency in the range of 60-185 mc's. Hand microphone or telephone handset are optional, both using a special coiled flexible lead which will not become entangled and returns to a neat pack when not in use.

For full details and technical information, write to:

BRITISH COMMUNICATIONS CORPORATION LTD

GORDON AVENUE, STANMORE, MIDDLESEX. Tel. Grimsdyke 1455 6
INSTALLED BY a well-known manufacturer of fractional h.p. motors, this Airmec Ionisation Tester achieved savings in two weeks that more than covered its initial cost. Maybe this is exceptional, but to any manufacturer of capacitors, transformers, choke coils or similar components, or insulating materials this equipment can be extremely valuable. Ionisation is indicated aurally and leakage by a magic eye indicator. No damage or breakdown is caused when testing. Please write for full information or demonstration of this new and particularly safe instrument.

ELECTRONIC IONISATION and INSULATION TESTER

AIRMEC LABORATORIES LTD • HIGH WYCOMBE • BUCKS • ENGLAND

Manufacturers of all types of Industrial Electronic Equipment and Test Gear
MICRO-CELL
PICK-UP CARTRIDGE

ESTABLISHES NEW STANDARDS
IN PICK-UP DESIGN

The G.P. 15 Micro-cell represents a great advance in the technique of sound reproduction. This new pick-up element can be used with equal facility on both standard 78 rpm. and micro-groove recordings—the stylus pressure is only 7 grammes for long-playing records. The G.P. 15 unit is non-hygroscopic, and the crystal and stylus are afforded complete protection from mechanical damage.

AN ACHIEVEMENT BY

COSMOCORD LTD • ENFIELD • MIDDX

TELEPHONE: ENFIELD 4022
Keeping the gap under control...

Nothing short of the proverbial sledge hammer will disturb the alignment or alter the clearance between the inner and outer poles in the R. & A. "700" Series speaker. With co-axial construction R. & A. have produced a Reproducer entirely free from the mechanical weaknesses found in loudspeakers generally. The essence of this design is the extreme accuracy of alignment along the central axis of the speaker. The R. & A. "700" Series are precision components, sensitive yet strong, simple yet foolproof. A phenomenal development keeping pace with the past achievements of the R. & A. technicians. Co-axial construction is covered by British Patents and Foreign Patent Applications.

REPRODUCERS AND AMPLIFIERS LIMITED
FREDERICK ST. WOLVERHAMPTON ENGLAND
Telephone Wolverhampton 22241
Telegrams "Audio Wolverhampton"

THE SOUND MAGNET
TAPE RECORDER and PLAY-BACK EQUIPMENT
Records any programme—with instant play-back, recordings permanent or may be erased. Complete apparatus in grained leather-cloth cabinet with amplifier and speaker. £35.

THE SOUND MAGNET SOON TO BE RELEASED
Write for descriptive leaflet.

SOUND EQUIPMENT
For Home & Export Markets.
Full catalogue on 20 models ready.

12w Gram only 11 gns.
12w Mic/Gr. ... 12
15w ... 14
25w ... 16

Dual AC/6vDC. Models
12w 17 gns. 15w 19 gns.

Miniature Mobile 9w
8 x 7 x 3 inches 13 gns.

When requesting leaflets please include 2d. stamp.
(Transformer list also available.)

GENERAL LAMINATION PRODUCTS LTD.
Winder House. 394, Broadway, Bexleyheath.

TELE-RADIO (1943) LTD.
177, EDGWARY RD., Paddington, London, W.2
OFFER FROM STOCK

Hallicrafter SX16, 60 Mc/s-55 Mc/s. Carriage paid ... £27 10 0
National HRO Receiver with suitable power pack and three coils, 7-14.4 Mc/s, 100-200 Kc/s, 50 Kc/s-100 Kcs. Carriage extra ... £25 0 0
National HRO Receiver with five coils only, 3.5-7.3 Mc/s, 7-14 Mc/s, 100-200 Kcs, 180-430 Kcs, 480-960 Kcs. Carriage extra ... £30 0 0
Cathode Ray Tube, 15in. E.M.T. Inc. P.T. £18 18 0
Scanning Coil for above ... £3 3 0
Focus Coil for above ... £1 16 0
Line Transformer for above ... £1 13 6
Ferranti 12in. C.R.T. Inc. P.T. £15 2 5
American "Bug Keys" : Vibroplex ... £3 15 0
McElroy ... £3 15 0
Lionell ... £3 7 6

High-grade Systoflex, nine colours, per 12 lengths... 2 6
Cable colour coded 5-way per yd. ... 1 3
Cable colour coded 6-way per yd. ... 1 3
Cable colour coded 7-way per yd. ... 1 6
Cable colour coded 8-way per yd. ... 1 9
Cable colour coded 9-way per yd. ... 1 9

"Phone : AMB 5393. Shop Hours. PAD. 6116. Mon.-Sat., 9-5.30 p.m. PAD. 5606. Thursday, 9-1 p.m.
Please include sufficient for postage and packing.
1949 Catalogue now available, 9d. post free.

World Radio History
CERAMICS FOR SWITCHES and all radio components FREQUENTITE-FARADEX-TEMPRADEX

STEATITE & PORCELAIN PRODUCTS LTD.
Stourport on Severn, Worcester Telephone: Stourport III Telegrams: Steatain, Stourport

S.P. 54
Expertly planned and superbly executed, this all-purpose communications receiver is yet another triumph for Redifon research and development. No other receiver in the world can equal its amazing range and performance. Those services demanding the very best in radio equipment will readily admit that the higher cost of the R.50 is more than justified by its amazing performance and reliability.

Five degrees of selectivity, including a crystal gate and crystal filter, are provided and the sensitivity is such that an input of between 1-5 microvolts gives a signal/noise ratio of at least 10 dB over the entire frequency range of 13.5 to 26 ke/s and 95 ke/s to 32 Mc/s. Separate power unit for A.C. or D.C. operation are availabl.
The most comprehensive range of Cells in the World...

Available with three types of cathode surfaces:

TYPE B—Bismuth etc.—Caesium. Sensitivity similar to human eye.

Sixty different types of Photo-Electric Cells

FOREMOST IN THE MANUFACTURE OF
- COUNTERS & CHRONOMETERS
- METAL DETECTORS
- OSCILLOSCOPES
- PHOTO-ELECTRIC CELLS
- CATHODE RAY TUBES
- GEIGER-MULLER TUBES
- ELECTRONIC INSTRUMENTS

CINEMA-TELEVISION LIMITED
WORSLEY BRIDGE ROAD, LONDON, S.E.26
Telephone: Hither Green 4600
Difficult Problems?

Made in Three Principal Materials

FREQUELEX
An insulating material of Low Dielectric Loss, for Coil Formers, Aerial Insulators, Valve Holders, etc.

PERMALEX
A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLEX
A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.

Bullers
BULLERS LOW LOSS CERAMICS

SURELY TESTED

with the

MICOVAC

ELECTRONIC TESTMETER

A versatile valve voltmeter for laboratory or test bench. Being battery-operated, it is instantly ready for use. Probe for V.H.F. measurements.

STEWARD TRANSFORMERS Ltd.
1021 FINCHLEY RD., LONDON, N.W.11
Tel.: SPEedwell 3900 and 3533
MORSE SET
Includes a high note buzzer with a first quality Morse key. Mounted on a platform with fixing clip for battery. Price £.

SLOW MOTION DIAL
With 200-1 vernier reduction. Calibrated 0-100. Front panel mounting, 6 inn. diameter. Fast and slow motion. £ 6.

HAND TELEPHONE SETS
Includes microphone and earpiece in one unit with “Press to talk” switch in grip. Balanced armature units. No batteries used. £ 6/6 each.

MINE DETECTOR PANEL
Include three 1FT valves, 12ft. Midlet Trans., three ceramic valve-standers, 18 valves. £ 20. 6/6 each.

GOVERNMENT SURPLUS MAINS TRANSFORMERS.
- 250-0-250 volts 100 mA, 5 volts 2 a., 6.3 volts 3.5 a.
- 330-0.330 volts 70 mA, 5 volts 2 a., 6.3 volts 2.3 a.

NEW BRANCHES AT
207, EDGWARE RD., W.2 Phone: AMBassador 4033
AND AT 152-153, FLEET STREET, E.C.4 Phone: CENtral 2833
All post Orders to 167, LOWER CLAPTON ROAD, LONDON, E.S.
Terms of Business: Cash with order or C.O.D. over £1. Send 2d. Stamp for List.

EDGWARE ROAD IS OPEN UNTIL 6 p.m. ON SATURDAYS.

NEW B-VALVE ALL-WAVE KIT
16 to 2,000 metres. Self-Excited Coil Pack ready wired and tested. £ 2.

METER KITS
- 500-Metre, M.1, meter, 0-3000 v. £ 1.
- 2 Porcelain Faces. Input plug and socket, and 3 output sockets, size 12m. x 8m. Price £ 2 2.

TRANSMITTING VARIABLE CONDENSERS
500 pF ceramic insulation. With opening made by a blade. £ 4 6 each.

OUR NEW 1949 LIST IS NOW READY
SPECIAL OFFER OF ELECTROLYTIC CONDENSERS.
- 16 mf. 500 v., working, All case 4 11
- 25-20 mf. 350 v. 4 11
- 35-50 mf. 250 v. 4 11
- 100 mf. 200 v. 4 11
- 1 uF. 250 v. 4 11
- 4 uF. 200 v. 4 11
- 6 uF. 200 v. 4 11

METER KIT.
A FERRANTI 500 MICROAMP M/C METER, with separate High Stability, High Accuracy, Resistant to measure. 12, 60, 150 and 600 volts D.C. Scale length 1m., diameter 2 1/2in. £ 10-6 the complete kit.

RADAR TRANSMITTERS. Type T9/APOZ, brand new, including, porcelain, $200, 201PO, 201, one GAT, two 707, one 114A, also includes a quantity of ceramitube tuning gear and two veater type counters. £ 26.

WESTINGHOUSE BATTERY CHARGERS, input 220v/240v 40 cycles, output 160v 16 amps., with meter and variable resistance. £ 10.

ANY PURCHASE TAX REDUCTIONS WILL BE EFFECTIVE IMMEDIATELY.
FOR THE
RADIO SERVICEMAN
DEALER AND OWNER

The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful.

Write to the I.C.S. Advisory Dept. stating your requirements. Our advice is free.

INTERNATIONAL CORRESPONDENCE SCHOOL Ltd.
DEPT. 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C.2
Please explain fully about your instruction in the subject marked X.
Complete Radio Engineering Radio Service Engineers
Radio Service and Sales Advanced Short-Wave Radio
Elementary Electronics, Radar, and Radio

British Institution of Radio Engineers
P.M.G. Certificates for Wireless Operators
City and Guilds Telecommunications
Wireless Operators and Wireless Mechanics, R.A.F.
I.C.S. Students for Examinations are coached till successful.

Name: ___________________________ Age: ________________ (BLOCK LETTERS PLEASE)
Address: __________________________

ICS

READ THIS!
The flick of a switch gives you instant contact with any department. All departments can contact each other. THE HADLEY MULTICOM is the only system of its kind to give you complete loud-speaking intercommunication. No 'phones, no dialling, no switchboard operator. All units identical and no larger than a telephone.

All Hadley Equipments are available on Cash Purchase or Rental Maintenance Terms.

Hadley
Sound Equipments

Johnnie get your Gun!

Savage Transformers are built to satisfy customers’ individual requirements—they are not mass-produced. They are designed specially for the work they have to perform.

Every Savage Transformer is subjected to exhaustive electrical and mechanical tests before despatch, to ensure years of faultless service. Available in all capacities up to 5kVA.

If yours is a Transformer Problem—write to us. We can solve it. Please address technical enquiries personally to our Mr. W. Bryan Savage at—

Savage Transformers Ltd

SAVAGE TRANSFORMERS LTD
NURSTEED ROAD, DEVIZES,
WILTS.
Telephone 536.

SOLDERING GUN

BURGOYNE
SECOND

Get instant soldering heat! Send your deposit to-day for this ultra-rapid electric soldering gun. Invaluable for radio servicemen, engineers and house mechanics. Simply plug in, press the button, and in seven seconds the iron’s hot. Absolutely safe, the bit cools instantly when not in use. Complete with two spare bits and ten yards of flex. Suitable for A.C. 200-250V or 100-130 V. Steel model required. Limited stock. No interest charge. Leaflet on request. Cash price 33. 19s. 6d. complete

Phone: BEArwood 1576/4
BARMER ROAD, SMETHWICK, STAFFS.

SAVAGE TRANSFORMERS LTD

SAVAGE TRANSFORMERS LTD
NURSTEED ROAD, DEVIZES,
WILTS.
Telephone 526.
Senior R.K. 12 in. Loudspeaker

The large curvature cone employed in this speaker produces a much wider and more level frequency response curve with a considerable reduction in sub-harmonics.

Acoustically dead material is used for the cone surround to give flexible suspension which results in exceptionally good reproduction where large amplitudes are encountered at low frequencies.

LIST PRICE
£6 · 15 · 0

THE EDISON SWAN ELECTRIC CO. LTD., 155 Charing Cross Road, London, W.C.2

THE SIMPLEST WAY to obtain E.H.T. is to connect a

Westinghouse

to the 350-0-350 volts winding of the normal mains transformer and obtain a 5.5kV DC output without using an E.H.T. transformer and valve rectifier.

Write for data sheet No. 52 to Dept. W.W.5.

Westinghouse Brake & Signal Co., Ltd., 82, York Way, King's Cross, London, N.1
Advertisements

Sole Agents Abroad.
K. G. Khosla & Co., 22,
School Lane, New Delhi,
India.

Etablits Octave Houart,
14, Quai de L'Industrie,
Sclentia-lez-Liege.

J.P. Fielding Co. (Canada)
131, Ontario Street,
St. Catherines, Ontario.

Hefve & Froeg, Osh,
Norway, Storsalen, 15.

MODEL "Q"

AUTOMATIC COIL
WINDING MACHINES
AND HAND WINDING MACHINES
Machines supplied complete with stand
motor and Two-Speed Friction Clutch

ETA TOOL CO
(LEICESTER) LTD.
29a, WELFORD ROAD, LEICESTER
Phone—5386

THE NEW "ACRU 24"

ELECTRIC SOLDERING IRON
...is CRASHPROOF!
... could even be used as a hammer without harm.
Element of unique construction; totally enclosed;
wound on steel tube with air-tight, die-cast case;
withstands the roughest treatment without damage.
Instantly detachable and interchangeable copper tips
with cam locking.

Ask your Radio Dealer or write direct for full details.

THE ACRU ELECTRIC TOOL MFG. CO. LTD.
123 HYDE ROAD, ARDWICK, MANCHESTER, 12.
Phone: ARDwick 4284.

Wireless World
May, 1949

HI-FIDELITY AMPLIFIERS
AS DESCRIBED BY T. D. N. WILLIAMSON IN W.W. MAY 1947

AS ILLUSTRATED £17 17 0
COMPLETE RANGE USING P.X.41, K.T.66, AVAILABLE
FROM £11 17 0
P.X.25 AMPLIFIER WITH TWO SEPARATE H.T. SUPPLIES £22 6 0

TONE CONTROL GIVING SEPARATE CONTROL OF BASS
AND TREBLE WITH L.83 £6 6 0
WITH E.F.37'S FOR HIGH GAIN £6 6 0
PARTRIDGE TRANSFORMERS AND B.W.A. VALVES AS STANDARD

Illustrated Brochure now available

Manufactured by
GOODSELL LTD., 40 GARDNER ST., BRIGHTON
TELEPHONE: BRIGHTON 6735

POTENTIOMETERS
by
RELIANCE

Wire-wound and Composition types.
Single, Ganged, Tandem Unics.
Characteristics: linear, log., semi-log., non-
inductive, etc. Full details on request.

RELIANCE MFG. CO. (SOUTHWARK), LTD.,
Sutherland Road, Higham Hill, Walthamstow, E.I7.
Telephone: Larkswood 3245

The "Commander" Model "B"

A Special "Don't-Le-Superhet"
Communicates and Receives for
Amateur and Commercial purp. set.
£48.10.0 net.

Radiovision (Leicester) Ltd., 25-69,
Rutland St., Leicester.

Phone: 20162, Cables: Raltonspel.
Two outstanding advantages...

- This bridge not only measures balanced or unbalanced impedances with equal facility, but also has the merit of extremely low impedances looking back into the terminals and from the terminals to ground. It provides, at radio frequencies, the range, flexibility and stability of an audio-frequency impedance bridge and, having a neutral terminal available, it permits the measurement of three-terminal networks. A high degree of accuracy is maintained throughout the full frequency range.

R.F. BRIDGE B 601 — 15 Kc/s to 5 Mc/s.
Capacity: 0.001 pf to 20,000 pf in five ranges.
Resistance: 10 ohms to 10 megohms—6 ranges.
Inductance values which will resonate the above capacities between 15 Kc/s and 5 Mc/s.
Direct reading accuracy is constant to within 1% up to 3 Mc/s and may fall to 2% at 5 Mc/s.

IN MARCH...
WE GAVE YOU
THE "STANELECT" MAJOR
UNIVERSAL LOUDSPEAKER
AT £7-10-0 COMPLETE

NOW!
WE OFFER YOU
THE "STANELECT" MINOR
UNIVERSAL LOUDSPEAKER
AT £6-10-0 COMPLETE

SUBJECT TO USUAL DISCOUNTS

Weatherproof. Compact.
Robust. Die-Cast cases
and Grills in Silicon Alloy.

Full Frequency Range

STANDARD ELECTRICAL ENGINEERING CO., HENEAGE LANE, LONDON, E.C.3
Tel phone AVEnue 1633
... of outstanding merit

... When you listen to the glorious high fidelity of a B.S.R. recording ... the organ deep range of the bass ... the crystal clear rustling of the highest treble ... you will understand why discriminating operators, in all parts of the world, specify the B.S.R. system.

IT IS WITHIN YOUR POWER to produce, simply and easily, the high quality recordings that make Disk Recording a sound commercial proposition. Remember it is the only recording system which provides your customer with the familiar, permanent record suitable for re-play in every home. That is why you can SELL this service at a PROFIT.

REMEMBER that Direct Disk Recording is a profession which is still in its infancy. Vast potential fields of opportunity are still untapped. By getting in now, with the B.S.R. system, you will not only have this versatile and robust equipment to rely on, but also the unique technical and advisory service which we offer.

A "B.S.R. RECORDIST" is a man who is proud of the Certificate he holds. He has been specially trained at the B.S.R. School and is able to go about his business with a good, sound understanding of his job. After his training he receives periodical bulletins on technical and other details which keep him up to date on recording matters, and is able to write for advice at any time. This course is FREE to all B.S.R. operators. Write now for further details.

Available for purchase or on hire Maintenance terms

BIRMINGHAM SOUND REPRODUCERS LTD.
RECORDING DIVISION, 88 HIGH STREET STOURBRIDGE. TELEPHONE: STOURBRIDGE 5556
Agents in all leading OVERSEAS COUNTRIES
Keeping abreast of fast-moving technical development calls for a new approach to production problems. The "WEARITE" Pressed Circuit System represents a substantial advance in production science to speed assembly and lower costs. The first of these "Wearite" New Approach Components is a Coil Pack comprising coils, switches, trimmers and padders completely wired and ready for instant incorporation into any standard Superhet circuit.

- 3 ranges
- Gram switching
- 2-hole fixing at 1\(^\text{1/2}\) centres
- All trimmers and adjusters conveniently placed in one surface

Manufacturers are urged to write for full technical details.

Owing to raw material restrictions, supplies, for the time being, are confined to Radio Receiver Manufacturers at home and abroad.
Valves and their applications

HIGH FIDELITY AUDIO AMPLIFIER USING EF37, ECC33 AND EL37

The introduction of wide frequency range gramophone recordings and pick-ups, together with the projected B.B.C. transmissions in the 90 Mc/s, band, means that if the extra fidelity so made available is not to be wasted, considerable care has to be exercised in the design of the reproducing equipment. One of the most important items in this is the A.F. Power Amplifier and Gramophone Pre-amplifier.

In a large room or small hall, say between 2,000 and 5,000 cu. ft. in volume, it will be found that the mean level of the electrical input to a normal type loudspeaker is of the order of 50 mW. As the peak amplitudes are 20 to 25 dB. above the mean level it follows that the available power output from the amplifier should be about 15 watts.

It is also necessary that the non-linear distortion is kept to a low level, in particular the high order odd harmonic and inter-modulation products. It is not usually the presence of the higher frequency components which causes annoyance but the products of non-linear amplification, these are invariably present when a pentode output valve is working into an inductive load such as the speech coil of a loudspeaker.

The circuit of a suitable amplifier is shown in Fig. 1. It consists of a Gramophone pre-amplifier stage V1. (EF37) the output of which is fed into a volume control and then into a bass boost circuit R10, R11 and C4 for correcting the recording characteristic. Then follows a voltage amplifying stage V2A. and the paraphase valve V2B (ECC33). A low pass filter F., may be inserted in the anode circuit of V2A to reduce surface noise when gramophone records are being played. The two phases are then fed into the two halves of V3, (ECC33) which is inserted into the chain to facilitate the application of degenerative feedback to the two output valves V4 and V5. (2-EL37s). The feedback is direct coupled from each of the output valve anodes by the resistors R5 and R6 back into the cathode circuits of the driver valves R3 and R4. The resistors between the grids and anodes of V3 and in the cathode circuit of V2B are to maintain the correct D.C. operating conditions for these valves, whilst those in the grid screen and anode circuits of V4 and V5 are to stop parasitic oscillations. The power supply is derived from a 350-0-350V open circuit voltage H.T. winding on the mains transformer, the rectifier being a GZ32. Adequate smoothing is provided by the components C1, L1, C2, R9 and C3.

At less than 1% total distortion the full output is 18 watts for 0.3 volts at the grid of V2A or 0.12 volts at the gramophone input terminals. The hum level is more than 60 dB. below 18 W. The frequency response is 0.5 dB below the 1 Kc/s level at 25 cis and 12 Kcis with an output transformer of reasonable design.

MULLARD ELECTRONIC PRODUCTS LTD.,
TECHNICAL PUBLICATIONS DEPARTMENT,
CENTURY HOUSE, SHAFTESBURY AVE., W.C.2

Reprints of this report from the Mullard Laboratories, together with circuit notes and further performance data may be obtained free of charge from the address below.

MVM89
Comments of the Month

RADIO PRE-HISTORY

SEVERAL of the historians of radio have commented on the fact—strange to our generation—that some of the earliest radio pioneers dissipated their energies in unprofitable lines of work, and tended to ignore the possibilities of electromagnetic waves for communicating intelligence. Hertz summarily dismissed the whole idea of wireless telephony as quite impracticable; Popov’s main early interest was in his “lightning recorder”; Tesla gave much time to the still-unsolved problem of wireless transmission of power.

It now seems that Captain (later Admiral Sir Henry) Jackson, the father of wireless in the British Navy, at first failed to recognize its real significance for communications. At any rate, it would so appear from the Report for 1896 of H.M.S. Vernon, extracts from which have recently been made available to us by the Admiralty. Jackson suggested that radio emissions should be used for purposes of identification by torpedo boats: as a precursor, in fact, of wartime radar I.F.F. (identification of friend or foe). In fairness to his foresightedness, it should be noted that he quickly changed his views, and undoubtedly it was his persistence in the face of opposition that brought about such rapid development of Naval wireless communications.

SYMPATHETIC CIRCUITS

ELSEWHERE in this issue we print an article on the technique of drawing circuit diagrams by an author who has made that subject very much his own. Wireless World does not endorse all the detailed proposals made, but does find itself in complete and wholehearted agreement with the underlying principles for which Mr. Bainbridge-Bell stands. Clearly, he believes that a circuit diagram should be something more than a collection of graphical symbols, grouped more or less at random and joined together as neatly as may be by connections following the shortest path. We assume that, like us, he regards a well-drawn diagram as an aid to understanding the functioning of the circuit concerned, and not merely a graphical record. In view of the increasing complexity of modern circuitry, that is more than ever desirable, especially when the diagram is likely to be studied by those with an imperfect knowledge of all the details which it purports to show. Indeed, we would go so far as to say that a small collection of diagrams, drawn with understanding and sympathy towards the difficulties of the potential user, constitutes almost a textbook in miniature.

Dissected Diagrams

Some twenty years ago, when the inception of broadcasting greatly increased interest in the technical side of radio, this journal published a series of so-called “dissected diagrams” with the object of familiarizing new readers with the graphical and symbolical representation of circuits. What was thought at the time to be a rather trivial contribution soon proved to be almost embarrassingly popular, being obviously considered as an easy short-cut to knowledge, both theoretical and practical. Times have changed, but the advantages of applying the principles which Mr. Bainbridge-Bell discusses are greater than ever.

We differ from him in the detail of “bridge cross-overs,” and think he weakens his case by admitting that they may be used for “double security.” When a number of leads are to be crossed, the “flyover” is clear, but a better plan is to divide the leads into groups, according to their functions. This answers most objections. With not more than three wires in a group, it is easy to trace any particular one.
COMMUNICATION THEORY

Establishing Absolute Criteria of Performance

By THOMAS RODDAM

The last months have been heavy with the rumblings of an approaching revolution. True, it is a technical revolution, but it resembles a political revolution in that the thoughts of a few philosophers will set in motion many men who have no understanding of their philosophy. Until recently we have been living under the beneficent influence of Hartley's Law, which is the engineer's equivalent of "Everything is for the best in the best of all possible worlds." You can read all about Hartley's Law in two articles by "Cathode Ray" (Wireless World, June and July, 1947). Unfortunately the recent developments described by him can now be seen to have been steps away from a general communication theory, so that some of the conclusions reached apply only to the special problem of transmitting speech.

To develop the new theory in a simplified form it will first be necessary to treat Hartley's Law briefly in a rather different way from that adopted by "Cathode Ray" (loc. cit.). I shall start at the very beginning, because the new theory is the result of a more close examination of the fundamentals of communication, while Hartley's Law is obtained if you gloss over some of the elementary problems. I'm sorry that I shall have to break into mathematics at one point, but the important thing about the new theory is that it enables system performance to be calculated. If the reader wants to know what he has been spared in the way of "sums" he should refer to the Bell System Technical Journal, July, 1948.

To begin with, therefore, let us define a communication system. Fig. 1 shows a basic system. The transmitter, medium and receiver may be regarded as conventional units in either radio or wire transmission. The coder and decoder require some explanation. The message itself may be either speech, a picture, or a written message. First of all we shall consider a written message. A typical one would be:

"Please buy me 1,000 Bongo State Loan 3% shares at 94."

In ordinary telegraphic practice no one would write this, of course, but would write:

"Buy 1,000 Bongo 3% 94." (A)

This change involves what are called the semantic aspects of communication, and is nothing to do with our problem.

If a teleprinter is used, this message comes out as a set of mark and space currents rather like those shown in Fig. 2. (The actual teleprinter code has not been used here.) Each letter takes up five time units; a separate symbol is used to indicate that figures follow; each time unit is occupied by either a "mark" or a "space." The total coding operation therefore transforms the message (A) into a set of marks and "spaces" of electric current. The first coding, which derived (A) by leaving out some words, is outside our scope, as its efficiency depends on psychological factors. The message shown in Fig. 2 is a standard message type, and it was this sort of message which Hartley considered.

Hartley's treatment was made in the days before we were all aware of the nature of network pulse responses, and it will be a bit clearer if we look at it in post-radar terms. If we pass one mark signal through a band-limiting filter (a low-pass filter if we consider the "video" circuits) we shall get out a rather distorted pulse, as shown in Fig. 3. We can go on narrowing the band (or lowering the cut-off frequency) until the tail of the pulse is so big that we cannot decide whether we have one pulse or two. The limit is somewhere between (d) and (e) in Fig. 3. If the mark is made longer, of course, we can reduce the cut-off in proportion, because we know that we get quite a reasonable pulse shape if we pass all frequencies up to \(1/\tau\), where \(\tau\) is the width of the pulse: anyone who doesn't agree with that can look up dozens of television and radar papers which discuss this point. Now the speed at which we send our message depends on how long each mark or space must be to pass through the filter, because we need to send a definite number of these marks (from now on I shall often write "mark" to mean either an "on" or an "off"). For a given message, therefore, if we double the bandwidth we can make each mark last half as long, and so send all the marks in half the time.

That was Hartley's way of deriving what we have come to know as Hartley's Law. Suppose that we now present ourselves with another piece of information: we measure the actual response of the system from transmitter input to receiver output. This we can do either directly as the response to a pulse, or indirectly through amplitude and phase measurements. For a very short pulse we shall arrive at the response shown in Fig. 4, which is quite a typical curve. By Hartley's method we should not be able to put another pulse into the system until the time corresponding to B was reached. At time X, however, the head of what Brillouin calls the first precursor of the response will have arrived.
After a prescribed time the voltage has risen to \(A \), which gives an amplitude proportional to the input pulse. We can start measuring from the arrival of infinitesimal signals, because we assume that the system is free from noise. We now know the whole characteristic of the curve (b), for the shape is settled by the system response, and the scale factor is settled by our measurement at \(A \).

We can then construct a local circuit to generate the second waveform shown in Fig. 5. This waveform is such that when added to the received waveform it cancels it exactly at all times later than \(C \). The output then becomes that shown in the third line of simply that we must know the response of the system and the size of the input pulse with increasing precision as we speed up the operation. And, of course, the network which generates the cancelling waveform becomes more complicated. We do know a bit about networks for this job, however, because in some ways the problem is the same as that of cancelling "permanent echoes" in a radar system. The one thing which has enabled us to take this additional step is that we are assuming that we can predict the future exactly. As soon as we introduce noise, we lose this power of exact prediction, and the solution found here is no longer valid: it will be more convenient
to discuss the effect of noise from a rather different standpoint, however.

We can see now why Hartley found it hard to get a numerical constant to equate to the product "bandwidth \times\ time": there just isn’t one. Gabor has arrived at the value \(\frac{1}{2} \), which depends on the application of the Hartley method to a transmission system having a Gaussian frequency response. The objections to this are, first, that no physical system can have exactly a Gaussian response and secondly that anyway, such a system has its amplitude response defined over an infinite band, the "bandwidth" term being simply the bandwidth at half-amplitude.

The new theory does not stop at the point reached above, which is, in its own way, as limited as the Hartley treatment. The presence of noise must always be assumed in any real communication system, and looking at Fig. 4 again we can see that we cannot move \(A \) too near to \(X \), or we shall not have enough signal to override the noise. To see what the effect of noise is, we code our message in a different way. Let us code it by numbering each letter:

\[
\begin{align*}
\text{B} & \quad 2 \\
\text{U} & \quad 21 \\
\text{Y} & \quad 25 \\
\text{B} & \quad 2 \\
\text{O} & \quad 15 \\
\text{N} & \quad 14 \\
\text{G} & \quad 7 \\
\text{O} & \quad 15
\end{align*}
\]

The message can then be sent in the form shown in Fig. 6, so long as the minimum level used is greater than that of noise. Now the amount of information in the message is dependent on the number of mark signals sent, and on the number of possible sizes of each mark signal. In fact, if we write for the "size" of the message, \(L \) for the number levels and \(n \) for the number of marks

\[
M = n
\]

is now proportional to the product of bandwidth \(\times \) time, since noise prevents us using the trick we used before to get round the Hartley relationship. We can follow Gabor and write \(n = \frac{4B}{T} \), or we can absorb the \(\frac{1}{2} \) into \(M \) by redefining the "size" of the message.

\[
L \text{ depends on the signal-to-noise ratio, and is equal, in the limiting case, to } (r + S), \text{ where } S \text{ is the signal/noise ratio. If the receiving device works on peak voltages we take (peak signal)/(peak noise): if it works on energy we take (r.m.s. signal)/(r.m.s. noise). Finally, however, we have } M \propto (r + S)^{\frac{1}{2}}
\]

![Fig. 5. Cancellation of pulse distortion.](image-url)
Communication Theory—

First of all, we shall do a little mathematics using this expression. If we have two systems, with bandwidths B_1 and B_2, we can obtain the same value of M for the same peak noise. For the same peak value in reducing bandwidth at the expense of raising the signal-to-noise ratio, speech transmission is greatly improved. For the same peak noise level, the number of steps are to be taken. It is easily seen that the message requires three times as many steps as in Fig. 6(a), which is a typical example of pulse code modulation. We need, then, a power increase of 100db, or almost 50kW, to transmit a signal in 1/3 of the normal bandwidth. We can say that f.m., with such and such deviation ratio, gives an improvement of so many decibels over amplitude modulation. Now we can see that f.m., with such and such deviation ratio, gives a signal to noise ratio so much better than f.m. broadcasting. We want to provide high-quality programmes at a minimum cost to the whole nation. If we have a million listeners, it is worthwhile to spend an extra £100,000 at the transmitters if we can save 5/- in the cost of each receiver. I have, in the past, urged a closer study of the possibilities of pulse transmission, especially if several programmes are to be radiated. It is most important that a fuller study should be made of the whole problem, especially from the point of view of national economics, not merely to find the policy which involves the least expenditure of B.B.C. money. The money all comes from the same place in the end. It is not impossible that the answer may turn out to be very high level amplitude modulation, say, 500kW. That sounds like a lot of power, but if it only amounts to 1 watt per listener, it can be saved by eliminating only one valve from a receiver.

One consequence should be a reconsideration of the policy of adopting frequency modulation for local broadcasting. We want to provide high-quality programmes at a minimum cost to the whole nation. If we have a million listeners, it is worthwhile to spend an extra £100,000 at the transmitters if we can save 5/- in the cost of each receiver. I have, in the past, urged a closer study of the possibilities of pulse transmission, especially if several programmes are to be radiated. It is most important that a fuller study should be made of the whole problem, especially from the point of view of national economics, not merely to find the policy which involves the least expenditure of B.B.C. money. The money all comes from the same place in the end. It is not impossible that the answer may turn out to be very high level amplitude modulation, say, 500kW. That sounds like a lot of power, but if it only amounts to 1 watt per listener, it can be saved by eliminating only one valve from a receiver.

LOWER-POWERED "BUSINESS RADIO"?

When the organization of e.h.f. "private" radio-telephone services was recently discussed by the Radio Section of the I.E.E., it was suggested that in many instances the licensed power was unnecessarily high, and should be reduced in order to lessen interference.
PLANAR ELECTRODE VALVES FOR V.H.F.

Reducing Interelectrode Capacitance and Transit Time

(Contributed by the Research Staff, M.O. Valve Company)

DURING the past ten or fifteen years considerable progress has been made in improving the high-frequency performance of triodes and pentodes by reducing the inductance of the leads to the electrodes. One of the first attempts in this direction was the "acorn" valve, which was designed with a very small electrode system, the leads from which projected as radial pins passing through the all-glass envelope. It is interesting to note that the earliest forms of this type of valve employed planar electrodes similar in some respects to those which will be mentioned later. However, this construction was abandoned in favour of a very small cylindrical electrode system when "acorns" were eventually produced and marketed. The "acorn" type of valve, while enabling a considerable improvement to be obtained in the effective amplification at very high frequencies, has proved to be a difficult manufacturing proposition and has been superseded by valves with conventional electrode systems, mounted on flat glass bases through which pass the lead-out wires, which themselves form the valve pins. Two forms of such designs are represented in present-day commercial products in the button seal pressed-base valves, commonly known as the miniature, and the ring seal moulded-base type. In all these valves the electrode lead-out wires themselves form the connecting pins and the necessity for an external base with separate pins has been obviated.

These glass-based valves represent a big step forward in valve design, and there seems little doubt that the majority of receiving valves in the future will be mounted on this form of base. Quite apart from the advantages of this construction for high-frequency operation, it has led to a reduction in size and freedom from loose base troubles, which, under some conditions, occur with the cemented plastic base. Furthermore, with large-scale production the cost of manufacture of some forms of pressed glass base valves may be less than with earlier designs. Fig. 1 shows an "acorn" valve, a modern valve on a pressed-glass base and a valve mounted on the conventional glass "pinch," a feature which owes its origin to the electric lamp.

In a wide-band amplifier it is normal for the dynamic resistance of the circuits to be of a comparatively low order and several considerations arise in the design of a suitable valve for high gain combined with low noise in such amplifiers.

The gain of a single stage of a wide-band amplifier is proportional to the ratio of the mutual conductance (g_m) to the sum of the input capacitance (C_i), the output capacitance (C_o) and the stray capacitances (C_s). It is important therefore to make this ratio as high as possible. In addition, for successful high-frequency operation the interelectrode capacitances should be kept small, in order to keep as much as possible of the circuit external to the valve, and the electron transit time should be reduced to a minimum.

Now it can readily be shown that the requirements of high ratio of mutual conductance to capacitance and of low electron transit time require a high ratio of electron current density to grid-cathode spacing. The further requirement of low interelectrode capacitance necessitates a small cathode area. Thus the best performance is likely to be obtained with a valve having a small cathode area, small grid-cathode spacing and operating at a high current density.

The ultimate sensitivity of a high-gain amplifier depends on its signal-to-noise performance. If the gain of the first amplifier stage of a receiver is more than about 5 db then most of the noise output is contributed by the first stage. The amount of noise contributed by a valve is usually regarded as being equivalent to that generated in an imaginary resistance, R_i, in the grid circuit of the valve. R_i is known as the "equivalent noise resistance" of the valve and is approximately inversely proportional to the mutual conductance. If R_i is the dynamic resistance of the input circuit, then it can be shown that the signal-to-noise ratio is a function only of the ratio R_i/R, and will increase as this ratio increases. Now R_i cannot be increased in-

Fig. 1. Types of valve construction (a) "acorn," (b) pressed-glass base, (c) conventional "pinch" seal and moulded base.

Planar Electrode Valves for VHF—
definitely owing to the inherent losses in circuit components so that the only way to improve the signal-to-noise performance is by reducing \(R \), and this means increasing the mutual conductance of the valve.

For frequencies above a few hundred megacycles per second a greater decrease in lead inductance proves necessary than has been achieved in the conventional concentric cylindrical arrangement of electrodes, and this improvement has been achieved by making the electrodes integral with metal discs which pass through the envelope and which may be directly connected to cavity resonators if desired. Such valves have been described elsewhere.\(^2\)

These valves are known as the disc-seal type and such are capable of operation at frequencies up to about 4,000 Mc/s. The valves employ planar electrodes which allow very small interelectrode spacings to be achieved, permitting a high mutual conductance from a small cathode area and a high ratio \(g_m/C_{g-k} \).

An example is the Osram and Marconi disc-seal triode type DET 23 in which the mutual conductance is 7.0 mA/volt at an anode current of 10 mA, and the total input and output capacitances including the discs which pass through the envelope are 2.4 pF and 1.1 pF respectively, of which the discs themselves account for about 0.7 pF in each case. Thus:
\[C_{g-k} = 1.7 \text{ pF} \]
\[C_{g-k} = 0.4 \text{ pF}. \]

This high ratio of mutual conductance to input capacitance is better than has hitherto been achieved with concentric electrode arrangements, and is due to the fact that the spacings are small only at the operating surfaces of the electrodes.

These disc-seal valves (illustrated in Fig. 2) which were designed primarily for ultra-high frequencies will be seen to satisfy the wide-band amplification requirements set out above. It therefore seemed desirable to employ a similar electrode arrangement in valves designed for more general use in the u.h.f. range, such as valves mounted on pressed glass bases with the pins forming the lead-in wires. Valves of this type are easier to use and less costly than the disc-seal valves.

A typical triode of this class is the experimental type E1714 and is illustrated in Fig. 3.

The very small grid-cathode spacing employed (0.003 in) necessitates the use of extremely fine and closely spaced wires for the grid, and the design of the grid (Fig. 4) is one of the principal features of valves of this type. In the conventional type of electrode system in which the grid wires are located on two separating rods the wires themselves must be sufficiently strong to carry the separate rods so that the whole structure is rigid enough for handling during the assembly of the valve electrodes without risk of distortion, and this sets a lower limit to the diameter of wire which can be employed. In planar electrode valves a departure from convention has been made, which enables rugged grids to be manufactured with wires as small as 0.0006 in.

The grid is in the form of a metal plate pierced by a circular aperture across which the grid wires are stretched, while the cathode and anode are the end surfaces of two short cylindrical members, supported from or integral with a relatively thick and therefore rigid plate. These plates and the grid frame are located in slotted mica bridges which serve to hold the electrodes in the correct relative positions. Stray capacitances between the electrodes are in this way reduced to a minimum, only the operating surfaces of the electrodes being in close proximity. The leads connecting the electrodes to the pins in the valve base are also well spaced and contribute little to the total capacitances. The electrode assembly for this type of valve is shown in Fig. 5.

The very small diameters of grid wire possible with this construction allow adequate grid dis-

The characteristics of the E1714 are as follows:
- Filament voltage: 6.3
- Filament current: 0.5 amp
- Anode voltage: 250 max
- Amplification factor: 40
- Mutual conductance: 80mA/V measured at anode voltage 150 and anode current 10mA.

<table>
<thead>
<tr>
<th>Capacities with cathode cold</th>
<th>Capacities with cathode hot</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 – k</td>
<td>1.6 pF</td>
</tr>
<tr>
<td>C2 – all (except anode)</td>
<td>2.6 pF</td>
</tr>
<tr>
<td>C4 – g</td>
<td>0.9 pF</td>
</tr>
<tr>
<td>C5 – all (except grid)</td>
<td>1.1 pF</td>
</tr>
<tr>
<td>(I = 10mA)</td>
<td></td>
</tr>
</tbody>
</table>

Equivalent noise resistance 500 ohms (I = 10mA).

These characteristics undoubtedly represent the best performance which has been obtained with a triode operating at frequencies of the order of 45 Mc/s, covering a bandwidth of 10/15 Mc/sec.

Television E.H.T. Supply

A new transformerless television receiver is of the transformerless type and suitable for use on a.c. or d.c. supplies of 220-250 V. A 10-in. tube, with an aluminized screen, is used and operated at 5.5 kV, the supply being obtained from the line fly-back. A permanent magnet is used for focusing and adjustment of focus is obtained by varying the r.f. supply by changing the flyback conditions. The picture size is 9in by 7in.

A metal rectifier is used to provide h.t., but a valve rectifier with its filament heated from the line-scan transformer is used in the e.h.t. circuit. The receiver is of the straight type and of moderate sensitivity; for extreme range the addition of a pre-amplifier is recommended. The panel controls are Sound Volume and Picture Brightness, the on-off switch being combined with the latter. The set measures 19½in high by 15½in deep by 13½in wide and weighs 30lb. The price is £37 16s plus 2s 6d purchase tax.

Coaxial / waveguide transformations matching 70-80-ohm lines can be made in a variety of forms, and standardized markings are used to distinguish power inputs and outputs. Among the components available are connectors, adaptors and bushes, loop-probe junctions, tuning plungers, matching stubs and crystal detector units. Measuring instruments include a bolometer in a bridge circuit covering 100 mW to a fraction of a milliwatt over a frequency range of 100 to 10,000 Mc/s, line attenuators using “Caslite” iron-dust cores, a piston attenuator for the non-dissipative “E” mode with a micrometer head calibrated directly in db, and coaxial-line wavemeters with ranges up to 20 and 40 cm.

This has its filament heated from the r.f. coil. The output is controllable below the maximum of 8 kV by reducing the h.t. voltage applied to the unit. The reservoir capacitor is of 0.001 µF only, so that a dangerous shock can hardly be obtained. The unit is completely screened and costs £5 8s.
SINGLE-VALVE FREQUENCY-

2. — Practical Details of Design and Use

By K. C. JOHNSON, B.A.

In last month's issue it was shown that it is possible to obtain electronic frequency modulation of an oscillator if an unusual circuit is employed with the tuning coil and condenser connected in series in the cathode circuit of a pentode valve, and with a second mutually-inductive coil carrying the anode current. The effect of the second coil is then simply to change the effective inductance of the first, and so the resonant frequency of the tuned circuit, as the suppressor grid voltage of the valve is varied and the fraction of the total cathode current which flows to the anode is changed. By this arrangement it is possible to obtain frequency modulation over ranges of as much as 30 per cent, using either of the circuits shown in Fig. 1.

In this article it is intended to discuss the many practical details which arise in the design and use of these circuits as "wobbulators" for receiver alignment.

The two-valve circuit shown in Fig. 1 (a) has several advantages over the single-valve version, for use in elaborate signal generators or as the local oscillator in parametric superhet receivers, where the phase-inverter valve can conveniently be the triode section of a normal frequency changer. However, for a simple unit working on a fixed central frequency the single-valve version is more economical and can be made to give an almost equally good performance in range and constancy of amplitude.

Unlike reactance valve arrangements, these two-valve oscillators give practically constant amplitude over wide ranges without any difficulty, since the frequency-modulation mechanism would not be expected to affect the loop gain, and, moreover, there is a strong limiting action, since the peak oscillatory current cannot exceed the mean current through the valve. The single-valve circuit, however, is not quite so good in this respect, since there must inevitably be some change of gain with frequency due to resonance in the phase-inverter coil; but with careful coil design this need only cause a fall of about 10 per cent in amplitude at the extreme ends of a range as great as 30 per cent in frequency.

For most ordinary purposes, such as the alignment of i.f. band-pass circuits in broadcast receivers, a coverage of 20 kc/s at 1 Mc/s is adequate, so that the amplitude even of the single-valve circuit will be practically constant. The linearity, also, will be practically perfect, since the voltage swing on the suppressor grid need be no more than two volts, or one-fifteenth of the total grid-base. The most generally useful oscillator, then, will be designed to have a fairly wide frequency range, even if only a small fraction of it is actually required, so as to get linearity and constant amplitude.

Valves.—It would appear at first sight that the natural choice of a valve for use in this circuit would be one of the new "suppressor-slope" pentodes which are now available, but although these have the great advantage that their suppressor grids are made to close tolerances, they are not the best valves for the purpose. This is because the minimum screen current is much greater than in ordinary pentodes, so that the available range of current division is much less, and also because the high suppressor sensitivity means that the small, but inevitable, voltage swing on the cathode will affect the current distribution between screen and anode.

The valve chosen is the EF50, which has a suppressor grid with a moderate sensitivity and made to definite tolerances, but almost any r.f. pentode can be used if the suppressor connection is available. As already described the linearity of the valve is not important when only a small range is required, but the EF50 does in practice give quite reasonable linearity over the whole range of control.

It must be remembered that in these circuits the valve may easily be run with the entire cathode current flowing to the screen grid and care must be taken that the h.t. supply voltage does not exceed about 150 volts. The cathode resistance is used to provide automatic bias for the suppressor grid in the usual manner, and the value for the EF50 is normally 2 kΩ, although it is convenient to use a 5 kΩ potentiometer so as to obtain a "d.c." frequency-shift control. This resistance is necessary also to carry the steady valve current and to avoid short-circuiting the tuned circuit; but it will be noticed that the tuned circuit behaves as an ideal bypass condenser at the oscillation frequency, so that the voltage swing at the cathode is actually extremely small and there is no need to put filters in the heater leads unless unusually good screening is required.

Tuning Coil.—The main tuning coil must be designed so that the frequency range available is as large as possible. This means that the mutual inductance between the two windings must be made negative and large so that it subtracts a maximum amount from the self-inductance. The self-capacitance of both coils must also be kept small so that there is no chance of the anode coil resonating even at the highest frequencies, and so that the maximum amount of the current in the cathode coil flows through the valve. The capacity between the windings must also be small, but this is not important if the tuning condenser is connected at the cathode end of the coil, so that the "dead" ends of the two windings come together. This has the additional advantage that the tuning condenser can then be used as the h.t. bypass and the windings of the coil need not be carefully insulated from each other. If, however, it is desired to use a variable tuning condenser with an earthed frame, the coil windings must be insulated and to avoid
MODULATED OSCILLATORS

capacity effects the connections will have to be reversed so that the mutual inductance is positive. The centre of the tuned circuit and the valve anode are the "hot" points where capacity must be avoided, but if the coil is so arranged that these voltages are in phase and roughly equal they can be close together in the winding without any serious effects. It will also be noticed that the valve anode impedances must be kept high to reduce damping effects, and this is assisted by bypassing the suppressor to earth at radio frequency with a small condenser.

The actual coil used for 1 Mc/s is wound on a 1/2in diameter former with an iron-dust core, and each winding is a layer of 100 turns of close-wound 34 SWG enamelled wire, the second being wound directly on top of the first, spiralling in the same direction. If iron cores are not obtainable it is possible to use a similar design of air-cored coil with 120 turns of 38 SWG enamelled in each layer, but this does not give such a good frequency coverage.

Fig. 1. (a) Frequency-modulated oscillator with valve phase-inverter. (b) Single-valve version with a damped auto-transformer phase-inverter.

since the iron increases the mutual-inductance in a greater proportion than the self-inductance and enables the self-capacitances to be reduced.

Phase Inverter Coil.—In the two-valve circuit the second valve serves simply to give a phase-inversion with a slight gain, and unless it is desired to have a variable tuning condenser or multi-range switching, the valve can quite satisfactorily be replaced by a tuned and damped auto-transformer. This must be adequately damped, however, so that the phase-shift and amplification remain nearly constant over the frequency range, and this can only be achieved by using a good coil of high L/C ratio and shunting it with a low resistance. This coil must be fitted with either a variable iron core or a normal capacity trimmer, and this must be adjusted until the amplitude falls off equally at either end of the sweep range, or so that the total valve current is a minimum, but this adjustment is not critical.

For 1 Mc/s a wave-wound iron-cored coil of 75 turns of 34 SWG tapped at 25 turns from the "anode" end on a 1/2in diameter former is suitable, and 1,000Ω is a satisfactory damping resistance for an EF50, though this would have to be increased for a valve of lower slope. Again, it is possible to use an air-cored coil if iron cores are not available, and the same number of turns of wave-wound 38 SWG is suitable, but the damping will not, of course, be quite so satisfactory. The two coils in this circuit must not be mounted too close together, but it is unnecessary to screen one carefully from the other and a few inches separation is sufficient.

Output Circuits.—The output from the two-valve circuit can most conveniently be taken from a tapping on the anode load of the second valve, and the low impedance which is available makes the design of an attenuator comparatively easy. The single-valve circuit is not so convenient, however, and the output must be taken, at much higher impedance, from the "anode" end of the phase-inverter coil or from a tapping on it. In any case the oscillator unit must be placed in a screened box to avoid radiation and interference with other receivers, since owing to the limiting action of the valve, harmonics as well as the fundamental are generated and may be radiated strongly.

For use in routine bandwidth adjustment of broadcast receiver i.f. amplifiers the frequency-modulated output is taken at low impe-
Single-valve Frequency-modulated Oscillators

The set response curve will be obtained. It will be noticed that the trace obtained on the oscilloscope is not quite the same in each direction. This is because it takes a definite time for the signal amplitude to build up in each tuned circuit, and unless the scanning is infinitely slow this will tend to make the second of two equal humps look higher. It can be shown that to obtain a "resolving power" of \(\frac{\pi^2}{4} \) \(\times \) per second, the rate of scan must not be greater than \(\pi^2 \) times per second, so that if a range of 20 kc/s is scanned 50 times each second it is only possible to distinguish two humps if they are more than about 1 kc/s apart. In practice this is more than sufficient for most purposes, but it is essential to use a sinusoidal scan and see "both sides of the picture" so as to be able to eliminate the distortion caused by the lag in building up the signal, which is far from negligible.

When the i.f. amplifier has been adjusted to any desired response characteristic the oscillator can be connected to the aerial terminal and the pre-selector adjusted for maximum signal by trimming and padding in the usual way. One advantage of using a wobbulator at 1 Mc/s, rather than at the i.f., is that it can be used without alteration for any medium-wave set, and another is that a very rapid estimate of the pass bandwidth can be obtained simply by tuning the receiver and watching its wavelength scale whilst the response curve moves down width across the screen.

Practical Performance.—Fig. 2 shows the circuit of the single-valve wobbulator unit with all the component values and the details of the arrangements for obtaining a sweep of variable width and variable central frequency. This was found to be possible to get a "d.c. shift" control very convenient in practice, and it has the additional advantage that it makes it very easy to adjust the phase-inverter tuning by means of the current variations over the range. The two-valve equivalent of this circuit can be easily visualized, and it need only be said that the load in the first valve should be no greater than 50\(\Omega \), whilst an EP50 in the second stage will give sufficient amplification with an anode load of 1,000\(\Omega \). The single-valve circuit shown in Fig. 2 will give a frequency deviation range of at least 30 per cent with very nearly constant amplitude and reasonably good linearity.

There is no reason at all why this circuit should not be used for television receiver alignment at 45 Mc/s, but unless the experimenter possesses a tunable receiver for these frequencies it will be found to be almost impossible to check the operation of the oscillator. The author has, however, experimented with a circuit using a single EF50, a main coil with two layers each of 15 turns of close wound 30 s.w.g. on a thin diameter air-cored former and a phase-inverter coil using 30 turns of the same wire on a similar former tapped at 10 turns. Tuning these coils with about 70 pF and 10 pF respectively the coverage of 2 Mc/s at a central frequency of 11.25 Mc/s, but the amplitude variations of the fourth harmonic, which swept the whole television frequency band, could not be examined.

Clearly this is only one of the many interesting possibilities which this new principle offers and which remain to be developed. Some others which suggest themselves are simple wide-band panoramic or remotely controlled receivers working on either the superregenerative or synchrodyne principles, and single-valve portable f.m. transmitters, but there are many more possible applications and it would be impossible to discuss them fully in this article.

MOON ECHOES

New Method of Ionosphere Research

Investigations of the transmission characteristics of the F-region of the ionosphere, making use of radio echoes from the moon, are in progress in Australia; they are reported by Kerr, Shain and Higgins in the February 26th, 1949, issue of Nature. Arrangements have been made with the Postmaster-General's Department, by the Division of Radiophysics, Department of Scientific and Industrial Research, Australia, to have the use of transmitters VLC9 (50 kW, 17.8 Mc/s) and VL.B5 (70 kW, 21.54 Mc/s) during periods when they are not in use for beamed transmissions to the U.S. and Canada.

As the aerials are fixed, it is necessary to wait for the moon to pass through the beam before making observations, but it has been found possible to carry out experiments on about 20 days in the year.

The receiver is an R.C.A. Type AR88 used in conjunction with a rhombic aerial system and both aural and c.r. tube observations of the echoes are made. By using a pulse length of 2.2 sec, short-term fluctuations of the returned signal have been studied, and particular attention is being paid to a comparison of the observed maximum angle of incidence on the F\(_2\) layer for penetration, with the angles calculated from current ionosphere theory. It appears that the transmission through the ionosphere in different directions follows different paths, and that this lack of reciprocity could arise from the effect of the earth's magnetic field.

It is expected that the new technique will prove superior to observations of solar noise for exploring the higher levels of the ionosphere.
Eliminate the switch-on surge in AC/DC receivers with BRIMISTORS. Wired in series with the valve heaters, a BRIMISTOR holds the starting current at a low value, allowing it gradually to rise to its working level, so eliminating the rush of current which shortens the lives of dial lights and valves.

When cold, a BRIMISTOR has a high resistance and this falls to a very low value as it warms up. Generally this low resistance can be ignored and at the most calls for a slight reduction in the resistance of linecord or other voltage dropper.

CHARACTERISTICS OF BRIMISTORS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>COLD RESISTANCE</th>
<th>RESISTANCE WITH THE FOLLOWING CURRENTS FLOWING</th>
<th>LIST PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZ1</td>
<td>3000 ohms</td>
<td>0.1 amp. 180 ohms, 0.15 amp. 100 ohms, 0.2 amp. 66 ohms, 0.3 amp. 38 ohms</td>
<td>3/6</td>
</tr>
<tr>
<td>CZ2</td>
<td>5500 ohms</td>
<td>170 ohms, 90 ohms, 66 ohms, 38 ohms max current 0.2 amp.</td>
<td>2/6</td>
</tr>
<tr>
<td>CZ3</td>
<td>1500 ohms</td>
<td>100 ohms, 50 ohms, 35 ohms</td>
<td>1/6</td>
</tr>
</tbody>
</table>

IMPORTANT Notes on the use of Brimistors

1. Owing to the high operating temperature (up to 250°C), Brimistors must be spaced away from coils and waxed components.
2. They should be inserted in the "live" end of the heater chain—i.e., between mains resistance and rectifier valve heater.
3. At least 1" of wire must be left at each end before soldering to a tag.
This is the new list giving descriptions of the 162 Standard types of "Somerford" Transformers and Chokes together with details of 28 types of Replacement components suitable for commercial receivers.

This COMPLETE range will meet ALL your normal needs. The requirements of the Electronic industries are many and varied. It is to meet such demands that the "Somerford" range of Transformers and Chokes exist. No matter whether you are engaged in radio, the manufacture of industrial or domestic appliances, or laboratory work, if you are looking for components that will give you accuracy and dependability at an economical cost, you will do well to choose GARDNER products. Research, skill and modern manufacturing methods have been combined to produce components that will withstand the most arduous working conditions and meet the exacting demands of present day standards. The "Somerford" range comprises 162 different types—a type for every normal need.

Ready for IMMEDIATE DELIVERY
Full details and specifications will be sent on request.

GARDNERS RADIO
SOMERFORD : CHRISTCHURCH : HANTS

"SOUND NEWS"
A LABORATORY BUILT
BEAT-FREQUENCY OSCILLATOR
AT THE REASONABLE PRICE OF £30

★ Range 12-27,000 cps. ± 1.5 db.
★ Output 4.5 watts constant
★ Level within ± 0.25 db.-40-20,000 cps.
★ Fully Push-Pull including Det.
★ True Sine Waveform
★ Moving Coil Type Output Meter
★ 50 cps. Calibration Check
★ Precision Tuning Condenser

A SOUND PRODUCT BY NAME AND NATURE
ALMOST INDISPENSABLE TO SERVICE ENGINEERS AND EXPERIMENTERS

SOUND SALES Ltd.
WORKS : WEST STREET, FARNHAM, SURREY.

SHOWROOMS & OFFICES:
57, ST. MARTIN'S LANE, W.C.2.
Telephone: TEMple Bar 4884.

WORKS: WEST STREET, FARHAM, SURREY. Telephone: Farnham 0461/2/3.
TEST REPORT

G.E.C. MODEL BRT400

High Performance Communications Receiver

There are two versions of the G.E.C. communications receiver; one is the BRT400, which is a table model and housed in a steel cabinet measuring 21 in wide, 10\(\frac{1}{4}\) in high and 14\(\frac{1}{2}\) in deep, and is the receiver illustrated here, the other is fitted with an overlapping front panel for mounting in the standard 19 in rack and is known as model BRT402.

Electrically both sets are identical and consist of an 11-valve superheterodyne with an integral a.c. supply unit. This has three valves and operates from supply voltages of 95 to 130 or 195 to 250 at from 40 to 60 c/s. If necessary the receiver can be used with batteries, in which case an external power unit for 12 volt operation would be used.

One requirement of a communications receiver is that it must cover a wide range of frequencies, giving reasonably constant amplification throughout. In the case of the BRT400 (and of the BRT402 as well) the coverage is from 150 kc/s to 33 Mc/s in six switched ranges. Apart from a small gap between 350 and 550 kc/s each range generously overlaps adjacent ones.

Selectivity being an all-important feature of a communications set, the G.E.C. model provides the choice of six alternative bandwidths selected by a switch. Three are for telegraphy reception, being 0.5 kc/s, 1 kc/s and 2 kc/s respectively, and the remainder are for telephony, being 5.5 kc/s, 7 kc/s and 9 kc/s wide. The inclusion of the 9-kc/s one may be thought unnecessary in a set of this kind, but it has to be borne in mind that, as a communications set, it has to serve all purposes, the reception of high-quality broadcast might well be one.

On frequency ranges one to four, which together cover 1.4 to 33 Mc/s, the input to the set is arranged for a 75-ohm feeder either balanced or unbalanced, but on ranges five and six, 550 to 1,400 and 150 to 350 kc/s a high impedance input of 400 ohms is allowed for.

Fig. 1. Range switching of r.f. inter-stage couplings in G.E.C. BRT400 receiver.
G.E.C. Model BET400—
the local oscillator is a N77 valve with a shunt-fed anode circuit using a resistance and with the h.t. derived from a voltage stabilizer in the power unit. In other respects the oscillator circuit follows normal practice with grid and anode coils switched for band changing. All coils have dust-iron cores for inductance trimming as well as parallel capacitance trimmers.

In Fig. 1 is shown the coil assembly and switching for the inter-valve coupling between the second r.f. and mixer valves, and this is typical of the other r.f. stages. Wafer-type switches are employed, of which there are nine double-sided plates in the r.f. and oscillator stages, and these are ganged for waveband changing. All idle coils are short-circuit to prevent absorption effects.

From the mixer stage the output is passed to a crystal filter transformer tuned to 455 kc/s. In the secondary circuit of this transformer is a quartz crystal with a split-stator phasing capacitor to neutralize the capacitance of the crystal. With correct neutralization the crystal is equivalent to a very sharp response curve. Variations of the phasing capacitor change the response characteristic of the crystal from a series to a parallel resonant circuit at either a higher or a lower frequency so that according to the setting of cycles removed from the one it is desired to receive. The system is only applicable, of course, to tele-

With the lid of the set removed the mains voltage adjusting platform is readily accessible, so also are all the coil inductance trimmers. Note the trimming tool, spare lamps and fuse on top of the gang condenser housing.

Fig. 2. Circuit details of the crystal filter and switching for the three narrower i.f. bandwidths.
"A.G.C." is provided so that two or more receivers can be operated in diversity. The "-100V" supply for the a.g.c. amplifier is provided by a metal rectifier in the power unit. It takes its input from a tapping on the mains transformer. It also supplies the grid bias for the first a.f. amplifier through a potential-divider.

Resistance-capacitance coupling is used between the first a.f. amplifier and the tetrode output stage. The capacitance is reduced by a switch marked "Speech/Music" when in the "speech" position and gives a 6-db cut in bass response at 300c/s. For speech and music negative feedback is applied over the output stage only and in this circuit is included a 1,000-c/s filter which can be brought in by a switch marked "Filter" for telegraphy, thereby further enhancing the overall selectivity.

Headphones, a loudspeaker or a 600-ohm line can be connected to the receiver via appropriate windings on the output transformer. Loudspeakers of either 2.5 or 15 ohms can be used.

A feature of interest in the power unit is the inclusion of a smoothing valve in order to avoid the need for large electrolytic capacitors. A tetrode, the KT81, is used in the output stage as it is connected across the h.t. supply after the normal smoothing system with the anode to the positive line and the cathode to the negative and a suitable resistor in the cathode for negative bias.

A portion of the ripple voltage is applied to the grid through a capacitance, its phase is changed by 180 degrees in the valve and it is fed back to the h.t. line as a ripple bucking voltage. The amount fed back is controlled by the gain of the valve, which in turn is controlled by a variable portion of the cathode resistor. The arrangement is simple but effective, as the background is very quiet indeed.

So much for the principal electrical features of the set. There is no doubt that much thought has been given also to the mechanical side, as everything inside that needs to be adjusted for routine maintenance purposes is exceptionally accessible. With the chassis removed from the cabinet all six tuning scales are individually calibrated in frequency but there is also provision for accurately logging any signal so that a return to it can be made with absolute certainty. This is made possible by the use of a precision-made gear box for operating the gang condenser and driving the scale pointer. This unit gives an overall reduction of 64 to 1, and 32 full turns of the tuning knob covers a range from end to end.

For purposes of station logging a circular vernier scale engraved...
G.E.C. Model BRT400—
by the pointer is a further scale
with 32 divisions. From the de-
scription of the gear box, it will be
seen that one revolution of
the tuning knob moves the point
er over 7 and of the horizontal
scale, or one division of the 0-32
scale. Thus a hypothetical station
could be logged as R32052; inter-
preted, this reads, range three, 20
on the horizontal scale and 52 on
the vernier. Spring-loaded split
gears are used and there is no
trace of backlash in the driving
mechanism. Flywheel tuning is
embodied.
Separate Perspex strips 1in
wide and 10in long are used for
each of the seven scales with illu-
mination effected from the sides,
the lighting being confined to the
range in use and to the bottom
(0-32) scale. For illumination of
the dial, receiver and “S” meter
no fewer than 30 lamps are
employed.
The high precision of the tuning
control makes the receiver a real
pleasure to handle, the wide-
range of selectivity provides
ample choice of bandwidth for the
type of reception needed, while
the crystal filter enables had het-
erydones to be readily removed.
The phasing control, however,
requires a little practice before it
gives of its best, since the tuning
and b.f.o. pitch control all play a
part.
On the general sensitivity little
need be said, since a receiver with
two r.f. and two i.f. stages is not
likely to be defective in this re-
spect. What must be commented
upon, however, is the very good
signal-to-noise ratio, which at first
gives the impression of low over-
all gain. This is very soon dis-
pelled when a signal is tuned in.

The local oscillator and b.f.o.
stability are above criticism, and
c.w. signals can be held without
adjustment for an indefinite time,
using the 500-c/s bandwidth. No
trace of mains ripple could be de-
tected and all c.w. signals gave
a pure Tg tone.

Manufactured by the General
Electric Co., Ltd., Magnet House,
Kingsway, London, W.C.2, the
price is £120 for the BRT400 and
£114 for the BRT402.

TEST AND MEASUREMENT

New Equipment at the R.C.M.F. Exhibition

T HIS short review of apparatus
shown at the recent exhibition
of the Radio Component Manu-
facturers’ Federation was unavoidably
held over from the general descrip-
tion of the exhibition published in
our April issue. A list giving the
full titles and addresses of the firms
concerned appeared in that issue.

Pointertype meters form the
basis of most test instruments, so
much so that they are often taken
for granted. It is only when one
sees them as individual components
that one realizes their importance
and the development that has taken
place in recent years. Robust mov-
ing-coil instruments of 500-µA range
are now common and a 100-µA move-
movement is nothing extraordinary.
In addition to such 2½-in and
3½-in single meters multi-range
as acting as an ohmmeter. The or-
dinary ohmmeter is usually limited
to a maximum of about 100 kΩ, al-
though some types go up to 1 MΩ.
For higher resistances a form en-
bodving a valve voltmeter is used.
The Taylor model 290A megohm-
eter is an example and covers 20k
ohms to 50,000 MΩ in four ranges.
It is for an a.c. power supply.

Bridge circuits are often used for
resistance measurement and usually
have capacitance ranges. The Pul-
in 666 bridge includes a valve volt-
mmeter as well. It covers 1Ω to
10 MΩ in six ranges and 100 pF to
100 nF also in 6 ranges with an
accuracy varying between 3% and
10% according to range. The valve-
voltmeter has six d.c. ranges from
1V full scale to 500V, and five a.c.
ranges from 10 V to 500 V peak.

The Dawe 613B valv
e voltmeter covers 1 mV to 300 V
with an accuracy of
3% of full-scale
reading and has a
frequency range of
10 c/s to 1 Mc/s. It
needs no zero ad-
justment.

An insulation test
set was shown by
Advance Compo-
nents. It provides
a test output of
6 kV measured by
an electrostatic volt-
meter, and a micro-
ammeter for checking leakage cur-
rent is included.

Advance Components also showed
a range of signal generators. The

Pullin 666 bridge.

well-known E1 covering 100 kc/s to
60 Mc/s now has a companion, the
E2 which covers 100 kc/s to
100 Mc/s. Even at the highest fre-
quency the stray field is guaranteed
less than 34V. A higher grade instru-
ment, the Advance Dr, covers
9.8 - 310 Mc/s.

Among low-frequency instru-
ments the B.S.R. L0800B should be
mentioned. It is of the beat-frequency
type and there are several models
with maximum frequencies from
16 kc/s to 54 kc/s.

Wobulator and double-beam
units for the Miniscope oscilloscope
were shown by G.E.C. The former
has a mid-frequency of 400-520 kc/s
and is intended for i.f. alignment.
The latter is a tube unit which con-
verts the Miniscope into a two-tube
oscilloscope.

Makers: Advance Components, Auto-
matic Coil Winder, Dawe Instruments,
Ferranti, G.E.C., Measuring Instruments
(Pullin), Salford Electrical Instruments,
Taylor Electrical Instruments.
British Vision Channels • Films and Television • 625-Line Demonstration

Television Frequencies

Although at present television transmissions in this country are limited to the 41.0 to 66.5 Mc/s band, plans have been made by the B.B.C. for five channels extending to 68 Mc/s in anticipation that the full width of the band as allocated at Atlantic City, will ultimately be available.

By the adoption of asymmetric sideband transmission in the new channels it has been possible for the Alexandra Palace station to continue double sideband transmissions on its present frequency. The carrier frequencies in each channel are:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Sound (Mc/s)</th>
<th>Vision (Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Alexandra Palace)</td>
<td>41.5</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>48.25</td>
<td>51.75</td>
</tr>
<tr>
<td>3</td>
<td>53.25</td>
<td>56.75</td>
</tr>
<tr>
<td>4 (Sutton Coldfield)</td>
<td>58.25</td>
<td>61.75</td>
</tr>
<tr>
<td>5</td>
<td>63.25</td>
<td>66.75</td>
</tr>
</tbody>
</table>

It will be seen that the spacing between sound and vision carriers is standardized at 3.5 Mc/s and that the spacing of the vision frequency of any one of the new channels from the sound carrier of the channel next higher in frequency is 1.5 Mc/s.

The design of the vision chain of all future transmitters will permit, as at Alexandra Palace, the transmission of vision signals substantially undistorted in amplitude and phase up to a vision frequency of 2.75 Mc/s. The carrier and the complete lower sideband of the a.m. vision signal, together with the upper sideband for vision frequencies up to 0.75 Mc/s, will be transmitted substantially unattenuated and with negligible phase distortion. This corresponds to a pass band of 3.5 Mc/s in width. For vision frequencies above 0.75 Mc/s the upper side-band will be considerably attenuated. An ideal frequency response for a receiver is given as 100% from \(f_c - 2.75\) Mc/s to \(f_c - 0.75\) Mc/s; 50% on the carrier frequency \(f_c\) and no response over 0.75 Mc/s above the carrier. The receiver will need to attenuate, by at least 30 db, the sound carrier on \(f_c - 3.5\) Mc/s in order to avoid interference from the sound modulation of the adjacent channel. It is pointed out that the more sensitive type of receiver will also need to attenuate by at least 50 db a signal on \(f_c + 1.5\) Mc/s as in fringe areas of reception the field strength of wanted and unwanted transmissions may be approximately equal. It is stressed that interference due to a beat frequency of 1.5 Mc/s is very evident on the picture.

Despite the fact that Alexandra Palace will continue to radiate both sidebands, a receiver designed on the above principles will receive its transmissions.

B.B.C. Expansion

Rumours have been current for some time that the B.B.C. was seeking a site for another Broadcasting House because of the inadequacy of the existing building even when extended to the limits provided in the original plan.

It has now been stated by the London County Council that it has agreed to make 14 acres of the 26-acre site of the old White City exhibition at Shepherd's Bush, West London, available to the B.B.C. for this purpose. If this project materializes, it will be possible for the Corporation to bring under one roof most of the sections which operate outside Broadcasting House in the 40 odd London premises they at present occupy.

To meet the immediate need for increasing the space available for television studios, the B.B.C. has rented a further section of Alexandra Palace, thereby doubling the studio capacity. The ultimate aim is to concentrate the television service in the proposed "Radio City."

Research work is to be centred at the new laboratories at Kingswood, Surrey.

Cinema Television

The G.P.O. has announced that the resumed talks between representatives of the film industry and the B.B.C. have once again been adjourned owing to the participants being unable to agree on the general principles of a co-operative experimental arrangement for exchange of material. This gives added interest to the proposals put forward by S. Seeman, managing director of Scophony-Baird, in a 16-page booklet "The Cinema and Television," Mr. Seeman, after comparing the progress of television in this country and the U.S.A., states, that in spite of the comparatively slow progress made in Great Britain, "there can be no doubt that in the not too distant future . . . this new medium will prove a serious competitor to the film industry."

A plan to "co-ordinate the advancement of television with the
World of Wireless—

interests of the cinema industry is put forward by the author. The basic provisions are (1) the granting of licences to large-screen television manufacturers to reproduce B.B.C. programmes to a paying audience in one cinema for each manufacturer, and (2) the granting of a licence to the cinema industry to establish its own transmitter and chain of relay stations providing a high-definition service of, say, 900 lines, to cinemas throughout the country. The second proposal also calls for the establishment of a Cinema Television Corporation to implement the scheme.

Air Navigation

A BAS, the British version of I.L.S., the instrument landing system required by the regulations of the International Civil Aviation Organization to be used at all international airports, is being installed at two South African airports near Johannesburg and Cape Town. The equipment, valued at £40,000, has been developed and manufactured by Pye Telecommunications of Cambridge, and will be installed by Marconi’s Wireless Telegraph Co., who are responsible for the installation and maintenance of the Abas.

The system provides not only beam-approach guidance for aircraft in both the horizontal and vertical planes by means of a crossed needle instrument on the dashboard, but also a glide path as a further element in the safe landing of planes.

The azimuth approach system operates on a frequency around 10 Mc/s and the glide path transmitter on about 330 Mc/s.

Télévision Française

ExPERIMENTAL transmissions from the new high-definition 625-line television station at the top of Eiffel Tower in Paris were due to begin in April on 213.25 Mc/s. Sound is on 202.1 Mc/s.

During experiments the power of the transmitter will be limited to 100 watts but will in the near future be increased to 4 kW. The scheduled power is 5 kW. The single side-band transmitter employs positive modulation and the transmission is vertically polarized.

The second high-definition station at Lille, almost adjacent to La Télévision Française, is expected to begin experimental transmissions towards the end of the year, will operate in the 160-174 Mc/s band.

The number of hours of transmission from the 1,435-line Paris transmitter, which is to continue to operate until 1958, has been increased to 21 per week, with daily afternoon and evening programmes.

Mobile Television

THE boat race on March 26th was unique in that viewers were able to watch it from start to finish. Seven television cameras were placed at suitable points along the course but, in addition, a camera was fixed in the bows of a launch which followed the whole race. This is claimed to be the first occasion on which a mobile television unit has been used for broadcasting.

A Marconi image-orthicon was mounted on a tripod in the bows of the launch, which carried a Pye transmitter for the radio link and a 3-KVA generating set. Three Pye receiving stations were used, one at each end of the course and one near the middle.

The jollies from the launch were marred by interference at the start of the race, but this gradually disappeared and excellent results were secured over the major part of the course. Towards the end it reappeared to some degree. The impression was that two of the receivers were picking up an interfering signal, but that the third was free from it—presumably, the null of its aerial was poled on it.

B.I.F.

ExPORT-STANDARD 625-line television will be publicly demonstrated for the first time at the Birmingham section of the British Industries Fair, which opens simultaneously in London and Birmingham on May 2nd. Marconi equipment, similar to that described on page 181, will be used for the demonstration transmissions, which will be on a closed circuit. Fifteen-inch tubes will be used to monitor the transmissions. Most of the domestic radio equipment to be shown at the B.I.F. will be exhibited at Olympia, London, and Industrial electronic gear at Birmingham.

PERSONALITIES

Sir Ben Lockspeiser, who has succeeded Sir Edward Appleton as Secretary of the Department of Scientific and Industrial Research, has been elected a Fellow of the Royal Society. Sir Edward, who is now Vice-Chancellor of Edinburgh University, has been awarded the James Alfred Ewing medal for 1949 on the joint recommendation of the Royal Society and the Institution of Civil Engineers.

A-V. M. R. S. Aitken, C.B., C.B.E., M.C., director of Radio and Television Trust, Lion Laboratories Ltd., has been elected president of the Radar Association for this year.

E. Cattanes, who was until recently sales manager of Airmec Laboratories, has been elected a Fellow of the Industrial Electronics Department (Stafford) of the English Electric Co.

A. J. Gale has been appointed television production manager of Scophony-Baird factory at Laneclhall Road, Wembley. He was, until recently, in charge of Philco television development.

C. D. C. Gledhill is now in charge of the London Office of Sound Sales, Ltd., at 47, St. Matthew's Road, W.1. His predecessor, G. H. Hodgkinson, is no longer with the company.

T. Hands, O.B.E., has been appointed director of manufacture to the Edison Swan Electric Co. Ltd. He succeeds the post of general manager (valves) which he has held since the amalgamation of Cosmos with Ediswan in January, 1948. He was with B.T.I.I. from 1941 to 1946, when he was works manager. In 1946 he was appointed managing director of Cosmos and a director of Ediswan.

P. V. Hunter, C.B.E., has been appointed chairman of the Radio Gramophone Development Co. He is also director and engineer-in-chief of British Insulated Callender’s Cables and chairman of British Insulated Callender’s Research Ltd. The new general manager of R.G.D. is G. H. Walton, who is also a director.

A. E. Lawson, London area representative of E.M.I. Sales and Service, has been appointed television manager to the company.

G. F. Mansbridge, O.B.E., retired from the Board of the Dubilier Condenser Co. on March 31st. Mr. Mansbridge, whose name is associated with condensers for many years, applied for his first patent in this field 59 years ago.

A. E. Newland has been appointed home sales manager of the Gramophone Co. (H.M.V.) and H. C. Goodman is his assistant. G. D. Putter continues as export sales manager.

J. D. Percy, who has been in charge of large-screen television engineering in the J. Arthur Rank Organization (Cinema Television, Ltd.) since 1937, has joined Scophony-Baird, Ltd., as director of television development. Prior to joining Cinema Television he was with Baird Television Ltd.

H. J. Perkins is retiring from the general secretariat of the Radio Officers’ Union which he has held for twelve years.

E. Yeoman Robinson, who has been chief engineer of Ediswan’s Brimsdown Works since 1929, has been appointed a director and engineer (valves) to the company. In 1922 he joined Metro-Vick’s Research Department, and in 1927, when valve production was transferred to Cosmos, he was appointed chief engineer of Cosmos valve department. He became a director, Ediswan on the amalgamation of Cosmos and Ediswan last year.

R. T. B. Wynn, C.B.E., assistant chief engineer, B.B.C., has been elected to the Council of the Engineers’ Guild, and M. J. L. Pulling, superintendent engineer (firing) at Stockport, has been elected to the provisional committee of the Metropolitan Branch of the Guild.
Comparisons.—Murphy states that in a standard television receiver, such as the V116, there are 2,200 parts, requiring 650 soldered joints, compared with only 450 and 223, respectively, in the A124 broadcast receiver. Whereas there are only four valves in the A124, there are 19, including rectifiers and c.r.t., in the television set.

E.M.I.—High-definition (63-line) television was recently demonstrated to members of the Belgo-Dutch television delegation when they visited Hayes.

Ship-Shore Radio.—The thirteenth Post Office stations situated at strategic points round the coasts of the British Isles last year handled over 10,000 radio-telephone calls and nearly 750,000 radio-telegrams from ships at sea. The stations also handled 252 requests for medical advice. The latter are dealt with under the Medical Advice to Ships at Sea service through which the Master of a ship can obtain advice in serious cases.

Marconi Veterans.—The thirteenth annual reunion luncheon of Marconi Veterans will be held on May 7th at Caxton Hall, London, S.W.1.

Amateur Convention.—The first National Convention to be held by the R.S.G.B. since 1938 is scheduled for October 22nd to 23rd at Belle Vue, Manchester.

Frequency Spectrum Chart.—A new and improved version of their frequency spectrum chart showing the Atlantic City allocations to the various services has been issued by Mullard. It measures 2 feet by 3 feet 4 in., is printed in 16 colours and costs 6s (including postage). A reprint for the use of amateurs is obtainable from the Marconi Communications Division, Century House, shaftesbury Avenue, London, W.C.2.

Marconi communication and radio-navigational equipment is to be operated by the British Overseas Airways Corporation on the new aircraft it is to operate. The first of the new aircraft to be fitted are twenty-two Canadair IVs, the radio equipment for which has been installed in the aircraft factory at Montreal. The installation includes two AD/108 nine-valve m.f./h.f. superhetes and two AD/7092 automatic direction finders. By the use of miniature components, the size and weight of the installation has been drastically reduced.

FROM ABROAD

Australian Television.—Pye 415-line television transmitters and receivers were recently flown to Melbourne for an "on the spot" demonstration of Marconi equipment. The demonstration was carried to limit to two shilling's a person's liability in fixing an interference suppressor to domestic equipment.

Engineers' Guild.—In addition to the Metropolitan Branch of the Guild which was formed last October, a West Midlands Branch, with headquarters in Birmingham, a Northern Branch with headquarters in Newcastle, and a North-Eastern Branch, centred on Leeds, have now been formed. Information regarding the Engineers' Guild, the aim of which is to further the professional interests of engineers, is obtainable from the honorary secretary, W. A. M. Allan, 28, Victoria Street, London, S.W.1.

Alleged Patent Infringement.—Electronic & Musical Industries, Ltd., state that a writ has been issued against Pye, Ltd., for alleged infringement of Letters Patent No. 42466 which relates to the E.M.I. Super-Emiton camera.

Reprints.—The articles describing a long-range television unit (February and March, 1949) will be operated by both the Canadian Broadcasting Corporation and privately owned commercial stations.

Canadian TV.—It was announced in the Canadian House of Commons at the end of March that television stations will be operated by both the Canadian Broadcasting Corporation and privately owned commercial stations.

Dutch TV.—The extension of the experimental television transmitter which Philips (Holland) are installing in Denmark have been supplied by a correspondent. The 367-line vision transmitter, using negative modulation, will operate in the 60-70-Mc/s band. The F.M. sound transmitter will operate in the 70-80-Mc/s band with 75 kc/s deviation. The picture ratio will be 4:3.

West Africa.—The extension of the radio-telephone service to link the four British West African colonies, Gambia, Sierra Leone, Gold Coast and Nigeria, has now been completed by Cable & Wireless. The colonies are linked with London through the transatlantic cable. (May, 1949.)

Germany.—The broadcasting authority in the British zone of Germany—Nordwestdeutscher Rundfunk—has brought into service a new o.4-kw transmitter installed at Berlin, which operates on 1,556 kc/s (189 m), one of the frequencies allocated to Germany in the Copenhagen Plan. This has been introduced to give listeners the opportunity to alter their sets to cover this lower wavelength—which is outside the present broadcasting band —in readiness for the introduction of the Plan next year. An e.h.f. transmitter, operating on 90 Mc/s, has,
World of Wireless—
according to the O.L.R., has been erected at Munich-Freimann in the American zone
Technical Publications Wanted.—
The Brazilian journal Antena wishes to receive copies of British technical journals and catalogues which will be referred to in the bibliographical and industrial news sections of that journal. Materials should be addressed to Apollo Fon, Caixa Postal 248, Rio de Janeiro, Brazil.
Czechoslovakia.—The name of the Czech journal Radiotechnika has been changed to Elektronik.

INDUSTRIAL NEWS

T.C.C.-U.I.C. Agreement.—The production and sale of silvered mica and ceramic capacitors, hitherto made by the United Insulator Co., will in future be undertaken by the Telegraph Con-

ductor Co. Key members of the staff of the research and development sections are joining T.C.C. The development, production and sale of ceramic materials will be continued by U.I.C.

Murphy in India.—A new company, Murphy Radio of India, Ltd., has been formed with headquarters in Bombay to assemble Murphy receivers from components exported from this country. Managing director of the new company is D. D. Lakhanpal and J. Wilson, who is to be general manager.

Philips.—The production of electric lamps having been transferred from the Philips factory at Harlesden, London, N.W.10, to Hamilton, Lanarkshire, the vacated factory is to be used for the production of television components.

New Relay Company.—With the ob-

ject of providing a television relay dis-

tribution system in localities on the fringes of the service area of a station, Pye and Murphy have jointly formed a new company called Link Sound and Vision Services, Ltd.

Component Tests.—The R.I.C. has published a specification giving general conditions of climatic and durability tests for components. The specification (RIC/11), which has not yet reached the stage of consideration by the British Standards Institution, is obtainable from the R.I.C., 59, Russell Square, London, W.C.1, price 1s.

Sargent Electronics, Ltd., have moved from Walton-on-Thames to Effingham, Surrey (Tel.: Bookham 2707).

Ultra Electric, Ltd., have transferred their sales branch from Buckinh-

ham Gate, London, S.W.1, to their factory at Western Avenue, London, W.3 (Tel.: Acorn 4348), to which all communications and orders for those in the service department which remains at Erskine Road, N.W.3, should be sent.

Tecon.—A quarterly house magazine, including some technical matter, is being produced by the Telegraph Con-}

struction and Maintenance Co. An article in the current issue records that the company's head offices have been in Old Broad Street, London, E.C.2, for 85 years.

General Sonic Industries is the new name adopted by the General Electrical Radio Co., makers of the "Mighty Midget" a.c./d.c. receiver. The firm's address remains unchanged—21-24, Shene Street, London, E.C.1.

"Mullard World Review” is the title of a new publication being issued by Mullard Electronic Products and is a link between representatives abroad and headquarters in this country.

CLUBS

Birmingham.—A lecture on wave interaction, better known as the "Luxembourg Effect," will be given to members of the Slade Radio Society, on May 13th, by F. J. Hyde, who is studying the subject at Birmingham University. The president of the Society, Dr. W. Wilson, will talk on electron tubes at another meeting on May 27th. Meetings are held fort-}nightly at the Parochial Hall, Slade Road, Erdington, at 8.0. Sec.: C. N. Smart, 9, Woodchurch Road, Erding-

ton, Birmingham, 23, Warwick.

Bristol.—Members of the Bristol and District S.W.I. Club will visit the R.B.G. Television Laboratories at Clevedon on May 7th. Meetings of the club are held on Fridays at 7.30 at the St. Mary Redcliffe Community Centre, Guinea Street, Bristol, 2. Sec.: C. G. Poed, 71, Brynland Avenue, Bristol, 7, Glos.

Enfield.—The Enfield Radio Society, which was disbanded in 1939, has now been re-formed and regular meetings are held on alternate Tuesdays at 8.0 at Chase Side School, Enfield. On May 10th the subject for consideration is the design of small transmitters. Sec.: F. Tickell, 30, Cowlydree Close, Enfield, Middlesex.

Liverpool Exhibition.—Three amateur societies—Merseyside, Liverpool and Wirral—are organizing an amateur radio exhibition which it is planned to hold in the Crane Build-}
gings, 28, Smithdown Road, Liverpool, from May 2nd to 7th inclusive. The exhibition, in which a number of manu-

facturers have been invited to partici-

pate, will continue from 10 a.m. to 9 p.m. except Saturday, when it will close at 9 p.m.

MEETINGS

Institution of Electrical Engineers—

"Measurements Section.—Some Electro-

magnetic Problems," by Professor G. W. O. Howe, D.Sc., LL.D., Tech-

nical Director, "Wiring Engineers," at 5.30 on May 11th.

Discussion on "Graphical Methods of Teaching Electrical Engineering in-} cluding Radio Work," by A. H. Martin, M.Sc., B.Sc. (Eng.) at 6.00 on May 19th.

London Students’ Section.—"A Method of Carrier-Frequency Syn-

chronization in Modulated Trans-

mitters," by D. J. Whyte and "An Application of Wave Analysis to Routi-

neous Frequency Response Measure-

ments," by I. J. Shelley at 7.0 on May 2nd.

The above meetings will be held at the I.E.E., Savoy Place, London, W.C.1.

British Institution of Radio Engineers—

London Section.—"Electronics in Heavy Industry," by W. W. Wilson, D.Sc., B.Eng., at 6.0 on May 19th, at the London School of Hygiene and To-

ropical Medicine, Keppel Street, London, W.C.1.

Merseyside Section.—"The Measure-

mem of F.M. Transmitter Performance," by D. R. Willis at 7.0 on May 26th at the Technical College, The Butts, Coventry.

North-Western Section.—"Ceramic Capacitors," by W. G. Roberts, B.Sc. (Eng.), at 6.45 on May 5th, at the Col-

leagues of Technology, Sackville Street, Manchester, 1.

Institution of Electronics—

North-Western Section.—"Radio Astronomy," by Dr. A. C. B. Lovell, O.B.E., at 6.30 on May 26th, in the Reynolds Hall, College of Technology, Manchester.

British Sound Recording Association—

London Annual general meeting and conference at 2.30 on May 21st, at the Clarendon Restaurant, Hamm-

Birmingham.—Lecture and demon-

stration of a home constructed disc re-

corder by Desmond O’C. Roe, B.Sc., at 3.0 on May 7th, at the Grand Hotel, Birmingham.

MANUFACTURERS’ LITERATURE

Osram Technical Publications: OV1 (battery miniature receiving valves), OV2 (a.c. and a.c./d.c. valves for radio receivers), TP1 (amplifiers for high-

fidelity sound reproduction, a.c. opera-

tion), TP2 (high-fidelity amplifiers for d.c./a.c. and battery supply), TP3 (the KT66 valve in a.f. power amplifiers, r.f. amplifiers and voltage stabilizers), from the General Electric Magnet House, Kingsway, London, W.C.2.

"Outstanding Features of S.I.E. Copper Oxide Rectifiers"—an illustrated folder from Salford Electrical Instruments, Silk Street, Salford, 3.

Technical data and characteristic curves of "Brimson!" current surge resistors, from Standard Telephones and Cables, Valve Works, Foots Cray, Sidcup, Kent.
Providing technical information, service and advice in relation to our products and the suppression of electrical interference

"Costly aerials unnecessary in many areas."

This heading appeared recently in certain Midland newspapers and we heartily agree. There is no doubt that in the London area many "H" type aerials4 were erected because of their snob appeal. The resulting signal being so strong that attenuators had to be fitted to reduce signal input.

So very much depends upon the site. We have always said that the "H" type should be used more often to reduce the pick-up of interference rather than to boost the signal. We do most sincerely ask readers to bear in mind that the "Veerod"*

Steel or Light Alloy

Now, by "controls," we have been forced over to the cheaper light alloy. This gets over the trouble of finish, but new troubles arise. To ensure the same margin of safety, we have to use heavier gauges of material than is usual, this brings "humming in the wind" as one of the teething troubles but we have cured that one.

Very often we know a change unavoidably to be a retrograde step, but as it looks different everybody thinks it must be better.

Generally, when a change is made to one of our aerials it is not just to create something new. It is often because we can no longer maintain by the old method, the quality we like to have associated with our products and we are often disappointed with the change. "Belling-Lee" television aerials are stronger than any we have tried, and while we know their elements are designed to withstand gusts of 100 m.p.h. we don't feel happy about their retaining the straightness usually associated with aerials of our manufacture. If we could obtain supplies of steel, and give them our pre-war protection we would not hesitate to change back.

In very bad cases, where steel aerials have seriously corroded within a month or two of erection, we replace faulty parts free of charge.

The illustration shows the "Belling-Lee" "Veerod"* chimney mounting inverted "V" aerial List No. L604 (London) L635 (Midland).

*1. "Viewrod" (Regd. trade mark) television aerials. L. 502/L London. L.634 Midland. £6/6/–.

*2. "Veerod" (Registration applied for) Attic aerial L605 London. L646 Midland. £2/12/6.

3. "Doorod" indoor television aerial. L645 London. L678 Midland. £1/10/–.

*4. "Skyrod" (Regd. trade mark) anti-interference vertical aerials, now known as L638/K chimney mounting with "Eliminorise" (Regd. trade mark) transformers and feeder. £10.

Television Aerial Performance

After an examination of television receiver sensitivities for peak vision while it would appear that the majority lie between 100 and 200 microvolts.

Taking 150 microvolts as a representative figure and using the latest B.B.C. field strength contour map, it is now possible to give for various "Belling-Lee" aerials, the range at which good reception should be almost certain. Since the B.B.C. field strengths on a given contour are both directional, with a sharp minima at right angles to their axis. Whereas, a single dipole is without directional properties.

Corroded Aerials

We know only too well that since the war we have not been able to maintain the same high standard of finish that we could demand in pre-war days. Many hundreds of our pre-war "Skyrod"*4 and television aerials are still giving good service; they had double plating, both zinc and cadmium, followed by a coating of pigmented chlorinated rubber. Even if we could obtain adequate supplies of such materials the public would not pay the price.

Even when a specification of raw material is accepted by a supplier it is rarely kept, and we find ourselves compelled to accept something inferior or do without.

Immediately after the war we used the finish called for by the Services for the aerials we made for them, i.e., zinc plate and chromate passivate. We soon found this otherwise good finish would not stand up to prolonged exposure to sulphur laden atmospheres from chimneys. This was followed by bonderising plus aluminium paint. If the paint had been to specification, or of pre-war finish would not stand up to prolonged exposure to sulphur laden atmospheres from chimneys. This was followed by bonderising plus aluminium paint. If the paint had been to specification, or of pre-war finish that we could demand in pre-war days. Many hundreds of our pre-war "Skyrod"*4 and television aerials are still giving good service; they had double plating, both zinc and cadmium, followed by a coating of pigmented chlorinated rubber. Even if we could obtain adequate supplies of such materials the public would not pay the price.

Even when a specification of raw material is accepted by a supplier it is rarely kept, and we find ourselves compelled to accept something inferior or do without.

Immediately after the war we used the finish called for by the Services for the aerials we made for them, i.e., zinc plate and chromate passivate. We soon found this otherwise good finish would not stand up to prolonged exposure to sulphur laden atmospheres from chimneys. This was followed by bonderising plus aluminium paint. If the paint had been to specification, or of pre-war finish that we could demand in pre-war days. Many hundreds of our pre-war "Skyrod"*4 and television aerials are still giving good service; they had double plating, both zinc and cadmium, followed by a coating of pigmented chlorinated rubber. Even if we could obtain adequate supplies of such materials the public would not pay the price.

Even when a specification of raw material is accepted by a supplier it is rarely kept, and we find ourselves compelled to accept something inferior or do without.

Immediately after the war we used the finish called for by the Services for the aerials we made for them, i.e., zinc plate and chromate passivate. We soon found this otherwise good finish would not stand up to prolonged exposure to sulphur laden atmospheres from chimneys. This was followed by bonderising plus aluminium paint. If the paint had been to specification, or of pre-war finish that we could demand in pre-war days. Many hundreds of our pre-war "Skyrod"*4 and television aerials are still giving good service; they had double plating, both zinc and cadmium, followed by a coating of pigmented chlorinated rubber. Even if we could obtain adequate supplies of such materials the public would not pay the price.

Even when a specification of raw material is accepted by a supplier it is rarely kept, and we find ourselves compelled to accept something inferior or do without.

These tables will explain why unexpected ranges are often encountered. All these figures are for two storied houses. Greater ranges are to be expected on taller buildings.

<table>
<thead>
<tr>
<th>AERIAL</th>
<th>MAXIMUM CERTAIN RANGE IN MILES</th>
<th>OCCASIONAL RANGE IN MILES</th>
<th>KNOWN EXTREME RANGE IN MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard "H" on chimney</td>
<td>35</td>
<td>60–70</td>
<td>over 100</td>
</tr>
<tr>
<td>Dipole on chimney</td>
<td>18</td>
<td>50</td>
<td>no data</td>
</tr>
<tr>
<td>Inverted "V" on chimney</td>
<td>14</td>
<td>35</td>
<td>no data</td>
</tr>
<tr>
<td>Inverted "V" or "Doorod" in attic</td>
<td>10</td>
<td>30</td>
<td>no data</td>
</tr>
<tr>
<td>On second floor</td>
<td>6</td>
<td>16</td>
<td>30</td>
</tr>
</tbody>
</table>

* Johannesburg, South Africa.
but there is a difference in sound equipment

The K12/10 and K12/20 Moving Coil Loudspeakers, designed especially as good quality single unit reproducers, can be relied upon, as can all VITAVOX products, to give an outstanding performance under exacting conditions.

Retail Price:

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>K12/10</td>
<td>£7 0 0</td>
</tr>
<tr>
<td>K12/20</td>
<td>£11 0 0</td>
</tr>
</tbody>
</table>

VITAVOX LTD., WESTMORELAND ROAD, LONDON, N.W.9. Tele: COLindale 8671

Recognised as the Most Reliable Valveholders

International Octal
Ref. No. SP8/US.

THE McMURDO INSTRUMENT CO., LTD., VICTORIA WORKS, ASHTEAD, SURREY ASHTEAD 3401
DRAWING CIRCUIT DIAGRAMS

Representation of Leads Which Cross Without Connection

By L. BAINBRIDGE-BELL (Royal Naval Scientific Service)

In the December, 1948 issue of *Wireless World* I contributed an account of the new British Standard on Circuit Symbols (BS-530:1948). To this the Editor appended a note which read: "Mr. Bainbridge-Bell's approval of our practice in the matter of bridge-cross-overs seems to cancel out his disapproval of our use of collinear connections. When bridges are used, the risk of errors through this cause automatically disappears." This reference to collinear connections was occasioned by my comment on the rule "Of wires meeting at a connecting point, not more than two should be collinear." I drew the attention of the *Wireless World* drawing office to this rule which has had "a rather unnoticed existence for fourteen years."

The above interchange of remarks seems a fitting cue for a statement of my considered opinions—which have developed during many years of experience in planning the drawing of circuit diagrams. In the course of delivering lectures on the subject, I have often been asked the following questions:

1. When leads cross without connection should they (a) go straight across, (b) have a bridge or (c) have a gap?

2. When leads cross with connection, how is the connection indicated?

3. (A minor question) Should tee-joints have dots on them?

Here is a summary of my opinions. Regarding question 2, leads need never cross with connection; the question, therefore, does not arise. As for question 1, if leads never cross with connection, the answer to that question is not very important. For simplicity use (a) "straight across." In certain cases where a mistake would be disastrous, and for readers accustomed to it, I recommend (b) the bridge, but hope that it may die out in favour of (a). In rare cases I recommend (c) the gap instead of (b) the bridge. If diagrams are drawn so that leads cross with connection; (b) the bridge or (c) the gap must be used. Regarding question 3, tee-joints should always have dots on them (but see my later remarks about "curved junctions").

Now for my reasons. I say "Leads need never cross with connection." It is interesting first to consider how the appearance of such a condition has arisen.

The term crossing with connection (or equivalent term) is misleading. The circuit draughtsman does not usually say, having drawn two leads AB, CD which intersect: "These are now required to touch where they cross." What really happens is this:—He says "I want a lead from A to make contact with CD," and he draws one making the contact at X. He then says "I want a lead from B to make contact with CD." With a mistaken idea of tidi-ness—or possibly from laziness—he draws the lead from B to meet CD at X, so that a crossing appears at X, and the harm is done.

Functionally, the "incident" is not a crossing, i.e., it is not indicating a flow of anything from A to B—it is indicating a flow from A to C (or D) and from B to C (or D). The configuration therefore can actually be misleading.

As an example, suppose that a diagram contains a resistor above the earth-line, and a capacitor below it. The draughtsman wants to show that they are both connected to earth. He draws a line downwards from the resistor to the earth-line and then continues it downwards, connecting the capacitor to it. Usually he puts a dot at the intersection. The novice, seeing this continuous line from the resistor to the capacitor, may think that there is a flow of something from one to the other and so be conf- used. If the draughtsman had taken the leads to separate points on the earth line, confusion would have been avoided.

An analogy drawn from the plumber's trade may help to emphasize this point. The waste pipes of my washbasin and bath are connected to a common drainpipe. No one would try to explain the system by saying that the two waste pipes were connected together, although an aquatic insect could crawl from the bath to the basin. The common drain-pipe corresponds to the common earth-line; the connection of the resistor and capacitor to the same point corresponds to a statement "the resistor and capacitor are connected together." There is another very practical reason for "staggering the cross-roads." In my experience, the "crossing of two leads with connection" or (as I would rather call it) the "four-way joint" has been responsible for most of the mis- takes in drawings. When a connection is intended the dot is often missed out by mistake; when a connection is not intended (using the "straight-across" convention) an unwanted dot is sometimes produced by an over-filled drawing pen causing the ink to run or by a fault in the printer's block. A tear in a wax stencil sheet can produce a similar effect.

The above remarks apply only to joints which are created by the draughtsman; it is sometimes neces-
Drawing Circuit Diagrams

I often hear it stated that "crossroads" are necessary in order to preserve symmetry (for example, in a push-pull valve stage where the two cathode leads are brought to the same point on the earth line). I consider that it is more important to obey the "staggered crossroads" rule without any exception then to preserve symmetry in minor details. Would the "symmetrical" die-hard insist on the upper valve being called V8 and the lower valve A8? I recommend that the cathode leads approach the earth line and diverge just before reaching it.

(The alternative, more symmetrical solution, of taking the two leads to a point on the same side of the vertical is objectionable as it can, when carelessly drawn, appear to be a bridged crossing.) A paper in a recent scientific journal uses this which is neat and may suit those who object (why?) to sloping lines.

The rule is put thus in a recent amendment to an interservices publication: "In order to avoid confusion with wires which cross without connection, wires which are in contact should be shown staggered thus: or thus (correct) and not thus or thus (incorrect) because the central dot can fail to appear, by accident owing to faulty printing, and thus lead to error."

Question 1: Crossings without connection. If the rule is obeyed without any exception and if it is realized that it is obeyed, the best method for showing crossings without connection is the simplest—straight across. This convention is observed by most of the engineers who draw circuit diagrams of telephone equipment.

Doubts about the fulfilment of the second condition (if it is realized that the "stagger" rule is obeyed) make me hesitate to advise draughtsmen to abandon the use of the bridge. Another difficulty is that a large number of readers of radio literature are accustomed to the bridge. (A count showed that 60 per cent of modern text-books and periodicals preferred the bridge.) Perhaps the recent action of a Service department (in changing from first- to third-angle projection) of putting a "rubber stamp" notice on every drawing "Third-Angle Projection"—may act as a guide.

I would recommend:—Use the "stagger" and straight across convention. If any confusion is likely to be caused to certain classes of readers by a change from bridges, a note should be prominently displayed:

Wires in Contact

Joints thus: or: and this action should be continued until the correct convention is well-known.

In exceptional cases—where confusion may cause fatal results—as in some "Service" applications—the bridge might still be used as a form of double security.

To those who still prefer the bridge, I would add that it is difficult to use where one lead crosses a number of closely spaced leads A number of small bridges is "messy," and one large bridge may be difficult to detect if its curvature is small. I would recommend the use of gaps or, better, go straight across as illustrated here. No one would intentionally connect a number of leads together by a lead crossing them—no confusion can arise.

In a wiring or installation diagram the bridge or gap need never be used. In these diagrams the fact that two leads, which happen to cross, were connected together would be shown by the presence of a terminal or junction-box.

On question 3 (representation of "tee" joints) I would say that when a lead AD is shown connected to BC at D there should always be a dot at D and thus showing an important path BC.

The reason for the recommendation (which may appear somewhat far-fetched, but which is nevertheless real) is that, if the dot is omitted, the reader associates the "dot-less" junction with electrical connection, and is led (by a false analogy) to think that the "dot-less" crossing is also a connection. I have witnessed this confusion on several occasions: if readers were so accustomed to the "stagger and straight across" that they instinctively rejected crossings with connection, there would be no confusion.

Finally, I would like to draw attention to a convention well known to "power" engineers that is gaining in popularity among radio engineers:

This is a variant of the "tee" joint which can display additional information, with little extra trouble. To quote the "Services" book: "Clarity in circuit diagrams is sometimes enhanced by substituting a tangent quadrant for a tee at a junction (e.g., at the junctions of leads to an H.T. bus-bar) in order to emphasize a particular path; thus

When there is a functional flow along AB and CB, but not along AC the above configuration suggests it—Note that no dot is used, as it would interrupt the idea of smooth flow.

Other possible "curved junctions" (as I call them) are and though for the latter, the conventional tee would probably be used.

I find a hybrid arrangement sometimes useful, particularly if I am trying to clarify an existing drawing and do not want to erase anything. I draw a curved line near the tee thus:

Some of my friends may be astonished at my conclusions. I must confess that I have changed from insisting on the almost universal use of bridges to the realization that in the absence of four-way joints the straight-across convention is the best.

I repeat that I would be glad to hear of any objections to my recommendations.

Wireless World May, 1949
TELEVISION TRANSMITTING EQUIPMENT

A part of the Marconi's W.T. Company's exhibit at the British Industries Fair will be a demonstration of 625-line television. The firm is advocating this standard for use in countries where there is no possibility of linking up with existing services, but where such a possibility does exist it can provide equipment designed for 405 lines or 525 lines—the British and American standards.

Transmitters with peak powers of 5 kW or 500 W can be supplied. Amplitude modulation is used for vision but frequency modulation with a deviation of ±25 kc/s for sound, the vision and sound carriers being spaced by 6.5 Mc/s in the 625-line system. For linking cameras to the transmitters, microwave links are available, and give a range of the order of 15 miles. Greater distances can be covered by using a number of links in tandem.

Operating on 6,500-7,100 Mc/s (around 4.5 cm) klystrons are used for the relay transmitter and for the receiver local oscillator. The power is 100 mW, but the 6-ft paraboloid recommended for the aerial system gives a gain of 40 dB. Frequency modulation is used, peak white corresponding to a deviation of 70 MC/s.

Since the success of television depends, in great measure, upon outside broadcasts, it is important that the cameras and their associated apparatus should be as portable as possible. A great advance in portability has been achieved by suitable sub-division of the equipment into units.

The camera, in particular, is unusually compact. It embodies an image-orthicon tube in which the picture is focused on to a semi-transparent photocathode to produce an electron image on the further side. This image is, in its turn, focused magnetically and with unity magnification on to a target electrode which consists of a very thin glass plate, faced on its input side with a metallic screen of extremely fine mesh.

The target is scanned on the other side by a low-velocity electron beam. It is of such low velocity that an uncharged area of the target repels it sufficiently to return the beam towards its starting point!

The electron image builds up a "picture" on the target in terms of charge distribution. This is done by means of secondary emission from the target and the whites of the original scene correspond to areas of most positive charge (i.e., areas most deficient in electrons).

The target is scanned on the other side by a low-velocity electron beam. It is of such low velocity that an uncharged area of the target repels it sufficiently to return the beam towards its starting point!
A SCALE model of the proposed television aerial system for the Sutton Coldfield transmitter was shown by the B.B.C. The scale is 7.5:1, and tests of power gain, impedance and both horizontal and vertical radiation characteristics have been made at proportionally higher frequencies (450-500 Mc/s) to check the design. Compensated folded dipole elements have been adopted. These are fed in phase quadrature so that the mast is virtually in a neutral field. There is also little vertical radiation, with a consequent power gain in the horizontal direction. Phase rotation is opposite for the sound channel, and it is claimed that this helps in reducing intermodulation between sound and vision.

A wide range of waveguide components used in research on millimetre waves was shown by the Telecommunication Research Establishment. An optical bench and components for a Michelson interferometer working in the 8-9 mm range were shown, and also methods of measuring dielectric constant in which a frequency stability of better than 1 part in 10^9 had been achieved.

Specimens of quartz crystal resonator plates, grown by a synthetic hydrothermal process, were shown by the Research Laboratories of the G.E.C. The process depends on the higher solubility and lower density of silica glass, compared with crystalline quartz in aqueous solution, and is carried out in a autoclave at a temperature of 350-400 deg C and a pressure of the order of 1,000 atmospheres, starting with a sodium metasilicate solution with potassium bifluoride as a catalyst to promote regular deposition. Thin plates of natural quartz are used as "seed" crystals. Specimens of ethylene diamine tartrate grown crystals were also shown. This substance is a promising substitute for quartz, and cuts with zero temperature coefficient are possible.

Working demonstrations of germanium triodes, on the lines of the Bell Telephone Laboratories' "Transistor" (see October, 1948, issue, p. 358), were given by Standard Telephones and the Research Laboratory of the B.T.-H. Theformer showed an amplifier stage with a power gain of about 14 db, and the latter an oscillator working at a frequency of 1 Mc/s. In the field of applied acoustics the B.B.C. gave a demonstration of portable equipment for the investigation of the transient response of studios. A lightweight 7-W amplifier and tone generator, giving pulses variable from 0.001 to 20 sec, energizes a loudspeaker, and the rise and decay of sound is examined on an oscilloscope. Transient response measurements on loudspeakers were also shown, and a three-dimensional model served to indicate the complex second-order resonance effects which may be experienced.

Apparatus for measuring the overall frequency characteristic, reverberation time and pulsed echo simultaneously above a certain minimum potential. The frequency-modulated signal is fed to the two control grids, one of which is connected to the primary of the i.f. transformer and the other to the
secondary. The f.m. signal is in this way converted to a phase-modulated one, and from this the valve produces anode-current pulses of a duration dependent on the phase modulation. In effect, the anode current is pulse-width modulated and so needs only integration to produce amplitude modulation. The output is claimed to be sufficient to drive an output valve directly.

This firm also had on view a complete range of sub-miniature valves with indirectly-heated cathodes rated for 0.3 V and for currents of 0.15 A and upwards. Known as the VX series, the valves are 1 cm in diameter and are provided with wire leads for soldered connections. Among them, the VX8029 has a mutual conductance of 3.5 mA/V and is rated for 100 V anode and screen supplies.

Ferranti showed a range of electron valves. Among them the BME6A tetrode is of interest. Its cathode needs 0.23 A at 4 V, and at 8 V and 6 V respectively for anode and screen it has a mutual conductance of 100 µA/V, the amplification factor being 2. The grid current at — 3 V grid bias is between 6 and 300 x 10⁻¹³ A. Miniature high-voltage rectifiers and cold-cathode valves were also displayed.

The General Electric Company had an unusual c.r. tube on view, designed for television monitoring. It is a flat-faced 9-in tube with electrostatic deflection. A c.r. switch tube having 40 contacts around the periphery of the screen was shown. Used with circular deflection the beam passes over each contact in turn. The contacts are coated with fluorescent material so that a visual indication of the beam position is obtained.

Cathode-Ray Apparatus.—As an example of modern circuit technique the Cintel Universal Valve Tester is outstanding. It is designed so that any valve can be plugged in and any of its characteristics displayed on the screen of a c.r. tube. Ten curves are shown simultaneously so that the usual family of curves can be seen and, by turning a knob, another parameter—say, the suppressed grid voltage—can be varied and its effect on the family is immediately seen. It should be invaluable when investigating unusual valve characteristics.

The input is 3-phase a.c. from the mains and this is converted into a 12-phase grid supply each of which generates a saw-tooth. Ten of these are used to provide the sweep voltages for the ten curves to be shown. Provision is made for peak anode currents from 5 mA to 5 A.

Protection devices are fitted to prevent overloading valves under test and there is a limiter to return the valve anode voltage to zero as soon as a curve reaches the edge of the screen. A calibration system is included so that the curves displayed can be provided with accurate ordinates.

The oscilloscope retains its pre-eminence for all but the depiction of the slowest phenomena. W. Netherton showed a high-speed oscillograph operating at 10 kV and which, with an f/1.0 lens, has a writing speed of 20,000 km/sec. The sweep has a duration of 0.05 µsec.

The miniature oscilloscope is more common than previously and Metropolitan-Vickers showed one including a push-pull saw-tooth generator covering 20 c/s to 100 kc/s and having a Y-amplifier with an amplification of 60 times to 150 kc/s or 10 times to 3.5 Mc/s.

The Furzehill 1684D/2, although not a miniature, is interesting in having d.c. push-pull amplifiers and a response to 3 Mc/s with a sensitivity of 18 mV/cm. The time base is recurrent or single-sweep, and covers 2 c/s to 150 kc/s. With an external capacitor it can be lowered to 0.2 Mc/s.

Provision is made for recording in many of the laboratory-type instruments, such as Southern Instruments ME15, and cameras are available for many others. Avimo, for instance, showed a range of most elaborate recording cameras. One includes 15 x 15-in c.r. tubes, so that 15 traces can be recorded simultaneously.

For very slow phenomena there is a revival of paper-tape recording methods and one example is to be found in the Dawe Instruments a.f. recorder. This is intended for recording response curves of amplifiers, loudspeakers, etc., and has a writing speed of 600 db/sec without overshoot.

Industrial Electronics.—There has been a significant increase in the number and variety of electronic scalers and counters, and examples were shown by Air- mec, British Telecommunications Research, Cintel, Labgear, Lydiate Ash, Marconi Instruments, Mullard, Panax and Plessey. Developed originally for nuclear and cosmic-ray research, these instruments are now available as industrial batching counters, revolution indicators, etc. British Telecommunications Research showed a machine for batching in

Electronic simulator for solving electromechanical problems in servo mechanism design (Sperry Gyroscope Co.)
Magnetic Amplifiers. — For the amplification of small d.c. inputs from low-impedance sources, the magnetic amplifier shows many advantages over valve amplifiers, and it is now being widely used for temperature control in conjunction with thermocouples, for strain-gauge work and for servo-control mechanisms. Examples were shown by Electro Methods, Elliott Bros. and Everett Edgcumbe. The latter firm were showing a "d.c. current transformer" for use on power circuits in which the field associated with the d.c. was used to determine the working point on the iron characteristic of toroidal windings carrying a.c. and surrounding the conductor.

To show that magnetic amplifiers are not necessarily restricted to low- or zero-frequency currents, Mullard demonstrated a two-stage push-pull amplifier of this nature should have many useful applications.

Signal Sources. — Among the more specialized forms of signal generators shown this year is an old one in a new guise. It is a valve maintained low frequency tuning fork, its revival having been brought about largely by the need for an alternative 50-c/s standard to the a.c. supply mains. It was shown by Muirhead as a general-purpose model type D1,18A. The fork has a very low temperature co-efficient and the frequency stability due to all causes is within ±0.005 per cent. The whole equipment is assembled on a standard 19-in panel for rack mounting. Although normally giving a 50-c/s output its range can be extended to 200-c/s if required.

Another unusual form of signal source is a pulse generator which was shown by Dawe. It is the Type Ediswan type R666 a.f. oscillator covering 1.4 to 5,500 c/s. 412 and produces a rectangular pulse of variable amplitude and with choice of 1, 10 or 100-μs pulse widths. The repetition frequency is adjustable over the range 1 to 5,000 c/s, which, with external triggering can be extended to 10,000 c/s. The output is 75 V maximum at either negative or positive polarity.

Sullivan had a beat-frequency oscillator, mains operated, in which the interaction between the two oscillators is so reduced that a 1-c/s output can be obtained. The range is 0-20 kc/s and the short-time stability is better than 5 c/s per day. An output of 4 to 5 watts is available. Included also by Sullivan was a variable-frequency RC oscillator for any number of frequencies from 10 c/s to 100 c/s with plug-in RC units.

Another high-precision beat-frequency oscillator was seen on the Furzehill stand. Covering 20 to 200,000 c/s it, also, had a short-time stability of 5 c/s per day with low hum and harmonic content. A meter-type monitor is fitted and the output is variable up to 10 V. Labgear had a variable-frequency a.f. oscillator of the Wayne Kerr video oscillator covering 7 kc/s to 7 Mc/s.

Muirhead 50-c/s standard frequency valve-maintained fork.

Mullard audio-frequency magnetic amplifier with provision for surging at rates of 8 to 60 per minute.

There were seen this year some oscillators covering frequencies in the video range. One was shown by Wayne Kerr covering 7 kc/s to 7 Mc/s. 412 and produces a rectangular pulse of variable amplitude and with choice of 1, 10 or 100-μs pulse widths. The repetition frequency is 7 Mc/s with the output level within ±0.1 per cent and of 3 V maximum. Marconi Instruments had one also covering 20 c/s to 5 Mc/s. Another
exhibit of the latter firm was a television sweep generator giving six pre-set output frequencies from 45 to 216 Mc/s. The r.f. oscillator can be frequency modulated and used for measurement and testing purposes in connection with television aerials, feeders and receivers.

Among the various a.f. oscillators was a very compact RC model made by Ediswan for bench or rack mounting. It covers 1.4 to 5,500 c/s in seven ranges.

Meters.—A noteworthy feature of the exhibits was the large number of highly sensitive galvanometers. George and Becker, for instance, showed an instrument measuring only 3½ in square by 4 in high with a 7-cm scale and a 50-Ω coil. Used with a light beam, it has a sensitivity at 1 m of 30 mm/µA and a period of 1.2 sec. Cambridge instruments had a number of mirror-types, including a.c. models and vibration galvanometers. Baldwin showed a model having a 1 deg deflection for 0.05 µA, while Tinsley had an instrument with a multiple-reflection optical system multiplying the sensitivity six times and giving a deflection at 1 m of 10,800 mm/µA.

The more robust instruments for everyday use ranged from microammeters to heavy-current meters of all grades and included many multi-range test meters. Ferranti exhibited sealed types operating while immersed in hot water. Sangamo-Weston had meter-type movements fitted with contacts to operate as relays; the S124 closes a contact on 2.5 A.

Valve voltmeters have long been accepted as measuring instruments, and Avo exhibited an unusual pattern. Of more or less conventional form as regards the meter itself, it is designed for operation from a 9-V accumulator, the h.t. supply being derived from a built-in vibrator power unit.

The Dawe Instruments 613B requires no zero adjustment and covers 1 mV–100 V at 10 c/s to 1.5 Mc/s. The H.T.H. exhibited a d.c. millivoltmeter having an error of less than 0.2 per cent of full scale on all ranges. It covers 5 mV–1 V with an input resistance of more than 100 MΩ and includes a d.c. feedback amplifier. This principle of using a stable d.c. amplifier is also adopted by W. Edwards in an electronic microammeter having ranges with full-scale deflections of 0.05–500 µA.

The valve voltmeter is also applied to resistance measurement and British Physical Laboratories have a megohmmeter RM175-LZ, which covers 0.1 to 10 MΩ in six ranges. Measurements can be made at up to 1 kV and provision is made for pre-charging elements of a capacitive nature. Another example is the Electronic Instruments 20 Million Megohmmeter which covers 0.3 to 20 x 1014 MΩ in seven decades.

Sangamo - Weston Sensitol relay, Model S124

was the Sullivan aperiodic detector consisting of a robust microammeter and amplifier. It can be used on either high or low impedance circuits and covers the range 40 c/s to 20 kc/s.

Another useful accessory is a small amplifier for increasing the sensitivity of existing measuring equipment, especially of bridges, by amplifying the output before applying it to the null indicator. Dawe had one for including in their Universal Impedance Bridge, and Avo showed a versatile amplifier, which, when interposed between their Standard Signal Generator and Electronic Tester, provides facilities for measurement of capacitance, of "Q" and also for testing i.f. transformers. Measurements can, in many cases, be made with the component in situ. The amplifier is aperiodic over the...
Physical Society's Exhibition
range 30c/s to 1 Mc/s and functions as a flatly tuned amplifier from 1 to 20 Mc/s in switched bands. Inductance from 0.9 μH to 50μH and capacitance from 1 pF to 1,000 pF are covered by this Avo Electronic Test Unit.

Miscellaneous Measuring Equipment.—Apparatus for separating and measuring the component frequencies of a complex wave was shown by Wayne Kerr and also by Dawe. The former's Waveform Analyser operates on the superhet principle and gives voltage measurements of the individual frequencies from 50 to 20,000 c/s. Balanced detectors and crystal i.f. filters with an 8-c/s bandwidth are used, and the attenuation so obtained is about 30 db at 20-c/s from the mid-band intermediate frequency.

The model shown by Dawe also functions on the superhet principle and accepts a signal up to 16 kc/s. This is mixed with a local oscillator, passed to a balanced detector and

then to a very selective 20-kc/s i.f. amplifier. Measurements of the amplitude of the individual component frequencies are recorded on a built-in meter.

Several improvements have been embodied in the Marconi Instruments Circuit Magnification Meter. This is basically a direct reading "Q" meter with certain refinements, one being the monitoring by a differential method of the r.f. voltage injected into, and that developed across, the circuit under test. By this means the amplitude of the built-in oscillator is made relatively unimportant. The range covered is 15 to 170 Mc/s. Among the general-purpose wide-

range portable test sets was a new Avmeter of exceptional ruggedness and designed for rough handling. It has 18 ranges for alternating and direct voltage and current, also resistance. Taylor Instruments had a robust multi-range meter also with 17 ranges for a.c. and d.c.

Apparatus for determining the breakdown voltage of accessories, components or materials without having actually to destroy the part under test was shown by Airmecc. It is an ionization voltage tester (type 732) and gives an audible indication when the applied voltage, which is variable from 200 V to 5 kV, reaches the threshold of breakdown and ionization begins to occur.

Components.—A new range of T.C.C. capacitors has a plastic (polyethylene) di-electric. The case is of metal and the wire leads are brought out through bushes of T.F.E. (polytetrafluorethylene). These capacitors have exceptionally high insulation resistance of the order of 250,000 MΩ per μF, which is maintained at high temperatures, and a power factor of 0.0002. They are especially suitable for use in timing circuits and similar applications, and are made in a range from 100 pF to 5,000 pF.

The latest development in variable resistors was shown by Bero. This was a potentiometer-sealed in a metal case using rubber ceramic seals for the connections and a neoprene spindle seal. Cooling fins have been fitted, and the unit is contact on wire-wound potentiometers.

A switch of high current capacity and low contact resistance is a new product of Taylor Electrical Instruments. Primarily designed for use in multi-range instruments it is also sold separately. The shorting type will carry 10 A and is available in 12- or 18-way decks.

Materials.—Plessey's experience in powder metallurgy has enabled them to produce satisfactory substitutes for solid permanent magnets, laminations and high-frequency cores. The first, known as Caslox, is in use in pickups where a moulded magnet is a great help to designers. The substitution is known as Caslam, and can be used at power frequencies, as in fluorescent-lighting chokes; at audio frequencies, and at high frequencies up to at least 100 kc/s, as in the line-output transformer for a television receiver. The core need only consist of two parts, such as an E and an I, so assembly is absurdly simple compared with normal laminations.

Johnson Matthey had a display of silver-clad copper, brass, phosphorbronze and beryllium-copper for use as contacts in switches, etc. Rhodium-plated contacts, for variable resistors and the like, were also to be seen, as were the fine resistance wires with which variable resistors are wound.

Marconi Instruments circuit magnification meter

Airmec ionization tester for non-destructive voltage breakdown measurements

Wireless World May, 1949

Dawe wave analyser for measuring component frequencies of a complex wave

Wireless World May, 1949

Airmec ionization tester for non-destructive voltage breakdown measurements
ELECTRONIC CIRCUITRY

Selections from a Designer's Notebook

By J. McG. SOWERBY (Cinema Television Ltd.)

COINCIDENCE circuits have been widely used in nuclear research, but they have various applications of a more mundane nature, and that is the excuse for these brief notes.

As readers may know, a Geiger-Muller tube is commonly used for the detection of cosmic rays and the products of nuclear disintegrations. Such a tube can be made to provide a pulse each time a quantum or particle of sufficient energy is incident upon it, and the number of pulses obtained in a given time is a measure of the intensity of the incident radiation. To discover the direction from which radiation is coming, two or more G-M tubes are sometimes arranged in a suitable geometric array, and connected in a coincidence circuit. Fig. 1 shows how two tubes might be arranged, and it is obvious that any source of energy lying within the indicated solid angle will be "seen" by both of them, and that if the energy of the incident radiation is sufficient to penetrate both tubes, nearly simultaneous pulses will be obtained. Provided we can design a circuit to transmit a pulse (to some form of indicating device) whenever simultaneous pulses are obtained on two channels, we can record only the effects of a source lying within the solid angle.

Coincidence circuits to meet the requirements roughly outlined above are, of course, the small change of the nuclear physicist, and have been in use for many years. One type of coincidence circuit used by the writer recently is shown in Fig. 2, and the general design follows common practice.

The two inputs are applied to the two similar pentodes V₁ and V₂, which are normally at zero bias. It is assumed that the inputs, which are to be transmitted when in coincidence, are both negative-going. The essential feature of this class of circuit is that if either V₁ or V₂ is cut off, the remaining valve is "bottomed" so that the anode potential, Vₐ₁, is relatively low.

This is achieved by making R sufficiently large, and with most pentodes Vₐ₁ will be less than about thirty volts. The choice of R is dictated by the characteristic curves of one of the pentodes, as shown in Fig. 3. A load line LL₁ has been drawn on the curves of Fig. 3, from the h.t. supply potential through the knee of the zero-bias curve. This line represents the minimum value of R, and any value greater than this may be used; that corresponding to LL₂ probably represents a good compromise. A compromise is sometimes necessary, because the effect of the stray capacitance across R is to slow the action, and if R is too large this may become seriously disadvantageous. On the other hand if the minimum value of R (for a new valve) is chosen, it may well be rather too low for the same valve after several hundred hours of service, or for another sample of slightly different characteristics.

By now it will be obvious that if both V₁ and V₂ are conducting, Vₐ₁ will be very low in a good design—say 20 volts. If V₁ or V₂ is now cut off by an input signal, Vₐ₁ will rise to the value shown in Fig. 3—say 30 volts. But if V₁ and V₂ are simultaneously cut off Vₐ₁ will rise until it approaches the full h.t. potential. Consequently, for a single signal at either input Vₐ₁ rises by only a few volts, but for a dual signal it rises by anything up to two or three hundred volts. We may put as many pentodes in parallel as we please to extend the scheme to three- four- or many-fold coincidences. The double triode
Electronic Circuitry—

\(V_2 \) is used merely as a clipper\(^2 \) to ensure that only the large signals at the pentode anodes shall be transmitted. To obtain this result it is only necessary to make \(V_s \) greater than \(V_{an} \) of Fig. 3 by more than twice the grid base of \(V_s \). In practice \(V_s \) is conveniently between 50 and 100 volts, and then the current in \(V_2 \) is controlled almost entirely by the value of the common cathode resistor.

Overall then, on the receipt of two simultaneous signals of sufficient amplitude to cut off \(V_1 \) and \(V_2 \), a positive signal of large and controllable amplitude is obtained at the output. Under any other conditions no output is obtained.

Coincidence circuits such as these have applications other than those mentioned above. For example one can arrange matters so that an output signal is obtained only on the simultaneous interruption of two crossing light beams falling on to two photocells. By this means an indication is provided only when an object appears in a pre-determined position. As the circuit given is direct-coupled, slow-moving objects are easily handled.

Details of a simple time-base circuit of some interest have recently been published\(^3 \) in the U.S.A., and on enquiry the writer finds that the circuit has been used for some time past in this country as a pulse generator.

Simple Time Base

The circuit in question is shown in Fig. 4 and it will be noticed that it bears a family resemblance to the cathode-coupled multivibrator discussed recently. In this arrangement \(C \) is rapidly charged in a cyclic manner through \(R_k \) (about 1 k\(\Omega \)), \(V_1 \), and the h.t. supply in series; it is cyclically discharged slowly through \(R \) (0.2 to 1 M\(\Omega \)). Let us assume that the circuit is oscillating, and consider its behaviour through one complete cycle.

Suppose that the cathode of \(V_1 \) is so positive with respect to the grid that the valve is cut off; it follows that \(V_2 \) must be conducting. \(C \) now discharges slowly through \(R \) so that the cathode potential of \(V_2 \) "runs down" negatively. This position of the cycle represents the forward sweep of the time base. Eventually \(V_1 \) begins to conduct as its cathode potential approaches that of its grid. Because \(C \) represents an instantaneous short circuit, part of the current of \(V_1 \) flows through \(R_k \), so that the cathode potential of \(V_2 \) moves positively. This reduces the current in \(V_2 \) so its anode potential rises, taking with it the grid of \(V_1 \). This action is cumulative so that \(V_2 \) is abruptly cut off and a large positive bias is applied to \(V_1 \), which consequently takes a large pulse of current and recharges \(C \). As the replacement of charge in \(C \) approaches its conclusion, the current in \(V_1 \) falls, and \(V_2 \) begins to conduct again. This initiates another cumulative action in which the state of affairs is reversed, \(V_2 \) becomes fully conducting and \(V_1 \) is cut off by the fall in its grid potential. The discharge of \(C \) through \(R \) begins again, and the cycle is complete.

Obviously synchronisation can be effected by the injection of a signal into the grid of \(V_2 \) as shown in the diagram, and this is most effectively achieved by the negative-going part of any input waveform.

The output amplitude available from the circuit as it stands must be low (20 to 30 volts) for a reasonable approach to linearity, as the standing potential across \(R \) will be of the order of 100 volts and the sweep is essentially exponential. Alternatively \(R \) may be replaced by a pentode or cathode-follower discharge circuit consuming an approximately constant current. Again, \(R_k \) must not be too low or there will be insufficient loop gain for correct operation, nor too high or the flyback will be slow. \(R \) is probably best made variable as in the original design.

As a pulse generator, a low resistance, \(R_{an} \), is placed in the anode lead of \(V_1 \), and a negative pulse is obtained across it each time \(C \) is recharged. This is better than taking the positive pulse across \(R_{an} \), as for the same output amplitude it is easy to make \(R_{an} \) smaller than \(R \), so that stray capacitances assume less importance.

It is of interest to note that one can make good use of both pulse and saw-tooth outputs simultaneously. The saw-tooth could well be amplified by a cathode-coupled pair of pentodes (for example) for normal c.r.t. X-deflection in an oscilloscope, and the pulse is of the correct sign for the application of flyback suppression at the c.r.t. grid.

Pentodes or triodes can be used, but as a pulse generator the former are preferable. In either case the circuit has the disadvantage that the flyback pulse across \(R \) is coupled to the sync. terminals by the grid-cathode capacitance of \(V_2 \).

SUPERHETERODYNE TELEVISION UNIT

We are informed that the convention adopted for marking the polarity of germanium-crystal rectifiers has been changed to conform to that used for metal rectifiers. The plus terminal now corresponds to the cathode of an equivalent diode.

As a result, the "+" and "—" signs on the crystals in Fig. 1 (February 1949) should be interchanged.

The change of convention means that crystals are in existence marked in both ways and there is no external means of distinguishing them. It is, however, readily possible to do so with an ohmmeter. A test with an ohmmeter shows lower resistance when it is so connected that the positive of the battery is joined to the equivalent anode (i.e., the minus terminal on the new convention) than when the leads are reversed. Since the positive of the battery is joined through the circuit to the positive meter terminal, this means that under the new convention the resistance is connected with the positive meter lead joined to the positive crystal terminal.
VORTEXION LIMITED, 257-261 THE BROADWAY, WIMBLEDON, LONDON, S.W.19
Telephones: LIB 2814 and 6242-3
Telegram: "Vortexion, Wimb, London"
When Negative Feedback Isn’t Negative—

The simplest case is the one with zero phase difference between output and input voltages, because then the feedback voltage adds directly to \(v_1 \) to give the input voltage, \(V_f \). This can be shown in a simple vector diagram, Fig. 2.

![Fig. 2. Vector diagram applying to Fig. 1 when the output voltage is in phase with the input.](image)

The vector \(oa \) is drawn to represent \(v_1 \), and \(oe \) is drawn \(A \) times as long, to represent \(v_0 \). Being in the same direction, it represents an output exactly in phase with the internal input \((v_i) \), such as would be the case with an ideally simple cathode follower or 2-stage resistance-coupled amplifier. \(ob \) is then marked off along \(oc \) to represent the feedback fraction, \(B_v \); the external input, \(od \), is \(oa + ob \). (In a cathode follower, the whole of the output is fed back, so \(ob \) coincides with \(oc \), and the input voltage is greater than the output by the amount \(v_1 \).)

Since in this case all the quantities are in phase, it is much easier to add them by simple arithmetic than to draw a vector diagram. The only purpose of Fig. 2 was to show the principle of the thing, for comparison with other cases. And of course the \(j \) method is quite unnecessary in this case, because \(j \) indicates the out-of-phase component, which is non-existent.

Next, consider a simple resistance-coupled audio amplifier, Fig. 3 (in which provision for grid bias and other details have been omitted for clearness). The only visible components whose behaviour depends on frequency are the coupling capacitors \(C_1 \) and \(C_2 \), and they are normally chosen so that their reactance at all working frequencies is negligible, in which case the output voltage is in phase with the input and Fig. 2 applies.

At very low frequencies, however, the reactance of \(C_1 \) is appreciable in comparison with \(R_2 \), and these two components form a sort of potential-divider. Only part of the output of \(V_1 \) reaches the input of \(V_2 \). What is more, the current through a capacitor leads the voltage across it by 90°; and, since the voltage across \(R_2 \) must be in phase with the current through \(R_4 \) and \(C_1 \), the voltages across \(R_4 \) and \(C_1 \) are 90° out of phase with one another. So when the frequency is low enough for the reactance of \(C_1 \) to be appreciable, not only does the amplification begin to drop, but also the phase of the output starts to lead the input.

As a matter of fact, it is the phase that is the first to start changing noticeably. This doesn’t matter in a “straight” amplifier used for listening purposes only, because the ear cannot detect even the maximum phase shift. But if negative feedback is used it does matter. To see how, we must go into the matter more closely.

Assume that the signal input to \(V_r \) can be varied in frequency but is constant in amplitude, yielding a certain output \((v_{o1}) \) at the node. If the resistance \(R_2 \) is very large compared with \(R_1 \) and \(r_{2a} \) (the anode resistance of \(V_1 \)), then the additional impedance of \(C_1 \) at low frequencies will not affect \(v_{o1} \) appreciably. So we shall assume that \(v_{o1} \) is constant too, and therefore can be represented by a vector line of fixed length (\(oe \) in Fig. 4).

The voltages across \(C_1 \) and \(R_2 \), which we can call \(v_{c1} \) and \(v_{r2} \) respectively, can also be represented by vectors, which will have to fulfil two conditions. The first is that they must of course always add up (vectorially) to equal \(v_{o1} \). And since, as we have just seen, they differ in phase by 90°, their vectors, \(fe \) and \(of \) in Fig. 4, must always be at right angles to one another.

You can make a working model of this vector diagram under these conditions by sticking pins in the points \(o \) and \(e \) and pushing the right-angled corner of a card between them, ignoring the part of the card below \(oe \). One edge of the card will form the vector \(of \) and the other \(fe \).

Except at low frequencies, the reactance of \(C_1 \) is so small compared with \(R_2 \) that the voltage across it \((v_{c1}) \) is negligible; this condition is represented by holding the card so that its edge of coincides with \(oe \), and \(fe \) disappears. But as the frequency is increased, \(v_{c1} \) correspondingly increases, as can be shown by bringing \(fe \) into view, still keeping the card pressed against the pins.

![Fig. 4. Vector diagram applying to the \(C_1 R_2 \) portion of Fig. 3 (and also to \(C_2 R_4 \)), showing how \(v_{o2} \) is related to \(v_{a1} \).](image)

To do this you must turn the card anti-clockwise, so that its edge of indicates a phase-shift, \(\phi \). But at first its length is hardly affected. As \(v_{c1} \) grows, however, \(v_{r2} \) dwindles at an increasing rate; until finally, when \(v_{c1} \) becomes relatively large, \(v_{r2} \) rapidly disappears while the angle of phase difference approaches 90° quite slowly. The corner of the card (as is proved in geometry) traces out the circumference of a semicircle, as is shown in Fig. 4.

To make the changes in \(v_{r2} \) and \(\phi \) clearer in relation to frequency, they can be plotted on a frequency base as in Fig. 5. The frequency scale shown holds good for all combinations of \(C_1 \) (in \(\mu \)F) and \(R_4 \) (in MΩ), which when multiplied...
If an amplifier could be made strictly according to Fig. 3, there would be no limit; but unfortunately there are the "invisible components"—stray capacitances. One lot of these, including the input capacitance of V_2 and the output capacitance of V_1, comes across R_2, so we shall call it C_a. By using Thévenin's theorem we can boil down the parts of the circuit concerned to Fig. 6, in which R is equal to R_{1a}, R_1 and R_2 in parallel, fed by a generator giving a constant voltage equal to v_{a1} when C_a is removed. This voltage has been marked v_{b1}. Now the only difference between this problem and the one already solved for C_1R_4 is that the desired v_{b2} comes across the capacitance instead of the resistance; so of course one wants this capacitive reactance to be as large as possible relative to R. The appropriate vector diagram is like Fig. 4 in reverse. The frequency curves have the same shape as those in Fig. 5 except that they too are reversed; the amplitude ratio is practically 1 until some fairly high frequency, when it begins to fall off, and at the same time the phase shift begins to grow—but this time it is a lag. As with C_1R_4, at the frequency which

Fig. 6. The effect of stray capacitance in Fig. 3 is made clear with the help of this "equivalent circuit."
When Negative Feedback Isn't Negative—

makes the reactance equal to the resistance, the phase shift is 45° and the amplitude ratio 0.707 (i.e. $1/\sqrt{2}$). Obviously the lower the combined valve and coupling resistance (R) the higher the frequency before the phase begins to shift and amplification falls off.

Putting all this together, then, the frequency characteristic of a resistance-coupled amplifier with one series-C coupling and one shunt-C stray capacitance, and leaving out of account any other influences such as power-supply impedance, is as shown in Fig. 7. The two curves together specify A, $|A|$ being the symbol for its numerical magnitude alone. The two sloping ends are copied from Fig. 5 and its mirror image, and can be made to apply to any amplifier by placing them so that the points where $|A|$ has dropped to 0.707 times maximum come where the appropriate resistances and capacitive reactances are equal. The amplifier frequency band is commonly regarded as extending from one of these frequencies to the other.

One of the objects of negative feedback is the widening of this frequency band. How it does this can be seen from Fig. 2. Let ωc represent the wanted output. Then ωa represents the input required to give it, with no feedback. Over the flat-top part of Fig. 7 the length of ωa will be constant, corresponding to constant amplification. But at low or high frequencies, where the amplification falls, the length of ωa has to be increased to keep the output constant. For example, at the medium frequencies, where $|A|$ drops to 0.707 of its maximum, the input voltage must be increased by the factor $1/0.707 = 1.41$.

With feedback, a greater input, $\omega a + \omega b$ say, is needed, so $|A|$ is low even over the flat region. But ωb, which can be made by far the larger part of $\omega a + \omega b$, is a constant proportion of ωc, so a falling off in the internal gain of the amplifier, which affects ωa only, has relatively little effect on the overall gain. It must be remembered that the phase is affected too, so at the high frequency end the vector diagram becomes something like Fig. 8a.

ωb is of course unchanged, but ωc has been made 1.41 times longer and given the corresponding phase lag of 45°. The required input, given by vectorially adding ωb and ωc, is ωd, which is much less than 1.41 times longer than ωb, and also its angle of lag is much smaller than ϕ. The more negative feedback is used, the less is the phase shift and drop in amplification due to whatever ωc does.

So the effects of negative feedback on the frequency characteristic, Fig. 7, are: (1) The flat top is lowered (from A to A/$(1+AB)$, as we saw at the beginning); (2) the fall-off at each end is less pronounced; (3) the phase shift at each end is less. But the benefits (2) and (3), can’t last for ever as the frequency is raised. In the end the internal input, represented by the vector ωc, must become large—even larger than ωb—and and its phase shift approaches 180°. This is where things begin to get interesting. Fig. 8(c), for example, shows the condition where each of two similar RC circuits is giving a lag of 60° and from Fig. 5 it can be ascertained that the relative amplification is 0.5 \times 0.5, so ωc must be four times as long as in Fig. 2. In spite of this, ωd is actually shorter than in Fig. 2, so the overall gain is higher. (This assumes, of course, that the amplifier can handle the internal input without being overloaded; if not, distortion may be violent). So instead of the overall amplification falling off, as it would with no negative feedback, it rises. This can’t go on, though; as ϕ approaches 90° per RC circuit the internal amplification drops off so rapidly that ωc becomes immense, and ωd likewise.

But now consider what may happen with three similar RC circuits. At the frequency where each introduces a lag of 60°, the total lag is 180°. And if ωa in Fig. 2 was one-eighth of ωb, it is now equal to it, so we get the result shown in Fig. 8(d), where ωd has shrunk to nothing. In other words, the amplifier will give output at this frequency without any input at all. In still other words, it is self-oscillating.

The same thing is liable to happen at a frequency lower than the working range, if there are three RC circuits of the series-C type. At first it might seem a very unlikely coincidence that ωc would be exactly equal to ωb when ϕ was exactly 180°, and so the risk of oscillation would be small. But this is not so. Make ϕ in Fig. 8(d) any length you like, less than ωb. Then the external input, ωd, must be in phase with ωb. So if ωd is reduced, say to zero by shorting the external input terminals ωc must increase correspondingly to preserve the balance. But that makes ωa and consequently ωd increase, so ωc must increase more. And so on, until the amplifier is overloaded and its amplification reduced to the point at which $\omega b = \omega c$ and oscillation is maintained at a steady amplitude.

We have just found that if an
amplifier circuit embraced by a negative feedback loop contains three similar RC circuits there will be oscillation unless AB is less than 8. (By "similar" I mean having the same RC values and tending to cut frequencies at the same end.) With four such circuits the critical phase shift in each is only 45° and the ratio in each (see Fig. 5 again) is 0.707, so the oscillation value of AB is only 1/0.707^4 = 4. But we can easily see from the diagrams that even if feedback is kept well below these fatal figures it may still be enough to raise peaks, as in Fig. 4; and these may cause things like a gramophone scratch and motor rumbles to be brought into undesirable prominence.

If a transformer is included in the system, the danger is greater, at least at the high-frequency end. As is explained in the books, at high frequencies a transformer usually becomes approximately equivalent to a series resonant circuit, composed of the leakage inductance and the stray capacitance. A feature of such a circuit is that the phase angle between the output (across the capacitance) and the input (across the whole) swings from a small lag below the resonant frequency, to 90° at resonance, and approaches 180° above resonance. So feedback across one transformer and one RC circuit can easily cause high-frequency oscillation.

It can be shown that at the low-frequency end the transformer is roughly equivalent to one RC circuit.

To make an extremely stable and level amplifier it is necessary to use a lot of feedback. Yet, paradoxically, in using it one seems certain to run a serious risk of causing oscillation and peakiness. The advice one usually gets about this is to see to it that the amplification has fallen well below the danger point at the frequencies where the phase shift is 180°. But, as we have seen in arriving at Fig. 5, the drop and the shift are bound together by the nature of the circuit.

One line of policy is to feed back over only one stage, including no transformer. But one stage with heavy feedback gives hardly any amplification. Two stages, again with no transformer, offer more useful possibilities, without risk of oscillation, but can develop peaks. Is it possible to include more than two phase-shifting circuits (counting one transformer as two circuits), to combine high amplification with a full measure of the benefits of negative feedback? If one adopts what would normally be a sound economic principle — to design each stage to cover the same frequency band — the answer would be No. But if you try combining the effects of circuits having different cut-off frequencies you will find that more feedback can be used before peaks appear. In particular, if three shunt-C circuits are included, as there usually will be in three stages, it is best to make one of them cover a narrower frequency band than the other two.

The truth of this can be shown in a more professional manner by the "j" method; and anybody who wants to go into the matter more deeply is advised to consult an article by C. F. Brockelsby in the March 1949 Wireless Engineer. He shows how one can design for "maximal flatness," which means "staggering" the cut-off frequencies of the circuits so that feedback can be used to extend the frequency coverage as far as possible, just short of allowing peaks to appear. The tendency to peak, controlled in this way, is useful for squaring the shoulders of the amplification frequency curve, without going so far as the curve of Fig. 9.

If your amplifier gives trouble when you feed back over three stages, then try using a low anode-coupling resistance for the middle stage and higher values for the two outer ones. Or, if a transformer is included, make sure that the other circuits cut off at a higher frequency. Of course, it is best to work out the design fully and check by tests; but the foregoing trial-and-error hints are better than nothing.
Unbiased

Radio Tompions Wanted

TIME switches were, of course, in use long before the days of radio but with the coming of broadcasting they entered a new field of usefulness. They enabled us to select our programmes for the day and leave the time switch to do the necessary switching on and off for us. The popularity of these programme clocks was not long lived because, I think, like Macbeth, they were in advance of their time. Lately, however, they have appeared again.

Now this, in my opinion, is all to the good but I, for one, should like to be able to select my programmes not only for a day but for a whole week ahead so that I need only look at the Radio Times once and then put it out for salvage. Unfortunately, however, so far as I know none of these programme clocks enables me to preselect my entertainment for even twenty-four hours ahead, let alone a week.

The sort of gadget which I and a lot of other listeners want is one which will enable us to flit from station to station picking up the various items we want regardless of wavelength. My requirements are not really extravagant for I only wish to be able to change at will from the "Home" to the "Light" wavelength and vice versa; I do not even demand the Third Programme. Those who do demand the Third Programme are usually content to remain on it and want no truck with Dick Barton and similar characters.

Third Programme Listener.

I am well aware that I could easily rig up what I want by means of two programme clocks and a little juggling with the innards of a preset type of push-button set but I am getting old and well-striken in years and want to be able to buy a ready-made outfit. Surely the ancient skill of the horologist, which is responsible for the complicated evolutions performed by the famous clocks at Strasbourg, Prague and Stockholm, to mention three among many, is capable of tackling this small job. Is there one in this country upon whom the mantle of Thomas Tompion has fallen or must we send abroad for the necessary chronological craftsmen?

Personal Participation

I was very interested in "Dial-list" reference in the March issue to the different sound levels at which listeners prefer their programmes. As a family man I fully endorse his remarks regarding the noise level normally produced by a youth, but, having silently suffered so often during Mrs. Free Grid's tea-time talks for tired tale-bearers, I consider the sound level maintained by the adult female far in excess of that of the younger generation.

However, be that as it may. It was his reference to the likes and dislikes of listeners regarding the volume level of broadcast programmes which particularly interested me. It recalled to my mind a gadget demonstrated recently to a friend of mine by an enthusiastic experimenter in Gipsy Hill, South London. Its point of interest lies in that it gives a feeling of personal participation in the programme broadcast. It consists merely of a number of metal knobs—mounted on a suitable little "keyboard"—which are connected to the aerial terminal of the set. By touching the keys, and in this way using the body as an aerial, the volume is increased at will and, moreover, instantaneously. This is just the thing for those who think they can improve on the B.B.C. renditions. By incorporating a number of "keys" the designer has provided the humble listener with an opportunity to display his musical ability.

Itinerant Tuners

No doubt a goodly number of the older generation of W.W. readers will recollect pre-broadcasting days, when the main source of music in the home was the ubiquitous piano. At the keyboard the pig-tailed daughter of the house used to sit and thump out a travesty of Rachmaninoff's Prelude in C Sharp Minor. Not even Mr. Punch's famous joke about the execution of such females could stem the flood of base and bass noises which she produced. But it is an ill wind that blows nobody any good, and the itinerant piano-tuners reaped a goodly harvest. Often these people were men of foresight and initiative who realized that the average householder was not sufficiently musical to know when his piano needed tuning, and so did not call in the local piano-tuner. There were, therefore, good pickings to be had by the independent, itinerant tuners who went from door to door with their bag of tools.

Those days, however, have long since passed, and the pig-tailed, piano-thumping daughter of the house has grown into a respectable matron with daughters of her own who can get equally excruciating noises out of a wireless set by tuning it "on edge." Even push-but-
LETTERS TO THE EDITOR

Pulse Code Modulation • Clarity in Circuit Diagrams • Improving Relay Circuits • Improvised E.H.T. Supply • High-gain Television Aerials

P.C.M.

THE advantage of pulse code modulation (your March issue) lies in the fact that noise other than quantizing noise can be practically eliminated even though the transmission medium is noisy, always provided that the presence or absence of each pulse can be detected. The limit to the amount of noise which can be present arises when the number of errors in detecting the presence or absence of these pulses is no longer negligible. This therefore determines the minimum power which is required for a particular system.

All systems, so far described (to my knowledge), make use of a binary scale, so that the 'weight' of pulses in a seven-pulse code, as described by Thomas Roddam, are respectively 1, 2, 4, 8, 16, 32 and 64 units. Thus a random error in detecting the seventh pulse can produce 64 times more noise voltage in the output than a similar error in the first pulse. Thus, for a certain minimum noise output, the number of errors which can be tolerated is less for the heavily weighted pulses. This suggests that a larger portion of the transmitted energy should be devoted to these 'heavy' pulses. This might be achieved by increasing the pulse amplitudes of the heavier pulses, or increasing their widths. The latter method would generally require a larger bandwidth for a given number of pulses.

The practical improvement which could be obtained by such a method would depend on the characteristics of the particular pulse reforming circuit at the threshold of failure. It is likely that the decrease of errors with increase of power follows a high power logarithmic law near the threshold, in which case the improvement would not be as great as at first appears.

D. G. HOLLOWAY.

The author of the original article writes:—

Certainly, false operation of the decoder by noise will be more disturbing if a 64-unit pulse is simulated than if a 1-unit pulse is simulated: neglecting the effect of the compressor-expander a noise-pulse of 50 per cent modulation will be produced. We can prevent this by replacing the 64-unit pulse by two 32-unit pulses. We then have three chances out of eight of getting a 25 per cent noise pulse, instead of one in seven of a 50 per cent noise pulse and one in seven of a 25 per cent noise pulse. The bandwidth must be increased by 14 per cent. I suspect that the result of this rather involved horse-dealing is to leave the system exactly where it was before. Mr. Holloway talks of increasing the pulse amplitudes, but of course this really means, in most practical cases, reducing the amplitudes of the 1-unit (etc.) pulses; this, I think, would degrade the system.

The limits which can be reached are discussed in my article 'Communication Theory.' * PCM comes very near to the limit which can be attained. Allowing for the margins needed for path variability and other practical aspects I think it probable that PCM systems will always be operating so far from threshold that the noise statistics becomes invalid. As Eddington has pointed out, there is a finite possibility that the kettle will freeze when put on the gas: natural phenomena do not seem to follow statistical laws right down to the tail of the curves. In any event quantizing noise will form the practical limit.

THOMAS RODDAM.

*See p. 162, this issue.—Ed.

Circuit Symbols

Having on many occasions found it necessary to redraw published circuit diagrams on conventional lines before I could fully understand them, I was interested to read the comments made by Mr. L. H. Bainbridge-Bell in your December, 1948, issue on the recently issued BS530, "Graphic Symbols for Telecommunications." Part of one paragraph states, "Diagrams should be drawn so that the main sequence of cause to effect goes from left to right ... When this is impracticable, the direction should be shown by an arrow." The reason is, of course, that we are used to thinking in terms of from left to right—most writing, graphical recording, and keys to group photographs, etc., being laid out in this convenient manner. Any departure from the

The Imhof Standard Enclosed Rack has been designed to fulfil a wide demand for an enclosed rack of functional design, yet of really modern and pleasing appearance. The two side doors are hinged, and are detachable, should several frames be required to be bolted together. A hinged back door is also fitted. Adjustable chassis supports, chassis, panels and panel handles are available to suit. These racks are being produced in two heights, 6' and 4', and will be available at an early date. An illustrated catalogue giving full details and prices is being prepared and will be available shortly.

ALFRED IMHOF LTD.

112-116 NEW OXFORD ST., LONDON, W.C.1
TELEPHONE MUS. 7878
Letters to the Editor—convention calls for closer concen-
tration on part of the reader, and may lead to misunderstanding
or mistakes.

Technical lecturers and writers too often arrange their demonstra-
tions and diagrams in a manner which involves a minimum amount of
preparatory work, regardless of the fact that this may cause others
unnecessary mental strain. Then they wonder why the subject has
failed to arouse interest or has not been thoroughly understood.

Something of this sort may, perhaps, be responsible for the bridge-
symbol being "officially depre-
cated" when illustrating crossing of
conductors. Like Mr. Bainbridge-
Bell, I trust that Wireless World
will continue to set a good example
by laying-out diagrams in the
clarest possible form. Doubtless
the draughtsmen will be pleased to
do so now that they know their
extra efforts are appreciated by at
least two readers.

J. H. SAVAGE.

Welling, Kent.

Long-range Television

CAN anyone explain the absence
from the British market of high-
gain television beams suitable
for the "fringe" areas ? I have used
3- and 4-element arrays for many
years now with tremendous success,
and it is very disheartening to pick
up every American magazine and see
so many of these very excellent
high-gain beams with folded dipoles
for sale.

Can some of our manufacturers
be persuaded to produce one, thus
extending the normal 60-80 miles
fringe to 100-120 miles.

W. GEARING-SHERRATT.

Newport, Isle of Wight.

Long-delay Relay Circuit

A S co-patentee (with the Mar-
coni Company) of this circuit
(designed for the same purpose) I
was interested in the note by J.
McG. Sowerby on p. 51 of your
February issue. One slight im-
provement on the circuit shown in
Fig. 5 was included; a resistor
was connected in series with the
grid connection in order to limit
the rapidity of resetting. By proper
choice of this resistor the circuit
can be made to tolerate short inter-
ruptions of supply of, say, one
second or less without any delay
when the supply is restored.

This circuit has been used exten-
sively in the type TME2 frequency
measuring equipment, made by
Marconi Instruments, and also in
some radar equipment during the
war (G,41 range calibrator). In the
latter equipment the valve used in
the delay circuit was also used as
a radio-frequency cathode-follower.
The TME2 master oscillator has
been re-designed recently to have a
day-to-day frequency stability of
the order of 1 in 100 or better and
a drift of not more than about 3 in
100 per month. While this was
being done the delayed switching
arrangements were altered to an en-
tirely electronic control in which
the potential across the cathode re-
sistor is used to key a switch-on
signal to the gas-filled relay. This
relay is normally cut off by a.c.
bius.

W. S. MORTLEY.

Marconi's W.T. Company,
Chelmsford, Essex.

Auto-transformer E.H.T.

CONSTRUCTORS using the ex-
Goyt, VC9y7 c.r. tube, as in
the "surplus" television receiver
(Wireless World, July, 1948) may
be interested in a simple method for
obtaining the 2.5 kV necessary for
this tube. A mains transformer is
used, and this may be of the usual
type having taps at 230 and 250
volts r.m.s. This is fed to a volt-
aging equipment, made by
Standard Telephones and Cables
for the B.B.C. Welsh Regional
station at Washford, Som. Notable
features of the transmitters, which
replace 60-kW equipment, include
the use of a single grounded-grid
valve in the final r.f. amplifier, a
cathode-follower driven Class B
modulator, electrically operated
tuning controls and performance
of less than 1% distortion from
50 to 10,000 c/s up to 35% overall
modulation with 36% main con-
version efficiency.

OUR COVER

Two new 100-kW transmitters,
one of which is shown on our
cover, have been supplied by
Standard Telephones and Cables
for the B.B.C. Welsh Regional
station at Washford, Som. Notable
features of the transmitters, which
replace 60-kW equipment, include
the use of a single grounded-grid
valve in the final r.f. amplifier, a
cathode-follower driven Class B
modulator, electrically operated
tuning controls and performance
of less than 1% distortion from
50 to 10,000 c/s up to 35% overall
modulation with 36% main con-
version efficiency.

winding which is connected should be
chosen so that the other end of
the winding has the best insulation
to earth, and the end of the
primary winding to which it is con-
ected must be found by trial, so
that the voltages are in phase.

The voltage obtained from this
transformer is then 700 + 250 = 950
volts r.m.s. This is fed to a volt-
age doubler, so that the final volt-
age is 2 x 950 x 1.41 = 2,680 v peak.

A circuit which has been in use
for several months is shown, and
here several other windings on the
isolating transformer are made use
of. However, this transformer is
not necessary if a form of voltage
doubler is used which has the same
effect as the above. It is now
possible for the chassis joined to one
side of the mains, as in "universal" television receivers.

Purley, Surrey.

J. CHARNOCK.

Copenhagen Comments

A RE P. Batham Jones' figures
are correct in his letter in the March
issue? According to the list pub-
lished in Wireless World (Novem-
ber, 1948), Holland and Belgium
each have one exclusive channel
(746 and 926 kc/s respectively) and
one shared channel (1007 and 620
kc/s respectively). Belgium may
have been allocated lower fre-
quencies because of greater attenua-
tion in that country.

Much more glaring is the ap-
pearance of Spain and Germany:
that country.

Spain has been denied
a frequency in the long-wave band,
so incidentally has Italy; both are
large countries. The virtual elim-
da of Germany from the ether
seems to be the purpose of the Plan.
Germany is given only three
channels (all shared) over 300 m,
none of which is in the long-wave
band. I think the result of this
policy will be the appropriation
of a number of additional channels
by German high-power transmitters
to a later date, and perhaps the
Deutschlandsender will join Luxem-
bourg in a hunt for the quietest spot
on the long waves.

To end on a domestic note How
am I to receive the Third Pro-
gramme after 1950 when the trans-
mitters on 204 m are moved to
194 m, as my sets do not tune lower
than 200 m? The 514 m transmis-
tor is no use to me.

R. CLEGHORN.

Beverley, E. Yorks.

* P. Batham Jones said "sub-
stantially clear channels." The
channels are shared with lower-
powered stations at a considerable
distance from the countries in
question.—Ed.
DURING March, maximum usable frequencies for this latitude decreasend daily by day, but increased considerably at night. These are the normal seasonal variations, which should now continue towards midsummer. The month was somewhat more disturbed than February, ionosphere storms being observed on 4th, 14th-19th, 22nd-24th, 29th and 31st; the 17-19th and 22nd-23rd were particularly disturbed. Working frequencies for the month were generally rather high, although reception conditions varied from circuit to circuit. Thus, while South American transmissions were received quite well, on the Antipodes and North Atlantic circuits reception was generally poor. At times the maximum usable frequencies reached very high values, particularly in southerly directions. Thus Alexandria Palace sound and vision transmissions were received in Cape Town quite frequently, while, conversely, in England G6DH has reported a contact with South African amateurs on 50 Mc/s towards the end of the month.

Although the rate of incidence of Sporadic E was less than in February, it was still abnormally high, and very much greater than the corresponding values for the previous years.

Seven "Dellinger" fadeouts were recorded in March (6th, 21st, 23rd, 26th, 28th, 29th and 31st), the fadeouts on 26th and 28th being particularly violent.

Sunspot activity in March was considerably less than in February. Only two large groups crossed the central meridian of the sun (on 15th and 19th), and they were very probably associated with severe reception disturbances which occurred around that period.

Owing to the generally unfavourable weather conditions, long-range tropospheric propagation was observed on relatively few occasions.

Forecast—During May m.u.fs should continue to decrease by day and increase by night, but moderately high frequencies will remain of use for considerably longer periods than during April, because of the longer duration of daylight at this end of the month. There will be in May, therefore, less change in working frequencies as between night and day than in April.

Except on southerly transmission paths, daytime communication on very high frequencies (like the 28-Mc/s band) should be relatively infrequent. However, over many circuits frequencies as high as 15 Mc/s will remain usable till well after midnight, and during the night frequencies lower than 11 Mc/s should not really be necessary at any time.

The E and the F₂ layers will largely control transmission for distances up to about 1,800 miles, and for these distances daytime as well as night-time working frequencies should be higher than during April.

Sporadic E usually increases sharply in May in its rate of incidence. Transmission by way of Sporadic E may very frequently be possible at irregular times for distances up to 1,400 miles on frequencies exceeding 21 Mc/s. Frequencies as high as 60 Mc/s may be occasionally reached for a very short time.

Below are given, in terms of the broadcast bands, the working frequencies which should be regularly usable during May for four long-distance circuits running in different directions from this country. (All times GMT.) In addition, a figure in brackets indicates the highest frequency likely to be usable for about 25 per cent of the time during the month for communication by way of the regular layers:

<table>
<thead>
<tr>
<th>Location</th>
<th>50 Mc/s (20 Mc/s)</th>
<th>15 Mc/s (20 Mc/s)</th>
<th>10 Mc/s (20 Mc/s)</th>
<th>5 Mc/s (20 Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montreal</td>
<td>0000 11 Mc/s (16 Mc/s)</td>
<td>0700 11 Mc/s (15 Mc/s)</td>
<td>1000 15 Mc/s (20 Mc/s)</td>
<td>1400 17 Mc/s (25 Mc/s)</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>0000 15 Mc/s (20 Mc/s)</td>
<td>1000 17 Mc/s (25 Mc/s)</td>
<td>2100 17 Mc/s (23 Mc/s)</td>
<td>2300 15 Mc/s (20 Mc/s)</td>
</tr>
<tr>
<td>Cape Town</td>
<td>0000 17 Mc/s (23 Mc/s)</td>
<td>0100 15 Mc/s (19 Mc/s)</td>
<td>0600 17 Mc/s (25 Mc/s)</td>
<td>0700 21 Mc/s (29 Mc/s)</td>
</tr>
<tr>
<td>Chungking</td>
<td>0000 11 Mc/s (15 Mc/s)</td>
<td>0400 15 Mc/s (20 Mc/s)</td>
<td>0600 17 Mc/s (24 Mc/s)</td>
<td>1000 15 Mc/s (19 Mc/s)</td>
</tr>
<tr>
<td></td>
<td>2100 11 Mc/s (15 Mc/s)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

During May ionosphere storms are not usually prevalent, nor are the effects of those which do occur often disastrous to radio communication. At the time of writing it would appear that storms are more likely to occur during the periods 7th, 12th, 15th-18th and 22nd-24th, than on the other days of the month.
RANDOM RADIATIONS

By “DIALLIST”

Circular Television Images

Two kind correspondents, writing from places in the United States a long way apart, send me slightly different versions of a delightful “explanation” of the launching of a television showing circular pictures on the American market. If it isn’t true, it is anyhow ben trovato. A number of the designers and the research engineers of the company concerned, the story goes, served for long periods in the U.S. Navy during the war. There they grew so accustomed to viewing the world through portholes that any non-circular vista came to seem unreal! Hence their craving for round images and the latest thing in American television receivers. On second thoughts, though, it’s not quite the latest thing, for the Hallicrafter people have gone one better. They have two receiver models, with seven-inch and ten-inch tubes respectively, which incorporate something quite new in the way of presentation. The normal image on the screen is rectangular with the $4/3$ ratio used in the U.S. But suppose that there is something near the middle of the picture that you’d like to see on an enlarged scale. All you do is to press a button, whereverupon the entire screen is occupied by a circular picture showing, considerately magnified, just the central area of the original image. No details of “how it works” are given; but I expect that the method employed is akin to that of the high-speed time bases, which could be brought into play at will in some wartime radar sets. Electrostatic c.r.t.s. were used in these, the normal X-plate voltage being of the order of $1,000V$. By turning a switch the X-plate voltage could be increased to $4,000V$, with the result that the whole screen was occupied by only about one quarter of the original trace. I’m not suggesting that electrostatic tubes are necessarily employed in the Hallicrafter sets. I’m just indicating one way in which the magnification of part of the image could be accomplished. If pressing the button considerably increased both X and Y deflecting voltages, the greater part of the image would be off the tube altogether and the central part of it in much magnified form would occupy the whole of the screen. It’s certainly good sales engineering and our folk might give it a thought.

Television in Europe

At the R.C.M.F. Exhibition I had talks with several visitors from Continental countries, all of whom were enthusiastic about the products displayed on the stands. Two of them, one from Denmark and one from France, told me that they had spent the previous evening watching the television programme. It was the first time that either had seen 405-line post-war television and they were very much impressed by the steadiness, the brilliance and the definition of the images. The Frenchman wondered whether his country had not been a little hasty in deciding to plump for 819 lines. The Dane said: “It will be about two years, I think, before we decide what standard to adopt. A great deal may have taken place in television development in that time. I do feel, though, that we should tackle the problem by realizing that modulation bandwidths must necessarily be limited and that to get a

A New Solder

If you’ve ever had a job of soldering to do on stainless steel, nickel or other “difficult” metals you’ve no doubt realized that, even with the correct special flux, a neat, firm joint takes a bit of making. Whilst talking to Richard Arbib on the Multicore stand at the R.C.M.F. show I referred to this and said what a pity it was that cored solders were useful only for the “easy” metals. For answer he picked up a piece of 4-in clockspring, still wearing its familiar blue surface, clamped it into a small vice and then ran solder on to it like butter on to hot toast, using an ordinary electric iron and a piece of cored solder of a brand new kind. I was told that it dealt just as easily with stainless steel and other metals classed as difficult. If that is so it will be a heaven-sent boon to radio factories and amateur workshops alike.

LIGHTWEIGHT PICKUP

The movement of this pickup is similar in design to that used in the original “Hypersensitive” and Type 12 models, and consists of a tubular high-permeability iron armature into which miniature needles are inserted as a push fit, and locked by wedge action under the frictional drag of the record while playing. The weight on the needle point is 1/16 oz.

The most significant change in the new Type 14 design is in the tone arm, which is a moulding of trapezoid section. This gives excellent torsional rigidity and should remove all possibility of resonances in the middle of the frequency spectrum.

It is stated that the response, with the customary bass correction, is substantially linear from 50 to 8,000 c/s. A bass compensating circuit is incorporated with the matching transformer, the output of which is $14V$ on an average record. Without the transformer the equivalent terminal voltage of the pickup is $6V$.

The pickup is designed to use “Columbia Miniature 99” steel needles and a permanent sapphire stylus is also available. To meet the demand of those who think that fibre needles are necessary, the “Columbia Miniature Thorn” needles have been introduced together with a neat and efficient re-pointing machine.

The price of the No. 14 pickup is £4 16s 8d including matching transformer, or without transformer (Type 14A).

New Marconiphone Type 14 pickup and accessories.

£3 118 8d. Sapphire-pointed needles cost 17s 5d each, and the price of the Columbia Thorn needle sharpener is 10s 6d, all prices including tax.

The pickup and its accessories are marketed by E.M.I. Sales and Service, Ltd., Hayes, Middlesex.
good service we must use the bandwidth available to the best advantage." That seems sound common sense to me.

Technical Terms

The rapid progress made nowadays in radio and kindred techniques makes the coining of new technical terms constantly necessary. Sometimes existing words are given new specialized meanings (some forty years ago a cat's whisker meant nothing but a strand of pussy's moustache; a grid was a kitchen utensil and nothing but that; the only flip-flop known was part of the equipment of the White City amusement park); sometimes entirely new words are coined. They're not always very beautiful and too often they are hideous hybrids of Latin and Greek. But they have the advantage of possessing one meaning only and they thus serve very useful purposes. This country and the United States seem to be the most fruitful sources of new technical words, but they soon become international. In the Latin Countries they are generally taken over as they stand, except for minor adjustments in the spelling where necessary. German and some Scandinavian tongues translate them literally before adopting them: "Television," for example, becomes simple "Telévisión" in French, but in German it is "Fernsehen" and in Norwegian "Fjernsyn."

Two interesting newcomers to the list are, "Miniaturization" and "Tropicalization," both of which seem to have secured international acceptance. I should, perhaps qualify the bit about technical terms having one and the same meaning everywhere. Generally speaking, that's true; but there's a regrettable tendency in some countries to depart from the special meanings accepted in the great majority of others.

"W.W." **INDEX**

The index to the material published in Volume LIV of Wireless World (January to December, 1948) is now available from our Publisher, price is 1d by post. A cloth binding case is also available which, complete with index, costs 4s 6d, including postage. Our Publisher is able to undertake the binding of readers' copies, the cost of which, including binding case, index and return postage on the bound volume, is 1s 3d.

BULGIN

Rotary Switches

<table>
<thead>
<tr>
<th>Make-before break</th>
<th>Break-before make</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.205</td>
<td>S.435</td>
</tr>
<tr>
<td>S.206</td>
<td>S.436</td>
</tr>
<tr>
<td>S.207</td>
<td>S.437</td>
</tr>
<tr>
<td>S.208</td>
<td>S.438</td>
</tr>
<tr>
<td>S.249</td>
<td>S.439</td>
</tr>
</tbody>
</table>

These popular BULGIN rotary-action Switches have strong and well defined indexing, and standard 1/8" (0.247"—0.249") shafts, with flat, 1/5" projection. 26 t.p. fixing bush, 1/8" for panels not more than 1/16" thick. With locating peg. Rear projection, 3/16"; o/a 1/8". Contact—Ω not more than 0.005 @ 2V. @ 2A. I.R. not less than 40 mΩ @ 1KV. peak (= max. test V.). Use @ not more than 500V. to E., not more than 250V. to pole. To Switch loads of 10W. max. peak, V of 250 Max., 0.1 min., subject to 1A. max. current limit. With make-before-break or break-before-make contacting. Incremental movement, 20°. Full range of Knobs available. Type tested for not less than 25,000 ops. @ 16 ops/minute=over 70 times a day for a year!

"The Choice of Critics"

A. F. BULGIN & CO., LTD., BYE-PASS ROAD - BARKING
RECENT INVENTIONS
A Selection of the More Interesting Radio Developments

Frequency Control Circuits

It is known that the frequency of a back-coupled oscillator is influenced by the value of the grid current to a degree that is increased when the phase

frequency modulation circuit,

displacement between the grid and node voltages is made to differ materially from 180 deg.

The diagram shows a circuit designed to take advantage of this fact, i.e., for frequency modulation. It consists of a main oscillation generator V, back-coupled through the coils L, L1, and having a grid-leak circuit which includes a choke K in series with a resistance R and a control valve V, to which the signal voltages are applied across terminals T, T1. The back-coupling condenser C1 is made much larger than usual, so as to act as a phase-shifting device, producing substantially opposite phase shifts across the resonant circuit L, C. Any change in the grid current of the valve V, due to the alteration of the anode-cathode resistance of the valve V, as the signal voltages are applied to the terminals T, T1, will create the phase-shifts described in the reaction circuits, and produce corresponding changes in the frequency of the oscillations being generated. A condenser C2 short-circuits the control valve from the carrier frequencies, whilst the choke K prevents amplitude modulation.

Philips Lamps, Ltd. Convention date (Belgium), February 8th, 1945. No. 60798.

Short-wave Signalling

The use of ultra-short waves for mobile communication systems is handicapped by the difficulty of giving reliable coverage over the whole service area, particularly in urban districts where shielding and reflection create serious local variations in signal strength.

According to the invention, the problem is met by transmitting the same signal synchronously on two or more slightly different carrier frequencies from arials which are suitably separated in space. Precautions are of course, taken to ensure that the separate modulations are identical in amplitude and phase. In a given example, one transmitter radiates a carrier tuned to 80 Mc/s plus 17.5 kc/s, whilst a second aerial, located 100 feet away from the first, uses a carrier of 80 Mc/s minus 17.5 kc/s. It is stated that a standard single-tuned receiver will accept both signals without any appreciable interference or intermodulation between the different carriers or their sidebands.

Aircraft and Aerial Systems

The metal wings, and fuselage, of an aeroplane are used, either alone or in combination, as an aerial system which may be given directional properties. This avoids air drag, and prevents the risk of damage to which separately installed aerials are liable when flying at high speed.

A circuit diagram of the arrangement is shown in diagram (a) and a practical embodiment in diagram (b), the same references being used in both drawings. Feed lines F from a radio transmitter or receiver are coupled through a primary circuit LC to a secondary circuit comprising a variable condenser C1 and coils L1, L2, the latter being wound around a laminated strip or core S. The strip may then be wound bodily over a section of the wing, so as to excite a magnetic field around it. Alternatively, as shown in (b) the coil L2 may be inserted alone in a recess formed in the leading edge of the wing, and fairied over with insulated material, the other coupling components being housed inside the wing. The fuselage may be similarly excited. The two wings may be arranged to operate either as a single or two aerials, and the combination suitably phased to produce various directional results.

Automatic Selectivity

The i.f. stages of a superhet set are arranged to vary their selectivity automatically, in accordance with changes in the strength of the incoming signals. This is done by changing the degree of coupling between the resonant circuits, and also the amount of regeneration applied to at least one of them, the two controlling factors being varied simultaneously in opposite directions.

The two amplifiers are coupled through primary and secondary circuits, which are linked to an accessory pair of circuits that are arranged to transfer energy in opposite directions, the whole forming a variable bandpass filter. The primary includes a regenerative valve which is subject to the normal source of a.c., whilst the secondary is associated with a damping valve which is also controlled by the prevailing level of signal strength. For maximum selectivity, the cut-off of phase link circuits are only slightly unbalanced, the coupling between the primary and secondary is loose, and regeneration is high. As signal strength rises, the reaction is cut down, and the damping of the coupled circuits is increased.

Generating Micro Waves

It is comparatively easy to construct discharge tubes of the hollow-resonator type for generating frequencies of the order of 3,000 Mc/s, but it becomes progressively more difficult to meet the conditions required for efficient operation at much higher frequencies, when the dimensions of the resonator must be correspondingly reduced. For frequencies above 20,000 Mc/s, in instance, the size of the resonator is less than 15 x 20 mm, so that the gap becomes too small to pass a large current, and its shunt impedance similarly fails off.

To avoid these difficulties, the inventor proposes to operate a rhampton tube of normal size at a selected harmonic of the fundamental frequency of the resonating electrode. For this purpose, separate electron streams are projected through different pairs of apertures, which are formed at the ends of trumpet-shaped projections, and are situated at, or near, voltage loops, corresponding to the selected harmonic of the resonator. The biasing potential applied to the different electrodes must also be such as to produce the electron transit times required for this harmonic mode of operation.

Standard Magnetism Materials

PERMALLOY 'C'
for highest initial permeability. Useful for wide frequency band transformers, current transformers, chokes, relays and magnetic shielding.

PERMALLOY 'B'
for higher flux densities than Permalloy 'C' and high incremental permeability. Suitable for low power and intervalve transformers.

PERMALLOY 'D'
for very high resistivity without undue lowering of maximum flux density or of the Curie point. Small variation of permeability with frequency. Ideal for H.F. applications.

V-PERMENDUR
for high permeability with unusually high flux density. Specially applied to high quality diaphragms and pole pieces.

Standard Magnetic Materials, which have been steadily improved and extended in range over many years, are produced by a Company which has the unique advantage of being also a large scale user of these materials.

Standard Telephones and Cables Limited
(Registered Office: Connaught House, Aldwych, London, W.C.2)
(Telephone Line Division)
NORTH WOOLWICH, LONDON, E.16. Telephone: Albert Dock 1401
EDISWAN
RADIO PRODUCTS
B.E.C. Electrolytic Condensers

<table>
<thead>
<tr>
<th>Capacity Mfd.</th>
<th>D.C. Working Voltage</th>
<th>External Size</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>450v</td>
<td>1 1/2" x 2"</td>
<td>3/3</td>
</tr>
<tr>
<td>8</td>
<td>450v</td>
<td>1 1/2" x 3"</td>
<td>4/0</td>
</tr>
<tr>
<td>16</td>
<td>450v</td>
<td>1 1/2" x 3"</td>
<td>4/9</td>
</tr>
<tr>
<td>4</td>
<td>450v</td>
<td>1/2" x 2"</td>
<td>2/6</td>
</tr>
<tr>
<td>8</td>
<td>450v</td>
<td>1/2" x 2"</td>
<td>3/0</td>
</tr>
<tr>
<td>16</td>
<td>450v</td>
<td>1/2" x 2"</td>
<td>4/0</td>
</tr>
<tr>
<td>32</td>
<td>450v</td>
<td>1/2" x 2"</td>
<td>5/9</td>
</tr>
<tr>
<td>8—8</td>
<td>450v</td>
<td>1 1/2" x 3"</td>
<td>5/9</td>
</tr>
<tr>
<td>8—16</td>
<td>450v</td>
<td>1 1/2" x 3"</td>
<td>7/6</td>
</tr>
<tr>
<td>16—16</td>
<td>450v</td>
<td>1 1/2" x 3"</td>
<td>7/9</td>
</tr>
<tr>
<td>20—20</td>
<td>275v</td>
<td>1 1/2" x 2"</td>
<td>6/0</td>
</tr>
<tr>
<td>50</td>
<td>12v</td>
<td>1 1/2" x 1"</td>
<td>2/0</td>
</tr>
<tr>
<td>25</td>
<td>25v</td>
<td>1 1/2" x 1"</td>
<td>2/0</td>
</tr>
<tr>
<td>25</td>
<td>50v</td>
<td>1 1/2" x 1"</td>
<td>2/3</td>
</tr>
<tr>
<td>50</td>
<td>50v</td>
<td>1 1/2" x 1"</td>
<td>2/4</td>
</tr>
<tr>
<td>8</td>
<td>150v</td>
<td>1 1/2" x 1"</td>
<td>2/6</td>
</tr>
</tbody>
</table>

* Fitted with 1 1/2" tags each end.

For full details of the range of B.E.C. Electrolytic Condensers please write for leaflet No. R.1395

SOLE DISTRIBUTORS TO THE WHOLESALE & RETAIL TRADES

THE EDISON SWAN ELECTRIC CO. LTD., 155 Charing Cross Road, London, W.C.2
BRANCHES IN ALL THE PRINCIPAL TOWNS

BAKERS 'Selhurst' RADIO
PIONEERS OF MOVING COIL SPEAKERS SINCE 1925

NEW 1949 MODELS
HIGH FIDELITY SPEAKERS

The standard 12" P.A. model I2.C.
The World Famous 12" triple cone I2.B.
The Cinema Model 18" “Duplex” C.T.

Write for illustrated list of — SPEAKERS, TUNERS and AMPLIFIERS.

BAKERS ‘SELHURST’ RADIO
25, Dingwall Road, Croydon
Telephone : CR/Gydon 2271/2

A NEW B.P.L. INSTRUMENT

THE VOLTASCOPE—A combined valve-voltmeter and oscilloscope. VALVE-VOLTOMETER—Infinite Input Resistance for D.C. ranges 0 to 300 volts. A.C. ranges 0 to 150 volts in 5 ranges. 3½ inch scale meter. OSCILLOSCOPE—3 inch screen tube provided with balanced amplifiers for Y and X plates giving a 5 times trace expansion. Maximum sensitivity 180mV/cm. Response from D.C. to 100 kcs.

Limited quantity available for early delivery.

BRITISH PHYSICAL LABORATORIES
HOUSEBOAT WORKS, RADLETT, HERTS.
Tel: Radlett 5874-5-6
Create your own Reference Library

BEGIN NOW to create your own reference library by binding your copies of "Wireless World" in the Easibinder.

Your reference will remain clean and undamaged, pages open flat and journals can be inserted or removed at will with steel rods supplied with the binder. By means of a special patented device the binder is just as useful when only partly filled and therefore never loses its book effect.

Easibinders for "Wireless World" hold a complete volume neatly bound in green cloth, and goldblocked with title and year on the spine (any year can be supplied). Price £2.6d.

POSTAGE AND PACKING RATES

<table>
<thead>
<tr>
<th>Binders</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 3</td>
<td>1/6</td>
</tr>
<tr>
<td>Up to 6</td>
<td>2/9</td>
</tr>
</tbody>
</table>

These rates apply to British Isles only.

Easibinders can be sent all over the world. Particulars of Easibinders for other journals supplied on request.

PILOT HOUSE, MALLOW STREET, LONDON, E.C.1

Visitors to our stand will be interested in the development of Victoria instruments during the past twelve months. New, advanced instruments and their applications will be demonstrated, and technicians will be at hand for advice on any matters relating to our products.

PORTABLE TEST SETS

Robust moving iron Instruments. Suitable for the Electrical Contractor or Automobile Electrical Engineer.

Size: 3½" x 3½" x 2½" overall complete with carrying strap.

These combined instruments are made in many standard ranges. Combination examples:

- 260V A.C. or D.C.
- 15A A.C. or D.C.
- 25V A.C. or D.C.
- 25A A.C. or D.C.

Other Combinations to order.

B.I.F. OLYMPIA • Stand No.C52

SQUARE FLANGE METERS

4" Large Open Scale. Mirror Scale can be supplied if required.

Ranges:

- A.C. From 1V-10kV
 - 25μA-100 Amps.
- D.C. From 5mV-10kV
 - 5μA-50000 Amps.

Victoria Instruments are made uncommonly well.
H.P. RADIO SERVICES LIMITED

OFFER

The following items representing unique value in Government Surplus Radio Equipment. EVERY ITEM IS GUARANTEED BRAND NEW AND UNUSED IN ORIGINAL MANUFACTURERS PACKING.

Ex-R.A.F. I.F. AF Amplifier Unit Type RI355. 5 stages of I.F. Amplification. Fitted 10 valves, VR65, SU40, SU120 etc. To be used in conjunction with the R.F. units types 24, 25, 26 or 27. Black Metal case size 18 x 9 x 8in. Brand New in Original sealed manufacturers packing. 49/6 carr. paid.

R.F. Unit Type 26. 50-65 mc/s. Variable Tuning. Ideal for Birmingham Television in conjunction with R1355 receiver. Also makes a fine 5 m. convertor. Brand New in Original Packing. Exceptional value 30/- each. carr. 1/-.

40 Valve Radar Receivers. Type R-31 APS-2E. A magnificent instrument. Absolutely brand new and unused in original manufacturers packing cases. Fitted two Cathode Ray Tubes. One type SFP7 5in. diameter Magnetic deflection and one 2API 2in. electrostatic. Valves fitted comprise 8 6L6G, 13 6SN7, 1 2X2, 2 6H6A, 2 6X5, 8 6AC7, 3 VR105. Has Blower motor cooling fan, 3 panel meters and a fabulous quantity of components. Input 115 v. 400 c. Size 26in. x 19in. x 12in. housed in a fine black crackle case.

Original cost approx. £150 each. A few only available and offered subject to being unsold at 16 gns. each. Carriage 10/- extra. Available in British Isles only.

Radar Indicators BC929A. Size 14 x 9 x 9ins. Valves fitted 2 6H6GT, 2 6SN7GT, 6G6, 6X5, 2X2, 10 potmeters, 600 v. 4 mfd, and 3in. 38PI Cathode Ray Tube and a host of other parts. Our price 3 gns. Carr. 3/6.

Antenna Units. Size 16 x 8 x 8in. Black Crackle Cabinet. Aerial Loading Variometer 3 pole 5 way Ceramic Switch. 4 porcelain lead through insulators. Precision slow motion dial. 3 6000 v. 80 mfd block condensers. Brand New in Cartons, 10/- each. carr. paid.

H.P. RADIO SERVICES LTD.

Britain's Leading Radio Mail Order House
55 COUNTY RD., WALTON, LIVERPOOL, 4

Established 1935 Telephone: Aintree 1445

FROM GOOD RADIO DEALERS

Richard Allan RADIO LTD.

CALEDONIA ROAD, BATLEY, YORKS

Made and Guaranteed by—
TELEVIEWERS WELCOME NEW PRICE REDUCTIONS

When Magnavista announced reduced Television Lens prices they were on safe ground in predicting an enthusiastic reception by the consumer, for the televiewer was being offered the same high quality at a substantially reduced price. These reductions, made possible by a new "DIRECT TO DEALER" MARKETING POLICY resulting in lower distribution costs, have in fact already resulted in rapidly increasing sales. When you purchase a Television Lens remember that the Magnavista is far more than a magnifer—it is an optical instrument developed in conjunction with eminent independent authorities on 'ens computation.

REDUCED MAGNAVISTA PRICES

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Tube</th>
<th>£</th>
<th>s</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.7</td>
<td>6"</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>A.1, A.2, A.4, A.5</td>
<td>9"</td>
<td>4</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>B.1, C.1</td>
<td>10" & 12"</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>D.1</td>
<td>15"</td>
<td>5</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>A.3 (Universal)</td>
<td>9"</td>
<td>6</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>B.2 (Universal)</td>
<td>10"</td>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

D.C. Oscilloscope 1684D/2

AN EXAMPLE from the Furzehill range of fine instruments is this high-grade oscilloscope for industrial, radio and television applications. Identical d.c. coupled high sensitivity amplifiers are provided for both axes having symmetrical inputs and a level frequency characteristic from zero to 3 Mc/s. Particularly valuable features are the instantaneous action of the shift controls, expansion of the time base scan from 1/4 to 5 screen diameters, negligible phase shift in the amplifiers and automatic amplitude limited synchronisation.

For full details of this, and other instruments in the Furzehill range, write for our new illustrated catalogue.

FURZEHILL LABORATORIES LIMITED
BOREHAM WOOD, HERTS, Tel. ELStree 1137
"You’re CERTAIN to get it at ARTHURS!"

VALVES: We have probably the largest Stock of valves in the country. Send your enquiries. We will reply by return.

PICK-UPS: DECCA £5 14 6. Decca head for Garrard £4 11 0. Adaptors 5/- Connoiseur £4 11 0.

REMINGTON FOURSOME SHAVERS
210-250 v. AC/DC. Also for 110 Volts £7 17 6.

ALL DENCO PRODUCTS IN STOCK
Maxi Q Coils and Turret Units

FOR TELEVISION
Deflection Coil Assembly £1 10 0.
Line Output Transformer with screening can £1 7 0.
Focus Coil Assembly £1 5 0.

ALL AVO AND TAYLORS METERS List on request

ALSO STOCKISTS OF ALL DOMESTIC APPLIANCES

London’s Oldest Leading Radio Dealers.

PROP: ARTHUR GRAY, LTD.
Terms C.O.D. or cash with order.

Our Only Address
Gray House, 150, Charing Cross Rd., London, W.C.2
Temple Bar 5833 4

ELECTRICAL TELEVISION & RADIO ENGINEERS.

Latest Model

FAULT TRACER
Combines in one unit the CHIEF TEST APPARATUS

SOME OF THE FEATURES INCLUDE:

- VISUAL (Magic Eye) and Phone Indication
- SIGNAL TRACER 100 k/c to 30 m/c (5 ranges)
- SIGNAL GENERATOR, range as above (30% Mod)
- AUDIO OSCILLATOR 1000 C.P.S.
- RESISTANCE BRIDGE 1 ohm to 10 megohms
- CAPACITY BRIDGE 25 µf to 50 µf

INSULATION TESTER

TEST SUPPLY OUTPUTS of 350v, 6.3v and 4.0 volts, etc.

Acknowledged as the most useful piece of gear in the trade for rapid checking and localisation of faults.

LABGEAR LTD.
WILLOW PLACE
CAMBRIDGE

Wireless World

The Radio Builder

For many years Ritherdons have kept chappies like this happy by supplying the metal parts with which the inker!

But, it isn't only the amateur that knows Ritherdons. Apart from wireless chassis, metal stands and cases, they specialize in sheet metal work, especially for electrical equipment and Radio & Television. All work can be enamelled or electro-plated before leaving the works because Ritherdons are fully equipped for this work too.

Seek their expert advice; enquiries will receive prompt attention.

RITHERDON & CO LTD
LURNE STREET, DARWEN, LANCs. Phone: Darwen 1628

Stars for Sale!

RUBY INDICATORS
SINGLE 9/14. each. Rs. 6.6d. or 40/-. each.

ENAMEL WIRE
4/-. per lb. each. 1 lb.
24 for 5/- 1/2 lb. each. 1 lb.

LOCK CONDENSERS
49 mfd. 250 v. A.C. working.
60 x 6 in. 410. Wt. 13 lbs. 10/6 each.
Carrying case 3/- extra.

SPEAKERS
3½ in. and 6½ in. P.M. each.
Reconditioned Manufacturers
Horpass, 5sn. 12/-. 80/- Post 6d.

VALVE HOLDERS
5-pin Ring 6SN7 56 (etc.).
6SN7 50, etc.
A57 type or
ASSORTED
24 for 5/- 1 Post 6d.

DC/AC ROTARY CONVERTERS
Input 24 v. & 500. Output 220 v. 100 w.
150 c/e. A.C. continuous rating. Ball bearings. Brand new in stout wood carrying case. 10/-. 40/- each.

RADIOGRAM UNITS
COLLAR
Type "8" Rim Drive motor, turntable and mag. F.U. £10. AC47 Motor and record changer only £15/5/6

MANDARIN UNITS
Type "8" Rim Drive motor, turntable and mag. F.U. £10. 24/6. Prices quoted are exclusive of purchase tax.

Phone: 2494.
University Radio, Limited

OFFER GUARANTEED USED EQUIPMENT AT ATTRACTIVE PRICES

- **Vitavox K12-20.** As new £7 0 0
- **Vitavox K12-10.** As new £4 10 0
- **Goodman's 12in. P.M.** As new £4 10 0
- **Goodman's Axiom 12in. P.M.** As new £5 10 0
- **Goodman's Cabinets, for 12in. P.M.s.** As new £3 0 0
- **Garrard Record-Player Unit.** As new £8 0 0
- **Trix Auto-Changer, mixer-type, portable record-player with built-in amplifier and speaker.** As new £26 0 0
- **FOUR ONLY. S.T.C. Amplifiers** (20 watt). In grey metal cases. As new £0 0 0
- **FOUR ONLY. Portogram** (brand new) 15 watt A.C.-D.C. portable amplifiers, built-in speaker. Mike and gram. input. As new £12 10 0
- **Cossor Ganging Oscillator, Type 343.** As new £10 0 0
- **Avo M.C.R.I's.** As new, with coils, power-pack, valves and speaker. As new £20 0 0
- **Avo 88 Model D.** As new £8 10 0
- **Avo 88 Model L.F.** As new £7 0 0
- **Hallicrafter's 5.** As new £12 10 0
- **Hallicrafter's 5X25.** With valves. As new £18 10 0
- **Hallicrafter's 5X24, with valves.** Very good condition £18 10 0
- **Hallicrafter's S.** With valves. As new £28 10 0
- **Hambender Pre-selector.** As new. With valves £9 0 0

Hundreds of other items too numerous to list at Bargain Prices. Please state requirements.

No lists and no C.O.D. cash or cheque with order. All items listed are CARRIAGE PAID.

22 LISLE STREET, LEICESTER SQUARE, LONDON, W.C.2
Phone GERrard 4447 & 8582. Hours 9 to 6 Thursdays 9 to 1

Wire Recorder

You simply MUST make a Wire Recorder

- **Capstan (Pulling Wire at Constant Speed)**
- **Crown Spool** Acting as Feed Spool

More thrilling than Radio—More gripping than Television. Complete constructional "Gen," 5/-.

All Components in stock. DEMONSTRATIONS BY APPOINTMENT.

PARK RADIO 676-8, Romford Road, London, E.12 Phone ILFORD 666
Wireless World
May, 1949

400 OF THOMPSON'S TINIEST TURNS

WILL GO INTO A MATCH-BOX
and every single one is DEAD ACCURATE in size

That's how Thompson's work. Whether you require large turnings or small, Thompson's will make them exactly to your specification.

W. & J. R. THOMPSON
(WOODTURNERS) LIMITED
1852 CROSSHILLS, KEIGHLEY, YORKSHIRE

Phone: Crosshills 2312-3 (2 lines) Grams: Turnwood, Crosshills

BLACKIE BOOKS

Television. Second Edition
By M. G. SCROGGIE, B.Sc., M.I.E.E.

This second edition has been completely rewritten to give a review of television in the post-war world. It is intended for the general reader with an interest in modern invention.

Applied Electronics
By D. HYLTON THOMAS, M.Sc.(Tech.), B.Sc.(Eng.). A.M.I.E.E., A.M.I.R.E. With 90 line diagrams. 7s. 6d. net.

Sufficient fundamental theory is provided to give the reader an insight into both the possibilities and limitations of electronic equipment.

BLACKIE & SON, LTD.
66 CHANDOS PLACE, LONDON, W.C.2
DESIGN INFORMATION
If you have a design problem involving audio Attenuators or Faders, consult Painton. Our engineers will be pleased to assist in selecting suitable units for specific requirements.

Long experience in building top class instruments for many of the foremost authorities is your assurance; you cannot do better than consult a specialist.

We invite you to send us your enquiries.

ILLUSTRATION
Ladder Attenuator, 20 steps, 40 db, 600 ohms; accuracy 0.1 db to 40 Kc's.

Agents in Denmark:
Janka Kondensatorfabriek A/S,
Holbergsgade 15, Copenhagen.

PAINTON & CO LTD
KINGSTORPE NORTHAMPTON

RESISTOR NOISE METER

Manufactured to an approved Ministry of Supply specification for the measurement of inherent noise above one microvolt in fixed and variable resistors.

PLEASE WRITE FOR FULL DETAILS TO
ERSKINE LABORATORIES LTD—SCALBY, SCARBOROUGH, YORKS.
The "L.S.L." Servicing Method is a combined fault analyser and circuit tester; simultaneously capable of indicating all voltage, current and resistance on each valve electrode without removing the chassis from the cabinet. Readings can be taken whilst the set is under actual operating conditions. The "L.S.L." Analyser is a combination of multi-range instrument and valve tester.

PRICE: £18. 18. 0 Subject.

THE "L.S.L." PORTABLE ANALYSER
* Saves time and trouble. * Greatly increases Profit in the Service Department. * Is portable, can be used on the bench or in the home. * Is simple to operate.

Send for further particulars from the sole distributors:

The only oscilloscope combining . . .

- Linear Response from Zero Frequency (DC) to Radio Frequency (0-100 k/c.)
- High Deflection Sensitivity on both axes (70 mV. cm.)
- Complete freedom from amplifier drift under D.C. conditions.
- Absolute independence of controls.
- Perfect synchronising at all frequencies.
- True portability (weight only 18lbs.)

Price £32. 0. 0

Write for Specifications

INDUSTRIAL ELECTRONICS
99, Gray's Inn Road, London, W.C.I.

Wireless World
May, 1949

the finest in electronic valves

Suipplied to ADA by R.C.A., ADA electron valves are designed to satisfy completely the requirements of radio receivers, service, amateur and laboratory equipment. Sturdily constructed and thoroughly tested, every ADA valve is guaranteed to give long, trouble-free use.

The ADA trademark is your assurance of dependable performance and durability.

Other ADA products:
- Household and Commercial Refrigerators
- Radios and Components
- Home Appliances

AD. AURIEMA, INC. 89 Broad St., New York 4, N.Y., U.S.A.

THREE SPECIAL OFFERS

A.C. MOTORS

Another attractive motor added to our range. We offer a 1/2 h.p. motor to operate on 220-250 v., A.C. mains which will give a speed of approx. 2,000 r.p.m. The motor is fitted with a useful 4in. dia. grinding stone at one end and a polishing mop at the other. A 3 foot 3 way mains lead is wired in. The fixing feet are part of the motor casting. A rare bargain at only £15 5s. carr. and pkg.

U.H.F. COMMUNICATIONS RECEIVERS

BRAND NEW in transit cases. A 10 valve receiver for use on 100-124 M.c.s. and adaptable for 144 M.e. Excellent A.G.C., and frequency stability. A back one, gives audible beat when receiving unmutilated carrier wave. Receiver consists of a signal frequency r.f. amp., followed by a frequency changer with one valve, 3 I.F. amp stages, double diode det. and A.G.C. rectifier and 2 stages A.F. amp. B.F.O. included to switch into detector circuit. Functions from A.C. mains (200-250 v.) in conjunction with a separate power pack. Valves: 1 each 6F1, 702A, 12AT7, 6J14, 2F99. Output T.V.O. Kilovolts 45, 200 resonant circuit, 150 volt. Impedance 500 ohms, but satisfactory 200-2,000 ohms. Supplied with circuits and oscilloscope chart. Dimensions 19in. x 16in. x 10in. Slightly soiled receiver in case. £25. 9s. 6d. carriage and packing 4/-

POWER UNITS

We offer an exceptionally fine rotary transformer complete with radio interference suppression devices, starter and voltage regulator, it is housed in a reasonably soundproof cabinet and is despatched in a wood transit case for safe carriage.

Input voltages 21-29 volts (specified at 24, but the voltage regulator takes care of varying voltages between these figures). Rating 20 amps. Outputs: 300 v., 260 m.a., 150 v. 10 m.a., 12-14 v. 5 amps. These may be used as D.C. battery chargers or converted to D.C. mains, 3 h.p. motors. A ventilating fan is fitted to the equipment. ONLY £41-10-6

NOW OPEN! (carr. and pkg., £4 extra).

OUR NEW PREMISES AT THE RADIO CENTRE
MAIL ORDER SUPPLY CO. 33, TOTTENHAM COURT RD, LONDON, W.1
MUSEUM 6667/8
NEW RECEIVERS AND AMPLIFIERS

G. W. SMITH & CO. (RADIO) LTD.

TELEVISION receivers, ex W.D. & R. 3585, containing a complete 5-quarter wave unit which comprises 5 t.r. stages (5F5Q). 1 double stage (5RE7) and video stage (6ZO7). 13 volt and 18 volt valves and many very useful component parts, brand new receive type R3084/1. brand new in sealed boxes, using 1250 valves, supplied complete with modifications sheet, 33/6. for 2 lines or less and 6/- for every additional line or part thereof, average lines 6 words. Bon Numbers.

2 words plus 1;-. Press Day June 1949 issue, beet post May, 1

TELEVISION receivers, ex W.D. & R. 3585. containing a complete 4501/c unit which comprises a complete 4501/c unit which comprises 10 valve television receiver, with a re-tuned complete with modification sheet, a cheaper price 52/6. limited number only; 8/6; 200ma, 5 henry. 3/6 each; 100ma, 7 henry. for same, 5/- each; chokes, 250ma, 7 henry. 3/6 each; 300ma, no t.t. winding. tapped Preliminary.

2,000 volt working. 4kv test. 1/6 each; 4mfd. condensers. 3/6 each; 0.001 5.000 volt test condensers. 2/9 each; 0-5ma m/c. 4/9 each; 0-20amp a.c., type 280. complete with valves. 19/6 each; S.T.C. only bargains, ex-R.A.F. E.H.T. power packs.

NEW RECEIVERS AND AMPLIFIERS

W. SMITH & Co. (RADIO) LTD.

144mc/s, with circuit diagram, parr. paid. 45/-; 1-500mc/s, with R.F. stem 0 nine wavebands. 13.5-2.000 metres; 2Y2d

IN OIL IF REQUIRED

NEW RECEIVERS AND AMPLIFIERS

GRAHAM SMITH & Co. (RADIO) LTD.

WEBSICLASSIFIED

RECEIVERS. R28/ARC5, new, ten America valves. 100-150mc/s, ideal conversion to V.C.R.97 tube; send large s.a.e.-T.H

NEW RECEIVERS AND AMPLIFIERS

PARTRIDGE

TECHNICAL DATA

WEBSICLASSIFIED

NEW RECEIVERS AND AMPLIFIERS

PARTRIDGE PRECISION BUILT COMPONENTS

NOW AVAILABLE HERMUTELY SEALED IN OIL IF REQUIRED

HAVE YOU HEARD THE PARTRIDGE "PPO" RANGE?

"The finest Output Transformer ever to be manufactured"

MAY WE SEND YOU THE TECHNICAL DATA ON THIS RANGE?

EMLBRIDGE

7977-8

PARTRIDGE TRANSFORMERS LTD

Roebuck Road, Tolworth, Surrey
Continuing our remarks of last month, we should like to explain how our small firm has achieved world-wide usage of the Hartley-Turner 215 Speaker since the end of 1946. Our very considerable pre-war goodwill, won only by sticking to the basic principle of making the best possible speaker, assured us a good hearing. Our conservatively worked technical and sales leaflets were read with a good deal of admiration and interest because we did not use "advertisingese". Full words of praise of what we had offered was this:

This was a matter of plain common sense. If our speaker were a bad one, high-pressure advertising would sell it — and the cost of selling would swamp the cost of production. But if our speaker were very good, then its performance in the user's home would automatically sell others for us, and this is what has happened. We have pinned our faith on the performance of the speaker in the customer's home, and the speaker has won through. The result is that although it is a much better speaker than any we had made up to 1939 it costs barely 10 per cent. more than the pre-war model.

So, then, when you buy a Hartley-Turner 215 Speaker you buy performance because the speaker in the customer's home, and every else is of secondary importance. But because the performance is so good the selling of it is easy, and the proportion of the price that represents cost of selling is negligible. That is one of those hidden things you don't realise you are paying for. When you buy Hartley-Turner you buy what you intended you buy — maximum results for the minimum expenditure. The speaker costs £9 (3-part cost of the speaker in the customer's home, and the speaker has won through. The result is that although it is a much better speaker than any we had made up to 1939 it costs barely 10 per cent. more than the pre-war model.

So, then, when you buy a Hartley-Turner 215 Speaker you buy performance because the performance is so good the selling of it is easy, and the proportion of the price that represents cost of selling is negligible. That is one of those hidden things you don't realise you are paying for. When you buy Hartley-Turner you buy maximum results for the minimum expenditure.

The speaker costs £9 (3-part cost of the speaker in the customer's home, and the speaker has won through. The result is that although it is a much better speaker than any we had made up to 1939 it costs barely 10 per cent. more than the pre-war model.

So, then, when you buy a Hartley-Turner 215 Speaker you buy performance because the performance is so good the selling of it is easy, and the proportion of the price that represents cost of selling is negligible. That is one of those hidden things you don't realise you are paying for. When you buy Hartley-Turner you buy maximum results for the minimum expenditure.

The speaker costs £9 (3-part cost of the speaker in the customer's home, and the speaker has won through. The result is that although it is a much better speaker than any we had made up to 1939 it costs barely 10 per cent. more than the pre-war model.
ELECTRICITY for Best British Bargains

D.C. DYNAMO BARGAINS. Crypto shunt 4amp., 2,000 r.p.m., £115/10/. Crypto shunt 5amp., 2,000 r.p.m., £15/10/.
Leete Neville shunt, 30 volts, 5amp., £115/10/.
Leete Neville shunt, 30 volts, 7amp., £13/10/.

BATTERY chargers, 4 models, 2-6-12v, 1-2-4v, 1-2-6v, 1-4-6v, £4/10/. Each week, 20 new types, £4/10/.

ELECTRIC MOTORS. Our famous range of 2-amp, 5-amp and 10-amp motors includes: 220v, 50 c/s a.c.; 12v, 15c/s d.c.; 24v, 15 c/s d.c.; 48v, 15 c/s d.c.; 1,000 watts; 2,000 watts; 3,000 watts. Complete units: £35/10/.

HIGHSTONE UTILITIES, 58, New Wanstead, London, S.E.1.

TRANSMITTING EQUIPMENT

2 or 6 watt 600 kc/s with 900 receiver. £8/10/-

REM-RECEIVER TR9, 40-meter band converter, 20 Lux 100 kc/s, 500 watts S.W.R., £10/10/.

AMOUR microphone, £8/10/.

ARMOUR wire recorder, 100 metres, £1/5/-

RESTO professional recorder model E., £35.

ELECTRADIX SOLDERING IRONS. New, 110 volts, 15watts, £1/5/.

CRYSTAL SETS. The Lesdix Boudoir Crystal set, 2-5 kHz, £3/5/.

HEADPHONES. Moving coil Headphones, 45 ohms, £5/.

SOLDERING IRONS. New, 110 volts, £1/5/.

ELECTRICAL ADVERTISMENTS

 nid, 1, 200 volts, 100 watts, £15/10/.

MAGNETS. New alloy permagnets by Swift Leivick, instrument type, machine and drilled type, £4/10/.

ELECTROLYSIS. Large lab, type, oil filled, in glass case, approx. .0005 mfd., with variable condensers, £25.

MOBILE TELEPHONES. House and office. Condensers, ceramic, 100 ohms, £10/.

HIGHFREQUENCY PICK-UP. £7/6.

VARICOILS. Large lab, type, oil filled, in glass case, approx. .0005 mfd., with variable condensers, £25.

OSSOR 339 D.B. oscilloscope, new condition, £35 or offer.- Box 4937.

OSSOR D.B. scope, unused, with instruction book: £35.- Box 4940.

TAYLOR 30a oscilloscope panels and other parts available; stamp for illustration.- Dr. Morey. Minsiter Yard, Lincoln.

HIGHFREQUENCY PICK-UP. £7/6.

MATERIALS.-3.5amp, 2in T.C., 5/-; 4amp, thermo-couple, 7/6.£.

100 kc/s accuracy 1%. £14, perfect.- T.B. 10 c/s to 350,000 c/s, X and Y read, Devon.

AUXMAX offer mahogany playing desks fitted with 5in magnetic flat end tube with focus and Lae.

ELECTRADIX SOLDERING IRONS. New, 110 volts, 15watts, £1/5/.

CRYSTAL SETS. The Lesdix Boudoir Crystal set, 2-5 kHz, £3/5/.

HEADPHONES. Moving coil Headphones, 45 ohms, £5/.

SOLDERING IRONS. New, 110 volts, £1/5/.

ELECTRADIX SOLDERING IRONS. New, 110 volts, 15watts, £1/5/.

CRYSTAL SETS. The Lesdix Boudoir Crystal set, 2-5 kHz, £3/5/.

HEADPHONES. Moving coil Headphones, 45 ohms, £5/.

SOLDERING IRONS. New, 110 volts, £1/5/.

ELECTRADIX SOLDERING IRONS. New, 110 volts, 15watts, £1/5/.

CRYSTAL SETS. The Lesdix Boudoir Crystal set, 2-5 kHz, £3/5/.

HEADPHONES. Moving coil Headphones, 45 ohms, £5/.

SOLDERING IRONS. New, 110 volts, £1/5/.

ELECTRADIX SOLDERING IRONS. New, 110 volts, 15watts, £1/5/.

CRYSTAL SETS. The Lesdix Boudoir Crystal set, 2-5 kHz, £3/5/.

HEADPHONES. Moving coil Headphones, 45 ohms, £5/.

SOLDERING IRONS. New, 110 volts, £1/5/.

ELECTRADIX SOLDERING IRONS. New, 110 volts, 15watts, £1/5/.

CRYSTAL SETS. The Lesdix Boudoir Crystal set, 2-5 kHz, £3/5/.

HEADPHONES. Moving coil Headphones, 45 ohms, £5/.

SOLDERING IRONS. New, 110 volts, £1/5/.

ELECTRADIX SOLDERING IRONS. New, 110 volts, 15watts, £1/5/.
M. H. SMITH & SON give special attention to the requirements of students and teachers.

Books not in stock, but obtainable from publishers, are supplied within a few days. Students' needs for examinations are given priority.
SOUTHERN RADIO'S WIRELESS BARGAINS

BENDIX COMMAND RECEIVERS. BC 454 (3-6 megs.), and BC 455 (6-9 megs.). Brand new and boxed, 6 valves; $25 each, 10/- per set, post 1/-. Ideal for car and AC/DC receivers and converters. Either set 35/-, post 1/6. BENDIX COMMAND RECEIVERS. 10 valve motor tuned V.H.F. superhet receiver, 100-156 megs. and 200-210 megs. signal, 10/- each, 6/- per set, post 1/-. Ideal for car and AC/DC receivers and converters. Either set 37/-, post 1/6.

NEWSEELAND Components. 10 valve motor tuned V.H. superhet receiver, 156-450 megs., signal, 10/- each, 6/- per set, post 1/-. Ideal for car and AC/DC receivers and converters. Either set 37/-, post 1/6.

POWER PACKS. Medium wave band converters, power pack and speaker. Converted from BC454 and BC455 receivers for use off any 12 v. supply. £ 2, carriage paid. £ 2.50, carriage paid. Model EXP8 supplied with two 4X400 in., 2X800 wkg. condensers. Sample: 800 wkg. condenser, 4X200 in., 1500 m/a, 2,000 m/a. Price £ 2.50. See Illustrated Catalogue.

INDICATOR UNITS BC929A. 2-in., 3BP1 Tube, Short period. Valves: 2XK2 (1), 6X42 (1), 12AQ6 (2), 12AQ6 (2), 6X59 (2). Large number of condensers, relays and resistors. £ 2, carriage paid. £ 2.50, carriage paid. Model EXP8 supplied with two 4X400 in., 2X800 wkg. condensers. Sample: 800 wkg. condenser, 4X200 in., 1500 m/a, 2,000 m/a. Price £ 2.50. See Illustrated Catalogue.

T133 TRANSMITTERS. Complete with hand generator, two valves, 2000 watt aerial with 60 ft. of 2 inch coaxial cable, ready to use. Packed in stout transit case. £ 3, carriage paid. £ 3.50, carriage paid. Model EXP8 supplied with two 4X400 in., 2X800 wkg. condensers. Sample: 800 wkg. condenser, 4X200 in., 1500 m/a, 2,000 m/a. Price £ 3.50. See Illustrated Catalogue.

MARCONI 60 OHM HEADSETS. 4/6, post paid. HIDE FACED HAMMERS. Ideal for chassis and panel work. 2/4, post paid.
MAINS TRANSFORMERS, SCREENED, FULLY INSULATED AND IMPREGNATED

H.S.63. Input 200/250, Output 250/350, 60/90 mA, 6 v at 3 amp.
15/6 Half Shrouded
at 4 amp., 4 v at 2 amp.
F.S.2. Input 200/250, Output 250/350, 80 mA
19/6 Fully Shrouded
at 4 amp., 5 v at 2 amp.
F.S.3. Input 200/250, Output 250/350, 100 mA
20/6
at 4 amp., 5 v at 2 amp.
F.S.4. Input 200/250, Output 250/350, 120 mA
24/6
at 4 amp., 5 v at 2 amp.
F.S.5. Input 200/250, Output 250/350, 150 mA
32/6
at 4 amp., 5 v at 2 amp.
F.S.6. Input 200/250, Output 250/350, 180 mA
39/6
at 4 amp., 5 v at 2 amp.
F.S.7. Input 200/250, Output 250/350, 200 mA
48/6
at 4 amp., 5 v at 2 amp.
F.S.8. Input 200/250, Output 250/350, 250 mA
54/6
at 4 amp., 5 v at 2 amp.

Get this FREE Book!
"ENGINEERING OPPORTUNITIES" reveals how you can become technically-qualified at home for a highly-paid key-appointment in the vast Radio and Television Industry. In 108 pages of intensely interesting matter, it includes full details of our up-to-the-minute home study courses in all branches of TELEVISION and RADIO, A.M. Brit. I.R.E., A.M.I.E.E., City & Guilds, Special Television, Servicing, Sound Film Projection, Short Wave, High Frequency, and General Wireless Courses. We definitely Guarantee "NO PASS—NO FEE" if you're earning less than £3 a week, this exciting book will be yours FREE with your copy today. It will be sent FREE and without obligation.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
2885, Shakespeare House
17 19, Stratford Place, London, W.1
GALPINS

ELECTRICAL STORES

408 HIGH STREET, LEWISHAM, LONDON, S.E.13

Telephone: Lee Green 0309. Near Lewisham Hospital.

TELEVISION

- **Terms with Cash.**
 - **Order.**
 - **Address.**

TELEVISION—WIRELESS WORLD.

- **Paxolin,** 4d ea; E.E. "Televisor Manual," 2/8
- **Mounted,** £ 3 ea; 13-27, Wastdale Rd., Forest Hill, S.E.23. For.
- **Parts.**
 - 4 mfd 200v electrolytics. T.C.C., new, 6d ea; Tubular condensers, wire ends, new. 2
 - £5/5, 10 each, carriage 5/-.

EX-R.A.F. R.F. UNITS TYPE 101.

- Containing 4 H.V. Rectifying Valve 1 5U4g H.V.
 - 34m scale ohm-meter Standard
 - 240 volts. Another 350/0/350, 300 m/a., 6.3
 - 8 a., 4 v. 8 a., 8 v. 0.1 m/a., 0.5 m/a., 50/0/50.

EX-N.A.V. TELEPHONE HAND-SETS.

- BAKEITE PATTERN (self-energized), no battery required complete with wall bracket (new). 15/- each, post 6d.

EX-R.A.F. ROTARY CONVERTORS, AS NEW.

- 110 volts required for energising Buzzer only.
 - 500/0/500 v., 300 m/a., 6.3 v. 0.1 m/a., 0.5 m/a., 50/0/50.

ELECTRIC LIGHT CHECK METERS (Watt Hour).

- A.C. 500, 200/250 v. 5 amp. load, 13/6 each, £3 15/6.

MOBILE TV RECEIVERS.—

- **Motor Alternators,** new, £1. 75/. 12 c.p.i., output at 500 watts., £ 7 each, carriage paid.

GALPINS ELECTRICAL STORES.

- **408 HIGH STREET, LEWISHAM, LONDON, S.E.13**
- **Telephone:** Lee Green 0309.
- **Near Lewisham Hospital.**

TELEVISION

- ** TERMS WITH CASH.**
 - **ORDER.**
 - **ADDRESS.**

TELEVISION—WIRELESS WORLD.

- **Paxolin,** 4d ea; E.E. "Televisor Manual," 2/8
 - **Mounted,** £ 3 ea; 13-27, Wastdale Rd., Forest Hill, S.E.23. For.
 - **Parts.**
 - 4 mfd 200v electrolytics. T.C.C., new, 6d ea; Tubular condensers, wire ends, new. 2
 - £5/5, 10 each, carriage 5/-.

EX-R.A.F. R.F. UNITS TYPE 101.

- Containing 4 H.V. Rectifying Valve 1 5U4g H.V.
 - 34m scale ohm-meter Standard
 - 240 volts. Another 350/0/350, 300 m/a., 6.3
 - 8 a., 4 v. 8 a., 8 v. 0.1 m/a., 0.5 m/a., 50/0/50.

EX-N.A.V. TELEPHONE HAND-SETS.

- BAKEITE PATTERN (self-energized), no battery required complete with wall bracket (new). 15/- each, post 6d.

EX-R.A.F. ROTARY CONVERTORS, AS NEW.

- 110 volts required for energising Buzzer only.
 - 500/0/500 v., 300 m/a., 6.3 v. 0.1 m/a., 0.5 m/a., 50/0/50.
MAINS TRANSFORMER.—Input 110-250 volt. Secondary 350-0-350 volt, 150 mills, 6 volt c.t., 4 amp., 6 volt, 2 amp., 5 volt tapped, 1 volt, 4 amp. 2/- plus 2/- postage and packing.

CHARGER, comprising transformer and rectifier giving 12 volt ± 3/8 amp. 6/4.

IRON CORDED 465 kc. IF's. Q120, 56 pair.

ELECTROLYTICS by well-known makers. 2 mfd. 450 working, 12d. 8 mfd. 450 working, 11/-d. 16 mfd. 450 working, 2/3d. 8-16 mfd. 450 working, 3/6d. 16-16 mfd. 450 working, 3/11d. 16-24 mfd. 350 working, 2/11d. 50 mfd. 12 volt working, 1/5. 25 mfd. 25 volt working 1/5.

Write for lists.

D. COHEN, 67. Raleigh Ave., Hayes, Midddx.

THE ULTIMATE in your quest for REALISTIC REPRODUCTION will be found at

"LOWTHOWER HOUSE"

Geometricians tell us that the shortest distance between two points is a straight line

THE LOWTHER MANUFACTURING CO.
Lowther House, St. Mark's Road, BROMLEY, KENT.

Manufacurers—Enamel, copper wires, all gauges, laminations all types, huge stock of radio components. etc. m.t. and block condensers, close tolerance and high stability resistors to 1%. all goods guaranteed.—E. P. Simmonds, 601, Vale Rd., Stonham, Beccles, Grimstoe 660.

It receives complete with valves and with a transit case, £6/10, card. £1; electronics, 59/-; m.t., £10; 2v input, 32-8 mfd, 500v w 3/9; for sale, only, 1355 receiver, 25/-; 48 indicator units complete with valves and c.t. £4/10; 62 indicators complete with all components and cabinets; send for lists—Pike Bros, 19, M.I.S. and, 1510 receiver £2/9. 6/4.

Raymax television sound unit, complete kit. £2/9. 6/- + postage. Classical punched and main components mounted, price till valves arrive. All valves supplied at current prices; suitable power pack chassis complete with mains transformers, valves and valve holder £1/4. Collette rim drive unit, mains transformer, auto-stop, etc. £5/10. Inter. octal moulded V/F's, all types of components ex stock, including cabinets for TV and radio. Catalogue TV v/f set at £13/15 is worth "looking into." (Good photo enlarger), mahogany playing desks fitted with latest. 2-watt 6v-60 volt unit, magnetic PU, auto-stop, etc. £6/14. We welcome enquires for complete units, specified or quoted.

Lowther House, St. Mark's Road, BROMLEY, KENT.

Therefor, pay us a visit, hear, examine and judge for yourself our complete range of reproducing equipment.

Daily demonstrations at

THE LOWTHER MANUFACTURING CO.
Lowther House, St. Mark's Road, BROMLEY, KENT.

Rav. 5225.

Manufacturers—Enamel, copper wires, all gauges, laminations all types, huge stock of radio components, etc. m.t. and block condensers, close tolerance and high stability resistors to 1%. all goods guaranteed.—E. P. Simmonds, 601, Vale Rd., Stonham, Beccles, Grimstoe 660.

It receives complete with valves and with a transit case, £6/10, card. £1; electronics, 59/-; m.t., £10; 2v input, 32-8 mfd, 500v w 3/9; for sale, only, 1355 receiver, 25/-; 48 indicator units complete with valves and c.t. £4/10; 62 indicators complete with all components and cabinets; send for lists—Pike Bros, 19, M.I.S. and, 1510 receiver £2/9. 6/4.

Raymax television sound unit, complete kit. £2/9. 6/- + postage. Classical punched and main components mounted, price till valves arrive. All valves supplied at current prices; suitable power pack chassis complete with mains transformers, valves and valve holder £1/4. Collette rim drive unit, mains transformer, auto-stop, etc. £5/10. Inter. octal moulded V/F's, all types of components ex stock, including cabinets for TV and radio. Catalogue TV v/f set at £13/15 is worth "looking into." (Good photo enlarger), mahogany playing desks fitted with latest. 2-watt 6v-60 volt unit, magnetic PU, auto-stop, etc. £6/14. We welcome enquires for complete units, specified or quoted.

The "FLUXITE QUINS" AT WORK

"Quick! Look at this!" shouted EE.

"A close up on soldering. See?"

And he’s using FLUXITE!*

Cried OH! "Now be bright. It’s not television. It’s M.E."

*See that FLUXITE IS always by a simple

"where you want

it by a simple pressure.

1/6, or filled, 2/6

Make FLUXITE...but IMPORTANT.

The FLUXITE GUN puts FLUXITE...where you want

it by a simple pressure. Price

1/6, or filled, 2/6

ALL MECHANICS USE FLUXITE.

FLUXITE

IT SIMPLIFIES ALL SOLDERING

Write for book on the ART OF "SOFT:" SOLDERING and for Leaflets on CASE-HARDENING STEEL and TEMPERING TOOLS with FLUXITE PRICES.

FLUXITE LTD.

(Dpt. W.W.) Bermondsey Street, S.E.1
TELEVISION!
Why not make your own?
THE HOME BUILT TELEVISOR

Book of instructions, wiring diagram and full list of parts 6/6 post free.

Full scale blueprints shortly available.

Units supplied ready wired, E.H.T. Trans., snubbed Focus Coils Line Transformers Scanning Coils 9 in. White Masks 112 in. White Masks

Send now to:

TELERADIO CO.
157, Fore St.,
Edmonton, N.18
(Phone TOT 3386)
The Leading Kit Suppliers.

THE NATIONAL LOUDSPEAKER REPAIR SERVICE ON YOUR OWN DOORSTEP
A.W.F. Loudspeaker cone assemblies, and A.W.F. "exact fit" Field coils, will provide your own L/S repair department in your own workshop.

INCREASE YOUR PROFITS

A.W.F. Radio Products Ltd.
Borough Mills, Bradford, Yorks.
 resistances, special offer. Panel containing 100 popular wattages, each 1/10th of a watt. Trade price £1.00 per 100. **(Trade enquiries invited.)**

**M* Speaker: B. Space. 63 (10), 65; 73 (25); 7R. 15; 17 (15 ohm).

M Speaker: B. Space. 51 (25), 55; 31 (25); 33 (25); 34 (25); 35 (25); 36 (25); 37 (25); 38 (25); 39 (25); 40 (25); 41 (25); 42 (25); 43 (25); 44 (25); 45 (25); 46 (25); 47 (25); 48 (25); 49 (25); 50 (25); 51 (25); 52 (25); 53 (25); 54 (25); 55 (25); 56 (25); 57 (25); 58 (25); 59 (25); 60 (25); 61 (25); 62 (25); 63 (25); 64 (25); 65 (25); 66 (25); 67 (25); 68 (25); 69 (25); 70 (25); 71 (25); 72 (25); 73 (25); 74 (25); 75 (25); 76 (25); 77 (25); 78 (25); 79 (25); 80 (25); 81 (25); 82 (25); 83 (25); 84 (25); 85 (25); 86 (25); 87 (25); 88 (25); 89 (25); 90 (25); 91 (25); 92 (25); 93 (25); 94 (25); 95 (25); 96 (25); 97 (25); 98 (25); 99 (25); 100 (25).

R Speaker: B. Space. 63 (10), 65; 73 (25); 7R. 15; 17 (15 ohm).

R Speaker: B. Space. 51 (25), 55; 31 (25); 33 (25); 34 (25); 35 (25); 36 (25); 37 (25); 38 (25); 39 (25); 40 (25); 41 (25); 42 (25); 43 (25); 44 (25); 45 (25); 46 (25); 47 (25); 48 (25); 49 (25); 50 (25); 51 (25); 52 (25); 53 (25); 54 (25); 55 (25); 56 (25); 57 (25); 58 (25); 59 (25); 60 (25); 61 (25); 62 (25); 63 (25); 64 (25); 65 (25); 66 (25); 67 (25); 68 (25); 69 (25); 70 (25); 71 (25); 72 (25); 73 (25); 74 (25); 75 (25); 76 (25); 77 (25); 78 (25); 79 (25); 80 (25); 81 (25); 82 (25); 83 (25); 84 (25); 85 (25); 86 (25); 87 (25); 88 (25); 89 (25); 90 (25); 91 (25); 92 (25); 93 (25); 94 (25); 95 (25); 96 (25); 97 (25); 98 (25); 99 (25); 100 (25).
ALLEN COMPONENTS LTD.

70 Advertisements Wireless World. 11av, 19.1v

70 Tower Road, Willesden, N.W.10

Type 320 5-wave band coil unit.
A comprehensive pre-assembled assembly consisting of switch, complete set of aerial, H.F. and oscillator coils and all associated trimming and padding condensers for 5-wave band operation with tuned H.F. stage on all bands. All coils have dust iron cores for inductance adjustment. A six position switch is used with provision for pick up connection and I.F. patching on the sixth position. For use with any of the standard frequency changers (A.I.C., E.C.H.35 etc.) and an I.F. frequency of 465 Kc.

Ranges: 1, 1.3-40; 2, 30-100; 3, 80-200; 4, 200-550; 5, 900-2000 metres.

Send for latest catalogue of our full range of components for Radio and Television.

ALLEN COMPONENTS LTD.

THE BRITISH NATIONAL RADIO SCHOOL

ESTD. 1940

Passing Examinations Becomes a MATTER OF COURSE when it's
A B.N.R.S. COURSE

City and Guilds, A.M.I.E.E., A.M.Brit. I.R.E., P.M.G. (Theory), also the most comprehensive Course available anywhere on RADAR & Radio Aids to NAVIGATION

Six months' trial period without obligation to continue

Write for free booklet to:

STUDIES DIRECTOR
BRITISH NATIONAL RADIO SCHOOL
66, ADDISCOMBE ROAD, CROYDON
Phone : Addiscombe 3361

MORSE CODE TRAINING

There are Candler Morse Code Courses for BEGINNERS AND OPERATORS

Send for this Free "BOOK OF FACTS" It gives full details concerning all Courses.

THE CANDLER SYSTEM CO. (Room 55W), 121 Kingsway, London, W.C.2

WE OFFER

A large range of used and new Test Equipment, Converters, Recorders, Amplifiers, Motors, Transformers, etc. All guaranteed and at very attractive prices.

We buy good modern used equipment of all types for spot cash.

UNIVERSITY RADIO LTD.

22 LINGLE STREET, LONDON, W.C.2.
Tel. : GER 4447 & 8382.
May, 1949

MISCELLANEOUS

GENERAL

London Press, 1a, Wood St., Mon. 1779.

Q. L. B. & K. approved log books, samples free.—Atkinson Bros., printers.

LONG range television with the QST9916, 1/6 only. Total cost of necessary equipment.

E.M. Meese note that we are now able to supply Mains E.H.T. TRANSFORMERS. Output 2,500 v., 5 We., 1 v., 1.1 amps., 2-0.2 v., 2 a. (for VCR97), 35/- only. CR TUBE VCR97. Each Tube brand new, suspended for 5CP1). 39/8. Output 4,000 v., 10 mA., 2-0.2 v., complete with printed data sheet. Only 3I3-. (Reg. a., carriage.)

TUBE ENLARGING LENS. For VCR97, or 5CP I. Really amazing in performance. Only 29 5. 5/. carriage.)

R.3084 RECEIVER. Incorporating 7 EF50, 2 EF54, 1 EF52, 1 EC52, 1 VE39A, 1 HVR2, 1 EA50, plus 30 mcle. 110, Park St., London. W.1. Tel. Mayfair 8541-2. Certificates; Technical; Translations, etc.) for membership details send s.a.e.—H.Q.(W). 145, Uxendon Hill, Wembley Park, Middlesex. The post is permanent and so provides for pension and pay for holidays. It may be possible to start the salary at a point which may be the limit of the income unit, and the demand is of course not limited by the supply. A MATEFIXERS with experience of mass production are offered, to assist in the work of preparation for absence through illness. pay for holidays

SEND dead each, and use of Refectory for meals. etc.; in addition to the above, we can supply necessary equipment for all popular sets of circuits.

FOUNDER LUMINIUM chassis and panels, standard a.s.e.—Emden, Moor Lane, Staines. (2787

SHOP hours: 9 to 6 p.m. 9 to 1 p.m. Thursday. SHOP hours: 9 to 6 p.m. 9 to 1 p.m. Thursday.

DESIGNS VACANT

Advertisements 71

Serf stamp for current Component List. Probably the most comprehensive in the trade.

Value for your Money! OUTSTANDING OFFERS at "all can afford" prices

NEW AND GUARANTEED MAINS TRANSFORMERS.

An unbelievable bargain! Primary : 200-250 v. 50 c/s. SCREENED. Secondary : 280-380 v. 60 c/s, 100 A.C. OUTPUT ONLY 1/2, plus 1/3 usage. Please ensure that your order is placed early to avoid disappointment.

RECEIVER R3084.

The most outstanding equipment for conversion to a Vision Receiver! Contains 13 valves as follows : 2 EP5, 1 EC52, 7 EF50, 1 EF39A and 1 EA50. Also included is a 30 megohmy L.F. Strip. 200 M/Js coverage. Circuit diagrams and full instructions for modification are issued with each receiver. BRAND NEW AND COMPLETE IN WOODEN CRATE.

RECEIVER R1224A. Brand new in maker's original crate.

This is the renowned 10-valve set covering 100-124 M/Js, incorporating tuning and reception in a completely new cabinet.

RECEIVER R1224A.

A communications receiver of searing superlative performance, the R1224A contains the following valves : 11 EF50, 11 EP5, 10 EF39A, 8 EF66, and 10 transformers covering 30-300 metres. Batteries required are H.T. 120 v., G.P. 9 v., and L.T. 6 v., plus 120 a. Particularly popular for operation aboard trawlers and similar craft, and ideal for your "Y" Station. Circuit diagrams included. Superior brand new in maker's packing and most reasonably priced at 44/19/6, plus 1/3 carriage and packing. ANTENNA TRANSFORMERS.

620-620-620 70 mA : 5 v. at 1 a., 6.3 v. at 3 a.\[285\]

The Governing Body invite applications for the following posts. Engagements Order, 1947.

The post is permanent and so provides for pension and pay for holidays. It may be possible to start the salary at a point which may be the limit of the income unit, and the demand is of course not limited by the supply.

SITUATIONS VACANT

Value for your Money! OUTSTANDING OFFERS at "all can afford" prices

SERIES VACANT

Vacancies advertised are restricted to persons of employment and from the provisions of the Engagements Order, 1947.

SWILLOW Polytechnic, Woolwich, S.E.18.

THE Governing Body invite applications for a Post in the Physics Department to assist in the work of the 1st and 2nd years of the Physics Degree course. Minimum qualifications are a knowledge of the subject and an ability to teach it. A degree in physics would however be an advantage. The University of London will contribute £50 to the cost of the post. Further details will be given at the interview. The Governing Body will be pleased to hear from anyone who considers himself capable of filling this post and who is willing to submit himself for the appointment. The Governing Body will be pleased to hear from anyone who considers himself capable of filling this post and who is willing to submit himself for the appointment. The Governing Body will be pleased to hear from anyone who considers himself capable of filling this post and who is willing to submit himself for the appointment.

OUR LONDON PREMISES WILL PROVE WORTH WHILE.

Best Buy at Britain's

CHARLES BRITAIN

(RADIO) LTD.

11, UPPER SAINT MARTIN'S LANE, LONDON, W.2

(3 minutes from Leicester Square Station)

Shop hours: 9 to 6 p.m. 9 to 1 p.m. Thursday. OPEN ALL DAY SATURDAY.

INFORMATION OF OUR HUGELY AND VAST VARIOUS STAFF TO US LONDON PREMISES WILL PROVE WORTH WHILE.
ROYAL NAVY—Short service commissions in the electrical branch of the Royal Navy to ex-R.N.V.R. officers, under 35 years of age, 1st January, 1949, who served in the Torpedo, Special, Electrical or Air Branches and were employed on technical duties connected with radar, wireless, and other forms of electrical or electronic equipment. Candidates will be ensured in the selection process, and preference will be given to junior ratings and officers who have undergone training designed to fit such officers for the work. Short service in the branch of the Royal Navy to ex-R.N.V.R. officers under 35 years of age, 1st January, 1949, who served in the Torpedo, Special, Electrical or Air Branches and were employed on technical duties connected with radar, wireless, and other forms of electrical or electronic equipment. Candidates will be ensured in the selection process, and preference will be given to junior ratings and officers who have undergone training designed to fit such officers for the work. Short service in the branch of the Royal Navy to ex-R.N.V.R. officers under 35 years of age, 1st January, 1949, who served in the Torpedo, Special, Electrical or Air Branches and were employed on technical duties connected with radar, wireless, and other forms of electrical or electronic equipment. Candidates will be ensured in the selection process, and preference will be given to junior ratings and officers who have undergone training designed to fit such officers for the work.
VACANCY exists for scientifically minded person, preferably with experience, to undertake the processing of quartz crystals.—Write, stating wages required, to Box 3575.

PLANNING engineer required, with experience in the manufacture of radio communication equipment, to take control of small office and responsibility for the design, manufacture and production of tools, issuing of shop orders, etc.; essential: good prospects for the right person.—Eve Communications, Ltd., Division Works, Newmarket Rd., Cambridge. [3222]

TELEVISION assembly line foreman required by expanding manufacturer in North-West London area, who will control ability to organise female labour and have extensive and recent experience of mass production of television receivers; a permanent post and good salary for a skilled worker of the right qualifications. Box 4197.

RADAR engineer and test engineer, experienced in alignment of receivers and amplifiers, for Exeter or London (120 miles London); applicants should have had factory experience; it is essential that they have practical experience, to be able to work under own initiative.—Write, stating full experience, salary required, etc., to Box 5532.

RADAR service engineer required for specially formed firm of high standing must be able to write, stating practical experience, knowledge of television an advantage; write, according to ability and confirmed after one month's probation.—Apply to, Mears, Barlow & Avis, Ltd., 140/1, Friar St., Reading, Berks. [3254]

DESIGN and development engineer with university degree in electrical engineering or physics or equivalent qualifications, to control design dept. in company at Godalming, manufacturing electrical instruments and control equipment for aircraft; salary 4,000 per annum or £450 if an unfurnished house is supplied free of all charges.—Reply Box 2453.

TRADESMEN are required by the Research Laboratories of the General Electric Co., Ltd., North Wembley, Middlesex, for work in the field of radio or telecommunications; vacancies exist for seniors with several years' experience as well as for more junior candidates. Apply to the Director, stating age, academic qualifications and experience.

PRACTICAL radio engineers with extensive experience of communication equipment required by development laboratory of radio manufacturer; applicants must have at least five years' experience on the development of radio communication equipment and adequate technical knowledge.—State age, experience and salary required, to Box 5448.

ENGLISH ELECTRIC Co., Ltd., Stafford, require urgently electric draughtsmen of all grades for research development and production drafting offices; experience in this field essential; good prospects. Please quote Ref. D.O.33 when sending full details to Central Personnel Services, English Electric Co., Ltd., 24-30, Gillingham St., London, S.W.1.

TRADESMEN for development and design of radio communication equipment; drawing office experience in the production of electro-mechanical apparatus essential; applicants should be of National Certificate standard.—Apply to the Secretary, Marconi's Wireless Telegraph Co., Ltd., Chelmsford, stating age, education, experience and salary required.

THE FAIREY AVIATION Co., Ltd., Hayes, Middlesex, requires engineers with experience of electro mechanical servo mechanism control circuits or auto-pilot design for research division U.K. and Australia; applicants should be capable of undertaking research and development work on the above or a similar degree or equivalent an advantage.—Apply to Personnel Manager.

APPOINTMENT as departmental chief of design engineering on development of microwave radio is offered by large company in London with international connections; a most attractive in nature, this is an honour degrees in electrical engineering or physics and must have extensive experience with microwave radio of allied work.—Kindly state full details, including salary required, to Box 5449.

LARGE electrical engineering firm in South London with international connections has vacancy for senior design engineer; applicants must have previous experience in developing electronic equipment to production stage; they should have sound background in amplifier design; good salary according to qualifications.—Write Box WW25, L.F.E., 110, St. Martin's Lane, W.C.3.

MACHINE shop attendant required, accustomed to the control of department and associated auxiliary apparatus; etc., fully conversant with the control of male and female labour and work efficiently in connection with these departments; experience of welding and spray painting is an advantage in the Dartford area. Write in confidence, stating age, experience, qualifications and salary required, to Box 5462.
CABOT RADIO CO., LTD.
28, BEDMINSTER PARADE,
Bristol 3, 'Phone 64314.
Open Sat. 9:30.

POST RADIO SUPPLIES
OFFER EX STOCK
COPPER INSTRUMENT WIRE.
Copper, Brass, Silver, Nickel, Tin, Lead, Zinc, Copper
COTTON AND SILK COVERED.

B.A. SCREWS, NUTS, WASHERS,
soldering caps, eyelets and rivets,
wire brushes, side cutters,
TURFOL ROD, PAXOLIN TOY COIL,
FORMERS AND TUBES, ALL DIAMETERS.

Send samples for our approval for competitive lists. Trade supplied.

POST RADIO SUPPLIES
Phone: Clissold 6688.
COVENTRY RADIO

COMPONENT SPECIALISTS SINCE 1925

1st Grade "HAPP" Coax and Transformers.

L.P. CHOKES. 40 A. 6/8; 60 A. 6/8; 100 A. 6/8. 15/8; 150 A. 10/8; 200 A. 15/8. 4 1/2 - 250 A. 1/15.

MAINS TRANSFORMERS. Primaries all 0-200, 220 volt.

250-0-250 volt 80 A, 6.3 volt 3 a., 5 v. 2 a... 25/6

300-0-250 volt 90 A, 6.3 volt 3 a., 5 v. 2 a... 25/6

350-0-250 volt 100 A, 6.3 volt 3 a., 5 v. 2 a... 25/6

500-0-250 volt 150 A, 6.3 volt 4 a., 5 v. 3 a... 32/6

600-0-250 volt 200 A, 6.3 volt 4 a., 5 v. 3 a... 32/6

LOCKWOOD & COMPANY

Lowlands Road, Harrow, Middlesex.

Bryn 3704

"PERIMET" ELECTRODE

Soldering and Brazing Tool

Operate from 4 or 8 Volt Accumulator or Transformer.

10c. Post free.

HOLBROW & CO.

J. B. M., 71, Weymouth Bay Avenue, Weymouth.

The frequency of any type or make of Quartz Crystal Unit will be measured, and a calibration certificate issued. Crystal Units are returned to the customer within 48 hours. For further particulars write for leaflet Q.C. 40/12 to:

SALFORD ELECTRICAL INSTRUMENTS LTD., Peel Works, Silk Street, Salford, 3.

The radio experience and the care taken in their design and construction are entirely un-ratified.

ELMSLEIGH RADIO CO.

1102 London Rd., Leigh-on-Sea, Essex

Leigh-on-Sea 75168

SALFORD

76 Advertisements

Wireless World

May, 1949

"BASIC"

—In the sense in which it is commonly used today is not our concern, but your basic requirements for high-quality reproduction are fully catered for by our Tuner, Feeder and Amplifier Units together with the Ian Bailey Series 2.

Your Meter Damaged?

Don't Rip It—Let GLASER Repair It

Repaired by skilled craftsmen to all makers and types of Voltmeters, Ammeters, Microameters, Multimeters, Test meters, Electrical Thermometers, Recording Instruments, synchronous Clocks, etc. 14 days Service—or speedy send defectives to Registered post.

L. GLASER

SCIENTIFIC & ELECTRICAL INSTRUMENT REPAIRERS

341 CITY ROAD, E.C.1.

Tel. Terminus 2429

THE USE OF A SIGNAL GENERATOR!

Without having any previous radio experience you can build our superb receivers with the certain knowledge that you will obtain FIRST CLASS RESULTS, away if you use our PRE-ALIGNED AND MATCHED Components! Thus, for a Receiver incorporating an R.F. Stage we pre-align and match together AS A UNIT, and seal, a selected Model 40 Coil Pack, a pair of High C.P. MM IF Transformers, an attractively three-colour dial and a J.B. J-gang tuning condenser.

This unit, known as the MODEL 40 TUNING UNIT costs only 74/6 complete, and when built into a case is a ware which does not need any further adjustment. You obtain outstanding performance WITHOUT THE USE OF A SIGNAL GENERATOR!

The Model 39 Tuning Unit costing 45/6 is similar but is for use with superhet, not incorporating an RF Stage. Circuits of many Receivers and Feeder Units with which these outfits can be used, together with constructional and servicing hints, resistance colour codes and a full catalogue of components at the lowest prices on the market are contained in "THE CONSTRUCTOR'S HANDBOOK" which now cost 1/1 (i.e., or stamps). Or a copy will be sent FREE with any order for 20/- or more.

SUPACOILS, 48, Greenway Avenue, London, E.17.
Mr. A. C. BARKER'S

- **1A4A** DIFF ERF UNDAMENTALLY FROM ORDINARY SPEAKERS

 by virtue of its unique dual drive and cone construction. This point cannot be too often stressed, for in them lie the secrets of the smooth, true output which renders the Barker drive a natural sound reproduction. The drive gives a perfectly graded cross-over which extends frequency response well into the supersonic region; it also imposes critical damping which ensures beautiful sharp and smooth response at all excursions of the cone, and the cone itself is made of a newly developed plastic that moulds to fit and holds to shape in the pressure field. The cone is not subject to wear or tear, and the excursions of the cone are generally much less than those of other makes. The result is an excellent, well defined transients; its inherent feedback damping which ensures beautifully sharp and sustained response at all frequencies. A good natural sound reproduction is achieved from a 'Quality' Specialist!

VALLANCE & DAVISON LIMITED

- **114 Bridgegate, Leeds 1.** Phone 21469

TELEVISION

The advance in Radio Technique offers unlimited opportunities of high pay and secure posts for those Radio Engineers who have had the foresight to become technically qualified. How you can do this quickly and easily in your spare time is fully explained in our excellent handbook "Engineering Opportunities in Radio". Full details are given at A.M.I.E.E., A.M.I.E.E. Cranny & Guyields, etc.
TUITON
THE British National Radio School
OFFERS you a career.
WRITE today for free booklet describing our wide range of training courses in radio, telecommunication, and physics. Res, mathematics, and mechanics—correspondence and day classes for the best rates of C.G. G. examinations; we specialise in turning "operator" into "engineer," and "personnel" into "staff"
"Four Year Plan," leading to A.M.I.E.E. and A.M.I.E.E. B.*, F.G.C. Certificate in 3 years. One of thešest...
TELEVISION RECEIVERS
SCANNING and FOCUS COILS
TIME BASE COMPONENTS
7KV. EHT. RF. UNITS AND TRANSFORMERS
Publications post free
HAYNES RADIO LTD.
Queensway, Enfield.

PHOTO-ELECTRIC CELLS
for Taking Picture Apparatus.
Catalogue now available
RADIO-ELECTRONICS LTD.,

FOR THE EXPERT

LUSTRAPHONE LTD.
84 BELSIZE LANE, N.W. 3.
HAMstead 5515 and 5389

VALRADIO
Vibrator Converters can be depended on for TELEVISION FROM D.C.

These British designed and manu-
ufactured converters give steady
A.C. from 13 volts D.C. upwards.
There are heavy duty types to give up to 300 watts output.
Valradio Converters are quiet
in use and are built for years of
unfailing service.

Telephone: GULiver 5165

INDUSTRIAL FINISHING CRACE
STOVE ENAMEL - ALL COLOURS
Stoving ovens and spray service at your disposal.
Prompt return after final inspection. Chassis, Panels, Cabinets, Photographic Equipment, etc.
Black-J. Colours 1:3 per sq. ft. (Flat surfaces, one side). Carryage extra. Special quantity quotations.
We make anything in metal to your requirements.
Full particulars on request.

Bucceleuch Radio Manufacturers
6 Wheatfield St., Edinburgh, 11
Grains: “Thern” Telephone 64596
INDEX TO ADVERTISERS

PAGE

A.A. Tools 78
Ad Vending Co. Ltd. 79
Ad. Aurama Inc. 79
Adams & Hare Components, Ltd. 80
Aerolite 81
A.E. Industries Ltd. 81
Air Force Laboratories, Ltd. 81
Airtest Co., Ltd. 82
Airtech Components, Ltd. 82
Aircraft Radio, Ltd. 83
Allan Development Ltd. 83
Altitude Antennas Ltd. 83
Antron (Mim., Ltd. 84
Armstrong Wireless & Television Co., Ltd. 84
Ashworth, H. 85
Automatic Cam & Machine Ltd. 85
AVRIC, Ltd. 86
B & H Radio 86
Bakers "Bathurst" Radio 87
Baker, A. C. 88
Balling & Lee, Ltd. 88
Berrys (Short Wave) Ltd. 89
Bird, E. S., & Sons, Ltd. 89
Birmingham Sound Reproducers, Ltd. 89
Black & Son, Ltd. 90
Blenfield, C. H. (Gramophones & Recordings), Ltd. 90
Bloor, E. H., Ltd. 91
Bolton, J. H. (Gramophones & Records), Ltd. 91
Boulton & Paul, Ltd. 91
The latest Erie development is a series of "Combined Components" comprising two condensers and a resistor of standard types and long proven high quality, contained in a tube no longer than would normally embody a single condenser. This means that within the limits of the range of the condensers and the resistor, any circuit normally employing two condensers and a resistor, can be combined in one unit with economy in space and labour, and with more efficient screening than can normally be provided by separate assembly. The drawing shows a Diode Filter, but other combinations such as R.C. Coupling or Decoupling units and Auto Bias units will readily suggest themselves to the designer.

Manufacturers are invited to enquire for further details.
Flux Facts

ABOUT MULTICORE SOLDERS

After talking to technical staff of radio and electronic manufacturers who have visited our stands at recent exhibitions, we have realised that it is not generally known that ERSIN MULTICORE SOLDER is made in a wide range of Flux speeds. Here are some facts about Multicore Solders to help you select the most suitable type for your particular job. This information should be studied in conjunction with our technical literature, which give details of alloys and gauges. Factories using solder are invited to ask for free samples of any specifications.

HERE ARE THE DIFFERENT TYPES OF MULTICORE SOLDER

ERSIN MULTICORE SOLDER

1. ERSIN MULTICORE SOLDER with N flux. This is a development of the original ERSIN MULTICORE SOLDER, having a slightly faster flux speed than the original flux (Standard flux 3E). It has thus been possible to reduce the flux percentage to approximately 2.2%. This grade is normally supplied unless an order specifies otherwise.

2. ERSIN MULTICORE SOLDER with Standard flux 3E has a flux percentage of 3.4%. ERSIN MULTICORE SOLDER types 1 and 2 are supplied in all Tin Lead alloys and other special alloys, and in most gauges between 10 and 22 S.W.G. They can be supplied in other diameters to special order. These solders comply with all Government and Ministry specifications, including M.A.P. D.T.D. 599, and are widely used in the Radio, Television, Telephone and Electronic industries.

3. ERSIN MULTICORE SOLDER with L flux. The flux in this solder is similar to type s and 2, but contains a higher percentage of the activating agent, making it specially suitable for use with the high-speed machines employed in the Lamp and Battery industries. The flux complies with the proposed new B.S.I. Cored Solder specification. The flux percentage is 3.4%.

4. ERSIN MULTICORE SOLDER with 2 L flux is similar to type 3 but has a flux percentage of 2.2%. Types 3 and 4 are supplied as standard only in 60/40 and 40/60 alloys. Other alloys can be supplied to special order.

ARAX MULTICORE SOLDER

ARAX MULTICORE SOLDER is designed for all soldering purposes other than wire to tag joints in radio, electronic and electrical apparatus; its extremely high speed making it particularly suitable for repetition production processes. The Arax Flux—exclusive to ARAX MULTICORE SOLDER—is acid-free, and has none of the unpleasant characteristics of acid fluxes, such as sputtering, whilst the speed of Arax Flux is equal to that of acid fluxes. The flux residue will not contaminate plating baths, and can easily be removed with water. Flame heating will entirely volatilize the residue.

ARAX MULTICORE SOLDER has many applications in the radio-electronic industries, apart from wire to tag joints for which Ersin Multicore Solder should be used. It can be employed in soldering operations on blued spring steel or stainless steel, without pre-cleaning.

ARAX MULTICORE SOLDER is available as standard in gauges between 10 and 22 S.W.G. in 60/40, 40/60 and 20/80 alloys. It can be supplied in other alloys to special order.

PRICES OF SIZE ONE CARTONS

<table>
<thead>
<tr>
<th>Catalogue Ref. No.</th>
<th>Alloy Tin/Lead</th>
<th>S.W.G.</th>
<th>Approx. Length per carton</th>
<th>List Price per carton (subject)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 16014</td>
<td>60/40</td>
<td>14</td>
<td>32 feet</td>
<td>6</td>
</tr>
<tr>
<td>C 16018</td>
<td>60/40</td>
<td>18</td>
<td>84 feet</td>
<td>6</td>
</tr>
<tr>
<td>C 14013</td>
<td>40/60</td>
<td>13</td>
<td>20 feet</td>
<td>4</td>
</tr>
<tr>
<td>C 14016</td>
<td>40/60</td>
<td>16</td>
<td>44 feet</td>
<td>5</td>
</tr>
</tbody>
</table>

These pieces of ERSIN MULTICORE SOLDER all weigh the same. By selecting the finest gauge, the maximum economy of material is obtained.

MULTICORE SOLDERS LTD. MELLIER HOUSE, ALBEMARLE ST., LONDON, W.1. Tel. REGent 1411