This publication is of importance to radio engineers. It gives useful information on the range of connecting wires and sleeving made by BICC to meet the requirements of the Radio and Telecommunication industry.

Write to-day for Publication 247T
Editorial Comment

Simple Cathode-Ray Oscilloscope. By M. G. Scroggie

Television Spot-Wobble. By R. W. Hallows

Fringe-Area Television

Wide Range R-C Bridge. By H. E. Styles

Interference from Fluorescent Tubes. By "Diallist"

Deflector Coil Characteristics. By W. T. Cocking

Short-Wave Conditions. By T. W. Bennington

World of Wireless

Earth. By "Cathode Ray"

Solving Parallel Problems. By D. A. Pollock

Electronic Circuitry. By J. McG. Sowerby

Negative Feedback. By E. Griffiths

Unbiased. By "Free Grid"

Letters to the Editor

Random Radiations. By "Diallist"

Manufacturers' Products

MANUFACTURERS’ PRODUCTS

World of Wireless

Earth. By "Cathode Ray"

Solving Parallel Problems. By D. A. Pollock

Electronic Circuitry. By J. McG. Sowerby

Negative Feedback. By E. Griffiths

Unbiased. By "Free Grid"

Letters to the Editor

Random Radiations. By "Diallist"

Manufacturers’ Products
AN ELECTRONIC TIMER FOR LONG TIME DELAYS USING EF91

In industrial processes and in domestic equipment there is often a need for a device which will automatically operate a switch after a predetermined time interval of several minutes. Various applications will be apparent to readers. As an example, it may be used in conjunction with an electric toaster to switch off the current before the toast is burnt. An improved timing circuit using only one valve and operating directly from the A.C. mains is described below.

Time-delay circuits employing valves generally belong to one of two groups. In the first of these a simple resistance-capacitance circuit holds off the valve during the timed interval, while in the second the Miller effect is used to retard the rise of anode current in a valve-operated relay circuit.

Circuits of the first group are generally suitable for time delays up to about 1 minute, since for longer periods the values of capacitance and resistance required become unduly large for most practical applications. On the other hand circuits of the second group can be used for time delays of as much as 15 minutes without unduly large resistors and capacitors.

A simple time-delay circuit using the Miller feed-back principle is shown in Fig. 1. The valve V1 functions as a half-wave rectifier to charge the electrolytic capacitor C1. The rise of potential across C1 is retarded by the feed-back capacitor C2, which is initially uncharged. As the potential across C1 tends to rise, C2 charges through R3 and R4, pulling the grid of V1 negative and thereby retarding the rate of rise of potential across C1. The effective retardation is dependent primarily upon the values of R3, R4, and C2, and is nearly independent of C1 provided that C1 is large.

The variable resistor R3 provides an adjustment of the time delay. With the component values given, the delay is 1½ to 2 minutes. Much longer delays than this can be obtained by using larger values of C2 and R4.

The relay RL is a high-resistance telephone relay with a low operating current, and is connected in series with a resistor R6 across the capacitor C1. The value of R6 is such that the relay RL closes when the voltage across C1 has risen to about 90% of its final value. When the circuit is switched on, the first delay period includes the warming-up time of the valve V1. The circuit is reset after each operation by means of the push button PB which is arranged to discharge the capacitor C2.

The heater current for the EF91 is drawn directly from the A.C. supply through the capacitor C3 which is chosen to give 0.3A. With this arrangement one end of the heater must be connected to the neutral line of the A.C. supply. The voltage across capacitor C2 is therefore applied between the heater and cathode of the valve and must not be allowed to rise above the permissible heater-to-cathode voltage of the EF91, namely 150V. Resistance R5 is included in the anode circuit to limit this voltage to a safe value.

The component values in Fig. 1 are typical but some modifications will be necessary for different relays and time delays. Capacitor C2 is electrolytic, C3 and C4 are paper. All resistors are 3W rating.

Reprints of this report from the Mullard Laboratories may be obtained free of charge from the address below.

MULLARD ELECTRONIC PRODUCTS LTD.
TECHNICAL PUBLICATIONS DEPARTMENT,
CENTURY HOUSE, SHAFTESBURY AVE., W.C.2

Mullard
Auxiliaries to Television

The setting-up of a national television service is not just a matter of deciding upon the best standards of transmission, of erecting suitably sited stations and then making available to would-be viewers a supply of receivers at prices they can afford. True, these things are of basic importance, and, as we have said in recent issues, Wireless World considers the foundations of a nation-wide service have been well and truly laid. But, however sound the foundations, a service cannot grow unless programmes are attractive and attainable at an economic cost. These matters are not our direct concern, but it is vitally important to us that the technical details of programme distribution should be developed to a high state of excellence. Economy in programme costs is as important as quality; television material is costly, and, at the present stage of development, the cost cannot be spread over a vast number of subscribers. It is reassuring that the B.B.C. is ready with equipment for serving the wider—and, presumably, increasingly more exacting—public for which it will soon have to cater.

Of these technical auxiliaries to the distribution of programmes, probably the most important are those for recording and subsequent retransmission on film. If we can go by the analogy of sound broadcasting, television will depend increasingly on the vision equivalent of sound recording, whereby films of current events can be made for use when required. The new "telefilm" recorders, described briefly in our January issue, fulfill this purpose. With the help of the ingenious and effective trick described as "spot wobble" (see page 84, this issue) the lines of the picture are made to disappear, and surprisingly little degradation of quality results from the combined processes of photographing from the end of a tube, subsequent scanning and then retransmitting the picture. New scanners also being installed will facilitate the handling of film, while elaborate apparatus has been installed for "dubbing" and other processes involved in preparing films.

The "telefilm" apparatus just mentioned is, of course, for recording events picked up by the television camera. Ordinary sound-on-film news-reels, photographed direct from the scene, also have their place in programmes, but the normal speed of processing is often too slow for television, and so the B.B.C. is developing a method of recording on magnetic film the sound which accompanies the picture. This, it is claimed, will substantially reduce production time, and should help television to retain its outstanding advantage of speed in presenting "actualities." At the same time, sound quality should be improved.

Aerial Restrictions

Many local authorities have banned the erection of television aerials on houses under their control, or else have imposed distinctly onerous restrictions. It would seem that in many cases this attitude has been due to ignorance, and we congratulate the Radio and Electronic Component Manufacturers' Federation on taking active steps to dispel ideas which would certainly be prejudicial to the rights and privileges of tenants. The Federation has set up a panel of experts who are willing to advise housing and municipal organizations or any others concerned with the problems of television aerials. The panel will make recommendations for aerial installations which would provide adequate reception without unnecessary interference with the architectural appearance of the buildings concerned. Apart from aesthetic considerations, no doubt the panel will be able to give useful information as to the risk—or lack of risk—of damage to the building due to the fitting of a properly installed television aerial. It is good to hear that some councils who have been strongly opposed to television aerials have shown a much more tolerant attitude after discussions with the panel.
Simple Cathode-Ray Oscilloscope

Design for an Inexpensive Instrument "Without Frills"

By M. G. SCROGGIE, B.Sc., M.I.E.E.

OSCILLOSCOPE designs that have appeared in the technical press since the war have tended towards more and still more facilities and refinements, which of course is all very well in its way but rather discouraging to the amateur with modest means and requirements. So it seems that there may be room for details of a design which covers most ordinary needs simply and inexpensively.

Like most oscilloscopes, it comprises three departments:

1. The cathode-ray tube itself, with its voltage supplies and controls for focusing, brightness, and shifts.
2. A variable-frequency time-base generator, with synchronizing device.
3. A deflection amplifier.

It is in (2) and (3) that there has been such lush growth in recent years. Demands for extreme linearity and such facilities as triggered "single-shot" and time-calibrated sweeps have resulted in elaborate multi-valve time-base circuits; and a wide-frequency-range amplifier must have low-resistance couplings, hence many stages—especially if push-pull is called for.

In the present design all the usual facilities as regards (1) are included. A single-valve amplifier gives a controllable gain of up to about 41 db (or ×110) at audio frequencies, and 26 db (or ×20) over a wider band. The tube can of course be used without amplification over a wide range of v.f. and r.f. The time base works at frequencies between 12 c/s and 40,000 c/s, so can be used for waveforms at least up to 500 kc/s. It departs perceptibly from perfect linearity, but if this is considered objectionable it could be overcome with the help of a sweep amplifier, similar to the above.

Principal Components

The tube specified is the VCR.138 because it is readily available at a very low price, it focuses excellently at low voltages, and has a nearly flat 3¡in screen. The power supply consists of an ordinary 320-350V receiver transformer and two small Westinghouse rectifiers. Time base and amplifier each need a single valve. The rest consists entirely of resistors (fixed and variable) and capacitors, with three switches, a few terminals, and some sort of container.

Power Supply. The required transformer outputs are:
(a) 4 V, 1A for the c.r.t. tube heater, (b) 6.3 V, 1.5A for the amplifier and time-base valve heaters, and (c) 700V for h.t. supplies (not more than 8 mA d.c.). An ordinary receiver transformer gives more than enough for all these, and, unless one wants to keep weight down to a minimum, will do in place of a special transformer. At such a reduced load it will give rather more than 700V r.m.s. between the end connections of the h.t. secondary, but the Westinghouse 16HT56 is rated up to 840. Assuming an actual 750V under load, the output across the reservoir capacitor is about +850V. The maximum rated d.c. output for this rectifier (half-wave) is 8 mA, and the actual current lies between 5 and 6 mA.

The 36EHT25 rectifier supplies about −950V, 0.5 mA, of which about 900V is available as anode voltage for the c.r.t. If the transformer voltage is liable to exceed 750V it would be prudent to use the next larger rectifier, 36EHT30.

The winding used to supply the c.r.t. heater current should of course be sufficiently well insulated to stand 1000V peak to the earthed end of the h.t. secondary and 2000V to the other end.

Except that the reservoir capacitance (C_H) for the 16HT56 rectifier is rated at 1 µF maximum, there is no objection to using larger smoothing capacitances than those specified.

C.R.T. Circuits. The VCR.138 tube (Mullard equivalent ECR.35) is rated at 1200V anode voltage (2500V max.). It gives good focusing and brightness at 750V, but is definitely poor at 500V. In the present design it receives about 900V, at which the peak-to-peak voltage required for 50 mm deflection is approximately 125V between the X plates and 60V (= 21V r.m.s.) between Y plates. Therefore as little as 1 V r.m.s. gives 2.5 mm Y-deflection.

The arrangements for controlling focus, brightness and X and Y shifts are entirely conventional. The wiring should be kept away from the 50 c/s h.t. connections, and a Murata screen for the tube is almost essential for preventing stray 50 c/s deflection.

Time-Base Generator. A gas-filled triode is used in the usual manner to discharge a selected capacitor at a frequency depending on the rate of charge and also on the grid bias. The following table will be a guide to the approximate frequency ranges obtained with the circuit shown, assuming the length of the time-base on the tube is adjusted to 50 mm:

<table>
<thead>
<tr>
<th>Capacitance, µF</th>
<th>Frequency, c/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>12-53</td>
</tr>
<tr>
<td>0.1</td>
<td>35-160</td>
</tr>
<tr>
<td>0.03</td>
<td>120-530</td>
</tr>
<tr>
<td>0.01</td>
<td>250-1,000</td>
</tr>
<tr>
<td>0.003</td>
<td>1,200-5,000</td>
</tr>
<tr>
<td>0.001</td>
<td>3,600-14,000</td>
</tr>
<tr>
<td>0.0003</td>
<td>13,000-40,000</td>
</tr>
</tbody>
</table>

WIRELESS WORLD, MARCH, 1950
minimized by means of R_{21}, which passes a compensating current through R_{23} (controlling the bias) when the current via R_{22} is reduced. The base length is less at the middle of the R_{23} frequency range than at the ends, but not seriously so.

When the time base is set to a normal working length—50 mm—the capacitor across V_x charges to only about one-sixth of the available h.t., so it is linear enough for most purposes. The alternative would be either to use a series pentode (on the negative side of the $EN31$) in place of R_{25}, or—more conveniently—to restrict the amplitude still more by reducing R_{25}, and then amplify it. An amplifier similar to the Y-deflection amplifier would be suitable, and the rectifier would just stand the extra drain.

The synchronizing control, R_e, enables anything up to about 10 per cent of the Y-plate "work" voltage to be applied to the grid of V_x. This control performs very well; a fraction of its maximum is generally sufficient to lock the trace firmly to a signal of reasonably constant frequency.

Amplifier. By not attempting to extend the frequency range much above audio frequencies, one easily obtains a voltage amplification of 110–120 from a single stage. And since the peak-to-peak output voltage need seldom exceed 60V out of an available 500V h.t., there is very little distortion. That is with the bypass capacitor C_4 in circuit.

When it is switched out, negative feedback reduces the gain to about 20, which affords a convenient step-adjustment of gain, and incidentally improves the uniformity of amplification. Over 20–20,000 c/s it is almost perfectly level, and a useful gain remains at some hundreds of kc/s, for v.f. tests, etc.

If the gain control R_4 is set low, its attenuation at high frequencies may be less than expected, due to bypassing by stray capacitance. A resistance R_5, which can be extended if desired, is included to bring voltages over 100 inside the "picture." The method of switching the amplifier is more convenient than separate terminals for Y-input, "with A" and "without A," but stray switch capacitance, should be minimized by careful wiring.

General. No particulars of container and layout are given, because they can be arranged to suit convenience and requirements. Owing to the high resistance of the circuits associated with the c.r.t., the main thing in laying out and wiring the job is to avoid capacitance coupling from points of high alternating potential, especially the live end of the transformer h.t. winding. Reasonable care over this is rewarded by steady sharply-defined traces.

A useful feature is a terminal connection to the live end of the 6.3V winding, which gives 18V peak-to-peak 50 c/s for setting-up, frequency calibration, and many other purposes.

Wireless World, March, 1950

Circuit diagram of oscilloscope. For values of C_{10} to C_{16}, see table. Wattage ratings of fixed resistors (over 0.1W) and voltage ratings of capacitors (over 500V) are shown in brackets.

Television Spot-Wobble

Simple Technique for Combatting "Lininess" in the Raster

By R. W. HALLOWS, M.A. (Cantab), M.I.E.E.

EVERY viewer is familiar with the unpleasing effect known as "lininess" in the images on the screen of a television receiver. The proverb tells us that we can't cut our cake and have it: television reception, on the other hand, appears to show that if we use a technique which involves cutting the image into horizontal slices, we are bound to find that we have "had it" in the unpleasant impression produced by the dark lines which cross the screen from side to side. Experts hasten to assure us that if the lines are obvious enough to annoy us, we are sitting too close to the viewing screen. "Move away," they urge, "until the lines of which you complain are no longer sufficiently clear to call your attention to them; you then won't be conscious of them at all, and you will see the television image as it should be seen."

Although I have a respect amounting almost to veneration for the pundits of radio and television, no very deep processes of thought or observation are required to bring one to the conclusion that the offensive dark horizontal lines are part and parcel of the fine detail of the image shown on the television screen. Remove yourself far enough to lose the lines and don't you automatically lose also something of the sharpness of the picture? My vision is, admittedly, not normal now; I have not only to use glasses, but also to wear different glasses for distant work and for reading. For that reason I should hesitate to base any criticism of a television reception system on the evidence of my own eyes alone. I find, though, that those with normal vision with whom I discuss the subject hold opinions very like my own: moving far enough from the television screen to make the lines unnoticeable means, willy-nilly, the acceptance of a not very sharp or detailed picture. Certainly there was no discrepancy in the views expressed by the owners of good, moderate and not-so-good eyes at a recent demonstration of spot-wobble television reception. All of us agreed that it was a joy to be able to sit near enough to the screen to see all the detail, and yet not to be annoyed by lininess in the image.

(Having heard something of spot-wobble, and finding that it was in regular use in the B.B.C. Research Department, I asked whether one or two friends and myself might be allowed to sample its achievements. I have to thank Mr. S. N. Watson, of the B.B.C. Designs Department, for his ready co-operation and help. Spot-wobble (which, as its name suggests, means that the receiver scanning spot takes a wobbly, instead of a straight, course across the screen) can hardly be described as new, for the original patent was taken out in 1934 by a French company engaged in the manufacture of gas meters! Until fairly recently, though, it does not appear to have been exploited: and so far as I know, no use of it has yet been made in any domestic television receiver.

The instrument used for the demonstration was a receiver, very much of the de luxe order, specially made for the B.B.C. by Cinema-Television, Ltd., and containing a 20in c.r.t. I imagine that its cost
would be in the neighbourhood of nine or ten times that of the ordinary domestic set—the tube alone runs, I believe, to something like £50! Apart from the size of the screen, striking features of this set are the sharpness of its focus and the perfection of the interlacing, clearly seen in its raster.

The room was furnished by the position of the chairs in which we were asked to take our places. I did not actually measure the distance between them and the screen, but I am sure that it was not more than seven or eight feet. The reader will know that this is very much less than the optimum viewing distance laid down by the experts for the 17 x 14 in picture shown. The lines should have been very much in evidence; and when the picture first appeared they were.

I was handed a small box connected by a length of twin flex to the receiver. "Cut the spot-wobble in or out as you like," I was told. "It's out now; but do that with the switch and it's in." I promptly did "that." The lines disappeared as completely as if some wizard had removed them with a magic duster. Handing the box to another of the party I put on my reading glasses, which focus at about 14 in, and went close up to the screen. Looking right into it in this way one could still see no lines. One was conscious of what I may term a kind of small-scale turbulence of the picture elements, which was somewhat reminiscent of Brownian Movements. This activity is entirely invisible at over about 3 ft to people with ordinary sight. The picture appears clear, detailed and with no dark lines.

Effect of Focusing

Thinking over the demonstration later on, I was led to wonder whether the full effectiveness of spot-wobble had not been due largely to the combination of a big screen and focusing arrangements so good that the spot was far smaller than that of the overall domestic television receiver. These points I mentioned to a friend who was going to see the apparatus later. A small screen set was not available, but at his suggestion, definition was degraded by de-focusing until it was judged to be of average "domestic" quality. The improvement affected by spot-wobble was still definite and pleasing.

So much for the results of spot-wobble. The reader will now want to know just what it is and how it is done. In the familiar system of scanning the screen of the receiver c.r.t. the spot takes a straight-line course from left to right across the screen as it stipples in the image by its varying degrees of brightness from instant to instant. We speak of the television image as made up of blacks, whites and greys. Actually, there are probably few absolute whites or absolute blacks, the image being built up of an infinite variety of greys, ranging from extremely pale to extremely dark.

If we knew how to produce either a square-shaped scanning spot or a perfectly circular spot of unvarying diameter, no dark lines would appear on the screen to annoy us, for the diameter of the spot could be made always equal to the width of a line. Actually, the spot is only roughly circular in shape and its apparent diameter varies in practice quite considerably with the degree of brightness. On whites the spot has a very bright central portion, though its "brilliance tails off towards the sides; it then appears to be larger than when it is dealing with medium, dark and very dark greys. The net result of all this is that the average diameter of a properly focused spot is a little less than the width of the slice of the image that it is painting in. At the top and bottom of the scanned line there are two narrow unactivated strips of the screen and, unless one views it at not less than a certain minimum distance, depending on its size, the image shows dark horizontal lines.

The better the focusing arrangements of a television receiver the smaller is the spot. This has two results. The first is improved definition; for the smallest element of an image that the spot can reproduce properly is one that is at least as large as itself. This is brought out in Fig. 1, from which it is seen that the brilliance of the spot at any instant corresponds to the average shade of the tiny portion of the image with which it is then dealing. As the figure shows, a spot large enough to fill the scanning line completely cannot reproduce the finest details of an image; an area consisting of tiny black and white elements is painted in as a grey patch. In many domestic receivers the focus is not very sharp, and there is consequently some loss of detail.

The second result of sharp focusing is to make the spot so small that, though it can cope with the finer details of the image, its diameter is less than that of the scanned strip. Hence, marked horizontal lines are produced on the screen, and to get rid of these effects the viewer must be so far away that he loses, perforce, much of the improved definition.

In other words, lilliness is not so obvious as to be particularly offensive in the television receiver whose focus is not very sharp; but it becomes more and more marked as the focusing arrangements—and the definition—are improved in better designed instruments at higher prices. Third, although spot-wobble is of the utmost value when applied to high-quality receivers, it is not to be expected that it will produce an equally striking improvement in sets in which the spot-focus is not very sharp. Nevertheless a definite improvement is likely even in these.

The spot-wobble system is so utterly simple that one cannot refrain from wondering why it was not thought of and applied at the very inception of c.r.t. television. But it is the way of important inventions to be completely simple—and of people to kick themselves for not having thought of them.

What will happen if a small, rapid, up-and-down movement is superimposed on the lateral travel of the spot? Make the movements in the vertical sense sufficiently rapid and the amplitude of those movements so small as not to overlap seriously the

Fig. 1. The scanning spot cannot deal adequately with any element of an image with an area less than its own. The spot, in fact, records on the screen elements representing the average illumination of areas of the same diameter as itself. Hence, the fine detail of each of the seven tiny areas seen at (a) is lost, and all of them appear on the screen as the small uniform medium-grey patch (b), the shade of which corresponds to the average brightness of each. The smaller the spot, due to good focusing, the better is detail brought out.

Wireless World, March, 1950
boundaries of one scanning line, then the wobbling spot will activate virtually the whole rectangular area of the screen corresponding to the line. To put it in another way, there will be what amounts to vertical elongation of the spot, and this, if correctly regulated, will annul the failure of the sharply focused spot to cover the full width of the scanned strips which, in the ordinary way, provides each line with dark borders and gives rise to linness. The scanning element becomes a short vertical line instead of a spot and the gaps are filled without losing horizontal definition.

Additions to the Receiver

That, precisely, is what is done in spot-wobble. The effects are illustrated diagrammatically in Fig. 2. By using spot-wobble we scan, in effect, not with a roughly circular spot, but with an elongated spot. The essence of the spot-wobble system is to give the spot a vertical movement at a frequency approaching 1,000 fps and down—let us call them cycles—per line. For our British 405-line, 25-image-per-second system this means a frequency of the order of 10 Mc/s. It would clearly not be feasible to apply this to the transmitter, the total modulation bandwidth of which is some 2.8 Mc/s. But there is no need for this. Spot-wobble is, in fact, essentially concerned with the receiver; and it is so simply produced that the additional cost need hardly exceed £1.

It might be done electrostatically by the use of two small deflector plates; but I was given to understand that magnetic methods are used in the instrument which we saw. The necessary additional circuits are shown in Fig. 3. They are given in block form partly because they are so simple and partly because the optimum component values for any particular television receiver must be found by experiment. The on-off switch is required because the receiver should be focused as sharply as possible with the wobbler out of circuit. That having been done, the switch is closed. To start with the control knob should be at the position giving minimum amplitude. Then the amplitude is gradually increased until the best balance is reached between welcome loss of lines and unwelcome loss of definition.

Fig. 2. The unwobbled “round” spot does not (a) quite fill the strip of the image which it scans. The result (b) is that each strip has narrow black borders and that the image is “lumpy.” The better the focus, the smaller the spot and the better the definition—but the more pronounced also is the linness. The wobbled spot (c) provides much the same effect as would the actual elongation of an unwobbled round spot. The scan slightly overlaps the edges of the strip and there are no unactivated portions of the screen; hence (d) the scanned strip is reproduced without the black borders, and the linness disappears.

Fig. 3. The simple additions necessary for the application of spot-wobble to television reception. Note that the 10 Mc/s oscillator requires no synchronizing, but functions quite independently. More than one turn may be needed in the “wobble” deflector coils with insensitive tubes.

For it must be admitted that spot-wobble results in a slight loss of vertical definition. When the proper adjustment of the amplitude is made the loss is very small indeed, and, as the vertical definition is rather better than the horizontal with existing systems, this is a matter of no real moment.

It is interesting to calculate the effects of a 10 Mc/s superimposed wobble on 405-line, 25-image-per-second reception. These can conveniently be based on a 10 x 8-inch image, for that is fast becoming the most popular size. Working in round figures, this frequency gives 1,000 wobbles per line. But the visible portion of the line is only 83.5 per cent of the whole; hence we have 835 up-and-down movements of the spot in 10 inches, or 83.5 in each inch of scanned line on the screen. The “wavelength” of the wobble in a 10 x 8-inch picture is thus 1/83.5 = 0.012 in.

Since 377 “active” lines compose the screen image measuring 8 in from top to bottom, the width of one line is 8/377, or 0.021 in. As we have seen, the average diameter of the unwobbled spot is a little less than the width of one line. Let us call it 0.021 in for the sake of argument. It will be seen that cutting in the spot-wobble circuit causes the scanning spot to describe very nearly two complete up-and-down movements as it travels a lateral distance equal to its own diameter.

It is open to question whether spot-wobble would work equally well with sequential scanning. Quite possibly the amplitude of the wobble, when adjusted to give the best results with interlaced scanning, would result in an undesirable overlap on “peak whites” (when the spot has its maximum diameter) in a sequential system. A smaller amplitude might be ineffective. But we do not seem likely to be concerned, at any rate in the near future, with any but interlaced systems; and with these, spot-wobble appears to supply the best means yet devised of making the even-numbered scanning lines adequately fill the gaps between those of odd number. It is interesting to speculate on the possible applications of spot-wobble to existing and future schemes for both colour television and stereoscopic television. Any system which permits a controlling frequency of 10 Mc/s or more to be applied to the scanning spot, quite independently of the transmitter bandwidth, or of the pass-band of the receiver’s r.f. and i.f. circuits, is clearly worthy of serious attention by those now engaged in the research which will lead to the television of tomorrow.
Fringe-Area Television

Map showing Midlands Station Field Strengths Outside the Recognized Service Area.

This map has been compiled from data gathered by Belling and Lee during the first part of a tour by a mobile field-strength measuring van (shown inset) on a radius of roughly 70 miles from Sutton Coldfield. Height of the 4-element receiving aerial array used for the measurements was 40ft above ground level. Vision signal strengths are shown in microvolts per metre for the Midlands station (M) and, where receivable, for London (L). At a few sites wide variations were met; these are indicated by minimum and maximum figures. At most sites a good picture was obtainable in the van from a representative commercial monitoring receiver fitted with a single-stage pre-amplifier when signal strength was 70 µV/m or over.

(Data published by courtesy of Belling and Lee.)

Wireless World, March, 1950
Wide Range R-C Bridge

A Simple Instrument for Resistance, Capacitance and Insulation Measurements

By H. E. Styles, B.Sc.

In these days of readily obtainable surplus radio components it is more than ever necessary to have a means of checking resistors and capacitors since these often bear no readily identifiable markings and may in any case be defective.

The use of an a.c. bridge for the measurement of resistance and capacitance will no doubt be familiar to most readers of this journal, as also will be the use of a neon "flashing" for insulation testing. The instrument to be described has been designed with a view to performing these three tests with a minimum of equipment. It has, moreover, a more open scale than many bridges, and can be operated from either a dry battery or a very simple mains unit, since its power consumption amounts only to about 0.1 mA at 200 V.

Bridge Circuits. The simplest a.c. bridge comprises the circuit of Fig. 1. In this an alternating potential is maintained across a potentiometer P, and an unknown resistance X is compared with a known resistance S by adjusting P until no sound is audible in the telephone receiver T. Under these conditions

\[\frac{B}{A} = \frac{X}{S} \]

where B and A are the resistance values of the two portions of the potentiometer at the balance point. Whatever the value of S, a given setting of the potentiometer always corresponds to a particular ratio between S and X and therefore a scale can be fitted to P to indicate this. It is evident that such a scale will extend from infinity at one extreme to zero at the other, the centre point corresponding to a ratio of unity. It follows that for ratios greater than unity the graduations must rapidly become very compressed.

The circuit can also be employed for comparison of capacitances, but if the same ratio scale is to be used it is necessary to interchange the position of the unknown and known components, since the bridge actually compares reactances which are, of course, inversely proportional to the capacitances.

Fig. 1. Simple bridge circuit. Fig. 2. Improved bridge circuit.

An improved circuit is shown in Fig. 2. In this a fixed resistance R is placed in series with the potentiometer P which must have a resistance slightly greater than R. A change-over switch W provides a means of interchanging S and X so that the bridge can always be balanced, regardless of whether S or X has the greater resistance. A ratio of unity, however, now corresponds to a potentiometer setting close to the extreme limit adjacent to R, and rotation of the potentiometer away from this position corresponds either to an increase or a decrease in ratio according to the position of switch W. Thus an almost complete rotation of the potentiometer now corresponds to a range of ratios of from unity to zero or from unity to infinity so that the effective scale length is twice that of the circuit of Fig. 1. The potentiometer has to be provided with two scales, but this presents no difficulty since one is merely the reciprocal of the other. Which scale has to be used during any particular test is determined by the position of switch W, and, when testing capacitors, it is merely necessary to employ the scale opposite to that which would be used were resistances being compared.

A.C. Excitation. Various types of a.c. generators may be employed for bridge excitation but, as will be seen later, the complexity of the test equipment and its versatility are considerably affected by the type of generator selected. Amongst possible sources of a.c. the following are commonly employed:

1. Electro-magnetic buzzers. These are normally suitable for battery operation only, are somewhat difficult to maintain and required to be sound-proofed to obviate acoustic interference. Their frequency range is restricted and additional equipment must be provided for insulation testing.

2. 50-c/s a.c. mains. This is far from an ideal source since neither the ear nor most telephone receivers are very responsive to a frequency of 50 c/s, whilst such a low frequency results in unduly high values of reactance when dealing with small capacitances. Hum pick-up from stray leakages may mask the null position, the frequency is fixed, and, obviously, such a source can only be used if a.c. mains are available. Added equipment is necessary for insulation tests.

3. Valve oscillators. These can be made to produce any desired frequency and can be mains or battery driven. Power consumption, however, may be relatively high owing to the necessity for cathode
heating and, in the case of mains-driven units, a fair amount of ancillary equipment is required. Additional equipment is required for insulation testing.

The neon oscillator. In the author’s opinion this is the almost ideal a.c. source for simple bridge work. Very few components are needed and the oscillator can be operated from either batteries or mains (d.c. or a.c.). Power consumption is negligible, the frequency can be adjusted over a wide range, and, finally, the same components can be used for insulation testing. An extremely compact unit can be constructed if miniature neon tubes such as are employed in certain types of tuning indicators are used, but even with more normal tubes a compact assembly is possible since, in essence, the oscillator comprises only the three components shown in Fig. 3.

A “d.c.” potential E charges the capacitor C through a high resistance R until the potential of C reaches the striking voltage of the neon tube N. At this stage capacitor C becomes partially discharged until its potential falls to the extinction voltage of N, when the cycle repeats itself. By suitable choice of values for E, R and C the repetition frequency can be varied from a few cycles per second to above the limit of audibility. With two of the values fixed, variation of the third gives a wide though not full range of control and applied voltage is a convenient choice of variable.

Insulation Testing. The circuit of Fig. 3 can be applied without alteration to the testing of the insulation of components such as capacitors, since, provided the combined leakage resistance of the neon tube, its holder and the shunt capacitor is sufficiently high, the capacitor can still be charged up to the striking voltage of the neon tube even though an extremely high resistance be inserted in series with the tube and the source of fixed potential. The striking frequency will, of course, decrease as the series resistance is increased, but with careful attention to the insulation of the oscillator it is easily possible to make it responsive to leakage resistances of 100 megohms or more. Owing to the small value of shunt capacitance required to produce a suitable frequency for bridge operation, the flashing of the neon tube is not so brilliant as it is usual for “flash” testers, but this is no disadvantage since the occurrence of flashing is accompanied by the production of an audible signal in the telephone. In fact, in the author’s instrument the neon tube is mounted behind the panel and its flashing is in any case not visible.

The objection might have been raised that a neon oscillator necessitates the use of somewhat high operating potentials, but this can now be seen to be invalid since if insulation tests are to be made it is obviously desirable to conduct these at a voltage reasonably similar to the working voltage of the components under test, and this is commonly of the order of 200 V.

Complete Test Circuit. The complete circuit of the test equipment is shown in Fig. 4. Apart from the inclusion of a means whereby any desired “standard” resistance or capacitance can be switched into circuit, it will be noted that two modifications to the previous circuits have been made. First, the relative positions of the telephone receiver and a.c. source have been interchanged. This has no effect upon the balance of the bridge but results in greater sensitivity when high resistances or low capacitances are being compared. Second, the neon oscillator is coupled to the bridge circuit by means of a step-down transformer. This serves the dual purpose of isolating the bridge and telephones from the power supply and also of helping to match the high impedance of the a.c. source to that of the bridge. The characteristics of the transformer are in no way critical and, since only a very small direct current is passed through the primary, a miniature a.f. component of 3:1 or high ratio is quite suitable.

Terminals Z are normally short-circuited and are employed only when insulation tests are being conducted. The selector switch SW for “standard” resistors, etc., is provided with an open-circuit position so that terminals S can be connected to any desired comparison component for special purposes. With the change-over switch in position A the bridge covers ratios from unity to infinity, whilst in position B the ratios range from unity down to zero. For capacitance tests the switch positions are reversed.

Construction. The lay-out of the components is in no way critical and may be such as to give a maximum compactness with the particular articles available. Undue capacitive couplings between the wiring should, however, be avoided, and it is most important to ensure that the insulation of the oscillator components and terminals Z is as high as possible. A list of the components is given with Fig. 4.

In the author’s instrument the “standard” com-

List of Components

- Wire-wound linear law potentiometer, 5,000Ω.
- Fixed resistors—1,000Ω, 1 watt, 1 MΩ, 1 watt.
- D.P.D.T. switch (W).
- Six-position S.P. wafer switch (SW).
- Telephone plug and jack (or terminals).
- A.F. transformer—3:1 or higher ratio.
- Neon tube, type CV 188.
- Fixed capacitor, 0.005 µF—preferably mica dielectric.
- “Standard” components: Resistors, 1 kΩ and 100 kΩ. Capacitors 10µF, 0.1µF and 0.001 µF.
- Terminals, panel, containing box and calibrated dial.

Wireless World, March, 1950
components and selector switch are mounted in the lid of the containing case, which is also provided with a compartment to house a single telephone earpiece and connecting leads. The rest of the components are mounted behind the panel of the bridge proper and the whole instrument is contained in a box measuring 8in x 7in x 4½in externally when closed.

The neon tube specified is actually a voltage-stabilizer available as government surplus, but other tubes possessing reasonably similar characteristics can be employed, though minor adjustments to the series resistance and shunt capacitance values may be necessary to obtain a satisfactory oscillation frequency. The striking and extinction voltages of the tube should, however, be in the neighbourhood of 140V and 100V respectively.

Power Supply. No power supply has been incorporated in the test equipment, since many readers will already have available a suitable source of c.e. at about 250 V, whilst in other cases it may be desired to use batteries. The very simple circuit of Fig. 5 has been found to be quite adequate to provide the required supply from an a.c. mains. The reservoir and smoothing capacitors may be of any capacitance above 1µF, whilst the 1 megohm variable resistor functions as both a smoothing resistance and voltage controller. In view of the small current demanded, the rectifier could well be of the type employed for providing e.h.t. supplies in television receivers. The smoothing capacitor should, however, be non-electrolytic to obviate excessive voltage drop due to passage of leakage current through the smoothing resistance.

Preliminary Adjustments.—No difficulty should be experienced in getting the equipment to operate satisfactorily. Terminals S should be short-circuited as well as terminals Z and, with switch W in position B, the potentiometer turned to its extreme position farthest from its junction with the fixed resistor R. This ensures a maximum of unbalance and a strong signal in the telephone. A voltage of about 150 is then applied to the oscillator and slowly increased. Oscillation will be indicated by a ticking sound in the telephone which will increase in frequency as the voltage is increased until a suitable note is produced. If the voltage is raised too high the tube may glow steadily and oscillation cease and should this occur before a sufficiently high frequency is obtained the shunt capacitance must be reduced somewhat. It will usually be found that at certain frequencies the telephone response peaks, on account of diaphragm resonances, and such a frequency should be employed for maximum sensitivity.

Having obtained satisfactory operation of the oscillator, terminals Z should be open-circuited. This should result in complete cessation of oscillation and if a slow ticking sound persists in the telephone it can be concluded that the insulation of the oscillator circuit is faulty. If so, appropriate steps should be taken to rectify the trouble; otherwise the leakage will be added to that of components undergoing insulation test.

Finally, if available, a high resistance of some 100 MΩ should be connected across terminals Z when a slow ticking sound will show that the leakage resistance across the tube shunt capacitance is sufficiently high to enable the instrument to detect insulation defects such that anything smaller can be ignored for all ordinary purposes. Should no oscillation occur under these conditions the resistance across terminals Z should be reduced until a slow tick is produced. This will indicate the result of the insulation test and if this proves to be inadequate, attention must be paid to the insulation of the neon tube and its shunt capacitor.

Calibration.—It is, of course, necessary to calibrate the instrument in order to construct either a specially graduated dial giving ratio values direct or, if a uniformly graduated dial is used, a graph by means of which dial readings can be converted to ratio values. The former involves rather more work initially, but renders the bridge much more convenient to use and is well worth while.

Whichever method is adopted, however, the calibration procedure described below can be employed. This depends upon the fact that, apart from small irregularities at the extreme positions of rotation, a linear law potentiometer is such that a given angle of rotation corresponds to the same change in resistance whatever the initial position of the potentiometer contact. From this fact it can easily be established that if F be any bridge ratio value less than unity and Y the angle between the corresponding potentiometer position and that of unity ratio, then the relation between F and Y is given by the expression

\[Y = K \cdot \frac{1 - F}{1 + F} \]

where K is a constant for any particular bridge. It follows that a graph of Y against \(\frac{1 - F}{1 + F} \) will be a straight line and can therefore easily be drawn provided a few corresponding values of Y and F can be determined. Once such a graph has been prepared it can be employed to determine the range of rotation required to give any desired bridge ratio, and the problem of calibration is thereby solved.

It is thus necessary only to determine a few fixed points on the bridge and this can be done by either of the following procedures. If a direct-reading dial is to be constructed the potentiometer should be fitted with a temporary paper scale upon which positions can be marked, and this should first be provided with two diaphragm lines at right angles so that the position of the scale centre can readily be located after a central hole has been cut for the potentiometer spindle. Whichever type of dial is used the position of maximum (or minimum) mechanical rotation of the potentiometer should be marked or noted so that

Fig. 5. A.C. power supply.

Fig. 6. Calibration circuit (Procedure 2).
if the dial is removed it can be replaced in the same position on the potentiometer.

Procedure 1. This is the simpler procedure but involves the use of resistors of accurately known values. Only a few such resistors are needed, however, and a suitable selection would be the following: 1 kΩ, 1 kΩ, 3 kΩ, and 50 kΩ.

With the bridge change-over switch in position B and the selector switch set so as to open circuit terminals S, the dial positions required to balance the following combinations of resistors should be determined:

<table>
<thead>
<tr>
<th>Resistors in series across terminals S</th>
<th>Resistors in series across terminals X</th>
<th>Ratio</th>
<th>Value of 1 - F</th>
<th>1 - F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kΩ</td>
<td>1 kΩ</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 kΩ</td>
<td>1 kΩ, 1 kΩ</td>
<td>0.667</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>3 kΩ</td>
<td>1 kΩ</td>
<td>0.333</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>1 kΩ, 3 kΩ</td>
<td>1 kΩ</td>
<td>0.25</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>50 kΩ</td>
<td>1 kΩ, 1 kΩ, 3 kΩ</td>
<td>0.10</td>
<td>0.818</td>
<td></td>
</tr>
<tr>
<td>50 kΩ</td>
<td>1 kΩ, 1 kΩ</td>
<td>0.04</td>
<td>0.923</td>
<td></td>
</tr>
<tr>
<td>50 kΩ</td>
<td>1 kΩ</td>
<td>0.02</td>
<td>0.961</td>
<td></td>
</tr>
</tbody>
</table>

From the dial readings thus obtained, or from measurement by protractor, the angles of rotation from unit ratio position can be determined and these plotted against the corresponding values in the final column of the above table. The points thus plotted should lie on a straight line and the latter should be drawn so as to give the best possible fit.

Procedure 2. This method does not require the use of any accurately known values of resistance, but necessitates the use of a fixed resistor of about 1 kΩ, and variable resistors of about the following resistance values: 2 kΩ, 20 kΩ, and 20 kΩ. The two high-resistance components can with advantage be wired in series with a 5 kΩ variable resistor to provide fine adjustment, but this is not absolutely essential. Two single-pole change-over switches are also required.

As before, the selector switch of the bridge is set to open-circuit terminals S, and the above resistors are connected to the bridge in the manner shown in Fig. 6 with B = 20 kΩ, C = 2 kΩ and D = 20 kΩ.

The first operation is to determine the position of the potentiometer corresponding to a ratio of unity.

With switch S₁ in position F and switch S₂ in position H, resistor C is adjusted to a setting considered to approximate to a resistance of about 1 kΩ. The bridge is then balanced and its setting noted or marked on the scale. The bridge change-over switch W is then reversed when a signal will probably be received in the telephone, in which case the bridge is re-balanced and its new setting noted. The bridge is then set to a position midway between the two positions thus determined, and resistor C is adjusted until no signal is audible. The bridge change-over switch is again reversed, and if a faint signal appears a fresh balance position obtained. The bridge is set to midway between these two positions, as before, and resistor C again adjusted to give no signal. The change-over switch is again reversed and the foregoing procedure continued, if necessary, until the balance remains unchanged by reversal of the bridge change-over switch. When this is so, the resistance C must be equal to the resistance A and the bridge setting must therefore correspond to a ratio of unity. Note or mark this on the temporary scale.

Next move switch S₁ to position G and adjust resistor D until no signal is received, the bridge being left at the unity ratio setting. Resistors A, C and D must then all be equal. Switch S₁ is then opened so as to put resistors C and D in series and the bridge re-balanced with the change-over switch W in position A. This corresponds to a ratio of 2:1, or, bearing in mind that the two bridge scales are reciprocals of each other, to a ratio of 0.5:1.

The bridge change-over switch is then reversed and, with the bridge setting still at the 2:1 or 0.5:1 position, switch S₂ is moved to position E and resistor B is adjusted to give no signal. The resistance of B must then be twice that of C plus D or four times A, C or D. Switch S₂ is therefore moved to position G and the bridge re-balanced to give a setting corresponding to a ratio of 0.25:1.

Again reverse the bridge change-over switch and, without altering the bridge setting, adjust resistor D to no signal. D must then have a resistance sixteen times that of A and, by moving switch S₂ to position F, the bridge can be re-balanced to a setting corresponding to a ratio of 16:1 or 0.0625:1.

Next reset the bridge to the previously determined 4:1 position, move the bridge change-over switch to position B, and switch S₂ to position H. Adjust resistor C to balance the bridge and thus make its resistance equal to one-quarter of A. Move switch S₁ to position E and S₂ to position G. Set the bridge to its unity ratio position and adjust resistor B to give no signal. Its resistance must then equal that of D, which has already been made equal to sixteen times A. B, therefore, now has a resistance sixty-four times that of C and by moving switch S₁ from position G to H the bridge can be balanced to give the setting for a ratio of 0.0156:1 (1:64).

<table>
<thead>
<tr>
<th>Ratio F</th>
<th>Value of 1 - F</th>
<th>1 + F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.333</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.600</td>
<td></td>
</tr>
<tr>
<td>0.0625</td>
<td>0.882</td>
<td></td>
</tr>
<tr>
<td>0.0156</td>
<td>0.969</td>
<td></td>
</tr>
</tbody>
</table>

Wireless World, March, 1950

www.americanradiohistory.com
The foregoing procedure, which is much easier to perform than to describe, will have established the bridge settings for the ratios given in the table, and the corresponding angles of rotation from the unity position can therefore be determined and plotted against the values of \(\frac{1-F}{1+F} \) as in the first method.

A graph such as that typified by Fig. 7 will thus have been prepared from which the angles corresponding to any values of \(\frac{1-F}{1+F} \) can be ascertained.

The Table below provides a ready means of converting bridge ratio values, \(F \), to corresponding values of \(\frac{1-F}{1+F} \) so that the graph can easily be used for the determination of angles corresponding to any desired values of \(F \).

In the case of a uniformly graduated dial it will be necessary to construct additional graphs showing the ratio values plotted against dial readings, whilst a direct-reading scale can, of course, be constructed by marking in desired graduations with the aid of a protractor.

In both cases the scale readings for ratios above unity are determined by the position of the corresponding reciprocal value on the scale for ratios below unity. A typical direct-reading dial is illustrated in Fig. 8, the calibrations being extended as far as ratios of 0.01 or 100:1.

Comparison Standards.—To complete the instrument it is necessary to fit the standard components to the bridge selector switch. This demands the provision of at least one resistor and one capacitor of accurately known values, commercially available components of ±1 per cent tolerance being suitable. Given one component of known value of each type, other required standards may be selected, by means of bridge measurements, from available spares. The standards shown in the circuit diagram suffice to cover a resistance range of 10Ω to 10MΩ and a capacitance range of 10µF to 100µF, the highest range being somewhat lacking in precision, but very useful for checking electrolytic capacitors for which great accuracy is not needed.

Insulation Testing.—When it is desired to carry out insulation tests, the 1 kΩ standard resistance should be switched across terminals \(S \), the change-over switch moved to position \(B \) and the bridge set to a ratio of 0:1 (i.e., fully rotated beyond the 0.01 ratio position). This ensures development of a loud out-of-balance signal.

Terminals \(Z \) are then open-circuited and the component to be tested is connected across them. If this has a fair capacitance it is probable that an initial burst of oscillation will be heard as the capacitance charges to the test voltage, but with components possessing first-rate insulation the oscillation will completely cease once charging has been completed. The continued occurrence of a few isolated clicks at a frequency such that they can be easily counted can be regarded as an indication that a leakage resistance of the order of some 100 megohms exists, a value sufficiently high to be ignored for all but the most exacting circuit conditions. With high-capacity components an irregular series of slow ticks may also result from fluctuations in the power supply voltage due to variations in the state of charge of the capacitance, but this effect is unlikely to be mistaken for a serious insulation defect.

If the rate of ticking is such that a low-frequency note is approached, the leakage resistance is of the order of tens of megohms and such components can only be regarded as possibly suitable for use under conditions when good insulation is unimportant. A musical note in any way approaching that of the normal bridge signal indicates very poor insulation.

The instrument can, of course, be used for any kind of insulation tests, such as the inter-winding insulation of transformers, but it is perhaps as well to point out that it cannot be used for checking the leakage of electrolytic capacitors, since this is always of considerable magnitude.

![Typical direct-reading ratio scales](image)

Fig. 8. Typical direct-reading ratio scales.

TABLE

<table>
<thead>
<tr>
<th>(F)</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1+F)</td>
<td>1.00</td>
<td>0.980</td>
<td>0.961</td>
<td>0.942</td>
<td>0.923</td>
<td>0.904</td>
<td>0.887</td>
<td>0.869</td>
<td>0.832</td>
<td>0.834</td>
</tr>
<tr>
<td>(1-F)</td>
<td>0.00</td>
<td>0.020</td>
<td>0.039</td>
<td>0.058</td>
<td>0.078</td>
<td>0.098</td>
<td>0.118</td>
<td>0.138</td>
<td>0.158</td>
<td>0.178</td>
</tr>
</tbody>
</table>

“Filters”—A Correction

The shunt arm impedance referred to in line 20, column 2 of Table 27 in the January issue should be \(Z_2 \), and equation (1) on the same page should read—

\[
Z_0 = \sqrt{Z_0 Z_2 \frac{1}{1 + \frac{1}{4Z_2}}}.
\]

Wireless World, March, 1950

www.americanradiohistory.com
Interference from Fluorescent Tubes

An Obscure Source of R.F. Radiation: Methods of Suppression

In the January issue of Wireless World (p. 38) I made a brief mention of the interference with radio and television reception which may be caused by certain of the fluorescent tubes which are so widely used for lighting purposes nowadays in business premises and in homes. Realizing that the three short paragraphs referred to did little more than touch the fringe of a wide subject, I arranged, with the kind cooperation of Messrs. Belling & Lee, to spend a day in the firm's research department in order to go into the matter more thoroughly. It would obviously be of interest to others besides myself to know more about it. Every reader uses radio receivers of one kind or another; and many have television sets as well; the use of fluorescent lighting is increasing rapidly; there is the Wireless Telegraphy Act of 1949, with its clauses prohibiting the use of interference-radiating apparatus.

One aspect of the question of the radiation of interference by gas-filled discharge tubes has received adequate treatment by Dr. E. B. Armstrong and Professor K. G. Emelius of Queen's University, Belfast, in their paper on "The Generation of High-Frequency Oscillations by Hot-cathode Discharge Tubes Containing Gas at Low Pressure." Their paper, however, is concerned mainly with low-pressure diodes and does not cover the fluorescent lighting tube, the behaviour of which shows important differences.

Outstanding amongst the observed facts about the behaviour of fluorescent tubes is that a small percentage of them generate interference with radio and television reception, the effects of which can fairly be described as devastating. The loudspeaker emits intolerable noise; across the screen of the television receiver there appear stationary white horizontal bars. If the receiver is close enough to such a fluorescent tube, the c.r.t. may be so over-driven that the horizontal bars are black instead of white.

The interference is generated by oscillation in the tube. This condition is not produced immediately the tube is switched on. It occurs from 5 to 15 minutes after switching on; and, once it has started, oscillation normally continues. It can be stopped as a rule by tapping the tube smartly. The interference then ceases for a time; but it always reappears, if the tube is one of those prone to oscillate, within 15 minutes.

When a tube is causing interference a noticeable bright spot can be seen on one of the heaters by looking through the narrow strip of clear glass near one or other of the ends. Rapping the tube sharply causes the bright spot and the interference to disappear simultaneously.

The interference is impulsive and the pulses are of very short duration; probably much less than a microsecond. For this reason no clean record may be obtainable on the screen of a cathode-ray oscillograph unless a suitably designed set-up is used. Fig. 1 shows interference waveforms on the screen of a c.r.o. connected across the telephones at the output of a receiver with a bandwidth of 8-10 kc/s (6 db down). The waveforms shown represent the modulation envelopes corresponding to large numbers of brief pulses. They are those obtained with the receiver bandwidth of 8-10 kc/s (6 db down).

Fig. 1. Typical fluorescent-light interference waveforms at various frequencies. C.R.O. connected across telephone terminals at output of measuring set with receiver bandwidth of 8-10 kc/s (6 db down).

The interference occurs at intervals over an enormously wide range of frequencies, extending from less than 100kc/s to well over 3,000Mc/s. Curiously enough, there is no harmonic relationship whatever between the frequencies at which it may be observed. If, for example, there is interference at 800kc/s, it may be absent at 1.6Mc/s, 2.4Mc/s or 3.2Mc/s.

Just how it is caused within the tube is still a matter that needs to be cleared up. There can be no doubt that its point of origin is the bright spot on the heater; if a search coil is moved over an interference-producing tube, the response of the c.r.o. increases as the coil nears the region of the bright spot and diminishes as it is moved away from it; but what exactly is taking place there?

The most plausible suggestion advanced up to now is that the oscillations causing interference are generated at a point (the bright spot, in the case of the fluorescent tube) where there is a small degree of flaking of the surface of the heater or cathode. This might occur with either a plain metal or an oxide-coated electrode. Between the body of the electrode and the flake something of the nature of an arc occurs. It is, again, possible that the flake itself is made to vibrate by the impact of the stream of electrons causing the arc. Inside the tube, it is suggested, there may occur bunchings of electrons, producing a kind of klystron effect. We are certainly concerned with oscillations of considerable amplitude, for Armstrong and Emeleus have shown that the interference radiated by diodes may amount to 1 per cent of the power dissipated at the anode. If this held good for fluorescent lighting tubes, an 80-watt tube could have an interference output of 0.8 watt!

Curiously enough, my own experience and that of others whom I have consulted I don't believe that the unwanted output of an interfering fluorescent tube is anything like so large. Nevertheless, its effect can be sufficient to ruin both radio and television reception.

Interference of many kinds, including that generated by offending fluorescent tubes, consists of two components: the symmetric and asymmetric. Let us take the case of the commutator motor, since this is simple to illustrate. As Fig. 2(a) indicates, the symmetric component of the interference appears as equal voltages of opposite sign in the two limbs of the circuit. Were the voltages exactly equal, even the vacuum-cleaner and the hair-drier would most likely cause little or no interference with radio or TV. What there was could, in any event, be removed by short-circuiting the voltage differences through the capacitor shown connected between points A and B.

In practice the voltages in the two limbs of the circuit are never precisely equal to one another. The difference between them gives rise to the asymmetric component (Fig. 2(b)), which appears as a voltage difference between the circuit taken as a whole and earth. The problem of suppression, then, becomes one of "shorting out" both the symmetric and the asymmetric voltage differences.

Fig. 3 indicates the way in which this is accomplished by the Belling and Lee suppressor for fluorescent tubes. The solid lines represent the normal components of the circuit and their connections. The additions made by the suppressor, when it has been connected to the circuit, are shown by broken lines.

In this case the two limbs of the circuit are not symmetrical, for that which is (or must certainly be!) connected to the phase wire contains a choke. For this reason C2 alone is not sufficient to short out the symmetrical interference component; it is also found necessary to increase the capacitance of the normal power factor capacitor by providing C3 in parallel with it. Shorting out the symmetric component thus takes place at both ends of the choke. C4 and C5 provide paths to earth from the circuit as a whole for the asymmetric component.

Even if a fluorescent tube does not suffer from "white-spot" trouble, it still radiates, if not suppressed, a small amount of interference owing to the asymmetry of its circuit. If only a single tube is in use, this interference may be so slight as to cause no noticeable effects; but when N tubes are served by the circuits of a building the total interference becomes √N times as great as that from one tube. How effective is this system of suppression will be realized by any reader who visited the recent Exhibition at Olympia. Every one of the hundreds of tubes in use there was fitted with the suppressors described and there was no interference whatever from them with radio or television reception.
Deflector Coil Characteristics

1. Efficiency in Television Scanning

By W. T. Cocking, M.I.E.E.

The function of a deflector coil is to produce a more or less uniform magnetic field within the neck of the cathode-ray tube where it can act to deflect the electron beam. The establishment of this magnetic field demands the expenditure of energy, which is stored in the field while it persists. On the collapse of the field part of the energy is dissipated as heat, but part can be returned to the circuit and utilized.

The amount of energy needed depends on the field strength required and the volume of space which it occupies. A certain minimum energy is stored in the field within the glass walls of the c.r. tube and this can be taken as the minimum energy needed for deflection. In no practical case is it possible to produce a field within the tube without also producing one outside it, however, and this external field serves no useful purpose. The energy stored in it is, therefore, waste energy.

Other things, such as defocusing and raster distortion being equal, the most efficient deflector coil is the one which produces the least external field for a given internal field. The importance of minimizing external field may be realized when it is said that only rarely does a deflector coil produce less external than internal field and that it is common for the external field to be several times as great as the internal.

Coil Constants

The importance of deflector-coil efficiency has been greatly increased by the development of the a.c./d.c. television receiver. The h.t. voltage available in this type of set is quite low and it is expensive to obtain large scanning power by increasing the current. One line of attack has been to develop "economy" circuits in which the energy stored in the magnetic field is not all wasted as heat during the fly-back, but is partially recovered. Such circuits, however, demand additional components and an extra valve. They are not, therefore, cheap, although their use may be cheaper than the supply of a heavy current.

The fundamental point of attack should obviously be the deflector coil, for any improvement in its efficiency is immediately reflected in a reduction of scanning power. The simple pursuit of deflector-coil efficiency by itself is not sufficient, however. Not only must the coil remain satisfactory in producing a well-focused and undistorted raster, but its cost of manufacture must be acceptable.

The aim in producing a more efficient deflector coil is not to produce the most efficient coil possible, but to produce the cheapest television receiver. In general, a more efficient coil will mean a coil which is more difficult to make and, therefore, more expensive. It is of advantage only if its use enables a greater saving to be made in the rest of the equipment.

There are many possible ways of making deflector coils, and there is very little published information about their characteristics. One of the main aims of this article is to fill this gap in some degree by giving figures for the performance of the main types. There is no difficulty in measuring the performance of a deflector coil; the great practical difficulty of an investigation lies in the enormous amount of labour required to make the different forms of coil. It may need many hours of mechanical work to effect quite a small change in a design.

The deflector coil has inductance L and series resistance R. For a given deflection under given conditions a peak-to-peak current I is needed in the coil. The peak back-e.m.f. on the scan is

\[\frac{L I}{\tau} (1 + \frac{R}{2L}) \]

where \(\tau \) is the scan period, \(-84\mu \text{sec}\) for the line scan of the 405-line transmissions. With L in millihenrys and R in ohms, this expression reduces to 11.9LI (1+0.042 R/L) volts. The peak value of the volt-amperes is thus 11.9LI\((1+0.042 R/L)\).

For the frame scan \(7\), is 19\mu sec and the peak back-e.m.f. becomes 0.0525 LI (1+0.5 R/L). It is better written 0.5 RI (1+0.105 L/R). The volt-amperes as 0.5 RI (1+0.105 L/R).

In practice, R/L usually lies within the limits 0.5 and 2 and is generally around 1 to 1.5. With an error of less than 10 per cent, therefore, the factors in brackets can be taken as unity and the line scan volt-amperes are approximately 11.9LI and the frame 0.5 RI.

The figure for LI is indicative of the energy needed to establish the magnetic field; and the smaller the figure obtained the more efficient is a deflector coil. Since resistance losses are usually unimportant at line frequency the LI\(^2\) figure is a convenient indication of the merit of a coil. At frame frequency, however, the opposite condition exists and the resistance losses greatly exceed the field energy. The figure for RI\(^2\) is in this case a measure of the power needed for deflection; the LI\(^2\) figure is still useful, however, for it is indicative of the merit of a coil in producing useful field. Consequently, it is often desirable to consider RI\(^2\) as the product LI\(^2\) X R/L.

While at line frequency efficiency can be improved only by reducing LI, at frame frequency it can be increased by reducing either LI\(^2\) or R/L. In fact, it may sometimes happen that an alteration which decreases the field efficiency enables the resistance/inductance ratio to be so much reduced that the total efficiency is improved.

It is, therefore, necessary to consider the line and frame coils to a large extent separately. Nearly everything that is said about the efficiency of line-
scan coils applies also to the field efficiency of frame-
scan coils but not necessarily to their total efficiency.
It is to be noted also that while the R^2 figure is
indicative of the inherent efficiency of a frame-scan
coil, it is not always a true measure of the merit
of a coil when considered in conjunction with the
circuit which feeds it. There are cases where circuit
energy may require a deflector coil which does not
have the lowest attainable R^2 figure.

At first the question of field efficiency only will
be considered. All inductance figures quoted are in
millihenrys and currents are in amperes. The energy
in the magnetic field in joules is, therefore, 0.0005
times the L^2 figure; and, at a scanning frequency
of 10,125 kc/s, the power in watts is 5.0625 L^2,
assuming that the energy is all dissipated in resistance
during the fly-back. In all cases, the current is the
peak-to-peak amplitude of saw-tooth current needed
to give a deflection of 7½ in measured across the
curved face of a Mullard MW14-c tube operating
at 5 kV.

The whole matter of deflector-coil design resolves
itself into obtaining the smallest L^2 figure compat-
bile with a satisfactory mechanical construction and
negligible defocusing and raster distortion. The attainment
of a low L^2 figure is essentially a matter
of avoiding waste field.

The simplest form of deflector coil is the air-core
type, but it is of limited utility because of its poor
efficiency. It necessarily produces a very large ex-
ternal field. The efficiency can be at least doubled
by the use of an iron circuit. This increases the
inductance, which is undesirable, but reduces the
current so much more that the net result is an im-
provement. With some iron-circuit types the addi-
tion of copper screens enables the increase of
inductance due to the iron to be partially offset
and a further improvement can be made. It is to
be noted that such screens are effective only at line
frequency, not at frame.

There are two basic forms of iron circuit, which
will be designated the iron-ring and iron-core types.
The iron-ring is usually a stack of laminations which
fits around the centre part of the coils which are
themselves much the same as in air-core types. An
air-core assembly (line-coils only) is shown at (a)
in Fig. 1 and with an iron-ring at (b). The rect-
angular stack forming the "ring" is often rectangu-
lar outside and circular inside. The iron-core type
is shown at (c). The core is a stack of circular
laminations and the winding is around the iron circuit
itself. The laminations need not be circular; in-
deed, rectangular are more frequently used, as shown
at (d).

The iron-ring and iron-core types are so different
in their construction that it is very important to
realize that inside the window of the iron circuit
they are identical. The main deflecting field is pro-
duced inside the iron circuit by the straight wires

![Fig. 1](image)

Fig. 1. The pair of bent-up
end coils forming an air-
core deflector coil for the
line scan is shown at (a)
and the same coils with an
"iron"-ring at (b). An
iron-core coil with the
winding around a stack
of circular laminations is
illustrated at (c) and with
square laminations at (d).

![Fig. 2](image)

Fig. 2. Cross-sections
through the centres of the
coils of Fig. 1 are shown here
together with an indica-
tion of the magnetic
fields. Reference letters
are the same as in Fig. 1.
which lie between the iron and the neck of the tube.

In all the coils of Fig. 1 parts of the whole coils are formed by sets of wires which lie alongside the neck of the c.r. tube. Cross sections through the centres of the various assemblies are shown in Fig. 2. In the air-core coil (a) the sets of wires A and B form the go and return paths for current in the upper coil of Fig. 1 (a), while C and D are the go and return paths for the lower coil. If the current flows upwards out of the paper in A it does so also in C, and flows downwards into the paper in B and D. The end connections between A and B and between C and D are made through the bent-up end wires passing outside the neck of the tube.

In an iron-ring coil, Fig. 2 (b), the coils are identical but the field external to the coil is substantially confined to the iron ring. It requires so much less energy to establish a field in iron than in air that the energy needed for the return field in the iron is negligibly small compared with that needed for the field in the air gap closed by the iron. The waste external field of the centre part of the air-core coil is virtually eliminated by the iron ring.

In the iron-core coil of Fig. 2 (c) the internal conditions are identical with those of the iron-ring coil (b). The windings of one coil are 1 and 2 and of the other they are 3 and 4. The wires of 1 are identical with A and C of Fig. 2 (b) and the wires of 3 are identical with B and D. If current flows upwards in 1 and 4 it flows downwards in 2 and 3.

External and End Fields

Internally there is no difference at all between the iron-ring and iron-core types. Externally there is quite a big difference, for the iron-core coil produces a large external field. This can, however, be greatly reduced by a close-fitting external metal shield in which eddy currents produce an opposing magnetic field. At line frequency such a shield can double the efficiency of a coil, but at frame frequency it is ineffective.

The iron-ring coil does not produce this external field, but instead it produces end fields quite different from those of the core type. In coils with an iron circuit, the waste field is largely produced by the connections between the side wires [A, B, C, D of Fig. 2 (b) and 1, 3 of Fig. 2 (c)]. These connections are 2 and 4 of Fig. 2 (c) but are the bent-up ends of the ring type.

In both core and ring types the field produced by the end connections of the side wires is waste. Unless the deflector coil is unusually short the length of wire involved in these end connections is greater for a core-type than for a ring type; in addition, the wire of these end connections is usually nearer the iron of the core than in a bent-up end coil. As a result, a core-type coil is usually less efficient than a ring type. At line frequency external copper screens are usually more effective in reducing inductance with the core-type of coil but, even so, the ring-type is still the more efficient.

The writer has not carried out measurements on very short deflector coils (coils with a length of under, say, 1 3/4 in as compared with the usual 14-2 in) but it is not improbable that the core-type of coil would then be relatively much better, for it would have the shorter end connections of the two. However, the reduction of length would in itself so reduce the efficiency that such short coils would never be used unless some special requirement made them otherwise necessary.

The most widely used deflector coil for television is the iron-ring type and the core-type is comparatively rare. A hybrid version, in which the iron acts as a ring for the line coils and as a core for the frame coils, is more common but its use is not nearly as widespread as the ring type. A slotted-ring type is also sometimes used, but again only rarely. This is like the ring type described but the stack of laminations has longitudinal slots on its internal face and the wires of the coils lie within the slots. The object is to increase the efficiency by bringing the iron nearer to the neck of the tube.

Still another form of deflector coil has iron pole pieces for the frame deflection. It is sketched in Fig. 3, the complete assembly at (a) and a section through it at (b). The line coils are of the ordinary bent-up end type, the sections through the internal wires being A, B, C and D. The iron poles 1 and 2 form part of an iron ring which is not complete, but is gapped at 3 and 4. The frame coils are E, F, G and H, and are wound around the poles, the magnetic path being completed by the external part of the laminations.

This type of assembly has been used for television but, as far as the writer can trace, there is not a single example of it now to be found. The most probable reason is that it is more expensive.

There is still one other general form—the tandem type. Here the line and frame structures are quite independent and mounted in tandem so that the electron beam passes first through one (usually the line) and then through the other. The main advantage is the very low degree of coupling which need exist between the two deflection assemblies and it is normally used only when the coils are fed directly from self-oscillating current generators. With these coupling between the line and frame generators can seriously affect the performance, but with more normal circuits, embodying amplifiers between the saw-tooth generators and the deflector coils, coupling is relatively unimportant.

Because the line deflector can be designed without having to consider frame requirements, the line scan efficiency of the tandem type can be higher than in the usual combined assembly. The frame efficiency is usually very poor, however, and it is usually more difficult to secure freedom from defocusing.

(To be continued)
SHORT-WAVE CONDITIONS
January in Retrospect: Forecast for March

By T. W. BENNINGTON (Engineering Division, B.B.C.)

DURING January the average day-time maximum usable frequency for these latitudes was considerably lower than during December, whilst the average night-time m.u.f. increased slightly, as compared with the previous month. The reason for these variations is not very obvious, since there was little change in the sunspot activity.

Day-time working frequencies remained relatively high, though the highest frequencies actually propagated seemed to decrease as the month progressed. During the first week American police transmissions on 38-40 Mc/s were frequently received in this country, but by the last week 30 Mc/s appeared to be the highest frequency being generally propagated over this path. The 28-Mc/s band was usable on undisturbed days over most circuits. The highest night-time working frequencies regularly usable were of the order of 8 Mc/s.

Sunspot activity was, on the average, slightly higher during the previous month.

January was another relatively quiet month, and only one ionospheric storm of the severe type appears to have occurred, on 24th-25th. Storms of minor intensity took place on 7th, 14th-15th, 20th-21st, and 30th-31st. A severe Dellinger fadeout occurred at 1105 on 20th, but no others have yet been reported.

Forecast.—During March there should be a decrease in the day-time m.u.f.s. in these latitudes, and a considerable increase in those for night-time.

Day-time working frequencies over nearly all circuits should, therefore, be somewhat lower than during February, and frequencies like 28 Mc/s should become less frequently usable over east-west paths. Over north-south paths, however, they should still be regularly usable. Day-time frequencies should remain operative for considerably longer periods than during February, due to the lengthening hours of daylight in the northern hemisphere. At night, 11 Mc/s should remain usable on most paths till after midnight, and 9 Mc/s should be the lowest frequency really necessary at any time of night.

Over medium distances the F layer may control transmission for an hour or two around noon, but Sporadic E transmission is not likely to be frequent.

March is often a bad month for ionospheric storms, and some periods of severe disturbance should be expected.

The curves indicate the highest frequencies likely to be usable over four long distance circuits from this country during the month.

NEW BOOK

IT is lately the fashion for technical books to be written with a cold impersonal style intended to imply efficiency. It is a welcome change to read a book written in narrative prose, particularly one in which the prose is well packed with meaning. This no doubt arises from the book having been based on lectures; it is unfortunate that this foundation has led to a rather unevenly detailed treatment of the subject. For instance, the generation of radio-frequency power for heating purposes is not just a very simple aspect of radio transmitter design, but a new subject full of its own pitfalls; but this book says all too little about it. Perhaps the title of the book is misleading; most of the books on r.f. heating deal with the theory and design of oscillators in as much detail as they deal with their use; this book is less ambitious.

For it is on r.f. heating applications that the book is most attractive. Whether the author has had personal experience of every single job that he writes about or whether he has skillfully abstracted some of it from the varied and copious bibliography is hard to tell; but he provides authoritative information on a variety of r.f. heating applications ranging from stock examples such as hardening steel tools to unexpected ones such as drying cabbage leaves, and on each subject he provides in a condensed and palatable form all that a worker in these fields needs to know before he can safely start collecting experience of his own. Practical details and enough of the underlying theory are given so that the reader can appraise the orders of magnitude involved in the various uses of r.f. heating; it should be a help in avoiding the waste of time which occurs in trying to apply r.f. heating in cases where it is quantitatively or qualitatively unsuitable.

To anyone interested in "application" work this book is whole-heartedly recommended. To anyone interested in packing readable facts into a small space this book should serve as an object lesson.

A. H. C.

WIRELESS WORLD, MARCH, 1950
WORLD OF WIRELESS

Standard Frequency Service • Television

News • Europe's Wavelengths • National Radio Show • French Television

U.K. Standard Frequencies

As a result of investigations carried out by a committee under the chairmanship of Dr. R. L. Smith-Rose (Director of Radio Research, D.S.I.R.), a daily experimental service of standard frequency transmissions was inaugurated on February 1st. The G.P.O. has assumed technical responsibility for the transmissions which will be radiated from the Rugby station using the call sign MF.

The frequencies to be used are 60 kc/s, 5 Mc/s and 10 Mc/s, with a power of 10 kW. The transmissions on 60 kc/s should be received throughout the United Kingdom and Western Europe. Those on 5 and 10 Mc/s form part of an international plan designed to give reliable world coverage on one or other of the six frequencies (2.5, 5, 10, 15, 20, 25 Mc/s) which have been allocated to standard frequency services. The transmissions on these frequencies from the U.S.A. National Bureau of Standards' station WWV are not always satisfactorily received in this country and farther east. It is hoped to learn from the new experimental service to what extent reception in the European area is improved and also to what extent the usefulness of both the U.S.A. and U.K. transmissions may be impaired by mutual interference.

The frequencies, which are to be maintained within two parts in one hundred million of the nominal values, will be monitored at the National Physical Laboratory, and all enquiries or comments concerning the transmissions should be addressed to the Director, National Physical Laboratory, Teddington, Middlesex. Information about reception conditions and any interference with the U.S.A. transmissions, which may be experienced, will be particularly useful.

The present schedule (G.M.T.) is 0514-0915 on 5 Mc/s; 0629-0700 on 10 Mc/s and 1029-1045 on 60 kc/s. The first minute of each transmission period is devoted to the call sign in slow morse and a speech announcement. Then the following fifteen-minute cycle is repeated: carrier modulated with 1,000 c/s for five minutes; the carrier unmodulated for nine minutes and the call sign and announcement for one minute.

Television Progress

As referred to elsewhere in this issue, the present frequency has a "house-warming party" for the five new studios at Lime Grove, Shepherd's Bush, the first of which it is hoped to bring into service in a few months.

Considerable progress is being made in the plans for erecting the remaining two stations to complete the chain of five high-power transmitters. An order has been placed with E.M.I. for the two 50-kW vision transmitters and with Standards for the associated 12-kW sound transmitters for these stations which will be erected in Scotland and the Bristol Channel area. For the Scottish station the B.B.C. is seeking a site at Kirk of Shotts near Harthill, which is almost mid-way between Edinburgh and Glasgow. Tests are in progress in South Wales and North Somerset for the other station.

Work has already begun on the Holme Moss station which is to be equipped with Marconi sound and vision transmitters. Five new image orthicon cameras are being purchased from Marconi's. This type of camera has already been used by the B.B.C. particularly on outside broadcasts—one of the first being the Oxford-Cambridge boat race last year.

The B.B.C. intends shortly to change the picture aspect ratio from 4:3 to 4:3 to bring it into line with cinema and foreign television standards. This change will merely involve slight readjustment of receiver height and width controls.

Frequency Re-Shuffle

At the time of going to press there is still considerable doubt as to the possibility of implementing the Copenhagen frequency plan for European broadcasting stations on the date originally given—March 15th. It will be recalled that the European medium-wave broadcasting band was extended and will in future be from 525-1,603 kc/s instead of from 550-1,500 kc/s. This extension of the band has, therefore, necessitated the re-allocation of frequencies to other services using the contiguous bands. For instance, the 1,650 kc/s marine distress and calling frequency is being altered to 2,182 kc/s.

No provision was made at Copenhagen for the Airmet transmissions at present radiated on 2,15 kc/s which in the plan is allocated to Kalundborg.

Complete details of the Plan were given in the November, 1948, issue of Wireless World, considerable available from our Publishers as a reprint, price 7½d, including postage. The fifth edition of our booklet, "Guide to Broadcasting Stations" (price 15 6d), which gives operating details of some 1,300 s.w. stations of the world and of Europe's long- and medium-wave stations, also lists the Copenhagen frequencies.

Broadcasting Committee

In addition to the oral evidence given by the B.B.C., the G.P.O. and such organizations as the Radio Industry Council and the LISTENERS' Association before the Broadcasting Committee, it has received written evidence from such bodies as the British Sound Recording Association, the Radio and Television Retailers' Association, the Relay Services Association and the Television Action Committee.

Among the personalities who have

WIRELESS WORLD, MARCH, 1950

99
French Television

In response to requests from several readers, we give below the times (G.M.T.) of transmissions from the medium-definition (455-line) Paris television station. The vision carrier frequency is 46 Mc/s and the sound carrier 42 Mc/s; the powers are 30 kW and 5 kW respectively.

1000-1100.—Sunday.
1145-1220.—Tuesday to Saturday.
1630-1700.—Wednesday and Thursday.
1630-1800.—Saturday and Sunday.
2000-2200.—Daily.

Programmes from the new 819-line transmitter—radiated from the Eiffel Tower on 185.25 Mc/s (vision) and 174.1 Mc/s (sound)—are broadcast from 1330 to 1530 from Tuesday to Friday.

B.B.C. Labour-Saving

In order to lower its engineering staff costs, the B.B.C. has introduced two labour-saving ideas into the sound broadcasting programme; unattended low-power transmitters and automatic quality-checking monitors.

The present unattended transmitters, which are remotely controlled and have duplicate sets of equipment, have proved as reliable in operation as attended transmitters; whilst in the future, even greater reliability may be obtained by the use of transmitters with multiple units working in parallel.

Automatic monitoring of a programme is achieved in comparison with another source of the same programme whose quality has been checked by a human monitor, any discrepancies being arranged to sound an alarm. By the end of 1950, this system is expected to release 26 men from the Home Service alone.

PERSONALITIES

Lord Burghley, who is chairman of A. C. Cobson, Ltd., and this year's president of the Radio Industries Club, is leading the industrial mission to Pakistan, which is being sent at the invitation of the Pakistan Government.

Sir Robert Watson-Watt, whose nomination as vice-president of the American Institute of Radio Engineers was announced in September, has now been elected to serve for 1950.

Prof. Arthur Porter, M.Sc., Ph.D., who went to the Military College of Science at Shrivenham, Wiltz, as the first occupant of the chair of instrumentation technology, has been appointed director of research in the Canadian branch of Ferranti's. During the war he worked in various Government research establishments, including the Radar Research and Development Establishment.

C. Holt Smith, B.Sc., has been appointed Professor of Instrument Technology at the Military College of Science in succession to Sir Archibald Porter. He was at the Royal Aircraft Establishment, Farnborough, from 1926 to 1930, and worked with the B.B.C. Research Department for eight years. In 1938 he returned to Government service and since then has held various technical and administrative positions in research establishments, including R.A.E. and T.R.E. His work has been largely associated with maritime and radar navigational aids for aircraft.

V. M. Roberts, B.Sc., who is manager of the Electronic and Sound Sales Department of B.T.H. and also director of Multi-Broadcast (Engineering), Ltd., has been elected chairman of the Council of the Radio Communication and Electronic Engineering Association for this year.

K. S. Davies, general manager of the Electronics Division of Murphy, is the new vice-chairman.

Derrick Murdoch has resigned from the position of joint general sales manager of the Truvox Engineering Co., to undertake export research on behalf of manufacturers. He is visiting the United States in March and enquiries from radio manufacturers should be sent to 46, Daver Court, Manor Street, Chelsea, London, S.W.3.

C. G. Allen (G.H.), director of McMichael Radio, Ltd., has been awarded the Rotub Cup by the Radio Society of Great Britain. It is awarded annually to the amateur who, in the opinion of the R.S.G.B. Council, has made outstanding long-distance transmissions during the year.

IN BRIEF

Licences.—An increase of 33,000 television licences was registered in December. The number of television licences current at the end of the year was 39,790—an increase of 3,480 during the year. The total number of licences—both sound and vision—on December 31st was 12,181,300 compared with 11,849,800 a year ago.

E.H.F. Television.—Experimental transmissions of television in the 350-Mc/s range have been made in Sweden.
An emergency station erected in Liverpool in 1910 and since the end of the war used to transmit the Third Programme has been brought into use by the B.B.C. The new station, which is in Birkenhead, comprises a 1-kW transmitter feeding a T aerial supported by two 12-ft tubular steel masts. The transmitter, which operates on 1,471 kc/s, is remotely controlled from Broadcasting House, Manchester. A second transmitter will later be installed.

R.C.E.A. Report.—The annual report of the Radio Communication and Electronic Engineering Association records that communications gear, broadcasting transmitters, navigational aids and industrial electronics to the value of £325,000 was exported in the first six months of last year. The Association, which is one of the four constituent bodies of the Radio Industries Federation, has prepared a simple 10-colour wiring code which is to be published and recommended to members for professional communications and electronic equipment.

Radio Facilities at the airfields in 110 countries are given in the Aerod Flight Guide issued by International Aeradio, Ltd. It also includes details of lighting and runways and general airport information. It is issued on a subscription basis, which includes the weekly amendment sheets, from 40, Parker Street, London, W.1.

Cathedral Acoustics.—A permanent sound reinforcement system has been installed by Philips Electrical in Canterbury Cathedral, with seventeen microphones and over a hundred loudspeakers, each individually adjusted to optimum level in order to overcome difficulties arising from the 81-second reverberation time. The system is completely automatic and the number and arrangement of loudspeakers in use is automatically controlled by the switching of individual microphones.

B.I. Callenders.—The Chester branch office of B.I. Callenders’ Cables is now at 48, Stanley Street, Watergate Street, Chester (Tel.: Chester 390). The company’s Cambridge office has also moved. The new address is 61A, Regent Street, Cambridge (Tel.: Cambridge 52318).

Canadian Television.—The transmitters for Canada’s first two television stations, to be installed in Montreal and Toronto, are being built by the Canadian subsidiaries of two American companies—General Electric Co. and R.C.A. The stations will be operated by the Canadian Broadcasting Corporation.

Marconi Booklets.—Two brochures dealing with Marconi’s training facilities have been produced by the Council under the name “Marconi Training”—deals with the company’s apprenticeship schemes. The booklets are issued from the Education Department, Marconi College, Arnold House, Clacton-on-Sea (Tel.: Clacton 1549). The new assistant general secretary is G. M. Tether.

A Radio Relay Record was created by Cable and Wireless when transmitting a photograph of the arrival at Auckland, New Zealand, of the South African Empire Games team on January 23rd. Transmitted from Wellington, the photograph was automatically relayed (not re-transmitted) at Sydney, Melbourne and London for reception in Cape Town, an unbroken journey of some 15,500 miles.

British Overseas Mart.—Under this name an organization has been set up in the United States to market British-made goods at its head office at 1775, Broadway, New York, 19, is a permanent exhibition where British products can be displayed and demonstrated. Among the firms whose products have already been handled by the British Overseas Mart—William Carduner and Harry Spinrad, are Multicore Soldiers and Garrard Engineering. Mr. Carduner is visiting this country in February.

Wireless World, March, 1950
MEETINGS

Institution of Electrical Engineers

Radio Section.—Discussion on "Mobile Radio Power-Packs" opened by Air Commodore L. Phillips, C.I.E., on February 27th.

"The Operation and Maintenance of Television Outside-Broadcast Equipment," by T. H. Bridgewater, on March 27th.

Informal Meeting.—Discussion on "The Place of High-Frequency Heating in Industry," opened by C. E. Eaton-Claire.

The above meetings will be held at the I.E.E., Savoy Place, London, W.C.2.

The Acoustics of Studios and Auditoria," by W. Allen, on March 21st.

Both Cambridge meetings will be held at 6.0 at the Cambridgeshire Technical College.

Merseys and North Wales Centre.—Faraday lecture on "Radar," by R. A. Smith, M.A., Ph.D., on March 22nd, at the Philharmonic Hall, Hope Street, Liverpool.

North-Eastern Radio Group.—"Experiences Over Fifty Years," by E. Fawsett, on March 6th.

The B.B.C. Short-Wave Transmitting Station at Skelton," by S. A. Williams, on March 26th.

Both North-Eastern Group meetings will be held at 6.15 at King's College, Newcastle-on-Tyne.

North-Eastern Centre.—Faraday lecture on "Radar," by R. A. Smith, M.A., Ph.D., on March 6th, at the Town Hall, Leeds.

The Inert Unisector and the Technique of Its Application in Telecommunication," by W. H. Grinsted, M.B.E., on March 17th, at the Yorkshire Electricity Board Offices, 1, Whitehall Road, Leeds.

North-Western Radio Group.—The Electrical Breakdown Strength of Air at Ultra-High Frequencies," by J. A. Pim, B.Sc. (Eng.), Ph.D., on March 30th, at the Engineers' Club, Albert Square, Manchester.

Scottish Centre.—"Some Electromagnetic Problems," by Prof. G. W. O. Howe, D.Sc., LL.D., on March 7th, at the Edinburgh University Engineering Department, George Square, Edinburgh.

Some Electromagnetic Problems," by Prof. G. W. O. Howe, D.Sc., LL.D., on March 15th, at Warwick House Restaurant, Boul Vue Terrace, Great Malvern.

A Storage System for Use with Binary Digital Computing Machines," by Prof. F. C. Williams, O.B.E., D.Sc., D.Phil., and T. Killburn, M.A., Ph.D., on 6.00 on March 27th, at the Jardine-Scott Institute, Great Charles Street, Birmingham.

Rugby Sub-Centre.—Some Electromagnetic Problems," by G. W. O. Howe, D.Sc., LL.D., on 6.30 on March 17th, at the Electricity Showrooms, High Street, Rugby.

Television Society

Leicester Centre.—"Lecture by member of research staff of Ultra Electric at 7.00 on March 1st.

Construction and Use of Wobbulator Alignment Receivers," by R. H. Hibberd, B.Sc. (B.T.H.) on 7.00 on March 22nd.

Both Leicester meetings will be held in Room 104, The College of Art and Technology, Leicester.

British Institution of Radio Engineers

London Section.—"Travelling Wave Tubes," by R. I. Kompeter, Diph. Eng., on 6.30 on March 3rd, at the London School of Hygiene and Tropical Medicine, Keppel Street, London, W.C.1. (Meeting postponed from February 23rd.)

"High Performance Television Monitors," by J. E. Jacob, B.Sc. (Eng.), on 6.30 on March 23rd at the London School of Hygiene and Tropical Medicine, Keppel Street, London, W.C.1.

West Midlands Section.—"Electronics and the Brain," by H. W. Shipston, on 7.0 on March 1st, at the Wolverhampton and Staffordshire Technical College, Wulfruna Street, Wolverhampton.

(Meeting postponed from February 23rd.)

"Radio Interference with Broadcast Reception," by A. A. Davey, on 7.00 on March 22nd, at the Wolverhampton and Staffordshire Technical College, Wolverhampton.

North-Eastern Section.—"Electrical Breakdown of Air at Ultra-High Frequencies," by W. A. Prowse, B.Sc., Ph.D., on 6.00 on March 19th, at Detroit Hall, Westgate Road, Newcastle-on-Tyne.

South Midlands Section.—"Electronics and the Brain," by H. W. Shipston, on 6.00 on March 10th, at Coventry Technical College.

British Sound Recording Association

"Microphones and Balance Techniques," by E. P. Hope-Warren, on 7.00 on March 24th, at the Royal Society of Arts, John Adam Street, London, W.C.1.

Institution of Electronics

North-West Branch.—"Improvements in Large-Screen Television," by T. C. Lance (Cinema Television) at 6.30 on March 23rd, at the Gas Showrooms, The Town Hall, Manchester.

Wireless World, March, 1950
"Cathode Ray"

Comes Down To Earth

—And Explains Some of the Finer Points of the Radio Valve

The extent to which I have drifted from my original simplicity has been strikingly brought home to me by seeing several of my recent articles actually mentioned in that stratospheric-brow journal, Wireless Engineer. No doubt the toddlers who, in pre-war days, grappled with my attempt to explain the difference between resistive and reactive ohms in terms of a game of blow-football, have now reached the age at which "Filters" (in two parts) is easy meat. But if I were to continue in phase with them while they advanced into the mathematical intricacies of non-linear networks, I would lose touch with readers who need help in understanding the learned mandarins who write the rest of Wireless World. In short, it is time for the flyback.

This introduction is merely to warn sophisticated readers not to continue in the hope of finding subtleties buried under the common or garden title above. It is going to be strictly elementary.

What use is the earth? What use, that is to say, apart from supporting life? The question must often have leapt into the more innocent public's mind when the earth wire became detached and the radio kept on playing pretty much as before. (The less innocent, of course, reply "Earth? I don't use it, old man," or perhaps just smile pityingly, as though one had called their attention to a "No Smoking" notice. And when they buy an electric appliance with a three-wire flex, they attach a two-pin plug to the most likely looking pair and hope for the best.)

Saving Aerial Wire

Is earthing, then, a practice of the ignorant or conscientious or pedantic few, and scorned by the rest as "just one of those regulations"? And do the rest always get away with their indifference to it?

The argument is likely to be rather confused unless we disentangle the various uses to which the earth is put. In pre-wireless days it was used as an inexpensive electrical conductor, saving the cost of a return wire in a telegraph system (Fig. 1). Although most soils are poor conductors compared with copper, the earth makes up for that by its considerably fatter gauge—provided that one makes the contact plates sufficiently large.

When wireless came along, the uninitiated thought they understood how one half of the connection between stations was established, for there was the same earthing as in Fig. 1; but they were completely baffled by how the other half went through the air. If Marconi's system had used a dipole or microwave aerial, without any earth connection, people would not have been misled by this apparent resemblance to Fig. 1. As things were, the buried-plate earth was an important feature of his system, but for quite different reasons. He used it as the lower half of a vertical aerial, or one plate of an opened-out capacitor. If he, and the person to whom he was signalling, had been floating in space, they would have been obliged to use aerials more or less like the present television dipoles. An outstretched electric field, such as is necessary for radiating wireless waves, cannot be produced unless there are two bodies between which to produce it. The dimensions of these bodies are preferably not too far short of a quarter of the length of wave to be radiated. So for medium and long waves the best length of aerial is long enough to make one welcome the opportunity of using the earth as one of the bodies, leaving only the other to be provided.

This stage in history, which is still with us, can be represented by Fig. 2, with a few of the imaginary lines of electric force drawn in between aerial and earth.

If you lay a large mirror on the floor to represent the earth, and stand a walking stick or something on it to represent an aerial, what you will see is this "aerial" and (apparently) another one exactly the same.

Fig. 1. Nineteenth-century use of "earths" to save telegraph wire.
Fig. 2. (Left) Twentieth-century use of earth to save aerial wire.
Fig. 3. (Right) For long-wave stations, the natural earth is usually false economy, so an artificial earth or "earth screen" is used.
same, pointing downwards below the surface of the "earth." Since light waves and wireless waves are exactly the same except for wavelength, this is a real working model illustrating the fact that, by virtue of its reflecting powers, the earth is equivalent to a mirror image of the aerial. (The reason why one can't actually see the image, except when the wireless station happens to be afloat on calm water, is that light consists of such extremely short waves that they are scattered by all except very smooth surfaces.)

Like most cheap substitutes, this half-aerial is not quite as good as the genuine article. If the earth were made of pure copper, or at any rate surfaced with it, there would be little to complain of (in this particular respect). Sea water is good enough for practical purposes, and there would even be something to be said for a perfect insulator (which, like a sheet of unsilvered glass, gives a partial reflection). But ordinary soil is neither; it acts as a resistance load, absorbing valuable radio-frequency power. This loss is particularly serious at very-long-wave stations, where the resistance of the aerial proper can be made very low. So at such stations it is customary to lay down an "earth screen" of copper wires or netting, Fig. 3, close to the surface of the ground (above or below).

Protection from Lightning

An artificial earth something like this was also used for the comparatively short waves of radar stations during the earlier years of the war. It was not for providing a low-loss half-aerial (for self-contained dipole aerials were used), but to ensure regularity of reflection where the earth itself was not quite level. The importance of this, especially in radar, is that the strongest radiation from the station rises at the angle where the radiation direct from the aerial and the radiation reflected from the surrounding earth (natural or artificial) are in phase.

All these things apply at the receiving end too. If so, then, how is it that it seems to make so little difference whether we earth or not?

Part of the answer lies in the fact that even the cheapest receivers are generally four-valve superhets, capable, with a good aerial-earth system, of receiving distant or weak stations; yet most listeners rarely, if ever, use them for anything beyond the powerful locals. So there is a vast amount of reserve, and all that happens when the earth wire is removed is that the a.c. brings this reserve into action and so keeps the volume nearly the same as before. This increased amplification is likely to bring in some noise as well; but that is a different story.

Taking history another step forward, we come to television. For reasons which have often been explained, it is organized on wavelengths which make the best length of aerial only a few feet long. So if the system in Fig. 2 were adopted, the whole of the aerial would inevitably be within a few feet of the earth. On most sites this would mean that it would be coyly hiding behind all sorts of obstructions which short waves find it difficult to get round or over. Fortunately the economy motive is reduced in proportion to the wavelength, so it is no great hardship to provide both halves of the aerial, which can then be mounted as high as practicable, free from all obligation to the earth. Is the earth therefore quite unnecessary? And if so, why are television receiving systems earthed?

These questions bring in some of the other uses of the earth. One of them is protection against lightning. Although some lightning flashes take place between two clouds, many are from cloud to earth, and if the most convenient spot to strike happens to be a high-sited aerial (television or otherwise) and that aerial leads into a cul de sac in the form of the receiver, it may be just too bad for the receiver. But if there is a comparatively straightforward by-pass to earth (even if it includes a short air-gap) the receiver will be reasonably safe. The heavy momentary currents in lightning set up dangerously large potentials across even small inductances, such as bends or loops in the aerial or lead-in wires, but have little difficulty in bridging short gaps. So an arrangement like Fig. 4 is usually quite good enough that, in the event of the kind, a protective earth with fuses in the branch, is used to protect telephones, as I discovered the other day after a thunderstorm. The earthing switches that used to be recommended have the disadvantage that there may not be anyone to work them when a thunderstorm comes on; or, if there is, the lightning might happen to strike while his hand was on the switch. Although the lightning risk is admittedly very small, it is better to be on the safe side.

Earthing the Receiver

A considerably greater risk is electric shock. Quite a number of people are killed every year by it; and even if you aren't killed it can be unpleasant. Probably the commonest danger is caused by the live side of the mains making accidental contact with the metal parts of an electric appliance, such as a kettle, iron, or lamp. When this happens (often due to frayed flex), and the metalwork is not earthed, it is all ready to hand out shocks. But if it is earthed—and that is the reason for the third wire—the fault causes a fuse to blow and investigations to be made.

To be a real protection, the earthing must have a low resistance. If not, we get the state of affairs shown in Fig. 5, in which a fault current flows as
indicated by the heavy line, but the earth resistance limits it so that the fuse either doesn't blow at all, or there is an appreciable delay, during which the case is fully live. An earthing rod stuck into the dry soil under the eaves is not good enough. Photographic evidence has been adduced to show that even the flower-pot earth is not a mere comedian's fable!

A radio set is less likely than most domestic electrical appliances to be a danger when its metalwork comes in contact with the mains, because it is generally covered up by a cabinet. This is just as well, with a.c./d.c. sets at least, because in most of them the chassis is deliberately connected to the mains. Seeing that from the safety point of view this can hardly be considered ideal, there must be a strong reason for doing it. This reason is that otherwise it is extremely difficult to avoid an intolerable amount of hum.

To understand why, consider the audio-amplifying part of the set—say the triode part of the double-diode-triode in most models—together with the mains connection (Fig. 6). Suppose for the moment that there is no surrounding metalwork. There will, therefore, inevitably be some stray capacitance, \(C_1 \), between the grid of the valve and earth. But if the side of the mains connected to the rectifier happens to be the one that is earthed, the whole mains voltage (assuming it is an a.c. supply) will come across \(C_1 \) and \(R \) in series. Since \(R \) is normally of the megohm order, and a small fraction of a volt across it is enough to cause hum, \(C_1 \) does not have to be exceptionally large to give trouble.

The answer to this, you may say, is to reverse the mains plug so as to bring the earthed side to cathode. Certainly, for a.c.; but what about d.c.? One is then obliged to connect so that the rectifier side is positive, and about half the d.c. mains have the positive earthed. So there is no getting away from it. While it is true that pure d.c. can't cause hum, d.c. mains invariably have a ripple which, though less in voltage than the d.c. itself, is comparatively high in frequency and therefore the more able to infiltrate via \(C_1 \). It is also far more audible than 50c/s.

Suppose, next, that in order to cut out \(C_1 \), the usual metal chassis and screening are used, and to avoid connecting it to the mains, it is left floating, as shown in Fig. 6. It will almost certainly make matters worse, for it will have a considerable stray capacitance to earth \(C_2 \) and also (compared with \(C_1 \)) to grid. \(C_2 \) is therefore merely replaced by \(C_1 \) and \(C_2 \) in series. Earthing the screens increases the total stray still further, by short-circuiting \(C_1 \).

So to ensure freedom from hum on all mains, one is obliged to stick to the usual practice of joining the negative side of the receiver circuit to chassis. And if the set is to work on d.c. mains this inevitably means connecting it direct to the mains, so there is a fifty-fifty chance of the chassis receiving full mains voltage.

The radio manufacturer who believes in keeping his customers alive to buy from him again, not only takes care to cover up all the metalwork—not forgetting the grub-screws on the control spindles—but also arranges matters so that one cannot get at it without unplugging the mains. For the same purpose, he insulates the aerial and earth terminals from the rest of the set, using either inductive coupling or capacitances not large enough to deliver a devastating shock.

Why Not a “Mains Earth”?

Obviously an earthable chassis is a surer and more convenient safety measure; and except for sets which may have to be used on d.c. there is no difficulty in arranging it, because the mains can be isolated by means of the usual transformer. Fig. 6, with the negative side of the valve circuits at alternating potential, is just an unfortunate abnormality. Normal practice is to earth the negative. Although a floating chassis would not then introduce hum by its stray capacitance to earth, as in Fig. 6, it would probably do so by its stray capacitance to the mains or other alternating potentials. So to be effective against electric fields, a screen must be tied down to an appropriate potential, preferably earth. This is no doubt what “Free Grid” had in mind when, some years ago, he investigated complaints of electrostatic interference arising from the stroking of cats by old ladies. His conclusion, it may be remembered, was that the only complete cure was to permanently earth the cats.

The desirability of earthing having now been established, the reader who is still reluctant to dig deep holes in the moist subsoil, or even to run a wire from a rising water main, may point out that (as shown in Fig. 5) one side of the mains is itself soundly earthed, so why not earth the set simply by connecting it to the earthed mains lead (the "neutral") as in Fig. 7?

One reason for not doing so would become only too clear if the set were plugged in the wrong way round! Among other reasons, the length of wire between the receiver and the earth connection at the supply end generally picks up an unpleasant assortment of electrical noises created by the neighbours' appliances. (Your own, of course, will all be noise-free or thoroughly "suppressed"!) Using this wire as an earth connection, you have these noise...

Wireless World, March, 1950
voltages right in the aerial-earth system, where they can make the maximum nuisances of themselves (Fig. 7). Moreover, any anti-noise filters the set may contain depend on direct earthing for their effectiveness. The advice to make the earth lead short is, after all, well-founded, and is not fulfilled by relying on a "mains earth." Incidentally, you are forbidden to earth the neutral at your end.

Stray Capacitances

One of the first things that have to be understood before making accurate measurements of capacitance is that it has no precise meaning unless the capacitor (or a surrounding screen) is earthed. Suppose C represents the capacitance between the terminals of a low-value standard capacitor (Fig. 8(a)). That might seem to be all one need know. But the plates, terminals and connections have some capacitance to the surroundings (which for simplicity we shall assume are all earthed). These capacitances are represented by C_1 and C_2. Being in series across C, they add to it. So one cannot just get C by itself. Even if the values of C_1 and C_2 can be found, they are upset whenever you (an earthed body) move nearer or farther away, or the capacitor is shifted.

Either C_1 or C_2 can be got rid of by earthing one of the terminals; but as it is unlikely that C_1 and C_2 are exactly equal, the value of the capacitor will depend on which terminal is earthed. The way out of the difficulty is to put the capacitor inside a metal screen, so that the only stray capacitance (C_s in Fig. 8(b)) is to the screen and is therefore unaffected by what goes on outside. The stray capacitance of the screen to earth is then eliminated by earthing it, and the total capacitance is $C + C_s$.

Stray capacitances affect the a.c. values of resistors and inductors, too; so an important use of earthing in lab. work is to make these values definite. The same applies to potentials. If a piece of apparatus is floating (i.e., not earthed), the potential of any part of it is indefinite, depending on stray leakages and other chance effects. The potential of earth is reckoned as zero, so by earthing the apparatus somewhere all its potentials are made definite.

One sometimes comes across the expression "earthy." This is not, as might be supposed, a quotation from the Burial Service (even when read over "Free Grid's" "aunts' cats), but a convenient way of describing terminals or other points in a circuit which may not actually be connected to earth but which normally have little or no alternating potential. Of the two input or output terminals of an amplifier, one is generally connected to h.t. and would be regarded as "earthy," in contrast to the other terminal which is connected to grid or anode.

Summing up the uses of earthing, then, we have: supplying the lower half of an aerial; controlling the angle of radiation or reception; protecting from lightning and electric shock; excluding hum and other noise; regularizing circuit values and potentials.

PUBLISHED REPORT

Naturalness in Speech

Reinforcement Systems

Some recent German research work has been concerned with the effect on the naturalness of speech sounds of a reinforcing signal following the original sounds within a few milliseconds. This work has been carried out by Herr H. Haas under the direction of Professor E. Meyer, University of Göttingen, and has given two main results which are summarized as follows:

First, if the reinforcing signal from a secondary source (e.g., loudspeakers) reaches the listener at least five milliseconds after the sound from the primary source (e.g., the actual speaker), then all of the sound appears to be coming from the primary source. This effect continues even if the secondary source is 10 decibels greater than the primary source, and is almost independent of the positions of the primary and secondary sources.

Secondly, if the time difference between the primary and secondary sounds reaching the listener is increased, a stage will of course be reached where the secondary sound is heard as a distinct echo. But before this occurs the secondary sound will have begun to have a bad effect on the naturalness of the speech sounds. The critical time differences have been investigated as a function of the relative intensities of the primary and secondary sources. For instance if the secondary sound is 10 decibels greater than the primary sound then the maximum permissible time difference before the naturalness is affected is about 25 milliseconds.

As these German results are of obvious importance in the design of speech reinforcement systems, and as this work would not normally be published, the Department of Scientific and Industrial Research has had the paper translated. Copies of the translation may be obtained, free of charge, by interested organisations and firms on written application to The Director, Building Research Station, Garston, Watford, Herts.

 Wireless World, March, 1950

![Fig. 7](image-url) One reason why it is not a good idea to rely on the mains as an earth.

![Fig. 8](image-url) (a) The exact capacitance of an unscreened capacitor is indefinite, owing to the "strays," C_1 and C_2. (b) For exact measurements, the capacitor should be screened and earthed.
Solving Parallel Problems

Unconventional Formula Suitable for Quick Mental Calculations

By D. A. Pollock (Engineering Division B.B.C.)

MOST of us who are concerned with radio in its many and varied aspects have occasion to use Ohm’s law, and early in our acquaintance with this law we discovered that when using resistances in series the value was easy to find. We just added their respective values. When we came to putting resistances in parallel we found that it was a different matter. There was a formula:

\[R = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} \text{ etc.} \]

Some of us do not carry around slide-rules for working out reciprocals and the rule of thumb routine is apt to be tedious. There was an alternative formula for two resistances in parallel:

\[R = \frac{R_1 \times R_2}{R_1 + R_2} \]

This is the accepted formula at present in general use, and unless the values of \(R_1 \) and \(R_2 \) are fairly simple figures it still requires either the slide-rule or pencil and paper.

Now when we parallel two resistances, we know at once that the combined value will be lower than that of either single resistance. Let us start from the most elementary values and observe their relationships. To find the combined value \(R \) when we parallel \(R_1 \) of 1 \(\Omega \) with \(R_2 \) of 2 \(\Omega \); using the conventional formula we find that the answer is \(2/3 \Omega \), which is \(1/3 \) lower in value than \(R_1 \). So far there is nothing significant except that we note that a new figure, 3, appears in the answer which is related to 2 and 1. Let \(R_1 = 1 \Omega \) and \(R_2 = 10 \Omega \). Then \(R = 0.909 \Omega \). \(R_1 \) was \(1/10 \)th of the value of \(R_2 \), but \(R \) is not \(1/10 \)th lower in value than \(R_1 \) but \(1/11 \)th, i.e., \(R \), minus (\(R_1 \) divided by 10 plus 1). Now add some noughts to the figures and let us see if this relationship still holds good. Let \(R_1 \) be \(1,000 \Omega \) and \(R_2 \) be 10,000 \(\Omega \). Then \(R \) is 0.909 \(\Omega \), still \(1/11 \)th lower than \(R_1 \).

Take some different figures: let \(R_1 \) be 50 \(\Omega \), and \(R_2 \) be 280 \(\Omega \) (five times greater), then \(R \) is 46.5 \(\Omega \), which is \(1/6 \)th lower than \(R_1 \). What is happening is that the combined value is following a relationship which is in proportion to the “ratio” of the resistance values, with the distinction that there is always figure 1 added; so all we need to do is to look at the values of \(R_1 \) and \(R_2 \) mentally assess the ratio of \(R_2 / R_1 \), and add 1. Divide \(R_1 \) by this figure and subtract the result from \(R_1 \) to get the answer for \(R \).

For example: find the parallel value \(R \) when \(R_1 \) is 33 \(\Omega \) and \(R_2 \) is 66 \(\Omega \). The ratio \(R_2 / R_1 \) is 66/33 = 2. Add 1, which gives the divisor 3. Then \(R = \frac{33 - 33/3 = 33 - 11 = 22 \Omega}{} \). This method can be stated in the formula:

\[R = R_1 - \frac{R_1}{R_2 + 1} \]

which can be shown to be the equivalent of the usual formula.

Having shown that resistances in parallel follow a “law” related to the ratio of their values, a further simplification can be introduced, namely:

\[R = \frac{R_2}{R_2 + 1} \]

which, again, can be shown to be the equivalent of the usual formula.

We need only look on \(R_2 / R_1 \) as a simple ratio to get sufficient accuracy for most practical requirements. Even where the experienced designer of radio circuitry wants accuracy with speed it will surely be agreed that this unconventional formula has advantages over the generally accepted one.

To take an example, let \(R_1 = 8,000 \Omega \) and \(R_2 = 24,000 \Omega \). Then substituting values, the parallel value will be:

\[R = \frac{24,000}{24,000 + 1} = \frac{8,000}{3 + 1} = 6,000 \Omega \]

Reversing the values of \(R_1 \) and \(R_2 \):

\[R = \frac{8,000}{8,000 + 1} = \frac{8,000}{3} = 2,666 \Omega \]

The formula applies equally to impedances wherever phase angle is not involved. Where \(Z \) is resistive:

\[Z = \frac{Z_2}{Z_2 + 1} \]

which is a useful formula for the quick calculation of parallel loads. Similarly for parallel inductances:

\[L = \frac{L_2}{L_2 + 1} \]

Parallel capacitances are simply added together as series resistances, but we can adapt the formula for capacitances in series:

\[C = \frac{C_2}{C_2 + 1} \]

Simple examples have, of course, been chosen for convenience in demonstrating the general principle. The formula is easy to memorize, and speed in using it will soon come with practice. Finally, here is a useful application of the “ratio” idea which needs no formula to express it. We have a resistance (or a load) of 55 \(\Omega \) and we want to bring it down to 50 \(\Omega \). Let \(R_1 = 50 \Omega \) and \(R_2 = 55 \Omega \) and \(R_3 = 550 \Omega \) be the parallel value required. Visualize \(R_3 \) split into its two parts (\(R_1 \) minus \(R \)) and \(R \). Then (\(R_1 - R \)) is to \(R \), as \(R_1 \) is to \(R_2 \). That is, \(5 : 50 \text{ as } 55 : R_2 \). Almost at a glance \(R_1 = 550 \Omega \).

Wireless World, March, 1950
Electronic Circuitry

Selections from a Designer's Notebook

STABLE C.R.O. TIME-BASE

A LINEAR time-base is commonly employed in cathode-ray oscilloscopes, and to meet varying requirements its frequency is usually made variable over a wide range. The controls which effect this variation may be calibrated if the time-base is sufficiently stable, and this facility is very useful for giving a rapid guide to the time scale of the waveform under observation. The terms in which the controls are calibrated will depend on how the oscilloscope is to be used; it is often convenient to calibrate the controls in terms of frequency, rather than time, if sine waves and similar repetitive signals are to be viewed and the time-base is of the continuously repeating type. On the other hand, if a triggered or single-volt time-base is used, only calibration in terms of time is practicable or directly useful. With a continuously repeating time-base calibrated in terms of frequency, the rise and fall of singularities in the waveform to be observed are easily timed because the interval taken by one complete sweep of the time-base is merely the reciprocal of the calibrated frequency (within the tolerances mentioned later).

If a condenser-charging (or discharging) type of time-base is to be calibrated, several awkward problems arise, most of which derive from the fact that simple time-bases are, as a rule, inherently unstable devices. For example, although it is not a difficult matter to control the charging current in a time-base with fair accuracy, it is much more difficult to be certain that the amplitude of the saw-tooth will remain constant with ageing valves and components, and when replacements are made. Because the amplitude of the saw-tooth waveform is inversely proportional to the frequency of the saw-tooth for a given charging current, it is necessary (as can be seen from the full line and dotted saw-tooth waveforms of Fig. 2 (a)) to regulate the amplitude of the saw-tooth in some way if the controls are to be calibrated in terms of frequency. Again, the fly-back time must either be negligible or a constant fraction of the time occupied by the forward sweep, or calibration at one end of the frequency scale will not hold at the other.

The aforementioned requirements are fairly well met in the following circuit, in which the frequency controls may be calibrated with a fair degree of accuracy. The principle adopted in this circuit is that of artificially constraining the amplitude of a time-base within fixed and predetermined limits, so that the resultant amplitude of saw-tooth waveform is less than that which would otherwise be obtained. The limits of the constraint imposed are defined by direct potentials, so that they may be controlled by a relatively stable device such as a gas discharge stabilizer tube.

Fig. 1 is a block diagram showing how the circuit is arranged. The output from the saw-tooth genera-

British Patent No. 624,022.

108

Fig. 1. Block diagram of the circuit, showing how the upper and lower limits of constraint, \(E_i\) and \(E_o\), are applied by two separate comparators, \(FB\) and \(FB_s\).

Fig. 2. At (a) is shown the output saw-tooth (full line), and the output (dotted) that would be obtained in the absence of the FB and FB, circuits. At (b) are the corresponding control pulses produced by FB and FB,

Fig. 3 shows one arrangement of the circuit which, although probably not the simplest, is easy to follow because the various functions are separated into blocks corresponding to Fig. 1. The components \(R, C, V_i\), and \(V_s\) form a normal Puckle time-base, the output saw-tooth being obtained at the cathode of \(V_s\) as usual. As \(C\) charges through \(R\) to form the sweep part of the waveform, the potential of the grid of \(V_s\) (b) is taken steadily negative until it approaches that of \(V_s\) (a) — which is \(E_i\). \(V_s\) (a) now begins to conduct (having so far been held at cut-off by the cathode current of \(V_s\) (b) through the common cathode load) and in doing so it applies a negative

By J. McG. SOWERBY (Cinema-Television, Ltd.)
going amplified saw-tooth to the suppressor grid of \(V_5\). As a result the anode potential of \(V_5\) rises, so that \(V_5\) begins to conduct. Note that for this to be possible, the standing anode potential of \(V_5\) must be less than \(E_0\). As soon as \(V_5\) is sufficiently conducting, \(V_5\) is cut off at its control grid in the usual manner of a Puckle time-base, and since the grid of \(V_5\), is returned to the h.t. line the impedance of \(V_5\) falls to a very low value. This allows \(C\) to discharge very quickly, and the cathode potential of \(V_5\) moves rapidly positive, taking with it the grid of \(V_5\). The anode of \(V_5\)(a) now goes positive (owing to increased current through the common cathode resistor) and so the negative pulse on the suppressor grid of \(V_5\) collapses; but this is of no importance, since \(V_5\) is held at cut-off by the potential applied to its control grid by the time the collapse takes place.

The time-base is now well into its fly-back mode, and as a result, the grid potential of \(V_5\)(a) now moves rapidly in a positive sense. Eventually the grid potential of \(V_5\)(a) approaches that of \(V_5\)(b), and \(V_5\)(a) begins to conduct. In consequence the common cathode potential of \(V_5\) begins to go positive, taking with it the grid of \(V_5\), which has hitherto been cut off by the bleeder current through its cathode resistor. As soon as \(V_5\) conducts sufficiently, the common \((V_5, V_5)\) anode potential falls and \(V_5\) is cut off, so that the fly-back mode is forcibly suppressed. The resultant onset of the negative-going sweep soon produces a collapse of the pulse at the grid of \(V_5\), but this is unimportant because the cessation of the fly-back allows \(V_5\) to conduct again and this is, of itself, sufficient to hold \(V_5\) at cut-off and to allow the sweep to proceed. The sweep continues until the grid potential of \(V_5\)(b) again approaches that of \(V_5\)(a) and the cycle of operations is complete.

It will be realized that the fly-back is forcibly initiated and suppressed at instants when the amplitude of the saw-tooth approaches equality with the potentials of \(E_1\) and \(E_2\) respectively, as shown in Fig. 2. In Fig. 3 the difference between these potentials is maintained constant by the gas discharge stabilizer \(V_5\). Owing to the relatively large loop amplifications of the FB\(_1\) and FB\(_2\) circuits, the amplitude of the saw-tooth is closely controlled, and with all ordinary variations to be expected in components, excepting \(R\) and \(C\), the repetition frequency changes very little. Normally a linear sweep is required, so that a negative feedback type of constant current charging device (e.g., a cathode follower) is usually substituted for \(R\) in Fig. 3. This is much preferable to the more usual pentode, because the current can then be controlled with considerable accuracy. The condenser \(C\)—or more usually a succession of condensers to give the required frequency range—must be a stable component; good quality paper condensers have been successfully used for the low frequencies and silvered mica for the high. With such precautions, the frequency controls of the time-base can be calibrated in the confidence that the calibrations are correct.

Fig. 3. Circuit of the stable time-base, with dotted compartments corresponding to the block diagram in Fig. 1.
tion will remain unchanged over considerable periods of time. The main "active component" on which the operating frequency depends is the stabilizer \(V_s \), and a good choice here would be the 85AI.

The time-base may be synchronized by applying a suitable proportion of the waveform under observation to the grid of \(V_1(a) \) or to the grid of \(V_1(b) \). In the latter case the synchronizing waveform either shortens or prolongs the fly-back time, so that this method is only really suitable when the synchronizing waveform has sharp leading or trailing edges. It is generally much more convenient to synchronize at the grid of \(V_1(a) \), and then the onset of the fly-back is either delayed or accelerated. This method is indicated in Fig. 3 by the connections shown.

In most simple time-bases it will be noticed that the onset and cessation of the fly-back is not very rapid compared with the intervening part. In the present time-base the fly-back can be made exceptionally rapid because of the additional loop amplification provided by the FB and FB' circuits at the critical "turn-over" points. An additional factor making for a short fly-back time is the fact that it is easy to arrange for the anode potential of \(V_s \) always to be sufficient to enable a large discharge current to be drawn. In fact, it has been found practicable to calibrate the frequency controls on the assumption of zero fly-back time for a 3:1 range between 5 and 15c/s, and between 15 and 50c/s; and to adjust \(C \) in steps to yield frequency ranges up to 90 to 150 kc/s, with an error nowhere exceeding four per cent. At frequencies above 150 kc/s (or thereabouts, depending on the exact circuit) the stray capacitances begin to exert sufficient influence to render the calibration increasingly inaccurate. Using the valve types shown, a maximum frequency of about 250 kc/s could be obtained with C provided merely by the stray and inter-electrode capacitance, with a charging current of 35 mA, and a saw-tooth amplitude of about 100 volts.

In use the waveform to be observed is applied to the deflection plates of a c.r.t. and to the synchronizing terminals of the time-base. The sync. control is then adjusted to apply the weakest of locking to the time-base, after which the frequency controls are adjusted until a poorly locked trace is seen, and finally the sync. control is advanced until the lock becomes satisfactory. The frequency of the time-base can now be read from the calibrated controls, and the frequency or timing of the waveform under investigation deduced. If the time-base proper is followed by an amplifier of variable gain, the amplitude of the visible sweep on the c.r.t. can be made variable without affecting the frequency calibration. This facility is sometimes useful when it is desired to study a small part of the waveform under investigation.

Finally, it is perhaps worth noting that stable time-bases of this type have been in laboratory use for nearly three years now, and on the whole have proved very useful.

AMERICAN INSULARITY

By O. S. PUCKLE, M.I.E.E.

Professor Maclaurin, of the Massachusetts Institute of Technology, has written a most interesting book, "Invention and Innovation in the Radio Industry." It is, however, unfortunate that a large part of the book suffers very greatly from the same fault as that which appears in many American technical writings. I refer to the fact that some American writers appear to play up American achievements at the expense of their scientific and technical colleagues in other parts of the world. A reader of this book who is unfamiliar with the true state of affairs would undoubtedly receive the impression that Europe had contributed nothing to the radio industry since about 1910. This is simply not true.

In dealing with the early days Professor Maclaurin has been eminently fair and reasonable. Why, then, does he find it necessary to write in so biased a manner about later happenings? One can only assume that his reading of the later happenings has been solely from American magazines and technical journals, which also suffer from this defect. These journals are read in Europe because the Americans have done, and are doing, much to help the radio industry, but they have certainly not done everything. I should add that the most important American scientific journals do not indulge in this practice.

In the field of inventions outside America, the following facts and inventions deserve a place:

1. Professor Sir Ambrose Fleming's work on the valve is made to appear unimportant, whereas it is the basis on which the whole of the radio industry is built.

2. Great Britain produced the first successful high-definition television service in the world and the quality of the results obtained in this country are considerably better than those obtained anywhere else, not excluding America.

3. Great Britain first developed radar and is certainly not lagging behind America at the present day.

4. The wartime work of A. D. Blumlein and F. C. Williams on circuitry in this country deserves notice since it is of the greatest possible importance, and the same may be said of the work of Randall, Boot and Megaw on the high-power magnetron, which at once made centimetric radar practicable.

I could enumerate many other examples, but these will suffice.

It is to be hoped that, in future, American writers will be rather less insular in their outlook and more willing to credit the foreigner with a certain amount of inventive ability. European engineers have a great deal of admiration for the work being done in America and they do their best to give them credit for all they have done when writing books or technical articles.

With the proviso stated above, I should like to say that, in my opinion, this book is of the very greatest interest and well worth reading. There is no doubt that Professor Maclaurin has done a useful job in publishing this book and I would like to suggest that he could do even better by immediately writing a second edition in which, to European eyes, the bias is less noticeable.
READERS of Wireless World will be familiar by now with the use of negative feedback to modify amplifier gain and distortion characteristics. Articles have also been published on the effect of negative feedback on output impedance, but very little has been written about the modification of input impedance by negative feedback, although it has been mentioned in passing by several authors. In this article the spotlight will be concentrated on the way in which negative feedback can be used to change the input impedance of an amplifier.

First, however, it is necessary to clear our minds of the idea that resistance as measured in ohms always indicates the presence of a physical component of that value. We are so used to handling resistors marked or colour-coded in ohms that it is easy to forget that resistance is a ratio of two in-phase quantities, voltage and current, and that the input impedance of a circuit is defined as the ratio of the voltage across the input terminals to the current flowing into the terminals. As an example, consider a mysterious black box with two terminals. If a p.d. of 2 V across the terminals causes a current of 1 A to flow, the obvious conclusion is that there is a 2-Ω resistor connected between the terminals, but this does not necessarily follow. There might be a 1-Ω resistor inside the box with a 1-V battery opposing the applied e.m.f., or on the other hand, it could be a 3-Ω resistor in series with a 1-V battery aiding the applied e.m.f. If different applied voltages were tried we might conclude that there was a non-ohmic resistor inside the box, because the applied e.m.f., divided by the current flowing, would not be a constant.

After a while, however, suspicion might be aroused and a voltmeter connected across the input terminals would give the answer to the problem. Suppose, however, there was a gremlin inside the box who adjusted the internal e.m.f. so that it was always proportional to the applied e.m.f. Where would we be then? The voltmeter test would show nothing, but it is obvious that the input resistance would not be equal to the value of the physical resistance inside the box.

Using the symbols shown in Fig. 1 we can calculate the input resistance as follows:

Net voltage acting round circuit

\[= E - zE \]

\[= E(1 - z) \]

hence

\[i = E(1 - z)/R \]

so that, input resistance

\[= E/i = R/(1 - z) \]

which is greater than R.

On the other hand, if the gremlin suddenly reversed the polarity of the internal e.m.f., the input resistance would fall to R/(1 + z).

After this slight digression we can now return to the object of this article and consider how the input impedance of an amplifier can be increased or decreased, depending on the method of connection of the feedback voltage. With series-connected feedback the source voltage, grid voltage and feedback voltage are in series round the circuit. Fig. 2 shows the simplified circuit for an input stage with valve gain A, connected to a source of internal resistance \(R_1 \) and open-circuit output voltage \(e' \). Assuming a grid-cathode voltage \(e_a \) is developed across the grid resistor \(R_2 \), the output voltage will be \(A e_a \) and, if the feedback voltage is fed back via a circuit of gain \(\beta' \), the feedback voltage will be \(A \beta' e_a \). (It will be seen later why \(\beta' \) is used in preference to the usual symbol \(\beta \).)

By definition, the input impedance \(Z_i = e/i \) and

\[e = iR_2 + A \beta' e_a \]

whence

\[Z = e/i = R_2 + A \beta' \]

and shows that the input impedance has been increased by the use of series-connected feedback.

Parallel-connected feedback is obtained when the three voltages in which we are interested are connected in parallel, as shown in Fig. 3. The feedback voltage is aiding the input voltage and the grid-circuit current is therefore increased—the input
impedance is thus reduced by the application of the feedback voltage.

With this circuit the input voltage is equal to the grid voltage, so that the input impedance is given by:

$$Z_i = \frac{\varepsilon_g}{i}$$

and

$$\varepsilon_g = iR_2 - A\beta'\varepsilon_g$$

from which, with a little mathematical juggling, we find:

$$Z_i = R_2/(1 + A\beta') \ldots \ldots \ldots \ldots (2)$$

Modern high gain a.f. amplifiers normally use a r.f. pentode for the first stage, and with such valves the maximum recommended value of grid resistor is usually of the order of 0.5 MΩ. When a crystal microphone or pickup is used, it may be desirable to use a much higher input impedance than this, and a series-connected feedback stage may then be used as a half-way house between a conventional valve stage and a cathode follower.

As an example, consider the requirement of a 5-MΩ input impedance when the grid resistor is 0.5 MΩ. The increase in input impedance required is 10 times and reference to equation (1) shows that the required value of \(A\beta'\) is 9. Assuming a grid to anode gain of 200 is available, calculation shows that \(\beta'\) is 9/200.

Fig. 4 then gives the circuit to be used. The load resistance for the valve (R) is that of the anode feed resistance \(R_4\) and the following grid resistance \(R_2\) in parallel and a typical value is 100 kΩ. \(\beta'\) is the ratio of the feedback resistance to the load resistance, and since this must have a value of 9/200, the correct value for the feedback resistance \(R_2\) is 4,500 ohms.

Parallel-connected feedback may be used to give feedback without loss of gain, provided that the comparison is made on the basis of two amplifiers doing the same job. By this, it is meant that the comparison is between two amplifiers having the same input impedance, rather than the same amplifier with and without feedback.

Fig. 5 shows an example of parallel-connected feedback. In this circuit the value of the grid resistance is not limited by the maker's recommended value, since there is a low resistance d.c. path between grid and cathode provided by the input transformer. If the resistance \(R_4\) is made 5 MΩ and the impedance on the secondary of the input transformer is to be 0.5 MΩ, reference to equation (2) shows that \(A\beta'\) must be 9 and hence, with a grid to anode gain of 200, \(\beta'\) is 9/200. Assuming a value for \(R_4 + R_2\) of 0.3 MΩ we have:

$$\frac{R_2}{R_4 + R_2} = \frac{9}{200}$$

and hence, \(R_2 = 13,500\) ohms.

The Feedback Factor

It is now necessary to distinguish between \(\beta\) and \(\beta'\). In this article, \(\beta'\) has been defined as the ratio of the feedback voltage to the output voltage. \(\beta\) is, however, defined by the fact that \(A\beta\) is the feedback voltage effective between grid and cathode. This distinction is made clear by reference to Fig. 6.
which is equivalent to Fig. 5 when only the feedback path is considered. The distortion-reduction factor when negative feedback is applied to a single-stage amplifier is \(1/(1+\beta')\), but the value of \(\beta'\) must not be substituted in this formula, since it is not the voltage \(A\beta'\eta\) which is effective between grid and cathode, but \(A\beta\eta\). As an example, considering the circuit shown in Fig. 5 again, we know that the resistance \(R_4\) is 5 MΩ and \(\beta'\) is 9/200, and assuming that \(Z_1=Z_2=500,000\) ohms, and remembering that \(R_2\) is small:

\[
\beta' = \frac{Z_s}{R_4 + R_2} = \frac{0.5}{1} \times \frac{9}{11} = \frac{9}{220} \times 11 = \frac{9}{200}
\]

The distortion-reduction factor with this circuit is therefore:

\[
\frac{1}{1+\alpha\beta'} = \frac{1}{1+\frac{200 \times 9}{11 \times 200}} \approx \frac{1}{2}
\]

This circuit can therefore be used to give nearly 50% decrease in distortion without loss of gain as compared with an amplifier without feedback and with the same input resistance. The greater the change in input impedance with feedback, the nearer the distortion-reduction factor approaches a half.

This particular change in harmonic distortion is, of course, only obtained with amplifiers in which a high input impedance is reduced to the same value as the source impedance by the use of parallel-connected feedback. When the source impedance is high compared with the input impedance obtained by applying feedback the distortion will be reduced by more than 50%, because \(\beta\) more nearly approaches \(\beta'\). The converse also applies.

When a greater reduction in distortion is required it can be obtained by using the circuit of Fig. 7. This circuit may be developed from that of Fig. 5 in the following manner. If \(\beta'\) is increased so that the value of the impedance \(Z\) will fall. The input impedance may be restored to its original value by adding the resistance \(R\), the effective feedback factor then becomes larger, so that the distortion is reduced still more. On the other hand, the series resistance \(R\) and the apparent impedance \(Z\), together, form a voltage-dividing network, so that the gain is reduced by the factor \(Z/(R+Z)\). When cathode injection of the feedback voltage is used, the gain is reduced by the same factor as the distortion (for a given output) but when parallel-connected feedback is used the required reduction in distortion can be obtained with only about half the loss in gain that is given by the more conventional circuit.

Gain Stabilization

One advantage of negative feedback is that the overall gain is stabilized in spite of reasonable variations in valve parameters. When parallel-connected feedback is used, an easily visualized explanation for this exists. If the grid to anode gain falls, the input impedance rises and with the simple circuit shown in Fig. 5 a bigger proportion of the source voltage appears between grid and cathode. With the circuit of Fig. 7 the loss ratio of the voltage-dividing network falls, owing to the rise in the value of \(Z\), but in this case the variation in amplifier input impedance is less, because of the padding effect of the series resistance \(R\).

OPERATING TROLLEY-BUS POINTS

Remote Control from Driver's Cab by Induction Link

Since the introduction of trolley-buses in London, one of the main operational difficulties has been the changing of points on the overhead track at junctions and turning places. At present, this has to be done either by the conductor, who leaves the bus to operate a switch at the side of the road, or, in the case of a busy junction, by a man permanently on the site. To overcome the many obvious disadvantages of this procedure, a device has now been developed by Wayne Kerr for the London Transport Executive, to enable the trolley-bus driver himself to change the points by pressing a button in his cab.

It is an induced-current system, comprising a one-valve oscillator and transmitting loop on the trolley-bus, and a corresponding pick-up loop and receiver mounted on the overhead track wires. The driver switches on the oscillator as he approaches the junction, then as soon as the transmitting loop on the roof of the trolley-bus passes underneath the pick-up loop, a current is induced from one into the other. This is rectified in the receiver, and the resulting d.c. operates a sensitive relay which, in turn, closes the electrical circuits of the existing point-changing mechanism. To switch on the oscillator, the driver presses a push-button which actuates a thermal relay to give a 30-second time delay; this enables him to put the system into operation some way in advance of the junction, and so leaves his hands free for driving for the rest of the time. A signal is painted on one of the roadside pillars to tell him exactly when to press the button.
Quicunque Vult

Most of you have, I suppose, heard the story of the youthful and impecunious curate whose wise unexpectedly presented him with a pair of scissors when he had budgeted for only one child. With a grim and determined expression on his face he promptly named them Alpha and Omega. To the unlettered masses such names may appear to be meaningless and to have no bearing on the matter, but W.W., readers and other alumni of Robert Ralikes will have no difficulty in recalling the succinct definitions of "the first and the last" given to these two letters in the Apocrypha.

I cannot help feeling that the + and - signs with which we continue to label our cells and the d.c. parts of our radio circuits are equally as meaningless to non-W.W. readers. Many a listener whose electrical education hasn't advanced greatly since the last century probably imagines that one sort of electricity comes out of one battery terminal and another out of the other. A more technically advanced citizen would speedily point out, with all the dignified skill of a well-fee'd lawyer, that there was only one kind of electricity, which, like the comet music in the once-popular song, "goes round and round." We could pardon him for thinking that there was an excess of electrons at the + terminal and a deficiency at the - terminal so that the battery tried to adjust itself around the external circuit in the seemingly commonsensical way.

But all W.W. readers will know on the authority of "Cathode Ray" and myself (15th December and 3rd November, 1938) that electrons dwell in Looking-Glass land like the friends of Alice and therefore go the wrong way round like a woman dri'er negotiating a traffic round.

Now it doesn't at all surprise me that the writer goes on to attack Hitler and St. Paul, among other figures who have been prominent in the world's history. Some scientists always attack Adolf because, I suppose, in his heyday he achieved a goodly measure of success in applied psychology, so far as the German people were concerned, although he had no book learning in the matter. To a scientist, lack of book learning is one of the unforgivable sins. It doesn't take a very long memory to recall the frowns bestowed on young Marconi who, although not claiming to be a scientific savant, managed to bridge the Atlantic in 1909 without ever having heard of the Heaviside layer.

If a scientist holds the technical and therefore virtually totalitarian views which the Franklin Journal writer voices, then there is an even greater sin than lack of book learning, and that is for an aggressor to see the error of his ways and join the opposite band. Those of you who have rather more accurate knowledge of St. Paul than to imagine that he built the Cathedral on Ludgate Hill, will recollect that this is exactly what the man of Tarsus did. Few people have persecuted a religious community with more fervour than he did, and it is not surprising, therefore, that when he suddenly abandoned his old ways he incurred the undying hatred of his former fellow-aggressors.

Since that day his memory has always been to the aggressor, potential or actual, a sharper and more piercing "thorn in the flesh" than that from which he himself suffered. If the opinions of the Franklin Journal writer be any criterion, it is clear that the passing of the ages has not blunted it by one decibel or whatever be the unit of acuity.

Wireless World, March, 1950

The Wrong Way Round.
"A.C./D.C.-Battery Power Supplies"

The Editor does not necessarily endorse the opinions expressed by his correspondents.

The article by L. Miller in your January issue contains several serious errors, presumably caused through lack of knowledge of the characteristics of the battery valves concerned.

In his third paragraph, Mr. Miller refers to "... 1.5V and 3.0V valves..." In fact, the rating is 1.4 and 2.8 volts both in England and America. This rating is, however, only used when the valves are run from a dry cell of the Leclanche type, whose discharge characteristic shows a progressive fall in voltage during life. When the valves are run from a constant voltage source, as is the case when mains-operated, it is desirable to maintain the filament voltage at 1.75 volts. In mA, in order to combine a long life with adequate performance.

The supply voltage, therefore, for a set of four valves, when mains operated, would be 0.35 volts (3 x 1.25 and 1 x 2.5) and not 7.5 volts as stated by Mr. Miller. If continuous operation at the higher voltage is attempted, an unnecessarily short life will be experienced.

The suggestion that a 50L6 be used is still applicable if the correct operating current for the battery valves is employed, by increasing the grid bias voltage by means of a cathode resistor.

The circuit shown in Fig. 3 is unlikely to be satisfactory, since the screen voltage is presumably left connected to the battery output pentode when the mains valve is in use, although the anode voltage is disconnected. Furthermore, the signal voltage is still applied to the control grid.

G. R. WOODVILLE.
The M.O. Valve Co.,

In view of some of the remarks in L. Miller's article in the January issue, we feel that we should draw your attention to our published operational recommendations for the use of "1.4 volt" valves, the relevant sections of which are:

(1) Dry Battery Operation. Valves with 1.4-volt filaments are designed to be operated from a dry-cell battery with a rated terminal voltage of 1.5 V. In no circumstances should the voltage across any 1.4-volt section of filament exceed 1.6 V. If these valves are operated with their filaments in series from dry batteries with a higher terminal voltage, shunting resistors may be required to ensure the correct voltage across individual 1.4-volt filaments.

(2) Accumulator or Mains Operation. When valves with 1.4-volt filaments are operated from an accumulator or from a mains supply unit, the voltage drop across each 1.4-volt section of filament of valves with rated filament current should have a nominal value of 1.3 V and should be maintained between 1.25 V and 1.4 V at normal line voltage. This is to say that voltages equivalent to 2 volts per cell for accumulators or to nominal line voltage for supply mains. If the filaments are operated in series, shunting resistors may be required to ensure the correct voltage across individual 1.4-volt filaments.

Although in paragraph (1) a rated terminal voltage of 1.5 V per cell is quoted, it must be borne in mind that the average potential per cell during most of its useful life is approximately 1.3 V.

From paragraph (2) it is apparent that the filament voltage should not be adjusted to a nominal value of 1.5 V when the filaments are operated from a mains supply.

The shunting resistors referred to in the final sentence are necessary by the fact that the anode current of each valve flows through the filaments of all valves nearer the negative end of the filament chain, and the cumulative anode current near the negative end of the chain is sufficient to overload the filaments.

The upper and lower limits for the filament voltage (1.4 V and 1.25 V) are specified to permit correct l.t. adjustment with the minimum number of input tappings on the mains transformer, and also to permit convenient values of shunting resistors to be employed.

It must also be understood that the rated filament current of 30 mA occurs only at a filament voltage of 1.4 V; at 1.3 V the filament current is less, a typical value being 47 mA.

The method of operation described by Mr. Miller in which the filament chain of the battery valves is in the cathode return of a mains output valve, cannot be recommended as satisfactory for use in...
large-scale receiver manufacture. Normal deviations of the characteristics of the mains output valve from those used in the design of the circuit, and possible variation in the operating conditions during life, might easily result in the filament of the battery valves being run at a voltage outside the recommended limits. Furthermore in the event of a mains valve passing an abnormally high current, the filaments of some or all of the battery valves would be destroyed.

II, however, there are experimenters who wish to investigate these circuits, may we draw attention to the Mullard UL41 valve? The heater current of the UL41 is only 0.1 A compared with 0.15 A for the 056, and it requires a heater voltage of 45. The half-wave rectifier in the Mullard range suitable for use with the UL41 is the UX41, with a heater current of 0.1 A and a heater voltage of 35.

H. P. WHITE.

Stereophonic Broadcasting

A NOTE in your January issue states that "it is understood" that the f.m. transmitter at Wrotham has now been accepted by the B.B.C., and we may therefore deduce that at some future, unspecified date official transmissions will begin.

It is typical, however, of the Corporation's obscurantism in engineering policy matters that we should have to rely on such meagre information on the progress of a fundamental development. Listeners with some technical awareness will not have forgotten the occasion of the change of site of the Third Programme transmitter which, virtually unnoticed, caused great inconvenience in much of the London area; nor will they have failed to observe, more recently, the unheralded juggling with transmitter powers. It is high time that the Corporation recognized its obligation to the technically informed public, for the rapid progress of broadcasting has depended to a considerable extent, on the active participation of this body in the transitional and formative phases.

I do not believe, however, that the B.B.C. is just praying for; it could easily reverse this baleful trend and restore its position as an enlightened body in the technical as well as the cultural spheres. It might begin, for instance, by sending out binaural transmissions from Wrotham, radiating one channel from the f.m. and the other from the a.m. transmitter. In this way the listeners could judge for themselves the efficacy, or otherwise, of a stereophonic system. Let me attempt to counter, in advance, possible objections which might be raised to this proposal, as follows:

(a) Cost. The binaural system could be used on, say, certain selected orchestral programmes originating in the London area; in this way the line costs could be kept to a minimum. The studio costs would be small, and I do not doubt for a moment that the necessary enthusiasm exists in all grades of the B.B.C. engineering staff to carry out such an experiment.

(b) The restricted appeal of such a system. A large number of professional and amateur radio engineers would no doubt welcome such a trial. We might note that Writtle had a restricted appeal in 1930.

(c) Division of effort and facilities. The juxtaposition of your January note with another suggests that powerful commercial interests may oppose further expenditure on the f.m./a.m. project. The B.B.C. has usually, in the past, set its heart against wrong-headed parochialism, however well intentioned, and it can safely be trusted to resist the influence of newer pressure groups.

E. JEFFERY.
Arborfield, Berks.

Television on 25c/s Mains

WITH the extension of the television service to the Midlands area, the existence of a number of pockets of 25 c/s mains will undoubtedly lead to the temptation to use television receivers designed primarily for frequencies of 40 to 60 c/s. Each individual design of equipment involves certain problems and, in many cases, addition of several hundred microfarads to the existing smoothing capacitor, whilst yielding a tolerable performance, is not without hazard.

I suggest that in each case the receiver manufacturer be consulted in advance to ensure that dependable information regarding the modifications required is obtained and carried out, to reduce this hazard to a minimum.

O. G. COX.

Dark Television Screens?

As the black portions of a television image are due to the non-illumination of the screen by the scanning beam, the depth of "blackness" is determined by any extraneous light which falls on the screen. Hence if the screen itself were initially dark instead of "off-white" as at present, considerable improvement in contrast should be experienced when viewing in lighted rooms or in daylight. It would be interesting to know if it is technically possible to manufacture tubes with dark-coloured screen materials.

A minor advantage would be a more pleasing appearance to the receiver when it is not in use, as the white screen has a very "naked" look.

With regard to title captions, lists of artists, etc., used during television programmes, the general practice seems to be black lettering on a light background. Would it not be more restful to the eye, if white lettering on a dark background? This could more readily be produced electronically.

ALAN HUMPHREYS.

"Output Impedance Control"

While it is true that excessive resistive damping applied to a loudspeaker can cause loss of transients, Mr. Roodham (your February issue) is surely at fault in stating this in connection with the effective damping produced by feedback. A low resistance connected across the loudspeaker could produce this effect, but feedback damping works in a different way. With negative voltage feedback, the amplifier input is the difference between the applied signal and the voltage across the loudspeaker. As the latter is largely dependent on the cone velocity, the feedback tends to make the velocity proportional to the applied voltage.

With no input signal, the feedback loop damps the motion of the cone, so that any movement will apply a voltage to the input of the amplifier so that the output stage exerts power to stop the movement. The application of an input signal jerks the cone into motion, the force applied being proportional to the discrepancy between the actual cone velocity and the correct velocity. Increased damping increases the excess power applied, and reduces the discrepancy.

The "swinging door" analogy fails, because in that case the damping is applied continuously in relation to a fixed point. In the feedback amplifier the damping is applied in relation to the instant-
taneous input signal voltage. Transients are improved by the application of excess power on the leading edge and at the peak, while the cone is brought to rest quickly after the transient has ended.

The excess power required must be available, and it may be that this is the source of Mr. Roddam's loss of transients. Taking the output level he quotes, 50 mW, an undamped amplifier will need about 5 watts peak output to deal with transient peaks. With feedback applied, the normal peak margin of 20 db must be increased by 3-4 db with the average loudspeaker, giving a total power of 20 watts.

It is interesting to note that the extra margin required with a cheap loudspeaker may be as much as 30 db, while some of the best types require only 3-4 db. These figures apply to a feedback loop giving AB=25. Lesser degrees of feedback would give very much less power.

If sufficient reserve power is available, the heaviest possible feedback gives the best result. The practical limit is imposed by stability requirements, and he again Mr. Roddam makes a queer statement. He says that if the feedback is taken too far the amplifier will oscillate, but this effect can be detected by ear. If not the oscillation is in the supersonic range, as it may well be. Many experimenters have condemned negative feedback because it introduces supersonic oscillations, the only audible effect being a reduction in power output capacity.

The scheme for feeding a varying number of speakers from the output of a heavily damped amplifier must also be questioned. The load impedance will vary, and the matching will suffer. A better system is to use suitable load resistors which are substituted for loudspeakers not in use. The load then remains constant, and so does the power supplied to each listening point.

Lastly, the condition under which a feedback amplifier has a gain of 1/B (more correctly 1–1/B) is that AB is large, not that A alone is large.

Having dealt cavalierly with some of his minor points, I would like to make some amends by congratulating Mr. Roddam on the circuit which forms his main theme. It is good to see something simple and efficient in these days of inefficient complexity.

DONALD W. THOMASSON.

Interference from Televisors

ONCE I again I write to you concerning a type of interference which is widespread in the London area, though I have read no comments on it. I refer to the severe interference propagated by certain types of television.

The interference is manifest by a raw a.c. tone comprising a mixture of 10-kc/s and 50-c/s frequencies together with other mush. This noise is imposed upon any strong carrier received by a radio receiver situated within 100 yards or so of the offending vision receiver.

The number of cases I have personally encountered during the past few months lead me to believe that this interference is rapidly increasing. Apparently the a.c./d.c. types of television are the main culprits.

Beyond doubt, local televisions are often responsible for complaints of load hum in broadcast receivers. When testing the vision units for this fault it is in most cases necessary to make sure television transmissions are on, otherwise the interference is at a low level.

In most cases a partial cure can be effected by placing a capacitor across the main input terminals of the video set. However, it transpires that the capacitance is critical. Too much capacitance often increases the radiation.

R. M. STAUNTON-LAMBERT.

"T-Match Television Aerial"

REFERRING to the article by B. Mayson in your January issue, we are interested, as manufacturers of aluminium alloys, in the material of which the aerial was made. We presume from the context that the alloy used by the author was Duralumin B. This alloy, which is the strongest of the Duralumin series, contains copper, and we would not regard it as specially suited for the construction of a television aerial. We are, in fact, supplying very large quantities of Duralumin H, a strong heat-treatable aluminium alloy not containing copper, for the manufacture of such components, and this alloy has been found to have a strength and corrosion resistance entirely adequate for the service. Aerials made in Duralumin H do not need protection by painting.

We do not normally recommend that, in those cases where aluminium alloys are to be protected by painting, paints containing lead compounds should be used; as in the event of the lead pigment becoming reduced, some harmful effect on the alloy might ensue. We have found that the word "Duralumin" is the registered trade mark of this Company, it should be spelt with a capital letter D and not with a small letter. C. SMITH.

James Booth & Company, Birmingham, 7.

THE "FLUXITE QUINS" AT WORK

"Our TV will never be right
Till it’s been overhaulied with FLUXITE." Cried the lads from the screen
"It’s the worst it’s been,
We’re all upside down here to-night!"

See that FLUXITE is always by you—in the house—garage—workshop—wherever speedy soldering is needed. Used for over 40 years in Government works and by leading engineers and manufacturers. Of all Ironmongers—in tins. 10d., 1/6 & 3/-

TO CYCLISTS! Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings AND SOLDERED. This makes a much stronger wheel. It's simple—with FLUXITE—but IMPORTANT.

The FLUXITE GUN puts FLUXITE where you want it by a simple pressure. Price 2/6, or filled, 3/6.

ALL MECHANICS WILL WANT

FLUXITE
IT SIMPLIFIES ALL SOLDERING

Write for Book on the ART OF "SOFT" SOLDERING and for Leaflets on CASE HARDENING STEEL AND TEMPERING TOOLS with FLUXITE. Price 6d. each.

FLUXITE LTD.
(Dept. W. W.), Bermondsey Street, S.E.1

117
European Television Standards

THOUGH Britain and France are the only European countries with regular television services, it is likely that a good many others will enter the field before very long. Everyone realizes the desirability of having a common standard, but it is not easy to find one that is acceptable to all; in fact, the only thing now common to all schemes is the number of frames per second! There's, fortunately, no choice about that, since the mains periodicity in almost all European countries is 50 c/s. A meeting was held in London in January at which the matter of definition standards was discussed by representatives of the five Brussels Treaty countries, Belgium, the Netherlands, France, Luxembourg and Britain. No agreement was then reached, but another meeting will be taking place in Paris by the time this appears in print and it is by no means impossible that these five countries, at any rate, will come to satisfactory terms.

Medium and High Definition

It can't be denied that the difficulties are very great indeed. We cannot possibly change our number of lines, for cast-iron guarantees have been given by the Government that it will be maintained for some years. Few people, except ourselves, regard 405 lines as adequate for the medium-definition service with which most countries will make a start. The standard that seems to be coming most into favour outside the five countries mentioned is 625 lines. Very good results are obtainable with this number of lines, but the modulation bandwidth required is too large for the majority of existing and projected coaxial cables to do justice to long-distance international relays. My forecast is that agreement will not be reached about the number of lines used in medium-definition services. But these, after all, are only a preliminary stage. The television of the future will be the thousand-odd line type and it should be possible to agree on a common standard for this, since no country is yet irretrievably committed to any particular number of lines.

Multum in Parvo

A very neat little multi-range measuring instrument has been sent to me by a French friend. This is the Model 450 of the well-known Anneye firm, Metrix. Though its dimensions are only 3½ x 4 inches it would hold a remarkable number of things—and does them well. Its ranges, 18 in number, are: 1.5, 15 and 150 mA, 1.5A, 15, 150, 300 and 750 V—on both a.c. and d.c.—10.000 ohms and 1 MΩ. The basic instrument is a moving-coil milliammeter with a full-scale deflection at 0.5 A and on all voltage ranges the resistance is 2,000 ohms per volt. The 3½-inch dial has clearly divided scales and an anti-parallax mirror. The makers claim an accuracy better than ±1.5 per cent on all ranges and tests made against sub-standard instruments bear this out. On the 150-V ranges, for example, the greatest error was under 0.5 per cent with d.c. and 1.3 per cent on a.c.

The Range Question

My only criticism of the instrument is one with which by no means every reader will agree. It concerns the actual ranges chosen and I suppose we all have our own ideas about what we like in that way. If I'd had the designing of an instrument with four voltage and four current ranges for a.c. and d.c., I think I should have chosen 3.30, 300 and 900 volts and for current 3.30, 300 mA and 3 amps. Then I would have preferred the resistance ranges to be 100,000 ohms and 10 megohms. With those ranges you can make nearly every test on radio receiving gear that can be made with a current-operated instrument. In the old days one never built a set without ruefully wishing later on that it contained just one more valve; nowadays I can't handle a multi-range meter for long without yearning for one more range. There isn't room on this little Metrix for the extra socket that would be needed; but perhaps the makers may produce a slightly larger version sometime. If they do, I'd like to see a 0-500 microamp range, making use of the basic milliammeter without any shunt. Should I be satisfied then? I should probably soon discover another that I wanted.

Simple but Useful

TALKING of meters, there's one type very useful for certain jobs which can be made up without much trouble from the bits and pieces that most of us have in drawers and cupboards. This is a simple form of slide-back voltmeter which will measure r.f. and a.f. voltages. Ingredients: a valve, a milliammeter, a d.c. voltmeter, a potentiometer, two 0.1 μF (or thereabouts) capacitors and a resistor of about 2 MΩ. The choice of the first two components will depend upon the magnitude of the voltages that you want to measure. One of the input terminals is connected to the cathode; the other is connected via one of the capacitors to the grid. Put the resistor between the grid and the slider of the potentiometer. The fixed portion of the potentiometer being connected across a grid biasing battery—the e.m.f. of which again depends on the sort of voltage to be measured. The voltmeter goes between the slider and g.b.+ and is shunted by the second capacitor. The milliammeter is arranged so as to measure the anode current. The principle is simply that the valve is biased back to begin with by moving the potentiometer slider until the anode current is zero. The voltmeter reading is now noted as V_r. Next the alternating or oscillating voltage to be measured is applied to the input terminals and the slider of the potentiometer is once more adjusted to make the anode current nil. Read the voltmeter again and you have V_r. The peak applied voltage is V_r - V_r. To obtain the r.m.s. voltage, if you require it, multiply by 0.707. Thus if V_r - V_r came to such an obliging—and more than likely—figure as 14.14, you would see at once that the applied voltage had an r.m.s. value of 10.

Elbow Room

AS IT HAPPENED, I wasn't able to go to the sort of housewarming party that the B.B.C. gave to inaugurate the new television studios at Lime Grove, Hammersmith, which were bought from the J.

WIRELESS WORLD, MARCH, 1950
Arthur Rank organization. Next day, though, I met a friend who had been there. He seemed still to be slightly dazzled by the vastness of the buildings. "They have bought five great cathedrals," he explained. In comparison with the rather cramped accommodation at Alexandra Palace the five new studios certainly are enormous. One of them has a floor area over twice as large as that of the whole studio space at A.P. Between them the five studios at Lime Grove measure some 28,100 square feet, or nearly two-thirds of an acre. The purchase was a wise one, for television plays and so on need many more rehearsals than those for sound broadcasting. Now several rehearsals will be able to go on at once and still leave a studio available for actual broadcasts. The B.B.C. is certainly doing everything it can to help television along. Would that its style were not so cramped by present-day economic obstacles in the way of buying new transmitters and erecting buildings.

MANUFACTURERS' LITERATURE

BULLETIN No. 85, dealing with "Alkylite" casting resin, from Aero Research, Ltd., Duxford, Cambridge.

Comprehensive lists of magnetic relays from Jack Davis, 30 Percy Street, London, W.1.

Illustrated leaflets describing radio-frequency heaters Types RFH/1 and E.H. and panel monitor, Type 3794, from E.M.I. Factories Ltd., Hayes, Middlesex.

Catalogue of "Resound" chassis, components and accessories, from the Resound Engineering and Electrical Company, Colshill Road, Sutton Coldfield, Warwickshire.

Technical specification, including response curve of the "Centric Dual" loudspeaker, from Sound Rentals, Canterbury Grove, London, S.E.27.

Retail list of radio components from M. Watts and Co., 8 Baker Street, Weybridge, Surrey.

WE CAN MEET ANY REQUIREMENTS

A modern, well-equipped Research and Development Section exists at the BULGIN Factory to make all types of electronic components to manufacturers' own specifications.

Stampings, plastic mouldings, and over 12,000 piece parts are ready to meet individual requirements.

BULGIN COMPONENTS all have the research of 25 years behind them, and that experience is a guarantee which has made them "The Choice of Critics"
Manufacturers' Products

New Equipment and Accessories for Radio and Electronics

Ignition Interference Suppressors

To combat interference with television, car radio and any form of mobile radio on petrol-engined vehicles, A. E. Bulgin and Company, Bye Pass Road, Barking, Essex, have introduced a suppressor incorporating a wire-wound resistance element for inserting in the ignition system. It is intended to fit into the centre contact of the distributor and both screw-in and plug-in types are available. The resistor is totally encased in a slightly flexible polythene moulding which is virtually impervious to moisture and oil.

In the samples examined, the resistor measured 15Ω and should therefore have negligible effect on the behaviour of the engine. The screw-in fitting is known as the P145 and the plug-in as the P444; each costs 1s 6d.

Disc Seal Triode

An addition to the Mullard range of e.h.f. valves is a new disc seal triode, the type ME1003. It is indirectly heated and operates at 6.3 V, 1.0 A, and the maximum anode voltage is 500 V. It will tolerate a peak anode current of 500 mA, with a normal maximum of 200 mA. The maximum anode dissipation with convection cooling is 25 W.

This valve is intended to be used in common grid type circuits in which the anode is "earthed" and in a concentric line oscillator or power amplifier. In a circuit of this kind the power output is approximately 6 watts at 1,500 Mc/s (20 cm), rising to 20 watts at 430 Mc/s (70 cm). The limit of operation is about 13 cm.

The makers are Mullard Electronic Products, Century House, Shattesbury Avenue, London, W.C.2.

Cabinet Loudspeakers

A SERIES of loudspeakers mounted in acoustically matched vented cabinets has been developed recently by "Phase-In" Speakers, 60, Ash Bank, Bucknall, Stoke-on-Trent. A special feature is the provision of vertical plywood strips in front of the loudspeaker aperture to diffuse the h.f. beam horizontally.

The "Junior" model is supplied with the Wharfedale "Golden" or the type W10/CSB unit at £13 13s or £16 16s and measures 30in x 13in x 12in. In the "Senior" model the width is increased to 17in and the driving units supplied are the Barker 148A, Goodmans Axion 12 or 22, or the Wharfedale W12/CS, the prices being £28 7s, £21 2s 6d and £19 19s respectively. Finally there is the "Twin" model containing the Wharfedale W10/CSB and W12/CS units with a cross-over network centred on 1,000 c/s. This loudspeaker costs £30 9s and is housed in a cabinet measuring 36in x 18in x 14in. All models have a nominal input impedance of 15 ohms.

Electronic Instruments' Model 25 laboratory valve voltmeter. The meter scale length is six inches and an anti-parallax mirror is provided.

Precision Valve Voltmeter

Designed to give a performance comparable with that of British Standard Specification BS89:1937 for first-grade moving-coil meters, the Model 26 laboratory valve voltmeter made by Electronic Instruments, 17, Paradise Road, Richmond, Surrey, has an accuracy better than ±1 per cent of full scale on all but the two lowest a.c. ranges (where the maximum error does not exceed 2½ per cent), and a stability of 0.7 per cent on d.c. and 0.8 per cent on a.c. ranges over a 24-hour period after warming-up.

Two double-stage d.c. amplifiers are coupled back-to-back to form a balanced bridge network and heavy negative feedback is applied over the whole system; individual range adjustment is effected by incremental variation of feedback. The power supply, which is derived from a.c. mains is stabilized by a constant-voltage transformer. Power consumption is 30 watts.

For high-frequency measurements a probe is provided and is housed in a compartment with a curved hinged flap. Terminals are also provided for low-frequency work, but when these are used the input capacitance is increased from 6 to 30pF.

There are six ranges for both a.c. and d.c. with full-scale readings of 1, 2½, 10, 25, 100 and 250 volts; resistances between 500Ω and 500MΩ can also be read in four overlapping ranges. The price is £88.

Wireless World, March, 1950
In response to popular request, we are pleased to announce the availability of the following accessories, which provide an inexpensive means of bringing the "Avo" Valve Tester completely up-to-date. Possession of these accessories will, furthermore, render it a simple matter to maintain the "Avo" Valve Tester in a condition capable of testing any new types of valves that may be produced in the future.

ACCESSORIES for the 'AVO' VALVE TESTER

FILAMENT VOLTAGE EXTENSION UNIT

For providing filament voltages of 1.4 to 117 volts for testing valves recently introduced into general use and which are not covered by the original "Avo" Valve Tester.

This unit is plugged in between the Meter panel and the S.S. panel, where it may be left permanently in position regardless of whether the original or the additional heater voltages are being used.

VALVE BASE ADAPTORS

These Adaptors have been specially designed for plugging into the international octal socket of any "Avo" Valve Tester Panel which is fitted with a rotary selector switch. The following types, covering recently introduced valve bases not provided for on the existing Valve Panel, are now available:

- Type No. 1: B7G and B8A.
- Type No. 2: B9G (EF50, etc.).
- Type No. 3: BBB (American Loctal).
- Type No. 4: Hicac Midget 4 and 5-pin and Midget Diode.
- Type No. 5: Blank.

Other types will be made available as required, and Adaptors can also be supplied for any special valve base.

Sole Proprietors and Manufacturers:

The AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO. LTD.

WINDER HOUSE, DOUGLAS STREET, LONDON, S.W.1

Telephone: VICTORIA 3404/9

V.T.E.I.
GOODSELL

15-WATT HI-FIDELITY AMPLIFIERS ARE UNSURPASSED IN PERFORMANCE

The fidelity of reproduction given by the Williamson Amplifier is now an accepted standard throughout the world. This high standard is made possible by the following important features.

- Specially designed output transformer.
- Low phase shift.
- Heavy feedback, which includes the output transformer and all the valves.

These features make possible:

- Low linear distortion, with less than 0.1 per cent. harmonic content.
- Low intermodulation distortion.

Our amplifiers are built to strict specification and incorporate only the finest components. After assembly and adjustment by experts they are severely tested to ensure the highest possible standard of performance.

PRICES:

- Amplifiers from £19 19 0
- Pre-Amplifiers ... from £8 0 0
- Tuners from £10 10 0

and NOW

A small amplifier of 6-7 watts, push-pull output, with 20 db feedback. Linear response from 30-15,000 cycles, low distortion and complete stability, designed to set a new standard of listening for the domestic user, having one of the excellent 10in. loudspeakers which are now available.

Valves: EF37, 6SN7, 6L6g (2), 5U4g, price £14 14
With built-in two-stage tone-control unit £18 18

Send for free illustrated brochure.

Manufactured by GOODSELL LTD, 40 GARDNER ST., BRIGHTON, SUSSEX Telephone: 6735

Easy Terms from LONDON RADIO SUPPLY CO., Balcombe, Sussex.
Illustrated here are a few examples of our wide range of Selenium Rectifiers.

For further particulars write to-day for leaflet W.W./SR9403.

Literature is also available for Radio Cores, Photo-Cells, Quartz Crystal Units, Copper Oxide Rectifiers, these being just a few of our products which are essential to the Radio Industry.
WINDSOR AUDIO OSCILLATOR

MODEL 190A
SPECIFICATION

CIRCUIT
A conventional R.C. oscillator circuit is used employing two triodes with negative feedback.

FREQUENCY RANGES
20-20,000 c.p.s. in 3 ranges.

POWER OUTPUT
Maximum output is 500 milliwatts matched to either, 600 ohms or 5,000 ohms.

POWER SUPPLY
100-125 and 200-250V, 40/100/c/s.

LIST PRICE £22.10.0
EARLY DELIVERY

other products include:
Multirange A.C. D.C. Test Meters
Signal Generators
A.C. Bridges
Circuit Analyzers
Cathode Ray Oscillographs
High and Low Range Ohmmeters
Output Meters
Insulation Testers
Moving Coil Instruments

ALL WINDSOR & TAYLOR TEST EQUIPMENT IS AVAILABLE
ON N.P. SEND FOR DETAILS AND CATALOGUES

TAYLOR ELECTRICAL INSTRUMENTS LTD
419-424 MONTROSE AVENUE, SLOUGH, BUCKS, ENGLAND
Telephone SLOUGH 21381 (4 lines) • Grams & Cables TAYLINS, SLOUGH

NEW
SERIES 800 ELLIPTICAL

Can 4-8? Of course it can't. And a 4" speaker can no more equal the performance of an 8" than a quart can come out of a pint pot.

BUT that is no reason why a 4" speaker cannot be a really good 4" speaker. Precision in machining, exactness of assembly and, of course, CO-AXIAL ALIGNMENT of all component parts is just as important as in any other of our speakers.

We are really pleased with our 4" x 7" Elliptical. So will you be when you hear it.

REPRODUCERS AND AMPLIFIERS LIMITED
FREDERICK STREET WOLVERHAMPTON ENGLAND
Telephone: "Wolverhampton 2241"
Telegrams: "Audio, Wolverhampton."
We recommend this tube because

It has a specially flat face.

It gives a bright, pleasantly coloured image.

Ferranti reliability ensures long life.

It gives freedom from ion burns.

The price is reasonable.

FERRANTI CATHODE RAY TUBES

There's a keen demand for this Ferranti T12/46 12" Television Tube, so place your order NOW!

FERRANTI LTD MOSTON MANCHESTER 10; & 36 KINGSWAY LONDON WC2
The Quality of old Craftsmanship in Modern form

Furzehill

INSTRUMENTS

d.c. coupled cathode ray oscilloscopes
oscilloscope cameras
valve voltmeters
a.f. attenuators
beat frequency oscillators
stabilised power supply units
high dissipation resistance boxes

Please write for our catalogue
FURZEHILL LABORATORIES LIMITED
BOREHAM WOOD · HERTS · Tel: ELStree 1137

BUILD YOUR OWN E.H.T. UNIT

A range of units is now available for the construction of simple, efficient and safe E.H.T. units. The unit illustrated is a pulse-driven multiplier for 6kV output. No alterations are required to the line scanning transformer. The unit is simply added to an existing circuit. Other units are available providing 1.7-, 3- and 5kV, from the normal 350-0-350 volt H.T. transformer.

WESTALITE

36 E.H.T. Rectifiers

Send 3d. for full details and circuits to
Dept. WW.3
Westinghouse Brake & Signal Co. Ltd.,
82 York Way, King’s Cross, London, N.1
Television

AERIAL FEEDERS

Scientifically designed cables for efficient service in all areas

![TCLCON Guarantee]

Retain this page as your guide to improved picture quality

CHARACTERISTICS & NOMINAL DIMENSIONS

<table>
<thead>
<tr>
<th>CHARACTERISTIC IMPEDANCE ohms</th>
<th>50Ω Coaxial</th>
<th>75Ω Coaxial</th>
<th>80Ω Twin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE AREA</td>
<td>Local Fringe</td>
<td>Local Fringe</td>
<td>Local Fringe</td>
</tr>
<tr>
<td>CODE NUMBER</td>
<td>K16M K15M A593M A593M PT1M K19M A560M K20 K125M BA24PSM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>Solid Solid Solid Air Spaced Unscreened Screened Screened</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPACITY µH/Foot</td>
<td>29 22.5 21.5 21.5 17 19.5 19 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attenuation dB/100ft. 1 Mc/s</td>
<td>0.7 0.24 0.4 0.65 0.2 0.3 1.2 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.8 1.7 2.6 3.7 1.5 2.1 5.9 2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.1 2.6 4.2 5.7 2.4 3.2 7.5 3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter in inches</td>
<td>7/0.0076 7/0.022 0.022 7/0.0076 0.048 0.036 0.029 0.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over Copper Conductor</td>
<td>0.085 0.180 0.128 0.128 0.200 0.19 x 0.1 0.140 0.200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" TELCOTHENE</td>
<td>" TELCOVIN Sheath</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Wire Braid</td>
<td>0.109 0.159 0.210 0.275 0.152 0.202 0.152 0.202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Twin Cores</td>
<td>0.200 0.300 0.230 0.300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dielectric is TELCOTHENE* and Sheath is TELCOVIN (P.V.C.)

*Polythene processed by Telcon to provide specific characteristics.
Prices and samples may be had on application to the sole manufacturers.

THE TELEGRAPH CONSTRUCTION & MAINTENANCE CO. LTD

Head Office: 22 OLD BROAD STREET, LONDON, E.C.2
Enquiries to: TELCON WORKS, GREENWICH, S.E.10
Telephone: LONDON Wall 3141

Enquiries to: TELCON WORKS, GREENWICH, S.E.10
Telephone: GREENwich 297
SPECIAL ALUMINIUM TUBING FOR AERIALS

BUY FROM THE MAN WITH EXPERIENCE—THE TUBE MANUFACTURER

SUPPLY FULL TECHNICAL DATA
WITH THEIR SPECIAL ALUMINIUM TUBING FOR AERIALS (NO EXTRA COST)

Southern Forge LTD
MEADFIELD ROAD · LANGLEY · BUCKS · Tel: LANGLEY 301

INTRODUCING THE R22/12, 20-WATT, 12" P.M. LOUDSPEAKER

MORE POWER—STILL GREATER EFFICIENCY—the ultimate development of the famous T2.

Available with two types of Cones:
CONE TYPE “1205”
Fundamental Resonance 75 c.p.s.
(Designed for PUBLIC ADDRESS)

CONETYPE “1206”
Fundamental Resonance 55 c.p.s.
(Designed for BASS REPRODUCTION)

Write for descriptive leaflet D30.

GOODMANS R22 20-WATT LOUDSPEAKER
FULLY DUSTPROOF

GOODMANS INDUSTRIES LTD. Lancelot Rd., Wembley, Middx.
Telephone: WEMbley 1200 (8 lines) Telegrams: Goodxion, Wembley
CERAMICS

FOR SWITCHES
and all radio components
FREQUENTITE-FARADEX-TEMPOLEX

STEATITE & PORCELAIN PRODUCTS LTD.
Stourport on Severn, WorcesterTelephone: Stourport III Telegrams: Steatain, Stourport
LIKE THE FISHERMAN’S STORY

Magnavista Television Lenses greatly exaggerate but unlike his, the picture they give is true, undistorted and brilliant—but enough of fishy stories.

Magnavista Television Lenses give maximum magnification, angle of view, and are guaranteed against discolouration.

Join the great army of Magnavista viewers who KNOW that Magnavista magnification is Television perfection.

PRICES

<table>
<thead>
<tr>
<th>Type</th>
<th>Tube</th>
<th>£ s. d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.7</td>
<td></td>
<td>6" 3 3 0</td>
</tr>
<tr>
<td>A.1, A.2, A.4, A.5, A.8, A.9, A.9a, A.10, A.11, A.12</td>
<td></td>
<td>9" 4 14 6</td>
</tr>
<tr>
<td>B.1, B.3, B.4, C.1</td>
<td></td>
<td>10" & 12" 5 5 0</td>
</tr>
<tr>
<td>D.1</td>
<td></td>
<td>15" 5 15 6</td>
</tr>
<tr>
<td>A.3</td>
<td></td>
<td>9" 6 16 6</td>
</tr>
<tr>
<td>B.2, C.2</td>
<td></td>
<td>10" & 12" 7 7 0</td>
</tr>
<tr>
<td>C.1x</td>
<td></td>
<td>9", 10" & 12" 7 7 0</td>
</tr>
</tbody>
</table>

Straps are available for A.1, B.1, C.1 and D.1 models at 3s. Id. per pr.
designed
with your specific needs in mind

The Cossor general purpose Oscillograph is designed and built by electronic engineers who are themselves familiar with the everyday problems which technicians have to face. The instrument consists of a Double Beam Tube operated at 2kV., a Time Base, Y Deflection Amplifiers and Internal Power Supplies. The 90mm. screen is flat, and traces are presented over the full area. Signals are normally fed through the Amplifiers, and the calibrated Y-Shift controls provide a measurement of the applied voltages. The Time Base operates repetitively, or by external trigger (for single stroke operation), or at trigger pulse repetition frequency for continuous scanning. A calibrated X-Shift Control is provided for the measurement of Time.

Model 1428 CAMERA
Specially developed for use with Cossor Oscillographs, it provides the simplest means of recording stationary or non-recurring waveforms and slow transients by the moving film method on standard perforated 35 mm. film or paper. Of robust construction, it has provision for power drive by the Cossor Three-Speed Motor Attachment, Model 1429.

Further details obtainable on application to:
A. C. COSSOR LTD., INSTRUMENT DIVISION, Highbury, London, N.5
TRIAL OF STRENGTH

To try the output strength of a small or mobile transmitter at any time and at a moment's notice, all you need is the Marconi TRANSMITTER OUTPUT METER, type TF 912. Covering the frequency range 80-160 Mc/s, it is battery-operated, self-contained and portable. The scale expansion of the meter is such that low power transmitters can be checked at an open part of the scale. The basic design feature is a bolometer bridge with moving coil indicator employing a 75 ohm resistively terminated input line of novel character. Further details are freely available.

Please ask for folder SUMMARY OF COMMUNICATIONS TEST GEAR

Marconi Instruments Limited
ST. ALBANS, HERTFORDSHIRE · Telephone: St. Albans 6161/5

AERIALITE
Introduce their NEW AERIALITE... the most advertised aerials made!

AERIALITE Ltd.
STALYBRIDGE, CHESHIRE

makers of the world's best AERIALS & EQUIPMENT

AERIAL FITTING SERVICE

- Are you missing sales through the inability to fit an aerial? If so, cash in now on the AERIALITE AERIAL FITTING SERVICE. This new service by the World's Largest Makers of Aerials applies to the wide range of AERIALITE TELEVISION and MASTATIC AERIALS. We shall also be pleased to receive applications to join our organisation from dealers who have experience in aerial fitting.
- EXAMPLE: Fitting of our new Popular D.P.O. MODEL 52. You can supply this low-priced Television Aerial complete and erected for £8.0.0 only. D.P.O. MODEL 52. Complete with 10ft. steel mast and Chimney Lashing Brackets, etc., £4.10.0. Complete Erection Costs, £3.10.0—Total Cost £8.0.0. Write today for full details.

Make sure you can meet the demand!
YOU REALLY MUST HEAR
THE NEW CONCERT MASTER

Here is a high-fidelity reproducing instrument with outstanding features and superb performance! It's the NEW CONCERT MASTER by CHARLES AMPLIFIERS—a magnificent achievement in technical and reproductive perfection!

Of its many advanced features, one is an EXCLUSIVE Detachable Control Head. This remote control unit can be detached, in a moment, from the main amplifiers chassis for convenience when mounting in a cabinet or can be used for armchair control. Alternatively the cable can be removed and the control head plugged into the main chassis to make a compact unit.

There are no valves in the control head to get damaged and no H.T. voltages. Triode valves are used throughout. Hum level is -90 db, two channel of bass boost are used to ensure unusually smooth balance and depth. The treble control has positions of lift and cut as well as a linear position.

Designed for high or low output pick-ups, the CONCERT MASTER has a pre-set matching control. Switch inputs include microphone, gram and radio. H.T. and L.T. is available for a tuning unit.

TWO YEAR GUARANTEE £29.10.0

Technical Specification:
Valves: 2 type P27/500, 3 x 6C5, 3 x 6SF5 (all Triodes!) 1 x 5U4.
Maximum: Output 10 watts.
Distortion: Below 0.5% at 10 watts.
Frequency Characteristic: Linear 30-20,000 c.p.s. taken overall including 6 ft. cable.
Sensitivity: 30mV R.M.S.
Radio: .25v. R.M.S.
Input Impedance: 100,000 ohms.
Output Impedance: 3, 7, 15 ohms.
Hum Level and Background Noise: -80 db.
Supply Voltage: 200/250 A.C.

Write for fully illustrated Catalogue

TRICORNE SPEAKER CHAMBER
For optimum acoustic performance with any good 12-in. speaker. Labyrinth construction, walnut veneered and crossbraced.
Price 11 gns. plus 20/- deposit (returnable) for crate.

Charles AMPLIFIERS (SALES) LTD
181, KENSINGTON HIGH STREET
LONDON, W.8

Phone: WEstern 3350

Our equipment can also be seen at:
WEBB'S RADIO, Soho St., W.1. SIGNAL SHOP, 51, St. Mary Street, Bridgewater, Somerset. ERNEST BUCHAN, 28, Belmont Street, Aberdeen FARMER & CO., 83, George Street, Luton
WIRELESS WORLD

MARCH, 1950

BATTERIES

First for quality
First for performance
First for reliability
First for long-life

Alpha offer a range of batteries for radio and lighting second to none in high quality performance. Remember, too, that amongst the Alpha range of batteries for lighting, is the unique Leak-proof battery which will operate or store in any climate.

ALPHA ACCESSORIES LTD.
SALES OFFICE, GRAMOPHONE BUILDINGS
BLYTH ROAD, HAYES, MIDDLESEX
Telephone: Southall 2468, Ex. 793

All your switching Problems solved!

As specified for conversion of the TR1196

OSMOR 'Q' COILPACKS

Just 5 connections (1-hole fixing) and all your coil and switching difficulties are over! The midget Osmor 'Q' Coilpack saves you hours of wasted time and gives you a really first-class job at very little cost.

Pre-aligned with full instructions and complete circuit diagrams included.

★ Portable battery model now available.

Send stamp for FREE circuits and our new lists of coils, Coilpacks and matched radio components, also latest Bargain Bulletin.

OSMOR RADIO PRODUCTS LTD. (Dept. W.4.)
BRIDGE VIEW WORKS, BOROUGH HILL, CROYDON, SURREY
Telephone: Croydon 1220.

FOR QUICK DELIVERY

AT
REASONABLE PRICES

OF
RADIO & ELECTRONIC PRODUCTS
(Wholesale Only)

Write or phone:—

S. Szymanski
(pronounced SHE-MAN-SKEE)

ELECTRONIC ENGINEER & STOCKIST
95 STRODES CRESCENT
STAINES, MIDDLESEX

Staines 3971

VALVES are our speciality—Probably the Largest Actual Stockist in England

EXPORT ENQUIRIES WELCOMED
Where excellent quality reproduction is essential...

.. the Metrovick

Audio Amplifier

is the instrument to use

This instrument is designed to give excellent quality reproduction with the added advantages of being a self-contained unit, portable and attractive in appearance. Thus it will prove ideal for Public Address work, educational authorities and similar organisations.

SPECIFICATION

Supply: 200/250V 50 c/s single-phase; consumption approximately 170 VA for full output.

Input: Gramophone 0.2V for full output. Microphone 0.02V for full output. The two circuits can be mixed as required.

Impedance: 7 ohms, 15 ohms and 45 ohms.

Output: 20 watts with negligible distortion.

Tone Control: Continuously variable.

Response: ±1 dB from 30 to 15000 c/s at zero position of tone control.

Controls: These are recessed to avoid damage and are illuminated when in operation.

Dimensions: 18 1/2" x 8 1/2" x 10 1/4".

Finish: The instrument is housed in an attractive steel case, stove enamelled in cream or blue as desired. A leather carrying handle is fitted.

METROPOLITAN-VICKERS ELECTRICAL CO. LTD.

TRAFFORD PARK, MANCHESTER 17
A high-grade instrument with wide frequency coverage for professional communications requirements

The '680' is a fifteen valve superheterodyne receiver embodying advanced technique. Among its special features are included: continuous coverage from 30 Mc/s to 480 K/cs, two R.F. stages, two I.F. stages, crystal filter, B.F.O., push-pull output stage, variable selectivity, "S" meter, noise limiter, standby switch, stabilised H.T. voltage to oscillator, provision for relay operation of transmitter, high signal-to-noise ratio and sensitivity, highly attenuated image response, very effective A.G.C., provision for twin feeder and single aerial, modern miniature all-glass valves, mechanical bandspread logging device. Available for rack mounting.

The complete frequency range is covered by five switched coil assemblies with an overlap between each. The gear-driven, flywheel controlled mechanism is positive, free from backlash and very smooth in action. The mechanical bandspread device takes the form of an auxiliary dial and gives a scale length equal to ninety inches per range. The dial can be read to one degree. I.F. transformers are permeability tuned to 450 K/cs. Operates from A.C. mains 110 and 200/240 volts, 40/60 cycles. The front panel and tuner unit chassis are aluminium diecastings, and the remaining units of stout brass, heavily nickel-plated. Lift up lid. The cabinet and front panel are finished a fine ripple black, set off by plated handles. The finger plate is black and silver. 16½in. x 13½in. x 8½in. high. Weight 41 lbs.

LIST PRICE IN U.K. £95.0 (No Purchase Tax)

STRATTON & Co. Ltd., West Heath, Birmingham 31 Cables: STRATNOID BIRMINGHAM

"You're CERTAIN to get it at ARTHURS!"

★ VALVES: We have probably the largest stock of valves in the country. Send your enquiries.

<table>
<thead>
<tr>
<th>AVO Meters in Stock</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avo Model 7</td>
<td>£19 10 0</td>
</tr>
<tr>
<td>Avo Model 7, high resistance</td>
<td>£19 10 0</td>
</tr>
<tr>
<td>Avo Model 40</td>
<td>£17 10 0</td>
</tr>
<tr>
<td>Valve Tester</td>
<td>£16 10 0</td>
</tr>
<tr>
<td>Test Bridge</td>
<td>£11 0 0</td>
</tr>
<tr>
<td>Avo MINOR, AC/DC model</td>
<td>£8 10 0</td>
</tr>
<tr>
<td>Electronic Test Meter</td>
<td>£35 0 0</td>
</tr>
<tr>
<td>Signal Generator</td>
<td>£25 0 0</td>
</tr>
<tr>
<td>Valve characteristic meter</td>
<td>£40 0 0</td>
</tr>
</tbody>
</table>

TAYLORS METERS. List on request.

DECCA PICK-UPS £3 15 5
DECCA HEAD for Garrard £2 19 2
Adaptors 3 8
COSSOR DOUBLE BEAM OSCILLOSCOPE £85 10 0
"Viewmaster" Television Kits in stock for Birmingham and London area. Please state which required.

LONDON'S OLDEST LEADING RADIO DEALERS

RODGING LABORATORIES (Mail Order Dept.)

70, LORD AVENUE, ILFORD, ESSEX

Phone: W.A.N. 4486
NEW high efficiency E.H.T. rectifier for Television Tubes

Osram

U37

MINIATURE BULB

The Osram Type U.37, because of its low heater rating, greatly improves circuit efficiency. This miniature directly-heated half-wave rectifier has been primarily designed to provide E.H.T. for cathode ray tubes from an R.F. source or by rectification of the fly-back voltage. It is a soldered-in type valve, 48 m.m. overall, excluding connections.

Osram

VALVES

THE GENERAL ELECTRIC CO. LTD., MAGNET HOUSE, KINGSWAY, W.C.2
The best HIGH & LOW

Exide AND Drydex

LOW TENSION ACCUMULATORS HIGH TENSION BATTERIES
for better battery radio reception

ISSUED BY CHLORIDE BATTERIES LIMITED

THE SOUND MAGNET
MAGNETIC RECORDERS MODEL X.L.

Complete portable machines with 10-w. P.P. amplifiers, internal pilot speaker, three forward speeds give 1, ½ and 1 hour, with twin tracks for doubling programme time. Model XL in production. £47/10/0 List.

Please write (do not telephone) for an illustrated brochure and full details of this wonder machine with notes upon the aspects of magnetic recorder applications. Send 2½d. stamp to Dept. SM.

GENERAL LAMINATION PRODUCTS LTD.
294 BROADWAY, BEXLEYHEATH, KENT.

ICS

HOME STUDY
backs radio experience with sound technical knowledge

MANY men who wished to link their radio experience with a sound technological background have received successful instruction by means of an ICS Course. Its value has been proved not only to aspirants but to men who already have a professional interest in radio and television engineering, including those taking qualifying examinations. It is invaluable, also, to students who wish to prepare themselves for a job in this field. Courses of instruction covering radio and, if necessary, television, include the following:

Complete Radio Engineering - Radio Service Engineers
Radio Service and Sales - Advanced Short-Wave Radio
Elementary Electronics, Radar and Radio
Television Technology

And the following Radio Examinations:
British Institution of Radio Engineers
P.M.G. Certificates for Wireless Operators
City and Guilds Telecommunications
Wireless Operators and Wireless Mechanics, R.A.F.

Write today for our FREE "Radio" booklet which fully describes the above ICS Courses and the facilities for the complete study of Radio and/or Television technology. The ICS Advisory Department will also give free and impartial advice on the need of and the means of instruction.

International CORRESPONDENCE SCHOOLS

OSCILLOSCOPES

It is the experienced engineer, familiar with the use of Oscilloscopes, who can best judge whether the Airmec Type 723 Oscilloscope meets the specification which we laid down when designing it. It was our aim that it should be a precision instrument of high quality, suitable for a wide range of applications, and so constructed as to be of maximum convenience in use. We believe we have achieved this object.

Our Pamphlet No. 19 is available on request and we shall be glad to send you this and other information about the instrument.

FOR A WIDE RANGE OF USES

* Range from D.C. to 5 Mc/s.
* Tube diameter 4” with flat screen.
* Sensitivity 10 mV/cm.
* Time base variable from 1 second to 1 micro-second repetitive or single stroke.
* Three tube Voltages, 1kV, 2kV and 4 kV.

SIGNAL GENERATORS VALVE VOLTMETERS
RADIATION INSTRUMENTS ELECTRONIC COUNTERS
BRIDGE OSCILLATORS COMMUNICATION TEST GEAR
INSULATION TESTERS INDUSTRIAL ELECTRONIC APPARATUS

The Quality of an AIRMEC product is outstanding

AIRMEC LABORATORIES LTD
HIGH WYCOMBE - BUCKINGHAMSHIRE - ENGLAND
TEL: HIGH WYCOMBE 2060
CABLES: COMMLABS HIGH WYCOMBE

DESIGNERS AND MANUFACTURERS OF SCIENTIFIC AND INDUSTRIAL ELECTRONIC EQUIPMENT
M.R. SUPPLIES Ltd

offer the following new and perfect material for immediate delivery. We only handle goods which are sure to satisfy.

Prices nett.

SANGAMO TIME SWITCHES (Synchronous 200/250 v. 50 e.)
Standard 24-hour dial with optional one-day emitting devise and manual on-off switch. Capacity 10 amps. Minimum period between operations 15 mins. Fitted pair of adjustable riders for two operations per day. Compact housing, 6in. diam., 2in. depth. £4 3/6 (despatch 1/6).

THERMOSTATIC SWITCHES. Adjustable range, 40/80 deg. F., differential 4 deg. F. Capacity 10 amps. Fitted manual on-off switch. Size 6in. x 2in. x 1in. The perfect temperature control for rooms, factories, laboratories, greenhouses, etc., £3 6/6 (des. 6/6).

REMOTE READING AIR (or immersion) THERMOMETERS. Scaled -35 deg. C. to +55 deg. C. Luminous. Approx. 10ft. tube to 12in. temperature rod. Conversion C. to F. table supplied. Ideal for measuring temperatures for processing, soil and propagation, photographic darkroom, etc., 10/- (des. 1/-).

ELECTRIC BLOWERS. Small efficient model, 5in. x 3in. overall. 110/240 v. A.C./D.C., 6,000 r.p.m., quiet running. For electronic and lamp cooling, drying, etc. £1 16/- (We have suitable mains transformers at 2/-).

AIR COMPRESSORS. Up to 300 lbs. per sq. in. Overall length 6in. Fitted splined driving shaft (power required about 1 h.p.). £25 0/- (des. 1/6).

SELENIUM RECTIFIERS. (Very useful range now in stock at attractive prices.) All full-wave. 24 v. 2.5 amp., 19/6; 24 v. 6 amp., 37/6; 12 v. 6 amp., 29/6. Also heavy duty industrial type, funnel cooled, D.C. delivery up to 30 v. 50 amps. A pair must be used for this delivery at full-wave verification. Size 13in. x 12in. x 4in. £72 each (des. 15/- each). Also H.T. SELENIUM RECTIFIERS. D.C. delivery up to 360 v. 1.2 amp. A pair in bridge will provide A.C./D.C. mains conversion at 1.2 amps, full-wave. £39 6/6 each, 79/- pair. (These are slightly soiled but guaranteed electrically.)

AMMETERS. First-grade m/coil with 5in. square flange. Deflection 0/500 amps., with external shunt. Ideal for use with above industrial rectifiers. Clear even scale with 2-amp. divisions, 42/6. Also 0/500 voltmeters in same style and make, 39/6.

DECADE RESISTANCE BOXES, by best precision makers. Units 0/10. Tens 0/100, with additional 100-ohms (can be altered to multiplier). Fitted grade 1 m/coil Galvano. Switching for Wheatstone Bridge and other tests, in fine portable case, 16in. x 7½in. x 5in., 65/- (des. 2/-).

ROTOR CONVERTERS. New machines under half list price. Input 110 v. D.C., output 230 v. D.C., 100-amps, £5 17/6 (des. 6/-). Also same machines mounted on all-wave radio filter, £9 (des. 5/-).

AMATEUR CONVERTERS (Rotary Transformers). Repeat offer of this most useful rating. Input 11 v. D.C., output 230 v. D.C. at 150 m.a. Brand new in customary original cases of eight, 25/- each, 65/- pair. £9 5/- (des. 6/-).

STEEL TRIPODS to suit all P.A. Speakers, extending up to 12ft. strong and rigid, £5 5/- (des. England 6/-, Scotland and Ireland, 8/-).

ANODE CONVERTERS (Rotary Transformers). Exceptional opportunity for brand new (25/6) 11-volt Pressure Units, 15 wires coil, with built-in line transformer, in weatherproof cabinet, in 25/6 model for only 65/- (des. 1/6), or complete with 100/150 A.G.E. Transformer, £3 12/6 (des. 15/-). Fitted to suit all P.A. Speakers, extending up to 12ft. strong and rigid, £9 5/- (des. 6/-). Also made in Canada by Voltis Ltd., 110 v. 12/5 amp.

S.P. PRESSURE SPEAKERS. Exceptional opportunity for brand new (25/6) 11-volt Pressure Units, 15 wires coil, with built-in line transformer, in weatherproof cabinet, in 25/6 model for only 65/- (des. 1/6), or complete with 100/150 A.G.E. Transformer, £3 12/6 (des. 15/-). Fitted to suit all P.A. Speakers, extending up to 12ft. strong and rigid, £9 5/- (des. 6/-). Also made in Canada by Voltis Ltd., 110 v. 12/5 amp.

STAGE LIGHTING DIMMERS. Fan bright to blackest at 220/240 v. Sliding type, 100-watt, 220-volt, 250-watt, 375-watt, 500-watt, 750-watt, 1,000-watt, 2,500-watt, 5,000-watt. All fully enclosed. £7 2/-.

MODEL WX

AUTOMATIC COIL WINDING MACHINES

WINDING MACHINES

AND HAND WINDING MACHINES

Wave winding machines for single or multiple coils 1/16" to 3/8" wide for power drive.

SOLE AGENTS ABROAD

K. G. Khosla & Co., 22 School Lane, New Delhi, India.
Etablits Octave Houart, 14, Quai de l'Industrie, Sclériaux-Liege.
J. P. Fielding Co. (Canada), P.O. Box 35, Station "H", Toronto, Canada.
Helsby & Frogl, Oslo, Norway, Starg activist, 15.

ETA TOOL CO

(LEICESTER) LTD.

29a, WELFORD ROAD, LEICESTER

Phone—3386
The Trix range of amplifiers and accessories covers every possible requirement in Sound Amplification and distribution. The design and quality, backed by nearly a quarter-of-a-century's experience of Sound Engineering, will satisfy the most critical — and the equipment is well-known for its reliability in service.

The range includes models specially designed for high fidelity gramophone record reproduction; multi purpose 3-stage high gain amplifiers; low power and portable models for mains and battery operation; and accessories including microphones, stands and all types of loudspeakers. High power rack mounted equipments are also supplied, designed to serve as many as 300 to 500 loudspeakers. The equipment is suitable for industrial installations, theatres, public buildings, churches, schools, hotels, railway stations, docks and many other purposes.

Write for illustrated list of full Sound Equipment Range for every type of installation.

THE TRIX ELECTRICAL CO. LTD
1-5 Maple Place, Tottenham Court Rd., London W.1
Phone: Museum 3817
Grams: "Trixadio, Wesdo London"
Wherever Precision Measurements must be made there is need for an iEi unit of STABILIZED POWER

With present laboratory practice considered these Pressure Supplies are designed and produced by us in differing categories of regulation, (see table under); and in groups determined by their maximum Voltage Outputs, irrespective of Load requirements.

Groups : (1) 300v. (2) 600v. (3) 1,000v. (4) 2.2kv. (5) 5,000v.

<table>
<thead>
<tr>
<th>Groups 1</th>
<th>Reg. %</th>
<th>Ripple PEAK</th>
<th>D.C. IMP.</th>
<th>Stab. Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.5%</td>
<td>3.0 mV.</td>
<td>4.0</td>
<td>± 1 V</td>
</tr>
<tr>
<td>B</td>
<td>.2%</td>
<td>1.0 mV.</td>
<td>.8</td>
<td>± .25 V</td>
</tr>
<tr>
<td>C</td>
<td>.04%</td>
<td>.5 mV.</td>
<td>.15</td>
<td>± .2 V</td>
</tr>
<tr>
<td>D</td>
<td>.003%</td>
<td>.4 mV.</td>
<td>.15</td>
<td>± .1 V</td>
</tr>
</tbody>
</table>

Example : TYPE 220 : % includes 3 separate R.P.S.

Reg. : (i) 220-360 v. 150 M.A. Reg : 0.2% Ripple 1 mV. Imp. 1.0 ohms.
(ii) 220-360 v. 75 M.A. 0.2% Ripple 1 mV. Imp. 1.0 ohms.
(iii) 150 v. 20 M.A. 0.2% Neon stabilized.
(iv) 300 v. 20 M.A. 0.2% Neon stabilized.

Unreg. : 450 v. 225 M.A. 6.3 v. 8.0 Amps.

Two separate R.P.S. in one unit facilitate multiple tests. Example : TYPE 900 : 50 c/s; 15 Watts; 1 part in 100,000.

Designers and manufacturers of all types of Stabilized Power Supplies between 100v. and 5000v. output and .5% and .003% regulation.

Write for further details specifying your special type interest.

T/V Experts agree...

that Murphy Radio Ltd., have accomplished a wonderful engineering feat in the TPG11 Tele-
vision Pattern Generator. A unique portable instru-
ment, the TPG11 gives a test pattern with all the
correct timing pulses etc., and can be used for all
television testing, installation, fault finding and
setting up IN THE ABSENCE OF A B.B.C.
TRANSMISSION. The TPG11 must not be con-
fused with cheaper types of pattern generator
which do not produce the correctly timed B.B.C.
synch. pulses, and are, therefore, only of limited
use. The immense value of the TPG11 will be
realised when one considers how much time is
saved in being independent of transmission hours.

For full specifications write to :-

F. LIVINGSTON HOGG
65, BARNSBURY STREET, LONDON, N.1.
or Telephone TUDor 5277
and arrange a demonstration

F. LIVINGSTON HOGG, SPECIALIST IN HIGH GRADE INSTRUMENTS FOR THE COMMUNICATIONS INDUSTRY.
NINE EXAMPLES

from the

"FLEXILANT"

(RUBBER BONDED TO METAL)

RANGE OF MOUNTINGS

OBTAINABLE FROM STOCK

OUR TECHNICAL STAFF investigates all mounting problems
May it investigate yours?

RUBBER BONDERS LIMITED

ENGINEERS IN RUBBER BONDED TO METAL

FLEXILANT WORKS
DUNSTABLE - BEDS.
WHAT CAN I DO THIS WINTER?

Well, if you know something about radio and are reasonably good with your hands, you can make yourself a Magnetic Recorder. This fascinating hobby is within your reach; using Park Radio's plans and parts you can make the recorder, including super-quality amplifier, for £20.

Recordings are made on wire or tape; they can be played time and time again without deteriorating, and when no longer required can be erased completely. In this way the wire or tape can be used over and over again.

Send 5/- now for complete Constructional Data, working drawings, and a price list of all parts.

PARK RADIO of MANOR PARK

676/8 ROMFORD ROAD, LONDON, E.12

(A division of Judge Industries)
THE NEW VALVE TECHNIQUE FOR V.H.F.
Versatile, Efficient, Dependable.

For their size these valves are among the most efficient in existence, and are particularly recommended for equipments operating in the V.H.F. range. Features are small size, low drive power and small power consumption for the rated outputs.

The Triodes TY2-125, TY3-250 and TY4-500 form a series with increasing anode dissipations from 135 to 500 watts, and are designed for use as R.F. amplifiers, grounded grid amplifiers or oscillators in both communications and small R.F. Heating equipments.

The Tetrodes QY3-125 and QY4-250 are rated respectively for maximum anode dissipations of 125 and 250 watts and are characterised by high power gains and high efficiencies at very high frequencies.

TYPICAL OPERATING CONDITIONS (CLASS C TELEGRAPHY)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Frequency (Mc/s)</th>
<th>V_a (V)</th>
<th>V_{g2} (V)</th>
<th>I_2 (mA)</th>
<th>I_g2 (mA)</th>
<th>P_{out} (W)</th>
<th>$%$</th>
<th>P_{load} (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TY2-125</td>
<td>Single Diode Voltage Amplifier A.F. Pentode.</td>
<td>150</td>
<td>2500</td>
<td>-</td>
<td>200</td>
<td>40</td>
<td>350</td>
<td>360</td>
<td>72</td>
</tr>
<tr>
<td>TY3-250</td>
<td>Sharp cut-off R.F. Pentode.</td>
<td>70</td>
<td>3000</td>
<td>-</td>
<td>250</td>
<td>70</td>
<td>420</td>
<td>850</td>
<td>70</td>
</tr>
<tr>
<td>TY4-500</td>
<td>Variable-mu R.F. Pentode.</td>
<td>70</td>
<td>4000</td>
<td>-</td>
<td>350</td>
<td>100</td>
<td>625</td>
<td>1670</td>
<td>680</td>
</tr>
<tr>
<td>QY3-125</td>
<td>High Slope Oscillator up to 500 Mc/s</td>
<td>120</td>
<td>3000</td>
<td>350</td>
<td>150</td>
<td>35</td>
<td>280</td>
<td>375</td>
<td>75</td>
</tr>
<tr>
<td>QY4-250</td>
<td>High Slope Circuits Pentode.</td>
<td>80</td>
<td>4000</td>
<td>500</td>
<td>225</td>
<td>50</td>
<td>312</td>
<td>375</td>
<td>78</td>
</tr>
</tbody>
</table>

ELECTRONIC FLASH TUBES FOR INDUSTRY AND RESEARCH. The Mullard range of electronic flash tubes now comprises types specially designed for applications in industry and research. They include: Line source tubes for applications such as photographing ion tracks in Wilson Cloud Chambers; a high light intensity type of 10,000 Joules (LSD 10); a Stroboscopic Tube (LSD 8); and a 1,000 Joule silica tube (LSD 9) for use where a UV light source is required.

INDUSTRIAL THYRATRONS.
Important additions to the Mullard range of industrial thyatrons include the Mercury Vapour Triodes MT17 and MT57. On account of their high current output, small size and reliability under severe conditions of service, these new thyatrons are particularly suitable for a variety of power control applications and for use in motor speed control systems. The range of thyatrons at present available is given below:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT17</td>
<td>0.5A Mercury Vapour Triode</td>
</tr>
<tr>
<td>MT57</td>
<td>2.5A Mercury Vapour Triode</td>
</tr>
<tr>
<td>EN31</td>
<td>Helium-filled Triode</td>
</tr>
<tr>
<td>2D21</td>
<td>Miniature Gas-filled Tetrode</td>
</tr>
<tr>
<td>1267</td>
<td>Cold Cathode Gas-filled Triode</td>
</tr>
</tbody>
</table>

There are Mullard valves and electron tubes for most communication and industrial requirements. Ranges include Industrial Power Valves, Industrial Rectifiers, Photocells, Accelerometers, Cathode Ray Tubes, Stabilisers and Reference Level Tubes, Cold Cathode Tubes, Electrometers, etc.

If you require full technical data on any of the valves described in this review, please check this form, pin to your letter heading and post to the address below.

V.H.F. Valves
10mm. Sub-miniatures
Flash Tubes
Thyratrons

Signature
DIRECT RECORDING ON DISK

The year 1930 marked a vital point in sound recording progress. It was then that Mr. C. E. Watts, founder of the M.S.S. Recording Co. Ltd., produced the first cellulose lacquer-coated disk—an achievement which paved the way to—indeed made possible—to-day's high-fidelity sound reproduction. That same pioneering spirit, consistently prompting every endeavour of the M.S.S. organisation, has produced a range of sound recording equipment which is acknowledged supreme wherever there is an appreciation of true fidelity in sound reproduction. Apart from its "quality" performance, every item of M.S.S. equipment—whether a complete recording channel or a cutter head—is built to a standard of technical excellence which assures long-maintained efficiency under the most exacting operating conditions. In this connection it is interesting to mention that the first disk recorder used by the B.B.C. for broadcast programmes and supplied by M.S.S. in 1933, is still in use in their training school.

Illustrated below is a typical M.S.S. Studio Recording equipment, but the M.S.S. range includes Portable Studio Recording equipment, Portable Recorders for the professional and also home recording equipment. Full details will gladly be sent on request.

M.S.S. RECORDING CO., LIMITED
POYLE CLOSE, COLNBROOK, Bucks
Telephone: COLNBROOK 115

Wharfedale announce
These Revised Prices effective from JANUARY 16th 1950

<table>
<thead>
<tr>
<th>CHASSIS (Less transformers)</th>
<th>Midget, 3½in.</th>
<th>22/6</th>
<th>Golden 10in.</th>
<th>80/-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Five-inch W. 5</td>
<td>34/6</td>
<td>Golden C.S.B.</td>
<td>90/-</td>
</tr>
<tr>
<td></td>
<td>Standard 8in.</td>
<td>32/6</td>
<td>W.10/C.S.</td>
<td>145/-</td>
</tr>
<tr>
<td></td>
<td>Bronce, 8in.</td>
<td>37/6</td>
<td>W.12, 13in.</td>
<td>140/-</td>
</tr>
<tr>
<td></td>
<td>Super 8</td>
<td>70/-</td>
<td>W.12/C.S. 12in.</td>
<td>150/-</td>
</tr>
<tr>
<td></td>
<td>Super 8/C.S.</td>
<td>80/-</td>
<td>W.15, 15in.</td>
<td>230/-</td>
</tr>
<tr>
<td></td>
<td>Bronce, 10in.</td>
<td>45/6</td>
<td>W.15/C.S. 15in.</td>
<td>240/-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CABINET MODELS (Less transformers)</th>
<th>Bantam</th>
<th>42/6</th>
<th>Sylvan Baffle</th>
<th>92/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyrr</td>
<td>50/6</td>
<td>De-Luxe Cabin</td>
<td>185/-</td>
<td></td>
</tr>
<tr>
<td>Bijou</td>
<td>79/6</td>
<td>Super 8/C.S. Baffle</td>
<td>140/-</td>
<td></td>
</tr>
<tr>
<td>Bronzing</td>
<td>105/-</td>
<td>W.10/C.S. Baffle</td>
<td>220/-</td>
<td></td>
</tr>
<tr>
<td>Gem Baffle</td>
<td>57/6</td>
<td>Corner Cabinet</td>
<td>97/-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FACTORY MODELS 3 or 15 ohms.</th>
<th>Factory/Bronze</th>
<th>102/6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factory/Golden</td>
<td>130/-</td>
</tr>
<tr>
<td></td>
<td>Factory/W.12</td>
<td>230/-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W.15/C.S. CORNER ASSEMBLY</th>
<th>SEPARATORS Non-resonant Sand-filled</th>
<th>Type A for 7 to 15 ohms</th>
<th>105/-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panel with Tin. top in</td>
<td>Type B for 7 to 15 ohms</td>
<td>155/-</td>
</tr>
<tr>
<td></td>
<td>Walnut, Oak, Mahogany £26 10 0</td>
<td>Type C for 2 to 6 ohms</td>
<td>105/-</td>
</tr>
<tr>
<td></td>
<td>Complete with W.15/C.S.</td>
<td>Type D for 2 to 6 ohms</td>
<td>175/-</td>
</tr>
<tr>
<td></td>
<td>Separator and W.10/C.S.</td>
<td>* Terminals. ↑ Tags.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baffle</td>
<td>£52 5 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Or with Super 8/C.S.</td>
<td>£68 5 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANSFORMERS</th>
<th>O.P.3</th>
<th>6/6</th>
<th>De Luxe</th>
<th>22/6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. Type</td>
<td>7/6</td>
<td>W.12</td>
<td>21/-</td>
</tr>
<tr>
<td></td>
<td>G.P.B.</td>
<td>11/6</td>
<td>W.12 Ratoes to order</td>
<td>25/-</td>
</tr>
<tr>
<td></td>
<td>Universal</td>
<td>13/6</td>
<td>W.15 Ratoes to order</td>
<td>60/-</td>
</tr>
</tbody>
</table>

Prices of Sundries and School Models remain as catalogue.

Some cheaper models have been reduced in price, but owing to the rise in cost of magnets, prices of better quality models have been increased.

WHARFEDALE WIRELESS WORKS
BRADFORD ROAD, IDLE, BRADFORD, YORKS

BUILD YOUR OWN TELEVISION RECEIVER THE EASY WAY
"VIEW MASTER"
(London or Birmingham)

All specified components can be supplied from stock. W.B. components including fitted chassis, mains transformer, choke and speaker £5 0
Complete set of Marganite resistors £1 5 0
Complete set of T.C.C. condensers £2 5
Complete set of Bulgin tag strips, switch, etc 12 6
Complete set of Westinghouse rectifiers £3 2 6
Complete set of Belling & Lee mains unit 7 6
Complete set of Colvern Potentiometers 17 0
Complete set of Wearnle coils £1 0 0
Plessey frame transformer 72001 18 6
Plessey line output transformer 72000 £1 1 3
Plessey seaming coil 72003 .. £1 5 6
Plessey focus ring (triode) 72004 19 6
Plessey focus ring (tetrode) 72005 19 6
Plessey boost choke 72006 .. 5 0
Plessey C.R.T. supports front and back, 72007 14 0

Send for complete instructions together with complete Price List, 5/-, post free.

Shop hours: Monday-Saturday, 9-6 p.m.; Thursday 9-1 p.m.

TELE-RADIO (1943) LTD.
177A, EDGWARE RD., LONDON, W.2
Phone: PAD 6116. PAD 5606.
SQUARE WAVE GENERATOR

This instrument provides a square wave of amplitudes from 5mV to 50v peak to peak calibrated, at a repetition frequency of from 5c/s to 150Kc/s. The mark/space ratio is 1:1 and the wave is flat to within less than ±1% top and bottom. Alternative positive and negative pulses of 0.05, 0.1, 0.2, or 0.3µSecs can also be obtained with amplitudes of from 3mV to 5v peak to peak.

UNIVERSAL VALVE TESTER

This instrument will display on a cathode ray tube the Anode volt/Anode current curves for any receiving type valve. Curves for eleven different grid voltages are shown simultaneously and a calibration pattern is displayed enabling the voltage and current characteristics to be checked.

For further particulars—please write to:

CINEMA-TELEVISION LIMITED

WORSLEY BRIDGE ROAD • LONDON • S.E.26

Telephone: HItHer Green 4600

Northern Agents:
F. C. ROBINSON & PARTNERS LIMITED
308 Deansgate, Manchester 3

Scottish Agents:
ATKINS, ROBERTSON & WHITEFORD LIMITED
100 Torrisdale Street, Glasgow, S.£
In Great Britain and America the styling of the Ambassador TV.2 Television Receiver has been acknowledged as being the most outstanding yet seen in Television.

In performance it is equally so. Unique circuit technique has given important advantages including tight interlace with positive frame and line lock through severest interference.

These circuits are exclusive to Ambassador and are the subjects of patent applications.

STYLED AND PRODUCED BY

WEMYRAD

Components for all users. If you are interested in these or any other items please write for further details.

BANDSPREAD UNITS—Ranges to suit all requirements—9 Wavebands—with or without R.F. stage.

TUNING SCALES NOW AVAILABLE. Size 9in. x 9in.

COIL PACKS—3 and 4 Waveband with R.F. stage. 3-Wave packs—Special versions for battery operation.

COILS—12.5 to 2,000 Metres. Air cored, Iron cored midget and Screened types available.

I.F. TRANSFORMERS—Miniature, Midget and Standard types, all of high performance.

FILTERS, CHOKEs AND SPECIAL COILS to order. We are coil winding and assembly Contractors to well known manufacturers at home and overseas. Your enquiries, large or small, are invited.

WEYMOUTH RADIO MANUFACTURING CO., LTD.,

Crescent Street, Weymouth
21 candles round the cake—the family gathered round the long table—and in a corner of the room, the Soundmirror, its sensitive microphone recording on reels of inexpensive magnetic tape all the fun and laughter of a once-in-a-lifetime event.

With this remarkable new Instrument you can make your own home sound recordings—the best music—the greatest drama, speeches, sports events, etc.

- Anyone can operate the Soundmirror. One single finger-tip control provides for Play, Record, Rewind or Fast forward requirements.
- Recordings can be played back at once.
- Recordings may be permanently retained, or old items erased as new recordings are made.
- Sound Library. You can build your own Sound Library of Music, Speeches, Talks or family events—Birthdays and Weddings, etc.

Full details from the Manufacturers or Demonstrations by Appointment.

THERMIONIC PRODUCTS LTD.
MORRIS HOUSE, JERMYN STREET, HAYMARKET, LONDON, S.W.1
Telephone: Whitehall 6422 (5 lines)
Sales and Service Centres: MANCHESTER · BIRMINGHAM · BRISTOL · LEEDS · ETC
TELCON'S LATEST MAGNETIC DEVELOPMENT

H.C.R. ALLOY

is now available in commercial quantities

"H.C.R." ALLOY TYPICAL D.C. HYSTERESIS LOOP

The magnetic properties of this alloy make it suitable for mechanical rectifiers, magnetic amplifiers and special forms of reactors.

Full technical details on request from:

THE TELEGRAPH CONSTRUCTION & MAINTENANCE LTD.

Founded 1864

Head Office: 22 OLD BROAD ST., LONDON, E.C.2. Tel: LONDON WALL 3141

Enquiries to TELCON WORKS, GREENVICH, S.E.10. Tel: Greenwich 3291

GOOD NEWS

for Gramophone Enthusiasts!

GREAT REDUCTION IN PRICES

OF ROTHERMEL CRYSTAL PICK-UPS

As and from January 1st, 1950, the prices of the famous Rothermel Crystal Pick-ups are greatly reduced. The cost of even the more expensive models is now within the price limit of the most slender purse, and the superb performance of these high-class instruments can now be enjoyed by all. The demand is bound to be heavy, so make your choice and secure now.

<table>
<thead>
<tr>
<th>Old Price</th>
<th>New Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENIOR MODEL</td>
<td>45/-</td>
</tr>
<tr>
<td>S.8 MODEL</td>
<td>42/-</td>
</tr>
<tr>
<td>S.12 MODEL</td>
<td>42/-</td>
</tr>
<tr>
<td>U.48 MODEL</td>
<td>25/-</td>
</tr>
</tbody>
</table>

Purchase Tax extra

If you have any difficulty in obtaining supplies from your retailer, write direct to:—

R.A. ROTHERMEL LTD.

ROthermel House,
CANTERBURY ROAD, KILBURN, LONDON, N.W.6

Telephone : MAIDA VALE 6066 (3 lines)

TAYLOR SWITCHES

TYPE 970

Designed for radio, electronic, or instrument use with 12 or 18 way decks. Robust, reliable and trouble free.

- CURRENT RATING. Shorting type 10 amps. Non shorting 5 amps.
- LOW CONTACT RESISTANCE. Shorting type 0.01 ohm, non shorting 0.02 ohm.
- COMPACT. Occupies panel space only 1 3/4" x 2 1/4".

Details of all Taylor Components sent on request

TAYLOR ELECTRICAL INSTRUMENTS LTD

419-424 MONTROSE AVE., SLOUGH, BUCKS, ENGLAND

Tel. SLOUGH 21381 (4 lines) Grams & Cables TAYLINS SLOUGH
NEW SCREENED H.F. PENTODES
FOR THE TELEVISION FREQUENCIES

The 6F1 and 10F1 are two new screened H.F. Pentodes for AC and AC/DC mains operation respectively. Identical, apart from heater rating, they have twin cathode connections giving a considerable reduction in common anode and grid circuit H.F. impedance, thereby enabling a high input resistance to be obtained.

This high input resistance together with the high mutual conductance of these valves (9mA/V at 10mA Anode Current) makes them ideal for use in straight television receivers, particularly for operation at a carrier frequency of 61.75 Mc/s as used by the Midland (Sutton Coldfield) transmitter.

<table>
<thead>
<tr>
<th>TYPICAL OPERATION</th>
<th>6F1</th>
<th>10F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage</td>
<td>6.3 volts</td>
<td>22 volts</td>
</tr>
<tr>
<td>Heater Current</td>
<td>0.35 amps</td>
<td>0.1 amps</td>
</tr>
<tr>
<td>Anode Voltage</td>
<td>200 volts</td>
<td>200 volts</td>
</tr>
<tr>
<td>Screen Voltage</td>
<td>200 volts</td>
<td>200 volts</td>
</tr>
<tr>
<td>Anode Current</td>
<td>10 mA</td>
<td>10 mA</td>
</tr>
<tr>
<td>Screen Current</td>
<td>2.6 mA</td>
<td>2.6 mA</td>
</tr>
<tr>
<td>Grid Voltage</td>
<td>-1.8 volts</td>
<td>-1.8 volts</td>
</tr>
<tr>
<td>Mutual Conductance</td>
<td>9 mA/V</td>
<td>9 mA/V</td>
</tr>
<tr>
<td>Input loss at 61.75 Mc/s (approx.)</td>
<td>7500 ohms</td>
<td>7500 ohms</td>
</tr>
</tbody>
</table>

BASE B8A.

LIST PRICE: 15/6d

EDISWAN
MAZDA
RADIO VALVES AND TELEVISION TUBES
THE EDISON SWAN ELECTRIC CO. LTD., 155 CHARING CROSS ROAD, LONDON, W.C.2
FIXED PADS
UP TO 60 db

STEP TYPE
UP TO 100 db

ACCURACY 1%
D.C. TO 50 Mc/s

AN ENTIRELY NEW
RANGE OF
CO-AXIAL ATTENUATORS

For particulars of these and our full range of measuring instruments, write to:

BRITISH PHYSICAL LABORATORIES
HOUSEBOAT WORKS - RADLETT - HERTS - Telephone: RADlett 5674-5-6

"STEWART"
HIGH GRADE TRANSFORMERS
Types Available for Delivery ex Stock
ANY OTHER SPECIFICATION TO ORDER

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Primaries tapped 210-210-250v.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2</td>
<td>260-0-260v 65 m/2 6.3v 2a 5v 2a</td>
<td>27/6d.</td>
</tr>
<tr>
<td>A6</td>
<td>350-0-350v 75 m/2 6.3v 3a 5v 2a</td>
<td>28/6d.</td>
</tr>
<tr>
<td>A4</td>
<td>350-0-350v 100 m/2 6.3v 3a 5v 2a</td>
<td>34/6d.</td>
</tr>
<tr>
<td>B4</td>
<td>350-0-350v 150 m/2 6.3v 4a 5v 2a</td>
<td>46/6d.</td>
</tr>
<tr>
<td>C6</td>
<td>350-0-350v 200 m/2 6.3v 4a 5v 2a</td>
<td>70/6d.</td>
</tr>
<tr>
<td>S/28/1**</td>
<td>425-0-425v 250 m/2 6.3v 4a 5v 3a</td>
<td>90/-d.</td>
</tr>
<tr>
<td>S/28/2*</td>
<td>350-0-350v 250 m/2 6.3v 4a 5v 3a</td>
<td>90/-d.</td>
</tr>
<tr>
<td>S/28/3</td>
<td>350-0-350v 250 m/2 6.3v 4a 5v 3a</td>
<td>82/6d.</td>
</tr>
<tr>
<td>S/24/1</td>
<td>1000v 10 m/2 0.2-4v 2a 6.3v 7a</td>
<td>40/-d.</td>
</tr>
<tr>
<td>S/24/2</td>
<td>1750v 10 m/2 0.2-4v 2a 5.0v 2a</td>
<td>45/-d.</td>
</tr>
<tr>
<td>S/24/3</td>
<td>2500v 10 m/2 0.2-4v 2a 5.0v 2a</td>
<td>55/-d.</td>
</tr>
<tr>
<td>S/24/4*</td>
<td>4000v 5 m/2 0.2-4v 2a 6.3v 7a</td>
<td>63/-d.</td>
</tr>
<tr>
<td>S/24/5*</td>
<td>5000v 5 m/2 0.2-4v 2a 75/-d.</td>
<td></td>
</tr>
</tbody>
</table>

* For "Electronic Eng." Televisor.
** For The "Will"son" Amplifier.

ACRУ
neon indicator lamps

In handsome Black Bakelite holder complete with series resistance and leads, to show Pink, Red, Amber or Green, on 230v or 400v AC or DC. Specially designed for easy assembly in ¼-inch mounting hole.

Send now for full details, prices and terms.

THE ACRУ ELECTRIC TOOL MFG. CO. LTD.
123, Hyde Road, Ardwick 4284.

N.L.
fidelity of response speaks for itself to the discriminating ear. Precision manufacture is no less eloquent to the trained engineer. These qualities make TRUVOX speakers famous.

G.P.M. 12" SPEAKER. The outcome of intensive development by specialist engineers, the method of construction employed in the Truvox "C.P.M." series offers a notable economy in size, weight and cost. Ranging from "midgets" to auditorium speakers, each model in the TRUVOX "C.P.M." series is precision-designed to combine maximum flux density with the widest frequency coverage for its size.

Model BX11

12" HEAVY DUTY. Rigid die-cast chasis; square casing for the magnet seating, secured with large hexagon head bolts; centre pole and bottom plate all in one forging; ring-clamped cone; die-cast centring ring; practical construction matched by excellent response and high sensitivity—all made for HEAVY DUTY.
Response 55-11,000 C.P.S; flux density 13,000 Gauss; power handling capacity 10 watts (A.C.)

Model SS10A

MONOBOLT. Unshakably rigid in transit and extended use, the unique construction of Truvox "Monobolt" loudspeakers gives unequalled reliability and consequent freedom from service troubles. The use of a one-inch pole-piece allows large power handling capacity free from distortion.

Model BX82 8"

TRUVOX ENGINEERING CO. LTD., EXHIBITION GROUNDS, WEMBLEY, MIDDX.
"JUNO" and "OCO" floor polishing machines are also manufactured by TRUVOX. Send for details.
The B.C.C. Mobile Radio-Telephone illustrated here will give two-way communication with the Fixed Station up to a distance of 25 miles or with the portable Pack-set up to 5 miles.

This B.C.C. equipment sets a new standard in V.H.F. Communications Technique and has been approved by the G.P.O. and Home Office. The complete range consists of:

- Fixed Stations ...Models L111 & H111
- MobilesModels L67 & H67
- Pack SetsModels L45V & H45V
- Hand Portables ...Models L45AV & H45AV

This equipment can be supplied to cover any spot frequency in the 75-100 Mc/s or 150-185 Mc/s bands.

Write now for full details and outstanding features of this remarkable equipment.

BRITISH COMMUNICATIONS CORPORATION LTD. Gordon Avenue, Stanmore, Middlesex. Tel. GRimsdyke 1455

NEW FOR 1950
BUILT BY CONVERSION EXPERTS
FOR THE DISCRIMINATING USER

A CONVERTER
type 230/110, with D.C. Input 200/250 volts giving an A.C. Output of 200/250 volts. Frequency 50 cycles at 110 watts Maximum load. £10.15.0

BY VALRADIO
Who want you to know that an A.C. operated Radio, Radio-gram or Amplifier give by far the Best Results.

Literature upon request, also for Rectifiers, Frequency and Voltage Changers.

VALRADIO LIMITED
57, FORTRESS ROAD, LONDON, N.W.5
GULiver 5165

High Fidelity Reproduction.
The S. G. Brown Type "K" Moving Coil headphones, with the following outstanding characteristics, supply that High Fidelity Reproduction demanded for DX work, monitoring and laboratory purposes, etc.

CHARACTERISTICS.
- D.C. RESISTANCE, 47 Ohms.
- IMPEDANCE 52 Ohms. at 1,000 c.p.s.
- SENSITIVITY, 1.3 x 10^-14 Watts at 1kHz... = 0.002 Dyn/cmm

Descriptive Literature on request

PRICE £5.5.0 PER PAIR

Your Local Dealer can supply

For details of other S. G. Brown Headphones (prices from 30/- to 77/6) write for illustrated Brochure "W.W." HEADPHONES WHICH UPHOLD BRITISH PRESTIGE

S.G. Brown, Ltd.
SHAKESPEARE STREET, WATFORD, HERTS.
WESTERN BALL MICROPHONE

Manufactured by . . .
STANDARD ELECTRIC

All in perfect condition

Suitable for broadcasting and recording.
Moving Coil (Dynamic). Omni-directional.
No energising necessary. High Fidelity.
Coil Impedance 15 ohm. and will work
very well in conjunction with an ordinary
speaker transformer.
Is of the type used by many leading
bodies, such as the B.B.C. and G.P.O.
for high fidelity reproduction.

£4.17.6

PHILIPS 6-VALVE
COMMUNICATIONS RECEIVER

16-50, 200-250 and 800-2,500 metres.
Spin-wheel tuning. In black metal case
with built-in speaker. Complete with
power pack, AC 200-250 v. Can also be
supplied with 12 v. DC. power pack if
required. BRAND NEW.
EX-GOVT.

£17.10.0

Brand New ACCUMULATORS

Complete in strong case, as
illustrated. British
made. 6v. 86a. Size
12x9x7 in. Weight
65 lb.

£3,10.0

Fractional H.P. AC MOTORS
Converted from ex-Govt. Generators
Brush type 220-250 v. 50 cycles
approx. £0.00 r.p.m. Overall diam.
10x4in. tin spindle extends 3
in both ends.

£21/-

R.A.F. 6-VALVE
SUPERHET RECEIVER
UNIT No. 25

All valves guaranteed. This unit is easily adapted to
Short-wave reception for
home use. In addition to
two EF39, two BP99, one
EK32 and one EBC33
valves, it contains 1 pr. 450
Kc/s iron dust I.F. Trans-
formers, Mic. and phone
output transformers, a number of
resistors and fixed condensers of useful
values, two 1 mfd. 500 v.
and 39 pair. American lightweight.
Suitable for deaf aid, 7/8 pair.
BLOWER MOTORS. 12-24 v.
and 80 v., 15/- each.
2-VOLT VIBRATORS. Type
576C. These 7-pin self-rectify-
ing vibrators have an output of
200 v. at 60 mA. Made by
Electronic Laboratories Inc. 7/6
CATHODE RAY TUBES
VCR140 Blue Screen, 90/, New VCR97, 37/6.
MOVING COIL HAND MICRO-
PHONE. Complete, 5/6.
INSERTS, as above, 2/9.
7-VALVE 1/4.H.P. RECEIVER,
Type R1147A. Range approx.
250 megacycles with 4 Acorn
Beautifully constructed and
fitted with inter-conductor
drive. Valve types: two
EF39, one EBC33, three 954, one
955. In black metal case, 8 x 7 x 4in.
Set complete with valves, 30/-.
PLEASE NOTE.—All carriage
charges relate to British Isles only.
We do not issue lists or catalogues.
See previous issues for other
Bargains.

EX-RAF TUNING UNIT
TYPE 207A
BRAND NEW. Includes Clystron valve,
3 Neon tubes CV71, 15Z4F and other useful
components. As illustrated, plus
metal cover.

£20/-

WALKIE-TALKIE (Transmitter) CHASSIS
including four ARP15 valves. In metal
case. Complete with components, except
the Send/Receive switch and the
AIF4 valve. Price

£35/-

TYPE 73a VISUAL UNITS
With 4in. Cathode Ray Tube, VCR138A, 4
SP61, 1 EB34 valves, potentiometers, etc.
Complete on chassis, 16 x 12 x
5in.

£35/-

MAP READING TORCH
Powerful magnifying lens, 8in. diam.
In bakelite case. Fitted with dimmer
switch. Takes 3 U2 cells. With
bulb, less batteries. 22/6

23 LISLE STREET,
Closed Thursday 1 p.m. Open all day Saturday and weekdays 9 a.m.—6 p.m.

LONDON CENTRAL RADIO STORES
Tel: GERrard 2969

LONDON, W.C.2
Ref. No. BM7/U moulded in Phenol-Formaldehyde

Ref. No. FM7/U moulded in PTFE

THE McMURDO INSTRUMENT COMPANY LTD., VICTORIA WORKS, ASHTEAD, SURREY • ASHTEAD 3401

SPECIFIED T.V. PARTS from stock

RELIANCE POTENTIOMETERS.

Type TW wire-wound 300k

50k, 1k, 2k, 5k, 10k

25k, 50k

Type TW 100k

Type 80 carbon 100k, 2 Meg. 5£

EED POTENTIOMETERS.

All values less sw. 2 1/2in. shafts 2/9

All values with sw. 2 1/2in. shafts 4/0

RI ELECTROLYTICS.

60µF cardboard blocks 500v 2/8

80µF do. do. 2/9

100µF do. do. 2/10

16µF do. do. 4/7

8+8µF do. do. 4/9

5+5µF do. do. 4/1

8+16µF do. do. 9/11

8µF vertical caps 500v 2/8

10µF do. do. 4/9

16µF do. do. 8/1

16+16µF do. do. 8/9

8µF moulded tubular 6".

ALSO Coils, transformers, valves, C.R.T.s, rectifiers, focus and scanning coils, P.M. focus unit, masks, lenses, as specified for "W.W.", "E.E.", "P.M.", Denco and Viewmaster TV designs.

"Viewmaster" envelopes, Midland version now available, 5/. and 6d. post.

Satisfaction guaranteed. All coils post free over £1.

COIL PACKS

Improved performance at lower price with the new F. P. series. 3 and 5 waveband models with or without R. F. stage.

VALVE TESTER

Type 218 for the Laboratory and Service Engineer

Full particulars from:

H. C. ATKINS LABORATORIES

32 CUMBERLAND RD., KEW GARDENS.

Telephone—RIChomond 2950.
Keeping assembly cost DOWN (and at the same time keeping assemblies safely together) can be a major production headache. Spire Speed Nuts answer that requirement. And many others as well. Acting on its own double-spring locking device, each Spire nut is speedier to put on, holds tighter when it’s home. Awkward fixings and blind assemblies are tackled with equal ease by Spire. Sometimes threaded members can be eliminated altogether. Will you write for more information on Spire Speed Nuts—the fastest thing in fastenings?

Spire

SPEED NUTS

The mounting of this loudspeaker grille is achieved by the use of “Push-On” Type Spire Fixes on integral unthreaded moulded studs. Inserts eliminated; moulding costs reduced; assembly is REALLY FAST.

that’s fixed that

Enquiries to —
SIMMONDS AEROCESORIES LTD. BYRON HOUSE 7-8-9 ST. JAMES’S ST. LONDON S.W.1
HEAD OFFICE AND WORKS: TREFOREST, GLAMORGAN
Video Oscillator
Type 0.221 7 Kc/s - 8 Mc/s
Amplitude range of adjustment -10db to -55db on 1 volt peak to peak, adjustable -0.5db steps. Amplitude constant to ±0.5db at any frequency setting. Harmonic content better than 40 db below fundamental - output impedance 75 ohms ±5%.

The instrument is built to meet a specification of the Designs Department of the B.B.C. It can be mounted to a standard G.P.O. 19" rack or alternatively is supplied with a light transportable case as illustrated.

Wayne Kerr
THE WAYNE KERR LABORATORIES LIMITED
NEW MALDEN, SURREY, PHONE: MALDEN 2202

PLEASE tell us of OTHER applications

Drayton ‘Hydroflex’

for HYDRAULICALLY FORMED

Seamless, one-piece, metal bellows combining the properties of a compression spring able to withstand repeated flexing, a packless gland and a container which can be hermetically sealed. Made by a process unique in this country, they are tough, resilient, with a uniformity of life, performance and reliability in operation unobtainable by any other method.

Drayton METAL BELLOWS

Write for List No. N800-1 DRAYTON REGULATOR & INSTRUMENT CO. LTD., WEST DRAYTON, MIDDLESEX. West Drayton 2611 B.8

Richard Allan
PRESTIGE CONSOLE SPEAKER

Console Extension Speaker with continuously variable constant Impedance Volume Control.

In Walnut as illustrated £12 19s. 6d. TRANSFORMER 25/- Extra.

DIMENSIONS. 32½" x 22½" x 8½".

- 10" Die Cast Chassis.
- 1½" Diameter Centre Pole.
- Critical Dimensions To 0.005".
- Completely Dust Proof Assembly.
- Impedance 8 ohms at 400 c.p.s.
- Peak input 8 watts.
- Flux Density 14000 Lines per sq. cm.
- Total Flux 82,000 lines.
- Bass Resonance 65 c.p.s.
- Self aligning Magnet Assembly.
- Special Curved cone is highly damped by the field provided by a 2 lb casting of Alcomax B.
- Level response from 60 to 9,500 c.p.s.
New Two Speed-motor

At the turn of a switch you have two speeds, 33 1/3 or 78 r.p.m. The Turntable is a full 12" diameter; its main spindle precision ground and lapped, runs in phosphor bronze bearings. The synchronous motor is virtually vibrationless and is suitable for playing standard, transcription and microgroove recordings. Guaranteed mechanically perfect. New super lightweight pick-up available with the interchangeable heads for microgroove and standard recordings.

Manufactured by
A. R. SUGDEN & CO. (ENGINEERS) LTD. WELL GREEN LANE BRIGHOUSE YORKS.

A Connoisseur PRODUCT

SPRING LOADED TERMINALS

PAINTON
PAINTON & CO. LTD • KINGSTHORPE • NORTHAMPTON • ENGLAND
For problems of INTERFERENCE SUPPRESSION
AT THE SOURCE

As specialists, with unlimited research and development experience in any capacitor application, Hunts can help you considerably with the low-cost production of suppressor equipment to B.S.S. specification and to any reasonable dimension for practically every possible kind of equipment. Designers and manufacturers are invited to let us know their requirements—in strictest confidence.

A typical example of Hunts suppressor capacitor types.
Size: 2" x 1" dia. 0.14
0.008 ± 0.005 250v.
A.C. wkg. to B.S.S. 613.

...consult the specialists

REGISTERED TRADE MARK
HUNTS
CAPACITORS
The Trade Mark of Reliability

LONDON
OR
BIRMINGHAM!

Here is a new opportunity worth grasping, build your own Television Receiver at a price you can afford.

- Designed around common types of valves.
- No unusual types to obtain.
- Will suit 9", 10" or 12" Tubes.
- The most competitive price on the market.

CAN BE BUILT FOR £20 (G.R. Tube Extra)

Instruction books PRICE 5/- post free.
Write today for further details.

PRE-AMPLIFIERS NOW AVAILABLE
Two stage model, complete with valves, tested........ £2 0 0
De-luxe model with built-in power pack, totally enclosed. Ready aligned and tested £7 10 0

PERM. MAGNET } For Mullard C.R. Tubes. Type FR1 21/-
FOCUS RINGS } For G.E.C. C.R. Tubes. Type FR2 22/6
} For Mazda C.R. Tubes. Type FR3 25/-

HOUGHTON & OSBORNE
Electron Works, Thame, Oxon.
Telephone: Thame 182.

THE "RD JUNIOR" DE LUXE

By popular demand the improved tone control circuit used in our Williamson pre-amplifier has now been incorporated in the "RD Junior" amplifier. This, together with increased N.F.B., low noise audio input stage (Mullard EF40) and other refinements, results in an amplifier which is by far the best available in its price class.

Performance Figures

Frequency response : ± 0.2 DB 20-20,000 cps.
Distortion : for 8 watts output, not exceeding 0.5 per cent. total harmonics at 100 and 1,000 cps.
- for 10 watts output, 1 per cent. second and third at 100 and 1,000 cps.
Sensitivity : Radio input, 2 v. R.M.S. for 10 watts output.
P.U. input, 170 mV. R.M.S. for 10 watts output (at 1,000 cps).
Hum and Noise : With maximum gain, maximum bass boost, and open grid circuit. Gram position—65 DB or better.
Bass and Treble controls : These are of the variable slope type, and give a range of ±18 DB at 20 and 20,000 cps. Cross-over frequency 1,000 cps.
Pick-up compensation : 6 DB per octave from 250 cps. to 30 cps.
Degree of feed-back : 20 DB.
Due to exceptionally low-phase shift the amplifier is unconditionally stable under all normal conditions.

PRICE: Completely wired and tested in chassis form—£22/10/-.

The amplifier may be heard at our Hampstead premises.
Demonstration times; 10.30 a.m.—12.30 p.m. 1.30 p.m.—3.30 p.m. DAILY. Thursdays ; 10.30 a.m.—12.30 p.m.
Nearest Underground Station—Hampstead—Northern Line.
The amplifier may also be heard at;
The Gramophone Exchange, Shaftesbury Avenue, W.C.2.
Electro-Power Service Co., 390, High Road, Leytonstone, E11.

ROGERS DEVELOPMENTS Co.,
106 HEATH STREET, HAMPSTEAD, LONDON, N.W.3
HAMPstead 6901
Serving the Four Corners of the World

The need for reliable Radio communication is being met throughout the world by Redifon equipment for many civil, commercial, marine and aeronautical services. The G.41, illustrated, is a typical example of a 5-7½ KW Transmitter for world wide, high speed Telegraphy, Teletype, Telephony and Broadcast purposes.

COMMUNICATIONS

Radio Communications Division

REDFON LIMITED, BROOmhILL ROAD, WANDSWORTH, S.W.18
DESIGNERS & MANUFACTURERS OF RADIO COMMUNICATION & INDUSTRIAL ELECTRONIC EQUIPMENT. Phone: VANDyke 5691

A NEW INSTRUMENT FOR THE AUDIO FREQUENCY ENGINEER

For taking the response curves of amplifiers, speakers, transformers, filters and microphones, or measuring the acoustic properties of rooms, studios and radio cabinets, etc., we introduce the:

MODEL 1900 A.F. RESPONSE CURVE TRACER.

FEATURES:
- Entirely electronic in operation.
- Log. frequency scale.
- Frequency range 25 cps. to 20 kcs. in two ranges.
- Accurate frequency calibration based on passive circuit elements.
- Repetition or single stroke frequency sweep.
- Remote single stroke sweep initiation.
- Sweep speed proportional to frequency.
- Approximately constant writing speed.
- Simple recording facilities.
- Built-in stabilised power supply.
- Portability.
- A practical price.

DIRECT CURRENT TO RADIO FREQUENCY

The only oscilloscope combining
- Linear Response from Zero Frequency (DC) to Radio Frequency (0-100 k/c.).
- High Deflection Sensitivity on both axes (70 mV. cm.).
- Complete freedom from amplifier drift under D.C. conditions.
- Absolute independence of controls.
- Perfect synchronising at all Frequencies.
- True portability (weight only 18 lbs.).
- Price £32.
- Six months' guarantee.

Model 1400B Visual Alignment Signal Generator shows the shape and characteristics of a tuned circuit response curve on the oscilloscope screen. Perfect alignment of I.F. or R.F. circuits is easily accomplished without an additional signal generator. Price £8 10s.

Write for specifications. Early delivery now available.

INDUSTRIAL ELECTRONICS,
99 Gray's Inn Road, London, W.C.1

Telephone: Holborn 9873/4
AN OLD FRIEND
WILL BE RECOGNISED ABOVE BY PRE-WAR
"WIRELESS WORLD" READERS.

Luxury "overcoats" to the VOIGT Domestic Reflector Type Corner
Horn are, alas, a memory of pre-war times. After a gap of 7 months,
however, our carpenter is able to resume production of the basic
horn "in the white." Price £47 10s. ex works. See below left.

Your local cabinet maker can veneer this to match your furniture.

Suitable VOIGT P.M. Unit, inclusive of B.B.C. Corrector and the
new Rematched diaphragm, is £40 ex works.

For those with slender purses we are designing a unit with a less
powerful magnet and also suggest a simpler type of corner horn, very
nearly as good as the above, known as the H.C. Type with bass chamber.
Price (in the white), £19 10s. ex works.

For further information see "W.W." Sept. 1949, page 33 (Advts.)
and "W.W." Feb. 1950, page 66 (Advts.).

Send your order to
VOIGT PATENTS LTD. c/o BCM/VOIGT LONDON, W.C.1

P.S.—Delay with correspondence is regretted, but Mr. Voigt has
not yet recovered fully.

"ADCOLA" SOLDERING INSTRUMENTS

Designed for Wireless Assembly and Maintenance.
Working temperature reached in 1½ mins., consumption 25 watts.
weight 24 ozs.
Supplied in voltage ranges from 6/7v. to 230/250v.
⅛" diam. Copper Bit (standard model) 22s. 1" diam. Copper Bit 25s.
Replacement Unit Bit Elements available.
British and Foreign patents.

Made by
ADCOLA PRODUCTS LIMITED ALLIANCE HOUSE, CAXTON STREET, LONDON, S.W.1
Write or Phone: Brixton 8075
NOW AVAILABLE FOR EARLY DELIVERY
A REALLY VERSATILE WIRE RECORDER

* Completely self contained and portable with storage for microphone and leads. Weight 40lbs.
* Records for one hour at one loading from microphone, radio or feeder unit.
* Uses large capstan and flywheel to reduce "wow" to a minimum. Rewinds at 6½ times forward speed.
* Push button controlled for ease of operation.

This up-to-date instrument in its neat carrying case is the ideal "personal" recorder for home or business use. It possesses unlimited applications for use in offices, universities and schools, hospitals and clinics, sales training and advertising departments and for professional artists and students of drama, elocution and music.

FOR DETAILS OF THIS UNIT AND OUR COMPREHENSIVE RANGE OF RECORDING EQUIPMENT AND ACCESSORIES PLEASE WRITE TO:

CABLES: Simsale, London.
TELEPHONE: Welbeck 2371 (4 lines)

THE INSULATOR

May solve your Insulation Problems
with the following

UNIQUE COMBINATION OF PROPERTIES

- HIGH DIELECTRIC STRENGTH
- LOW-LOSS FACTOR
- HEAT RESISTING
- MANUFACTURED TO CLOSE TOLERANCES
- NON-TRACKING
- RESISTANT TO FUNGUS GROWTH
- WILL NOT SHRINK OR WARP
- LOW EXPANSION CO-EFFICIENT

MACHINED TO CUSTOMER'S REQUIREMENTS OR AVAILABLE IN SHEETS, RODS AND MOULDINGS

Also makers of INGRAM MYCALEX Capacitors utilising MYCALEX as a dielectric with plates moulded in, to form a sealed unit

Phone: CIRENCESTER 400 or send enquiries to

MYCALEX COMPANY LTD · ASHCROFT ROAD · CIRENCESTER GLOS
Induction Motor FPI0

A precision engineered, well balanced 4-pole motor, designed to give constant trouble-free performance indefinitely. The F.P.10 is ideal for record players, tape and wire recorders, timing mechanisms, and every application demanding a constant speed vibration free motor.

Note these attractive features:

* Fully protected.
* Dual voltage range.
* Negligible external magnetic field.
* Four poles.
* Oil impregnated self aligning bearings.
* Silent running.
* Speed constancy.
* List price 38/-.

Inquiries from manufacturers invited.

PROVISIONAL SPECIFICATION

<table>
<thead>
<tr>
<th>Voltage, 100/125-200/250.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency : 50 cycles or 60 cycles.</td>
</tr>
<tr>
<td>Consumption at 230 v., 14 watts.</td>
</tr>
<tr>
<td>Speed, Light : 1,400 r.p.m.</td>
</tr>
<tr>
<td>Max. torque : 3in. ounces.</td>
</tr>
<tr>
<td>Starting torque : 3in. ounces.</td>
</tr>
<tr>
<td>Shaft dia. : .1875in.</td>
</tr>
<tr>
<td>Weight : 1\frac{1}{2} lbs.</td>
</tr>
<tr>
<td>Size : 3\frac{1}{4}in. x 2 7/16in. x 2\frac{1}{4}in.</td>
</tr>
<tr>
<td>External shaft length : 1 inch.</td>
</tr>
</tbody>
</table>

Birmingham Sound Reproducers Limited

Telephone : Cradley Heath 6212/3 CLAREMONT WORKS, OLD HILL, STAFFS. 'Grams : 'ELECTRONIC' Old Hill, Cradley Heath.
In This Issue

EDITORIAL COMMENT .. 81
SIMPLE CATHODE-RAY OSCILLOSCOPE. By M. G. Scroggie 82
TELEVISION SPOT-WOBBLE. By R. W. Hallows 84
FRINGE-AREA TELEVISION 87
WIDE RANGE R-C BRIDGE. By H. E. Styles 88
INTERFERENCE FROM FLUORESCENT TUBES. By "Diallist" ... 93
DEFLECTOR COIL CHARACTERISTICS. By W. T. Cocking 95
SHORT-WAVE CONDITIONS. By T. W. Bennington 98
WORLD OF WIRELESS .. 99
EARTH. By "Cathode Ray" 103
SOLVING PARALLEL PROBLEMS. By D. A. Pollock 107
ELECTRONIC CIRCUITRY. By J. McG. Sowerby 108
NEGATIVE FEEDBACK. By E. Griffiths 111
UNBIASED. By "Free Grid" 114
LETTERS TO THE EDITOR 115
RANDOM RADIATIONS. By "Diallist" 118
MANUFACTURERS' PRODUCTS 120

WEARITE COIL PACKS

"P" COILS

... for Aerial, R.F., and Oscillator Tuning and readily available in all ranges.

WRIGHT & WEAIRe LIMITED

Telephone: SLOane 2214/S.
Factory: South Shields, Co. Durham
In industrial processes and in domestic equipment there is often a need for a device which will automatically operate a switch after a predetermined time interval of several minutes. Various applications will be apparent to readers. As an example, it may be used in conjunction with an electric toaster to switch off the current before the toast is burnt. An improved timing circuit using only one valve and operating directly from the A.C. mains is described below.

Time-delay circuits employing valves generally belong to one of two groups. In the first of these a simple resistance-capacitance circuit holds off the valve during the timed interval, while in the second the Miller effect is used to retard the rise of anode current in a valve-operated relay circuit.

Circuits of the first group are generally suitable for time delays up to about 15 minutes, since for longer periods the values of capacitance and resistance required become unduly large for most practical applications. On the other hand circuits of the second group can be used for time delays of as much as fifteen minutes without unduly large resistors and capacitors.

A simple time-delay circuit using the Miller feed-back principle is shown in Fig. 1. The valve V1 functions as a half-wave rectifier to charge the electrolytic capacitor C1. The rise of potential across C1 is retarded by the feed-back capacitor C2, which is initially uncharged. As the potential across C1 tends to rise, C2 charges through R3 and R4 pulling the grid of V1 negative and thereby retarding the rate of rise of potential across C1. The effective retardation is dependent primarily on the values of R3, R4, and C2, and is nearly independent of C1 provided that C1 is large.

The variable resistor R3 provides an adjustment of the time delay. With the component values given, the delay is 1.5 to 2 minutes. Much longer delays than this can be obtained by using larger values of C2 and R4.

The relay RL is a high-resistance telephone relay with a low operating current, and is connected in series with a resistor R5 across the capacitor C2. The value of R5 is such that the relay RL closes when the voltage across C2 has risen to about 90% of its final value. When the circuit is switched on, the first delay period includes the warming-up time of the valve V1. The circuit is reset after each operation by means of the push button PB which is arranged to discharge the capacitor C2.

The heater current for the EF91 is drawn directly from the A.C. supply through the capacitor C3 which is chosen to give 0.3A. With this arrangement one end of the heater must be connected to the neutral line of the A.C. supply. The voltage across capacitor C3 is therefore applied between the heater and cathode of the valve and must not be allowed to rise above the permissible heater-to-cathode voltage of the EF91, namely 150V. Resistance R1 is included in the anode circuit to limit this voltage to a safe value.

The component values in Fig. 1 are typical but some modifications will be necessary for different relays and time delays. Capacitor C1 is electrolytic, C2 and C3 are paper. All resistors are 1/4W rating.

FIG. 1 CIRCUIT OF ELECTRONIC TIMER

Reprints of this report from the Mullard Laboratories may be obtained free of charge from the address below.

MULLARD ELECTRONIC PRODUCTS LTD.
TECHNICAL PUBLICATIONS DEPARTMENT,
CENTURY HOUSE, SHAFTESBURY AVE., W.C.2

Mullard
These Valves make News!

THE BRIMAR MINIATURE A.C. RANGE

These high efficiency types feature rugged construction and small overall dimensions, they are fitted with the standard B7G base. Each valve is exactly equivalent to its popular American counterpart and bears the identical number.

TYPE 6BE6

Special Heptode Frequency Changer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage</td>
<td>6.3 volts</td>
</tr>
<tr>
<td>Heater Current</td>
<td>0.3 amp.</td>
</tr>
<tr>
<td>Anode Voltage</td>
<td>250 volts</td>
</tr>
<tr>
<td>Anode Impedance</td>
<td>1.0 meg.</td>
</tr>
<tr>
<td>Conversion Conductance</td>
<td>0.475 mA/V</td>
</tr>
<tr>
<td>Oscillator Slope</td>
<td>7.25 mA/V*</td>
</tr>
</tbody>
</table>

* The exact value depends on circuit conditions.

TYPE 6BA6

High Slope Vari-mu R.F. Pentode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage</td>
<td>6.3 volts</td>
</tr>
<tr>
<td>Heater Current</td>
<td>0.3 amp.</td>
</tr>
<tr>
<td>Anode Voltage</td>
<td>250 volts</td>
</tr>
<tr>
<td>Anode Impedance</td>
<td>1.5 meg.</td>
</tr>
<tr>
<td>Mutual Conductance</td>
<td>4.4 mA/V</td>
</tr>
<tr>
<td>Anode to grid capacitance</td>
<td>0.0035 pF. max.</td>
</tr>
</tbody>
</table>

TYPE 6AT6

Double Diode Triode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage</td>
<td>6.3 volts</td>
</tr>
<tr>
<td>Heater Current</td>
<td>0.3 amp.</td>
</tr>
<tr>
<td>Anode Voltage</td>
<td>250 volts</td>
</tr>
<tr>
<td>Anode Impedance</td>
<td>58,000 ohms</td>
</tr>
<tr>
<td>Amplification Factor</td>
<td>70</td>
</tr>
</tbody>
</table>

TYPE 6AQ5

Output Beam Tetrode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage</td>
<td>6.3 volts</td>
</tr>
<tr>
<td>Heater Current</td>
<td>0.45 amp.</td>
</tr>
<tr>
<td>Anode Voltage</td>
<td>250 volts max.</td>
</tr>
<tr>
<td>Mutual Conductance</td>
<td>4.1 mA/V</td>
</tr>
<tr>
<td>Optimum Load</td>
<td>5,000 ohms</td>
</tr>
<tr>
<td>Power Output</td>
<td>4.5 watts</td>
</tr>
</tbody>
</table>

TYPE 6X4

Full Wave Rectifier

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage</td>
<td>6.3 volts</td>
</tr>
<tr>
<td>Heater Current</td>
<td>0.6 amp.</td>
</tr>
<tr>
<td>RMS Input per Anode</td>
<td>325 volts max.</td>
</tr>
<tr>
<td>Rectified Current</td>
<td>70 mA max.</td>
</tr>
<tr>
<td>Heater—Cathode Potential</td>
<td>450 volts max.</td>
</tr>
</tbody>
</table>

Types 6BE6, 6BA6, 6AT6, may be operated in A.C. or A.C./D.C. equipment. An equivalent range of 0.15 amp. valves will be available shortly, including types 12BE6, 12BA6, 12AT6, 50C5 and 35W4.

Write to Dept. 4530 for Data Sheets on the above valves.

STANDARD TELEPHONES AND CABLES LIMITED, FOOTSCRAY, SIDCUP, KENT.
RECORD NEWS...

for MUSIC LOVERS &
those seeking faithful reproduction

A revelation awaits every serious gramophone user and connoisseur of true fidelity who has not yet heard his records reproduced via the **acos G.P.20 NEW-TRUE Fidelity Pick-up**. Revolutionary in design—and in appearance too—the G.P.20 assures a tonal quality and a brilliance hitherto associated only with laboratory instruments. Moreover, this outstanding performance is attained without recourse to equalisers or other extra components—just connect it to your radiogram or amplifier. Ask your dealer for a demonstration.

acos

GP20 NEW TRUE FIDELITY PICK-UP

Heavy export commitments have severely curtailed supplies of the G.P.20 to the home market. Every effort is being made to increase production and in the meantime we ask your forbearance.
THE "BELLING-LEE" PAGE

Providing technical information, service and advice in relation to our products and the suppression of electrical interference

Polar Diagrams

In future, aerial polar diagrams issued by "Belling-Lee" will express the response of the aerial in microvolts in a given field, and not in decibels referred to minimum response.

The change will make the diagrams more easily read and understood by a larger number of people, who may not have the necessary appreciation of logarithmic notation. When shown in microvolts, the comparison of the polar diagrams of two different aerials will be seen at a glance, since a linear scale is used. If one aerial has twice the pick-up in one direction compared with another aerial, the distance in the appropriate direction from the centre of the diagram to the response curve of the aerial will be twice the corresponding distance in respect of the other.

It all depends upon the point of view

Quite recently our installations department was called in to "put the aerial the right way round". On making enquiries, it appeared that the picture was fine, but captions failed on this account. We explained that the aerial has been carefully installed and correctly terminated. It should be remembered that bandwidth depends upon the aerial, the feeder, method of termination and the input arrangement of the receiver. The last detail being beyond our control.

The highly directional "Multirod"*1 is often suspected, but as it includes a carefully designed matching stub, there need be no doubts on this score. The engineer in charge of our installation department is emphatic that he has not come across a single case where a "Belling-Lee" "Viewrod"*2 has failed on this account.

Bandwidth

We are often asked if the bandwidth of one of our aerials is such as to allow a receiver to resolve 3 Mc/s. The answer is yes, provided that the aerial has been carefully installed and correctly terminated. It should be remembered that bandwidth depends upon the aerial, the feeder, method of termination and the input arrangement of the receiver. The last detail being beyond our control.

Indoor aerials, and specially the "Doorod"*3 and "Viewflex"*4 may have their bandwidth degraded by the proximity of metal objects etc., but it is doubtful if, in the circumstances for which the types are sold and installed, the degree of degradation would be such as to detract from pleasure of the user.

Opinions damaging to the industry

We have heard of people in low-lying towns a hundred miles from Alexandra Palace, who agree with the local authorities about "H" type aerials spoiling the skyline. They also suggest that these aerials are unnecessary because they have heard of people in London who receive television programmes using only an indoor aerial. It seems incredible that such views can be held and spread around without due thought given to the damaging effect on the industry.

We advertise in literature and through the press that no indoor aerial is recommended for use in districts over 10—15 miles from the transmitter except where signal strength is known to be high. This reminds us of a telephone conversation with an irate gentleman who declared that our "Doorod"*3 indoor aerial was a swindle. He was speaking from a town over fifty miles from the transmitter.

*1 "MULTIROD"
*2 "VIEWROD"
*3 "H" type from 50/-
*4 "DOOROD"
*5 "VIEWFLEX"
Thanks for the bouquet

Six months ago we announced that, due to reorganisation of our manufacturing programme, we were able to offer our 12" Speaker Chassis to a far wider field. The response to that announcement — and the very flattering remarks we have subsequently received — have far exceeded our expectations. Bouquets are rare in this business, but they are very welcome. Thank you — so much.

Stentorian
LOUDSPEAKERS AND RADIO EQUIPMENT
WHITELEY ELECTRICAL RADIO CO. LTD
MANSFIELD • NOTTS

CHARACTERISTİC CURVES
of Somerford Transformers showing frequency response between 20 cycles per second and 25,000 cycles per second are available upon request.

SOMERFORD, A range of Output Transformers designed to ensure high quality and reliable performance. Suitable for single ended or push-pull circuits, they cover the widest limits of the audio frequency band. May be used with confidence for the most exacting circuits.

MINIFORD, A range of high quality transformers of economical design which provide excellent reproduction for domestic purposes, but over a more restricted range of audio frequencies than the Somerford Transformers. 2, 4 and 8 watt types suitable for all outputs.

WRITE FOR OUR LATEST FOLDER GIVING COMPLETE DETAILS OF THE SOMERFORD AND MINIFORD Transformers

GARDNERS RADIO
SOMERFORD • CHRISTCHURCH • HANTS
Phone: CHRISTCHURCH 1025
"STEREOPHONIC" AMPLIFIER

This new amplifier with triode cathode-coupled output stages has the effect of making the reproduction more like the original than ever before. A small proportion of this improvement results from the reduction of the Doppler effect, which is achieved without lowering the damping factor on the speakers, with the consequent distortion and transient loss which would follow.

When listening to an orchestra the low frequencies are usually heard towards the right, and the high frequencies towards the left. When reproduced through the Vortexion "Stereophonic" amplifier with low and high frequency speakers suitably spaced according to required listening angle, the high and low frequencies are heard in their relative positions simulating the effect and appreciation of the original. This speaker placing is necessary because our ears are on a horizontal plane. The effect would be lost if our ears were positioned one above the other, as can be proved by inclining the head sideways.

Our efforts to achieve "Stereophonic" results by the use of various choke and condenser cross-over networks between the amplifier and speakers were unsuccessful, due to the large variation of speaker impedance at various frequencies, unevenly loading the resonant circuits.

After many months of research we finally achieved our aim with what is basically two special low-distortion, high-damping factor amplifiers in one, each covering a portion of the audio spectrum with a sharp cut per octave at change-over frequency. The acoustical efficiency of the bass and treble speakers may vary, so a balancing control is fitted to the amplifier. This simplifies the choice of speakers, since each speaker has only a narrow frequency coverage.

The "Stereophonic" amplifier is now in production, and we invite you to hear a demonstration of what we believe to be something new and which will add to your enjoyment of music.

Chassis complete with valves

Price 36½ gns

VORTEXION LIMITED, 257-261 THE BROADWAY, WIMBLEDON, LONDON, S.W.19
Telephones: LIB 2814 and 6242-3
Telegrams: "Vortexion, Wimble, London."
Maximum sensitivity with uniform frequency response from a more compact speaker, appreciably reduced in weight—that is what Rola technicians have achieved with the new G.12. Special features include dust-proof suspension completely protecting coil and magnet gap and the powerful Alcomax II magnet. Write for details and also for particulars of Rola 3" and 4" P.M. models, dust-proofed and equipped with Alcomax II magnets.

"YANKS ROLL IN LIKE LOCALS"

WHEN YOU HAVE A "D.X. PLUS TWO FEEDER UNIT" working in conjunction with the "TONEMASTER AMPLIFIER."

Every feature to ensure good listening is incorporated in this equipment, including Tone Controls, and Master Volume Controls brought out to a separate panel to facilitate mounting.

THE "D.X. PLUS TWO FEEDER UNIT" covers from 5 to 2,000 metres in five overlapping steps, plus infinitely variable selectivity, tuning indicator, etc.

THE "TONEMASTER" AMPLIFIER incorporates push-pull output, negative feedback and separate electronic tone control circuits.

OVERALL COST £44.10.0 plus purchase tax.

SOUND SALES' PRODUCTS are backed by 12 MONTHS' GUARANTEE, plus 20 years experience in the manufacture of electronic equipment.

Sound Sales Limited

London Office, Demonstrations—LLOYDS BANK CHAMBERS, 125, OXFORD STREET, LONDON, W.I.
Telephone: Gerrard 8782.

Head Office and Works—WEST STREET, FARNHAM, SURREY. Farnham 6461/2/3.
The
WESTON
S.75
Multi-Range
Test Set

53 Ranges with Rotary Switch Selection
This uniquely comprehensive Test Set has 53 ranges for measuring AC and DC current and voltage, resistance and insulation. It is completely self-contained, with internal batteries to provide power for the ohms ranges and self-contained power pack for insulation measurement at 500 v. Selection is carried out by two 20-position switches. A fully protective safety device is fitted and is operative for forward or reverse overload. The 150 division 6" scale is uniformly divided and is fitted with an anti-parallax mirror. The set is enclosed in a handsome bakelite case and fully complies with B.S.S. No. 89 covering first grade instruments. Full details of this, and other Weston electrical measuring instruments will gladly be supplied on request.

SANGAMO WESTON LIMITED
ENFIELD, MIDDLESEX

TELEPHONE: ENFIELD 3434 (6 LINES) AND 1242 (4 LINES)

AREA DEPOTS:
201 St. Vincent Street, Glasgow. Central 6308
Milburn House, Newcastle-on-Tyne. Newcastle 26867
22 Stroch Street, Manchester. Central 7904
33 Princess Street, Wolverhampton. Wolverhampton 21912
R.A.'s may wrangle

. . . . But painters are practical men — they use paint (which has been electrically charged) to spray Industrial equipment without wasting a splutter.

That Parmeko Transformers are used in this equipment to obtain better results is not surprising: for Parmeko Transformers are designed by people, devoted solely to that task; produced on single-purpose plant, and used by most of Britain's largest manufacturers.

PARMEKO of LEICESTER

Makers of Transformers for the Electronic and Electrical Industries.
BRITAIN'S BEST AUDIO AMPLIFIER

The amplifier whose PERFORMANCE FIGURES have been CHECKED and SUBSTANTIATED by the NATIONAL PHYSICAL LABORATORY

TESTS OF TL/12 12 WATT AMPLIFIER

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HARMONIC DISTORTION.</td>
<td>The following are the "pass" figures on final test of amplifiers carried out in our own laboratory. They are the performance figures advertised in preceding issues of the "Wireless World."</td>
<td>In all cases the input was applied to a 50,000Ω resistor connected to the amplifier by 3 feet of screened cable. The output load was in all cases a resistor of 18Ω and the output transformer secondary windings were connected for the "15Ω-20Ω" condition.</td>
</tr>
<tr>
<td>0.1% for 10 watts output at 1,000 c/s.</td>
<td>0.03% for 10 watts output at 1,000 c/s.</td>
<td></td>
</tr>
<tr>
<td>0.19% for 10 watts output at 60 c/s.</td>
<td>0.1% for 10 watts output at 60 c/s.</td>
<td></td>
</tr>
<tr>
<td>HUM AND NOISE.</td>
<td>- 80 db. referred to 10 watts.</td>
<td>- 80 db. referred to 10 watts.</td>
</tr>
<tr>
<td>SENSITIVITY.</td>
<td>Input required for 12 watts output at 1,000 c/s.</td>
<td>160 mV.r.m.s.</td>
</tr>
<tr>
<td>LOAD DAMPING FACTOR.</td>
<td>20.</td>
<td>42.</td>
</tr>
<tr>
<td>FREQUENCY RESPONSE.</td>
<td>Gain relative to that at 1,000 c/s. measured at 7.5 watts.</td>
<td>c/s.</td>
</tr>
<tr>
<td>20-20,000</td>
<td>± 0.1</td>
<td></td>
</tr>
<tr>
<td>20-1,000</td>
<td>+ 0.1</td>
<td></td>
</tr>
<tr>
<td>60-5,000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5,000</td>
<td>- 0.1</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>- 0.3</td>
<td></td>
</tr>
<tr>
<td>15,000</td>
<td>- 0.4</td>
<td></td>
</tr>
<tr>
<td>20,000</td>
<td>- 0.7</td>
<td></td>
</tr>
</tbody>
</table>

NOTE the N.P.L. figures for frequency response include the losses introduced at the higher frequencies by the capacitance of the input cable shunting the input resistance of 50,000Ω.

TL/12 12 WATT AMPLIFIER Price £25.15.0
RC/PA REMOTE CONTROL PRE-AMPLIFIER Price £6.15.0

Used with the RC/PA pre-amplifier and the best complementary equipment the TL/12 power amplifier gives to the music-lover a quality of reproduction unsurpassed by any equipment at any price. It is designed in a form so that the power amplifier can be housed in the base of a cabinet and the small pre-amplifier mounted in a position best suited to the user.

If you are interested in high-fidelity reproduction or recording you are certain to find our 16-page illustrated booklet of considerable value. It is presented in a form acceptable both to the professional communications engineer and to the amateur enthusiast seeking the highest possible quality of reproduction.

WRITE FOR BOOKLET W/TL/12

H. J. LEAK & CO. LTD. (Est. 1934)
BRUNEL ROAD · WESTWAY FACTORY ESTATE · ACTON, W.3

Bargains in Ex-Services Radio and Electronic Equipment

Ex Canadian Army Equipment:

SUPPLY UNIT RECTIFIER, FOR No. 43 RECEIVER.

Input 110 v A.C., 60 c.s., H.T. outputs 2,100 v, 375 ma., 500 v, 400 ma., 450 v, 275 v, Bias 275 v, 250, 150 v, 80 v. Components include :- Transformers (4) 2100-1-3100 v, tapped 500-5-0-500 v, (2) 450-4-0-450 v, (13) VCT, 6.3 v, 5 v. (3) 2.5 vkt. plus thermal starter 6.3 v, Chokes, 2/1/5 H. 375 ms, 15 H. 450 ms, 20 H., 163 ma., 2/15 H. 110 ma, H.V. condensers, etc., Valves, 2/6A3, 6S57, 4/866/A866, 5Z3, VR150/30, I, starter tube, in metal case, finished in olive-drab crackle, with output and input sockets and switches. Dim. :-2ft. 6in. x 1ft. 6in. x 1ft. with shock-absorbing feet. Wgt. 420 lbs.

PRICE ONLY

CLYDESDALE'S 1/6 CARRIAGE PAID.

A few only.

STOP POWERED TELEPHONE.

This equipment can also be used with dry batteries (not supplied) as a PORTABLE WALKIE-TALKIE. Power required :- H.T. 162 v, 60 ma. L.T. 3.1 v, 0.3 a. Dimensions :- Set and Battery container: - 11/2 x 10 x 17/2 ins.

PRICE ONLY

CLYDESDALE'S 14/10.0 CARRIAGE PAID.

AN/ARC-5—SCR-274-N EX U.S.A.F. "COMMAND" RECEIVERS.

R-33/ARC-5 (BC-453), 550-190 kc., or R-26/ARC-5 or BC-454, 3.0-6.0 mcs., or R-26/ARC-5 (BC-455), 6.0-9.0 mcs.

Brand New in maker's original carton or Unused, good condition.

PRICE ONLY

CLYDESDALE’S 50/- each. PAID.

Or used, with case dented at 37/6 each, post paid. Set of Circuits for SCR-274-N at 4/6, or BC-453 or BC-454 or BC-455 Circuits 1/3 each, post paid. MEDIUM WAVE CONVERSION COIL ASSEMBLIES. Cat. M67 for BC-453 or H68 for BC-454 or H69 for BC-455.

PRICE ONLY

CLYDESDALE’S 10/- each. PAID.

Brand New, Ex U.S. Navy, in maker's original carton.

CONTROL BOX CTT-2315, EQUAL TO U.S. ARMY, BC-496-A.

For Two Command Receivers, with dual tuning and volume controls, switches, Inlet and Outlet points, Black crackle finish box. Dim. :- 6 x 4 x 12ins.

PRICE ONLY

CLYDESDALE’S 10/6 each. POST PAID.
Announcing

PREMIER TELEVISOR KITS

FOR LONDON AND BIRMINGHAM

USING 9" OR 12" MAGNETIC C.R. TUBES

£19.19.0 including all parts, valves and loud-speaker, but excluding C.R. TUBE

CIRCUIT DETAILS

The Vision Receiver consists of 4 R.F. Stages which are followed by a diode detector which is directly coupled to the Vidio Valve, which modulates the cathode of the C.R. Tube. A noise limiter is incorporated in both sound and vision receivers.

The Sound Receiver comprises 3 R.F. Stages, followed by a double diode triode which acts as detector and L.F. amplifier. The output valve is of the Beam type and drives a P.M. Loud-speaker with closed field magnet.

The Time Base employs blocking oscillators on both Line and Frame. E.H.T. is taken from the line output transformer through a voltage doubler employing two valves.

The Power Supply is from a double wound mains transformer completely isolating the receiver from the mains.

FEATURES

- Uses 9 in. or 12 in. Tubes.
- Noise Limiter on Vision and Sound.
- Non-Lethal E.H.T.
- P.M. Focusing
- Uses 21 valves.
- Each Kit available separately.
- Recommended for use in fringe areas.

CONSTRUCTION BOOK 3/-

Ready March 25th. 1950

* Delivery of Kits will commence immediately after.

No other details will be available until March 25th, 1950

167 LOWER CLAPTON ROAD, LONDON, E.5

Telephone: AMHerst 4723
PREMIER MIDGET OUTPUT TRANSFORMERS, 45/-.

WILLIAMSON AMPLIFIER OUTPUT TRANSFORMERS are produced, one for 200-250 volt A.C. mains, and the other for 20-250 volt A.C. mains. Both are for use on 200 to 250 volt mains. The Galli Illuminated, and the receiver presents a very attractive appearance.

Complete kits of parts with cabinet and diagrams, 24/16/-, Inc. Purchase Tax.

PREMIER MIDGET SUPERHETER KIT. This powerful Midget Superhet Receiver is designed to cover the short-wave bands between 100 and 350 metres and the medium waves between 500 and 667 metres. Two models are available, one for 200-250 volt A.C. mains, and the other for 20-250 volt A.C. mains. Both are supplied with the same plastic cabinet as the TRV Receiver. The A.C. model line-up is the same, with the exception of the output valve, which is a 6V6. The halls illuminated, making a very attractive receiver.

Complete kits of parts with cabinet and diagrams, 26/10/-, Inc. Purchase Tax.

PLASTIC CABINETS, as illustrated above. In Brown, or Ivory Bakelite, 12in. long x 9in. wide x 6in. high.

THE NEW PREMIER 1950 CATALOGUE contains all the newest TV Kits, Com- ponent Mounts, Tube Cages, Bases, Kit of Parts for the Mains - Waveband Receiver, and a new Mains Transformer, 45/-. Full list price of the stand was 51/15/-.

SUPER MOILING COIL MIKE AND STAND. We have now supplied the special designed White Robber Micophone in both the standard size Mic. and Stand, and the Super Grade Mic. and Stand, 15/-. Both have 4 v. Heaters. Screen colour is green.

LOUDSPEAKERS Ly famous makers. 71in. long x 6in. wide x 9in. high, 10/-. Larger Models, as/. each.

MULLARD MANS. MAGNETIC TUBES. We can supply a limited quantity of these new and unused Tubes at 16/- each.

MOVING COIL EARPIECES. Consists of 113in. Moving Coil Earpiecetead with noise eliminating rubber caps. Made excellent Mikes. Price of Speakers, £2 each.

SPECIAL HEADPHONE USE. High-grade Double Headphone, made balanced structure units, D. O. Res. 60 ohms, 2/6 per pair. Matching transformer required if used.

SPECIAL OFFER OF ELECTROLYTIC CONDENSERS 10/-. (C) 2009. 50/-. 6/-. 3/6. 2/6. 1/6. 6/-. 5/-.

MORRIS & CO. (RADIO LTD.) 207, EDGWARE ROAD, W. Phone: AMBassador 4033 AND AT—

A NEW LARGE PURCHASE ENABLES US TO OFFER AT A LOWER PRICE THAN EVER RIB. ONE OF THE ARMY’S FIRST COMMUNICATIONS RECEIVERS. (See “W.W.”, August, 3415.)
THE BIRMINGHAM VERSION OF THE
"PREMIER" TELEVISOR KIT
is now ready. The price is the same as the London Model

£17 - 17 - 0

As is usual in all Premier Kits every single item down to the last Bolt and Nut is supplied. All chassis are punched and layout diagrams and theoretical circuits are included.

Five Easy to Assemble Kits are supplied:—

VISION RECEIVER with valves, carriage 2/6........ £3 13 6
SOUND RECEIVER with valves, carriage 2/6........ £2 14 6
TIME BASE with valves, carriage 2/6................ £2 7 6
POWER SUPPLY UNIT with valves, carriage 5/.... £6 3 0
TUBE ASSEMBLY, carriage and packing 2/6........ £2 18 6

This unit includes the VCR97 Tube, Tube Fittings and Socket and a 6in. P.M. Moving Coil Speaker with closed field for Television. The Instruction Book costs 2/6, but is credited if a Kit for the complete Televisor is purchased.

Any of these Kits may be purchased separately; in fact, any single part can be supplied. A complete priced list of all parts will be found in the Instruction Book.

20 Valves are used, the coils are all wound and every part is tested. All you need to build a complete Television Receiver is a screw-driver, a pair of pliers, a soldering iron and the ability to read a theoretical diagram.

A well-made walnut finish

PEDESTAL CABINET

is available at £5/10/0 plus 7/6 carriage and packing.

Working Models can be seen during transmitting hours at our Fleet Street and Edgware Road Branches.

PRE-AMPLIFIER FOR FRINGE RECEPTION AREAS

We can supply the complete kit of parts to make this wide band width Pre-Amplifier, using 2 EF54 Pentodes. Powered by the TV Kit, it is completely screened. With all parts, valves, chassis, diagrams, etc., 27/6. All parts available separately.
HALF LIST PRICE

Radiogram unit by a very famous maker, comprising centre driven AC/5 with speed regulator, autostop and magnetic pick-up all mounted on full size unitplate. Brand new in manufacturer's cartons. Limited quantity, £1/6/6, plus 3½ carriage and insurance.

SELECTED SURPLUS (Ex-Govt.)

10 K.V.A. ALTERNATOR SETS. Ideal for country house or if you are setting up a workshop or laboratory in a remote place, then these are an ideal unit, because in addition to the main output of 10 K.V.A. 230 v. 50 cycles 3-phase there is also 1.5 K.V.A. 230 v. 400 cycles. These alternator sets are complete with exciter, voltage regulators, switch board, frequency meters, a.m.p. meters, and iron-clad switch fuses for output. They are mounted on stout angle-iron stand and are complete with "Vee" belt pulley, the alternator is designed to run at 1,500 r.p.m., but being belt-driven they can, of course, be driven by an engine of almost any speed, as the difference can be adjusted by the size of the pulley on the engine. Unused but storage soiled. Price is £85 each, ex works.

TYPE 6 INDICATOR. As specified for the "Wireless World" oscilloscope. Also for "Inexpensive Television" (booklet 1/6), and the Mark I Television (Constructions envelope 2/6). These indicators are brand new, packed and sealed in manufacturer's original crate, they contain C.R.97 Cathode Ray Tubes. 4 EF50 valves, 3 other valves, and hundreds of useful components, including wire-wound pots. Price is only £1/10/-, plus carriage and packing 7½.

10 VALVE 1 METRE SUPERHET. Ideal for conversion into a Midlands or London region Television. These contain 6 valves type SP61, and 1 each RL7, RL16, and EA50. 6 I.F. Transformers of 12 m/c, 4 m/c band width. and hundreds of other useful components. Complete with 3 r.t. mm. formers, price 59½, plus carriage and packing 5½. These receivers are unused, being in original wrappings.

RADAR RECEIVER TYPE 3084A. These require only the smallest of modification to make them into a sound and vision television. Main components are valves : 7 EF50, 2 VR136, 1 VR137, 1 HV43A, 1 RL7, 1 V807, 1 EA50, wire-wound variable resistors, small 80 v. A.C. motor, and dozens of useful components, resistors, condensers, etc. Brand new, in original manufacturer's packing and transit case, price 59½, carriage 5½.

RECEIVER R.3585. An ideal unit for conversion to T.V. in the London Service Area, as it contains a "PYE" 45 m/c I.F. Strip, and valves as follows : 5 EF75, 4 SP61, 8 EF50, 2 EA54, 1 EA50, brand new—only 90/-, carriage, etc., 7½.

RECEPTION SET BP43. Made by Philco. 4 valve battery superhet. Valve line up, frequency changer, I.F. amplifier, double diode triode and output pentode. Complete with all valves and 5½ P.M. speaker. Originally packed. Cabinet size 10½ in. x 7½ in. x 7½ in. Controls are volume, ON/OFF switch, and tuning. Frequency coverage 1.4 to 4 m/c, 75-222 metres (Trawler, 80 and 160 metres Amateur bands). Only £3/19/6, plus 5½ carriage and packing.

TRANSMITTING AND SPECIAL VALVES

ALL BRAND NEW IN ORIGINAL CARTONS, MOSTLY AMERICAN MAKE.

813 47½ 865A 10½ 807 7½ 6L6 16½ 6A3 ... 22½ 2A3 9½
TZ40 27½ CV57 30½ 8011 18½ 3S7 .. 25½ VR150 12½ 1655 5½
573 13½ 6N7 6½ 832 16½
GU24 (CV5) VS68 (STV3040) PT15 (VT104) VT23 (DE725) VU28 (CV108) RK34
Many other types available, including Magnetrons, Klystrons, Thytrons, etc., etc. Send us your enquiries.

PARTS FOR TELEVISORS

£10 FOR A MAGNETIC TELEVISOR (and H.V. Tcters if you wish). This Televisor is suitable for use with 9, 10, or 12 in. magnetic tube (not included in the £10). No ex-Government units are used, you start with all brand new components, brand new and guaranteed, except for the valves which are Government Surplus though again guaranteed. This Televisor was demonstrated at Radiolympia, and we will demonstrate to you if you can call during transmitting time. All parts available separately for those already having some of them. Detailed point-to-point wiring and instructions for novice or expert, 5½. Explanatory leaflet free. When ordering booklet please state whether for Birmingham or London.

R.F. E.H.T. We were so pleased with the quality of this unit that we have taken up the entire output of the manufacturer, the voltage can be adjusted to make it suitable for working 9in., 12in. or 15in. tubes, the unique design and vacuum impregnation combine to give a trouble-free unit which will give years of satisfactory service, and, of course, the big point about the R.F. E.H.T. is that it is not lethal, the size is only 4½ x 3½ x 4½ in., price complete ready to operate, 4½/-.

£15½/- FOR A COMPLETE TELEVISOR. This is our famous Mark II which is doing good service all over the country. Two Ex-R.A.F. Units are used, and these save you a good deal of work. These and all the other parts, including the loudspeaker needed to make the working televisor, are included in the £15½/-.- Technical knowledge is necessary because you have to work from theory diagrams. 44 pages of data are included free if you buy the Kit, or alternatively will be supplied at 7½ per copy.

"10 PITFALLS FOR TELEVISION CONSTRUCTORS." If you are having difficulty in getting a perfect picture, then this publication may solve your problem. The price is only 2½ post free.

WHITE RUBBER MASK. Designed to fit a 6in. electrostatic tube, VCR-97, etc. This will give a professional look to your home-built Televisor. If yours is a bigger than usual picture, the size of the opening can be enlarged to suit your own needs. The price is 7½ post free.

MAGNIFYING LENS. De Luxe type. The lens which is really designed to give optical perfection. First-class quality and workmanship throughout. Guaranteed against any discoloration of the special oil content. Price 39½, postage, packing and insurance 5½.

AERIALS. Indoor type—for fitting in loft. Very simple in installation. Full instructions and fixing clips, etc., supplied with every one. Order "SNAPPY AERIAL KIT," price 15½./-

VCR-97 CATHODE RAY TUBES. Brand new in original cartons. Price 3½/-, carriage and insurance paid. Buy a spare now while they are still available at this silly price.

PRE-Amplifier for television. 2-valve unit made up and wired ready to work, complete with valves and input and output plugs, 39½.

Conversion details using RF27 (ex-R.A.F. Unit). Unit with details 2½, nothing else needed, suitable for sound or vision. Details separately, 2½ post free.

CO-AXIAL CABLE. 80 ohm thin, 10d. per yard, 80 ohm Govern-ment type, 8d. per yard thick, 4d. per yard thin. E.H.T. CONDENSERS. 1 mf 2.5 K.V., 2½. 1 mf 5 K.V., 4½.
1 mf 7 K.V., 13½. 02 mf 8 K.V., 3½.
DISCOUPLING CONDENSERS. Very small bakelite moulded mica insulation, .00 1 mfd. or .0005 mfd., 6½.

FRAME AND LINE COIL ASSEMBLY. Perfectly made by a very famous maker, for standard type magnetic tubes, 9in., 10in., 12in. or 15in., we have a limited number only, the price is 16½, and cannot be repeated once these are cleared, so please act quickly.

PERMANENT MAGNETIC FOCUSING UNITS. No current drain for all makes of tubes—patented method of adjusting the gap, giving really clean pictures and even focus of whole of the tube free. Price 16½ each.

(2) ELECTRON HOUSE, Windmill Hill, RUISLIP MANOR, MIDDX.
MARCH, 1950

WIRELESS WORLD

THE PRICE OF THE UNIT (including valves) is Whichever way you look at this, the value of the goods and mounting brackets, etc. meters, I ON/OFF toggle switch, 3 high ohmage relays, 6 paper condensers, metal rectifier, 3 potentiometers, on which are mounted all the valve bases for the above, 8 PYE sockets, case, size 2/in. x 8/in. x 1/in. high, containing a chassis and framework 2 CV54's, high voltage rectifier, V960, will rectify 2.5 KV at 60 ma.

Our latest purchase of ex-Government material includes a batch of RADAR Units, type 64.

B.A. SOCKET SPANNERS

Covering sizes 0-6 B.A. and with double ended wrench as illustrated. A really good set which will help you with those nuts in awkward corners, price 5/6 complete.

POLISHED B.A. SPANNERS

Covering sizes 1 to 6 B.A., these are so made to have a straight and a right angle end for each B.A. size. 6/- set.

QUADRANT-TYPE DIVIDERS

For marking out chassis these are the ideal tool normal price 7/- our price while they last, 3/9.

BREAK-DOWN PARCEL

In a store which we have to clear are a large number of ex-W.D. units which we intended to break down for spare parts. We shall not have time to do this, so we are offering these units to you at the ridiculous price of 4/6 each, plus 1/6 postage in this unit would cost at least £5.

1.2-metre coils.
2. Tuning Condensers, slip resistor type.
3. 2-watt Carbon Resistors, all useful values.
4. Tapped 20-watt Resistor, vitreous 20 and 17 ohm sections.
5. 2-watt Carbon Resistors, useful values.
6. 0.25 1,000 volt Paper Condensers.
7. 10,000 volt Paper Condensers.
8. Heavy metal chassis, size 12/in. x 7/in. x 5/in.
10. H.P. Chokes.
11. 1 mfd. 450 Paper Condensers.
12. 15 volt Paper Condensers.

Also: Assorted Nuts, Bolts and P.K. self-threading Screws, Miscellaneous bits and pieces, including four Tag Boards, 14 Chassis mounting connection Tags, Grid Caps, screened and otherwise, Levers, Rollers, Connecting Rods, Rubber Retains, etc., etc.
NEW AMERICAN FEEDER CABLE. Type RG7/U. 72 ohms. Lazer provides improved match to multi-element Television arrays. Supplied in any length, 9d. yd., minimum 10 yds. Quotations for quantities.

TELEVISION MAGNIFYING LENS. A most satisfactory method for improved viewing of 5in., 6in. or 7in. tubes. Easily installed. 27pl.

NEW AMERICAN JENSEN 15½in. AUDITORIUM ENERGISED SPEAKERS. Ortho-dynamic model 1A-5. Excellent response. A limited stock at £7½/-. A.F.

L.E.T. Transformer. 12½v. Permeability tuned. Fully screened. Suitable for T.V. strips, etc., 4½/-.

RADIO ATR GAS GAPS TYPE 724A. Complete with silver plated tunable cavity. 1½/- List of Radio parts, etc., on request.

NEW R.C.A. QUALITY AMPLIFIERS. Some 450 types in stock at ordinary retail prices on request.

NEW AMERICAN BUSH 15½in. TELEVISION MASTS. 36½ft. Made by Bendix Corp., U.S.A. Telescopic, 5½in. dia., self supporting on patent base. Constructed of laminated resin impregnated timber. This superbly engineered product is ideal for mounting beam arrays, etc. As supplied to leading industrial and public concerns. Complete £6.

TELEVISION MASTS. 36½ft. Made by Bendix Corp., U.S.A. Telescopic, 5½in. dia., self supporting on patent base. Constructed of laminated resin impregnated timber. This superbly engineered product is ideal for mounting beam arrays, etc. As supplied to leading industrial and public concerns. Complete £6.

NEW AMERICAN BUSH 15½in. TELEVISION MASTS. 36½ft. Made by Bendix Corp., U.S.A. Telescopic, 5½in. dia., self supporting on patent base. Constructed of laminated resin impregnated timber. This superbly engineered product is ideal for mounting beam arrays, etc. As supplied to leading industrial and public concerns. Complete £6.

RADIO ATR GAS GAPS TYPE 724A. Complete with silver plated tunable cavity. 1½/- List of Radio parts, etc., on request.

NEW R.C.A. QUALITY AMPLIFIERS. Some 450 types in stock at ordinary retail prices on request.

NEW AMERICAN BUSH 15½in. TELEVISION MASTS. 36½ft. Made by Bendix Corp., U.S.A. Telescopic, 5½in. dia., self supporting on patent base. Constructed of laminated resin impregnated timber. This superbly engineered product is ideal for mounting beam arrays, etc. As supplied to leading industrial and public concerns. Complete £6.
D. COHEN

RADIO & TELEVISION COMPONENTS

THE BURGOYNE
SEVEN SECOND
SOLDERING GUN
as illustrated,
This Gun is so well known to all wireless enthusiasts that it needs no description from me. Limited quantity available. One to each customer. All orders dealt with in strict rotation.

GUN CASE. Limited quantity available. One case to each customer. Price 7/6, plus 1/- post and packing.

THE HEART OF THE
BURGOYNE SEVEN
SECOND SOLDERING
GUN. As illustrated
200/350 v. input 13/6
plus 1/6 post and packing. Copper bit, 6d.; automatic switch assembly 1/6, plus 6d. post and packing.

CONSTRUCTOR'S
PARCEL as illustrated.
Comprising 5-valve superhet chassis with transformer cut-out, size 13 fin. x 6 in. x 2 in., with L.M. & S. scale, size 7 in. x 5 in. Back-plate two supporting brackets, drive drum, pointer, two-speed spindle, twin gang condenser, mains transformer 250/60 m.A. 4 v. 3 amp. 1/6 post and packing.

Price 17/6, plus 1/6 post and packing.

TUNING CONDENSERS
.0005 twin gang with feet. 4/-.
.0005 twin gang, fished feet. 4/-
Midget .0037 twin gang. 6/-
Midget .0037 twin gang, fitted trimmers and Perspex dust cover. 4/6.
.0005 tuning condenser. 2/-

PORTABLE CABINET
Grey mottle veneer covered, leather carrying handle, scale and pointer, aerial, serial wound on back. Size 24 fin. x 10 in. x 6 fin. 24/- plus 1/6 post and packing.

METAL RECTIFIERS
250 v. 125 ma. 4/3, post 6d.
250 v. 60 ma. 2/4, post 6d.
24 v. 4 amp. 18/4, post 1/-

MAINS DROPPERS
.2 amp, 1000 ohms tapped 900 ohms. 1/-, post 3d.
.2 amp, 717 ohms, tapped 100 ohms. 1/-, post 3d.

TRICKLE CHARGER
comprising transformer and metal rectifier, 230/250 v. A.C. mains, giving 12 v. 2 amp. 8/6, plus 1/- post and packing.

WAVE CHANGE
SWITCHES
6 pole 3 way. 1/2.
3 pole 2 way. 1/2.
6 pole 2 way. 1/2.
5 pole 3 way. 1/2.

WHITE KNOBS
12-sided, 1 fin. dia., jin. deep 5d. each.

BROWN KNOBS
1 fin. dia. 4d. each.

POSTAGE STAMP
TRIMMERS
50p. 4d. each.

VARIABLE TRACKERS
300 x 300. 9d.
100 x 500. 9d.
100 x 220. 9d.

METAL BRAIDED WIRE
with PVC outer insulation, 6d. per yard.

SILK COVERED
SPEAKER BAFFLE
8 fin. x 6 fin. 9d.

CONSTRUCTOR'S PARCEL, comprising chassis 10 fin. x 5 fin. x 2 in., with speaker and valve holder cut-outs, ROLA 5 fin. P.M. with O.P. trans. twin gang with trimmers, pair of TRF coils, 4 International Octal valve holders and wave change switch. Price 17/6, plus 1/6 post and packing.

SUPERHET COIL KIT, comprising medium and short wave coils, twin gang, pair of 465 I.F., 6 pole 3 way switch, 6 trimmers, two trackers and 5-valve superhet chassis with IF and speaker cut-outs. 14/6, plus 1/- post and packing.

MINIATURE CHASSIS, size 8 fin. x 3 fin. x 1 fin., miniature twin gang .00027, pair of miniature Wearite IFS, Type 400B, four B7G valve holders, frame aerial and medium wave osc. coll. £1 9s. 6d., post and packing 1/6.

ENERGISED SPEAKERS
ROLA 6 fin. 700 ohm field with O.P. trans. 5000 ohm imp. 11/6
Less trans. 9/6
Bin. 2000 ohm field with O.P. trans. 5000 ohm imp. 11/6

P.M. SPEAKERS
with less trans. trans.
Size
5 in. 13/6
6 fin. 12/6 8/9
Bin. 11/6 11/9
10 in. 17/6 14/6
12 fin. 29/6

Post and packing on above items 1/- each extra.

EDCO LIOUTER OF THE BURGOYNE ENGINEERING CO.

MARCH, 1950

WIRELESS WORLD

67 RALEIGH AVENUE, HAYES, MIDDLESEX

POST ORDERS ONLY
OUTSTANDING OFFERS FOR THE DISCERNING BUYER

BC312 RECEIVERS. In perfect condition. 230v. operation. Coverage 1,500 kcs.—18 mes. in 6 Bands. £22/10.
Carriage paid.

BC348 RECEIVERS. In perfect condition. 28v. operation. Coverage 200-500 kcs. and 1.5-18 mcs. in 6 Bands. £18. Two each only of the above sets available.

RI132A RECEIVERS. 11 valves 100-126 mcs. Grey cabinet, 19in. x 11in. x 10in. Brand new in original crates, £41/10/6. plus carriage £5/-. 12 only available.

RI355 RECEIVERS. 11 valves. As specified for the Inexpensive Television Receiver. Brand new, 63/-, carr. 5/-. 5, HARROW ROAD, LONDON, W.2

ABK1 10-VALVE IFF RECEIVERS. Have 6 of 657H, 2 of 6H6, 2 of 7193, Motor Gen. with reduction gear, 3 relays etc. New condition, 20/- each, carr. 5/-. 2/6/ARC5 RECEIVERS (Similar to 454). 3-6 mcs. Brand of 6H6, 2 of 7193, Motor Gen. with reduction gear, 5/-.

Inexpensive Television Receiver.

R1355 RECEIVERS. Brand new in original crates, I9in. x 11 in. x 10in. Brand new in original crates, £18. Two each only of the above sets available.

BC343G RADIO COMPASS UNITS. Absolutely brand new and complete with 15 valves. 7 only £7/10/- each, carr. paid.

BC21I FREQUENCY METER. "In original maker's packing (not surplus), 55/- each. Less than cost.

PLUG-ON POWER PACKS, for Command Receivers BC45/3/5. No alterations to wiring. Complete with rectifier valve 50v. carr. paid.

MODULATOR UNITS. Type 64. 7 valves, 2 VR91, CV73, CV85, 2 VU133, TV604A, 3 Relays, 4.5mfd., 2,200v., each, carr. paid. CV73, CV85, 2 VU133, VT604A, 3 Relays, 4.5mfd., 2,200v., each, carr. paid. Each, 10/-.

EF50 VALVE HOLDERS. Finest quality. Brand new, 3/-. doz. Post 6d.

POWER UNITS PE949A. 28v. input. Output 300v. at 260 ma., 150v. at 10 ma., 14.5v. at 5 amps., £3 each, carr. paid.

POWER UNITS. TYPE 10. Hoover manufacture. 24v. Input. Output 300v. at 120 ma., 150v. at 10 ma., 6 v. 5 amps., each 70/-, carr. paid.

PAMPHONIC PA SPEAKERS. 10in. in handsome maroon metal cabinet. In original Makers packing (not surplus), 55/- each. Less than cost.

Moving Coil 5in. SPEAKERS. Brand new goods, surplus), 55/- each. Less than cost.

AIRCRAFT COMPASSES. Diameter 6in. depth 1/2in.

SC122 TRANSMITTER CHASSIS. Less valves. (Modulation trans, choke and crystal switch included but not fitted), 19/6, carr. 3 6.

VIEWMASTER TELEVISION RECEIVER PARTS FROM STOCK.

VIEWMASTER CONSTRUCTIONAL ENVELOPE FOR BIRMINGHAM, 5 4. Post paid.

" INEXPENSIVE TELEVISION RECEIVER."

Composition book, 1/9. 6 page Conversion Data for 1155 Receiver, 9d., post paid.

MARCONI AUTOMATIC RECORD CHANGERS. Light-weight pick-up, complete with matching transformer, £10/10/8, carr. paid. Latest type.

PROMPT DELIVERY AND SATISFACTION GUARANTEED AS ALWAYS

2½d. stamped envelope must accompany all enquires.

LISTS AVAILABLE.

H.P. RADIO SERVICES LTD.

Britain's Leading Radio Mail Order House

Estd. 1935

55 COUNTY ROAD, WALTON, LIVERPOOL, 4

Tel.: Aintree 1445 Staff Call 82ns.

HJDGL, GIJDLV

MARCH, 1950
Collaro Record-changer Unit, as new. (Mod. RC500)............. £8 10 0
Collaro Record-changer, Bar type, as new.................. £12 0 0
Garrard Autochanger, Model RC65, fitted with Decca FFRR Head, as new, A.C. mains........ £12 10 0
M.S.S. Recorder Unit, 1946 model (disc), Complete less Amplifier, as new........ £30 0 0
V.T. Garrard, A.C. mains........ £30 0 0
A very fine job........ £8 0 0
AR88-LF, in perfect condition and working order........ £35 0 0
MCR-I, complete with coils, power-pack, 'phones, etc. As new........ £22 0 0
Taylor 65B Signal Generator, as new........ £1 0 0
Avo 1946 model Signal Generator, as new........ £10 0 0

Pam 25 watt Amplifier, 2 Pam speakers, in cabinet, with Pam 'Gramophone', M/C. mike and stand, 200-250 volts A.C. As new........ £7 10 0
Tungar 3 Circuit Changer, complete and perfect with rectifier valves........ £9 10 0
Hallicrafters Sky Champion in perfect condition........ £18 10 0
R.M.E. 69, with Speaker, in perfect condition and working order........ £19 10 0
Hallicrafters,'520T' in good working order........ £14 0 0
Peto Scott Trophy 8, with speaker. Perfect........ £10 10 0
6 only Clyde-drive 'Gram Motors, with turntables. New. Each........ £4 10 0
Collaro Standard Magnette Pick-ups. New. Tax paid each........ £1 7 6
2 kVA. Auto-Transformers, 50 cycle, 115-230 volts.. each........ £4 10 0

Avo model 40, as new, in leather case........ £12 10 0
Murphy Auto-change Radio-grams, model A-138B, unscratched. Cost 5 months ago £9/10/-: Our price........ £65 0 0
Avo latest model Signal Generator (wide Range)........ £17 0 0
Everett's Wee Meggers, 500 volts. Perfect........ £6 10 0
Crompton Tong Tester, complete with 3 additional ranges up to 600 amps. As new........ £7 0 0
1155 Receiver, complete, with power-pack and Magnavox speaker (66). As new........ £17 0 0
Collaro De Luxe Auto-change Microgram. As new........ £22 0 0
Muirhead Valve Voltmeter, type 3A. Perfect........ £10 0 0
R.M.E. Volt Ohm Microhm Unit, 200-250 volts. A.C. Perfect........ £10 0 0
Romac 25 watt Amplifier, with built-in Radio, Mikophone and 'Gram inputs, 200-250 volts. A.C. As new........ £18 10 0

WE NEED GOOD USED EQUIPMENT URGENTLY! PLEASE SEND, BRING OR PHONE FOR OFFER

Avo Model 40, as new........ £11 10 0
Avo Valve-Testers, with Roller Panel, 1948 model as new........ £11 10 0
Hunt's Capacity & Resistance Bridge, with CRB, as new........ £11 0 0
Magnavox 66 Speaker, with built-in output transformer. Perfect........ £5 0 0
B.T.H. KR Senior Speaker, mains energised, 15 ohm Speak Collar. Perfect........ £3 0 0
Taylor Capacity & Inductance Collar, A.C. mains........ £17 6 0
Weston (U.S.A.) Test-meter, Model E772, AC/DC, 20,000 D.P.V. in portable wood case. As new........ £15 10 0
H.R.O. Junior, complete with power-pack and all valves. Less coils, In perfect condition and working order........ £15 0 0
Howard Communication Receiver, model 640, 550 kc. to 43 mg, A.C. 200-250 volts, complete with 5 meter, all valves, Speaker, etc. In good condition and working order........ £21 0 0
BC342 & BC348, in perfect condition, with all valves, etc. each........ £15 0 0
Hallicrafter's Ultra Skyladder, complete and in perfect condition. A.C. mains........ £19 10 0 0
R.M.E. DB20 Preselector, in perfect condition........ £8 10 0 0
National 1 to 10 metres Receiver, complete with power-pack, coils valves, etc. In perfect order........ £13 10 0 0
B.S.R. Audio Oscillator, model L50, in perfect condition and working order. Cost £50 12 months ago. Our price........ £27 10 0
Davenset Dri-met 3 Circuit Changer, as new........ £17 0 0

2 kVA. Variacs, 50 cycle. As new........ £10 10 0
New Ex-W.D. Rotary Converter, 24 volt D.C. to 330 vac. A.C. 1 phase, 50 cycle, 100 watts. Complete in metal case........ £5 0 0
E.D.C. Rotary Converter, 220/240 D.C. to 330 A.C. 1 phase, 50 cycle, 180 watts. Complete in metal case with Filter Unit. Perfect condition........ £12 10 0
Word Rotary Converter, 50 v. A.C. to 200-250 volts, 50 cycle, 1 phase, 140 watts, complete with Filter Unit. Perfect........ £9 0 0
Valradio D.C. to A.C. Converter, 200 to 250 volts A.C. 75 cycle, complete in perfect condition........ £8 10 0
Another, at 50 cycle........ £8 10 0
B.S.R. Disc Recorder, complete, with B.S.R. Amplifier, Ribbon Mike and Stand. Cost £2/4/-: Our price as new........ £135 0 0
M.S.S. Disc Recorder, complete with Amplifier and Phono-back, in two portable cases, less mike and stand. As new........ £75 0 0
350 Twelve inch Classical Records, in portable cases. Each case containing 50 records. Not pre-wireed or in perfect condition. To callers only, in lots of 50. Each........ £3 0 0
Panex Equipment 'Scope, as new........ £11 10 0
Taylor 'Scope, Model 30, Perfect condition........ £14 0 0
R-107 Chassis, complete with all valves, less speaker and metal cabinet. Perfect........ £7 10 0
1943 M.S.S. Disc Recorder Unit, in portable case, complete with Play-back Pick-up, less Amplifier, A.C. 200-250 volts. In perfect condition........ £22 10 0
Latest Model Hallicrafter Speaker, as new........ £6 10 0
Sound Sales Speaker, as new........ £5 10 0
Triplet U.S.A. 1,000 cycle Test-meter and AC/DC Test-meter Combined, 110 volt mains, with charts, in perfect condition........ £12 0 0
Precision, as above........ £11 10 0
Cambridge Thermionic Voltmeter, Moulin pattern C. Perfect........ £8 10 0
E.M.I. Service Capacitor........ £6 10 0
114th H.P. A.C. Motors, ideal for recording, 200-250 volts. New each........ £1 12 6
B.P.L. Latest Model Super Ranger Test-meter, 1,000 c.p.s., AC/DC........ £14 0 0
G.E.C. 2 kilowatt Fan Heaters A.C. 200-250 volts. Perfect, Each........ £6 0 0
Taylor 85A AC/DC Test Meter, as new........ £14 0 0
Taylor 4TA (Voltage and AC/DC Test-meter Combined). As new........ £18 10 0
Taylor 90A, as new........ £10 10 0
Taylor 70A, as new........ £7 10 0
4 only G.E.C. M/C Mikes. Perfect........ £2 0 0
R.S.A. Ribbon Mike, with Transformer and cable. As new........ £6 0 0
Shaftesbury Ribbon Mike, with transformer. As new........ £5 10 0
Vicavox M/C Mike, in chrome case. As new........ £4 10 0
VIEWMASTER T.V.
ANYONE CAN BUILD
Come and VIEW this MASTER of T.V. Construction. Full instructions and blueprints, 9" x 12", plus 3d. postage.
Great improvements have been made on sound. Automatic interference suppression, 9-in. or 12-in. C.R.T., can be used. New type magnetic focus. Can be easily aligned without instruments. The requisite components are available from stock (postage extra).

T.C.C. Capacitors... £6 4
Westinghouse Resistors... £3 2 6
Colvern Resistors... £19 3
Morganite Resistors... £1 6 9
Plugger equipment... £5 12 6
W.B. parts... £6 5 0
Belling & Lee accessories... £7 12 6
Tag Strips... £12 6

All prices include Purchase Tax.

WELL-KNOWN PICKUPS

Postage extra £ s. d.

Connoisseur (no transformer) £3 19 0
Cosmocord G.P.10 £2 10 0
Deca £3 15 5
Golding 100 £1 16 2
Golding 121 (with sapphire-no transformer) £3 11 8
Marconi 14 (no transformer) £2 10 4
Shaf Standard (brown) £2 15 6

All prices include Purchase Tax.

ELECTROLYTICS

8µF 500V d.c. working... £2 6
16µF... £3 3
32µF... £5
8-8µF... £3 6
16-16µF... £5 6
32-32µF 450V... £6 6
8-16µF 350V... £4
8µF 350V... £2

Postage extra

MAINS TRANSFORMERS (Postage extra)

By the well-known GRANGE TRANSFORMER PRODUCTS

£ s. d.
350-350V 100mA ; 6V 5V 3A... £10 6
4V 2A... £7 6
5V 2A... £12 6
12V 1A... £17 6

CHOKES (Postage extra)

15Hy. 150mA L.F. Choke... £9 0
10Hy. 150 ohms 75mA L.F. Choke... £4 9
15Hy. 80mA L.F. Choke... £9 0
10Hy. 100mA L.F. Choke... £9 0
20Hy. 10mA 1,000 ohms Choke... £4 8
20Hy. 20mA Choke... £5 6
10Hy. 150 mA L.F. Choke... £12 6
50Hy. 20mA, 1,500 ohms Choke... £5 6

Stop worrying about that metal work problem—there's always Ritherdon's!

This old established firm make Instrument Cases, Amplifier Racks, Fuse Boxes, Busbar Chambers, etc. to customers' specifications.

Experience has taught them that it costs no more to work to individual requirements than to produce standard lines. Bring that problem to Ritherdon's, all enquiries are welcome and will receive prompt attention.

RITHERDON & CO LTD
LORNE STREET, DARwen, LANCs. Phone: Darwen 1028

Specialists in fine sheet metal work since 1895.
THE BURGOYNE AERIAL COAXIAL CONNECTOR

for EFFICIENT WATERTIGHT COAXIAL CABLE CONNECTIONS

Improves Signal Strength
This Connector provides both commercial and amateur users with a means of making efficient watertight coaxial cable connections for aerials. It also serves as centre insulator for a half wave doublets.

The Burgoyne Connector is made of aluminium with stellite insulation, and has two forged steel eye-bolts equipped with convenient soldering connections. A tube of weatherproof cement plus the necessary assembly screws, are supplied with each connector.

Amateurs, and all listeners requiring perfect reception will welcome the Burgoyne Connector because it eliminates the necessity for crude, inefficient coaxial cable connections, thus saving them time and trouble due to the inroads of weather on home-made connections. Professional operators will find that it provides a quick, well-engineered means of doing an essential job.

Used on all maritime installations.

LIST PRICE REDUCED TO

12/3 each (Post 9d.)

TRIMMER KIT.
'11 Qualified' 1 An essential to every radio man.

Price 35/- only! (List price 45/-.) Comprising : 1, 2, 4, 5, 6, 8 BA box spanners, 5 screwdriver trimmers (vertical and horizontal), 4 spanner, vane setter and thickness gauge. Attractively finished. All neatly laid out in black crackle box.

DO EVERY SOLDERING JOB— Better, faster, cheaper with the—

BURGOYNE Instant-Heat SOLDER GUN.

M A K E R ' S L I S T P R I C E 7/6. O U R P R I C E 5/2/6

SAVE TIME ON SOLDERING!
Just press the button, count seven, and solder, and the bit will remain at soldering heat until you release the pressure when it cools off instantly. No waiting to warm up or cool down—No element to burn out—No Mica to crack or splinter—No risk of shock. £750 spent on the design of this famous tool! For A.C. mains 240-250 V.

EVERY SERVICE ENGINEER MUST have one!

A BLOCKED EXPORT ORDER makes this offer possible by an accident—the exporter missing the last boat to South Africa!

SPECIAL NOTICE.
This Solder Gun is offered to you in the original manufacturer's carton carrying their seal and we guarantee each Burgoyne Solder Gun for TWO YEARS. We cannot undertake to service or guarantee any gun purchased from any other source.

MOVING COIL HEADPHONES.
American type with padded ear cushions. Low resistance. (Post 9d.)

R.1355 RECEIVER I.F. TRANSFORMERS
6-7 m.c.s. replacement units. Brand new

4 for 5/- (Post 9d.)

M.O.S. RADIO-ALARM KIT.
A complete radio time switch in kit form which can be made in a few hours by anyone possessing the normal household tools. Be awakened to the strains of early morning music from your radio.

Full wiring diagram and instructions included. The KIT

12/6 (Post 9d.)

IVALEK De-Luxe CRYSTAL SET.
Complete in attractive cream or brown plastic cabinet with tuning scale. Fully guaranteed.

15/- (Post 9d.)

TELEVISION CONVERSION
A brand new 13 valve receiver incorporating 30 m.c.s. I.F. strip with band width of 4 m.c.s, as well as RF Unit. Valves supplied 5 EPC; 2 EF54; 1 BG54; 1 VU36A; 1 VH4 and 1 EA20. 52/-

Carr. and Pkg. 7/6)

NOW—LIGHT when you need it!

LONG BEAM FOCUSING TORCHES.
American type.

These imported torches throw a beam of 700 ft. Previously unobtainable on the home market for over 10 years, they now become available at a cost less than any non-focusing torch on the market. FULLY GUARANTEED Type A (as illustrated) complete with-BRITISH batteries and bulb ready for use. Solid brass nickel plated finish with adjustable Ring Focusing head. Pull out carrying loop in base. Spare bulb container. ONLY 15/11 Type B. As above but with 400 ft. beam range. ONLY 12/11

The demand is huge—orders in strict rotation.

HIRE-PURCHASE FACILITIES ON GRAM. MOTORS.
Collaro RC99 AC Auto Changer-Mixed. Crystal head £14 6 8
Collaro RG610 AC Auto Changer-Non-mixer. Crystal head £10 15 0
Collaro AC504 AC Motor and turntable with crystal head £5 17 7
Collaro AC504 AC Motor and turntable with Mag. head £5 3 2
Conrad RUA AC Motor and turntable less head £1 7 6

All the above (except Condor) on H.P. terms 331 per cent. cash down with balance spread over 6 months.

Terms : Cash with order.

DIMMER SWITCHES.
Resistance 60 ohms.
With on-off switch. Black moulded case fitted with engraved knob. Carries 1 amp. at 110 V.

2/9 each or 6 for 12/6

Post free

M O S NEWS LETTER
Packed with good ideas, circuits and bargains. Send 1/- for specimen copy or 5/- for a year's subscription.

MAIL ORDER SUPPLY CO., The Radio Centre, 33 Tottenham Court Rd., London, W.I (Museum 6667-B-9)
RECEIVER TYPE 18

A four valve, battery superhet, covering 6-9 mc/s, that only requires the addition of batteries to receive dozens of short wave stations! COMPLETE with four two volt valves, and a pair of matched headphones with jack-plug. **OUR PRICE. 22/6**

RECEIVER TYPE 21. The receiver section of the W/S 21, covering from 4.2-7.5 mc/s; and 18-31 mc/s; with 9 two volt valves, BFO, crash limiter, and On drive, they may be operated from 6v. L.T. and 120v. L.T. ; removal of a resistor from each filament lead permits 2v. L.T. operation. Complete with valves, circuit and connecting data, 32/.

VIBRATOR TYPE 21. The vibrator pack for the above receiver, contained in a metal case measuring 9 x 10 x 24, this unit will fit beneath the receiver, and its 6v input, matching the 6v. L.T. circuit of the receiver, will provide a small, complete unit. **ONLY 19/9**

RECEIVER TYPE 2844. This unit contains fifteen EBF50's, two RF61's, one EF86, one EF76, three ERL34's and one RA00 ; a nifty 80v. motor, dozens of resistors, condensers, pots, etc., would make this one of today's most attractive "buys," but the "Pre-" 45 mc/s I.F. strip, which is ideal for London TV makes the unit a "must" for every amateur. **BRAND NEW, in makers crates. 25/12.**

VELOCITY TYPE SPEAKERS. Robustly constructed P.M. speaker units, which, when loaded with a horn, will handle 50 watts at real quality. 15 ohm, Impedance. **ONLY £1**

RECEPTION SET VRL. Made by Vancouver Radio Laboratories and covering 1.5-29 mc/s in four bands, these superb receivers have never before been offered on the surplus market.

- **19 valves (6v.).**
- **Variable selectivity 2 dial fitter.**
- **Noise limiter.**
- **B.F. gain control.**
- **A.F. gain control.**
- **Two speed indication of A.G.C.**
- **Magic eye.**
- **Build-in speaker.**
- **Full view dial.**
- **Crystal calibrator, providing " pips " every 10, 100 or 1,000 kc/s.**
- ** Provision for phones, with options "muting" of internal speaker.**
- ** Attractively built from top grade components.**

PRICE £22/10/-, carriage paid. Complete with 19 spare valves, £22/10/-

These units are in brand new condition, but were removed from their transit cases, by the Ministry of Supply, immediately prior to sale.

POWER UNIT TYPE 19. A rotary convertor, delivering 440v. at 60 mA., and 275v. at 110 mA., plus a 275v. vibrator unit, both operating from 12 or 74 volts input, make this an ideal emergency or mobile power supply unit. **OUR PRICE, 12/6.**

TRANSFORMERS. Large modulation transformers, fully shielded, and measuring 31 x 31 x 5in. These may be used as mains step-down transformers, providing a 2:1 ratio, and capable of handling some 75 watts. Price 6/- each.

OUTPUT TRANSFORMERS. Multi-ratio output transformers, with a centre tapped primary, one high resistance secondary and one tapped low resistance secondary. Price 4/6.

OTE

The Revolutionary GOLDRING Headmaster HYPERFIDELITY PICK-UP

With an interchangeable Pick-Up Head for every type of record.

Supplied in attractive Display Carton complete with Goldring Tonaliser and Transformer

Goldring Products include:

- PICK-UPS, PICK-UP HEADS,
- SAPPHIRE JEWEL POINT NEEDLES, AND RADIOGRAM ACCESSORIES.

Write for full Descriptive Lists and Technical Information

ERWIN SCHARF

49-51a De Beauvoir Road, London, N.1

Telephone: CLISSOLD 3434

THE NEW B.P.L. SUPER RANGER

20,000 OHMS PER VOLT.

- **D.C. VOLTS:** 100mV to 5kV
- **D.C. CURRENT:** 1µA to 1 Amp.
- **A.C. VOLTS:** 0-5V to 5kV.
- **A.C. CURRENT:** 10mA to 10 Amps

RESISTANCE: 1 ohm to 2 meg-ohms

OUTPUT: 0 to 62 db

METER:

8-inch Long arc, fitted with knife-edge pointer and mirror scale.

LIST PRICE: £22 - 15 - 0

BRITISH PHYSICAL LABORATORIES

Houseboat Works, Radlett, Herts.
TELEVISION WITHOUT TEARS

OUR KIT OF PARTS (down to the last nut and bolt) is proving doubly popular because (a) the price of £1/4 (10s. 6d.) is amazingly low and (b) the explicit nature of our instructions and easy to follow point-to-point wiring diagrams make success for all. Its most convincing feature, however, is that the conversion of ex-government equipment is NOT involved.

The Televisor is built from standard radio components and includes a new type of turret for two chasiss, one for the Vision Receiver, Sound Receiver and Time Base, the other for the A.C. Supplies. It operates on A.C. Mains 250-250 volts. The price of the comprehensive point-to-point wiring diagrams and 17 pages of data is £1 4s. 6d. post free. Why we urge you to send for these initially. If a Kit is subsequently purchased the 6d., of course will be credited. PLEASE SPECIFY LONDON OR SUTTON COLDFIELD WHEN ORDERING DATA OR KIT.

NOTE THESE FEATURES

- NO KNOWLEDGE OF TELEVISION TECHNIQUE ESSENTIAL
- ALL PARTS BRAND NEW, COMPLETE, AND OF THE FINEST QUALITY
- ALL PARTS MAY BE PURCHASED SEPARATELY
- ROCK-STeadY PICTURE ASSURED BECAUSE SIX EF30 VALVES ARE USED IN THE TIME BASE AND SYNCHRONIZATION CIRCUIT
- UNIQUE * AFTER SALES SERVICE. (LONDON ONLY) TESTING AND ALIGNMENT OF RECEIVERS ARE INCLUDED IN THE COMPLETION OF ASSEMBLY UNDERTAKEN FOR A NOMINAL SUM. WE GUARANTEE RESULTS.

VIEWMASTER KIT

NOW AVAILABLE FOR

SUTTON COLDFIELD

THE SPECIFIED KITS OF COMPONENTS, AS UNDER, NOW IN STOCK. ENVELOPE WITH FULL CONSTRUCTIONAL DATA. 5/- POST FREE. EVERY TECHNICAL ASSISTANCE, INCLUDING ALIGNMENT, (LONDON ONLY) WILL BE GIVEN TO CONSTRUCTORS PURCHASING THEIR KITS FROM US.

W.B. Chassis and Speaker Kit, including chokes and transformers, etc., 6/6/- T.C.C. complete constructional. 6/6/5/-, Westinghouse Rectifier Kit, £3/2/-6d. Magnesium rect. Kit, £1/6/- Plissey Focus, scanning coils etc., Kit, £5/1/- Calverts wirewound potentiometer Kit, 1/- Burgin panel and switch Kit, 1/- Weanite coils and potentiometer, 1/-

All makes of C.R. Tubes available. Prices: 9ins., £1/11/6d./10d., 12ins., £1/5/-/2s. 6d.

All necessary valves available 'rom stock.

CHARLES BRITAIN (RADIO) LTD.

11 UPPER SAINT MARTIN'S LANE, LONDON, W.C.2

(Three minutes from Leicester Square, Tube Station, Up Cranbourne Street.)

Shop hours 9-6 p.m. daily (9-1 p.m. Thursday). Open all day Saturday.

Temple Bar 0545
Announcing the £15 T/V for the Midlands

Constructors in the Midland TV Area will be pleased to learn that the Data for our Mk. II Television for operation on the Sutton Coldfield Frequencies is now available. All constructors of this Television who have not yet received the information should write in quoting date of purchase and invoice number, when the full details will be supplied gratis.

This Television, many hundreds of which are in service, is designed round two Radar Units which cost only £6 the pair. One unit is an Indicator containing a VCR97 C.R. Tube, and the majority of the valves and components, and the other unit is a ready made Vision Receiver which only requires modification for the TV Frequencies. Use of this latter item, which was made regardless of cost to a planned layout, eliminates many of the headaches experienced by those who have attempted the construction of a Vision Receiver from scratch. The Constructional Data is most detailed, with photographs, parts lists, circuit diagrams, etc., and costs only 7/6, or is supplied gratis with the two Radar Units. Alternatively, it may be purchased, and the cost will be credited against the subsequent purchase of the Radar Units within 14 days. A fully detailed price list shows that the total cost is £15/4/9.

Please note that orders for the Radar Units should include the purchase and invoice number, when the full details will be received the information should write in quoting date of order. Please note that orders for the Radar Units should include the RF Unit 24 25, 62/6 (carriage 7 6). RF UNITS TYPE 25 specified for London Area Station, RF UNITS TYPE 26, specified for the Birmingham Station, will be all sold, but we can supply the RF Unit 24 suitable for alteration, price as above, or brand new in unboxed, new condition.

INDICATOR UNITS TYPE 6. The indicator unit specified for "Inexpensive Television," is being built with the VCR97 Tube and valves. BRAND NEW IN MAKERS CAGES, ONLY 90/- (carriage 7/6).

TRANSFORMERS for above TV have been specially made as follows: Time Bases and Vision Transformer, 350-0-350v. 160 m/a., 5v. 3a., 6.3v. 6a., 6.3v. 3., ONLY 36/-. Sound Receiver Transformer, 250-0-250v. 100 m/a., 5v. 3a., 6.3v. 6a., ONLY 27 6. EHT Transformer for VCR97 Tube, 2-0-2v. 1.1a., 2-0-2v. 2a., EHT at 5m/a., 30/-, postage 1/6 per transformer.

MAGNIFYING LENS for 6in. C.R. Tube. Brings up the picture size to approximately that given by a 9in. tube. ONLY 25/- (postage 1/6).

SMOOTHING CHOKES. 10H. 80 m/a., 8/6, 3H. 200 m/a., 6/- (postage on each 9d.). EHT CONDENSERS. 2,500 v. 1 mfd. oil filled tubulars 2/4 (post 3d.), 3,000v. 1 mfd. block paper size 3 ½ x 2 ½ x 3/4in. (inc. terminals). 4/4 (post 9d.). CO-AXIAL CABLE, 75-80 ohms, 1/3 per yard.

PYE CO-AXIAL plug and socket, 1/1/2 pair or 6d. each.

SPEAKERS. 10in. Truxox PM less transformer, 17/6 (postage, etc., 2/6).

CONDENSERS. 2 pf. to .1 mfd., mica, silver mica, or paper 6d. each.

RESISTORS. jw. 4d., jw. 5d., iw. 6d., 2w. 9d.

CWO please. Add postage where not stated on orders under 12.

U.E.I. CORP., The Radio Corner
138 GRAY'S INN ROAD, LONDON, W.C.1 (Phone: TERminus 7937)

Open until 1 p.m. Saturdays, we are 2 minutes from High Holborn and 5 minutes from King's Cross.

BAKERS 'Selhurst' RADIO
PIONEERS OF MOVING COIL SPEAKERS SINCE 1925

NEW "HIGH FLUX" 1950 MODELS

HIGH FIDELITY SPEAKERS

The World Famous 12" triple cone 12.B.

The standard 12" F.A. model 12 C.

The Cinema Model 18" "Duplex" C.T.

Write for Illustrated list and technical details of SPEAKERS, TUNERS and AMPLIFIERS.

BAKERS 'SELHURST' RADIO
Dingwall Road, Craydon
Telephone: CRaydon 2271/2

RADIO MENDERS LIMITED
FOR SPECIAL TRANSFORMERS AND REWINDS

We specialise in AMATEURS' WINDINGS, TRANSFORMERS ALL TYPES, CHOKES, PICK-UP COILS, INSTRUMENT COILS, Etc.

Highest workmanship Good Delivery

U.L.

RADIO MENDERS, LTD.
Television & Radio Apparatus, Transformer & Coilswinders.
123-5-7 Parchmore Road, THORNTON HEATH, SURREY
LIV 2261. Trade enquiries invited. Established 16 years.
Made in Three Principal Materials

FREQUELEX
An Insulating material of Low Dielectric Loss, for Coil Formers, Aerial Insulators, Valve Holders, etc.

PERMALEX
A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

 TEMPLEX
A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.

the most difficult problems solved by...

Bullers

BULLERS LOW LOSS CERAMICS

A COMPLETE RANGE OF TELEVISION COMPONENTS

- Line and Frame Scanning Assemblies.
- Focus Coils and P.M. Focus Units.
- Line and Frame Output Transformers.
- Line and Frame Oscillator Transformers.
- Combined Line Output transformers and E.H.T. Generators.
- Width controls.
- Video correction chokes.
- Filament transformers, E.H.T. transformers and Smoothing chokes.

Allen Components are specified for the Electronic Engineering Home Televisor and the range includes components suitable for use in all of the popular Home Constructor Sets.

ALLEN COMPONENTS LTD.
1 Shrewsbury Road, Stonebridge, London, N.W.10
Telephone: WILlesden 3675 and 4901.
G2AK This Month's Bargains

G.P.O. Standard Desk Microphones with screened lead and plug, 9/6 each, plus postage 1/6.

H.R. Headphones, 8/- per pair.

Moving-coil Hand Microphones with switch, 3/11. Transformer for above, 2/-.

500 Microamp Meters. Scaled 0-600. 5/- each.

Microphone Tester. In smart teak case 7in. x Sin. x Sin., contains three jacks, mike transformer, terminal sockets, etc., with 0-10v. rectifier-type meter, 1,000 ohms per volt. 17/- plus 1/6 post and packing.

B.C.610 Tuning Units. Contains host of parts. Var. condensers, switches, coils, sockets, etc. 2/- each, plus 1/- postage.

Meter Oscillator Units. Type 123. This consists of a silver-plated box 6in. x 3in. containing a rotating coil of 50 turns on a 1/4in. x 3in. former driven by a J.B. type 5 so that reduction drive fitted with a 0.100 engraved dial. Given away at 5/-, plus 1/- postage.

T.U. Units. Most types. New in boxes, 10/- each.

0-100 engraved dial. Given away at 5/-, plus 1/- postage.

3in. former driven by a J.B. type 5 to box 6in. x 3in. x 3in. containing a rotating coil of 50 turns on a 1/4in. x 3in. former driven by a J.B. type 5 so that reduction drive fitted with a 0.100 engraved dial.

Please print your name and address

CHAS. H. YOUNG, G2AK
All Callers to 110 DALE END, BIRMINGHAM
Mail Orders to 102 HOLLOWAY HEAD, BIRMINGHAM
Telephone : MIDLAND 3254

THE IDEAL MICROPHONE FOR TELE-COMMUNICATION

MODEL C 51

MOVING-COIL MICROPHONE BY LUSTRAPHONE

Designed and developed essentially for G.P.O. hand-sets, with mobile, tele-communication and P.A. work in view, LUSTRAPHONE Model C 51 is fast establishing itself wherever a good microphone is called for. It provides maximum intelligibility at extreme range and under adverse conditions, and is used extensively by Broadcast Engineers and others needing quality and dependability. Available as insert unit, or complete hand instrument.

Data sheet on request.

KERSHAW'S KORNER, PERSHORE STREET, BROMSGROVE

KERSHAW'S KORNER, PERSHORE STREET, BROMSGROVE

March, 1950

RELAYS AND KEY SWITCHES

LARGE EX-GOVT. STOCKS IMMEDIATE DELIVERY

Types 600-3000 Relays Siemens High Speed Uniselector Switches, Carbon Insets, Telephone Components Plugs, Jacks, Handsets, Co-Axial Cables

JACK DAVIS
Dept. W.
30 PERCY STREET, LONDON, W.1
Phones : MUSEUM 7960, LANGEHAM 4821

G.W. SMITH & CO., (RADIO) LTD.

TELEVISION. Ex-R.A.F. type 208 Amplifier units, complete with 2 E.F.S0 valves. Ideal as Pre-Amplifier for both Vision and Sound, with full conversion instructions for sound and vision, 19/- each.

Transmitter Units, type T.U.B. Nos. 5, 6, 7, 8, 9, 10 and 26 complete with cabinet, 15/- each.

B.C. 455 Receivers, complete with valves, 22/6 each. B.C. 454 dizer, 25/-. B.C. 453, 39/6.

Television High Voltage type Mansbridge Condensers, "TROUBLE FREE" .1 3000 v. 2/-; .1 4000 v. 3/-; .1 5000 v. 3/1/3 each

Transformers, Adm. Pats., 230 volt 50 cycle, Primary, Secondary, 700 volt 20 M/. Filaments Tested at 5000 volt. 2 of 4 volt 1.25 amp., ideal transformer for 'scope unit. 17/- each. Brand New and Boxed.

Filament Transformers, Ex-W.D. 230 volt primary 6.3 volt C.T. 3-5 amp. 10/- each.

Filament Transformers, Ex-W.D. 230 volt primary 5 3 amp., 6.3 v. 1.25 amp. twice, 6.3 v. 6 amp. 12/- each.

Television Condensers, 1000 pf. 500 pf. midget moulded mica, 4d. each. .001 mfd. 5000 v. mica 1/3 each. .001 mfd. 9000 v. 1/3 each. .001 mfd. 15000 v. 1/6 each.

Please order from your local stockist. All Goods post paid. No lists or Catalogues.

KERSHAW'S KORNER KALLING !! ! ! T.V. AMATEURS BARGAINS IN GOVERNMENT SURPLUS ELECTRONIC TELEVISION COMPONENTS MODULATOR TYPE 20 consisting of 2 valves VU11, 4 volts 6kV E.H.T. rectifiers, 5 valves type KT44 (very suitable for line output), and 1 valve type 5H41. This modulator is a marvellous unit for spare parts and is offered for the very low price of 42/- inc. carriage. RCR.3515, f.f. strip 13.5 Mc/s, ideal for "W.W." Televisor. 1.1.f stages with 3 Mc/s band width. EASO Oscillator and EF39 Video O.P. Our price, 30/- each complete with valves. INERT 1.5 v. CELL BATTERIES, long life, fill with plain water and have continuous use. Ideal for every purpose. 3 for 2/6. Post paid.
SOUND & VISION KIT

21 Valves, Suitable for 9in., 10in. and 12in. Magnetic Tubes. Less Tube, tube holder and Mask. Chassis all stamped out. State whether for Sutton Coldfield or Alexandra Park. Complete with booklet, instructions, etc. £21 12s. 6d. carr. paid.

Pre-Amplifier de Luxe. Consisting of power pack and two R.F.s. Built up and enclosed in case. £7 12s. 6d. carr. paid. Small Pre-Amplifier. No power pack. 42s. 6d. carr. paid. Co-Axial Aerial. 75 ohms. 1s. 6d. per yd. All new.

MAINS TRANSFORMERS, FULLY INTERLEAVED, SCREENED AND IMPREGNATED. ALL PRIMARIES ARE 200/250 v. Half Shrouded.

Output
HS2. 250/0/250v. 80 m/a.
HS30. 300/0/300v. 80 m/a.
HS3. 350/0/350v. 80 m/a.
HSX2. 350/0/250v. 100 m/a.
HSX0. 300/0/300v. 100 m/a.

Fully Shrouded
Output
FS2. 250/0/250v., 80 m/a.
FS3. 300/0/300v. 80 m/a.
FS3. 350/0/350v. 80 m/a.
FS3X. 350/0/300v. 100 m/a.
FS3X. 350/0/350v. 100 m/a.

All the above have inputs of 200/250v.

SCREENED AND IMPREGNATED.

H. ASHWORTH
(Dept. W.W.)
676 GT. HORTON ROAD
BRADFORD, YORKS.

Output
HSX1. 250/0/250v., 80 m/a.
HSX3. 250/0/250v. 80 m/a.
HSX0. 350/0/350v. 80 m/a.
HSX2. 350/0/250v. 100 m/a.
HSX0X. 300/0/300v. 100 m/a.

F5 and F6/4 framed with Flying Leads
F6/4.
F5.
F29.
FU6.
F24.
F12.
F6X.

The above have inputs of 200/250v.

FILAMENT TRANSFORMERS
F4. Output, 4v. 2 amps.
F6. Output, 6.3v. 2.5amps.
F66. Output, 6.3v. 6 amps.
F4X. Output, 6.3v. 3 amps.
F12. Output, 12.6v. tapped 6.3v. at 3 amps.
F24. Output, 24v. tapped 12v. at 3 amps.
F12 and F24 framed with Flying Leads.

F16. Output, 0.2-4-6-6.3v. at 2 amps.
F29. Output, 0.2-4-6.3v. at 4 amps.
F16 and F29 clamped with Flying Leads.

F5. Output, 6.3v. at 10 amps. 5v. at 10 amps. 12.6v. at 5 amps. 0v. at 5 amps. 350/01350v. 120 m/a. 6.3v. 2 amps.

F6/4. Output, four at 6.3v. tapped at 5v. at 5 amps. per winding, giving by suitable series and parallel connections 24v. at 5 amp., 20v. at 5 amp., 18v. at 5 amp., 15v. at 5 amp., 12v. at 10 amp., 6.3v. at 20 amp., 5v. at 20 amp.

F5 and F6/4 framed with Flying Leads

OUTPUT TRANSFORMERS
MOPI. Ratios 26, 46, 56, 66, 90, 120-1 50 m/a. max. current. C.T. for Q.P.P. Class B, etc. Secondary 2/4 ohms. Top panel and clamped. 5/-.
OP1. Midget Power Pencode, ratios 30, 60, 90, 120, 140 m/a., Secondary 2/3 ohms. per doz. 3/4.
OP2. Midget Pencode, ratios 45-1, Secondary 2/3 ohms. 40 m/a. 3/-.
OP10. 10/15 watts output, 20 ratios on Full and Half primary 16/-.
OP30. 30 watts output, 20 ratios on Full and Half primary. 23/-.
OP10. Williamson’s O.P. Transformer to Author’s specification £3/12/6. Chokes for Williamson’s Amplifier. 30h at 20 m/a., 15/6; 10h at 150 m/a. 29/6.
C.W.O. (add 1/- in £ for carriage), all orders over £2 carriage paid.

A NEW FIELDEN TECHNIQUE

in micro-measurement and control

FOR ANY INDUSTRIAL OR RESEARCH PROBLEM RESOLVABLE INTO MINUTE ELECTRICAL CAPACITANCE CHANGE

ACTUATION BY PROXIMITY of solid or liquid conductors or Insulators to an electrode terminating a co-axial cable.

THE FIELDEN PROXIMITY METER—SENSITIVITY 0.01 mmf—indicates minute capacitance changes, whether caused by very small mechanical displacement or dielectric change. It measures, for instance, strains in structures, it gauges components to less than 0.00001in., monitors sheet, foil and wire sizes, measures liquid and other levels precisely, monitors dimensions and compositions, compares dielectric properties of non-conducting, liquids etc. It does what is impossible mechanically and, in many fields, surpasses all other micro-measurement methods.

THE FIELDEN TECTOR—SENSITIVITY 0.25 mmf —is a unique, stable, high-speed capacity relay which solves many problems of counting, temperature control, level control of liquids and solids, and so on where simple direct-switching is impossible.

Please send for specification FE/4 to the SPECIALISTS IN INDUSTRIAL ELECTRONIC EQUIPMENT

FIELDER
(ELECTRONICS) LIMITED
HOLT TOWN
MANCHESTER
Notice

Owing to removal to our New Factory

Temporarily Suspended

When we are again able to accept speakers for repair an announcement will be made in “Wireless World.”

Electric and Electronic Development

Presenting

The Famous Williamson Amplifier

Precision built by experts to instrument-standards. Special models available for installation of existing equipment (as illustrated), and for recording and cinema work.

Full particulars of this and other productions on application.

HUBERT STREET, ASTON, BIRMINGHAM, 6

Telephone: Aston Cross 2440
History in the making

Prehistoric man discovered that by extracting certain clays from the ground and roughly fashioning them into shapes before baking them in the sun, he could make serviceable vessels.

From this early beginning progress was made; and then a genius of the tribe discovered that by building up his roughpot on the flattened side of a boulder which had a pointed base he could, by spinning the boulder, manipulate his clay into various shapes—the beginning of the potter’s wheel.

In modern times the products in porcelain made by the Taylor Tunnicliff organisation range from microscopic insulating units to giant porcelains for the highest voltage switchgear, transformers, transmission systems, etc. Whatever your insulation problem may be, Taylor Tunnicliff can help you, and their Research Department is at your service—including their Impulse Generator constructed for studying the behaviour of Insulators under steep-fronted transients up to 1,200,000 v. peak amplitude.

TAYLOR, TUNNICLIFF PORCELAIN
Keeps Electricity in its place.
A Real MINOR OSCILLOSCOPE with a MAJOR PERFORMANCE

Features:

- COMPACT
- ROBUST
- PORTABLE
- EASY TO USE
- IDEAL FOR THE SERVICEMAN

Price

£8-19-6

Carriage free G.K.

Specification:

FULL details on request

PROOPS BROS. LTD.
111 HIGH STREET, ESHER, SURREY

111 WIRELESS WORLD
MARCH, 1950

GUARANTEED SPOTLESS SURPLUS BARGAINS

- P.M. SPEAKERS. New and Boxed. 3½in., 3½/; 5½in., 10½/; 6½in., 12½/; 8½in., 15½/; 10½/; 12½/; 16½/; 16½/; 31/2.
- OUTPUT TRANSFORMERS. Standard Pentode, 7,000 ohms, 3½/; Heavy Duty Multi-Ratio, 2½-16 ohms, 12½/; Push-Pull, twin secondary, 5½.
- TRANSMITTING VALVE. 807, 4½.
- MOBILE AMPLIFIER comprising: Speaker, Microphone, Transformers, etc. An excellent Hailer system, requiring only a 12-volt battery to operate. Ideal for Election, Fete, Advertising, etc.
- RADIO UNLIMITED, ELM RD., LONDON, E.17

TELEBOOSTERS

for long range Television reception. Super high gain single-stage pre-amplifier. 2 stage, 1 VR91 valve, slug tuned, London or Birmingham. Co-axial plugs and sockets, flying leads for High and Low tension, fully screened, low noise. Price £2/12½/.

S.A.E. for trade test report.

BOCOMBE RADIO & ELECTRIC, 595, Christchurch Road, Boscombe. Bournemouth. Phone : 36522

ANOTHER WINNER BY RUCO'S

A 6-POSITION VARIABLE SELECTIVITY 3-WAVE BAND FEEDER UNIT. R.F. STAGE. INFINITE IMPEDANCE DETECTION.

DON'T DELAY!

Write now for details

RUCO PRODUCTS
197 LOWER RICHMOND ROAD
RICHMOND, SURREY

Phone PRO. 7463.

VENTEX CABINETS

Scientifically designed. Beautifully finished. Your 12" loudspeaker fitted in a VENTEX CABINET will give you that superb depth of reproduction, unobtainable with ordinary cabinets and baffles. Available in choice of veneers.

For STD. 12" £115 10 inc. packing. Carr. extra.

Also supplied fitted any of GOODMAN'S 12" loudspeakers. Send for leaflet W.50.

C. T. CHAPMAN (Reproucers) Ltd.
RILEY WORKS, RILEY STREET, CHELSEA, S.W.10

Consultants in all branches of Acoustic Engineering.

GUARANTEED SPOTLESS SURPLUS BARGAINS:

- P.M. SPEAKERS. New and Boxed. 3½in., 3½/; 5½in., 10½/; 6½in., 12½/; 8½in., 15½/; 10½/; 12½/; 16½/; 16½/; 31/2.
- OUTPUT TRANSFORMERS. Standard Pentode, 7,000 ohms, 3½/; Heavy Duty Multi-Ratio, 2½-16 ohms, 12½/; Push-Pull, twin secondary, 5½.
- TRANSMITTING VALVE. 807, 4½.
- MOBILE AMPLIFIER comprising: Speaker, Microphone, Transformers, etc. An excellent Hailer system, requiring only a 12-volt battery to operate. Ideal for Election, Fete, Advertising, etc.
- RADIO UNLIMITED, ELM RD., LONDON, E.17

YOU SHOULD HAVE A NEW TAYLOR

We can supply the latest Taylor Test-Equipment, and take your used Equipment in part exchange. Balance by cash or hire purchase.

Write, phone or send your gear along for inspection and offer.

UNIVERSITY RADIO LTD.
22 LISLE ST. Tel. GERRARD 4447 & 8552
new, 60 watt heavy duty P.A. equipment. Fully built for continuous indoor or outdoor use. £12 10/6 Plus tax and rack mounting; £60; Lists—Broadcast & Acoustic Equipment Co., Ltd., Tomlinson. Middx. Post Monday, March 16th. No responsibility accepted for errors.

WARNING

Readers are warned that Government surplus components which may be offered through the columns carry no manufacturers' guarantees: Many of these components will have been operated for special purposes making them unsuitable for civilian use, or may have deteriorated as a result of the conditions under which they have been stored. We cannot undertake to deal with any complaints regarding any such components purchased.

NEW RECEIVERS AND AMPLIFIERS

MASON'S Vievbooe, nr. Colchester.

ILLUSTRATED catalogue, price 9d, full details of licensed receivers, balanced output transformers, television kits and Bernard's radio books.

ULTRA義務, ELECTRONIC PRODUCTS, Ltd., Marylebone High St., London, W.1. Tel. Wringer 0.699.

SPECIALISTS in the design and manufacture of high fidelity reproducing equipment for 100 watts for domestic or industrial purposes. Our B.T.H. U.E.S. (40 watts) and U.E.T. (200 watts) push-pull amplifiers are designed especially for the connoisseur who requires the finest possible reproduction of recorded music; both amplifiers have been operated for over 60,000 hours with a damping factor of 12, and incorporate pre-amplifier stage, together with full control of bass and treble. Our policy is to produce an instrument which represents the highest standards in workmanship and performance and no expense has been spared to achieve this object. A new addition to our range is the type U.E.3 (25 watts) at £13 10/6. We also supply a complete range of units, both t.r.f. and superhet, for use in conjunction with either of our own or other makes of amplifiers. We should be pleased to quote you for the design and construction of any unit or replacement chassis to your exact requirements. Full details of our products will be forwarded on request, and we would welcome the opportunity to demonstrate our equipment at any time to suit your convenience. [3355]

NEW full ranges of Armstrong radio and television chassis advertised in this issue is now available from our London distributor. Write for details, open all day Saturdays.—Hayes Co., 77, Richmond Rd., S.W.15.

DC mains? This new 2watt mini multi-tone valve amplifier has been designed to give you high fidelity reproduction from DC mains, supplied for moving coil pick-ups, 5.5-15 ohms, bass and treble controls, complete £21/10; EDDYSTONE 8.640 32-1.7mc/s, [0067] £52/10.

NEW push-pull output transformers for circuits incorporating 6962 Jr.

— Write or telephone, R.T.M.C. (Ealing). Ltd., 28, Upper Norwood, London, S.E.19, designers of the R.T.M.C. "Williamson" is now the pass-word in radio enthusiasts' mouths: the undoubted merits of this product are now so well known that further amplifiers from W.W. do not need amplify its many good points any further. Illustrated catalogue, price 6d, contains full details of push-pull amplifier, complete with 5x EF50, 2XVR53 and Vr54, £1 ea.; wave-guide adapter, complete £2 10/6; "Tentmaters," King Alfreds Place, Bir- minham, 1. [3425]

— MICROPHONE delivery, 7,500-10,000 micro-watts, £14 10/6; Goodmans 34202, £4 8/3; balanced mfr. 500, £2 10/6; HW, new, 21/10, 4 for £10 10/6 in bridge give £11 convered with output valve £15; new, £10; GRAMOPHONE de luxe complete receiver, 7 valves, full wave, 54 volt—31ms, 110 to 240 volts; £3; F.E.L, new, complete with silver and gold, £4 10/6; 1,000v, 10/-; hand generators for high or low windings, £1 10/6; P.A/12T superb portable amplifier for music, voice, £10 10/6; P.A/12T superb portable amplifier for music, voice, £10 10/6; in carton £10 10/6.

NEW push-pull output transformers for circuits incorporating 6962 Jr.

— We do not make the Rolls-Royce car, but we always try to make the Rolls-Royce amplifier. The R.T.M.C. "Williamson" is now the pass-word in radio enthusiasts' mouths. No doubt the unqualified merits of this product are now so well known that further amplifiers from W.W. do not need amplify its many good points any further. Illustrated catalogue, price 6d, contains full details of push-pull amplifier, complete with 5x EF50, 2XVR53 and Vr54, £1 ea.; wave-guide adapter, complete £2 10/6; "Tentmaters," King Alfreds Place, Bir- minham, 1.

NEW push-pull output transformers for circuits incorporating 6962 Jr.

— Illustrated is a typical Partridge Transformer (Type DN) in its Memetal Screenng Box. It is merely to remind you that all Partridge Precision Components (standard or "to specification" types) are now available as hermetically sealed units.

— Then there's the 'PPO' range, designed to meet more fully the particular demands of push-pull output transformers where wide A.F. range with low distortion are vital.

FULL DATA ON REQUEST

NEW LOUDSPEAKERS

— STILL the best for the baker, the Tridem 12D for the professional, and the total absence of an external speaker unit.

— ULTRA義務, ELECTRONIC PRODUCTS, Ltd., 141, Little Elm Lane, Ealing. 6962.

NEW LOUDSPEAKERS

— STILL the best for the baker, the Tridem 12D for the professional, and the total absence of an external speaker unit.

— ULTRA義務, ELECTRONIC PRODUCTS, Ltd., 141, Little Elm Lane, Ealing. 6962.

— RLOBECK ROAD, KINGSTON-BY-PASS WOLTMOUTH 8-677 TOLWORTH 8-677

NEW push-pull output transformers for circuits incorporating 6962 Jr.

— We do not make the Rolls-Royce car, but we always try to make the Rolls-Royce amplifier. The R.T.M.C. "Williamson" is now the pass-word in radio enthusiasts' mouths. No doubt the unqualified merits of this product are now so well known that further amplifiers from W.W. do not need amplify its many good points any further. Illustrated catalogue, price 6d, contains full details of push-pull amplifier, complete with 5x EF50, 2XVR53 and Vr54, £1 ea.; wave-guide adapter, complete £2 10/6; "Tentmaters," King Alfreds Place, Bir- minham, 1.
DOES "HIGH-FIDELITY" MEAN ANYTHING?

Recently we have been approached by several manufacturers of "high-fidelity" equipment who are looking for better speakers. It is generally supposed that the major stumbling block in designing equipment for natural reproduction is the "speaker." Past experience makes us doubtful of the outcome of this, not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it - not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it.

In some cases where we thought the final sound was frightful the makers of the equipment thought it was much better than they ever had before and were still very much interested in the 215. What are we to do? Is there any answer to that question?

But it does raise the point that "High-fidelity" is a term which is applied to equipment without there being any agreed basis of performance. It cannot therefore be a term of absolute merit. It is generally supposed that the major stumbling block in designing equipment for natural reproduction is the "speaker." Past experience makes us doubtful of the outcome of this, not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it.

What are we to do? Is there any answer to that question?

But it does raise the point that "High-fidelity" is a term which is applied to equipment without there being any agreed basis of performance. It cannot therefore be a term of absolute merit. It is generally supposed that the major stumbling block in designing equipment for natural reproduction is the "speaker." Past experience makes us doubtful of the outcome of this, not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it.

What are we to do? Is there any answer to that question?

But it does raise the point that "High-fidelity" is a term which is applied to equipment without there being any agreed basis of performance. It cannot therefore be a term of absolute merit. It is generally supposed that the major stumbling block in designing equipment for natural reproduction is the "speaker." Past experience makes us doubtful of the outcome of this, not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it.

What are we to do? Is there any answer to that question?

But it does raise the point that "High-fidelity" is a term which is applied to equipment without there being any agreed basis of performance. It cannot therefore be a term of absolute merit. It is generally supposed that the major stumbling block in designing equipment for natural reproduction is the "speaker." Past experience makes us doubtful of the outcome of this, not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it.

What are we to do? Is there any answer to that question?

But it does raise the point that "High-fidelity" is a term which is applied to equipment without there being any agreed basis of performance. It cannot therefore be a term of absolute merit. It is generally supposed that the major stumbling block in designing equipment for natural reproduction is the "speaker." Past experience makes us doubtful of the outcome of this, not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it.

What are we to do? Is there any answer to that question?

But it does raise the point that "High-fidelity" is a term which is applied to equipment without there being any agreed basis of performance. It cannot therefore be a term of absolute merit. It is generally supposed that the major stumbling block in designing equipment for natural reproduction is the "speaker." Past experience makes us doubtful of the outcome of this, not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it.

What are we to do? Is there any answer to that question?

But it does raise the point that "High-fidelity" is a term which is applied to equipment without there being any agreed basis of performance. It cannot therefore be a term of absolute merit. It is generally supposed that the major stumbling block in designing equipment for natural reproduction is the "speaker." Past experience makes us doubtful of the outcome of this, not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it.

What are we to do? Is there any answer to that question?

But it does raise the point that "High-fidelity" is a term which is applied to equipment without there being any agreed basis of performance. It cannot therefore be a term of absolute merit. It is generally supposed that the major stumbling block in designing equipment for natural reproduction is the "speaker." Past experience makes us doubtful of the outcome of this, not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it.

What are we to do? Is there any answer to that question?

But it does raise the point that "High-fidelity" is a term which is applied to equipment without there being any agreed basis of performance. It cannot therefore be a term of absolute merit. It is generally supposed that the major stumbling block in designing equipment for natural reproduction is the "speaker." Past experience makes us doubtful of the outcome of this, not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it.

What are we to do? Is there any answer to that question?

But it does raise the point that "High-fidelity" is a term which is applied to equipment without there being any agreed basis of performance. It cannot therefore be a term of absolute merit. It is generally supposed that the major stumbling block in designing equipment for natural reproduction is the "speaker." Past experience makes us doubtful of the outcome of this, not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it.

What are we to do? Is there any answer to that question?

But it does raise the point that "High-fidelity" is a term which is applied to equipment without there being any agreed basis of performance. It cannot therefore be a term of absolute merit. It is generally supposed that the major stumbling block in designing equipment for natural reproduction is the "speaker." Past experience makes us doubtful of the outcome of this, not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it.

What are we to do? Is there any answer to that question?

But it does raise the point that "High-fidelity" is a term which is applied to equipment without there being any agreed basis of performance. It cannot therefore be a term of absolute merit. It is generally supposed that the major stumbling block in designing equipment for natural reproduction is the "speaker." Past experience makes us doubtful of the outcome of this, not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it.

What are we to do? Is there any answer to that question?

But it does raise the point that "High-fidelity" is a term which is applied to equipment without there being any agreed basis of performance. It cannot therefore be a term of absolute merit. It is generally supposed that the major stumbling block in designing equipment for natural reproduction is the "speaker." Past experience makes us doubtful of the outcome of this, not because we don't want to sell speakers but because we don't want the Hartley-Turner speaker to be the object of responsibility for it.
If yours is a problem — are the who will likely

If you're a problem — are the who will likely

If yours is a problem — are the who will likely

If yours is a problem — are the who will likely

If yours is a problem — are the who will likely

If yours is a problem — are the who will likely

If yours is a problem — are the who will likely

If yours is a problem — are the who will likely
MENTS, tone control and loudspeaker testing for all W.W.C. circuits; special designs promptly made.

-Morecambe Sound Service, 4-6, Green St., Morecambe. Tel. 02276

INFUNTEC bass corner deflectors, scientifically designed and designed and recommended for 8 to 12 mixers, lists—Broadcast & Acoustic Equipment Co., Ltd., Norwich.

TRANSFORMERS, tone control and loudspeaker testing for all W.W.C. circuits; special designs promptly made.

-Morecambe Sound Service, 4-6, Green St., Morecambe. Tel. 02276

RECORDING equipment in good condition for sale. 2 m.s.s. recorders, plunge-carrying case, 7-channel mixer, rotary converter, 6-way generator and accessories. £10 or nearest offer. Miss Dole, Plat 643, Neil Green House, Ilford, Essex. Tel. Mac. 4986. Ref. 1937.

BRAIN RADIOCRAFT, Ltd., Leicester. 0027

GRAMOPHONE WIRE & SOUND EQUIPMENT

SPECIALS AND SECONDHAND

BRIEFLY HF-FI pick-up, unused, with transformer, excess 220-240 volts. £7—Box 2035 W.W.

DECA pick-up C, new, Sapphire II, with motor and non-ferrous finish. £15—2049 W.W.

WILKING & Wright coil pick-up, with transformer, as new. £10—Driver, Whittington Lane, Gosforth, Newcastle. £15—D.O.P. electro-plating cell; recording pick-up, bent cutting head. £10—Q.3 B.M.I., 4 Queen Mary's Av, Washington, Tyne & Wear. Tel. 479.

MAGNETIC sound recording wire, stainless steel, temper, weight 1 oz., approx. 14 hours' running time at 21ft per sec., 1473—per reel.
WIRELESS WORLD

TELEVISION: Sel P.M. focus rings, universal tube and turret driving. No. 225, 4/6.

COMPONENTS - SURPLUS AND SECONDHAND

SOUTHERN RADIO'S wireless bargains.

TELEKITT SUPPLY CO.
- SLCOS Monitor units, utilising 2lmn tube (VCH-135), from £2/6.
- U.S. Zenith-type metal cabinet, 113 x 89 x 222, with hinged lid, including 6x15 tubes, 120v, 9/6.
- Tram TYPE A battery, 6x7, 12, 350v, 15 watts. 22/6.
- Twinom, d.t.p. stereo, spring clip to neck, 3/-.

HILLFIELDS MAIL RADIO, 8, Burnham Rd. L.P. chokes. 2/6.

A.W.L.COE.-
- Pre-aligned, sealed and the whole matched to- ward as a unit; the circuit re- search, and design work supplied with- out the super- b B.H. Spindrift line. 4/2.
- Detail lists of these and our other high quality products and accessories. The company can supply together with many circuits and constructional ideas. The company invites you to see the quality and attention to detail present. The cost is eliminated and power saved; an ideal re- pair for TCA. 2/6.

ELECTRONIC Eng. televisor; 16/6.

PACKARD-BELL Pre-amplifier, buzzor, 41/2v, baseboard, batt. clip and instruc- tion sheet. 22/6;

NEW oscilloscope scope, 30/-; as above, but less valves and tube, 16/6;

PRACTICAL wireless televisor; 16/6.

ECONOMY

You're SURE to get it at STERNS!

RESTRICTIONS: A certain number of popular assorted val- ues for 1 watt, 6/6, or 1 watt, 8/6.

- **Molder Coil Speakers. Well-known manufacturer's sur- plus, all types, 14/6, 11/6, 16/6, 12/6.**
- **Electro-TRONIC VALVE VOLTMETERS. We can supply the COMPLETE KIT OF PARTS, including the Valve, Blode and Metz, etc., to build a finished Instrument, as published in the January issue of W.R.E.T. We have now a new Type. The kit is designed for a 1 watt type, 6j/mm, 18/6, 16/6, 24, 3/6, 3 amp. Also K.T. 12 volt valve, 12/6, 6 watts, 12/6, 7/6.**

NATIONAL Radio Co. Ltd., 109 and 115 FLEET STREET, E.C.4.

Telephone: Central 5841 and 2280.
WIRELESS WORLD

For Further Lines of Cables, Capacitors, Resistors, etc.

per dos.
9d.

10 Watts 41-

Dissp. 20 Watts, 3/6.

Volume Controls with Switch (Heavy Duty) 6/6.

Sin. P/M Speaker Units, 3.4 ohm Coil 15/8.

Bakelite Control knobs, llin. DIRM. 9d. High Density

COMPONENTS, ETC.

Colour : Brown.

ACCESSORIES AT A SAVING!

COMPONENTS MATERIALS AND

SOUTHGATE, CAR & GENERAL RADIO

SPECIAL QUOTATIONS FOR QUANTITIES

BULGIN 5,000 ohm Wire Wound

HEAVY DUTY KITS, S.T.C., 12 v. 6 amp. giant finned

HEAVY DUTY RECTIFIERS, small space selen)nin type, D.C. 6.3v6a,

6.3v, 6 amp, 30/-; 10 amp., 42/-;

3 amp., 3.13/6 ;

4 amp.. 22/-; large finned type

for 6 v. 22/9, 12/9 d.

"AUTOMATIC" 2 amp. motorist's charger for 6 v. and

12/15 v. IS amp, 25/-; 6 amp, 30/-; 10 amp., 42/-;

3 amp., 3.13/6 ;

4 amp.. 22/-; large finned type

for 6 v. 22/9, 12/9 d.

"AUTOMATIC" 2 amp. motorist's charger for 6 v. and

12/15 v. IS amp, 25/-; 6 amp, 30/-; 10 amp., 42/-;

3 amp., 3.13/6 ;

4 amp.. 22/-; large finned type

for 6 v. 22/9, 12/9 d.

"AUTOMATIC" 2 amp. motorist's charger for 6 v. and

12/15 v. IS amp, 25/-; 6 amp, 30/-; 10 amp., 42/-;

3 amp., 3.13/6 ;

4 amp.. 22/-; large finned type

for 6 v. 22/9, 12/9 d.

"AUTOMATIC" 2 amp. motorist's charger for 6 v. and

12/15 v. IS amp, 25/-; 6 amp, 30/-; 10 amp., 42/-;

3 amp., 3.13/6 ;

4 amp.. 22/-; large finned type

for 6 v. 22/9, 12/9 d.

"AUTOMATIC" 2 amp. motorist's charger for 6 v. and

12/15 v. IS amp, 25/-; 6 amp, 30/-; 10 amp., 42/-;

3 amp., 3.13/6 ;

4 amp.. 22/-; large finned type

for 6 v. 22/9, 12/9 d.

"AUTOMATIC" 2 amp. motorist's charger for 6 v. and

12/15 v. IS amp, 25/-; 6 amp, 30/-; 10 amp., 42/-;

3 amp., 3.13/6 ;

4 amp.. 22/-; large finned type

for 6 v. 22/9, 12/9 d.

"AUTOMATIC" 2 amp. motorist's charger for 6 v. and

12/15 v. IS amp, 25/-; 6 amp, 30/-; 10 amp., 42/-;

3 amp., 3.13/6 ;

4 amp.. 22/-; large finned type

for 6 v. 22/9, 12/9 d.

"AUTOMATIC" 2 amp. motorist's charger for 6 v. and

12/15 v. IS amp, 25/-; 6 amp, 30/-; 10 amp., 42/-;

3 amp., 3.13/6 ;

4 amp.. 22/-; large finned type

for 6 v. 22/9, 12/9 d.

"AUTOMATIC" 2 amp. motorist's charger for 6 v. and

12/15 v. IS amp, 25/-; 6 amp, 30/-; 10 amp., 42/-;

3 amp., 3.13/6 ;

4 amp.. 22/-; large finned type

for 6 v. 22/9, 12/9 d.

"AUTOMATIC" 2 amp. motorist's charger for 6 v. and

12/15 v. IS amp, 25/-; 6 amp, 30/-; 10 amp., 42/-;

3 amp., 3.13/6 ;

4 amp.. 22/-; large finned type

for 6 v. 22/9, 12/9 d.

"AUTOMATIC" 2 amp. motorist's charger for 6 v. and

12/15 v. IS amp, 25/-; 6 amp, 30/-; 10 amp., 42/-;

3 amp., 3.13/6 ;

4 amp.. 22/-; large finned type

for 6 v. 22/9, 12/9 d.

"AUTOMATIC" 2 amp. motorist's charger for 6 v. and

12/15 v. IS amp, 25/-; 6 amp, 30/-; 10 amp., 42/-;

3 amp., 3.13/6 ;

4 amp.. 22/-; large finned type

for 6 v. 22/9, 12/9 d.

"AUTOMATIC" 2 amp. motorist's charger for 6 v. and

12/15 v. IS amp, 25/-; 6 amp, 30/-; 10 amp., 42/-;

3 amp., 3.13/6 ;

4 amp.. 22/-; large finned type

for 6 v. 22/9, 12/9 d.
GALPINS

ELECTRICAL STORES

408 HIGH STREET, LEWISHAM, LONDON, S.E.13
Telephone: Lee Green 0309.
Near Lewisham Hospital.

TERMS: CASH WITH ORDER. NO C.O.D.

10061
Staveley Rd.; list.

2, 5, 10, 20, 50, 100, 200, 400 and 1,000 ohms; price 4/- per set, post paid; special quotation for larger quantities.

10050
VOLTS, 50 cycle, 1 phase at 300 watts, approx. * h.p. windings

200/250 volts 300 m/amps; output 160-200 volts de, 14 amp.; price 45/- per doz.

10055
W.K.G., 1/- per each; post paid; 45/- per doz.

1005
EX R.A.F. ROTARY CONVERTORS, 100/190, and 230 volts at 1,600 watts, £5/5/- each, carriage 10/-.

10035
EX R.A.F. CRYSTAL MONITORS, 12 volts, 6 amp., £2; ditto half the above size, 10/- each; another 100 watts D.C. input 50/100 volts 500 cycles, 150/- each, carriage 7/6.

1003
EX R.A.F. ROTARY CONVERTORS, 12 volts, 6 amp., £2.50;ditto half the above size, 10/- each; another 100 watts D.C. input 50/100 volts 500 cycles, 150/- each, carriage 7/6.

1002
EX R.A.F. ROTARY CONVERTORS, 12 volts, 6 amp., £2.50;ditto half the above size, 10/- each; another 100 watts D.C. input 50/100 volts 500 cycles, 150/- each, carriage 7/6.

1001
EX R.A.F. ROTARY CONVERTORS, 12 volts, 6 amp., £2.50;ditto half the above size, 10/- each; another 100 watts D.C. input 50/100 volts 500 cycles, 150/- each, carriage 7/6.

1000
EX R.A.F. ROTARY CONVERTORS, 12 volts, 6 amp., £2.50;ditto half the above size, 10/- each; another 100 watts D.C. input 50/100 volts 500 cycles, 150/- each, carriage 7/6.
The British National Radio School

CASH IS NOT ENOUGH

We must first be convinced that YOU are going to BENEFIT!

Write and tell us of your background and AMBITIONS and we will advise, not lure.

A.M.I.E.E. (in approved cases), Brit.I.R.E., City and Guilds, P.M.G. (Theory only) Examination Courses, also what we sincerely believe to be the best RADAR Course ever written.

Studies Director

British National Radio School
65, Addiscombe Road, Croydon

Radio Clearances, Ltd., 27, Tottenham Court Road, London, W.1. Tel. Museum 5598

RADIO CLEARANCES

Justable sensitivity. Bandwidth 3-4 mc/s.

PRE-AMPLIFIERS

TELEVISION STANDARD COMMERICAL RECEIVERS. Ideal 200/250 A.C. 50 cps.

RADAR Course ever written.

British National Radio School

Bristol 3.

Established 1940

THE

TELEVISION

PRE-AMPLIFIERS

FOR BIRMINGHAM FREQUENCY

SPECIFICATION:

Two stage high gain low noise having adjustable sensitivity. Bandwidth 3-4 mc/s. Completely self contained, operates from 200/250 A.C. 50 cps.

Ideal for long distance reception of standard commercial receivers.

Price £5.15.0 post paid

Cabot Radio Co. Ltd.

28 Bedminster Parade, Bristol 3.

Tel.: 64314

Radio Clearances, Ltd., 27, Tottenham Court Road, London, W.1. Tel. Museum 5598

Radio Clearances

80 watt high fidelity amplifier kits for constructing the more up-to-date and modern type of A.G.O.U. amplifier, suitable for using with or without low impedance input (suitable for moving coil circuits, etc.). By placing two small rectifier tube circuits to each stage the output from the stages is multiplied.

R.C. coupled to triode strapped stage (EF75), which has both its base and collector to a common cathode, and the output is taken from this point. The first stage is a grounded grid coupled pentode stage (EF75). The output is taken from the grid coupling, and the stage is biased in the linear region of operation.

The gain of the rest of the previously described amplifiers is also very high. Rectifiers of the 807 type are used in the power supply. The power is transferred to the output stage using four CL33's in series with a 20 watt high fidelity amplifier, the output brought out on 8 ft screened lead, 17/6: 0.5mA, 15/6: 0.3mA, 7/-; 0.300v series res.

Output brought out on 8 ft screened lead, 17/6: 0.5mA, 15/6: 0.3mA, 7/-; 0.300v series res.

WIRELESS WORLD

March, 1950

NO NOTES CHANGED

if you use the following AMPLIFIERS

SPEAKERS

Wharfedale S.F. New Corner, Tannoy "Duo Concentric," W.B. £6/6- Concentric Duplex, Barker 180 and 148a, also our matched pair with crossovers, 14 gns.

PICK-UPS

Decca, Acois, Connosseur, Brierley.

FEEDER UNITS

Leak P.B., Sound Sales DX, Plus One and Two and new Bumpas. E. Other lines include Armstrong Chassis Autochange Units and FFrr Records.

Call and hear them at:

Holley's Radio Store

285, Canterbury Road, S.E.5

Phone: Rodney 4988

200/250 volt A.C. MOTORS

Approx. H.P. ONE EIGHTH, Carriage and Packing 3/- extra. Each.

ALDIS LAMPS

Stage Spot Lighting, EACH Photographic work etc.

Mains Interference Suppressors

Rid your set of all noises from the Mains

21/- each

POSTAGE 1/- Large stocks.

Send stamps for descriptive leaflets of RADIO BARGAINS

Universal Bazaars

(M.L), Ltd., 8-10 Brown Street, Manchester, 2

(Translated 5009)
SOUTHERN RADIO'S WIRELESS BARGAINS

R.F.A. BOMBSIGHT COMPUTERS

Complete with motors, gyro, blowers, gears, etc., and other components.

The best component value ever offered.

SERVO UNIT ASSEMBLY for bombsight computer, including 27 volts motor, gearing, blowers, etc.

CONTACTOR TIME SWITCHES.

10-hour motor type, for 240 volts. Operate 2 impulses per second.

All complete in sound-proof case, 10/-.

DELCO HAND GENERATORS.

6 volts at 4 amps, complete, ready for use.

LUCAS GENERATORS.

12 volts input to 480 volts output D.C., 100 A.M.

PERISCOPE.

Ex-U.S.A. Type M B.M., complete with removable telescope, 1/4.

COMMAND RECEIVERS, B.C.454 (49/100 metres), B.C.455 (33-49 metres).

Complete with 6 valves. Ideal for easy conversion to mains receivers or car radio.

Conversion circuit to mains, etc., etc., etc.

CRYSTALS.

American and British 2-pin types. A fair assortment of frequencies from 2000 to 2040 Hz, etc.

CRYSTAL MONITORS.

Type 2.

Complete for 480 volts output D.C., 8 valves.

CAMEO CONTROL UNITS.

Type 35 No. 26, Complete in wooden box.

LUBBER HOLE CUTTERS.

Adjustable from bolt to 31 inches. For use on wood, metal, plastic, etc., etc.

RADIO COMPASS INDICATORS.

With 4 elements. 3 inch, 360 degrees Fahrenheit.

ROTOTHERM.

Temperature gauges, from 200 to 500 degrees Fahrenheit. Chromium finish.

SECTIONAL AERIALS.

8-feet interlocking, 3/6, base for same 2/6.

WAVEMETERS.

Ideal for Oscillator conversion, 44/-, with 230 volts d.c., and 24 volt 230 volt, A.C.

INDICATOR UNITS.

Type BC 929.

7 Valves 2X2 (I), 12X2 (I), 12X5 (I), 6X5 (I), 6H6 (2), 6G6 (I), 12SL7 (2), 12a6 (I), etc., etc.

MORSE TAPPING KEYS.

Designed for Crystal Control, 55/-, plus 5/- carriage.

PERISCOPE.

Complete with 2 valves.

FACINGHAM, 95, North St., Keighley.

LUCAS GENERATORS.

12 volts input to 480 volts output D.C., 100 A.M.

PERISCOPE.

Ex-U.S.A. Type M B.M., complete with removable telescope, 1/4.

COMMAND RECEIVERS, B.C.454 (49/100 metres), B.C.455 (33-49 metres).

Complete with 6 valves. Ideal for easy conversion to mains receivers or car radio.

Conversion circuit to mains, etc., etc., etc.

CRYSTALS.

American and British 2-pin types. A fair assortment of frequencies from 2000 Hz, etc.

CRYSTAL MONITORS.

Type 2.

Complete for 480 volts output D.C., 8 valves.

CAMEO CONTROL UNITS.

Type 35 No. 26, Complete in wooden box.

LUBBER HOLE CUTTERS.

Adjustable from bolt to 31 inches. For use on wood, metal, plastic, etc., etc.

RADIO COMPASS INDICATORS.

With 4 elements. 3 inch, 360 degrees Fahrenheit.

ROTOTHERM.

Temperature gauges, from 200 to 500 degrees Fahrenheit. Chromium finish.

SECTIONAL AERIALS.

8-feet interlocking, 3/6, base for same 2/6.

WAVEMETERS.

Ideal for Oscillator conversion, 44/-, with 230 volts d.c., and 24 volt 230 volt, A.C.

INDICATOR UNITS.

Type BC 929.

7 Valves 2X2 (I), 12X2 (I), 12X5 (I), 6X5 (I), 6H6 (2), 6G6 (I), 12SL7 (2), 12a6 (I), etc., etc.

MORSE TAPPING KEYS.

Designed for Crystal Control, 55/-, plus 5/- carriage.

PERISCOPE.

Complete with 2 valves.

FACINGHAM, 95, North St., Keighley.
STANDARD ENCLOSED RACK

The Imhof 6ft. and 4ft. enclosed racks are standard articles, available from stock. They embody several unique features in their design. For example, both sides as well as back door are swung on lift-off hinges, and multiple units may be formed using only two end doors. Panels, chassis, chassis runners—telescopic and fixed, desk unit, gram unit and mobile base are all standard accessories.

Write for leaflet giving full details or catalogue of our complete range of standard cases, chassis, handle, etc.

RADIO and television sets, all in stock, estos to tape recorders. We also make and sell, repair and maintain all types of radio and television equipment. We have a large range of sound reproduction systems, including tape recorders, turntables, and hi-fi equipment. We also sell a wide range of accessories, such as speakers, amplifiers, and turntables. We can also repair or service your equipment.

WORK WANTED

We make and sell radiowaves and television cabinets for home and export, immediate delivery.

WRITE FOR LEAFLET GIVING FULL DETAILS OR CATALOGUE OF OUR COMPLETE RANGE OF STANDARD CASES, CHASSIS, HANDLES, ETC.

MISCELLANEOUS

The Imhof 6ft. and 4ft. enclosed racks are standard articles, available from stock. They embody several unique features in their design. For example, both sides as well as back door are swung on lift-off hinges, and multiple units may be formed using only two end doors. Panels, chassis, chassis runners—telescopic and fixed, desk unit, gram unit and mobile base are all standard accessories.

Registered Design No. 858451

The Imhof 6ft. and 4ft. enclosed racks are standard articles, available from stock. They embody several unique features in their design. For example, both sides as well as back door are swung on lift-off hinges, and multiple units may be formed using only two end doors. Panels, chassis, chassis runners—telescopic and fixed, desk unit, gram unit and mobile base are all standard accessories.

Write for leaflet giving full details or catalogue of our complete range of standard cases, chassis, handles, etc.

BARKER LOUDSPEAKER

FOR THE SAME GOOD REASONS WHICH HAVE LED HUNDREDS TO A SIMILAR HAPPY SATISFYING AND LASTING CHOICE

There is a waiting list for both models at present and delivery takes two to three weeks. We regret this and are doing our best. The wise will act promptly in ordering now

WHITE FOR DETAILS TO BCM/ADU

LONDON, W.C.1
WIRELESS WORLD
March, 1950

THEME: Thinking of building a Television Set?

4 gns.

Carriage Paid

ASH MASTS

30-feet Masts. 10-section best selected. Ash. Socketed ends complete with guy ropes, piper posts, fixing instructions, etc. In manufacturer's sealed cases.

£2/15/- plus 6/- carriage.

Brand New

Westinghouse

45-ft. 10-Sectional

2" DURAL MASTS

Complete with six guy ropes, piper posts, packed in canvas bag. Each

£7/10/- plus 12/6 carriage.

Dept. W. WIRELESS INSTRUMENTS (Leeds) Ltd.

54-56 The Headrow.

Tel. 22822.

WE DON'T

supply anything Ex-Government

for NTI (£5000)

—fully guaranteed—

AUTOCHANGERS IN STOCK

GARRARD RC56A & RC12J. Complete sets,

Recorded. Standard lightweight Magnetic Head, 12/15s.

E.M. MARCONI, A.C. Auto Changer, non mixed, Hi-Fi Head, complete with

Transformers and Coils. COLLARO. RC 500. A.C. Auto Changer Non Mix. Crystal or Hi-Fi Head, £10/15s/6. CABSNETS. Unpainted for all above changers. Motor Boards ready cut to fit place, £3/6/0.

AND TEST GEAR

The entire range by this famous maker is now available on HIRE PURCHASE. S.A.E. for Catalogue and Terms. **NEW AND REWINDS**

ALLOV TEST GEAR NOW IN STOCK

A.V.O. 7. Leather cases, £2/14/6. We would be interested in second-hand A.V.O. or Avo Meters in England. S.A.E. for Catalogue and Price List. All items can be supplied C.O.D. up to 1516. in weight. Otherwise Cash with order please.

Special attention to Overseas Orders, which a we have arranged in conjunction with our Crown Agents.

MODERN ELECTRICS LTD.,

164, Charing Cross Road, London, W.C.2.

Telephone : Temple Bar 7587.

TRANSFORMERS & COILWINDERS

NEW AND REWINDS

All transformers interrogated & Impregnated Tested for (1) Shored turns. (2) Insulation at 2 K.V. minimum. E.M.T. A SPECIALITY. "E.M.T." MIDDLESEX TRANSFORMATION COILS,

1847. S.W.6.

J. E. THORNER & SONS,

Telephone : 2584.

WILCO ELECTRONICS

RACKS P.O. Standard 19in., with heavy single iron base, 5t. 49/-; 5ft, 79/-; 8ft. 6n.

Lighter Type £0.

OPERATORS DESKS. Standard 19in. Rack mounted 12in. deep, 15/-.

POWER UNITS. 19in. Rack Mounting, panel 19in. x 10in., input 200-250 v., 50 cy., output 280-230 v. x 190 ma., 63 a. 9 a. 5 v. 3 at 2A. Complete with choke, con-

verter, identity lamp, Bulgin connector, "SUG REECE & COVER,

1952.

GWANDON REEL, 6in. Dia., 7/6 each.

Non-sync., 5/6 each.

A PUBLISHED SET of P.WST 1-10 Mils complete with 5 values, less power pack, 3/6 each.

TRANSFORMER SPEC., 19in. A.C. M.I. 2 gin., 17/6 each, 3in., 12/4 each.

204 LOWER ADDISCOMBE ROAD, CROYDON

R.C.C 220 VOLT 20A WIRE.

WIRELESS WORLD

March, 1950

**ENGRAVING, amateurs and trade could take advantage of engraving problems in the cutting by getting some form of solid workmanship, and O. E. Entwistle, 18a, Windmill Rd., London, S.W.10. Brass, bronze, etching, one kind or another, repetition equally entertained.

1934

3/6

For this modest sum we supply you with full constructional details for building our latest push-pull amplifier with one transist. This is a variable negative feedback; these constructional sheets are simplified so that the most inexperienced person may build and obtain first-class results. Complete Housewife's Handbook, with circuits of this and many other sets, see “Superspares,” 92, Great West Rd. Ave., London, E.17.

1947

GOGOVEMENT POSTS VACANT

Vacancies are advertised to persons employed excepting the provisions of the Control of Employment Order, 1947.

WE ARE now actively considering the appointment of a First assistant radio engineer required by broadcasting a Directorate for one in first instance, Salary £1500 rising to £1620 by end of year. Qualifications: I.D. 245 a month, high of living allowance of between 12L and 11.43 a month, according to salary and dependants (latest and envelope). Preference given to fund, free passages. Candidates must (a) hold P.E. Ots. 104 or equivalent, (b) have experience in the field of radio and television transmitters and receivers and electrical and mechanical parts of the apparatus in a large city airport. —Apply at once by letter, stating age, whether married or single, and full particulars of qualifications and experience, and mentioning paper to the Crown Agents for the Colonies. S. Millbank, London, S.W.1, quoting M/N/2000 (8) on both letter and envelope. The Crown Agents cannot undertake to acknowledge all applications or that they will communicate with applicants only with successful candidates for further consideration.

CROWN Agents for the Colonies.

RADIO TELEGRAPH Inspected by Nigeria Government.”

Telegraphs Department, Eastern Division, British Electricity Authority, for one year of 18 to 24 months, Salary £150 a year (including tax, 49/- a week), official allowance £50; free passages: the duties of the post are those of an operation foreman engaged on the installation of radio diffusion or relay systems including (a) receiving stations with diversity reception, aerial arrays, etc., and (b) the various lines and apparatus candidates should have had experience with a company operating radio relay services; apply at once by letter, stating age, whether married or single, and full particulars of qualifications and experience and mentioning paper to the Crown Agents for the Colonies. S. Millbank, London, S.W.1, quoting M/N/2000/1918 on both letter and envelope. The Crown Agents cannot undertake to acknowledge all applications or that they will communicate with applicants only with successful candidates for further consideration.

CROWN Agents for the Colonies.

B | N

FOR (c) qualifications should include education to School Certificate standard. and some practical knowledge of radio. For (b) qualifications and experience, and mentioning good business letters, and have adequate training or School Certificate. be capable of writing Secondary School education and hold Matricula-

tion with good education, capable of writing secondary school education and hold Matulica-

tion with good education.

A GENERAL assistant engineer is required in the Communications Section of the Technical Department at Divisional Controller’s Office, North Ebooklet’s Area, to assist in the promotion of the Divisional Engineer’s work. The work will include the maintenance of telephone exchange arrangements and various electronic engineering. Applicants should be graduate members of the Institute of Electrical Engineers or have completed the basic or equivalent course for the degree of A.E. and I.D. or degree in electronic engineering. A general assistant engineer required to work in the Divisions of Electrical Officers, to assist in the promotion of the Divisional Engineer’s work. The work will include the maintenance of telephone exchange arrangements and various electronic engineering. Applicants should be graduate members of the Institute of Electrical Engineers or have completed the basic or equivalent course for the degree of A.E. and I.D. or degree in electronic engineering.

THE salary range for the position is in accordance with the Divisional Engineer Salary Schedule 1947.

**We are now actively considering the appointment of a First assistant radio engineer required by broadcasting a Directorate for one in first instance, Salary £1500 rising to £1620 by end of year. Qualifications: I.D. 245 a month, high of living allowance of between 12L and 11.43 a month, according to salary and dependants (latest and envelope). Preference given to fund, free passages. Candidates must (a) hold P.E. Ots. 104 or equivalent, (b) have experience in the field of radio and television transmitters and receivers and electrical and mechanical parts of the apparatus in a large city airport. —Apply at once by letter, stating age, whether married or single, and full particulars of qualifications and experience, and mentioning paper to the Crown Agents for the Colonies. S. Millbank, London, S.W.1, quoting M/N/2000/1918 on both letter and envelope. The Crown Agents cannot undertake to acknowledge all applications or that they will communicate with applicants only with successful candidates for further consideration.

CROWN Agents for the Colonies.

RADIO TELEGRAPH Inspected by Nigeria Government.”

Telegraphs Department, Eastern Division, British Electricity Authority, for one year of 18 to 24 months, Salary £150 a year (including tax, 49/- a week), official allowance £50; free passages: the duties of the post are those of an operation foreman engaged on the installation of radio diffusion or relay systems including (a) receiving stations with diversity reception, aerial arrays, etc., and (b) the various lines and apparatus candidates should have had experience with a company operating radio relay services; apply at once by letter, stating age, whether married or single, and full particulars of qualifications and experience and mentioning paper to the Crown Agents for the Colonies. S. Millbank, London, S.W.1, quoting M/N/2000/1918 on both letter and envelope. The Crown Agents cannot undertake to acknowledge all applications or that they will communicate with applicants only with successful candidates for further consideration.

CROWN Agents for the Colonies.

B | N

FOR (c) qualifications should include education to School Certificate standard. and some practical knowledge of radio. For (b) qualifications and experience, and mentioning good business letters, and have adequate training or School Certificate. be capable of writing Secondary School education and hold Matulica-

tion with good education.
This model has been produced after exhaustive investigation into the requirements of Overseas Listeners. Ease of operation on the short-wave bands high sensitivity and quality output have all been studied and incorporated in the EXP 119.

BRIEF SPECIFICATION

1. Designed specifically for the Overseas Listener.
2. 9 wave ranges. (Bandspread and 3 general coverage) 11-570 metres.
3. High slope pentode R.F. stage.
4. 2 stages of I.F. amplification.
5. Variable selectivity.
6. Automatic noise limiter.
7. 10 watts push-pull output.
8. Separate A.C. power pack to facilitate operation from a vibrator if required.
9. 11 valve circuit (including cathode-ray tuning indicator).

A few of these models are now available for the home market price £36 plus P.T.

Write now for fullest information.
Send your list of requirements for instant attention. Regret no catalogue at present, but we do have the merchandise.

TELEVISION CONSTRUCTORS! E. B. Televisor Demonstrated Daily MIDLAND CONSTRUCTORS ETC. ARE INVITED TO SEND FOR OUR COMPLETE COMPETENCE LIST AND TAKE ADVANTAGE OF OUR PROMPT POSTAL SERVICE.

J. T. FILER TOPPLE ESTATE, BIXLEY, KENT.
Tel. Beeleyheathe 126f

100 kcs. QUARTZ CRYSTAL UNIT Type Q5/100

For Secondary Frequency Standards ★ Accuracy better than 0.01%. ★ Temperature coefficient 2 parts in a million per degree Centigrade temperature change. ★ Gold electrodes applied by cathode sputtering direct to the faces of the crystal. ★ Giving perfect stabilization and vibration. ★ Single simple valve circuit gives strong harmonics of the crystal, giving permanence of calibration. ★ Applied by cathodic sputtering direct to the faces of the crystal. ★ Gold electrodes for secondary applications. ★ Used in research purposes; starting salary dependent on qualifications and practical experience.

GABINS AND COMPONENTS

4 Watt A.C. Quality Amplifier, with negative feedback and separate bass and treble controls, from £5. 15s. Od. 5 Watt Universal similar to above from £3. 15s. Od. 12 Watt Universal from £6. 5s. Od. Full details on request.

LEWIS RADIO CO. (Dept. 73)

321, High Road, Wood Green, LONDON N.2. Phone: BOWes Park 5997

SUPACOILS

Have pleasure in announcing that they can now supply all the components for the famous VIEWMASTER.

VIEWMASTER

THE TELEVISOR THAT YOU CAN BUILD FROM STANDARD COMPONENTS.

FAILURE IS IMPOSSIBLE!

Viewmaster Envelope of instructions with 8 detailed full size drawings and construction details for building this Modern Television, together with complete list of Television Components.

Kits of Components by the recommended manufacturers are available as follows:

Whiteley Electrical, £6/5/-.

Plessey, £12/-.

D.C. Prefabricated Sets, 45x6x6cm.

G.E., £3/9-1/10.

Magnetics, £1/5/-.

Valves as specified. Forte 80 Pilot. We cater exclusively for Mail Order Customers and you can trust our packing and despatch department to see that your orders are dealt with promptly and reach you in perfect condition, whatever the distance.

SUPACOILS

Mail Order Office 98, Greenway Avenue, London, E.17
When Quality Counts

the HOMELAB Signal Generator is a wise choice. But there is a snag—we can give immediate delivery. The fact is that the large demand for this instrument has, until recently, exceeded our manufacturing capacity. Some of our customers have had to wait longer than was anticipated, but we have now obtained additional premises for the production of the HOMELAB and are able to make lots more of them. During the next few weeks we will be able to get right up to date with orders. We offer our apologies to those who have patiently waited delivery—but we gather from the letters we receive that the HOMELAB is well worth waiting for. May we remind you that the HOMELAB Signal Generator has the following features:

- 100KCS. to 130 MCS.
- 30 per cent. MODULATION at 4000, or
- UNMODULATED CARRIER
- PROVISION FOR EXTERNAL MODULATION
- OUTPUT IMPEDANCE 10Q
- LOW EXTERNAL FIELD
- BUFFER STAGE
- VARIABLE 400 OUTPUT
- ACCURACY OF CALIBRATION ±1 per cent.
- A.C. MAINS OPERATION ONLY.

PRICE £6:11:0 plus 5/- for packing, etc.

Please send S.A.E. for full technical details and price lists. P.O. for 2/6 if circuit diagram required. The HOMELAB Signal Generator can be seen at our new showroom—the address is HOMELAB INSTRUMENTS, 374, High Road, London, E.I—but orders can only be accepted by post and these, together with all enquiries should be addressed to:

HELY-MANN
ELECTRONICS LABORATORIES
116, GROVE RD., LONDON, E.17.
SUPACOILS
OFFER

Model 30 Coil Pack.—The 3-waveband superhet pack with adjustable iron core coils and trimmers for absolute accuracy in padding and tuning. This pack is further more and more favour among experienced engineers in professional design high quality workmanship and high sensitivity, fully aligned...27/9 (inc.)

Model 40 Coil Pack.—Similar to the Model 30 but with RF stage, fully aligned...54/6 (inc.)

Model 30 Tuning Unit.—This is now one of the most popular units for easy and efficient superhet construction. It consists of a Model 30 coil pack, power supplies, tuning units, and an attractive dial. Components are aligned together as a unit in an actual receiver and sealed. No further alignment is required...54/9 (inc.)

Model 40 Tuning Unit.—Similar to above with provision for RF stage...84/3 (inc.)

FREE. A Free copy of the enormously successful HOME CONSTRUCTOR's HANDBOOK will be given to every purchaser. Or a copy can be obtained for 1/- from SUPACOILS (Mail Order Office) 98, Greenway Avenue, London, E.17

You can master

MATHEMATICS

if you wish to understand radio really thoroughly, you must possess a degree in Electrical Engineering. Our new Home-Study Courses make them really interesting and easy to learn.

T & C. RADIO COLLEGE
Specialists in Home-Study Tuition in Mathematics, Radio & Television.

Write for free booklet "W" to:-
R. Heath Bradley, T. C. R. C.,
SOUTHBOURNE, BOURNEMOUTH.

No. 19 TRANSMITTER—RECEIVER UNITS

Once again we have been fortunate to secure a limited number of these excellass transmitters. They were in most cases brand new, and of Canadian manufacture, but to conform to regulations were partially dismantled by the Ministry before resale, and are sold by us for the many components, which include:—1 A four 9060 Tuning Condenser, 1 single 8900 Tuning condenser, each fitted with slow motion dials; + 40uede trimmers and several dozen condensers, resistors etc. Our Special Price is 19s. 10d. We regret that when we last advertised these chassis the colossal demand exhausted our stocks and many were disappointed in this unit.

POWER UNIT for the above works direct from a 12 or 24 v. battery and is actually 4 units in 1. In Rotary Transformer and a Vibrator Unit: Upto 260 v. at 120 m/A and 540 v. at 26 m/A. Brand New, by professionals, for professional radio enthusiasts. Each complete and ready for fitting. (Callers Only).

TELEVISION ENTHUSIASTS! Low loss Dipole Antenna. Also large selection of Specialist Elements, to suit London or Birmingham. The basis of any ultra efficient Aerial Installation. Only 1/- each.

WALTON'S WIRELESS STORES
203, STAVELY ROAD, WOLVERHAMPTON

48, STAFFORD STREET, WOLVERHAMPTON
(Calls Only.)

Supercalls (Mail Order Office) 98, Greenway Avenue, London, E.17
APPLICATIONS are invited from electronic engineers for permanent positions in a successful and expanding organisation near Esher, Surrey; a wide range of experience exists for development engineers, junior and senior designers, coil and transformer designers, and electronics and systems engineers. Salaries and conditions are to be discussed. Good working conditions. Free meals and free transport to Esher from London. Reference required. Apply to Box 102.

SITUATIONS WANTED

ELECTRONICS consultant seeks post anywhere in country. Box 2066.

YOUNG man, 22, single, moving to London from Yorkshire, looking for H.V. service engineer post, seeks position with scope for initiative in sales or service. Box 1069.

BUSINESSES FOR SALE AND WANTED

COLARO AC504 single record player, with mag. pickup, £10/15/-; with hi-fi lightweight, 211/15/-. (Tapped for twin turntables, mike and headphones.) £35-0-0. Mended for above amplifier and Leak .1. Williamson & Zepler)

TELEVISION television aerials can be sent to any district.

WIRELESS, land, sea and air; students, both men and women, are sought at Wireless College, Colwyn Bay. Two courses are available. A. M. I. Mech. E. Degree standard in electronics.无线

PATENTS

A QUALITY AMPLIFIER TO SUIT ALL POCKETS.

A SET-CONTAINED COMPACT 4-VALVE AMPLIFIER CHASSIS WITH AN OUTPUT OF APPROX. 49 WATTS. Includes 3-stage series gain stage, and incorporates independent Bases and Treble boost controls. Suitable spare parts list and detailed instruction pack included. Complete constructional booklet including circuit, layout and component lists for chassis. Price - £49 6s. 6d. for A.C. 110-250v. models. Price £39 8s. 9d. for D.C. A.C. 110-250v. models. Price £38 15s. 9d. for 60-300v. model. Price £37 10s. 6d. for 150-300v. model. Price £36 7s. 6d. for 90-150v. model. Post free.

NUSOUND PRODUCTS

136 WARDOUR ST., LONDON, W.1.

TELEPHONE 9164.

RADIO, TELEVISION AND ELECTRICAL

FULL MAIL ORDER FACILITIES (postage included).

A HIGH QUALITY AMPLIFIER TO SUIT ALL POCKETS.

A HIGH QUALITY AMPLIFIER TO SUIT ALL POCKETS.

Northern Radio Services, 16, King's College Road, Swiss Cottage, London, N. W. 3.

Primosco 8314

WIRELESS WORLD

MARCH, 1950

REOOUNDING MANUFACTURERS OF SOUNO REPRODUCING EQUIPMENT AND ACCESSORIES

LOUDSPEAKERS - SPECIALIST AMPLIFIERS - SINGLE AND TWIN TURNTABLE UNITS - LINE TRANSFORMERS - RUBBER SHROUDED LOUDSPEAKER CONNECTORS - ASSOCIATED SHEET METAL WORK

ILLUSTRATED LISTS ON REQUEST.

REOOUND REOOUNDING ENGINEERING & ELECTRICAL COMPANY, "Reoound Works," Coleshill Road, Sutton Coldfield.

Grans: Reoound, Sutton Coldfield.

Tel.: SUT. 4686.

The Tone Mender Amplifier

Sensational new audio amplifier by N.R.B. The most flexible type ever produced, with a wide range of tone control, including bass lift, treble lift, middle lift, treble cut, negative feedback. For A.C. 110-250v. output, two P.C. to suit your speaker (please state).

WREOOUND ENGINEERING & ELECTRICAL COMPANY, "Reoound Works," Coleshill Road, Sutton Coldfield.

Grans: Reoound, Sutton Coldfield.

Tel.: SUT. 4686.

Nusound Products

136 WARDOUR ST., LONDON, W.1.

TeLEPHONE 9164.

RADIO, TELEVISION AND ELECTRICAL

FULL MAIL ORDER FACILITIES (postage included).

A QUALITY AMPLIFIER TO SUIT ALL POCKETS.

A high quality amplifier for use with an output of approx. 49 watts. Includes 3-stage series gain stage, and incorporates independent Bases and Treble boost controls. Suitable spare parts list and detailed instruction pack included. Complete constructional booklet including circuit, layout and component lists for chassis. Price - £49 6s. 6d. for A.C. 110-250v. models. Price £39 8s. 9d. for D.C. A.C. 110-250v. models. Price £38 15s. 9d. for 60-300v. model. Price £36 7s. 6d. for 150-300v. model. Price £35 5s. 9d. for 90-150v. model. Post free.

Nusound Models

Fitted with separate microphone input and independent volume control for A.C. Extra, B.I.E.T. (Dept. W.W. 3A)

Let us quote you by return of post for components of all types.

EX STOCK.

Build your own chargers with these reliable and efficient L. T. RECTIFIERS. Fully guaranteed and delivery ex stock.

L. T. 41 12V. 1A. 30/6d.

L. T. 42 6V. 1A. 23/8d.

L. T. 45 6V. 4A. 45/2d.

Dep't W. 3. A.

Westinghouse Brake & Signal Co., Ltd.

B. & H. RADIO

BASS & TREBLE SEPARATOR
kit of parts ... £1 9 6
SCRATCH FILTER
Gives a marked reduction of scratch level without serious effect on treble response 15 0

VARIABLE SELECTIVITY I.F. TRANS.
465 kc. gives 3 degree of selectivity per pair £1 0 0

TONE CONTROL UNIT
To control to any equipment and gives independent control of bass and treble £6 10 0

MAINS FILTERS.
To eliminate mains borne interference. The four chokes are dust iron cored and the condensers are 1 KY, wk. Cases are metal with inlet and outlet bushes .. 17 6

B. & H. RADIO EAST STREET, DARLINGTON.

ENQUIRIES FOR ALL TYPES INVITED

BASS & TREBLE SEPARATOR
kit of parts ... £1 9 6
SCRATCH FILTER
Gives a marked reduction of scratch level without serious effect on treble response 15 0

VARIABLE SELECTIVITY I.F. TRANS.
465 kc. gives 3 degree of selectivity per pair £1 0 0

TONE CONTROL UNIT
To control to any equipment and gives independent control of bass and treble £6 10 0

MAINS FILTERS.
To eliminate mains borne interference. The four chokes are dust iron cored and the condensers are 1 KY, wk. Cases are metal with inlet and outlet bushes .. 17 6

B. & H. RADIO EAST STREET, DARLINGTON.

INSTRUMENT WIRE
ENAMELLED, D.C.C. SILK COVERTED
ETC. all sizes from 10 s.w.g. to 42 s.w.g.

ENQUIRIES FOR ALL TYPES INVITED

ENQUIRIES FOR ALL TYPES INVITED

BROOKES CRYSTALS LTD.
10 STOCKWELL STREET
GREENWICH, LONDON, S.E.10.

PHONE GRE. 1828.

CABLE, XTALS LONDON

POST RADIO SUPPLIES
OFFER EX STOCK
COPPER INSTRUMENT WIRE
ENAMELLED, TINNED, LITZ
COTTON AND SILK COVERED.
Post gauges available.

B.A. SCREWS, NUTS, WASHERS,
soldering tags, eyelets and rivets.

EPOXY AND PHENOLITE PANELS,
TUFNOL, ROD, PAXOLIN TYPE COIL FORMERS AND TUBES, ALL DIAMETERS.

Latest Radio Publications.
Send stamped, addressed envelopes for comprehensive lists. Trade supplied.

POST RADIO SUPPLIES
Telephone Clissold 4688

Unquestionably the best TELEVISION PRE-AMPLIFIERS as a trial will prove!
SPENCER WEST, QUAY WORKS, Gt. YARMOUTH

GLOBE-KING "MARVEL IN MINIATURE"

SHORT-WAVE RADIO KIT

- Probably the smallest and most popular Short-Wave Radio receiver in the world using standard parts with headphones saving device. "Significant performer," the personally British line and balance built and designed to precision standards, complete kit can only 49 6d.—write today for descriptive catalogue.

JOHNSONS (E.A.) ELECTRICAL SPECIALISTS (KENS.) LTD.

Unquestionably the best TELEVISION PRE-AMPLIFIERS as a trial will prove!
SPENCER WEST, QUAY WORKS, Gt. YARMOUTH

ELECTRONICS DUPLEY LTD.
CRANE AV. EALING W.13

Reduces soldering. Better work. Saves solder. Use for latex 500. RUNBAKEN-MANCHESTER 1

LUDLOW & COLE
PICKETTS AVENUE
LEIGH-ON-SEA
ESSEX

Specialists in Transformers

COVENTRY RADIO
COMPONENT SPECIALISTS SINCE 1925.

SPECIAL OFFER
New £1 watt Resistors, popular make, 25 standard values.
ASSORTMENT OF 100 FOR 15/-
(List Price value 50/-)
This is an opportunity not to be missed. Stock your workshop now while stocks last.

COVENTRY RADIO
189, DUNSTABLE RD., LUTON, BEDS.
THE MODERN BOOK CO.

THE PRINCIPLES OF TELEVISION RECEPTION.
By A. W. Keen. 2s. 6d. cloth; 6d. paper.

WIRELESS WORLD.

March, 1950

95

WIRELESS WORLD.

VALLANCE’S FOR THE "VIEWMASTER"!

The Sutton Coldfield data enquirer is now available for this receiver at 5/- post free.

TYPESET COMPONENTS.
Frame transformer V7001, 20/.- Width control, 5/.-, Synchronising oval V7002, 20/.-. Boost choke V7006, 2/.-.
Robe choke V7260, 5/-.
Pair of tube sockets 25/.-.
Complete set of PHILTRON components, 30/.-

WHITELAW ELECTRICAL COMPONENTS.
"Diamond" Picture, £10. 2/.-. Power Pack/Time base unit 1/-.
Supporting bases for "Diamond" £10/1-5/.-. Resistor transformer VM101, 1/-.
Main choke VM101, 5/-.
辉光二极管 VM100, 1/6.
Board set of WHITELAW components, 60/.-

WESTINGHOUSE COMPONENTS.
Set of five metal resistors, 25/.-

BULKIN COMPONENTS.
Complete set containing led strips, plugs and sockets, own switch etc., 15/-.

T.C.C. CONDENSER KIT.
Complete set of condensers.
London set, 6/.-.
Midland set, 7/6.
Complete set of COLVEND potentiometers, 30/.-

BILLING LEE.
Slab connector unit LIV, less frame and screw LII, 3/.-. Postage 6d. each.

WHITE TUBE MASKS, etc., 12m., 8/-.
COILS — WRIGHT & WEARE.
Yorkland, 14 iron-cored coils and 1 R.P. Choke, 15/-.
London coils and choice, 21/.-

MORAGANTE RESISTORS.
Midland resistor pack (60 resistors) 2/.-
London pack 100 resistors, 2/7/6.
1 variable 100 k., 5/-.
1 variable 50k., 5/-
CABINETES.
As specified, tin, tin size, complete with back, mask, glass, and lead and minor Ions, 87/6.

CATHODE RAY TUBES.
Nine brands, Midland MIV/10, 6/-.
London set, 8/-.

BULGIN COMPONENTS.
Bulgin resistors for every application.

When ordering components, please state whether for "London" or "Birmingham".

VALLANCE & DAVISON LTD.
144, Bridgegate, Leeds, 1
‘Phone 29428-9

SOLONS FOR YOUR SOLDERING JOBS!

Types available — 65 watt oval tapered bit. 65 watt round taper. 125 watt oval tapered bit. 75 watt oval pencil bit. 120 watt oval tapered bit.

Bridisco

CRISTAL SET, 9/2. Housed in a sturdy bakelite cabinet and complete with fully shielded permanent detector. Permanent Deflector, 2/6. Crystal and Whisker, 6d. Cats Whisker Deflector Kit, 2/6. Tapped Coil, 3/-.

Diode Valve Crystal, 4/6. Experimenters’ Crystals, 3/- for six assorted.

Headphones — High Fidelity, £1. 5/-.

For your local retailer, use this order blank or send the postcard enclosed.

L. GLASER

Scientific & Electrical Instrument Repairs

341 CITY ROAD, E.C.1.
Tel. Terminus 2499

BRIDISCO

These five models will satisfy practically every soldering demand whether for the occasional hobbyist or continuous soldering under workshop or factory conditions. With the Solon the heat is in the bit itself... continuously adjustable after your connection is boused at the end of handle away from heat. Each model can be used with all types of soldering iron. Available now from stock. Write to order Y.10.

W. T. HENLEY’S TELEGRAPH WARE CO. LTD.
51-53 Hatton Garden, London, E.C.1
INDEX TO ADVERTISERS

- Aero Electric Tool Mfg. Co., Ltd., The
- Adoria Products, Ltd.
- Alice Instruments, Ltd.
- Airco Refrigeration Ltd.
- Allan Richard, Ltd., The
- Allen Components, Ltd.
- Alpha Accessories, Ltd.
- Alumagoose Laboratories, Ltd.
- Antiference, Ltd.
- Antiference, Sherman & TV & Telephone Co., Ltd.
- Ashworth, H. (Gramophones & Records), Ltd.
- Ashworth, W. & C. Laboratories, Ltd.
- Ashworth, A. W.
- Audiograph, Ltd.
- Audion Gold Winder & Electrical Equip. Co., Ltd.
- B & H Radio
- Bakers "Beethoven" Radio
- Barker, A. C.
- Basset, Ltd.
- Beiling & Lee, Ltd.
- Berry (Kilford Wave), Ltd.
- Bird, S. B. & Sons, Ltd.
- Bingham Sound Reproducers, Ltd.
- Boscombe Radio & Electric Ltd.
- Brookes Crystals
- British Rola, Ltd.
- British Distributing Co., Ltd.
- British Communications Corp., Ltd.
- British Distributing Co.
- British Institute of Engineering Technology
- British Insulated Callender's Cables, Ltd.
- British National Radio School
- British Rola, Ltd.
- British Rola, Ltd.
- Browne, S. G., Ltd.
- Bull, J. & Sons
- Calor Gas, Ltd.
- Carb Radio Co., Ltd.
- Candler System Co., Ltd.
- Chang, J.
- Champion Products
- Chase, D. T. (No byproducts), Ltd.
- Charles Amplifiers, Ltd.
- Clapton, Ltd.
- C. J. R. Elec. and Electronic Development
- Champion Products
- C. O. R. Elec. and Electronic Development.
- Cinema-Televis.
- Cinematograph, Ltd.
- Cohen, D.
- Cornwall Electronics, Ltd.
- Cosset, A. C., Ltd.
- Coventry Radio
- Davis, Alec, Supplies, Ltd.
- Davey, Jack
- Drayton Radio & Electrical Co., Ltd.
- Drayton Regulator & Instrument Co., Ltd.
- Dudley Electronics, Ltd.
- Edison Swan Electric Co., Ltd.
- E.L.E. Acoustical Laboratories, Ltd.
- Electrical Sound & Television Patents, Ltd.
- E.M.I. Acoustical Developments
- Electronic Instruments, Ltd.
- Encyclopaedia British Address Book
- E.M.I. Institutes
- Elco Tool Co. (Leicester), Ltd.
- Englishay, Ltd.
- Evershine (Electronics), Ltd.
- Flander, Ltd.
- Firth Radiocraft, Ltd.
- Forsell Laboratories, Ltd.

GALPINS
- Gardners Radio, Ltd.
- Garland Radio, Ltd.
- General Electric Co., Ltd.
- General Laminated Products, Ltd.
- Glazer, L.
- Goodmans Industries, Ltd.
- Goodsell, Ltd.
- Gray, A. Ltd.
- Hallam, Bleigh & Chester Ltd.
- Halliwell, H. R. Co., Ltd.
- Halliday, W. Co., Ltd.
- Haynes Radio Products, Ltd.
- Heymann-Electronics Laboratories
- Henry's, W. and the Telephoto Work Co., Ltd.
- Henry's, W. & Churchill Ltd.
- Hogg, F. Levisham
- Holton's Radio Stores
- Holt, B.
- Hopkinton & Co., Ltd.
- H. P. Radio Services, Ltd.
- Hunt, A. H. Ltd.
- Imhoff, A. J., Ltd.
- Industrial Electrics
- Inter Electra, Ltd.
- International Correspondence School, Ltd.
- Jackson Bros. (London), Ltd.
- Johnson's (Radio)
- Kennew, S.
- Lucky's Radio
- Lawrence, G., Ltd.
- Lewis, H. R. Co.
- Lewis Radio Co.
- Lichfield, E. Ltd.
- London Radio Stores
- Lovite, Ltd.
- Ludford & Co.
- Ludlow & Co.
- Lyons Radio
- Mall Order Supply Co.
- Marcon Instrument Co., Ltd.
- Maurice, Richard Equipment Co., Ltd.
- McMillan Instrument Co., Ltd.
- Measurements Instruments (Pullin), Ltd.
- Metro Phil., Ltd.
- Metropolitan-Vickers Electrical Co., Ltd.
- Midland Electric Co., Ltd.
- Modern Book Co.
- Modern Electronics, Ltd., The
- M.R. Supplies, Ltd.
- M.B. & Recordin, Co., Ltd.
- Mullard Electronic Products, Ltd.
- Multicore Solders, Ltd.
- Mycalcs, Ltd.
- Northern Electric Ltd.
- Northern Radio Services
- Nusound Products
- Oliver Pile Control, Ltd.
- Oxford Ltd.
- OXLEY Development Co., Ltd.
- Palinton & Co., Ltd.
- Parmalo, Ltd.
- Partington, Ltd.
- P.C.A. Radio
- Power, T. W.
- Poynter, Ltd.
- Puleman, Ltd.
- Pitman, Sir Isaac & Sons, Ltd.

WINTER 1950

- Post Radio Supplies
- Prairies Radio
- Princess Radio Co., Ltd.
- Proops Bros., Ltd.
- Quartz Crystal Co., Ltd.
- Radio Exchange Co.
- Radio Illuminating Co., Ltd.
- Radio Services Co.
- Radios Laboratories, Ltd.
- Radio Unlimited
- Record Electrical Co., Ltd., The
- Refelton, Ltd.
- Reflex, Ltd. (Swansea), Ltd.
- Resound Eng. & Electrical Co.
- Reynolds & Co., Ltd.
- Rothermel, R. & Co.
- Rubber Benders, Ltd.
- Samarahan Electrical Products, Ltd.
- Salford Electrical Instruments, Ltd.
- Salgado, Weston, Ltd.
- Savage Transformers, Ltd.
- Schuh, Erwin
- Schuhs Accessories, Ltd.
- Simon Sound Service
- Smith, G. W. (Radio), Ltd.
- Sound Sales, Ltd.
- Southern Forge, Ltd.
- Southern Radio Supply, Ltd.
- Stability Radio Components, Ltd.
- Tele insolite, Ltd.
- Shield & Porcelain Products, Ltd.
- Simmons, Ltd.
- Smith, E. R., Ltd.
- Stewart Transformers, Ltd.
- Suffolk, Ltd.
- Sunderland, A., R., & Co. (Engineers), Ltd.
- Sullivan, Ltd.
- Symons, Ltd.
- T. & A. Radio College
- Taylor Tuning (Refractions), Ltd.
- Tele-Research, Ltd.
- Telegraph Construction & Maintenance Co., Ltd.
- Talk Radio (1943), Ltd.
- Thorne, J. F., & Sons
- Thorndale, Ltd.
- Truvo Engineering Co., Ltd.
- United Insulator Co., Ltd.
- United States Radio, Ltd.
- Universal Electrical Instruments Corp.
- University Radio, Ltd.
- Unitec Co., Ltd.
- Vefa, Ltd.
- Vortex, Ltd.
- Vortex, Ltd.
- Walton's Wireless Stores
- Warburton Ltd.
- Westhedge Brake & Signal Co., Ltd.
- Weymouth Radio Mfg. Co., Ltd., The
- Westwood Wireless Co., Ltd.
- Whiteley Electrical Radio Co., Ltd.
- Wiretronics, Ltd.
- Wireless Instruments (Leeds), Ltd.
- Wireless Transformer, Ltd.
- Wright & Weaire, Ltd.
- Young, H. C.

MUMETAL AND RADIODMETAL TRANSFORMERS AND CHOKES

- MUMETAL and RADIODMETAL TRANSFORMERS and CHOKES
- MUMETAL and RADIODMETAL TRANSFORMERS and CHOKES

SOWTER TRANSFORMERS

- SOWTER TRANSFORMERS

MUMETAL and RADIODMETAL TRANSFORMERS and CHOKES

- MUMETAL and RADIODMETAL TRANSFORMERS and CHOKES
- MUMETAL and RADIODMETAL TRANSFORMERS and CHOKES

SOWTER TRANSFORMERS

- SOWTER TRANSFORMERS

MUMETAL and RADIODMETAL TRANSFORMERS and CHOKES

- MUMETAL and RADIODMETAL TRANSFORMERS and CHOKES
- MUMETAL and RADIODMETAL TRANSFORMERS and CHOKES

SOWTER TRANSFORMERS

- SOWTER TRANSFORMERS

MUMETAL and RADIODMETAL TRANSFORMERS and CHOKES

- MUMETAL and RADIODMETAL TRANSFORMERS and CHOKES
- MUMETAL and RADIODMETAL TRANSFORMERS and CHOKES

SOWTER TRANSFORMERS

- SOWTER TRANSFORMERS
ETCHED FOIL

DRY ELECTROLYTIC CONDENSERS

THESE Etched Foil types provide very large capacities in an extremely compact form. They are hermetically sealed into aluminium tubes or cans and employ "ALL-ALUMINIUM" construction.

The advancement in technique now enables the production of Etched Foil Electrolytics which are comparable in reliability to the well-tried Plain Foil types, and they can be used in both reservoir and smoothing positions where the ripple ratings are not exceeded.

As a general guide, the ripple ratings of Etched Foil Condensers are roughly half those of equivalent Plain Foil Condensers.

T.C.C. Condensers are exclusively specified in the View Master— the Television Set you build at home from standard parts. Constructor Envelopes (Model A, London, or Model B, Sutton Coldfield) 5/- each from all Wireless Shops.

THE TELEGRAPH CONDENSER CO. LTD

RADIO DIVISION: NORTH ACTON, LONDON, W.3. Tel: ACORN 0061
ON BOTH SIDES OF THE ATLANTIC LEADING MANUFACTURERS OF

TELEVISION AND RADIO

prefer

ERSIN MULTICORE SOLDER

Three separate cores of flux eliminate possibility of no flux in a portion of the wire. Guaranteed continuity of the flux streams prevent "dry" joints.

Although there are three cores of flux in Multicore, the total percentage of flux to solder is less than most other solders.

Very rapid melting results from the multiple core construction which provides thinner walls of solder than are found in same gauge single cored solder.

Ability to tin rapidly produces perfect joints with less solder. Greater coverage per pound.

ERSIN FLUX

Ersin Flux — exclusive to Multicore — is a high grade rosin, homogeneously activated.

Ersin Flux has a vigorous fluxing action and possesses the non-corrosive and protective feature of the original rosin. Soldered joints made with Ersin Flux do not corrode even after prolonged exposure to any degree of humidity. It has been tested under climatic conditions ranging from the Arctic to the Tropics.

Free from objectionable odour — non toxic in use.

Technical information, samples and bulk prices for manufacturers on request.

SIZE 1 CARTON — 5s. RETAIL

<table>
<thead>
<tr>
<th>Catalogue Ref. No.</th>
<th>Alloy</th>
<th>Tin/Lead</th>
<th>S.W.G.</th>
<th>Approx. Length per Carton</th>
</tr>
</thead>
<tbody>
<tr>
<td>C16014</td>
<td>60/40</td>
<td>14</td>
<td>26 feet</td>
<td></td>
</tr>
<tr>
<td>*C16018</td>
<td>60/40</td>
<td>18</td>
<td>60 feet</td>
<td></td>
</tr>
<tr>
<td>C14013</td>
<td>40/60</td>
<td>13</td>
<td>22 feet</td>
<td></td>
</tr>
<tr>
<td>C14016</td>
<td>40/60</td>
<td>16</td>
<td>42 feet</td>
<td></td>
</tr>
</tbody>
</table>

* Specially recommended for Television service and manufacture.

Compare standards of

QUALITY

Ersin Multicore Solder is approved by A.I.D., and G.P.O. It has been used by the leading Government Departments for more than ten years. There is a suitable alloy and gauge for every electronic equipment soldering need.

Compare standards of

PURITY

Only virgin metals of the highest possible degree of purity are used in the manufacture of Ersin Multicore Solder. The non-corrosive Ersin Flux is manufactured under laboratory controlled conditions, before it is incorporated in the three cores of Ersin Multicore Solder.

Compare standards of

MANUFACTURE

Every reel and carton of Ersin Multicore Solder is colour coded and shows the exact tin/lead content and gauge. Supplies are available for manufacturers on 7lb. and 1lb. reels and 1lb. cartons. Size 1 cartons in 4 specifications — shown on left — are a convenient size for service engineers and radio technicians.

MULTICORE SOLDER LTD.

MELLIER HOUSE, ALBEMARLE STREET, LONDON, W.1 • REgent 1411