Wireless World
RADIO AND ELECTRONICS

Radiolympia

OCT. 1949
2/-
Vol. LV. No. 10

IN THIS ISSUE: RADIOLYMPHIA SHOW GUIDE
Made from solid-drawn high-conductivity copper, BICC earthing rods are specially designed for use with radio and television receivers. Further information, including sizes and construction, is contained in this Publication (No. 243 T). Send for a copy to-day.

BRITISH INSULATED CALLENDER'S CABLES LIMITED
NORFOLK HOUSE, NORFOLK STREET, LONDON, W.C.2
In response to popular request, we are pleased to announce the availability of the following accessories, which provide an inexpensive means of bringing the "Avo" Valve Tester completely up-to-date. Possession of these accessories will, furthermore, render it a simple matter to maintain the "Avo" Valve Tester in a condition capable of testing any new types of valves that may be produced in the future.

ACCESSORIES for the 'AVO' VALVE TESTER

FILAMENT VOLTAGE EXTENSION UNIT

For providing filament voltages of 1.4 to 117 volts for testing valves recently introduced into general use and which are not covered by the original "Avo" Valve Tester.

This unit is plugged in between the Meter panel and the S.S. panel, where it may be left permanently in position regardless of whether the original or the additional heater voltages are being used.

VALVE BASE ADAPTORS

These Adaptors have been specially designed for plugging into the international octal socket of any "Avo" Valve Tester Panel which is fitted with a rotary selector switch. The following types, covering recently introduced valve bases not provided for on the existing Valve Panel, are now available:

- Type No. 1... B7G and B8A.
- Type No. 2... B9G (EF50, etc.).
- Type No. 3... B8B (American Loctal).
- Type No. 4... Hivic Midget 4 and 5-pin and Midget Diode.
- Type No. 5... Blank.

Other types will be made available as required, and Adaptors can also be supplied for any special valve base.
GOODSELL

15-WATT HI-FIDELITY AMPLIFIERS ARE UNSURPASSED IN PERFORMANCE

AS DESCRIBED BY T. D. N. WILLIAMSON IN "WIRELESS WORLD" AUG. 1949.

The fidelity of reproduction given by the Williamson Amplifier is now an accepted standard throughout the world. This high standard is made possible by the following important features.

- Specially designed output transformer.
- Low phase shift.
- Heavy feedback, which includes the output transformer and all the valves.

These features make possible:

- Low linear distortion, with less than 0.1 per cent. harmonic content.
- Low intermodulation distortion.

Our amplifiers are built to strict specification and incorporate only the finest components. After assembly and adjustment by experts they are severely tested to ensure the highest possible standard of performance.

PRICES:

Amplifiers	£19 19 0	No tax.
Pre-Amplifiers	£8 0 0	tax.
Tuners with Pre-Amplifiers	£10 10 0	plus tax.

Send for free illustrated brochure.

Manufactured by GOODSELL LTD, 40 Gardner St, Brighton, Sussex. Telephone: 6735

Easy Terms from LONDON RADIO SUPPLY CO, Balcombe, Sussex.
We Proudly Present

the latest, the loveliest, the teeniest weeniest, our own, our very own Baby Power Screwdriver—M.60. Not much bigger than a fountain pen but what a bundle of energy! There’s going to be a great rush to be godfather to little M.60 and we shall give preference to electrical engineers, watchmakers, chaps now working overtime in optics or indeed anyone who will give him the sort of work he loves. We’ll send you a leaflet about M.60 if you like. And then perhaps you too will be a godfather. Goody goody!

Call up the little horse

THE DESOUTTER MINIATURE SCREWDRIVER weighs 8 ounces. Size: 5½" long by ½" diameter. Capacity: Screws, No. 3 to 10 BA, and equivalent nuts. Operation: The air is automatically switched on when the tool is applied to the head of the screw and pressed on to the work. The tool can quickly be reversed by turning the ring switch fitted in the head of the tool. The impact clutch of new design gives perfect torque selection when used with pressure regulator on the air line.

Write for literature giving much more information.

DESOUTTER
Specialists in Lightweight Pneumatic and Electric Portable Tools.
The Ferranti Neostron is a cold cathode tetrode filled with neon, designed for use as a stroboscopic light source, a flashing indicator, or an electronic relay.

The discharge in the anode is started by initiating a glow discharge between the screen and grid electrodes, the screen being at a fixed positive bias, a negative impulse being applied to the grid.

<table>
<thead>
<tr>
<th>Operating Characteristics</th>
<th>NSP1</th>
<th>NSPT</th>
<th>ASP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Anode Voltage</td>
<td>400</td>
<td>650</td>
<td>400</td>
</tr>
<tr>
<td>Normal Anode Voltage</td>
<td>300</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>Mean Anode Current</td>
<td>40-100* mA</td>
<td>40-100* mA</td>
<td>40-100* mA</td>
</tr>
<tr>
<td>Peak Anode Current</td>
<td>250 Amps.</td>
<td>250 Amps.</td>
<td>250 Amps.</td>
</tr>
<tr>
<td>Anode Connection</td>
<td>in base</td>
<td>Top cap</td>
<td>in base</td>
</tr>
<tr>
<td>Gas Filling</td>
<td>Neon</td>
<td>Neon</td>
<td>Argon</td>
</tr>
</tbody>
</table>

*Dependent upon frequency of operation

All types can be supplied with English 4 pin or American 4 pin bases.
CERAMICS

FOR SWITCHES
and all radio components
FREQUENTITE-FARADEX-TEMPRADEX

STEATITE & PORCELAIN PRODUCTS LTD.
Stourport on Severn, Worcester Telephone: Stourport 3
Telegrams: Steatain, Stourport
OSRAM VALVES FOR AC OPERATION

Left to right are the X61M, W61, DH63, Y61, KT61, and U30. All types are octal based.

THE POWER IN THE PACKAGE

THE GENERAL ELECTRIC CO. LTD., MAGNET HOUSE, KINGSWAY, W.C.2

and more service behind the sales.

The G.E.C. Osram Valve Book O.V.2 deals fully and authoritatively with the Octal range of valves used in standard radio receivers designed for AC operation. Data, characteristics, circuit diagrams and component values are included.

COPIES FOR FREE DISTRIBUTION

BE FIRST and benefit most. Supplies are limited so send for yours TODAY to Osram Valve Technical Dept., Magnet House, Kingsway, London, W.C.2.
PUT THEM ON RECORD SPEECHES • LECTURES
MEETINGS • SOCIAL FUNCTIONS • CONCERTS
WITH THE E.M.I. PORTABLE RECORDER

Produced by E.M.I. technicians with 50 years' experience in recording equipment this new E.M.I. Portable Recorder is a remarkable technical achievement. Here in transportable form is a complete recording and play-back equipment designed to produce high quality recordings on lacquer blanks without demanding expert knowledge of recording technique. Operation is extremely easy and the equipment which is contained in three transportable cases will operate on 200/250 volts 50 cycle A.C. mains supply or from a Car Battery and converter.

The lacquer recording blanks from 6" to 13" diameter are ready for play-back immediately after cutting. Facilities for play-back and for sound amplification form an integral part of the Recorder.

Microphone. High performance ribbon type designed to exacting professional standards and having a frequency response uniform within ± 2 dB from 30-10,000 c.p.s. It is free from distortion even at extremely high levels of sound. The matching impedance is 20 ohms.

4 Stage Amplifier. Flat response from 50-10,000 c.p.s. with "push-pull" output of 8 watts.

Turntable. Band driven 18 lbs. balanced turntable powered by 1/20 h.p. motor specially mounted to give freedom from vibration. Speed 78 r.p.m.

Recording Head. Moving Iron type used in conjunction with a specially matched equaliser. The depth of cut can be adjusted for various types of lacquer blanks and cutting stylus.

Loudspeaker Unit. Houses the Microphone and connecting cables. The Loudspeaker is of the 10" elliptical permanent magnet, wide range, high quality type. Impedance 5 ohms at 1,000 cycles.

A descriptive leaflet giving full details of the equipment and Recording Blanks is available on request.

E.M.I. SALES & SERVICE LTD. HEAD OFFICE • HAYES • MIDDLESEX

NINE EXAMPLES

from the
"FLEXILANT"
(RUBBER BONDED TO METAL)

RANGE OF MOUNTINGS

* OBTAINABLE FROM STOCK

OUR TECHNICAL STAFF investigates all mounting problems
May it investigate yours?

RUBBER BONDERS LIMITED
ENGINEERS IN RUBBER BONDED TO METAL
FLEXILANT WORKS
DUNSTABLE \ BEDS.
TELEPHONE DUNSTABLE 80545
INSIDE INFORMATION

about the switch that is superior

We agree that there are cheaper 3 amp. toggle switches than the Cutler-Hammer types made by British N.S.F. — but there are none better. If super-reliability is the yardstick by which you choose a switch then this is the switch for you.

NOTE THESE
C-H FEATURES

- Quick make and break mechanism.
- Self-aligning "wiping" moving contact.
- Spring-leaf fixed contacts.
- Long coil spring.
- One-piece moulded case.
- Welded terminal plates.
- Isolated toggle lever.
- Insulated terminal bridge.

Nominal rating 3 amps, 250 volts — suitable for A.C. and D.C. service. Available in a wide range of single and double pole types operated by lever, plunger, slider or trigger, with screw or solder-lug terminals. Enquiries invited.

Other British N.S.F. products include:
Carbon and wire-wound potentiometers; Paper tubular capacitors; Wire-wound resistors.

BRITISH N·S·F CO. LTD
KEIGHLEY - YORKS

Phone : Keighley 4221/5. Grams : ENESEF, Keighley.
LONDON OFFICE : 9 Stratford Place, W.1. Phone : Mayfair 4234.
Licensees of Igranic Electric Co. Ltd, for the above products of Cutler-Hammer Inc. Milwaukee, U.S.A.
THE NEW PREMIER TABLEGRAM, a modern Tablegram, incorporating many new features, covers Medium and Long wavebands, and is compact and durable. It is designed for home or office use. It is also suitable for use in schools and educational establishments.

PREMIER MIDGET DIRECT RADIO RECEIVER. Due to the greatly increased production, we are now able to offer this receiver at a greatly reduced price. The receiver is housed in a very attractive plastic case, 11" long, 5" across, 5" high. The tuning is by means of a high-quality, dual-magnet, 5727-C. A Selenium Rectifier in the A.C. model and a 6K7, 266A and Selenium Rectifier in the D.C. model. Both are for use on 230 or 250 volt mains. The dials are illuminated, and the receiver presents a very attractive appearance. Complete kit of parts for the medium and four waves. **PRICE £6 15s.**

COMPLETE KIT of parts with diagrams, £6 6s.

PURCHASE TAX.

Wireless World October, 1949

207, EDGWARE ROAD, W.2
Phone : AMBassador 4033

EDGWARE ROAD IS OPEN UNTIL 6 p.m. ON SATURDAYS

BRANCHES

207, EDGWARE ROAD, W.2
Phone : AMBassador 4033

All POST ORDERS to 167, LOWER CLAPTON ROAD, LONDON, E.5.
Phone : AMHerst 4723

Terms of Business : Cash with order or C.O.D. over £1.

Send 2d. Stamps for list

207, EDGWARE ROAD, W.2
Phone : AMBassador 4033

Bнская

EMPIRE RADIO COMPANY

MORRIS & CO. (RAO) LTD

207, EDGWARE ROAD, W.2
Phone : AMBassador 4033

All POST ORDERS to 167, LOWER CLAPTON ROAD, LONDON, E.5.
Phone : AMHerst 4723

Terms of Business : Cash with order or C.O.D. over £1.

Send 2d. Stamps for list

EDGWARE ROAD IS OPEN UNTIL 6 p.m. ON SATURDAYS

207, EDGWARE ROAD, W.2
Phone : AMBassador 4033

All POST ORDERS to 167, LOWER CLAPTON ROAD, LONDON, E.5.
Phone : AMHerst 4723

Terms of Business : Cash with order or C.O.D. over £1.

Send 2d. Stamps for list

EDGWARE ROAD IS OPEN UNTIL 6 p.m. ON SATURDAYS

207, EDGWARE ROAD, W.2
Phone : AMBassador 4033

All POST ORDERS to 167, LOWER CLAPTON ROAD, LONDON, E.5.
Phone : AMHerst 4723

Terms of Business : Cash with order or C.O.D. over £1.

Send 2d. Stamps for list

EDGWARE ROAD IS OPEN UNTIL 6 p.m. ON SATURDAYS

207, EDGWARE ROAD, W.2
Phone : AMBassador 4033

All POST ORDERS to 167, LOWER CLAPTON ROAD, LONDON, E.5.
Phone : AMHerst 4723

Terms of Business : Cash with order or C.O.D. over £1.

Send 2d. Stamps for list

EDGWARE ROAD IS OPEN UNTIL 6 p.m. ON SATURDAYS

207, EDGWARE ROAD, W.2
Phone : AMBassador 4033

All POST ORDERS to 167, LOWER CLAPTON ROAD, LONDON, E.5.
Phone : AMHerst 4723

Terms of Business : Cash with order or C.O.D. over £1.

Send 2d. Stamps for list

EDGWARE ROAD IS OPEN UNTIL 6 p.m. ON SATURDAYS
You can build a commercial looking and working

TELEVISOR WITH PREMIER KITS FOR £17.17.0

This Receiver consists of 4 units:
The Sound Receiver, Vision Receiver, Time Base and Power Pack. As is usual in all Premier Kits, every single item down to the last bolt and nut is supplied. All chassis are punched and layout diagrams and theoretical circuits are included.

The cost of the Kits of Parts is as follows:
- Vision Receiver with valves £3 13 6
 Carriage 2 6
- Sound Receiver with valves £2 14 6
 Carriage 2 6
- Time Base with valves £2 7 6
 Carriage 2 6
- Power Supply Unit with valves £6 3 0
 Carriage 5 0

In addition, you will need:
- VCR97 Cathode Ray Tube £1 15 0
 Carriage 1 6
- Set of Tube Fittings and Socket 7 0
 Carriage 6d.
- 6in. PM Moving Coil Speaker 16 6
 Carriage 6d.

A well-made pedestal cabinet in walnut is available at £5 10 - plus 10 - packing and carriage.

The Instruction Book costs 2 6, but is credited if a Kit for the complete Televisor is purchased.

Any of these Kits may be purchased separately; in fact any single part can be supplied. A complete priced list of all parts will be found in the Instruction Book.

A GLANCE AT THE PRICES WILL SHOW THAT THIS IS THE GREATEST VALUE OFFER PREMIER HAVE EVER MADE

WORKING MODELS CAN BE SEEN DURING TRANSMITTING HOURS AT OUR FLEET STREET AND EDGWARE ROAD BRANCHES.

--152-153, FLEET STREET, E.C.4 Phone: CENtral 2833
All POST ORDERS to 167, LOWER CLAPTON ROAD, LONDON, E.5. Phone: AMHerst 4723

Terms of Business: Cash with order or C.O.D. over £1. Send 2d. Stamp for list.

EDGWARE ROAD IS OPEN UNTIL 6 p.m. ON SATURDAYS
Originally styled for service in the front line, this mobile Marconi Signal Generator has proved itself supremely adaptable. Light and compact as an attaché case it is mains operated ordinarily but independent of power supplies when fitted with its special battery unit. Technically a triumph of ingenuity, it combines in so small a compass a SIGNAL GENERATOR with wide frequency coverage—70 kc/s to 70 Mc/s—OUTPUT POWER METER, up to 1 W with impedance matching — and CRYSTAL CALIBRATOR accuracy 2 parts in 10⁴. Accuracy of output and frequency calibration is above the average for so moderately priced an instrument. Please ask for further particulars of:

The Portable Receiver Tester Type TF888
MARCONI INSTRUMENTS LTD.
ST. ALBANS, HERTS. Telephone: St. Albans 6161/5

Exide and Drydex LOW TENSION ACCUMULATORS HIGH TENSION BATTERIES for better battery radio reception

ISSUED BY THE CHLORIDE ELECTRICAL STORAGE COMPANY LIMITED
Make sure of getting your copy of the

EDISWAN

MAZDA

VALVE MANUAL

This handy pocket-sized booklet contains 240 pages of valuable information for all Radio Engineers and designers. Divided into five sections covering Receiving, Transmitting, Industrial and Special Purpose Valves, and Cathode Ray Tubes, it contains ratings, characteristic curves, basings and typical operating conditions of a large number of Ediswan Mazda valves in those groups.

In addition, there are a number of outline drawings and typical circuits and some useful notes on valve symbols. Priced at a nominal figure, it is excellent value. Send Postal Order 1/4 (which includes postage and packing) for your copy now.

This booklet is a condensed version of the Ediswan Loose-leaf Valve Manual.

Address your envelope to the Technical Publications Department.

THE EDISON SWAN ELECTRIC CO. LTD., 155 CHARING CROSS ROAD, LONDON, W.C.2
Success through constant research—can we help you?

LOW LOSS CERAMICS

by

TAYLOR TUNNICLIFF

TAYLOR TUNNICLIFF (REFRACTORIES) LTD.,
Albion Works, Longton, Stoke-on-Trent, Staffs.
Phones: Stoke-on-Trent 5272 & Holborn 191112.

TELCON METALS
are used extensively for
RADIO & TELEVISION COMPONENTS

The value of MUMETAL for magnetic screening is well appreciated and shields for cathode ray tubes, transformers and other devices susceptible to stray magnetic fields are made in large quantities. Apart from producing a range of MUMETAL SCREENS for all normal applications, we undertake the manufacture of special screens, either in the form of DEEP DRAWN CANS for large quantity production, or hand fabricated assemblies for the shielding of apparatus of complicated shape. Whether the screening reduction is to be 10 dB, or 100 dB, we can offer a solution, and the services of our technicians are always available. A list of standard sizes of screens will be sent on request. We also manufacture RADIOMETAL, RHOMETAL, H.C.R. ALLOY, TELCON BIMETAL, TELCON BRONZE (Beryllium - Copper), TELCUMAN and TELCOSEAL GLASS SEALING ALLOYS.

Meet us at Radiolympia Stand 30

THE TELEGRAPH CONSTRUCTION & MAINTENANCE CO. LTD.
Head Office: 22 OLD BROAD ST., LONDON, E.C.2. Tel.: LONDON Wall 3141
Enquiries to: TELCON WORKS, GREENWICH, S.E.10. Tel.: GREENwich 3291
NEW LEAK "POINT ONE" AMPLIFIERS

REMOTE CONTROL PRE-AMPLIFIER RC/PA

£6 - 15 - 0 list.

An original feedback tone-control circuit which will become a standard.

No resonant circuits employed.

- Distortion: Less than 0.05%.
- Switching for Pick-up, Microphone and Radio, with automatic alteration of tone-control characteristics.
- High sensitivities. Will operate from any moving-coil, moving iron or crystal P.-U.; from any moving-coil microphone; from any radio unit.
- Controls: Input Selector; Bass Gain and Loss; Treble Gain and Loss; Volume.

Output Impedance: 0-30,000Ω at 20 kc.p.s.

The unit will mount on motor-board through a cut-out of 10\(\times\)3\(\frac{1}{2}\)in., or it can be bolted to the power amplifier, when, with a top cover, the whole assembly becomes portable.

For use only with LEAK amplifiers.

Used with the RC/PA pre-amplifier and the best complementary equipment theTL/12 power amplifier gives to the music-lover a quality of reproduction unsurpassed by any equipment at any price. It is designed in a form so that the power amplifier can be housed in the base of a cabinet and the small pre-amplifier mounted in a position best suited to the user.

- A Leak triple loop feedback circuit, the main loop giving 26 db. feedback over 3 stages and the output transformer.
- Push-pull triode output stage. 400 V. on anodes.
- No H.T. electrolytic smoothing or decoupling condensers.
- Impregnated transformers; tropically finished components.
- H.T. and L.T., supplies for pre-amp. and radio units.
- Distortion: at 1,000 c/s and 10 W. output, 0.15% ; at 60 c/s and 10 W., output, 0.15% ; at 40 c/s and 10 W. output 0.20%.
- Hum and Noise: -90 db. on 10 W.
- Frequency response: ± 0.1 db., 20 c/s-20 kc/s.
- Sensitivity: 100 mV.
- Damping Factor: 20. Input impedance: 1 MΩ.
- Output impedances: 2Ω; 7-9Ω; 15-20Ω; 28-36Ω.

25 W. model available at £27.10.0.

WRITE FOR BOOKLET W TL 12

H. J. LEAK & CO. LTD. (Est. 1934)
BRUNEL ROAD, WESTWAY FACTORY ESTATE, ACTON, W.3.

FULLY DETAILED LIST OF "WILLIAMSON" COMPONENTS

SENT FREE ON REQUEST

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partridge Mains Transformer</td>
<td>£4.80</td>
</tr>
<tr>
<td>Partridge Mains Transformer (de luxe model)</td>
<td>£4.18</td>
</tr>
<tr>
<td>Webb's Mains Transformer</td>
<td>£3.06</td>
</tr>
<tr>
<td>Partridge 30H 20 m/A Choke</td>
<td>16.0</td>
</tr>
<tr>
<td>Webb's 30 H 20 m/A Shrouded</td>
<td>16.0</td>
</tr>
<tr>
<td>Partridge 10 H 150 m/A Choke</td>
<td>£1.11</td>
</tr>
<tr>
<td>Webb's 10 H 150 m/A Shrouded</td>
<td>£1.16</td>
</tr>
<tr>
<td>Partridge Output Transformer</td>
<td>£5.00</td>
</tr>
<tr>
<td>Partridge Output Transformer (de luxe model)</td>
<td>£5.13</td>
</tr>
<tr>
<td>Wooden Output Transformer</td>
<td>£4.26</td>
</tr>
</tbody>
</table>

TELEVISION designs by the score!

It is no economy to buy the cheapest components, and then have to spend months "frigging about" after construction. If you want designs capable of producing pictures as good, if not better, than commercial televisions, use WEBB'S SPECIFIED COMPONENTS and build the "Wireless World" or "Electronic Engineering" circuits. Also remember WEBB'S FREE TECHNICAL ASSISTANCE—we will gladly answer your queries and help smooth any "snags." Ask for WEBB'S "TELEVISION PRICE LIST"—FREE. (Covers both Birmingham and London details). Play safe and use only specified components backed by WEBB'S GUARANTEE.

Test Instruments from stock

<table>
<thead>
<tr>
<th>Instrument Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor Signal Generator "65C"</td>
<td>£17.15</td>
</tr>
<tr>
<td>Avo Signal Generator</td>
<td>£4.25</td>
</tr>
<tr>
<td>Advance Signal Generator "E2"</td>
<td>£3.10</td>
</tr>
<tr>
<td>Avo Valve Characteristic Meter</td>
<td>£4.00</td>
</tr>
</tbody>
</table>

Phone: GERRard 2089. Shop Hours: 9 a.m.—5.30 p.m. Sat. 9 a.m.—1 p.m.
Popular Models
from a
FAMOUS RANGE

SIGNAL GENERATOR, MODEL 65B
For testing audio receivers and for tuning and alignment adjustments on tuned circuits. Mains operated. Frequency range: 50 kc/s to 50 Mc/s. Power consumption approximately 15 watts. A 500-cycle audio signal available for testing audio amplifiers.

PRICE £17. 10. 0.
R.P. terms: £2 6s. Od. deposit and 10 monthly payments of £1 6s. 4d.

CIRCUIT ANALYSER, MODEL 20A
For checking on receivers, radiograms, audio and radio frequency amplifiers. Incorporates a "Magic Eye" indicator and an audio amplifier and loudspeaker. Units can be used independently.

PRICE £15. 15. 0.
R.P. terms: £2 7s. 6d. deposit and 10 monthly payments of £1 10s. 3d.

UNIVERSAL TAYLOR-METER, MODEL 75A
This instrument has a sensitivity of 20,000 ohms per volt on both D.C. and A.C. 50 ranges cover all A.C., D.C. and resistance measurements.

PRICE £14. 0. 0.
R.P. terms: £2 2s. 0d. deposit and 10 monthly payments of £1 6s. 4d.

CATHODE RAY OSCILLOGRAPH, MODEL 30A
This oscillograph incorporates a 3½" electrostatic tube operating from A.C. mains; power consumption 20 watts; provision made for a time base generator, a vertical amplifier and external coupling to both sets of deflection plates.

PRICE £23. 10. 0.
R.P. terms: £4 8s. 0d. deposit and 10 monthly payments of £2 10s. 5d.

VALVE TESTER AND UNIVERSAL METER
MODEL 47A
Similar to Model 45A, but an extra panel has been fitted at the bottom enabling the meter to be used for measurements of A.C. and D.C. volts, D.C. current and ohms.

PRICE £27. 0. 0.
R.P. terms: £4 1s. 9d. deposit and 10 monthly payments of £2 11s. 6d.

VALVE TESTER, MODEL 45A
Available as bench or portable instrument giving correct measurements for the mutual conductance of amplifying valves. Sixteen valve holders supplied with each instrument. Bench instrument shown is housed in a steel case; portable is supplied in a strong oak case.

PRICE £22. 0. 0.
R.P. terms: £3 6s. 0d. deposit and 10 monthly payments of £2 2s. 0d.

IMMEDIATE DELIVERY ON ALL THE ABOVE MODELS

Further information gladly supplied on request
Model \textit{849 T.R.}\hfill
For the Home buyer (illustrated) an eight valve AC DC superhet with three wavebands S.W. 13-50 metres, M.W. 175-550 metres, L.W. 900-2,000 metres. Average sensitivity better than 10 microvolts.
Other details as for 949 T.R.

\textit{£31 Tax Paid}

Model \textit{949 T.R.}\hfill
For the Overseas buyer a nine valve 6 Band AC or AC+DC superhet with R.F. stage and push-pull output. Twin speakers, Tuning Indicator, continuous bandspread between 10.5 and 32 metres over 44" of scale length. Separate Bass and Treble controls. S.W. sensitivity better than 5 microvolts.

\textit{Made in England}
\textit{AMBASSADOR RADIO, BRIGHOUSE, YORKS}

\textbf{THE COMPLETE SERVICE FOR SOUND RECORDING AND REPRODUCTION}

- Mobile, static and specialised recording units
- Recording amplifiers, speakers, microphones, etc.
- Sapphire cutting and reproducing stylii
- Blank recording discs from \textit{S} in. to 1\textit{1} in. Single and Double sided
- Groove locating and cueing device
- A comprehensive range of accessories to meet every requirement of the sound recording engineer
- A development of special interest to users of sapphire and delicate pick-ups—THE SIMITROL. This is a controlled micro-movement easily fitted for use with any type of pick-up

\textbf{OUR CDR49A RECORDER UNIT complete and self-contained, measuring only 22in. x 14in. x 13\textit{1}/\textit{2}in., incorporating 8-valve amplifier, recorder unit, lightweight pick-up, speaker and microphone and with many exclusive features, is now ready for early delivery}

\textbf{OUR WELL-EQUIPPED WORKSHOPS ARE AVAILABLE FOR THE DEVELOPMENT OF EQUIPMENT TO MEET SPECIAL NEEDS.}

\textbf{SIMON SOUND SERVICE, Recorder House, 48/50, George St., Portman Square, London, W.1.}

Typical rectifier for use in A.C. or A.C./D.C. receivers.

Type 36EHT rectifier. Two such units only 2½" long by ¾" dia. will give an output of 5.3kV.

"Westeht" E.H.T. supply unit. 5kV output from a 350-0-350 A.C. input.

STAND 177

- **H.T. & E.H.T.** for radio, television and electronic apparatus
- **H.T., L.T. & G.B.** for radio transmitters
- **E.H.T.** from standard mains transformers or from line flyback transformer
- **A.C. VOLTAGE STABILISERS**
- **BATTERY CHARGERS**
- **SPARK SUPPRESSION**

WESTINGHOUSE

WESTALITE METAL RECTIFIERS

WESTINGHOUSE BRAKE & SIGNAL CO., LTD., 82, York Way, King's Cross, London, N.1
The Revolutionary
GOLDRING
Headmaster
HYPERFIDELITY
PICK-UP

With an Interchangeable Pick-up Head for every type of Record

TONE CONTROL AND BASS EQUALISER

DESIGNED BY ENTHUSIASTS who know that low surface noise and absence of distortion are as important as wide frequency range. APPROVED BY EXPERTS who recognize that this is the best, as well as the cheapest LIGHT-WEIGHT PICK-UP in the world.

OUTSTANDING FEATURES INCLUDE:

- Resonance free response over the entire audible range.
- Needle pressure of less than twenty grams and very free armature movement for minimum record wear.
- Three-Point Tonaliser compensates for different record characteristics.
- Low surface noise and absence of distortion with even the most difficult records.

Only with the "Headmaster" can you choose the right point to fit the groove every time.

RADIOLYMPIA STAND No. 97

Write for full technical information to:

ERWIN SCHARF,
49-51a DE BEAUVOIR RD., LONDON, N.1
Telephone: CLIssold 3434

Price complete
£6 10 6
Tax Paid
Replacement Heads
£1 1 6
Tax Paid

MAGNAVISTA Magnification
is Television Perfection

METRO PEX LTD
38, Gt. Portland St., London, W.1
("Phone: Museum 9024-5")

SEE FOR YOURSELF WHAT A DIFFERENCE IT MAKES

You are Cordially Invited to the Demonstration on STAND 10 (GRAND HALL) RADIOLYMPIA

where you can see for yourself the high magnification, freedom from distortion, amazing clarity and wide angle of view secured with a Magnavista Lens. If you cannot visit the show write today for details.
For all
Sound Recording
and Reproducing

Here, in one compact, good-looking instrument is a complete
sound recording and reproducing unit.

Using reels of inexpensive magnetic tape, the versatile
SOUNDMIRROR records and plays back with lifelike fidelity,
speech, music and all other sounds audible to the human ear.
Brilliantly conceived, perfectly engineered, the SOUND-
MIRROR is the triumphant outcome of extensive research in
the science of magnetic electronics.

Each SOUNDMIRROR reel gives a full half-hour’s recording.
Short recordings can be cut and spliced together. Recordings
can be retained permanently or, if desired, old items can be
completely erased when new recordings are made.

SOUNDMIRROR built-in jacks permit the instrument to be
linked up with radio or public address systems.
SOUNDMIRROR is simple to operate. Single finger tip
control provides for play, record, fast rewind or fast forward
requirements.

Made in England. Protected by British and Foreign
Patents and Patents pending.

THERMIONIC PRODUCTS LTD. LEADERS IN THE FIELD OF
MAGNETIC RECORDING
Head Office: Morris House, Jermyn Street, Haymarket, S.W.1.
Telephone: Whitehall 6422
Sales and Service centres at Manchester, Birmingham, Bristol, etc.
Damp, the insidious and invisible enemy of all stored transformers, chokes and other electrical components, cannot be detected by the normal high voltage insulation test without risking the destruction of the components. Damp undetected by test is a frequent cause of breakdown in service.

The AIRMEC Ionisation Voltage Tester will indicate non-destructively the presence of ionisation due to damp or other causes. It provides an adjustable test voltage up to 5kV and gives visual and aural indication.

It is portable, safe, requires no special skill to operate and is low in cost.

AIRMEC LABORATORIES LTD • HIGH WYCOMBE • BUCKINGHAMSHIRE • ENGLAND
Telephone: High Wycombe 2060 Cables: Commlabs
WILCOX ...First Choice for Transatlantic Airline Communication

The whirling propellers of the international airlines make daily mockery of the vast space of the Atlantic Ocean. Intercontinental passengers and cargo come and go hourly at New York, Miami, Gander, Shannon, Ireland, and Lisbon, Portugal. These European and American airports are equipped with modern long-range, multichannel WILCOX Transmitters.

Oslo, Norway, and Stockholm, Sweden, use WILCOX Transmitters as basic communications equipment, and radio beacon service is provided at Reykjavik, Iceland, by WILCOX Type 96-200 Transmitters.

Thus, the giant airliners of the world's major airways are protected in flight and guided safely to the runways of Europe's and America's principal ports of entry.

WRITE TODAY...for complete information on air-borne, ground station, point-to-point, or shore-to-ship communications equipment.

WILCOX ELECTRIC COMPANY
KANSAS CITY
MISSOURI
Made in Three Principal Materials

FREQUELEX
An insulating material of Low Dielectric Loss, for Coil Formers, Aerial Insulators, Valve Holders, etc.

PERMALEX
A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLEX
A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.
The New WESTON S75 Multi-Range Test Set

53 Ranges with Rotary Switch Selection

This new and uniquely comprehensive Test Set has 53 ranges for measuring AC and DC current and voltage, resistance and insulation. It is completely self-contained, with internal batteries to provide power for the ohms ranges and self-contained power pack for insulation measurement at 500 V. Selection is carried out by two 20-position switches. A fully protective safety device is fitted and is operative for forward or reverse overload. The 150-division 6" scale is uniformly divided and is fitted with an anti-parallax mirror. The set is enclosed in a handsome bakelite case and fully complies with B.S.S. No. 89 covering first-grade instruments. Full details of the ranges covered and of the complete specification will gladly be supplied on request. **Price £65**

SANGAMO WESTON LIMITED
ENFIELD • MIDDX • Tel.: Enfield 3434 (6 lines) and 1242 (4 lines)

201 St. Vincent Street, Glasgow
Tel.: Central 6208

Milburn House,
Newcastle-on-Tyne
Tel.: Newcastle 26367

22 Booth Street,
Manchester
Tel.: Central 7904

33 Princess Street,
Wolverhampton
Tel.: Wolverhampton 21012

We are exhibiting at Radiolympia — Stand No. 219 Grand Hall Annexe
INTRODUCING THE R22/12, 20-WATT, 12" P.M. LOUDSPEAKER

MORE POWER—STILL GREATER EFFICIENCY—
the ultimate development of the famous T2.

Available with two types of Cones:—
CONE TYPE “1205”
Fundamental Resonance 75 c.p.s.
(Designed for PUBLIC ADDRESS)
CONE TYPE “1206”
Fundamental Resonance 55 c.p.s.
(Designed for BASS REPRODUCTION)

Write for descriptive leaflet D.109.

GOODMANS INDUSTRIES LTD.
Lancelot Rd., Wembley, Middx.

FULLY DUSTPROOF
Meet us at Radiolympia—Stand No. 6

ICS

HOME STUDY
backs radio experience with
sound technical knowledge

MANY men who wished to link their radio experience with a sound technical background have received successful instruction by means of an ICS Course. Its value has been proved not only to amateurs but to men who already have a professional interest in radio and television engineering, including those taking qualifying examinations. It is invaluable, also, to students who wish to prepare themselves for a job in this field. Courses of instruction covering radio and, if necessary, television include the following:

Complete Radio Engineering Radio Service Engineers
Radio Service and Sales Advanced Short-Wave Radio
Elementary Electronics, Radar and Radio
Television Technology

And the following Radio Examinations:

British Institution of Radio Engineers
P.M.G. Certificates for Wireless Operators
City and Guilds Telecommunications
Wireless Operators and Wireless Mechanics, R.A.F.

Write today for our FREE "Radio" booklet which fully describes the above ICS Courses and the facilities for the complete study of Radio and/or Television technology. The ICS Advisory Department will also give free and impartial advice on need and means of instruction.

International CORRESPONDENCE SCHOOLS

FOR QUICK DELIVERY
AT REASONABLE PRICES
OF RADIO & ELECTRONIC PRODUCTS
(Wholesale Only)

Write or phone:—

S. Szymanski
(pronounced SHE-MAN-SKEE)

ELECTRONIC ENGINEER & STOCKIST
95 STRODES CRESCENT
STAINES, MIDDLESEX

VALVES are our speciality—Probably the Largest Actual Stockist in England

EXPORT ENQUIRIES WELCOMED
METAL DETECTION EQUIPMENT

provides an additional safeguard for the quality of the product and eliminates the risk of fire and damage to machinery by tramp metal.

Typical installations of the
'CINTEL' INDUSTRIAL ELECTRONIC METAL DETECTOR

Chocolate Coated Biscuits

Dried Fruits

Chocolate Bars

Toilet Requisites

Raw Rubber

Packaged Confectionery

Applications in other industries including Plastics, Tobacco, Textiles, Insulating materials, Limestone, Sugar cane crushing, etc.

The 'Cintel' Industrial Electronic Metal Detector has been specially designed to provide permanent inspection facilities with the minimum of attention. Fully automatic in operation, the equipment removes the risk of error that may be present with visual inspection and detects both ferrous and non-ferrous metal inclusions.

CINEMA TELEVISION LIMITED
WORSLEY BRIDGE ROAD, LONDON, S.E.26
Telephone: HlTher Green 4600
Moulded in PHENOL-FORMALDEHYDE. Also moulded in SILICA-LOADED POLYSTYRENE. For special low loss applications at audio frequencies.

THE McMURDO INSTRUMENT CO., LTD., VICTORIA WORKS, ASHTEAD, SURREY ASHTEAD 3041

POTENTIOMETER

This wire-wound linear law potentiometer is available in a number of resistance values.

- **CONSTRUCTION.** A moulded body carries the spindle, fixing bush, potential brush and connection tags.
- **RESISTANCE.** This is wire wound on a flat strip and fitted after winding to the moulded body.
- **BRUSH.** A well-sprung and insulated brush gives good contact and smooth action under all working conditions.
- **RESISTANCE VALUES.** Standard values available from 10 ohms up to 50,000 ohms
- **WATTAGE.** The maximum dissipation over the whole resistance is 5 watts continuous.
- **FIXING.** A bush is provided for one-hole fixing on panels up to 1/4 in. thick.

TAYLOR ELECTRICAL INSTRUMENTS LTD
419-424 MONTROSE AVENUE, SLOUGH, BUCKS, ENGLAND
Telephone SLOUGH 21381 (4 lines) • Grams & Cables TAYLINS, SLOUGH

TELEVISION COMPONENTS
AVAILABLE FROM STOCK

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferranti C.R.T., 12in., Flat Face</td>
<td>£15 2 5</td>
</tr>
<tr>
<td>Mazda C.R.T., 12in., CRM121, Round Face</td>
<td>£15 2 5</td>
</tr>
<tr>
<td>Mazda C.R.T., 9in., CRM92, Round Face</td>
<td>£11 6 9</td>
</tr>
<tr>
<td>G.E.C. C.R.T., 9in., 6501, Flat Face</td>
<td>£11 6 9</td>
</tr>
<tr>
<td>Rubber Mask (Sorbo) for 9in. tubes</td>
<td>£4 6 6</td>
</tr>
<tr>
<td>Rubber Mask, black, for 9in. tubes</td>
<td>£9 6 6</td>
</tr>
<tr>
<td>Rubber Mask, white, for 9in. tubes</td>
<td>£11 3 3</td>
</tr>
<tr>
<td>Rubber Mask, black, for 12in. tubes</td>
<td>£18 0 0</td>
</tr>
<tr>
<td>Rubber Mask, white, for 12in. tubes</td>
<td>£1 1 6 6</td>
</tr>
<tr>
<td>Scanco Scanning Coils</td>
<td>£5 1 6 6</td>
</tr>
<tr>
<td>Scanco Focus Coils</td>
<td>£10 0 0 0</td>
</tr>
<tr>
<td>Scanco Line Output Trans.</td>
<td>£2 8 0 0</td>
</tr>
<tr>
<td>Scanco 4 kV. E.H.T. Transformer</td>
<td>£3 0 0 0 0</td>
</tr>
<tr>
<td>Scanco 5 kV. E.H.T. Transformer</td>
<td>£3 1 0 4 4</td>
</tr>
<tr>
<td>Haynes Scanning Coils</td>
<td>£18 3 3 3</td>
</tr>
<tr>
<td>Haynes Focus Coils</td>
<td>£16 3 3 3</td>
</tr>
<tr>
<td>Haynes Line Output Trans.</td>
<td>£16 0 0</td>
</tr>
<tr>
<td>Haynes 4 kV. E.H.T. Transformer</td>
<td>£3 0 0 0 0</td>
</tr>
</tbody>
</table>

We can also supply from stock all the subsidiary components for a "Home built television receiver."

Send for complete price list of components as specified for use in a receiver for the Birmingham transmissions. Please include sufficient for postage and packing.

Shop Hours: Monday—Saturday, 9 a.m. —5.30 p.m. Thursday, 9 a.m.—1 p.m.

TELE-RADIO (1943) LTD.
177, EDGWARE RD., LONDON, W.2
Phone: AMB. 5393. PAD. 6116, 5606
If you have a problem of sound reproduction and distribution, you will find the solution with one or a combination of the quality units in the VITAVOX range. From a 12" cone type loudspeaker to a huge industrial, theatre or stadium sound system, VITAVOX can supply your individual need. Each unit has been specially designed to solve a specific sound problem. Thousands of VITAVOX loudspeakers, microphones, units and horns are now in use in the motion picture, public address and radio industries. Remember—if your problems are sound—VITAVOX have the answer. Illustrated above are:

- A typical installation of Vitavox 75" Circular Horns.
- Console Reproducer. Model KC.10.
- Bitone Reproducer. Model 6201.
- 15" Cone Loudspeaker. Model K15/40.
- Multicell Horns: Type 220. In 3, 6, 10 and 15 cell units.
- G.P.1 Pressure Unit.
- 12" Cone Loudspeaker: Models K12/10 K12/20.
- Beam Projector Loudspeakers Model B.P.28.
- Microphone. Type B50. (Hand held model).

Write for full details of any or all the Vitavox range.

VITAVOX LIMITED
WESTMORLAND ROAD · LONDON · N.W.9 · ENGLAND · TELEPHONE: COLINDALE 8671/3
TELEGRAMS: VITAVOX · HYDE · LONDON · CABLEGRAMS: VITAVOX · LONDON
Wireless World October, 1949

See the

EDDYSTONE '680'
COMMUNICATIONS RECEIVER

ON STAND NO. 182 AT RADIOLYMPIA NATIONAL HALL

Here is your opportunity to make first-hand acquaintance with the Eddystone '680' Communications Receiver that has aroused so much interested attention among the more seriously-minded in the world of wireless. The '680' is a fifteen valve superheterodyne receiver embodying advanced technique. Among its special features are included: continuous coverage from 30 Mc/s to 480 K/cs, two R.F. stages, two I.F. stages, crystal filter, B.F.O., push-pull output stage, variable selectivity, 'S' meter, noise limiter, standby switch, stabilised H.T. voltage to oscillator, provision for relay operation of transmitter, high signal-to-noise ratio and sensitivity, highly attenuated image response, very effective A.V.C., provision for twin feeder and single aerial, modern miniature all-glass valves, mechanical bandspread logging device. Available for rack mounting.

The complete frequency range is covered by five switched coil assemblies with an overlap between each. The gear-driven, flywheel controlled mechanism is positive, free from backlash and very smooth in action. The mechanical bandspread device takes the form of an auxiliary dial and gives a scale length equal to ninety inches per range. The dial can be read to one degree. I.F. transformers are permeability tuned to 450 Kcs. Operates from A.C. mains 110 and 200/240 volts, 40/60 cycles. The front panel and tuner unit chassis are aluminium, and the remaining units of stout brass, heavily nickel-plated. Lift up lid. The cabinet and front panel are finished a handsome ripple black, set off by plated handles. The finger plate is black and silver. 16½in. x 13½in. x 8½in. high. Weight 51 lbs.

LIST PRICE IN U.K. £15 (No Purchase Tax)

Manufacturers:

STRATTON & Co., Ltd., West Heath, Birmingham 31 Cables: STRATNOID, BIRMINGHAM

.... concerning BAFFLETTE!
Trade Mark

These reasonably priced Extension Speakers, which are available at most good shops, will be displayed attractively at the inspiring radio exhibition of 1949.

Radiolympia
Stand No. 49 Grand Hall

Ask your dealer for the free Richard Allan booklet—16 pages telling all about the magnificent range of speakers which in their price field cannot be equalled. Insist on Bafflette—the extension speaker you will be proud to possess.

Made and Guaranteed by
Richard Allan Ltd
Now at BAFFLETTE HOUSE, BATLEY, YORKSHIRE

Stars for Sale!

IT'S NEW!
IT'S FOOL-PROOF!
IT'S the EMI AD100!
IT'S UNDER £10!

price inc. P. Tax

Here is the latest AUTOMATIC RECORD CHANGER from stock:
Brief specification: Plays TEN 10" or 12" records (not mixed); high fidelity lightweight PU (output 1.5v RMS with matching trans.); single lever control for start, stop and reverse; 100-122-225-250v A.C.; Price £19.10 P.T.; Matching transformer 1½v, no tax. Sent carriage paid in U.K. Export orders tax free, carriage extra.

FLASH! Latest DENCO superhet kit now available. This is an inexpensive 4-valver (MW and LW) using the new BAA0.1A valves, Wonder-ful value at £6.17.0: £6.16.9 P.T. tax, post free. Also available as SW and MW.

See latest lists, post free on request, for specified television components, including line, frame and focus coils, transformers, HV condensers, Reliance and Colvern pots, BTH crystal diodes, Woden transformers, coax plugs and sockets, Lewco enamel wire, valves and cathode ray tubes and holders.

SATISFACTION GUARANTEED
OR CASH REFUNDED INSTANTLY.

A 30
The Latest Technical and Engineering Achievement in Resistors

The exceptional characteristics of this new range of resistors are such that they are eminently suitable for use in the most stringent conditions of service. The new 3/8" x 3/4" light weight unit of 1/2 watt rating at 70°C has a technical perfection, tested over long periods, to suit the complex and exacting circuitry of modern radio and television. This resistor gives outstanding performance under severe tropical conditions and has generous overload properties thus setting a new standard for all fixed resistors. Full details and samples are available to Radio Manufacturers upon application.

Visit us at STAND No. 82, Grand Hall, Radiolympia

DUBILIER CONDENSER CO. (1925) LTD., DUCON WORKS, VICTORIA ROAD, N. ACTON, LONDON, W.3
Phone: Acorn 2241 (5 lines)
Grams: Hivoltcon, Wespoke, London
Spire Speed Nuts reduce the number of parts to be handled. Can they be assembled better and cheaper? Yes, their relatively large bearing surface and self-locking spring tension eliminate need for plain washers or separate locking devices. They are fixed in a moment; stay fixed as long as you like. It's their unique double-spring action that gives Spire such a grip. Will you see what Spire, fastest thing in fastenings, can do to help you? Write for more information now.

The SNB type of Cable Clips are made as standard to suit up to 1” dia. Spring steel takes a kindly view of small variation in O.D. Spire Clip and screw replaces pressing, bolt, nut and washer. Two parts instead of four.

IDEAL BARGAIN FOR HOME CONSTRUCTORS

Assemble your own TABLE ELECTRIC GRAMOPHONE or RECORD PLAYER at half comparable prices.

CABINETS designed for 6½ inch loud-speakers. Walnut with Rumanian Birch grille. Interior of lid felted. Volume Control and top plate ready drilled 14 x 16 x 12 inches deep. £2 10 0 each.

GRAMOPHONE UNITS for same. Constant speed Magnetic pick-up, Superb Quality. A.C. MAINS. £5 10 0 incl. P. Tax.

3W AMPIFIERS for same KITS comprise Chassis, Mains and Output transformers. Choke, Valveholders, Volume Control, escutcheon and Knob. Mains tap changer. 2 – 8 m.l.d. condensers. LOUDSPEAKER and circuit diagram. £3 15 0.

WILLIAMSON AMPIFIER Output transformers. Latest design as per August issue. £4 10 0.

N. MIERS & CO. LTD. Tel: Euston 7515
115 Gower Street, London, W.C.1 Cables: MIERSCO
Concerning ELECTRICAL RESISTANCE MATERIALS

- NICKEL - CHROMIUM
- NICKEL - CHROMIUM - IRON
- COPPER - NICKEL
- MINALPHA
- MANCOLOY 10

RESISTANCE MATERIALS FOR SPECIFIC PURPOSES

A revised issue of this booklet contains, in easy reference form, complete tables of physical data for each alloy and detailed information upon the characteristics, availability and recommended uses of our precision-drawn wires.

To those engaged in the design of resistance elements of any type it cannot fail to be of interest—to those who seek greater accuracy and uniformity in production it will be of greater service, by suggesting the means of attainment.

Copies will gladly be provided on request. When writing please refer to Booklet 1440.

Specialised Products of

Johnson Matthey

JOHNSON, MATTHEY & CO., LTD. • HATTON GARDEN, LONDON, E.C.1

Birmingham: Vittoria Street, Birmingham, 1
Presenting R.C. 500... a brilliant new Automatic Record Changer specifically designed for simplicity and reliability... at LOW COST! Plays nine 10" or nine 12" records and incorporates spring suspension which eliminates acoustic feedback. And it's foolproof against jamming!...

...and the R.C. 49... a reasonably priced Changer incorporating all the refinements hitherto associated only with expensive instruments... plus many exclusive features. Plays ten 10" or 12" records mixed in any order by the operation of one single control knob.

Both Changers are fitted with a powerful induction-type Rim-Drive A.C. Motor—with a choice of four types of pickup including Magnetic, Crystal and High Fidelity models.

Write for trade terms and illustrated literature.

MAKERS OF FINE QUALITY GRAMOPHONE COMPONENTS, INCLUDING AUTOMATIC RECORD CHANGERS, GRAMOPHONE UNITS, PORTABLE ELECTRIC GRAMOPHONES, INDUCTION MOTORS AND PICKUPS.

THE NEW B.P.L. SUPER RANGER

20,000 OHMS PER VOLT.

D.C. VOLTS: 100 mV to 5 kV

D.C. CURRENT: 1 μA to 1 Amp.

A.C. VOLTS: 0-5 V to 5 kV.

A.C. CURRENT: 10 mA to 10 Amps

RESISTANCE: 1 ohm to 2 meg-ohms

OUTPUT: 0 to 62 dB

METER: 8-inch Long arc, fitted with knife-edge pointer and mirror scale.

LIST PRICE: £21 - 10 - 0.
A mobile television system
in 7 lightweight units...

1. IMAGE ORTHICON CAMERA, with detachable electronic viewfinder.
 Weights: Camera 65 lbs. Viewfinder 35 lbs.
 Dimensions: Camera 25" x 11" x 14". Viewfinder 22" x 10" x 8".

2. CAMERA CONTROL AND PREVIEW MONITOR
 Weight: 65 lbs.
 Dimensions: 26" x 8½" x 16".

3. POWER SUPPLY UNIT
 Weight: 65 lbs.
 Dimensions: 26" x 8½" x 16".

4. SWITCHING UNIT
 Weight: 80 lbs.
 Dimensions: 26" x 8½" x 16".

5. MASTER MONITOR
 Weight: 68 lbs.
 Dimensions: 20" x 13" x 18".

6 & 7. WAVE FORM GENERATOR
 (in two units)
 Weight: 70 lbs. and 55 lbs.
 Dimensions: 26" x 8½" x 16" and 26" x 8½" x 16".

These seven lightweight "suitcase" units provide a complete mobile television system. Easily transportable, adaptable and flexible, their exceptional mobility widens the horizon of television. For outside broadcasts or for the specialised applications of television in hospitals, in film studios, or for general application in industry, Marconi television equipment is the finest in the world.

Ask for descriptive brochure SPI4.

DEMONSTRATION ON STAND NO. 174
NATIONAL HALL, RADIOLYMPIA

MARCONI'S WIRELESS TELEGRAPH COMPANY LIMITED, MARCONI HOUSE, CHELMSFORD.
A new development in Loudspeakers

The Corner Ribbon

We have now completed our work in the development of a new type of loudspeaker aimed to give the highest possible quality of sound reproduction.

The new loudspeaker incorporates a freely suspended ribbon for the mid-high and high frequencies, this being loaded front and back and arranged to radiate in all directions (including the rear). A cone unit is used for the lower frequencies, the back being coupled to the air through a two-section acoustic filter.

During the last three years, the development of this loudspeaker has entailed some physiological research and a vast number of conventional measurements. It has also brought to light some new methods for assessing the goodness of a loudspeaker. Full details of the loudspeaker itself and some of the methods used in its development will shortly be available.

A special listening lounge will be provided at Radio-lympia this year solely for the demonstration of this loudspeaker—fed from a QAI 2 P amplifier with radio and records. We strongly recommend that you take advantage of this demonstration. We should also like to see you on our stand (No. 91), where we shall be pleased to give you further information.

CO-AX AIR-SPACED ARTICULATED R.F. CABLES

IMMEDIATE DELIVERIES FOR HOME & EXPORT

LOW IMPED.
LOW ATTEN.
LOADING

HIGH POWER FLEXIBLE

FOR RADIO FREQUENCIES

FOR VIDEO & SPECIAL APPLICATIONS

Slashed Prices to clear
EX-GOVERNMENT SURPLUS!

TR3152 Special Purpose Tx. and Rx. (U.H.F.). Containing 2 ECS2 1 EF50, 1 6V6G, 1 5Z4G, 1 SP61 and 1 6H4G. All brand new and boxed. Carriage 5/-, NOW 30/-.

CATHODE RAY INDICATOR UNITS. American, Type AN/APA-I. Complete with 3in. C.R.T. and time base, etc., using 11 valves (6SN7's, 6H6 and Rectifiers). Only requires 115V 500 cycle Transformer changing to put into immediate use. Carriage 10/-, NOW 90/-.

TRANSMITTING VALVES. Brand new Westinghouse latest 1.5V type 1299A (QRP Tx. local base pentode). 7/6, NOW 5/-, UX210 (Continental). The famous transmitting 10. 4/6, NOW 2/6. • VR135 (U.S.F. Triode). 3/6, NOW 2/6, NOW 2/-. • EF50. 7/6, NOW 5/-, * All out of Government surplus equipment but O.K. Brand new and boxed R.C.A. 866A and 866. 25/-, NOW 18/6. Ex Belmont 250TH 45/-, 100TH 35/-, 300B, 332A, 25/- ea., NOW 20/-, 307, 8/6, NOW 7/6, 813, 60/-, NOW 50/.

TYPE M90 AMPLIFIERS (special purpose). Containing 1 5U4, 2 EF50 and 1 6H4S condensers, resistors, etc. (Sold for components only) Carriage 2/6, 27/6, NOW 20/.

METERS. Moving Coil, brand new in maker’s cartons. 2in. dia. Fluss meg., 0-50 mA., 0-100 mA., 15/- ea., NOW 7/6. 2in. dia. Fluss meg., 0-1 mA., 0-500 micro/Amps., 2in. dia. Fluss meg., 0-500 micro/Amps. (Scaled 0-15V and 0-600V). 17/6 ea. NOW 12/.

Ex Naval Power Supply Unit. No valves, sold for parts only. Containing 500-0-500 170 mA A Transformer, 3.8 x 170 mA. Chokes, Condensers, etc. Carriage 7/6, 80/-, NOW 50/.

IMPORTANT.—The above offers are only a few of the large selection available at slashed prices. SEND NOW for 8-PAGE LIST No. 8a. It gives details of complete range offered at clearance prices.

Co-Axial Manufacturing Co. Ltd.
Huntingdon
Telephone: HUNTINGDON 361

Radiomart

48 Holloway Head
Birmingham, 1
Tel. - Midland 3234
A NEW
FIELDEN TECHNIQUE
IN MICRO-MEASUREMENT AND CONTROL

FOR ANY INDUSTRIAL OR RESEARCH PROBLEM RESOLVABLE INTO MINUTE ELECTRICAL CAPACITANCE CHANGE

ACTUATION by PROXIMITY of solid or liquid conductors or insulators to an electrode terminating a coaxial cable

THE FIELDEN PROXIMITY METER—SENSITIVITY 0.01 mmf—indicates minute capacitance changes, whether caused by very small mechanical displacement or dielectric change. It measures, for instance, strains in structures, it gauges components to less than 0.00001", monitors sheet, foil and wire sizes, measures liquid and other levels precisely, monitors dimensions and compositions, compares dielectric properties of non-conducting liquids etc. It does what is impossible mechanically and, in many fields, surpasses all other micro-measurement methods.

THE FIELDEN TEKTOR—SENSITIVITY 0.25 mmf—is a unique, stable, high-speed capacity relay which solves many problems of counting, temperature control, level control of liquids and solids, and so on where simple direct-switching is impossible.

Please send for Specification FE/3 to the SPECIALISTS IN INDUSTRIAL ELECTRONIC EQUIPMENT

FIELDEN (Electronics) Limited
HOLT TOWN MANCHESTER
Tel: ARDwick 2619
CHOICE OF THE CONNOISSEUR

Chosen by many cinemas, concert halls and gramophone societies, “BAKERS” High Fidelity Speakers combine the highest possible quality of reproduction together with the widest frequency range available, making them the obvious choice for either public or private use.

12" and 18" “TRIPLE CONE” and “DUPLEX” Models.

Write for Descriptive Leaflet giving full technical details (or better still call for an audition) of:— “BAKERS” SPEAKERS, RECEIVERS AND AMPLIFIERS, ETC. the combination of which offers the highest possible quality radiogram unit obtainable.

BAKERS 'Selhurst' RADIO

PIONEERS OF MOVING COIL SPEAKERS SINCE 1925

Dingwall Road, Croydon. Telephone: CROYdon 2271

NEW LOW-PRICED STAND NO. 13

WOLSEY T.V. AERIALS AT RADIO LYMPIA GRAND HALL

Eight types of WOLSEY Outdoor Aerials for London and Birmingham, including a new "field-tested" In-line 3-element Folded Dipole Array, giving a gain of 7.5 DB's. Also a new low priced All-Flexible Indoor Aerial.

WOLSEY TELEVISION LTD.

15 Gresham Road, Brixton, London S.W.9 BRIXTON 4451 and 4452

59 Soho Hill, Birmingham 19.

BRIERLEY PICKUPS

Ribbon, type JB'P'R/2

Microarmature, type JB'P'A/1

These two pickups are individually made instruments for those who take a pride and obtain pleasure in reproduction that is as nearly perfect as present technical development permits.

We regret that our best efforts fail to meet the present demand, and we have still to ask for patience.

J. H. BRIERLEY GRAMOPHONES & RECORDINGS LTD.

46, TITHEBARN STREET, LIVERPOOL, 2.
Perfect Reproduction?

APOLOGIA

We may as well admit it. The only reason why this space is not filled with our usual “informative” article on radio is that our author slipped away on holiday; and what with one thing and another we forgot to ask him for the next instalment. So let’s forget negative feedback, non-linearity, QPP and Uncle Tom Cobley and all, and get down to a little honest to goodness advertising for a change.

Here is our latest Television Set—the Murphy V 120. From every point of view, including that of the “experts”, it’s a pretty good set. It has a large size screen (12" C.R.T.) and yet costs only £71.10s.8d. including Purchase Tax. The illustration here gives you some idea of the set but it’s the quality of picture and sound that count of course. So you’ll go along and see it working at the nearest Murphy Television Dealer, won’t you?
PVC Stripper Pliers
FOR PLASTIC INSULATED WIRES

“Stanelco” stripping piers remove plastic insulation from stranded or solid conductors up to 1" overall dia. By means of electrically heated plier jaws, the thermo-plastic properties of the insulation are utilised to ensure clean, speedy stripping without charring insulation or damaging conductor. No switching is necessary. Pliers can be left connected without overheating. Supply Voltage: 220/250 volts (A.C. only). Power consumption 10 watts.

Standard Telephones and Cables Limited
HEAT TREATMENT GROUP
(Industrial Supplies Division) CLINE RD., BOUNDS GREEN, LONDON, N.11

TELEMEDIA
for Radio and Television
Replacement Units and Kits

Television kit by DENCO. Complete in three units
1. C.R. Tube. valves & H.F. units £15 11 7
2. Time base units & mains chassis £10 10 9
3. Power supplies £6 10 9

Total including tax £41 7 1
Including full constructional data

MODEL A70. 6 valve all-wave modern superhet chassis with tuning indicator, tone control and radiogas switch. The ideal replacement chassis £12 12 0, including Tax, plus valves, £3 3 0.
MODEL 70 TU. As above but with 3 valve tuning unit feeding model 77 amplifier. £8 8 0, plus 34 1/2d. Purchase Tax.
MODEL 77. 4 valve push pull amplifier with 2 6v6 fed by phase inverter. Approx. 8 watts output, £9 0 6d.

AVAILABLE AS KIT OF PARTS:- Blueprints 4/-
Send for leaflet to:

TELESPORT
157 FORE STREET, EDMONTON, N.18 (Tot. 3386)
MODERN CAPACITOR MOUNTING

This modern method of mounting enables the maximum advantage to be secured from the improved electrical characteristics and size reductions of Dubilier Drilitic Capacitors.

No loose parts, clamps, screws or rivets are necessary; a slight twist of the mounting ears and the capacitor is fixed. For chassis-capacitor isolation bakelite mounting plates are supplied; metal plates are available with identical centres for general replacement purposes of the older type capacitors and for interim tooling period.

Ear Mounting Drilitic Capacitors type CTE and CRE have hermetically sealed seamless drawn aluminium containers, have solder tags and are supplied in the usual capacitances and voltages.

Comprehensive catalogues giving detailed information of capacitors and technical service are available upon request.
A.D.S. QUALITY AMPLIFIERS

Full construction details of our 41-watt inexpensive quality amplifier are now available, including circuit diagrams and layout pictures. Post free. 9d. Complete set of components for above amplifier, including cabinet, chasis, knobs, etc. Carriage free, only 8/6. Complete amplifier, constructed and tested. Carriage free, only 29/6.

WILLIAMSON AMPLIFIER

Sapphire point (inc. P.T.) £2/10/6. (Postage 1/3.)

ACCESSORIÉS: EQUIPMENT —

CONNOISSEUR PICK-UP

A high impedance pick-up giving approximately 0–3 volts at the secondary of the special coupling transformer. Level frequency response from 50 to 1,000 c.p.s. Below 50 c.p.s. a rising frequency response gives a bass resonance nadir 25 c.p.s. Above 1,000 c.p.s. the output talls steadily, giving a loss of approx. 5 db. at 3,800 c.p.s. and 9 db. at 12,000 c.p.s. Price, complete with transformer (inc. P.T.) (Postage £1.) £1/10/6.

GOLDING 121 PICK-UP

WHARFDALE 10in. GOLDFI

5 or 12 inch special roll. Frequency response 40–12,000 c.p.s. Close resonance average 30 c.p.s. Maximum input power 8 watts. Price £3.10s. (Postage 1/10.)

NEEDLES. (All prices include P.T.)

ConEdison miniature needles, 20 packet. 2/10.
Columbia Choice rubberized needle, 10 per packet. 1/6.
Columbia 59 miniature needles, 10 per packet. 3/7. (Post free, 1/6.)

18 TOTTENHAM COURT ROAD, LONDON, W.1
Tel: MUSEum 4539
Shop hours: Monday–Friday 9–5.30. Saturday 9–1
FULL MAIL ORDER FACILITIES Please add postage

TELEVISION

Our comprehensive television catalogue is now available post free 6d. Contains itemised lists of ‘Wireless World’ and ‘Electronic Engineering’ Television. Please state if Birmingham Area supplement is required.

Set of 4 black knobs with gold lettering for “Electronic Engineering” Television (Postage 5d.).

Bel Sound television cable to original specifications, all bored and individually marked.

Sears Television components for all types of Televisions, 5 kV. E.H.T., with 0.2–2 volt rectifier heater. Fully shrouded. (Postage £1.) £1/6.

As above, 4 kV. (Postage £1.) £2.6.

As above. 4 kV. (Postage £1.) £2.8.

Focus Coil + W.S. — Type Hi-rise. Resistance 300 ohms. Maximum D.C. 150 mA. (Postage 1/1.) £1/7/6.

Masks

Tube mounting stands in wood for 12in., or 15in. tubes. 16/6.

BELGOL (Polyurethane cement).

1 oz. bottle. 11d. 2 oz. bottle, 2/6.

SCANCO E.H.T. TRANSFORMER

2.5 kV. 3 mA. 2,9–2 v. 2 a., 4 v. 1.5 a. £2.

As above. 4 kV. (Postage 1/10.) £2.8.

CHARECTORISTICS.

D.C. RESISTANCE. 47 Ohms.

IMPEDANCE 52 Ohms, at 1.(O) C.F.S.

SENSITIVITY, 1,2 x 10^-11 Watts at 1 kc., .0002 Dyne/cm^2

Descripive Literature on request

PRICE £5.50 PER PAIR

Your Local Dealer can supply

High Fidelity Reproduction

The S. G. Brown Type "K" Moving Coi headphones, with the following outstanding characteristics, supply that High Fidelity Reproduction demanded for DX work, monitoring and laboratory purposes, etc.

CHARACTERISTICS.

D.C. RESISTANCE. 47 Ohms.

IMPEDANCE 52 Ohms, at 1.(O) C.F.S.

SENSITIVITY, 1.2 x 10^-11 Watts at 1 kc., .0002 Dyne/cm^2

Descriptive Literature on request

PRICE £5.50 PER PAIR

Your Local Dealer can supply

For details of other S. G. Brown Headphones (prices from 50 to 776 write for illustrated Brochure "W.W.”

HEADPHONES WHICH UPHOLD BRITISH PRESTIGE

Telephone: Watford 7241

S.G.Brown,Ltd.

SHAKESPEARE STREET, WATFORD, HERTS.
fidelity of response speaks for itself to the discriminating ear. Precision manufacture is no less eloquent to the trained engineer. These qualities make TRUVOX speakers famous.

C.P.M. 12" SPEAKER. The outcome of intensive development by specialist engineers, the method of construction employed in the Truvox “C.P.M.” series offers a notable economy in size, weight and cost. Ranging from “midgets” to auditorium speakers, each model in the TRUVOX “C.P.M.” series is precision-designed to combine maximum flux density with the widest frequency coverage for its size.

Model BXII (12" C.P.M.) LIST PRICE 45/-

12" HEAVY DUTY. Rigid die-cast chassis; square casting for the magnet seating, secured with large hexagon head bolts; centre pole and bottom plate all in one forging; ring-clamped cone; die-cast centring ring; practical construction matched by excellent response and high sensitivity—all made for HEAVY DUTY. Response 55-11,000 C.P.S.; flux density 13,000 Gauss; power handling capacity 10 watts (A.C.)

Model SS10A LIST PRICE £6.17.6

6½" WAFER. Wherever the requirements call for minimum space, minimum weight, robustness and normal sensitivity and response, Truvox "Wafer" speakers are the answer. Designed by specialists with twenty years' pioneering experience in loudspeaker manufacture, they are the outcome of a completely fresh approach to the problems of speaker weight and size in relation to efficiency.

Designers and manufacturers of personal and television receivers, car radio, and intercommunication equipment, and all other users needing real compactness, will find the "Wafer" speaker range of superlative interest.

Model B51650 LIST PRICE 25/-

MONOBOLT. Unshakably rigid in transit and extended use, the unique construction of Truvox “Monobolt” loudspeakers gives unequalled reliability and consequent freedom from service troubles. The clean straightforward design—ensures permanent and outstanding efficiency.

Model BX52.5" 19/- Model BX62 6½" 20/-
Model BX82 8" 22.6
Model BX102 10" 25/-

TRUVOX ENGINEERING CO. LTD., EXHIBITION GROUNDS, WEMBLEY, MIDDX. "JUNO" and "OCO" floor polishing machines are also manufactured by TRUVOX. Send for details.

TRI65
introduce the
Leak Proof
Battery!

A REVOLUTIONARY DEVELOPMENT
EXCLUSIVE TO ALPHA

- Sealed in Steel *
- Cannot deteriorate when idle
- Stands up to rough handling and years of storage
- Unaffected by extremes of temperature

This new type of battery is a revolutionary development exclusive to Alpha. The cell is completely sealed in an insulated steel jacket, preventing leakage and permitting storage for years without loss of power. For all-round efficiency and value for money, Alpha batteries for Radio and Lighting are second-to-none. The Alpha Leak-Proof battery (1.5 volts) is made in the standard size similar to A.2.

Price 6d.
* Covered by British Patent No. 531237

ALPHA ACCESSORIES LIMITED
GRAMOPHONE BUILDINGS
BLYTH ROAD • HAYES • MIDDLESEX

22 RANGES
VOLTS
D.C., A.C., R.F.
CURRENT
From few micro-
amps to
1.5 Amps. D.C.
RESISTANCES
Up to 100 MΩ

SURELY TESTED

ELECTRONIC INSTRUMENTS LTD
17 PARADISE ROAD • RICHMOND • SURREY

The T.G.2 Direct Disc Recording Traverse Gear

A precision built robust mechanism simple in operation producing first quality recording £21 0 0
Recording Motor and Turntable £14 0 0
Complete Recorder including amplifier and microphone in lightweight portable case £85 0 0
A New Permanent Needle at the amazingly low price of £5 0 0 (Inc. P.T.)

We supply a well established and guaranteed reputable make of superior quality Sapphire Needle
- REGRIND SERVICE AVAILABLE
- Diamond Needles can be supplied
- Prompt attention given to enquiries for any quantity—large or small.
- Write for details or call for demonstration.

ELECTROSOUND SUPPLIES CO.,
99, BELGRAVE ROAD, S.W.1.
PHONE: VIC. 8814
At London's most modern and spacious showrooms, in the heart of the West End, full ranges of the latest television and radio receivers, all available for immediate delivery, await your inspection. All models are available for demonstration between 9 a.m. and 10 p.m. Call in any time to see and hear this grand display of Bush, Ekco, Ferguson, Cossor, G.E.C., Ultra, K.B., Marconi, R.G.D., Alva, In- vets, etc., etc., etc.

A large selection of the best known makes of electrical appliances also awaits your inspection.

SERVICE AFTER SALES we consider of prime importance. Our expert engineers are always available to help and advise you.

HIRE PURCHASE FACILITIES gladly arranged on all models.

Appointed Hoover and Electrolyx Dealers.

VISIT THE RADIO CENTRE, 33 Tottenham Court Road, London, W.I.

EQUIPMENT FOR THE AMATEUR & RADIO ENTHUSIAST

- Stockists of Avo, Taylor & Pullin instruments
- WODEN appointed Dealers
- All B.V.A. valves in stock

MORSE OSCILLATORS

A battery-operated Morse Oscillator, complete with modulation and interference circuits, incorporating note selector control, volume control, phone, key and interference jacks. Size 8 in. x 8 in. x 8 1/2 in. Power supply required, 150-60 v., 45 v., LT 5 v. Provision for fitting batteries inside case, complete with 2 valves. Price £27 - 6d. (Carriage and packing £2 6d.), 12 months' guarantee.

MORSE BUZZERS

Brand new outfits comprising double buzzer wired to morse key and battery. Complete with 4 v. battery, £2 6d. post free. Or less battery, £3 6d. post free.

With full working instructions.

RADIO CENTER EXHIBITION

RADIO OLYMPIA

1950 MODELS

FULL MARKS FOR VALUE—

BUSH

The Symbol of Reliable Radio

THE NEW BUSH TABLE TELEVISION

Behind the Screens... that's where we look first. And having had a good look at this new Bush Table Model, we know why it gives such trouble-free performance. Even at so reasonable a price. It is built to the traditional Bush standard. You will be impressed by its sharp picture, clear sound, and ease of control. Outstanding value at 46 Gns. tax paid. Look in for a demonstration.

VISIT THE RADIO CENTRE, 33 Tottenham Court Road, London, W.I.

PARMEKO DUAL LOUDSPEAKERS

Two 8in. P.M. Speakers mounted back to back on durable frame. For outdoor work and P.A. 10 watts. Complete with volume control with switched tappings. Provision for fitting an aerial tuning unit supplied to improve signal strength. Add 10/- carriage and packing for rail.

WHILST THEY LAST... BRAND NEW R.F.24

Converters in sealed cartons, complete with 3 valves. Frequency coverage 20-30 Mc/s., tunes to 5 spot frequencies. CALL IF YOU CAN. ONLY 10/6 (Carriage and packing 3/6).

ELECTRIC MOTORS

A complete A.C. Motor ready for use without adaptation. 1/2 h.p., 2,500 r.p.m. For use on 220-250 volts A.C. mains. Spindle fitted with 2 in. dia. pulley ready for use with small belt drive. Fitted with 1/315, 3-way mains lead. 27 1/6 carriage paid.

VALVE COMMUNICATIONS RECEIVERS

3 Equipments comprising a 14-valve crystal calibrated receiver covering a range of 2.4 to 31 Mc/s. Specification: R.F. amplifier, mixer with separate L.O., crystal check oscillator, limiter monitor, 2 stages I.F. (550 kc/s.), detector, A.V.C., B.F.O. with AF amplifier (phones), and push pull output for speaker. Approx. output 5 watts. Aerial tuning unit supplied to improve signal strength. This pr.vides correct impedance matching to the receiver over its frequency range, with any length of aerial in use.

DO YOU SUBSCRIBE TO THE MOS NEWSLETTER?

The "MOSRAG" is it is known to its readers, users for every taste. Subscription fee 5/- per annum. Send 6d. for specimen copy.

MAIL ORDER SUPPLY CO., 33 Tottenham Court Road, W.I.

Advertisements

- 45

World Radio History

Image
MEASURING INSTRUMENTS (PULLIN) LTD
ELECTRIN WORKS, WINCHESTER STREET, LONDON, W.3. Tel.: ACON 4651 & 4999

CONSISTENTLY Accurate
PULLIN SERIES 100 TEST SET

SENSITIVITY 10,000 OHMS/VOLT

with
A.C./D.C. Voltage Multiplier
for 2,500 V. and 5,000 V.
Volts A.C. and D.C. Range:
10, 25, 100, 250, 500, 1,000.
Milliamps D.C. only:
2.5, 10, 25, 100, 500.
Ohms: 0-10,000 and 0-1 megohm.
A.C. Current Transformer
Range: 0.01, 0.05, 0.1, 0.5, 1.0,
2.5 A. and 5.0 A.

We can give early deliveries—
Address all enquiries to:

MEASURING INSTRUMENTS (PULLIN) LTD
ELECTRIN WORKS, WINCHESTER STREET, LONDON, W.3.

Our diode filter capacitor 2 x 100 pF ± 20% has been designed for economy. Its cost compares favourably with that of two capacitors. It saves space and it saves time on the assembly line. Manufacturers are invited to ask for samples and prices.
Wharfedale NEW MODELS...

★ SUPER 865 - (6 watts.) SUPER 8/CS 75 - (4 watts)
Alcomax III Magnet, 13,000 lines.
Weight 4½ lb. An eight inch design of outstanding performance, fitted with new type of bakelised cone.

★ SUPER 12 (18 wts.) £12.5.0. SUPER 12/CS (12 wts.) £12.15.0
Alcomax III Magnet, 17,000 lines. Weight 18½ lbs.
Maximum efficiency. Wide response without the usual "twelve inch peak" between 3,000 and 5,000 cycles.

★ W.15 TRANSFORMER 60 -
Weight 4½ lbs. For wide response circuits up to 20 watts.
Sectioned Windings. Inductance 70 Henrys.
Leakage Inductance .1 Henry.

★ W.12 REFLEX £19.10.0
34" x 16½" x 17½". Gives extremely good bass response with bright "top."

Inspect these and other Models on
Stand 215, Radiolympia (Annexe)

Books by G. A. Briggs
"Loudspeakers" 5/- (5/3 post free)
"Sound Reproduction" 7/6 (8/- post free)

Wharfedale Wireless Works
BRADFORD RD., IDLE, BRADFORD

Telephone: Idle 461. Telegrams: Whorfdel, Idle, Bradford
BLIND ALLEYS
ON THE EBB TIDE...

The sting in the salt air is likely to be intensified by the language of harbour masters should a vessel approach any anchorage as casually as the holiday-maker in his dinghy.

Hazards of 'getting in' safely have been reduced considerably by the electronic development of the 'blind approach' to harbour or aerodromes in foul weather.

To the manufacturer of electronic and electrical equipment fogged or grounded by transformer trouble - Parmeko extend the guiding hand of the specialist to ensure successful landing.

Parameko
of Leicester (Tel. 32287)

RITHERDON & CO. LTD.
LUNA STREET, HARROW, LONDON
(phone numbers: 1028)

LAMINATIONS
FOR
All Radio and Electrical Uses.
In Silicon, Dynamo, Intermediate and Transformer Qualities.
Permalloy, Mumetal, Radiometal.
Screens for all Electrical Uses.
Transformer Shrouds for 35 and 74 Lams.
General Precision Engineers.
Heat Treatment.
Sheradising to the Trade.

Electrical Sound & Television Patents Ltd.
12 Pembroke Street, London, N.1. — TERMINUS 4355
24 Manor Way, Boreham Wood, Herts. — ELSTREE 2138

Makers of Transformers or the Electronic and Electrical Industry.
UNIVERSITY RADIO, LIMITED

Offer Guaranteed Used Equipment at Attractive Prices

Woden super 60-watt amplifiers
Offer Guaranteed Used Equipment at Attractive Prices

October, toe Wireless World

22 LISLE STREET, LEICESTER SQUARE, LONDON, W.C.2

Pam 25-watt amplifiers with m/c

1948 Lexinton Quality Amplifiers

Pamko, 12 v, input mobile amplifiers 15 watts, ex W.D., complete valves and hand mike.
PERFECT. Each £11 0 0

Woden super 60-watt amplifiers with valves. As new, cost £47/10/0 £27 10 0

New 8-watt Amplifiers, ex W.D., with valves m/c mike and gram inputs 66/6's PF, in metal cases, each £7 7 0

Pam 25-watt amplifiers with m/c mike and stand, Pam gram player, 2 Pam speakers as new £34 0 0

1947 Baker Quality amplifiers with valves, cost £28.00

1948 Lexington Quality Amplifier Radio unit, and Pre amp, complete valves, etc., as new cost £90

Brand New Portgottom, AC/DC 15 watts amp, with built-in speaker, m/c mide and gram inputs, in portable steel case... £15 10 0

RSA 25 watt AC/DC amp, 2 m/c mike, gram inputs in black and chrome case with valves. As new, cost £32/10/0 £18 10 0

Vitavox 12in, Vitavox case, As new £8 10 0

Vitavox Bitone, 20 watt units. As new £20 0 0

PULLIN SERIES 100 AC/DC test meter, as new £7 0 0

AC/DC Test Meters by EIC 1000 OP., similar to Pullin £5 10 0

We have 400 AC/DC Multirange Test Meters of various types in Stock. All as new.

Taylor model 75A as new, 20,000 o.p.v., AC/DC test meter... £9 15 0

Taylor 1,500, o.p.v. model 75A, as new £7 10 0

Taylor AC/DC Minor 120A, as new £5 10 0

Avo minor AC/DC, as new £5 3/6 0

VITAVON 75A, complete £11 10 0

VITAVON 500, complete £20 0 0

Evershed bridge Megger less Res. box 1,000 v. in wooden case, as new, cost £68
Evershed bridge Megger less Res. 500 v., cost £48
Evershed Wee Megger 500 v., as new £20 0 0

H.R.O. and Eddystone Coils in stock.
One H.R.O. senior less cabinet, as new £9 0 0
Cossor 'Scope Single Beam, pre war, as new £15 0 0

E.D.C. & Ward Rotary Converters 12 v. DC to 230 v. AC 50 Cycles single P.H., 300 watts with filter unit, perfect condition, each £12 10 0

E.D.C. & Ward Rotary Converters 200/50 volts DC to 230 AC up to 120 watts, as new 300 watts, as new £20 0 0

One German Rotary Converter 220 DC to 110 AC 100 watts, 50 Cycles, each £3 10 0
One Ex W.D. 12 v. DC 230 v. AC £3 10 0

E.D.C. Rotary Converters 200/250 DC to 230 AC 1 Ph. 50 Cy. 300 watts, complete in metal cabinet with filter unit. Perfect condition and working order... £15 0 0

WE HAVE RECEIVED FURTHER SUPPLIES OF GOODS ADVERTISED IN PREVIOUS ISSUES

Goodmans Axioms 12in. P.M. in cabinet. As new... £9 16 0
Rola 12in. P.M., as new... £4 6 0

Wharfedale W10/CS10 Units, as new... £5 0 0

1938 Murphy, pre war 15v. All Wave Console, band spread 5.9, a really superb job, P.P. output, 12 speakers, a job for the connoisseur. QNE only, in perfect condition, would cost £130. Owner deceased, as new £39 0 0

S.T.C. Moving Coil Ball Mikes, 400 watts, as new £5 0 0

Cambridge Unipivot P.H. meter, as new £14 10 0

Muirhead Thermionics Voltmeter Type 3A, as new 200-250 v., AC... £15 0 0

Marconi BFO type 60A 0.10 Kc/s., Perfect, AC 200-250 v., £16 0 0

Cambridge Thermionic Voltmeter, Moulin model C, 6 v., perfect... £9 10 0

Cambridge Thermionic Voltmeter, Moulin model C, 6 v., perfect... £9 10 0

Avo 40A, as model 40. As new... £10 10 0

Gardner RC/DC gramo motor unit, latest model as new. £9 10 0
Collaro AC gramo unit, latest model Rim Drive, as new... £4 10 0

Stromberg - Carlson 110-350 AC. Broadcast Band in Floor Console Cabinet 6 valve Magic eye, as new £12 10 0
Taylor Valve Tester and Test Meter. Combined model 47A, perfect condition £13 10 0
Taylor Model 40 valve cester, perfect £7 10 0
Taylor Valve tester and test meter combined in portable case, as new £17 0 0
Taylor Valve Tester model 45A, perfect £11 0 0

Triplet U.S.A. AC/DC cester meter and valve testester combined, AC 110 v. Perfect condition, as new £13 10 0
ALL ABOVE COMPLETE WITH CHARTS, ETC.

M.S.S. Disc Recording Unit in portable case less amplifier, as new £35 0 0

Heavy Duty Recording Motor and Turntable, as new, AC 200/50 v. £9 0 0

We have other types of equipment arriving daily. We take your used gear in part exchange for new. Balance by Cash or Deferred Terms. We urgently need good used equipment, and will buy for spot cash. Bring, send or phone for offer.

CASH OR CHEQUE WITH ORDERS. ALL ITEMS LISTED ARE CARRIAGE PAID.

22 LISLE STREET, LEICESTER SQUARE, LONDON, W.C.2
Phone GERRard 4447 and 8582. Hours 9 to 6. Thursdays 9 to 1.
TELEPHONE MANUFACTURING COMPANY LIMITED
Capacitor Dept., St. Mary Cray, Orpington, Kent. Telephone: Orpington 2650

Why you should use...

Superspeed
SPECIAL
Activated
ROSON CORED SOLDER

1 Maximum "Wetting" Capacity
2 Accelerated Fluidity
3 Moderate Soldering at low temperatures
4 Mechanical Bonding and perfect Electrical conductivity ensured.
5 Minimum amount of solder used per joint.

Supplied in a wide range of Gauges and Alloys on 1 lb and 7 lb reels, works coils or as required. Prices on application.

H. J. Enthoven & Sons, Ltd.
89, UPPER THAMES STREET, LONDON, E.C.4.
Phone: MANSion House 8513. Works: Rotherhithe, Craydon, Derbyshire.

You are offering

*PEAK PERFORMANCE

THE IDEAL MICROPHONE
FOR P.A. WORK,
BROADCASTING AND
RECORDING

Here is a wide range high fidelity moving coil type Microphone which combines good sensitivity with a level response curve. Equally suitable for Auditorium or Outdoor Work, and its use can confidently be advised for Amateur as well as Professional use. Housed in modern streamlined die cast alloy case of great strength and finished in hammered metallic lacquer with chromium plated grille. Delivery from stock. List price £3.8.0

Grampian Reproducers Ltd., Hampton Road, Hanworth, Middx.
Phone: Feltham 2657.
The leading Television Set Makers

are fitting

EDISWAN
MAZDA

Television Tubes and Radio Valves

THE EDISON SWAN ELECTRIC CO. LTD., 155 CHARING CROSS ROAD, LONDON, W.C.2.
just what we keep on saying—
is drained. — P. G. E.

Women's Voices
ELIZABETH CHRISTINE BROWN suggests that the reception of women's voices is worse than that of men's because they are pitched higher. Surely this is a reflection on the inability of most commercial wireless receivers to reproduce the top frequencies, on which the clarity of voices depends. Given a wireless of adequate performance, I can assure her that women's voices are received as well as men's. It does seem to be the habit of many manufacturers to spend a disproportionately small amount of the cost of a set on the loudspeaker. After all it does make the noise.—R. C. Headden, Oxford.

Letter to RADIO TIMES
Aug. 12th 1949

its the
Loudspeaker
that
COUNTS!

REPRODUCERS AND AMPLIFIERS LIMITED
FREDERICK STREET WOLVERHAMPTON ENGLAND
Telephone Wolverhampton 22241
Telegramse "Audio Wolverhampton"

Dependable Di-electrics

OKERIN waxes

and DI-JELLS

—for insulating, filing, impregnating, waterproofing, sealing and finishing radio and electrical components, cables, etc.

ALL GRADES ARE DESIGNED TO MEET DEFINITE CHEMICAL, PHYSICAL AND ELECTRICAL STANDARDS.

For technical advice and samples, phone TEMPLE BAR 5927.

When an unusual Specification is required

We can give you the benefit of 20 years' experience in transformer construction and design. We do NOT mass produce. Every instrument is built to suit your most exacting individual specification.

Send your enquiries for the personal attention of our Mr. W. Bryan Savage.

SAVAGE TRANSFORMERS LTD.
3 CHRISTIE RD, DEVIZES, WILTS.
TELEVISION for £15. 5s. Od. (SOUND and VISION)

BY USING OUR EX-BRADAR UNITS FOR YOUR HOME-BUILT TELEVISION YOU ARE LEITING WITH BRITISH BRAINS AND INDUSTRY HAVE YOU MORE TIME AND TROUBLE. For instance the vision receiver is practically built for you, and after all the radii, receiver is the stumbling block of many constructors, because in this unit, even the simplest, it is impossible. To know one of these almost ready made, obviously it is a tremendous advantage. At the 7-inch Televisor is a double decker type, so that it accommodates the large sound receiver, power pack and tube in a very professional manner. In fact the whole receiver assembled into a compact table model, size approximately 16 x 24, high and 16in. step at illustrated. Of course, if you want to make up a complete, you can read the model itself as we will tell you.

TROUBLES AND Approved Circuit. Our Mark II Televisor has already been built up and we have even had letters from people claiming results from parts as far as following any set using 20 or so parts. Neverthe less, we have a technical information service to help you in these cases.

SOME QUESTIONS ANSWERED.

QUESTION 1. Is technical knowledge necessary?

ANSWER. You need not know anything about television, but you must be able to understand from book and understand a theory circuit diagram.

QUESTION 2. What is the total cost?

ANSWER. £15 5s. 6d. If you collect the goods yourself, otherwise £1 extra for the packing case and carriage. Full terms may be obtained separately. Detailed price list enclosed with this 7s. 6d., or will be sent on request.

QUESTION 3. Are there any other things included?

ANSWER. Yes, 15 5s. 6d. include everything!

QUESTION 4. How much is it in the cabinet?

ANSWER. Our data contains 26 pages of instructions, wiring diagrams and photos, but may be credited to you if you buy the bulk of the components and the unit, and also this price is inclusive of technical service.

DEMONSTRATIONS Daily. Why not call to see our demonstration models, we are open 7 a.m., weekdays, 1 p.m., Saturdays, when a make-up receiver can be seen.

If you can't call, however, we shall be able to send the outfit carefully packed in £1 cash.

BIRMINGHAM CONSTRUCTORS. You can make your own set now, but certain modifications will not, if necessary, of this equipment will be available later.

THE ITEMS BELOW ARE OF SPECIAL INTEREST TO CONSTRUCTORS OF TELEVISIONS USING ELECTRONIC TUBES (V.R), etc.

"50 TIPS FOR TELEVISION CONSTRUCTORS." If you are having difficulty in getting your pictures right, this picture may solve your problems. The price is 2/- post free.

WHITE PLASTIC MASK. Designed to fit a 6in. electronic tube, V.R, etc. This picture, the size of the opening can be enlarged to suit your own needs. The price is 7/6.

MAGNIFYING LENS. De Luxe type. The lens which is really designed to give optical perfection. Finish is quality and workmanship throughout. Guaranteed against any damage from the special oil content. Price 2/- post free. Packing, packing and insurance 5/6. 6 x 5 and 3 x 4 ins. etc., supplied with every one, order "KNAPPY AERIAL KIT".

Send cash with order or request C.O.D. Orders over £2 are post free—we are open until 5 p.m. Sat. As is available on request—its helpful if you can quote our Bin. No.

TELEVISION for £15. 5s. Od. (SOUND and VISION)

V.R.7: CATHODE RAY TUBES. Brand new in original cartons. Price 3/- each, carriage and insurance paid. Buy a spare now while they are still available at this special price.

E.H.T. CONDENSERS. 25 MFD. 350v., 2 x 16 MFD. 450v. 16 x 16 MFD. 450v. 16 x 24 MFD. 450v. 4 x 8 MFD. 450v. 1 /2 x 16 MFD. 450v. 1 MFD. 1500v. 1 MFD. 2500v. 3 MFD. 4500v. 6 x 15 MFD. 450v. 4 x 32 MFD. 450v. 1 x 16 MFD. 650v. 4 x 8 MFD. 2000v. 8 x 1 MFD. 2000v. 1 x 3 MFD. 2000v. 1 x 3 MFD. 500v.

OCTOBER SALE OF RADIO SPARES

Bin No. 300 OUTPUT TRANSFORMER, standard pentode matching, 2/6 each.

302 OUTPUT TRANSFORMER, triode-pentode matching, 3/6 each.

309 CO-AXIAL, 40 ohm T, feeder, 16 1/2 x 24 in. 2/- each.

340 DOUBLE TRACKER as above, one section 200 p.f. other section 100 p.f. 3/6 each.

440 INSULATED TOP CAPS for high voltage rectifiers, 2/6 each.

560 Un. ENERGIZED SPEAKER, 3/6 each with output transformer, "Iota".

F516 FAXO FINISHING HINTS, internal orbital, small type, 4/- each.

15 L.P. TRANSFORMERS, 420 KD, dust covers, very high, "Q", 6/- per pair.

154 MO. VOLUME CONTROL, with 6-in. extra long spindle, 3/- each.

147 25 MFD. 800V, METAL CASED CONDENSER, 6/6 each.

291 TOGGLE SWITCH—double pole on-off 20 Amps. 10/6 each.

304 DRIVERS, 5-in. 200W, 200W, 5-in. 120W, 100W, 5-in. 50W, plus carriage charges.

410 DE-CHASSISING KIT, 20 MFD. 450v. 16 MFD. 450v. 8 MFD. 450v. 2 MFD. 450v. 1 MFD. 450v.

415 SELF ADHESIVE PURE BUBBLE TAPE, large coil, 1.00 each.

416 TUNING CONDENSER, type 2000K standard, 5000K, extra long type, undoubled.

47h P.M. SPEAKER, 16/6in., 100W, 100W.

47m SNAPPING CONDENSERS, 11 MFD. 450v., 1 MFD. 450v. These are recent manufacture but cannot be credited to you I f you can't call, however, we ' Mall be able t

P61 MAINS TRANSFORMER, 200-0-200 at 70 w., 63 v. at 3 amps., 5 v. at 125 amp.

19 Mains Transformer, 200-0-200 at 60-70 v., 4 amp. at 4 v. at 2 amps.

B52 F.V.C. Insulated Upper Connecting Wire, really fine for chassis wiring or as throw-out aerials, etc., 250 yd. roll £1.

ELECTROLITH TRANSFORMER, (only new block from best manufacturers).

2 MFD. 450v. 3 MFD. 450v. 4 MFD. 450v. 5 MFD. 450v. 6 MFD. 450v.

3 MFD. 800v. 4 MFD. 800v. 5 MFD. 800v. 6 MFD. 800v. 7 MFD. 800v.

16 x 1 MFD. 250v. 16 x 3 MFD. 250v. 16 x 5 MFD. 250v. 16 x 10 MFD. 250v.

Good. 4 x 10 MFD. 500v. 6 x 8 MFD. 500v. 3 x 16 MFD. 500v.

16 x 1 MFD. 1000v. 16 x 3 MFD. 1000v. 16 x 5 MFD. 1000v. 16 x 10 MFD. 1000v.

16 x 1 MFD. 1500v. 16 x 3 MFD. 1500v. 16 x 5 MFD. 1500v. 16 x 10 MFD. 1500v.

B52 Mains Transformer, 200-0-200 at 70-70 v., 4 amp. at 4 v. at 2 amps.

19 Mains Transformer, 200-0-200 at 60-70 v., 4 amp. at 4 v. at 2 amps.

B64 P.V.C. Insulated Upper Connecting Wire, really fine for chassis wiring or as throw-out aerials, etc., 250 yd. roll £1.

P120 TRIMMER, postal small post small post 20 per cent. ceramic, extremely fine job, 4/- each.

P121 AMPLIFIER INTERNATIONAL orbital valve holder, 4/- each.

P124 MIDWAY TUNING CONDENSERS, 8-GANG, 800K2, fitted with trimmers and complete with 8-amp. fuse. The A.C. R.86 is the type used for television personal receivers, 8/- each plus job.

P129 4-GANG TUNING CONDENSERS, £000K each or suit-marked trimmer—ceramic mounting. These are complete in a very useful chassis, and are fitted with a drive. Government Surplus P Type. New and reaced, 2/- each, plus 1/- postage. Case of 24 units. 17/- 6/- 1/- postage rate.

B79 P.M. SPEAKER, "TRUVOX" 1/6 each.

B81 STETHOSCOPE ELEKTRON, 1 lamp, assorted colours, 1 0/- per dozen.

P124 CROCODILE CLIPS, small brass type, very well made by "Reinig", 3/- per dozen.
Maximum sensitivity with uniform frequency response from a more compact speaker, appreciably reduced in weight—that is what Rola technicians have achieved with the new G.12. Special features include dust-proof suspension completely protecting coil and magnet gap and the powerful Alcomax II magnet. Write for details and also for particulars of Rola 3" and 4" P.M. models, dust-proofed and equipped with Alcomax II magnets.

Constant Voltage Power Supply Units

New Series 101

Our new Laboratory Power Supplies, Series 101, are based on our well-known Model 101-A, but incorporate a number of improvements and refinements.

Details on Request.

All-Power Transformers Ltd.

3a Gladstone Road, Wimbledon, S.W.13

Tel.: Liberty 3303.

Tape Recording

Put it on record—tape it with a Sound Magnet Recorder

Concerts—Parties—Lectures—Talks—Dictation—Entertainment—Educational—Instructional, etc. Any Sound—Anywhere—Anytime—Tape Recorded.

For details on the Sound Magnet write now for brochure

Two models £35 and £47 10 0.

(Prompt attention to Overseas enquiries)

General Lamination Products Ltd.

Dept. S.M., 294 Broadway, Bexleyheath, Kent
The ERIE D8, 5,000 ohm ignition suppressor, illustrated above is designed to screw into the distributor head or into the coil where the distributor head is not accessible, and embodies the same time proven element used in the standard range of ERIE Government Approved suppressors.

This new suppressor will be on sale at our stand at Radiolympia, at a list price of 2s. each, and, for this special occasion will be supplied in hermetically sealed polythene envelopes.

You are cordially invited to inspect the full range of ERIE suppressors and other products and to place your orders for the coming season.
THE PYE Automatic VOLTAGE REGULATOR FOR A.C. MAINS

For efficient operation, modern radio and electronic devices demand a constant input voltage.

The Pye Automatic Voltage Regulator not only ensures such a constant input but also gives a waveform free from distortion, a characteristic not found in other types of stabilizer.

Directors of Research laboratories, of educational institutions, e.g. universities and technical colleges; makers and users of laboratory testing equipment, radio transmitters and radar equipment, facsimile telegraphy apparatus, cinema projectors and sound equipment, telephone apparatus, electronic calibrators, electro-chemical analysis equipment, will find this voltage stabilizer indispensable. It is fully automatic and of special value wherever equipment is installed on unattended sites since it prevents large and sudden changes in the input voltage from causing momentary overloads to equipment.

The regulator is robust, fully tropicalised, and requires little maintenance. It gives constant output voltage of 230 volts or any required voltage within ±1% despite an input variation of up to 90 volts, e.g.

Voltage Required: 230 Volts.
Output Voltage from Pye Automatic Voltage Regulator: 230 ± 1.15 volts.

Although the mains may vary from 170 -- 260 volts.

The regulator is designed for a maximum power output of 4.8 Kilowatts.

PYE LIMITED • TELECOMMUNICATIONS DIVISION • CAMBRIDGE • ENGLAND

THE WILLIAMSON AMPLIFIER

Our version of this well-known amplifier built by craftsmen to laboratory standards, and incorporating recent improvements, is now available from stock.

Only the finest quality components are used in its construction, and the layout has been carefully designed to produce the best possible performance.

Standard Model "A" with 150 mA H.T. supply £27 10/-, Model "B" with 200 mA H.T. supply, £29 10/-.

Various pre-amplifiers are available including a pre-tuned high fidelity radio unit. Full details will be forwarded on request.

For constructors, drawings and detailed lists of components are available at 7/6 per set.

SPECIAL:
The experimental B.B.C. V.H.F. A.M. transmissions may now be heard (when operating) at our demonstration room.

ROGERS DEVELOPMENTS Co.,
106, Heath Street, Hampstead, London, N.W.3
HAMpstead 6901.

BARKER'S 148a SPEAKER IS NOT AT RADIOLYMPIA

Not because we have any prejudice, but due to present preoccupations with building up a stock to meet what we believe to be a record season for the 148a. Summer has been no holiday this year, the traditional doldrums of July and August being as lively as last autumn, and our forward delivery order book is quite full. We believe the patented Barker cone and coil system is the basically correct way to achieve NATURAL REPRODUCTION, and our latest methods of manufacture do full justice to this ideal, within a very reasonable price limit. The high percentage of 148a users who write to tell us of their pleasure is proof enough.

So whatever may be seen and heard at Olympia, those who seek truth in sound reproduction will turn back to listen to the 148a before deciding they have found the nearest approach to their ideal. Many good retailers, especially those particularly concerned with high quality reproduction, sell Barker Speakers; they include famous names like Webbs Radio, Rogers Developments, Goodsell, E.M.G., Lowther, Gramophone Exchange, Brierley and a number of music and radio dealers spread over Great Britain.

If you live near one of these, see him; if not, ask your dealer or write direct to

BCM/AADU LONDON, W.C.1.
New, Unused Rack mtg.
A.C. Mains Power Unit, Type 3.
For R1481 and R1132.

CLYDESDALE'S PRICE ONLY £4.19.6 each CARRIAGE PAID

Also a few R1132 Crvrs. (freq. 100-124 mcts.) finish light grey. Dimensions etc., as R1481, available at the same price.

RACK MOUNTING
R1481 V.H.F. R/T Receiver Unit.
Frequency 65-86 mcts.
A 10 valve superhet; with 4/V53 (EF39) V54 (EF54) V57 (EK32) 2/V65 (5P6) V66 (P61) V67 (6JS5) plus, stabiliser V50 (7475) 5" meter, screened R.F. section, B.P.O., etc., etc., in enclosed chassis, size 19 x 10½ x 11 in., finished dark grey. Circuit supplied.

CLYDESDALE'S PRICE ONLY £4.19.6 each CARRIAGE PAID

For both units with rcvr. (PU) Coil only.
Receiver and PU Coll, 34/4.

Ex. British Army.
Telesonic Xmt/Rcvr. YA4911-YA4915.
Designed for the Transmission and Reception of audio frequencies No. R.F. is employed.
The Transmitter unit YA4911 with valves 2/ ARP2(2)'s (VP53) 2/ATP4's (V24A) (loop serial not supplied) H.T. 6v., 60 volts, V2. 120 v. V3 and 4, 180 v. L.T. 2 volts. Space for batteries is provided inside the unit, Dimensions 7 x 6 x 2 in., finished Khaki.

The receiver unit YA4915 with valves 3/XH1.5V (HV1C) 3/XPI.5V. (HV1C) which are in series parallel for 3 v. fit. supply. H.T. 67.5 v. Space for batteries is provided inside the unit. Dimensions 7 x 6 x 2½ in., finished Khaki, with pick up coil.

CLYDESDALE'S PRICE ONLY £3.00 each CARRIAGE PAID

Ex-U.S.A.A.F.
Brand New, in maker's carton.
SCR-720 BLOWER
WITH SHUNT MOTOR
Made by I.G.C. Electric Ventilating Co./Western Electric, etc. 37 volts D.C., 1.5A., 1/50 h.p., 5,000 r.p.m., continuous running, multi-bladed an. outlet dia. 2½in. Size overall 7 x 5 x 6 in., mini. size 7¼ x 5 x 4½in., with fixing screws, aluminium construction.

CLYDESDALE'S PRICE ONLY 17/6 each POST PAID

RELAY

CLYDESDALE'S PRICE 42/- each CARRIAGE PAID

Brand New, Reflector Aerial (MX-137A).
E175. A first class Transmitting and Receiving Omnidirectional Aerial, in original moisture proof carton with assembly instructions, size 16½ x 8½ x 1½ in., finished. Ht. 6 ft. volt. C/W. Bird, 4½ in., with retaining clamp.

CLYDESDALE'S PRICE ONLY 56 each POST PAID

Circuits for Ex-Service Equipment available, full list on application.

Units of the SCR-522 (TR5043) for experiments on 3 metres T.V. and Radio Telephone wavebands.
Frequency, 100-156 mcts. with 11 valves:
3/12SG7's
12CG
12JS
12AH7
3/12003
9002

PLUS. BC-625A Transmitter Unit Chassis, partly stripped but containing many useful parts, R.F. section in good order, no valves, modulation, trans. or xtal switch. Dimensions as Rcavr.

CLYDESDALE'S PRICE ONLY 37/6 each CARRIAGE PAID

Brand New.
Receiver and Units of SCR-269 Radio Compass, By Bendix Aviation Corp.

PLUS: BC-434-A Control Box, with "5" Meter etc. (metal case 7½ x 4½ x 7½in. 2 Flexible Tuning Drivers, MC-124 Service Instruction Book, for SCR-269 Radio Compass Equipment.

Conversion Data Supplied.
CLYDESDALE'S PRICE 6.6.0 each CARRIAGE PRICE ONLY per set PAID
Set of "Radio Compass" (SCR-269-G) Circuits available, at 2½ per set. Post Paid.

38 A.F.V. Xmt/Rcvr.

CLYDESDALE'S PRICE 45/- each CARRIAGE PRICE ONLY per set PAID

Brand New.
5 Pin Push Button Unit
CONTROLLER ELECTRIC, TYPE 1A.101/17.
E133. 5-digist push button switch, with 5 pilot bulb holders, 2/3 pos. 4 pole Key Switch, wired to 12-pin Jones type plug, in metal box, 5½ x 4 x 1½in., wiring diagram supplied.

CLYDESDALE'S PRICE 3½ each POST PAID

Price only each per doz. PAID
15-watt Toroidal Variable Resistor.
200 ohms. Wound on Porcelain 2½in. dia. x 1½ in., with spindle.

CLYDESDALE'S PRICE 3 each POST PAID

World Radio History
For Designers who want more 'ELBOW ROOM'

Another Hunt development... the W.99 settles layout, weight and space problems—and is the first major stride forward in types of capacitors designed to allow the most efficient use to be made of the new miniature valves. In conjunction with these, it will inspire numerous applications in every possible kind of modern, compact and portable electronic, communication and T.V. equipment.

SPECIAL NOTE. Now available in the W.99 range and in the same standard dimensions—

- 1000 pF 250 v. A.C. wkg. at 71 C.
- A decoupling capacitor, this is suitable for a frequency range of 50 c.o.s. to 100 mc's.
- Technical co-operation with you in the adaptation and application of W.99 capacitors to your requirements will be welcomed. Write for full details.

THE TRADE MARK OF RELIABILITY

A. H. HUNT LTD. WANDSWORTH, LONDON

BAKELITE CABINET, made 'or famous manufacturer size 12in. high x (Bin. long x Bin. deep. Complete with scale pan and two supporting brackets, clips for holding scale, three pulley wheels, flywheel tuning and back. Packing carton charged S/- (returnable).

- Post paid 15s. 0d.
- Scale for above 2s. 0d.
- MAINS TRANSFORMER, drop through type, cap tag panel.
- Primary 200, 210, 220, 230 and 240 volts. 300-0-500 volts 150 mA, 6.3 v. 3 amp, 6.3 v. 1 amp, 5 v. 2 amp, 4 v. 1 amp, 7 v. 3 amp, Pack and packing 2s. extra.
- CHARGER TRANS. 230/250 input, output 13 v. 2 amps, tapped at 4 volts. Plus postage 6d.
- CHARGER TRANS. 230/250 input, output 15 v. 2 amp. Plus post 9d.
- HEATER TRANS. 230/250 input, 6.3 volts 1 Amp. Plus 9d. post.
- MIDGET OP. TRANS. 40 mA.
- STD. OP. TRANS.
- MINIATURE IRON-CORED I.F. G.120
- IRON-CORED FILTERS
- SELENIUM RECTIFIER H.T. half-wave 250 v. 60 mA.
- SET OF FOUR 1in. dia. BROWN NOBS, marked volume, tuning, wave change and tone, in gold lettering per set.
- SET OF THREE 2in. dia. BROWN NOBS, marked volume, tuning and wave change, in white lettering per set. 1d.
- .0005 TWIN GANG with feet
- .0005 TWIN GANG, less feet
- 10 Hen. 80 ma. SMOOTHING CHOKE
- ASSOCIATED ELECTRONICS LINE MATCHING TRANSFORMER, primary impedance 500 ohm., secondary 15 ohm.
- MINIATURE 465 Kc. FIXED IRON-CORED, size 1in. x 1in.
- SUPERHET COIL KIT, comprising long, medium and short wave coils, standard twin gang, pair 465 I.F., 4 pole, 4-way switch, 4 trimmers and two trackers, complete with circuit (pair + post and packing).
- ROLA 6aj. speaker, energised, field 700 ohm., output transformer impedance 5000 ohm.

Write for lists:

D. COHEN,
67, Raleigh Avenue, HAYES, Midd.
TWO BOOKS—for the expert and the amateur enthusiast

LOUDSPEAKERS
The Why & How of Good Reproduction
by G. A. BRIGGS
Acknowledged to be the most comprehensive book available on the subject of Loudspeakers and the mechanics of good reproduction. This book contains valuable, detailed information and is profusely illustrated with easy to understand diagrams.

88 pages, 36 illustrations 5/- Post free 5.3

SOUND REPRODUCTION
by G. A. BRIGGS
This new book by the author of "Loudspeakers" is meeting with the success that attended the earlier book, and includes valuable data on recording, pick-ups, acoustics etc., covering 24 chapters.

144 pp. 120 illustrations, Bound Rexine 7.6 Post Free 8. –

SPECIAL An error in the printing of this book shows the coloured response curves on pages 50 & 51 out of register. Corrected prints on gummed paper are now available and will be sent free of charge upon request.

OBTAINABLE IN LONDON from:

Charles Amplifiers Ltd., 1 Palace Gate, Kensington, W.8.
Modern Book Co., 19-21 Praed Street, Paddington, W.2.

Premier Radio Co., 169 Fleet St., and Edgware Rd.
Rogers Development Co., 106 Heath St., Hampstead N.W.3.
W. H. Smith & Son Ltd., Bookshops.
Webb's Radio, 14 Soho Street, Oxford St., W.1.

ALSO SOLD BY MAIN DEALERS IN MOST LARGE TOWNS

Published by WHARFEDALE WIRELESS WORKS Bradford Rd., Idle, Bradford, Yorks

WHEN ORDERING TRANSFORMERS Specify WODEN FOR RELIABILITY

TYPES AVAILABLE FOR:
TELEVISION EQUIPMENT, QUALITY AMPLIFIERS, TRANSMITTERS, ETC.

Send or particulars of Components for "Wireless World" Williamson Amplifier.
"Electronic Engineering" Televisor, also for complete catalogue and price list.
A NOTABLE EVENT IN THE WIRELESS WORLD

The manufacturers of Nagard electronic equipment announce their productions available for 1949 and 1950.

NAGARD WIDE RANGE CALIBRATED OSCILLOSCOPE TYPE 103
- TIME BASES—2 c/s to 200 Kc/s or 10 c/s to 1 Mc/s calibrated time and frequency.
- Y AMPLIFIER—sensitivity better than 1 mV per cm. D.c. to 2.5 Mc/s.
- VOLTAGE MEASUREMENT—10 mV to 300 v. per cm. direct or with probe independently of amplifier gain.
- UNIT CONSTRUCTION—provides, by exchangeable units, alternative ranges, special displays, beam switching, etc.
- Stabilised power supplies. (5 in. screen. Portable.

NAGARD D.C. AMPLIFIERS
Various types are available all incorporating high stability, and drift-free characteristics at reasonable cost. These can be quoted against specified requirements, or for standard types with high or medium gain and response characteristics in any desired frequency range up to 10 Mc/s.

NAGARD UNIVERSAL OSCILLOSCOPE MOUNTING
The Nagard Oscilloscope Mounting is an ingeniously designed mounting table for all makes of portable oscilloscopes. It overcomes parallax errors when the operator is viewing the C.R.T. screen since a turn of the handle gives immediate vertical adjustment. The rubber-tyred wheels allow the oscilloscope to be moved about in the horizontal plane. Make your oscilloscope observations in comfort, with accuracy and without strain with the Nagard Universal Mounting.

A NOTABLE EVENT IN THE WIRELESS WORLD

You’re CERTAIN to get it at ARTHURS!"

VALVES: We have probably the largest stock of valves in the country. Send your enquiries. We will reply by return.

AVO METERS IN STOCK
- Avo Model 7
- Avo Model 7, high resistance
- Avo Model 40
- Valve Tester
- Test Bridge
- Avo Minor, AC/DC
- Electronic Test Meter
- Signal Generator

DENO COILS & COMPONENTS in stock

ELECTRIC LAMPS, all types.
TAYLORS METERS, List on request.
DECCA PICK-UPS
DECCA HEAD for Garrard

LONDON’S OLDEST LEADING RADIO DEALERS

PROPS: ARTHUR GRAY, LTD.
Our Only Address: Gray House, 158/152 Charterhouse St., London, W.C.2

ELECTRICAL, TELEVISION & RADIO ENGINEERS.

OSMOR "Q" COILPACKS
No need to spend hours puzzling over coil and switching problems. Just 5 connections (1-hole fixing), and the job’s done—quickly, efficiently and cheaply. Full-circuit layouts and instructions with every pre-aligned “Q” Coilpack. Portable Battery—Model now available.

Send stamp for free circuits and our new lists of coils, coilpacks and matched radio components, also “Bargain Bulletin.”

OSMOR RADIO PRODUCTS LTD.
BRIDGE VIEW WORKS, BOROUGH HILL, CROYDON

Telephone: Croydon 1220
LISTEN—IT’S A GOOD SOUND JOB

R.A. TUNING UNIT

THE K.I. AMPLIFIER
A seven-valve amplifier especially designed for the lightweight high-fidelity type pick-up. Independent bass and treble controls. Price complete 17 gns., or in kit form, 13 gns. Blueprint available separately 2s. 6d.

"LIVING MUSIC"—our fully illustrated 16-page catalogue showing complete range of amplifiers and tuning units. Write for your copy today!

THE TRICORNE SPEAKER CHAMBER
For optimum acoustical performance with any good 12-in. speaker. Labyrinth construction, walnut veneered and cross-braced. Price 10 gns., plus £1 deposit (returnable) for crate.

THE CONCERTO Amplifier
...acclaimed by music lovers for its exceptionally high fidelity. This magnificent amplifier covers all normal requirements for home or concert hall. Distortion level below 0.5 per cent. Two channels of bass boost ensure unusually smooth balance and depth. Designed for any type of pick-up. Radio input socket provided. Two year guarantee. Price £27. 10s. 0d. Heavy perforated steel cover with bottom plate and rubber feet. 37s. 6d. extra. Delivery by passenger train. Carriage Paid. 10s. deposit (returnable) for crate.

DEFERRED TERMS AVAILABLE ON ALL MODELS
Our equipment can also be seen and heard at:
- UNIVERSITY RECORDING CO., 16 BURLEIGH PLACE, CAMBRIDGE, also ERNEST BUCHAN, 28 BELMONT STREET, ABERDEEN.

FOR THE UTMOST REALISM FROM RECORDS & RADIO

It's got to be good

The heart of a Vibrator Power Unit (which supplies H.T. Current from low power D.C.) is the vibrator itself. Unless that gives a first class performance and goes on giving it for many, many hours, you have a heap of trouble on your hands. Hence the popularity of the "Wimbledon" Vibrator among many well known radio and electronic engineers. We have done a great deal of work on this Vibrator and we think it is just a little better than any other you can get. We are producing both synchronous and non-synchronous Vibrators and a complete range of Vibrator Power Units. Write for full details and judge them for yourself.

WIMBLEDON ENGINEERING COMPANY LTD
GARTH ROAD · LOWER MORDEN · SURREY · TEL.: DERWENT 4814, 5010

Approved and used by leading British manufacturers of car radio sets and receivers operated entirely from low voltage supplies.
"... of outstanding merit"

TURNTABLE UNIT T.U.2

The T.U.2 has been designed to meet a long-felt need for a gramophone motor unit to which any pick-up may be added. The two-pole induction type rim drive motor gives greatly increased torque and speed constancy. Double mechanical filtering eliminates motor rumble and gives silent, vibrationless operation.

Price £2.5.0. Tax 19/3.

GRAMOPHONE UNIT TYPE G.U.2

A gramophone unit that sets a new standard of quality at a modest price.

A new high output magnetic pick-up is employed and an improved adjustable auto-stop has been proved simple and absolutely foolproof.

Spring mountings are provided for the unit plate to counteract tendencies to cabinet resonance feedback. When correctly assembled the entire plate is on a fully floating suspension.

The finish and presentation of the G.U.2 are of a new conception giving simplicity and smooth lines in accordance with the best modern trends.

SHADeD POLE MOTORS

A rugged and highly efficient motor that will stand heavy overloads, and for intermittent ratings is capable of giving up to twice the rated power. Two models available: 1.7 and 2.3 in. ozs. Starting torque. Suitable for Gramophones, Wire and Tape Recorders, Fans, Motion Displays, Switch Movements, Timing Mechanisms, and many other applications.

Prices: S.R.1, £1.12.0. No tax.

S.R.2, £1.5.0.

See the full range of B.S.R. precision-built oscillators on Stand 81, Grand Hall.

BIRMINGHAM SOUND REPRODUCERS LTD
Claremont Works, Old Hill, Staffs.
In This Issue

EDITORIAL COMMENT ... 361
MAGNETIC RECORDING TECHNIQUE By D. Roe 362
HIGH-QUALITY AMPLIFIER: NEW VERSION By D. T. N. Williamson 365
MICROWAVE LENSES By C. Susskind 370
AIR RADIO .. 373
MAINS-BATTERY TURNTABLE By I. C. Hutcheon 375
NATIONAL RADIO EXHIBITION, 1949 376
WORLD OF WIRELESS .. 385
SMOOTHING CIRCUITS—1 By "Cathode Ray" 389
MANUFACTURERS' PRODUCTS 393
UNBIASED By "Free Grid" ... 394
ELECTRONIC CIRCUITRY By J. McG. Sowerby 395
SHORT-WAVE CONDITIONS By T. W. Bennington 397
VENTED LOUDSPEAKER CABINETS By C. T. Chapman 398
HIGH-VOLTAGE MEASUREMENT 400
REFLEX VALVE VOLTMETER By M. G. Scroggie 401
THERMISTORS ... 405
LETTERS TO THE EDITOR .. 408
RANDOM RADIATIONS By "Diallist" 410
RECENT INVENTIONS .. 412

VIBRATORS

"Stratosil" for efficiency.

A data book, complete with replacement guide and transformer design information is now ready and will be gladly sent to you at 6d. post free. Please use the coupon.

POST THE COUPON NOW
Wright & Weaire, Ltd., 138 Sloane Street, London, S.W.1, England
Please send me VIBRATOR DATA BOOK for which I enclose 6d.
Name and Address ..

SLOANE ST. LONDON S.W.1 TEL. SLOANE 2214 S FACTORY: SOUTH SHIELDS, CO. DURHAM
Previous articles have, in general, been concerned with one valve or one circuit stage; it frequently happens that more complex problems are encountered in combining a number of valves and stages to make a complete equipment and this article and the next three deal with television receiver synchronizing and time base circuits. A practical circuit with complete operating and constructional details is given as an illustration of the solution of this type of problem. The circuit, though employing only five valves for all the functions of synchronizing, scanning, and E.H.T. derivation, and being economical in components, will be found to give excellent stability of synchronization under conditions of interference and will also give good linearity.

A block schematic diagram in Fig. 1 gives the valve and stage arrangement. It will be seen that the functions of frame output amplifier and line blocking oscillator are carried out in one valve envelope. This avoids the risk of non-interlaced which would attend the combination of the line blocking oscillator with the frame blocking oscillator or frame synchronizing pulse separator. The triode used for frame synchronizing pulse separation gives an amplified pulse and a very steady hold as a result. Thus, this arrangement gives a better performance than one using a diode or double diode for separating the frame synchronizing pulse and a separate valve for the line time base oscillator, and is more economical in valves and components.

The frame output valve is transformer coupled to the deflector coils. As with all frame output transformers it is not possible to make the magnetizing current negligible compared with the load current without using a core and windings of prohibitive size. A circuit and valve must, therefore, be provided which supply this magnetizing current of parabolic form and the load current of linear form.

If the output valve has a high output impedance (e.g. a pentode) the grid potential waveform will be substantially the same shape as the anode current waveform. On the other hand, if the output valve has a low output impedance (e.g. a triode) the grid potential waveform will be substantially the same shape as the anode potential waveform, which is linear during the scan.

The potential waveform obtained from most time base oscillators has an exponential form such that the slope decreases during the scan while the waveform of the total valve current should increase in slope during the scan. It is evident that the correction needed to produce the correct grid potential waveform will be easier when a triode or low impedance valve is used. Conversely, when a given degree of correction is available a triode valve will allow a greater proportion of the current to be parabolic in form and a smaller transformer can then be employed. Furthermore, one of the most convenient and effective methods of waveform correction uses potential negative feedback which reduces the effective output impedance of the valve in addition to conferring the other advantages of negative feedback. Negative feedback of approximately 5:1 should be used with all frame time bases to reduce the effects of microphony in the output valve which otherwise would need to be more rigidly constructed and its cost would be greater. From the point of view of microphony a low-l. triode is also better than a high slope pentode as a blocking oscillator. Hence, if no limitation such as a low value H.T. line is imposed, the triodes of the ECC34 have great advantages for frame time base circuits, and the use of double-triodes has enabled the economical arrangement of Fig. 1 to be employed.

Reprints of this report from the Mullard Laboratories, together with full transformer and coil winding data can be obtained from the address below. The complete circuit will be given in the next issue of the "Wireless World."

MULLARD ELECTRONIC PRODUCTS LTD.,
TECHNICAL PUBLICATIONS DEPARTMENT,
CENTURY HOUSE, SHAFTESBURY AVE., W.C.2
(MVM 105)
THE more obvious purpose of a radio exhibition is strictly commercial; it acts as a convenient shop window, and the commercial exhibitor hopes to recoup himself for a considerable expenditure—of time, effort and money—by an immediate increase in sales. Taking the long-term view, the aim should be to encourage the widest possible section of the public to take an intelligent and serious interest in all branches of radio. And to those already “in the game” an annual exhibition should be a kind of focal point of the year.

In our view, pre-war exhibitions failed lamentably in all these respects. They were too specialized, and concentrated mainly on “selling” broadcasting—which was already sold—rather than on selling equipment, or, on the broader issue, showing the year’s progress in all branches of the industry. True, there were some signs of improvement in 1939; the fiasco of the exhibition of that year was in no way the fault of the organizers, but was due to the fact that it coincided with the outbreak of war. Broadly speaking, however, it was not until the first post-war exhibition of 1947, which came under the wing of the Radio Industry Council (itself a war-time creation) that the exhibition took on what we think to be the right shape. It proved a great success, and did much to re-establish in the eyes of the world the prestige of the British radio industry, and to offset much of the harm that had been done by ill-advised delays in permitting the publication of detailed technical information on war-time developments. Attendances at the 1947 exhibition reached record figures; true, some of that attendance comprised “exhibition addicts” and so was not of any great value, but we know from our own observation that there was a very high proportion of deeply interested and serious visitors, including users and would-be users of every kind of radio and radio-like equipment.

Radiolympia, 1949, follows the essential pattern of its immediate predecessor of 1947. In spite of one or two regrettable defaults, the show which will have opened when this appears in print should be adequately representative of all branches of radio and its offshoots, and there is little to criticize in its general plan. Though it may be urged that television is given undue prominence, the organizers could hardly do otherwise at a time when our national service is in process, at long last, of being extended, and with further extensions in prospect.

So far as can be judged at present, there is a lack of the more serious kind of educational exhibit which, we suggest, would be a highly desirable feature. Developments in our field are still so rapid that there is small wonder that the layman, even of the best informed type, can hardly be expected to know what radio can (and cannot) do for him. To some small extent the exhibits of the various non-commercial bodies and Government departments fill this gap, but the kind of thing we have in mind would be of a rather more detailed nature, and might well be presented by the various industrial organizations.

 Elsewhere in this issue we present information which, it is hoped, will serve as a convenient guide to the visitor to Olympia, and, at the same time, will be of some value to readers, including those overseas, who are unable to go to the show. In addition to a plan of the exhibition, with lists of exhibitors, we give in tabular and graphical form a quick-reference index to the stands on which the various classes and types of radio and electronic equipment are to be seen. This information is as complete as possible up to the time of going to press. In our next issue we hope to give a detailed review of the show.
THE general theory of magnetic recording has already been covered in this journal, and it is the purpose of the present article to cover the more practical aspects and to draw attention to some of the finer points of technique, now that tape and wire are available, e.g., from E.M.I. Factories, Ltd., Hayes, Middlesex, and Wirek (Electronics), Deansbrook Road, Edgware.

Heads (General): Modern magnetic heads are made in ring or toroidal form. Usually the rings are cut in half and each half fitted with a coil (Fig. 1). The halves are then clamped together with non-magnetic spacing shims to give two accurately dimensioned gaps. The magnetic recording medium is arranged to lie in contact with the outer face of the core for about \(\frac{1}{8} \)th of an inch on either side of one of the gaps. Different gap widths are used for the erase, record and playback heads, typical values being 20 mil, 1 mil and \(\frac{1}{2} \) mil respectively (1 mil = 0.001 in).

Heads for use with tape are generally made from a stack of 5 mil ring laminations, the thin gauge being necessary to reduce eddy-current losses at high frequencies. Heads vary from \(\frac{1}{2} \) in to \(\frac{1}{2} \) in outside diameter, with about \(\frac{1}{2} \) in wall. High-permeability nickel-iron alloy, such as Mumetal or Permalloy-C, is used, as it is essential to have the lowest possible reluctance at the pole-piece tips for a sharply defined magnetic field. Laminations are clamped together and the gap edges ground straight and square. The tape contact area is also smoothed. Finally the laminations are annealed to restore maximum permeability and then cemented solidly together. A hard material, such as beryllium-copper, is used for the shims to prevent rounding of the gap edges.

Less efficient tape heads may be made by bending two \(\frac{1}{2} \) in wide strips of 15-mil material into semi-circular shape. The loss in efficiency occurs mainly at low frequencies owing to the low iron/copper ratio, so that these heads are more suitable for use at low tape speeds, where, as will be seen, the bass response is relatively greater. These heads work quite well un-annealed, but there is a comparative treble loss of about an octave.

A head for wire recording is very similar, but consists of a single-ring lamination, about 10 mil thick, clamped between non-magnetic side pieces. These side pieces are bevelled so as to form a V slot leading down to the edge of the lamination. The wire runs on the edge of the lamination and a shallow groove is usually provided to keep the wire central and to give better magnetic contact with the round surface. It is not necessary for a head to be of perfect ring form. Rectangular laminations may be used, with a curved edge or a felt pad to keep the medium in contact with the gap. But it is important to keep the head symmetrical and the coils identical; an astatic head picks up much less hum, which is a very real problem in magnetic recording.

Coils may be of high or low impedance according to circuit requirements. Low impedances have the advantage that self-supporting coils of thicker wire may be used. The playback head, however, must be of high impedance, or used with a step-up transformer, for maximum voltage output to be developed.

Erase Head.—A fairly wide gap is used in the erase head so that the erasing field spreads sufficiently for each point of the passing wire or tape to be subjected to a hundred or so gradually decreasing demagnetizing cycles. But the gap must not be too large or the maximum value of the field will not be enough to saturate the medium, and previous recordings will not be erased completely. To obtain sufficient erase current the inductance of the erase head is
often tuned to the frequency of the ultrasonic oscillator by means of a series condenser. It is quite common for an erase head to run warm. 100 ampere-turns is a typical energizing value. Radio-metal is better than Mumetal for erase heads.

Recording Head.—In recording with modern "ultrasonic bias," the actual flux density recorded depends on the instantaneous value of the magnetizing field at the moment the medium leaves the gap and passes into the relatively field-free region of the rear pole-piece. Hence the actual gap width is of less importance than the rapidity of the decay of the magnetic field at the rear gap edge. It is important, therefore, that the rear edge be sharp and square, and the material fully annealed for lowest reluctance if the maximum high frequency response is to be recorded.

Playback Head.—For good treble response on playback, "scanning" loss must be a minimum, so the playback gap is made very narrow, about 1/4 to 1 mil. The gap should not be too narrow or else efficiency will be lowered due to the magnetic flux from the medium leaking back across the gap instead of going through the pick-up coils. Pole-pieces are slightly tapered to the point where they meet the medium, so that the actual amount of parallel gap is small. In the case of wire heads, it is usual to clamp the two pole-pieces, remove the spacer and soft solder the pole tips in position.

Frequency Response.—In any sound recording system, to obtain the maximum signal-to-noise ratio, there should be equal likelihood of overload at all frequencies. In magnetic recording the overload point is set by the saturation level of the magnetic medium. Saturation is independent of frequency, and depends only on the magnetizing field of the recording head; that is, on the recording ampere-turns. Constant recording current, therefore, produces constant peak flux.

On playback the voltage induced in the playback head is proportional to the rate of change of flux, and as the flux reversal is clearly more rapid at higher frequencies, owing to the shorter wavelength, the playback output rises with frequency at a rate of 6 db per octave. However, at very high frequencies the minute magnets representing individual cycles become very short and of a size comparable with the thickness of the wire or tape. Consequently the well-known demagnetization of short magnets occurs, resulting in considerable high-frequency attenuation. A typical playback response curve of a constant current recording is shown in Fig. 2. It should be noted that this curve is more or less constant in shape for a given wire or tape, and with changes in recording speed merely shifts proportionately, parallel to the 6 db per octave line.

Constant current in the recording head is obtained by feeding it from a constant-voltage high-resistance source, or through a series resistance from a source of low resistance. Magnetic recording requires a power of only about 10 mW, so the resulting power transfer loss is not important. In recording, some treble boost and a little bass boost may be used without risk of frequency-selective overload. However, most of the equalization has to be applied during playback. Between 18 db and 30 db of bass boost at 100 c/s is required, according to the recording speed. Treble boost is usually obtained by means of a damped tuned circuit, which more closely complements the recording curve.

A typical playback equalizer circuit is shown in Fig. 3. Owing to the large amount of bass boost used on playback, great care has to be taken to shield the playback head from magnetic hum pick-up. One or more screening cans of high-permeability alloy may be needed, and the head should be spaced as far as possible from drive motors and mains transformers.

Distortion.—Superimposition of a steady high-frequency tone upon the audio signal while recording on a completely unmagnetized medium has been found to produce a linear magnetic recording characteristic of greater volume range than previous methods, together with much less background noise. The frequency of this "ultrasonic bias" is not important, but it is usual to choose a value at least five times the highest audio frequency, to prevent audible beat notes with the signal. The optimum amplitude of the bias varies with different wires, tapes and recording heads. Fortunately, it is easily found by experiment and is not very critical.

Using music as a test signal, as the "bias" is increased from zero, distortion rapidly diminishes, while the volume output rises to a maximum. Above this point, any
Magnetic Recording Technique —

further increase in "bias" begins to reduce the volume level, and especially the high frequencies, although some further reduction in distortion may occur. A compromise has to be effected between good high-frequency response and low distortion. Too high "bias" also makes erasure more difficult. Care must be taken during these tests to keep the recording level well below the overload point. Fig. 4 shows a typical oscillator circuit and connections.

Noise.—If a demagnetized wire or tape is run over a demagnetized playback head, clearly no signal voltages can be induced. If, however, the medium is first passed over, say, a permanent magnet, then every discrete magnetic particle becomes magnetized and capable of inducing a noise voltage. For low noise levels it has been found that the diameter of these individual particles should not exceed about 0.0001in., that the size must be uniform and "clumping" of particles prevented. It is important to note that noise not only occurs when there is some permanent magnetic influence, but also during recording. Each cycle of signal is really an integration of noise voltages so that, although a bad speci-

![Fig. 4. Suggested circuit for high-frequency bias oscillator, with connections to heads. 120 turns on a single lamination gives about 1mH.](image)

TELEVISION RECEIVER KIT

THIS receiver is sold as a kit of parts by Premier Radio Company, 167, Lower Clapton Road, London, E.5, and an assembled model has been tested. There are separate vision- and sound-channel receivers, the former comprising four r.f. stages, diode detector, v.f. stage, d.c. restorer and phase-splitter, while the latter has two r.f. stages, double-diode-triode detector and a.f. amplifier, and a pentode output stage. The vision receiver is designed for single-sideband operation on the London transmissions, the sidebands remote from the sound channel being selected so that rejectors are not needed.

The tube is a 6-in electrostatic with a green screen and operates at about 2.5 kV. Each time base comprises a transitron-Miller integrator with a paraphase stage. Two valves are used for sync separation. The power supply is of the usual full-wave type, with a voltage-doubler using metal rectifiers for e.h.t.

On test the apparatus functioned well, the definition and synchronizing being good. The brightness is hardly sufficient for daylight view-

ELECTRONIC COUNTER

"Scale - of - ten" counter recording up to 999,999 impulses, and pre-amplifier for use with Geiger-Muller tubes, made by Labgear, Willow Place, Fair Street, Cambridge. A stabilized e.h.t. unit for the tube bias is also available.

Assuming a quiet medium, unnecessary noise is often caused by slight permanent magnetization of the playback head. This may be demagnetized by applying "bias" to it from the oscillator and reducing this slowly to zero. Noise can also be caused by asymmetry of the "bias" waveform, which, in effect, produces a slight permanent magnetization. Even-harmonic distortion of the oscillator must be reduced to a minimum, and in this connection, to reduce loading effects, a Class "A" buffer amplifier is often interposed between oscillator and erase head, which generally requires rather a high power for complete erase.

While the foregoing notes are by no means exhaustive, they should at least enable the experimenter to obtain satisfactory results from the start. As with other systems of recording, perfection involves further careful experiment and measurements on the individual equipment in use.

The construction appears simple and comprises merely the assembly and wiring of the parts. The initial adjustments are few and do not appear to be at all difficult. A booklet describing the construction is available from the firm. A magnifying lens can be supplied at £1 19s 6d.

World Radio History
By D. T. N. WILLIAMSON
(Ferranti Research Laboratories)

HIGH-QUALITY AMPLIFIER: New Version

MOST power amplifiers intended for sound reproduction are designed to have a uniform response to frequencies within the audible range, and it is the aim of designers of pickups, microphones and loudspeakers to give similar characteristics to their products. This represents an attempt to fulfill one of the conditions for the creation of a perfect replica of the original sound and provides a common basis for the design of individual units, which, when connected together, will provide a complete channel with a uniform gain/frequency characteristic.

Considerations of an engineering nature sometimes make it desirable, and even essential, to depart from this ideal of a uniform response in certain sections of equipment, and quite frequently the use of inferior equipment or long and unsuitable transmission lines, leads to an undesirable departure from uniformity. In cases like this, other “equalizer” units have to be inserted in the channel to provide characteristics which are the inverse of those of the offending section, so remedying the defect.

When listening conditions depart from the ideal—and this, unfortunately, happens frequently since most rooms are unsuitable auditoria for the reproduction of orchestral music at realistic intensities—it is sometimes beneficial to modify the frequency response characteristic of the equipment in an attempt to compensate for the more obvious defects in the room acoustics. This question of the frequency compensation which is desirable when conditions depart from the ideal is a very thorny and subjective one. It provokes much heated, dogmatic, and usually very unscientific discussion, and is beyond the scope of the present article. It must suffice to say that the matter is one in which the individual must exercise his own judgment and act accordingly.

In order that he may have scope to do this, a pre-amplifier designed to be used in conjunction with gramophone recordings and radio transmissions should therefore be capable of providing variable compensation for such defects as are likely to occur in the source, and are capable of being ameliorated. In addition, fixed compensation must be provided for deviations from a uniform response which are deliberately introduced in gramophone records.

The degree of complication which is worthwhile in such a unit must be considered. In theory, it is possible to compensate precisely for deficiencies in the amplitude/frequency and phase/frequency response characteristics, but the equipment to do this is complicated and expensive. When a considerable portion of the channel is outside the control of the listener, as is the case when reproducing records or broadcast transmissions, he has no means, apart from the sensitivity and training of his ears, of determining the defects which may have occurred in that portion. Since it is impossible to determine the nature and amount of phase distortion by listening to a transmission, and since it is not usual for much attention to be paid to this form of distortion at the recording or transmitting end, there would seem to be little justification for the inclusion of phase correcting networks in domestic equipment. In the case of a sound reproducing system which is completely under the control of the user, particularly if stereophonic, phase distortion should not be allowed to occur if the finest possible quality is to be obtained. This is especially true at low frequencies, where considerable time delays are involved. Low phase distortion is best achieved by designing a system with a bandwidth considerably greater than the audible range, but where this is not possible compensation may be provided.

Consideration of the causes of frequency distortion leads to the conclusion that it is normal for the levels at the ends of the spectrum to be accentuated or attenuated progressively with respect to the level at middle frequencies and a form of compensation to correct this fulfills most requirements. It is not possible to lay down hard and fast rules about the amount of compensation necessary, but rates of attenuation or accentuation greater than 6 db/octave are not usually required.

As it is often desirable to change the amount of compensation during a programme without calling attention to the fact, methods which give continuous control over the response are to be preferred to switched systems, unless the latter are graded in very fine steps.

The use of inductors to provide gain/frequency compensation is
High-Quality Amplifier—
to be deprecated as, apart from
possible troubles due to resonance
effects and non-linearity, they are
very liable to pick up hum from
stray alternating magnetic fields,
especially if they are air-cored.
Metal- or dust-cored toroids are
less troublesome in this respect,
but are expensive and not readily
obtainable.

Fig. 5. Basic frequency compen-
sation circuit. Typical values
(for use after an EF37, triode-
connected) are: \(R_{40} = 250k\Omega \),
log; \(R_{41} = 100k\Omega \); \(R_{42} = 6.8k\Omega \);
\(R_{43} = 10k\Omega \); \(R_{44} = 100k\Omega \) linear,
\(C_{20} = 150pF \) max.; \(C_{21} = 0.01\mu F \),
\(C_{22} = 0.05\mu F \); \(C_{23} = 1000pF \).

Frequency Compensation.—Fig.
5 shows a simple compensation
circuit which will accomplish bass
and treble accentuation and
attenuation without the use of in-
ductors. The controls consist of
two potentiometers, each asso-
ciated with a changeover switch.
Consider the low frequency con-
trols \(R_4 \) and \(S_2 \). When \(R_4 \) is
fully anticlockwise (minimum re-
sistance) the response to fre-
quencies below 1000c/s is uni-
form. If the switch \(S_2 \) is set to
"rise," as \(R_4 \) is rotated clock-
wise, the amplitude/frequency
characteristic will rise at low fre-
quencies to the maximum shown
at A in Fig. 6. If \(S_2 \) is set to
"fall" and \(R_4 \) rotated clockwise
from minimum position, progres-
sive low-frequency attenuation
will be introduced, up to the
maximum shown at B. In a simi-
lar manner, by the use of \(R_{44} \) and
\(S_4 \), the high-frequency response is
continuously variable from a level
response to the extremes shown at
C and D with the values given.

Fig. 6. Response curves of circuit of Fig. 5.
The curves may
be shifted bodily
along the hori-
zontal axis by
modifying the
capacitance
values as shown
by the arrows in
Fig. 6.
The attenuation
introduced by the net-
work when controls are at the
level position is 24 db, and the
network must, of course, be
introduced into the system at a
signal level such that the valve
feeding it is not
overloaded.

Low-Pass Filter.—The
majority of
medium-wave
broadcast trans-
missions, when
reproduced with
wide-range equip-
ment, exhibit a most objectionable form of non-linear
distortion. This takes the form of a
rattle or buzz often accompanying
transient sounds such as piano-
forte music. This type of distortion
is commonly caused by minor
discontinuities in the transfer
characteristic and is frequently
associated with Class "B" ampli-
fiers.

Recording and processing de-
fects, record wear and imperfect
tracing by the pickup produce a
similar type of distortion from
gramophone records.
The most offensive frequency
components of the rattle or
buzz are generally present at
the extreme upper end of the
audible spectrum, and spread
downwards as the severity of the
effect increases. Fortunately, the
concentration of this type of dis-
tortion into the extreme upper end
of the spectrum makes it possible
to effect considerable improve-
ment by removing or reducing the
energy in the signal at these fre-
quencies. A low-pass filter with
a cut-off frequency variable be-
tween the limits of 5 and 13 kc/s

Fig. 7. Basic filter circuit.

Fig. 8. Characteristics of circuit
of Fig. 5.
and a fairly high rate of attenuation above the cut-off frequency is a greater asset in securing the best possible aural result from indifferent transmissions or recordings.

Although it is practicable to provide a filter with a continuously variable cut-off frequency, the expense and complication are not normally justified and a switched selection of frequencies is satisfactory. To attain the high attenuation rates necessary to secure satisfactory results a normal resonant-section type of filter could be used, but this carries with it the disadvantages associated with the use of inductors.

An alternative type of filter using only resistive and capacitive elements based on the parallel-T network is capable of giving very satisfactory results. Briefly, the principle of this filter is as follows. In Fig. 7 is shown an amplifier feeding a parallel-T null network, the output from the network being fed back to the input of the amplifier. Such a system has amplitude and phase characteristics of the general shape shown in Fig. 8. By altering the loop gain of the amplifier, it is possible to produce a resonance characteristic of any desired degree of sharpness.

If now a lagging phase shift is introduced into the amplifier, for example, by connecting the capacitor C from grid to earth, it will be seen that the total phase shift due to network and amplifier just below resonance will be greater than 90° and the feedback voltage will have a positive component, whilst above resonance a greater negative component will exist. The effect of this is to unbalance the amplitude characteristic as shown in Fig. 9. A rise in response occurs just before the resonance frequency due to the positive component of feedback, and above the resonant frequency the response rises to a fraction of its value below resonance and then falls off due to the attenuation produced by the capacitor C.

The addition of a further R-C attenuating network external to the circuit will produce a frequency response characteristic as shown in Fig. 10. The similarity of this curve to the response of a resonant element L-C filter will readily be appreciated. There is a practical limit to the rate of attenuation which can be achieved with a single stage, since the attenuation rate and the level to which the response rises above the frequency of maximum attenuation are interrelated. Thus a high rate of attenuation is achieved with simplicity only at the expense of a low ratio of response below cut-off to peak response above cut-off. However, a rate of attenuation of 40 db/octave can be obtained from one stage with a minimum attenuation above cut-off of nearly 30 db, which is quite satisfactory. By cascading a number of these filter stages any desired attenuation characteristics may be achieved, and high-pass filters may be similarly formed by the addition of leading phase shift to the amplifier.

A filter designed on these lines, with five switched positions giving nominal cut-off frequencies of 5, 7, 10 and 13 kc/s and a "linear" position is incorporated in the final circuit. The performance is shown in Fig. 11.

Gramophone Pre-amplifier. — The arrangements just described are generally all that is necessary to compensate for defects in radio transmissions. For record reproduction, however, additional fixed compensation is required. The nature of this compensation will depend on the recording characteristic and the type of pickup used.

For reasons now too well known to require repetition, lateral disc recordings are usually cut with a groove amplitude which is proportional to signal below some arbitrarily selected frequency in the 300-4000 c/s region and with a lateral groove velocity which is proportional to signal above this frequency. To improve signal/noise ratio it is now common practice to increase the level recorded with pre-amplifier circuit to be described in a subsequent instalment.

High-Quality Amplifier—

used by Decca. The E.M.I. characteristic does not differ substantially at low frequencies but the rise above 3,000 c/s is absent. It is proposed to use the Decca characteristic as a basis for design. When playing E.M.I. recordings, one fixed capacitor in the pre-amplifiers to be described later may be switched out of circuit, giving a level response. Alternatively the gramophone pre-amplifier may be left unchanged and correction provided by means of the variable treble control in the tone compensation unit. This, when \(C_{\text{re}} \) is set to 100\(\mu \)F and \(R_4 \) (Fig. 5) advanced by one quarter of maximum rotation, gives almost perfect correction.

![Depicted graph](image)

The majority of pickups, with the exception of piezoelectric types, give an electrical output which is proportional to the lateral velocity of the stylus. The output of such a pickup when playing a Decca recording will be of the form shown in Fig. 12, with ordinates of voltage instead of velocity. A pre-amplifier suitable for such a pickup should have a frequency characteristic which is the inverse of this.

Some desirable properties of a pickup pre-amplifier are:

1. Low noise level.
2. Low distortion at signal levels likely to be encountered with pickups in common use.
3. Sharp attenuation below 20c/s to suppress turntable rumble, etc.
4. Provision for varying the gain electrically.

Noise Level.—The attainment of a low noise level in high-quality sound systems is of such vital importance that a few remarks of a general nature will not be out of place at this juncture.

It is an unfortunate fact that improvements in microphones and pickups in the direction of wider frequency range and absence of other forms of distortion are almost invariably achieved at the expense of the electrical output. This does not necessarily mean that the efficiency of the transducer is reduced by the other improvements, but merely that it removes less energy from the acoustical field or from the record groove which actuates it, causing less disturbance of this field, or less wear of the record groove.

There is, however, a limit to ratio of 70 db, a sound reproducing system with a frequency response flat to 20,000 c/s operating at a realistic volume level produces, in the absence of a signal, noise which is just audible as a very gentle rustle and is completely inoffensive.

Most modern microphones and pickups are electromagnetic, although there is a tendency for microphone design to gravitate towards carrier-operated capacitor types. These have problems of their own and will not be treated here. Electromagnetic microphones and pickups are manufactured with impedances ranging from a few milliohms to several thousand ohms, but are normally used in conjunction with a transformer which raises the impedance to a suitably high value to match the input impedance of a valve.

For obvious reasons it is desirable to make this secondary impedance as large as possible—say several megohms—since the voltage output from the transducer will increase simultaneously, reducing the gain required from the electronic equipment and the amount of noise contributed by it.

It is not practicable, however, to increase the secondary impedance much beyond 0.1\(\text{M}\Omega \) if a flat frequency response is required from the transformer over the audible range.

The noise generated by thermal agitation in a 0.1\(\text{M}\Omega \) resistor at room temperature is about 6µV for a bandwidth of 20,000 c/s. To this must be added the noise produced in the first valve of the amplifier. By careful design and construction, and by the use of a suitable valve, the noise from all causes, including mains hum, can be reduced to a value equivalent to about 3µV at the grid, but under normal conditions a figure of 5µV is fairly representative. The total noise may be taken as the square root of the sum of the squares of these values, or about 8µV. To obtain a signal/noise ratio of 70 db, then, the peak signal must be 70 db above this level, say 25 mV r.m.s. The pre-amplifier should have sufficient gain to enable the main amplifier to be fully loaded by a signal at this level.

The choice of a valve type for the first stage must be made carefully. In theory, for equal gain
the noise level in a triode stage is lower than that produced by a pentode, since the pentode has an additional noise component due to electron partition between screen and anode. In fact, however, there are no high-gain triodes commercially available with the requisite characteristics and electrode structures for low-noise operation. A valve designed for such conditions should have a rigidly braced electrode structure to reduce microphony and a balanced "double helical" heater construction to minimize the alternating field surrounding the cathode. The Mullard EF37 has this construction and, connected as a pentode, the noise levels mentioned earlier are obtainable. Before commencing work, the reader who is not familiar with the technique of high-gain amplifier construction should consult an article on this subject. Considerable reduction of residual hum may usually be obtained by demagnetizing the valve. In order to obtain the best signal/noise ratio, the principle which should be followed, when valve noise is the limiting factor in high-gain amplifiers, is to put the whole of the available signal into the valve grid, and to provide any frequency compensation which may be necessary after the signal has been amplified. By this method valve noise is included in any attenuating operations which may be performed and the overall signal noise ratio is improved.

Low Distortion. — Numerous methods of providing a response which varies with frequency are possible and, of course, each method has advantages and disadvantages. Where the response has to be continuously variable the method which gives greatest simplicity of control usually triumphs. Other things being equal, however, methods which employ selective negative feedback are to be preferred, as circuits of this nature generally have a high signal-handling capacity and non-linear distortion is kept to a minimum. In a pickup pre-amplifier this may be of importance where pickups with widely varying output levels are to be used.

High-Pass Characteristic. — Gramophone motors tend to produce vibrations which can cause unpleasant rumbling noises in a wide-range system. Although the energy contained in the "rumble" components may be relatively low, the frequency is also very low, and consequently loudspeaker cone movements of high amplitude may be caused. If the driving coil should move out of the region of uniform flux-density, the whole spectrum being reproduced will be distorted in a particularly unpleasant manner. Distortion in the output transformer is also possible.

This situation can be improved materially by the insertion of a high-pass filter with a cut-off frequency of about 20 c/s and a fairly rapid attenuation below cut-off. At these low frequencies, such filters are conveniently composed of resistance-capacitance networks and may be incorporated in the bass-compensation pre-amplifier.

Electrical Fading Control. — When the pickup is placed on, or removed from, the disc the gain must be reduced to avoid unpleasant noises. While this may be done by a mechanical potentiometer the method is clumsy and does not facilitate rapid record changing. It has been found convenient to employ an electrical method in which the gain of one of the stages is reduced to zero at the flick of a switch by a bias voltage applied and removed by means of a network with a suitable time constant.

(To be continued)

NEWS FROM THE CLUBS

Birmingham.—The annual dinner of the Midland Amateur Radio Society will be held at the Imperial Hotel, Birmingham, on October 15th, at 6.30. Sec.: A. W. Rhodes, 155, Woolmore Road, Birmingham, 23, Warwicks.

Eastbourne.—Meetings of the Eastbourne and District Group of the R.S.G.B. are held on the first Friday of each month at the Friends' Meeting House, Wish Road, Eastbourne. Sec.: K. F. Nugent, Field House, Windy Hill, nr. Hailsham, Sussex.

Luton and District Radio Society meets each Monday at 7.30 at Surrey Street school, 37, Wilsden Avenue, Luton, Beds.

Richmond.—The formation of the Richmond and District Radio Society is proposed and the inaugural meeting will be held at the Station Hotel, Richmond, at 7.30 on October 4th.

Southport.—In addition to the monthly meetings of the Southport Radio Society, which are held on the third Monday in each month at 8 p.m. at the headquarters, 38a Forest Road, the club premises are open every Monday and Wednesday evening. Sec.: F. H. P. Cawson, 113 Waterloo Road, Southport, Lancs.

Spen Valley Radio and Television Society meets on D. E. French's, Wednesdays at the Temperance Hall, Cleckheaton at 7.30. The subjects to be discussed at the meetings on October 12th and 26th are "Measurements and the Radio Amateur" and "Some Aspects of Television." Sec.: N. Pride, 101 Raikes Lane, Brinsall, nr. Leeds, Yorks.

Sunderland.—Meetings of the Sunderland Radio Society are held at Prospect House, Prospect Row. On October 19th, B. A. Holden, M.A., will speak on "Quality Disc Reproduction" and on October 26th J. M. Carter, B.Sc., will demonstrate the Wright and Wareham magnetic tape recorder. Both meetings begin at 8 p.m. Sec.: C. A. Chester, 38 Westfield Grove, High Barnes, Sunderland.

RADIATION MONITOR

Both visual and aural indication of pulses from a Geiger-Muller tube are given in this instrument, the meter being arranged to indicate "rate of count". A stabilized power supply is included and the overall accuracy is within ± 1% per cent. Alpha and beta-gamma probe units are available. The makers are A Larmec Laboratories, High Wycombe, Bucks.
MICROWAVE LENSES

A General Survey of the Three Main Types

(Yale University, U.S.A.)

Radio waves are essentially of the same nature as light waves. Both are electromagnetic radiation phenomena which differ merely in frequency. At microwave frequencies (e.g., in radar work) the wavelengths—and hence the antenna dimensions—are of the order of only a few centimetres. Accordingly, certain optical analogies suggest themselves. The most widely used device for producing a beam of light, for instance, is the parabolic mirror; if the source is located at the focus, the rays will be reflected parallel to the axis. This arrangement will work equally well for microwaves, provided a conducting surface is substituted for the mirror.

The parabolic "dish" antenna has certain disadvantages, however: the source is in the path of the beam and distorts it by virtue of a shadow effect, in addition to interference introduced as a result of forward radiation directly from the source; there is ample opportunity for radiation in the backward direction, past the reflector, with the attendant loss of energy and possibility of interference with nearby radiators ("cross-talk"); some energy is reflected back into the feed and may disturb the source; and furthermore, the tolerances required in the construction of the reflector are very small.

These difficulties can be obviated if the reflector is replaced by a large lens, made of glass, polystyrene, or some other dielectric material, and placed in front of the source. The source, which is no longer in the beam path, is now made to radiate in the forward direction; the two surfaces give the designer an additional degree of freedom; the possibility of distortion due to warping is greatly reduced; and it can be shown that the tolerances required are four to five times greater than for the parabolic reflector.

The solid lens may, on the other hand, present a considerable mismatch at its surface, and consequently cause loss of gain and interference (scattering). This mismatch may be reduced by the use of quarter-wavelength sheets: the lens surfaces are covered by a sheet consisting of another dielectric, the thickness of which is adjusted so that the waves reflected from it and from the surface proper cancel out.

A more serious disadvantage of the solid dielectric lens is its weight: a lens of a size useful in practical applications would be very heavy indeed. To circumvent this difficulty, Kock in America and Rust in Britain have each independently suggested the use of parallel-plate configurations.

Metal Plate Lenses

Two semi-infinite, parallel metal strips constitute a very simple form of waveguide. The velocity with which a surface of constant phase propagates (phase velocity) between parallel plates of separation h is given by

\[v_p = \frac{v_0}{\sqrt{1 - \frac{m^2 \lambda^2}{2h}}} \quad \ldots \quad (1) \]

where v_0 is the phase velocity in free space, m the order of the mode being propagated, and λ the wavelength. The wave will be propagated without attenuation only if

\[h > \frac{m\lambda}{2} \quad \ldots \quad \ldots \quad (2) \]

Thus the phase velocity v_p between the plates is always greater than the velocity v_0 in free space. If a set of parallel plates (arranged parallel to the direction of electric intensity E) having the shape shown in Fig. 1(a) is used, it is seen that the phase velocity will be increased along paths where the plates are wide, and unaffected where the plates have zero width. Thus the equiphase surfaces (shown dotted), spherical to the left of the lens, will emerge as planes from the lens; this is the condition which will yield maximum gain and directivity.

To determine the contour of this lens, the times required for two points on the same equiphase surface to travel along two different paths (cf. Fig. 1(b)) are equated. Using the terminology of optics, the ratio of the two phase velocities

\[\eta = \frac{v_p}{v_0} = \sqrt{1 - \frac{m^2 \lambda^2}{2h}} \quad \ldots \quad (3) \]

may be considered to represent ar
equivalent index of refraction. (Note that $n < 1$ for this construction.) The equation obtained for the contour of a lens element is that of an ellipse. If the spherical wave emerging from a point source is to be converted into a plane wave by passing through the lens, an ellipsoid of revolution is actually required. The system may, of course, be used conversely as a receiver antenna by allowing a plane wave to impinge upon the flat surface and to be focused to a point. A metal plate lens constructed at the Dunham Laboratory of Electrical Engineering, Yale University, is shown in Fig. 2. This lens, designed for operation at 3 cm, has a focal length of 18 $\frac{3}{4}$ cm, an aperture of 1 cm, and an effective index of refraction $n = 0.6$.

The most obvious disadvantage of the metal plate lens is evident from equation (3): it is the dependence of the equivalent index of refraction on the wavelength (or frequency). Experimental results show that a useful bandwidth of not more than 5 per cent of the operating frequency can be achieved. This important limitation has led to the development of a broad-band lens at the Bell Telephone Laboratories, in which so-called artificial dielectrics are utilized.

Artificial-Dielectric Lenses

When an ordinary dielectric is placed into an electric field \mathbf{E}, the dielectric is polarized to the extent $\mathbf{P} = N\varepsilon_0\mathbf{E}$, where N is the number of molecules per unit volume, and ε_0 the polarizability (always positive). It is customary to define a displacement vector $\mathbf{D} = \varepsilon_0\mathbf{E} + \mathbf{P}$ where ε is the permittivity of the dielectric and ε_0 the permittivity of free space ($\varepsilon_0 = 8.85 \times 10^{-12}$ farad/metre in the m.k.s. system of units). Thus the permittivity is given by

$$\varepsilon = \varepsilon_0 + N\varepsilon_0\ldots \quad (4)$$

and the dielectric constant is given by the ratio

$$\kappa_\varepsilon = \frac{\varepsilon}{\varepsilon_0} = 1 + N\varepsilon_0\ldots \quad (5)$$

Similarly, the magnetic permeability is given by

$$\mu = \mu_0 + N\mu_0\ldots \quad (6)$$

where μ_0 is the permeability of free space ($\mu_0 = 4\pi \times 10^{-7}$ henry/metre in the m.k.s. system) and μ_0 the magnetic polarizability (may be positive or negative). The relative permeability is given by the ratio

$$\kappa_\mu = \frac{\mu}{\mu_0} = 1 + N\mu_0\ldots \quad (7)$$

The polarizabilities ε_0 and μ_0 can be calculated for various geometric configurations; their values may be found in many advanced textbooks. The general shape of a molecule is usually assumed to be spherical; for a sphere, $\varepsilon_0 = 4\pi \varepsilon_0 a^3$ and $\mu_0 = -2\pi \mu_0 a^3$ where a is the sphere radius.

The index of refraction is given by

$$n = \sqrt{\kappa_\varepsilon \kappa_\mu}\ldots \quad (8)$$

and is independent of frequency in the region where the wavelength is large compared with the size of the particles and the spacing between them. It is found that an analogous artificial dielectric can be constructed by reproducing the molecular structure on a macroscopic scale; such a dielectric may consist of a lattice of metal spheres having a radius and separation which are small compared with the wavelength.

The artificial dielectric will have the properties described by equations (4) to (8), inclusive. Thus a lens like that in Fig. 3(a) may be constructed from small metal spheres supported as shown. This lens will have the shape and action of a solid dielectric lens, and yet retain the weight advantage of the metal plate lens. Furthermore, the artificial-dielectric lens will have an index of refraction $n = v_p/v_p$ which is, essentially independent of frequency, except in the range where the size and separation of the elements become comparable with the wavelength.

To determine the contour of this lens, a procedure similar to that described in the case of the metal plate lens is followed. A comparison of paths (cf. Fig. 3(b)) yields the equation of a hyperboloid; to transform the spherical waves emanating from a point source into plane waves, a hyperboloid of revolution is needed. It should be noted that the index of refraction $n = v_p/v_p$ will be greater than 1 for artificial dielectrics, since here $v_p > v_p$.

The action of the latter is to delay the portion of the wavefront passing through the middle of the lens, with respect to that passing through the edge, and this lens is therefore sometimes designated as a "delay lens." The index of refraction of an artificial dielectric consisting of small spheres (radius a) is given, from equation (3), by

$$n = \sqrt{(1 + 4\pi Na^3)(1 - 2\pi Na^3)} \quad (9)$$

Fig. 3. Artificial-dielectric lens (cross-section)

The artificial dielectric will have the properties described by equations (4) to (8), inclusive. Thus a lens like that in Fig. 3(a) may be constructed from small metal spheres supported as shown. This lens will have the shape and action of a solid dielectric lens, and yet retain the weight advantage of the metal plate lens. Furthermore, the artificial-dielectric lens will have an index of refraction $n = v_p/v_p$ which is, essentially independent of frequency, except in the range where the size and separation of the elements become comparable with the wavelength.

To determine the contour of this lens, a procedure similar to that described in the case of the metal plate lens is followed. A comparison of paths (cf. Fig. 3(b)) yields the equation of a hyperboloid; to transform the spherical waves emanating from a point source into plane waves, a hyperboloid of revolution is needed. It should be noted that the index of refraction $n = v_p/v_p$ will be greater than 1 for artificial dielectrics, since here $v_p > v_p$. This relationship accounts for the difference between the shapes of the metal plate lens previously described and the artificial-dielectric lens. The action of the latter is to delay the portion of the wavefront passing through the middle of the lens with respect to that passing through the edge, and this lens is therefore sometimes designated as a "delay lens."

The index of refraction of an artificial dielectric consisting of small spheres (radius a) is given, from equation (3), by

$$n = \sqrt{(1 + 4\pi Na^3)(1 - 2\pi Na^3)} \quad (9)$$

Fig. 3. Artificial-dielectric lens (cross-section)

The artificial dielectric will have the properties described by equations (4) to (8), inclusive. Thus a lens like that in Fig. 3(a) may be constructed from small metal spheres supported as shown. This lens will have the shape and action of a solid dielectric lens, and yet retain the weight advantage of the metal plate lens. Furthermore, the artificial-dielectric lens will have an index of refraction $n = v_p/v_p$ which is, essentially independent of frequency, except in the range where the size and separation of the elements become comparable with the wavelength.

To determine the contour of this lens, a procedure similar to that described in the case of the metal plate lens is followed. A comparison of paths (cf. Fig. 3(b)) yields the equation of a hyperboloid; to transform the spherical waves emanating from a point source into plane waves, a hyperboloid of revolution is needed. It should be noted that the index of refraction $n = v_p/v_p$ will be greater than 1 for artificial dielectrics, since here $v_p > v_p$. This relationship accounts for the difference between the shapes of the metal plate lens previously described and the artificial-dielectric lens. The action of the latter is to delay the portion of the wavefront passing through the middle of the lens, with respect to that passing through the edge, and this lens is therefore sometimes designated as a "delay lens."

The index of refraction of an artificial dielectric consisting of small spheres (radius a) is given, from equation (3), by

$$n = \sqrt{(1 + 4\pi Na^3)(1 - 2\pi Na^3)} \quad (9)$$

Fig. 3. Artificial-dielectric lens (cross-section)

The artificial dielectric will have the properties described by equations (4) to (8), inclusive. Thus a lens like that in Fig. 3(a) may be constructed from small metal spheres supported as shown. This lens will have the shape and action of a solid dielectric lens, and yet retain the weight advantage of the metal plate lens. Furthermore, the artificial-dielectric lens will have an index of refraction $n = v_p/v_p$ which is, essentially independent of frequency, except in the range where the size and separation of the elements become comparable with the wavelength.
Microwave Lenses—
reduction can be eliminated if particles are used which are thin in the direction of propagation, and thus do not disturb the magnetic field. For such elements the index of refraction is given simply by

\[n = \sqrt{1 + \frac{16 \epsilon d^2}{3}} \]

The spheres of Fig. 3(a) are replaced by thin metal discs lying in vertical planes which are normal to the plane of the paper. Such a lens was first proposed by Kock. The discs may be made of copper foil and affixed to thin slabs of polystyrene foam. The polarizability of a disc of radius \(a \) and width \(d \) is given by

\[a_p = \frac{16 \epsilon d^2}{3} \]

and the index of refraction is

\[n = \sqrt{1 + \frac{16 \epsilon d^2}{3} N} \]

where \(N \) is now the number of strips per unit area, looking on edgewise.

The assembled lens is shown in Fig. 6; designed for operation at 3 cm, it has a focal length of 17 λ and an index of refraction of

\[n = 1.375 \]

The Bell Telephone Company’s microwave relay systems at present utilize both the metal plate and the artificial-dielectric lens: the former on the New York-Boston line, and the latter on the New York-Chicago line.

Path-Length Lenses

Since the above was written, still another type of delay lens has been developed at the Bell Telephone Laboratories: the path-length lens. This lens, which has the over-all hyperbolic contour of Fig. 3(b), comprises corrugated metal plates arranged horizontally, or flat plates supported at an angle with the horizontal. Either arrangement serves to "delay" the part of the wavefront passing through the centre of the lens with respect to that passing through the edge, thus giving focusing action. The main advantage of the new lens, as compared with the delay lens previously described, is simpler construction. The path-length lens retains the broad-band characteristics of the earlier type and even improves upon them at the high-frequency end by eliminating dispersion and refraction; the only requirement is that the vertical spacing between the plates must be smaller than \(\lambda/2 \) for the highest frequency desired.

REFERENCES

AT LAST–
BETTER ALL-DRY MINIATURES

![Image of valves]

Type Number	**Application**	**Heater Volts**	**Anode Voltage Normal**	**Screen Voltage Normal**	**Grid Voltage Normal**	**Anode Current mA**	**Screen Current mA**	**Impedance Ohms**	**Mutual Conductance mA/V**	**Optimum Load Ohms**	**Power Output Watts**
IT4 | Batt. Pent. Vari-Mu | 1.4 | 0.05 | 90 | 67.5 | 0/-16 | 3.5 | 1.4 | 500,000 | 0.9 | — | —
IR5 | Heptode F.C. | 1.4 | 0.05 | 90 | 67.5 | 0/-14 | 1.6 | 3.2 | 600,000 | 300* | — | —
IS4 | Batt. Beam Tetrode | 1.4 | 0.1 | 90 | 67.5 | 7 | 7.4 | 1.4 | 100,000 | 1.58 | 8000 | 0.27
IS5 | Batt. Diode Pentode | 1.4 | 0.05 | 90 | 67.5 | 0 | 1.6 | 0.4 | 600,000 | 0.63 | — | —
IS4 | Batt. Beam Tetrode | 1.4 | 0.1 | 2.8 | 0.05 | 90 | 67.5 | 7 | 7.4 | 1.4 | 100,000 | 1.58 | 8000 | 0.27
3V4 | Batt. Beam Tetrode | 1.4 | 0.1 | 2.8 | 0.05 | 90 | 90 | -4.5 | 9.5 | 2.1 | 100,000 | 2.15 | 10000 | 0.27

* Conversion Conductance in Micromhos.

GREATLY advanced engineering techniques have enabled us to produce ALL-DRY Miniatures that are better in every way. Every valve is individually RECEPTION TESTED and bears this identifiable seal.

BRIMAR ALL-DRY Miniatures are suitable for every modern All-Dry Portable.

Full details of their characteristics are shown in the table above.

BRIMAR

ALL-DRY MINIATURES

STANDARD TELEPHONES AND CABLES LIMITED, FOOTS CRAY, SIDCUP, KENT.
And two new ‘Quality’ microphones

MIC 22 Incorporates a sintercel insert which is more sensitive than sound-cell type: substantially flat response from 40 to 6,000 c.p.s.

MIC 16 Incorporates the well-known floating sound-cell construction. Flat response from 30 to 10,000 c.p.s.

The GP. 20 Microcell Pick-up

The GP. 20 crystal pick-up establishes new standards in pick-up design. With provision for interchangeable pick-up head for “long-playing” records it has the following unique advantages:

★ 20 times greater output than comparable magnetic types.
★ Automatic bass-boost — can be fitted to any domestic radio without additional equalisers.
★ Needle talk and motor rumble negligible.
★ Record wear virtually eliminated.
★ Unbreakable and non-hygrosopic crystal element.
★ Permanent sapphire stylus eliminates needle-change.

PRICE £2.10.0 plus 21/5d. P.T.

*See them at Radiolympia • Stand 7 • Demonstration Room D.10

Other acos products: GP. 10 Crystal pick-up — a general purpose model with patented unbreakable crystal assembly. GP. 12 High Fidelity model pick-up with permanent sapphire stylus and excellent performance.

GP. 7 Magnetic pick-up head for soundbox replacement. GP. 6 Magnetic pick-up, good performance with robust construction. RH. 1 Disc cutter-head — good performance and modest price for the amateur. RH. 2 High quality cutter-head which requires no equaliser circuit.

COSMOCORD • LIMITED • ENFIELD • MIDDX.
THE exhibition of aircraft equipment, which accompanies the flying display held by the Society of British Aircraft Constructors at Farnborough, Hants, revealed an interestingly new development in the field of v.h.f. radio equipment for use in aircraft. Hitherto most makers have provided a number of alternative channels in the one set with some simple form of selecting switch. In recent years the tendency has been for more and more channels to be made available, but this year some makers have decided to anticipate future requirements and provide the maximum number possible in the allotted band of 118 to 132 Mc/s.

At present the channel separation is fixed at 200 Kc/s, which allows for 70 channels and equipment giving this number was shown by Standard Telephones. The send and receive frequencies are crystal controlled on all channels, but individual crystals are not used; indeed, it would be uneconomical so to do and the circuit is so arranged that 24 crystals are made to provide all the necessary frequency pegging.

Control Unit of Murphy 140-channel v.h.f. transmitter-receiver. In each case one knob selects the whole number and another the decimal part of the operating frequency.

On the control box, which contains the crystals, are two switches, one marked in whole numbers of Mc/s from 118 to 131 and the other in decimal fractions of 0.1, 0.3, etc., up to 0.9 Mc/s. Selection of the operating channel is then made by setting the switches to the frequency required, for example, 120.1, 124.5 and so on.

To facilitate channel selection and avoid the need for retuning circuits, wide-band inter-stage couplings are usually employed. The Standard 70-channel set uses two wide-band transmitter units to cover the 14 Mc/s band, the remote control unit selecting the appropriate transmitter. One receiver unit only is used.

Murphy were showing a multichannel v.h.f. set also, but in this case they have anticipated future needs to the extent of providing 140 channels with 100-Kc/s separation. Crystal control of both the send and receive frequencies is adopted and here again comparatively few crystals suffice for all purposes.

Channel selection is made on the basis of the frequency required, two switches being employed for the transmitter and two for the receiver. One selects the whole number of the frequency between 118 and 131 Mc/s, while the other selects the decimal fraction.

The transmitter circuits are, in this case, divided into 7 bands of 2 Mc/s each, while the receiver has 5 bands of 3 Mc/s and the switching automatically selects the required crystals and, by remote control, the appropriate transmitter and receiver bands.

A v.h.f. transmitter-receiver covering a considerably wider frequency range was shown by Ekco. It has been developed for the Ministry of Supply and is capable of providing, by remote control alone, some 312 channels spaced 180 Kc/s apart in the band 100 to 156 Mc/s or 281 channels with 200 Kc/s spacing. The equipment is divided into five units comprising aerial unit, transmitter-receiver, main controller and power- modulator respectively. In addition, Ekco had some lightweight equipment pro-
Air Radio—

viding up to 21 channels by the movement of a single switch.

There was a new v.h.f. aircraft set shown by Plessey known as the PTR61 and which has been designed for use where small size and low weight are of first importance, with simplicity of operation a close second. Six spot frequencies, all crystal controlled, in the band 116 to 132Mc/s are provided, but as crystals can be changed easily in the air, many more channels are potentially available. A single control suffices to tune simultaneously both the transmitter and the receiver. The set gives intercom facilities for three positions in the aircraft.

For airport use Plessey were showing a single-channel crystal controlled receiver covering 116 to 132Mc/s, while another set of a somewhat similar kind was seen on the Ekco stand. These sets are primarily for rack mounting with separate receivers permanently set up on the various frequencies used by the airport where they are installed.

Other v.h.f. equipment seen this year was a twin-channel transmitter and receiver in rack form for airports made by Ekco, a 50-watt twin-channel transmitter, with both transmitters taking the same modulation, shown by Standard and a 100-watt twin transmitter working on spot frequencies in two bands, one being 116 to 132Mc/s and the other 2.5 to 13Mc/s. The last mentioned is a Plessey product known as the PTR6.

Whilst the predominating interest was in the new v.h.f. equipment the other aspects of aircraft communications and radio navigation were not entirely forgotten. For example, Cossor Radar had an improved GEE ground station and a new miniature GEE receiver designed especially for small aircraft and very simple to operate. All the information needed to fly along a GEE lattice line is given by a visual “left-right” pointer indicator.

Also for air navigation Ferranti showed a prototype version of a new Consol and Radio Range Receiver, combining also facilities for r.t. reception in the band 225 to 510Kc/s. It is a miniature set measuring 4 x 8 x 5 in only.

Another aim in air navigation was the Cloud and Collision Warning Radar operating in the centimetre band made by Ekco. Clouds up to 40 miles away are clearly visible on the display unit.

High-power ground transmitters for point-to-point communication for use as aircraft beacons and for long-distance communication with aircraft in the medium and high frequency bands, were shown this year. Redifon had a 300-watt transmitter which, while extremely robust, can readily be separated into three self-contained units each under 200 lb in weight. This should help to solve some of the difficulties often met with when moving heavy equipment to remote airfields.

An output of 300 watts is also given by the new Cossor Radar airport transmitter which is capable of operation over the band 1.5 to 20 Mc/s using either telephony or c.w. or m.c.w. telegraphy.

A new communications receiver for ground use was shown by Redifon in the form of a junior version of the R50 set. Housed in the same cabinet and having most of the distinctive features of this set, it differs primarily in the frequency coverage provided. In the R50A, as it is called, the coverage is from 585Kc/s to 32Mc/s in five ranges and one i.f. amplifier only is needed, which in this case is 465Kc/s.

Another recently introduced communications set, designed for use in aircraft, is the Marconi AD94 which is described as a high discrimination set in view of the small increments of calibration actually appearing on the extremely long moving tape scales. Calibrations are made at intervals of 10Kc/s, but much closer reading, and setting, than this is possible. It covers 2 to 18.5Mc/s and 150 to 510Kc/s.

For medium and high frequency operation in aircraft Marconi was showing, among other apparatus, a new high-power transmitter, the AD107 giving between 100 and 150 watts output on ten spot frequencies in the band 2 to 18.5Mc/s and 10 to 120 watts from 320 to 250Kc/s.

A 140-watt 12-channel aircraft transmitter for a similar service was included in the Standard range of aircraft sets. The frequency range is 2.8 to 18Mc/s.

"WIRELESS WORLD" DIARY

All available copies of the Wireless World Diary for 1950 are being distributed by 12th October to newsagents and booksellers. The new edition of this useful pocket-sized book contains an 80-page reference section of technical data and general information which has again been revised. New and more convenient valve base tables show the connections of over 600 valves, and v.h.f. aerial data for the projected new B.B.C. services are given. The price of the Diary is 3s 4d, including purchase tax.
MAINS-BATTERY TURNTABLE

THE public address operator finds, in general, a wide variety of apparatus from which he may choose to suit his needs. If, however, he wishes to reproduce gramophone records through a mobile public address system, such as a loudspeaker van, he is forced either to purchase a turntable which will operate directly from a battery supply, or to use one with a clockwork motor which requires frequent rewinding.

The ordinary a.c. mains induction turntable forms a part of the equipment of most public address engineers, and it can quite simply be operated by means of a special vibrator pack from a 12-volt car battery. This device has several advantages over the use of a rotary converter. The initial cost is lower, there is a moderate saving in size and weight, the noise is very much less and there is considerable reduction in current consumption.

The apparatus consists of a non-synchronous vibrator, a vibrator transformer with a centre-tapped primary and a number of small condensers. All these can be comfortably accommodated under the motor board of the normal turntable with the exception of the vibrator, which may be arranged to plug in through the board and thus be readily changeable.

The circuit, which is given above, is basically the same as that of a normal power pack giving an unsmoothed output of 230 volts a.c. at the vibrator frequency of about 100 c/s. There is, however, an important modification which consists of the condenser C in series with the motor winding. This has the effect of turning the inductive load, presented by the motor to the vibrator, into one which is resistive or capacitive.

A preliminary estimate of the approximate value of C can be made by assuming a vibrator frequency of 100 c/s and calculating a value of C which will have the same reactance as the inductive reactance of the motor. The latter can be calculated (if we ignore such things as change of phase angle with load) from a knowledge of the power consumed, the supply voltage and the d.c. resistance of the windings. In a particular case, the calculated value turned out to be 0.34 µF, and in practice a value of 0.25 µF was found to be satisfactory.

The circuit diagram of gramophone motor operating from a.c. mains or car accumulator.

A Simple Circuit
Suitable for Public Address Work

By I. C. HUTCHESON, M.A.

The current taken by the vibrator pack from a 12-volt battery is a little under 3 amps. This vibrator pack has had many hours of use and continues to function very satisfactorily. Similar methods could, no doubt, be employed for the running of other small mains motors from a low-voltage d.c. source.

PROXIMITY METER

THIS instrument, illustrated here, has many industrial applications for the control of thickness and composition in non-conducting films, the setting up of machine tools, etc. It functions on the measurement of minute changes of capacitance and has a sensitivity of 0.01 pF.

The manufacturers of the meter are Fielden (Electronics), Holt-Town Works, Manchester, 10.
National Radio Exhibition, 1949

Olympia, London

Wednesday, 28 September, to Saturday, 8 October

(Open daily, except Sunday, 11 a.m.—10 p.m. Admission 2/6)

Alphabetical List of Exhibitors and Guide to the Stands

Name	**Stand**	**Name**	**Stand**	**Name**	**Stand**
A.W.F. | 203 | D.S.I.R. | 52 | K.B. | 65
Ace | 21 | "Daily Mail" | 220, 221 | Keith Prowse | 104
Acos (Cosmogrid) | 7 | Decca | 47 | Kerry's Bank | 73
Acoustical Mfg. | 91 | Defant (Co-op W. Soc.) | 28 | Kleegaze (Levene) | 158
Acrylite (Motor and Air) | 164 | Dibben | 220 | L.E.S. | T17
Admiralty | 73 | Dublilier | 52 | L. & P. Factors | T11
Advance | 209 | Dynatron | 2 | Lectroa (Acoustic Products) | 208
Aerolite | 62 | E.R.I.C. | 151 | Lee | 157
Airmec | 85 | Etonic (Hale) | 68 | Lloyds Bank | 162
Albion | 92 | "Electrical & Radio Trading" | T14 | Long & Hamby | 14
Alba (Balcombe) | 44 | Elex (Eastick) | 73 | Lowther | 165
Amerite | 156 | Ekco (E. K. Cole) | 58, 59 | Lugton | T7
Avo (Automatic Coil Winder) | 85 | "European Radio Programme" | 94 | M.S.S. | 76
B.B.C. | 151 | Ever Ready | 46 | McMichael | 70
B.B.R.M.A. | 211 | Ferguson | 40 | Magnavista (Metro-Pex) | 16
B.R.M.A. | 214 | Ferranti | 43 | Marconi | 174
B.R.S. | 61 | Franklin | 204 | Marconi Inst. | 154
B.T.H. | 178 | G.E.C. | 38, 175 | Marconi Mobile | 41
Baffett (Allan Radio) | 49 | G.P.O. | 301 | Masteradio | 159
Baird (Scophony) | 27 | Gamma | 4 | Matrix Bank | 139
Barclays Bank | 166 | Garrard | 4 | Masteradio | 159
Beethoven | 11 | General Sonic | 74 | McCauley | 25
Belclere (Bell & Croyden) | 3 | Goldring (Scharf) | 97 | McKee | 46
Bellis-Gee | 25 | Goodmans | 6 | Meldrum | 56
Bernard | 217 | Grampian | 90 | Merton Bank | 161
B.I. Callender's | 55 | H.M.V. (Gramophone Co.) | 57 | Min. of Civil Aviation | 33
Board of Trade | 51 | Haynes | 9 | Min. of Supply | 34
Brining (Standard) | 60 | Hazehurst | 205 | Mullard | 36, 176, 210
Brit. Moulded Plastics | 22 | Hobday | T15 | Multico | 83, 84
British Railways | 171 | Houghton & Osborne | 93 | Murphy | 56, 160
Brown Bros. | T12 | Hunt | 17 | National Prov. Bank | 103
Bullin | 1 | Imhof | 89, 183 | Netfield (Guest-Ken) | 185
Burns | 172 | Invicta | 71 | Norman (Rose) | T6
Bush | 66 | Judge | 206 | Oscaidee (V. A. Foot) | 218
Cebtelion | 87 | "Practical Wireless" | 100 | Pye | 72, 180
Champion | 26 | C.F.R. | T18 | Quairad | 202
Chloride | 19 | Philips | 34 | R.A.F. (Air Ministry) | 74
Concordia | 5 | Pullin | 45 | R.E.M.E. (War Office) | 53
Connoisseur (Sugden) | 207 | Plus-a-Gram (Margolin) | 102 | R.G.D. | 37
Cossor | 35 | Polar (Wingrove & Rogers) | 212 | R.W.F. | T9

In the National Hall Gallery (not shown):— Studio Viewing Gallery, G. P. O. (Stand 301), and another Communal Television Avenue.
In preparing our "Guide to the Show" we have this year adopted a different method of presentation in the belief that it gives a more comprehensive view of the present activities of the firms represented, both for the visitor to the show and those who will have to depend on the pages of Wireless World. All the main products of the radio industry are classified under convenient headings, and the exhibitors of any particular product, with their stand numbers, can be found in a moment. These tables, which are on pp 379-382, are as complete as they can be up to the time of going to press.

It is not easy to pick outstanding features from the mass of information obtained from manufacturers, but it would appear that the return of the television-broadcast-radiogramophone set is the feature of Radiolympia, 1949, which, organized by the Radio Industry Council, is the sixteenth in the series. There will, of course, be the usual "surprise" items, details of which have been kept closely guarded by manufacturers until the show opened.

Television and Sound Distribution

Television is the pièce de résistance, and nearly 40 manufacturers are exhibiting sets. Special arrangements have been made to provide visitors with facilities for viewing both the transmitted scene and the received picture. The B.B.C. television studio in the National Hall, which is more than twice the size of the entire studio space at Alexandra Palace, is overlooked by a glass-enclosed gallery from which visitors can watch rehearsals and performances. The studio equipment includes three of the new C.P.S. Emitron cameras.

Additional floor space and improved arrangements for the viewing of a variety of receivers in the television communal demonstration avenues in the two galleries have been provided this year. In addition to these, a number of manufacturers have their own demonstration rooms where both sound and vision receivers are demonstrated. A list of these is given at the end of the numerical list of stand holders on p 384.

As already announced, a radio-frequency distribution system is fed to the demonstration rooms. Long- and medium-wave transmissions picked up by an aerial erected on the roof of the hall are fed by r.f. to these rooms, thus enabling visitors to assess the overall response of broadcast receivers instead of just the a.f. output as has been the case at previous exhibitions. In conjunction with this system, a specially recorded programme of speech and music is distributed on 767 kc/s (391.1 metres)—the frequency of the Scottish Home Service, which is not normally receivable at an entertainment value in London.

Our tabular guide to the show deals only with the commercial exhibits. There are, in addition, a number of stands occupied by non-commercial producers and users of radio and electronic equipment including the Ministries of Supply, Air and Civil Aviation, the D.S.I.R., G.P.O., Board of Trade and the Armed Forces. One section of the Post Office exhibit, which is located on a large site in the National Hall Gallery, is devoted to a display dealing with the suppression of electrical interference. An Interference Information Bureau is also provided. In another section a Post Office coast station is reproduced and visitors can see how distress calls from ships are dealt with. The part played by the Post Office in the extension of the television service to the Midlands—the provision of the radio and cable links—is also shown.

The cathode-ray direction-finding equipment for the location of thunderstorms, as used by the forecasting stations of the Meteorological Office at Dunstable, Camborne, Leuchars and Irvinestown, is being demonstrated by the Department of Scientific and Industrial Research. The D.S.I.R. is also showing the apparatus used by its Radio Research Station at Slough for ionospheric sounding.

Radio research and development work undertaken at the various establishments of the Ministry of Supply are featured on Stand 54. Among the equipment shown is a pulse code modulator designed to code and decode speech and automatic frequency-selecting mechanism for airborne transmitter-receivers.

Ground controlled Approach equipment (G.C.A.) is shown on the stand of the Ministry of Civil Aviation to demonstrate its use at London Airport. Visitors can watch the course of a model aircraft as it comes in to land and at the same time see the "blips" on the G.C.A. screen.

The War Office has two stands. One is devoted to a display showing the diversity of wireless equipment used by the Army. It includes the latest "walkie-talkie" (No. 88) receiver which is frequency modulated. This stand is staffed by Royal Signals.

The maintenance of Army telecommunication and electronic control equipment is the responsibility of R.E.M.E., and members of the Corps are demon-
GUIDE TO THE SHOW

Stratifying the work on the second War Office stand.

Special arrangements have been made for overseas visitors who will find the R.I.C. reception and Board of Trade information bureau at the west end of the Grand Hall. We have not indicated in our tabular lists the equipment which is for export only, but a large number of manufacturers have receivers specially designed for the foreign market and at least two are showing television receivers designed for use in North America.

Although the sectionalizing of the exhibition has not been strictly adhered to, in general the broadcast set manufacturers are in the Grand Hall and wholesalers in the Grand Hall Annexe, whilst the National Hall is devoted to electronics—industrial, scientific and medical equipment—and transmitting apparatus.

RECEIVERS: Broadcast, Television, Communications and Special Purpose

<table>
<thead>
<tr>
<th>FIRM</th>
<th>Broadcast</th>
<th>Television</th>
<th>Radio</th>
<th>Phonographophone</th>
<th>Special purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ace</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Alba</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ambassador</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ampion</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Armstrong</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Auratone</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Baird</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Beethoven</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Bush</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Champion</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Coscor</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Decca</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Defiant</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Dynatron</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>E.R.I.C.</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Eddystone</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ekco</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Etronic</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Eveready</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ferguson</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ferranti</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>G.E.C.</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Gamma</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>General Sonic</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Gramplan</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>H.M.V.</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Haynes</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Houghton & Osborne</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

A, Car radio; C, Communications receivers; F, F.M. receivers; K, Receiver kits; S, Schools receivers; T, Trawler sets.

TEST AND MEASURING GEAR: Including Signal Generators and Test Sets

<table>
<thead>
<tr>
<th>FIRM</th>
<th>Broadcast</th>
<th>Television</th>
<th>Oscilloscopes</th>
<th>Servicing tools and materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ace</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Alba</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ambassador</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ampion</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Armstrong</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Auratone</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Baird</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Beethoven</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Bush</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Champion</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Coscor</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Decca</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Defiant</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Dynatron</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>E.R.I.C.</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Eddystone</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ekco</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Etronic</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Eveready</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ferguson</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ferranti</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>G.E.C.</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Gamma</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>General Sonic</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Gramplan</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>H.M.V.</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Haynes</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Houghton & Osborne</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

T. Television Signal Source.
ACCESSORIES: Including Materials, Valves and Non-electronic Rectifiers

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylite</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerialite</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amploton</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiflare</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.I. Callender's</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.T.H.</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belling-Lee</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brimar</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgin</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concordia</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cossor</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dubillier</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.M.I.</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eddystone</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ediswan</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekco</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erle</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enstic</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever Ready</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franklin</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.E.C.</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Houghton & Osborne</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerry's</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnavista</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marconiphone</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marconi</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multicore</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oldham</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osisde</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osclade</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taylor</td>
<td></td>
<td>rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCIENTIFIC, INDUSTRIAL AND MEDICAL APPARATUS: Equipment for Applied Electronics

<table>
<thead>
<tr>
<th>FIRM</th>
<th>Radio heaters</th>
<th>Electronic meters</th>
<th>Control devices</th>
<th>Counter</th>
<th>Medical apparatus</th>
<th>Hearing aids</th>
<th>Computers</th>
<th>Magnetic amplifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acro ...</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrom ...</td>
<td>(156)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auratone</td>
<td>(106)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.S.R.</td>
<td>(35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.T.H.</td>
<td>(178)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belclère</td>
<td>(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cossor</td>
<td>(25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.E. & L.</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekco</td>
<td>(50, 153)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.E.C.</td>
<td>(36, 175)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K.B.</td>
<td>(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marconi inst.</td>
<td>(154)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martrivick</td>
<td>(179)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murphy</td>
<td>(56, 160)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osclade</td>
<td>(170)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taylor</td>
<td>(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSMITTERS: Including Radar and Low-power Transmitter/Receivers

<table>
<thead>
<tr>
<th>FIRM</th>
<th>Broadcasting</th>
<th>Point-to-point</th>
<th>Television</th>
<th>Airport</th>
<th>Airborne</th>
<th>Marine</th>
<th>Mobile V.H.F.</th>
<th>Radar</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.T.H.</td>
<td>... (178)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekco</td>
<td>(50, 153)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.E.C.</td>
<td>(36, 175)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marconi</td>
<td>(176)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martrivick</td>
<td>(179)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mullard</td>
<td>(36, 175, 210)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murphy</td>
<td>(56, 160)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pye</td>
<td>(72, 180)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romac</td>
<td>(88)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>(173)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W.B.</td>
<td>(77)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wells</td>
<td>(53)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wokinghouse</td>
<td>(173)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolsey</td>
<td>(13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M. Meteorological.
H.M.V. 1851 television receiver with 15-in tube and all-wave set.

(Right) Philips Model 291U mains portable.

Murphy baffle type receiver, Model A146C.

(Below) Pye Model D18T television console.

Bush DAC90 mains portable.

McMichael Model 492 console a.c. receiver.

Invicta Model 55 portable ("Twin-victa").

Baird "Everyman" television receiver.

Vidor a.c./battery attaché portable.

Cossor 914 television set with 10-in tube and all-wave broadcast receiver.

Ekco TSC93 television console.
COMPONENTS: Excluding Accessories and Sub-Assemblies

<table>
<thead>
<tr>
<th>FIRM</th>
<th>Capacitors</th>
<th>Resistors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fixed</td>
<td>Trimmers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOUND REPRODUCING EQUIPMENT: Audio-Amplifiers and Electro-Acoustic Apparatus

<table>
<thead>
<tr>
<th>FIRM</th>
<th>Microphones</th>
<th>Pickup</th>
<th>Amplifiers</th>
<th>Loadspeakers</th>
<th>Recorders</th>
<th>Electric</th>
<th>Grammophones</th>
<th>Gramm.</th>
<th>Record players</th>
<th>Intercom sets</th>
<th>FIRM</th>
<th>Microphones</th>
<th>Pickup</th>
<th>Amplifiers</th>
<th>Loadspeakers</th>
<th>Recorders</th>
<th>Electric</th>
<th>Grammophones</th>
<th>Gramm.</th>
<th>Record players</th>
<th>Intercom sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ace</td>
<td>(21)</td>
<td></td>
</tr>
<tr>
<td>Acos</td>
<td>(27)</td>
<td></td>
</tr>
<tr>
<td>Acoustical Mfg.</td>
<td>(91)</td>
<td></td>
</tr>
<tr>
<td>Airmec</td>
<td>(154)</td>
<td></td>
</tr>
<tr>
<td>Amplion</td>
<td>(20)</td>
<td></td>
</tr>
<tr>
<td>B.S.R.</td>
<td>(81)</td>
<td></td>
</tr>
<tr>
<td>Baxi</td>
<td>(49)</td>
<td></td>
</tr>
<tr>
<td>Celestion</td>
<td>(87)</td>
<td></td>
</tr>
<tr>
<td>Collaro</td>
<td>(207)</td>
<td></td>
</tr>
<tr>
<td>Connoisseur</td>
<td>(207)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>(78)</td>
<td></td>
</tr>
<tr>
<td>Decca</td>
<td>(41)</td>
<td></td>
</tr>
<tr>
<td>Dynatron</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>E.M.I.</td>
<td>(67)</td>
<td></td>
</tr>
<tr>
<td>E.R.I.C.</td>
<td>(181)</td>
<td></td>
</tr>
<tr>
<td>Eddystone</td>
<td>(102)</td>
<td></td>
</tr>
<tr>
<td>Ediswan</td>
<td>(47)</td>
<td></td>
</tr>
<tr>
<td>G.E.C.</td>
<td>(38,75)</td>
<td></td>
</tr>
<tr>
<td>Garraud</td>
<td>(79)</td>
<td></td>
</tr>
<tr>
<td>Goldring</td>
<td>(97)</td>
<td></td>
</tr>
<tr>
<td>Goodmans</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>Grampian</td>
<td>(90)</td>
<td></td>
</tr>
<tr>
<td>H.M.V.</td>
<td>(57)</td>
<td></td>
</tr>
<tr>
<td>Haynes</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>Judge</td>
<td>(206)</td>
<td></td>
</tr>
<tr>
<td>K.B.</td>
<td>(65)</td>
<td></td>
</tr>
</tbody>
</table>

C, Record Changers; D, Disc Recorders; M, Magnetic Recorders.
(Below) : Wolsey television aerial with folded dipole.

Hunt's moulded paper capacitors (up to 0.01 μF) on a 3d piece.

New Dubilier Type Q volume control with switch.

Vitavox hand microphone.

Antiference "X" television aerial.

(Above) : (Left) Telcon 300-Ω transmission line Type K35.

(Right) Wharfedale "Super 12" loudspeaker.

Erie diode filter unit.

Sangamo-Weston Model S75 portable test set.

Belling-Lee anti-interference aerial kit.

E.R.I.C. valve voltmeter with ranges up to 1,000V.

Collaro RC500 rim-drive automatic record-changer.

Marconi Instruments high-velocity level recorder Type TF946.

R.G.D. magnetic tape recorder.
NUMERICAL LIST OF STANDHOLDERS

<table>
<thead>
<tr>
<th>Number</th>
<th>Company Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A. F. Belin & Co.</td>
<td>Hyde Park, Backing, Essex</td>
</tr>
<tr>
<td>2</td>
<td>Dynamico Radio, PERFECTA, Ltd.</td>
<td>Bay Lea Rd., Maidenhead, Berks.</td>
</tr>
<tr>
<td>3</td>
<td>John Bell, Ltd.</td>
<td>10-54, Wigmore St., London, W.</td>
</tr>
<tr>
<td>4</td>
<td>Gallaher Electrical, Burwood Rd., Hammersmith, London, N.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gallaher Electrical & Wire Co., Long Eaton, N.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Metropolitan Film, Leicester Rd., W.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Vidor & Co., Ltd.</td>
<td>700, Gt. Cambridge Rd., Enfield, Bucks.</td>
</tr>
<tr>
<td>9</td>
<td>Haynes Radio, Queensey, Einfeld, Bucks.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Master-Radio, 163, Pitney Rd., London, W.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Beevenborn Electric Equipment, Chapel Lane, Sand, Bucks.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Taylor Instrument, 411-412, Montrose Court Rd., London, W.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Vendors Electrical Co., Exhibition Grounds, W.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Botes, Ltd.</td>
<td>260, Bettinson Park, Northumberland, N.</td>
</tr>
<tr>
<td>16</td>
<td>Arco Radio, Tower Works, Tower Rd., London, W.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Britten, Ltd.</td>
<td>9, Harrow Rd., W.</td>
</tr>
<tr>
<td>18</td>
<td>Beeson's Electrical Co., Avenue Works, Walthamstow, London, E.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Schell Industries, Langley Park, Dr. Stough, Bucks.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Recordia of Cambridge Arterial Rd., Einfeld, Bucks.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Ferranti Ltd., Champion Works, Seaford, Sussex.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Southern-Bright, Reade Rd., Wimbley, Middlesex.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Central Electrical, Highfield Grove, London, S.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Pallo Overseas, 59-61, Potters Lane, London, W.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Ferguson Radio Corp., 102-9, Judd St., London, E.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Doncaster Record Co., 1-3, Britex Blvd., London, S.</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Radiophone, Orkney Works, London, N.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Ferranti Ltd., Highbury Grove, London, N.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>J. A. Balcombe, 36-38, Tabernacle, London, W.</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>H. H. Chadwick, 12, Westmoreland Rd., London, N.</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Ferranti Ltd., Hollinwood, Lancs.</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Marconi, Ltd., 1, Cambridge Rd., Cambridge, E.</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Greaves Alloys, 119, Southend-on-Sea, Essex.</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>E. F. Weeks, 31, Chelmsford, Essex.</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>British Broadcasting Corp., 1, Boulton St., London, W.</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Armstrong Wireless & Television Co., Worthing, Sussex.</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Houghton & Osborne, Electronic Works, 6, High St., Thame, Oxford.</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>“European Radio Programme,” 9-34, Queens House, E. Middlesex,</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Robert's Radio, 10-12, Recto Rd., Berth, Surrey.</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Devree, Hyde, Welwyn Garden City, Herts.</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Keith Powers, 65, New Bond St., London, W.</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Radio Corporation and Electronics Engineering Ass., 65, Queen St., E. Middlesex,</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>E. O. E., Exon Works, Southend-on-Sea, Essex.</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>“Manx Electrical Instrument Co.,” 11, High St., Isle of Man.</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>“Electronic Engineering,” 28, Essex St., E. Middlesex,</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Airmore Laboratories, Cresser Works, High Wycombe, Berks.</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Lee Products (G.B.), 90, Great Eastern St., London, E.</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>William Leven, 30a, Backstine Rd., W. London, E.</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Martins London, 10, London, B.C.</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Morris Radio, Welwyn Garden City, Herts.</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>National Provincial Bank, 15, Bishopsgate, London, E.</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Motor & Air Products, 8, James Square, London, W.</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Lowe, Ltd., Lambton Rd., London, E.</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Midland Bank, Poultry, London, E.</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>The Hyde, London, E.</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>“3M,” Ltd., 230, Tottenham Court Rd., London, E.</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>A. R. Sugden & Co., W. Green Lane, Bradford, Lancs.</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Acoustic Products, 50-58, Britannia Walk, City Rd., London, E.</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>British Radio Equipment Manufacturer, 41, W. London, E.</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>E. E. Robins & Son, Denton, Manchester, Lancs.</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Starco, Ltd., Great Cambridge Rd., Einfeld, Bucks.</td>
<td></td>
</tr>
</tbody>
</table>

World Radio History

Title: Wireless World, October 1949

Issue: Vol. 1, No. 10

Content:
- **List of Exhibitors:** List of demonstration rooms for the 1949 radio exhibition.
- **Summary:** The list includes a wide range of companies and their addresses, indicating the diversity of products and technologies showcased at the exhibition.

Key Topics:
- **Radio and Electronics:** Focuses on companies and products related to radio and electronics, reflecting the technological advancements of the time.
- **Geographical Spread:** Exhibitors are located across various regions in the United Kingdom, highlighting the national interest in the exhibition.

Context: This list is part of a historical document that provides insight into the early days of radio broadcasting and the companies that were leading the industry at that time. It serves as a valuable resource for understanding the evolution of radio technology and its market during the mid-20th century.
By the time this page is being read, Radiolympia will be open and we sincerely hope to meet many of the readers of "The Belling-Lee Page" on our stand No. 25, where we will be showing our new range of aerials and many types making use of ingeniously engineered light alloy die casts for fixing brackets, etc. The light-weight range will be shown for the first time, symbolised by the illustration Fig. 1 on this page. This new 'H' with its cranked arm is introduced for use in locations other than fringe areas, or where interference is severe in "close-in" areas. All types are available for London and Midland frequencies, and in addition, those normally sold complete with cable, such as the "Doored" are now available, suitable for either balanced or unbalanced receiver inputs.

Two entirely new dipoles are introduced in this page for the first time, the "Twinrod" Fig. II and the "Viewflex" Fig. III.

The "Twinrod" T.V. Aerial for windowsill mounting.

This new dual purpose aerial may be used either for the reception of broadcast or television programmes. As a broadcast aerial it will give better results than the "Winrod" and much better results than any indoor aerial.

When used for television, it is excellent and convenient, provided always that its use is confined to locations not greatly in excess of fifteen miles depending upon the absence of metal-framed buildings, etc., close to and between it and the television transmitter. In favourable conditions this distance would be greatly exceeded. It is a fully dimensioned half wave dipole and must not be confused with compressed dipoles and therefore should give by comparison a better picture.

The "Twinrod" might be described as the marriage of the "Winrod" and the "Doored." It is the obvious development to use the now well-known and very popular "Doored" as an outdoor aerial suitable for mounting on a window sill or gutter board. The upper element is rigid and like the "Winrod" is designed to stand away from the building. The lower element is a flat flexible which, for best results, should be allowed to hang straight down, being stapled to the wall to prevent swaying in the wind, which would cause picture flutter and would soon impair the insulator. For absolute optimum results this flexible element should be "stood off" the wall by a few inches, but this is by no means essential. Where it is not practicable or desirable to let the flexible element hang straight down, it may be bent over, to run under the window ledge, but if at right-angles from the rigid element, there will be an appreciable loss in signal, but even then there should be adequate pick-up if the location is normal, and the distance not greater than 5-8 miles from the transmitter.

At the centre insulator there will be found a metal strap. The position of this decides whether or not the aerial is adjusted for television or broadcast reception. It cannot normally be used for both at one time. Each "Twinrod" is supplied with eighteen feet of coaxial feeder which is sufficient for most normal rooms. This may be lengthened within reason.

The "Viewflex" Indoor T.V. Aerial.

This is revolutionary in design, but technically it is as efficient as a "Doored," or in fact any other type of indoor television aerial. It may not be found so convenient to fix as the "Doored," but it will only require the household steps so as to make the full use of height. In the "Viewflex" both elements of the dipole are flat flexible conductors with polythene insulation. It should be fixed with as much of it as possible, vertical. Where the height of the room is such that it cannot all be vertical then the lower element may be bent at right angles without too much loss in signal.

NEW AERIALS

Providing technical information, service and advice in relation to our products and the suppression of electrical interference.

Mobile Research Unit.

Readers of this page will be interested to know that our Mobile Research Unit will be sited at Radiolympia and will be open for visitors inspection.

1. "Viewrod" light-weight series (Registered patents applied for)
 - "H" type 0.15 wave spacing
 - In. dia. elements
 - L.700 London with suffixes
 - L.701 Midland / below /C for own mast 45/-
 - /W mast wall fixing 70/-
 - /L mast, 1 lashing, 84/-.

2. "Twinrod" window mounting (Registration & patents applied for)
 - L.694 London with suffixes
 - L.695 Midland / below /1 with coaxial feeder, 32/6.
 - /2 with balanced feeder, 29/-.

3. "Viewflex" indoor T.V. aerial (Registration & patents applied for)
 - L.696 London with suffixes
 - L.697 Midland / below /1 with coaxial feeder, 21/-.
 - /2 with balanced feeder, 17/6.
 - Lightweight dipoles from 25/-.

Indoor T.V. Aerials from 17/6.

Senior range T.V. aerials from 57/6.

Multi element arrays. 210/-
very part of every W/B speaker—cone, magnet, speech coil assembly, cabinet—is made within the one organisation. The close correlation of design thus made possible is part of the reason for the typical performance. High fidelity large units, diffusers, industrial and relay speakers, extension speakers, each in their class give outstanding reproduction and unmatched reliability.

"Baffle" extension speakers for any set from 3½".
Angel-French Television

Further details of the recent meeting of the C.C.I.R. at which the question of European television standards was discussed, resulting in the French decision to adopt 405 lines, have been issued by the International Broadcasting Organization.

The Study Group of the C.C.I.R. responsible for investigating this vexed question of television standards met in Zurich in July. The countries represented were: Austria, Belgium, Czechoslovakia, Denmark, France, Italy, Netherlands, Sweden, Switzerland and the United Kingdom. It is noteworthy that in addition to these European administrations the United States was represented and among the manufacturing companies present was the R.C.A.

In order to facilitate the discussion of standardization, a questionnaire had been circulated to countries represented and replies were considered. The two bands under consideration were the 41 to 68 Mc/s and 174 to 216 Mc/s. It was concluded that world standardization, although desirable, was not possible in these bands, but would be practicable in the 470 to 960-Mc/s band.

When considering what was regarded as the most suitable number of lines per frame, the French and U.K. delegations stated that they intended to unify their existing “medium” definition systems on 405 lines and proposed the establishment of a high definition system on 819 lines operating in the 174 to 216-Mc/s band. It was further stated by France and the U.K. that a change to 525 lines, recommended by America, or even 625, recommended by other European countries, would not be justifiable.

International Television

Delegates to the International Television Convention and Exhibition held in Milan in the middle of September had the opportunity of comparing British, French and American television gear.

Large-screen 625-line equipment, working on a closed circuit, was demonstrated jointly by Marconi’s and Cinema Television. The screen used measured 18 x 12.5 feet. The French delegation demonstrated 819-line equipment and the Americans 525-line gear. The British 405-line standard was not shown.

L. H. Bedford of Marconi’s was one of the British delegates and addressed the Convention.

U.N. Radio

In preparation for the installation of communications equipment in the new United Nations head-quarters, a firm of American consultants is compiling an analysis of available equipment, including British. Manufacturers are therefore asked to submit catalogues and descriptive matter of any of the following equipment: television gear, including cameras, amplifiers, control gear, monitors and tele-ciné equipment; and broadcast studio equipment, including control consoles, amplifiers, loudspeakers, microphones, turntables and disc, wire and tape recorders. Material should be sent to Dr. Walter Duschinsky, c/o Van Doren-Nowland & Schladermundt, 205, East 42nd St., New York, 17.

Midland Television

Complaints have been made in the Midland area regarding the inability of television set owners to receive the signals from the B.B.C. pilot transmitter, which was mentioned in August, are being radiated from Birmingham, Wolverhampton and Coventry.

It is stressed by the B.B.C. that the signals are intended to help the radio trade only so that dealers within the limited range of the pilot transmitter, using aerials specially prescribed as the type 0A216, it is a comprehensive collection of test equipment tester simulating the radio apparatus at airports, an

Aircraft Radio

In order to expedite the testing of and fault locating in aircraft radio apparatus at airports, an equipment tester simulating the conditions under which the sets are used in the aircraft has been designed and produced jointly by Marconi’s Wireless Telegraph Company and Marconi Instruments. Described as the type OA216, it is a comprehensive collection of test ap-
World of Wireless—

paratus incorporated in one steel cabinet measuring 4ft wide, 3ft high and 16in deep.

Although it has been specifically designed for testing the Marconi range of aircraft sets, intercom systems and radio compass, it is sufficiently flexible to enable any other make of apparatus to be dealt with expeditiously. The principal items in the assembly can be identified by the lettering on the accompanying illustration and the inscription below it.

Two-Metre Transmitter

A CRYSTAL-controlled transmitter for use on the 145Mc/s band has been introduced by Labgear, Willow Place, Fair Street, Cambridge, for amateur use. The design is based on orthodox and well-tried practice, and it should give reliable and efficient service.

It is designed to take three 8Mc/s crystals and selection of the desired final frequency is effected by a panel switch. The crystal oscillator is an EF50 and this is followed by two frequency multipliers using QVO4-7 valves. The output stage is a push-pull 82913 beam tetrode. Anode modulation is employed and sufficient a.f. gain is provided to permit the use of a crystal microphone.

OBITUARY

It is with regret we record the death of Captain A. G. D. West, managing director of Cinema Television, as the result of a climbing accident in Switzerland on August 22nd. He joined the B.B.C. in 1923 at the age of 26 as asst. chief engineer. In 1929 he left the B.B.C. to become chief of design and development for the Gramophone Co. His first appointment in television came in 1933 when he became technical director of Baird Television (now Cinema Television). Captain West was a founder member of the International Television Committee and was this year appointed vice-president. He was to have taken a prominent part in the international television exhibition which opened in Milan on September 11th. He was president of the British Kinematograph Society from 1938 to 1946.

PERSONALITIES

Arthur L. Budlong, who has been assistant secretary of the American Radio Relay League for twenty-three years, has been appointed secretary and general manager in succession to the late Kenneth B. Warner.

G. Darnley-Smith, who has been on the Board of Cinema Television for some time, has been appointed managing director in succession to the late Captain A. G. D. West. He is also managing director of the associate company, Bush Radio, and was chairman of the R.I.C. in 1946.

Alan Knight has joined Philips Electrical as car radio manager. Prior to entering the radio industry some seventeen years ago, he was in the export department of General Motors of New York. During the war he was in the Ministry of Production.

H. J. Leak, director of the company bearing his name, has gone to America to exhibit audio amplifiers at the Audio Fair which is being held in New York from October 27th to 29th. The show is sponsored by the Audio Engineering Society of America.

J. T. Moore, who has been with the Philips organization since 1928, has been appointed Midlands television executive by the company.

Louis G. Pacent, president and technical director of Pacent Engineering Corp., New York, has been appointed consulting engineer by Plessey International of Ilford.

H. M. Thorne has been appointed radio sales manager by Philips Electrical. He joined the company in 1929 and has been for some time personal assistant to H. Slater, director in charge of the radio and television side of the business.

IN BRIEF

Licences.—With increases of 40,150 "sound" licences and 7,250 television licences during July, the total at the end of the month was 11,958,250. Of this total 155,150 were for television receivers.

Radiolypia, 1951.—It is announced by the Radio Industry Council that Olympia has been booked for a session in June each year from 1951 for the National Radio Exhibition. The relative merits of an early or late summer show have been discussed for some years; the disadvantages of the latter being that it follows too soon after the
annual holiday period when most works are closed and, too, it interferes with autumn production plans.

American Amateurs.—New amateur regulations proposed by the American Federal Communications Commission, in a recent reconsideration of the A.R.R.L., amount to undesirably rigorous control of amateur transmitting activities. The A.R.R.L. has lodged with the Commission a lengthy statement by way of protest.

Electronics.—Among the courses of lectures arranged by the Dept. of Mathematics and Physics at the Polytechnic, Registry, St. London, is a postgraduate course on electronics which will be held on Thursdays from 7.0 to 8.30, commencing September 29th. The first part of the course will deal with the emission of electrons from solids, the second with amplifiers and oscillators and the third with ultra-high-frequency techniques. The fee for Parts A or B is 12s 6d and for C 25s.

Overseas Standards.—The British Standards Institution asks us to remind manufacturers that the institution acts as agent in this country for all overseas national standards organizations and, as such, is in a position to supply copies of Standards issued by them.

Amateurs' Examination.—The Dept. of Technology of the City and Guilds of London Institute announces that 636 of the 898 candidates passed the Radio Amateurs' Examination in May primarily to receiving a transmitting licence. In the report of the examiners it is stated that the only question which appeared to give serious trouble was that dealing with the calculation of circuit values.

Evening Courses.—Among the courses arranged by the South-East London Technical College, Lewisham, Way, S.E. 13, one of thirty lectures on R. and electronic measurements. It commences on October 14th at 7.0; fee £1. Another course of about thirty lectures, which commences on October 17th at 7.0 deals with the theory and design of communication networks.

Broadcasting Stations.—The fifth edition of the 88-page "Wireless World" booklet "Guide to Broadcasting Stations" is now available, price 15d from bookstalls and newsagents. In addition to the lists giving operating details of over 350 long- and medium-wave European stations and of some 1,300 short-wave stations of the world, it includes the European frequencies allocated under the Copenhagen Plan which is due to come into force next March.

"Wireless World" at Radiolympia.—A range of new technical books, including some new editions and reprints, will be on view at our stand (No. 29, Grand Hall).

Sound Producing Equipment consisting of two 300-watt amplifiers feeding 360 loudspeakers has been installed by the G.E.C. in the Central Office of the Ministry of National Insurance at Benton, Newcastle-on-Tyne, where 7,500 are employed.

Magnetic Recording.—The latest of the series of booklets to be issued by E.M.I. containing papers read by members of the staff to learned societies is entitled "Some Fundamentals of Magnetic Recording" by E. W. Berth-Jones, B.Sc. of E.M.I. Studios. It is based on a lecture given by the author to members of the British Sound Recording Association. The booklet, priced 25d, is available from the Advertising Department of E.M.I. Sales and Service, Hayes, Middx.

Radio Servicing.—Of the 153 candidates who sat for the Radio Servicing Certificate examination in May, 59 passed both the written and practical sections and 24 passed the written examination only. The exam is organized jointly by the Radio Trades Examination Board and City & Guilds.

Components Exhibition.—The seventh annual exhibition of radio components, valves and test gear organized by the Radio and Electronic Component Manufacturers Federation, will be held at Grosvenor House, Park Lane, London, W.1, from April 17th to 19th next year.

Reunion.—We have been asked to announce that a reunion of those who worked in the Test Dept., No. 1 Signals Depot, R.A.F., West Drayton, will be held at Paxtons Head, R.A.F., West Drayton, on October 12th. Further information is obtainable from H. Coker, 18 Beechdale, London, S.W.7.

"Mechanical Handling," our associate journal, is organizing the second Mechanical Handling Exhibition which will be held at Olympia, London, from June 6th to 17th next year.

Packaging.—The first National Packaging Exhibition, sponsored by the Institute of Packaging, will be held at the City Hall, Manchester, from October 5th to 15th. The British Standards Institution has recently issued a revised Code of Practice for packaging—BS.1133.

"Wireless World" at Radiolympia.—Among the papers to be read during the electronics exhibition at the Examination Hall, Queens Square, W.1, from November 2nd to 4th, are the following: "Electronic Amplifiers," by D. L. Banks (Furness); "Some Recent Improvements in Electronic Measuring Techniques," by C. H. W. Brookes-Smith and J. A. Coles (Southern Instruments); and "The Measurement of Some Transient Phenomena," by Dr. H. A. Dell (Mullard). Further particulars and tickets are obtainable from the Electronics Section of the Scientific Instrument Manufacturers' Association, 17, Princes Gate, London, S.W.7.

Schools' Radio.—The Essex Education Committee recently accepted tenders for the supply of £10,000 worth of radio equipment for installation in schools during 1949/50.

Television Training School for G.E.C. dealers in the Manchester area has been opened by the company. The course of instruction, which lasts a week, includes practical work on the diagnosis and rectification of faults in television sets.

Amateur Radio.—An exhibition is being held at the Corn Exchange, Manchester, from October 21st to 25th in connection with the R.S.G.B. National Convention. On the first day it opens at 2.30 and on subsequent days at 11 a.m. It closes daily at 9.

Italian Television.—It is learned from an Italian correspondent that the Italian broadcasting authorities are installing both American (625-line) and French (815-line) television transmitters near Turin with a view to conducting a series of experiments before establishing a service. One of the difficulties to be overcome in establishing a service in Italy is the non-standard periodicity of the electric mains.

Benelux Exhibition.—"Wireless World" and books issued by W.W. are among the publications of the Scientific and Technical Press being displayed in the Century Hotel, Antwerp, during the Benelux Exhibition which closes on October 9th.

INDUSTRIAL NEWS

Electronics Centre.—Cinema-Television and Dawe Instruments have jointly opened a London showroom at 83, Piccadilly, W.1 (Tel.: Mayfair 4043). A wide range of test and measuring gars and electronic instruments is on show.

British Mechanical Productions and the established company, the General Accessories Co., makers of Clix components, whose works are at Wokingham, Berkshire, are building a new factory at Wokingham, Berkshire. The joint managing direc-
World of Wireless—

The French authorities for token im-

ment for the provision of a radio-

Railways for the installation of eight

received an order from the Nyasaland

be sent to H. Pilbeam, Buhl Sons Co.,

S.W.r, quoting reference CRE(IB)

21112/49.

Projects from this country.

who specializes in the design and production of electronic instruments to special order. The firm, recently developed such apparatus as noise measuring sets, a d.c. amplifier, diathermy equipment, photometry equipment and many kinds of special-purpose amplifiers.

Aerialite is opening a new depot at

Postal Television have opened a Midland depot at Sainsbury Hill, Birmingham, 19 (Tel.: Northern 2762 and 3493).

Sound Sales.—The London office and demonstration rooms of Sound Sales, Ltd., are now at Lloyds Bank Chambers, 125, Oxford Street, W.1 (Tel.: Gerrard 8782).

Masteradio (Australia) Pty. has been formed in Melbourne for the assembly of British Masteradio car receivers.

EXPORT

India.—Enquiries have been received by the U.K. Trade Commissioner at Madras for details of manufacturers who are able to supply dry battery or combined mains/battery receivers. Frequency coverage should be from 13 to 90 metres and 200 to 550 metres, with Indian station names marked on the dials. Manufacturers should send lists of apparatus and delivery dates to the Commercial Relations and Exports Dept., Board of Trade, Thames House North, Millbank, London, S.W.1, quoting reference CRE(1B) 21112/49.

Switzerland.—Control and surveillance radar equipment for use at the new Kloten airport is required by the Zurich authorities and they will be interested to receive offers from British firms. Communications should be sent direct to Radio Suisse A.G. Hauptpostamt, Berne.

Iran.—A report on the Iranian market for receivers has been supplied by the Commercial Counsellor at Tehran. The two main criticisms of British sets are that they are too conservative in design and seem "old-fashioned" to Persians and that they are not so extensively advertised as American sets.

U.S.A.—The British Consulate General at Detroit states that Buhl Sons Co. have agreed to consider offering Marshall British-made broadcast receivers. Particulars should be sent to H. Pilbeam, Buhl Sons Co., 135, Adair Street, Detroit, Mich., U.S.A.

Nyasaland.—The International Marine Radio Co., of Croydon, has received an order from the Nyasaland Railways for the installation of eight shore stations and associated equipment for the provision of a radio-telephone system on Lake Nyasa.

Radio Components and hearing-aid parts are among the articles listed by the French authorities for token imports from this country.

Pye (Canada), Ltd., a subsidiary of Pye of Cambridge, has recently opened a factory in Toronto, for the production of television sets operating on the American 525-line system. Six prototype receivers were sent from this country and demonstrated at the Canadian National Exhibition in Toronto. As there are no television stations operating in Canada, transmissions from a Norwegian station at Buffalo (60 miles away) were received.

MEETINGS

Institution of Electrical Engineers—Inaugural address of the president, Professor E. B. Moulin, M.A., Sc.D., at 5.30 on October 6th.

Radio Section.—Inaugural address of the chairman, R. T. B. W.1, C.B.E., M.A., at 5.30 on October 19th.

"The C.B.S. Colour Television System in the United States," by P. C. Goldmark, B.S., Ph.D., at 5.30 on October 1st.

The above meetings will be held at the I.E.E., Savoy Place, London, W.2.

Cambridge Radio Group.—Address of the chairman, C. W. Oatley, M.A., M.Sc., at 6.00 on October 11th, at the Cambridge Technical College.

North-Eastern Radio Group.—Address of the chairman, G. E. Moore, at 6.15 on October 17th, at King’s College, Newcastle-on-Tyne.

North-Western Radio Group.—Discussion on "Wave-guides," opened by E. Colin Cherry, M.Sc. (Eng.), at 6.30 on October 19th, at the Engineers’ Club, Albert Square, Manchester.

South Midland Radio Group.—"Hot-Cathode Thermatrons: Practical Studies of Characteristics," by H. de B. Knight, M.Sc., at 6.00 on October 24th, at the James Watt Memorial Institute, Great Charles Street, Birmingham.

British Institution of Radio Engineers London.—"Inaugural Experimental Study of the Magnetic Amplifier," by E. H. Frost-Smith, B.A., at 6.30 on October 13th, at the London School of Hygiene and Tropical Medicine, Gower Street, W.C.1.

Merseyside Section.—"The Sensitivity and Other Properties of Television Camera Tubes," by L. H. Bedford, O.B.E., M.A., B.Sc., at 7.00 on October 5th at the Accountants’ Hall, Derby Square, Liverpool.

Scottish Section.—"Electronics in Aircraft Design," by A. L. Whitwell, at 6.30 on October 4th, at the Electrical Department, Glasgow University.

South Midlands Section.—"The Performance and Stability of Permanent Magnets," by A. J. Fox, F.R.S., at 7.00 on October 27th, at the Technical College, The Butts, Coventry.

West Midlands Section.—"Television Receiver Design," by W. Jones, at 7.00 on October 12th, at the Technical College, Wulfrun House, Wolverhampton.

British Sound Recording Association—The date of the opening meeting of the session has been changed to October 25th.
The first specialised miniature radio components were manufactured by Bulgin over 25 years ago. Since then their wide range has been developed to cover every requirement of the radio and television industries.

The latest Bulgin achievement is the introduction of the first coloured components which reflect the scientific skill and practical design of all Bulgin products.

WE WELCOME VISITORS TO
STAND NUMBER ONE
RADIOLYMPIA

BULGIN
Quality Electronic Components

A. F. BULGIN & CO. LTD.,
BYE PASS ROAD, BARKING.
CHANGE OF ADDRESS
The Hub of Progress

NEW — THE —
TWIN P.1 CROSS OVER SPEAKER

NEW — THE —
DX PLUS 2
5-2,000 M.
H.F. FEEDER UNIT

NEW — THE —
R-N-W PICK-UP

NEW
TRANSFORMERS
AND
CHOKES

QUALITY AMPLIFIERS
TONE CONTROL UNITS

NEW IDEAS
TO INTEREST YOU

LABORATORY — BUILT —
BEAT FREQUENCY OSCILLATORS

Sound Sales Ltd.

125 OXFORD ST., LONDON, W.1
GERRARD 8782
SMOOTHING CIRCUITS:

(1) Resistance - Capacitance

Many readers have asked me to write about filters, with particular reference to smoothing circuits. This I have hesitated to do, because the subject of filters is so involved that most people like to leave it to a specialist. Most of the general books on radio take care not to embark on it at all seriously, while the books devoted specially to electrical networks almost invariably plunge the reader into a morass of hyperbolics, where he is likely to lose sight of all physical realities.

The orthodox manner of complying with the above request would be to start by dealing with the general theory of filters. That would take several months (at least), by the end of which there would be few survivors to take an interest in the application of that theory to smoothing circuits. I have therefore decided to reverse the order and start with smoothing circuits—which are of practical interest to nearly everybody—and use that familiar ground as an approach to filters in general.

Nobody ought to be encouraged to hope that he can become proficient in designing filters without prolonged study and much practice. But I do think that anybody seriously interested in radio ought to have at least a clearly defined and reliable skeleton of information on filters in place of the vague and mysterious ghost that too often haunts him.

Greatly daring, I shall attempt to construct such a skeleton without going more mathematical than usual. But if you propose to go through with it I should say beforehand that you ought to be entirely familiar with the meanings of reactance and impedance, and the standard relationships:

\[
\omega = 2\pi f
\]

\[
X_L = \omega L
\]

\[
X_C = \frac{1}{\omega C}
\]

from which

\[
X_LX_C = \frac{L}{C}
\]

But it is time we finished with introductory remarks and got down to smoothing circuits.

The simplest of all is the combination of one resistance with one capacitance (Fig. 1). It is the commonest type of "decoupler," and when the current is small or the drop in voltage doesn't rule it out it is a convenient form of rectified a.c. smoother. It appears in almost every detector circuit, to filter out the r.f., and in every a.g.c. circuit, to filter out the a.f.

It works, of course, as a simple potential divider in which the impedance of the element across which the output is taken \((C)\) is less for high frequencies than for low.

As with all potential dividers, the loss of voltage depends not only on the ratio of its two impedances, but also on the impedance connected across its output terminals—the load impedance. Unless we say otherwise, we shall assume that the load impedance is a resistance, denoted by \(R_L\). Whenever \(R_L\) is very large compared with the impedance of the part of the potential divider it comes across (in this case \(X_C\)) it makes calculations much easier, because then the ratio of input to output voltage \((V_i/V_o)\) is equal simply to the ratio of the whole impedance \(\sqrt{R^2 + X_C^2}\) to \(X_C\).

We shall call \(V_i/V_o\) the attenuation, and denote it by \(a\). If \(a\) is 3, for example, it means that only one third of the input voltage reaches the output.* In Fig. 1, then, we have

\[
a = \sqrt{R^2 + X_C^2} \quad \frac{X_C}{X_C}
\]

One should always scrutinize equations to see if they are in the most convenient form. In (1) the part that depends on frequency appears twice; so to see more clearly how it affects \(a\) and to avoid needless duplication of

* You can, of course, if you prefer, reckon \(a\) in decibels, but they would have to be turned back into ratios to fit our equations.
Smoothing Circuits—

Effort when evaluating a it is beneficial to divide above and below by X_C, with the result

$$a = \sqrt{\frac{1}{R^2 X_C^2} + 1} \quad (2)$$

It can be made to look even tidier, and at the same time to express the relationship more distinctly, by using any convenient symbol, say p, to denote the ratio of resistance to reactance. Then we have

$$a = \sqrt{p^2 + 1} \quad (3)$$

Using this we can draw a curve of a against p that will hold good for the Fig. 1 class of circuit in general (Fig. 2). Incidentally, this illustrates last month’s story about generalized graphs.

Still more of a simplification can be made so long as we are aiming at a fairly large attenuation, so that a is at least several times greater than 1. For then the 1 can by comparison be neglected and we get

$$a = p \quad (4)$$

Up to the present I have not been able to think of any further simplification. On the contrary, in case you forget what p stands for I suggest the fuller version

$$a = \frac{R}{X_C} = 2\pi f C R \quad (5)$$

Remember that for (5) to be reasonably accurate it is necessary for

(a) R_L to be much greater than X_C.
(b) R to be at least several times greater than X_C (i.e., a to be several times greater than 1).

We shall call (a) the shunting assumption and (b) the vector assumption. As an example, suppose R is 4 times X_C; then (5) gives a as 4, which can be compared with the correct value given by (2) or (3), 4.12. The 3% error is quite negligible in this kind of work. The dotted line in Fig. 2 is drawn to equation (5), so that you can see how the error becomes imperceptible as p increases.

As we saw last month, this type of circuit doesn’t discriminate sharply between different frequencies. Its characteristic curve (Fig. 2) shows it to have a slope that approaches 6 db per octave at the high-frequency end. In other words, doubling the frequency only halves the output, at best. If it is necessary for the lower of two frequencies to be nearly 100% preserved, the reduction of a voltage at double the frequency is much less still, owing to the gradualness of the bend in the region of $p = 1$ or less. The effect of R_L not being relatively very large reduces the discrimination still more, because it cuts down the output at low frequencies without making much difference at high.

In smoothing filters, however, the only frequency to be passed is zero, so one can hardly have too much a.c. attenuation. At the very least, the lowest a.c. frequency present should come on to the main slope, and preferably as far up as it is required for the purpose in view. At the same time, R must fit into the d.c. requirements. For example, suppose an attenuation of at least 40 is required from a half-wave 50 c/s rectifier to supply 5 mA at 1,000 V., and the output of the rectifier across the reservoir capacitor is 1,300 V. at 5 mA. The value of R is fixed at once by the voltage drop; it is $(1300 - 1000)/5 = 60$ kΩ (remembering that mA and kΩ are “consistent” units). For a as large as 40 we can use equation (5), and, as the lowest frequency is 50 c/s, we find $C = 40/(2\pi \times 50 \times 60,000)$ $F = 2\mu F$ approximately. R_L is 100k/5 = 20kΩ, so the shunting assumption is justified. The harmonics present are reduced 2, 3, etc., times as much, so it might seem that so long as the lowest frequency is sufficiently attenuated it won’t matter about any of the others. And that is quite so when the objectionable effects of the ripple depend only on its magnitude. But it must be remembered that the sensitiveness of the ear to hum increases more rapidly with frequency than the attenuation shown in Fig. 2, so in sound-producing equipment it is necessary to do better than reduce the lowest frequency to inaudibility.

Distribution of R and C

It should be clear by now that the effectiveness of the Fig. 1 circuit depends solely on R, which is $2\pi f C R$, and therefore at a given frequency depends solely on the product $C R$. (This is not necessarily true where the effect of R_L is appreciable, but for the time being we are continuing the shunting assumption.) A specified a can therefore be obtained by any C and R which give the right figure when multiplied. But, as we have seen, R is usually dictated by the required or allowable d.c. drop, in which case C is also decided. If a very smooth output is needed, the value of C found in this way may be disappointingly large. So we may well ask whether the Fig. 1 circuit makes the best use of C and R.

Any number of units or “sections” like Fig. 1 can be used in cascade (i.e., one feeding into another), and, so long as our two
assumptions apply to every section, the a of the whole combination will be the product of the a's of the separate sections. A second section like the first in the example just taken would reduce below which one section is better than two. Let us call it p_1, to indicate that there is no sense in going beyond one section until p exceeds that value.

To answer the second question

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
n & p_n & a_n & RC in k\(\Omega\)-\(\mu F\) per section, when \(f=1000/\)s \\
\hline
1 & 16 & 16 & 25.5 \\
2 & 45.5 & 180 & 18 \\
3 & 90 & 1,000 & 16 \\
4 & 149 & 7,540 & 15 \\
5 & 223 & 56,600 & 14 \\
6 & 311 & 416,000 & 13.7 \\
\hline
\end{tabular}
\caption{TABLE I.}
\end{table}

we have to find another value—p_2—above which it pays to use three sections instead of two; and so on. In general, we want p_n, the value of p at which the best number of sections changes over from n to $n + 1$. The calculation is made along exactly the same lines as for p_1 (for details see the Appendix) and the results are given in Table I above.

Fig. 4. Summary of attenuation measurements made on filters having the same total C and R, nominal values as shown.

Suppose you have a certain total capacitance and want to know the best way of connecting it. For example, the d.c. drop requirement gives you 20k\(\Omega\), and you have 16\(\mu F\). It is a 50 c/s full-wave rectifier, so the lowest ripple frequency is 100 c/s. So your total p is \(2\pi \times 100 \times 20 \times 16/1000 = 200\). The table shows this is more than p_1, but not more than p_2; so 5 is the best number of sections. The total a (third column) lies between 7,540 and 56,600; the actual value is $(p/n^2)^5$, in this case $200/25)^5 = 32,770$. Whether it is convenient to divide your 16\(\mu F\) into five equal sections is another matter, of course; you may have to make it four, at some slight sacrifice of a. But at least the table gives you something more to go on than pure guesswork.

Or you may want to find the minimum C and R for a specified attenuation, say 1000. The table shows that you can get it with three (or four) sections having sufficient total C and R to make $p = 90$, and (fourth column) that

\[
\begin{array}{|c|c|c|}
\hline
n & \text{CALCULATED } a & \text{MEASURED } a \\
\hline
1 & - & 100 \\
2 & \left(\frac{100}{4}\right)^2 & 625 \\
3 & \left(\frac{100}{9}\right)^3 & 1,375 \\
4 & \left(\frac{100}{16}\right)^4 & 1,530 \\
\hline
\end{array}
\]
Smoothing Circuits—

each section should be made up of 16 kilohm-microfarads.

You may wonder why I have included the last column, which shows the p per section on changing over to the next higher number of sections. For example, we saw that one section is best up to $p = 16$, and changing over to two sections at that point has no effect on the total attenuation, but it would reduce the p per section to 4. The last column, therefore, shows the lowest p you would ever get if you followed the table strictly. The point is that if this figure dropped to something like 2 or less, the vector assumption would be unjustified and the table would be invalid. But we see the least p is 4, with a vector error of 3%, which is not serious even when multiplied by 2. The other errors are still smaller, so are not serious even when multiplied by the larger number of sections. Such error as there is tends to make the true a_n larger and reduce p_n, R_n, for example, would be 15 instead of 16.

What about the shunting error? Even if R_n is infinitely large, so that the last section is unshunted, the last section shunts the last but one, and so on. It is difficult to work out the size of the error exactly when there are several sections, and anyway it depends on the load resistance; but the $p(t_n + 1)$ figures show that it ought not to be very serious, and again it would tend to make the actual attenuation and also the best number of sections higher than in the table. But since the cost of the filter generally goes up with the number of sections, the fact that the table puts the change-over point higher than the theoretical ideal is all to the good.

Another point to be considered is that the attenuation increases in proportion to the nth power of the frequency, so in sound-reproducing equipment, at least, it is advisable to make n not less than 2.

To check the theory and to see how far its assumptions were justified I did a few measurements. I aimed at $p = 90$, to check the middle lines in the table, but had to use the components available, so it worked out at about 100. Fig. 4 shows the nominal values, which were subject to commercial tolerances. Assuming that the measured p in one section (100) was divided exactly into 2, 3 and 4 sections, the attenuations predicted by the approximate theory were 625, 1375, and 1530 respectively. The measured attenuations (subject to possibly ±10% error of measurement) were 690, 1430, and 2000. These results show that

(a) The theoretical table is good enough for design purposes.

(b) It tends to underestimate the results.

(c) The discrepancy increases with the number of sections. (This is what one would expect, because the p per section is less with more sections, so the assumptions are less justifiable.)

To get still nearer to working conditions I did a test using a typical value of reservoir capacitor (8µF) and load resistance (5kΩ), as in Fig. 5. The reservoir, without any other filtration, would reduce the hum current passing into the load. Adding one filter section having a p of about 10 made the total measured current attenuation 147. Splitting this filter section into two, the attenuation was the same. According to the approximate theory, the p for which this would happen would be 16 (or 15, correcting the vector error). But the actual p per section in Fig. 5 (b) is only 24, so one would expect the approximate theory to be thrown out somewhat by shunting. Taking into account the higher cost with two sections, one would almost certainly want p to be at least 16 before sectionalizing.

There are at least two methods (Fig. 6(a) and (b)) for eliminating the most troublesome ripple frequency altogether. They take advantage of the fact that its phase shift as the ripples pass along the filter. If the right amount of ripple from the input is fed to a point where there is an 180° phase difference, the two will cancel one another out. There may be some occasions when these devices are worth while (such as when only a small d.c. drop is allowable), but there are several objections. One is that success depends on both magnitude and phase being correctly adjusted. Another is that only one frequency is cancelled; for the others the attenuation of the original filter (admittedly relatively high for the higher frequencies) is actually reduced. It is necessary to use several sections to get the required phase shift, and the table has shown us that quite a large a can be obtained with several sections straightforwardly, without going beyond reasonable limits for CR. Still another disadvantage is that the necessary design information would increase the length of this...
article, and it is already full size. Calculation of actual hum voltage, and inductance-capacitance filters must wait until next month.

APPENDIX
(Showing how to calculate the table giving the number of sections for maximum attenuation) very $n = 2 \pi f \times \text{total CR.}$

If CR is divided into n equal sections, the attenuation per section is approximately $\frac{p}{n^2}$ (assuming that it is at least several times greater than 1, so that the simplifying assumptions apply). The total attenuation, a, is therefore

$$a_n \simeq \left(\frac{p}{n^2} \right)^n$$

If the same CR were divided into $n+1$ equal sections the attenuation would be

$$a_{n+1} \simeq \left(\frac{p}{(n+1)^2} \right)^{n+1}$$

If p_n is the value of p that makes $a_n = a_{n+1}$ then approximately

$$p_n = \left(\frac{p_n}{(n+1)^2} \right)^{n+1}$$

And p_{n+1} is divided into $n+1$ sections is

$$p_{n+1} = \left(\frac{n+1}{n} \right)^{a_n} \simeq \left(\frac{n+1}{n} \right)^{a_{n+1}}$$

MANUFACTURERS' PRODUCTS

New Plessey Components

Several new components have been introduced recently by the Plessey Company, Vicarage Lane, Ilford, Essex. One is a ceramic type B8A valve holder with floating nickel silver contacts having a wide and low lead-in angle, which should prevent any likelihood of bent pins or a fractured base provided that the "float" in the socket is not destroyed by stiff wiring. It has a metal centre spigot tube, which also serves as an earthing contact, and a base screening shield incorporating a locating keyway. The inter-socket capacitance is between 0.1 and 0.2 pF while, between all sockets and earth, the capacitance is less than 0.15 pF, a very necessary feature for v.h.f. applications.

There is a laminated plate-type valveholder for the B9A valves having silver-plated phosphor bronze contacts giving a firm but sound electrical contact with the valve pins.

A volume control, having a solid moulded resistance element contained in a moulded body, is also among the new items. It is designed to be very robust and reliable in operation. Resistance values range from 100 ohms to 2 megohms, while the minimum values, often called the "hop-on" and "hop-off" values, are kept down to 1.0 per cent of the track resistance, or 50 ohms in the lower values. The track will safely carry some direct current so that their usefulness is extended to television controls and cathode bias circuits.

Conventional single-hole fixing is employed and either single- or double-pole on-off switches can be incorporated.

Some Useful Accessories

The introduction of a new signal lamp fitting taking a modified "Pigmy Sign" mains bulb of 15 watts rating adds some fifty further varieties of signal fittings to the already extensive range made by A. F. Bulgin and Co., Ltd., Bypass Road, Barking, Essex.

The new signal lamp has a B.E.S. screw fitting for the bulb and a 1½-in diameter plastic lens which is secured in position by means of three springy tongues and slots cut in the annular ring of the back plate. This plate is riveted to a bracket carrying the B.E.S. lamp holder. Ten varieties of coloured lenses are available and the metal rim can be finished in a wide range of colours and styles. The price is 2s 6d.

Another recently introduced Bulgin product is a fully insulated non-reversible moulded connector. In a 2-pin type it will handle mains supplies up to 500 volts at 1 amp, or on low voltages up to 10 amps. High-grade Bakelite is employed and although the normal colour is black other shades can be supplied to order.

The non-reversible feature is obtained by a moulded key on the withdrawable socket part and a corresponding keyway in the fixed plug housing. This is a useful feature for d.c. sets. A cable grip is also included. Two-, three- and six-pin connectors are available and the prices are 5s 9d, 6s 3d and 8s 3d respectively.

An interference suppressor for motor car engines has now been added to this firm's range of accessories. It is a plug-in type for the distributor head and is inserted in the lead to the coil. The suppressor resistor is wire wound and is enclosed in a flexible weatherproof moulding. The price is 1s 6d.

New Television Receiver

The 15-inch tube in the Model 1806 H.M.V. gives a picture size 12¾in x 10in and it is claimed that the aluminized screen gives sufficient brilliance for viewing by normal room lighting. The price is £14.8 4s 5d, with tax.

H.M.V. Model 1806 receiver.
North of the Border

TELEVISION aerials are not a very conspicuous feature of the Scottish landscape at present. This is not very surprising as Scotsmen very sensibly like to have value for their money and freak reception from A.P. has no attractions for them. In fact, the only installation I actually saw on a recent visit there was owned by a mad dog of an Englishman, but that was not very surprising for, as Noel Coward reminds us, they are apt to do odd things such as going out hatless in the midday sun in the tropics. Licence figures, too, show that there is a dearth of Scottish television installations. I cannot refrain from mentioning, however, that doubts as to the accuracy of licence figures were aroused in my mind when I noticed that some of the "Monarchs of the Glen" showed no signs of movement even when I got to wind'ard of them; their antlers, too, were aroused in my mind when I suspected that the ordinary mechanism of levers and what-not was being used. To settle the question I heaved up the platform with the aid of my umbrella and a monkey wrench which I usually carry about with me and was astounded to find nothing but a stout spiral spring supporting the platform at each corner.

It was not, in fact, until I had sat far into the night in my cell at the local police station that I realized how it worked. The overhead radar gear had measured the distance down to the top of my head when I first stood on the platform, thus giving my height, and then had measured it again when the spring-borne platform and myself had sunk a fraction of an inch under the influence of gravity. The difference between these two readings was, of course, my weight.

"I heaved up the platform."
SUPER FIFTY WATT

This AMPLIFIER has a response of 30 c/s to 25,000 c/s, within 2 db, under 2 per cent distortion at 40 watts and 1 per cent at 15 watts, including noise and distortion of pre-amplifier and microphone transformer. Electronic mixing for microphone and gramophone of either high or low impedance with top and bass controls. Output for 15/250 ohms with generous voice coil feedback to minimise speaker distortion. New style easy access steel case gives recessed controls, making transport safe and easy. Exceedingly well ventilated for long life. Amplifier complete in steel case, with built-in 15 ohm mu-metal shielded microphone transformer, tropical finish.

As illustrated. Price 36½ Gns.

30 WATT RECORD REPRODUCER

This amplifier has been produced for extremely high quality gramophone or microphone quality in large halls or in the open. An output power of 30 watts is obtainable at under 1% distortion after the output transformer which is arranged for 4, 7½, or 15 ohm output. The most noticeable point is the absence of background noise or hum. Very generous feedback is employed to help out any distortion developed by the speaker and the large damping factor ensures good transient response. The usual response of 30 to 25,000 cycles plus or minus 1/2 db is given, and recording compensation of 5 db per octave lift below 300 cycles is obtainable on the gramophone input by means of a switch. A carefully balanced treble control is arranged to correct top lift on some recordings as well as to reduce scratch on old records without noticeable effect on frequencies below 3,500 to 4,000 cycles. The input is intended for the high fidelity type of pick-up and is fully loaded by an input of .2 volts on 100,000 ohm or 4 meg. ohm as required. The microphone stage requires an input of .3 millivolts on 15 ohm balanced line through the wide response mumetal shielded microphone transformer. An octal socket is fitted at the rear of the chassis to provide power for feeder units, etc., 6.3 volts at 2 amps and 350 volts at 30 millamps is available. Complete in well ventilated steel case. Price 30½ Gns.

FOUR WAY ELECTRONIC MIXER

This unit has 4 built-in, balanced and screened microphone transformers, normally of 15-30 ohms impedance. It has 5 valves and selenium rectifier supplied by its own built-in screened power pack: consumption 20 watts. Suitable for recording and dubbing, or large P.A. Installations since it will drive up to six of our 50 watt amplifiers, whose base dimensions it matches. The standard model has an output impedance of 20,000 ohms or less, and any impedance can be supplied to order. Price in case with valves, etc., £24.

VORTEXION LIMITED, 257-261 THE BROADWAY, WIMBLEDON, LONDON, S.W.19

Telephones: LIB 2814 and 6242-3
Our Success Story . . .

is shared with our Students

The increasing demand for our HOME STUDY and DAY COURSES in Radio, Television and Kindred Electronic subjects, compels us to move to larger premises. At our new address we shall have much more accommodation for staff, larger and better equipped classrooms and laboratories and improved boarding facilities.

★ 91% PASSES ★

In recent City & Guilds examinations, our candidates were remarkably successful. No less than 91% achieved passes. A large proportion of which were "first classes".

WRITE FOR FREE BOOKLET which gives full details of all courses. In addition to HOME STUDY there are the following DAYTIME courses:

PRINCIPLES & PRACTICE OF RADIO — 1 Year.

TELECOM. ENGINEERING — 2 Years.
(City & Guilds Final Certificate)

ELECTRONICS ENGINEERING — 3 Years, including 1 year in E.M.I. Factories.
(City & Guilds Full Technological Certificate)

P.M.G. MARINE AND AIR RADIO OPERATORS 1st Class Certificates.

E.M.I. INSTITUTES

Associated with "H.M.V.", Marconiphone, Columbia, etc.
Dept. 127, 43, Grove Park Road, Chiswick, W.4 Telephone: CHIswick 4417/8

WELL PAID CAREERS.

Letter from SIR BEN LOCKSPEISER, M.A., M.I.Mech.E., F.R.Ae.S., when Chief Scientist to the Ministry of Supply to Professor Trewman, the Principal.

"I am much interested in the courses of training in electronics at E.M.I. Institutes. Apart from the obvious need for such trained people in the Radio and Television industry, there is a rapidly increasing demand in very many other fields Although scientists possessing University Degrees are required in increasing numbers, many times this number of skilled technologists are needed We look forward to receiving the names of your students when their courses are complete".
SOME months ago it was pointed out in these columns\(^1\) that a cathode follower is sometimes used for stabilizing the current in a television cathode-ray tube focus coil. As this aroused some interest it has been thought worth while to present the following brief notes on current stabilizers in general, as they have various laboratory uses, one of which is the stabilization of the currents in the lens coils of an electron microscope.

Normally a current stabilizer is required to stabilize not only against fluctuations of the supply mains, but also against changes of resistance of the component through which an unvarying current is required. To be definite, let us call this component a coil whose resistance (if wound with copper wire) will change with temperature. A significant change in temperature may well be caused by the power dissipated in the coil when the current is flowing.

Current stabilizers may be looked at in two different ways, and it is largely a matter of personal preference which is chosen, as they lead to the same conclusions. If the coil is placed in series with a resistance of value high compared with that of the coil and a correspondingly high voltage applied to the two components in series, then changes of coil resistance will have little effect on the current flowing, provided the supply voltage is constant. For example, if the series resistance is ten times the coil resistance, a change of one per cent in the resistance of the coil will represent a change of only 1/11 per cent in the total resistance, and the percentage current change is similarly reduced by a factor of eleven.

A straightforward current stabilizer for a coil of resistance 5,000 ohms to be supplied with 20 mA might be constructed as indicated in Fig. 1. This arrangement would discriminate against mains fluctuations by the stabilization ratio of the voltage stabilizer, and against coil resistance fluctuations by a factor of eleven. The supply voltage required is 55 kΩ × 20 mA = 1,100 volts. The power to be supplied is equally easy to calculate and is 1,100 volts × 20 mA = 55 watts, and of this total power only 5 kΩ × (20 mA)\(^2\) = 2 watts is actually supplied to the coil. Thus the arrangement is very wasteful of power, and this is only one of its faults.

By the use of a device capable of passing a useful current at a reasonable voltage, and yet having a high (a.c.) resistance to changes of current a much more economical circuit can be designed. Such a circuit is that shown in Fig. 2.

Here \(V_1\) is a triode whose effective internal resistance is increased from \(r_a\) (the normal anode resistance of the valve) to \(R_0=r_a+(\mu+1) R_k\) where \(\mu\) is amplification factor.

\(V_2\) is a stabilizer tube whose running potential is \(V_n\), and this supplies a nominally constant grid bias to \(V_1\). If we make the assumption—which is nearly true for a high-\(\mu\) valve—that the potential across \(R_k\) is also \(V_n\), we may re-write the internal resistance as

\[
R_0=r_a+(\mu+1) V_n/i
\]

where \(i=\text{required stabilized current}\).

Putting in practical values of \(r_a=3 k\Omega\), \(\mu=28\) (for an EF55) \(V_n=85\) volts (for an 85A1) and \(i=20\) mA, we find \(R_0=126\) kΩ. If the coil resistance \(R_k=5\) kΩ the coil will drop 100 volts at 20 mA so that the coil and \(R_k\) together account for 185 volts. If a supply potential of 350 volts is used, 165 volts will appear across the valve, and, at this anode voltage, reference to the valve curves shows that no grid current flows.

In such an arrangement the effect of a change of coil resistance of one per cent on the current flowing is reduced to about 0.04 per cent. The total resistance in the circuit is \((126+5)=131\) kΩ, so that if the h.t. supply line changes by 10 per cent (35 volts), the change in current is only 35/131 = 0.27 mA, or rather less than 1.5 per cent of the total coil current. The total power consumed (excluding the stabilizer tube circuit) is 350 V × 20 mA = 7 watts, and of this, 2 watts is supplied to the coil. This contrasts very favourably with the arrangement of Fig. 1.

The circuit of Fig. 2 can be looked at a second way in which the coil is regarded as having a resistance \(R_k\) in series with it, and the aim is to maintain a constant voltage across \(R_k\). Obviously if the voltage across \(R_k\) is unchanged, and \(R_k\) remains unchanged, then the current through \(R_k\) must remain unchanged. As any current that
Electronic Circuitry—

flows through \(R_b \) also flows through the coil, the coil current must also remain unchanged. This way of looking at the circuit quickly leads one to the more refined and effective circuit of Fig. 3.

In Fig. 3, \(V_1 \) and \(V_2 \) correspond to \(V_1 \) and \(V_3 \) in Fig. 2, but now an amplifier valve \(V_b \) has been interposed. As this valve is actually a cathode-coupled pair it amplifies the difference in potentials applied to the two grids. One of these potentials is the reference potential \(V_n \) derived across \(V_b \), and the other is that across \(R_{b1} \). The amplified signal across \(R_n \) is applied via the potentiometer chain \(R_1 \), \(R_2 \) back to the grid of \(V_1 \) in such a way as to tend to maintain the potential across \(R_{b1} \) equal to \(V_n \). Analysis shows that the effective resistance in series with the coil is increased by the introduction of the amplifier valve \(V_b \). It is found that for this circuit

\[
R_n = \mu_1 A_3 V_n/l \text{ approximately}
\]

where \(\mu_1 \) = amplification factor of \(V_1 \).

\(A_3 \) = gain from cathode to grid of \(V_1 \) through \(V_b \).

In practice it is not easy to make \(A_3 \) much greater than 10, and if each triode of \(V_3 \) has \(\mu_3 = 70 \), the cathode coupling will restrict the gain from \(P \) to \(Q \) to less than 70/2 = say 25, and a further loss of 1/2 will take place from \(Q \) to the grid of \(V_1 \) if \(R_1 = R_2 \). So much loss in the \(R_2 R_b \) coupling chain is a consequence of the need to maintain the correct standing potentials at \(P \) and \(Q \). The choice \(R_1 = R_2 \) is often convenient, and the anode-cathode potential of the left-hand side of \(V_3 \) will be nearly equal to \(V_n \).

Taking practical values of \(\mu_1 = 28 \) (EF55), \(V_n = 85 \text{ volts} \), \(I = 20 \text{mA} \), \(A_3 = 10 \), we find the effective resistance \(R_n \approx 1.2 \mu \Omega \) (approximately) in series with the coil. Making the assumption* that \(V_n \) is constant, the effective stabilization ratio to the cathode of \(V_3 \) is approximately \(S_n = \mu_1 A_3 \) (= 280 for the values assumed above), so that discrimination against both mains fluctuations and changes of coil resistance is very good. One point is rather important; as the coil current is determined by the current through \(R_{b1} \), it is imperative that this component shall be highly stable, and low temperature coefficient wire-wound resistors should be used. To control the value of the stabilized current it is generally best to switch, in different values of \(R_{b1} \) for large changes, and to vary the effective value of \(V_n \) for small changes by arranging for the right-hand grid of \(V_3 \) to be connected to the slider of a potentiometer across \(V_2 \), so that the effective \(V_n \) can be varied (say) from 85 to 70 volts.

The informed reader will have recognised that the arrangement of Fig. 3 closely resembles a voltage stabilizer, and other voltage stabilizer circuits were ably described recently in this journal. The interested reader will be able to adapt these other circuits in the light of what has been said above, and it may be remarked that the circuit of Fig. 3 by no means represents the ultimate in performance, although it is satisfactory for a variety of applications.

Neutralizing Phase-splitters

Phase-splitting valves were discussed at length in this journal some time ago, and these may broadly be divided into low- and high-gain types. Examples of the latter are the cathode-coupled and see-saw phase-splitters. Some designers of these circuits avoid the use of triodes, because of the increase of input capacitance due to the Miller effect. It is not always realized that neutralization can often be employed, and this may, in some circumstances, be a material aid in maintaining the response at the higher frequencies.

Fig. 4 shows a cathode-coupled phase-splitter driven by some previous amplifier stage \(S \). Those who studied the recent article on the Miller effect (August issue) will remember that the anode-grid capacitance \(C_{ag} \) is effectively multiplied by the gain of \(V_1 \) from grid to anode, and appears effectively between the grid of \(V_3 \) and earth. Thus, although \(C_{ag} \) may be only 3 or 4 pF, the effective input capacitance of \(V_3 \) may be up to 100 pF, and this may be serious if \(S \) is a pentode of the 6L7 type, with a high-resistance anode load.

This large input capacitance is a consequence of the fact that any

Electronic Circuitry—

that at the grid of V_1. Hence a neutralizing capacitance C_n equal to C_{qu} may be connected as shown and the undesirable effects of C_{qu} are neutralized at ordinary frequencies where the amplifier behaves essentially as a resistance-coupled stage. The actual capacitance of C_{qu} is practically never more than 5 pF, so that C_n must be restricted to some value not more than this. It is often convenient* to split R_{a2} (as shown at the side of Fig. 4) so that signal voltage fed to C_n is reduced by a factor of three. This enables an ordinary r.f. trimmer (e.g. 5-15 pF) to be used, and avoids the necessity for a special component.

A good method of adjusting the circuit is to apply a square wave-form to the input of S (frequency about 1 kc/s for audio amplifiers), view the output on an oscilloscope and adjust C_n for the best results. This method generally leads to slight over-neutralization, but this is only undesirable if carried to excess so that the circuit is on the verge of oscillation.

This method of reducing the input capacitance of amplifiers was used in some radar circuits, and for further information the reader is referred to "Waveforms," Chance, Williams, Hughes, MacNichol and Sayre, M.I.T. Rад. Lab. series, Vol. 19, p. 767. McGraw Hill.

* But theoretically incorrect. However, the method is legitimate as long as the anode resistances from which R_{a2} are derived are very low compared with the reactances of C_{qu} and C_n. This is nearly always the case in practical circuits up to about 20 kc/s.

SHORT-WAVE CONDITIONS

August in Retrospect : Forecast for October

By T. W. BENNINGTON (Engineering Division, B.B.C.)

During August the average daytime maximum usable frequencies for these latitudes were somewhat higher than during July, whilst those for night-time were appreciably lower. This is in conformity with the usual seasonal trend, and m.u.f.s should now continue this type of variation towards the winter. Daytime working frequencies were, therefore, fairly high, though not high enough to permit regular use of frequencies like the 28-Mc/s band. Night-time frequencies of 9 Mc/s were often needed on some circuits.

Sporadic E was prevalent during the month, though somewhat less so than during July; and medium-distance communication on high frequencies by way of the medium was frequently possible. It is expected that the rate of incidence of Sporadic E will now decrease rapidly. August was a much more disturbed month than July, one long period of 14 days never being quite free of disturbance. This was 3rd-19th, the other disturbed period being 20th-31st. Most severely disturbed days were 3rd, 4th, 5th and 8th. "Dellinger" fadeouts were reported on 5th (2), 11th, 16th, 17th 20th and 31st, whilst those of 5th, 17th and 31st being intense.

Long-range tropospheric propagation does not appear to have been very frequent during the month. Forecast.—During October daytime m.u.f.s in the Northern Hemisphere will continue to increase, and, towards the end of the month, should reach exceptionally high values. It is unlikely, however, that they will be so high as those reached during the previous period of the last two years. Night-time m.u.f.s should continue to decrease.

Working frequencies for long-distance communication should therefore be high by day, frequencies like the 28-Mc/s band being frequently—for not regularly—usable over most transmission paths. At night 9 Mc/s should be the highest frequency regularly usable frequency, and lower ones will be necessary for some circuits. It is not expected that the E or F layers will control transmission over any distances from this country during October.

It is not likely that Sporadic E will be much in evidence. Ionospheric storms are often prevalent during October and some considerable periods of poor communication are therefore to be expected. At the time of writing it appears that ionospheric storms are most likely on 8th-9th, 18th-21st and 24th-25th.

Starting this month it is intended to give the predicted working frequencies for four long-distance circuits running in different directions from this country in graphic, instead of in tabular, form, as hitherto. Although the graphs are largely self-explanatory, the following few words may be said about them. A dashed line in each graph indicates the predicted m.u.f. for the circuit for each hour of the day, average for the month—and thus represents the highest frequency which should be usable at each hour for fifty per cent of the total time. The full line indicates the so-called o.w.f.—the frequency below which it should be possible to maintain regular communication; i.e., on every day of the month except those during which ionospheric storms are in progress. The dot-dashed line is for the use of those whose primary object is the working of certain bands; it gives the highest frequency likely to be usable at each hour for about 25 per cent of the time.

Forecast Chart

- **Predicted Average Maximum Usable Frequency**
- **Frequency Below Which Communication Should Be Possible for All Disturbed Days**
- **Frequency Below Which Communication Should Be Possible for 25% of the Total Time**

World Radio History
VENTED LOUDSPEAKER

Basis of Design to Match Existing Loudspeaker Units

By C. T. CHAPMAN (Goodmans Industries)

The large irregular plane baffle, or, better still, a baffle of "infinite" dimensions, such as a hole in a wall, although basically representing the optimum method of loading for a direct-radiator type loudspeaker, is seldom practicable. The result is that the baffle dimensions are reduced below the minimum required for the proper development of the lower frequencies. The musical balance is upset, and, even more serious, the loudspeaker diaphragm may develop excessive amplitudes, resulting in intermodulation and harmonic distortion. This effect is often unwittingly worsened by the user, who, in an attempt to obtain increased bass output, provides bass boost in his amplifier equipment.

The problem is a very real one, for, to provide adequate loading on the diaphragm down to 55 c/s, a plane baffle 10 feet in diameter is required, with attendant difficulties of construction, maintenance of rigidity, etc.

The basic requirement is to increase the radiation resistance at the lower frequencies, and it can be seen that the use of a Helmholtz resonator or a vented chamber provides a promising approach to the problem.

The equivalent circuit of a loudspeaker mounted in a vented cabinet, Fig. 1 (a) is shown at (b), where L_v, C_v, R_v represent the diaphragm mass, the acoustic capacitance or compliance of the suspension system, and the resistance of the air loading on the front of the diaphragm. C_p is the acoustical capacitance of the enclosed volume, and R_a and L_a the acoustic radiation resistance and inertance of the vent.

C_v and L_v are proportioned to resonate at the same frequency as the effective mass and compliance (L_c and C_c) of the loudspeaker diaphragm, thus reducing the diaphragm excursions and the output directly radiated at this frequency.

Also, since the phase difference between the volume currents in L_v and those generated at the immediate rear of the diaphragm may be as much as 180°, the sound issuing from the vent may be in phase with that directly radiated.

A primary design consideration, therefore, is a knowledge of the loudspeaker resonant frequency, so that the enclosure dimensions can be determined. The exact value can be obtained from the loudspeaker manufacturer, although on a standard product, which may have a nominal resonance of say 55 c/s, the manufacturer's tolerance may well be 10 c/s. It is therefore advisable to check the resonance of the actual unit, although, as is explained later, certain variations in resonance can be obtained in the cabinet by change of vent length.

A second consideration is the area required for the vent. This should be equal to the piston area of the loudspeaker diaphragm so that

\[\text{Vent area} = \pi r^2 \]

where r = \frac{1}{2}$ piston diameter of diaphragm.

The initial enclosure volume V is obtained by equating the expressions for the reactances C_v and L_v, which are equal at resonance and solving for V as originally proposed by Hoekstra. It will be shown later that this initial...
CABINETS

volume must be modified before
the final enclosure volume \(V_f \) is
determined.

Thus the capacitive reactance
of the enclosed volume is:

\[
X_{cv} = \frac{c^2 \rho}{\omega V} \quad \ldots \quad (2)
\]

where \(V \) = the initial volume,
\(\rho \) = density of air,
\(c \) = velocity of sound in
air.
\(\omega = 2nf \).
\(f \) = loudspeaker reson-
ant frequency.
and the reactance of the mass of
air in the release opening is

\[
X_{L} = \frac{c^2 \rho \rho_{pl}}{\pi r^4} \quad \ldots \quad (3)
\]

where \(V \) = the initial volume.
\(\rho \) = density of air.
\(c \) = velocity of sound in
air.
\(\omega \) = frequency of the
final enclosure.
\(f \) = loudspeaker reso-
nant frequency.
and equation (3) will reduce to

\[
X_{L} = \frac{3.4 f \rho + 2 f l \rho}{r^2} \quad \ldots \quad (4)
\]

Equating \(X_{cv} \) and \(X_{L} \) an expres-
sion for \(V \) is obtained:

\[
\frac{c^4 \rho}{4} = \frac{2 R(1.77 + l)}{\pi r^4} \quad \ldots \quad (5)
\]

As can be seen from
equation (5), changes
in resonance of a
given enclosure may
be effected by modi-
fying the length of the
vent.

Although it is de-
sirable to obtain the
minimum volume,
the vent should only
be extended to the centre of the enclo-
sure as shown in Fig.
1 (a), so that it may be
lengthened or
shortened as neces-
sary to obtain the
final adjustment to compensate
for the cabinet makers' tolerances,
and the exact loudspeaker reson-
ance.

It must be remembered that
both the loudspeaker and the vent
will displace a volume which must be
added to \(V \) to obtain the final
volume \(V_f \) on which the cabinet
size is based.

The final dimensions of an
enclosure of the required volume
will be a matter of personal taste
and convenience, but the basic
design of a cabinet which has been
used in various forms with reliable
results is as follows:

The loudspeaker is a standard
12in model with an actual piston
diameter of 10in. Then with a
resonant frequency of 57 c/s, suggested length of vent 7in,
c = 1185ft per sec and \(r \) and \(l \) in
inches.

\[
V = \frac{1185^2 \times 12^2 \times 5^2}{4 \pi 57^2 \times 15.5}
\]

= 8,000 cu in.
Volume of loud-
speaker = 200
Volume of vent = 540 cu in.
Volume of loud-
speaker = 740

\[
\frac{1}{V} \quad \ldots \quad (6)
\]

Final cabinet volume \(V_f =
8,000 \text{ cu in} + 740 \text{ cu in} = 8,740
\text{ cu in}.

Suggested dimensions:
Height 2ft 6in
Width 1ft 9in
Depth 1ft 2in.

With area of vent 80 sq in.

When the original cabinet was
made, as shown in Fig 2, it was
decided to have the vent variable
in length for measurement pur-
poses, and to enable a correction
to be made, if necessary, to the
final resonance figure.

Fig 3 shows the effect on the
impedance curve of changing the
resonance of the loudspeaker.
Changing the unit for the one for
which the cabinet was designed,
with a free air resonance of
57 c/s, various measurements were
taken as shown in Fig 4. The free
air impedance curve of this unit
is typical of the normal high-flux
12in unit obtainable to-day, and,
Vented Loudspeaker Cabinets—
as can be seen at (1) of Fig 4, rises
to almost astronomical heights at
resonance. When put in the
 cabinet, however, with the anti-
phase resonance at the same
frequency, the result can be seen
at (2) of Fig 4, with the dia-
phragm clamped at (3), and
mounted on a baffle of "infinite"
dimensions at (4). Variations of
vent length from 4 in to 7 in
and 10 in give the resonances of 63.5,
58 and 53 c/s respectively,
equal to those for cabinet volumes
of 9,800, 8,000 and 6,700 cu in
respectively, when the vent length
is kept at 7 in.

The basic formula in this article
has been used successfully over a
wide range of requirements, from
a cabinet housing a 6 in speaker
with a bass resonance of 130 c/s
up to four 18 in speakers each with
a resonance of 50 c/s. It is, how-
ever, imperative in all designs
that the cabinet be rigidly con-
structed, for any resonance in the
individual panels will cause a
sharp attenuation at the fre-
quency concerned, and, if the
resonance is particularly severe,
the panel itself will radiate.

It is necessary to line the inside
of the back, top and bottom of the
 cabinet with felt or cotton wool in
butter muslin to minimise standing
waves.

REFERENCES
C. E. Hockstra. "Vented Loudspeaker
Enclosures." Electronics, March, 1940.
F. Otton. "Elements of Acoustical Engineer-
ing." van Nostrand, Macmillan.
F. W. Smith. "Resonant Loudspeaker En-
closure Design." Communications, August, 1945.

HIGH - VOLTAGE MEASUREMENT
R.M.S. and Peak Values

In television, it is often neces-
sary to be able to measure
high voltages, but the inter-
nal impedances of their sources are
usually so high that ordinary
methods are inapplicable. The
electrostatic voltmeter is particu-
larly useful because it draws no
current from the source in d.c.
measurements.

It consists essentially of a vari-
able capacitor to the rotor of
which is attached a pointer. The
rotor is spring-loaded so that in
the absence of any force acting to
enmesh the vanes the capacitor
is always at its minimum value.
On connecting a high-voltage
source to the capacitor it becomes
charged and the electric field
between the plates exerts a
mechanical force which tends to
enmesh the plates. The rotor
plate actually does move, carrying
with it the indicating pointer, and
comes to rest when the force pro-
duced by the electric field balances
the restoring force of the spring.

Usually the rotor has a single
vane and the stator one or two.
The clearance between them is
considerable—often as much as
just so that the capacitance is
very small. It is commonly of
the order of 20 pF.

With vanes of straight-line
capacitance, the instrument has
a square-law scale, but in prac-
tice, it is usual to shape the vanes
to give an approximately linear
scale. The shaping is usually such
that the scale is cramped at each
end and open in the middle.

The electrostatic voltmeter can
be used with alternating as well
as direct supplies and measures
the r.m.s. value of a sine wave-
form. It is independent of fre-
quency as long as its capacitance
current is negligibly small.

If it is fed through a diode, it
becomes a peak voltmeter indicat-
ing the peak value of alternating
waveforms. An instrument of
this kind is shown in the photo-
graphs and the arrangement is
given in the circuit. It is built
around a 3½-in meter of 5 kV full-
scale reading; the instrument used
was actually a Government-sur-
plus type covering 1-5 kV.

For use as a normal electrostatic
voltmeter, connection is made to
terminals 1-2. For use as a peak
voltmeter, connection is made to
terminals 2-3. The valve is a

Mullard EY51 with its filament
heated from two No. 8 torch bat-
teries. As shown in the circuit,
the instrument measures the peak
value when the input makes ter-
minal 3 positive with respect to
terminal 2.
AT OUR RADIOLYMPIA STAND

Here you will be welcome to inspect the complete range of Marconiphone products which includes Television, Radio, Record Players, Valves and Batteries.

Make a point of seeing this new low-priced Model T21A which represents the finest value for money in radio today. It is a five-valve, three-waveband table receiver for A.C. Mains (195/255 volts 50-100 cycles) with the following special features:

- Astonishing tonal fidelity due to new form of negative feedback
- "Spot-on" tuning of 3 pre-selected stations as well as flywheel manual tuning
- Inbuilt aerial fitted—only mains connection needed for normal requirements
- Sockets for pick-up or record player
- Provision for external loudspeaker with special plug/switch for selection of Internal/External loudspeakers
- Handsome walnut cabinet with brown moulded control knobs

Price £17.19.6 plus £3.17.11 Tax.

MARC INPHONE

THE GREATEST NAME IN RADIO

The Marconiphone Co. Ltd., Hayes, Middx.
Latest additions to the PHILIPS range of sound reproducing equipment

A new amplifier

The outstanding features of this new Philips Amplifier include: A high degree of voltage amplification; an output of 100 watts; and very little waste heat, giving cool running and long life. An unusual feature is that the output is well maintained even at extremes of the audio spectrum, and generous negative feedback taken over the output transformer provides excellent loudspeaker damping. List price £100 guineas.

Full range of literature available

A complete range of literature covering the full Philips range of S.R.E., and an extensive new price list, are now available upon request.

A new loudspeaker

This new Philips all-metal Central Diffusion Loudspeaker is for ceiling mounting or suspension. It is attractively finished in a pleasing shade of cream that will harmonize well with any type of surrounding. Dimensions are 15 in. diameter, 8 in. deep. A Philips type 9803 unit is fitted in the loudspeaker which has a 100 volt transformer tapped for 1, 3 and 6 watt operation. List price £7

SALFORD ELECTRICAL INSTRUMENTS LTD.

A Subsidiary of THE GENERAL ELECTRIC CO. LTD. OF ENGLAND
REFLEX VALVE VOLTMETER

A Simple but Effective Method of Stabilization

By

M. G. SCROGGIE, B.Sc., M.I.E.E.

Most present-day valve voltmeters have as their basis a pair of similar valves with the meter connected between cathodes or anodes. This arrangement, which by itself is suitable for d.c. measurements, is usually supplemented by a diode rectifier for a.c. Although the effective mutual conductance of the pair of meter-driving valves used in this way is only half the actual g_m of one of them, at least they can be worked on the "straight" of their characteristics, where g_m approaches its maximum. If the valves are well matched, their comparatively large anode current under these conditions is automatically balanced out, and this balance is unaffected by changes in anode voltage. The diode gives linear rectification over a large range of input voltage, which is not limited by the supply voltage available for the instrument.

Yet for some purposes, especially for level indicators incorporated in signal generators,* etc., this three-valve voltmeter is rather more elaborate than one may wish. And although the zero setting is stable (always assuming that the valves really are similar), the calibration depends directly on the valves' g_m and hence indirectly on the anode voltage. Provided that one is not chiefly interested in measuring very low or very high voltages, there is still a lot to be said for what is generally known as the reflex valve voltmeter, but which can also be regarded as an automatic slide-back type.

![Fig. 1. Reflex (or automatic slide-back) valve voltmeter in its simplest form. V_x is the voltage to be measured. If the input terminals are liable to be open-circuited, an internal high resistance across them is desirable.](image)

For d.c. measurements, is usually supplemented by a diode rectifier for a.c. Although the effective mutual conductance of the pair of meter-driving valves used in this way is only half the actual g_m of one of them, at least they can be worked on the "straight" of their characteristics, where g_m approaches its maximum. If the valves are well matched, their comparatively large anode current under these conditions is automatically balanced out, and this balance is unaffected by changes in anode voltage. The diode gives linear rectification over a large range of input voltage, which is not limited by the supply voltage available for the instrument.

Yet for some purposes, especially for level indicators incorporated in signal generators,* etc., this three-valve voltmeter is rather more elaborate than one may wish. And although the zero setting is stable (always assuming that the valves really are similar), the calibration depends directly on the valves' g_m and hence indirectly on the anode voltage. Provided that one is not chiefly interested in measuring very low or very high voltages, there is still a lot to be said for what is generally known as the reflex valve voltmeter, but which can also be regarded as an automatic slide-back type.

![Fig. 2. The full lines, which apply to the circuit of Fig. 1, show how the meter deflection depends on the supply voltage, V_b. The readings were taken with $R = 25 \, \text{k\Omega}$, $\mu = 30$, g_m (nominal) = 3.5 mA/V, and $C = 50 \, \mu\text{F}$; and V_x is specified in r.m.s. values of 50-c/s sinusoidal voltage. The dotted lines show the effect of adding $R' (= \mu R)$ (Fig. 4), in this case 750 kΩ.](image)

As Fig. 1 shows, it is extremely simple. Compared with the diode type, which in some ways it resembles, it has the advantage that the "signal," V_x, is relieved of the burden of supplying the power in the load resistance, so the input impedance can be very high even although the meter current may be as much as several milliamps. On the other hand, the maximum voltage that can be measured is limited to something less—generally a good deal less—than the supply voltage: V_b.

Before discussing the functioning and design of this type of voltmeter in detail, let us note the important improvement that was incorporated in the example just cited. In its simplest form (Fig. 1), the system suffers from the disadvantage that both the zero setting and the calibration depend on V_b. This fact is shown by the full lines in Fig. 2, the results of readings taken with the circuit values stated thereunder. As we see, the "zero" current (i.e., with $V_x = 0$) is very closely proportional to V_b. In some applications V_b may be far from constant and it may not be convenient to use a voltage stabilizer. The very appreciable zero current is also a nuisance.

![Fig. 3. Well-known method of measuring μ, showing basis of stabilizing method (Fig. 4).](image)

A simple and effective way out of both difficulties can be derived from the classic circuit for the measurement of μ (Fig. 3). Except for the presence of R' this is essentially the same as Fig. 1,
Reflex Valve Voltmeter

the output, \(v \), of the generator representing changes in \(V_b \). The ratio of \(R' \) to \(R \) is adjusted until there is no signal in the valve circuit. Then \(\mu = R'/R \). Put another way, the value of \(R' \) required in this circuit to prevent changes in supply voltage from causing changes in valve current is \(\mu R \). All that is needed to stabilize the reflex valve voltmeter against variations in \(V_b \), then, is to add \(R' \) (Fig. 4). Even though \(g_m \) and \(r_a \) vary considerably as the working point of a valve is shifted, and also when the valve ages, \(\mu \) remains nearly constant; so once \(R' \) has been correctly set for a given \(R \) and valve it can be relied upon to remain correct.

It may not be obvious at first glance that this stabilization will necessarily hold good under signal-handling conditions, over the full range of measurement; so we shall look into that when considering the working in detail. But in the meantime the dotted lines in Fig. 2 offer experimental evidence that a fixed value of \(R' \) does, in fact, give almost perfect stabilization not only at zero but also at any signal level. In this case at least, variations in zero setting and in calibration are hardly appreciable over a supply voltage range of 50 to 300. Not only so, but the zero current is so much reduced that devices for balancing it out are unnecessary.

Heater voltage is not likely to vary so much as \(V_b \); a reduction of 15% (which is certainly outside good practice) was found to affect a mid-scale reading by less than 2%.

Let us first consider the voltmeter in its Fig. 1 form. *Mutatis mutandis*, the same consideration applies to the so-called infinite-impedance detector.

The zero condition is easily ascertained from the appropriate \(I_p/V_p \) curve (Fig. 5) by drawing a load line (the reciprocal of its slope representing \(R \)) from the origin \(O \) and noting the point of intersection \(A \). This point indicates the initial meter current and the bias developed by it in \(R \). For strict correctness the usual constant-\(V_o \) characteristic curve would have to be "de-sloped" slightly to allow for the fact that \(V_o \) becomes progressively less than \(V_b \) as the current is increased; this can easily be done, of course, but is hardly worth while in practice, as the difference is trifling.

Both for rectification and for minimizing the "zero" current it is clear that \(R \) should be large enough for its line to cut the valve curve low down.

Considering now the effect of \(R' \), we see that the supply current flowing through it develops a bias across \(R \) equal to \(V_b R/(R + R') \), which can be allowed for in the diagram by making the load line start this distance to the left of the origin, at \(B \). With \(R' = \mu R \), this bias is equal to \(V_b/(\mu + 1) \).

The original load line OA will from now on be ignored.

The new load line cuts the valve curve at \(C \), and it is obvious at once how the "zero" current is greatly reduced. The rectification of small signals is not necessarily improved, because this part of the valve characteristic usually approximates to a parabola, which is notable for rectifying equally at all points. In any case the small-signal rectification is poor.

When current flows through \(R \) from the valve, the voltage across \(R' \), and therefore the current through it, alters; so it might appear that the bias represented by \(OB \) is affected. This is not so if, making use of the Principle of Superposition, we regard the load resistance as \(R \) and \(R' \) in parallel, which is equal to \(R/(\mu + 1) \), and draw the load line accordingly. In practice \(\mu >> 1 \), so that the slope of the new load line is hardly distinguishable from that of the old. As a matter of fact the two lines meet at the point where \(-V_p = V_b \).

Let us assume now that \(V_p \) is large enough to sweep well around the bend. The negative half-cycles are almost completely suppressed in the output circuit, while the positive voltage half-cycles reach the steep part of the valve curve and produce large current pulses. These quickly charge up \(C \), increasing the voltage drop across \(R \), and the working point is driven up the load line to the left, reducing the current amplitude and also (except with square waves) the portion of each cycle during which current can flow. This double reduction in mean current limits the leftward movement of the working point and brings it to a stop at the position...
the estimated departure from square-wave values by experiment. Another alternative, which is recommended for the light it sheds on the process, is the analysis described by G. L. Hamburger in Wireless Engineer, May, 1949, pp. 147-153.

If the portion of the signal voltage wave during which anode current flows (shown shaded in Fig. 5) could be reduced to a very small fraction of the whole amplitude, then the instrument’s deflections would sensibly be proportional to peak values. They would also be almost entirely independent of the valve characteristics. It is clear from the diagram that to approach this ideal the load line slope should be very gradual compared with that of the valve curve. In other words, R should be very large compared with the mutual resistance, $1/g_m$. The ratio of the shaded portion of the voltage wave to the rest is approximately g_m/R, where g_m is the ratio of peak to mean current. This g_m is, of course, the average over the working part of the curve, which includes the bottom bend, so will be less than the figure given in the manufacturer’s catalogue.

Making R very large necessitates a low-reading meter, or increases the value of V_x for a given deflection. The need for the sensitive meter can be overcome by using a second triode as a cathode-follower current amplifier; but with two triodes one might as well use the balanced type of instrument.

In practice, using a milliammeter rather than a microammeter—and especially with peaky waveforms—the response

![Diagram](https://example.com/diagram.png)

Fig. 6. The arrows indicate the relative meter deflections (i.e., mean currents) obtained with (a) an unsymmetrical square wave, (b) the same reversed, and (c) a sine wave having the same peak-to-peak voltage. The shaded portions are those during which I_a flows. In (b) the duration of current flow is one-third that in (a), so the amplitude of current would have to be three times greater to yield the same mean value. Actually the mean value is between two and three times greater. So care must be taken that peaky waves do not drive the valve into grid current. The deflection due to a sine wave is intermediate.
Reflex Valve Voltmeter—
of this type of instrument, although approximately peak, is more or less influenced by the mean value of the positive half-cycle of input.

With unsymmetrical square waves, the half-cycles with the greater duration have the less amplitude and therefore give the smaller reading; but this principle is partly offset by the fact that when the duration is less the shaded portions (during which current flows) must have greater area, and therefore doubly greater amplitude in order to yield the greater mean value of current to develop the greater voltage drop across \(R \).

This is shown in Fig. 6, where the arrows indicate the relative deflections in each case.

By the simple expedient of omitting \(C \), thus converting the system to a cathode follower, the voltmeter can be made to respond fairly accurately to mean values of positive half-cycles of all except small voltages. The stabilizing resistance, \(R' \), remains effective. The sensitivity is reduced to about one third, and since stray capacitance tends to restore the higher sensitivity at high frequencies, it is advisable to restrict this arrangement to audio and perhaps low radio frequencies.

Experimental calibration curves are shown in Fig. 7 for the conditions indicated. In each case the start of grid current is marked. For comparison, one curve with \(C \) omitted is also shown; as one would expect, the current for a given \(V_x \) is reduced to approximately \(I/\pi \), that being the ratio of mean to peak of half-cycles of sine waves. In all cases the what one ought to expect.

What we have to prove is that the mean current through the valve, which we shall denote by \(I_a \), is not affected by variations in \(V_b \) (provided of course that \(V_b \) does not fall below the level necessary to allow sufficient peak current to flow through the valve to maintain the mean current).

The effect on the valve curve of altering \(V_a \) and/or \(V_b \) is to shift it bodily to left or right, and \(V_a \) shifts it \(\mu \) times as far as an equal \(V_b \). The error involved in this assumption is small, especially as the calibration of the instrument depends only to a minor extent on the precise shape of the curve.

Now \(V_a \) (with any signal, \(V_a \)) is represented in Fig. 5 by \(O B + BF \). \(OB \) we already know is \(V_b/(\mu + 1) \), and \(BF \) is given by the effective load resistance, \(R' \mu/(\mu + 1) \), multiplied by the mean current, \(I_a \). So

\[
V_a = -\frac{V_b}{\mu + 1} \frac{I_a R \mu}{\mu + 1}
\]

Also

\[
V_a = V_b - IR_a - V_b = \frac{V_b - I_a R \mu}{\mu + 1} = \frac{V_b (\mu + 1)}{\mu + 1} I_a R \mu
\]

Assuming for the moment that \(I_a \) is (as we wish) constant, the only terms in the above expressions for \(V_a \) and \(V_b \) that vary with \(V_b \) are \(- V_b \) and \(\mu V_b \) respectively. As the latter is \(\mu \) times the former and of opposite sign, their effects cancel out, and our assumption that \(I_a \) would be constant is justified.

It should not be difficult to see that varying \(V_a \) can be represented in Fig. 5 by moving the point \(O \) horizontally, carrying the voltage scale with it. The effect of increasing \(V_b \) therefore is to allow a greater scope for peak anode current and so to enable a larger \(V_a \) to be applied without running into grid current.

Books Published for “Wireless World”

<table>
<thead>
<tr>
<th>Title</th>
<th>Net Price</th>
<th>By post</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUIDE TO BROADCASTING STATIONS. Fifth Edition</td>
<td>1/6</td>
<td>1/7</td>
</tr>
<tr>
<td>RADIO VALVE DATA. Characteristics of 1,000 Receiving Valves</td>
<td>3/6</td>
<td>3/9</td>
</tr>
<tr>
<td>FOUNDATIONS OF WIRELESS. Fourth revised Edition, by M. G. Scroggie, B.Sc., M.I.E.E.</td>
<td>7/6</td>
<td>7/10</td>
</tr>
<tr>
<td>WIRELESS SERVICING MANUAL, by W. T. Cocking, M.I.E.E., Seventh Edition</td>
<td>10/6</td>
<td>10/10</td>
</tr>
<tr>
<td>TELEVISION RECEIVER CONSTRUCTION. A Reprint of 10 articles from “Wireless World”</td>
<td>2/6</td>
<td>2/9</td>
</tr>
<tr>
<td>WIRELESS DIRECTION FINDING. FINDING, by R. Keen, M.B.E., B.Eng. (Hons.), Fourth Edition</td>
<td>45/-</td>
<td>45/9</td>
</tr>
</tbody>
</table>

A complete list of books is available on application.

Obtainable from all leading booksellers or from

Properties and Uses of Negative Temperature Coefficient Resistors

Essentially the thermistor is a device which possesses a high negative temperature coefficient of resistance, and this unusual property makes it useful in many electrical devices.

Thermistors of many types are in regular production by Standard Telephones and Cables, and their ready availability means that they may be considered for use in modern circuitry. While many materials can be used, that which has been developed as a result of thirteen years' work in the research laboratories is made from a mixture of various metallic oxides, which are heat-treated to extremely high temperatures in an oxidizing atmosphere. By control of the mixture and firing temperature schedule, the resistivity and temperature coefficient can be varied in very wide ranges.

These thermistors, when operated within their rated limits and in neutral or oxidizing atmospheres, are quite stable with time, and no limit to their life is known.

Forms of Thermistors

To meet the majority of applications, a series of designs has been standardized and put into production. They may be divided into the following types:

Bead Types

In these types the thermistor element is a small bead unit mounted on parallel platinum wires. The diameter of the bead is about 0.020in, and the arrangement is shown in Fig. 1. The bead types are made in two forms, directly-heated and indirectly-heated. In the directly-heated form, the bead as described is welded to stouter lead wires and the unit sealed into a glass bulb for protection. In indirectly-heated types the bead is provided with a thin electrical insulating coating, I, upon which a minute 100-ohm heater, H, is wound (Fig. 2). The whole unit is attached to suitable supports and leads, and is sealed into a small glass bulb which may be highly evacuated or gas filled, depending upon the applications.

Block Types

In these types much larger pieces of material are employed. For example, circular discs are made by sintering aggregates formed by pressing thermistor powder in moulds under hydraulic pressure; and rods are formed by firing lengths of thermistor "dough" which have been extruded through circular dies. After firing, these types are prepared for use by metallization of contacts followed by the soldering on of tinned copper lead wires.

Fig. 1. Bead-type thermistor with embedded platinum leads.

Fig. 2. Indirectly-heated thermistor with insulated auxiliary winding.

The temperature coefficient of resistance is given by:

$$ x = \frac{1}{T^2} $$

and thus decreases as the temperature rises.

By control of the manufacturing processes, the resistivity of the material can be varied in a ratio of 500 to 1, and in general it can be said that the higher the resistivity the higher the negative value of temperature coefficient. The beads mentioned can, for example, be produced with room temperature resistances of 500 to 500,000 ohms and with temperature coefficients for the latter of the order of -4 per cent per °C. This may be compared with a value of the order of +0.003 for metals.

There is another rather striking property of thermistors which results from the negative temperature coefficient. Consider a thermistor connected to a source of electrical power; then energy will be dissipated in the thermistor, which will raise its temperature and decrease its resistance. For small power inputs the loss of heat by convection can equal the input, and the thermistor is maintained at a constant temperature slightly above its surroundings. When the temperature difference reaches a value usually around 30° C, a condition arises where this balance is no longer maintained, and the temperature starts to rise. This results in a greater dissipation and further temperature rise, and will ultimately result in destruction of the thermistor unless the power dissipation is limited by external resistance. With such a resistance, the current will rise to a new stable value, which may be many times larger than the initial current. The circuit has behaved rather like a relay. When the thermistor is provided with a separate heating element, the simple characteristics can be greatly modified by variation of the current flowing through the heater.

With any thermistor, therefore,
Thermistors—there is a critical voltage which, if applied across it, will cause the temperature to rise and the resistance to fall until limited by some other part of the circuit. With thermistor elements of the same size, this voltage \(V_{\text{max}} \) increases with the square root of the resistance. It decreases as the ambient temperature increases, and increases if the thermistor is connected to a better "heat sink."

Uses of Thermistors

The most obvious application of the thermistor is for resistance thermometry. The very small wire mentioned earlier, the circuit may be arranged so that, when the thermistor reaches a certain temperature, the current rises abruptly to a much larger value, and this may be used to operate signals.

Other types of thermistors are available for use as bolometers, and perhaps the greatest application to date has been to the measurement of power at centimetric wavelengths. For this purpose, very small beads are mounted between colinear wires which are then supported in appropriate positions, and with proper matching, in waveguides or coaxial line systems. The power dissipated by the radio frequency compensation, though this can be accurately achieved only over a small range of temperature.

Surge Suppression

The properties of thermistors are well suited for the suppression of current surges of short duration, and especially those due to switching. At the moment of arrival of the surge, the thermistor must be cold and of high resistance, and after a time the resistance must be so low that it can remain in the working circuit without causing embarrassment.

The switching of tungsten filaments is a familiar case, accompanied by very large surges. For instance, when a tungsten-filament lamp is switched on to its normal running voltage, a momentary surge of current of 5 to 10 times the normal current is produced. In some cases this is objectionable, because the mechanical effects on the filament dimensions and thermal capacity of the thermistor bead result in a thermometer with a very small "bulb," and high speed and sensitivity. But because of this, care must be exercised to reduce errors which arise due to the measuring bridge current itself modifying the temperature of the thermistor, and the bridge current must be reduced to a very small value. When this is done, temperatures can be measured with an accuracy of 0.001°C and, provided the instrument is carefully handled, the resistance-temperature curve will remain stable.

Thermistors can also be used as protective devices. By use of the maximum voltage effect mentioned earlier, the shunt of a voltmeter can be employed to give temperature compensation, though this can be accurately achieved only over a small range of temperature.
perature much faster than those of the other series valves, or there may be a dial lamp which comes to full brightness in a very short time. In these cases, the heater which reaches running temperature first has to pass an overload current while at normal or higher than normal resistance for some seconds. In one actual case it was found that a cathode-ray tube designed for 6.3 volts was actually subjected to 18 volts for a few seconds during switching. Now, by the use of an appropriate thermistor in series with the heaters, the surge can be either completely suppressed or reduced to safe proportions, so that heater burn-outs of this nature are eliminated.

For this purpose the type CZ Brimistor was designed. It is in the form of a rod with end wires for direct soldering into the circuit. It is made in various sizes to suit the common heater ratings.

Similar problems occur in telephone circuits, where inductive surges from switching or dialling operations may cause annoyance.

The indirectly-heated thermistors lend themselves to many varied uses in electronic apparatus. By variation of the current through the heater, the resistance of the thermistor may be varied in a ratio of 500:1, and the power lost in the heater to cause this change is only of the order of 60 milliwatts. This form of thermistor can therefore be used as a remotely controlled variable resistance. Naturally, the dissipation in the thermistor element must be kept small if the resistance is to obey accurately the orders it receives from the control circuit. With this limitation, the device can be very valuable in amplifier gain-control circuits. The heater is small, and has such low inductance that the control circuit may be operated directly by radio-frequency currents, and useful arrangements for automatic control of level can be devised.

Similarly, the use of thermistors in phase shifting networks opens up many possibilities.

The trigger effect which is obtained when the critical voltage is applied to the thermistor is often made use of to provide a relay. By the application of voltages close to the critical value, the circuit behaves as a time-delay relay, and reliable timing up to periods of 10 or 15 seconds can be secured. By the use of the indirectly-heated thermistors, the time delay can be varied according to the power dissipated in the heater. It is necessary to point out that in this and some other of the applications, the sensitivity of the thermistor to temperature is such that variation of room temperature will cause variation of performance. This can be overcome by a more complex circuit in which another thermistor is provided to balance out the effects due to this cause.

Enough has been said to indicate the extraordinary versatility of thermistors. In their modern form they are reliable instruments which will continue to function without variation as long as they are correctly used. Though they are semi-conductors, their resistance at constant temperature is truly ohmic, and their use in audio- or radio-frequency circuits results in no measurable distortion. Their high sensitivity can be used to advantage in many measuring and controlling circuits, and it is safe to say that the extent of their field of application is limited only by the ingenuity of circuit designers.

ANTI-IMPSLON

THE Radio Manufacturers Association of America has formulated the following set of precautionary rules to minimize risk in handling cathode-ray tubes when they are being fitted in a set, or a faulty one is being replaced:

1. Don't remove the tube from its carton until you are quite ready to use it.
2. Always wear goggles with safety glass, or its equivalent, when handling the naked tube.
3. Keep other persons, especially children, at a safe distance when the tube is out of its container.
4. Always place the tube on a soft padding whenever it is set down, or better still, return it to its carton.
5. When replacing a defective tube put the old tube inside the protective carton and dispose of it as soon as possible.
6. Never leave defective tubes lying around. One safe way of disposing of the tube is to seal it in the carton and then drive a crowbar through the closed top of the container.
7. Dummy tubes should be used when possible for display purposes.

For every SOUND AMPLIFICATION requirement from 5-500 w. it pays to use

TRIX

SOUND EQUIPMENT

SEE OUR LATEST EQUIPMENT

STAND 101

RADIOLYMPIA

THE TRIX ELECTRICAL CO. LTD.

1-5 Maple Place, Tottenham Court Road, London, W.1. Phone: Museum 5817 Grams & Cables: "Trixradio, Wesdo, London."
LETTERS TO THE EDITOR

Copenhagen Plan: B.B.C. View • Leaning Television Images • C.R. Tube Problems

“Intermediate Frequency and the Copenhagen Plan”

The article by G. H. Russell in your September issue appears to contain serious errors, and as a result it gives an unfairly pessimistic picture of reception conditions when the Copenhagen Plan comes into operation.

Allowing the author’s implicit assumption that intermediate frequencies which give rise to a whistle of 9 kc/s or less are unusable, some of his errors seem to be:

1. The bands of intermediate frequencies unusable because of second harmonic interference are shown in Table II to be up to 45 kc/s wide, whereas the figure should be 18 kc/s if the interfering carrier is below the oscillator harmonic frequency and 6 kc/s if the interfering carrier is above it.

2. Intermediate frequency bands rejected because of second-channel interference have widths up to 20 kc/s. These should be 9 kc/s in every case.

After correcting Mr. Russell’s tabulation it is found that the following bands are clear:

- 497.6 kc/s to 499.0 kc/s
- 499.0 kc/s to 501.6 kc/s
- 502.6 kc/s to 505.0 kc/s
- 506.0 kc/s to 509.0 kc/s
- 509.0 kc/s to 512.0 kc/s

Incidentally it is of interest to note that, applying Mr. Russell’s assumptions to the present distribution of B.B.C. frequencies, one of the bands of i.f. that cannot be used (among many others) is from 456.5 kc/s to 456.5 kc/s. But nevertheless he refers to “the popular intermediate frequencies of 456 and 465 kc/s”!

In addition I think it is a very debatable point whether the spurious responses due to i.f. third harmonic, the second-channel frequency at 200 kc/s, and oscillator 2nd harmonic on 200 kc/s, should have been included. Measurements we have made on typical modern superheters with one signal-frequency tuned circuit indicate that these factors are of negligible importance. However, in case where interfering signals are objectionable a simple rejector circuit, like those at present supplied by receiver manufacturers, would solve the problem.

The difficulty in some parts of the North Region due to the proximity of 668 kc/s with the combination of 200 kc/s and 465 kc/s will be eliminated under the Copenhagen Plan as the northern frequency at 692 kc/s will be sufficiently remote. Moreover, the possibility of interference from International Common Frequencies is unlikely as the transmitter powers will be so low.

A careful examination of the Copenhagen Plan shows that the likelihood of interference due to these several causes is less than that existing under the Lucerne Plan. The margin of frequency tolerance to safeguard against ageing of i.f. circuits is also as great under the new Plan.

I am sure your readers know that agreement on a wavelength distribution plan is reached only after the most exhaustive examination of the requirements of all the participating countries; the need to have allocations which minimize interference of this kind is only one of many problems which have to be borne in mind. On the whole, I feel there are grounds for hoping that, with the orderly distribution of wavelengths in Europe, broadcasting in the United Kingdom will benefit from the implementation of the Copenhagen Plan.

H. BISHOP, Chief Engineer, B.B.C.

[Correction: The author of the article referred to in this letter corrects an error in the 5th line of col. 1, p. 324: 485 should read 455—Ed.]

“Television Moving Images”

Most readers of Wireless World realize, I feel sure, that I was to a considerable extent trailing my coat when I wrote the article on this subject for the August issue. My great wish is to see television make rapid advances on the road towards perfection and the surest way of bringing this about is to discover just what its present imperfections are and how they come about. Any provocative article in Wireless World is certain to bring in constructive criticism from its wide circle of well-informed readers, whose strictures and suggestions have helped in the past to point a way to the solution of many a problem.

It is, though, but fair that a critic should read an article with understanding before giving up his loins to tear it and its author to pieces. I feel, therefore, that, as a change from the setting of traps and the springing of them of which he accuses me, I may be allowed to try my hand at rolling out the Barrett! Both television and the cinema obtain their results by deceiving the eye, a point which I stress and re-stress in my elementary book on television; but most people seem to share my view that television’s methods of deception are not so successful as those of the cine. Interline flicker I find particularly annoying and that is one reason why I don’t feel at all sure that interlacing provides the final answer to the viewer’s prayer.

I am well aware that U.S.A. systems use 60 frames per second because that number is called for by their a.c. mains frequency. It has, however, been suggested by writers on this side of the Atlantic that this unavoidable increase of 20 per cent in the number of frames as compared with ours, is a liability (since it wastes good bandwidth) rather than an asset. I sought to show that in the case of moving objects it might not be altogether a disadvantage. But never have I suggested anywhere that we should adopt an image frequency which was not a multiple of 30 or of 25.

Another reader claims that there can be no “lean” of a moving image, since the mosaic of the television camera is an image-storing device. I would accept that were the screen of the receiver c.r.t. also image-storing. The afterglow of screen varies a little in persistence in different makes of television tubes, but it is, I understand, always a matter of a few milliseconds. The truth is that there are not two but three screens concerned in the transmission and reception of a television image; the mosaic, the fluorescent screen and the retina of the eye. Both the first and last are image-storing. The “lean” may thus occur on the screen, but not be noticed by the eye as a lean—though its presence is likely to make for reduced sharpness of the image.

R. W. HALLOWES.

“Cathode-ray Tubes for Television”

In the first part of my article in the June Wireless World I did not make it clear that the solution of the problem of how to change a
c.r. tube design and operating conditions to accommodate an increased number of lines assumes negligible deflection defocusing in the prototype tube. When the number of scanning lines is increased the size of the spot must be proportionately reduced at all parts of the screen. Thus we simultaneously require (1) the undeflected spot size shall be \(\frac{1}{2} \) of that on the original (this condition was satisfied in the June solution) and (2) the increase of spot size on deflection shall also be \(\frac{1}{2} \) of that on the prototype. This second condition was not met and the solution given is not valid therefore unless the deflection defocusing of the prototype is negligibly small.

But condition (2) can be closely met by reducing the beam width in the deflecting fields to \(\frac{1}{2} \) of its original value. This is most easily done by moving the whole triode towards the focusing coil (Fig. I, June issue) until the geometrical magnification between crossover and spot is increased \(r \) times. \(a \) is kept constant as before.

The spot size on the derived tube will then be \(\mu S = \sqrt{\frac{V_0}{V_2}} \) using the original notation: \(S \) is the cross-over size on the prototype and \(M \) its magnification. But the spot size on the derived tube (undeflected) is to be multiplied by \(\frac{1}{2} \) to meet condition (1). This yields \(\mu^2 a = \sqrt{\frac{V_0}{V_2}} \).

The condition of constant brightness yields

\[
I_1 V_1^* = I_2 V_2^*.
\]

We can now proceed exactly as in the article, both for the case of constant beam current and constant cathode loading.

The results are given in the accompanying table which should be compared with the last two columns of the table in the June issue. The conditions in this more general case are much more stringent.

Table: Basic Operation vs. Secondary Operations

<table>
<thead>
<tr>
<th>Basic Operation</th>
<th>No. of lines multiplied by (\mu)</th>
<th>Tube screen dimensions held constant. Fig. 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Operations</td>
<td></td>
<td>Triode scaled and moved towards focusing coil.</td>
</tr>
<tr>
<td>Geometrical changes made.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triode dimensions</td>
<td>(\times \frac{1}{\mu^2})</td>
<td>(\times \frac{1}{\mu^{2n/(n+1)}})</td>
</tr>
<tr>
<td>Cathode-grid spacing*</td>
<td>(\times \frac{1}{\mu})</td>
<td>(\times \frac{1}{\mu^{2n/(3n+1)}})</td>
</tr>
<tr>
<td>Triode to focusing coil distance</td>
<td>(\times \frac{1}{\mu})</td>
<td>(\times \frac{1}{\mu})</td>
</tr>
<tr>
<td>Electrical changes made</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anode voltage</td>
<td>(\times \frac{1}{\mu})</td>
<td>(\times \frac{1}{\mu^{(n+1)}})</td>
</tr>
<tr>
<td>Cut-off voltage</td>
<td>(\times \frac{1}{\mu})</td>
<td>(\times \frac{1}{\mu^{2n/(3n+1)}})</td>
</tr>
<tr>
<td>Grid drive</td>
<td>(\times \frac{1}{\mu})</td>
<td>(\times \frac{1}{\mu^{2n/(3n+1)}})</td>
</tr>
<tr>
<td>Scanning-coil current</td>
<td>(\times \frac{1}{\mu})</td>
<td>(\times \frac{1}{\mu^{2n/(3n+1)}})</td>
</tr>
<tr>
<td>Beam current</td>
<td>(\times \frac{1}{\mu})</td>
<td>(\times \frac{1}{\mu})</td>
</tr>
<tr>
<td>Spot diameter at all points</td>
<td>(\times \frac{1}{\mu})</td>
<td>(\times \frac{1}{\mu})</td>
</tr>
<tr>
<td>Beam angle (\alpha)</td>
<td>(\times \frac{1}{\mu})</td>
<td>(\times \frac{1}{\mu})</td>
</tr>
<tr>
<td>Screen surface brightness...</td>
<td>(\times \frac{1}{\mu})</td>
<td>(\times \frac{1}{\mu})</td>
</tr>
<tr>
<td>Cathode loading</td>
<td>(\times \mu^4)</td>
<td>(\times \mu^4)</td>
</tr>
</tbody>
</table>

* This adjustment to be made additionally to that effected by the scaling of the whole triode.

With constant voltage and beam current the cathode loading is multiplied by \(\mu^2 \) instead of by \(\mu^4 \). With constant cathode loading the voltage must be multiplied by \(\mu^2 \) instead of \(\mu^4 \). Taking \(n = 1.67 \) an increase in the number of lines from 405 to 625 demands an increase in tube voltage from 5 to 9.8 kV if the cathode loading and deflection defocusing are to remain unchanged. The scanning-coil current must be increased 1.38 times.

Emmer Green.

Antiference

Announce the **ANTEX** (Regd)

A new conception in Television Aerials

SEE IT ON STAND 64 RADIOLYMPIA

- for greater signal strength
- for greater noise cut
- for less weight
- at less cost

ANTIFERENCE Research and engineering knowledge once more lead the way with this revolutionary new "ANTEX" (Regd.) Aerial. With a front to back ratio of 32.0 db and a forward gain of 2 db, when compared with the standard "H" aerial it brings a new level of quality to television reception. The electrical and mechanical design of this aerial is protected by Patent Nos. 35957/46 and 12178/49 and Reg. Design No. 850630.

FRONT/BACK RATIO

Standard Dipole and Reflector (Harray) 7.5 db "ANTEX" AERIAL (X array) - 22.0 db

The Forward Gain of the "Antex" Aerial is 2 db better than a standard H array.

MODEL XL for London XL/B for Birmingham including 7 ft mast and chimney lashing equipment as illustrated £3 10 0
MODEL XW for London XW/B for Birmingham including 7 ft mast and wall mounting bracket £2 17 6

(Deliveries available 6 weeks approx.)

ANTIFERENCE LIMITED
67, BRYANSTON ST., LONDON, W.1
RANDOM RADIATIONS

By “DIALLIST”

The Capacitor Puzzle

Several kind readers send the suggestion that the queer behaviour by certain old capacitors which I described last month may be due to the fact that with the passage of time they have gradually changed into electrets. If you remember, I told how a 17-year-old paper condenser showed a steady e.m.f. of 0.4 V when a valve voltmeter with an input resistance of 10 MΩ was applied to it. Other old capacitors of the same type showed 0.1-0.2 V. An electret is formed by heating certain dielectric materials to melting point and allowing them to solidify in an electric field. The mass then develops positively and negatively charged surfaces and the charge may be retained almost indefinitely if it is wrapped in metal foil. At first sight this seems to fit in quite well with waxed-paper capacitors. If one of these had become heated whilst charged until the wax was just beginning to run, might not it have turned itself into an electret as it cooled down? There are two objections that I can see to this explanation. The first is that for an electret to be formed it appears to be necessary for the dielectric material to contain polar groups of the —OH, —COOH type and these do not normally occur in the paraffin wax used in paper condensers. It is just possible—perhaps some reader as used with the chemical aspects can give information on that point—that the necessary polar groups may have been formed as time passed by oxidation of the wax. The second objection, which seems even stronger, is this. As I understand it, an electret has a purely static charge; but here we have an e.m.f., which was found to maintain a steady current of 0.4/10 A, or 0.04 µA. It is difficult to see how this could happen without a continuous electro-chemical reaction to bring it about.

Speaking of Electrets

The possibilities of the electret for providing biasing voltages in radio gear where no flow of current is involved don’t seem to have been very fully explored. I recall reading (and a letter from a reader confirms this) that they were found to have been so used in the radio gear of some Japanese aeroplanes captured or shot down during the last war. As an electret could provide a source of steady “free” negative bias indefinitely it might be of considerable use to designers of battery-operated wireless receivers. The grid bias voltages needed in these are negative and if they do their jobs properly there should be no flow of grid current. The present practice of obtaining these voltages from means of bleeder networks is not ideal, for it means amongst other things that we have to rob Peter in order to pay Paul. In other words, if the voltage available from a new h.t.b. is 120 V, 9 V-12 V must often be used for the grids, leaving a maximum of only 108-111 V for the anode circuits. Harking back to the old paper capacitors which develop appreciable e.m.f.s, one wonders whether their conduct may not be responsible for some mystifying effects in radio receivers and other kinds of electronic apparatus that have been in use for a number of years.

Trig. Without Trig. Tables

You remember that a month or two ago I wrote of the excellent tip given by an American writer for the rapid evolution in your head of all sine and cosine values? I asked then if anyone could suggest an equally simple way of memorising a key to tangents. Several readers have pointed out that if you know the sine and cosine, the tangent is easy, since \(\tan \alpha = \frac{\sin \alpha}{\cos \alpha} \). That wasn’t quite what I had in mind. What I was after was a second string to one’s mental bow; another series of figures, just as easy to memorise as those for cosines, which could be there as a stand-by in case the others were forgotten. One reader sends a suggestion. The series to be memorised for tangents is: 9, 9, 9, 11, 11, 12, 14, 16. Place a decimal point and a nought in front of each; then successive addition to 0 gives you tangent values for every 5° up to 45°. Thus we have

- \(\tan 5^\circ = 0.09 \)
- \(\tan 10^\circ = 0.18 \)
- \(\tan 15^\circ = 0.27 \)

and so on:

- \(\tan 45^\circ = 1.00 \)

These figures, like those for cosines, are all correct to 2 decimal places, or to ±15’ of angle. To obtain the remaining tangents simply use \(\tan 50^\circ = \frac{\tan 90^\circ - \tan 40^\circ}{1} \) and so on. What it all comes to is that whether you memorise one or both simple sets of figures you have a means of arriving at all trig.

CLOUD DETECTION BY RADAR

Photographs taken on the recent B.O.A.C. flight to the Far East to test the Ekco cloud and collision warning equipment. The central picture was taken at a range of 20 miles from the cumulo-nimbus formation. The cloud top was at approximately 28,000 feet and the aircraft was flying at 10,000 feet. The left-hand P.P.I. picture shows responses from the dangerous cumulo-nimbus clouds at 25-40 miles range. In the right-hand picture there are additional responses at 15 miles from cumulus clouds. The cumulus cloud in the foreground did not give a response until the range was down to 10 miles.
rations—sines, cosines, tangents, cosecants, secants and cotangents—for all angles, with sufficient accuracy for most electrical purposes, almost as quickly as you can look them up in a book of tables. Rather more quickly in my case, though I possess a variety of sets of trig. tables, I can seldom put my finger on any one of them when I want it!

Fluorescent Lamps in the Workshop

When I wrote recently of possible risks from stroboscopic effects if fluorescent lighting is used in the amateur’s workshop, I had, of course, in mind the kind of fixture that one most commonly sees in homes of ordinary folks—the single 40-watt or 80-watt tube, with or without reflector. Fixtures containing two tubes connected in parallel are easier to come by now than they were and they are obtainable with a built-in phase-splitter which ensures freedom from stroboscopic effects to be obtained on the normal single-phase domestic supply. A kind reader sends me a useful tip, with the aid of which anyone worthy of the name of handyman can “destrobify” a dual 40-watt fixture not already fitted with a phase-splitter. The power-factor condenser is removed. Calling the two tubes A and B, A’s choke is connected direct to the phase lead of the mains and a 3.75µF capacitor is wired between the phase lead and the choke of B. In this way the e.m.f. applied to A leads the current by about 60°, whilst B’s e.m.f. lags 60° on the current. The leading and lagging power factors counter-balance one another. The two tubes are now approximately 120° de-phased and there is no strobosce.

Chinks in the Armour

What fluorescent lighting most needs, I feel, is the development of fluorescent coating materials of longer afterglow. This would automatically put an end to strobosce and to the rather annoying flicker effect which is so noticeable when an object with a reflecting surface is moved rapidly in the illuminated area beneath a fluorescent lamp. Whilst on the subject of these lamps I feel I must tell you the true story of certain happenings in Hong Kong after the war, as related to me by a friend who was chief engineer of the South China Electricity Company before the war and returned to that post after some grim years as a prisoner in Japanese hands. As soon as the war was over the reconstruction of factories and offices went ahead rapidly. The business community was fluorescent lamp-minded, and this form of lighting was installed here, there and everywhere as quickly as Chinese contractors could carry out the work. Fixtures and tubes were readily available; but there was a serious shortage of p.f. capacitors. That, however, did not daunt the Chinese. A new installation having been made, the company was asked to inspect and approve it. That having been done, the power-factor capacitors were removed and used for the next installation. Presently, the company began to find that it was supplying vastly more kilowatts than the consumers’ meters were ticking up and immediate strong action had to be taken. A good thing for electricity authorities the world over that the radio valve placing a chiefly reactive load on power supplies has not yet been invented!

The “Interference Act”

The Wireless Telegraphy Act of 1949 seems destined to be known popularly as the “interference act” since one of its provisions of high importance to owners of broadcast receivers and television sets is aimed at the suppression of interference of the man-made variety with their enjoyment. The original Bill was altered a good deal as it went its way through Parliament. The Act as it stands is not perhaps so strong as some would like; some, again, may think the procedure laid down by it overly leisurely. When it is proved that apparatus is causing interference the P.M.G. must serve his owner with 28 days’ notice to abate the nuisance. That seems rather a long time; but the delay may not end there, for the owner, having received such notice, may then refer the matter to the Appeal Tribunal. The notice then becomes inoperative until the Tribunal has heard the appeal and unless its decision is in favour of the P.M.G. The only exception is when the P.M.G. is satisfied that the interference is upsetting “safety” services such as police radio-telephony or airport radar; he can then demand immediate action.

Whatever its shortcomings, the new Act is a long step in the right direction. It should bring about a big improvement in reception conditions. Some manufacturers have been fitting suppressors to their domestic electrical products since soon after the provisions of the Bill were first made public. Others are bound to follow suit now, for the P.M.G. has power to prohibit the sale or hiring out of apparatus proved to cause serious interference.
DIRECTION AND DISTANCE FINDER

STANDARD methods of airport control rely on triangulation methods using normal d.f. equipment or on radar methods relying on reflections from an aircraft. The former requires two stations while the latter methods may fail to identify the aircraft, as response is automatic and not dependent on any action taken by the aircraft.

The system described is applicable to a fixed station and a mobile station and provides for the fixed station emitting a sine modulated carrier which is received by the mobile station, the required circuit being an emitter carrier wave of a different frequency. By comparing the phase of the received waves with the transmitted waves, an indication of the distance of the mobile station can be obtained, while known d.f. methods may be used to obtain the bearing. The transmitter at the mobile station may be the normal communication equipment, and it may emit the modulated carrier at the request of airport control to assist identification.

The system described is outlined below, showing a method of displaying the information on a cathode ray tube at the control point in a form of a radial trace, the velocity of which indicates the bearing while the position of a “spot” on the trace indicates the distance.

PULSE COMMUNICATION

WHEN using pulse communication methods for transmitting several channels over one carrier it has been usual to interleave in time the signal pulses of the several channels. This normally involves synchronizing the pulses in the different channels which cannot always be easily arranged.

The system described utilizes several trains of pulses, each train having a different characteristic pulse width and recurrence frequency, and all the pulses are transmitted over a common communication medium, but without synchronization. Synchronization may be obtained by controlling the information output of the pulses of each train. Unscrambling at the receiver is based on pulse width discrimination.

One method described in outline is based on providing a delay network for each channel giving a delay equal to the pulse width of the particular channel. The composite received modulation is differentiated and inverted, and fed to the delay networks. Combination of the original differentiated wave form with the inverted and delayed wave form will give a double height pulse in the correct channel circuit where the delayed and inverted peak of the leading edge of the received wave form coincides with the trailing edge of the differentiated wave form without inversion or delay. The several channels are thus selected at the receiver and may be converted into speech or other signals by normal methods.

A.F.C. SYSTEMS

IN broadcast receivers a discriminator circuit may be used to control the frequency of a local oscillator by means of a “deflection valve.” This system is not suitable for communication receivers or other apparatus where the received signal may disappear for a length of time, for then the station will be tuned out by the a.f.c. system and may not be again picked up when the signal returns. In these circumstances, a motor-operated device is often used, but the known systems require two valves for the two directions of the motor.

In the system shown on the diagram R1 is the load resistance of the discriminator, which is connected to a pentode V biased to a straight part of the characteristic, and which has an anode load R2. A divider network R3R4 is connected across the anode supply as shown. The valve impedance and R2, R3, R4 form a bridge system across which are connected forward and backward connected rectifiers W1W2. So long as the discriminator is not supplying a control voltage there is no input to V and the bridge is balanced under these conditions so that no current flows in A1 or A2. A control voltage from the discriminator will raise or lower the potential at the anode of V and current will flow either in A1 or A2 by the action of rectifiers W1 and W2, thus energizing one relay to correct the tuning of the receiver. Thereby the control voltage drops and the relay A1 or A2 releases to stop the tuning motor.

Colour Television

PROPOSALS for colour television have been based on the use of a three-colour filter wheel rotated in front of the cathode ray tube. Such a filter wheel must be synchronized with the transmission. This may depend on the use of synchronized mains power, which is not always available, or on the transmission of pulses which are amplified sufficiently to drive a synchronous motor, which is wasteful.

These difficulties are avoided by driving the filter wheel by a motor running naturally at a speed slightly higher than the required speed and subjected to the action of an electromagnetic brake. The wheel drives a simple alternator the phase of which is compared with received synchronizing signals in a valve circuit to derive a current which varies with the phase difference and is applied to the brake to reduce the speed until it moves in step with the synchronizing signals.

Television

THE transmission of a sound channel with the vision signal by modulated pulses in the interline blanking period is dealt with in this specification.

In the system described, which is not limited to transmitting sound but may be used for transmitting other information, modulation pulses are positioned within synchronizing pulses and are spaced from both the leading and trailing edges of the synchronizing pulses. Modulation may be dependent on pulse height, phase, frequency, or, preferably, all three. Any edge of the modulation pulses which is variable with modulation always occurs with a minimum time separation from the synchronizing edge of the synchronizing pulse, which extends a period of the pulse of the synchronized time base oscillator. Thereby time synchronization is maintained and penetration of the sound pulse into the picture is avoided. Reference is made to the transmission of several sound channels by several successive pulses during each blanking period.

The system described is automatic and not dependent on any synchronization of different aircraft, as response is automatic and not dependent on any action taken by the aircraft.

The British Abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from specifications obtained from the Patent Office, 25, Southampton Buildings, London, W.C.2 price 2/- each.
STANDARD MAGNETIC MATERIALS have the unique advantage of being produced by a Company which itself is a large scale user of these materials, as a result of which a vast amount of direct experience in the use of magnetic alloys has become available. Permalloy Nickel/Iron Alloys are particularly suitable in cases which demand high permeability and low losses—especially low hysteresis loss: they should, however, be selected according to individual requirements. V-Permendur, one of the Cobalt/Iron alloys, should be employed where high permeability throughout a wide range of flux densities is called for, and it finds special application in diaphragms for high quality telephone receivers.

<table>
<thead>
<tr>
<th>PERMALLOY C.</th>
<th>Gives the highest initial permeability of any magnetic material yet known. Applications: wide frequency-band transformers, accurate current transformers, chokes, sensitive relays and magnetic shielding.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMALLOY B.</td>
<td>Lower initial permeability than "C," but higher flux densities possible.</td>
</tr>
<tr>
<td>PERMALLOY D.</td>
<td>High resistivity without undue lowering of flux density or of the Curie Point. Very suitable for certain high frequency applications since frequency permeability variation is small.</td>
</tr>
<tr>
<td>V-PERMENDUR.</td>
<td>A Cobalt/Iron alloy with unusually high flux density. It can be rolled to 0.010 in. strip and exhibits high permeability up to high flux densities.</td>
</tr>
</tbody>
</table>

Permalloy Permalloy V. C Permendur

Specific gravity
- Permalloy "B": 8.3
- Permalloy "C": 8.6
- Permalloy "D": 8.15
- V-Permendur: 8.2

Electrical resistivity, microhms per cm. cube
- Permalloy "B": 55
- Permalloy "C": 60
- Permalloy "D": 90
- V-Permendur: 26

Temperature for heat treatment
- Permalloy "B": C
- Permalloy "C": 200
- Permalloy "D": 1,000
- V-Permendur: 700

Initial permeability \(\mu \)
- Permalloy "B": 1,800
- Permalloy "C": 2,400
- Permalloy "D": 3,000
- V-Permendur: 1,000

Maximum permeability \(\mu_{max} \)
- Permalloy "B": 10,000
- Permalloy "C": 20,000
- Permalloy "D": 3,000
- V-Permendur: 5,000

Magnetising force for \(\mu_{max} \)
- Permalloy "B": 0.3 to 0.6
- Permalloy "C": 0.025 to 0.04
- Permalloy "D": 0.5 to 1.0
- V-Permendur: 2.0 to 6.0

Maximum flux density, gauss
- Permalloy "B": 16,000
- Permalloy "C": 8,000
- Permalloy "D": 13,000
- V-Permendur: 23,000

Coercive force, oersteds for \(B_{max} = 5,000 \) gauss
- Permalloy "B": 0.25
- Permalloy "C": 0.03
- Permalloy "D": 0.5
- V-Permendur: -

Remanence in gauss for \(B_{max} = 5,000 \) gauss
- Permalloy "B": 4,000
- Permalloy "C": 3,500
- Permalloy "D": 3,500
- V-Permendur: -

Hysteresis loss in ergs per c.c. per cycle for \(B_{max} = 5,000 \) gauss
- Permalloy "B": 300
- Permalloy "C": 45
- Permalloy "D": 550
- V-Permendur: -

Total loss in watts
- Permalloy "B": 0.01
- Permalloy "C": 0.04
- Permalloy "D": 0.2
- V-Permendur: -
Here are sets to delight the expert

WITH 2 YEARS’ FREE
ALL-IN SERVICE IN THE HOME

Apply any test you wish to these Sobell 6-valve superhet models. You will find that every component is superbly engineered. Check the circuits, the signal rectification, the I.F. selectivity, the audio sensitivity—and any other points you like. They'll all satisfy your critical judgment.

We'll say nothing about the obvious—the pleasing cabinets, the simple controls, the easy-to-read 3 wave band tuning dials, the special gramophone pick-up sockets with automatic switches, the provision for external loudspeakers—because these are "musts" in sets designed to the highest standards.

The two models illustrated are 610 and 610 TAG respectively, working on 200-250 volts A.C. only. The two models are 'musts' because these are "musts" in sets designed to the highest standards.

There's a Sobell dealer in your district—he'll be glad to arrange a thorough demonstration.

LASKY’S RADIO
370 HARROW ROAD, PADDINGTON, LONDON, W. (Opposite Paddington Hospital)
Telephone: OXFORDMAN 1787
Hours: Monday to Saturday 9.30 a.m. to 6 p.m. Thursday half day.
A GREAT NEW TELEVISION SET

that anyone can build without previous experience

Here for the first time is Television stripped of its mystery and reduced to simple stage-by-stage assembly and wiring. Brilliantly designed by a Fellow of the Television Society and sponsored by nine of the leading component makers, the View Master will make Television history. Large Constructor Envelope contains eight full-size assembly and wiring diagrams and 32-page illustrated booklet packed with technical information. From all wireless shops and newsagents in T.V. Service area, price 5.-.

"VIEW MASTER"
The Television Set the Home Constructor can build from standard parts

"BAFFLE" SPEAKERS

Celesion

The Foremost Name in Sound Reproduction

Whilst retaining the well known Celesion qualities of tone, sensitivity and reliability, the new "Baffle" speakers offer a pleasing departure from the conventional "cabinet" type extension speaker. Designed to harmonise with any furnishing scheme, the Celesion "Baffles" are undoubtedly the finest quality obtainable at such reasonable prices.

MODEL "FIVE B"
5” P.M. SPEAKER
Without transformer
Polished Walnut Baffle, cream sides. Fitted with Volume Control.

Retail Price 39/6

SOLE DISTRIBUTORS to the Wholesale and Retail Trades

Cyril French Ltd.

HIGH STREET, HAMPTON WICK, KINGSTON-ON-THAMES, SURREY

"BAFFLE" SPEAKERS

MODEL "SIX B"
6½” P.M. SPEAKER
Without transformer
Polished Walnut Baffle, cream sides. Fitted with Volume Control.

Retail Price 49/6

SOLE DISTRIBUTORS to the Wholesale and Retail Trades

Meet us at
RADIOLYMPIA
Sept. 28-Oct. 8

STAND 87

STREET, HAMPTON WICK, KINGSTON-ON-THAMES, SURREY
H.P. RADIO SERVICES LTD. OFFER

The following items representing unique value in Government Surplus Radio Equipment.

40 Valve Radar Receivers. Type R-31 APS-2E. A magnificent instrument. Absolutely brand new and unused in original manufacturer’s packing cases. Fitted two Cathode Ray Tubes. One type SFP7 cathode ray tube with a magnetic deflection and one 2API 2in. electrostatic. Valves fitted comprise 8 6L6G, 13 6SN7, 12X2, 2 6H6, 2 6X5, 8 6C7, 3 VR-105, etc. Has Blower motor cooling fan, 3 panel meters and a fabulous quantity of components. Input 115v. 400 c. Size 26 in. x19in.x12in. housed in a fine black crackle case. Original cost approx. £150 each. A few only available and offered subject to being unsold at 16 gns. each. Carriage 10/- extra. Available in British Isles only.

Antenna Units. Size 16in.x 8in.x 8in. Black Crackle Cabinet. Aerial Loading Variometer 3 pole 5 way Ceramic Switch. 4 porcelain lead-through insulators. Precision slow motion dial. 3 6000v. 80 mfn. block condensers. Brand New 10/- each. Carr. 2/-.

2 METRE ENTHUSIASTS!!!

BC624 Receivers part of SCR522. Brand New.

D.C. - A.C. CONVERSION

Frequency stability, R.F. and A.F. suppression, with long working life, are but some of the features of Valradio Vibrator convertors. We quote two examples here.

12v. INPUT

Model 230 75/12 gives a useful A.C. output at 50 or 75 c.p.s., and is ideal for outdoor P.A. work. 280v. 75 watts. A.C. £10. 15. 0

110v. INPUT

Model 230 300 110 particularly suitable for television and audio-grammers. A.C. output at 50 or 75 c.p.s. 280-350 v. 300 watts. £16. 0. 0

LOCKWOOD & CO.

LOWLANDS ROAD, HARROW, MIDDX.

Telephone: BYron 3704

Planned for the connoisseur requiring a high quality cabinet suitable for a quality receiver. As good as pre-war and embodying all that is best in British craftsmanship and design. For export or for those holding or who can obtain timber permits. Private enquiries are invited and those interested will have their names entered on our lists. Various makes of pick-ups can be supplied as an extra, also Garrard & Collaro Gram. Units. No charge is made for fitting. We shall be pleased to give any assistance and advice you may require.

Interviews by appointment only.

Export Enquiries Invited.

D.C. TO A.C. CONVERSION

Frequency stability, R.F. and A.F. suppression, with long working life, are but some of the features of Valradio Vibrator convertors. We quote two examples here.

12v. INPUT

Model 230 75/12 gives a useful A.C. output at 50 or 75 c.p.s., and is ideal for outdoor P.A. work. 280v. 75 watts. A.C. £10. 15. 0

110v. INPUT

Model 230 300 110 particularly suitable for television and audio-grammers. A.C. output at 50 or 75 c.p.s. 280-350 v. 300 watts. £16. 0. 0

VALRADIO LTD.

57, FORTRESS ROAD, N.W.5 GULiver 5165

Established 1935

Telephone: Aintree 1445

H.P. RADIO SERVICES LTD.

Britain’s Leading Radio Mail Order House

55 COUNTY RD., WALTON, LIVERPOOL 4

Established 1935

Telephone: Aintree 1445

STAFF CALL SIGNS: GJHLY, GIDGL

The Aristocrat

Planned for the connoisseur requiring a high quality cabinet suitable for a quality receiver. As good as pre-war and embodying all that is best in British craftsmanship and design. For export or for those holding or who can obtain timber permits. Private enquiries are invited and those interested will have their names entered on our lists. Various makes of pick-ups can be supplied as an extra, also Garrard & Collaro Gram. Units. No charge is made for fitting. We shall be pleased to give any assistance and advice you may require.

Interviews by appointment only.

Export Enquiries Invited.

LOCKWOOD & CO.

LOWLANDS ROAD, HARROW, MIDDX.

Telephone: BYron 3704

Planned for the connoisseur requiring a high quality cabinet suitable for a quality receiver. As good as pre-war and embodying all that is best in British craftsmanship and design. For export or for those holding or who can obtain timber permits. Private enquiries are invited and those interested will have their names entered on our lists. Various makes of pick-ups can be supplied as an extra, also Garrard & Collaro Gram. Units. No charge is made for fitting. We shall be pleased to give any assistance and advice you may require.

Interviews by appointment only.

Export Enquiries Invited.

LOCKWOOD & CO.

LOWLANDS ROAD, HARROW, MIDDX.

Telephone: BYron 3704

Planned for the connoisseur requiring a high quality cabinet suitable for a quality receiver. As good as pre-war and embodying all that is best in British craftsmanship and design. For export or for those holding or who can obtain timber permits. Private enquiries are invited and those interested will have their names entered on our lists. Various makes of pick-ups can be supplied as an extra, also Garrard & Collaro Gram. Units. No charge is made for fitting. We shall be pleased to give any assistance and advice you may require.

Interviews by appointment only.

Export Enquiries Invited.

LOCKWOOD & CO.

LOWLANDS ROAD, HARROW, MIDDX.

Telephone: BYron 3704

Planned for the connoisseur requiring a high quality cabinet suitable for a quality receiver. As good as pre-war and embodying all that is best in British craftsmanship and design. For export or for those holding or who can obtain timber permits. Private enquiries are invited and those interested will have their names entered on our lists. Various makes of pick-ups can be supplied as an extra, also Garrard & Collaro Gram. Units. No charge is made for fitting. We shall be pleased to give any assistance and advice you may require.

Interviews by appointment only.

Export Enquiries Invited.

LOCKWOOD & CO.

LOWLANDS ROAD, HARROW, MIDDX.

Telephone: BYron 3704

Planned for the connoisseur requiring a high quality cabinet suitable for a quality receiver. As good as pre-war and embodying all that is best in British craftsmanship and design. For export or for those holding or who can obtain timber permits. Private enquiries are invited and those interested will have their names entered on our lists. Various makes of pick-ups can be supplied as an extra, also Garrard & Collaro Gram. Units. No charge is made for fitting. We shall be pleased to give any assistance and advice you may require.

Interviews by appointment only.

Export Enquiries Invited.
The Connoisseur pick-up is a super sensitive instrument, scientifically developed for the benefit of music lovers who insist on Natural reproduction.

If you are scientifically-minded you will know how good it is when we say that every pick-up is hand tested to show within + or — 2 db's of our published response curve, which is substantially flat from 50-9,000 cps.

If you have a musician's ear you will know how good it is immediately you hear it bring the first few notes from a record in their original purity.

Made by A. R. SUGDEN & Co. (Engineers) Ltd., Well Green Lane, Brighouse, Yorks

COMMUNICATION RECEIVER

DCR 19
Has every feature expected of a modern high performance communication receiver— at minimum price.
£49/10s. (NO TAX)

TELEVISION KITS & CHASSIS

The result of years of careful development, correctly assembled and aligned, are capable of giving performance equal to the best receivers money can buy. Definitely not built around surplus components. Available with 9in. or 12in. C.R. tubes and R.F. units for London or Sutton Coldfield. Complete 9in. unit DTK3 L or B. £36 plus Tax £8/11/–.

RADIO RECEIVERS AND KITS

Designed around Denco Components— three special kits for the complete and easy assembly of high performance radio chassis. We have specialised in the export of these kits for assembly overseas. Complete receiver using the chassis also available.

Denco (Clacton) Ltd.
Old Road, Clacton, Essex

Denco Distributors Ltd.
115 Fleet Street, London
Advertising

Value Beyond Compare—Anywhere

RECEIVER R1185A. The renowned UHF communications receiver, well known to every radio enthusiast with all UHF fans and hobbyists. We have a quantity of these excellent receivers, used but nevertheless in excellent condition, which we are currently offering to CALLERS ONLY. Absolutely cheap at 38/-.

RECEIVER UNIT BC864 (SCR-922). Still available from stock and proving one of our most popular offers. And no wonder! These 11-valve American receivers—unused but slightly soiled—represent real value. The valves are of the 15 v., 15 amp, series and included are 3 9003 and 1 9002. As supplied, the unit tunes between 190-156 Mc/s with 4 spot frequencies. It is necessary to modify it to a 120 Mc/s receiver for remote tuning, as the local oscillator is crystal-controlled and cannot be tuned! We therefore supply with each receiver circuit diagrams and full modification instructions for "Do-it-yourself" use. ONLY 26/-, carriage paid. Order early.

RECEIVER R1121. Eureka! excellent for conversion to the television sound channel. Frequency range 30.5-40.5 Mc/s, switched by a 5-bank 6-way Yaxley and complete with the following valves: 1 1OD1, 1 5D2, 3 9D2, 1 81/2,— all with screen and channel. Frequency range 30.5-40.5 Mc/s, switched by a 5-bank 6-way Yaxley and complete with the following valves: 1 1OD1, 1 5D2, 3 9D2, 1 81/2— all with screen and channel.

RECEIVER UNIT BC624 (SCR-522). Still available from stock and proving one of our most popular offers. And no wonder! These 11-valve American receivers—unused but slightly soiled—represent real value. The valves are of the 12 v., 15 amp. series and included are 3 9003 and 1 9002. As supplied, the unit tunes between 190-156 Mc/s with 4 spot frequencies. It is necessary to modify it to a 120 Mc/s receiver for remote tuning, as the local oscillator is crystal-controlled and cannot be tuned! We therefore supply with each receiver circuit diagrams and full modification instructions for "Do-it-yourself" use. ONLY 15/-, carriage paid. Order early.

TEST SET TYPE 72. CONSISTS OF A SPECIAL PURPOSE OSCILLOSCOPE WITH A 30 cm. TUBE. CONTROLS ARE BRIGHTNESS, X AND Y SHIFT, FOCUS, AMPLIFIER, IN OUT, VELOCITY, ETC. THIS OUTSTANDING EQUIPMENT MEETS THE NEEDS OF THE NORM OF Cases, X 1200, Y 900, AND IS COMPLETE WITH C.R. TUBE AND ALL VALUES. IT OPERATES FROM A.C. MAINS 230 V. 50 MC/s AND IS SUPPLIED COMPLETE WITH COMPREHENSIVE INSTRUCTIONS FOR CONVERSION TO A STANDARD OSCILLOSCOPE, TOGETHER WITH ALL PARTS NECESSARY FOR CONVERSION. IN BRAND NEW AND IMPREGNABLE CONDITION.

The CABOT 25 Watt HIGH QUALITY AMPLIFIER

Incorporating negative feedback, suitable for use where sound amplification is required.

SPECIFICATION—Separate mike and gram or radio inputs for mixing. Mike input for moving coil or other types as required. Gram input suitable for standard Magnetic or Lightweight pick-up. Tone control. Output 25 Watts into 4-8 or 15 ohms, input 110/230v 50 cps. Fitted in steel cabinet, finished in black crackle, panel engraved as illustrated. Ideal for general P.A. work. Youths Clubs, gram or radio Amplifier for the Home, etc.

FILAMENT TRANSFORMERS. Combined 6.3 v., 2 amps and 4 v., 3 amps. Primary 230-250, Secondary 6.3 v. 2 amp.

MAINS TRANSFORMERS. NEW AND GUARANTEED. A remarkable offer. 240-0-240 v. 70 ma, 5 v. 2 a., 5 v. 3 a., screened primary, 50 cycles A.C., 0-215-240 v. An exceptionally good transformer at ONLY 12/-, plus 1/2 carriage.

TV CONSTRUCTION—NOW IS THE TIME

We modestly claim that our Kit of Parts answers the prayer of all those who lack knowledge of TV technique! Its simplicity of design and construction make it a practical proposition for all, and our comprehensive instructions and easy-to-follow point-to-point wiring diagrams ensure success. Now and second for these instructions. The price is only 5/-, post free, refunded when the Kit is purchased.

The complete Kit of Parts costs £10 10/-, and for this price everything is brand new, does it to the last nut and bolt. If cost is a primary consideration, we can supply the complete Kit—again with tested valves and C.R.T.—for only £15. In this instance the valves and C.R.T. are slightly soiled but guaranteed perfect.

Huge Meter Disposal!

A demonstration model can be seen at our London premises during view ing hours. Come along and see for yourself. NOTE OUR UNIQUE "AFTER SALE" SERVICE. TESTING AND ALIGNMENT OF RECEIVERS AFTER COMPLETION OF ASSEMBLY UNDERTAKEN FOR A NOMINAL SUM.

Amplifier Unit 1815A. A neat and compact equipment incorporating the following valves: 2 6SN1, 1 12AX7, 1 12AU7; together with microphone transformer, inter- valve transformers, condensers, resistors, etc. Are you looking for something to "break down"? Then here's your chance. An experimental gold mine for ONLY 10/-, carriage paid.

Amplifier Unit A1158A. Valve line-up: 1 VR73, 1 EL22, 1 VR65. Contains inter valve transformers and many small components. Absolutely cheap at 8/-, post free.

Best Buy at Britain's

Send for List "WW." Bargains Galore.

CHARLES BRITAIN (Radio) Ltd.
11, Upper Saint Martin's Lane, Liverpool, W. 2
Tel: 0345

3 minutes from Leicester Square Station (up Cranbourne Street)
Shop Hours: 9-6 p.m. (9-1 p.m. Thursday)
Open all day Saturday

COAXIAL CABLES. Manufactured under strict Laboratory conditions and to Government Specification where possible. Send for list of the full range of AERIALITE R/F Cables and Feeders.

AERIALITE LTD., CASTLE WORKS, STALYBRIDGE, CHESHIRE

You simply MUST make a WIRE RECORDER

You have seen in this space for the past six months a sketch of a very simple Wire Recorder for attachment to a Gramophone turntable. This is one of the many types of Wire or Tape Recorders which you can make with the help of our complete Constructional Data. This Data, including price list of accessories (all of which we can supply from stock), is 5/-. Instructions are given how to make a record-playback pickup, the cost of which need not exceed 3d., unless it is desired to dress the pickup in a fancy housing. If our instructions are followed the constructor will get entire satisfaction, and we offer every help to this conclusion.

Constructors wishing to see our new designs are cordially invited to our Stand, No. 206, at Radiolympia. Also on view for the first time will be several of our new inventions, including Talking Books for the Blind, Radio control for opening garage doors, and for the flight control of model aircraft; the Talking Violin and Talking Circular Saw, and the miracle radio fault-finder, the ISOTOPE.

MEET US AT STAND 206

JUDGE INDUSTRIES
(Distributors: PARK RADIO of MANOR PARK)
783 ROMFORD ROAD, LONDON, E.12
W4790. Receivers
10 valve 1½ Metres
The most suitable receiver for long distance reception complete with valves and mod sheet for Television conversion 52½ each.

6 VOLT VIBRATOR PACKS
fully smoothed output 250 v. 60 mA
12½ each.

Type 24 U.H.F. Units
Boxed New 12½-
Polystrene Slugged coil formers for Television ½" x 1½" 5d. each 4½ doz.

3. LISLE STREET, LONDON, W.C.2.
Telephone: Gerrard 8204

G. W. SMITH & CO., (RADIO LTD.)
WIRELESS WORLD
October, 1940

RCA 291A PHOTO-ELECTRIC CELL AND MULTIPLIER. For facsimile transmission and research involving low light-levels, 5-stage multiplier. Brand new and guaranteed. Only 30/-.

TE VALVES. Westminster 4S1 at 30/-, 4S2 at 20/-, 566A at 15/-, Ryfrost 705A/5 at 25/-.

TYPE BC 426A RECEIVERS. Absolutely brand new by RENDIX Ltd. etc. Volumes 3/4" Carat. 3 condenser, 3000, 3002, 3004, 10 valves in all. Frequency coverage 100-1054 m.e.

RECEIVER TYPE 25. The receiver portion of the type 11/196. Covers 24-42-70 Mc/s. Ideal for roll-up radio, as per "Practical Wireless". August issue. Complete with double type speakers, type Condensers, etc. Only 22/6. Cash only 8/-.

113/4A AMPLIFIER CHASSIS. Complete 3 valves, V605, V611 and V712, plus transformers and driving conditions.

RECEIVER UNIT TYPE 159. Size 8 in. x 6 in. x 4½ in. Containing V8205, CV69, CV68, V902 and 24 v. selector switch. New condition, 15/-.

E.K. OUTPUT POWER UNIT. Size 2½ in. x 7½ in. x 4 in. Containing V924 U.H.F. Rect., 1 ½ v., 250 kv. relay and transformer. 15/-.

VIBRATOR POWER UNITS. 2 volt. (For Canadian only.) Completely smoothed, output 1.5 v. at 20 and 0 v., at 10 ma. Guaranteed.

MAINS TRANSFORMER for Vision Receiver Unit 250. 1.25/6. 60 m/v., 5 v. 3 a., 5 v. 2 a., 6.3 v. 2 a., input 200-250 v. Only 28½.

INDICATOR UNIT TYPE 198. Containing VCR 138A 3½ in. tube, 3 VR05, 1 VI151, 10 tubes, 5 condensers, etc., Suitable for an oscilloscope. 39/-.

HEADPHONES. 100 ohms resistance with plug, 3½ pair, 10/-.

U.S. ARMY MIDGET LIGHTWEIGHT HEADPHONES. 200 ohms. Suitable for mains, input 210-230-250 v., output 2,500 v. 4. v., 1.1 a., 15/-.

Bridge Rectifiers, 500 V. 2 nt., a., 3, 250 v. 120 in a., 15/-.

280 v. 60 m/ a., Standard Telephones 280 v. 75 m/ a., 4, 61 in. Brand new and individually boxed. 17/-.

VIBRATOR POWER UNITS. 2 volt. As for Canadian set. Completely smoothed, output 2½ v. 1 a., 6.3 v. 2 a., 5 v. 4 a., input 200-250 v. Only 3½.

EX. GOVT. POWER UNIT. Size 7½ in. x 7½ in. x 4½ in. Containing V11120 MV. Rect., rotary generator, relays, and hundreds of condensers and resistors. Complete in metal case. Absolutely brand new.

2.5 kv., relay and transformers. 15/-.

RECEIVER TYPE 25. The receiver portion of the T/11 1196. Covers 4.3-6.7 Mc/s., Type 24, U.H.F. Units.

TYPE BC 824A RECEIVERS. Absolutely brand new by BENDIX, etc. Volumes 3/4" Carat. 3 condenser, 3000, 3002, 3004, 10 valves in all. Frequency coverage 100-1054 m.e.

TX VALVES. Weetinghouse 813 at 50/-, 832 at 20/-, 866A at 15/-, for flying spot telecine transmission and research involving low light-levels, 9-stage Klystron transmitter.

RCA 981A PHOTO-ELECTRIC CELL AND MULTIPLIER. For facsimile transmission and research involving low light-levels, 5-stage multiplier. Brand new and guaranteed. Only 30/-.

TE VALVES. Westminster 4S1 at 30/-, 4S2 at 20/-, 566A at 15/-, Ryfrost 705A/5 at 25/-.

TYPE BC 426A RECEIVERS. Absolutely brand new by RENDIX Ltd. etc. Volumes 3/4" Carat. 3 condenser, 3000, 3002, 3004, 10 valves in all. Frequency coverage 100-1054 m.e.
Not only radio but everything electrical can be tested with this world famous PIFCO Radiometer. Bell and telephone circuits, radio, television, vacuum cleaners, irons, car lighting, H.T. and L.T. milliammps, etc. Increasing supplies now available for the home market.

CIRCUIT TEST
Tests for open or faulty circuits in all radio and electrical apparatus and domestic appliances. Equally for testing car lighting and starting circuits.

H.T. TEST
- 0-240 volts. May be used direct on any mains, AC or DC

L.T. TEST
- 0-6 volts AC or DC

MILLIAMPERE TEST
- 0/30 m.a. scale for testing total discharge from battery or testing single cell

VALVE TEST
- Made by inserting valve in socket on front of meter.

PIFCO ALL-IN-ONE RADIOMETER

PIFCO LTD., PIFCO HOUSE, WATLING STREET, MANCHESTER, 4
And at PIFCO HOUSE, GT. EASTERN STREET, LONDON, E.C.2

This is the NEW ADVANCE AUDIO GENERATOR

RANGE
- 15 c/s to 50,000 c/s

ACCURACY
- ±1 cycle over all ranges

PRICE £20

We are proud of this latest addition to the Advance range of high quality equipment. Mechanically and electrically it is robust, accurate, and stable—a laboratory instrument for everyday use. A fully descriptive folder will be gladly sent on request.

RECEIVERS R103. Communication type. 1.6-7.5 mc. Seven valves. B.F.O. 55/-.

MARDONI GR100 Power Packs. Input 0 v. Output 100 v. 80 mA., fully smoothed. 23/5

POWER SUPPLY UNITS. for No. 19 sets. Input 12 v. With Aerial Viatometer. 22/-.

MAGNETRON MAGNETS. 9 lbs. 3.4 oz. considerible weight. Numerous uses. New 5/.

METAL STORAGE BINS. Ideal for storage of small parts etc. Overall size 19in. x 6in. x 5in. Nine sliding drawers. New 15/.

DYNAMOTORS. Type 33. Input 6-12 v. Output 600 v. For mobile radio, etc. 11/8.

AIRCRAFT INSTRUMENTS. We have in stock an enormous variety of precision instruments, of all types, at lowest prices. Write for illustrated list.

AMERICAN BORING DISCS. 12in. Finest quality. Zinc base, acetate coated. 16 discs packed in metal box. 35/-.

SLOW MOTION DIALS. Ratio 200-1. 180 deg. dial, of white ivory. New 4/5.

IMPEDEANCE ADAPTORS. MG385. For matching L.R. phases to H.R. outputs. 9/5.

Write for Illustrated leaflet.

INERTIA SWITCHES BS706D.含带 sensitive micro switch. New. 8/5.

CARLTON QUALITY TRANSFORMERS, for Television Sets. Fully guaranteed. Two valves. With circuits. 8/5.

AMERICAN DYNAMOTORS. Type PE94.

VOLUME CONTROLS. Carbon type, with switch. State resistance required. New, 4/6 each.

METAL RECTIFIERS. Neutral type, inc. 220 v. 60 MA., 4/6. State requirements.

Radar T.R. GAS GAPS. Type 1826, 10/-.

MAINS INTERFERENCE FILTERS. 5/8.

CABINET SYSTEM providing an easily constructed cabinet for manufacturers and laboratories. The range of extended sections, corners and brackets now available enables a housing for individual designs to be easily erected.

Technical & Sales Agent C. H. DAVIS 55, BROMPTON RD. LONDON, S.W.3

Sub Cargo Microphones with high level of performance. Data Sheet on request.

MAINS TRANSFORMERS - A.F. TRANSFORMERS THERMAL DELAY SWITCHES SMOOTHING CHOKES POWER RESISTANCES

OLIVER PELL CONTROL LTD CAMBRIDGE ROW, WOOLWICH, S.E.18

Made by

C.51 FOR TELE-COMMUNICATION

A new Lustraphone Moving-Coil Microphone designed and developed specifically for G.P.O. hand-sets, with mobile tele-communication and P.A. equipment in view. Available as Insert Unit (C.51) or complete Hand Microphone (C.51). Characterised by sturdy construction, light weight, and high level of performance. Data Sheet on request.

LUSTRAPHONE LTD. 84, Belsize Lane, N.W.3

Write for Illustrated leaflet.
COULPHONE RADIO PRODUCTS

COULPHONE MAINS TRANSFORMERS

16/6 POST PAID

COULPHONE Mains Transformers are made to the highest electrical standards and are fully guaranteed. We supply them to the Ministry of Supply Atomic Research Stations, so they will no doubt meet your requirements. Special quotations for quantities and types to order.

<table>
<thead>
<tr>
<th>Type</th>
<th>Standard Replacement Types, Drop-through chassis type with top shroud, Impregnated and Interleaved Beryllium Primaries tapped for 200/250/500 volts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>250-6-250 x 80 mA, 6.5 x 2.0 A</td>
</tr>
<tr>
<td>(b)</td>
<td>250-6-250 x 80 mA, 4 x 1.4 A</td>
</tr>
<tr>
<td>(c)</td>
<td>250-6-250 x 80 mA, 6.0 x 1.4 A</td>
</tr>
<tr>
<td>(d)</td>
<td>250-6-250 x 80 mA, 6.0 x 1.4 A, 6.0 x 1.4 A</td>
</tr>
<tr>
<td>(e)</td>
<td>350-6-350 x 80 mA, 6.0 x 1.4 A</td>
</tr>
<tr>
<td>(f)</td>
<td>450-6-450 x 100 mA, 6.0 x 1.4 A</td>
</tr>
<tr>
<td>(g)</td>
<td>500-6-500 x 100 mA, 6.0 x 1.4 A</td>
</tr>
<tr>
<td>(h)</td>
<td>350-6-350 x 80 mA, 6.0 x 1.4 A, 4 A, 4 A, 4 A</td>
</tr>
<tr>
<td>(i)</td>
<td>350-6-350 x 80 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(j)</td>
<td>350-6-350 x 80 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(k)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(l)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(m)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(n)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(o)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(p)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(q)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(r)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(s)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(t)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(u)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(v)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(w)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(x)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(y)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
<tr>
<td>(z)</td>
<td>400-6-400 x 100 mA, 6.0 x 1.4 A, 6 A, 6 A, 6 A</td>
</tr>
</tbody>
</table>

COULPHONE COIL PACKS. Medium, Long and Short Wave. Built on 16 S.W.G. Aluminium chassis. Totally enclosed, hole fixed. Aligned ready for connection into receiver. 4½ x 4½ x 4½.

MODEL A. For use with 2 gang tuning condenser. 6½ in. or any triode or pentode frequency changer.

MODEL AR. For use with 3 gang tuning condenser. 6½ in. or any triode hexode frequency changer.

ROTHEMEL "TORPEDO" MIKES. Made up from ex-Govt. surplus. COULPHONE offer them brought out to octal socket. 6.3 V., 5 A. and 250 V. Supply for feeder unit or tone control unit but with push-pull 8170 for higher power output.

COULPHONE STAND No. 11: High quality coiled coils. £13/17/6.

RADIOOLYMPIA ENCYCLOPAEDIA

STAND No. 217

This Encyclopaedia, which has been prepared under the direction of Bernard B. Babani, gives the operating characteristics and base connections of some 15,000 valves made throughout the world by approximately 164 manufacturers and includes all the Military, Naval and Service types of many countries produced during the war.

An indispensable work of reference to all amateurs, home constructors, radio service engineers, radio dealers, radio and electrical manufacturers, government departments, universities, technical colleges, research laboratories, etc.

DISTINCTIVE FEATURES

- Includes thousands more valves than any other similar publication.
- Annual supplements will be issued to keep it up to date.
- Valve base connections are on the same page as characteristics.
- Many valves not due for production until 1951 are included.

As practically all the world's valves are given, the technical matter and instructions for using the tables have been translated by native technicians into French, German, Spanish, Italian, Portuguese, Dutch, Swedish, Danish, Norwegian, Russian, Polish, Czech, Turkish and Modern Hebrew, which are bound into the one volume with the English data and tables.

10" x 7½" full cloth bound.

There are 11 sections as follows:

- Receiving tubes of all classes; Transmitting Triodes; Transmitting Tetrodes, Pentodes, etc.; Current Rectifier Values; Thyatrons; Voltage and Current Regulators; Tuning Indicators; Cathode Ray Tubes (including Television Tubes and Orthicons, etc.) Photo Tubes and Photo Cells; Rare Tubes and their equivalents; Supplementary data.

496 pages 42/- net ($8.50)

Copies may be obtained from radio dealers and bookshops. In case of difficulty write direct to publishers, BERNARDS (PUBLISHERS) LTD., The Grampians, Western Gate, London, W.6.
TELEVISION MINDED AND IN TOWN FOR THE SHOW?

Then you should make a point of calling on us to see our Home Constructor's Televisor in operation. Built round Radar Gear, this Televisor can be constructed by anyone with a basic knowledge of radio and the ability to read a circuit diagram. When using Radar Gear you utilise a precision built Vision Receiver, which of course is the heart of a Televisor. Undoubtedly to anyone who intends building a set using the VCR97 Cathode Ray Tube, Radar Conversion represents the easiest and cheapest method. The Constructional Data is most detailed, running into 26 large pages of explanatory matter, illustrations, photographs, and circuits and costs only 7/6d. If the two radar items specified, the Indicator Unit containing the C.R. Tube and the majority of the valves and components, and the Vision Receiver I.F. Strip are purchased, cost £6 the pair, the data is supplied free, but intending constructors can purchase the data first, and the cost will be credited if the two radar items are purchased within the following 14 days. If you are interested, and cannot call why not invest 7 6d.? If ordering the specified items by post, please add 12 6d carriage and 10/- deposit on returnable packing case.

For constructors of other Televisors we can offer a comprehensive range of material, several items of which are listed below:

- E.H.T. CONDENSERS. .1 mfd. 2,500 v., 2.6d.; .01 mfd. 2,500 v., 1.6d.; .05 mfd. 1,500 v., 1.6d.
- CONDENSERS, mica and paper tubular. 2pf to .1 mfd. 500 v. working, 6d.
- RESISTORS. 1 w. 4d.; 1 w. 5d.; 2 w. 6d.; 2 w. 9d.
- VCR 97 C.R. TUBES. Brand new in maker's packing and vision tested before dispatch. ONLY 35/- (carriage 7/6d.). Tube bases 2.6d.
- TUBE ENLARGING LENS. Designed for use on any tube up to 6in. Specially made to give maximum effect. ONLY 29/6d. (postage 1/-).
- E.H.T. TRANSFORMER. For VCR 97, Input 210 v.-250 v., output 2,500 v., 4 v. 1.1a, 2 v.-0 v. ONLY 37 6d.
- CO-AXIAL CABLE. 75-80 ohms. Thin type for lead in, 1 3d. per yard.
- AERIALS. Indoor type for fitting in loft etc., 15/-.
- UNIVERSAL DIPOLE with adjustable rods for Birmingham or London. Has a porcelain High Voltage Insulator (30,000 volts test), and adjustable impedance matching device. Complete with fixing plate, and full instructions. ONLY 52 6d. (carriage 5/-).
- SPEAKERS. 6fin. Truvox PM, 12 6d. (with transformer), 6fin. R & A PM with transformer, 17 6d., 10in. Truvox PM (less transformer), 17 6d., 10in. Rola PM (less transformer), 21 6d. (Postage on all these 2 6d. each).

SPEAKERS include:
- 6fin. Truvox PM, 12 6d. (with transformer), 6fin. R & A PM with transformer, 17 6d., 10in. Truvox PM (less transformer), 17 6d., 10in. Rola PM (less transformer), 21 6d. (Postage on all these 2 6d. each).

BOOKS TO ASSIST THE TV CONSTRUCTOR:
- "A Television Pre-Amplifier." How to make a pre-amp., using the RF Unit 27 (available 27 6d). Full conversion details, 2 3d.
- "50 Pitfalls for the TV Constructor." 50 common faults and their causes, 2 3d. per copy.

C.W.O. please, and add postage under £2. S.A.E. for lists.

U.E.I. CORP., The Radio Corner
138 GRAY'S INN ROAD, LONDON, W.C.1
(Phone : TERminus 7937)

Open until 1 p.m. Saturdays, we are 2 mins. walk from High Holborn, (Chancery Lane Station), and 5 mins. by bus from Kings Cross.

You can have 100 gns.

RADIO-GRAM

for less than one third of that amount with

"RUCO" FEEDER AND AMPLIFIER UNITS

Revive that old gram with a Ruco outfit and bring new life to your Radio and Record entertainment

Don't delay—

WRITE NOW GIVING FULL DETAILS OF YOUR REQUIREMENTS

Do you know that we are one of the largest manufacturers of Radio Feeder Units?

RUCO PRODUCTS

197 Lower Richmond Road
RICHMOND, SURREY

Phone PRO 7463.
New Receivers and Amplifiers

FULL range of Denco, Lowther and Eddystone goods available, 5 to 10 waveband gram covering 3 to 60mc/s, 150 to 1,500kc/s, amplifiers for every use, television kits, radio kits, televisor covering 3 to 60mc/s, 150 to 1,500kc/s, amplifiers FULL range of Denco, Lowther and Eddystone TUNING Units. Full treated 54-page catalogue, price 9d. to Mason's £5 1. working at 150 miles range with good results; s.a.e. for leaflet of single items or illustrated catalogues.

EX- ARMY 13.10 receivers containing 45mc/s unit 22/6 each. 52/6 plus carriage.

TELEVISION coil formers with dust iron cores. METER rectifiers, 0-1m/a bridge, 5/6 each, brand new, M/c, 4 each, 4/9 dozen.

lamp: J.5v 6amp, twice; 17/6 each.

SWITCHES, miniature, 1 pole seven way, 9d each.

KLAXON MOTORS, not rotary transformers. new, 12/6 each.

end, 3ft 6in long. 9d each, rye plugs for .. ln co-
duction. recently overhauled; £ 35; would make a good communication set, or by change of switch, good transformer problems. Our policy is to produce all amplifiers. We should be pleased to show the various acoustic properties of one room with another; radio tuner units for use with the partridge components for: 'Wireless World' Constructional Television Receiver

Electronic Engineering F.M. Receiver

Among the working demonstrations will be the PARTRIDGE 15 watt "Quality" Amplifier and the Williamson "Quality" Amplifier (by courtesy of Rogers Developments Co.)

NOTE: This exhibition is open to the Public and the Trade and components displayed are available for immediate purchase; and Partridge technicians will be at your service to deal with... on the spot transformer problems.

WARNING

Readers are warned that Government surplus components which may be offered for sale through no manufacturer's guarantee. Many of these components will have been designed for special purposes making them unsuitable for civilian use, or may have deteriorated as a result of the conditions under which they have been stored. We undertake to deal with any complaints regarding any such components purchased.

NEW RECEIVERS AND AMPLIFIERS

Top of the line 4058.

Top of the line 4058.

NEW RECEIVERS AND AMPLIFIERS

Top of the line 4058.

Top of the line 4058.
HARTLEY-TURNER IS ALWAYS ON SHOW

Our show room is always 400 yards from Olympia, and at the time of writing is a mecca for American music-lovers. But at all times and particularly during the Show period you can hear very good musical reproduction in comfort, free from distractions, and discussed by an expert staff. So before and after your visit to Olympia, call and see us and hear the 215 Speaker. You won't need to visit to Olympia, call and see us and hear the new 215 Speaker.

HARTLEY-TURNER IS
CANADIAN 55 set -transceiver, condition as new, offer or offer.- Box 6912 £ 4/10

RECEIVERS, AMPLIFIERS—SECOND-HAND

LOW range, 24 at £1 each: speakers, horn type, 40-42kHz, complete with units. 36. £4.

MIXERS, R.C.A. A.R. amplifiers in portable case, £2.50.

TUNERS & AMPLIFIERS

NEW "QUALITY" RADIO TUNERS & AMPLIFIERS

NO. 1 TUNER. Long and medium wave T.H.F. range, 750-1500 kHz, 25 watts output at 200-250 volts. £9 10s.

AMPLIFIERS

NO. 1, 4 watts, 2/3 ohms (other impedance to 20 ohms). £10 15s.

NO. 2, 10 watts, 2/3 ohms (other impedance to 20 ohms). £18 10s.

NO. 3, 30 watts, 2/3 ohms (other impedance to 20 ohms). £20 15s.

NO. 4, 50 watts, 2/3 ohms (other impedance to 20 ohms). £25 10s.

NO. 5. 100 watts, 2/3 ohms (other impedance to 20 ohms). £30 10s.

NO. 6. 250 watts, 2/3 ohms (other impedance to 20 ohms). £40 0

NO. 7. 1000 watts, 2/3 ohms (other impedance to 20 ohms). £60 0

NO. 8. 3000 watts, 2/3 ohms (other impedance to 20 ohms). £80 0

NO. 9. 10000 watts, 2/3 ohms (other impedance to 20 ohms). £100 0

NO. 10. 20000 watts, 2/3 ohms (other impedance to 20 ohms). £200 0

NO. 11. 50000 watts, 2/3 ohms (other impedance to 20 ohms). £500 0

NO. 12. 100000 watts, 2/3 ohms (other impedance to 20 ohms). £800 0

NEW LOUDSPEAKERS

ROADSHOW—The first line of the Hil-Tec, the Tallis line of the Hil-Tec, the Blackpool line of the Hil-Tec, the motherboard line of the PLD. £3 10s. Hi-Fi twin cones £6 10s.-Broadcast & Acoustic Equipment Co., Ltd., Tonbridge, Nor. (1949)
Electrolytic capacitors provide energy storage in a compact form, suitable for a wide range of electronic applications. They are used in circuits to filter DC power supplies, bypass AC signals, and store energy for pulse power sources. These capacitors come in various types, such as tantalum, ceramic, and aluminum electrolytic capacitors.

Electrolytic Capacitor Characteristics

- **Tantalum Capacitors**:
 - High capacitance per volume.
 - Excellent energy storage.
 - Good high-frequency performance.
 - Used in power supplies and filters.

- **Ceramic Capacitors**:
 - Low capacitance per volume.
 - High frequency range.
 - Used in RF circuits and oscillators.

- **Aluminum Electrolytic Capacitors**:
 - Moderate capacitance per volume.
 - Good cost-effective solution for many applications.
 - Used in power supplies, filters, and bypassing circuits.

Application Considerations

- **Operation Temperature**:
 - Tantalum capacitors are generally more temperature-resistant than ceramic or electrolytic capacitors.

- **Voltage Rating**:
 - Tantalum capacitors often have lower voltage ratings compared to electrolytic capacitors.

- ** Ripple Current**:
 - Ceramic capacitors can handle higher ripple currents compared to electrolytic capacitors.

Purchasing Electrolytic Capacitors

- **Selecting the Right Type**:
 - Consider the application requirements, such as the operating voltage and current.
 - Check the manufacturer’s specifications for each capacitor type.

- **Checking Quality**:
 - Look for products with reputable manufacturers and good customer reviews.

- **Ensuring Reliability**:
 - Choose capacitors from suppliers known for delivering consistent quality.

Conclusion

Electrolytic capacitors are indispensable components in electronic circuits, providing essential functions such as filtering, coupling, and energy storage. By considering the characteristics and application requirements, one can select the appropriate electrolytic capacitor for their specific needs.
QUALITY COUNTS! (and so does the price!)

You can rest assured that in all our products both these items are highly satisfactory from YOUR point of view.

The popular 30 TUNING UNIT which comes in:

- Model 30 Coll Pack (aligned to 465 Kcs. and sealed);
- I pair "M.M."
- Transformer (aligned to 465 Kcs. and sealed);
- Splendid 3 colour dial, 6in. x 6in. (matched to coil pack);
- J.B. 2-gang (matched) condenser:
 - has no equal anywhere at 48½ inclusive, or with J.B. Spin Wheel Tuner at 3½ extra. Each item can, of course, be supplied separately. For prices see below.

30 Coll Pack (16,200 metres) aligned to 465 Kcs. and sealed, 24½ inclusive.

"M.M." I transformers aligned to 465 Kcs. and sealed, 1½ per pair (or not sealed, 1½ pair). Standard size. 2½ - 6½ colour Dial, £3 each.

A FREE copy of our famous "Home Constructor's Handbook" will be given with all orders for the 30 Tuning Unit, or a copy may be obtained for 15½ from our Mail Order offices, or 9½ with J.B. Spin Wheel Tuner.

Stamp for further details and catalogue.

RODING LABORATORIES,
70 LORD AVENUE, ILFORD, ESSEX

W. H. SMITH & SON give special attention to the requirements of technical men and students.

Books not in stock, but obtainable from publishers, are supplied within a few days. Students' needs for examinations are given priority.

CONSOnders of all types

We can offer, FOR IMMEDIATE DELIVERY from very generous stocks, a wide range of ultra-high quality fixed paper Condensers, from .001 μF to .0001 μF. Prices are exceedingly moderate.

Enquiries are invited for manufacturers’ requirements, wholesale and export orders are available for bulk quantities, and for scheduled deliveries over a period, as required.

Most condensers are available for immediate delivery.

Please request our 4 page bulletin CONSEVEN0114

CLAUDE LYONS LTD.
180 Tottenham Court Rd., London, W.1

and price is the only limitation, the HOME LAB Signal Generator is the logical choice. For serious work at a modest outlay it offers a first rate design and a comprehensive specification.

- 100 kilocycles to 1 megacycles
- 30 per cent. modulation at 400 or uncomplicated carrier
- Provision for external modulation
- Two-stage constant impedance attenuator
- Output impedance 10 ohms
- Low external field
- Buffer stage
- Variable 400 output voltage
- Accuracy of calibration ± 1 per cent.

PRICE £6:6:0 plus 3½/- for packing.

AC and DC models available. Send S.A.E. for free descriptive brochure and enclose P.O. for 2½ if circuit diagram required.

Owing to the very large demand, delivery is subject to 6-7 weeks delay. Orders can only be accepted by post at present.

HELY-MANK ELECTRONICS LABORATORIES, 116, Grove Road, London, E.17.
GALPINS
ELECTRICAL STORES
408 HIGH STREET, LEWISHAM, LONDON S.E.13

Telephone: Lez Green 3039
Near Lewisham Hospital

TERMS: CASH WITH ORDER. NO C.O.D.
THURSDAY EARLY CLOSING

October, 1949

Wireless World

Advertisements 91

150 W. CW Tx. PP 5ST. rack mounted, E.C.O. for 14. 25W/c. $22 or near offer. 415/8 mc/s. 5mc/s. mounted. £10 or near offer. Box 8482.

HALICRAFTERS transmitters. Type HT2E. Km series. 415/8 mc/s. 'kilo-
nameters' test. covering all frequencies from 1mc to 250mc/s. receiver and various matching
-cables, etc.; limited quantities only now available.

PANORAMIC adaptor. Type MCA44. British
-telephone and radio receivers. Mostsuitable
-communication receiver. in addition to all Halil-
crafters models. Immediate delivery. Available at Halicrafters
-licensee. SX424 receiver. now available for export only.

MCELROY-ADAMS MFG. GROUP, LTD.,
Green St., Birmingham, 1, S.W.1. 151/2.

SPECIAL offer in H.T. and other batteries.
-portable 190v 115v 51. L.T. made by the
Batt. 120v 230v 720v. American manufacture, 7/6. as
above, 500 cells. Half cells only supplied if other
-1 goods are ordered. portable 12v accumula-
tors. battery for use in taxed charge cases or as a
-case, 25/-.

Ni-all nital portable batteries, two cables, 11/6; 21/6. with
-approx 10 A.H. 7. 6; send s/e, for latest radio
-battery list; special offer in factored packs
-hand, 2,000 only very useful small chassis, containing 2 Interna-
tional Mains Booster Transformers. 2 in
-6 watt resistances, various values, 2 h.f.
speakers. for all batteries. 3/-; price of
-10/-; our price, 2 complete chassis for

WALTON'S WIRELESS STORES, 203, Staveley
Rd., Wolverhampton. [0011

WALTON'S WIRELESS STORES, 203, Staveley
Rd., Wolverhampton. [0011
LABORATORY Test Equipment.
The instruments detailed below have been
reconditioned and recalibrated in our own
laboratories and are guaranteed to be within
the makers specification.

MARCONI INSTRUMENTS COMPANY SIGNAL GENERATORS
Type TF.144G .. $75
Type TF.146 .. $85
Type TF.390F .. $65
Type TF.517E ... $65
Type TF.517E fitted with Pulse Modulator
Type 675A ... $85

VALVE VOLTMETER Type TF.428A $40
OUTPUT METER Type TF. 428a $31

MISCELLANEOUS EQUIPMENT
COSSOR double beam oscilloscope
Type 339 ... $39
COSSOR signal generator Type 51A. Fre-
quency range 6 to 52 Mc/s. Modu-
lation eicher pulse or sine. Provision for
ex. mod. R.F. output variable up to
4,000 Hz. Price $23/6 Bradbury.

ALSO in stock, we have "Varicaps," precision
attenuators, wavemeters up to
1,000 Mc/s, crystal quartz and constant
voltage transformers, etc.

For send for lists.

PIKE BROS.
86 MILL LANE, LONDON, N.W.6
TelephonE: HAMPSTEAD 4219

Type 300 3-wave band coil unit.
A reasonably priced assembly of exceptional
performance consisting of switches perme-
selves of aerial and oscillator coils with all
associated trimming and padding condensers.
Improved aerial coupling system gives high
sensitivity with exceptional discrimination
against unwanted signals. A four position
switch gives facilities for gramophone pick-
up connection and R.F. muting. Suitable for
use with any of the standard frequency changer
valves and an IF frequency of 455Kc. Calibrated
glass scale available.

Type 300B: 11-26, 30-90, 190-550 metres.

Television: Scanning yokes, Focus coils, Line
output transformers and H.T transformers.

Send for free lists.

ALLEN COMPONENTS LTD.
Tower Road, Willesden, N.W.10
TelephonE: Willesden 3875.
SOUTHERN RADIO's Wireless Bargains.

BENDIX command receivers, B.C.454 (49-100 metres), £20.00 net.
B.C.455 (15-30 metres), £3.00 net.
Tel. 25/-; 1,000 valves at list prices: 610, 9in and Command receivers. 23/-; 14ft control cables.
metres). B.C.455 (33-49 metres). complete with 6
contactor time switches by Smith or Venner, WX6 and W112, 6/- per dozen, special line,
specification lamps with lead and plug. 2/-6; Westec-
tories, complete brand new in sealed cartons,
limited quantity only; type 58 Mk I transmitter
lines previously advertised still available; full
SOUTHERN RADIO SUPPLY. Ltd., 46, Lisle
St., London. W.C. Gerrard 6653. 10016

Amplifier, 5 watt ; less valves), or wired and
resistors. Reliance potentiometers. aerials. etc.
of repute; Eddystone, Raymart, Denco, Wearite.
new E.M.I. auto- changer at £ 9/19/10 inc. tax.
useful literature.
SEND NOW for (a) T.V. list: (b) amplifier list;
2/3 doz. 1 watt 3/- doz; condensers. 0.1 350v.
8 plus 16 450 2/11. 16 83s 350v 3/6; line
0.001 to 0.008. 4d each; 2- gang condensers.
MAINS Transformers: (l.t pri. 0-200-230v. sec. 0-24v 4a,
14275
23/24v d.c. Output 230v. 50cps 75watt. Brush-

ELEVISION and radio constructors.

THE signal generator you need at the price
1.4 of radio and television components; pay us

D.C. Mains Transformer.

Electrolytic Condensers, B.C.C Can Tubular, 8,16,4,0.66 in. (H. 1in dia. x 2.1in high); 8,16,5,0.66 in. (H. 1in dia. x 2.1in high); 8,16,4,0.66 in. (H. 1in dia. x 2.1in high); 8,16,5,0.66 in. (H. 1in dia. x 2.1in high);
B.C.C Card Tubular, 4,0.66 in. (H. 1in dia. x 1in high); 4,0.66 in. (H. 1in dia. x 1in high);
B.C.C Card Tubular, 4,0.66 in. (H. 1in dia. x 1in high);
B.C.C Card Tubular, 4,0.66 in. (H. 1in dia. x 1in high);
B.C.C Card Tubular, 4,0.66 in. (H. 1in dia. x 1in high);

Slat ion area at the prices indicated, the RI'. Chехis being a Super- het . Unit.
provide necessary Power Supplies require I by the above two Clasels. The tuned- choke principle is employed
D.T.K.3

Slat ion area at the prices indicated, the RI'. Chехis being a Super- het . Unit.
provide necessary Power Supplies require I by the above two Clasels. The tuned- choke principle is employed
D.T.K.3

Slat ion area at the prices indicated, the RI'. Chехis being a Super- het . Unit.
provide necessary Power Supplies require I by the above two Clasels. The tuned- choke principle is employed
D.T.K.3

Slat ion area at the prices indicated, the RI'. Chехis being a Super- het . Unit.
provide necessary Power Supplies require I by the above two Clasels. The tuned- choke principle is employed
D.T.K.3

Slat ion area at the prices indicated, the RI'. Chехis being a Super- het . Unit.
provide necessary Power Supplies require I by the above two Clasels. The tuned- choke principle is employed
D.T.K.3

Slat ion area at the prices indicated, the RI'. Chехis being a Super- het . Unit.
provide necessary Power Supplies require I by the above two Clasels. The tuned- choke principle is employed
D.T.K.3

Slat ion area at the prices indicated, the RI'. Chехis being a Super- het . Unit.
provide necessary Power Supplies require I by the above two Clasels. The tuned- choke principle is employed
D.T.K.3

Slat ion area at the prices indicated, the RI'. Chехis being a Super- het . Unit.
provide necessary Power Supplies require I by the above two Clasels. The tuned- chose principle is employed
D.T.K.3

Slat ion area at the prices indicated, the RI'. Chехis being a Super- het . Unit.
provide necessary Power Supplies require I by the above two Clasels. The tuned- chose principle is employed
D.T.K.3

Slat ion area at the prices indicated, the RI'. Chехis being a Super- het . Unit.
MORSE CODE TRAINING

YOU CAN do what these students have done!
Ref. 5529 says: "I feel sure you will be interested to learn that yesterday I took the G.P.O. test in Morse for a special post, and passed very comfortably. I sent a faultless 16 w.p.m. without effort and received at 14 w.p.m. with no errors; my numerals were all well on the right side, ending 12 and receiving 14 for a total of 16 and a half minutes. I have now full of confidence as a result of this success and delighted with the progress I have made." Ref. 6140.—Many thanks for your letter regarding my son. I will pass your letter on to him, and ask him to reply to you. He told me quite definitely that he had derived great help from your course. You will be pleased to know that he was successful in passing his first Class P.M.G. He had to leave home at short notice to take up a position under Marconi Co., and is now at sea." Ref. 2245.—"I am glad to announce that I recently passed the P.M.G. Special Exam., and as you will definitely that he had derived great help from your course, you will be pleased to know that he was successful in passing his first Class P.M.G. He had to leave home at short notice to take up a position under Marconi Co., and is now at sea.

THE CANDLER SYSTEM CO.
For Beginners and Operators
MORSE CODE COURSES
see on my report, my speeds are now far ahead passed the P.M.G. Special Exam., and as you will definitely that he had derived great help from your course, you will be pleased to know that he was successful in passing his first Class P.M.G. He had to leave home at short notice to take up a position under Marconi Co., and is now at sea.

YOU CAN do what these students have done!

MORSE CODE COURSES

For Beginners and Operators

Just send for the CANDLER SYSTEM CO.
(55 W.), 121 KINGSWAY, LONDON W.C.2

Conductor System Co., Denver, Colorado, U.S.A.

VACUUM relays, thermal type, 40v 35ma will switch 250w 150v; length 5/8in. diameter 3/8in, fitted with standard 4-pin lamp base.

LINEAR wirewound potentiometers (for bridges).

Bender type M100-250; 250w only 500; 250w only 50; 500w carbon potentiometers, 1meg.-1meg., 3/8in. diameter, in many types in stock send for list.—Hopton Radio, 1, Holborn Viaduct, High Rd., London. S.W.16.

RESISTORS, new, 5watt wire wound, 3-90 ohm. 11/- 100, condensers: 0.005-0.01, 0.25mfd, 50mf 25v, 5/-, 20/-, 100/-, 1400/-

TELEVISION, all parts in stock for "EE" television and scan and focus coil, line trans., model on view.—H. G. Radio, 150, Stratford Road, Balsall Heath, 28.

DEFLECTOR coil assembly, 22/-; focus coil, 25/-.

TELEVISION scanning coils, 30/-; frame pot, 15/-; line output transformers, 25/-; also mains transformers, choke.—The Hartman Electric Co. Ltd., Hoddesdon.

B035/4/5; conversions car mains receiver, circuit and full construction notes; enclosed is list for "W W."—Ref. 1220.

YOU’LL probably get it at Smith’s, Edgware Rd., London, W., as the constructor, from a 110volt resistors to a radiogram cabinet, is very near his biggest variety.—Near Metropolitan Music Hall, 111, 2nd Ave. 1400.

M A NEWMAN, 25, Bristol Hill, Bristol, 4, offers T.R.F. kits, complete with moulded brown bakelite cabinets, for £5; 15; ivory cabinets plus £5; limited quantity available; circuit diagrams sent on application. [4356]

G005 twin gangs, 250v 0.1amp, 1 6; 45W switches, 1/-; 0.01 1000v spruce, 5/- 6/; Damp Droppers, 1/-; 2/- gross; many other bargains.—List from T. O. Hoyle & Co. (W), 25, Mr.William Road, Brighton, 4.

A Li ham supplies, wide range all well known manufacturers, such as Able, Edgstone, Raymart, Harmad, Laboger, Prentis, etc.—Deliveries free to list, s.a.e. with enquiries.—Newson, G3GY, Market Place, North Walsham, Norfolk, 4231.

ROTARY transformers, 12 input, 275v and 1000v output; can be transformed into A.C. motors, instructions supplied; complete with two fuses, pilot light, switch and various condensers and fuses.—Radio Aid Ltd., 29, Market St., Warfard. [0036]

CLOCK work; timing, etc.—Reversed ex-G.A.F. equipment, suitable for process work dark room timing, etc.—May be used on 10 to 60 seconds relay to operate off 6-volt battery capable of handling 100 watts supplied with each movement; price with relay, 36/- each, post paid, each movement is fully lapse protected against back-ironing.

SYNCHRONOUS clock units, self-starting, 200-250; A.C. 50 cycle, 5-25w, fitted Sagambo motors, consumption 2.5a watts, size 2 x 2in dia., 2in deep, geared 1 rev/min, and ideal movements for making electric clocks, time switches, etc., ticked pointer to complete with 121 dial train and 1 hand hands. 22/6, post paid.

Regulator, as above, final speed, one rev per min, less dial train, ideal for process time, etc.—Free post paid.

LIGHTWEIGHT, high-resistance headphones, complete with head band and cord, 4,000 ohms, 10/- per pair.

TYPE 24 R.F. units, new, in makers’ cartons, these make excellent 6 w. converters, complete with valves, price 15/- each, post paid. CONDENSERS: 250v, 1,000mf, 25v C.D.; W.R.O.: 4/6 each, post paid; 45/- per doz. RECTIFIER units, A.C. to D.C., input 200-250v A.C., 50 cycles, 1-phase, output 160/220v D.C.; lamp, price 41/- £1, item 28. SIEMENS high-speed relays, 2,000ohms, ideal for model control, 6/6 each, post paid. 20 VOLT D.C. motors, 1in x 1in x 1in, ideal for model work, reversible on D.C.; price 10/- each, post paid.

1AMP Mercury switch, sealed with saddle and clip, 4/- each, postage paid.

TRANSFER MOS, input 250v A.C. output 9-16 volts 5 amps; direct, output 250 volts 5 amps: 50/- 6/- each.

SOLENOIDS, heavy duty, 12/24 volts D.C.; 10/- each, postage paid.

A LARGE quantity of single items which we do not list, which are available to callers; also assortment of various ex-W.D. radar and radio equipment, relays, power packs, oscillograph units, gears, lamps, condensers, etc., s.a.e. for list.

FRANKS, 58, New Oxford St., London, W.C.1. One minute from Tottenham Court Rd Court Station, Tel. Museum 6862.

MANUFACTURERS.—Enamelled copper wires, all gauges, uninsulated, all types, high stock radio components, s.m.m., m.m., 1/4 and 3/8in. diameter; high performance transformer and high stability resistors to 1%, all goods guaranteed.—L. Simmons & Co., 66, Broad Rd., Harrow, Middx. Telephones Underhill 2515, Harrow 0318, 2515.

MACS, S. SHAKESPEARE RD., FINCHLEY, N.3

Phone: Finchley 2188

*Phone: Finchley 2188

POPULAR TELEVISION

Manufactured to "Electronic Engineering" Televisor Specification.

MIDLAND T.V. Sound and Vision Panels.—Fitted with microphone and dust cores now available.

LINE OUTPUT TRANSFORMERS

NEW Improved SET OF GANTRIES COMPLETE

FOCUS COILS

LINE AND FRAME SCANNING COIL ASSEMBLIES

All Steel CADMIUM PLATED POWER AND TIME BASE CHASSIS valve-boxes, 3 point and single socket and all necessary cut-outs.

SOUND PANEL CHASSIS ASSEMBLY.—fitted with screens, valve-boxes, forearms and dust cores.

VISION PANEL CHASSIS ASSEMBLY,—fitted with screens, valve-boxes, forearms and dust cores.

9° C.TUBE SUPPORT for mounting on top of Gantries Assembly.

9° CREAM MASKS.

S. SHAKESPEARE RD., FINCHLEY. N.3

The Quality Enthusiasts

Radio Show

Featuring the following:—

AMPLIFIERS

speakERS

PICK-UPS

New R.N.W., Deca, Wilkins & Wright, Briery, Connoisseur, All Radio Feeders Units, Tone Control Units and P.I. Cabinets.

Call and hear them at:—

HOLLEY'S RADIO STORES
265, CAMBERWELL Rd., S.E.5

*Phone: RODney 4988

WE CAN SUPPLY YOU WITH THE CABINET FOR THAT CHASSIS

Any type of Cabinet made to specification.

RECEIVER CABINETS from stock. 12in. x 8in. x 7in. deep, in polished walnut at 35/-.

GRAMOPHONE CABINETS. 15in. x 13in. High in polished walnut at 45/- each.

Illustrated leaflets of these cabinets are available.

AMPLIFIERS. 12 watt Universal Kit at 8/- Components for our 42 watt A.C. and 5 watt Universal Amplifiers sold separately if desired. Full details and illustrations upon request. Blueprints of these amplifiers are available at 2/- each.

BLUEPRINTS of the following receivers are available at 2/6 each.

SUPERHET RECEIVER A.C. or Universal Plines. 4 valves, plus rectifier, 3 wavebands, S.M.L. or S.S.P. Ext. L.F.

PERSONAL PORTABLE RECEIVER. 3 Pidget valves T.R.F. design Medium wave.

Our SPEEDY Mail Order service for all Radio Components is at your disposal. Lists available.

LEWIS RADIO CO.
322, High Road, Wood Green, LONDON, N.22

*Phone: Bowes Park 5997.
October, 1949 Wireless World, page 95

SELENIUM rectifiers, new, 50 types in stock, job, £6v 2 amp/12v 0.5a 45/-, £6v 2a/12v 1.5a 55/-, really first class at moderate price.

H.T. recta., small space selenium, 250v 120ma for garage charger conversions; add 1/- postage.

DIODES, 3/6, post 3d.

CHARGERS and chargers' kits, 14 months' g'tee, high grade.

TRANSFORMERS and chokes; “E.E.” 350-0-350, 250 m/a, 62.6; E.R.T. 2.5kva, 10-150, 35/-, choke 60 ma.

CHOKE 60 ma.

15amp fuse holders. complete. Type 10H/628, 2/20.

12in Phillips loudspeaker, 10/-, 5in P.M. 11/-, 12in P.M. 15/-, 10in Goemans 19/6, 485 ke/s IF transformers, metal rectifiers, 8/6 pair, complete.

10029

Model EXP. 125/2. 14 VALVE ALL-WAVE CHASSIS

Model R.F. 103/3. 10 VALVE ALL-WAVE CHASSIS

Model EXP. 10. ALL-WAVE 10 VALVE CHASSIS

Model UNI. 83/2. ALL-WAVE 8 STAGE CHASSIS

Model EXP. 83/2. ALL-WAVE 8 STAGE CHASSIS

ARMSTRONG WIRELESS & TELEVISION COMPANY LTD.

WARRIERS ROAD, HULL, LONDON N.7.

P.O. Box 9539.

JUST PUBLISHED

INTERNATIONAL RADIO TUBE ENCYPLOAEDIA.

Ed. B. B. Babani.

Operating characteristics and pin connections of 14,500 radio tubes of all classes that have been manufactured in 20 countries. Altogether 4,500 pages are required for this book, the only one that has been attempted in 15 languages.

42/- THE MODERN BOOK CO. 21 Praed Street, London W.2.
WIRELESS INSTRUMENTS (LEEDS) LTD.

Our Bargain Price

Send stamped addressed envelope for illustrative list.

BARGAIN

WIRELESS INSTRUMENTS (LEEDS) LTD. 54-56, THE HEADROW, LEEDS 1.
Tel. 22162.

FROM EVERY POINT OF VIEW

A.W.F.

LOUDSPEAKER CONE ASSEMBLIES AND EXACT FIT FIELD COILS, together with our stocks of sundries: spiders, fixing segments, lead wires, brass screws, nuts, washers, bushes, etc., etc.,

CONSTITUTE THE IDEAL SPEAKER REPAIR SERVICE where you need it most:

IN YOUR OWN SERVICE DEPARTMENT.

Let us show you how to increase your profits and efficiency, at one and the same time.

MEET US AT RADIOLYMPIA NO. 203 SEPTEMBER 28-30 OCT

A. W. F. RADIO PRODUCTS LTD. (Dept. W)
BOROUGH MILLS, BRADFORD, YORKS.

AMAZING BARGAIN

Ex. M.O.S. NEW & UNUSUAL ELECTRIC MOTORS

A.C., single phase, approx. one-sixth h.p., for 200/250 volts, 50 cycles. They're worth £1's. Dimension 11in, long 5x4in, x 5in. Weight 16lbs, shaft 6in, x 1in. Keyed ready for pulley.

Vee Die Cast Pulley 3/4in. 80v a.c. motors. Will work off 110v a.c. and 6.3v d.c. old model, 22/6 each; all new model, 4/- each.

C. A. J. CROWE. 99s and 100, Northbrook St., West Alley, Ilitchin, Herts.

RADIO EXCHANGE CO. (W) 9 Cedarwall St., WEDSTED, Phone 5668 BLACK & WHITE PICTURES FOR ALL

The Booklet for Everyone. Only 5/- post free. Write for your copy to-day. Contains every detail showing you how to build your own Television Receiver from a kit, using only full size magnetic tubes. Point to point wiring diagrams given.

KITS FOR THE ABOVE

Kits of parts for the above are available for £16 (less Tube). Write for leaflet giving further details.

TELEVISION COMPONENTS AVAILABLE

Deflection Coils
PRICE 237 10 0

TELEPHONE generators, 4/6; carbon microphone with switch, flex and plug, 2/-; m/c. mike with switch, flex and plug, new, 4/6; 3-wave tuning scale with stencil names, 9d. Admiralty style wiring plug and mixer unit contains 5Q4e, 2X650, 8P61, 4PE6, 2X25D, condenser transformer, etc., 18/6; 12v transformers, 4/6; 12v transformer trian. 4/6, selenium rectifier, 2/-; f.w. 180 ac in, 140 dc out, 75 m.s., 2/-; f.w. 180 ac in, 140 dc out, 150v a.c. or 200 v.d.c., condenser transformers, 100 for 9/-; assorted condensers, 12 for 3/-; transformers, iron core, 1.2, 2a, 12/6 ea. 20v 900c, 50v 10amps out, 40/-; assorted coils, 12 for 1/-; f.f. coils, x 4 condensers, 8a 1/4, 4a 1/4, 2s 6d. Yale type switch 6 1/2w 16X8mfd cut-out for valves, 1/-; 600v Diode 4220. 3pk. Coax plug and socket. £7 0 10

Houghton & Osborne ELECTRON WORKS, THAME, OXON

WIRELESS WORLD October, 1949
SOUTHERN RADIO'S WIRELESS BARGAINS

CRYSTAL MONITOR Type 2, complete in case less crystals. 6/6. With two Brand New crystals. 16/6.

CRYSTALS, brand new American and British types. From 50,000 to 22,000,000. 1¢ each. Twelve assorted frequencies. 6/6.

BENDIX COMMAND RECEIVERS, B.C. 144 (100 MHz), B.C. 165 (240 MHz). New with complete with all valves converted to 268 TV receivers for television sound. 50/6.

CONTROL BOXES FOR B.C.450/45, with slow motion slide, volume control etc., 13/6.

DRIVE CABLES FOR B.C.450/45, 141/2 ft length with adapters, 6/6.

DRIVE ADAPTOR FOR B.C.343/3, with knobs, 2/9.

CARIBUS. Converted from Control Receiver for use immediately on 12 volts. COMPLETE WITH ALL ENDS, 5/6.

RAT. BOMBIGHT COMPUTERS. Complete with Motors, tyne, tyner, blowers, etc., 65/6, plus 6c. The last component value ever offered.

INDICATOR UNITS. B.C.900A. 50/6.

CONTACTOR TIME SWITCHES by SMITH or VEN. No 10-hour movement with thermostat control. Complete with 5 time settings, 40/6, plus 90/6. Ideal for photographs and other uses, 1.4.

REPLACEMENT COMPONENTS with Selenics Motors.

BRAZING LAMPS, with extension hose and nozzle, 40/6.

ALUMINA LAMPS, less complete with valves. 3/6.

FLASHER MOTES, 24 volts with switching and gear box. 13/6.

LEACH RELAYS, 12 volt heavy duty, 10/6.

DELCO HAND GENERATORS, 6 volt at 4 amp. 5/6.

GAS GENERATORS, 100 watts. In grey case. 18X12X12 in. with motor and noisier units, 23/5. CARR. PAID;

CROSSOVER NEEDLE, with 2 separate 60 microamps. 4/6.

MODULATOR AND MIXER UNITS. In metal case with louvres. 4/71. A's) 42/6.

OIL FILLED CONDENSERS. 9.1 odd. and 0.5 mfd. at 200 volts. 6/6.

THROAT MICROPHONES. Complete with lead and metal mites. 40/-.

FULL DETAILS AND CHARACTERISTICS INTERNATIONAL RADIO TUBE ENCYCLOPAEDIA included. 1198 SUPER-HET RECEIVER. Complete with all in transit case, 22/6, CARR. PAID.

TELEPHONE LINE UNITS. In polished wooden case. 5 kV, 3 per lot, plus 2/-.

DIPOLE AERIALS. Folding for vhf., 2/6.

OIL FILLED CONDENSERS. 9.1 odd. and 0.5 mfd. at 200 volts. 6/6.

PORTABLE COILS. 30 inch, 4/6, 33 inch, 6/6.

DIAL AND INDICATOR UNITS, with Rectifiers, Relays, etc., 15/-.

OIL FILLED CONDENSERS. 9.1 odd. and 0.5 mfd. at 200 volts. 6/6.

PORTABLE COILS. 30 inch, 4/6, 33 inch, 6/6.

DIAL AND INDICATOR UNITS, with Rectifiers, Relays, etc., 15/-.

OIL FILLED CONDENSERS. 9.1 odd. and 0.5 mfd. at 200 volts. 6/6.

PORTABLE COILS. 30 inch, 4/6, 33 inch, 6/6.

DIAL AND INDICATOR UNITS, with Rectifiers, Relays, etc., 15/-.

OIL FILLED CONDENSERS. 9.1 odd. and 0.5 mfd. at 200 volts. 6/6.

PORTABLE COILS. 30 inch, 4/6, 33 inch, 6/6.

DIAL AND INDICATOR UNITS, with Rectifiers, Relays, etc., 15/-.

OIL FILLED CONDENSERS. 9.1 odd. and 0.5 mfd. at 200 volts. 6/6.

PORTABLE COILS. 30 inch, 4/6, 33 inch, 6/6.

DIAL AND INDICATOR UNITS, with Rectifiers, Relays, etc., 15/-.

OIL FILLED CONDENSERS. 9.1 odd. and 0.5 mfd. at 200 volts. 6/6.

PORTABLE COILS. 30 inch, 4/6, 33 inch, 6/6.

DIAL AND INDICATOR UNITS, with Rectifiers, Relays, etc., 15/-.

OIL FILLED CONDENSERS. 9.1 odd. and 0.5 mfd. at 200 volts. 6/6.

PORTABLE COILS. 30 inch, 4/6, 33 inch, 6/6.

DIAL AND INDICATOR UNITS, with Rectifiers, Relays, etc., 15/-.

OIL FILLED CONDENSERS. 9.1 odd. and 0.5 mfd. at 200 volts. 6/6.

PORTABLE COILS. 30 inch, 4/6, 33 inch, 6/6.

DIAL AND INDICATOR UNITS, with Rectifiers, Relays, etc., 15/-.

OIL FILLED CONDENSERS. 9.1 odd. and 0.5 mfd. at 200 volts. 6/6.

PORTABLE COILS. 30 inch, 4/6, 33 inch, 6/6.

DIAL AND INDICATOR UNITS, with Rectifiers, Relays, etc., 15/-.
20 watt rack mounting amplifiers, complete with ac power pack and standard rack 105/-, less valves. Bendix transistor chassis, complete with Littoc, 6/6 special filter of H.P. motors 200-250 ac/dc 1/20 hp 3000rpm. Finish six 5in long with extending spindles, ideal for sewing machines, mixers, etc. 57/6 ea; these motors are new and are continuously rated, and are not to be confused with converted rotary transformers, new 12v ac/dc motors, suitable for models 7, 9, each. Aldi signalling lamps 25/- ea; Lorain A.P.N. indicator units, complete with valves, 125/- c. crystal 12PF CR tube 90/- ea. H.T. Bendex motors type 1813 250v 3.8a 50 cycle, 70watt electronic televi- sion transformer 450-0-450v 250w/μa usual in win- dings, 50/- ea; auto transformers 2, 5, 115 v 250v. From 80/- ea; large stocks of heavy duty lift transformers; quotation for special size rotary transformers 12x input 250v 125w output, 21/- ea; 12v output 450v, 65ma 175v, rotary converters 200v dc input, 25ac 50 cycle output, 125 watts, 6/- ea; Selenium recti- fiers, 50amp, 54/- ea.; large stocks of trans- mitting values in stock; above prices do not include carriage.

SERVICE RADIO SPARES. (Ger. 1734), 4, Lisle St., London, W.C.2.

Guaranteed goods, mains transformers, full voltage ratings, improved, pri- maries, 200-250v 50cp, screened; upright mount- ing, fully shrouded types 400-245v, 600ma. 6.5-4v 6A C.T., 6.3-4v 6A C.T., 5-4v 3A 59/- post. 150-0-150v 100mA 64.5-4v 2A 21/6.; or with 4v 1.5v only 17/-; midget type 21-1-21. 250-0-250v 50mA 4.5v 1.5a 12/- 11/; half- shrouded drop-through types, 150-0-550v 80ma. 6, 3-4v 3a 15/-; 12-9. 250-0- 250v 60ma. 6.3v 5a 15/-; push-pull 10-12watt input trans. match 6L6, 6L6 etc., to 1500w speaker 8.9. Can electrics, 8-8dmt 450v with clip 53s ea. 6 in 6.6, 1500w 3-5v 5s ea. 6 in 6.6; midt. tubular, 8dtmd 450v 2.3 es. 45/-; d.t.; selenium rectifiers, smallsize, 500ma 250v 5.6 each. 50ma 12v 56/- ea.; 50ma 125v 79/- ea.; 50ma 450v 2/6d ea.; 50ma 1250v 5/- ea.; 50ma 3000v 4/- 5.6d ea.; 50ma 8000v 1/- ea.; 50ma 30000v 5/- ea.; 50ma 80000v 1/- ea.; 50ma 300000v 5/- ea.; 50ma 800000v 1/- ea.; 50ma 3000000v 5/- ea.; 50ma 8000000v 1/- ea.; 50ma 30000000v 5/- ea.; 50ma 80000000v 1/- ea.; 50ma 300000000v 5/- ea.; 50ma 800000000v 1/- ea.; 50ma 3000000000v 5/- ea.; 50ma 16 in dia 16 in long with extending spindles, ideal for sewing machines, mixers, etc. 57/6 ea; these motors are new and are continuously rated, and are not to be confused with converted rotary transformers, new 12v ac/dc motors, suitable for models 7, 9, each. Aldi signalling lamps 25/- ea; Lorain A.P.N. indicator units, complete with valves, 125/- c. crystal 12PF CR tube 90/- ea. H.T. Bendex motors type 1813 250v 3.8a 50 cycle, 70watt electronic television transformer 450-0-450v 250w/μa usual in windings, 50/- ea; auto transformers 2, 5, 115 v 250v. From 80/- ea; large stocks of heavy duty lift transformers; quotation for special size rotary transformers 12x input 250v 125w output, 21/- ea; 12v output 450v, 65ma 175v, rotary converters 200v dc input, 25ac 50 cycle output, 125 watts, 6/- ea; Selenium recti- fiers, 50amp, 54/- ea.; large stocks of transmitting values in stock; above prices do not include carriage.

SERIAL R.F. E.H.T. UNITS

R.F. E.H.T. UNITS

200/250 volt A.C. MOTORS

APPROX. H.P. ONE-EIGHTH. Revl. 2,000. Carriage and Pack 3/- extra.

AIDLIS LAMPS 32/- STAGE SPOT LIGHTING, EACH

PHOTOGRAPHIC WORK etc. Post Free

MAINS INTERFERENCE SUPPRESSORS

Rid your set of all noises from the MAINS

21/- each

POSTAGE 1/-

Large Stocks Resistances, Condensers, Speakers, Valves

UNIVERSAL BAZAARS

RADIO BARGAINS

MANCHESTER, 8, 6-10 BROWN STREET, (DEAgnate 5005)

Woolwich Polytechnic

A course of six advanced lectures on

THE DESIGN OF TRANSFORMERS AND INDUCTORS FOR AUDIO AND CARRIER FREQUENCIES

on Tuesday evenings commencing on Tuesday, 1st November, 1949

by

John H. Mole, Ph.D., D.I.C., A.M.I.E.E.

The course will consist of lectures, with associated class work

Lecture: 7-8 p.m.

Exercises & Discussion: 8-10-9.30 p.m.

The fee for the course will be £1. Details of the syllabus may be obtained on application to the Secretary.
FROM RADIOLYMPIA TO OUR RADIO BOOK DISPLAY

(No. 27 Bus, Door to Door)

Sound Reproduction. By G. A. Briggs. 7s. 6d. Postage 4d.

Home Built F.M. Receiver. By K. R. Sturley. 4s. 6d. Postage 3d.

Television Servicing Manual. By E. N. Bradly. 4s. 6d. Postage 3d.

Loudspeakers. By G. A. Briggs. 5s. 3d.

Radio Valve Data. Compiled by "Wireless World." 3s. 6d. Postage 3d.

Outline of Radio—covering the principles of radio, television and radar. 21s. Postage 9d.

Radio Laboratory Handbook. By M. G. Scroggie. 12s. 6d. Postage 4d.

Ultrasonics. By Benson Carlin. 30s. Postage 9d.

Electronic Circuits and Tubes. By Crislauf Electronics Staff. 45s. Postage 9d.

Classified Radio Receiver Diagnoses. By E. M. Squire. 10s. 6d. Postage 4d.

We have the finest selection of British and American radio books. Complete list on application.

THE MODERN BOOK CO.
(Department W. T.)
19-23, PRAED STREET, LONDON, W.2.
HIGH Q TOROIDAL INDUCTORS
WAVE FILTERS
EQUALISERS
for Telecommunications
and Electronics
LYNCAR LABORATORIES
29, Camborne Road, Morden, Surrey
LIBERTY 3247.

SITUATIONS VACANT
Vacancies are advertised to restricted persons of the Corporation of Engagement Order, 1947.

R. M.

REGULAR COMMISSIONS in R. M. E. APPLICATIONS are invited from young Engineers for Regular Commissions in the Corps of Royal Electrical and Mechanical Engineers.

2. CANDIDATES must:
(a) Be British Subjects or citizens of the Republic of Ireland.

(h) Be over the age of 21 and 27.

(c) Have had at least 2½ years (1½ years for those holding a university degree) practical workshop experience as a pupil or apprentice or with an engineering firm, or, in special cases, other appropriate employment, including previous service in the armed forces.

1. If a man is in possession of a university degree he is required to have

2. Have an engineering degree of a British University.

3. Have passed or have been exempted from Sections A and B of the Associate Membership Examination of the Institution of Mechanical Engineers or the Institution of Electrical Engineers, (such exemptions include the Ordinary and High National Certificates, with endorsement, on a subject-specific basis). In some cases, other appropriate employment, including previous service in the armed forces.

1. CANDIDATES must hold as a minimum a degree in one of the following fields:

(a) Electrical Engineering.

(b) Mechanical Engineering.

(c) Civil Engineering.

(d) Electronic Engineering.

(e) Computer Science.

(f) Telecommunications.

(g) Systems Engineering.

(h) Control Systems.

(i) Power Systems.

(j) Robotics.

(k) Software Engineering.

(l) Environmental Engineering.

(m) Materials Science.

(n) Mechatronics.

(o) Materials Engineering.

(p) Nanotechnology.

(q) Biomedical Engineering.

(r) Biophysics.

(s) Neurotechnology.

(t) Nanonanotechnology.

(u) Nanoscale Electronics.

(v) Nanoscale Materials.

(w) Nanoscale Devices.

(x) Nanoscale Systems.

(y) Nanoscale Technologies.

(z) Nanoscale Applications.

2. CANDIDATES must have had at least 2½ years (1½ years for those holding a university degree) practical workshop experience as a pupil or apprentice or with an engineering firm, or, in special cases, other appropriate employment, including previous service in the armed forces.

3. CANDIDATES must hold as a minimum a degree in one of the following fields:

(a) Electrical Engineering.

(b) Mechanical Engineering.

(c) Civil Engineering.

(d) Electronic Engineering.

(e) Computer Science.

(f) Telecommunications.

(g) Systems Engineering.

(h) Control Systems.

(i) Power Systems.

(j) Robotics.

(k) Software Engineering.

(l) Environmental Engineering.

(m) Materials Science.

(n) Mechatronics.

(o) Materials Engineering.

(p) Nanotechnology.

(q) Biomedical Engineering.

(r) Biophysics.

(s) Neurotechnology.

(t) Nanonanotechnology.

(u) Nanoscale Electronics.

(v) Nanoscale Materials.

(w) Nanoscale Devices.

(x) Nanoscale Systems.

(y) Nanoscale Technologies.

(z) Nanoscale Applications.

3. CANDIDATES must have had at least 2½ years (1½ years for those holding a university degree) practical workshop experience as a pupil or apprentice or with an engineering firm, or, in special cases, other appropriate employment, including previous service in the armed forces.

4. CANDIDATES must hold as a minimum a degree in one of the following fields:

(a) Electrical Engineering.

(b) Mechanical Engineering.

(c) Civil Engineering.

(d) Electronic Engineering.

(e) Computer Science.

(f) Telecommunications.

(g) Systems Engineering.

(h) Control Systems.

(i) Power Systems.

(j) Robotics.

(k) Software Engineering.

(l) Environmental Engineering.

(m) Materials Science.

(n) Mechatronics.

(o) Materials Engineering.

(p) Nanotechnology.

(q) Biomedical Engineering.

(r) Biophysics.

(s) Neurotechnology.

(t) Nanonanotechnology.

(u) Nanoscale Electronics.

(v) Nanoscale Materials.

(w) Nanoscale Devices.

(x) Nanoscale Systems.

(y) Nanoscale Technologies.

(z) Nanoscale Applications.

4. If a man is in possession of a university degree, he is required to have

5. CANDIDATES must have had at least 2½ years (1½ years for those holding a university degree) practical workshop experience as a pupil or apprentice or with an engineering firm, or, in special cases, other appropriate employment, including previous service in the armed forces.

5. If a man is in possession of a university degree, he is required to have

6. CANDIDATES must hold as a minimum a degree in one of the following fields:

(a) Electrical Engineering.

(b) Mechanical Engineering.

(c) Civil Engineering.

(d) Electronic Engineering.

(e) Computer Science.

(f) Telecommunications.

(g) Systems Engineering.

(h) Control Systems.

(i) Power Systems.

(j) Robotics.

(k) Software Engineering.

(l) Environmental Engineering.

(m) Materials Science.

(n) Mechatronics.

(o) Materials Engineering.

(p) Nanotechnology.

(q) Biomedical Engineering.

(r) Biophysics.

(s) Neurotechnology.

(t) Nanonanotechnology.

(u) Nanoscale Electronics.

(v) Nanoscale Materials.

(w) Nanoscale Devices.

(x) Nanoscale Systems.

(y) Nanoscale Technologies.

(z) Nanoscale Applications.

7. CANDIDATES must have had at least 2½ years (1½ years for those holding a university degree) practical workshop experience as a pupil or apprentice or with an engineering firm, or, in special cases, other appropriate employment, including previous service in the armed forces.

7. If a man is in possession of a university degree, he is required to have

8. CANDIDATES must hold as a minimum a degree in one of the following fields:

(a) Electrical Engineering.

(b) Mechanical Engineering.

(c) Civil Engineering.

(d) Electronic Engineering.

(e) Computer Science.

(f) Telecommunications.

(g) Systems Engineering.

(h) Control Systems.

(i) Power Systems.

(j) Robotics.

(k) Software Engineering.

(l) Environmental Engineering.

(m) Materials Science.

(n) Mechatronics.

(o) Materials Engineering.

(p) Nanotechnology.

(q) Biomedical Engineering.

(r) Biophysics.

(s) Neurotechnology.

(t) Nanonanotechnology.

(u) Nanoscale Electronics.

(v) Nanoscale Materials.

(w) Nanoscale Devices.

(x) Nanoscale Systems.

(y) Nanoscale Technologies.

(z) Nanoscale Applications.
October, 1949

Advertisements

Full size Blue Prints for our new T.R.F. and vision. (E.F.50’s) T.R.F. circuit, wide stage of V.H.F. Interference suppressors on Four stages of R.F. amplification on both sound and vision. 4 control knobs in front—Brightness, Volume, well smoothed output. Full wave rectification.

TELEVISION

Chassis ready drilled, all best quality cabling, a good bright picture, steady, interference free and excellently good quality on sound.

Working well outside the fringe area given a high powered output. Exquisitely well situated. BLUE PRINTS, one theoretical, and two full site practical, and priced list of packs, 18/-

OUR NEW HIGH FIDELITY TUNING UNIT

Brief specification:

One R.F. stage, F.C. with separate oscillator, 1 stage of I.F., gain control with selectivity.

Main tuning control, no band-spacing required, sensitivity control working on the first R.F. valve, I.F. gain control with selectivity, and the high fidelity obtained on the medium wave-band, due in measure to the cathode detector valve with its distortionless output, in conjunction with its filter system.

Price £25 including purchase tax.

RADIOLOMIA

We are open in the evening till 9 p.m. during the Radio Exhibition at Radiolympia and we believe this to be the finest tuning heart on the market. They must have practical experience of the radio receivers, and the Crown Agents cannot undertake to acknowledge and will communicate only with applicants for further consideration.

CROWN Agents for the Colonies.

WIRELESS operator/mechanic required for the Nyasaland Government Aviation Department for 2-3 months. A prospectus of work may be obtained, £25 including purchase tax.

TELEFAX

FS1, 2500/0/250v. 100 m/a. 19/6
FS2, 3500/0/350v. 80 m/a. 19/6
FS3, 4500/0/450v. 80 m/a. 19/6
FS4, 5500/0/550v. 80 m/a. 19/6
FS5, 6500/0/650v. 80 m/a. 19/6
FS6, 7500/0/750v. 80 m/a. 19/6
FS7, 8500/0/850v. 80 m/a. 19/6
FS8, 9500/0/950v. 80 m/a. 19/6

Price list of Flying Leads.

FL16. Output, 0-2-4-5-6.3v. at 2 amps. 9/-
FL24. Output, 0-2-4-5-6.3v. at 4 amps. 15/-
FLD9 and FLF9 clamped with Flying Leads.

Top panel and clamped, each add 1/ in carriage.

C.W.O. (add 1/- in carriage), all orders to be addressed to M. Ashworth, 4877, 4878, 4879, 4880.

Government of Iraq.

Wireless operators and mechanics required for the Communications Department. A prospectus of work may be obtained, £25 including purchase tax. Preference will be given to candidates with previous experience in radio work. They must possess a P.M.G. 1st class certificate in wireless telegraphy and be A.M. Brit. I.R.E. or equivalent.

They must have practical experience of erecting, operating and maintaining all types of radio equipment, and of the installation, operation and maintenance of radio communication stations.

They must possess the ability to work on radio equipment, and to interpret and communicate in English.

Applications are invited from married and single men, of initiative, capable of working on their own and under supervision.

The salary will be £670 to £900 per annum, which is determined by the scale of entry and on leave; income tax is at local rates, which are very much lower than those in London. Free passage is provided for the officer on first appointment and on leave; a passport is issued to him at the time of joining the service; where Government quarters are provided he will receive an outfit allowance £30; free passages; candidates, depending on age, qualifications and approved merit, may be appointed.

Successful candidates will be appointed to the Radiotechnical Section of the Directorate for one tour of three years in the first instance. Salary scales for officers are £1,100-£1,550, and for others £750-£1,150 per annum. Cost of living allowance between 10/- and 25/-, depending on salary.

There are a number of positions vacant in the Middle East, the Far East and the South Pacific. A list of these is available on request.

Applications with the full particulars of their qualifications and experience, and mentioning this paper to the Crown Agents, should be addressed to: The Director of Personnel, Government of Iraq, London, W.C.1.

WIRELESS operators/ mechanics required for the Colonial Service.

Successful candidates will be awarded the necessary courses of training and will be appointed to the Colonial Service.

Applications are invited from single men, either married or single, and full particulars of qualifications and experience and mentioning this paper, to the Crown Agents for the Colonies.

RADIOCHEMICAL CENTRE.

Output transformers.

MOPI. Ratios 26, 46, 56, 66, 90, 120-1, 50 m/a maximum. C.T. for Q.P.P. Class B etc. 2nd or 3rd. 2/3 ohms.

Top panel and clamped, each 5/-

OPI. Midget Power Pentode, ratios 30, 40, 50-1, 60 mia. Secondary 2/4 ohms, 5 impulsions on tape, and 5 impulsions on disc; the secondary must be between the size of 25 and 45. Good salaries will be offered to those having the required experience and qualifications. A position is available on the staff of Thorium, Ltd. (Managing Agent to the Government of Iraq). Candidates are required; preference will be given to candidates with previous experience of radioactive work, who are capable of preparing radioactive compounds and of diesel electric plants up to 15kva, the theory and design of aerial systems and of their installation and workshop experience. Application—Apply at once by letter, stating age, whether married or single, and full particulars of qualifications and experience, and mentioning this paper, to the Crown Agents for the Colonies.

Applications with the full particulars of qualifications and experience and mentioning this paper, to the Crown Agents for the Colonies.
Copper Wire
Enamelled, Silk, D.C.C., etc., most sizes.
Insulating Materials, Empire cloth, leatherside, pavolin, sleeving, etc.
Motors A.C. & D.C. up to 1 h.p., a specialty.
Send S.A.E. for list.

Stan. Halt.
349, High St. Smethwick, Staffs.
Telephone: Woodgate 3769

COPPER WIRE
ENAMELLED, SILK, D.C.C., etc., most sizes.
INSULATING MATERIALS, EMPIRE CLOTH, LEATHERSIDE, PAVOLIN, SLEEVING, etc.
MOTORS A.C. & D.C. up to 1 h.p., a specialty.
Send S.A.E. for list.

TO THE QUARTZ CRYSTAL CO., LTD.
63-71 Kingston Road, NEW MALDEN, SURREY.
Telephone: Malden 0334

TELEVISION service engineer.
A LEADING manufacturer requires the full time services of a skilled outside mobile service engineer; must be able to drive; this is an important position; qualifications of men with wide technical experience are asked to apply. Submit in writing your full particulars and state salary required to Mr. Shepherd, Manager, Service Department, E. K. Cole, Ltd., Birtley Works, Southend-on-Sea.

UNIVERSITY OF GLASGOW
APPLICATIONS are invited for the post of special technician for work in the field of electronics as applied to the biological sciences. The salary scale £450-£550 per annum. Applications should be made to the University, Glasgow, W.2.

CROWN Agents for the Colonies.
WIRELESS operators required for Government of Pakistan. Salary ranges Survey Service in the Antarctic for one tour of 18 or 30 months, free quarters, free clothing and free passage in research ship to and from the Antarctic. The application should be made to the Secretary, Department of Customs and Excise, London, W.1.

NORHERN RHODEIA.
A VACANCY exists for an Assistant Broadcasting Engineer. The appointment is non-pensionable but includes free board for 3 months' residential service in the Colony. The salary is £30-£40 per annum, point salary at 25 per cent. on age qualification and approved war service. When Government quarters are provided, 10s. per month is deducted as rent. Persons not over 30 years of age will be considered for this appointment on a contract basis.

THE SERVICE ENGINEER'S FIRST CHOICE
AMPLIFIERS KIT for HOME CONSTRUCTORS
A complete set of components to construct a 10 watt amplifier including 4 Woden output transistors, 1 source transformer, 3 meters, 296, speaker, 200, earth return, 240, cabinet, 8R5, microphone, 2397, pre-amp, 2379, driver, 2379, push-to-talk, tone control, steel chassis, suitable home or small hall.

Cash with order. Price complete to the last screw
BEETHOVEN LTD. 87-10-0
1,118 118 Shortlands, 9-11 East Street, Torquay, Devon.
"Phone" Torquay 2612"
LOWTHER MOVING COIL PICK-UP, fitted with a diamond reproducing point (to which the above refers) is an EXCELLENT BEGINNING to your reproduction from disc and
LOWTHER P.M.2.—P.W.I LOUDSPEAKER is the most outstanding combination for discs and
LOWTHER MOVING COIL PICK-UP, fitted (as the above refers) is an EXCELLENT BEGINNING to your reproduction from disc and
BEGINNING to your reproduction from disc and

METEON Ltd., have vacancies at their radio works, Moston, Manchester, for:
(a) SENIOR development engineers with responsible experience in the design of domestic television receivers.
(b) DEVELOPMENT engineers with honours degree or equivalent technical qualifications, preferably with some experience of circuit design for domestic television and radio receivers. SALARY on a liberal basis, according to qualifications and experience.—Application from the Assistant Manager, Hollinwood Lanes.

APPLICATIONS are invited by the Ministry of Supply for the following appointments in the Division of Atomic Energy, Windscale Works, Seasalset, Cumberland.—Shop manager (electrical) to be responsible for the general supervision of the assembly and testing of all electrical apparatus in the factory, and the administration of the factory. SALARY £700 to £1,200 per annum, (if under 30) £700 to £900 (if over 30). Apply Box 316/49-A. to Ministry of Labour and National Service, 11, 6.6 and 0.415kW distribution systems with supervisory control. 11kV automatic load control gear, small motors, mercury arc rectifiers, emergency diesel generation, etc. D.C. motor generators and large nickel cadmium batteries. Candidates must either have an honours degree in engineering, corporate membership of any of the Institutions of Civil, Mechanical or Electrical Engineers, or have passed examinations recognised by any of these Institutions as granting exemption from Sections A and B of their examination for associate membership. They should have had good experience in the types of duties specified. Salary will be assessed according to qualifications and experience within the range £570 to £720 per annum, (if under 30) £700 to £900 (if under 30). Candidates will normally be required to pass interviews to which British subject, born within the United Kingdom or one of the self-governing Dominions, of parentage similarly born. Applications should be addressed to Staff Section, Division of Atomic Energy (Production), Risley, Warrington, Lancs. (4520)

SERVICE and installation engineer required for electronic equipment of large experience essential.—Apply Fursehill Laboratories, Ltd., Elstree 1137. (4164)

MINISTRY OF SUPPLY invite applications from radio engineers for appointment as technical officer in the Air Technical Publications branch at Malvern, Worcs. THE duties involve collecting information from research, design, manufacturing, and other sources and preparing from official publications for the instruction of technical personnel in the Services on the theoretical and practical aspects of airborne and ground centimetric radar equipment. Applicants should possess good instructional ability in scientific or technical subjects, or experience in writing or editing publications on such subjects.

A DEGREE in engineering, or in physics is required, but applicants having lower qualifications, such as Higher National Certificate in radio or radar engineering, will be considered: in any case attainment of a good standard in physics and mathematics is essential; preference will be given to candidates holding corporate membership of the Institution of Electrical Engineers or who have passed examinations recognised by the Institution as granting exemption from Sections A and B of their examination. APPLICATIONS must have had either: (i) several years experience of centimetric radar apparatus and techniques in the research and development department of a leading manufacturer or in a Government research establishment, or (ii) extensive experience in a position of technical responsibility in the Services on the operation and maintenance of such equipment. The salary offered will be up to £720 per annum, depending on age, qualifications and experience. The post is unestablished, but opportunities to compete for established posts may occur later. Write, quoting D 316/49-A, to Ministry of Labour and National Service, Technical and Scientific Register (K), York House, Kingsway, London, W.C.2, for forms of application, which must be completed and returned within 14 days of the advertisement appearing in this issue. (4251)

INKY-RADAR mechanics with experience on ground radar equipment in the Forces on installation or maintenance work, are invited to write quoting Ref. 704 to Box 774. (4006)

VACANCY exists for scientifically minded person, preferably with experience, to undertake the preparation of quartz crystals.—Write stating wages required, to Box 6940. (2262)

ELECTRICAL engineer to specialist in high frequency work, hardening and heat treatment of metals: should have experience in general power engineering.—Write, quoting Ref. 708, to Box 6940. (4062)

REQUIRED by well-known radio manufacturers in West London, television and radio service engineers for both field and workshop: remuneration for 5-day week dependent on qualifications.—Apply Box 8364. (4181)

SENIOR, junior engineers and boys required (prefer, radio amateurs) for transmitters, receivers, etc. Write only full details of experience, qualifications, etc., to "Q-MAX" Ltd., 10, Little Turnstile, W.C.1. (4180)

MEET US ON STAND 165 RADIOLYMPIA

or write for further details to:—

"The Laboratory Production Unit"

The LOWTHER MANUFACTURING CO.

Lowther House, St. Mark's Road,
Bromley, Kent

RAV. 5225

PENNINE AUDIO SIGNAL GENERATOR

• HIGH STABILITY
• WIDE RANGE 40-16000 C.P.S.
• LOW PRICE
• 3 WATTS OUTPUT

LIST PRICE £99.0

Write for Particulars

PENNINE AMPLIFIERS

SOUTHBAGE, ELLAND, YORKS, ENG.
Tel.: Elland 2107

VALVES. All types for Radio and Television in stock, all new, at B.O.T. prices. Please order C.O.D. or remit with order. Comprehensive lists sent by return.

EASTERN ARENA SERVICE Manuals—a BARGAIN, Greatly reduced from £12.6 each Volume to £8.6 for three Volumes as follows—

EASY TERMS again on all TAYLOR meters. Please ask for illustrated application and application form.

BOOKS on every aspect of Radio in stock. We shall be pleased to send special list. VALVE Equivalent charts with quick reference Index, 2/8 post free.

OTHER BARGAINS

Pocket Sports Binoculars 17/6
Theatre Glasses 12/6
"Quick Sight" Binoculars 4/6
Spectacle Binoculars £2.15.0
Smith’s Wall Thermometers 4/6
Photo-Magic Cameras 57/6
10ft. Rods (Cooking and Fishing) 9/6
14ft. 7-section Rods, Aerial 11/6
9ft. Telescopic Aluminium Mast 19/6
Radio Reception Book 12/6
Radio NANNY, mother’s help 15/6
Vibro-Tool, etc., Engraving Pen 25/6
Vibro-Arc, etc., Engraving Pencil 12/6
Embossing Kit 10/6
Radio and Electrical Repairs Book 10/6
Thermal Massager A/C/DC 16/9
Vibro-Massager 7/6
Portable Sewing Machines 94/6
"Patchskaw" cuts anything 15/6
Babies’ Hot Water Fobs/Plates 8/6
Scientific Cycle Locking Device 6/6
"The Complete Handyman"
Electric Tie Irons, half price 7/6
Razor Blades, surgical steel 2/6
Pocket Photo Cameras and Accessories 2/6
White Fathers or Headphones 23/6
Test Prods., P.V.C. insulated 3/6
Scratch Remover, £1.0.0
Plus postage, Remit or C.O.D.

STOP PRESS

Ex-W.D. CHASSIS with valves in brand new condition as follows: 1RS, 1RT, 155, 154, 276/4
MORSE BUZZER training set, Silver point clapper and bell buzzer, adjustable for high and low pitch, with diagram on back, 3/-.
JEWELTONE straight type, champagne niple housed in plastic container 6/-, "Servisol" 5/-.

(Please mark envelope W.W.)
MUMETAL and RADIONETAL TRANSFORMERS and CHOKES

As Specialists with many years of experience we can design and supply practically any type of transformer or choke with a nickel core for use on a band within the frequency range 1 c/s to 150 k.c/s.

A available for prompt delivery - Single phase Transformers, Input Transformers, Line Transformers, Precision Transformers, Output Transformers, Venter Trans- formers, Venter Transformators, Filter Transformers, Rectifier Transformers, Noise Transformers, High Q. Chokes, High Inductive Chokes, etc., with or without Mometal Shields.

MAINS COMPONENTS ARE ALSO STOCKED.

SOWTER TRANSFORMERS

E. A. SOWTER, 18 HEAD STREET, COLCHESTER.

Phone: COLCHESTER 2449.

MINIATURE RELAY

D.C. up to 24 volts TYPE MINIST

DOUBLE POLE CHANGE

CONTACTS.

Ask for List £124/WW

LONDSEX LTD

Manufacturers of Relays

227, ANERLEY RD., LONDON, S.E.20.

SYDenham 6258-9

ENGINEERS!

Whatever your age or experience you must read "ENGINEERING OPPORTUNITIES" - Full details of the various ways to pass A.I.M.E., B. I.M.E., A.M.I.E., C. I.M.E., CITY & GUILDS, MATER, etc. on "ENGINEERING OPPORTUNITIES" - Full details of 176 PAGES

FREE!

POST FREE.

B.I.T.

E.DDYSTONE RECEIVERS

FOR

AMATEUR

MARINE

C.R.Y.S.T.A.L.S

FOR

AIRCRAFT

MINERAL

and

AMATEUR TRANSMITTERS

ALL LOW TEMP. CO-EFF. CUTS.

BROOKES CRYSTALS LTD.

10, STOCKWELL ST., GREENWICH,

LONDON, S.E.10.

CRYS.TALS

FOR

C.W.

WIRELESS WORLD

October, 1949

LUDLOW & COLE

manufacturers of

GOOD TRANSFORMERS & TAG PANELS

Why not smarten that circuit with a tag panel?

Let us make one specially for the job — send us your design and we shall manufacture and return it within FOUR days. Any quantity from ONE upwards.

Try our 7 day rewinding Service. It’s quicker and cheaper.

Further details on application to:

"THE CROFT,” PIPETTS AVE.

LEIGH-ON-SEA, ESSEX

B.T.S.

The Radio firm of the South,

63 London Road, Box Hill, Surrey.

Phone: Brighton 1555

SPEAKERS

BRAND NEW

Goodman’s, Truvox, Rola (as available),

5 inch 13.; 6 inch 14.; 8 inch 16.;

including packing and postage.

EDDYSTONE RECEIVERS

Full range of components.

All C.O.D. orders promptly executed.

Send for Catalogue, 1/- post free.

CUT OUT THE NOISE, BUZZ & CRACKLE WITH A NAPP

MAINS INTERFERENCE SUPPRESSOR, AN EFFICIENT SCREENED UNIT of 1st class construction, twin filter chokes, fused, fader control, aging condensers with terminal connection. Suitable for TELEVISION, RADIO & SMALL ELECTRICAL APPLIANCES.

SATISFIED CUSTOMERS.

OHERWISE MONEY REFUNDED 18.6

WHOLESALE ENQUIRIES INVITED.

THE COVENTRY COMPANY

181, DUNSTABLE ROAD, LUTON, BEDS.

APPLIANCES.

887. Shakespeare Hts.,

and write for your copy less than a week, tell Mechanical, Electrical Counsels is all branches terms and details of current work, must be prepared to handle corre- spondence stating age, experience and salary required. — Write fully, in English.

CANDIDATES will normally be confined to British subjects of test equipment. applicants must be experienced and possess Good knowledge of radio and valve technique. West London area: 5-day week. Write, stating experience, and wages required. to Box 8565.

RADIO installation engineers with experience of aircraft, or ground station radio equip- ment required by large manufacturer in East London; the applicants selected will be required to carry out installation work on site. — State full details of experience and salary required to Box 8990.

COMMERCIAL sales manager, with wide knowledge of the home and export market, required for progressive radio manufacturers in North London area; only applicants with responsible experience need apply. Write fully, in confidence, stating age, experience and salary required; to Box 8890.

SERVICE manager required by hearing aid manufacturers in West End; sound technical background, although actual hearing aid experience not essential; appointment will entail interviewing clients and handling corres- pondence; salary £450-£600; company’s staff aware of vacancy — write similarly born. — 4279.

REQUISITED by South-West London factory, test engineers for radio, audio and elec- tronics apparatus, and one or two young persons with limited skills and experience of above; applicants must state experience, qualifications and wages required.—Box W 2425, L.P.E., 110, 80, Martin’s Lane, W.C.3

T.V. TELEVISION development engineers required by the Plessey Co., Ltd.; a suitable appli- cants should have general screen experience in television circuit development and adequate technical knowledge. Write, submit written applica- tion, stating full details, attention Personnel Manager, The Plessey Co., Ltd., Hiford, Essex. — 4179.

COMMERCIAL engineers, Westminister, re- quire contract engineer to assist in current light industry work, must be prepared to handle correspond- andes and reports relating to communica- tion and allied research, computer circuit or carrier telephony an advantage; degree followed by 2-3 years’ light industry experience desirable. Applications to Box 8481.

ELECTRICAL engineer required for progressive position, qualifications degree or equal- valent in physics or electrical engineering with at least three years’ post-graduate or other laboratory experience on problems connected with television or allied fields — Applicants to send details to Personnel Department, E.M.I., D.I.E. Development Ltd., Blyth Rd., Hayes, Midddx. — 4198

YOUR METER DAMAGED?

LEAD GLASER REPAIR IT

Leading Electrical Instrument Repairs to the Industry.

Repairs by skilled craftsmen to all makes and types of Voltmeters, Ammeters, Microameters, Multimeter Test Instruments, Electrical Testing Equipment, battery instruments, synchronous Circuits, etc. Quick delivery for speedy service send detailed instructions to L. GLASER

SCIENTIFIC & ELECTRICAL INSTRUMENT REPAIRERS

341 CITY ROAD, E.C.1.

Tel. Terminals 2489.
October, 1949

Wireless World

L-R-S

FOR PROMPT & EFFICIENT SERVICE

CASH or EASY TERMS

ARMSTRONG ALL-WAVE CHASSIS

Various Models Available

GOODMAN’S “Axiom Twelve” Speaker Unit

Cash price £6 6 0

GOODMAN’S Standard 12” Speaker

Cash price £8 8 0

GOODSELL-WILLIAMSON HIGH FIDELITY AMPLIFIERS

A. G. BARKER’S New 144A Speaker

COLLARO Radiogram Units—various models

AVO METERS—All models available.

COLLARO

GOODMAN’S Standard

GOODMAN’S Axiom Twelve” Speaker Uni

QUALITY COMPONENTS

GEE Bros. Radio Ltd.

FOR QUALITY COMPONENTS

C.R.T., 24in. V.C.B. 129A (or ACR10), brand new and boxed. 21½.”

HOLDER supplied separately. 2s.

MINIATURE NEON INDICATOR, size 8½”, approx. 400 volts.

HOLDING holder operating Voltage 100-120V. 1½.

3½ in. P.H. 5 OHMS SPEAKER. Ex. famous manu-

facture, only £1.11.

6½ in. P.H. 3 ORMS SPEAKER. Ex. famous manu-

facture, only 9-11.

MINIATURE AMPLIFIER, high-speed, completely sealed.

1,000-0,000 cells. New and boxed. 6s.

MINIATURE V.V.V. MOTORS. Ex. Government.

Spindle length 2½”, length X 2½”, width. Spindle length.

1½”, x 3½”, diameter. 1½.

16 W.P.D. 700V. PAPER COIL D.

E.5 in. x 5in. x 5in. with fixing feet. 8½.

13 TRANSMITTING VALVES.

Brand new and boxed. 6s.

8011 (TVS-A.C.T. 19) TRANSMITTING VALVES.

New and boxed. 6s.”

EXTERNAL R.C.A. SPEECH AMPLIFIER MAINS TRANS-

FORMER, Part No. R30001-200. Ref. No. I.W. 200.

A new type. Brand new and boxed. 26c.”

6½ in. DIAL MOVING COIL CENTRE ZERO 5-0-5

M/A METERS. Flush mounting, new and boxed. 8½.

Cash with order, or C.O.D. orders under £1. 1/1/ postages.

GEE BROS. RADIO LTD.

15, Little Newport St.

LONDON, W.2

GER 6794

THE BRITISH NATIONAL RADIO SCHOOL

ESTD. 1940

THE BRITISH NATIONAL RADIO SCHOOL

ESTD. 1940

ANOTHER FIRST

FOR B.N.R.S.!

ALL FEES* DOWN 10%

*There has never been an increase INDIVIDUAL COACHING BY POST in RADIO, TELECOMMUNICATIONS, RADAR, PHYSICS, MATHEMATICS.

STUDIES DIRECTOR

BRITISH NATIONAL RADIO SCHOOL

66, ADDISONCOMBE ROAD, CROYDON

Phone: Addiscombe 3341

STAND 15, GRAND HALL RADIOLYMPIA

Peerless Radio

LTD, 374 KENSINGTON HIGH STREET, W.14

Advertisements

FOR equipment of interest to the genuine enthusiast, visit

STAND 15, GRAND HALL RADIOLYMPIA

Peerless Radio

for equipment of interest to the genuine enthusiast, visit

STAND 15, GRAND HALL RADIOLYMPIA

Peerless Radio
TERMS: Cub with order or C.O.D. on orders over £1.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

DUAL WAVE INPUT FILTER, 465 Kc/s., parallel or series tuned,
size of former lin. x lin., 3/8 each.

The Latest "Collom" 10-Record Autochange unit.
A.C. 15 watts output. Descriptive literature on
request.

600 in a complete kit of parts and instructions.

SITUATIONS WANTED

BUSINESS OPPORTUNITIES

THE LATEST "COLUMBIA" I 2-Speed Automatic unit.
Complete with Crystal P/Up. A.C. mains 200, 250 V.
Motor battery 110 V. in. A.D. 15 W. output.

Descriptive literature on
request.

THE LATEST "COLUMBIA" I 0-Speed Automatic unit.
Complete with Crystal P/Up. A.C. mains 200/250 V.
Motor battery 110 V. in. A.D. 15 W. output. Descriptive literature on
request.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.

I.F. TRANSFORMERS, standard, 465 Kc/s., per
6 each.

High-Q "Iron Cores Coils"
Unsurpassed Quality for Discriming Amateurs
AERIAL, H.P. OR OSCILLATOR, short, medium or long
wave, size of former lin. x lin., 3/8 each.

INPUT FILTER, 465 Kc/s., parallel or series tuned.

DUAL WAVE CORE COIL, medium and long wave aerial
6 each.
TECHNICAL TRAINING

A M.I.E.E., City and Guilds. etc., on "No Pass-No Fee" terms, over 99% success; for details of exams, and courses, in all branches of electrical technology, send for our 112-page handbook, free and post free.—B.E.T. (Dept. 388A) 17, Stratford Place, London, W.1. [207]

TUITION

RADIO training.—P.M.G. exams, and I.E.E. exam. prospectus free.—Technica-

l Hull. [0611]

WIRELESS officer's attendance and " Radio-

M ARINE and aircraft wireless operators.—The

Ist-class P.M.G. Certificate assures early and well-paid employment; obtain it with the help of our special daytime course commencing January, 1956. WRITE for full details to E.M.I. Institutes, Dept. W.W.. 43, Grove Park Rd., London, W.4. [0001]

WIRELESS (sea and air) television, broadcasting, radar etc., offer tremendous opportunities; students both sexes, age 14 upwards, trained for appointments in all branches of radio; low fees, boarders accepted; 2d stamp for details.—Wireless College, Colwyn Bay. [0019]

WILCO ELECTRONICS

294, LOWER ADDISCOMBE RD., CROYDON.

WIRELESS RECEIVERS, 2 METER BAND B.8944A. Kradly converted for other Ham Bands.

Brand new ex U.S.A. 11 values including 2000, 9000, etc. Don't miss these at 38/-.

WAVEMETERS, 39-51 MHz. Type W391. Complete with power pack 230 volt.

500 V, Magic Kyddical, etc. 70/-, Type W392. Price 2/-.

SLOW MOTION DIANS, 200-1 Reduction or

Front of mounting board. 6 inch. dia. sealed 6/-10.

CONDENSERS, Paper plate type.

4 Mfd. 750 V.D.C., 1000 V.D.C., 1.5 Mfd. 2000 V.D.C., 100 V.

Micrometer tubes 1.5, 2 and 3 volt. 6/6.6.

POWER UNITS. Including 16-32(50). 1-2400. 1 Mfd. 2000 V.D.C. 20/-, etc.

Chapters in Design.

TELEVISION UNIT. 2 B.F. 1 Det. 1 Video Stage using EF50 and EA50. Iron-cored transformer. 500 g. weight. 500 g. weight. 500 g. weight.

Speakers. 8In. P.M. WC. excelsior transformer in wall case Tannoy.

Bargain price, £ 11 10. TELEVISION UNIT. 1 R.F. Det., 1 video stage using EF500 and EA50. Iron, etc. 700 g. weight.

For 3 VR150-311, 1 2X2, 12140.2. 2 61f+l. SPECIAL PRICE £ 16 10.0001.

TELESONIC RECEIVERS, brand new, complete with

transistor detector, 99% success; for details of exams, and courses, in all branches of electrical technology, send for our 112-page handbook, free and post free.—B.E.T. (Dept. 388A) 17, Stratford Place, London, W.1. [207]

TELEVISION—The Gothic Television School

Television and radio programmes. All tutors possess university degrees and have corporate membership of professional institutions and are appointed individually to each course to ensure complete and thorough training. Principals, M.B.E., B.Sc., M.Brit. I.R.E., education committee members. Courses assume no previous television knowledge and provide guaranteed training for Brit.I.R.E., and R.T.E. examinations. Numerous well-known companies have adopted the School's Basic Television Course as standard television training for their staffs. Moderate fees. Details from Gothic Television School, 13, North Avenue, London, W.15. [1639]

POTENTIOMETERS by RELIANCE

Wire-wound and Composition types, Single, Ganged, Tandem Units. Characteristics: linear, log., semi-log., non-inductive, etc. Full details on request.

RELIANCE MFG. CO. (SOUTHWARK), LTD., Sutherland Road, Higham Hill, Willesdon, E.17.

Telephone: Larkwood 3745

RADIO TRANSFORMERS AND REWINDS

We specialise in AMATEURS' WINDINGS, TRANSFORMERS, PICK-UP COILS, INSTRUMENT COILS, etc.

LOUD SPEAKER SERVICE

Highest workmanship Good Delivery

RADIOMENDERS LIMITED

123-5-7 Parchmore Road, THORNTON HEATH, SURREY

LIV 2261. Trade enquiries invited. Established 16 years.

OXLEYS DEVELOPMENTS CO., LTD., WVE 10, LORD LANSDOWNE, DORSET.

TECHNICAL EXCELLENCE combines with beauty and soundness of DESIGN in the

OXLEY DIFFERENTIAL AIR DIELECTRIC TRIMMER

Dimensions: Width: 16.6 m. Height: 26 mm. Length: 1.5 to 2 X 2, 4, 6, 8 mm.

OXLEY DEVELOPMENTS CO., LTD., WULFERTON, N. LANC'S. TEL. WULFERTON 3306
INDEX TO ADVERTISERS

Frith Radiocraft, Ltd.
French, Cyril, Ltd.
Fluxite, Ltd.
Fielden (Electronics), Ltd.
Filmer, J. T.
Fanthorpe, A.
E.M.I. Institutes, Ltd.
Electrosound Supplies Co., Ltd.
E.M.I. Sales & Service, Ltd.
Electronic Precision Equipment
Electronic Instruments, Ltd.
Hale, S. H., & Sons, Ltd.
Birmingham Sound Reproducers, Ltd.
Brierley, H. (Gramophone & Recordings), Ltd.
Britten Tele-Services
British Radio, Ltd.
British Institute of Engineering Technology
British Insulated Caledon's Cables, Ltd.
British National Radio School
British Standard Newspapers, Ltd.
Bull, J., & Sons, Ltd.
Bulgin, A. F., & Co., Ltd.
Bulgin, Ltd.
Bullers, Ltd.
Cabot Radio Co., Ltd.
Cade, Ltd.
Caledonia, Ltd.
Chloride, Electrical Storage Co., Ltd.
Chloride, Ltd.
Clydesdale Supply Co., Ltd.
Clydon, Ltd.
Colaro, Ltd.
Companhia Radio, Ltd.
Conway Radio
Coventry Radio
Davis, Alec, Supplies, Ltd.
Dawson & Moore, Ltd.
Desoutter Bros., Ltd.
Dyke & Wright, Ltd.
E. & J. Dungworth & Co. (1923), Ltd.
Duple Electronics, Ltd.
Edison Swan Electric Co., Ltd.
Electric Radios
Electric Sound & Television Patents, Ltd.
Electric Aid Co.
Electronic Instruments
Electronic Devices
Electronic Supplies Co., Ltd.
E. M. I. Sales & Service, Ltd.
Entwistle, H. J., & Sons, Ltd.
E.R. Engineering Co., Ltd.
Pactor, J.
Panthorpe, A.
Perkins, Ltd.
Pfeifer Electronics, Ltd.
Pitchford, A.
Fluxite, Ltd.
French, Curt, Ltd.
Frith Radiocraft, Ltd.

Galspin, G.
Gentleman, J. G., Ltd.
General Electric Co., Ltd.
General Lamination Products, Ltd.
Glasg.
Goodmans Industries, Ltd.
Gould, J.
Grampian Reproducers, Ltd.
Group's, Ltd.
Hale, S. H., & Sons, Ltd.
Haynes Laboratories, Ltd.
Hewlett, W. T., Telegraph Works, Ltd.
Hill & Churchill, Ltd.
Hoyne's Radio Stores
Hurn, A. H., Ltd.
International Correspondence School, Ltd.
Johnson, Matthey & Co., Ltd.
Judge Industries
Kennedy, S.
Lasky's Radio
Lawrence, D. C.
Leak, R. H., & Co., Ltd.
Lewis Radio Co.
Locwood & Co.
London, Ltd.
London Radio Supply Stores
London Television Co., Ltd.
Loudon, Ltd.
Loudon & Co.
Lynor Laboratories
Lyons, Ltd.
Lyons Radio
Mail Order Supply Co.
Marconi Instruments, Ltd.
Marconi's Wireless Telegraph Co., Ltd.
Marstona, Ltd.
Metro Instruments
Midland Instrument Co.
Miers, N.
Millett & Hoden, Ltd.
Modern Block, Ltd.
Monochord Radio
M.R. Supplies, Ltd.
M.S.E. Recording Co., Ltd.
Multicore, Ltd.
Murphy Radio, Ltd.
Murphy, Ltd.
Myles, Ltd.
Nagard, Ltd.
Nellor, J., & Co., Ltd.
Northern Radio Services
Oliver Pelt Control, Ltd.
Osman Radio Products, Ltd.
Otley Development Co., Ltd.
Painon & Co., Ltd.
Park Radio
Parr, Ltd.
Pattison & Partners, Ltd.
Penneke Amplifiers
Phillips, Ltd.
Plowman, Ltd.
Post Radio Supplies
Premier Radio Co.
Pyle, Ltd.

Our 1950 fully Illustrated Catalogue is now available 3p Post Free

QUAY WORKS, Gt. YARMOUTH

October, 1949

ELECTRONIC & ELECTRO—MECHANICAL EQUIPMENT
developed for industrial applications.
Reasonable charges.

SPENCER-WEST
QUAY WORKS, Gt. YARMOUTH

108 Wireless World

TELEVISION RECEIVERS
SCANING AND FOCUS COILS
TIME BASE COMPONENTS
7KV. EHT., RF. UNITS and TRANSFORMERS

HAYNES RADIO LTD.

PUBLICATIONS POST FREE

World Radio History
Maybe we'll talk condensers—maybe not. Perhaps we'll adjourn somewhere. Whatever it is, it will be grand to see our hundreds of friends in trade and industry at the best of all shows. Remember the figures—seven five.
ERSIN MULTICORE SOLDER

Contains 3 cores of non-corrosive Ersin flux to guarantee flux continuity and sound permanent joints. Approved A.I.D. & G.P.O.

Available for manufacturers as standard in 5 alloys, 9 gauges and 2 flux percentages. 3 types of non-corrosive flux. Wire pre-forms. Multicored rings and washers. Other alloys and gauges to special order.

On this Stand watch staff from E.M.I. Factories manufacturing R.F. units for “H.M.V.” Television receivers. Each unit is assembled from 47 parts involving 117 Ersin Multicore soldered joints. See how Ersin Multicore Solder is exported to more than 40 overseas countries. Ask for a free copy of the Ersin Multicore Data Card containing many useful tables for the Radio Technician including Resistor colour code, Ohm’s Law, Resistance and Capacitance calculations, etc.

ARAX MULTICORE SOLDER

The new cored solder for “difficult metals”. Flux residue removed with water. Replaces stick solder, fluid and paste fluxes.

"Diallist" of “Wireless World” who saw an advance sample of Arax Multicore Solder at the R.C.M.F. Exhibition reported in May 1949 issue:

"The solder ran like butter on blued 1” clockspring . . . it will be a heaven sent boon to factories and amateur workshops alike."

Supplies for manufacturers in 60.40, 40.60 and 20.80 alloys, 3-22 S.W.G. in coils, 1 lb. and 7 lb. reels.

Now available in 5/- retail cartons.

MODEL MAKERS QUALITY

ACB4021 18 ft. of 60.40 Tin Lead 13 S.W.G.
ACB4026 42 ft. of 60.40 Tin Lead 16 S.W.G.

REPAIRING QUALITY

ACB4941 18 ft. of 40.60 Tin Lead 12 S.W.G.
ACB4016 42 ft. of 40.60 Tin Lead 16 S.W.G.

MULTICORE SOLDER KITS

Each contains 4 cartons of Ersin and Arax Multicore Solders.

Meet us at Radiolymniata
SEPT 18- OCT 4

WIRELESS WORLD

The Finest Cored Solder in the World at Radiolymniata 1949

STAND 84 GRAND HALL

STAND 83 GRAND HALL

Size 2 cartons 60/ea. each contain 3 feet: 40.60.16 S.W.G. Ersin Multicore Solder—sufficient for 200 average wiring joints.

Size 1 cartons 5/- each

High Tin Television and Radio Quality

<table>
<thead>
<tr>
<th>CAT. REF. NO.</th>
<th>LENGTH</th>
<th>ALLOY</th>
<th>S.W.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 16014</td>
<td>26 feet</td>
<td>60.40</td>
<td>14</td>
</tr>
<tr>
<td>C 16018</td>
<td>60 feet</td>
<td>60.40</td>
<td>18</td>
</tr>
</tbody>
</table>

Electrical and Radio Quality

<table>
<thead>
<tr>
<th>CAT. REF. NO.</th>
<th>LENGTH</th>
<th>ALLOY</th>
<th>S.W.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 14013</td>
<td>22 feet</td>
<td>40.60</td>
<td>13</td>
</tr>
<tr>
<td>C 14016</td>
<td>42 feet</td>
<td>40.60</td>
<td>16</td>
</tr>
</tbody>
</table>