THERE'S A NAME BEHIND IT!

WHAT IT DOES It has been specially designed to alleviate interference caused by radiation from electrically-operated transport, vehicle ignition systems, electrical appliances using commutator motors, lighting systems, etc. A high signal level is obtained and this ensures better listening on all broadcast wavelengths, giving maximum choice of programmes against a quiet background.

WHAT IT IS A 60-ft. polythene-protected dipole complete with insulators and matching transformer, 80-ft. coaxial screened downlead with polythene plug moulded to each end, and a receiver transformer. All the necessary components for the Aerial are included in the complete kit.

Write for Publication No. 221S giving further information.

Obtainable only from recognised dealers. £6.18.0
This instrument, which is an up-to-date example of current instrument practice, has been developed to meet the growing demand for an instrument of laboratory sensitivity built in a robust and portable form, for use in conjunction with electronic and other apparatus where it is imperative that the instrument should present a negligible loading factor upon the circuit under test.

The instrument consists basically of a balanced bridge voltmeter. It incorporates many unique features and a wide set of ranges so that in operation it is as simple to use as a normal multi-range testmeter.

The instrument gives 49 ranges of readings as follows:

- **D.C. VOLTS:** 2.5mV. to 10,000V.
 - (Input Resistance 111.1 megohms).
- **D.C. CURRENT:** 0.25µA. to 1 Amp. (150mV. drop on all ranges).
- **A.C. VOLTS:** 0.1V. to 2,500 V. R.M.S. up to 1 Mc/s. With external diode probe 0.1V. to 250V. up to 200 Mc/s.
- **A.C. OUTPUT POWER:** 5mW. to 5 watts in 6 different load resistances from 5 to 5,000 ohms.
- **DECIBELS:** -10db. to +20db.
- **CAPACITANCE:** .0001µF. to 50µF.
- **RESISTANCE:** 0.2 ohms to 10 megohms.
- **INSULATION:** 0.1 megohm to 1,000 megohms.

The thermionic circuit gives delicate galvanometer sensitivity to a robust moving coil movement. It is almost impossible to damage by overload. The instrument is quickly set up for any of the various tests to be undertaken, a single circuit selector switch automatically removing from the circuit any voltages and controls which are not required for the test in question.

Fully descriptive pamphlet available on application.
WEBB'S Radio Map & Globe

NEW EDITIONS

Webb's Radio Map of the World
INDISPENSABLE FOR THE RADIO "SHACK"

Shows the true directivity of any place in the world and gives amateur radio international prefixes, also indicates the time of the day for the world. Originally printed in 1936, many thousands of radio men have proved its use time and time again.

ENTIRELY NEW PRINTING with revised and up-to-date Call Signs prefixes, coded to country and time-zones, combined with improved printing in multi-colours.

This Map is drawn on an azimithal projection and looks strange to those accustomed to Mercator's projection, but, giving directivity and Great Circle distances, it performs many functions for radio men that the original map cannot do. Printed on the margin is an index to Call Signs and full explanation of use of time-zones and "Great Circle" projection.

Printed in full colours on heavy white paper, size 40° - 30°, price 4/6, plus 6d postage.

Webb's Radio Globe

An improved and enlarged version of our famous pre-war globe brought right up to date with new continental boundaries and Amateur Radio Prefixes. The enlarged diameter (13") greatly increases map area, and a compass fitted in the base makes correct orientation simple. Invaluable for quick location of unfamiliar calls and a handsome adjunct to receiver or transmitter.

Price 47/6 to callers.

EDDYSTONE "640" Communications Receiver

WEBB'S RADIO

54, SOHO STREET, OXFORD STREET, LONDON, W.1
Telephone : GERald 2089.

Note our Shop Hours : 9 a.m. to 5.30 p.m. Sat. 9 a.m. to 1 p.m.

The Connoisseur

Obtainable from all good dealers
Price 54/- plus purchase tax.
Transformer if required 13/-.
Special head for fitting to Garrard Auto-changers.
R.C. 60, 65, 70, 42/- plus purchase tax.
Long playing needles 20 for 2/-, plus tax.

Made by A. R. SUGDEN & Co. (Engineers) Ltd., Well Green Lane, Brighouse, Yorks
*Perfect Reproduction?

*PROBLEMS REFERRED TO IN PREVIOUS NOTES

Spatial Distribution of Sound
Echoes in the Listening Room
Limitations of Single Channel
Limitations of the Human Ear
Distortions and Faults caused by Apparatus
The Radio Link
Frequency Response
Non-linearity
The Signal Rectifier

THE A.V.C. RECTIFIER

In our last article we dealt with the trials of the signal rectifier. They are indeed severe if anything less than reasonable harmonic distortion is aimed at.

The rectifier used for producing A.V.C. can also produce bad distortion unless care and money are spent. Suppose that this diode is fed from the primary of the last intermediate frequency transformer, as is commonly the case. Suppose also for the moment that the action of the A.V.C. is undelayed. The effect of the diode on the tuned circuit can be represented by a damping resistance which remains sensibly constant provided that the diode conducts at every positive carrier frequency peak. But unless the AC/DC load ratio of this diode is high, the diode will cease to conduct during periods of minimum carrier in the troughs of the modulation cycle. Precisely the same criterion holds here as for the signal rectifier.

As soon as the A.V.C. diode ceases to conduct, the damping on the tuned circuit is reduced so that the amplitude of the modulated carrier increases, thus distorting the modulation envelope. If for the sake of good A.V.C. the action of the diode is delayed by an applied negative voltage, the case becomes even worse for it is easy to see that the diode will certainly cease to conduct as soon as the carrier falls below the delay voltage. For example, if the carrier input is 10V. peak and the delay voltage is also 10V. then for all percentage modulations the diode will conduct during the positive half of the modulation cycle but will be an open circuit for the negative half. For a signal of twice this value, distortion will only occur for modulation depths greater than 50%.

It is simple to combine the effects of delay and AC/DC load ratio by saying that the highest percentage modulation which will not produce distortion is the product of the AC/DC load ratio and the delay/carrier level ratio.

This extremely severe limitation can be mitigated by one route and virtually overcome by another. It can be mitigated by arranging that the delay action required for good A.V.C. is obtained, not by back-biasing the A.V.C. diode itself, but by delaying the effect of its negative output on the controlled stages until the desired carrier level has been reached. This is only a mitigation since it still leaves the trouble with the delay/carrier level ratio.

The complete cure is to replace the amplifying valve from whose output the A.V.C. signal is taken, by a diode rectifier. This will prevent any further slope distortions which are always present in the triode amplifying chain. In cases where triode distortion is still a problem, a single diode fed from the output of the triode stage will prevent the trouble.
A wonderful reception!

Since the new Stentorians were introduced a few months ago many thousands have been sold. This wonderful reception is due to their outstanding value, quality and appearance plus the unique remote control feature on Beaufort and Bristol models. Each Speaker incorporates a die-cast unit fitted with Alcomax magnet; volume control; handsomely finished in polished walnut veneer.

Stentorian
BAFFLE SPEAKERS

One 'Long Arm' Remote Control operates any number of Stentorian speakers (Remote control models) and enables any make of set to be switched on or off from any room in the house.
Price 35/- No Purchase Tax.

Beaufort £3. 7. 6. (with transformer £3.15.0).
Bedford £1.19.6. " " £2. 5. 6.

* All three models are identical except in size.

Ask your dealer to demonstrate today.

Literature on Stentorian Speakers & 'Long Arm' free on request.

WHITELEY ELECTRICAL RADIO CO., LTD • MANSFIELD • NOTTS.

VICTORIA "SPECIALS"

A very keen interest is taken by the technical staff at Victoria Instruments in the design and development of special-purpose instruments. This willingness to undertake the "teasers" does not surprise those who already buy Victoria products. Users of electronic measuring instruments should avail themselves of this service, and take a leaf from the book of some of the largest firms in the electronic industry.

PORTABLE TEST SETS
Robust moving iron instruments. Suitable for the Electrical Contractor or Automobile Electrical Engineer.
Size: 31" x 31" x 21" overall complete with carrying strap.

These combined instruments are made in many standard ranges.
Combination examples:
260V A.C. or D.C.
15A A.C. or D.C.
25V A.C. or D.C.
25A A.C. or D.C.

Other Combinations to order.

SQUARE FLANGE METERS
4" Large Open Scale. Mirror Scale can be supplied if required.
RANGES:
A.C. from 1V-10kV 25uA-100 Amps.
D.C. From 5mV-10kV 5uA-5000 Amps.

Victoria Instruments are made uncommonly well.

VICTORIA INSTRUMENTS

Victoria Instruments are made uncommonly well.

Victoria Instruments are made uncommonly well.

Victoria Instruments are made uncommonly well.
NOTICE

"POINT ONE" is the Trade Mark of H. J. Leak & Co., Ltd. It was originally applied to the first power amplifiers having a total distortion as low as point one of one per cent, when in June, 1945, H. J. Leak, M. Brit. E.R.E., revolutionised the performance standards for audio amplifiers by designing the original "POINT ONE" series.

NEW LEAK "POINT ONE" AMPLIFIERS

REMOTE CONTROL PRE-AMPLIFIER RC/PA
£6 - 15 - 0 list.

An original feedback tone-control circuit which will become a standard.
No resonant circuits employed.
- Distortion: Less than 0.05%
- Switching for Pick-up, Microphone and Radio, with automatic alteration of tone-control characteristics.
- High sensitivities. Will operate from any moving-coil, moving iron or crystal P.-U.; from any moving-coil microphone; from any radio unit.
- Controls: Input Selector; Bass Gain and Loss; Treble Gain and Loss; Volume.
Output Impedance: 0-30,000Ω at 20 kc.p.s.
The unit will mount on motor-board through a cut-out of 10½in. x 3½in., or it can be bolted to the power amplifier, when, with a top cover, the whole assembly becomes portable.
For use only with LEAK amplifiers.

Used with the RC/PA pre-amplifier and the best complementary equipment, a TL/12 power amplifier gives to the music-lover a quality of reproduction unsurpassed by any equipment at a price. The TL/12 is designed in form so that the power amplifier can be housed in the base of a cabinet and the small pre-amplifier can be mounted on motor-board through a cut-out.

TL/12 12W. TRIPLE LOOP POWER AMPLIFIER
£25 - 15 - 0 list.

A Leak triple loop feedback circuit, the main loop giving 26 db. feedback over 3 stages and the output transformer.
- Push-pull triode output stage. 400 V. on anodes.
- No H.T. electrolytic smoothing or decoupling condensers.
- Impregnated transformers; tropically finished components.
- H.T. and L.T. supplies for pre-amp. and radio units.
- Distortion: at 1,000 c/s and 10 W. output, 0.1%; at 60 c/s and 10 W. output, 0.19%; at 40 c/s and 10 W. output 0.21%.
- Hum and Noise: — 70 db. on 10 W.
- Frequency response: ±0.1 db., 20 c/s-20 kc/s.
- Sensitivity: 100 mV.
- Damping Factor: 20. Input impedance: 1 MΩ.
Output impedances: 2Ω, 7-9Ω, 15-20Ω, 28-30Ω.
25 W. model available at £27.10.0.

DO YOU KNOW what these
PHASE MARGIN 20° ± 10°
They are of vital importance, for the "goodness" of the absence of this information, however impressive the only organisation advertising these figures ("Wireless World", May 1949).

If you would like to know more about a
KOLECTRIC
AUTOMATIC COIL WINDING MACHINE
Type A1/1

This machine is precision built and it embodies all the latest improvements in coil winding technique. It is suitable for winding coils up to 5" (127 m) diameter and 7 1/2" (190.5 m) long. Minimum length of coil 7 3/4" (5.6 m).

Among the many features to be found on the Type A1/1 machine are the following:

- A clear Wire Gauge indicator is fitted with a glass window and calibrated in mils, or millimetres, as desired. The machine can be quickly set to wind any required wire gauge .020" (.508 m) and .001" (.0254 m).
- For setting purposes, micrometer adjustments are provided on the trip rod. These enable the machine to be set to the required width of coil to fine limits. The wire feed carriage automatically reverses its direction of travel when the trip rod operates.
- The railstock is fully adjustable along its bed and the center is spring loaded to enable rapid change of the coil former.

Please write to us for illustrated leaflets A1/1, A1/2 and RT/1, which contain a full technical specification on the machine and reel stand.

Mullard
STROBOSCOPE
Type GM.5500
An industrial and laboratory unit for the visual examination of mechanical parts, liquids or gases under working conditions.

Special Features
Maximum light flux 20 million lumens • Flash duration 3 to 10 microseconds • Light intensity variable over seven switched positions • Flash frequency adjustable between 0.5 to 250 per second • Built-in frequency meter gives direct reading of flash frequency over whole range • Connectors and a switched system for external synchronisation • Removable lamp unit • Built-in mains filter • Simple to operate Completely mobile.

Write for full information to:

Mullard
Electronic Products Ltd.,
ELECTRONIC EQUIPMENT DIVISION
WORKS • ABOYNE ROAD • S.W.17.
Now available, the new Ferranti Television tube

Our new T 12/46 12" Television Tube (above) upholds the Ferranti tradition of reliability in radio engineering. The screen is specially flat, and gives a bright, pleasantly coloured image.

Improved design ensures long life and complete elimination of ion spots, while the electron gun assembly produces a finely-focused spot for clear
INTRODUCING THE R22/12, 20-WATT, 12" P.M. LOUDSPEAKER

MORE POWER—STILL GREATER EFFICIENCY—
the ultimate development of the famous T2

Available with two types of Cones:

CONE TYPE "1205"
Fundamental Resonance 75 c.p.s.
(Designed for PUBLIC ADDRESS)

CONE TYPE "1206"
Fundamental Resonance 55 c.p.s.
(Designed for BASS REPRODUCTION)

Write for descriptive leaflet D.8.

GOODMANS R22 20-WATT 12" P.M. LOUDSPEAKER
FULLY DUSTPROOF

GOODMANS INDUSTRIES LTD. Lancelot Rd., Wembley, Middx.
Telephone: WEMbley 1200 (8 lines). Telegrams: Goodaxiom, Wembley

let "Mighty Midget" Boost Your Sales

- 3 valve, plus rectifier, midget radio receiver; 200-250 volts A.C. or D.C.
- Cabinet: Fully seasoned wood, finished in polished walnut
- Valves: Latest British Octal and Ballast Type
- Coils: High "Q" iron cored on "low-loss" formers
- Wave-range: 200-550 metres
- Chassis: Steel, plated for reliability & long life
- Loudspeaker: 5" dia. "Monobolt" construction, to which is fed 3 watts of Audio Power
- Guarantee: 12 months
- Apart from Mains, the only connection is an aerial supplied with the set

Volume, Tone and Sensitivity are remarkable. From a Radio measuring 6" x 7" x 4½". The advertising campaign now getting into its stride, will be increased in volume and tempo, as space becomes available.

£6.19.9 INC. P.T.

TUIRAL SONIC INDUSTRIES
(Formerly General Electrical Radio)
BATH STREET, LONDON E.C.1
FOR TRIMMER CONDENSERS
and all radio components
FREQUENTITE-FARADEX-TEMPRADEX

STEATITE & PORCELAIN PRODUCTS LTD.
Stourport on Severn, Worcester. Telephone: Stourport III. Telegrams: Steatin, Stourport
introduce the

Leak Proof Battery!

A REVOLUTIONARY DEVELOPMENT EXCLUSIVE TO ALPHA

- Sealed in Steel *
- Cannot deteriorate when idle
- Stands up to rough handling and years of storage
- Unaffected by extremes of temperature

Here is a new type of battery: the cell is completely sealed in an insulated steel jacket. Only Alpha have this exclusive development which prevents leakage, allows storage for years without loss of power, and will not corrode in the torch-case. Next time you buy a battery insist on Alpha—and get the power you pay for. The Alpha Leak-proof Battery (1.5 volts) is made in the standard size and is available from local dealers.

* Covered by British Patent No. 531237

Retail Price 6d.

ALPHA ACCESSORIES LTD., SALES OFFICE, GRAMOPHONE BLDGS., BLYTH ROAD, HAYES, MIDDLESEX. Telephone Southall 2468.

TAKING A WIDE VIEW

It is astonishing how perfectly an image enlarged by a Magnavista Lens can be seen in comfort from almost any angle. You don’t have to sit dead in front of the receiver. You don’t have to peer closely into the screen. That is because a Magnavista Television Lens is optically correct and constructed in accordance with specifications arrived at in consultation with eminent independent authorities on lens computation. It gives HIGH MAGNIFICATION plus absolute clarity and a wide angle of view. The Magnavista Television Lens is not just another refinement but an important contribution to the pleasure of televiewing—one which no connoisseur of television can be content to ignore.

<table>
<thead>
<tr>
<th>Type</th>
<th>£</th>
<th>s</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.7, 6in.</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>A.1, 2, 4, 5, 8 and 9, 9in.</td>
<td>4</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>D.1, C.1, 10in. and 12in.</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>D.1, 15in.</td>
<td>5</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>A.3 (Universal), 9in.</td>
<td>6</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>B.2 (Universal), 10in.</td>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

MAGNAVISTA Magnification is Television Perfection

METRO PEX LTD
38, Gt. Portland St., London, W.1
("Phone: Museum 9024-5")
METAL DETECTION EQUIPMENT

provides an additional safeguard for the quality of the product and eliminates the risk of fire and damage to machinery by tramp metal.

Typical installations of the 'CINTEL' INDUSTRIAL ELECTRONIC METAL DETECTOR

Applications in other industries including Plastics, Tobacco, Textiles, Insulating materials, Limestone, Sugar cane crushing, etc.

The 'Cintel' Industrial Electronic Metal Detector has been specially designed to provide permanent inspection facilities with the minimum of attention. Fully automatic in operation, the equipment removes the risk of error that may be present with visual inspection and detects both ferrous and non-ferrous metal inclusions.
Large and small Multi-Unit Rack Assemblies for all types of installations.

The illustration shows a typical 2 channel Radio System with automatic microphone switching.

MYCALEX

THE INSULATOR

May solve your Insulation Problems with the following

UNIQUE COMBINATION OF PROPERTIES

- HIGH DIELECTRIC STRENGTH
- LOW-LOSS FACTOR
- HEAT RESISTING
- MANUFACTURED TO CLOSE TOLERANCES
- NON-TRACKING
- RESISTANT TO FUNGUS GROWTH
- WILL NOT SHRINK OR WARP
- LOW EXPANSION CO-EFFICIENT

MACHINED TO CUSTOMER'S REQUIREMENTS OR AVAILABLE IN SHEETS, RODS AND MOULDINGS

Also makers of INGRAM MYCALEX Capacitors utilising MYCALEX as a dielectric with plates moulded in, to form a sealed unit

'Phone: CIRENCESTER 400 or send enquiries to

LTD • ASHCROFT ROAD • CIRENCESTER GLOS
A NEW A.C. ALL-WAVE SUPERHET RECEIVER.

A new A.C. All-wave Superhet Receiver with a voltage doubling circuit, these will give slightly higher output. We can supply one for 200-250 volts a.c. mains. The dial is illuminated, and the receiver presents a very attractive appearance. Coverage is for the medium and long wavebands.

NEW PRICES

PREMIER MIDGET RADIO RECEIVER. Due to greatly increased production we are now able to offer this receiver at a greatly reduced price. The Receiver is housed in an attractive Bakelite case, 12 in. long x 5 in. wide x 3 in. high. The valve line-up is 6J7, 25A6 and a Selenium Rectifier in the A.C. model: 50A5, 50G4, 50G6 and Selenium Rectifier in the A.C./D.C. model. Both are for use on 200 to 250 volt mains. The dial is illuminated, and the receiver presents a very attractive appearance. Coverage is for the medium and long wavebands.

Price: £8 19s. Complete kit of parts with diagrams: £5 8s. Inc. Purchase Tax.

PREMIER MIDGET SUPERHET RECEIVER. This powerful Midget Superhet Receiver is designed to cover the short-wave bands between 16 and 50 metres and the medium wavebands between 200 and 557 metres. Two models are produced, one for 200-250 volt a.c. mains and the other for 300-350 volts a.c. or D.C. mains. Both are supplied in the same plastic cabinet as the TRF Receiver. The A.C. valve line-up is 6J7, 25A6, 6V6 and a selenium rectifier. The A.C./D.C. line-up is the same, with the exception of the output valve, which is a 5A4. The dial is illuminated, making it a very attractive receiver. Price: £8 3s. Complete kit of parts with diagrams: £5 8s. Inc. Purchase Tax.

PLASTIC CABINETS, as illustrated above. In Brown, 17s. 6d. In Ivory, 22s. 6d.

METERS. All meters are by the best makers: all are contained in bakelite cases. Price range from £1 to £5.

TELEPHONE KITS. Bullringer 4-Wire or 2-Wire Telephones. Complete sets of units, with diagrams.
Here are sets to delight the expert

WITH 2 YEARS' FREE ALL-IN SERVICE IN THE HOME

Apply any test you wish to these Sobell 5-valve superhet table receivers. You will find that every component is superbly engineered. Check the circuits, the signal rectification, the I.F. selectivity, the audio sensitivity — and any other points you like. They'll all satisfy your critical judgment.

We'll say nothing about the obvious — the pleasing cabinets, the simple controls, the easy-to-read 3 wave band tuning dials, the special gramophone pick-up sockets with automatic switches, the provision for external loudspeakers — because these are "musts" in sets designed to the highest standards.

The two models illustrated are S19P and S19W respectively, working on 200-250 volts A.C. only. There's a Sobell dealer in your district — he'll be glad to arrange a thorough demonstration.

"You're CERTAIN to get it at ARTHURS!"

VALVES: We have probably the largest Stock of valves in the Country. Send your enquiries. We will reply by return.

AVO METERS IN STOCK
Avo Model 7 .. £19 10 6
Avo Model 7, high resistance £19 10 0
Valve Tester .. £16 10 0
Test bridge .. £11 0 0
Avo Minor, AC/DC model £8 10 0
Electronic Test Meter £35 0 0
Signal Generator £35 0 0
TAYLORS METERS, list on request.
DECCA PICK-UPS £6 14 6
DECCA HEAD for Garrard £4 11 0
Adaptors ... 3 8

DENCO COILS & COMPONENTS in stock.

All types stocked
DUBILIER Capacitors are available for every requirement in all industries where capacitors are used.

Years of concentrated and highly specialised experience, maintained by continuous research and development, the use of special purpose plant of our own design allied to production based upon a well balanced economy, are some of the reasons why our capacitors go in an ever increasing stream to the Markets of the World.

Catalogues of these outstanding examples of modern capacitor engineering are available if you will indicate the types of capacitors in which you are interested.

DUBILIER CONDENSER CO. (1925) LTD., DUCON WORKS, VICTORIA ROAD, NORTH ACTON, W.3
NEW

The following are now available:

BOOKS:
- "Sound Reproduction" by G. A. Briggs. 8/- post free.

LOUDSPEAKER CABINETS:
- The RD Junior Corner Cabinet. For use with the Wharfedale W10.CS.
- A compact and attractive design giving good bass response down to 35 cps.

GRAMOPHONE FEEDER UNITS:
- Two new models suitable for use in conjunction with the Williamson amplifier are now ready.
 - Model RD3 £10 10 0
 - Model RD4 £6 10 0
- Full descriptions of these units will be forwarded on request.

DRAWINGS:
- Complete set of drawings for the Williamson amplifier, including layout diagram, circuit diagram and component list 7/6 post free.

ROGERS DEVELOPMENTS Co.,
106. HEATH STREET, HAMPSTEAD, LONDON, N.W.3.

DESIGN INFORMATION

If you have a design problem involving audio Attenuators or Faders, consult Painton. Our engineers will be pleased to assist in selecting suitable units for specific requirements.

Long experience in building top class instruments for many of the foremost authorities is your assurance: you cannot do better than consult a specialist.

We invite you to send us your enquiries.

ILLUSTRATION

Ladder Attenuator, 20 steps, 40 db, 600 ohms; accuracy 0.1 db to 40 Kc/s.

Agents in Denmark:
Janko Kondensat ornfabriek A.S., Holbergsgade 15, Copenhagen.

PAINTON & CO LTD
KINGSTORPE NORTHAMPTON

The CONSTAC

Constant Voltage Transformer

A versatile transformer which provides a fully stabilised 6.3v. heater supply in addition to a variety of stabilised H.T. outputs.

Originally designed for use in E.L.L. instruments, the CONSTAC* is now available to manufacturers of high grade equipment.

*Made under licence by The Banner Electric Co., Ltd.

Input: 160 to 260 v. 50 c/s.
L.T. Output: 6.3 v. 2 A.
H.T. Output: 350 v. 25 mA or 200 v. 15 mA or 15 v. 15 mA and 120 v. 25 mA.

ELECTRONIC INSTRUMENTS LTD
17 PARADISE ROAD • RICHMOND • SURREY
They speak for themselves...

The SS10A 12-inch Heavy Duty Speaker, illustrated, offering a frequency response from 55 to 11,000 c.p.s. and handling 10 watts is a typical example of TRUVOX workmanship.

TRUVOX ENGINEERING CO. LTD • EXHIBITION GDS • WEMBLEY • ENGLAND
AN EXAMPLE from the Furzehill range of fine instruments in this high-grade oscilloscope for industrial, radio and television applications. Both axes have identical d.c. coupled high sensitivity amplifiers with symmetrical inputs and a level frequency characteristic from zero to 15 screen diameters, negligible phase shift in the amplifiers and automatic amplitude-limited synchronisation.

For full details of this, and other instruments in the Furzehill range, write for our new illustrated catalogue.
"INSIDE STORY"

of OSRAM VALVE B65

This is a double triode designed for use in push-pull, parallel or cascade circuits. The valve is octal based, compact in design, and apart from the common 6.3 volt 0.6 amp. heater, the two sections are entirely independent.

1 MICA SPACER — anchors the various electrodes in accurately locked positions. It is sprayed with magnesia to provide high surface insulation.

2 CONTROL GRIDS — Molybdenum wire wound onto copper rod supports.

3 GETTER CUP & PATCH. The metal barium, contained in the cup is deposited in a silvery film on the inside wall of the bulb. It maintains a high vacuum condition during the life of the valve.

4 TWO PART BASE ensures reliable fixture of base to bulb.

5 ANODES are carbonised externally to enhance heat radiation.

6 ANODE RIBBING. Designed to impart additional mechanical strength to anode assembly.

7 EYELETS for easy assembly of anode plates. Reducing spot welding to a minimum.
Spire Speed Nuts cut assembly time to a minimum; they're so easy and quick to fix, even in really difficult blind assemblies and awkward locations. They will not "clog" with paint or enamel. They eliminate a retapping operation. And once home, Spire Speed Nuts lock tight as long as they're wanted (regardless of any number of bolt removals) their unique double-spring action sees to that. If you're worrying right now over a fastening problem, why not send for more news of Spire—fastest thing in fastenings.

Enquiries to:
Simmonds Aerocessories Ltd., Byron House, 7-8-9, St. James's Street, London, S.W.1

Head Office and Works: Treforest, Glamorgan
HOW WILL IT SOUND?

It may look O.K. on the blueprint, but the only thing that really matters is—how does it sound? Time and money are often spent by enthusiasts who neglect the essential feature of all sound equipment—a high quality, reliable speaker—best of all, a VITAVOX. Consult us on your sound problems and remember—

IT WILL SOUND BETTER THROUGH VITAVOX LOUDSPEAKERS

Fullest Information gladly sent on request

VITAVOX LIMITED

WESTMORELAND ROAD - LONDON - N.W.9 - ENGLAND

Telephone: COlindale 8671/3

Telegrams: Vitavox, Hyde, London

Cables: Vitavox, London
Precision with a Pedigree

FREQUENCY
MEASURING
EQUIPMENT

Type TME 1

Years ago, the frequency measuring equipments made by Marconi’s were for their own use — because nowhere else could sufficiently accurate instruments be obtained. The present equipment therefore, Type TME 1, boasts a long and distinguished pedigree and, like its predecessors, is precision-built to an exacting specification. Anywhere in the world it can be rapidly installed and its rated stability of 1 part in 10^6 maintained indefinitely. In price too, it commends itself as the ideal laboratory standard. Please ask for further details. Type TME 1 Frequency Measuring Equipment is available for early delivery.

Marconi Instruments Ltd
ST. ALBANS, HERTS. Telephone: St. Albans 6161/S

Write for FREE BOOKLET
containing full details of POSTAL and ATTENDANCE courses covering such subjects as Television • Elementary and Advanced Radio, Theory and Practice • Radio for the Amateur Licence • Intermediate and Higher Mathematics • Electronics in Industry, Etc.

Write to Dept. 16
E.M.I. INSTITUTES
Associated with "H.M.V." MARCONI-PHONE COLUMBIA ETC.
E.134A

• CONSTANT VOLTAGE • POWER SUPPLY UNITS

NEW SERIES 101
Our new Laboratory Power Supplies, Series 101, are based on our well-known Model 101-A, but incorporate a number of improvements and refinements.

DETAILS ON REQUEST.
ALL-POWER TRANSFORMERS LTD.
8a, GLADSTONE ROAD, WIMBLEDON, S.W.19
Tel.: Liberry 3303.
HIGH FREQUENCY
AERIAL FEEDERS
for Television, F.M., Transmission and Anti-Static Systems

Ediswan offer for quick delivery a useful range of radio frequency cables. The types available meet general requirements of set design and area signal strength. Scientific construction, controlled by rigorous tests, is responsible for the accurate characteristics and long service given by Ediswan radio frequency cables.

<table>
<thead>
<tr>
<th>Nominal Characteristic Impedance, Type and Code Ref.</th>
<th>Attenuation db/100 ft. at 50 Mc/s.</th>
<th>Conductor size, inch</th>
<th>Construction</th>
<th>Dimensions Overall, inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Ohm Coaxial (50/CS/60)</td>
<td>6.0</td>
<td>7/.0076</td>
<td>POLYTHENE DIELECTRIC, COPPER WIRE BRAID, P.V.C. SHEATH</td>
<td>.165</td>
</tr>
<tr>
<td>70 Ohm Coaxial (70/CS/40)</td>
<td>4.0</td>
<td>7/.0076</td>
<td></td>
<td>.220</td>
</tr>
<tr>
<td>75 Ohm Coaxial (Low attenuation) (75/CS/10)</td>
<td>1.0</td>
<td>1/.048</td>
<td></td>
<td>.300</td>
</tr>
<tr>
<td>70 Ohm Coaxial (Low Attenuation) (70/CS/12)</td>
<td>1.2</td>
<td>1/.056</td>
<td>POLYTHENE DIELECTRIC</td>
<td>.450</td>
</tr>
<tr>
<td>70 Ohm Balanced Screened Twin (70/T5/60)</td>
<td>6.0</td>
<td>7/.010</td>
<td></td>
<td>.250</td>
</tr>
<tr>
<td>75 Ohm Unscreened Twin (75/TU/45)</td>
<td>4.5</td>
<td>7/.012</td>
<td></td>
<td>.19 x .10</td>
</tr>
<tr>
<td>150 Ohm Unscreened Twin (150/TU/21)</td>
<td>2.1</td>
<td>7/.012</td>
<td>POLYTHENE DIELECTRIC</td>
<td>.17 x .09</td>
</tr>
<tr>
<td>300 Ohm Unscreened Twin (300/TU/10)</td>
<td>1.0</td>
<td>7/.012</td>
<td></td>
<td>.44 x .10</td>
</tr>
<tr>
<td>300 Ohm Unscreened Three Core (300/VK/10)</td>
<td>1.0</td>
<td>7/.012</td>
<td></td>
<td>.44 x .10</td>
</tr>
</tbody>
</table>

EDISWAN Radio Cables

THE EDISON SWAN ELECTRIC CO., LTD., 155 Charing Cross Road, London, W.C.2
THE COMPLETE SERVICE
FOR SOUND RECORDING AND
REPRODUCTION

- Mobile, static and specialised recording units
- Recording amplifiers, speakers, microphones, etc.
- Sapphire cutting and reproducing styli
- Blank recording discs from Sin. to 17in. Single
 and Double-sided
- Groove locating and cueing devices
- A comprehensive range of accessories to meet every require-
 ment of the sound recording engineer
- A development of special interest to users of sapphire and,
 delicate pick-ups—THE SIMTROL. This is a controlled micro-
 movement easily fitted for use with any type of pick-up
- OUR CDR49A RECORDER UNIT complete and self-contained
 measuring only 22in. x 14in. x 13\(\frac{1}{2}\)in., incorporating 8-valve
 amplifier, recorder unit, light-weight pick-up, speaker and
 microphone and with many exclusive features, is now ready
 for early delivery.

OUR WELL-EQUIPPED WORKSHOPS ARE AVAILABLE FOR THE
DEVELOPMENT OF EQUIPMENT TO MEET SPECIAL NEEDS.

The RIMINGTON JEWEL
will bring new life to
GRAMOPHONE REPRODUCTION

- Reproduces the maximum recorded frequency range.
- Wear on records is negligible, the jewel is scientifi-
 cally designed to follow the groove of the record
 lightly and smoothly.
- Preserves the higher frequencies delicately imprinted
 in the record, so easily destroyed, and reproduce.
- Jewel well set and angle correct.
- Contained in plastic box well packed and mou-
 nced.
- LIFE. It is not possible to state categorically the
 life of a jewel point, but in the interest of quality
 it is advisable to replace the jewel after 1000
 playings—it is a matter of personal discretion.
- The Rimington Jewel needle reveals new beauti-
 in your records which you have heretofore
 unsuspected.

PRICE—Most reasonable. The Rimington Jewe-

The RIMINGTON JEWEL
is the finest sapphire on the market and it
retails at only 9.9.

Order your Rimington Jewel NOW and revolutionise
your gramophone reproduction.

TRADE ENQUIRIES INVITED

RIMINGTONS

RIMINGTON, VAN WYCK LTD., 42-43 Cranbourn St., London, W.C.2
Cable: Gerrard 1171
RIMINGTON, VAN WYCK (Mail Order) LTD., 28a Devonshire St.,
Marylebone, London, W.1 Welbeck 4695

TRANSIENTS ARE TRANSIENT
from
BARKER'S 148a SPEAKER

One of the del-
lights of listening
to the 148a is the
amazingly clean,
NATURAL, tran-
sient reproduction.
It is an ever re-
current joy to
hear staccato pas-
sages, plucked
strings, cymbals,
the triangle, the
whole tracery of
complex orchestra-
tion rendered with-
out blur, without
false colouration,
each note, each
instrument charac-
teristic, true to its
origin.

With good equip-
ment before it and
a good transmission
or record the 148a
is superb. And it
is economical, for
its extended fre-
quency range ren-
ders one unit ade-
quate for any
domestic high
quality installation,
bass to shake the floor if needed and extreme top to catch the most delicate
breath of violin string. A single 148a, properly mounted, will give results
otherwise unobtainable at several times its cost.

Practically all specialists in really high quality gear have the 148a always in
stock: Brerley, E. M. G., Goodsell, Lowther, Rogers, Valiance & Davison,
Webbs Radio and many good music dealers like Largs of Dundee, Storeys
of Chichester. If your own dealer hasn't one, write direct to:

BCM/AADU, LONDON, W.C.1

Wireless World
August, 1949
Briery Club Ribbon Pick-up, with Transformer and Pre-amplifier. As new £13 10 0

Decca FFRR High Impedance, Light Weight Pick-up. As new £4 5 0

Decca Heads (Garrard fitting), as new £12 6

Lexington Senior Pick-ups, with Transformer and Pre-amplifier. As new £6 17 6

R.I. Lightweight Pick-up. As new £3 15 0

Rothemer Senior Crystal Pick-up. As new £1 15 0

E.M.I. Lightweight Pick-up. As new £2 15 0

Lexington Head (Garrard fitting). As new £2 15 0

ARRB's Model D. As new £7 10 0

Vogt Amplifier (pre-war) and Radio Unit in 3ft. Rack. Metered and with valves. In perfect condition and working-order £15 0

S-37 Hallcrafters. As new. A.C. 220-250 volt £30 0

National H.R.O. Senior. 5 coils, 30 meg. to 430 kcs. (cont.) 200-250 V. In Power-Pack. In perfect condition £27 10

BC348, with Power-Pack. 200-250 A.C. In perfect condition £12 10

Edystone 504. As new £2 10

Edystone 640, with speaker. As new £2 0

Avo 7½’s, in perfect condition and working-order £10 10

Avo 7½’s, as new £10 0

Avo Capacity and Resistance Bridge. As new £10 0

Taylor Cap. and Res. Bridge. As new £8 0

Hunt’s Capacity and Res. Bridge, Model C.R.B. As new £11 0

G.E.C. Miniscope with Wobbulator Unit, leads, adaptors etc. Latest model. As new £21 0

Flux Meters, M. M. M. Marvin U. S. P. 3 only. Brand new. Each £15 0

BC212F's. Brand new £12 0

Complete Recording-Unit—Motor and portable, tracking-gear and cutting-head, on Unit plate, less Amplifier. A.C. 200-250. As new £16 10

Taylor Capacity and Inductance Adaptor, 313c. As new £2 17 6

S.T.C. Ball and Biscuit Mikes, 4021A. As new £7 10

Ward Rotary Converter, 24 volt D.C., 230 A.C. 50 cycles, 300 watts. With filter unit. Perfect £8 10

E.D.C. Rotary Converters, 200-250 volts D.C., to 230 A.C. Single phase, 50 cycles. 150 watts, Cabinets and filter units. Others in stock. As new £13 10

Vortexion Super 50-watt Amplifier, with valves. As new £17 10

Pam 25-watt Amplifier, with 2 Pam speakers and 'Gram Unit. As new. With M/C Mike input £31 10

Phillip's P.C.R.-I, complete with valves and Power-pack. As new £14 0

Several Radiogrid Cabinets. Brand new. Beautiful finish. £20 0

Avo Valve-Testers, roller panels, with charts. As new £11 0

Avo Oscillators. As new. All wave 1948 £6 10

Taylor Windsors. As new £12 0

Taylor Valve-Testers 45A, with charts, as new £12 10

Taylor Valve-Tester and Test-Meter Combined. 4AP. As new £17 10

Taylor AC DC Test-Meter, 20,000 O.P.V. Model 5A. As new £11 0

Taylor AC DC Test-Meter. Model 83C. As new £8 10

Weston AC DC Test-Meter. Model E772 £10 0

Weston Test-Meter, 20,000 O.P.V. In portable case. As new, AC/DC £14 0

Mullard Oscilloscope, Model G.M. AC mains 200-250 volts. Case soiled, but in perfect working-order £25 0

Taylor Oscilloscope. As new £18 10

Cossor Oscilloscope, ex-W.D. Model II. AC. 200-250 volts, 50 cycles. 2½-in. Tube, with Circuit Diagram. As new £12 10

Cossor Double-Beam Oscilloscope. Model 3339. As new £27 13 0

Others in stock from £5. Price varies according to external condition only. All are internally perfect.

B.S.R. Amplifiers, model P.A.29. In portable steel cases. Mike and 'Gram inputs. 250 volts AC, 50 cycles. As new £17 10

Shafesbury Portable Amplifier, AC/DC. With M/C Mike, stand etc. £18 10

R.S.A. Amplifier, AC/DC, 25 watt, complete with Ribbon Mike and stand. As new 7¾ in. 7¾ and 15 ohms. 2 Mike and 'Gram inputs. As new £22 0

R.S. Amplifiers with valves. AC/DC. 10-watts. M/C Mike and 'Gram inputs. Perfect condition £8 10

Southern Sounds Studios 16 mm. Silent-to-Sound Conversion Equipment. Including Amplifier, Valves, Soundhead, Photocell, etc. Complete. Condition as new £18 10

Vortexion 15-watt Amplifier, with valves. AC 200-250 volts, 50 cycles. M/C Mike and 'Gram inputs, Output: 2, 5, 7½ and 15 ohms. As new £12 0

Gramplan Amplifier Chassis, 12 volt DC and 200-250 volt AC. 25-watt, With valves. 2. KT66’s. P-P. Output: 2, 5, 7½ and 15 ohms. Mike 'Gram inputs. As new £11 0

Collaro Portable Record-Player. Latest model. As new £8 10

Romac Record-Player, in portable steel case. As new £9 0

Pam Record-Player, in portable steel case. As new £9 0

Columbia Latest Model Portable Record-Player, in polished wood case, with lightweight Pick-up. As new £10 10

Decca Latest Model Portable Record-Player. As new £8 10

Garrard AC/DC Record-Player, in grey steel portable case. As new £9 0

Rothemel Crystal Mikes, model 1485. (Golf-ball) Sound Cell type. As new £5 0

R.S.A. Ribbon Mike. As new £7 0

G.E.C. Ribbon Mike. As new £6 10

R.C.A. Ribbon Mike, on table stand. As new £6 10

Meico M/C Mike. As new £3 0

Lustraphone M/C Mike. As new £3 0

B.S.R. M/C Mike. As new £3 0

Portable Chrome Mike Stand. As new £10 0

Evershed’s Megger Ohmmeters, high and low ranges, with leecher cases. As new £3 10

M.S.S. Disc Recording Unit, complete. £37 10

Technifon Tracking-gear and Cutting-head. As new £13 10

Heavy-duty Recording Motor and Turntable, 200-250 volts AC. 50 cycle. As new £9 0

Recording Turntable. As new £12 0

Hundreds of other items too numerous to list at Bargain Prices. Please state requirements. No Lists, and no C.O.D., Cash or Cheque with order. All items listed are Carriage Paid. We take your used equipment in part exchange for new goods.

22 LISLE STREET, LEICESTER SQUARE, LONDON, W.C.2

Phone GERrard 4447 and 8582. Hours 9 to 6. Thursdays 9 to 1.
THE NEW Aerialite TELEVISION AERIAL

COAXIAL CABLES. Manufactured under strict Laboratory conditions and to Government Specification where possible. Send for list of the full range of AERIALITE R/F Cables and Feeders.

AERIALITE LTD., CASTLE WORKS, STALYBRIDGE, CHESHIRE

SPECIAL OFFERS

HIGH VOLTAGE OIL FILLED CONDENSERS. 5 mfd. 2,000 v. wkg., 8/-. 2 mfd. 1,000 v. wkg., 5/-. 4 mfd. 600 v. wkg., 8/-. 8 mfd. 500 v. wkg., 7/6.

FIXED CONDENSERS. 0.001 mfd. 1,000 v., screened, 9d.

12 VHF Chokes, 3 Silver Mica 7 pF, Condensers, 4-pin Plug and Socket. A most useful assembly. Price 9d., packing and postage 9d.

Numerous other bargains are now available; Send 3d. in stamps for No. 2 Special Offers List and Raymart new illustrated catalogue.

RADIOMART

48 HOLLOWAY HEAD
BIRMINGHAM, I

TELEVISION AERIAL
RELAY CONTACTS & SPRINGS

You will be in no doubt of the basic excellence of your design. It is the result of many hours of detailed planning and experimental work, and you will have left nothing to chance. The operation of the equipment when it leaves your hands will be faultless. But—will it continue to be so?

Shortening of useful life due to mechanical or electrical wear of contacts, fluctuations in circuit characteristics through surface tarnishing—these are ever-present possibilities when the contacts you have fitted are not suited to their work.

If you have experienced such problems, or others more subtle, remember that we maintain at your command a range of contact materials we know to be without equal and an advisory service always ready to assist you impartially in obtaining the maximum working life from your equipment.

Specialised Products of

JOHNSON MATTHEY & CO., LIMITED, HATTON GARDEN, LONDON E.C.1.

CONTROLLING MALLORY METALLURGICAL PRODUCTS LTD.

G.D. 118.
"SOUND REPRODUCTION"
by G. A. Briggs

7'6

Bound Full Rexine. About 144 pages
120 Illustrations (70 original) Fine Art Paper
8/- POST FREE

PART I.

PART II.

In view of the demand for the book "LOUDSPEAKERS" it is expected that the first Edition of 10,000 copies of "SOUND REPRODUCTION" will be quickly sold out. Order early to avoid disappointment. Many radio dealers can accept orders.

Published by:
WHARFEDALE WIRELESS WORKS
BRADFORD ROAD • IDLE • BRADFORD • YORKS
Telephone: Idle 461
Telegram: Wharfdel, Idle, Bradford

"LOUDSPEAKERS"
The Why and How of Good Reproduction
by G. A. Briggs
88 pages
36 Illustrations
5/- per copy
(5/3 post free)
Third Edition now ready

Read this book before "SOUND REPRODUCTION" to be published in July.

Our diode filter capacitor $2 \times 100 \text{ pF} \pm 20\%$ has been designed for economy. Its cost compares favourably with that of two capacitors. It saves space and it saves time on the assembly line. Manufacturers are invited to ask for samples and prices.

STABILITY RADIO COMPONENTS LTD
14, NORMAN’S BUILDINGS
CENTRAL STREET, LONDON, E.C.1
Telephone: CLerkenwell 5974

For the utmost realism from records and radio

Our equipment can also be seen and heard at
UNIVERSITY RECORDING CO. 16 BURLEIGH PLACE, CAMBRIDGE
Telephone: CAMBRIDGE 34947
27 M1 Photo-Multiplier

This High Vacuum Photo-Cell has a high response in the visible region and is capable of multiplying very small currents produced under weak illumination by more than one million times when operated at 100 volts per stage. Of great sensitivity, low noise level, low dark current, freedom from distortion and small size, this cell lends itself ideally for application in such fields as:

1. Spectrography.
2. Film scanning and facsimile Transmission.
4. Alpha Particle Counting.

Equivalent to American Tube 931A.

PRICE £15.0.0

TYPICAL OPERATION.

<table>
<thead>
<tr>
<th>Overall Voltage</th>
<th>1000 v.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>10A/lumen</td>
</tr>
<tr>
<td>Spectral Range</td>
<td>3300–6500 Å</td>
</tr>
</tbody>
</table>

DIMENSIONS.

Max. Overall Length (mm)	94.0
Bulb Diameter (mm)	28.5
Base Diameter (mm)	33.4
Light Centre from Seat (mm)	49.2 ± 2.4

The sensitivity is on the basis of a lamp colour temperature of 2700°K and a light area of 4mm x 20mm.

BASE. Special 11 pin Low Leakage Sub Magnal (Holder supplied with valve).

The 27M2 is similar to the 27M1 except that it has a wider tolerance on the anode dark current necessitating a lower anode supply voltage of 900 volts and a consequent reduction in overall magnification to 250,000.

PRICE £12.0.0

EDISWAN

MAZDA

RADIO VALVES AND CATHODE RAY TUBES

THE EDISON SWAN ELECTRIC CO. LTD., 155 Charing Cross Road, London, W.C.2
FREE GIFT OFFER

NEW

Units of the SCR-522 (TR5043) for experiments on 2 metres T.V. and Radio Telephone wavebands.

BC-624-A Receiver Unit Chassis.

Frequency: 100-156 Mc/s with 11 valves:
- 125G7’s
- 12C8
- 12J5
- 12A47
- 12H6
- 39003’s
- 9007

CLYDESDALE'S
PRICE ONLY £4.19.6 CARRIAGE PAID.

SPECIAL OFFER
Receiver and Power Unit.
CLYDESDALE'S
PRICE ONLY £8.9.6 CARRIAGE PAID.

Why you should use...

Superspeed Activated Rosin Cored Solder

1 Maximum "Wetting" Capacity.
2 Accelerated Fluidity.
3 Moderate soldering bit temperatures.
4 Mechanical bonding and perfect Electrical conductivity ensured.
5 Minimum amount of solder used per joint.
6 Residue sets hard, is non-corrosive, and of high dielectric strength.
7 No harmful fume deposits.
8 Continuous, unvarying core.
9 Even distribution of activator in core.
10 Approved by Air Ministry and General Post Office.

Supplied in a wide range of Gauges and Alloys on 1 lb and 7 lb reels, works calls, or as required. Prices on application.

Sole Manufacturers:

H. J. Enthoven & Sons, Ltd.
89, UPPER THAMES STREET, LONDON, E.C.4.
Phone: MANsign House 4633. Works: Rotherhithe, Croydon, Derbyshire.

PORTABLE PUBLIC ADDRESS EQUIPMENT IN TRAVEL CASES WITH SPEAKERS, ETC.

Ten New Designs in Production

Foundation casework of heavy plyboard, expertly covered serviceable leathercloth, with chromium locks, corner protectors, drop flat handles.

C/13, 12/15 watt amplifier, A.C. For Mic. and Gram. Attache case pattern. 12 x 10 x 6ins. 16 gns.

C/126, as above, dual AC/6 volt. D.C. 20 gns.

CS/12, 12/15 watt A.C. with 10in. L.S. 18 gns.

CS/126, as above, dual AC/6 volt. D.C. 25 gns.

CG/12, 12/15 watt amplifier, AC Mic and Gram. With var. speed playing desk. 21 gns.

Separate speakers in cases to match are available. Where speaker is combined in the equipment, that part of the case detaches for distant location. This new range provides for portability and completeness, facilities for carrying all accessories. Full details on this latest range, see List CE.

G.L.P.

DELIVERIES SOON COMMENCING.

Have you considered recording on TAPE?

The phenomenal success of our tape recorders bring orders from every corner of the world. Long programme time, twin tracks, three speeds. Two models, £35 and £47/10/- Write for SM Data Sheets.

GENERAL LAMINATION PRODUCTS LTD.
294 BROADWAY, BEXLEYHEATH, KENT.

For those 144 Mc/s experiments.

Brand New, Rack mount. V.H.F. R/T Receiver Units.
R1481 Frequency 65-86 Mc/s.
R1132 Frequency 100-124 Mc/s.
Each a 10-valve (plus stabiliser) superhet. Enclosed chassis 19 x 10 x 11in., finish (R1481 dark grey) (R1132 light grey). Circuit supplied, all units tested and guaranteed working before despatch.

CLYDESDALE'S
PRICE ONLY £4.19.6 CARRIAGE PAID.

POWER UNIT TYPE 3.

For the R1481 or R1132, input 0-200-210-220-240-250 v., complete with Voltmeter 0/300 v. H.T. Meter 0/150 mA. 5Z4 rectifier fully smoothed. Output 200 v. 40 mA, 63 v. 3A, 4 v. 1.5 a. Rack mounting chassis, size 19 x 7 x 11in. Finish dark grey.

CLYDESDALE'S
PRICE ONLY £4.10.0 CARRIAGE PAID.

CLYDESDALE'S SUPPLY CO. LTD. • 2 BRIDGE STREET • GLASGOW • 0.5.

Send now for new Illustrated List. Please print Name and Address. Phone: SOUTH 2706,9
WILCOX SERVES THE GOVERNMENTS OF THE WORLD

Wherever airplanes fly—wherever lives depend on reliable communications—you'll find WILCOX radio transmitting and receiving equipment. From the Scandinavian countries to New Zealand...from Portugal to Pakistan, the governments of the world select WILCOX because of its proven performance under all extremes of climate, temperature, and humidity.

As with many governments, WILCOX is being used by the United States government in the basic communication systems for the Air Force, Signal Corps, and the Civil Aeronautics Authority.

The governments of the world have spanned the globe with WILCOX communications. From the Berlin Airlift to the Orient...WILCOX equipments carry the messages that help keep freedom a vital force in the turbulent affairs of the world.

WRITE TODAY...for complete information on all types of point-to-point, air-borne, ground station, or shore-to-ship communications equipment.

WILCOX ELECTRIC COMPANY
KANSAS CITY MISSOURI
COULPHONE COIL PACKS. Medium, Long and Short Wave. Built on 16 W.W. Aluminium chassis. Totally enclosed, one hole fitting. Aligned ready for connection into receiver. 1.7. £ 0.50 c. each.

MODEL A. For use with 2 gang tuning condenser. Single iron dust core coils. £ 0.17 6. each.

COULPHONE 50-WATT HIGH FIDELITY AMPLIFIER. Built to famous Williamson circuit but with added coils for higher power output. Linear response from 20–20000 c.p.s. Price for power unit or tone control unit brought out to octal socket. 6.3 volts, 15 and 300, 1000. £ 4.10 6.

EX GOVT. SURPLUS COULPHONE COIL PACKS. Medium. Long and Short Wave. Built on 16 W.W. Aluminium chassis. Totally enclosed, one hole fitting. Aligned ready for connection into receiver. 6.3 volts, 15 and 300. £ 4.10 6.

BROWN-E.R.D.

DISC RECORDER

Incorporating the latest advances in Sound-on-Disc Recording

Write for interesting brochures presenting full technical details of this latest development in Sound-on-Disc recording. Also 17 inch models for the Professional user.

S. G. BROWN LTD., Shakespeare St., WATFORD

Established in Electro Acoustics and high precision Engineering for over 40 years. Manufacturers of the world-famous "BROWN" Gyro Compass.

Telephone: Watford 7241

Feeder Units

Valves required: E256, 6G9, 6G75, 6G70 4.5 volts. £ 3.11.6. Price for set of five valves. £ 3.11.6.

A.F. AMPLIFIER POWER UNIT. Specially designed for use with above units. Employs 6V6G output (4 watts) and 5.5 volt rectifier. Price less valves £ 4.10 6.

Two valves if required. £ 1.13.10.

New Goods Only

COULPHONE RADIO 53 BURSCOUGH ST. ORMSKIRK, LANCS.

The S. G. Brown Type "K" Moving Coil headphones, with the following outstanding characteristics, supply that High Fidelity Reproduction demanded for DX work, monitoring and laboratory purposes, etc.

CHARACTERISTICS.

D.C. RESISTANCE, 47 Ohms.

IMPEDANCE 52 Ohms at 1,000 c.p.s.

SENSITIVITY, 1.2 x 10^-6 Watts at 1 kc. — 3000 Dynes cm-2

Descriptive Literature on request

PRICE £ 5.5.0 PER PAIR

Your Local Dealer can supply

For details of other S. G. Brown Headphones (prices from 30/- to 77/6) write for illustrated Brochure "W.W." HEADPHONES WHICH UPHOLD BRITISH PRESTIGE

S.G.Brown, Ltd.

SHAKESPEARE STREET, WATFORD, HERTS.
Such a lovely Baby

M.60 — we call him, the quietest, best behaved little darling of a baby screwdriver you ever did see. And quick! Well you won’t believe it but he revolves at 14,000 r.p.m. Bad for him? Not a bit, dearie, the little sweet stays as cool as a cucumber. Never tires, never complains. Like to hold him? Well so you shall, dearie! Just send us a postcard to say you’re interested.

Call up the little
teeny-weeny
horse

THE DESOUTTER MINIATURE SCREWDRIVER weighs 8 ounces. Size: 5½" long by ¾" diameter. Capacity: Screws, No. 3 to 10 BA, and equivalent nuts. Operation: The air is automatically switched on when the tool is applied to the head of the screw and pressed on to the work. The tool can quickly be reversed by turning the ring switch fitted in the head of the tool. The impact clutch of new design gives perfect torque selection when used with pressure regulator on the air line.

Write for literature giving much more information.

DESOUTTER
Specialists in Lightweight Pneumatic and Electric Portable Tools.

Here is a new development of importance to all users of speciality capacitors. HUNT-INGRAM CAPACITORS, previously marketed as 'Ingram-Mycalex'—are now available with the pooled marketing and technical resources of the two companies behind them.

For heavy duty work and limited space, Hunt-Ingram Capacitors offer great advantages and show savings in costs where they can be applied. Available in standard units or made to order for special requirements, both mechanically and electrically, in a wide variety of shapes.

For Blocking and Bypass in High Frequency Heating and Radio Transmission ; High Altitude Airborne Equipment ; Delay Networks in Pulse Circuits ; Voltage Dividers ; Stabilising Units, etc.

TYPICAL STANDARD UNITS

<table>
<thead>
<tr>
<th>Type</th>
<th>Full load: 70 kVA at 500 KC to 10 MC per sec. Peak Wkg. 10 kV.</th>
<th>Full load: 8 kVA at 500 KC to 10 MC per sec. Peak Wkg. 15 kV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIA</td>
<td>Infinite Input Resistance for D.C. ranges 0 to 300 volts.</td>
<td>Infinite Input Resistance for D.C. ranges 0 to 300 volts.</td>
</tr>
<tr>
<td>10,000 pF</td>
<td>6½” x 13” x 1½”</td>
<td>5 lb. 10 oz.</td>
</tr>
<tr>
<td>5,000 pF</td>
<td>6½” x 13” x 1½”</td>
<td>5 lb. 10 oz.</td>
</tr>
<tr>
<td>250 pF</td>
<td>2” x 4½” x 1”</td>
<td>5 oz.</td>
</tr>
</tbody>
</table>

Full list and details on application.

A. H. HUNT LIMITED
Wandsworth, London, S.W.18. Tel. : BATTERSEA 13131

ESTABLISHED 1901

TELE-RADIO (1943) LTD.

177, EDDGWARE ROAD, LONDON, W.2.

AMB. 5393. PADD. 6116. PAD. 5606.

High Fidelity Williamson Amplifier £26 10 0

Preamplifier Tone Control Unit, for above amplifier £6 10 0

Rogers Development Junior Amplifier £10 0 0

Frequency response flat within plus or minus 5 db from 20-20,000 cps. Output 8-10 watts £19 10 0

Partridge Mains Transformer, for Williamson amplifier £2 17 0

Partridge Chokes, for above amplifier, 25 H. 60 mA. and 13 H. 200 mA., 16- and 45-inch £1 11 0

Partridge Williamson Output Transformer, as specified "W.W." of '47 £5 0 0

Punched Chassis, for "Williamson Amplifier" £1 17 6

Matched Valves, in pairs, KT66, per pair £1 16 6

Matched Valves, in pairs, 6L6, per pair £1 16 6

Matched Valves, in pairs, PX4, per pair £1 13 0

Matched Valves, in pairs, PX25, per pair £2 14 4

Gram Record Changers, "Collaro" £14 6 8

Gram Record Changers, "Garrard" Hi Fi Head £20 10 0

Gram Record Changers, "Plessey" Hi Fi Head £18 10 0

Paper Condensers, 4 mfd. 1,000 v., size, 5½ x 4 x 1½ in., 2 each or 3 for £7 0 0

Two Gang Tuning Condenser, 500 mmfd. £5 6

Electrolytic Condenser, 16 x 16 x 350 v., 4½ each or five for £1 1 0

When ordering please include sufficient for postage and packing.
Increased Production means LOWER PRICES . . .

THE COLLARO "DE LUXE" MICROGRAM
NOW 14 GNS. PLUS P.T.

As the happy result of increased production, the Collaro "De Luxe" Microgram is now reduced from £19.19.0 plus P.T. to £14.14.0 plus P.T.—the world's finest portable electric gramophone at even better value than ever!

Judge this wonderful offer for yourself . . . SEE and HEAR the Microgram at your Dealer's Showroom today.

MORE GOOD NEWS! . . . Watch these spaces for the next Collaro advertisement announcing the new Gramophone Units . . . and a new low-priced Record Changer!

The "De Luxe" Microgram with 64" Speaker, Automatic Stop & Crystal Pickup. A.C. Mains.

NEW PRICE
£14.14.0
Plus Purchase Tax £6.7.5

Trade Details and Illustrated Literature from:—
COLLARO LTD., RIPPLE WORKS, BY-PASS ROAD, BARKING, ESSEX (RIPPLEWAY 3333)
R.A.F. 6-VALVE SUPERHET RECEIVING UNIT No. 25

Easily adapted for short-wave reception for home use. Contains two EF36, two EF39, one EK32, one EBC33 valves, condensers, resistances, etc. Free circuit diagram, easily adapted for short-wave reception for home use.

Price 25/- carr. paid

You will find many attractive bargains detailed in our June and July advertisements.

When in Town call and examine our vast range of Government Surplus Equipment.

23, LISLE ST. (GERard road 2969) LONDON, W.C.2
Closed Thurs. 1 p.m. Open all day Sat., and weekdays 9 a.m.—6 p.m.
The **Soundmirror** "Magic Ribbon" offers all these Advantages

Using reels of magnetised paper—or "Magic Ribbon"—the "Soundmirror" will record and reproduce with perfect fidelity THE SPOKEN WORD; MUSIC, from a violin concerto to a full orchestra; SOUND EFFECTS of all kinds. It gives life-like tonal quality (without scratch or extraneous noises) of any desired volume equal to the best radio receivers.

Perfectly designed for simplicity of operation—you can't go wrong—one single finger tip control provides for play—record—rewind or fast forward requirements.

The "**Soundmirror**" Recorder is a complete electronic unit—contains speaker, amplifier, microphone and is equipped with jacks for easy hook-up to radio, public address and other electronic audio systems.

Soundmirror "Magic Ribbon" gives a full unbroken half-hour's recording on every reel of "Magic Ribbon."

"Soundmirror" "Magic Ribbon" can be erased and used an indefinite number of times. Erasure is accomplished automatically whenever a new recording is made.

"Soundmirror" "Magic Ribbon" can be cut and spliced—short recordings joined together—unwanted parts removed. The unwanted portions can be erased and used again.

"Soundmirror" "Magic Ribbon" is easy to handle—it does not become coiled or tangled. Easy to handle—easy to thread—easy to store.

Soundmirror "Magic Ribbon" is easy to handle—easy to thread—easy to store.

Made in England
Protected by British & Foreign Patents & Patents Pending

THE Soundmirror Magnetic Tape Recorder

THERMIONIC PRODUCTS LTD. LEADERS IN THE FIELD OF MAGNETIC RECORDING

Head Office: Morris House, Jermyn Street, Haymarket, London, S.W.1

Telephone: Whitehall 6422 (5 lines)
MODERN SERVICING METHOD

The "L.S.L." Servicing Method is a combined fault analyser and circuit tester; simultaneously capable of indicating all voltage, current and resistance on each valve electrode without removing the chassis from the cabinet. Readings can be taken whilst the set is under actual operating conditions. The "L.S.L." Analyser is a combination of multi-range instrument and valve tester.

PRICE: £18. 18. 0 Subject.

THE "L.S.L." PORTABLE ANALYSER
★ Saves time and trouble. ★ Greatly increases Profit in the Service Department. ★ Is portable, can be used on the bench or in the home. ★ Is simple to operate.

Send for further particulars from the sole distributors:

Kerry's
WARTON ROAD, STRATFORD, LONDON, E,15.
Telephone: Marylebone 1 886
Export Address: 23/26, DUNSTANS HILL, E.C.1

New
WOLSEY INDOOR T.V. AERIAL

THE BEST YET
FULLY ADJUSTABLE

Wolsey present their new "ALL-WAYS" Indoor T.V. Aerial, for use where an outdoor aerial is difficult and where signal strength is adequate. A special feature is a polythene A.V.C. insulator giving improved results over normal indoor aerials.

Elements are easily adjusted for use at T.V., Inverted V.L. or Vertical D.pole. Best used in loft or attic but can be fitted in passage or room. Packed flat in carton, with all extra bolts, nuts, etc. for various positions 25/-

Address of your nearest Stockist on request.

WOLSEY TELEVISION LTD.
75, GRESHAM RD., BRIXTON, LONDON, S.W.9
Phone: BRIXTON 6651/2
Established 1934

CELESTION

MODEL
P44

• Overall Diameter 12.18"
• Voice Coil Impedance ohms 3.0
• Magnet Pole Diameter 1.25"
• Flux Density (Gauss) 10,000
• Total Gap Flux (Maxwells) 60,000
• Peak Power Capacity 10W

The General Public should please order through their Local Dealers.

Manufacturers are invited to write for details of the full range of Celestion speakers.

CELESTION LTD.
SUMMER ROAD, THAMES DITTON, SURREY

Telephone: EMBERBROOK 3402-5

SYDNEY S. BIRD & Son, Ltd.
CAMBRIDGE ARTERIAL RD., ENFIELD, MIDDLESEX
Phone: Enfield 871-1 "Birdy, Enfield"

Varley

Products of Quality & Reliability

MAINS TRANSFORMERS
A.F. TRANSFORMERS
THERMAL DELAY SWITCHES
SMOOTHING CHOKES
POWER RESISTANCES

Made by
OLIVER PELL CONTROL LTD
Telephone: WOODWARD 1922-1926
CAMBRIDGE RD. • WOODWARD • S.E.18
MAGNETIC T.V. PARTS

We have available, at very much below the standard prices, all the essential parts needed to make a magnetic type Television or for converting your existing television into a white picture. In fact, on examination, it will be found that the picture is actually better than that obtained by using an ordinary type. The picture is also much sharper and more defined, and has a much greater depth of focus.

The three main parts are:
(a) The tube assembly, which consists of the frame on which the tube is mounted.
(b) The E.H.T. Transformer, which is designed to give a 4 kV. supply.
(c) The very efficient line output transformer.

The price for this set of three parts is £3 10s. 0d., and we will forward without extra charge the circuit diagram of the television as illustrated for your benefit.

If you are setting up a new installation or your present equipment is unsatisfactory, you will find these parts available at a most reasonable price.

The items below are of special interest to constructors of television using electrostatic tubes (VCB7, etc.).

"50 FITTINGS FOR TELEVISION CONSTRUCTORS." If you are having difficulty in getting a perfect picture, then this publication may solve your problem. The price is 1/9 each.

WHITE PLASTIC BASKET. Designed to fit a thin-electrostatic type, VCB7, etc. This will give a professional look to your home-built television. If yours is a larger picture, the size of the opening can be enlarged to suit your needs. The price is 7/6 each.

MAGNIFYING LENS. Be Luxe type. The lens is really designed to give optical perfection. First class quality and workmanship throughout. Guaranteed against any discoloration of the special oil content. Price 33/6, postage, packing and insurance 9d.

AERIALS. Indoor type—for fitting in loft. Very simple in installation. Full instructions and fixing clips, etc., supplied with every order. Order "SNAPPY AERIAL KIT." Price 15s.

VCB7 CATHODE RAY TUBE.

Brand new in original cartons. Price 35s., carriage and insurance paid. Buy a spare now while they are still available at this attractive price.

PRE-AMPLIFIERS FOR TELEVISION. Complete conversion details for using R.P.M. or R.P.R. as B.A.P. units, 2/3 post free. Brand new R.P.M. units, 30s. post free. Nothing else needed. Suitable for sound or vision.

E.H.T. CONDENSERS. 1 mfd. 2,500 v., 2 6. 10 mfd. 8,000 v. 8,000 v. can type at 3 0: 1 mfd. 1 kV. at 2 6.; 30 mfd. 3,000 v. at 1 6.; 1 mfd. 5,000 v. 3 0.

Send cash with order or request C.O.D. Orders over £2 are post free—use our new card. List available on request—it helps us if you can quote our Bin No.

AUGUST SALE OF RADIO SPARES

Bin No.

01 MAINS TRANSFORMER "WOODEN" potted, fully-shrouded and impregnated. Fitted primary screen. 300-6-500 at 150-200 ma., 6.3 v. at 10 amp., 5 v. at 3 amp. Primary tapages to give adjustments at 10 v. spacings between 190-200 v. 36 C.F.P., 27/6.

02 MIDGET 400 kva. 1 p.f. Transformers. High Q iron dust core, made by "PLESSEY." 7 6 per pair.

04 CLIX 13 amp. switch plug, 10.— each.

06 SCREWS, 1/4 in. 4 B.A. cheesehead cadmium plated, 1/9 per gross.

07 TUNING CONDENSER, 1-gang 8000 standard size. Made by "PLESSEY," and undoubtably a very good job. 3/6 each.

08 P.M. SPEAKER, 10in., "HAIA," New and perfect. 2/6 each.

09 SMOOTHING CONDENSER, K.I.T. 1 mfd. 4 kV., these are recent manufacture and undoubtedly a very good job. 3/9 each.

11 TOGGLE SWITCH, metal—special duty with a Y cut out, as fitted in receiver, where the wave change knob cuts out mains. 10d. each.

12 DIAL PAN, single band, single drive, and pointer cut out, and clip for magic eye, and complete with pointers and drive cards already fitted, 8/8 each. Few only.

14 MAINS TRANSFORMER "PARKER," half-shrouded drop through chassis type, 200-6-600 at 50 ma., 6.3 v. at 4 amps., 5 v. at 2 amps. Primary fitted for 200-240 v. Fitted primary screen and impregnated. New and perfect. 16/6 each.

16 MAINS TRANSFORMER, 250-6-600 at 70 ma., 6.3 v. at 3 amps., 5 v. at 2 amps, 4 v. at 2 amp. otherwise as 14 above. 13/9 each.

16B P.V.C. INSULATED COPPER CONNECTING WIRE—really fine for chassis wiring or as throw over aerial, etc., 250 yd. roll. £1.

ELECTROLYTIC CONDENSERS. (Only new stock from best manufacturers)

2 mfd. 330 v. 1 1...
4 mfd. 450 v. 1...
8 mfd. 630 v. 1...
10 mfd. 750 v. 1...
16 mfd. 1,000 v. 1...
25 mfd. 1,050 v. 1...
34 mfd. 1,500 v. 1...
67 mfd. 2,000 v. 1...
100 mfd. 2,500 v. 1...
150 mfd. 3,000 v. 1...
220 mfd. 3,500 v. 1...
330 mfd. 4,000 v. 1...
680 mfd. 5,000 v. 1...
...
Price 1/6 each.

DROP CAP 200/400 micro-amps., 1/3 each.
...
Price 1/3 each.
...
Price 1/6 each.

850 MIDGET TUNING CONDENSERS, 1-gang 8000 standard size. Made by "PLESSEY." These condensers are of the type used for tuning personnel receivers. 6/8, plus 6d. postage.

F7 4-GANG TUNING CONDENSERS, 8000 each section—fitted trimmers-ceramic base. These condensers are complete in a very useful chassis and are fitted with a drive. Government surplus equipment but new and perfect. £2, plus £1/3 postage case of 6 units, 17 6, carriage paid.

876 BSN ENERGISED SPEAKER—"PLESSEY," 3500 ohms field, complete with period matching 0.75 p.f. 17/6.

FF11 Bin, P.M. SPEAKER "ROLA," less output transformer, 8/9.

108 BSN P.M. SPEAKER "TRUVOK," 20/6.

FB11 STYROFOAM SLEWING, 1 mm. assorted colours, 1/9 per dozen.

FB10 DROPPER for 2 amp. valves, vitreous enameled covered, with tape mark 220, 240, 1/3 each.

FD4 CROCODILE CLIPS, small instrument type, very well made by "BULGIN," 3/6 per dozen.

ELECTRON HOUSE (2) Windmill Hill, Ruislip Manor, Middx.

This portable 20 watt amplifier is for the discriminating public address engineer. An attractive appearance and unique construction with an unbeatable performance give this instrument a hallmark of distinction usually associated with B.S.R. products. Suitable for A.C. mains or 12 volt battery in conjunction with Converter Unit Type L.T.20. Inputs for Ribbon and Moving Coil Microphones. Mic. and gram. mixing; high and low impedance outputs. Output level indicator. Supply socket for Radio Feeder Unit RF.1. Peak output 25 watts.

Price £36. 10. 0. Converter Type L.T.20 £12. 10. 0.

M.A. 15 MOBILE OUTFIT. ★

A mobile P.A. outfit comprising:
(a) 15 watt amplifier for either 6 volt or 12 volt D.C. operation.
(b) High quality hand microphone.
(c) Co-axial re-entrant horn speaker.
An ideal set for elections and campaigns.

Price £42. 0. 0. Complete

RIBBON MICROPHONE R.B.M.1. ★

A beautifully styled high fidelity ribbon microphone for Sound Recording and Public Address work. Finished in silver grey wrinkle with matt silver relief. Special interval anti-vibration suspension and built-in 600 ohm line transformer. Sensitivity 0.13 millivolt/dyne/cm² open circuit. P.A. 20.B. Amplifier is provided with suitable input for this microphone.

Price £10. 10. 0.

BIRMINGHAM SOUND REPRODUCERS LIMITED
Claremont Works, Old Hill, Staffs. 'Phone Cradley Heath 6212/3
In This Issue

OUR COVER: Testing Television Sets (See Page 316)

EDITORIAL COMMENT 281
HIGH-QUALITY AMPLIFIER: NEW VERSION By D. T. N. Williamson 282
SHARED TELEVISION AERIALS 287
TEST REPORT: PHILIPS MODEL 681A 289
TELEVISING MOVING IMAGES By R. W. Hallows 291
AUDIO SIGNAL GENERATOR By M. G. Scroggie 294
 ELECTRONIC CIRCUITRY By J. McG. Sowerby 298
WORLD OF WIRELESS 301
TELEVISION RECORDING By D. A. Smith 305
 MILLER EFFECT By "Cathode Ray" 307
BIRMINGHAM TELEVISION RECEPTION 311
UNBIASED By "Free Grid" 314
LETTERS TO THE EDITOR 315
SHORT-WAVE CONDITIONS 317
RANDOM RADIATIONS By "Diallist" 318
RECENT INVENTIONS 320

"Stratosil" fully sealed vibrators are supplied in synchronous, non-synchronous and split-reeed synchronous types. Being available in both shunt and series drive (the latter being made under "OAK" patents) they offer a replacement service for the majority of American-pattern vibrators as well as covering fully the needs of the designer of new equipments.

POST THE COUPON NOW
Wright & Weaire, Ltd., 138 Sloane Street, London, S.W.1, England
Please send me VIBRATOR DATA BOOK for which I enclose 6d.
Name and Address

Wright and Weaire Limited
138, SLOANE ST. LONDON S.W.1 TEL. SLOANE 2245 FACTORY: SOUTH SHIELDS, CO. DURHAM
Valves and their applications

A Linear Time-base Generator for an Oscillograph using the EF42

The design of a broad band Amplifier for an Oscillograph has already been discussed in previous articles*, and a linear time base waveform generator may be found useful in completing the design of a general purpose oscillograph using EF42 valves.

The time-base generator is designed to operate with an ECR35 Cathode ray tube operating at 1.2 KV overall accelerating voltage. The total signal required under these conditions will be 350 volts (peak to peak) or 175 volts per valve from two EF42's in push-pull, when the X plates are used. Allowing for 25% over-deflection this output voltage must be increased to 420 volts (peak to peak).

To obtain this large output from two EF42 valves a 300 V. H.T. Line is found desirable, although the circuit described may still be made to oversweep the C.R. tube with only 250V, H.T. Some non-linearity is to be expected when operating at this high output level, but this may be considerably reduced by the use of negative feedback. A resistive feedback network from the anodes of the output valves proves effective in providing the required degree of linearity.

Figure 2 shows a linear sawtooth generator providing the input to the pair of EF42 valves. The sawtooth voltage waveform is generated at a lower voltage level (approx. 25 volts peak to peak); the pair of EF42 output valves serves to amplify and paraphase the output from the sawtooth generator.

The d.c. connection to the deflector plates prevents drifting of the trace with variation of the time base amplitude.

The circuit of the sawtooth generator is shown in figure 1. This is a circuit of the self-running 'Miller' integrator type; it differs from the 'transitron' in the omission of the coupling capacitor between the screen and the suppressor grids. The 'switching' or 'flyback' is provided by accumulated charge on the suppressor grid and is thus independent of the time constants in the screen grid circuit.

The 'Miller' capacitor C₁ is switched to provide coarse increments in the variation of the time-base velocity, the fine control being provided by a d.c. potential (V₁) derived from a potentiometer (R₁). The amplitude of the waveform will remain constant, constant H.T. to the waveform generator, but the output may be preset to any desired value by the adjustment of the network arm R₃.

* See "Wireless World" January and April 1949.

Reprints of this report from the Mullard Laboratories, together with additional circuit notes and details of the power supply may be obtained free of charge from the address below.

MULLARD ELECTRONIC PRODUCTS LTD.,
TECHNICAL PUBLICATIONS DEPARTMENT,
CENTURY HOUSE, SHAFTESBURY AVE., W.C.2

(MVM9p8)
BROADCASTING FOR EXPORT

For a long time there has been growing dissatisfaction over the low field strength provided by the broadcasting service in certain areas of the country, notably the South Coast. Last month a reader made what seems to be an eminently practical suggestion: that the Kingston station, near Brighton, should be used, at such times as it is not carrying out its normal function of distributing the Third programme, for reinforcing the Home and Light programmes over an area that is notoriously badly served.

Many readers now protest that this suggestion, though useful, offers merely a palliative. It is pointed out that the supplementary service would not be available at night-time, when, during the summer, atmospherics are most likely to spoil reception of the long-wave station. The real cause of the trouble, it is contended, is that the B.B.C. is using two of its medium-wave channels exclusively for broadcasting to Europe, and not for the internal service. Here it should perhaps be added that one of the channels in question is "borrowed" and is not one of those officially allocated to this country under the Lucerne Plan. But, as a reader whose letter is printed elsewhere in this issue points out, the avowed intention of the B.B.C. is to use two of the medium-wave channels given to Great Britain under the Copenhagen Plan, including one of our three exclusive (non-shared) frequencies for the European Service. Thus it would seem that medium-wave broadcasting for export is to become a semi-permanent activity.

The general idea is, of course, one with which we have become uncomfortably familiar of late years: the exporting of something we need ourselves. The parallel is not quite perfect, and in any case, most of the issues raised cannot be commented upon here. It is permissible, however, to say that our correspondent is probably right in assuming the frequencies given to us at Copenhagen were for home consumption: it seems unlikely that the delegates of all the countries represented there agreed on our having extra channels, over and above our domestic requirements, for propagating our ideas abroad. And it also seems to follow that, at future conferences, we shall find it difficult to sustain claims for the number of channels enjoyed at present if it can be shown we evidently can do without some of them for home consumption.

One conclusion is clear. If the Government decides that medium-wave channels that are in fact necessary for a good home service are to be permanently used for other purposes, it is more than ever desirable that the development of a supplementary e.h.f. service should proceed at all speed. As to whether a.m. or f.m. will be used for the service will presumably depend on the results of the B.B.C.'s forthcoming full-scale tests.

TELEVISION PICTURE QUALITY

An article elsewhere in this issue will serve to draw attention to the fact, of which there is growing recognition, that definition as expressed in the number of scanning lines is not the only quality that goes to make a satisfactory television picture. One of the novel views put forward is that, so far as reproduction of moving objects is concerned, it might be better to reduce the number of lines and increase the number of frames. This and other suggestions of the author, though ingenious, call for experimental verification before they can be accepted.

In view of our editorial comments last month on the relative merits of British and American television standards, we were particularly interested in our contributor's suggestion that the U.S. practice of using 60 frames per second (as opposed to our 50) might give less distortion of rapidly moving images. If he is proved to be right, we may have to modify our statement, though we stick to our original contention that the 60-per-second rate was chosen to fit in with the standard American supply frequency.
HIGH-QUALITY AMPLIFIER:

Since the "Williamson" amplifier, as it has come to be called, was first described in our issues of April and May, 1947, it has aroused world-wide interest. In the Australian Radiotronics (Nov.-Dec., 1947) it was described as "by far the best we have ever tested... It not only gives extraordinary linearity and lack of harmonic and intermodulation distortion, but is comparatively simple..." The present article repeats the original design data, with slight modifications, and deals at length with special precautions to be taken.

Since the publication in the April and May, 1947, issues of this journal of an amplifier design suitable for high-quality reproduction of sound, correspondence has revealed that a more complete explanation of demand exists for a pre-amplifier unit to enable the amplifier to be used in conjunction with gramophone pickups and microphones of low output. In the present article it is proposed to deal with the amplifier, and in a subsequent article to present the design of auxiliary equipment to form a domestic sound-reproducing installation.

Circuit Diagram. To avoid the necessity for frequent reference to the May, 1947, issue, the circuit of the amplifier and the list of component values are printed again. These differ in minor detail from the originals. In the circuit previously printed a potentiometer was provided in the penultimate stage to enable the signal to be balanced. Due to the use of common unbypassed cathode resistors for the push-pull stages, the amplifier is largely self-balancing to signal, and it is permissible to dispense with this adjustment. Accordingly, revised values and tolerances are shown for resistors R₆, R₇, R₁₁ and R₁₂.

A transitional phase-shift network consisting of R₂₀ and C₂₀, as well as R₁₄, R₁₅, 0.1MΩ variable 3 watt wire-wound, is provided in the signal stage to provide a constant phase shift to the output, and therefore a constant phase shift to the input as well. This is necessary because the output impedance of the pickup microphones is very high, and the phase of the signal is therefore very sensitive to changes in the input impedance of the amplifier. The phase shift network is also necessary to provide a constant phase shift to the output, and therefore a constant phase shift to the input as well.

Some of the features of the design, with the addition of some information about construction, would be of interest. The correspondence also shows that considerable interest exists for a pre-amplifier unit to enable the amplifier to be used in conjunction with gramophone pickups and microphones of low output. In the present article it is proposed to deal with the amplifier, and in a subsequent article to present the design of auxiliary equipment to form a domestic sound-reproducing installation.

Circuit Diagram. To avoid the necessity for frequent reference to the May, 1947, issue, the circuit of the amplifier and the list of component values are printed again. These differ in minor detail from the originals. In the circuit previously printed a potentiometer was provided in the penultimate stage to enable the signal to be balanced. Due to the use of common unbypassed cathode resistors for the push-pull stages, the amplifier is largely self-balancing to signal, and it is permissible to dispense with this adjustment. Accordingly, revised values and tolerances are shown for resistors R₆, R₇, R₁₁ and R₁₂.

A transitional phase-shift network consisting of R₂₀ and C₂₀, as well as R₁₄, R₁₅, 0.1MΩ variable 3 watt wire-wound, is provided in the signal stage to provide a constant phase shift to the output, and therefore a constant phase shift to the input as well. This is necessary because the output impedance of the pickup microphones is very high, and the phase of the signal is therefore very sensitive to changes in the input impedance of the amplifier. The phase shift network is also necessary to provide a constant phase shift to the output, and therefore a constant phase shift to the input as well.

Some of the features of the design, with the addition of some information about construction, would be of interest. The correspondence also shows that considerable interest exists for a pre-amplifier unit to enable the amplifier to be used in conjunction with gramophone pickups and microphones of low output. In the present article it is proposed to deal with the amplifier, and in a subsequent article to present the design of auxiliary equipment to form a domestic sound-reproducing installation.

Circuit Diagram. To avoid the necessity for frequent reference to the May, 1947, issue, the circuit of the amplifier and the list of component values are printed again. These differ in minor detail from the originals. In the circuit previously printed a potentiometer was provided in the penultimate stage to enable the signal to be balanced. Due to the use of common unbypassed cathode resistors for the push-pull stages, the amplifier is largely self-balancing to signal, and it is permissible to dispense with this adjustment. Accordingly, revised values and tolerances are shown for resistors R₆, R₇, R₁₁ and R₁₂.

A transitional phase-shift network consisting of R₂₀ and C₂₀, as well as R₁₄, R₁₅, 0.1MΩ variable 3 watt wire-wound, is provided in the signal stage to provide a constant phase shift to the output, and therefore a constant phase shift to the input as well. This is necessary because the output impedance of the pickup microphones is very high, and the phase of the signal is therefore very sensitive to changes in the input impedance of the amplifier. The phase shift network is also necessary to provide a constant phase shift to the output, and therefore a constant phase shift to the input as well.

Some of the features of the design, with the addition of some information about construction, would be of interest. The correspondence also shows that considerable interest exists for a pre-amplifier unit to enable the amplifier to be used in conjunction with gramophone pickups and microphones of low output. In the present article it is proposed to deal with the amplifier, and in a subsequent article to present the design of auxiliary equipment to form a domestic sound-reproducing installation.
New Version

Design Data: Modifications:
Further Notes

By D. T. N. WILLIAMSON (Ferranti Research Laboratories)

will be discussed later when the stability of the amplifier is considered.

Finally, an indirectly-heated rectifier has been substituted as this prevents a damaging voltage surge when the amplifier is switched on. No suitable type was available when the circuit was originally published. A list of alternative valve types is also shown.

Amplitude and Phase/frequency Response. A curve showing the transmission and loop gain of the amplifier at frequencies between 1 c/s and 1 Mc/s is shown in Fig. 2. Although only the section between 10 c/s and 20,000 c/s is useful for sound reproduction, the curves outside this range are included as they may be of interest to those who may wish to use the amplifier for other purposes. They may also serve to emphasize that, in a feedback amplifier, the response must be carefully controlled at frequencies very remote from the useful range if stability is to be achieved.

Many different arrangements have been used satisfactorily to suit differing circumstances. An excellent plan is to construct the power supply and the amplifier on separate chassis, as this gives greater flexibility in accommodating the equipment in a cabinet.

The following precautions should be observed:

1. The output transformer core should be positioned at right angles to the cores of the mains transformer and the main smoothing choke.

2. The output transformer and loudspeaker leads should be kept at a reasonable distance from the input leads, which should be screened. As the response curve shows, the amplifier has consider- able gain at low radio frequencies, and care is necessary to avoid oscillation.

3. Signal wires, especially grid leads, should be kept as short as possible, and the stopper resistors associated with the output stage must be mounted on the valve-holder tags, and not on group panels.

4. A bus-bar earth return formed by a piece of 12 or 14 s.w.g. tinned copper wire, connected to the chassis at the input end, is greatly to be preferred to the use of the chassis as an earth return.

5. Electrolytic and paper capacitors should be kept away from sources of heat, such as the output and rectifier valves.

Figs. 3 and 4 show the positions of the major components in two alternative layouts which have been used successfully.

Initial Adjustments. Before the amplifier is put into service
High-Quality Amplifier—there are a few adjustments which require to be made. These concern the balancing of the standing currents in the output stage, and (with the original circuit) balancing of the signal currents in the push-pull stages.

Accurate balance of the standing currents in the output stage is essential, as the low-frequency characteristics of the output transformer deteriorate rapidly with d.c. magnetization. The procedure to be adopted for static and signal balancing is as follows:

Static Balancing.
(a) Connect a suitable milliammeter in the lead to the centre tap of the output transformer primary.
(b) Set the total current to 125 mA by means of \(R_s \).
(c) Connect a moving-coil voltmeter (0-10 V approx.) across the whole of the output transformer primary and adjust \(R_s \), until the reading is zero, indicating balance. Random fluctuations of this instrument may be noticed. These are due to mains and valve fluctuations and should be disregarded.

Signal Balancing.
(a) Connect the low-impedance winding of a small output transformer in the lead to the centre tap of the output transformer. Connect a detector (headphones or a cathode-ray oscillograph if available) to the other winding, earthing one side for safety.
(b) Connect a resistive load in place of the loudspeaker.
(c) Apply a signal at a frequency of about 400 c/s to the amplifier input to give an output voltage about half maximum.
(d) Adjust \(R_s \), for minimum output in the detector.

The Output Transformer. As stated previously, the output transformer is the most critical component in the amplifier and satisfactory performance will not be obtained with a component differing substantially from the specification. The effect of decreasing the primary inductance will be to produce instability at low frequencies, which can be cured only by altering the time-constants of the other coupling circuits, or by decreasing the amount of feedback. At high frequencies the situation is more complex, as there are more variables. The leakage inductance, the self-capacitance of the windings, the capacitance between windings and the distribution of these parameters determine the transmission of the component at high frequencies, and great variations are possible.

In the output transformer specified, the only parameter which is likely to vary appreciably is the inductance of the primary at low signal levels, due to the use of core material with a low initial permeability, or to careless assembly of the core. The high-frequency characteristics are not dependent on the core material to a substantial degree. They are dependent only on the geometry of construction, and to some extent upon the dielectric properties of the insulators used, and are therefore reproducible with a high degree of accuracy.

Comments are frequently expressed about the size of the output transformer. It is true that it is considerably larger than the transformers which are usually fitted to 15-watt amplifiers. The fact that the peak flux density of 7.250 gauss for maximum output at 20 c/s lies on the upper safe limit for low distortion is sufficient comment on current practice.

Some confusion arose regarding the method of connection of the transformer secondary windings to match loads of various impedances, whilst utilizing all the secondary sections. The correct procedure is to match loads of various impedances, whilst utilizing all the secondary sections. The correct procedure is to match loads of various impedances, whilst utilizing all the secondary sections.

Winding data for an output transformer primary should normally be connected together to form the centre tap, the inner sections of the winding being taken to the valve anodes. This gives...
Stability with Negative Feedback.—Much has been written about the stability of amplifiers under conditions of negative feedback, and the criteria for stability are now widely appreciated. The article by "Cathode Ray" in the May, 1949, issue, states the matter simply and with characteristic clarity.

Continuous oscillation will occur in a feedback amplifier if the loop gain—that is the transmission of the amplifier and the feedback network—is greater than unity at any point where the phase shift of the amplifier has reached 180°. It is also possible for an amplifier to be unstable in the absence of continuous oscillation if these conditions should occur in a transient manner at a critical signal level. This latter condition is particularly likely to occur in badly designed amplifiers with iron-cored components, where the inductance and, therefore, the time constant controlling the phase and amplitude characteristics of one or more stages may increase by as much as a factor of five between zero and maximum signal levels. If this variable time constant is shorter than those of the fixed coupling circuits, an increase in its value due to a high signal level may be sufficient to render the system unstable. In order to avoid this condition the fixed time constants must be made much longer than that of the variable stage. This condition would lead to undesirably large interstage couplings if good low frequency response were required. Alternatively, the variable time constant must be chosen in relation to the fixed time constants, such that its minimum value is sufficiently longer than the fixed values to produce stability. An increase in its value then serves only to increase the stability margin. This method is used in the amplifier under discussion.

To ensure a wide margin of stability, whilst at the same time preserving the high loop gain necessary to reduce the effect of transformer distortion at frequencies of the order of 10-20 c/s, would require a transformer with the lowest practicable value. When the amplifier is reproduced, the "spread" in tolerance of components will normally be such that changes in characteristics due to departure from the nominal value of one component will be balanced by opposite changes produced by departure in another component, and the amplifier as a whole is likely to have characteristics close to the average. Individual amplifiers may, however, have characteristics which differ substantially from the average, due to an upward or downward trend in the changes produced by component deviations. If the trend is in a direction such that the loop gain is reduced, no instability will result, the only effect being a slight degrading of the performance. If, on the other hand, the loop gain is increased by an amount greater than the margin of stability, oscillation will occur. It should be emphasized that this will happen only very rarely, and when it does the remedy is obviously to reduce the loop gain to its correct value. To assist the unfortunate few who experience instability, the following procedure is recom-

<table>
<thead>
<tr>
<th>No. of secondary groups of sections in series</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct secondary impedance (ohms)</td>
<td>1.7</td>
<td>6.8</td>
<td>15.3</td>
<td>27</td>
<td>42.5</td>
<td>61</td>
<td>83</td>
<td>109</td>
</tr>
<tr>
<td>Minimum secondary impedance permissible (ohms)</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
</tr>
<tr>
<td>Feedback resistor R_{25} (ohms)</td>
<td>1,500</td>
<td>3,300</td>
<td>4,700</td>
<td>6,800</td>
<td>8,200</td>
<td>10,000</td>
<td>11,000</td>
<td>12,000</td>
</tr>
<tr>
<td>Turns ratio</td>
<td>76</td>
<td>38</td>
<td>25.4</td>
<td>19</td>
<td>15.2</td>
<td>12.6</td>
<td>10.8</td>
<td>9.5</td>
</tr>
<tr>
<td>Correct secondary impedance (ohms)</td>
<td>3.6</td>
<td>14.4</td>
<td>32.5</td>
<td>57.5</td>
<td>90</td>
<td>130</td>
<td>176</td>
<td>230</td>
</tr>
<tr>
<td>Feedback resistor R_{25} (ohms)</td>
<td>2,200</td>
<td>4,700</td>
<td>6,800</td>
<td>9,000</td>
<td>11,500</td>
<td>13,500</td>
<td>16,000</td>
<td>18,000</td>
</tr>
<tr>
<td>Turns ratio</td>
<td>52.5</td>
<td>26.25</td>
<td>17.5</td>
<td>13</td>
<td>10.5</td>
<td>8.75</td>
<td>7.5</td>
<td>6.5</td>
</tr>
</tbody>
</table>

controlling the phase and amplitude characteristics of one or more stages may increase by as much as a factor of five between zero and maximum signal levels. If this variable time constant is shorter than those of the fixed coupling circuits, an increase in its value due to a high signal level may be sufficient to render the system unstable. In order to avoid this condition the fixed time constants must be made much longer than that of the variable stage. This condition would lead to undesirably large interstage couplings if good low frequency response were required. Alternatively, the variable time constant must be chosen in relation to the fixed time constants, such that its minimum value is sufficiently longer than the fixed values to produce stability. An increase in its value then serves only to increase the stability margin. This method is used in the amplifier under discussion.

To ensure a wide margin of stability, whilst at the same time preserving the high loop gain necessary to reduce the effect of transformer distortion at frequencies of the order of 10-20 c/s, would require a transformer with the lowest practicable value. When the amplifier is reproduced, the "spread" in tolerance of components will normally be such that changes in characteristics due to departure from the nominal value of one component will be balanced by opposite changes produced by departure in another component, and the amplifier as a whole is likely to have characteristics close to the average. Individual amplifiers may, however, have characteristics which differ substantially from the average, due to an upward or downward trend in the changes produced by component deviations. If the trend is in a direction such that the loop gain is reduced, no instability will result, the only effect being a slight degrading of the performance. If, on the other hand, the loop gain is increased by an amount greater than the margin of stability, oscillation will occur. It should be emphasized that this will happen only very rarely, and when it does the remedy is obviously to reduce the loop gain to its correct value. To assist the unfortunate few who experience instability, the following procedure is recom-
High-Quality Amplifier—Recommended. If oscillation should occur at a low frequency (about 2 c/s) the first step should be to disconnect the feedback resistor R_{fb}. If the oscillation continues the decoupling circuits should be checked and any faulty components replaced. The amplifier should also be examined to ensure that it is operating correctly balanced in push-pull, and not in an unbalanced manner due to the failure of some component.

Primary Inductance

Assuming that the amplifier is, or has been rendered, stable with the feedback disconnected, the next step should be to check the phase and amplitude characteristics at low frequencies. It is not possible to make direct measurements of these characteristics without very special equipment, as inspection of Fig. 2 will show that the interesting region lies below 10 c/s. It is therefore necessary to arrive at the desired result by indirect means, namely by measurement of the component parameters which determine the characteristics. The parameter which is most likely to show a large deviation from specification is the initial primary inductance of the output transformer, since the quality of the core material is not easy to control accurately, and careless assembly of the core may cause considerable variations in its permeability.

The initial primary inductance should be checked by connecting the primary winding across the 5-V, 50-c/s rectifier heater winding of the mains transformer and measuring the current in it. The secondary windings should be open circuit. The current, which can just be read on the 10 mA a.c. range of a Model 7 Avometer, should be 150 mA or lower. The component should be rejected if the current exceeds 200 μA.

If the output transformer is satisfactory the values of the other components should be checked, particular attention being paid to the coupling components. Should the time constants of the couplings, that is their RC product, be higher than the nominal values by more than 20 per cent, the resistors should be adjusted to give the correct value.

The trouble will probably have revealed itself by this time, but, if upon reconnecting R_{fb} the oscillation is still present, it is very likely to be due to the use of valves with mutual conductances higher than those of the present type and it is legitimate to increase the value of R_{fb} to reduce the loop gain. If instruments are available, the loop gain may be measured by disconnecting R_{fb} from the cathode of V_1 and reconnecting it via a $470 \Omega \pm 10$ per cent resistor to chassis. The voltage gain, measured from the input grid to the junction of R_{fb} and the 470Ω resistor, should be 10 at frequencies between $30 c/s$ and $10 kc/s$. Care must be taken not to overload the amplifier when this measurement is being made.

The adjustment of the loop gain to its correct value at medium frequencies should render the amplifier stable at high frequencies. It is unlikely that the phase characteristic at high frequencies of individual amplifiers will deviate appreciably from normal unless the layout is very poor or the transformer is not to specification.

Capacitive Loads

The amplifier is absolutely stable at high frequencies with a resistive or inductive load, but it is possible for oscillation to occur when the load impedance is capacitive at very high frequencies, for example, when a long cable is used to connect the amplifier and loudspeaker. To avoid this possibility, and to give an increased margin of stability, a transitional phase-shift network consisting of R_{fb} and C_{ph} in conjunction with the output resistance of V_1, has been included in the circuit. This has the effect of reducing the loop gain at frequencies from 20 kc/s upwards without affecting the phase shift in the critical region.

The use of a phase advance network consisting of a capacitor shunting R_{fb} has been advocated as a means of stabilizing this amplifier. The effect of such a network is to increase the loop gain at high frequencies, at the same time reducing the amount of phase lag. It is sometimes possible by this means to steer the phase curve away from the 180° point as the loop gain is passing through unity, thus increasing the margin of stability.

The connection of a capacitor across R_{fb}, however, will not stabilize this amplifier if it has been constructed to specification, although it may produce improvement if oscillation is due to a large departure from specification, such as the use of an output transformer with completely different high-frequency characteristics. The writer has no information about this.

The use of separate RC bias impedances for the output valves has also been suggested. This procedure is not endorsed by the writer, as there are numerous disadvantages in its use and no redeeming features whatsoever. If the time constant of the bias network is made sufficiently long to ensure that the low-frequency performance of the amplifier is impaired, the phase shift of the bias network will have its maximum at or near the lower critical frequency and may provoke oscillation. If, on the other hand, it is made sufficiently short to avoid this, the ability of the amplifier to handle low frequencies will be impaired. The use of separate bias impedances for the output valves whose anode currents lie within the manufacturer's tolerance limits. Finally, there can be little justification for the modification on economic grounds, as the costs are roughly similar. Indeed, if the question of replacement due to failure is considered, the common bias arrangement shows a definite saving.

It is to be hoped that these remarks on stability will not have the effect of frightening those who already possess amplifiers of this type or are contemplating acquiring them. Their purpose is to help the occasional "outer limit" case, where instability is experienced, but if they serve to impress upon the reader that negative feedback amplifiers are designed as an integral unit, and that any modifications, however insignificant they may appear, may seriously affect the performance or
stability, a useful purpose will have been accomplished. Such modifications should be attempted only by those who are confident that they know what they are doing, and who have access to measuring equipment to verify results.

APPENDIX

Output Transformer with 3.6-ohm Secondaries

Winding Data

Core: 1½ in. stack of 28A Super Silcor laminations. (M. & E.A.)
The winding consists of two identical interleaved coils each 1½ in.
wide on paxolin formers 1½ in. × 1½ in. inside dimensions. On each
former is wound:

5 primary sections, each consisting of 440 turns (5 layers, 88
turns per layer) of 30 S.w.g. enamelled copper wire interleaved
with 2 mil. paper.

4 secondary sections, each consisting of 84 turns (2 layers, 42
turns per layer) of 22 S.w.g. enamelled copper wire interleaved
with 2 mil. paper.

Each section is insulated from its neighbours by 3 layers of 5 mil.
Empire tape. All connections are brought out on one side of the winding,
but the primary sections may be connected in series when winding,
two primary connections only per bobbin being brought out. Windings
to be assembled on core with one bobbin reversed, and with insulating
cheeks and a centre spacer.

SHARED TELEVISION AERIALS

Methods of Feeding Several Receivers

It is not always realized that it is a simple matter to operate more than one television receiver from a single aerial. There is, of course, a loss of signal, for in the ideal case the signal power provided by the aerial is divided equally among the receivers connected to it. The loss is rarely a serious one, however, except in areas of low field strength.

The most obvious way of connecting several sets to a common aerial is by means of a transformer, for then there is no loss in the network, apart from some unavoidable transformer loss. This is shown in Fig. 1 and if each receiver is designed for a feeder impedance Z_0 and the aerial feeder impedance is also Z_0, the transformer

Fig. 1. This diagram shows the method of matching a feeder to several receivers by a transformer.

former must have an impedance ratio $Z_0 : Z_0/n$ where n is the number of receivers. This is a

turns ratio of $1 : N = 1 : \sqrt[4]{1/n}$. Ignoring transformer losses, the input to each individual receiver is $10 \log n$ db below the aerial output.

Where only a few sets are used it is much simpler to use a resistance matching network, but it is rather less efficient. The arrangement is shown in Fig. 2. It can be seen by inspection that for proper matching it is necessary to have

$Z_0 = R + Z_0 + R/n$

whence

$R = Z_0 (n - 1) / (n + 1)$

The aerial current divides equally among the receivers, therefore the input power to each is $10 \log n$ db below the aerial output. The power lost in the resistors is as much as that fed to the receivers. The commonest use of this circuit is to connect two receivers to one aerial. Then $n = 2$ and $R = Z_0/3 = 24 \Omega$ if $Z_0 = 72 \Omega$ as is usual. Each receiver input is 6 db below the aerial output. The resistors can be the ordinary small composition type and in this instance it would be convenient to use for each two 47-Ω components in parallel, since this would permit the use of standard-value components.

The matching unit can be connected at any convenient point. Where it is desired to operate several receivers simultaneously in the same room, as in a demonstration showroom, the unit would obviously be fitted where the aerial feeder enters the room and short lengths of feeder run from it to each set. On the other hand, a pair of semi-detached houses might decide to share an outdoor aerial. It might then be desirable to fit the matching unit fairly close to the aerial and run separate long feeders from it into the separate houses. In this case the unit must be carefully weather-proofed.

The unit can equally well go in the middle of a cable run. Thus, two flats on different floors might share an aerial, and the obvious place for the unit is at the entry point of the cable into the upper of the two.

Since the loss of signal for two sets is 6 db the scheme may be inapplicable in fringe areas. There is, however, the possibility that if two neighbours combine they could for the cost of two separate aerials erect one more elaborate and lofty structure which would provide an increase of more than 6 db in signal. However, the transformer matching system...
Shared Television Aerials—
is likely to be more satisfactory
under this condition.

For two receivers the unit has
the form shown in Fig. 3 (a). An
alternative form which is exactly
equivalent is shown in Fig. 3 (b).

The star-delta transformation
theorem \(R_3 = 3R = Z_a \). Therefore,
the resistor and the feeder
impedances are the same. Hence,
two of the resistors could be
replaced by feeders and so four
sets could be operated without any
loss.

This scheme is sketched in
Fig. 3 (c) for twin-wire lines,

![Diagram](image)

matching looking in from the
receiver feeders.

It should be noted that none of
the receiver feeders is balanced
to earth in this arrangement, but
the aerial feeder is. Such a unit
should, therefore, be used only
when but short connections to the
receivers are needed.

HARBOUR RADIO

Supplementary Aid to Radar Navigation

A v.h.f. radio telephone system
is being installed by the Mersey
Docks and Harbour Board in order
to provide direct communication
between the port radar station* or
docks and the pilots on board ships
entering or leaving the river.

Initially 150 portable sets and 10
fixed shore stations will be
employed. The portable sets are
battery operated, weigh just under
20lb and are designed to provide a
working range of up to 25 nautical
miles.

Twelve radio channels have been
allocated to this service, six for the
portable sets in the band 158.6 to
164.1 Mc/s and six for the land
stations covering 163.6 to 164.1
Mc/s.

The portable sets are crystal
controlled and any channel can be
selected merely by turning a switch.
A 5-Mc/s i.f. is used and as this is
arranged to be the difference be-
tween the transmitting and receiv-
ing frequencies of each set the same
crystals can be used for both the
transmitter and the receiver. A
4-volt accumulator powers the set
and the r.f. output to the aerial is
0.25 W, amplitude modulation being
employed.

An important feature of the set
is its simplicity of operation. There
are three controls only, a channel
selector, combined on-off and
send-receive switch and a ringing key.
The last mentioned is a novelty for
this type of equipment and it pro-
vides a 1,000-c/s modulating tone
for calling the shore station. A
simple code will be used to dis-
tinguish between stations operating
in the same channel.

The coast stations are assembled
in the standard 19in wide racks and
give about 50 watts r.f. output.
Unit construction is adopted for
ease of maintenance and a complete
unit, transmitter, receiver or power
supply, can be quickly replaced if a
failure occurs.

Under development is a further
set intended for installation on
board ships. It will give about 10
watts r.f. output and provide a con-
siderably greater range than the
lightweight portables. It will be

![Image](image)

A v.h.f. radio telephone used by pilots of
the Mersey Docks and Har-
bour Board for ship-to-shore
communication.

* See "Harbour Radar." *Wire-
317-320.

High-Quality Audio Amplifiers

This 20-page booklet containing
reprints of five *Wireless World
articles on amplifier design is now
available from our Publisher, price
zs 6d (postage 2d). The circuits in-
cluded are "W.W. Quality Amplifiers,"
"A.C./D.C. Quality Amplifier," Jeff-
rey's "Push-Pull Phase Splitter,"
Baxandall's "High-Quality Amplifier
Design" and Woodville's "Economical
50-watt Amplifier."
Unusual care has been taken in the design of this table model receiver to provide ease and stability of tuning on short waves. In addition to the usual medium- and long-wave ranges and two short-wave ranges covering 11 to 110 metres, which are covered by the basic superheterodyne circuit consisting of r.f. amplifier, frequency changer, i.f. amplifier, detector and a.f. stages, there are eight selected short-wave broadcast bands of about 0.5 Mc/s which are each expanded to the full width of the 7-inch horizontal tuning scale. A double superheterodyne principle has been applied to the bandspread circuits in such a manner that the local oscillator on each band works at a single fixed frequency and is therefore easier to stabilize.

On the bandspread ranges the section of the main ganged tuning condenser associated with the input to the r.f. stage is disconnected, and the second section tuning the intervalve coupling is transferred to a first intermediate-frequency transformer in the anode circuit of the mixer section of the auxiliary frequency changer. The r.f. stage is fixed-tuned to a point in the middle of the band and will accept, without appreciable attenuation, signals up to 250 kc/s on either side of the centre frequency. The oscillator section of the first frequency changer is also fixed-tuned to a frequency 3 Mc/s higher than the centre point of the r.f. tuned circuits. Other signals in the band produce a spectrum of frequencies, centred on 3 Mc/s, and this first intermediate band is explored by the tuned secondary circuit connected to the grid of the second frequency changer. Here the conversion is made to the main i.f. of 452 kc/s and the signals follow the same course as on other wave ranges.

Fig. 1 shows the circuit arrangement of the two frequency changers on the bandspread ranges. The filter circuit in series with the primary of the first i.f. transformer is included for whistle suppression. Fig. 2 shows the progress of the signal through the receiver on the bandspread ranges.

As the first oscillator is higher in frequency than the signals, the calibration of the scales on the bandspread ranges is opposite to that on the normally tuned broadcast ranges. Wavelength decreases as the pointer moves from left to right, instead of increasing as on the long-, medium- and general-coverage short-wave bands.

The i.f. amplifier, detector and a.v.c. stages follow standard practice and a cathode-ray tuning indicator, controlled by the a.v.c. bias, is included.

A centre-tapped auto-trans-
Philips Model 681A

former couples the triode a.f. amplifier to the push-pull pentode output valves, and Fig. 3 gives the circuit arrangement of the stage. To balance out hum in the push-pull circuits \(R_C \) is introduced to offset RC. Feedback is applied from the secondary of the output transformer to one side of the phase-inverting circuit.

Tone control is effected by feedback through a capacitance from the anode to the grid of the first a.f stage. A potential divider, which includes the tone control resistance, is connected across the phase-splitting inductance, and values are chosen so that the point X is at the same a.f. potential as the grid of the valve. When the slider is at this end of the control there is no feedback, and maximum high-note response is obtained.

Performance. — On the bandspread ranges the set handles like an ordinary broadcast receiver on medium waves—except that there are more stations to choose from and there is less overlapping. Each station can be tuned in to the mid-point of its bandwidth as easily as the local station, and if the ear does not give this point clearly, it can be found quite accurately by observing the cathode-ray tuning indicator with its two-stage sensitivity.

The set is remarkably free from self-generated whistles on all wavebands and the sensitivity and selectivity enable any station above background noise to be well received. On the bandspread ranges the scales are accurately calibrated in both metres and megacycles and a check at several points showed that the graduations could be relied upon to find a wanted station.

Frequency stability was also very good and no warming-up drift could be detected. Station settings can be logged with accuracy by means of an auxiliary 180-degree scale.

The 8-inch loudspeaker gives good quality, and volume much above the average for a table model.

Mechanical Features. — The rather complicated wave-range switching is accomplished on three spindles, guarded together by a rack and pinion mechanism. It is positive in action and not unduly heavy to operate.

All trimmers are accessible from the back of the set and a large proportion of the top area of the chassis is occupied by them. The main tuning condenser is rubber-mounted, but we did not find any evidence of microphony when the condenser body was clamped for transit.

From every point of view the Type 681A can be classed as a high-quality receiver and it is particularly well fitted for serious short-wave listening.

The makers are Philips Electrical, Century House, Shaftesbury Avenue, London, W.C.2.

PUBLICATION DATE

In future Wireless World will be published on the last Thursday of the month preceding the date of publication instead of on the 26th as in the past.
A popular range of Brimar Battery Miniatures suitable for all Battery Receivers built since the war.

Reception Tested for reliability, Brimar Miniature Valves are manufactured to a specification to entirely eliminate microphony.

Brimar Miniature Valves

Standard Telephones and Cables Limited, Footscray, Sidcup, Kent.
CRYSTAL PICK-UP PREJUDICES
— their Rhyme and Reason . . .

PREJUDICES are frequently unreasonable, often enough they are formed not from experience but from hearsay. The reputation of Crystal pick-ups has suffered in this way, yet every day and any day there are many thousands of Crystal pick-ups giving delight to gramophone enthusiasts, particularly those who are “sound purists.” Then why this prejudice in other quarters? Let us be frank. Under certain circumstances Crystal pick-ups have in the past possessed some failings, but, let us hasten to add, failings small enough to be discounted by the user who sought the finest yet obtainable in sound reproduction.

Now, when Radiolympia is about to show us the great strides that ACOS research has made in utilising the amazing characteristics of the piezo-electric principle, it is opportune to review the reasons for the prejudices which persist from the pre-ACOS era.

The fallacy of their fragility

First, there is the belief that the Crystal pick-ups must necessarily be fragile and easily damaged. True, certain early types were easily fractured because assembly methods were as yet unperfected. But the Cosmocord laboratories produced an unbreakable crystal assembly which ensures that no crystal in an ACOS pick-up can be broken, even by so drastic a measure as tapping the needle with a hammer—an extreme of violence which would never be approached in ordinary usage.

Humidity deterioration effects defeated

A second persistent prejudice against Crystal pick-ups is that the crystal element—Rochelle-Salt—is susceptible to deterioration when subjected to the higher degrees of humidity. Since this failing is an inherent characteristic of Rochelle-Salt, counter measures had necessarily to be those of protection. ACOS research was indeed set a formidable problem, the solution of which was particularly cuive, for in this country the humidity count is much higher than, say, in the United States, where Crystal pick-ups are in almost universal use. Nevertheless the problem was solved by long and intensive research in the Cosmocord laboratories. Now an assembly has been designed which positively counteracts any danger of deterioration from humidity. In this assembly the crystal is mounted in a gel-like substance which provides a complete water-vapour barrier, rendering the cartridge absolutely non-hygroscopic.

Equaliser Circuits now past history

Another criticism is that the Crystal pick-up requires the fitting of an equaliser before satisfactory reproduction can be obtained from the ordinary commercial “constant velocity” records. In passing it should be mentioned that this condition is not confined to Crystal pick-ups only. The criticism is then that in order to attain the best from a crystal pick-up it is necessary to spend time and money on fitting additional components. The connoisseur of sound reproduction has considered this effort well justified by the results, knowing that a crystal pick-up alone is capable of giving him the high quality he demands.

Now, however, even the critical requirements of the connoisseur can be met without recourse to an equaliser circuit for again ACOS research has solved the problem in providing a crystal pick-up which, without additional components, can be connected direct to any domestic radio set or amplifier.

An invitation to the critics

Thus all past criticisms have been met, and any lingering prejudices shown to be without reason. And in confirmation there is to be inspected and heard at the Cosmocord Stand No. 7 and Demonstration Room No. D.10 the latest product from the Cosmocord Research laboratories—a Crystal pick-up of revolutionary design which, apart from providing a new and higher standard of performance, is also a thing of beauty. This pick-up will be available through the Trade after Radiolympia.
TELEVISIONING MOVING IMAGES

IN the pages of *Wireless World* and elsewhere there has been much discussion of late concerning the many problems involved in television definition. The writers of the articles (I feel that I may be permitted to criticise, since I was one of them) like the participants in most verbal discussions and the authors of many textbooks, advance arguments that are perfectly sound, so long as one rather important proviso is made. That proviso is, perhaps, something more than rather important; for it is to the effect that in television transmission and reception we are mainly concerned with still images, such as test patterns. All of the generally accepted rules and equations are of unquestionable correctness when applied to still images; they enable one to calculate to a nicety the modulation bandwidth needed to deal properly with fixed vertical straight lines of any width and spacing, or the number of scanning lines necessary to televise fixed horizontal straight lines of any width or spacing.

Movement the Keynote

The contingency that they do not cover is that the lines in question should be moving. And movement is surely the keynote of television. The cinematograph could never have obtained its present popularity as a means of entertainment had it not been able to outdo its forerunner, the magic lantern, by projecting moving scenes on to the screen. Years ago the B.B.C. and the Vienna broadcasting station ran for some time transmissions of still pictures, which would be received in anyone's home by means of comparatively inexpensive apparatus fed by the output of an ordinary receiver. The pictures themselves were excellent—as still pictures. It took about four minutes to receive one of them and those who came to one's home to witness the new miracle of broadcasting were lost in wonder and admiration; but, apart from their novelty-appeal (which soon wore off, as I can testify from personal experience, even with the most dyed-in-the-wool wireless enthusiasts) these transmissions had no genuine entertainment value. It was not until J. L. Baird showed that moving images could be transmitted and received by radio that broadcast pictures stood any real chance of providing worth-while entertainment in the home.

When we come to consider the moving image, as opposed to the still, test-pattern, new factors are involved; and these modify considerably the accepted ideas of definition in television.

Let us take as the basis of the argument a runner, human or equine, moving at such a velocity that his image would cross the screen of a television receiver in one second. I am not for one moment suggesting that the transmission of the subject of a television broadcast from one side to the other of the viewing screen would ever occur in practice in this space of time. An important part of the technique of the operator of a television camera is to ensure that no such thing happens: by swinging his camera he keeps his principal subject at or near the centre of the screen at all times.

The reason for this is that the viewer instinctively keeps his eyes glued to the most arresting figure in the scene shown on his screen. So long as he can do this without moving his eyes, all is well; but if the figure is allowed by the camera operator to move rapidly across the screen and the eyes of the viewer follow its movement, interlacing is at once destroyed and "interline flicker" is very much in evidence. This would not happen if the movement of the eyes was absolutely parallel with the scanning lines; but there is nearly always some vertical component in the passage of a figure across the screen.

Yet, no matter how great the skill of the cameraman parts of any rapidly moving image must have velocities such that, if they did move right across the viewing screen, they would do so in one second or less. Think, for example, of the legs and feet of a dancer or a runner, of the hands of an actor making a gesture, or of the whole outline of a figure which makes some brief, rapid movement too quickly for the camera to be swung so as to follow it. Things of that kind are constantly happening in every television transmission; it is in fact, to the continual occurrence of numbers of such movements that the television image owes its animation.

The Moving "Figure"

It is simplest to think of our object as a single vertical straight line, moving from left to right across the screen with a velocity that would accomplish one complete traverse in one second. This straight line we will call the "figure" for the word "line" is needed for other purposes. During the first odd-numbered 405-line interlaced scan one small element of the figure is depicted on the screen. This is a straight line equal in length to \(\frac{1}{377} \) of the height of the whole screen image, since 377 is the number of active lines. The next element is put in 99 \(\mu \) sec later (99 \(\mu \) sec is the total duration of a line, including initial and final blacks and line sync pulse) by the
Televising Moving Images—

following odd-numbered line. In that time the figure has travelled a distance equal to 0.00099 of the whole width of the screen; the second element appearing on the viewing screen is therefore displaced by this distance from one before. As odd-numbered line follows odd-numbered line the displacement of the elements is cumulative. If we were watching a 10×8-in image the displacement of the final odd-numbered element of a figure extending to the whole height of the screen would be $0.00099 \times 188.5 \times 10 = \text{approx.} 0.19\text{in.}$

The result is illustrated diagrammatically and in much exaggerated form in Fig. 1 (b). It must be emphasized that in the ordinary way the eye of the viewer is not actually conscious of any leaning of a moving figure. Still, the inclination is there and it must to some extent affect the reproduction of the image. It will be seen that the original vertical line of Fig. 1 (a) has become a slope built up of displaced vertical elements with gaps between them. Were the figure stationary, these gaps would be filled by the even-numbered scans. As the figure is moving at the velocity under discussion the even-numbered elements do not fill the gaps. Since there are 2 (b) shows how the original clear, single, vertical line is reproduced as two slopes, each composed of spaced and displaced vertical elements. Besides the distortion introduced by the slope, there must be some haziness due (1) to the gaps between the elements and (2) to the fact that the elements are vertical whilst the line built up by them is not.

Several interesting facts emerge from these considerations. The first is that it becomes doubtful whether in the case of a moving image, we are entirely justified in regarding each even-numbered scan as complementing and, so to speak, belonging to the preceding odd-numbered scan, the two together forming one image complete in itself. An even-numbered frame would “belong” unquestionably to the preceding and not to the following odd frame, if there were a short blackout between an odd frame and the even frame following it and then a much longer blackout after the even frame to mark the completion of the image. As it is, the sync pulse blackouts are identical in duration in both cases.

Consider the four consecutive frames seen in Fig. 3. Can it be held that A and B or C and D are always linked together to form images and that in some way the eye combines them rather than B and C? Is it not nearer the truth to regard A, B, C and D each as separate skeleton images, from the merging of which the eye receives a reasonably good general impression of a moving object rather than a clear-cut picture?

In any event it is plain that no increase in the number of scanning lines can make any improvement in the distortion due to the sloping reproduction of an image moving across the screen. This slope, or “distortion angle” becomes less as the number of frames per second is increased. From this it becomes apparent that the use of a larger number of frames is likely to provide a better moving image and that the 60 frames per second used in the U.S.A. may, after all, mean something more than a mere waste of good bandwidth.

A second small shock comes when we think about those gaps between the elements in each frame of a moving image. More lines must lead to smaller gaps and, therefore, to a clearer picture drawn by each frame. A figure in vertical movement is, again, likely to be better reproduced by the use of a larger number of scanning lines. In fact, by taking an extreme case and imagining the lines reduced to a very small number it is not difficult to picture a narrow horizontal figure in rapid upward or downward movement which is barely touched by any scanning line—or even not touched at all.

What it comes to is that calculations of balanced definition cannot be based entirely on the transmission and reception of still images. The moving image, which is what we want to tele- vise, brings many new complications into the problem. Since we live on the surface of the ground the movements that we and our fellows most often make, and those which are, therefore, the most important to television, are in the horizontal sense. To attain genuine high-fidelity reproduction of these on the c.r.t. screen it is probably necessary to increase the number of frames to more than
50 per second. I have given some reasons why interlaced scanning cannot be looked to to furnish the answers we had hoped.

![Image](Fig. 3. Four consecutive frames reproducing a moving vertical straight line. Does A always interlace with B and C with D?)

For what it is worth, my view is that research on high definition television should not take L000-channels scanning as its goal. Rather, it should be directed first and foremost towards developing methods of producing wide-band transmitting and receiving apparatus. Ardente Acoustic Laboratories have equipped a large caravan with the various types of equipment produced for use on merchant ships. The unit is entirely self-contained and carries its own power supplies so that demonstrations can be given anywhere.

The towing vehicle is a complementary part of the unit, since it carries a special dynamo for battery charging. It also has a pair of weather-proof loudspeakers and a loud hailer on the roof.

Inside the caravan is a comprehensive display of Ardente marine sound apparatus. One interesting item is the "Sonomarine" system giving radio, gramophone and speech facilities in all parts of the ship. It operates from the ship’s mains of from 100 to 250 volts a.c. or d.c. It has three microphone input circuits, and these can be arranged in order of importance. Thus the captain would be given highest priority and, no matter what is being relayed, switching on his microphone immediately silences everything else. Every loudspeaker in the ship comes on at full volume even if it had been turned down or even turned off. An announcement from any microphone interrupts radio or gramophone in the same way.

Another piece of equipment we had demonstrated to us was the "Talk-Back Hailer," a combined communication system having three sub-stations and a loud hailer. This is battery operated, 12 or 24 volts, and has a 4-valve amplifier, resistance-capacitance coupled throughout, with a small motor generator for h.t. supply.

At the sub-station the loudspeaker serves also as a microphone, and the sensitivity is such that replies from a considerable distance can be made if extraneous noises are not overriding. It has marked directional properties and this can usually be taken advantage of in mounting it. At a demonstration in the open and with some traffic noise to contend with replies from distances up to about 20 feet were perfectly audible.

Among the other apparatus in the caravan is a "Master Communicator" which is a multiple system feeding up to 10 remote stations, all with "talk-back" and calling facilities. The loudspeaker is in all cases used as a microphone for replies. There are examples of the various styles of loudspeaker available for cabin or deck use, microphones and a small emergency communication set for point-to-point working, which does not use valve amplification.
DETAiLS of this instrument are offered in the hope that they may be of interest to readers who want to construct an oscillator covering the audio band. Some of the features are unusual and have been found very convenient for general laboratory work. In case a glance at the full circuit diagram (Fig. 1) and the control panel suggests that it would be better to look elsewhere for something simpler, it should be understood that most of the apparatus shown consists of optional "extras."

General Description.—The nucleus is a 2-valve resistance-capacitance oscillator (V1 and V2 in Fig. 1), which with one of the cathode-follower output stages (V5) would make a self-sufficient audio source. This circuit is shown by itself as Fig. 2.

The output, for less than 1% harmonic distortion, is about 40 mW (20V peak across 5 kΩ) and is held constant by a thermistor within 0.2 dB or less over the whole frequency range of 20 to 20,000 c/s, covered in three decade ranges.

The usefulness of the instrument, especially for measurements on amplifiers, filters, etc., is much increased by adding the attenuators, covering 0 to 105 db continuously by means of a 0-5 db potentiometer in front of the output stage and two switched attenuators following it, one giving four 5 db steps and the other four 20 db steps.

V6 and V7 comprise another refinement—a phase inverter and second output stage. For many purposes it is useful to have an output balanced to earth. In bridge work this feature is equivalent to a Wagner earth and enables the effects of all stray capacitances from bridge arms to earth to be practically eliminated.

An incidental advantage of having the two output stages is that their signal currents cancel one another out in the anode supply circuit.

If steep-fronted square waves are available, apparatus under test can be much more searchingly examined than with sine waves alone, and many transient effects are shown up that would otherwise go unrevealed. So the next refinement is a squarer section (V3 and V4), brought in as desired by a Sine/Square change-over switch.

The complete absence of signal transformers anywhere in the instrument, and the use of simple low-frequency compensation, assist in the preservation of good flat tops down to 20 c/s and wavefronts of only a few microseconds duration.

Lastly there is V8, a valve
voltmeter, with a switch to connect it to various points in the signal generator and also to an external terminal so that the voltmeter can be used independently. A simple device renders the calibration unaffected by the worst fluctuations in anode voltage.

A further provision that might be useful would be a switch to change the grid of V1 over to an external terminal, so that the instrument could be used as an amplifier, squarer, phase splitter, etc., for external signals.

The particular generator shown was adapted from a war surplus Test Set Type 87. In this way the whole of the chassis, mains power unit, all nine valves, much of their wiring, and many of the controls and components, were ready-made. The front panel was fairly easily removable for drilling holes to take the extra controls. The r.f. oscillator (the original set was a 150-300 Mc/s generator) was in a small section at one end and came away bodily to make room for the frequency-determining network.

Design Considerations — Oscillator.—The beat-frequency type the ability to sweep over the whole band in one turn of the frequency control—is counterbalanced by frequency controls described in Wireless World by K. C. Johnson (March 1948) and B. J. Solley.

![Circuit diagram](image)

Fig. 2. Circuit diagram of the essential parts, consisting of bridge-controlled, amplitude-stabilized RC oscillator with cathode-follower output stage. Component values are as in Fig. 1.

of oscillator was quickly ruled out because of the great difficulty of achieving stable frequency and pure waveform at the lowest frequency. Its one advantage—considerable thought was given to possible alternatives. Twin-T networks were rejected as undesirably complicated. On the other hand there were the single-component switching can be arranged so that three decades of frequency can be covered without a break, in three successive sweeps (up-down-up) of the control, and because a
Audio Signal Generator—

A logarithmic scale is given by a linear potentiometer. But unfortunately the attenuation varies so widely with frequency setting that no automatic amplitude control could be found that would keep amplitude and waveform closely constant.

The theory of the Wien bridge oscillator is well known, but a recapitulation may be helpful. Neglecting R_3 and R_4 in Fig. 3, the two arms $C_1 R_1$ and $C_2 R_2$ form a potential divider such that the output (across $C_2 R_2$) is in phase with the input (across the whole) at only one frequency, namely:

$$f = \frac{1}{2\pi \sqrt{R_1 R_2 C_1 C_2}} \quad (1)$$

Fig. 3. Functional diagram of bridge-controlled RC oscillator.

When, as is usual, $R_1 = R_2$ ($= R$) and $C_1 = C_2$ ($= C$), this frequency is inversely proportional to R and C, and the output voltage is one third of the input (attenuation $9\frac{1}{2}$ dB). If, therefore, this output is fed back to the input through an amplifier having $9\frac{1}{2}$ dB gain and zero phase shift, continuous oscillation will be maintained at frequency f.

Any phase shift in the amplifier necessitates a corresponding phase shift in the RC network and consequently a departure from the frequency as given by equation (1). To minimize amplifier phase shift, and so stabilize the frequency of the oscillator, negative feedback is usually introduced, by feeding the input in opposite polarity with a proportion of the output, tapped off by the potential divider $R_3 R_4$. The gain of the amplifier must of course be correspondingly increased.

Another way of looking at the circuit is to consider it as a bridge, which would be balanced if $R_3 = 2 R_4$, because both "detector" points would then be at the same potential. In other words the attenuation of the network would be infinitely large. By lowering the tapping of $R_3 R_4$ the attenuation is reduced, until the loop gain of the amplifier is sufficient to cause oscillation.

If the gain of the amplifier itself is made very much larger than $9\frac{1}{2}$ db the necessary shift in the $R_3 R_4$ tapping is small, so that the $R_3 : R_4$ ratio becomes extremely effective as an oscillation control. By choosing for R_4 an element whose resistance decreases with amplitude of oscillation (or R_4 with opposite characteristics), the amplitude is automatically limited other than by overloading of the amplifier and consequent distortion.

Using a bridge circuit, one inevitably encounters the difficulty that either both the input or both the output terminals must be at signal potential. There is the further difficulty in this case that for good a.a.c. (automatic amplitude control) the control element should not have to carry d.c. as well as the signal a.c. In some designs, R_3 and R_4 have been made respectively the anode and cathode resistors in the output stage: but since they must necessarily be fairly low in resistance, the exclusion of d.c. from the control element without bypassing most of the signal a.c. and introducing phase shift at the lowest frequencies is an awkward requirement. In the present design the alternative has been chosen, so that R_3 in Fig. 3 is the thermistor R_3 in Fig. 1, and R_4 is the cathode resistor of the input valve V_1. The signal current in R_4 via V_1 is small compared with that from V_2. via R_3.

Fig. 4 shows the characteristics of the thermistor, Standard Telephones Type A5513/100. This device is many times more effective than the special lamps that are usually specified for a.a.c., and at one stroke completely banished all the "hunting" (or amplitude bounce) troubles that had been experienced with lamp or rectifier methods of a.a.c. It occupies negligible space (approx. 1 in long by ¼ in dia.), and is cheaper than special lamps: and it is obtainable in higher resistances, more suitable for valve circuits. It is appreciably sensitive to ambient temperature, but long-term amplitude stability is relatively unimportant. At the output of V_2, short-term amplitude variations are imperceptible, most of the 0.2 db drop at 20,000 c/s being due to the coupling to V_3.

The amplifier is conventional, but care must be taken to minimize low-frequency phase shift by making the coupling capacitances adequate in relation to the coupled circuits. Parasitic oscillation is possible with some layouts, and in the preliminary trials 100 pF had to be used across R_5.

Turning to the frequency control there was the question of capacitance versus resistance variation. Most designers favour capacitance as the continuously-variable element, for the sake of smoothness of control. But even if two 4-gang capacitors are coupled together
the associated resistance has to run into megohms to get down to 20 c/s, and the whole system has to be carefully screened to exclude hum. All this, especially the coupled drive, is a considerable mechanical problem, and the result is inevitably bulky. The writer, disliking both mechanical problems and high-impedance circuits, eventually settled on variable resistance.

Incidentally, one advantage of resistance over capacitance control is that the scale is spread over about 300° instead of being confined to 180°.

For convenience, the capacitances were made 0.1, 0.01, and 0.001 µF, so for ranges of 20-200, 200-2,000, and 2,000-20,000 c/s respectively, plus margins of about 8% at each end, the resistance range worked out at 7.5 kΩ fixed and 8 kΩ variable. The graph of resistance against angular setting to give a logarithmic scale of frequency was found to be almost identical with the commercial potentiometer characteristic known as semi-log. If the frequency control is to be of the type in which a pointer moves over a fixed scale, then in order to have a scale with frequency increasing clockwise an "inverse semi-log" potentiometer is necessary.

The three decade logarithmic frequency ranges together correspond with the graph paper usually used for frequency characteristics.

Suitable ganged potentiometers can be obtained from Reliance Manufacturing Co., Sutherland Road, London, E.17, or Colvern, Mawneys Road, Romford. Values over 50 kΩ are not available with semi-log windings in the smaller sizes, and the larger ones, which are also desirable for precise frequency control, are several times more expensive—in the region of £2 per gang. If a slightly lower standard of setting is acceptable, the ordinary 3-watt type can be substituted, with resistance values multiplied by $\frac{5}{3}$ and capacitances by $\frac{5}{3}$. One must then look out for a tendency to overload V2 at the high-frequency end of each range, as the impedance of the RC chain goes down to 10 kΩ.

Output Stage.—Preservation of waveform was considered more important than high power; one can always obtain the latter with a separate power amplifier, but waveform once lost cannot readily be restored. So a cathode follower with its high input impedance, low output impedance and minimum phase shift and distortion, was chosen as the buffer stage between the oscillator and output terminals.

To exclude d.c. from the load, the arrangement shown in Fig. 5 was adopted, in which R_h, the load resistance, is separated from R_a, the valve feed resistance, by a capacitance large enough to have negligible impedance compared with R_a at the lowest frequency. The optimum values of R_h and R_a for maximum undistorted power in R_a do not seem to be given in the literature of the subject; but according to the writer's calculations, confirmed by experiment, they are equal to r_a and $\sqrt{r_a}$ respectively, where r_a is the nearest linear approximation to the I_a/V_a curve of the valve at the grid bias where grid current starts. In the present case these resistances worked out at about 5 kΩ and 7 kΩ respectively; and the calculated maximum power in R_a (also confirmed by experiment) was 70 mW. This is where distortion becomes visible on the oscilloscope. To keep well away from this overload point the normal output was rated as 40 mW (20 V peak across 5 kΩ). If desired, it would be quite easy to raise this to 50 mW in order to agree with a widely adopted standard, either by a slight increase in anode voltage or by accepting a lower but still very good purity of waveform.

About 50% greater undistorted voltage is available on open circuit.

(To be concluded.)
LAST month ring counters were discussed, and it was shown how a counter of any division ratio consisting of the product of numbers not exceeding seven could be arranged. This month we shall discuss how a counter of any scaling factor may be designed starting with an appropriate chain of scale-of-two counters.\(^1\)

If we start with three scales of two in cascade, we shall have a total scaling factor of eight; and there will be eight possible different combinations of conducting (or non-conducting) valves in the three stages. We may give each of these combinations (or states) a letter, thus A, B, C, D, E, F, G, H, A, B, . . . and the states will follow one another in the order given. Now if a scaling factor of seven is required, then we must arrange matters so that one of the states is missed—say A.

Fig. 1. Scale of eight in state A.

—so that the sequence of states becomes B, C, D, E, F, G, H, (A), B, C . . . and the state which is missed is shown in brackets. Similarly to obtain a scaling factor of six the required sequence is C, D, E, F, G, H, (A, B), C, D and for five D, E, F, G, H, (A, B, C), D, E If S is the number of states resulting naturally from a chain of a scale-of-two counters, S may have values of 2, 4, 8, 16, 32, 64, 128 If N is the required scaling factor then (S-N) states must be missed. To obtain a scaling factor of N = 23 for example, one begins with a chain of scale-of-two having a natural scaling factor in excess of 23, by as small a margin as possible—and in this case S = 32. Then (S-N) = (32-23) = 9 states must be missed. For illustration of the method we shall confine ourselves to S = 8, as this is a sufficiently large number to indicate the principles involved, and in addition by arranging for three states to be missed a value of N = 5 is obtained.\(^2\) This is particularly valuable as a scale of five in association with another scale of two forms a scale of 10, or counter decade.

Fig. 2. Block diagrams, modified scale of eight.

As we have already discussed a scale of two, interest is now centred on the means whereby particular states in a chain of scales of two can be arranged to be missed. Let us first therefore draw up a table showing what combinations of conducting and non-conducting valves correspond to the eight possible states in the chain of three scales of two shown schematically in Figure 1. This shows three rectangles each of which is divided into two, so that each square corresponds to one valve in a scale of two. We may begin with all the left-hand valves conducting—indicated by (O) and all the right-hand ones non-conducting—indicated by (X). In drawing up the table we may confine our attention to the left-hand valves only, and indicate whether each one is conducting (O), or not (X). Thus:

There are eight possible states—A to H inclusive—after which the sequence repeats. On closer inspection we see that in the last scale of two (the third in this case) (X) changes into (O) only at one point in the sequence; in changing from states H to A, in fact.

This is not true of any of the other scales of two, and means simply that one pulse of a particular polarity can be obtained from the last scale of two once at the completion of each sequence of eight states.

Now suppose that we wish to have a scaling factor of seven so that, as already noted, state A is to be missed; when the circuit falls into state A it must be automatically altered to B. States A and B differ only in the condition of the first scale of two, so that to alter A to B the first scale of two must be reversed. This reversal may be carried out by injecting the pulse (derived from the last scale of two in changing from H to A) into the first scale of two in

\(^1\) Blume, R. J., *Electronics*, Feb., 1948.

such an asymmetrical manner as to make the left-hand valve non-conducting. If this is done we obtain the block diagram of Figure 2 (a).

Again if a scaling factor of six is required, two states—A and B—must be missed. As H changes into A a pulse is derived from the last scale of two, and this is used to change state A automatically into state C. Now A and C differ only in the condition of the second scale of two into which the feedback pulse must be introduced asymmetrically as shown in Figure 2 (b). As the first scale of two remains unaltered in this arrangement it follows—as might have been expected—that the scale of six is built up of the first scale of two and a scale of three formed by the last two scales of two when the feedback has been added. Thus in arranging a scale of six we have also derived a scale of three.

Similarly if a scale of five is required, three states—A, B, and C—must be missed, and to convert A into D both first and second scales of two required to be reversed. The pulse from the last scale of two is then fed asymmetrically into both the previous scales of two as shown in Figure 2 (c). By prefacing this scale of five with another scale of two a counter decade is obtained.

If we take the reduction of scaling factor a step further to obtain a scale of four a difficulty arises, as we shall then require states A, B, C and D to be missed, so that the sequence is E, F, G, H, E, F This requires that the third scale of two shall be reversed and since this reversal is caused by a pulse derived from the same scale of two, direct feedback of the pulse cannot be used, as the each double triode and its associated components forms a scale of two. The feedback is applied asymmetrically at the grids of the first and second scales of two from one anode of the last scale of two.

For those readers who may wish for some initial guidance in experimental work, Figure 4 shows a practical scale of two, capable of being cascaded without buffers, which is designed to operate at frequencies not exceeding 10 kc/s.

A delayed feedback pulse is required when N is equal to or less than S/2. In circuits of fixed scaling factor, the difficulty need never arise, as if N ≤ S/2 one or more scales of two can simply be removed from the circuit.

A scale of five circuit incorporating the feedback described is shown in Figure 3, and here

Fig. 3. Schematic circuit of scale of five.
Electronic Circuity—
In wiring care must be taken to keep stray capacitances to as low a value as possible, and it is desirable to wire the anode-grid coupling components directly across the valveholder. Matched pairs of resistances should be used where symmetry is desirable—i.e., in the anode loads and the cross-coupling networks. High stability resistors should be used for maximum reliability.

Having designed a counter of a particular scaling factor, one state is then allotted the figure sought, and then subsequent states are allotted numbers 1, 2, 3, 4, ..., up to the scaling factor. It is usually convenient to be able to reset the circuit to nought, and this may be done by arranging for the valves to be forced into the state corresponding to nought; either by applying a positive bias to those grids of valves required to be conducting, or by applying negative bias to those required to be cut-off. The bias may be applied on the depression of a push-button switch.

It is often desirable that the state existing in the circuit at any instant shall be indicated. The simplest and most usual way of arranging this is to associate a miniature neon indicating lamp with each scale of two to show the state existing in the circuit at any particular time. It is usual to have the anode loads and the cross-coupling networks on the anode-grid coupling networks. This is then allotted the figure nought, and then subsequent states are allotted numbers 1, 2, 3, 4, ..., up to the scaling factor. A crystal oscillator which is frequency divided by a counter chain to produce pulses at 1 c/s. These are fed into an electronic gate which remains in its “open” condition for exactly one second. During that second the recording counters are allowed to count individual cycles of the unknown frequency, so that at the conclusion of the second the unknown frequency is displayed on the indicators associated with the recording counters. The gate may be designed so that having once remained “open” for one second and closed again, it remains closed until reset manually. By this means the unknown frequency can be sampled for one second and the result displayed until reset manually. The method is limited to frequencies not exceeding the maximum repetition rate of the recording counters (about 1 Mc/s with present techniques), but within these limitations the method is extremely rapid and convenient.

CATALOGUE of aluminium and aluminium-alloy wire from the Aluminium Wire & Cable Co., Ltd., 10, Buckingham Place, London, W.1.

Illustrated leaflets describing the Baird a.c./d.c. portable television receiver and the Sopwith-Baird magnetic tape sound recorder for use with sub-standard film projectors, from Sopwith-Baird, Ltd., Lancelot Road, Wembley.

Information leaflets (Nos. 1 to 4) dealing with neon test prod, appliance switches, fuses and plug-in ignition interference suppressors from A. F. Bulgin, Bye Pass Road, Barking, Essex.

Leaflet describing the Model 8903 record player unit, from the Marconi-phone Co., Hayes, Middlesex.

Comprehensive catalogue of “Somerford” chokes and transformers, from Gardners Radio, Somerford, Christchurch, Hants.

Leaflet describing the Axiom 22, twin diaphragm, 20-watt loudspeaker and H6, 30-watt output transformer, from Goodmans Industries, Lancelot Road, Wembley.

Catalogue and price list of electrical meters from Taylor Electrical Instruments, 419-424, Montrose Avenue, Slough, Bucks.

The following new illustrated lists have been received from Marconi’s Wireless Telegraph Co., Chelmsford: SL14/3, d.f. equipment; SL17/3, 500W transmitters; SP5, v.h.f. communication equipment; SP14, television equipment; DP9, type Ug valve; SP7/3, transmitting and power rectifying valves; SP8/3, receiving and rectifying valves.

MANUFACTURERS’ LITERATURE

Brochure dealing with fabricated-plate electrolytic capacitors made by the Plimsoll Co., Components Division, Ilford, Essex.

Catalogue V.549 of “Variac” auto-transformers from Claude Lyons, 189, Tottenham Court Road, London, W.I.

Illustrated leaflet describing “Telrad” high-quality radio gramophone, from Telecommunications, 70, Church Road, Upper Norwood, London, S.E.19.

Specification and technical details of Model RA101Z schools broadcasting equipment, from Trix Electrical Co., 15, Marble Place, Tottenham Court Road, London, W.I.

List of d.c.-a.c. vibratory convertors from Valradio, Ltd., 57, Fortress Road, Kentish Town, London, N.W.3.

Leaflet describing “Eta” Series 111 permeability-trimmed i.f. transformers from Electro Technical Assemblies, 109, West Hill, St. Leonards-on-Sea.

MORE COPIES OF “WIRELESS WORLD”

As already announced, the Government’s decision to increase the allowance of paper for technical periodicals makes it possible to print more copies of Wireless World. Starting with this issue there should be enough for all anticipated requirements. But the number of copies will still be limited, and so it will be necessary for an order to be placed with a newsagent.
Lightning Protection

At this time of year we constantly receive anxious enquiries as to the risk involved in having a television dipole* or "Skyrod" aerial on the roof. We have not the slightest hesitation in stating that the chances of trouble are negligible.

Any "Belling-Lee" aerial, or radio or television receiver connected thereto is insured for the sum of £100 against damage by lightning. This applies in the event of there being no collateral insurance or after existing cover has been exhausted. This operates for one year after the date of purchase by the ultimate user no matter where purchased or by whom installed. If insurance companies considered aerials a risk, they would not be slow in calling for increased premiums.

We have been making and installing television aerials since the advent of television and of the total of all makes installed a very high proportion are of "Belling-Lee" manufacture, but we have no record of a single claim of damage by lightning, and we do not suggest that other makes of aerials are more likely to be struck. As things are at present we feel quite safe in suggesting that there must be more dwellings without aerials struck by lightning than vice-versa, but only because there are a greater number of such dwellings.

Now Let Us Deal With Television Aerials

It is almost impossible to envisage conditions which would set up an excessive potential difference between the two elements of a television dipole, and consequently we need only concern ourselves with voltages which may develop between the dipole elements and earth. In some cases, where an unbalanced feeder is employed, one dipole element is connected to the earth, via the receiver, and there is no reason why the earthy conductor of the feeder should not be independently connected to a safety earth outside the building. This, however, would not really afford any advantage, since the unearthed element, which is usually the upper one, requires some other form of protection.

Obviously, any method of protection must take the form of a path to earth which only becomes operative when the potential of the conductor to be protected rises above a certain value. This points to some form of spark-gap. In a Television aerial a built up charge would spark across the dipole insulator, and it is only necessary to earth the cross-arm and we do not suggest that other elements should not be independently earthed. As things are at present, there must be many dwellings with aerials struck by lightning than a spark-gap placed in the feeder at, say, the point of entry into the house, since in such an arrangement the heavy discharge currents would have to flow through the conductors of the feeder, and might thus cause them to fuse. Smaller charges would leak to earth harmlessly in the cable.

Another type of static discharger specially designed for use with Television aerials and "Belling-Lee" Twin-Feeder *3. List No. L376. Price 7/6d. of the aerial in order to implement this form of protection. In theory, this method should be of greater value than a spark-gap placed in the feeder at, say, the point of entry into the house, since in such an arrangement the heavy discharge currents would have to flow through the conductors of the feeder, and might thus cause them to fuse. Smaller charges would leak to earth harmlessly in the cable.

We have done such work on ships of all sizes from the "Queen" class to trawlers, drifters and yachts.

WILL those in coastal towns, fishing ports, yachting centres etc., bear in mind that "Belling-Lee" are specialising in suppression on board ship.

Now let us deal with television aerials since the advent of television and of the total of all makes installed a very high proportion are of "Belling-Lee" manufacture, but we have no record of a single claim of damage by lightning, and we do not suggest that other makes of aerials are more likely to be struck. As things are at present we feel quite safe in suggesting that there must be more dwellings without aerials struck by lightning than vice-versa, but only because there are a greater number of such dwellings.

*2. "Skyrod" (Regd. trade mark) 18 foot vertical aerials L638 collector, chimney mounting, £4 4/-, L638/K plus "Eliminoise" equipment, £10 10/-, £10 6/-. L638/C collector mast mounting, £3 5/-, £3 12/-. L638/GK plus "Eliminoise" equipment £8 15/-.

*3. Balanced twin feeder. L336 unscreened 74d. per yard. L221 screened 1/9d. per yard.

Manufactured by BELLING & LEE LTD
List No. L350 selling at 9/6d.
Maximum sensitivity with uniform frequency response from a more compact speaker, appreciably reduced in weight—that is what Rola technicians have achieved with the new G.12. Special features include dust-proof suspension completely protecting coil and magnet gap and the powerful Alcomax II magnet. Write for details and also for particulars of Rola 3" and 4" P.M. models, dust-proofed and equipped with Alcomax II magnets.

THE DX PLUS ONE FEEDER UNITS AND THE DX PLUS SEVEN QUALITY CHASSIS

by the Specialists for Feeder Units and Chassis since 1934

Sound Sales Limited

PRICE

£15 plus P.T.

Remember that the products of SOUND SALES LTD., are guaranteed for 12 months, in accordance with the guarantee issued.

Like the Phase Inverter Speaker, flattered by imitation, the Feeder Units and Chassis by Sound Sales Ltd., can usually be found as the Heart of most Quality Equipment.

Unique features include, the latest dial of no less than 8½in. diameter, and tandem coupled variable selectivity, etc.

Particulars and Demonstrations from our London Office at

57 ST. MARTIN'S LANE, LONDON, W.C.2. TEMple Bar 4284

Works: West Street, Farnham, Surrey. Farnham 6461-2-3
WORLD OF WIRELESS

B.B.C. Inquiry • Television Progress • U.S. Citizens’ Radio • New B.B.C. Station

Broadcasting Committee

The committee set up by the Government to consider the constitution, control, finance, etc., of the broadcasting service in this country has been officially called the Broadcasting Committee, 1949.

The first meeting of the committee was held on June 24th under its new chairman, Lord Beveridge. It has been officially stated that the committee will be glad to receive representations from organizations and individuals on matters falling within its terms of reference. These should be sent to the Secretary, Broadcasting Committee, G.P.O. Headquarters, London, E.C.1, not later than October 1st.

Midland Television

Test transmissions from a mobile transmitter set up in three centres within the area to be served by the Sutton Coldfield station, are to be radiated for the next two months in order to give dealers an opportunity of testing receivers.

The transmitter will operate for two or three weeks from a site in Birmingham and will then go on to Wolverhampton and Coventry. A still image will be transmitted on the vision frequency to be used by Sutton Coldfield (61.75 Mc/s) with a power of about 1 kW. The transmissions should have a range of a little more than five miles. One of the B.B.C. O.B. transmitters with a “fire escape” aerial will be used for these tests, which will begin about the middle of August and continue until just before the Sutton Coldfield station opens—probably in November.

Third Television Station

Although official confirmation has not yet been given to the rumour that the B.B.C.’s third television station will be at Holme Moss, near Huddersfield, it is known that it is the chosen site so far as the B.B.C. is concerned. Tests were carried out by B.B.C. engineers some months ago at a number of sites in the north-east, and the final choice was Holme Moss. Approval has, however, still to be received from various Government departments.

Some idea of the anticipated service area to be provided by the station can be gained from our sketch map. Holme Moss, which is 1,750 feet above sea level, is on the borders of Cheshire and Yorkshire. With the introduction of this third transmitter it is anticipated that the country’s potential television audience will be about ten million.

Communication Networks

The problems arising in communication networks which utilize more than one method of transmission are most acute at those places where the different methods join up. Radio-telephone terminal units produced by the Marconi Company, in collaboration with Siemens Brothers, have been designed to minimize the special problems of linking radio and landline transmissions. They ensure stability of signal and provide facilities for controlling the signal level, for discriminating against line and radio noises and for rendering conversation unintelligible to unauthorized listeners.

Twenty-two of these units, which embody the most recent circuit designs and practice of the G.P.O., have been ordered by Cable and Wireless. They can be remotely controlled and a number of terminals can be handled simultaneously from a central control.

Citizens’ Radio

Regulations were recently introduced by the F.C.C. for the licensing of citizens’ radio stations as an established service. They have, up to now, been operating as experimental transmitters.

Under the new rules, any American citizen of 18 years of age or over may obtain a five-year licence to operate a station in the
World of Wireless—

400 to 470 Mc/s band. Two types of station, with powers of 10 and 50 kilowatts, are authorized. Operation is limited to 'phone unless the licensee also holds a telegraphy licence.

The operation of "citizens' radio" differs from our "business radio" in that in this country one of the stations must be mobile. Moreover, there does not appear to be any provision to limit its use to purely business concerns—it is for "Sam Citizen."

East Anglian Transmitter

The new B.B.C. station at Postwick (Orange, near Norwich, which was opened last month, has an interesting aerial system. Two 126ft tubular steel mast radiators, spaced 240 feet apart, which is $\frac{2}{3}$ at the operating frequency of 1,013 kc/s are used. The easterly mast is energized, the power being conveyed to it over a 6-wire feeder, whilst the other mast—which is not energized, acts as a parasitic reflector. Each mast is insulated from the ground and is connected to its nearby tuning house.

Between the mast heads are stretched two parallel wires, the end sections of which act as capacity tops and increase slightly the electrical lengths of the masts.

The present power of the transmitter is 5 kW. Under the Copenhagen Plan it is permitted to use 20 kW.

European Broadcasting

According to the latest survey of the International Broadcasting Organization, 195 frequencies between 150 and 1,600 kc/s were occupied by broadcasting stations at the beginning of this year. Some of these frequencies are used by as many as seven countries.

A chart published in the O.I.R. Bulletin shows that there were at that date 331 utilizations—that is, the use of a frequency by a country whether for one station, synchronized network or a number of low-power transmitters. The total is 10 less than that recorded six months earlier. The number of actual stations operating in this band is said to be approximately 426.

Colonial Broadcasting

One million pounds has been earmarked for the development of Colonial broadcasting services from the funds provided under the Colonial Development and Welfare Act. This was stated in the House of Commons in response to a question on the extension of the broadcasting systems in the Colonies.

It was further stated that a complete survey of the broadcasting needs of the four West African Colonies has just been completed; a wire rediffusion service designed to serve 10,000 homes has been opened in Iong Kong and that a detailed broadcasting system for Cyprus has also been prepared. The Northern Rhodesian Government is installing a higher-powered transmitter, and some thousands of cheap receivers, specially designed by a British manufacturer, were being made available to African listeners.

Slow Morse

The latest schedule of slow Morse transmissions radiated regularly by members of the R.S.G.B. and organized by C. H. L. Edwards (GSTL) is given below. The times are B.S.T.

- **Sundays**
 - 09.50 1840 kc/s G6X A (Guilford).
 - 20.30 1802 kc/s G2FLJ (Derby).

- **Tuesdays**
 - 13.00 1870 kc/s G3AXX (Southend-on-Sea).
 - 26.00 1900 kc/s G2AJU (Stutton, Ipswich).
 - 20.30 1830 kc/s G3BHJ (Kasleigh, Hants).
 - 20.00 1800 kc/s G2JSN (Bradford).
 - 20.30 1750 kc/s G3NRK (Herby).
 - 21.00 1900 kc/s G3BLN (Bournemouth).
 - 21.00 1850 kc/s G6VR (London, S.E.2).

- **Wednesdays**
 - 20.00 3025 kc/s PAOAA (Hilversum, Holland).
 - 20.00 1783 kc/s G3AFD (Southampton).
 - 22.00 1890 kc/s G3DLC (Grays).
 - 22.00 1840 kc/s G6SA (Guilford).

- **Thursdays**
 - 13.00 1870 kc/s G3AXX (Southend-on-Sea).
 - 22.30 1873 kc/s G3ABK (South Woodford).
 - 22.30 1873 kc/s G3ABK (South Woodford).
 - 22.30 1803 kc/s G4OAJ (Manchester).

- **Fridays**
 - 13.00 1870 kc/s G3AXX (Southend-on-Sea).
 - 22.30 1873 kc/s G3HXX (South Woodford).
 - 22.30 1873 kc/s G3HXX (South Woodford).
 - 22.30 1803 kc/s A3AW (Wirral).
 - 20.30 1868 kc/s G3LZ (Gravesend).
 - 22.30 1800 kc/s G3JB (Salcombe, Devon).
 - 22.30 1830 kc/s G3ANX (Kirkealdy).

- **Saturdays**
 - 20.00 1800 kc/s G3CHY (Ashton-u-Lyne).

OBITUARY

It is with regret that we record the death of C. B. De Soto, technical editor of the Proceedings of the I.R.E. and former editor of IST, at the age of 37. He was for sixteen years on the staff of the American Radio Relay League prior to accepting the editorship of the Proc.I.R.E. in 1945.

We also record with regret the sudden death of J. A. Corbett, the secretary of the Guild of Radio Service Engineers. He has been associated with the Guild from its earliest days.

René Mesny, professor at l'Ecole Supérieure d'Electricité of France, who died on June 8th, was one of the pioneers of French radio, having been a close collaborator with General Ferrié. He was a specialist in direction-finding and author of many published works on fundamental research.

PERSONALITIES

Professor E. B. Moullin, M.A., Sc.D., professor of electrical engineering at Cambridge University, has been elected president of the I.E.E. for the ensuing year. He was chairman of the Radio Section for 1949-1950. Professor Moullin was lecturer at Cambridge from 1920 to 1929, during which time he established the electrical laboratory. His researches include work on radio-frequency measurements, dielectric losses and background noise in radio receivers.

Professor Willis Jackson, D.Sc., D.Phil., who has been head of the Electrical Engineering Department of the Imperial College of Science since 1946, has been elected a member of the I.E.E. Council. For eight years prior to going to the Imperial College he occupied the chair of electrotechnics at Manchester University. He is a member of the Ministry of Supply Advisory Council on Scientific Research and Technical Development and of the B.E.S. Scientific Advisory Committee.

J. A. Saxton, Ph.D., B.Sc., A.R.C.S., who is in the Radio Division of the N.P.L., has been elected to the I.E.E. Council. Prior to going to the N.P.L. in 1938 Dr. Saxton was on the staff of the Physics Department at the Imperial College of Science. During the war he was Radio Liaison Officer at the British Commonwealth Scientific Office in Washington. His researches include investigations into the propagation of v.h.f. and the dielectric properties of liquids at microwaves.

OBITUARY

It is with regret that we record the death of C. B. De Soto, technical editor of the Proceedings of the I.R.E. and former editor of IST, at the age of 37. He was for sixteen years on the headquarters staff of the American Radio Relay League prior to accepting the editorship of the Proc.I.R.E. in 1945.

We also record with regret the sudden death of J. A. Corbett, the secretary of the Guild of Radio Service Engineers. He has been associated with the Guild from its earliest days.

René Mesny, professor at l'Ecole Supérieure d'Electricité de France, who died on June 8th, was one of the pioneers of French radio, having been a close collaborator with General Ferrié. He was a specialist in direction-finding and author of many published works on fundamental research.

PERSONALITIES

Professor E. B. Moullin, M.A., Sc.D., professor of electrical engineering at Cambridge University, has been elected president of the I.E.E. for the ensuing year. He was chairman of the Radio Section for 1949-1950. Professor Moullin was lecturer at Cambridge from 1920 to 1929, during which time he established the electrical laboratory. His researches include work on radio-frequency measurements, dielectric losses and background noise in radio receivers.

Professor Willis Jackson, D.Sc., D.Phil., who has been head of the Electrical Engineering Department of the Imperial College of Science since 1946, has been elected a member of the I.E.E. Council. For eight years prior to going to the Imperial College he occupied the chair of electrotechnics at Manchester University. He is a member of the Ministry of Supply Advisory Council on Scientific Research and Technical Development and of the B.E.S. Scientific Advisory Committee.

J. A. Saxton, Ph.D., B.Sc., A.R.C.S., who is in the Radio Division of the N.P.L., has been elected to the I.E.E. Council. Prior to going to the N.P.L. in 1938 Dr. Saxton was on the staff of the Physics Department at the Imperial College of Science. During the war he was Radio Liaison Officer at the British Commonwealth Scientific Office in Washington. His researches include investigations into the propagation of v.h.f. and the dielectric properties of liquids at microwaves.

OBITUARY

It is with regret that we record the death of C. B. De Soto, technical editor of the Proceedings of the I.R.E. and former editor of IST, at the age of 37. He was for sixteen years on the headquarters staff of the American Radio Relay League prior to accepting the editorship of the Proc.I.R.E. in 1945.

We also record with regret the sudden death of J. A. Corbett, the secretary of the Guild of Radio Service Engineers. He has been associated with the Guild from its earliest days.

René Mesny, professor at l'Ecole Supérieure d'Electricité de France, who died on June 8th, was one of the pioneers of French radio, having been a close collaborator with General Ferrié. He was a specialist in direction-finding and author of many published works on fundamental research.

PERSONALITIES

Professor E. B. Moullin, M.A., Sc.D., professor of electrical engineering at Cambridge University, has been elected president of the I.E.E. for the ensuing year. He was chairman of the Radio Section for 1949-1950. Professor Moullin was lecturer at Cambridge from 1920 to 1929, during which time he established the electrical laboratory. His researches include work on radio-frequency measurements, dielectric losses and background noise in radio receivers.

Professor Willis Jackson, D.Sc., D.Phil., who has been head of the Electrical Engineering Department of the Imperial College of Science since 1946, has been elected a member of the I.E.E. Council. For eight years prior to going to the Imperial College he occupied the chair of electrotechnics at Manchester University. He is a member of the Ministry of Supply Advisory Council on Scientific Research and Technical Development and of the B.E.S. Scientific Advisory Committee.

J. A. Saxton, Ph.D., B.Sc., A.R.C.S., who is in the Radio Division of the N.P.L., has been elected to the I.E.E. Council. Prior to going to the N.P.L. in 1938 Dr. Saxton was on the staff of the Physics Department at the Imperial College of Science. During the war he was Radio Liaison Officer at the British Commonwealth Scientific Office in Washington. His researches include investigations into the propagation of v.h.f. and the dielectric properties of liquids at microwaves.
H. G. WHITING, Midland Television E-in-C.

OSWALD F. MINGAY (See Personalities).

Record Processing.—For the guidance of those who may wish to have pressings made from direct disc recordings the Association of Professional Recording Studios has issued a pamphlet setting out the requirements of a good recording from the point of view of those who will have to process the record and make the stamper. The author is E. B. Pinniger, F.C.S., and the title is "Recording Engineering for Pressing." Copies available to non-members of the association and may be obtained from J. Cussons of Cussons and Light, Kings Square, York. The price is 3d.

Business Radio.—Some of the concerns to which Marconi's have recently supplied or demonstrated business radio—equipment include the Brighton Waterworks Department and the Grimsby Fishing Fleet. At Brighton 20-watt transmitters receiving marine traffic installed in the waterworks service and maintenance vans. The master transmitter is located at the reservoir and is remotely controlled over a G.P.O. line from the engineer's office two miles away. Marconi "Seaphone" v.h.f. gear was recently installed in a tug at Grimsby for passing on information regarding the requirements of the incoming trawlers to the pier-head and for receiving berthing instructions.

Tyre Tests.—A decrease of 6db in background noise was registered during tests at Fort Dunlop recently when using a receiver on a car fitted with special conducting tubes.

"Superheterodyne Television Unit."—It is regretted that there has been some delay in issuing the reprint of the articles published in the February and March issues giving details of a long-range unit for the reception of Alexandra Palace. This is now available from our Publisher, price 2d and 6d.

More Hospital Television.—Two Marconi Image Orthicon television cameras with associated equipment were installed at University College Hospital, London, for this year's International Gynaecological Congress. Delegates were thus able to keep an accurate record of progress without having to crowd into the small gallery. The 625-line apparatus worked on a closed circuit; viewing was by special Cintel receivers with 20-inch tubes.

Pye v.h.f. radio-telephone equipment has been ordered by the Ministry of Civil Aviation for the fire service at eighteen civil aerodromes. The equipment for each aerodrome comprises five sets—two master transmitter-receivers and three mobile sets. The sets operate in the 118 to 132-Mc/s aeronautical band and have an output of 12 watts. Each radio-equipped fire appliance has a loud-hailer which is fed from the a.f. section of the receiver.

Irish Radio Exhibition, which has not been held for eleven years, is being revived this autumn. It will be held in the Mansion House, Dublin, from September 9th to 11th. The organizing secretary is J. J. McCann, of 67, Grafton Street, Dublin.

Now You Know!—A radio engineer is a person who passes as an exacting expert on the basis of being able to procreate with prolific fortitude infinite series of incomprehensible formula calculations with micrometric precision from vague assumptions. The job is not only profitable but also on debatable figures taken from inconclu-
Nautical Aids.—Ten radio-beacon transmitters operating in the 200 to 415-kc/s band have been ordered by the Indian Air Force from Marconi’s. The output of the WB8 transmitter, which is enclosed in a cabinet measuring 6ft by 5ft by 2ft 6in, is 2.4 kW on c.w. and 3.4 kW on m.c.w. Two 150ft masts are used to support a 4-wire 300ft top t“T” aerial.

SYMBOLIC OF British Radio. The Alexandra Palace television and f.m. aerials are incorporated in the design of the Radiolympia poster.

Indian Amateurs have formed the Amateur Radio Club of India—for transmitters, and the Short-wave League of India—for non-transmitters. Headquarters are at How, Central India, and the address of the QSL bureau is Post Office Box 6666, Bombay. A monthly journal, QHR, is being issued jointly by these organizations for their members. Two transmitters have been installed at the headquarters with the call signs, VU2XNC and VU2SWL; they operate in the 7.14 and 28 Mc/s bands.

Popularizing F.M.—The suggestion is made by our New York correspondent, Tele-Frcn, that American television receivers should cover the 88 to 108 Mc/s f.m. band. This would increase the potential audience for the service provided by the 750 or more f.m. stations.

INDUSTRIAL NEWS

Redifon, Ltd., is the new name adopted by Redifon, Ltd., of Broomhill Road, Wandsworth, London, S.W.18. The change has been made to avoid confusion—the name Redifon having been the trade name of the company for some time, whilst the name Rediffon has been applied to the system of wire broadcasting operated by the Broadcast Relay group of companies.
A brief description of the system developed by B.B.C. engineers for making high-quality recordings of television programmes for subsequent transmission was published last year.* More recently a need has been felt at Alexandra Palace for a rather simpler and more economical system of television recording, intended primarily to enable producers to study their productions after transmission and hold post-mortems on them. To meet this need, a system using standard 16-mm film, perforated on one edge and running at 16-2/3 frames per second, has now been developed and is being tried out at Alexandra Palace.

To record all the information on an interlaced television picture, one must be able to photograph consecutive frames; i.e., one odd-line scan and one even-line scan. The method now about to be described photographs two consecutive television frames, and misses the third frame, then photographs the fourth and fifth frames, and misses the sixth frame, and so on. To achieve this the film must remain stationary in the camera gate for at least twice as long as it takes to move downwards to the next frame. The ratio of the period during which the film is being pulled down to that during which it is stationary is called the pull-down ratio, and it will be seen from the foregoing that this ratio must be 1:2 or greater. The pull-down ratio of most cameras is 1:1, but that of projectors is usually 1:3, which is quite suitable. It was, therefore, decided to modify a standard projector and use it as a camera, running in synchronism with the television transmission. This was achieved by driving the projector with a 3-phase motor running at 1,500 revolutions per minute and connected to the main electricity supply, to which the television transmission is locked. The projector mechanism is suitably geared down from the motor, so that the projector runs at 16-2/3 frames per second; i.e., a gear-down ratio of 3:2.

A projector was converted by fitting a shutter with an aperture or opening of 240° (Fig. 1) on to the projector-shutter shaft, the shaft having been extended so that the shutter revolves just in front of the lens. (Fig. 2.) In a period of one second fifty television frames are displayed and 16-2/3 film frames pass through the camera. The shutter opening of 240° allows two consecutive television frames to be photographed on one film frame, after

Television Recording

which the shutter closes during the third television frame and the film is moved down to its next position. The shutter next opens while the fourth and fifth television frames are displayed and closes during the sixth frame and the film is again moved down. Thus two out of every three television frames are photographed. When the film has been processed and is projected on a standard projector having a three-bladed shutter and running at silent speed (i.e., 16 frames per second), very little flicker is apparent, and reasonably good reproduction of the television programme is obtained.

The sound system of the projector was modified to enable the sound component of the programme to be recorded on the film. This modification consists of replacing the exciter lamp with a gas-discharge recording lamp (Fig. 2), and reducing the width of the slit in the sound optical unit to less than 1/4,000 inch, in order to permit frequencies up to 5,000 c/s to be recorded. The recording lamp is connected to the sound output valve of the receiver as Fig. 3.

With panchromatic film, it is essential that all sources of light should be shielded from the film. For this reason the entire projector is housed in a light-tight box. (Fig. 2). Using Kodak Super X panchromatic film, with a lens aperture of f/1.9, an excellent exposure can be obtained with an ordinary television receiver adjusted for normal viewing. Experiments have also been made using Kodak Positive film (a film very sensitive to blue light, but insensitive to red light) and a receiver modified to give a negative image of rather greater brightness than usual. In this way a very good film negative can be obtained in a positive sense. There are many advantages in using positive film—a sharper picture can be reproduced because the grain size in the emulsion is very much smaller, and the frequency range of the sound track can be extended up to some 6,000 or 7,000 c/s. If the apparatus is set up in a dark room, and the light from the television receiver is screened from the projector and film spools, the projector need not be encased in a light-tight box, and a red safe light can be used while filming, which eases the operators lot by enabling him to watch the progress of the film through the projector.

The silent speed of most 16-mm projectors is about 16 frames per second, and good television recordings can be made by increasing the shutter aperture to an angle that is dependent on the film speed. The formula for calculating this angle is:

\[
\text{shutter aperture} = \frac{\text{film frame speed}}{\text{television frame frequency}} \times 360 \times 2 \text{ degrees}
\]

Thus for a projector running at 16 frames per second in conjunction with the B.B.C. television service:

\[
\text{shutter aperture} = \frac{16}{50} \times 360 \times 2 = 231 \text{ degrees.}
\]

Using Super X panchromatic reversal film, a transmission lasting one hour can be filmed at a cost of about £25. If positive release film is used the cost is only about £10 for an hour’s programme.

This description has been confined to a system using 16-mm film, but the same system is equally applicable to 35-mm or 9.5-mm film. On 35-mm film, of course, a picture of rather better quality can be obtained, but the cost is much greater.

TELEVISION AERIAL TESTER

DESIGNED to measure the signal voltage appearing at the end of the aerial feeder, this instrument consists of a battery-operated 7-valve superheterodyne tunable over the range of 40-50 Mc/s. The output is fed to a meter which is calibrated in microvolts. A three-range attenuator is included in the i.f. amplifier and the full range of 100 kV to 100 mV is thus obtained in three steps. A loudspeaker is included so that an audible signal can be obtained.

The instrument measures 9½ in by 5¼ in by 13 in and weighs 18 lb including batteries. It was designed for Rediffusion Ltd. by British Communications Corp., Ltd., of Gordon Avenue, Stanmore, Middlesex, to which firm any enquiries should be addressed.

RUBY NEEDLES

GRAMOPHONE needles of the straight-shank, trailer and miniature type with ruby tips are being marketed by Brooks & Bohm, 90, Victoria Street, London, S.W.1. Ruby is a variety of corundum and belongs to the same group as sapphire, of which there are white and blue types, depending on the nature of the colouring impurity. Corundum has a hardness of 9 on the Mohs scale (diamond is 10) and there are slight variations according to the method of production. The makers claim that their ruby is superior to sapphire and will have a longer life.

The retail price is 7s 6d each.
SUPER FIFTY WATT

This AMPLIFIER has a response of 30 c.s. to 25,000 c/s. within + db, under 2 per cent distortion at 40 watts and 1 per cent at 15 watts, including noise and distortion of pre-amplifier and microphone transformer. Electronic mixing for microphone and gramophone of either high or low impedance with top and bass controls. Output for 15,250 ohms with generous voice coil feedback to minimise speaker distortion. New style easy access steel case gives recessed controls, making transport safe and easy. Exceedingly well ventilated for long life. Amplifier complete in steel case, with built-in 15 ohm mu-metal shielded microphone transformer, tropical finish.

As illustrated. Price 36½ Gns.

CP20A. 15 WATT AMPLIFIER

for 12 volt battery and A.C. Mains operation. This improved version has switch change-over from A.C. to D.C. and “stand by” positions and only consumes 5½ amperes from 12 volt battery. Fitted mu-metal shielded microphone transformer for 15 ohm microphone, and provision for crystal or moving iron pick-up with tone control for bass and top and outputs for 7.5 and 15 ohms. Complete in steel case with valves.

As illustrated. Price £28 0 0.

30 WATT RECORD REPRODUCER

This amplifier has been produced for extremely high quality gramophone or microphone quality in large halls or in the open. An output power of 30 watts is obtainable at under 1% distortion after the output transformer which is arranged for 4, 7½, or 15 ohm output. The most noticeable point is the absence of background noise or hum. Very generous feedback is employed to help out any distortion developed by the speaker and the large damping factor ensures good transient response. The usual response of 30 to 25,000 cycles plus or minus ½ db is given, and recording compensation of 5 db per octave lift below 300 cycles is obtainable on the gramophone input by means of a switch. A carefully balanced treble control is arranged to correct top lift on some recordings as well as to reduce scratch on old records without noticeable effect on frequencies below 3,500 to 4,000 cycles. The input is intended for the high fidelity type of pick-up and is fully loaded by an input of .2 volts on 100,000 ohm or ½ meg. ohm as required. The microphone stage requires an input of .3 millivolts on 15 ohm balanced line through the wide response mumetal shielded microphone transformer. An octal socket is fitted at the rear of the chassis to provide power for feeder units, etc., 6.3 volts at 2 amps and 350 volts at 30 milliamps is available. Complete in well ventilated steel case. Price 30½ Gns.

FOUR WAY ELECTRONIC MIXER

This unit has 4 built-in, balanced and screened microphone transformers, normally of 15-30 ohms impedance. It has 5 valves and selenium rectifier supplied by its own built-in screened power pack: consumption 20 watts. Suitable for recording and dubbing, or large P.A. Installations since it will drive up to six of our 50 watt amplifiers, whose base dimensions it matches. The standard model has an output impedance of 20,000 ohms or less, and any impedance can be supplied to order. Price in case with valves, etc., £24.

VORTEXION LIMITED, 257-261 THE BROADWAY, WIMBLEDON, LONDON, S.W.19

Telephones: LIB 2814 and 6242-3

Telegrams: “Vortexion, Wimble, London”
S.R.E. for all purposes

Philips have supplied through traders and others throughout the world S.R.E. for almost every conceivable application. While specialized equipment is produced whenever necessary, a very wide range of standard apparatus units minimizes the need for this, and simplifies installation and maintenance.

As it can be shown to be much better engineering practice to use one large amplifier instead of a lot of little ones to feed one load, the standard range includes three large rack amplifiers.

Features include triode valves throughout, four push-pull stages, no electrolytics, and three separate anode supplies.

<table>
<thead>
<tr>
<th>Wattage</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>£255</td>
</tr>
<tr>
<td>500</td>
<td>£325</td>
</tr>
<tr>
<td>1,000</td>
<td>£425</td>
</tr>
</tbody>
</table>

S.R.E. available through the trade on hire purchase or rental terms.

PHILIPS ELECTRICAL LIMITED
MILLER EFFECT

Step-by-Step Resolution of Some of Its Paradoxes

By "CATHODE RAY"

ONE of the stickiest patches in valve circuit theory seems to be Miller effect with reactive load. Why should an inductive anode circuit look like a negative resistance when viewed from the grid? Even those who are prepared to accept a mathematical proof of this curious fact generally find its action difficult to visualize.

Several readers have asked me to make this clearer for them; and in case there are some who are not too happy even with a simple resistive load I propose to start right from the beginning, taking the thing by easy stages. The difficulty arises from trying to think of the whole problem at one go.

Very well, then.

In discussing circuits one often talks about parts of them "looking like" something else. This sort of statement may sound rather casual and unscientific to the uninitiated, but actually it has quite a precise meaning. Fig. 1 (a) shows a celebrated example. One may say that at resonance the circuit LCR looks to the generator (E) like a resistance R, as shown in Fig. 1(b).

C are usually much greater than that across R. What it does mean is that so far as the magnitude and phase of the generator current is concerned there is no difference between (a) and (b). If LCR were altered, so that the circuit is no longer at resonance, it no longer looks anything like Fig. 1(b). At any particular frequency, however, another equivalent could be calculated, which would include only resistance and inductance or capacitance.

Forgive me if all that is painfully familiar, but it is important to be quite clear from the start about the trick of using circuit equivalents. We shall be doing it steadily from now on.

Imagine another of these mysterious sealed boxes with terminals, and that you are provided with as many batteries and a.c. generators and meters as you like, and have been asked to find out what circuit there is inside. And suppose that whatever you connect to the terminals you can detect no trace of current, either continuous or transient. You will probably report that the terminals are open-circuited. And you might easily be right. On the other hand you might be wrong. Because for all you know there may be a small but extremely efficient demon inside the box, always connecting a low-resistance battery or generator exactly equal and opposite in voltage to any you

Fig. 1. The generator here (and in other diagrams) represents any source of voltage, E. So long as its frequency is equal to the resonant frequency of the circuit LCR(a), it makes no difference so far as the generator is concerned if L and C are removed, leaving only R(b).

Fig. 2. If by any means an internal voltage is introduced which is always 100 times the applied voltage E(b), it makes the capacitance seem to be 101 times larger than it really is (c). One way in which this internal voltage can be introduced is by means of amplification (d).

That is not, of course, intended to mean that LCR is the same thing as R; obviously it is not, because the voltages across L and

Such statements usually have conditional clauses; in this case, "at resonance." Directly the frequency of the generator is

World Radio History
Miller Effect—
connect. If so, although the resistance between the terminals would be low, to you it would "look like" an infinitely high resistance.

I hope you haven't thrown this line of argument aside with contempt as vain superstition, unworthy of Wireless World—even of "Free Grid"—for it is just another of these convenient and quite legitimate equivalents. The precise mechanism by which the internal voltage was kept so exactly equal to whatever you might have chosen to apply externally was unimportant, and it was less fatiguing to invoke a demon than to think out some more humdrum electronic device, which by its sheer ingenuity might have distracted attention from the main conclusion, viz., that the presence in a circuit of a voltage proportional in some way to the applied voltage may make the circuit impedance behave exactly like some quite different impedance.

Suppose now that the box contains a real capacitor, as bought from a reputable firm, and guaranteed 1 nF (within the usual tolerances). You want to make quite sure, however; and as you have a 2-volt cell and a ballistic galvanometer (an instrument for measuring quantity of electricity by the amplitude of the transient deflection), and can recall the textbook formula $C = Q/E$, you connect them up as shown in Fig. 2(a). In the ordinary way of things the galvanometer would indicate a charge of 2 microcoulombs, and knowing the voltage was 2 you would deduce that the capacitance in the box was in fact 1 nF. But unfortunately the demon has crept in again (b), and has misleadingly inserted a 200-volt battery in such a way as to augment your 2 volts. The charge is therefore actually 202 microcoulombs. When you and the galvo have recovered from your surprise, your version of the incident (seeing that you don't believe in demons) is that the box contained $202/2 = 101 \mu F$, as shown in Fig. 2(c).

If, perhaps, you are more experienced and wary you may suspect that someone has been playing a trick on you by charging up the capacitor when you weren't looking, hoping you would touch both terminals at once. So you short the terminals to discharge it and then try again; perhaps

$$C_e = C_0 (A + 1)$$

where C_{e} is the capacitance between grid and anode and A is the voltage amplification. (There is of course always the grid-to-cathode capacitance of the valve, C_{gk} in the usual nomenclature, to add in; but I shall not bother to mention it every time).

To reduce the time-constant complication to relative insignificance, and at the same time to arrive at a more typical case of Miller effect, we next remove the 1 nF, leaving the interelectrode C_{gk}, which would be only a few pF. But the same principle holds good regardless of the actual amount; the input capacitance of the valve is still $(A + 1)$ times as great (plus, of course, C_{gk}, which is charged only by the input voltage, so is not amplified). To take some actual figures from the Wireless World Valve Data book, a certain triode with a g_m of 2 mA/V has $\mu = 68$ and $r_\pi = 34 k\Omega$. If these characteristics hold good with a coupling resistance of 50 kΩ, the voltage amplification A is $(68 \times 50)/(50 + 34) = 40.5$. e_{qg} is given as 2.5 pF and e_{gk} as 5 pF; so the effective input capacitance C_e is $3 + (4.5 \times 2.5) = 104 \mu F$. Substituting a comparable pentode, $g_m = 1.8$, $\mu = 2160$, $r_\pi = 1.2 M\Omega$; A would be 87.
For this valve c_{pu} and c_{pk} are 0.002 and 4pF respectively, so $C_a = 4 \times (88 \times 0.002) = 4.18$ pF. Rather a difference! In practice any external stray capacitance between anode and grid would have to be added to c_{pu} and C_a in both cases would be rather larger, especially with the pentode.

Another way of representing the situation is as in Fig. 3, in which the output voltage of the valve, AE, is shown as if it were being produced by a generator synchronized with the source of E. It is negative relative to E if both are reckoned from cathode; but if they are reckoned from grid (which, being one terminal of c_{pu} is more convenient) they are in phase. This is represented in the vector diagram, Fig. 4. (If the frequency were high enough, the reactance of c_{pu} and c_{pk} would offer an appreciable bypass to the anode load resistance, and would throw the output voltage out of phase; but we are assuming that the frequency is not so high, or else that the effect of capacitance on the anode load impedance is neutralized by inductance.) The voltage at the grid has an entirely capacitive load, so its current vector must be 90° leading (I in Fig. 4, remembering that the diagram conventionally rotates anti-clockwise).

Well, that is the particular case of Miller effect in which the output voltage of the valve is exactly opposite to the input (relative to cathode or earth) and exactly in phase with it (relative to grid)—the case in which the anode load is purely resistive, whether it consists actually of a coupling resistor, or only looks like one, being actually a parallel-resonant circuit. Most people can follow it quite easily because the input and output voltages are in line with one another and so add up across the grid-to-anode capacitance by simple arithmetic. It is when the anode load is reactive that the trouble starts. But it will be all right if we tackle it bit by bit.

A reactive anode load may consist of a tuned coupling such as an i.f. transformer at some off-tune frequency, or an audio transformer at very low or very high frequencies, or even the resistance shown in Fig. 2(d) at very high frequencies, when the effect of stray capacitance across it is appreciable. Let us take the last case first, and examine it with the help of the "valve equivalent generator," Fig. 5(a).

The black letter A is to show that capacitive than the whole circuit r_aRC, and so the phase angle between its current and voltage will be greater than ϕ. Let us call it ψ, and draw in the output voltage vector AE, in the diagram. The black letter A is to show that it is a vector quantity.

We have discovered from Fig. 5 that is the effect of a capacitive reactance in the load is to make the output voltage lag behind the internally generated voltage, μE, which is in phase with the input voltage reckoned from the grid, E. It is a matter of ordinary a.c. calculation to determine the actual angle of lag, and the magnitude of A, from any given circuit data.

We now know that with a capacitive load the output generator AE in Fig. 3 is synchronized with E at a different phase angle, so that the current through c_{pu} will also shift its phase from what is appropriate to a pure capacitance fed from E, and will "look" to E like something different. It is easier to see what by constructing a revised vector diagram in place of Fig. 4. We know from Fig. 5(b) that AE must be replaced by AE, lagging by an angle ($\psi - \phi$), which we can rename θ. So we can draw the diagram, as Fig. 6. The total voltage across c_{pu}, of course, the sum of the input and output voltages, $E(A + 1)$. And, as c_{pu} is a pure capacitance, the current through it (I) leads its voltage by 90°. When this current vector is added in Fig. 6 we can see what we have been trying to find all the time—that when the anode load becomes capacitive the current vector I tends to pull into phase with E. In other words, to the input voltage the valve looks like a mixture of capacitance and resistance. So far as input current is concerned, the valve could be replaced by the circuit shown in Fig. 7, in which the component of current still at right angles to E (I_e in Fig. 6) is accounted for by the
Miller Effect—path \(C_e \), and the new component in phase with \(E \) (1) is accounted for by \(R_e \).

The interesting thing is that the grid circuit now appears to conduct, even although true conduction can be entirely prevented by grid bias. The more capacitive the anode circuit, the more conductive is the grid circuit. Generally this is even more undesirable than a high input capacitance, because capacitance can be tuned out, whereas the conductance damps any tuned circuit supplying signal voltage to the grid. Hence the preference for screen-grid valves, in which \(c_{ga} \) is very small.

Before going on, it might be as well to take a final look at Fig. 3 and visualize the generator \(AE \) shifting in phase so that the current through \(c_{ga} \) is no longer 90° in front of \(E \), and therefore no longer what \(E \) would expect from a true and pure capacitance.

\[\frac{1}{R_e} = -A \sin \theta \cdot c_{ga} \]

The component of \(AE \) in phase with \(E \) is \(AE \cos \theta \). The input conductance, \(\frac{1}{R_e} \), is this current divided by the input voltage \(E \);

so we have:

\[\frac{1}{R_e} = -A \sin \theta \cdot c_{ga} \]

Fig. 8. Vector diagram corresponding to Fig. 6, but with the load inductive instead of capacitive. The component of current in phase with \(E \) is negative, indicating a negative input conductance.

\[\theta \] is a lagging angle, as already explained; lag is conventionally denoted by a negative sign; the sine of a negative angle between 0° and 90° is negative, but the corresponding component of current, as can be seen from Fig. 6, is in phase with \(E \) and therefore implies a positive resistance or conductance. So a second negative sign is necessary to neutralize the one brought in by \(\theta \).

You will see the importance of this sign if you go through the whole argument relating to Figs. 5 and 6 again, substituting an inductance for \(c \) in Fig. 7.

AE sin \(\theta \) o \(c_{ga} \). The input conductance, \(\frac{1}{R_e} \), is this current divided by the input voltage \(E \); so we have:

\[\frac{1}{R_e} = -A \sin \theta \cdot c_{ga} \]

Fig. 9. If \(L_2C_2 \) is tuned to exactly the same frequency as \(L_1C_1 \), at which it is equivalent to a pure resistance, why should it not amplify stably?

I have expressed it in the form of a conductance, rather than the resistance \(R_e \), because it is the conductance that is responsible for the disturbing effects. The negative sign comes in this way: with a capacitive load, \(\theta \) is a lagging angle, as already explained; lag is conventionally denoted by a negative sign; the sine of a negative angle between 0° and 90° is negative, but the corresponding component of current, as can be seen from Fig. 6, is in phase with \(E \) and therefore implies a positive resistance or conductance. So a second negative sign is necessary to neutralize the one brought in by \(\theta \).

You will see the importance of this sign if you go through the whole argument relating to Figs. 5 and 6 again, substituting an inductance for \(C \) in Fig. 7.

\[\frac{1}{R_e} = -A \sin \theta \cdot c_{ga} \]

Fig. 10. These curves show the circuit \(L_2C_2 \) in Fig. 9 becomes highly inductive at a frequency only very slightly lower than the resonant frequency.

5(a). I needn’t write it all out in full, because it should be quite clear that \(\theta \) will be a leading angle, so that the vector diagram corresponding to Fig. 6 will be something like Fig. 8, in which the horizontal component of \(I \) leads \(E \) by 90°, indicating input capacitance, as before, but the vertical component is in opposition to \(E \), indicating negative resistance or conductance. This agrees with the formula again, because \(\theta \) is now positive. The only change in Fig. 7 is that \(R_e \) is negative. So if \(c_{ga} \) is tuned by an inductance connected across the input to the valve, and — \(R_e \) is sufficient to neutralize the positive resistance of the coil and other losses, it will oscillate.

There is one other thing that is commonly misunderstood—the application of the above result to the tuned-grid, tuned-anode circuit (Fig. 9). Every experimenter knows that this is a very reliable oscillator, in spite of needing no back-coupling other than the accidental one via the anode-to-grid capacitance \((c_{ga}) \) of the valve. And that for this reason it is useless as a r.f. amplifier, unless most of \(c_{ga} \) is abolished by means of the screening provided in a tetrode or pentode. Yet one might suppose that it would be a simple matter to obtain stable amplification even with a triode, by tuning both \(L_1C_1 \) and \(L_2C_2 \) to the frequency to be amplified. Then at that frequency \(L_2C_2 \) would be equivalent to a resistance and the only thing fed back to the input would be capacitance, which could easily be allowed for in adjusting \(C_1 \). Or by detuning \(L_2C_2 \) slightly, making it slightly inductive, enough negative resistance could be fed back to compensate for the losses of a cheap \(L_1C_1 \) and sharpen up the tuning.
It all sounds very plausible. But try it, and I shall be surprised if you find it works out like that.

The snag can be explained by referring to Fig. 10, which shows the impedance and phase angle of a typical tuned circuit \((Q = 100)\) adjusted to resonate at 1,000 kc/s. At that frequency the impedance is about 94 KΩ and the phase angle is zero, so if the circuit is used as \(L_L C_L\) in Fig. 9 it is equivalent to a 94 KΩ resistance coupling. If the triode has the same characteristics as the one we used earlier as an example, the fed-back capacitance would be \(2.5 \times \frac{68 \times 94}{94 + 34} = 2.5 \frac{68 \times 94}{94 + 34} + 1 = 2.5 \frac{68 \times 94}{94 + 34} + 1 = 127 \mu F.\) Assuming that \(C_1\) is adjusted to allow for this, why shouldn't we get a perfectly good 50-fold r.f. voltage amplification at 1,000 kc/s?

The answer is to consider what is happening at, say, 995 kc/s. Here the impedance is 67 KΩ and the phase angle is \(-45^\circ\). Being a lag, this indicates inductive reactance, amounting to 47 KΩ, in series with a resistance which is also 47 KΩ. So we have the equivalent circuit shown in Fig. 11(a). The current is in phase with the voltage across the resistances, and at right angles to the voltage across the inductive reactance. Drawing vectors proportional to the resistances and reactance, to represent the voltages across them, we get Fig. 11(b). The angle between current and output voltage, which as we have already noted is \(45^\circ\), is marked \(\psi\), as in Fig. 5(b); and the angle between the current and internal generator voltage \((\phi)\), as measured from the diagram, is just over \(30^\circ\).

So the angle \(\theta\) between output and input voltage is the difference, approximately \(+15^\circ\). The magnitude of \(A\) can also be derived from the diagram; it is 48.

Inserting these values in equations (1) and (2) we get:

\[
C_1 = 119 \mu F, \quad R_e = -5100 \Omega.
\]

A negative resistance as low as this is a very powerful pro-voker of oscillation—it is capable of causing oscillation in any circuit (resonant at 995 kc/s) which has a dynamic resistance of 5.1 KΩ or more. Assuming circuit \(L_L C_L\) is the same as \(L_L C_L\), it has a dynamic resistance of 94 KΩ at 1,000 kc/s and almost as much (shunted by an inductive reactance) at 995 kc/s. 995 kc/s is only 0.5% less than 1,000 kc/s, yet this slight mistuning transfers nearly 20 times as much negative conductance into the input circuit as is needed for oscillation. Since \(\sin \theta\) is nearly proportional to \(\theta\) for small angles, we can guess that the conditions for oscillation would be fulfilled at a frequency something like 0.03% less than 1,000 kc/s.

Calculating the actual frequency of oscillation is rather more complicated a business; but this simple approach may be sufficient to show that the stability of the Fig. 9 circuit is a fallacy—as of course we all know by experience.

If the anode circuit is tuned to a frequency higher than that of the grid, then of course it will be an inductive load, liable to cause oscillation if the circuit values permit. On the other hand if the anode circuit is tuned to a lower frequency, possibly by adding inductance, it will be a capacitive load, tending to damp out oscillations. If this paradox of making a circuit less inductive by adding inductance sounds puzzling, think it out with the help of Fig. 10. Suppose both \(L_L C_L\) and \(L_L C_L\) are tuned to 1,020 kc/s. To make \(L_L C_L\) fit Fig. 10 it is necessary to tune it to a lower frequency (1,000 kc/s) by increasing \(L_L\) or \(C_L\) or both. Suppose it is done by increasing \(L_L\). Then Fig. 10 shows that at 1,020 kc/s (the input frequency)
Miller Effect—
its current has a leading phase angle, so is a capacitive load.

If this is still not perfectly convincing, imagine that the anode load consists of an a.f. transformer shunted by a r.f. bypass capacitor. As a tuned circuit, this would resonate far below 1000 kc/s. The inductance is very high indeed. So high, in fact, that it can be regarded as a complete barrier to r.f. currents in comparison with the capacitive bypass. To them the circuit is capacitive.

The paradox arises, as I explained a few months ago,* out of the relationship between impedance and admittance. The greater the inductive impedance the greater by comparison is the capacitive admittance.

BIRMINGHAM TELEVISION RECEPTION

Modifying the "Wireless World" Superheterodyne Unit

WHEN describing the Superheterodyne Television Unit for the Wireless World Television Receiver it was said that the changes needed to make suitable for the reception of the Birmingham station would be described later. It was expected that the changes would be to three coils only.

As the Birmingham station is not yet in operation it is obviously impossible to test the modified receiver on the actual television reception, but signal-generator tests indicate that it should behave correctly. As single-sideband transmission will be used, there is always the possibility that some further minor changes might be needed, but this is considered unlikely.

The alterations needed to the Superheterodyne Unit are confined to the three coils T₁, T₂, and L, of the original circuit diagram and to one minor circuit alteration. The coil formers are unchanged

T₁ should have 10 turns for the winding 1-2 and 1½ turns for 3-4, instead of the 12+1½ turns used for Alexandra Palace. T₂ should have one winding of 6 turns instead of the double winding of 9 turns. The turns are spaced out to fill the winding space available—the 1½ turn coupling coil in T₁ being interwound at the earthy end—and No. 36 d.s.c. wire is used. The oscillator coil L₁ has 8 turns of No. 20 enamelled wire close wound instead of the original 15 turns.

The circuit change consists of the use of a tuned-anode coupling for T₂ instead of a double-wound...
VERSATILE TEST SET
Taylor Circuit Analyser

WITH this instrument, aided only by signals from a broadcast station, it is possible to carry out a complete investigation of any fault in a broadcast or television receiver. The main unit contains a triode valve functioning as an a.f. amplifier, a loudspeaker, a magic eye indicator and switching for selecting various methods of test. Included is an a.c. mains supply unit, input and output sockets and an octal valve holder into which can be plugged a separate probe unit.

This probe is used for all r.f. tests and it functions as an aperiodic detector over a very large band of frequencies. Without any other aid an audible signal from the main unit was heard with the probe connected to the feeder from a television aerial in the heart of London.

When looking for a defect in a receiver the set can be tuned to the known position of the local broadcast station and the r.f. probe used to explore, stage by stage, from the aerial socket to the loudspeaker. Signals will be heard from the built-in loudspeaker up to the point in the set where the defect lies and it should then be a simple matter to isolate and locate the trouble.

Apart from fault tracing the analyser can be used to search for possible weaknesses in decoupling components, for instance, and as the probe is moved the probe signals should be audible on one side of the by-pass capacitors but not on the other.

For most audio tests the signal is injected into the main unit via the input terminals, amplified and passed to either the loudspeaker or headphones as required.

The magic eye can also be used for audio tests but without amplification. Normally this indicator will be employed for d.c. tests and as it imposes no load on the circuit it is ideal for checking a.c. circuits.

This versatile test set is listed as the Model 20A Circuit Analyser and the price is £15 15s. The makers are Taylor Electrical Instruments, Ltd., 419-424, Montrose Avenue, Slough, Bucks.
Unbiased

Oyez

Most of us suffer to greater or lesser degree from one or more of the infirmities of age long before we approach the Psalmist’s three score years and ten. It is then that we summon science and Mr. Bevan to our aid to equip us with dentures and hearing-aid to say nothing of spectacles and wigs. Of these, the hearing-aid is undoubtedly the Cinderella and the only one with which I am concerned as it alone depends on a radio-begotten technique for its operation. Now this device has made great strides from a technical point of view, but from the all-important aesthetic one it shows little advance on the formidable-looking ear trumpet which our grandparents used to direct at us when conversationally inclined. This is in marked contrast to our aids to vision which are designed to enhance rather than impair such beauty as we possess.

In the case of hearing-aids, however, we still seem tied to an en-tangling wire leading from our ears to other parts of our person on which are concealed microphone, amplifier and batteries which spoil “the line” of our gent’s summer suiting. Now in the case of our hearing-aids to vision which are designed to reach our ears where, of course, it should be, and I see no reason at all why all the apparatus of our auditory aids should not be housed on our ears. It may seem a very tall order to endeavour to mount battery, amplifier and mike

Hearing-Aid of the Future.

on our ears, but actually it is nothing of the kind. In far-off Mela-nesia much bulkier articles are carried in the ear lobes as I briefly mentioned last month. I myself have seen such knick-knacks as pipestems and quarter-pound tins of tobacco carried in this manner. This is done by piercing the ear lobes, ear-ring fashion, in early youth and then enlarging the hole with a wooden plug and later a springy twig of wish-bone shape so that eventually a narrow strip of flesh hangs down.

Whatever men may say, women at least could have no objection to carrying hearing aids in this way for they already mutilate themselves to wear earrings and they might just as well carry something useful as well as ornamental. No doubt our manufacturers could easily develop amplifiers and battery containers in a groovy round the periphery into which the strip of flesh could be stretched as I endeavour to show in my illustration. Parents might treat their children’s ears in this fashion as a sort of insurance against the infirmities of old age; even if never required the ear-lobe carrier would be useful for holding the ever-increasing burden of documents which our bureaucrats require us to carry about with us. I need hardly say that women with their craze for fashion could insist on an alteration in shape or colour every year and there would thus be an almost bottomless well of fresh trade to warm what Sir Stafford Cripps would probably call his Cochlea Cardis.

Womanproof

As most of you who have visited Radiolympia in bygone years will know, technical information from some manufacturers’ stands has always been, what in modern jargon is called, in short supply. In fact, I could go so far as to say that in the case of certain firms who ought to know better it is easier to obtain an intelligent answer from a Government Department than from their representatives at the exhibition. One particular manufacturer to whom I complained about this state of affairs frankly admitted it and told me that the reason was that statistics prepared by his sales research laboratories have therefore been sent to him as was noiseless gear changing to the motor manufacturer.

My informant considers that the fundamental mistake hitherto made by manufacturers was in marking their tuning scales in metres, kilo-cycles or station names. The two former meant just nothing to the average woman while the latter meant very little more, and he soon realized that what was wanted was a scale marked with such things as “Mrs. Dale’s Diary,” and “Sentimental Slush.” Unfortunately he had encountered difficulty with the B.B.C. who had refused to accept his suggestion to put all the slush on one wavelength instead of scat-tering it all over the scale.

Finally, he tells me, he has solved his problem by remembering a suggestion I made some years ago. It was, that the time had come for us to give up referring to dress materials by such foolish terms as “a delicate shade of blue” and adopt instead a precise scientific description of the myriad shades of colour in the visible spectrum by referring to their wavelength in Angstrom units. He intends to reverse my suggestion and deliberately pander to women’s love of describing colours with their customary circumlocutory verbosity instead of the plain and precise A.U. for which I had pleaded. He proposes to sweep his tuning scales clear of all names and numbers and simply change it from violet to red by almost infinite graduations of shade. He will then issue a chart showing in descriptive colour terms exactly where a particular programme is to be found on the scale. Mrs. Dale, for instance, being simply labelled “Alice-blue” or some such nonsense. By this means he hopes to sweep the market at the forthcoming exhibition to such an extent that all other manufacturers will be sweeping the streets.
LETTERS TO THE EDITOR

August, 1949 Wireless World

Contrast Expansion Problems • B.B.C. Television in Holland • “Exporting” Broadcast Channels • What is “Strobing”?

“Contrast Expansion”

THESE articles in your June issue of Wireless World prompt me to draw attention to an important design parameter to which the author did not refer; viz., the frequency/gain characteristic of the auxiliary amplifier feeding the rectifier producing the gain-controlling voltage. It is, of course, a fundamental requirement of the contrast amplifier that the output should not include any component of the gain-controlling voltage waveform (as pointed out by the author when discussing Langford Smith’s circuit). This requirement is most readily met by designing the auxiliary amplifier to have low gain at all frequencies below that whose period is at least several times that of the time constant for the increase in gain of the system. Assuming with the author that the optimum value of the latter is 20/25 milliseconds, the auxiliary amplifier should provide low gain at all frequencies below, say, 250 c/s. This condition is obtained by reducing C_1 in Fig. 5 from 0.1 F to 3.3 pF.

Besides improving the low frequency transient response this modification will ensure that the gain of the contrast amplifier is dependent more upon the apparent loudness of the signal than upon the energy level, which may be greatest in the bass frequencies. G. MITCHELL.

I HAVE read with interest the article by L. J. Wheeler in the June Wireless World, and should like to offer some comments on the section referring to the use of negative feedback.

Examination of Fig. 4 of the article shows that the feedback from anode to cathode is not negative. In order that it should be so, it would be necessary to introduce either a transformer or an extra amplifying stage to obtain a further 180° phase shift.

It was, therefore, surprising to find what at first sight appeared to be this circuit used in Fig. 5, and, according to the table of results, used successfully. However, Mr. Wheeler’s reference to my device for avoiding current feedback in the first stage of my expander gave the necessary clue. As Mr. Wheeler arranges the circuit, not only is current feedback avoided, but also the voltage feedback from the anode circuit. The output of V_1 is developed between its anode and the junction of R_{21} and R_{11}, no part of the alternating anode current passes through R_{11} and V_{2a} is simply a variable shunt across these points. The gain of V_1 is substantially $g_m R_L$, where R_L is the effective anode load and includes the impedance of V_{2a}, which varies with its bias and so produces expansion. This explains, of course, why Mr. Wheeler found a pentode desirable as V_1. The only effects of R_{21} are to introduce a very small amount of negative feedback in the screen circuit of V_1, because C_1 is returned to earth and not to the low-potential end of R_{21} and to set up a hum voltage between control grid and cathode of V_1 from any residual ripple in the.h.t. supply.

In order to check these conclusions, an amplifier was set up and consisted of V_1 and its associated components, using Mr. Wheeler’s values, but with a variable resistance in place of V_{2a}, and with C_1 connected across the secondary screen circuit feedback. The gain was measured with high and low values of “feedback” resistance and then the measurements were repeated with R_{21} short-circuited. For a given value of feedback resistance there was no difference in gain whether R_{21} was in circuit or shorted and, therefore, no difference in the ratio of gains for different values of “feedback” resistance. Thus R_{21} was not essential to the circuit, the analysis given above is justified, and Mr. Wheeler’s claim that the circuit is an example of a “negative feedback” expander fails. Returning C_1 to earth produced no effect invalidating these conclusions.

Certain secondary comments seem pertinent. While it is true that a pentode, unlike a triode, will work satisfactorily with widely different values of anode load, it is still necessary that the a.c./d.c. ratio should be as high as possible, in order that harmonic distortion may be kept small. Admittedly, in Mr. Wheeler’s circuit, the load ratio increases with the signal input to V_1, but it is a consideration which may constitute a limiting factor in the application of the circuit.

Mr. Wheeler advocates, as I did, a standing bias on the variable impedance valve. He does this in order to avoid the small range over...
Letters to the Editor—

which gain changes slowly with increase of signal. He then arranges for a variable delay on the rectifier circuit so that the onset of expansion may be delayed until the signal reaches a certain level. I should have thought that this was throwing away on the swings what had been gained on the roundabouts.

Mr. Wheeler uses a full-wave circuit to obtain the control voltage, and this is an arrangement which is well worth while, as the a.f. ripple on the resultant d.c. is at twice the frequency of the fundamental and may, therefore, be reduced to the required extent by the use of a filter circuit of lower time constant than would be needed after a half-wave rectifier.

In conclusion, and in case Mr. Wheeler’s references to my articles may revive interest in them, they appeared in the issues of your journal for September and October, 1945, and April, 1946, not in those quoted in your footnote.

J. G. WHITE.

A. P. in Holland

A regular reader of Wireless World I have pleasure in informing you that I nearly every night have good reception of the B.B.C. television in my home at Delft. As the distance is more than 330 kilometres I think that the results are not bad.

Perhaps some details of the receiver are worth publishing as I think long-distance reception is always interesting.

As synchronization splitter I use a ECC40. The frame-time base is also an ECC40 as squelching oscillator and cathode-follower and after that 2 EF40s as deflection push-pull amplifiers.

The line time-base has also a ECC40 as blocking oscillator and 2 EF40s in push-pull. The picture tube is a war-surplus VCR07.

For reception of the Philips experimental television transmitter at Eindhoven, Holland, which I receive with the same receiver I use a separate radio-frequency amplifier and oscillator (mixer). Also I have to change the detector for the negative modulation, and to turn the potentiometer knob of the blocking oscillator to get the right line frequency for Eindhoven.

J. TH. VAN REYSEN.

Delft, Holland.

Blocking Oscillators

I THINK W. T. Cocking overstated his case when he says that a blocking oscillator is now almost standard for television time base generation (Wireless World, June, 1949). Very many makers, both large and small, use thyatrons for this purpose.

The thyatron provides a very elegant method of time base generation which avoids the cost of a transformer and allows for synchronization with very small voltages.

K. S. PHILLIPS.

B.B.C. Coverage

The better B.B.C. service for the South Coast for which D. C. Smith pleads in your July issue could easily be provided under the Copenhagen Plan if the two medium-wave channels to be used for political and propaganda broadcasts to Europe were applied to their proper use—distribution of broadcasting inside this country. I submit that these channels incidentally they include one of our 3 exclusive frequencies — were not allocated to Great Britain for the purpose to which they are to be put.

Mr. Smith’s suggestion for using the Kingston station for retransmitting the Home or Light Programme is good and apparently practicable, so far as it goes, but would provide only a palliative.

A. ALFORD.

Worthing.

Calibrating a Wobbulator

I AM afraid Mr. Gibson (July issue) has been anticipated in his discovery as the American technical Press has for some months carried advertisements for “ F.M. and T.V. sweep generators with built-in marker sig. gen.” Incidentally, I can’t accept the term “strobing” for this use of a marker signal.

There is a faint analogy to an early radar system in the aspect of the trace, but the only similarity in effect present is that which the system shares with all apparently stationary c.r.o. traces.

It would be interesting to know if there is an official definition. It is not too easy to frame a really elegant one that includes the essentials of mechanical and electronic systems and those dependent on persistence of vision as well as “long-persistence screen” types.

K. C. WINDSOR.

Car Radio

ON technical grounds may I press for the abolition of the separate licence for a car radio?

This step would at once lead to a great increase in all-round efficiency due to the installation of the most efficient rod aerial in lieu of the less obtrusive running board type.

ROBERT C. BELL.

Ambleside.
SHORT-WAVE CONDITIONS

June in Retrospect: Forecast for August

By T. W. BENNINGTON and L. J. PRECHNER (Engineering Division, B.B.C.)

DURING JUNE, maximum usable frequencies for this latitude decreased considerably by day and increased at night in accordance with the normal seasonal trend. Consequently the difference between the day and night value of m.u.fs was quite small. The month was less disturbed than May, ionosphere storms being observed on 1st, 4th, 8th, 12th, 16th, 19th, 26th and 30th. The period 5th to 6th, during which a severe magnetic storm was recorded, was exceptionally disturbed.

Working frequencies for the month were generally very low and long-distance communication on the 28-Mc/s band was seldom possible, except on a rather good circuit. During the night no frequencies below 7 Mc/s were really necessary. The rate of incidence of Sporadic E was very high and, as forecast in this column, transmissions on frequencies as high as 60 Mc/s were occasionally received via this layer.

Two "Dellinger" fadeouts, neither of which was particularly severe, were recorded in June—on 16th and 30th. Sporadic activity in June was considerably greater than in May. Three large sunspot groups crossed the central meridian of the sun on 5th, 16th and 28th, the disturbances associated with the first group being particularly intense.

Long-range tropospheric propagation was very prevalent, particularly in the second half of the month, probably owing to the long periods of anticyclonic weather conditions.

Forecast.—During August the working frequencies for long-distance transmission will tend to be a little higher than those for July during the day-time and a little lower by night, thus the working frequencies for long-distance transmission will probably still be relatively low by day and high by night. Communication on very high frequencies (like the 28-Mc/s band) is not likely to be very frequent. However, towards the end of the month they may begin to become more useful, particularly in the southerly directions. Over many circuits fairly high frequencies, such as 15 Mc/s, will remain regularly usable until midnight. During the night, frequencies lower than 11 Mc/s will seldom be required. For medium distances up to about 1,400 miles E and F, layers will control transmission.

Sporadic E is usually very prevalent in August, although rather less so than during July. Communication over distances up to 1,400 miles may be possible by way of this medium on frequencies greatly in excess of the m.u.fs for the regular E and F layers, and frequencies as high as 60 Mc/s may be occasionally reached for a short time. Owing to the irregular behaviour of the Sporadic E it is impossible to predict when such communication may occur.

Below are given, in terms of the broadcast bands, the working frequencies which should be regularly usable during August for four long-distance circuits, running in different directions from this country. All times are G.M.T. In addition, a figure in parentheses is given for the use of those whose primary interest is the exploitation of certain frequency bands, and this indicates the highest frequency likely to be usable for about 25 per cent of the time during the month, for communication by way of the regular layers:

Montreal :

<table>
<thead>
<tr>
<th>Time</th>
<th>11 Mc/s</th>
<th>(10 Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>11</td>
<td>(10)</td>
</tr>
<tr>
<td>0600</td>
<td>11</td>
<td>(16)</td>
</tr>
<tr>
<td>1100</td>
<td>15</td>
<td>(29)</td>
</tr>
<tr>
<td>1600</td>
<td>15</td>
<td>(29)</td>
</tr>
</tbody>
</table>

Buenos Aires :

<table>
<thead>
<tr>
<th>Time</th>
<th>11 Mc/s</th>
<th>(17 Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>11</td>
<td>(17)</td>
</tr>
<tr>
<td>0600</td>
<td>15</td>
<td>(24)</td>
</tr>
<tr>
<td>1100</td>
<td>15</td>
<td>(24)</td>
</tr>
<tr>
<td>1600</td>
<td>15</td>
<td>(24)</td>
</tr>
</tbody>
</table>

Capetown :

<table>
<thead>
<tr>
<th>Time</th>
<th>15 Mc/s</th>
<th>(20 Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>15</td>
<td>(16)</td>
</tr>
<tr>
<td>0600</td>
<td>17</td>
<td>(24)</td>
</tr>
<tr>
<td>1200</td>
<td>21</td>
<td>(28)</td>
</tr>
<tr>
<td>1800</td>
<td>20</td>
<td>(23)</td>
</tr>
<tr>
<td>2400</td>
<td>16</td>
<td>(20)</td>
</tr>
</tbody>
</table>

Chungking :

<table>
<thead>
<tr>
<th>Time</th>
<th>9 Mc/s</th>
<th>(14 Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0400</td>
<td>11</td>
<td>(16)</td>
</tr>
<tr>
<td>1000</td>
<td>15</td>
<td>(20)</td>
</tr>
<tr>
<td>1600</td>
<td>17</td>
<td>(23)</td>
</tr>
<tr>
<td>2200</td>
<td>16</td>
<td>(14)</td>
</tr>
</tbody>
</table>

Ionospheric storms are not usually very prevalent during August, but at the time of writing it would appear that storms are more likely to occur during the periods 6th-7th, 21st-23rd and 25th-27th than on the other days of the month.

"Trader Year Book."—The 1949 edition of this old-established annual, which was first published in 1925, is the usual mine of information for those seeking details of radio and electrical manufacturers' addresses, trade names, receiver specifications, valve base connections, etc. Prepared by our associated Journal The Wireless and Electrical Trader, it is published by the Trader Publishing Co., price 10s 6d.
Cosines Without Tears

The July number of the New York Radio-Electronics contains a useful tip for obtaining sine and cosine values—when you haven’t a book of trig tables handy—of angles which are integral multiples of 10°. All that you need do is to memorize the series of numbers 2, 4, 8, 10, 12, 14, 16, 17, 17. Not a difficult business for it means simply the even numbers up to sixteen, with six left out, and then a couple of seventeens. You will observe that the first six add up to 50 and the whole lot to 100. To find cos 10° subtract the first number from 100; for cost 20° subtract the sum of the first two; for cos 30°, the sum of the first three, and so on. Put a decimal point in front of the result and there you are. Thus:

For cos 10°, 100 – 2 gives 0.98.
For cos 20°, 100 – (2 + 4) gives 0.94.
For cos 30°, 100 – (2 + 4 + 8) gives 0.86.

And so on to cos 80°, when 100 – (2 + 4 + 8 + 10 + 12 + 14 + 16 + 17) gives 0.17. Compare these values with those of a trig table and you’ll find that their accuracy (better than ±2%) is quite good enough for everyday electrical calculations. In point of fact it is amply sufficient for the bulk of one’s normal work on a.c. problems. Sines of angles are found just as easily, since sin φ = cos (90° – φ). Thus, if you want sin 50°, all you have to do is to find cos (90° – 50°) = cos 40° in the way suggested: 100 – (2 + 4 + 8 + 10) gives 0.76.

Interpolation

The method may also be used with quite remarkable accuracy for finding the cosines and sines of angles which are not integral multiples of 10°. Suppose, for instance, that the wanted cosine is that of 56°. For cos 50° we have 100 – (2 + 4 + 8 + 10 + 12) which gives 0.64. But for 56° we must also subtract 6/10, or 0.6, of the next number in the series, 14. Hence we have 100 – (2 + 4 + 8 + 10 + 12 + 8), which gives 0.56—and that doesn’t compare badly with the 0.559193 of a six-figure table. Or we might want to find sin 63°. Sin 63° = cos 27°. Then we have 100 – (2 + 4 + [0.7 x 8]), which gives, to two figures, 0.88. The six-figure tables show the value as 0.891007, so again we haven’t done too badly. In practice any of these calculations can, of course, be made in one’s head in far less time than it takes to describe the steps involved. To me, at any rate, the idea is quite new, though I fully expect to hear from some reader who is versed in the history of mathematics that it dates back to the time of Archimedes, or before. Can anybody suggest a method for obtaining tangents which is as easily memorized and as simple to use?

Rough on Rats

The same Journal quotes an apparently authenticated account of the successful use of magnetic wire recording to deal with a plague of rats! No, it wasn’t on Pied-Piper-of-Hamelin lines; and yet, perhaps one part of the process was, in a way. A warehouse in Vancouver, British Columbia, was infested by rats, which were doing a great deal of damage. The manager, owned a wire recorder and decided to see whether something could not be done with its aid. Rats, he knew, will set up speed records in their dash for the horizon if they hear the warning squeaks of their fellows. He caught two or three in a cage trap, placed a microphone near the contrivance and proceeded to prod and harry its occupants until they were squeaking with fright. Next, he played back his record over the p.a. system of the warehouse. The result, he declares, was a positive stamperede. Rats of all ages and sizes emerged from every hole and made as fast as their legs would carry them for the great open spaces. The trouble was that unless the record was kept playing, which was more than human flesh and blood could stand, the rats came back. Another method was evolved and this is where the Pied Piper part of the business came in. It is well known to professional ratcatchers, or rodent officers as they are now officially called, that male rats respond instantly, though not with purely altruistic motives, to the squeaks of distress of female rats. The cries of a few trapped females were recorded and played back over the p.a. loudspeakers. This produced just the opposite of the previous breakaway. Male rats appeared from everywhere and converged on the loudspeakers so purposefully that they offered easy targets. I’m wondering whether a campaign on similar lines would help me to combat the legions of mice which this year have dug up and eaten vegetable seeds almost as fast as I have been able to sow them in my garden.

The ULTRASONIC GENERATOR

By “DIALLIST”

COMMERCIAL

ULTRASONIC GENERATOR

Capable of producing 1 kW of ultrasonic power at nominal frequencies of 0.25, 0.5, 1 and 2 Mc/s this generator is mounted on a trolley for ease of transport. The quartz crystal transducer is air-backed to give maximum radiation in a forward direction and is coupled to the oscillator by a coaxial cable. Silver electrodes, fired on both sides of the crystal, are used to establish the electric field. The makers are Mul-lard Electronic Products, Abonye Road, London, S.W.17.

'Ware Strobing

Glancing recently through a book written for amateur workshop enthusiasts, I was disturbed at finding an unqualified recommendation of fluorescent lighting for workshop use. The fluorescent lamp has no more ardent supporter than myself; I would not for anything be without the “daylight” example by the light of which I do most of my reading and writing of nights. But not in the amateur workshop,
for there it may be a dangerous thing to use. The reason is that these lamps actually throw a flickering light, cutting out at each zero point of the a.c. mains voltage. The flickers are much too rapid (2f, or 100 per second in this country) to be perceptible to the eye. But in the workshop they can give rise to stroboscopic effects, which may make rapidly revolving or reciprocating machine tools appear to be motionless. In factories, where 3-phase a.c. is nearly always available, since the 3-phase induction motor is by far the most widely used of electrical turners of the wheels of industry, this snag is easily avoided. The usual practice is to mount fluorescent lamps in banks of three, each tube being connected to a different phase of the mains supply. The amateur, though, has seldom, if ever, more than a single phase at his command and he should, therefore, be duly on his guard against the risks which strobing may involve. If you don't believe me, take an ordinary hand-driven emery wheel, fix it to a table beneath a fluorescent light and gradually work up the revs, getting a friend to observe what happens. You can see something of the strobing effect if you watch an electric fan illuminated by a fluorescent lamp. Its blades never appear quite motionless since the induction motor which drives it has always some "slip" —it couldn't work if it hadn't. Its rate of revolution is, therefore, a little less than an integral sub-multiple of the frequency applied to both it and the lamp and perfect strobing cannot take place. Still, you will obtain, especially if your eyes are a little tired, the impression of rather indistinct blades moving slowly backwards, like the spokes of motor car wheels in old-time ciné films.

Treating 'em Rough

The specification recently brought out by the Radio Industry Council for climatic and durability tests of radio and other electronic components makes interesting reading. I should emphasize, by the way, that the specification is the Council's own private product and has not yet reached the stage of being considered by the British Standards Institution. The tests outlined are of so exacting a nature that they should ensure a very high standard of performance.
Random Radiations—
under the most adverse conditions
by British-made components. Take the
'salt-atmosphere test'—six hours in a
closed cabinet with a spray (not directed straight at the
component) atomizing a solution of
sodium chloride, magnesium chloride,
calcium chloride and potassium
chloride; then 18 hours with the
spray off and the cabinet open.
Repeat the cycle three times.
I'm particularly taken by the design
of the special bumping machine. In
fact I'm wondering whether, to
catch from the condition of some of
the parcels I receive, the Post
Office has not had a "super"
model in use for some time! The
R.I.C. bumping machine is a gem of
fine workmanship. The component
under test is fixed on a wooden plat-
form, hinged at one end to a sup-
port. Fifteen inches from the hinge
a square spindle with tinfoil faces turns
at a speed of 120 revolutions a
minute under the free end of the plat-
form. If a component can stand up
to the prescribed eight minutes of
that, or $8 \times 4 \times 120 = 3,840$ hefty
bumps, it should be able to smile at
normal rough handling.

RECENT INVENTIONS
A Selection of the More Interesting Radio Developments

Short-wave Amplifiers

The invention, which claims an
early priority date, is based on the
fact that effects associated with the
presence of inductance in the supply
to a short-wave amplifier can,
within limits, be offset by providing
mutual coupling between certain of
the leads.

In the diagram, the inductance L_1 of
the supply wires to the cathode K is
closely coupled at X to the inductance
L_2 of the wire leading to the control
grid G, the interelectrode capacities of
the amplifier being represented at C_1 and
C_2. When an input signal is
applied at V, the back e.m.f. developed
through the coupling M reduces the
value of the circulating current that
would otherwise bypass the amplifier.
The value of M must be at least half
that of L_1, which in turn should not
exceed 0.04 microhenrys. Various de-
vices are described for securing the
necessary degree of close coupling be-
tween the supply leads.

Philips Lamp, Ltd. Convention date
(Netherlands), September 14th, 1939.
No. 612651.

Systems of Modulation

CENTIMETRE waves flowing
through a waveguide are modu-
lated in amplitude by varying the nor-
mal coefficient of transmission of the
waveguide through the agency of a variable
reactance such as a magnetron or simi-
lar valve of the space-charge or braking-field type.
Such valves show an apparent capacitance particularly in
the neighbourhood of their inherent
resonance, which is highly sensitive, in
the case of the magnetron, to small
changes of anode potential.

In one arrangement, a waveguide ter-
minating in a flared radiator is coupled through
a coaxial line to a magnetron to
which television signals are separat-
ely applied. The resulting changes in
capacitance control the flow of waves
towards the radiator to an extent that
varies from the normal maximum to a
complete cut-off.

A carrier wave of several hundred
watts can be fully modulated in this
way by signal energy of the order of
one watt. Moreover, the method does
not tend to damp or otherwise affect
the frequency stability of the main
generator.

G. Generale de Telegraphe Sans Fil.
Conventi10n date (France), February

Indicators for Radio
Navigation

RELATES to approach and blind-
landing systems of the overlapping-
bearing type in which complemen-
tary signals are radiated in morse alter-
natively in a given time cycle to produce
an equi-signal zone marking out a de-
sired course and having distinctive
signals to port and starboard of it.

According to the invention, a visual
indication of such signals is secured by
feeding them to the grid of a rectifier
tube, the anode of which is also
coupled to a local oscillator, so that a
phasing output appears only during the intervals when both the grid
and anode are positive with respect to
the cathode. Under this arrangement, this out-
put is applied to a first pair of half-
wave rectifiers, and then through a low-
pass filter to an auto-transformer, which feeds a half pair of rectifiers
controlling a zero-centre galvanometer.

So long as the aircraft is "on course,"
the auto-transformer receives a direct

The British abstracts published
here are prepared with the permision of the
H. M. Stationery Office, from
specifications obiable at the
Patent Office, 2 Carlton
Buildings, London, W.C.2, price
2 each.
Introduce . . .

THE TELEVISION KIT

YOU CAN BUILD FOR £17.17.0

This Receiver consists of 4 units:
The Sound Receiver, Vision Receiver, Time Base and Power Pack. As is usual in all Premier Kits, every single item down to the last bolt and nut is supplied. All chassis are punched and layout diagrams and theoretical circuits are included.

The cost of the Kits of Parts is as follows:
- Vision Receiver with valves £3 13 6
- Sound Receiver with valves £2 14 6
- Time Base with valves £2 7 6
- Power Supply Unit with valves £6 3 0

In Addition you will need:
- VCR97 Cathode Ray Tube £1 15 0
- Set of Tube Fittings and Socket 7 0
- 6in. PM Moving Coil Speaker 16 6

The Instruction Book costs 2/6, but is credited if a Kit for the complete Televisor is purchased.

Any of these Kits may be purchased separately; in fact any single part can be supplied. A complete priced list of all parts will be found in the Instruction Book.

A GLANCE AT THE PRICES WILL SHOW THAT THIS IS THE GREATEST VALUE OFFER PREMIER HAVE EVER MADE

WORKING MODELS CAN BE SEEN DURING TRANSMITTING HOURS AT OUR FLEET STREET AND EDGWARE ROAD BRANCHES.

BRANCHES AT

207, EDGWARE RD., W.2 Phone : AMBassador 4033
AND AT 152-153, FLEET STREET, E.C.4 Phone : CENtral 2833
All POST ORDERS to 167, LOWER CLAPTON ROAD, LONDON, E.S. Phone : AMHerst 4723

Terms of Business : Cash with order or C.O.D. over £1. Send 2d. Stamp for list.

EDGWARE ROAD IS OPEN UNTIL 6 p.m. ON SATURDAYS
H.P. RADIO SERVICES LTD.
OFFER

The following items representing unique value in Government Surplus Radio Equipment.

40 Valve Radar Receivers. Type R-31 APS-2E. A magnificent instrument. Absolutely brand new and unused in original manufacturer's packing cases. One type 5FP7 5in. diameter Magnetic deflection and one 2AP1 2in. electrostatic. Valves fitted comprise 8 6L6G, 13 6SN7, 1 2X2, 2 6H6, 2 6X5, 8 6AC7, 3 VR105, etc. Has Blower motor cooling fan, 3 panel meters and a fabulous quantity of components. Input 115v. 400 c. Size 26 in. x18 in.x12in. housed in a fine black crackle case. Original cost approx. £150 each. A few only available and offered subject to being unsold at 16 guineas each. carriage 10/- extra. Available in British Isles only.

Antenna Units. Size 16in.x 8in.x 8in. Black Crackle Cabinet. Aerial Loading Variometer 3 pole 5 way Ceramic Switch. 4 porcelain lead-through insulators. Precision slow motion dial. 3 6000v. 80 mmf. block condensers. Brand New 10/- each. Carr. 2/6.

AR88. 13 Valve Communication Receivers. 230v. Immaculate condition. 5 only £40 each. Carr. paid.

1155 Receivers. Really beautiful condition. 10 valve Communication Receiver of outstanding efficiency. £9 each. Carr. 5/-.

H.P. RADIO SERVICES LTD.
Britain's Leading Radio Mail Order House
55 COUNTY RD., WALTON, LIVERPOOL, 4
Established 1935
Telephone: Aintree 1445
STAFF CALL SIGNS GJDLY, GJDGL

ICS

HOME STUDY
backs radio experience with sound technical knowledge

MANY men who wished to link their radio experience with a sound technological background have received successful instruction by means of an ICS Course. Its value has been proved not only to amateurs but to men who already have a professional interest in radio and television engineering, including those taking qualifying examinations. It is invaluable, also, to students who wish to prepare themselves for a job in this field. Courses of instruction covering radio and, if necessary, television include the following:

Complete Radio Engineering Radio Service Engineers Radio Service and Sales Advanced Short-Wave Radio Elementary Electronics, Radar and Radio Television Technology

And the following Radio Examinations:

British Institution of Radio Engineers P.M.G. Certificates for Wireless Operators City and Guilds Telecommunications Wireless Operators and Wireless Mechanics, R.A.F.

Write today for our FREE "Radio" booklet which fully describes the above ICS Courses and the facilities for the complete study of Radio and/or Television technology. The ICS Advisory Department will also give free and impartial advice on need and means of instruction.

International
CORRESPONDENCE SCHOOLS

Wireless World
August, 1949

THE SCIENTIFIC VALVE
BRITISH MADE
53 Ranges with Rotary Switch Selection

This new and unique comprehensive Test Set has 53 ranges for measuring A.C. and D.C. current and voltage, resistance and insulation. It is completely self-contained, with internal batteries to provide power for the ohms ranges and self-contained power pack for insulation measurement at 500 v. Selection is carried out by two 20-position switches. A fully protective safety device is fitted and is operative for forward or reverse overload. The 100-division 6in. scale is uniformly divided and is fitted with an anti-parallax mirror. The set is enclosed in a handsome bakelite case and fully complies with B.S.S. No. 89 covering first-grade instruments.

Full details of the ranges covered and of the complete specification will gladly be supplied on request.

PRICE £65

THE COMPONENT SPECIALISTS NOW OFFER

TECHNICAL SERVICE

FOR TELEVISION & RADIO (Inc. "W.W." & "E.E." DESIGNS). A CALL, 'PHONE, OR STAMPED ADDRESSED ENVELOPE WILL BRING FREE EXPERT ADVICE ON YOUR PROBLEM.

A SELECTION FROM OUR WIDE STOCK IS SHOWN BELOW

SANGAMO WESTON LTD.

ENFIELD, MIDDX.

Tel.: Enfield 3434 (6 lines) and 1242 (4 lines)

201 S' View St, Street, Glasgow - - - - Tel. : Central 6208

22 Hop St, Street, Manchester - - - - Tel. : Newcastle le 26857

33 Princess Street, Wolverhampton - - Tel. : Wolverhampton 21912

August, 1949 Wireless Advertisements 51

ALEC Davis Supplies Ltd.

18, TOTTENHAM COURT ROAD, LONDON, W.1. MUS. 2453/4539.

Hours. MON., FRI. 9-5.30. SAT. 9-1 p.m.

TELEVISION AND GENERAL CATALOGUE, PRICE 6d.

ALL "W.W." TECHNICAL BOOKS AVAILABLE. FULL POSTAL FACILITIES. PLEASE ADD POSTAGE. TELEVISION AND GENERAL CATALOGUE, PRICE 6d. STOCKISTS OF VALVES, BATTERIES AND TEST EQUIPMENT.

For all Electrical Tests

PIFCO

ALL-IN-ONE RADIOMETER

with internal battery and multi scale the PIFCO All-In-One Radiometer tests everything electrical, Radio and P.A. Equipments, Household appliances of all kinds. Car Lighting Systems, Bell and Teleprinter Circuits. May be used on AC or DC mains.

Write for full details and Export terms. Overseas enquiries invited.

PIFCO LTD., PIFCO HOUSE, WATLING STREET, MANCHESTER, 4
and at PIFCO HOUSE, GT. EASTERN STREET, LONDON, E.C.2

G. W. SMITH & CO., (RADIO) LTD.

BC 624A BENDIX RECEIVERS 22/6 COMPLETE WITH VALVES

FREQUENCY COVERAGE 100-150 Mc/s

BC 522 TRANSMITTER CHASSIS
Less Mod. Trans., Chokes and Switching 4’6 EACH
Mod. Trans. and Chokes sold separate 4’6 PAIR

3 Lisle Street, London, W.C.2
Telephone Gerrard 8204

Speaking of operations, a delicate but highly successful one has been carried out in striking the balance of correctly matched voice coil and curvilinear cone for our new 12" loud speaker. By carefully suitting the weight of coil to cone we have reduced the peaks and secured a freedom from break-up, while the very high flux density of the large Alcomax magnet considerably increases the sensitivity, especially in the higher frequencies. All very worth while as you may see, or rather hear.

Overall diam. 12.5". Depth 6". Weight 7Lb. 13 ozs. Voice Coil Impedance 15 ohms. Fundamental resonance 60 cycles. Flux density 14,000 lines per sq. cm. Frequency range 50-7,000 c.p.s. Fixing holes 4 holes 3⁄4" diam. spaced 90° on P.C.D. 121⁄2.

DELIVERY FROM STOCK LIST PRICE £6-10-0

GRAMPIAN REPRODUCERS LTD
Hampton Road, Hanworth, Middx. Phone: Feltham 2657
Tripler circuit using WESTALITE TYPE 36EHT35 RECTIFIERS

Peak pulse input approximately 2,500V.
Output approximately 6kV at 100 micro-amperes.

Simple . . . efficient . . . and reliable

Write for data sheet No. 60, to Dept. W.W.8

WESTINGHOUSE BRAKE & SIGNAL CO., LTD.
82 YORK WAY, KING'S CROSS, LONDON, N.1
Success through constant research—can we help you?

LOW LOSS CERAMICS

by

TAYLOR TUNNICLIFF

TAYLOR TUNNICLIFF (REFRACTORIES) LTD.,
Albion Works, Longton, Stoke-on-Trent, Staffs.
Phones: Stoke-on-Trent 3172 & Holborn 1951/2.

MAINS TRANSFORMERS SCREENED, FULLY INTERLEAVED AND IMPREGNATED.

H.S. 33. Input 200/250 v. Output 250/0/250 v... 15/6
40 m/a., 6.3 v. 3 amps., 5 v. 2 amps.

H.S. 40. Windings as above. 4 v. 4 amps., 4 v. 2 amps.

<table>
<thead>
<tr>
<th>H.S. 2</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>200/250 v.</td>
<td>250/0/250 v.</td>
<td>80 m/a.</td>
</tr>
<tr>
<td>80 m/a.</td>
<td>15/6</td>
<td></td>
</tr>
</tbody>
</table>

H.S. 33. Input 200/250 v. Output 250/0/250 v... 15/6
40 m/a., 6.3 v. 3 amps., 5 v. 2 amps.

H.S. 40. Windings as above. 4 v. 4 amps., 4 v. 2 amps.

<table>
<thead>
<tr>
<th>H.S. 2</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>200/250 v.</td>
<td>250/0/250 v.</td>
<td>80 m/a.</td>
</tr>
<tr>
<td>80 m/a.</td>
<td>15/6</td>
<td></td>
</tr>
</tbody>
</table>

H.S. 33. Input 200/250 v. Output 250/0/250 v... 15/6
40 m/a., 6.3 v. 3 amps., 5 v. 2 amps.

H.S. 40. Windings as above. 4 v. 4 amps., 4 v. 2 amps.

<table>
<thead>
<tr>
<th>H.S. 2</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>200/250 v.</td>
<td>250/0/250 v.</td>
<td>80 m/a.</td>
</tr>
<tr>
<td>80 m/a.</td>
<td>15/6</td>
<td></td>
</tr>
</tbody>
</table>

H.S. 33. Input 200/250 v. Output 250/0/250 v... 15/6
40 m/a., 6.3 v. 3 amps., 5 v. 2 amps.

H.S. 40. Windings as above. 4 v. 4 amps., 4 v. 2 amps.

The T.G.2 Direct Disc Recording Traverse Gear

A precision built robust mechanism simple in operation producing first quality recording — £10 0 0
Recording Motor and Turntable — £14 0 0
Ideal for assembly into Light, Portable Equipment

A New Permanent Needle at the amazingly low price of — £5 0 0

We supply a well established and guaranteed reputable make of superior quality Sapphire Needles

- REGRIND SERVICE AVAILABLE
- Diamond Needles can be supplied
- Prompt attention given to enquiries for any quantity—large or small.
- Speedy delivery.

ELECTROSONG SUPPLIES CO.,
99, BELGRAVE ROAD, S.W.1.
PHONE: VIC. 8084
CONSISTENTLY Accurate
PULLIN SERIES 100 TEST SET

SENSITIVITY 10,000 OHMS/VOLT
with
A.C./D.C. Voltage Multiplier
for 2,500 V. and 5,000 V.
Volts A.C. and D.C. Range:
10, 25, 100, 250, 500, 1,000.
Milliamperes D.C. only:
2-5, 10, 25, 100, 500.
Ohms: 0-10,000 and 0-1 megohm.
A.C. Current Transformer
Range: 0-0.025, 0.01, 0.5, 1.0, 5.0,
25.0 Amps.

We can give early deliveries—
Address all enquiries to:
MEASURING INSTRUMENTS (PULLIN) LTD
ELECTRIN WORKS, WINCHESTER STREET, LONDON, W.3. Tel.: 7CO/In 4651/3 & 4995

TELCON METALS are used extensively for
RADIO & TELEVISION COMPONENTS

The value of MUMETAL for magnetic screening is well appreciated and shields for cathode ray tubes, transformers and other devices susceptible to stray magnetic fields are made in large quantities. Apart from producing a range of MUMETAL SCREENS for all normal applications, we undertake the manufacture of special screens, either in the form of DEEP DRAWN CANS for large quantity production, or hand fabricated assemblies for the shielding of apparatus of complicated shape. Whether the screening reduction is to be 10 dB, or 100 dB, we can offer a solution, and the services of our technicians are always available. A list of standard sizes of screens will be sent on request. We also manufacture RADIOMETAL, RHOMETAL, H.C.R. ALLOY, TELCON BIMETAL, TELCON BRONZE (Beryllium - Copper), TELCUMAN and TELCOSEAL GLASS SEALING ALLOYS.

Meet us at Radiolympia Stand 30

TELEGRAPH CONSTRUCTION & MAINTENANCE CO. LTD
HEAD OFFICE: 22 OLD BROAD ST., LONDON, E.C.2. TEL.: LONDON WALL 3141
Enquiries to: TELCON WORKS, GREENWICH, S.E.10. TEL.: GREENwich 3291
WHEN ORDERING TRANSFORMERS

Specify

WODEN FOR RELIABILITY

TYPES AVAILABLE FOR:

TELEVISION EQUIPMENT, QUALITY AMPLIFIERS, TRANSMITTERS, ETC.

Send for Illustrated Catalogue and Price List of full range.

WODEN TRANSFORMER CO LTD

MOXLEY ROAD • BILSTON • STAFFS

TEL: BILSTON 41959

Quality Components for the "W.W." Superhet Television Receiver

Complete set of 20 cores for London or Birmingham...

Line O.P. Transformer...

Blocking oscillator do...

Mounted Scanning coil assembly with Line, Frame and intermediate focus coils...

Single flex 135/012 per yd...

Bilhamco T.W. Wire-Wound Pot. 1K, 2K, 10K...

Bilhamco B.G. plugs 100K, 10K and 2 meg...

S.T.O. 114/200 E.V. Rectifiers...

Dubiller 001/5,000 V. Mica...

Dubiller 002/5,000 V. Mica...

Dubiller 003 B.T.H. Crystal Diodes, co-ax plugs, sockets and cable, small resistors and condensers, mains transformers and chokes, valves and picture tubes.

FOR QUICK DELIVERY AT REASONABLE PRICES OF RADIO & ELECTRONIC PRODUCTS

Write or phone:

S. Szymanski

ELECTRONIC ENGINEER & STOCKIST
95 STRODES CRESCENT
STAINES, MIDDLESEX

valves are our speciality—probably the largest actual stockist in england

export enquiries welcomed
AUG. 1949 Wireless World

INTRICATE PARTS

but not too intricate for Bullers

Made in Three Principal Materials

FREQUELEX
An insulating material of Low Dielectric Loss, for Coils, Formers, Aerial Insulators, Valve Holders, etc.

PERMALEX
A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLEX
A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.

BULLERS LTD., 6, Laurence Pountney Hill, London, E.C.4

Telegrams: "Bullers, Cannon, London"

AN ADVANCED DESIGN IN OSCilloscopes

The new Airmec Oscilloscope has been designed to incorporate features found from practical experience to be advantageous. Some characteristics are indicated briefly below. Further details are given in pamphlet No. 19 available on request. The instrument has been designed to have minimum forward dimensions and is therefore suitable for bench or rack mounting on the standard P.O. centres. Racks are available if required.

"X" trace or independent use, e.g. beam modulation.

Frequency response: D.C. to 5 Mc/s flat within ±2 db.

Time Base: 0.5 second to 1 microsecond with provision for single stroke.

Brilliance Control: Manual, and automatic compensation for photography of high speed traces. 4 kv. for extra brilliance.

Photography: Motor operated camera provided for mounting above oscilloscope. Screen visible up to instant of exposure.

Controls: Switches and rotary controls are provided to minimise need for manipulation of external connections.

AIRMEC LABORATORIES LTD.
HIGH WYCOMBE • BUCKINGHAMSHIRE • ENGLAND • Tel. High Wycombe 2060 • Cables: Commlabs.
MANUFACTURERS OF ALL TYPES OF INDUSTRIAL ELECTRONIC EQUIPMENT & TEST GEAR
When an unusual Specification is required

We can give you the benefit of 20 years' experience in transformer construction and design. We do NOT mass produce. Every instrument is built to suit your most exacting individual specification.

Send your enquiries for the personal attention of our Mr. W. Bryan Savage.

Brierley Pickups are individually hand-made and their performance is dependent on certain essential parts being so made; for this reason, production cannot be easily stepped up.

It is regretted that there is still an average delay of about 2 months on home orders and supplies for the home market may indeed become unobtainable from time to time.

J. H. BRIERLEY (GRAMOPHONES & RECORDINGS) LTD.,
46, TITHEBARN STREET, LIVERPOOL, 2.

Whatever it is—the answer is always OAK! Equalised pressure, double contact clips and floating rotors are exclusive features embodied in all special or standard type OAK switches

WITHOUT QUESTION SPECIFY

OAK SWITCHES

BRITISH N.S.F CO. LTD., Keighley, Yorks.

Sole Licensees of OAK Manufacturing Co., Chicago
You simply MUST make a
WIRE RECORDER
CAPSTAN (PULLING WIRE AT CONSTANT SPEED)

More thrilling than Radio—More gripping than Television. Complete constructional "Gen," 5/-. All Components in stock. DEMONSTRATIONS BY APPOINTMENT.

PARK RADIO 676-8, Romford Road, London, E.12 'Phone: ILFORD 2066

VIBRATORS FOR RELIABLE REPLACEMENTS

 Entirely British in design and construction, and fully approved for Government Service equipment, W.E. Vibrators are ready for all your replacements. They are fitted as standard components by leading radio manufacturers.

WIMBLEDON ENGINEERING CO. LTD.
GARTH ROAD. LOWER MORDEN, SURREY. TELEPHONE: DERWENT 4814, 5010.
Wireless World
August, 1949

For Govt. Surplus Stock, etc.

SIGNAL GENERATOR Model 1

Frequency Range 110 to 50 Megacycles. With calibrated extension covering London, & Midlands Transmitter frequency, at over 60 Frequencies.

Modulation
400 c.p.s. sinusoidal.
Attenuator
5-step ladder, with fine control.

Output
Switched via single test-lead, RF, and AF. 1 volt Max.

External Radiation
Less than 1 micro-v.

For A.C. mains operation. Complete with Standard Dummy Aerial.

SPHERING RADIO LIMITED
HEATH LANE, WEST BROMWICH, ENGLAND

TELEVISION COMPONENTS by well-known manufacturer, complete tube mounting assembly, focus and deflection coils, line output trans., 4 heavy duty chokes, 5 kVA., E.H.T. trans., one each of the following, 350 0-350 v., 80 mills., 4 v. 10 amp., 4 v. 2 amp., 400-0-400 v., 80 mili., 4 v. 6 amp., 4 v. 2 amp., 2 v. 2 amp. Most of the valves used in this circuit are SP41. Kindly note: we do not supply valves. Complete with full Circuits, etc. £7 10s.

- meg. volume con., long spine with switch 3/10
- meg. POT WITH SWITCH LONG SPINDE 2/3
- 20K pot long spine 1/9
- 50K pot with switch long spine 3/1
- 1 meg. pot medium length spine 1/9
- 8 position press button unit, not surplus 2/4
- 4 position press button unit, one pos. mains on/off 1/9
8in. Mains Energised 2000 ohm field, output trans., 5000 ohm imp. 15/9

Plus post, 1/1.

Set of four 1/4 dia. brown knobs, marked "Tuning, Volume, Wavechange and Tone," in gold lettering per set 2/1

EXTENSION SPEAKER, in Walnut cabinet, Walnut louvres, volume control, R. & A. high fidelity 8in. speaker. Size of cabinet, 11in. high, 17in. long, 8in. deep, sloping to 6in. at top. Switch for cutting out speaker on back. 396, plus 2/6 post and pack.

Write for lists.

D. COHEN
67 Raleigh Ave., Hayes, Midd.
A new standard in PUSH-PULL OUTPUT PERFORMANCE

The new "PPO" output transformers permit the reproduction of a full A.F. range with minimum distortion. Rating is 12 v., 2 1/2% harmonic distortion at 50 cycles. Six standard models are available, for accurate matching anode to anode loads of 4,000 ohms to 12,000 ohms. The secondary in each case is brought out in two sections for series or parallel connection to match a 15 ohm or 3.7 ohm load. These standard models are available from other suppliers, but specification can be wound to special order.

Full details are given in Technical Data Sheet No. 1, a copy of which will gladly be sent on request.

PARTRIDGE TRANSFORMERS LTD.
ROEBUCK ROAD, AINSTON-BY-PASS, TOLSWORTH
TELEPHONE: Elmbridge 6737 S

TELEVISION pre-amplifiers with built-in 5-pin feeders, two for amplifiers. B7 valves, totally enclosed and nicely finished. £20.

G. WERTHEIM, 5, Elmbridge Drive, Ruislip, Middlesex.

19-in dropfeed feeder unit with R.F. stage, nine wavebands, 15.5-2.000 metres; £24; special offer of simplified Williamson 7-valve models at £22 6s; all amplifiers are guaranteed to reproduce the highest quality recorded sound.

W. MURPHY Station Master rec., as new, £22 10s; also R.M.C. - (Ealing), Ltd., pioneers of the high fidelity audio amplifier. £30, new PA/12 series portable amplifiers in all refinements. £30 high impedance inputs, independent bass and treble tone controls. £10; new PA/12M high impedance inputs, tone control (top cut type). £14 10s; detailed catalogue available; trade supplied.

RECEIVERS, AMPLIFIERS—BROADCAST-RECORDING

MURPHY Station Master rec., as new, £25 20s; also R.M.C. - (Ealing), Ltd., pioneers of the high fidelity audio amplifier. £30, new PA/12 series portable amplifiers in all refinements. £30 high impedance inputs, independent bass and treble tone controls. £10; new PA/12M high impedance inputs, tone control (top cut type). £14 10s; detailed catalogue available; trade supplied.

RECEIVERS, AMPLIFIERS—BROADCAST-RECORDING

MURPHY Station Master rec., as new, £25 20s; also R.M.C. - (Ealing), Ltd., pioneers of the high fidelity audio amplifier. £30, new PA/12 series portable amplifiers in all refinements. £30 high impedance inputs, independent bass and treble tone controls. £10; new PA/12M high impedance inputs, tone control (top cut type). £14 10s; detailed catalogue available; trade supplied.

A new standard in PUSH-PULL OUTPUT PERFORMANCE

The new "PPO" output transformers permit the reproduction of a full A.F. range with minimum distortion. Rating is 12 v., 2 1/2% harmonic distortion at 50 cycles. Six standard models are available, for accurate matching anode to anode loads of 4,000 ohms to 12,000 ohms. The secondary in each case is brought out in two sections for series or parallel connection to match a 15 ohm or 3.7 ohm load. These standard models are available from other suppliers, but specification can be wound to special order.

Full details are given in Technical Data Sheet No. 1, a copy of which will gladly be sent on request.

PARTRIDGE TRANSFORMERS LTD.
ROEBUCK ROAD, AINSTON-BY-PASS, TOLSWORTH
TELEPHONE: Elmbridge 6737 S

TELEVISION pre-amplifiers with built-in 5-pin feeders, two for amplifiers. B7 valves, totally enclosed and nicely finished. £20.

G. WERTHEIM, 5, Elmbridge Drive, Ruislip, Middlesex.

19-in dropfeed feeder unit with R.F. stage, nine wavebands, 15.5-2.000 metres; £24; special offer of simplified Williamson 7-valve models at £22 6s; all amplifiers are guaranteed to reproduce the highest quality recorded sound.

W. MURPHY Station Master rec., as new, £22 10s; also R.M.C. - (Ealing), Ltd., pioneers of the high fidelity audio amplifier. £30, new PA/12 series portable amplifiers in all refinements. £30 high impedance inputs, independent bass and treble tone controls. £10; new PA/12M high impedance inputs, tone control (top cut type). £14 10s; detailed catalogue available; trade supplied.

RECEIVERS, AMPLIFIERS—BROADCAST-RECORDING

MURPHY Station Master rec., as new, £25 20s; also R.M.C. - (Ealing), Ltd., pioneers of the high fidelity audio amplifier. £30, new PA/12 series portable amplifiers in all refinements. £30 high impedance inputs, independent bass and treble tone controls. £10; new PA/12M high impedance inputs, tone control (top cut type). £14 10s; detailed catalogue available; trade supplied.

A new standard in PUSH-PULL OUTPUT PERFORMANCE

The new "PPO" output transformers permit the reproduction of a full A.F. range with minimum distortion. Rating is 12 v., 2 1/2% harmonic distortion at 50 cycles. Six standard models are available, for accurate matching anode to anode loads of 4,000 ohms to 12,000 ohms. The secondary in each case is brought out in two sections for series or parallel connection to match a 15 ohm or 3.7 ohm load. These standard models are available from other suppliers, but specification can be wound to special order.

Full details are given in Technical Data Sheet No. 1, a copy of which will gladly be sent on request.

PARTRIDGE TRANSFORMERS LTD.
ROEBUCK ROAD, AINSTON-BY-PASS, TOLSWORTH
TELEPHONE: Elmbridge 6737 S

TELEVISION pre-amplifiers with built-in 5-pin feeders, two for amplifiers. B7 valves, totally enclosed and nicely finished. £20.

G. WERTHEIM, 5, Elmbridge Drive, Ruislip, Middlesex.

19-in dropfeed feeder unit with R.F. stage, nine wavebands, 15.5-2.000 metres; £24; special offer of simplified Williamson 7-valve models at £22 6s; all amplifiers are guaranteed to reproduce the highest quality recorded sound.

W. MURPHY Station Master rec., as new, £22 10s; also R.M.C. - (Ealing), Ltd., pioneers of the high fidelity audio amplifier. £30, new PA/12 series portable amplifiers in all refinements. £30 high impedance inputs, independent bass and treble tone controls. £10; new PA/12M high impedance inputs, tone control (top cut type). £14 10s; detailed catalogue available; trade supplied.

RECEIVERS, AMPLIFIERS—BROADCAST-RECORDING

MURPHY Station Master rec., as new, £25 20s; also R.M.C. - (Ealing), Ltd., pioneers of the high fidelity audio amplifier. £30, new PA/12 series portable amplifiers in all refinements. £30 high impedance inputs, independent bass and treble tone controls. £10; new PA/12M high impedance inputs, tone control (top cut type). £14 10s; detailed catalogue available; trade supplied.

TECHNICALITIES AND SUMMER BARGAINS

We are providing a technical data sheet service for our American customers as a supplement to "New Notes in Radio." These sheets contain useful facts and figures which the more technical-minded will find interesting. Five sheets are ready and others will follow from time to time as we do more research work.

We have been told that these data sheets will also be useful to British high-fidelity enthusiasts and we are therefore happy to announce their availability to all who care to send us the modest subscription of 2/- per year. If you have "New Notes" you ought to have these supplementary sheets: if you have not yet read "New Notes in Radio" send 5/- for the book and the data sheet service. Catalogue sheets are free for the asking.

We have seven slightly shop-soiled 215 Speakers which we offer at £17 each, plus 6/6 for postage and packing. They will perform exactly like a brand-new 215, and that is good enough for anyone. But there are only seven of these in stock and only choice.

We also have a few pre-war models at keen prices for personal shoppers only, and a few other odds and ends of surplus equipment.

Why not call and see what we have?

H. A. HARTLEY CO. LTD.
152 HAMMERSMITH ROAD, LONDON, W.6.
RIV. 7387

AMAZING BARGAIN
Ex. M.O.S. NEW & UNUSED ELECTRIC MOTORS

MOVING COIL HEAD & MICROPHONE SET (Brand new)
Made by the same amos maker, these units must have cost the Government many pounds.

Our Bargain Price

20/-
carr. paid.

WIRELESS BARGAIN

WIRELESS INSTRUMENTS (LEEDS) LTD.
54-56, THE HEADROW, LEEDS 1.

TECHNICALITIES AND SUMMER BARGAINS

We are providing a technical data sheet service for our American customers as a supplement to "New Notes in Radio." These sheets contain useful facts and figures which the more technical-minded will find interesting. Five sheets are ready and others will follow from time to time as we do more research work.

We have been told that these data sheets will also be useful to British high-fidelity enthusiasts and we are therefore happy to announce their availability to all who care to send us the modest subscription of 2/- per year. If you have "New Notes" you ought to have these supplementary sheets: if you have not yet read "New Notes in Radio" send 5/- for the book and the data sheet service. Catalogue sheets are free for the asking.

We have seven slightly shop-soiled 215 Speakers which we offer at £17 each, plus 6/6 for postage and packing. They will perform exactly like a brand-new 215, and that is good enough for anyone. But there are only seven of these in stock and only choice.

We also have a few pre-war models at keen prices for personal shoppers only, and a few other odds and ends of surplus equipment.

Why not call and see what we have?

H. A. HARTLEY CO. LTD.
152 HAMMERSMITH ROAD, LONDON, W.6.
RIV. 7387

AMAZING BARGAIN
Ex. M.O.S. NEW & UNUSED ELECTRIC MOTORS

MOVING COIL HEAD & MICROPHONE SET (Brand new)
Made by the same amos maker, these units must have cost the Government many pounds.

Our Bargain Price

20/-
carr. paid.

WIRELESS BARGAIN

WIRELESS INSTRUMENTS (LEEDS) LTD.
54-56, THE HEADROW, LEEDS 1.

CONSENSORS

of all types...

We can offer, FOR IMMEDIATE DELIVERY from very generous stocks, a wide range of ultra-high quality fixed paper Condensers, from .001 μF to 8 μF. Also STOCKS of small, genuine MICA Condensers from .00001 (10 pf) to .01 μF (10,000 pf). Prices are exceedingly moderate.

Enquiries are invited for manufacturers’ requirements, wholesale and export only for bulk quantities, and for scheduled deliveries, as required. Most condensers are now available for immediate delivery.

Please request our 4 page bulletin CONSEVEN 01114

CLAude Lyons LTD.
180 Tottenham Court Rd., London, W.1 and 76, Oldhall St., Liverpool 3, Lancs.

DYNAMO MUS.

MOTORS, ETC.

Electrical motors range of motors again available from stock: example, 7 hp, single-phase, 1,400 rpm. from 4/16/6, send for lists.

Great Summer Sale!

**ALL GOODS REDUCED IN PRICE TO CLEAR OWING TO EXPIRATION OF LEASE. **

**ADVANTAGE OF THIS SPECIAL OFFER. **

DYNAMOS. D.C. Shunt Wound 12 volt 10amps. 1,400 rpm, 25c./ 12 volts 10/15amps. 600/1000 rpm, for use on hotbeds or ends for P.A. and W.R., at prop. 40/-; 24 volt 30 amp, 2,500 rpm. 30c., 12 volts 30 amp. 2,500 rpm. 25c., 30 volts 5 amps. 25c., 1,500 rpm.

Mo'tor Blowers. Kiech Blackman 24 volt D.C. 1 h.p. Motor with Blower, Sin. Inlet and Sin. Outlet 5 in. long. £17. 10c./ 1500 c.f.m.

Variable Resistances. Wire wound slider type, laminated brush gear 3 ohms 10amps. 12/. 1,2/. ohms 6 amps. 15/. Rotary type, Resistance Mat, radial stud switch and contact arm, 10ohms 18amps. 25/-, carriage 5/-.

Transmitters. Trench Type in canvas covered wood boxes, 10-way rotary switch with laminated brush, hit wound variometer, coupling, and fuse holder mounted on ebonite panel, folding Morse key, etc. 3/6, carriage 2/6.

Meters.

- **Ammeters.** 2in. D.C. Moving Coil 0-20, 0-35, 0-40, with shunts, 4/6 each.
- **Central Zero.** D.C. and M.C. 0-15 amps, 5/..
- **Milliammeters.** D.C. 0-1 flush panel, 5/., carriage 2/6.
- **Voltmeters.** 2in. D.C. 0-60, 0-150, 0-300 volts, 5/., carriage 2/6.
- **M.C. Rs.** 0-15 volts 0-5m.a., 4/., double range, 3in.
- **Millivoltmeters.** D.C. M.C. 0-1, carriage 2/6.

Transformers. Foster double wound, 100 watt 230v d.c. output 230v ± 10% and 150v ± 10%.

Home Meters. 200volt D.C. 2, 3 and 3 amp, in metal case, 7/6 each, cartridge 5/-.

Transmitters. Foster double wound, 100 watt 230v d.c. output 230v ± 10% and 150v ± 10%.

House Meters. 200volt D.C. 2, 3 and 3 amp, in metal case, 7/6 each, 5/- each, carriage 5/.

Amplifiers. Easy to handle, has outstanding performance.

- **50/0.** sine, 0-5v, m/c. 3/6; 100v, 0-5m.a., 7/6; 500v, 2/6.

ELECTRIAX RADIO. 214 Queenstown Road, London, S.W.8

Telephone: MACaulay 2159
SOUTHERN RADIO'S WIRELESS BARGAINS

INVESTORS TYPE MAP, Input 9v. Output 115v. at 400 m.p.s.w. Black, crinkle finish. In maker's sealed case with driving legs. 80c. carriage paid.

RECEIVERS RPR8/C-5. Ideal for two metre converter. 1½ watt input, V.H.F. superhet., 20 valves, 1717 (4), 1281HT (1), 2LMT (2), and 1E607T (1). Complete with 6½ ft. h.p.o. tuning motor. In maker's sealed case. 80c. carriage paid.

BC 454 (3-0 m.t.) and BC 455 (8-0 m.t.) RE-CRYSTAL. Quartz, 12817 (4), 12817 (4), 1257 (4), 1IK8 (1). Ideal for converters, AUDIO receivers, and car radios. In maker's sealed cartons. Either set, 35c., post 1/6.

DRIVE ADAPTER AND KNOB FOR BC458 4½. Gives slow motion drive from existing engine. 2½ each, post 5d.

CONTROL BOXES FOR BC458 4½. Three slow motion drive mechanism, and drives. Three 300-500 ohm volume controls and six rotary switches. In maker's sealed cartons. 12½ each, post 1½.

CABLES FOR BC458 4½. 1½ ft. long. Adapt ore at both ends. 2½ each, post 1½.

R.A.P. BOMBIGHT COMPUTERS, complete with audo motors, Gearing, etc., etc. New 25. carriage paid.

TIME SWITCHES, 10-hour clockwork movement, complete with clock, 1½ each, post 1½.

INDICATOR UNITS, BOGOTA. 5 valves. 992 (1), 635 (1) 531 (1) and 2N6 (1). Complete with R.F. and I.F. tube and tuning motor. In black and crinkle case. 1 0½ each, post 1½.

RECEIVER UNIT TYPE 25 from TR 1106, 4½-6½. 5 valves superhet. EF80 (2), EF701S (1), EF96 (2), R22 (2), and R60 (1). Suitable for conversion. AUDIO or car radio, 25½, post 2 ½.

Southern Radio Supply Ltd
46, Lisle Street, London W.C.2.
GERard 6653

LIFE GETS TEDIOUS—DON'T IT!

N'c if you possess a copy of the new, revised "MINOR" era. "Home Constructor's Handbook: (now in its fifth edition!) This justly famous 2/6 book is crammed full of many thousands of ideas for radio engineer, experimenter or beginner.

Eight tested and guaranteed circuits with full descriptions and parts.
Feeder Units, Tuning Units and their details.
Quality Amplifier, etc.
Servicing and Constructional Hints.
Resistance Colour Code and Charts, etc.
Tape Formulae, etc., etc.
And many other interesting items.
We are proud to make the special offer once again of this useful book to "W.W." readers for 1/- ONLY. SEND NOW for your copy.

Let us praise continuance to reach us daily regarding the new improved model 20 pack with CERAMIC switching for improved performance.

The price is still unchanged at 42½ - inclusive or 47½ - aligned and sealed for 465 kcs. IF.

FURTHER LETTERS OF PRAISE continue to reach as daily regarding the new improved model 40 pack with CERAMIC switching for improved performance.

We are proud to make the special offer for 110½; 250v ac: terms c.w.o., or c.o.d., bargain price £ 14; all above.

Distributors for the keen radio engineer, experimenter or beginner.

Southern Radio Supply Ltd
46, Lisle Street, London W.C.2.
GERard 6653

THE RECORD | THE RECORD ELECTRICAL CO. LTD.

August, 1949

Wireless World

WIRELESS BARGAINS

COMPLETE service for rebuilding customers' radio grammophones, to modern standards: our advice free to those who have their own sets; we can supply amplifiers, auto-changers, R.F. units, etc., etc. Write to Douglas Co., 37, Hoghton St., Southport, Lancs.

[3495]

PROFESSIONAL recording equipment, blank discs, amplifiers and magnetic tape recorders, gramophone motors with non-magnetic turntables, all produced from your own masters in any quantity; full trade terms available to Dealers: Supplies, 50, Upper Richmond Rd., S.W.15.

[3495]

COLLARO AC47 induction type motors, with non-magnetic core, speed, our price £ 5. COLLARO new model AC48 motor-pickup, & valve, 10½ h.t., £ 5/5. COLLARO new AC49 mixed automatic record changer with hi-critical pick-up, our price £ 14; all above for 110-250v ac: terms c.w.o. or c.o.d.; banhair list of amplifiers and t.r. and superhet tuners 21½—N.K.'s, 102, Parkhill Rd., London, N.W.3. Gulliver 1419.

MEMBERSHIP of the British Sound Recording Association ensures the professional and amateur record engineer and quality reproduction enthusiast. Of all the latest information concerning affairs, publications, demonstrations and the official journal, "Sound Recording," published quarterly; Vol. 3, Nos. 1, 2, 3, 4 available at 2/6 each. Details of membership in soundproof boxes from Membership Secretary, Harrie J. King, 48, Mount View Rd., Ealing, London, W.5.

WIRE recorders, ex-U.S.A. Navy. Western Electric design, providing approx. 45 minutes quality recording, complete with mic and choice of wood or metal cabinet. A.mk. wire recorders, with built-in speakers, 100ft. and special sensitivity valve pack for details. Also available: Indicator 198, with 5m short performance. This unit giving 2-5 m. and hundreds of parts. 37½: 16 set PU with 540v and 275v generator and 275v vibrator pack, 12 or 24v input. 19½: portable telephones with bell, buzzer and key, 2½ p. (Q.T. £ 25) each; American 1PF sets with 13 (6.3v) valves and crammed with parts. 12½, etc. —Radio Exchange Co. 9, Caldwell St., Bedford.

COMPONENTS—SECOND-HAND, SURPLUS SOUTHERN BARGAINS.

BENDIX Command receivers, B.C. 454/455, complete with 6 valves, brand new, 35/-; plus 1½; drive adaptor for Command receivers, 2/9; control boxes for 453/454/455 Command receivers, 12½ each, plus 1½; drive cables for 453/454/455 Command receivers, 1½ with adaptors. 8½, plus 1½; CAR radios, 1½, converted from Bendix Command receivers, complete, ready for use, with speaker, 20½, plus 1½; contactor time switches, complete in soundproof boxes, 12½; radio control panels, 5½; BENDIX complete with 6 valves, brand new, 35/- plus 1½; Delco hand generators, 6v at damp, brand new, 12½, complete in soundproof boxes. thermostatic control. 27½; "MINOR" hand generators, 2/9, complete in soundproof boxes, 5½; Delco hand generators, 2/9, complete with leads and parts. 12½; R.A.F bombsights, complete, 27½ each; drive cables for Command receivers, with knob, 2½, plus 1½; drive adaptor for Command receivers, with complete with 6 valves, brand new, 35/- plus 1½; Metal box for Command receivers, complete, all Inc. 11 valves. 35½, plus 1½; Motor-generator sets with 6v battery, brand new, 45/-; Radio Exchange Co. 9, Caldwell St., Bedford.

RADIO ELECTRICAL CO. LTD, 28, Victoria St., S.W.1. Tel: Abbey 5141

Manufacturers and Trade Enquiries invited.

ELECTRO TECHNICAL ASSEMBLIES

West Hill, St. Leonards-on-Sea, Sussex

RECORD

MINOR

INSULATION TEST SET

Continuous and inexpensive, without sacrificing accuracy and reliability. Weighs only 3lbs. Height allows for full swing of generator handle. Ranges up to 50 megohms 500 volts.

Continuity Tester

This latest addition to the Record Ohmmeters' range is enclosed in a moulded bakelite case of pleasing appearance. Equipped with self-contained dry battery. Specially designed test probes and leads can be supplied also in a "test and carry" case in which the instrument may be used without removal. Ranges: 200-0 f00 ohms. 0-2000 ohms. 0-20000 ohms.

The Record Electrical Co. Ltd,
Broadheath, Altrincham, Cheshire.

Tel.: Altrincham 2921/2922: "Infusion," Altrincham.
Tel: Abbey 5141
ARMSTRONG now introduce
MODEL EXP. 83 TYPE 2
7-VALVE ALL-WAVE RADIO CHASSIS
Complete with 10 in. Loudspeaker

This is a Model of Our Extremely Popular Model EXP. 83, which has been modified in order to simplify the complete assembly of the chassis. The result is a Chassis so pleasing in design and high performance, which we offer to you fully confident of its outstanding values.

- ALL-WAVE 7-VALVE CHASSIS
- 10 in. LOUDSPEAKER
- NEGATIVE FEEDBACK
- FLYWHEEL TUNING
- HORIZONTAL SCALE
- 8 WATS PUSH-PULL OUTPUT

For 200/250 v. a. C. Price £15.8.8 plus tax

MODEL UN183. TYPE 2. 7-VALVE ALL-WAVE RADIO CHASSIS complete with 10 in. Loudspeaker. Negative feedback, Flywheel tuning. Horizontal scale, 5 watts push-pull output. For 200-250 v. a. C. mains

Price £15.8.8 plus tax

MODEL RT103 TYPE 2. 10-VALVE ALL-WAVE RADIO CHASSIS. R.F. stage. 2 I.F. stages, variable selectivity. 10 watts push-pull output. For 200-250 v. a. C. mains

Price 19 gns. plus tax

MODEL EXP. 125 14-VALVE ALL-WAVE RADIO CHASSIS giving continuous waveband coverage from 119 m. upwards. Waveband expansion, R.F. preamplifier. Two I.F. stages with variable selectivity. Electronic bass and treble lift controls. 15 watts push-pull output. For 200-250 v. a. C. mains.

Kindly write for illustrated catalogue Demonstrations at our Showrooms

ARMSMSON ARMSTRONG WIRELESS & TELEVISION CO. LTD.
WARTLERS ROAD, HOLLOWAY, LONDON, N.7

*Phone: NOR4 3213

5, HARROW ROAD, LONDON, W.2

PA Dalton 1008/9
Advertisements Wireless World August, 1949

GOLDRING Light Weight PICK-UP WITH JEWEL POINT SAPPHIRE NEEDLE

The Latest GOLDRING Pick-up No. 121 has many great advantages, including:
- Full Frequency Reproduction in combination with a standard Wireless Set.
- Will abolish constant needle changes.
- Will safeguard record through reduced wear.

Write for full descriptive leaflet.

ERWIN SCHARF
49-51a, De Beauvoir Road, London, N.1

Telephone: CLissald 3434

AMAZING value, 16-18 350V, 1/31.0005 value twin gangs. 4x0.025 x 0.025. Drop caps, 1/5 etc., etc. Send for list of other outstanding bargains. F. Q. Howell & Co., 23, McMillan Rd., Brighton, 7.

HEAVY duty mains transformer 550-0-350 at 120vac. 2 x 4 volt windings at 300w each.

No. 121 has many great advantages, including:-
- Low Price
- Wide Range
- Low Voltage

Price £9.9.0

A Union College, University-Bursaries and other free educational facilities are provided for members as well as the usual trade protection benefits on a generous scale. Join the E.T.U. the Union which caters for all grades employed in the ELECTRONIC, RADIO and ELECTRICAL INDUSTRIES.

Low Price

Wide Range

Low Voltage

PENNINE AMPLIFIERS

SOUTHGATE, ELLAND, YORKS, ENGLAND

Write for Particulars

TERMS: c.o.d. no cod; send extra for postage orders under £2; 2d. s.a.e. all enquiries and radio and television lists.

Houghton & Osborne

Electron Works

HIGH STREET, THAME, OXON
World wireless

GALPINS ELECTRICAL STORES
408 HIGH STREET, LEWISHAM, LONDON, S.E.13

TERMS: CASH WITH ORDER. NO C.O.D.

THURSDAY EARLY CLOSE

SUMMER SALE—10 per cent, discount allowed off all prices for the month of August.

ELECTRIC LIGHT CHECK METERS (wartime type), all for 200/250 volt A.C. 50 cycles, all electrically guaranteed: 2½ amp, load, 15/-; 5 amp., load, 21/-; 2½ amp., 25/-; 10 amp., 30/-; 40 amp., 35/-; 50 amp., 42/-; 100 amp., 56/-; Carriage on all types, 8/- ex-post. TANNOY P.M. SPEAKERS (Small Hailers); 4 ohm speech coil, complete in wooden case, with output transformer, 15/- each, carriage 2/6.

EX-R.A.F. TYPE 18 CRYSTAL CALIBRATORS. These units contain 100 kc's crystal filters. Complete in wooden case with output transformer, 15/- each, carriage 2/6.

SYNCHRONOUS MOTORS, 200/250 volts, 50 cy., 1 ph., conversion as Clock Motor. 1½ ph., 250 volts, 150 ohms to carry -25 volts (fixed) but can easily be fitted with a step-down transformer.

DECKEN, a few only to clear, £16/- each, carriage 2/6.

PRE-PAYMENT 1/- SLOTE ELECTRIC LIGHT CHECK METERS, 200/250 volts, 50 cy., 1 ph., 2 amp, load, 30/- each, carriage 5/-, carriage 10/-.

EX-R.A.F. CRYSTAL MONITORS, type 2, complete in wooden casing, the frequency depending on crystal used, 5/- each. Short Wave Aerial Coupling Units (Wavemeters), 5/- each.

GALPINS ELECTRICAL STORES
408 HIGH STREET, LEWISHAM, LONDON, S.E.13

TERMS: CASH WITH ORDER. NO C.O.D.

THURSDAY EARLY CLOSE

SUMMER SALE—10 per cent, discount allowed off all prices for the month of August.

ELECTRIC LIGHT CHECK METERS (wartime type), all for 200/250 volt A.C. 50 cycles, all electrically guaranteed: 2½ amp, load, 15/-; 5 amp., load, 21/-; 2½ amp., 25/-; 10 amp., 30/-; 40 amp., 35/-; 50 amp., 42/-; 100 amp., 56/-; Carriage on all types, 8/- ex-post. TANNOY P.M. SPEAKERS (Small Hailers); 4 ohm speech coil, complete in wooden case, with output transformer, 15/- each, carriage 2/6.

EX-R.A.F. TYPE 18 CRYSTAL CALIBRATORS. These units contain 100 kc's crystal filters. Complete in wooden case with output transformer, 15/- each, carriage 2/6.

SYNCHRONOUS MOTORS, 200/250 volts, 50 cy., 1 ph., conversion as Clock Motor. 1½ ph., 250 volts, 150 ohms to carry -25 volts (fixed) but can easily be fitted with a step-down transformer.

DECKEN, a few only to clear, £16/- each, carriage 2/6.

PRE-PAYMENT 1/- SLOTE ELECTRIC LIGHT CHECK METERS, 200/250 volts, 50 cy., 1 ph., 2 amp, load, 30/- each, carriage 5/-, carriage 10/-.

EX-R.A.F. CRYSTAL MONITORS, type 2, complete in wooden casing, the frequency depending on crystal used, 5/- each. Short Wave Aerial Coupling Units (Wavemeters), 5/- each.

GALPINS ELECTRICAL STORES
408 HIGH STREET, LEWISHAM, LONDON, S.E.13

TERMS: CASH WITH ORDER. NO C.O.D.

THURSDAY EARLY CLOSE

SUMMER SALE—10 per cent, discount allowed off all prices for the month of August.

ELECTRIC LIGHT CHECK METERS (wartime type), all for 200/250 volt A.C. 50 cycles, all electrically guaranteed: 2½ amp, load, 15/-; 5 amp., load, 21/-; 2½ amp., 25/-; 10 amp., 30/-; 40 amp., 35/-; 50 amp., 42/-; 100 amp., 56/-; Carriage on all types, 8/- ex-post. TANNOY P.M. SPEAKERS (Small Hailers); 4 ohm speech coil, complete in wooden case, with output transformer, 15/- each, carriage 2/6.

EX-R.A.F. TYPE 18 CRYSTAL CALIBRATORS. These units contain 100 kc's crystal filters. Complete in wooden case with output transformer, 15/- each, carriage 2/6.

SYNCHRONOUS MOTORS, 200/250 volts, 50 cy., 1 ph., conversion as Clock Motor. 1½ ph., 250 volts, 150 ohms to carry -25 volts (fixed) but can easily be fitted with a step-down transformer.

DECKEN, a few only to clear, £16/- each, carriage 2/6.

PRE-PAYMENT 1/- SLOTE ELECTRIC LIGHT CHECK METERS, 200/250 volts, 50 cy., 1 ph., 2 amp, load, 30/- each, carriage 5/-, carriage 10/-.

EX-R.A.F. CRYSTAL MONITORS, type 2, complete in wooden casing, the frequency depending on crystal used, 5/- each. Short Wave Aerial Coupling Units (Wavemeters), 5/- each.
TELEVISION

Manufactured to "Electronic Engineering" Television Specification.

LINE OUTPUT TRANSFORMERS

NEW Improved
SET OF GANTRIES COMPLETE
FOCUS COILS

LINE AND FRAME SCANNING COIL ASSEMBLIES

All Steel CADMIUM PLATED
POWER AND TIME BASE
CHASSIS valve-holders, 3 point and
single socket and all necessary cut-outs.

SOUND PANEL CHASSIS

assembly, fitted with screens,
valve-holders, formers and dust cores.

VISION PANEL CHASSIS

ASSEMBLY, with fitted screens,
valve-holders, formers and dust cores.

9" C.T.B. TUBE SUPPORT
for mounting on top of Gantry Assembly

9" CREAM MASKS.

S. SHAKESPEARE RD., FINCHLEY, N.3

"phone : Finchley 2188

It's a Pleasure to demonstrate the following:

AMPLIFIERS

Leak "Point One"
Vortexion "Sterephonic"
Acoustical, Sound Sales.

SPEAKERS

Barker's 148a
Goodmans Axiom 22
Sound Sales Phase Inverter
Warfieldale 10 and 12 cs.

PICK-UPS

Decca, Brerley, Coll and
Connoiseur, also Tone Control
and Feeder Units.

Call and hear them at —

HOLLEY'S RADIO STORES

285, CAMBERWELL RD., S.E.5

"Phone : Rodney 4983

where nothing is too much trouble and the Student is Always Right!
Where the half-truth catch phrase is unknown

The GOLDEN RULE still runs.

Overseas Students Especially Welcome
INDIVIDUAL COACHING BY POST

in

RADIO, TELECOMMUNICATIONS, RADAR • PHYSICS • MATHS.

We can arrange for most examinations to be taken anywhere, aboard ship or furthestmost outpost.
Free Booklet from

STUDIES DIRECTOR
BRITISH NATIONAL RADIO SCHOOL
66, ADDISCOMBE ROAD, CROYDON
Phone: Addiscombe 3341

RADIO EXCHANGE CO.

WIRE RECORDERS. Of Western Electric design, these consist of an amplifier/recorder/playback, erase unit, with a detachable head and are ruggedly constructed from first-quality components.
The amplifier, with an output of approx. 3 watts, has provision for high impedance mike (bullet in preamp) or for microphone input; output is low impedance. The head contains wire approx. 400-500 microns, recording Incorporated automatic timing scales and switch, and is gear driven. Quality is absolutely first class.

They are delivered 115 v. input, but we supply a standard transformer; e.w.o. or c.o.d.

Also available.

9 SET POWER UNITS,
with 549 v. and 275 v. D.C. output from dynatron,
and 375 v. a.c. chokes.

18/4 v. microphone input.

18/4 DISPLAY UNIT 198, with 880 short period
output, 2000 v. and 2000 v. a.c. chokes etc., brand new. ONLY 22 TELEPHONES
25V or 45V with bell, buzzer and key, and standard FO, band, 276.

Goods sold as used unless otherwise stated.

RADIO EXCHANGE CO.

9 Cauldwell 81, BEDFORD, "Phone 5568
You're SURE to get it at STERN'S PORTABLE "PERSONAL" KIT
A complete KIT of PARTS to build a Midget 4 set. No tools required. Full instructions. Over 25 years' experience. 6-Watt valve type 115/100. Price $19.95. (Plus 7½% sales tax.)

Suitable unpitched cabinet 6½ x 4½ x 3½.

Detailed Building Instructions and Circuit with practical layout included with each Kit make the assembly very easy. Price includes 3-months' maintenance.

Complete Ready 111 Battery, 7½.

STERN'S RIDGE BATTERY PORTABLE "PERSONAL" KIT
A complete KIT of PARTS to build a Midget 4 set. No tools required. Full instructions. Over 25 years' experience. 6-Watt valve type 115/100. Price $19.95. (Plus 7½% sales tax.)

Suitable unpitched cabinet 6½ x 4½ x 3½.

Detailed Building Instructions and Circuit with practical layout included with each Kit make the assembly very easy. Price includes 3-months' maintenance.

Complete Ready 111 Battery, 7½.

Consecutive Generators. 7-pack ensures long battery life.

T.R.F. Kit is designed for a cabinet, minimum size 6½ x 4½ x 3½. Detailed Building Instructions and Circuit with practical layout included with each Kit make the assembly very easy. Price includes 3-months' maintenance.

Complete Ready 111 Battery, 7½.

Selenium Rectifiers. H.T., h./ wave : 250 v. 50 ma.

A complete KIT of PARTS to build a TR.F. to build a Midget 1 receiver. All components tu build this set are specified in March Issue at total coat of 23.0.0.

Midget 1 Dn. X fin. y lin. Ratios 60-1, 4.6 (also at 30 watt type, 30/-). (tapped 15.8 and 4 v.), 3 atom., 24/6; 30 v. (tapped 21e. X 350v. capacity tuned, 13/9 pair. ditto, 88 pair. 8/11et. snatched, 8.M. k L., 89, .1 mfd. 5,000 volt Mainsbridge, 81. .25 mfd. 2/-. Carbon Hand Mike, with 8/R Switch, 2 11.

D.O. motor suitable for models, 11 75 ohms, with adjustable Hemlband, 1/6. Midget 1/9 each (3/8 pair with leads). Single earphone., Switch, 6 -. Midget with Switch, 8, 1 and 1 Meg. , each, Including R.F.. B.F.O. and A.F.

311 amps., 8/6. Also with output 4 v. 11 watts., 7 9.

8/, Special . 75 Meg., with Switch, 4/9,

8/, 50% overload comfortably, £ 3/5, carr. paid; Wilcox Gay V.F.O. covers 2-10 Mc/s. 50% overload comfortably, £ 3/5, carr. paid; superhet coils W6332A, with 7 valves (1-5U4G. 2-6.15. 2-P61. 6.5v 2.5A, P.M. rotary mounted on chassis as on R.F.26 etc., 3/11; ex- Admiralty patt. 1257. 8/6: 0/15v 7/-; 100-0-100v. lmA. F.S.D. 7/-; 1 mA desk type 15/-; control units with 2 2mn

3w, 2B 3/-; 2p., 6w, 4B 4/6; switches small size 2/6.

3w, 2B 3/-; 2p., 6w, 4B 4/6; switches small size 2/6.

1mA desk type 15/-; control units with 2 2mn

3w, 2B 3/-; 2p., 6w, 4B 4/6; switches small size 2/6.

3w, 2B 3/-; 2p., 6w, 4B 4/6; switches small size 2/6.

3w, 2B 3/-; 2p., 6w, 4B 4/6; switches small size 2/6.

1mA desk type 15/-; control units with 2 2mn

3w, 2B 3/-; 2p., 6w, 4B 4/6; switches small size 2/6.

3w, 2B 3/-; 2p., 6w, 4B 4/6; switches small size 2/6.

1mA desk type 15/-; control units with 2 2mn

3w, 2B 3/-; 2p., 6w, 4B 4/6; switches small size 2/6.

3w, 2B 3/-; 2p., 6w, 4B 4/6; switches small size 2/6.
TELEVISION CONSTRUCTORS!

E.E. Television Demonstrated Daily

Midland Constructors Etc.

Are invited to send for our complete Component List and Take Advantage of Our Prompt Postal Service

J. T. Filmer

9 Maypole Estate, Bexley, Kent.

Tel. Bexleyheath 7207

HILL & CHURCHILL LTD.

BOOKSELLERS

SWANAGE, DORSET

Available from stock

Standard Telephones and Cables—"Reference Data for Radio Engineers"—$5.00

Scroggie—Radio Laboratory Handbook, 1949—$12.60

Smith—"Antenna Manual"—$17.60

Nelson and Hornung—Practical Radio Communication—$35.00

Rider—"Inside the Vacuum Tube"—$30.00

Brainard—High Frequency Techniques—$28.00

Ramo and Whinnery—"Fields and Waves in Modern Radio"—$33.00

Schelkunoff—"Electro-Magnetic Waves"—$42.00

Zworykin—"Electron Optics and the Electron Microscope"—$60.00

Postage Extra.

CATALOGUE ON APPLICATION

BESPOKE TRANSFORMERS OF DISTINCTION BUILT TO YOUR OWN REQUIREMENTS

Dealers & service engineers (R.T.A. definition) are invited to send for the latest "Monthly Bulletin."
Here's your Chance... 14 VALVE COMMUNICATIONS RECEIVER
(Type AR 906).
Three Equipments comprising a 14-valve crystal-calibrated receiver covering a range of 2.4 to 13 Mcs.

Specification: RF amplifier, mixer with separate L.O., crystal check oscillator, limiter monitor, 2 stages I.F. (150 Kc/s), Detector, AVC, BFO, with AF amplifier (phones) and push-pull output for speaker. Approx. output power.

Aerial tuning unit supplied for use in front of the Receiver to improve signal strength. This unit provides correct impedance matching of the receiver to improve signal strength.

A LUXURY JOB FOR ONLY £5
Add 15/- cat. and packing.

IN SERVICE With a smile!—Repairs of all kinds including American receivers, TV, coil rewind; American valves, speaker repairs, line cord.—F.R.S. Ltd. 22, Howland St., W. 1. (Phone: 5675).

RADIO MAINTENANCE SERVICE for guaranteed quality and reliable service. I.F. motors, vacuum, units, portable tools, etc.: good deliveries.—139, Goldhurst Terrace, N.W. 6. (Phone: 6133).

"STURDY" rewinds, mains transformers, choke fields, first-class work, prompt deliveries and satisfaction guaranteed.—Sturdy Electric Co. Ltd. Diploma, Newington Green, N.Y.

ACCURATE coil windings: tuning coils, i.f.s., all types of rewound coil wound to specifications; wave and progressive windings.—Ryndon, Ltd. 17, Arundel St., Falmouth.

A SECOND-to-none rewind service, reliable, neat, return of past service; your television requirements promptly executed. K.F.T. Line and Header transformers; stamp for quotations.—R. E. F., 137a, Ashton Rd., Oldham. (Phone: 1519)

For service, 6 months' guarantee on all transformers, mains outputs and I.F.s, etc., of all types of new tran, etc., supplied to your requirements, guaranteed. Free carry card for trade prices.—Marlboro Co. Ltd., 180 Windsor Rd., Bournemouth.

L.T.P. rewind service, all winds are layer wound, prewound and rewound, precision tested at 20,000 volts and guaranteed for three months, 48-hour service.—Exquisite London Transformer, P.O. Box 705, W. 11. (Phone: 8281).

M.E.TROPOLITAN RADIO SERVICE for re-winds. All transformers, choke fields and coil windings 3 days' delivery. New and used transformers manufactured singly or in quantities.—Metropolitan Radio Service Company, 1061, Finchley Rd., London, N. 11. (Phone: 8281).

REWINDS.—Send your "burn outs" to be rewound; no technical data wanted; cost transformer, etc., labelled with your name, address, and marked "rewound by our winders"; our winds are done in standard sizes and guaranteed.—Southern Trade Services Ltd., 297-299, High St., Barking, Essex. (Phone: 4870).

WORK WANTED
We make wireless and radiogram cabinets for home and export markets, immediate delivery.—Radiac Ltd., 15, Brondebury Rd., London, N.W. 6. (Phone: Malmaison 7982, also Terminus 8477).

Radio mfrs. undertake development and assembly of radio or electronic equipment. Windings done with vacuum impregnation plant; ample stock and labour available.—Box 665.

C. A. M. I. E. E. assures efficient, speedy and reasonable service on original material or specification, personal supervision.—Box 7125.

DECLASSE transformers and choke fields manufactured stock lines available, also special made to your requirements in all types of radio and electronic apparatus designed or built to your specification. A.M. Froude 50th, Ealing, W. 5. (Phone: 2421, Ealing 8860).

DRAWING and testing work for radio and electrical engineering, lid and tool and light engineering, design work, full sets of standard drawings.—Drawings and Specifications Office, Ministry of Defence, Ewell Rd. Thames Ditton, Surrey. (Phone: 2740).

MISCELLANEOUS
W. 1935-47, 1948-64, complete, some bound.—Offers Box 1180.
"Q.S.W.s " and "G.P.O. " approved log books, samples free.—Atkinson Bros., Elderslie, 10/6 ea. (Phone: Willow 7398).

EXCLUSIVE modern hand-made radio cabinets (empty).—Particulars from Costas, 120, Risingham. (Phone: 7398).

WIRELESS WORLD, nearly consecutive to date, £3: E5 Electronic Engineering, £3: 10 flash-all-wave oscilator, £10 solar capability, £2/10 osciloscope, £10:200 Wre meg., £5.—Bill, 965a, Middleton Rd., Chadderton, (Phone: 2945)

U.E.I. CORP.
THE RADIO CORNER,
("Phone: T.E.Rminus 7937.")

AUGUST BARGAINS from U.E.I.
10in. P.M. SPEAKERS by Truvox less. Brand new. ONLY 17/6 (postage 2/6).

2in. CIRCULAR 6-1 M.A. METERS (with flange 2in.) marked with 50 degrees scale. Brand new. ONLY 15/- (postage, etc., 5/-).

AMPLIFIER SPEAKER CABINETS, of heavy timber, designed to take a 10in. speaker. Has compartment at rear for leads, etc., and leather carrying handle on top. Size 17in. x 17in. x 6in. Brand new. In cartons.

EX-R.A.F. POWER UNITS, TYPE 10. Input 24V, output 6 V., 150 V., and 300 V. Complete type P Motor Generator, starting relay, LT and HT smoothing chokes, condensers, etc. All input and output connections of 10-way Jones plug. In black metal case, size 17in. x 8in. x 5in. Brand new. ONLY 15/- (postage 3/-).

WAVELENGTH DETECTORS, TYPE 34. Contains 6 valves SP3, 3 EF36, 1 EB33, 2 EB34, 1 V827, and relays, transformers, condensers, resistors, etc. ONLY 22/6 (postage 3/6).

2-VALVE BATTERY AMPLIFIERS, used by the R.A.F. for intercomm, on aircraft. Makes an ideal pre-amp. stage for a gramophone, pick-up, etc. Complete with valves QP21 and 210UF. Operating voltages 2 v. LT and 120 v. HT. Brand new. In transit cases. ONLY 25/- (postage 2/6).

EXTENSION SPEAKERS, Sin. PM specification. Cream or walnut. Fitted with volume control. ONLY 29/6 (postage 2/6).

E.M.T. CONDENSERS, 2.500, .01 mfd., 1,500, .05 mfd. metal cased tubular. 1/6 ea. (postage 3d).

POCKET VOLTMETERS. Ex-Govt., 2-range 0-15 v. and 2-500 v. DC. Brand new. In cartons. ONLY 10/6 (postage 1/-).

TELEVISION CONSTRUCTORS should now be thinking of obtaining their gear. Don't wait for the long winter evenings when everything will be in demand and the bargain snapped up. Using Radar Gear you can construct a very cheap TV, and our 26-page data at 1/6 shows how it can be done. We can supply every unit ranging ready, and if the two main Radar Units are purchased the data is supplied gratis, or it may be purchased and then credited if the units are bought within 14 days. Send for the Data NOW, and at least two of your Radar Units before supplies "dry up."

S.A.E., for Lists.

U.E.I. CORP.
When QUALITY counts

TRADE transfers, gold and black, your wordings, 7 days' delivery; also decorative trans-fer list free.— W. J. A. Axon, Jester, C.I. 15795

[3654]

M ANUFACTURER has quantities of enamelled and covered copper wire in various sizes for disposal at considerably below market prices.— Box 702

RADIOGRAM, table radiogram and corner cabinets, prices from £4/15; trade enquirers invited.— Illustrated leaflets from Cabinet Radio Summit Works, Heyes St., Blackburn.

A LUMINUM chassis and panels, any size manufactured quickly, holes punched for valve-holders, etc.: crackle and cellulose finishing.— E. A. D., 15, Broad Rd., Withington, Salford.

N UTS, screws, washers, etc., large stock of useful sizes (4BA and similar) for disposal in small quantities at a bargain. low prices. P.O. for list.— J. M. McIntyre, Benson, Oxford.

[3662]

E XPOSURE meter components, light cell 6–6, APX meter movement 7–10, moulded case 9–10; assembly instructions and conversion scale regulations 3–1—Burgess, 76, Repson Rd., Bristol, 4.

[3642]

R ADIO supervisors and technicians should join the appropriate branch of the Association of Supervisory Staffs, Executive and Technical. Write for full details to ASSE, 110, Park St., London, W.1. Tel. Mayfair 8541-2.

E NGRAVING—Amateurs and trade requirements for signs, panels, cheques, metal and plastic, attention to urgent deliveries; one knob or repetitive equally entertained. Call or write Newman, 19a, Windmill Rd., Wandsworth, S.W.5.

[3646]

[3627]

F LUORESCENT lighting, special August offer. 60w control unit, clip, F.P. condensers, light poster, supported by tube holders, tested 210–240v a.c., 4½/6 only; buy your 5½ tube locally.— Molten Transformer Supplies, 200–202, Cambridge Rd., Norbiton, Surrey.

[4001]

C OOPER wires enamelled, tinned. Litz, cotton, silk covered, all gauges; BA screws, nuts, washers, soldering tags, eyes, combs and laminated bakelite panels, tube formers; Tufno rod; headphones, flexes, etc.; latest radio publications, full range available; list s.a.e.— Post Radio Supplies, 33, Bourne Gardens. London, E.4.

[4154]

A TTE N TION—Something new and original: perfect models of television or radioogram quality, veneered in walnut and french polished; ideal for miniature radios or novelty speakers, fitted with the latest gold anodised metal grille, accommodation up to six periods, price 56/6 net: refinish if not delighted.— Burman, 64, Regent Rd., Clapton, London, E.5.

[3661]

SITUATIONS VACANT

Vacancies advertised are restricted to persons or employers excepted from the provisions of the Control of Employment Orders, 1947.

U NION OF SOUTH AFRICA

VACANCY-UNION OBSERVATORY, Johannesburg, apply. APPOINTMENTS are invited for appointment on a three-year contractual basis (to a post of assistant professional officer (physics) on the establishment of the Union Observatory, Johannesburg,

QUALIFICATIONS: A university degree in electronics, engineering (light currents) or a B.Sc. degree with physics as a major subject. The holder will be expected to maintain the observation of various crystal clocks and the maintenance of electronic equipment in the observatory’s time department. A thorough knowl-edge of quartz crystal oscillators is an essential. The salary scale applicable is £300–£525 to £600 p.a. plus a cost of living allowance which at present is £220 p.a. for married and £250 p.a. for single personnel. This allowance is subject to fluctuation from time to time.

APPLICATIONS must be made on the prescribed form, 12.7s. and P.S.C. which are obtainable from the Secretary, South African House, 12, Great Square, London, W.C.2, to whom completed forms must be addressed so as to reach him not later than August 31st, 1949. [3502]

YOUNG Engineer-Salesman required for radio and television department, must be a keen, energetic, person, must be able to work on his own initiative, must have a sound knowledge of the trade and be experienced in the sale of radio and television equipment. Apply Staff Manager, Bearmans, Ltd., Leytonstone, E.11. [3794]

S EVICE Engineer, preferably with experience of television, required by manufacturers.—Apply Service Manager, Masteradio, Ltd., 315, Euston Rd., N.W.I. [3797]

OPPORTUNITIES IN RADIO

WIRELESS WORLD August, 1949

Get this FREE Book! "ENGINEERING OPPORTUNITIES" reveals how you can become technically-qualified at home for a high-paid key-appointment in the vast Radio and Television Industry. In 176 pages of intensely interesting matter, it includes full details of our up-to-the-minute home study courses in all branches of TELEVISION AND RADIO, A.M. B.I.T., 319, Euston Rd., London, W.1.

OPPORTUNITIES IN HOME SERVICE MACHINES. We definitely Guarantee "NO PASS—NO FEE" if you're earning less than £10 a week, this enlightening book is for you. Write for your copy today. It will be sent FREE and without obligation.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

1719 STRATFORD BLAG, LONDON, W.J.

THE QSR HIGH PERFORMANCE AERIAL FOR BETTER TELEVISION

Folded dipole, multi-element design; executed in high duty alloy, provides wide bandwidth, high gain, low noise, and results in high-definition and long range.

* Y42. 2 Element 8 db gain, 6½ lbs. weight.

* Y136. Triple reflector, for low interference.

* YD3E. 3 Element long range, 7½ db gain.

Also available for BIRMINGHAM, BATH, LEEDS, GLASGOW and EMBRO LIMITED, ACE WORKS, STAINES.

RANSOM FOR RADIO VALVES

Send a selection from any Guarantee Price List issued each month. List available.

SPEAKERS

P.M. 6in. 8½d; 6in. 10½d; 8½ in. 14½d; 10½ in. with transformer, 17½d.

CONDENSERS

Cathedralpak 1 mfd. 250; 1, 250; 5 mfd. 250; 2, 250; 10 mfd. 250; 2, 250; 10 mfd. 500; 2, 250; Aluminium Case Standard Pack 4 mfd. 250, 2, 250; 5 mfd. 250, 2, 250; Aluminium Case Midgetpak 4 mfd. 450, 2, 450; 5 mfd. 450, 2, 450; 10 mfd. 450, 2, 450; 25 mfd. 450, 2, 450.

YAXLEY TYPE SWITCHES. 2 way 4 pole, 2/4; 3 way 3 pole, 2/4; 4 way 3 pole, 2/4; 3 way 4 pole, 2/4.

GARIBRD AUTO-CHANGER A.C. TYPE ROI, 250, 2, 250; B.B. 3, 11½d.

EARS PHONES. 2,000 ohms, 7/9.

MIDGET RADIO CABINETS. 15–35.

ENAMEL WIRE. 4 oz. coil, 24 w.g., 10/6; 20 g.w., 2/6; 25; 30; 30 g.w., 2/6; 30; 35 g.w., 2/6.

H.I.P. VALVES. Most types available, 10,000 stocked. All new, 40 off. 8/3, prices. Valve list available.

34, BOND STREET, BRIGHTON.
P \underbar{ELECTRICAL} Branch, Royal Navy.

The Admiral announces an extension of the scheme for Short Service Commissions in the Electrical Engineering branches to all candidates who have had previous commissioned service in the R.N., R.A., or the Royal Air Force, or in electrical and radio duties, and civilians who possess suitable qualifications.

Some of the terms of the scheme are:

PERIOD OF SERVICE... Five years are to be completed on the Active List, to be followed by four years on the Reserve list.

CIVILIAN CANDIDATES... Must be under 50 years of age and must be members of the I.E.E. or Brit.I.R.E., or have passed such examinations as are recognised by the above-named bodies as qualifications for Graduate Membership.

FURTHER DETAILS... For further details application should be made to: The Director of Naval Electrical Department, Admiralty, London, S.W.1.

NORTHERN POLYTECHNIC, Holloway, N.7.

The Governing Body invite immediate applications for the following Lectureship in Radio Engineering for the three-year full-time course in Radio Engineering. Certificate of the City and Guilds of London Institute in Electrical Engineering or Science, or be Graduate Members of the I.E.E. or Brit.I.R.E., or have passed such examinations as are recognised by the above-named bodies as qualifications for Graduate Membership.

APPLICATIONS... Will be entered in the rank of Acting Sub-Lieutenant (L.) R.N., and promotion to the rank of Lieutenant (L.) R.N., may be expected after a total of three years of the above-named positions.

The JUBILEE SOLDERING IRON, 260-250 v., with iron and brush, ideal for radio and instrument work. Only 9/11.

BAYTON DP 36 amp. ROTARY SWITCH, with knob. New.

EXHIBITION BATTERIES... All are fully charged, 2 volts, 300 g. p. h., size loin. ' din. Price 18. 6. 100 neon R.F. valve housed in strong Hipare metal case. £ 1 5. 10/6.

GEE BROS. RADIO LTD.
15, Little Newport St., LONDON, W.C.2

GER 6794
Advertisements

HIGH VOLTAGES ARE OUR BUSINESS

If you want the best in Transformers for Television, Photo-Flash, Neon Lighting, etc., why not consult us?

MILLET & HOLDEN LTD.

BIRCHMANS, BIRCHM ROAD, SOUTHEND-ON-SEA, ESSEX

Phone: Southend 68469

TELEVISION

Complete set of coils for The "Electronic Engineering" Televisor. Video and Hester Chokes included. All Boxed and Marked.

STAN. HOLT,

349, HIGH ST. SMETHWICK, STAFFS.

Phone: WOODGATE 3789

VIBRATORPACK

POWER SUPPLY UNITS

Famous British make. Steel case approx. 8 ins. long, 4 ins. wide. 5 lbs. high.

COPPER WIRE

ENAMELLED, SILK, D.C.C., etc., most sizes.

INSULATING MATERIALS

Empire cloth, leatheroid, paxolin, sleeving, etc.

MOTORS A.C. & D.C. up to 1 h.p., a speciality.

VERSANTI, Ltd., Moston Works, Manchester, Manchester

CRYSTALS

FOR

AIRCRAFT

MARINE

AND

AMATEUR

TRANSMITTERS

ALL LOW TEMP. CO-EFF. CUTS.

BROOKES CRYSTALS LTD.

10, STOCKWELL ST., GREENWICH, GRE. 1828.

ELECTRO-Acoustic DEVELOPMENTS

16 BROAD RD., WILLINGDON, BX.

HIGH VOLTAGE INDUCTION

Our range of H.V. Inductiions includes 2k.F. feeder, 8 gns., local station feeder, 5 gns., 6 watt amplifier 20,000 cycle response, 12 gns., 5 watt amplifier with tone control stage, £14 10s. Data sheets on request.

FERRANTI, Ltd., Moson Works, Manchester,

have staff vacancies for engineers and scientists of all grades with long-term development work on an important radio telecontrol project.

(i) Development Group Leaders. To take charge of large development. Qualifications include a good degree in physics or electrical engineering and extensive past experience in charge of development projects. Salary according to qualifications and experience in the range £1,200-£1,600 p.a.

(ii) Development Leaders. To take charge of sections in the above groups. Qualifications include a good degree in physics or electrical engineering or its equivalent and previous experience in any of the following fields: Radar, radio communications, microwaves, servo control and computer etc. Salary according to qualifications and experience in the range £750-£1,200 p.a.

(iii) Engineers and Scientists. Qualifications include a good degree in physics or electrical engineering or its equivalent and preferably some experience in the fields given in Section (ii). Salaries based on A.E.E. services. For qualified leaders, £750-£1,200 p.a.

(iv) Designers and Draftsmen. Section leaders, draughtsmen and junior draughtsmen. Preferably with age 25-35 years. Our high fidelity equipment includes zR.F. stages, £14 too. Data sheets on request.

MILLET & HOLDEN LTD.

BIRCHMANS, BIRCHM ROAD, SOUTHEND-ON-SEA, ESSEX

Phone: Southend 68469

WEBSITES

ADCOLA PRODUCTS LIMITED

Allied House, Caxton Street, London, S.W.1

Write or Phone: W.21, 2230.

"ADCOLA" SOLDERING INSTRUMENTS

Reg. Trade Mark.

Designed for Wireless Assembly and Maintenance.

Working temperature reached in 1 min., maintains 160° C.

Supplied in voltage ranges from 6/7v. to 230/250v.

ADCOLA PRODUCTS LIMITED

SPIRIT VAPORISER, INC.

Manchester, N.H.

HIGH "Q" IRON CORED COILS

Greatly reduced prices—large stocks of new style coils on hand.

ADVERTISMENTS

Supplied in voltage ranges from 6/7v. to 230/250v.

ADCOLA PRODUCTS LIMITED

MILLET & HOLDEN LTD.

BIRCHMANS, BIRCHM ROAD, SOUTHEND-ON-SEA, ESSEX

Phone: Southend 68469

HIGH VOLTAGES ARE OUR BUSINESS

If you want the best in Transformers for Television, Photo-Flash, Neon Lighting, etc., why not consult us?

MILLET & HOLDEN LTD.

BIRCHMANS, BIRCHM ROAD, SOUTHEND-ON-SEA, ESSEX

Phone: Southend 68469

CRYSTALS

FOR

AIRCRAFT

MARINE

AND

AMATEUR

TRANSMITTERS

ALL LOW TEMP. CO-EFF. CUTS.

BROOKES CRYSTALS LTD.

10, STOCKWELL ST., GREENWICH, GRE. 1828.

ELECTRO-Acoustic DEVELOPMENTS

16 BROAD RD., WILLINGDON, BX.

HIGH VOLTAGE INDUCTION

Our range of H.V. Inductiions includes 2k.F. feeder, 8 gns., local station feeder, 5 gns., 6 watt amplifier 20,000 cycle response, 12 gns., 5 watt amplifier with tone control stage, £14 10s. Data sheets on request.

FERRANTI, Ltd., Moson Works, Manchester,

have staff vacancies for engineers and scientists of all grades with long-term development work on an important radio telecontrol project.

(i) Development Group Leaders. To take charge of large development. Qualifications include a good degree in physics or electrical engineering and extensive past experience in charge of development projects. Salary according to qualifications and experience in the range £1,200-£1,600 p.a.

(ii) Development Leaders. To take charge of sections in the above groups. Qualifications include a good degree in physics or electrical engineering or its equivalent and previous experience in any of the following fields: Radar, radio communications, microwaves, servo control and computer etc. Salary according to qualifications and experience in the range £750-£1,200 p.a.

(iii) Engineers and Scientists. Qualifications include a good degree in physics or electrical engineering or its equivalent and preferably some experience in the fields given in Section (ii). Salaries based on A.E.E. services. For qualified leaders, £750-£1,200 p.a.

(iv) Designers and Draftsmen. Section leaders, draughtsmen and junior draughtsmen. Preferably with age 25-35 years. Our high fidelity equipment includes zR.F. stages, £14 too. Data sheets on request.

MILLET & HOLDEN LTD.

BIRCHMANS, BIRCHM ROAD, SOUTHEND-ON-SEA, ESSEX

Phone: Southend 68469

WEBSITES

ADCOLA PRODUCTS LIMITED

Allied House, Caxton Street, London, S.W.1

Write or Phone: W.21, 2230.

"ADCOLA" SOLDERING INSTRUMENTS

Reg. Trade Mark.

Designed for Wireless Assembly and Maintenance.

Working temperature reached in 1 min., maintains 160° C.

Supplied in voltage ranges from 6/7v. to 230/250v.

ADCOLA PRODUCTS LIMITED

SPIRIT VAPORISER, INC.

Manchester, N.H.

HIGH "Q" IRON CORED COILS

Greatly reduced prices—large stocks of new style coils on hand.

ADVERTISMENTS

Supplied in voltage ranges from 6/7v. to 230/250v.

ADCOLA PRODUCTS LIMITED

MILLET & HOLDEN LTD.

BIRCHMANS, BIRCHM ROAD, SOUTHEND-ON-SEA, ESSEX

Phone: Southend 68469

CRYSTALS

FOR

AIRCRAFT

MARINE

AND

AMATEUR

TRANSMITTERS

ALL LOW TEMP. CO-EFF. CUTS.

BROOKES CRYSTALS LTD.

10, STOCKWELL ST., GREENWICH, GRE. 1828.

ELECTRO-Acoustic DEVELOPMENTS

16 BROAD RD., WILLINGDON, BX.

HIGH VOLTAGE INDUCTION

Our range of H.V. Inductiions includes 2k.F. feeder, 8 gns., local station feeder, 5 gns., 6 watt amplifier 20,000 cycle response, 12 gns., 5 watt amplifier with tone control stage, £14 10s. Data sheets on request.

FERRANTI, Ltd., Moson Works, Manchester,

have staff vacancies for engineers and scientists of all grades with long-term development work on an important radio telecontrol project.

(i) Development Group Leaders. To take charge of large development. Qualifications include a good degree in physics or electrical engineering and extensive past experience in charge of development projects. Salary according to qualifications and experience in the range £1,200-£1,600 p.a.

(ii) Development Leaders. To take charge of sections in the above groups. Qualifications include a good degree in physics or electrical engineering or its equivalent and previous experience in any of the following fields: Radar, radio communications, microwaves, servo control and computer etc. Salary according to qualifications and experience in the range £750-£1,200 p.a.

(iii) Engineers and Scientists. Qualifications include a good degree in physics or electrical engineering or its equivalent and preferably some experience in the fields given in Section (ii). Salaries based on A.E.E. services. For qualified leaders, £750-£1,200 p.a.

(iv) Designers and Draftsmen. Section leaders, draughtsmen and junior draughtsmen. Preferably with age 25-35 years. Our high fidelity equipment includes zR.F. stages, £14 too. Data sheets on request.

MILLET & HOLDEN LTD.

BIRCHMANS, BIRCHM ROAD, SOUTHEND-ON-SEA, ESSEX

Phone: Southend 68469

WEBSITES

ADCOLA PRODUCTS LIMITED

Allied House, Caxton Street, London, S.W.1

Write or Phone: W.21, 2230.

"ADCOLA" SOLDERING INSTRUMENTS

Reg. Trade Mark.

Designed for Wireless Assembly and Maintenance.

Working temperature reached in 1 min., maintains 160° C.

Supplied in voltage ranges from 6/7v. to 230/250v.

ADCOLA PRODUCTS LIMITED

SPIRIT VAPORISER, INC.

Manchester, N.H.

HIGH "Q" IRON CORED COILS

Greatly reduced prices—large stocks of new style coils on hand.
5OLON electric soldering irons have proved their capacity for continuous service under the most exacting conditions. 5 models; 240 watt oval tapered bit; 125 watt oval tapered and round pencil bits and 65 watt oval tapered and round pencil bits. Each model complete with 6 feet of Henley 3-core flexible. Now available from stock. Write for folder Y.10.

L-R-S FOR PROMPT & EFFICIENT SERVICE CASH OR EASY TERMS ARMSTRONG ALL-WAVE CHASSIS Various Models Available

GOODMAN'S * Azimut Twelve * Speaker Unit Price £ 8 8 0
GOODMAN'S Standard 12* Speaker Unit Price £ 6 15 0

GOODSELL-WILLIAMS HIGH FIDELITY AMPLIFIERS

A. C. BARKER'S New 140A Speaker (See Advertisement p. 58)

COLLARO Radiogram Units—various models AVO METERS—All models available.

SPECIAL AUGUST CLEARANCE RADAR RECEIVER TYPE 3054A BRAND NEW AND UNUSED IN MAKEr'S CARTONS,
Transit Case. Specifications: IF brand new receivers, 7 IF/R, 2 VR100, 1 VR117, Deans of useful components, including 80-volt AC motor used for aerial switching, front panel taping control, etc. With little modification this unit will make an ideal 2-metre receiver. Also suitable for television conversion. Totally enclosed in metal case, 14 1/2 x 8 1/2 x 4 inches. Write in confidence, stating age and salary required, to Chief Engineer. Box 7308.

SOLON electric soldering irons have proved their capacity for continuous service under the most exacting conditions. 5 models; 240 watt oval tapered bit; 125 watt oval tapered and round pencil bits and 65 watt oval tapered and round pencil bits. Each model complete with 6 feet of Henley 3-core flexible. Now available from stock. Write for folder Y.10.

SOLON electric soldering irons have proved their capacity for continuous service under the most exacting conditions. 5 models; 240 watt oval tapered bit; 125 watt oval tapered and round pencil bits and 65 watt oval tapered and round pencil bits. Each model complete with 6 feet of Henley 3-core flexible. Now available from stock. Write for folder Y.10.

SOLON electric soldering irons have proved their capacity for continuous service under the most exacting conditions. 5 models; 240 watt oval tapered bit; 125 watt oval tapered and round pencil bits and 65 watt oval tapered and round pencil bits. Each model complete with 6 feet of Henley 3-core flexible. Now available from stock. Write for folder Y.10.
SUPACOILS

OFFER
Model 30 Coil Pack.—The 3-waveband superhet pack with adjustable iron cored coils and transformers, gives accuracy in padding and tracking. This pack is gaining popularity more and more amongst practical engineers and amateurs for its sound design, high quality workmanship and high sensitivity and selectivity. .剧院

SUPACOILS (Mail Order Office) 98, Greenway Avenue London, E.17

VOIGT PATENTS LTD
15 SILVERDALE
S.E.26
Town and Country PLANNING!

P.S. Mr. Voigt is slowly recovering his health. Re service, please await further announcement.

YOU SHOULD HAVE A NEW TAYLOR

*** *** *** *** ***

We can supply the latest Taylors Test-Equipment, and take your used Equipment in part exchange. Balance by cash or hire purchase.

Write, phone or send your gear along for inspection and offer.

** ** ** ** ** ** ** ** ** **

UNIVERSITY RADIO LTD.
82 Lille St. Tel. Gerrard 4447 & 5502

OUR 1949’50 R.49

RADIO AND TELEVISION COMPONENT CATALOGUE
IS NOW READY

Send 6d. in stamps for this super catalogue. Details of thousands of lst Grade Branded Makes of components and resistor colour code, etc., send now

COVENTRY RADIO
DUNSTABLE ROAD, LUTON, BEDS.

CHIEF Engineer required to take charge of design and development for company manufacturing electrical measuring instruments and industrial and radio electronic test equipment; present position with a man with suitable experience.—Write giving full particulars of technical training, experience and salary required to Box 7497.

A PPLICATIONS are invited for the post of radio engineer in our firm's radio manufacture installation; applicants should have either held a commission as Radar Officer during the war or been actively engaged on radar development in industry; the post demands an energy, willingness to travel, and ability to handle installations and repairs in a capable manner. Ref. W. H. SMITH & Co. Elec. Eng., Ltd., Pared Bldg., 25 Kingswood Park, E.17

REQUIRED, general works manager by a company engaged in the light-elastic electro-plating and rubberizing industry situated in the North of England; applicants must be first-class practical engineers, with wide administrative and organising experience, capable of taking full control of a mass production factory under direction of the Board, and of personnel who have held a position in a similar field, and who are fully qualified to continue the expansion work. Housing problem is not an insurmountable one.—Write in confidence, stating qualifications, experience, etc., to Box 7256.

ENGLISH ELECTRIC invite applications from mechanical and electrical engineers for vacancies which exist on aircraft, gas turbines, steam turbines, generator turbines, transformers, a.c. and d.c. machines, electronic telecommunication engineering; vacancies exist in various parts of the country; stable employment, good conditions; please state salary required, type of engineering equipment in which you are interested, and any preferences regarding location.—Apply, quoting Ref. D.O.62, to Central Personnel, English Electric Company, 24-30, Gillingham St., Westminster, London, S.W.1.

CHIEF Inspector required by the company division of the Fieseler company; applicants must have predominently electrical training, comprehensive knowledge of radio components and allied electrical equipment, and must have adequate technical knowledge; to a man between the ages of 30 and 45 who has had the above experience and having handled a large Inspection staff, the company offer a senior and permanent position with excellent prospects.—Write giving full particulars, stating age and salary required, should be made to (the Personnel) Manager, The Fieseler Company Ltd., Ilford, Essex.

CHIEF radio engineer designer, manager or production manager, general manager, senior and junior draughtsmen, also women tradesmen, select best radio engineers and receivers development engineers for radio, radar, electronics, quality & quantity production, ability to work closely with representatives use service engineers, P.A. radio, radio television and radar also the whole opening; engineers (skilled and semi-skilled); radar, instruments, prototype radio, desk aid; n.f. receivers; planning production, production engineering, process chemists for electro-chemical process R. Eng., also, other applications.—Consult Technical Employment Agency, 179, Clapham Rd., S.W.9 (Briis), 9966.

SITUATIONS WANTED

WORKS manager, 30, B.Sc. (Eng.), A.M.I.E.E., with experience with well-known companies operating the manufacture of both radio and electronic components.—Box 7486.

BUSINESSES FOR SALE AND WANTED

RADIO, electrical, television sales service. Premises Walthamstow, living accommodation; complete with stock: £8250.—Box 13975.

BUSINESS for sale owing to removal, in Croydon area; equipped for transformer rewind; etc.: £2550, machinies and stock at value:—Tel. Lib. 1461.

RADIO, television and electrical business for sale, mainly through the use of absorption accuracy in padding and tracking, 18 years lease, whole house and shop, low rent, accommodation premises for buyer: price, £25,000.—Apply Box 7517.

OLD-ESTABLISHED and prosperous wireless training college for sale as a going concern; owner going abroad to retire.—Interested parties (principally radio) should write: Golvers, 30, Bouverie St., E.C.4.

THE principal of an old-established wireless institution and telecommunication college and will consider selling the business to a man of initiative. Applicants for further particulars must possesses the P.M.G. lst or 2nd Class Certificate; other requirements and qualifications will be an advantage.—Write Box 7506.

MENZIES TRANSFORMER. 3 Hesta. 35c. Post free HOLBORO & CO., 71, Weymouth Bay Avenue, Weymouth.

ELECTRONIC & ELECTRO-MECHANICAL EQUIPMENT

developed for Industrial applications. Reasonable charges.

SPENCER-WEST

QUAY WORKS, Gt. YARMOUTH

RADIO UNLIMITED

OFFER

Dencos. 5 waveband chassis. 5 valve plus Magic eye. Complete with 10w. P.M. speaker. Price, inc. tax, 15 Gns., carriage paid.

Also

Single and Auto-change Gram motors, Amplifiers, Speakers, Valve, etc. New catalogue now ready. 1d. stamp please. Kindly note.—We have moved from 16, Carnarvon Road, Leyton, to 10, ELM ROAD, WALTHAMSTOW LONDON, E.17.

PRECISION TEST EQUIPMENT

SIGNAL GENERATOR TYPE TF.144v. By Macrae Instruments. 80 Mics to 100 Mics. As new and guaranteed.

SIGNAL GENERATOR TYPE 576. By Comar. Frequency range 6 to 02. Mains or external elcto or pole. Price for £5, mod. R.P. output variable from 1W. to 1000W. Complete with all accessories in transit case. New.

SIGNAL GENERATOR TYPE F.060. For the U.S. Navy. Two Frequency ranges, 6165 and 150—2000 Mics. Operates from internal crystal calibrator. R.P. output variable from 1W. to 1000M. As new.

CRYSTAL OVENS. AMR, PATTERN 3190. For Amateur use. £27

Effect, Variable from 10 to 100 mV. Complete with all accessories. New.

APPAREL engineering and electronic process. N. Eng. £20. Service.—For speedy estimate send defective instrument by registered no.t. to:

YOUR METER DAMAGED?

Don't let GLASER REPAIR IT

LEADING ELECTRICAL INSTRUMENT REPAIRERS

to the Industry.

Repair by skilled craftsmen to all makes and types of Voltmeters, Ammeters, Micrometers, Multimeters, Test meters, Electrical Thermometers, Recording instruments, galvanometer, potential divider, etc. A duty free speedy estimate and defective instrument by registered despatch.

L. GLASER

SCIENTIFIC & ELECTRICAL INSTRUMENT REPAIRERS

341 CITY ROAD, E.C.1 Tel. Terminus 2489

"PERIMET" ELECTRODE
Soldering and Brazing Tool

Operates from 6 or 6 Volt Accumulator or Transformer

Post free

Mains Transformer, 3 Hesta. 35c. Post free

HOLBORO & CO.,
71, Weymouth Bay Avenue, Weymouth.
PLANNING 1949-50

S KENSINGTON—Well established and
flourishing radio and electrical con-
structing business with position close
to S. Kensington Stn., double-fronted shop with office, space to rear basement fitted with storage racks and
work-bench, cloakroom, etc. lease 4 years
with option of further 21 years: price, including
stock, equipment, contracts etc. at bargain
price of £1000 or near offer. Apply Stone,
3137, 4669 and 9776.

BUSINESS OPPORTUNITIES
RADIO service partner wishes to dispose of his
share in radio and electrical business. London.
—Box 797. 3978

REPUTABLE electrical wholesale distributors
and exporters throughout the U.K. and overseas require additional attrac-
tive lines.—Write in confidence to Box 7360.

AGENTS WANTED
TECHNICAL staff for several
seated territories in the U.K. for the sale of
public address and internal communication equipment; only men with proved qualifications in
this field need apply; car essential; salary,
commission.—Box 7355. 3527

TECHNICAL TRAINING
A M.I.E.E. City and Guilds etc. on "No Pass
No Fee" terms, over 95% success. For full
detail of modern courses in all branches of
radio electrical technology send for free 112-page hand-
book, free and post free.—B.I.E.T. (Dept. 598A)
17, Stratford Place, London, W.1. 8720

TUITION
THE British National Radio School
OFFERS you a career.
WRITE to-day for free booklet describing our
wide range of training courses in radio, Radar,
Telecommunications, Mathematics, Mechanics,
Physics, and Meghetics, and courses carrying G. Exami-
inations; we specialise in turning "operator." into
trained technicians and engineers. This published free
Four Year Plan. Guidance to A.M.I.E.E. and
A.M.Brit.I.R.E. with G. & C. Certificates as interim rewards is unsual: our guarantee
has no string attached."—Directors
B.Sc. A.M.I.E.E., M.Brit.I.R.E. 66, Addis-
combe Rd., Croydon, Surrey. 6861

WIRELESS officer's attendance and postal courses.—Wireless Sch., Manor Gdns., N.7.

RADIO training.—P.M.O., exams. and I.E.E.
Diplomas: prospectus free.—Technical Col-
lege, Hull.

WIRELESS (am and a/f) radio, television,
broadcasting, E.H.T. and allied subjects: tremendous
courses for all professional opportunities; students both sexes, age 16 upwards,
trained for appointments in all branches of
radio; free ducts for all courses, building; write
today for 106-page handbook free.—B.I.E.T.
(Dept. 2678). 17, Stratford Place, London, W.1.

TELEVISION
TELEVISION postal course for radio trades
people. Valves. M.V.O. etc., with or without
exams. Full details.—British School of Television,
Manor Gdns., N.7.

RADIO ENGINNEERING SCHOOL.
Air Service Representative. London.

THE NEW DENTO TELEVISION
KITS OF PARTS
* The Kit with a Name Behind It.
* Acclaimed by Amateur Constructors for Its
Superb Quality in Assembly, and Outstandingly
Clear Picture Definition.
* Employs recently developed circuit and
components including line fly-back E.H.T./output
transformer unit, ready assembled.
* Video section has 3 R.F. stages. Detector, Noise
Limiter and Video Amplifier.
* Suitable for use at all distances within the
service area of the station.
* The new miniature high slope B.G. pentode
valves are used in R.F. and video stages, etc. A
total of 17 valves.
* Circuit layout and instruction data supplied
with each Kit.
* All valves and C.T., Drilled Chassis, etc.,—
are included (Loudspeaker and O.P. Transformer
excluded.)

Price complete. £36 f. Tax £21/11.

* A similar Kit to the above incorporating a
100, C.R.T., is available at a additional cost of
approx. £4.

The following units will be available for sale
separately, each complete with Circuits,
Layout and Instruction Data:

* DENTO-RF Kit consisting of all com-
ponents, valves and B.G. C.R.T., for vision and
audio sections up to the detector stage (including
drilled sub-chassis.

* DENTO-3B. A similar outfit for line base
circuits including ready assembled fly-back
E.H.T., video amp. sync. separator, detector
and focus assemblies and main chassis.

* DENTO-3K. Complete Power supply outfit
(excluding E.H.T. which is part of line output
circuit), consisting of all components and rectifier
valves; output 3 110 v. 225 a. and 6.3 v. 7 A.
(rect. heater winding absent).

COILS Matched pair Midget T.R.F. for Medium and
High Frequency Work.

Other available Dento Products are listed in a most
comprehensive and detailed Catalogue. Price 9d.

IMPORT AND TRADE ENQUIRIES INVITED.

DENTO DISTRIBUTORS LTD.,

MUMETAL and RADIOMETAL
TRANSFORMERS and CHOKES
As Specialists with many years of experience we can
design and supply practically any type of transformer
or choke with a nickeliron core for use on a band within
the frequency range

1 to 150 kc/s

Available for rapid delivery:—Microphone Transformers, Line Transformers, Pickup Transformers, Output Transformers, High Fidelity Transformers, Vibration Transformers, High Q Chokes, High Inductance Chokes, etc., with or without Mumen Shields.

MAIN COMPONENTS ARE ALSO STOCKED.

SOWTER TRANSFORMERS,
S. Sowerby, L. B. HEAD STREET,
COLECHESTER.

Phone: CHELSEA 640.
THE INSTITUTE OF PRACTICAL RADIO ENGINEERS have available Home Study Courses in every phase of radio and television engineering, specialising in the practical training of apprentices in the mail trade; enrollments limited, fees moderate.—The Syllabus of Instructional Text may be obtained free from the Secretary, I.P.R.E., Fairfield House, 20, Fairfield Rd., Crouch End, London, N.8. Tel. 11614 "BOOKS INSTRUCTIONS, ETC."

"HOME Constructors’ Handbook," the latest edition of this famous handbook containing circuits, radio constructional and servicing hints and complete catalogue, is now available at only £1.; mail order only.

THE QUARTZ CRYSTAL Co., Ltd.

For urgent requirements.

COMMERCIAL USE are available in the complete range from 35 kilo-
cycles to 15 megacycles.

Alternative mountings in standard two-pin A.M. pattern 10X, International octal, and miniature type FT243, can be supplied for most frequencies.

Prices are fully competitive, and we specialise in prompt deliveries for urgent requirements.

WE WELCOME YOUR ENQUIRIES.

507 Morley Road, London, S.E.20. SYDenham 6258

THE QUARTZ CRYSTAL Co., Ltd.

53-71 Kingston Road,
NEW MALDEN, SURREY

Telephone: MALden 0334

THE COIL PICK-UP

will give you real music when you tire of the blare from the fair.

WILKINS & WRIGHT, LTD.,
Holyhead Road, Birmingham, 21.

B.T.S.

THE Radio firm of the South,
63 London Road, Brighton, I, Sussex

Phone: Brighton 1555

SPEAKERS
BRAND NEW

Goodman’s, Trosay, Rola (as available). 5 inch 13/-; 6 inch 14/-; 8 inch 16/-, including packing and postage.

EDDYSTONE RECEIVERS

Full range of components. All C.O.D. orders promptly executed. Send for Catalogue, 1/- post free.

RELAYS

for A.G. and D.C.
2 VA Coil consumption from 2 to 600 volts and tested to 2,000 volts. Aerial Change-over Relays, Mercury Relays, Measuring Relays and Time Delay Relays.

LONDEX LTD.
Manufacturers of Relays

107 Anerley Road, London, S.E.20. SYDenham 0258

POST RADIO SUPPLIES

OFFER EX STOCK
COPPER INSTRUMENT WIRE.
ENAMELLED, TINNED, LIITZ, COTTON AND SILK COVERED.

Most gauges available. B.A. SCREWS, NUTS, WASHERS, soldering tags, eyelets and rivets, Ebonite and Bakelite Panels, Turn-Up Rods, Panel Type Coil Formers and Tubes, All Diameters.

POST RADIO SUPPLIES

Phone: C/Ittsell 4688

SUBSCRIPTIONS TO "BOOK OF FACTS"
Send for this Free "BOOK OF FACTS"

It gives full details concerning all Courses.

THE CANDLER SYSTEM CO.
(Room 55W), 121 Kingeway, London, W.C.1

Candler System Co., Denver, Colorado, U.S.A.

Morse Code Training

There are Candler Morse Code Courses for BEGINNERS AND OPERATORS

Send for this Free "BOOK OF FACTS"

It gives full details concerning all Courses.

THE CANDLER SYSTEM CO.
(Room 55W), 121 Kingeway, London, W.C.1

Send for Catalogue, 1/- post free.

BRASS, COPPER, DURAL, ALUMINIUM, BRONZE

ROD, BAR, SHEET TUBE, STRIP WIRE.

3,000 STANDARD STOCK SIZES

No Quantity too Small.

List on application.

London: H. R. OLLET & Co. Ltd., 175, Cheapside Place, S.W.1.

Kirkby Estates, S.L.O. 3463

SIMONSWOOD 1271.

A BIT OF SCREWY BUSINESS!

When you need screws, nuts, tags, washers, rivets, etc., consult:

HAROLD KING

"The Chestnuts," Crays Hill, Billericay, Essex

Send S.A.E. for lists.

Large "PK" screws 4/6 per gross

RADIO BATTERY TESTER

Use "Quixo" method of battery testing.

Reliable results. Guaranteed.

Send for interesting leaflet.

Loudspeakers" by G. A. Briggs 5/-

"Partridge Manual" 3/- post 3d.

Loudspeakers by H. King 5/- post 3d.

Goodsell Ltd.,
40 Gardner Street, Brighton.

send for:

Our illustrated brochure. Free on request.

BRASS, COPPER, DURAL, ALUMINIUM, BRONZE

B.A. SCREWS, NUTS, WASHERS, soldering tags, eyelets and rivets.

RUTON'S BRASS ROD, RUTON'S RAWLINS, RUTON'S ROD, RUTON'S BAR, RUTON'S SHEET TUBE, RUTON'S STRIP WIRE.

3,000 STANDARD STOCK SIZES

No Quantity too Small.

List on application.

London: H. R. OLLET & Co. Ltd., 175, Cheapside Place, S.W.1.

Kirkby Estates, S.L.O. 3463

SIMONSWOOD 1271.

A BIT OF SCREWY BUSINESS!

When you need screws, nuts, tags, washers, rivets, etc., consult:

HAROLD KING

"The Chestnuts," Crays Hill, Billericay, Essex

Send S.A.E. for lists.

Large "PK" screws 4/6 per gross

RADIO BATTERY TESTER

Use "Quixo" method of battery testing.

Reliable results. Guaranteed.

Send for interesting leaflet.

Loudspeakers" by G. A. Briggs 5/-

"Partridge Manual" 3/- post 3d.

Loudspeakers by H. King 5/- post 3d.

Goodsell Ltd.,
40 Gardner Street, Brighton.

send for:

Our illustrated brochure. Free on request.

The Northern Polytechnic

Holloway Road, N.7.

Principal: T. J. DRAKELEY D.Sc., Ph. D.
F.R.I.C., F.I.R.I.

Department of Radio and Musical Instrument Technology.

Head of Department;
S. A. Hurren, M.C., M.Brit.I.R.E.

Full-time Day Courses in TELECOMMUNICATIONS ENGINEERING in preparation for all recognised qualifications in this subject. Practical laboratory and workshop experience provided.

Prospectus free on application to Secretary. New term begins September 26th.
Kershaw's Korner Kalling

Special!!!

M.O.S. Lines

Telesonic Receivers, brand new, complete with four 1.5 v. Hvac Midget valves ideal for making your own personal portable. 3 for 2/6. Post paid.

Inert 1.5 v. Cell Batteries, long life, fill with plain water and have continuous use. Ideal for every purpose. 3 for 2/6. Post paid.

Make your own crystal set, with polished terminal box complete with volume control, resistance, etc. 1/6 each. Post paid.

S. Kershaw

93-95 Pershore Street, Birmingham, S.

Wilkinson's of Croydon

Radio Receivers Roseha. For 144 Mc. Convertible to 28-50-60 Mc. - Brand New, including 11 valves. Bargain Price, 35/- C. Cash and Pay. 5/-.

Electrolytics, 8 MFD 500 v. BC500, 3/- each - 24 sq. New York.

F.M. Speakers, 11 w., with transformer. In wall case, 21/2.

Power Unit, employing a 2SK4 and a high voltage rectifier R5120A, together with a .1 mf condenser, 2.5 kV. and other components. 17/6 post free.

Television Unit, 2HF stages, a detector and 1 video amplifier, complete with a 1600-2000 mets. 30-120. Special price £16 10.0

Slow Motion Dial. With Vernier 200-1 reduction. Front of panel mounting, 17.0 x 6x2/1 " 81-.

L.Wilkinson, 204, Lower Addiscombe Road, CROYDON

August, 1949 Wireless World

Advertisements 79

The "Commander" Double Superhet Communications Receiver

For Commercial and Amateur Users

Brief Specification:

- Complete Coverage 177 to 31 Mcs.
- Separate Electrical Bandspread.
- Direct Reading Full Vision Dial.
- Three Selectivity Positions.
- Highly Efficient Noise Limiter.
- Illuminated 5 Meter.
- Directivity 1 Watt Output.
- 2/6 and 150 kHz. 1.F. Stages. B.F.O.
- Excellent Signal/Noise Ratio.

Price £48. 10.0

Hire Purchase Facilities

Prompt Delivery, Home and Export Operating and Servicing Handbook, 5/-; Illustrated Literature, 2/1d stamp.

Trade Enquiries Invited.

Radiovision (Leicester) LTD.

58-60 Rutland Street, Leicester • Phone 20167

The King of Coil Packs

The letters of praise we receive in our post bag every day confirm our opinion that the Model 40 Coil Pack is the best that money can buy, from the point of view of quality, workmanship and performance.

It is, to the best of our knowledge, the only unit on the market with an R.F. stage which can be supplied prealigned and sealed for direct inclusion into a superhet receiver. It uses 5 separate iron-cored high efficiency coils, with high stab. R.M. padders and variable trimmers. The R.F. coverage is 15-60, 200-350 and 800-1,000 metres. Notwithstanding its compact size (12in. x 4in. x 21/2in.) the internal and external increasing is efficient and more than adequate to eliminate any interference between the Aerial, R.F. and Oscillator sections.

The price! Only 2 gas., or can be supplied fully aligned at 47/-.

For a further month only, we are supplying FREE with every Model 40 Coil Pack our comprehensive and detailed instruction sheets for the construction of a 6 valve superhet receiver embodying this unit. These sheets are really comprehensive and even if you have never built a radio receiver before, you can go ahead with the knowledge that you cannot fail to complete a highly efficient multi-valve receiver, that will give you years of pleasurable listening or DX roaming.

Send 1/- for the latest issue of "The House Constructor's Handbook," or a 2d. stamp will bring you our latest lists.

*Phone, write or call:

LONDON TELEVISION CO., LTD.

694 Lea Bridge Road, Leyton, E.10. Telephone: LEY. 4380

C.51

FOR TELE-COMMUNICATION

A new Lustraphone Moving-Coil Microphone designed and developed specifically for G.P.O. hand-sets, with mobile tele-communication and P.A. equipment in view. Available as Insert Unit (C.51) or complete Hand Microphone (C.H.51).

Characterised by sturdy construction, light weight, and high level of performance. Data Sheet on request.

Lustraphone Ltd. 84, Belvoir Lane, N.W.3

Radiomenders Limited

FOR SPECIAL TRANSFORMERS ANDREWINDS

We specialise in

Amateurs' Windings, Transformers All Types, Chokes, Pick-Up Coils, Instrument Coils, Etc.

Loud Speaker Service

Highest workmanship

Good Delivery

Radiomenders LTD.

Television & Radio Apparatus, Transformer & Coilwinders.

123-5-7 Parchmore Road, Thornton Heath, Surrey

LIV 2261. Trade enquiries invited. Established 16 years.
'ALL-ALUMINIUM' non-corrosive construction with completely hermetic seal.

Protective outer cardboard tube eliminating any risk of aluminium tube causing short circuits.

High-gain etched foil gives you the smallest and lightest condenser yet offered for replacement purposes.

Conservative voltage rating and T.C.C. high quality ensure long and trouble-free life.

This is the new T.C.C. Electrolytic Condenser which, with the "Micropack" and "Lectropack" types form the most complete range of condensers for the use of radio designers and engineers. "Micromite" has certain features of prime importance.

| Capacity (µF) | Voltage (Peak Working) | Voltage (Surge) | Length ("" | Diameter (""
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>450</td>
<td>550</td>
<td>1"</td>
<td>1"</td>
</tr>
<tr>
<td>16</td>
<td>450</td>
<td>550</td>
<td>1"</td>
<td>1"</td>
</tr>
<tr>
<td>32</td>
<td>450</td>
<td>550</td>
<td>2"</td>
<td>1"</td>
</tr>
<tr>
<td>16</td>
<td>350</td>
<td>400</td>
<td>2"</td>
<td>1"</td>
</tr>
<tr>
<td>32</td>
<td>350</td>
<td>400</td>
<td>2"</td>
<td>1"</td>
</tr>
</tbody>
</table>

Price (each):
- 3/6
- 5/-
- 7/6
- 4/-
- 6/-

NOTE—"Micropack" and "Lectropack" should be used for the reservoir position where high ripple current may be expected.

THE TELEGRAPH CONDENSER CO. LTD
RADIO DIVISION: NORTH ACTON, LONDON, W.3 • TELEPHONE: ACORN 0061
It can often be advantageous in soldering production processes to adopt a different procedure to the usual one of employing a hand iron. Here are illustrations of two methods where production has been speeded up and a higher standard of precision joints obtained.

Only Ersin Multicore contains extra-active, non-corrosive Ersin Flux enabling joints to be made on heavily oxidised surfaces. Only Ersin Multicore with its 3 core construction gives guaranteed flux continuity, instantaneous melting and guaranteed freedom from 'dry' or H.R. joints.

Ersin Multicore Solder as used by the leading Television, Radio and Telephone manufacturers, is available from most retailers in Size 1 cartons in the specifications shown below.

<table>
<thead>
<tr>
<th>Catalogue Ref. No.</th>
<th>Alloy</th>
<th>Tin/Lead</th>
<th>S.W.G.</th>
<th>Approx. Length per Carton</th>
<th>List Price (per Carton subject)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C16014</td>
<td>60 40</td>
<td>14</td>
<td>32 feet</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>C16015</td>
<td>60 40</td>
<td>16</td>
<td>32 feet</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>C14013</td>
<td>40 60</td>
<td>13</td>
<td>20 feet</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>C14016</td>
<td>40 60</td>
<td>16</td>
<td>44 feet</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

At the works where Garrard Record Changers and Pick-ups are made, ERSIN MULTICORE SOLDER is used for the jointing of screened pick-up leads to tags by a foot controlled pivoted iron. By the adoption of this procedure it is not necessary for wires or screening to be located in holes in the tags. The need for three hands is avoided by this novel method of mounting the iron devised by Garrard engineers.

75 Joints of the switch unit of the Pye Receiver are soldered at the Pye Works by applying ERSIN MULTICORE SOLDER to the tags, which have been heated by a bench type iron. This procedure avoids the use of a jig for holding the small chassis and is less fatiguing for the worker.