Let us design and manufacture the multi-unit cable you need to meet your specific requirements! It may include coaxial, twin, quad and small power or control cores in any combination.

We have produced numerous multi-unit low-loss cables to meet specialised needs as well as a wide range of R.F. cables for every use, and now offer YOU the services of our engineers and the vast research and production facilities of the BICC organisation.

Why not investigate this unique offer? Write to-day and let us assist with your low-loss cables problems.

*The flexible multi-core cables shown here were specially produced by BICC for Pye Ltd. mobile television equipment.

Multi-unit LOW-LOSS CABLES

BRITISH INSULATED CALLENDER'S CABLES LIMITED
NORFOLK HOUSE, NORFOLK STREET, LONDON, W.C.2
Editorial Comment

SAFETY PRECAUTIONS. By F. C. Connelly

NERVE COMMUNICATIONS

RIBBON LOUDSPEAKER. By P. L. Taylor

PROFESSIONAL SOUND RECORDING

TEMPORARY VISION AERIAL. By F. D. Bolt

WORLD OF WIRELESS

SOCIALIES AND CLUBS.

VECTOR DIAGRAMS. By “Cathode Ray”

SHORT-WAVE CONDITIONS. By T. W. Bennington

FLYBACK E.H.T. BOOSTER. By A. H. H. Walker

YOUR LOUDSPEAKER. By Thomas Roddam

UNUSUAL LADDER FILTER. By F. C. C. Dasey

SUNDERLAND RADAR

SQUARE WAVE GENERATOR. By O. C. Wells

MANUFACTURERS’ PRODUCTS

UNBIASED. By “Free Grid”

LETTERS TO THE EDITOR

RANDOM RADIATIONS. By “Diallist”

CERAMIC SWITCHES

For applications where only the best is good enough. Stators and rotors of “Frequentite” ceramic. All contact members of silver alloy.

Wright and Weaire Limited

138, SLOANE ST. LONDON S.W.1 TEL. SLOANE 2214/5 FACTORY: SOUTH SHIELDS, CO. DURHAM
Important trends in VALVE DESIGN

MULLARD DOUBLE TRIODE ECC81

The double triode ECC81 has, like the nonode EQ80, been included in the Mullard World Series of television valves primarily with a view to meeting the requirements of the television systems of other countries. Although on the British television waveband the choice between a T.R.F. and a superheterodyne circuit is very much a matter of individual preference, for the very much higher frequencies employed overseas there is no alternative to a superheterodyne circuit.

For the British television band the EF80 pentode is the obvious choice both as an R.F. amplifier and as a frequency changer. For frequencies in the range 100 Mc/s to 300 Mc/s, the performance of triodes in these stages is superior to that of pentodes mainly because of their inherently low noise factor.

The ECC81 is an all-glass double triode on the B9A (Noval) base, and is intended primarily for use as oscillator-mixer or as R.F. amplifier on television sets operating on frequencies between 100 Mc/s and 300 Mc/s.

The provision of two high-quality triodes with separate cathodes in a single envelope ensures maximum circuit economy and flexibility. Normally, two ECC81 valves will be used, one as an R.F. amplifier and the other as frequency changer.

For the amplifier application several alternatives are available. For example, the two triode sections may be used separately for two different frequency bands, or may be strapped together to form a single triode with double the mutual conductance and half the anode resistance. Another arrangement is a two-stage amplifier in which one half of the valve is operated as a grounded-cathode amplifier and the other half as a grounded-grid amplifier. When a balanced circuit is required, the two sections may be arranged in push-pull.

In high-frequency, wide-band receivers, the most important features of the frequency changer are low mixer noise level and high oscillator mutual conductance. The ECC81 fulfils both requirements.

RATINGS AND CHARACTERISTICS

Heater Centre-tapped. Suitable for series or parallel operation, A.C. or D.C.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_h</td>
<td>6.3</td>
</tr>
<tr>
<td>I_h</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Capacitances

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Section 1</th>
<th>Section 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{h-e}</td>
<td>1.45</td>
<td>1.45</td>
</tr>
<tr>
<td>C_{h-k}</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>C_{e-k}</td>
<td>0.45</td>
<td>0.35</td>
</tr>
<tr>
<td>C_{e-e}</td>
<td>< 0.005</td>
<td>< 0.4</td>
</tr>
<tr>
<td>C_{e-e}</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Characteristics (each section)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_s</td>
<td>170</td>
</tr>
<tr>
<td>V_m</td>
<td>1.5</td>
</tr>
<tr>
<td>I_s</td>
<td>6.5</td>
</tr>
<tr>
<td>g_m</td>
<td>4.8</td>
</tr>
<tr>
<td>μ</td>
<td>52</td>
</tr>
<tr>
<td>r_s</td>
<td>11</td>
</tr>
<tr>
<td>R_s</td>
<td>9.8</td>
</tr>
</tbody>
</table>

Limiting Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{oh}</td>
<td>550V</td>
</tr>
<tr>
<td>V_s</td>
<td>300V</td>
</tr>
<tr>
<td>p_a</td>
<td>15 mW</td>
</tr>
<tr>
<td>R_{h-e}</td>
<td>20 kΩ</td>
</tr>
<tr>
<td>V_a</td>
<td>90 V</td>
</tr>
<tr>
<td>V_a</td>
<td>9.5 V</td>
</tr>
<tr>
<td>V_a</td>
<td>19 V</td>
</tr>
</tbody>
</table>

Reprints of this article together with additional data may be obtained free of charge from the address below.

MULLARD ELECTRONIC PRODUCTS LTD,
TECHNICAL PUBLICATIONS DEPARTMENT,
CENTURY HSE., SHAFTESBURY AVE., W.C.2.

MULLARD

Mullard
Fire and Shock

It would be unwarrantably alarmist—indeed, quite untrue—to suggest that domestic broadcast and television receivers are serious sources of electrical dangers to their users. On the contrary, by their nature and method of use they are probably responsible for fewer fires and cases of shock than any one of half a dozen household electrical appliances. However, it seems well established that fires ascribed to receivers are on the increase. Though the actual number may be trivial, the curve is rising very steeply. Further, the fire risk due to television is disproportionately large as compared with sound-only sets. One of the reasons for the increase, no doubt, is that the average age of sound receivers is increasing; many are over 10 years old. Television troubles may be partly due to the newness of the design technique.

Electrical engineers in the old-established branches are apt to express disapproval at the absence from radio receivers of the protective measures to which they are accustomed, but, when pressed to go into details and to make constructive suggestions, they are generally forced to concede that methods applicable to other appliances would be either impracticable or ineffective. Perhaps, though, there is a grain of truth behind these strictures; some designers in the rapidly growing radio art, concerned mainly with fundamental developments, may feel inclined to take safety precautions in their stride. Others may still be influenced by the practices of an earlier epoch when radio equipment was designed for operation entirely by those trained in its use, and not by the ordinary householder. There was a day when transmitter h.t. bus-bars were unguarded and when the user depended entirely on his nose for warning that something should be done to check an incipient fire.

Be that as it may, all designers are now well aware of the problems involved, and it is all to the good that they should be freely discussed, as there is still divergence of opinion as to which precautions are most effective. An article printed on another page describes the general nature of fire and shock risks, and also deals with some of the more widely accepted protective devices and methods of attack.

Of these devices, the so-called temperature fuse is the most interesting. The conventional electrical fuse, depending for its protective action on the passage through it of an excessively heavy current, has a distinctly limited application in radio equipment. The temperature fuse, which can be arranged to interrupt an electrical circuit when the temperature of a component to which it is attached (or of the surrounding air) reaches a dangerously high level, overcomes many of the disabilities of the older method. Some of these disabilities can, however, be overcome by using time-delay fuses which are not "blown" by surges. In its cheapest and simplest form the temperature fuse consists of a short conductor of low-melting-point alloy, but a number of rather more complicated arrangements are possible.

Devices of this kind have been used for some time and are standard articles of commerce. Some temperature fuses can be reset by the user, but we imagine the kind favoured for domestic radio sets will require attention from the service technician, who will at the same time investigate the cause of the rise in temperature that caused the fuse to "break."

Fortunately, the extra precautions that meet with favour are not unduly costly, nor are they likely appreciably to increase the susceptibility of a receiver to develop faults in normal service.

Information as to the precise causes of fire (and to a lesser extent shock) brought about by domestic receivers is hard to come by. We suspect in many cases the associated section of the domestic wiring is as much to blame as the radio equipment proper. For instance, judging by correspondence and our own observation, it is all too common to find electrical outlet sockets switched in the "dead" lead. However, that is no reason why radio sets should not be as far beyond suspicion as all reasonable precautions can make them. None of us want a state of affairs to arise where the reporters of the lay Press, instead of ascribing the causes of a fire to the classical "fusing of an electric wire," decide there is more news value and modernity in fires caused by "a faulty television receiver."
Safety Precautions

Reducing Fire and Shock Risks in Domestic Receivers

By F. C. CONNELLY, Ph.D., A.M.I.E.E. (Murphy Radio)

DURING the past two or three years there has been considerable interest, both in this country and internationally, in the safety aspects of domestic electrical equipment. Radio apparatus has naturally been included in the discussions and a considerable amount of work on the problem has been carried out in the industry. It should not be assumed from this that radio receivers have been found to be a serious source of danger; they are, in their normal state, probably much less likely to cause accidents than many other domestic appliances. Nevertheless there have from time to time been fatalities from shock or fire, nearly always due to mishandling by the user or to deterioration of components within the receiver. Because of this several organizations representing the various interests connected with radio and television have been attempting to reduce these already small risks to even smaller dimensions.

In this country the British Radio Equipment Manufacturers Association has taken an active part in investigating possible causes of trouble and the British Standards Institution is in the process of redrafting BS415 to accord with current developments. In some countries, notably the Scandinavian ones, compliance with the national safety specification has to be certified by the official testing laboratory before a receiver or other domestic appliance can be marketed. Naturally there has been a tendency for each country to decide upon slightly different requirements and this has hampered international trading; in consequence several meetings of the radio-communication committee of the International Electrotechnical Commission have been devoted to discussion on the points of divergence and at the recent I.E.C. meeting in Paris a very large measure of agreement was reached. Representatives of both the testing institutes and the manufacturers are present at these meetings so that a balanced solution can be found.

In Britain the electrical supply organizations have found the earthing of exposed metal parts on electrical appliances of all kinds as an important measure of safety. To meet the earthing requirements portable apparatus has usually to be installed with three-core cables and three-pin plugs, although certain exceptions are permissible. From safety considerations it would appear to be desirable that radio receivers, too, should be installed with three-core leads to ensure the efficient earthing of exposed metal parts, including (as regards mains frequencies) the aerial and earth leads, pickup, loudspeaker, etc. Unfortunately the requirements of safety and reduction of man-made interference are likely to be in conflict here and some alternative to the earthing technique would be desirable. On the continent, earthing of domestic appliances is not the usual practice and little reliance is placed on it. As probably the majority of users of radio sets even in this country have no facilities for connecting their apparatus to an earth continuity conductor in their house, earthing can at best only be regarded as an additional precaution rather than a primary method of ensuring safety.

Possible Dangers.—The principal electrical dangers which can arise in a receiver are shock from touching some live part of the apparatus and fire from overheating. The reason why so much thought has been given to these hazards in receivers is not the frequency of their occurrence but the fact that the circuits of these devices are much more complicated than those of most other domestic apparatus. Straightforward fuse protection, for example, is often impracticable owing to the large current surge which occurs when a set is first switched on. Again, the rise in input current due to a fault in one part of the circuit may be too small to ensure operation of a fuse in the mains circuit and yet the consequent overheating in that part may be sufficient to start a fire. Fires in radio equipment, particularly television, are actually a greater cause of anxiety than shock risks and much of the recent work has been concerned with means of minimising the effects of overheating following the breakdown of insulation.

The most important development in the pursuit of an improved standard of safety is the recognition that certain components or methods of construction may become faulty during the life of a set in such a manner

Wireless World, January 1951
as to endanger persons using it. According to this principle a receiver cannot be considered to be completely safe unless it remains free from danger even when these components have failed. The faults which are expected to occur are mostly breakdowns of insulation such as that of an electrolytic capacitor, or between the electrodes of a valve; when a short-circuit occurs at any or all of these doubtful points, the equipment should either remain safe or protective devices must come into operation to disconnect it from the supply mains. It is convenient in what follows to describe an apparatus as operating under "normal conditions" when it is in the state in which it was designed to be used and under "fault conditions" when artificial short-circuits (or in some cases open-circuits) have been applied to any or all of the points specified as being of doubtful insulation (or liable to disconnection).

"Normal Conditions."—Taking first of all "normal conditions," so long as a receiver remains in the state in which the designer intended it to be the risk of an accident is very small. Naturally no designer would knowingly turn out a model in which he thought there was a risk of contact with live parts or in which excessive temperatures were reached. It is, however, somewhat a matter of opinion as to what is, for example, the highest permissible operating temperature for a particular kind of material and also exactly what degree of protection is required against contact with live parts—it would no doubt be possible to get a shock from almost any mains-operated device if one were sufficiently ingenious in poking knitting needles and such things into it! To arrive at a uniform standard of safety in respect of contact with live parts it is necessary to adopt standardized contact devices which are applied to different parts of an apparatus to see whether they can be made to touch dangerous points. For most situations an artificial "standard finger" is used (Fig. 1): this is 12 mm diameter and 80 mm long, tapered and flattened at the end to represent the general shape of a human finger and provided with two joints which can be set to any angle assumed by a real finger. In addition to this general test, certain parts such as control shafts on sets with live chassis are checked for accessibility with special test devices, such as a 2 mm flexible cord.

On the fire risk side the temperature rises of the working parts of reputable receivers under normal operating conditions are nearly always well below the danger point, but, again for uniformity, maximum working temperatures for different classes of materials are laid down in test specifications as well as the highest allowable temperatures for external parts such as control knobs, cabinet, etc.

"Fault Conditions."—As already indicated, compliance with the requirements for "normal operation" involves few departures from usual practice and most current production receivers satisfy these conditions. It is in providing the protective arrangements to ensure safety from shock and fire under fault conditions (when any part of which cannot be reasonably considered completely reliable has broken down) that most of the ingenuity is required. The parts which are generally considered to be liable to breakdown, besides the electrolytic capacitors and valve electrode clearances already mentioned, include rectifiers of any type, variable and air-dielectric capacitors, varnish or enamel layers (except as inter-turn insulation in coils) and any creepage or clearance distances in air or in vacuo less than certain figures laid down. To prevent danger when a failure occurs in one of these parts the designer has several courses open to him: he can avoid the use of the components in question, arrange that no danger is present even if they are short-circuited, or, thirdly, employ fuses or other overload devices to disconnect the circuits. The first method—refraining from using the parts named—is hardly practicable in all cases. It is sometimes not difficult, as in the case of an output transformer subjected to a large current because the output valve electrodes are short-circuited, so to proportion a part that it can take the overload without reaching dangerous temperatures or failing in primary-secondary insulation, but usually the designer has to apply the third method of finding a way of providing protection by some form of cut-out.

It must not be forgotten that safety from shock as well as fire risks is involved under fault conditions. For example, the clearance distances between any live parts and any accessible metal parts must never be less than the specified distances, nor must paints or textile material be used as the sole insulation for live parts; these would have to be short-circuited during the fault test. Aerial, earth, loudspeaker and pickup sockets must, in principle, be considered as accessible parts, even if the sockets are so recessed as to prevent contact with the standard test finger, because the user is liable to connect bare, or lightly insulated, leads to these points when installing his receiver. In consequence of this, the insulation between high-voltage points and these circuits must not depend on air-dielectric or variable condensers or must it be possible for a breakdown between any pair of valve electrodes to put an unsafe voltage on these sockets. The case of an output transformer already mentioned is a more complicated one, involving, as it does, both fire and shock considerations. Generally speaking, however, fire is the most likely contingency which has to be met under fault conditions and some typical problems and their solutions will be examined.

"Isolated Apparatus."—Take first of all an A.C. receiver supplied from the mains through a double-
wound transformer—an "isolated" receiver as it is described in "safety" terminology (see Fig 2). Short-circuits in the heater or pilot lamp circuits or in the h.t. rectifier, reservoir capacitor or perhaps even in the smoothing capacitors are bound to increase the current through the mains transformer primary to an appreciable extent and it might at first sight have been considered satisfactory to deal with these faults by inserting a fuse in the smoothing circuit. Unfortunately, this is not such a straightforward method as might have been expected, because at the moment of switching on a very large current surge may occur. The magnitude of the peak current reached depends on the instant in the applied voltage cycle at which the switch made contact, completion of the circuit near a voltage zero resulting in a large current surge and at a voltage maximum little or no excess current. Special fuses having a long time-delay can sometimes be used satisfactorily in these conditions, but a more sensitive method of discriminating between faults and switching surges is to fit a cut-out which depends for its operation on the temperature of the transformer windings themselves. The transformer itself is, of course, rendered completely safe by this means because it can never attain a dangerously temperature as the current is cut off before this happens. One way of constructing the thermal cut-out uses a low-melting-point alloy to bridge a pair of spring contacts in the primary circuit whilst another incorporates a bi-metallic strip. The latter method can be arranged to permit resetting by means of a button—this may or may not be advantageous.

There seems to be little doubt that the heat-fuse method is the most satisfactory way of dealing with potential short-circuits in both h.t. and in the good-regulation sections of the h.t. circuits in "isolated" receivers. The low-current circuits supplying the screens and anodes of early stage valves, however, remain unprotected, and unless other precautions are taken there is a danger of fire due to overheating of the feed resistances if the electrodes concerned become connected to say, the cathode or suppressor grid. The resistance involved can, depending on its value, either be made of such a rating as to be able to withstand the full voltage of the h.t. supply without danger of fire, or it can be of a type (such as "wire wound") that it burns out without risk of setting fire to surrounding components or wiring. If this latter alternative is adopted care must be taken in the location of the resistor; e.g., it may be mounted on fireproof supports above the chassis. This is a convenient way of dealing with smoothing resistors used in the simpler types of receiver instead of smoothing chokes. They are usually of the order of 2,000 ohms and cannot therefore be made capable of withstanding the full h.t. without considerable expense. Smoothing chokes, if used, are likely to have a good margin of safety from the temperature rise point of view, as they are generally designed to have a large voltage drop. Unfortunately, it may therefore be impossible to short-circuit a smoothing capacitor on the output end of such a choke without causing the temperature rise to exceed a safe figure; if not, an h.t. line fuse may be required. Connected in series with an inductive element there is little likelihood of spurious operation due to current surges when charging up capacitors as the set warms up. Summing up, the greater part of the "isolated" type of radio receiver can be protected by the provision of a thermal device built into the mains transformer, whilst fire risks in the remainder can usually be dealt with by suitable positioning of feed resistors.

"Non-Isoalted" Sets.—The "non-isolated" or (a.c./d.c.) type has problems of its own and requires different methods of treatment. Even to meet safety requirements under normal conditions current practice may have to be modified in some respects, notably in the amount of attention which is paid to the isolation of aerial, earth and pick-up sockets from the mains. It has now been established that well over 90 per cent of persons can feel a current of 0.5 mA (r.m.s.) at mains frequencies and it is obviously desirable that it should not be possible to draw currents exceeding this figure from any accessible point on an equipment. In that connection the sockets for aerial, earth, pick-up and loudspeaker should be regarded as accessible even if the terminal points themselves are recessed or otherwise protected since the user may connect bare or lightly insulated wires to them. Limitation of the permissible current to 0.5 mA, however, may involve serious restrictions in the design of the signal- and audio-frequency portions of a receiver circuit: as numerous tests have shown that currents up to at least 5 mA can be passed between the human hand and foot without producing cramping of the muscles and consequent inability to let go, currents up to about 2 mA are probably not dangerous although quite unpleasant. This does not apply to the aerial terminal, as window cleaners, painters and others may come in contact with the aerial wires when perched precariously on ladders, etc. Under these conditions, of course, only a very slight shock may cause a fall with serious consequences. As it is usually possible to restrict the mains frequency current through the aerial to figures well below 0.5 mA without prejudicing the R.F. performance, a blocking capacitor of approximately 0.001 μF should be inserted in series with the aerial terminal, or other similar measures adopted (see Fig. 3).

Non-isolated receivers are usually dependent on capacitors for the isolation of accessible parts from the mains so that great care must be exercised in the choice of suitable capacitors and in the provision of reliable mounting and wiring to ensure that the capacitor is not short-circuited externally. An important development in recent work has been the recognition that a capacitor having an extremely long life when subjected to a particular d.c. voltage may fail at a very early stage when used on a.c. having a peak voltage no higher than this d.c. value. Paper-dielectric capacitors having solid impregnants (e.g., waxes) have been found to suffer rapid deterioration under a.c. stresses whereas oil impregnation gives excellent results. Mica, once specified as the height of perfection in dielectrics, is also liable to breakdown under a.c. operation at voltages much lower than would have been expected from its performance on d.c. The trouble is due to the formation of minute voids within the dielectric. The electrical stress at these points is high due to their lower s.i.c. and ionization occurs with rapid deterioration of the material. Fluid or semi-fluid impregnants are naturally much less likely to allow voids to form. Because of these possibilities of failure it is obviously essential for the designer to specify isolating capacitors of a type which have been proved to have an indefinitely long life under a.c. mains voltage conditions.

Live shafts on non-isolated equipment are a poten-
tial danger of shock. Even if the knobs are really securely fixed (and this is not always the case) there may be sufficient space between the back of the knob and the cabinet to allow metal objects to fall through and touch the shaft. A tube of insulating material or an extension of the knob within the cabinet is advisable to prevent trouble here.

Another feature of present-day non-isolated sets which may require attention in order to comply with the standards which are now laid down in several European countries is the aerial circuit switching arrangements. Creepage distances between adjacent contacts or between certain contacts and the frame of many of the wafer-type switches in general use are decidedly less than the requirements demanded for the insulation of parts at mains potential. As the frame of the switch is usually connected directly to the chassis by the mounting bush and in addition some of the contacts may also be connected to chassis (which is in turn connected to one pole of the mains) arrangements will have to be made to ensure that the aerial coupling winding contacts are adequately separated from the danger points or that the coil circuit is itself isolated from the aerial and earth sockets.

When we turn to the safeguarding of non-isolated models against fire under "fault conditions" we come up immediately against the fact that there may be no central power source corresponding to the transformer in an isolated set and consequently we cannot base our protection on a thermal release located between the windings. Receivers employing auto-transformers are, of course, classed as non-isolated and in their case the thermal release is applicable but true a.c./d.c. apparatus has to be dealt with by current fuses. The occurrence of heavy surges at the moment of switching on a set (as in the heater circuit when starting from cold or in the h.t. circuit when switching on again soon after switching off whilst an indirectly heated valve rectifier is still hot) will often present problems. It is seldom possible to secure full protection with one fuse; the heater and h.t. circuits have to be treated separately. A long time-lag fuse is necessary in the heater circuit and this may be used as a main input fuse as it can often be chosen to deal with short-circuits in the rectifier or reservoir capacitor. Breakdowns in the smoothing capacitors are, however, unlikely to cause a sufficient increase in the current to cause the main fuse to blow, owing to the limiting effect of the smoothing choke or resistors. A sub-fuse should therefore be used which carries only the h.t. current; as this can be connected in series with the choke or resistor, surges are, by the nature of the smoothing circuit, avoided and plain fuses are usually satisfactory.

As in isolated receivers, the feed resistors of anode and screen circuits are best dealt with by choosing wattage ratings which will withstand the full h.t. without risk of catching fire, or, alternatively, positioning them so that there is no danger of adjacent components such as waxed coils or capacitors becoming overheated.

Television.—Although the foregoing paragraphs refer primarily to sound receivers, the principles are directly applicable to television sets. The guarding of live parts to prevent shock, for example, follows the same technique as for radio equipment. At first sight it might have been expected that more stringent precautions would have been required owing to the existence within the receiver of voltages up to 12 kV or more. When it was the standard practice to obtain e.h.t. from a winding on the 50-c/s transformer through a rectifier these fears would have been justified, not only because of the relatively high current

(Below) Fig. 2. The power supply and audio stages of an "isolated" receiver showing some of the points which have to be short-circuited during a fault test. No danger should result if points having corresponding letters; e.g. BB, are connected together. Short-circuiting AA, BB or CC would result in the operation of the temperature fuse. Joining DD or FF would cause the smoothing resistor to over-heat, but if suitably located no harm would result. It is quite practicable to choose the wattage of the anode coupling resistor so that joining GG does no harm. Short-circuiting HH has little effect on the current distribution.

Fig. 3. The aerial circuit of a non-isolated receiver. During a fault test many wafer-type switches would have to be short-circuited because their clearances are less than those specified. This involves blocking capacitances in aerial and earth connections. A leak should be provided from aerial to earth to drain away static charges which may accumulate.
which could be drawn from these supplies but also on account of the large smoothing capacitors which could remain charged after the set had been switched off unless discharge resistors were fitted. Now, however, fly-back systems of obtaining the accelerating voltage for the c.r.t. are very frequently used and neither of these considerations applies; it is very unlikely that a dangerous shock could be obtained by touching the e.h.t. supply when a set is working. External connections to a television receiver are usually confined to the aerial feeder so that isolation difficulties, even on a "live-chassis" set are not troublesome. The feeder cable itself is usually covered by a layer of p.v.c. or similar material, so giving an additional measure of protection should the isolation fail within the receiver.

Fire risks, on the other hand, require more attention—not only are there about three times as many stages to give trouble, but also the technique is less well established and breakdowns of insulation are consequently more likely to occur. The line scan circuits, for instance, often develop several kilovolts, apart from any step-up winding on the transformer for the specific purpose of obtaining e.h.t. supplies. The necessity for low values of self-capacitance in the line scan windings restricts the designer to small physical dimensions and increases the difficulties of insulating the coils adequately. The use of better materials and newer methods is overcoming these weaknesses, but there are potentialities for trouble in this part of the receiver.

When a mains transformer is used the temperature fuse can be used to deal with many of the possible breakdowns in electrolytic capacitors and rectifiers. The other technique of obtaining e.h.t. from a winding on the transformer was apt to present difficulties in arranging the temperature fuse because a winding of this kind had necessarily to be well insulated electrically. As good electrical insulators are practically always good thermal insulators it was difficult to avoid overheating of the e.h.t. coil before the heat was conducted to the temperature fuse. The fly-back technique has eased matters here as well as on the shock side. H.T. line fuses are commonly fitted to deal with failures of components in the circuits fed from subsidiary smoothing filters where the effect on the main h.t. current would be small. As in radio receivers, careful placing of feed resistors liable to overheat if short-circuits develop in valves or tuned windings is essential to avoid the rapid spread of flames. The use of p.v.c. covered connecting wire is another important contribution, as this material does not continue to burn of its own accord, whereas rubber coverings form easy channels whereby fire may spread from one part of a set to another.

Conclusion.—The recognition that we cannot expect to ensure in an apparatus as complex as a radio or television receiver that no component ensuring freedom from shock or fire risks will ever fail, is bound to lead to an improved standard. Protective devices are being developed in various quarters to implement the proposals that every set should be able to deal safely with failures of insulation in components such as electrolytic capacitors, valves and switches.

NERVE COMMUNICATIONS

There are so many striking resemblances nowadays between electronic devices and the human body that it has become fashionable for medical men and engineers to look for analogies in each other's work as a means to the better understanding of their own. Neurologists in particular are tending to regard the nervous system, which conveys information about the body, as a vast communications network, and are hoping that the knowledge of communications engineers will prove valuable in studying the complex "circuitry" of this network on a more scientific basis.

This method of approach was perhaps influenced by the fact that information is actually conveyed along the nerve fibres of the body by electrical impulses. Furthermore, these impulses are transmitted by sensory organs, such as the eyes and ears, and received by motor organs, such as muscles and glands, all of which have obvious electrical counterparts. The complex groups of nerve cells or ganglia existing in the spinal cord and brain can similarly be compared with telephone exchanges or the "brain" of electronic control devices.

Analogies of this sort, however, cannot be taken too far, as there are some important differences to be considered. For instance, the impulses are not conducted along the nerves as they would be along wires, but move comparatively slowly (about 80-100 metres per sec) as a kind of "travelling breakdown" of the polarizing voltage that exists between the inner core and outer sheath of a nerve fibre. Furthermore, since the process of breakdown and restoration takes time to complete, there is a limit to the rate at which the impulses can be transmitted and the nerves do, in fact, "cut-off" like a filter at a repetition rate of about 500 per second. This latter point was raised at an informal discussion on "The Nervous System as a Communication Network," held at the I.E.E., on 29th November, 1950, when one of the speakers asked how was it possible, in these circumstances, for us to hear frequencies up to about 15 kc/s. In reply, the lecturer (Dr. J. A. V. Bates) said that the frequency discrimination of hearing was not done in the nervous system at all but in the inner ear. This had a resonant structure which responded at different points corresponding to different frequencies, and since the endings of the auditory nerve fibres were spatially distributed over this structure they could identify the frequencies by their position and convey the result to the brain. The actual repetition rate of the impulses along a nerve was merely a measure of the intensity of the stimulus, in this case sound.

Discrimination by position occurs in a similar way in the other sense organs, the spatial distribution of nerve fibres being repeated at the far end of the "line" by a corresponding distribution on the brain itself. To carry the information in this fashion, a large number of individual channels are required, and in the optic nerve of the human eye, for example, there are something like a million separate fibres.
Riboon Loudspeaker

Principles of Design and Constructional Details of a High-frequency Unit Making Use of a Magnetron Field Magnet

By P. L. TAYLOR, M.A.

THE unit to be described has given excellent results and is comparatively simple to make. The basis of the design is a Government-surplus magnetron magnet; but these vary in dimensions, gap widths and flux densities, and to enable the home constructor to modify the design to suit any particular magnet, some elementary theory is given which will serve as a guide to the orders of magnitude of the quantities involved and to the effect of changes in the design on the final results.

It is well known that when a sound is propagated through air the air particles, normally at rest, are set in vibration longitudinally, i.e., along the direction of propagation. This movement of the particles gives rise to the variation of air pressure, above and below atmospheric, that constitutes the sound wave. At a particular point in the medium, whenever the particles are moving forward (in the same direction as the sound) the pressure is above atmospheric, and when they move backwards the pressure is below atmospheric. It can be shown that, if \(p \) is the pressure excess and \(v \) the particle velocity (not the velocity of the sound wave) the ratio \(p/v \) is a constant determined by the characteristics of the medium. This constant is known as the unit area impedance of the medium, and denoted by \(Z_u \).

We have therefore

\[
\frac{p}{v} = Z_u \quad \ldots \quad (1)
\]

For plane waves in air, if \(p \) and \(v \) are measured in c.g.s. units (dynes/cm\(^2\), and cm/sec respectively) \(Z_u = 41.2 \) c.g.s. units. This is only true if the waves are plane; for diverging and converging waves the relation between \(p \) and \(v \) is more complicated, but need not be considered here.

Consider a ribbon carrying a current in a magnetic field (Fig. 1). It will experience a force tending to move it in a direction at right-angles both to the direction of the field and the direction of the current. This movement will be communicated to the air, and if the current is alternating the movement will also be alternating, giving rise to the radiation of a sound wave. But at high frequencies the inertia of the ribbon will prevent it moving as much as it should, and the radiated power will fall off. Obviously, for good high-frequency response as light a ribbon as possible is called for; but the matter is not quite as simple as that.

Using the symbols given in Table I, we can write:

\[
F_1 = B I \text{ dynes} \quad \ldots \quad (2)
\]

\[
F_2 = 2pab \text{ dynes} \quad \ldots \quad (3)
\]

(Refactor 2 allows for the two faces of the ribbon)

![Fig. 1. Relevant dimensions of ribbon in a magnetic field.](image)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic flux density</td>
<td>(B)</td>
<td>gauss</td>
</tr>
<tr>
<td>Length of ribbon</td>
<td>(a)</td>
<td>cm</td>
</tr>
<tr>
<td>Breadth of ribbon</td>
<td>(b)</td>
<td>cm</td>
</tr>
<tr>
<td>Thickness of ribbon</td>
<td>(t)</td>
<td>cm</td>
</tr>
<tr>
<td>Density of ribbon material</td>
<td>(\rho)</td>
<td>gm/cm(^3)</td>
</tr>
<tr>
<td>Mass of ribbon</td>
<td>(M)</td>
<td>lb</td>
</tr>
<tr>
<td>Resistivity of ribbon material</td>
<td>(\sigma)</td>
<td>ohm/cm</td>
</tr>
<tr>
<td>Air pressure excess</td>
<td>(p)</td>
<td>dynes/cm(^2)</td>
</tr>
<tr>
<td>Air particle velocity</td>
<td>(v)</td>
<td>cm/sec</td>
</tr>
<tr>
<td>Displacement of ribbon from rest</td>
<td>(x)</td>
<td>cm</td>
</tr>
<tr>
<td>Current through ribbon</td>
<td>(I)</td>
<td>c.m.n.</td>
</tr>
<tr>
<td>Electromagnetic force on ribbon</td>
<td>(F_1 = B I)</td>
<td>dyne</td>
</tr>
<tr>
<td>Acoustic force on ribbon</td>
<td>(F_2 = 2pab)</td>
<td>dyne</td>
</tr>
</tbody>
</table>

See, for example, "Acoustics," by Alexander Wood (Blackie and Son)

Wireless World, January 1951
when there is a pressure excess on one side of the ribbon there will be a pressure deficit on the other, so that the force on the ribbon will be twice that on one face.) Making the assumptions that the air particle velocity is equal to the ribbon velocity, and that the radiated waves are plane, equation (1) holds and substituting this in equation (3) gives

\[F_z = 2abZuv \]

\[= 2abZ_u \frac{dx}{dt} \]

(3a)

The resultant of \(F_z \) and \(F_r \) will cause acceleration of the ribbon, and, assuming that it moves as a whole and has negligible stiffness at its supports, we can write:

\[F_1 - F_2 = m \frac{dx}{dt} \]

(4)

Substituting equations (2) and (3a) and the mass of the ribbon as given in Table I we get:

\[1Ba - 2abZ_u \frac{dx}{dt} = \rho ab \frac{dx}{dt} \]

(5)

But the voltage \(V \) across the ribbon is given by

\[V = aB \frac{dx}{dt} \]

and therefore

\[\frac{dx}{dt} = \frac{V}{B} \]

\[\frac{dx}{dt} = \frac{dV}{aB} \]

(6)

Substituting equations (6) in (5) gives

\[1aB = 2Z_u \rho b \frac{dV}{aB} + \rho b \frac{dV}{aB} \]

or

\[I = \frac{V}{aB} + \frac{\rho b}{aB} \frac{dV}{d} \]

(7)

Fortunately it is not necessary to solve this equation, which connects the voltage across the ribbon with the current through it, i.e., represents the electrical impedance between the ends of the ribbon due to the fact that it is moving. This impedance is called the "motional impedance" of the ribbon.

TABLE II

<table>
<thead>
<tr>
<th>Unit</th>
<th>Equivalent Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ampere</td>
<td>0.1 e.m.u.</td>
</tr>
<tr>
<td>1 volt</td>
<td>10^8 e.m.u.</td>
</tr>
<tr>
<td>1 ohm</td>
<td>10^6 e.m.u.</td>
</tr>
<tr>
<td>1 henry</td>
<td>10^6 e.m.u.</td>
</tr>
</tbody>
</table>

We may find it by comparing equation (7) with the equation of current and voltage in the circuit of Fig. 2(a).

\[I = \frac{V}{R + C} \frac{dV}{dt} \]

(8)

Equations (7) and (8) are of exactly the same form, so the motional impedance is evidently a resistance and capacitance in parallel, where

\[R = \frac{aB^2}{2Z_u} \text{ e.m.u.} \]

\[C = \frac{\rho b}{aB^2} \text{ e.m.u.} \]

These electromagnetic units must be converted to practical units (Table II) and we get:

\[R = \frac{aB^2}{2Z_u} \times 10^{-9} \text{ ohm} \]

\[C = \frac{\rho b}{aB^2} \times 10^8 \text{ farads} \]

But Fig. 2(a) does not represent fully a practical ribbon; for the voltage \(V \) in equations (7) and (8) is the back e.m.f. produced by the motion of the ribbon which in the practical case is much less than the e.m.f. applied to the ribbon by a generator. The difference is due to the voltage drop in the normal electrical resistance of the ribbon (and strictly speaking also in the inductance of the ribbon and the leads to it; but for the moment we may ignore this). The equivalent circuit of a practical ribbon is therefore Fig. 2(b) where \(R_\text{c} \), the d.c. resistance of the ribbon, is given by

\[R_\text{c} = \frac{ad}{b} \text{ ohms} \]

(11)

From this figure we can see that when an alternating voltage is applied part of the energy is absorbed uselessly by \(R_\text{c} \) and part is radiated as sound; this radiated energy is represented by that absorbed in the "radiation resistance" \(R \). As the frequency increases the radiation is decreased by the effect of the mass of the ribbon, represented by the shunting of \(R \) by a capacitance \(C \).

Two considerations enter into the design of a ribbon loudspeaker: first, the efficiency, i.e., the fraction of the total energy supplied to the ribbon that is actually converted to sound, and second the frequency response.

Fig. 2(b) shows that, at a low frequency where the effect of \(C \) may be neglected, the efficiency \(\eta \) is given by

\[\eta = \frac{R}{R + R_\text{c}} \]

and the radiated power will fall by 3db at a frequency at which the voltage across \(R \) falls by 3db. This is determined by the time-constant \(T \) of the circuit which, assuming it to be fed from a low-impedance source, is the product of \(C \) and the parallel combination of \(R \) and \(R_\text{c} \), i.e.,

\[T = C \frac{R_\text{c}}{R + R_\text{c}} \]

(13)

and the radiated power will fall by 3db at a frequency given by

\[f_\text{3db} = \frac{1}{2 \pi T} \]

(14)

WIRELESS WORLD, JANUARY 1951
It is difficult to see immediately from the foregoing equations which are the most important variables to be fixed at the outset in attempting a design, as \(T \) and \(\eta \) are obviously closely related, and changing one by altering the design will affect the other. We may therefore introduce the idea of a "figure of merit" given by the fraction \(\frac{\eta}{T} \), which must be as large as possible since we require \(\eta \) to be large and \(T \) small. From equations (12) and (13),

\[
\frac{\eta}{T} = \frac{I}{CR_1} = \frac{B^2}{\rho a}
\]

which makes the problem look much simpler, as all the dimensions of the ribbon have disappeared. This equation shows that only two quantities are prerequisites of a good design: the flux-density and the material of which the ribbon is made. \(B \) must be as high as possible, and even a small improvement is worth striving for as the figure of merit is proportional to the square of \(B \). It is interesting that it is not \(\rho \) and \(\sigma \) separately that are important, but their product. Table III gives the values of \(\rho \sigma \) for various metals; magnesium seems an obvious choice with aluminium a close second. In practice aluminium is used as it does not tarnish and is readily obtainable in the form of foil.

Having obtained as high a value of \(\frac{\eta}{T} \) as possible, design procedure is then to choose the ribbon thickness so that \(\eta \) is about the same as that of the main loudspeaker with which the unit is to be used; this in turn fixes \(T \) and the frequency response. As an example, the figures in Table IV apply to the aluminium ribbon used in this design. It is interesting also to calculate the results that theoretically could be achieved using the best magnet materials that are at present commercially available, and a thinner aluminium ribbon. Assuming \(B = 15,000 \) gauss, \(\eta = 0.2 \), we find that \(f \cdot 3\text{db} = 20.6 \text{ kc/s} \) and \(r = 0.00012 \text{ in.} \).

Horns.—The fundamental assumption was made above that the ribbon would be radiating plane waves so that we could equate the ribbon velocity and the acoustic pressure with \(Z_u \) (equation (1)). But

<table>
<thead>
<tr>
<th>TABLE III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Magnesium</td>
</tr>
<tr>
<td>Aluminium</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>Silver</td>
</tr>
<tr>
<td>Zinc</td>
</tr>
<tr>
<td>Gold</td>
</tr>
<tr>
<td>Tin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>B = 12,500 gauss</td>
</tr>
<tr>
<td>a = 1.5 inches</td>
</tr>
<tr>
<td>b = 0.375 inch</td>
</tr>
<tr>
<td>\tau = 0.0003 inch</td>
</tr>
<tr>
<td>R_1 = (17 \times 10^{-3}) ohm</td>
</tr>
</tbody>
</table>

![Fig. 3. Illustrating the development of an exponential horn.](image)

Component parts of ribbon loudspeaker before assembly

Wireless World, January 1951
for a ribbon in free air this assumption is by no means justified, and in practice horn loading is generally considered necessary. To quote from p. 120 of the reference given earlier "The primary purpose of a horn is to load the diaphragm at the narrow end by increasing the pressure against which it has to work and to deliver the energy it receives to the atmosphere over an area sufficiently large to avoid reflection back into the horn with consequent stationary vibration and resonance." In other words, a horn is a device for matching the diaphragm (in this case the ribbon) into the air and so ensuring efficient radiation.

The usual form of a horn is "exponential" (Fig. 3) in which the area S_x at a distance x from the small end (the throat) is related to the throat area S by the equation

$$S_x = S e^{ax}$$ \hspace{1cm} (14)

In designing the horn two decisions have to be made: the value of m (i.e., the rate of flare) and the total length of the horn.

It can be shown that an exponential horn only behaves as required above a critical frequency f_c which is determined by m; in fact,

$$m = \frac{4f_c}{c}$$ \hspace{1cm} (15)

where c is the velocity of sound (13,500 inches per second, since we shall be working in inches for the horn dimensions). Below this critical frequency no radiation occurs, and the less rapid is the flare (i.e., the lower is m) the lower the critical frequency. But the ribbon unit must not be allowed to work at too low a frequency, even if space for a large horn can be found, as the thin ribbon is easily overdriven. Most of the power in music and speech lies below a frequency of about 1,000 c/s so it is wise to arrange by means of a crossover network that a normal moving-coil loudspeaker which is reasonably satisfactory up to this frequency handles the range up to, say, 2,000 c/s and the ribbon unit the higher frequencies. The horn can then be designed for a critical frequency of 1,000 c/s (giving an m of 0.03 per inch) which ensures that the lowest frequency it has to handle (2,000 c/s) is well within its working range. At the same time, the flare is not so rapid as to lead to practical difficulties in cutting and bending to the right shape the horn material, and yet the horn is reasonably small.

The length of the horn is determined by considerations of the dimensions of the mouth. As pointed out above, these dimensions must be "sufficiently large to avoid reflections back into the horn": within reason the larger the mouth of the horn the better. A practical criterion is that the sides of the mouth should be about one wavelength at the lowest frequency. For the figures given above this is about 12in., leading to a horn about 6\text{ in.} long.

It is not essential that the horn should be of the same cross-sectional proportions all the way along; starting from a long narrow ribbon this would give a horn of an awkward shape. Instead, the rates of flare m_a and m_b of the a_x and b_x dimensions may be different; but

$$S_x = a_x e^{m_a x} = b_x e^{m_b x}$$

$$= a e^{(m_a + m_b) x} = S e^{m x}$$

and therefore $m_a + m_b = m$. In the present design $m = 0.9$ giving a mouth area of about 50 square inches with a length of 5 inches. The a_x dimension expands from 1.5 inches to 8 inches in this length, so that $m_a = 0.335$ and therefore $m_b = 0.565$.

Practical Details

Construction.—The magnet used originally produced a field of 9,700 gauss across a $\frac{1}{4}\text{ in.}$ gap between poles $\frac{1}{2}\text{ in.}$ by $\frac{1}{4}\text{ in.}$; this was increased to 12,500 gauss by fitting pole-pieces $\frac{1}{2}\text{ in.}$ by $\frac{1}{8}\text{ in.}$ of mild steel strip. Mild steel fillets were fitted where the pole-pieces project beyond the original poles to even the field distribution.

It is obvious that a powerful magnet is necessary to produce the required flux density in such a large volume, together with the inevitable stray field. Watches and ferrous tools must be kept well away from it, and all assembly work should be done away from the normal work-bench where iron filings might enter the gap. The keeper should not be removed and replaced more often than is necessary.

The ribbon and horn supports (Fig. 4) are made of synthetic-resin bonded paper board ("Paxolin," "Tefnol," etc.). Five pieces (two A, two B and
one C) of the appropriate thicknesses are cut approximately to the right dimensions and the bolt-holes E carefully drilled. They are then bolted together and filled to size, and the bottom holes slotted as the magnet somewhat obscures them and the bolts have to be put in sideways. The pieces A are filled out to fit snugly over the poles and fillets, with the inner faces flush with the faces of the poles. Pieces B have \frac{1}{16}\text{in} by \frac{3}{16}\text{in} holes for the extra pole-pieces, and are filed towards the edges to the contour of the horn. The centre piece is cut into four pieces C, shaped to the other horn section, allowing room for the ribbon clamps D. These are pairs of aluminium blocks of \frac{3}{16}\text{in} square cross-section; one block of each pair is screwed to one of the pieces B and extends to form a terminal post. The butting faces of these blocks are smoothed down on emery cloth on a flat surface, to ensure good contact to the ribbon.

The ribbon was obtained from a tubular paper capacitor—some search was necessary before one containing thin enough material was found! Once obtained this is cut to the correct width, but considerably longer than the final length, before removing the last layer of paper. After washing in carbon tetrachloride to remove grease, it is smoothed out on a sheet of clean glass. (The ribbon has a tendency to curl up, and fixing a piece of transparent sticky tape to each end greatly facilitates handling.) It is corrugated slightly by winding turns of 16 s.w.g. enamelled wire on a flat former, and pressing the ribbon on to the turns with a finger.

The two horns are made of about 26 s.w.g. tinplate, to be calculated dimensions, allowing for the fact that the initial part of the horn is formed by parts B and C of the ribbon supports. Of course, the shapes to which the tinplate has to be cut are not the same as the axial cross-sections of the horns; the method of developing the required shapes is shown in Fig. 5.) After bending and soldering along the corners the small ends are soldered to channel pieces F in which appropriate rectangular holes have been cut. The sides of the channels are slotted to pass under the bolts in the main structure.

Assembly.—This is quite straightforward. All the parts of the main structure are assembled on the magnet, with the exception of the smaller clamping blocks and the shaped pieces C covering them. The magnet is then laid on its side and the two bolts which are now underneath temporarily inserted. The ribbon is placed in position and held by the adhesive tape on its ends while the small clamps are screwed down; excess ribbon can then be torn off. The remaining pieces C are inserted and one of the horns bolted in place, after which the other bolts can be loosened and the second horn fixed. Rubber washers cut from a car-tyre inner tube are placed between the horns and the main structure. Only brass nuts and screws should be used throughout.

General.—Since the ribbon impedance is so low the leads to the matching transformer must be stout and twisted together to reduce inductance, but should not be less than a foot long to allow the transformer to be mounted well away from the magnet. Also, the transformer secondary must have a low resistance and leakage inductance. As a guide, a transformer to match the above unit into 15 ohms was wound as follows:

Core: square stack of Mumetal laminations (Pattern 178, Magnetic and Electrical Alloys).

Results

Impedance Measurements.—Measurement by a bridge method showed that for all frequencies above about 3,000 c/s the impedance of the unit was substantially that of Fig. 2(b) with the addition of an inductance L in series with R, where \(L = 6.9 \times 10^{-7} \) henrys, \(R_1 = 2.7 \times 10^{2} \) ohms, \(R = 6.6 \times 10^{2} \) ohms, \(C = 3.4 \times 10^{-9} \) farads. Below 3,000 c/s the horn is

2 Beatty and Sowerby, "Radio Data Charts" p. 81. (Iliffe and Sons).
operating near its cut-off frequency, the effect of which is that \(Z_w \) is not entirely a real quantity and the impedance of the ribbon differs from that given above. But above this frequency the agreement of the figures for \(R \) and \(C \) with theory is good. The importance of short leads is evident from \(R_w \) and \(L \) also becomes important at the higher frequencies.

6. Frequency Response—Three curves are plotted in Fig. 6; one from the simple calculated impedance of Fig. 2(6), one from the measured impedance, and one measured with a calibrated microphone. The latter shows well the effect of the horn. It is not extended above 12,500 c/s as the microphone was not calibrated above this frequency, but aural impressions indicate that the response continues to fall smoothly without either peaks or a sharp cut-off. The curve for the measured impedance is somewhat misleading; strictly, it does not apply below 3,000 c/s but should fall rapidly. Allowing for this, and raising the general level of the curve so that its highest point is at 0 db, it would show closer agreement with the measured response. Otherwise the correlation between the curves is reasonable considering the experimental errors and the various assumptions made. It may therefore be concluded (a) that it is important to design the horn for a cut-off frequency at least an octave below the cross-over frequency, and (b) provided values of \(B \) and \(\gamma \) as given by the simple theory are used, good results may be expected. In calculating \(\gamma \) from \(\beta \) and \(\gamma \) a value for \(\gamma \) of about 0.2 should be used. In a practical unit the resistances of leads and of the connection to the ribbon itself lower the efficiency to something more nearly approaching that of a normal 12in moving-coil unit. Even so, it may be necessary to pad down the ribbon unit to match the other as has proved the case with the writer's combination, particularly as it may not be possible in practice to obtain thin enough ribbon.

Aural Impressions.—The improvement in high-frequency response with the ribbon unit over the writer's 12in speaker (itself considered to be good) is most marked, and has been commented on by a number of people, both technical and non-technical, musical and non-musical. Results compare very favourably with two commercial units which the writer has heard.

PROFESSIONAL SOUND RECORDING

In his Presidential Address at the Royal Society of Arts to the Association of Professional Recording Studios on December 5th last, the Earl of Harewood spoke of the value of direct recording to musicians as a medium for self-criticism, and of his own experiences with recording apparatus. The craft of producing good recordings was one which had to be learnt, and one essential was that the mechanism of recording should not obtrude on the performer's preoccupation with his art. Having spent large sums on initial training for his career as a musician, he would not begrudge the few pounds necessary to secure a record of his progress under the comfortable conditions of a professional recording studio. In America recording was now accepted as a routine part of orchestral rehearsals; there was ample scope for the expansion of professional recording activities in this direction in this country.

C. E. Watts (President of the British Sound Recording Association) followed with a demonstration of the recent progress in disc recording in which he played some remarkably fine piano recordings, made with no restriction on lateral acceleration of the groove. Unfortunately the life of such records was limited to about a dozen playings, even with modern lightweight pickups.

The future of commercial broadcasting was the topic chosen for the address by the Vice-President of the Association, Derek Faraday. After drawing a careful distinction between "commercial," and "sponsored" types of programme structure, he showed, with examples from recent B.B.C. features, how a sponsored system might be introduced without any obvious change in the character of B.B.C. programmes as at present constituted. Such a change would open up a wide field for independent professional recording studios.

Particulars of the Association of Professional Recording Studios, and the services offered to members are obtainable from the General Secretary, M. K. Howells, 14, Wynchgate, Harrow Weald, Middlesex.

MANUFACTURERS' LITERATURE

Schools Radio equipment briefly described in leaflets from Audix B.B., Ltd., Hockerill Works, Bishop's Stortford, Herts.

Car Radios made by Ekco; short specifications for the complete range of models from E. K. Cole, Ltd., Ekco Works, Southend-on-Sea, Essex.

Components and accessories in a catalogue from A. F. Bulgin & Co., Ltd., Bye Pass Road, Barking, Essex.

Radiogramophone, Model FG50 described briefly in a specification from Kolster-Brandes, Ltd., Footscray, Sidcup, Kent.

Batteries for all purposes, including accumulators, catalogued in a booklet from Pettrix (Holsum Batteries, Ltd.), 137, Victoria Street, London, S.W.1.

Loudspeakers and accessories catalogued in an illustrated brochure from Wharfedale Wireless Works, Bradford Road, Idle, Bradford, Yorkshire.

Sound Level Meter, type 1440 portable instrument described in a leaflet from Dawe Instruments, Ltd., 130, Uxbridge Road, Harwell, London, W.7.

"Always in the Picture," an illustrated booklet describing the television activities of Pye, Ltd., of Cambridge.

Geiger-Muller and Cathode-Ray tubes; data sheets and a price list from 20th Century Electronics, Ltd., Dunbar Street, West Norwood, London, S.E.27.

Multi-way Connectors by Kohi described in a leaflet from Precision Components (Barnet), Ltd., 13, Byng Road, Barnet, Herts.

Catalogue of radio and electronic equipment from Holiday and Hemmendorfer, Ltd., 24-78, Hardman Street, Deansgate, Manchester, 3.

Output Transformers, complying with the "Williamson" specification in a technical data sheet from Partridge Transformers, Ltd., Roebeck Road, Tolworth, Surrey.

Long-playing Turntable, an attachment for converting normal radiograms, described in a leaflet from Chancery Precision Instrument Service, Ltd., 64, George Street, London, W.1.

WIRELESS WORLD, JANUARY 1951
Temporary Vision Aerial

Wide-band Folded Dipole of Unusual Design at the London Television Station

When conductors of equal size are used in a folded dipole (the usual arrangement) the impedance at the centre of the driven element is approximately four times that of a single straight half-wave aerial, namely 300 ohms. By using conductors that are unequal a useful range of impedances can be achieved, and this can be extended by arranging one element so that it partly shields the other. Bandwidth is dependent on the effective diameter/length ratio of the whole aerial, and for a folded dipole it is greatly improved by the inherent reactance correction.

Recent advances in the manufacture of v.h.f. cables have resulted in the production of a cable which will carry nearly 5 kW at 45 Mc/s with an attenuation of 0.2 dB per 100 ft. The velocity factor of the cable is 0.9. The mean power output of the Alexandra Palace vision transmitter during the transmission of an average picture is about 7.5 kW, the peak white power being 17 kW. The temporary aerial was designed to be centre fed by two cables arranged as a “binocular pair,” the feed point impedance being made equal to the characteristic impedance (2 x 84 ohms) of the pair in order to avoid the mechanical difficulty of inserting matching devices.

Construction

A central element of aluminium scaffold tubing surrounded by three driven elements was used to give a driving point resistance of 168 ohms at 45 Mc/s deviating by not more than ±10 per cent between 42 and 48 Mc/s. The variation of parallel reactance increases the impedance variation to ±20 per cent over this frequency band. Control of the resistance value is obtained either by changing the number (coarse control) or the diameter (fine control) of the driven elements. The reactance can be varied by auxiliary connections between inner and outer near the ends of the dipole, but no improvement results from such a connection because the inherent parallel stub formed by the two elements is shorter than the optimum length. Fig. 1 gives the dimensions finally adopted, and Fig. 2 shows the aerial as it was set up during the testing period.

The vision transmitter output at Alexandra Palace is arranged for driving into a 50-ohm co-axial feeder. At some point the two 84-ohm cables had to be joined to work in parallel by making one a half wavelength longer than the other. Technically this would best be done close to the aerial in order to avoid differen-

AMPLIFIERS FOR DISC RECORDING

Lecture-Demonstration at the B.S.R.A.

SOME useful criteria for the specification of amplifiers for high-quality recording were given by H. D. McD. Ellis, M.A., M.I.E.E., at a meeting of the British Sound Recording Association in London on November 24th last.

The frequency response of B.B.C. recording amplifiers was 50 to 10,000 c/s ± 1 db with a gradual rather than a sharp cut-off. Transformers were the limiting factor and the economic upper limit of 10 kc/s was dictated by the characteristics of 'music' land lines. Any reduction of frequency response should be made at both ends of the scale; the product of high and low frequency limits should approximate to 500,000 with a centre in the region of 700 to 800 c/s. Distortion was best assessed by calculating the r.m.s. sum of harmonics in per cent, with each (n'th) harmonic weighted by multiplying by $n^2/4$. On this basis a figure of 5 might well represent the borderline between high and medium quality.

High-quality transducers (microphones and cutter heads) were usually insensitive and overall power gains of the order of 100 db were necessary. At this level of amplification, noise was a major problem with Johnson thermal noise as the limiting factor. In general, hum level up to 6 db worse than Johnson noise could be tolerated; hand-picked valves were necessary to ensure adequate freedom from microphonic.

The output required for disc recording was considerable—of the order of 100 VA in the B.B.C. Type D equipment. Cutter heads with high inductance presented matching difficulties and called for low voltage and high current at low frequencies, high voltage and low current at high frequencies. It was better to express the output in volt-amperes rather than in watts.

After discussing the limitations of feedback, Mr. Ellis went on to show how it could be applied with advantage to include distortions in the recording. In the B.B.C. Type B head a second coil monitors the rate of change of flux in the magnetic circuit and provides a voltage which is fed back to an intermediate stage of the amplifier to compensate for distortion of the flux waveform. This gives a close approximation to the ideal of feedback controlled by the actual motion of the cutter point.

Volume compression was necessary in order to reduce actual sound level changes to the range of 45 db, which could be accommodated in disc recording. Manual control by a skilled operator was preferable to automatic compression, since some distortion was inherent in the non-linear characteristic required for instantaneous control. The virtue of manual control was intelligent anticipation, but some safeguard for carelessness was necessary, and in the amplifier used in the Type D equipment an auxiliary circuit, biased to cut-off at normal operating levels, was arranged to provide automatic overload prevention for excessive peaks.

After a general description of a typical B.B.C. recording channel, Mr. Ellis gave a demonstration of some high-quality piano recording, and showed the merits of the latest type of volume indicating meter.
WORLD OF WIRELESS

Beveridge Report • New Governors • European Broadcasting Problems • B.B.C. Television Policy • Steel C.R. Tubes

Broadcasting Inquiry

THE last meeting of the Broadcasting Committee, which was appointed in 1949 to consider, under the chairmanship of Lord Beveridge, the constitution and control of the United Kingdom broadcasting service, was held on December 15th for the signing of the report. It is understood that this report, which will summarize the oral and written evidence obtained from a considerable number of witnesses and give the findings of the eleven members, will be presented to the Government soon after the Christmas recess.

B.B.C. Governors

TWO new Governors of the B.B.C. have been appointed—I. A. R. Stedeford, who was a member of the Beveridge Broadcasting Committee and was previously a member of the Television Advisory Committee, and Francis Williams, who, during the war, was Controller of News and Censorship at the Ministry of Information. Their term of office is for one year only; the B.B.C. Charter ends on December 31st, 1951. Their appointment brings the number on the Board of Governors, which controls B.B.C. policy, up to eight.

Lord Telfder, who was appointed a Governor last year, has been made vice-chairman of the Board in succession to the Dowager Marchioness of Reading, whose term of office has ended.

I.F. Problems

THE problem of the choice of intermediate frequencies for superhet receivers, created by the introduction of the Copenhagen Plan, which was dealt with by G. H. Russell in our September, 1949, issue, has been tackled by the Technical Centre of the European Broadcasting Union (U.E.R.). In the November issue of the U.E.R. Bulletin in which there is an article on the subject, it is stated that the members of the Union are, so to speak, “manufacturers and suppliers” of modulated waves, and as such they need not, in principle, concern themselves with what their “customers” chose ultimately to do with their products. If, on the other hand, it can be shown that a judicious arrangement of broadcasting stations in Europe results in reception with a minimum of “whistles,” then it is considered by the Union that its members should not dissociate themselves entirely from the problem.

With a view to undertaking a closer study of the problem the Union has sent a questionnaire to representatives of receiver manufacturers in Belgium, France, Italy, Switzerland, and to B.R.E.M.A. in this country.

Italian F.M.

LIKE Germany, where in each of the three Western Zones there has been established a f.m. network to alleviate the congestion in the medium-wave band, the Italian broadcast service (Radio Audizioni Italiano) has introduced a chain of eight f.m. stations to radiate the country’s Third Programme. To meet the needs of those outside the service areas of the eight transmitters the programme is also being radiated on four wavelengths in the short-wave band with amplitude modulation.

The eight transmitters, which operate on frequencies ranging from 90.9 to 99.9 Mc/s, are located in Bologna, Florence, Genoa, Milan, Naples, Rome, Turin and Venice.

Television Progress

WHEN outlining the B.B.C.’s policy regarding television at a recent conference, the Director General, Sir William Haley, quoted figures showing the increased amount of capital expenditure on the service—from £74,000 in 1947-1948 to £914,000 in the current financial year and an estimated £1,202,000 next year. He estimated that 60 per cent of the Corporation’s income in the next three years will be devoted to the development of the television service.

On the question of the international exchange of programmes, it was learned that a television transcription service, similar to that already existing for sound broadcasting, is being introduced by the B.B.C. to provide British programmes for other European countries.

When dealing with the question of the transmission of the Test Card at times suitable for home constructors to test their sets, it was stated that the main difficulty is the shortage of camera equipment and studios, which are used for rehearsals out of transmitting hours. The difficulty is so acute that the television camera is not infrequently used for the present Test Card transmissions.

The progress report on the building of the Holme Moss transmitter shows that at the end of December the mast—like that at Sutton Coldfield, will incorporate a slotted v.h.f. aerial “in case a v.h.f. transmitter for sound broadcasting is installed”—has risen to some 600ft—it will eventually be 750ft. A stand-by mast, 150ft high, with a smaller aerial, is being erected in case there is trouble with the main mast.

NORTHERN TELEVISION. — The B.B.C. states that the area within which reception of Holme Moss can be relied upon is expected to be roughly rectangular, as indicated on this map. To show the probable overlap of the Midland and Northern service areas some of the field-strength contours of the Sutton Coldfield transmitter are included.

Wireless World, January 1951
Steel C.R. Tubes

CATHODE RAY tubes with spun-steel conical bodies and glass face-plates and necks are now being manufactured by the English Electric Valve Company. It is claimed that the new tube is lighter but at the same time more robust than its all-glass counterpart, and, above all, that the design lends itself much better to modern mass-production techniques. The face-plate is nearly flat, thus increasing its effective area.

One size only—in.—will be available. The tube is being marketed by the parent English Electric Company.

Science Centre

FOR some years negotiations have been going on for the establishment of a centre in London which would provide adequate accommodation for the learned societies. In the House of Commons on November 21st, the Lord President of the Council announced that it had been possible to overcome the remaining obstacles for the adoption of the proposals originated by the Royal Society for a British Science Centre in London.

Provision will be made for accommodating in the Centre the Patent Office and its Library, the D.S.I.R. and other Government scientific organizations as well as providing new quarters for many of the leading scientific societies.

The actual site has not been announced.

International Acoustics

AS a result of the proposal put forward at an international acous- tical meeting in Marseilles some months ago, a new journal, with the title Acustica, is being sponsored jointly by the Acoustics Group of the Physical Society in this country and similar organizations in France and Germany.

The journal, which will cover musical, architectural, physiological and biological acoustics, will be published in Switzerland in either French, German, or English with abstracts in the other two languages. The British representative on the Editorial Board is Dr. E. G. Richardson, Physics Department, King's College, Newcastle-on-Tyne, 2.

Television Cables

OUR oft-repeated claim that the British 405-line television system, with a bandwidth of 3 Mc/s, is the only one that is suitable for transmission over the existing international telephone cables, was reiterated by a sub-committee of the International Telephone Consultative Committee (C.C.I.F.) at a recent meeting in Geneva. It was emphasized that it would be necessary to double the number of repeaters for the "European" 625- and French 815-line systems.

East African Communications

AN experimental v.h.f. beam radiotelephone link between Nairobi and Nakuru which has been in use for more than a year has proved so successful that the East African Posts and Telegraphs Department plans to install similar equipment linking the major towns in Kenya, Uganda, and Tanganyika. During this year radio equipment will be installed, the linking the telephones systems of Karpatia and Jinja, Jinja and Nakuru and Tanga and Dar-es-Salaam. By 1952 Nairobi will be linked with Mombasa, Mombasa with Tanganyika, and Dar-es-Salaam with Dodoma.

A team of radio engineers is at present carrying out a survey in the coastal sector of East Africa, the results of which should add much to the knowledge of v.h.f. propagation in the tropics. Both the experimental gear and field survey equipment—which is mounted in motor vehicles to enable tests to be taken in any part of East Africa—were provided by Marconi.

G.R.S.E.

THE need to educate the public to the fact that radio servicing is a highly skilled job and also to eliminate "the dabber and selfstyled expert" is stressed in the recently produced prospectus of the Guild of Radio Service Engineers. There are four classes of membership of the Guild, the main objects of which are to improve the status of those engaged in the "repair and maintenance of radio, television and similar electronic apparatus"; they are: (a) Full-Member—who must be over 21, hold an approved certificate or have served for five consecutive years as a service technician; (b) Associate Member—who, although over 21, has served for less than five years; (c) Apprentice—serving under intendency; and (d) Improver Membership is not open to principals or partners of firms or to those trading upon their own account.
PARTICULARS OF THE GUILD, which is registered under the Trade Unions Acts and has branches in Northern Ireland, Scotland, N.E. and N.W. England, are obtainable from the Honorary General Secretary, H. Hill, 2 Stevenson Street West, Accrington, Lancs.

It may be remembered that the G.R.S.E. is joint sponsor with the Radio and Television Retailers' Association of the Radio Service Trade Register.

B.B.C. APPOINTMENTS

A NOTHER rearrangement of executives and departments in the Engineering Division of the B.B.C. is announced. A newly formed group composed of the Planning and Installation Department and the Designs Department— to be known as the Engineering Projects Group. F. C. McLean, who has been Head of the Engineering Services Group for the past 18 months, becomes Head of the new group and is succeeded by E. L. E. Pawley, who was his assistant. Mr. McLean joined the Corporation in 1936 after 17 years with Standard Telephones and Cables and was largely responsible for the erection of many of the B.B.C. transmitters built during the war. Mr. Pawley has joined the Research Department of the B.B.C. since 1931.

T. C. Macnamara, who had been with the Corporation since 1921, and who had, since 1947, been Head of the Planning and Installation Department, has resigned from the Corporation (see "Personalities") and is succeeded by A. N. Thomas, his assistant. Mr. Thomas joined the Research Department of the B.B.C. in 1936 and in 1936 became assistant to the Superintendent Engineer (Transmitters).

PERSONALITIES

T. C. MACNAMARA

sioning and installing all the equipment used by the Corporation, has joined Scophony-Baird as Director of Engineering and Production. During his 27 years with the B.B.C. he was largely concerned with the establishment of transmitters, including Drottwich, Alexandra Palace and Ottingham. He was Secretary to the 1913 Television Committee under the chairmanship of Lord Sankey.

Air Comdre. B. D. Nicholas, who has been appointed Air Officer Commanding No. 1 Group, R.A.F. Technical Training Command, has, since 1946, successively held the posts of Inspector of Signals, No. 00 Group; Deputy Director of Air at the Ministry and Director of Signals (Organization).

Percy Good, C.B.E., who had been Director of the British Standards Institution since 1939, died on December 27 at the age of 70. He was appointed Assistant Secretary of the British Engineering Standards Association— now the B.S.I.—in 1913 and was president of the I.E.E. in 1947.

IN BRIEF

Synthetic Radio and radar equipment is used in the training of air traffic control officers at the Ministry of Civil Aviation's A.T.C. School at Hurst Airport, in addition to normal courses on telecommunications and radar. Comprehensive training of all aspects of air control is given both to new recruits and established M.C.A. officers, and since 1948 when the school opened 279 British and 23 Overseas officers have passed through it. Arriving at Hurst by air, Wireless World was safely and efficiently "talked down" on to the runway by pupils who were gaining actual operational experience of radar in the Airport's G.O.

Iceland's new 5-kW transmitter at Fidar—operating on 611 kc/s—was provided by Marconi's who supplied the original 1-kW installation which it replaces. The Iceland State Broadcasting Service has now placed an order with the company for a 5-kW transmitter for a new station at Akureyri which, under the Copenhagen Plan, shares the 737-kc/s channel with Spain, Palestine and the Netherlands. Iceland has also ordered a 20-kW long-wave transmitter for erection on the same site as the existing 200-kW long-wave station at Reykjavik.

S.W. LISTENING.—The annual short-wave listening competitions organized by the International Short Wave Club will be held in February. In the first of these, contestants have to log between February 1st and 15th the stations in the Central and Western Indies operating on c.w. or "phone" in the 14 and 28-Mc/s bands. In the second contest, competitors have to log during the six weekends in February the short-wave broadcasting stations in the same areas. Entrance forms and full details are available from 1 S.W.C. 105, Adams Gardens Estate, London, S.E.16.

Yachtmen among our readers may like to know of the introduction of the Yachting World Diary issued for our associated journal Yachting World by our Publisher, priced 9s. od., including purchase tax. The material in the 42 pages of reference data ranges from the International Signals in full colour to the London Underground System and includes the Morse code and the times of B.B.C. weather forecasts.

WEATHER REPORT

A South African company is being formed by F.T. Holobon and H. Pollacci & Co. of South Africa and a factory is being erected in Johannesburg for the manufacture of gramophone records. It is understood that it is intended at a later stage to extend the factory to include the manufacture of other H. M. I. consumer goods, including broadcast receivers and radio-granophones.

U.N. TELEVISION.—Tenders for television equipment, presumably to American standards, have been called for by the United Nations Headquarters, Lake Success, include three complete mobil-camera chains and vision control equipment. Details are available from The Commercial Relations and Exports Department (Industries Branch), Board of Trade, Room 1010, Thomas House North, Millbank, London, S.W.1. (Reference C.R.E. (U.B.) 21/15/60).

NEW STUDIOS for the broadcasting service in Hong Kong and the Far East, on the side which is the responsibility of Cable and Wireless— are to be equipped with some Marconi control gear.

Marconi International Marine Communication Co. has acquired new premises at 50, Broad Street, Peterhead, from which all Marconi marine business in the port will be conducted (Tel.: Peterhead 376).

A.B. Metal Products, Ltd., have found it necessary to extend their premises at Barry, Glamorgan, into which they recently moved, and the factory now covers an area of 7,000 sq. ft.

MEETINGS

Institution of Electrical Engineers

Radio Section.—Discussion on "How Reliable is a Radiophone?" to be opened by G. H. Metson, Ph.D., M.Eng., I.E.E., at 5.30 on January 22nd at Savoy Place, London, W.C.2.

Cambridge Radio Group.—"The Use of Beautiful Equations for Pulse Generators," by W. S. Melville, B.Sc.(Eng.), at 8.15 on January 26th at the Cavendish Laboratory. South Midland Radio Group.—Informal lecture on "The Operation and Maintenance of Television Outside-Broadcast Equipment," by T. H. Bridgewater at 6.00 on January 29th at the James Watt Memorial Institute, Great Charles Street, Birmingham.

Reading (Berk's) District.—"Trends of Development in Radiocommunication," by Professor Willis Jackson, D.Sc., D.Phil., at 7.00 on January 22nd at the Great Western Hotel, Reading.

British Sound Recording Association

Television Society

Leicester Centre.—"Television from Calais," by E. F. Richardson (B.B.C. Television Service) at 8.15 on January 20th at the Leicester College of Technology, The Newarke, Leicester.
Radio Research

Report of the Radio Research Board

IT is seventeen years since a report on the activities of the Radio Research Board has been issued as a separate publication, so that the one covering the period 1933 to 1948, which is just published by the Stationery Office (price 2s.), is of particular interest.

"Radio Research 1933-1948," as it is called, includes in its 60 pages not only the official report of the Board, of which Sir Stanley Angwin is chairman, but also a survey of the investigations carried out under the direction of the Board between 1934 and 1947; the report of the Director of Research—Dr. R. L. Smith-Rose—for 1948; and appendixes giving the membership of the Board, the papers emanating from the Radio Division of the N.P.L., and the constitution of the Board's various committees. For the sake of continuity with the earlier reports, the Board gives a brief account of its activities from 1933-1945, but the major part of the publication is devoted to a more detailed survey of the post-war period.

The report records that a considerable amount of time is devoted to the study of the ionosphere and that this part of the Board's work is being extended. This work has been centred on the Radio Research Station, Slough, where these measurements have been conducted for many years past. In addition, however, regular observations of a similar type have been made at the sub-stations at Fraserburgh in Aberdeenshire, and at Port Stanley in the Falkland Islands; while during the latter part of 1948 preparations were made for a similar ionospheric observatory to be set up at Singapore.

Following the recommendation of the British Commonwealth Scientific Official Conference in 1946, the possibility of installing ionospheric recording stations in Graham Land has been explored and an observatory is to be established on Deception Island.

The present research programme includes an investigation of the communication possibilities of the shorter wavelengths now being used for radio-telephone relay links and television, and valuable data has already been accumulated.

Research into the characteristics and sources of atmospheric noise has been developed into a worldwide survey in cooperation with Australia and the United States of America. Sixteen Service and commercial stations now make a schedule of hourly observations over the frequency band 2.5-20 Mc/s. The investigation is being extended to the low-frequency range of 15 to 500 kc/s, and a network of observation stations covering this range of frequencies is being established.

Catalogue of Research

A catalogue of all types of research work being done or being planned for which the Board is responsible has been issued, including the work done by the various committees.

Piezoelectric Pickups

A prophecy that in five years time ceramic aggregates of the strontium-barium titanate type might displace Rochelle salt as the principal material for making crystal pickup elements was made by S. Kelly in a lecture to the British Sound Recording Association on December 20th last. Much work remained to be done before a piezoelectric ceramic of adequate stability could be put into production, and means devised for safeguarding it against fracture. He compared its inherent strength to a piece of fur from the lining of a kettle and pointed out that because of its high mechanical impedance elements of only 0.005 in thickness could be used in pickup movements. The chief advantages of this material over Rochelle salt were resistance to humidity changes and high dielectric constant.

Recent advances in crystal pickups were reviewed and a design described in which a narrow crystal torsion element, free at both ends, is embedded in a plastic gel of optimum viscosity to give an evenly distributed load, presenting to the needle point the equivalent of a properly terminated transmission line. The reflected mechanical impedance at the stylus point was reduced by the use of a cantilever mounting and record wear had proved to be remarkably low. The pickup had given very good results with long-playing records in which the problem of tracking was made more difficult than on 78-r.p.m. records because of the limitation of downward pressure imposed by the new plastic materials used, and the higher relative velocity of recording at high compared with medium and low frequencies—about rodb between 1,000 and 10,000 c/s.

Wireless World, January 1951
It is now nearly three years since we last published a list of amateur societies and, as the number of such organizations on our records has almost doubled, it is considered opportune to issue a revised list.

Arranged in alphabetical order under towns, the names of the club, and in some cases the club call sign, is followed by that of the secretary from whom details of the society's activities may be obtained. Clubs which are affiliated to the Radio Society of Great Britain are indicated by an asterisk.

We shall be pleased to receive details from the secretaries of active societies which may have been inadvertently omitted from this list.

Societies and Clubs

List of Radio Groups in the British Isles

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABERDARE</td>
<td>Rhigos and District Radio Club</td>
<td>Aberdare, Glam.</td>
<td></td>
</tr>
<tr>
<td>ABERDEEN</td>
<td>Aberdeen Amateur Radio Society* (G3ARO)</td>
<td>Aberdeen</td>
<td></td>
</tr>
<tr>
<td>ASHTON-UNDER-LYNE</td>
<td>Ashton-under-Lyne and District Amateur Radio Society* (G3FJY)</td>
<td>Ashton-under-Lyne</td>
<td></td>
</tr>
<tr>
<td>AYLESBURY</td>
<td>Aylesbury and District Amateur Radio Society* (G3ACO)</td>
<td>Aylesbury, Bucks</td>
<td></td>
</tr>
<tr>
<td>BALDOWC</td>
<td>Baldock and District Radio Club* (G3AQP)</td>
<td>Baldock</td>
<td></td>
</tr>
<tr>
<td>BALSLEY</td>
<td>Balsley and District Amateur Radio Club*</td>
<td>Balsley</td>
<td></td>
</tr>
<tr>
<td>BASINGSTOKE</td>
<td>Basingstoke and District Amateur Radio Society* (G3BBO)</td>
<td>Basingstoke</td>
<td></td>
</tr>
<tr>
<td>BATH</td>
<td>Bath - Admiralty Electronics Society* (G3BBC)</td>
<td>Bath</td>
<td></td>
</tr>
<tr>
<td>BELFAST</td>
<td>City of Belfast Y.M.C.A. Radio Club* (G3BCF)</td>
<td>Belfast</td>
<td></td>
</tr>
<tr>
<td>BERWICK-ON-TWEED</td>
<td>Berwick-on-Tweed Radio Club*</td>
<td>Berwick</td>
<td></td>
</tr>
<tr>
<td>BIRMINGHAM</td>
<td>Birmingham and District Short-Wave Society* (G3AAG)</td>
<td>Birmingham, 39</td>
<td></td>
</tr>
<tr>
<td>BRIRKENHEAD</td>
<td>Wirral Amateur Radio Society* (G3AAT)</td>
<td>Birkenhead</td>
<td></td>
</tr>
<tr>
<td>BURTON-ON-TRENT</td>
<td>Burton and District Radio Society* (G3BTP)</td>
<td>Burton</td>
<td></td>
</tr>
<tr>
<td>BURY</td>
<td>Bury District Radio Society* (G3BQY)</td>
<td>Bury</td>
<td></td>
</tr>
<tr>
<td>CAMBRIDGE</td>
<td>Cambridge and District Amateur Radio Club* (G3AOI)</td>
<td>Cambridge</td>
<td></td>
</tr>
<tr>
<td>CANNOCK</td>
<td>Cannock Chase Radio Society* (G3AOQ)</td>
<td>Cannock</td>
<td></td>
</tr>
<tr>
<td>CARLISLE</td>
<td>Carlisle Amateur Radio Society* (G3BQJ)</td>
<td>Carlisle</td>
<td></td>
</tr>
<tr>
<td>Catterick</td>
<td>Catterick Amateur Radio Club* (G3BQI)</td>
<td>Catterick</td>
<td></td>
</tr>
<tr>
<td>CHELTENHAM</td>
<td>Cheltenham Amateur Radio Society* (G3BQF)</td>
<td>Cheltenham</td>
<td></td>
</tr>
<tr>
<td>CHESTER</td>
<td>Chester and District Amateur Radio Society* (G3BQG)</td>
<td>Chester</td>
<td></td>
</tr>
<tr>
<td>CHIPPENHAM</td>
<td>Chippingham and District Short-Wave Club* (G3BQH)</td>
<td>Chippingham, Wills</td>
<td></td>
</tr>
<tr>
<td>CLECKHEATON</td>
<td>Spenn Valley Radio and Television Society* (G3BQJ)</td>
<td>Spenn Valley</td>
<td></td>
</tr>
<tr>
<td>COVENTRY</td>
<td>Courtauld's Amateur Radio Group* (G3BQQ)</td>
<td>Coventry</td>
<td></td>
</tr>
<tr>
<td>CRANWELL</td>
<td>R.A.F. Amateur Radio Society* (G3BQK)</td>
<td>Cranwell</td>
<td></td>
</tr>
<tr>
<td>DERBY</td>
<td>Derby and District Amateur Radio Society* (G3BQL)</td>
<td>Derby</td>
<td></td>
</tr>
<tr>
<td>Doncaster</td>
<td>Doncaster and District Amateur Radio Society* (G3BLM)</td>
<td>Doncaster, Yorks</td>
<td></td>
</tr>
<tr>
<td>DORKING</td>
<td>Dorking and District Radio Society* (G3BLP)</td>
<td>Dorking</td>
<td></td>
</tr>
<tr>
<td>DUBLIN</td>
<td>Irish Radio Transmitters Society* (G3BLR)</td>
<td>Dublin</td>
<td></td>
</tr>
<tr>
<td>DUNFERMLINE</td>
<td>Dunfermline Radio Society* (G3BLS)</td>
<td>Dunfermline</td>
<td></td>
</tr>
<tr>
<td>EASTBOURNE</td>
<td>Eastbourne and District Radio Society* (G3BLC)</td>
<td>Eastbourne</td>
<td></td>
</tr>
<tr>
<td>EAST GRINSTEAD</td>
<td>East Grinstead Radio and Television Society* (G3BME)</td>
<td>East Grinstead</td>
<td></td>
</tr>
<tr>
<td>EGGLETON</td>
<td>Eglington and District Radio Society* (G3BNC)</td>
<td>Eglington</td>
<td></td>
</tr>
<tr>
<td>EDINBURGH</td>
<td>Edinburgh Amateur Radio Club* (G3BPI)</td>
<td>Edinburgh</td>
<td></td>
</tr>
<tr>
<td>EXETER</td>
<td>Exeter and District Radio Society* (G3BJK)</td>
<td>Exeter</td>
<td></td>
</tr>
<tr>
<td>FALMOUTH</td>
<td>West Cornwall Radio Club* (G3BJC)</td>
<td>Falmouth</td>
<td></td>
</tr>
<tr>
<td>FARMBOROUGH</td>
<td>B.A.E. and Farmborough District Amateur Radio Society* (G3BJD)</td>
<td>Farmborough</td>
<td></td>
</tr>
<tr>
<td>FORFAIR</td>
<td>Forfar and District Amateur Radio Club* (G3BJE)</td>
<td>Forfar</td>
<td></td>
</tr>
<tr>
<td>GATESHEAD</td>
<td>Gateshead and District Amateur Radio Club* (G3BKF)</td>
<td>Gateshead</td>
<td></td>
</tr>
<tr>
<td>GERRARDS CROSS</td>
<td>British Amateur Television Club*</td>
<td>Gerrards Cross, Bucks</td>
<td></td>
</tr>
</tbody>
</table>

Wireless World, January 1951

19
Vector Diagrams

By "CATHODE RAY"

SOME readers seem to have found "Miller Effect"* rather heavy going when it came to the vector diagrams. It was pointed out to me that not everybody knows how to apply vector diagrams to valve circuits, nor even where to find simple instructions, and could I do something about it.

Always willing to oblige, I started off—and found I had used up something like the month's ration of paper before valves came into it all! For on considering the matter I became convinced that at least half the trouble had to do with vector diagrams themselves rather than with their application to valve circuits. True, I could see one possible difficulty connected with the valves—I hope to get on to that eventually—but the first thing seemed very definitely to be the removal of possible misunderstandings about vector diagrams as such, applied to circuits using only ordinary circuit components.

Looking through a good selection of electrical and radio books, I was surprised to find how few made any serious attempt to explain to the uninitiated how to represent the conditions in a circuit by a vector diagram without risk of ambiguity.

Oh! I went to a fresh start, then—but again I found the roots of the matter lay deeper. A particular vector diagram shows, shall we say, that at the moment under consideration a certain voltage marked V_1 is positive. What exactly does this mean? Presumably we also have the corresponding circuit diagram, on which V_1 is marked; does that help at all? Suppose Fig. 1 is the part of the diagram concerned. The two arrows show that V_1 exists between two wires, which we shall label a and b. The vector diagram, if it is drawn to scale, may tell us how many volts V_1 is. It wouldn't need a vector diagram just to say that.

The main object of the vector diagram is to show the directions or phases of the quantities represented by it. But even when it does this, by telling us that V_1 is positive, how much wider are we? Does it mean that a is positive compared with b, or the other way about?

It does seem, then, that it would be a waste of time to talk about vector diagrams before we have cleared up questions like these, concerning the circuit. They are questions of convention rather than of fact. The fact in our example is a tendency for electrons to move from one wire to the other. Suppose that actually they tended to move from a to b. That fact could be conventionally expressed by marking either wire "$+"$ and the other "$-"$. Perhaps the most sensible convention would call a the positive wire. But the most important thing about a convention is not so much that it should be sensible as that everybody should stick to the same one. If it can be sensible too, so much the better.

Conventions are like the rules of a game. If you are playing a game with people who have different rules from yours there is likely to be some unpleasantness, sooner or later. As it happens, the convention that has been universally adopted (unluckily, perhaps) would in this case put the "$+"$ label on b.

We still have to take care with such a label, not to forget that it refers to b in relation to a and does not necessarily hold good with reference to another wire, say c, towards which b might be negative. But for the present let us consider V_1 only. It might be as well to attach the "$+"$ label to the b-ward arrow associated with V_1, rather than to the wire.

If the positivity of b were permanent there would be no need for the vector diagram: $+\text{ and } -$ signs on the circuit diagram would do. But we are assuming that V_1 is variable and reversible, and we need to know what a positive value for it means. A negative value will then automatically be the opposite.

If one of the wires, say a, happened to be connected to earth, then the accepted convention that potentials are reckoned relative to earth (unless the contrary is stated) would lead one to guess that a positive V_1

Left: Fig. 1. Example of one common method of labelling a voltage. Unfortunately, knowing whether the voltage is positive or negative does not tell one which (a or b) is positive with respect to the other.

Right: Fig. 2. Considering these additional circuit details may help one to decide on the best way of indicating the polarity of a voltage.

Wireless World, January 1951
would mean that b was more positive than a. But perhaps neither a nor b is earthed. What then?

A neat way of indicating the two points and the direction between them is to use the notation "V_{ab}" in place of "V_b". It is generally agreed that this means "the voltage in the direction a to b," and V_{ab} is the voltage in the opposite direction. But as regards polarity or sign, it could mean either "the voltage of a relative to that of b" or "the voltage change in the direction a-to-b." According to the former convention a positive value of V_{ab} would mean that a was more positive than b, and the latter would mean just the opposite.

The few books I have seen that make use of this "double-subscript" notation seem mostly to adopt the first of the two conventions, so that a positive V_{ab} would mean a more positive than b. In other words, it reckons falls of potential as positive.

In Fig. 1 we assumed, if you remember, that b was more positive than a. According to the convention just stated this could be expressed by saying either that V_{ab} was negative, or that V_{ba} was positive. Now try applying this to Fig. 2, in which some of the circuit details have been filled in. The voltage originally called V_b is now seen to be due to an e.m.f., denoted by E, which tends to drive current (I) from its positive to its negative terminal, through the resistance R, in the clockwise direction indicated by the arrow alongside "I." (If you prefer to call the direction of the current the same as the direction of electron flow, your arrow will point the opposite way. You may have logic on your side, but you will run the risk of being misunderstood. To the person who knows what he is doing, all conventions are lawful, but—as St. Paul said—not all are expedient). Because the circuit is closed (itself a confusing description, I always think), and there is no stronger opposing e.m.f., current actually must flow as indicated. As a result there is a voltage drop across R, denoted by V. The current automatically flows at the strength that makes this voltage exactly equal to the e.m.f. (resistance other than R being neglected). If we replace "V" and its rather non-committal pair of arrows by "V_{ba}" then the fact that V_{ba} is positive would appropriately be indicated by an arrow pointing from b to a, as in Fig. 3. So far so good. But what about E? The direction of current flow through the battery is from a to b, and according to the assumed convention V_{ab} (or E_{ab}, if you prefer) is negative. This follows in another way, if we remember that the convention regarded falls in potential as positive; here we have a rise in potential, which must accordingly be negative.

This idea of regarding E as negative in the direction from a to b seems to follow inevitably from the convention being considered, but it doesn't appeal to me. The only natural way for me to draw an arrow connected with E is in the direction in which E tends to drive current; in this case, clockwise, from a to b. If this clashes with the convention, so much the worse for the convention.

The defender of the convention may tell me I have got it wrong—I am mixing up e.m.fs and the &p;ds. I ought to know that an e.m.f. drives current from + to — through the external circuit and from — to + through itself, so of course it must be treated differently.

Well, it is all very nice to be able to discriminate between e.m.fs and the rest in this way, but (as we saw last month) even the authorities differ on what is and what is not an e.m.f., and busy people have no time to argue it out every time they analyse a circuit. Moreover, it would mean discriminating as regards voltage convention between impedances that are reactances (which have no e.m.f.) and impedances that are reactances (which are sources of e.m.f.).

Reckoning voltages as falls in potential thus gives a result that I for one find unnatural. How about reckon them as rises? Then E in Fig. 3 is positive in the direction of current flow, which makes sense of Fig. 4. The double-subscript notation for E, which would be E_{ab}, being positive, would have to mean the change in voltage on moving from a to b. V_{ab} (across R) would on the same principle be negative. So the appropriate direction for the arrow alongside V is against the current (Fig. 4). Some people disagree with that, because it makes V look as if it were an e.m.f. But surely it fits the facts? If you push a table across the floor it moves in the direction in which you exert the "table-motive force," and the table presses against your hands equally in the opposite direction. If the circuit impedance were a reactance, its opposition would be an e.m.f., and there would be no doubt about its being opposite in direction to the applied e.m.f. Although a resistance has no e.m.f. it seems reasonable to treat the voltage drop across it as an opposing voltage.

Provided, therefore, that we can persuade everybody to interpret "V_{ab}" as "the change in potential on moving from a to b," the result is a useful convention that fits in well with other generally accepted or acceptable ideas.

Many people may dislike this system because it makes the voltage across the resistance, V_{ba} negative; that is to say, opposite in phase to the current. One is taught that the current through a resistance is in phase with the voltage across it. But "the voltage" here means the voltage driving the current. So the objection can be overcome by reckoning the voltage across the resistance as the one that includes the e.m.f.—the voltage between a and b through the source, which is V_{ab} (or E_{ab}), and positive.
There is still one possible cause of confusion to clear up. I have spoken of V in Fig. 4 as being opposite to E. "But," you may say, "the arrows are pointing in the same direction, from a to b!" It is surely a serious matter for one person to say one thing and another person the opposite. Before long they may be calling one another liars. If two people, represented by A and B in Fig. 5, were to face one another and discuss a piece of string, xy, Mr. A might well declare that x was the right-hand end of the string, and Mr. B might be equally sure it was the left-hand end. Mr. C, asked to adjudicate, might say "Nonsense! It is neither to the right nor left of y!" The plain man (as he likes to call himself) is so apt to assume that if one statement is true the diametrical opposite must be untrue. But a simple example like Fig. 5 shows the fallacy of this. It all depends on the point of view. I haven't actually heard Messrs. A and B in the course of their particular heated argument ("Man! Don't you know your right hand from your left?"), but I have heard heated arguments that were just as futile, because based on the same fallacy.

Electrical Point of View

Reverting to Fig. 4, anybody who sees E and V as being in the same direction should consider Fig. 6, which shows exactly the same circuit. The only difference is that the drawing is laid out a little differently, which you will surely agree can have no effect whatever on the actual voltages in the real circuit. Yet I have actually read an article in which the author confused himself over this very thing. It is the point of view again. The way Fig. 4 is drawn tends to suggest a parallel circuit, whereas Fig. 6 looks more like a series circuit. Either series or parallel (or both) may be right, depending on circumstances and the way one is considering the circuit.

The particular way the circuit diagram is arranged does not necessarily decide the matter, though admittedly diagram layout is a useful method of suggesting the point of view the drawer intends.

![Fig. 5](image1)

Three people, situated respectively at A, B, and C, would have different views as to whether x was to the right or left of y.

![Fig. 6](image2)

This circuit is identical with that in Fig. 4; only the drawing is different.

Sometimes it is convenient to reckon voltages with reference to a particular point in the circuit (usually an earthed point), at other times they are reckoned round the circuit. This is where a sound system of notation is necessary. As far as voltages are concerned, it should indicate clearly the two points between which the voltage exists, and the direction in which it is being reckoned between those points. This does not necessarily mean the direction in which it is actually operating. E in Fig. 4 is operating from a to b, if one judges by the fact that it is driving or tending to drive current in that direction. But we can reckon it in either direction, as E_{ab} or E_{ba}. In this case E_{ab} would be negative.

The double-arrow notation used in Figs. 1 and 2 is very good for showing the terminal points of the voltage, but fails to distinguish one direction from the other. The single-arrow system (Figs. 4 and 6) certainly shows the direction but leaves one to guess the points. Moreover I suspect that it is commonly used to show the direction in which the voltage acts, so using it to show the direction of reckoning may cause confusion. The double-subscript notation $-V_{ab}$ and so forth—states quite definitely both of the points and a direction between them. I think it is universally agreed that the direction is from the first subscript letter to the second.

Whichever point of view one takes, this notation fits in with familiar electrical axioms. If you consider the voltage of one point relative to another, then you have the fact that the voltage between two points is the same regardless of the path you take between them. The voltage from a to b is called V_{ab} and, in Fig. 4 for example, is inevitably the same whether one reckons clockwise or anticlockwise. If you take the rotational point of view, then the principle is that no point can be at two different voltages, so if you go round any circuit the sum of the voltages must be zero. Round Fig. 4 we have $V_{ab} + V_{ba}$ and as V_{ab} means $-V_{ba}$ there can be no doubt about the total being zero.

It is a matter of convenience which way round one reckons a closed circuit. Some people tend to go clockwise round the diagram. But it must be remembered it may mean either way round the actual circuit, depending on the particular way the circuit diagram is drawn. Although Fig. 7 represents exactly the same circuit as Figs. 6 and 4, taking it clockwise would reverse all the signs. They would still be correct relative to one another, of course. Another custom is to adopt the direction in which the current is flowing. If that is unknown it doesn't matter; a "wrong" guess will merely result in a negative value for the current, which just means that it is flowing the other way. The important thing is to mark the assumed direction of current on the diagram. So far, our example has for the sake of simplicity been a d.c. circuit, on which + and − signs have been marked, taking care that they are clearly arranged in pairs so as to show which point is negative with respect to each positive. Although with a.c. the signs are periodically reversing, it is allowable and sometimes convenient to mark them on a circuit diagram, on the clear understanding that they refer, say, to the first half of each cycle. During the second half all will be reversed, so relative to one another will be the same. This rather unorthodox practice is useful for quickly working out the relative signal polarities in a multi-stage amplifier, as when finding

Wireless World, January 1951
whether a proposed connection will give negative or positive feedback; but of course one has to take care to keep the a.c. signs quite distinct from the various d.c. polarities. Except for very rough work it is far better to use vectors, because they cannot be confused with the d.c. symbols, and (much more important) they are not restricted to only two phase relationships—0° and 180°.

So next time we shall deal with vector diagrams. Meanwhile Fig. 8 is an example for giving some practice in the use of the notations we have just been considering. Try working out the values of all the voltages, before looking at the answers in the table. Because the circuit is linear (i.e., subject throughout to Ohm's Law) the a.c. and d.c. can each be calculated separately just as if the other didn't exist.

Here is a summary of the notations:

1. A voltage between two points can be identified on a circuit diagram by a numbered V with a pair of arrows marking the points, as in Fig. 1.
2. If the points are labelled (say a, b, etc.) an alternative to (1) is the double-subscript notation \(V_{ab} \), etc. which has the advantages
 (i) that it is not necessary to mark the voltage symbols and arrows on the circuit diagram, and
 (ii) that the voltages in the opposite directions are distinguishable as \(V_{ba} \), etc., thus enabling one to keep the relative polarities throughout the circuit right.
3. A further advantage follows if it is agreed whether the reckoning is in falls or rises of potential. If in falls, then a positive \(V_{ab} \) means that \(a \) is more positive than \(b \); if in rises, it means \(b \) is more positive than \(a \).
4. Compared with (3), + and — signs on the circuit diagram may be misleading, because a single point can be both positive and negative, depending on which other point it is being related to. Also their usefulness is very limited in dealing with a.c.
5. Single directional arrows are sometimes used to indicate the positive direction of e.m.f. or of electric field. But since these are usually opposite there is risk of confusion through doubt as to which is meant.

Clockwise

<table>
<thead>
<tr>
<th></th>
<th>Rise</th>
<th>Fall</th>
<th></th>
<th>Rise</th>
<th>Fall</th>
<th>How derived</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.C.</td>
<td>A.C.</td>
<td>D.C.</td>
<td>A.C.</td>
<td>D.C.</td>
<td>A.C.</td>
<td></td>
</tr>
<tr>
<td>(V_{ab})</td>
<td>0</td>
<td>-70.0</td>
<td>0</td>
<td>70.0</td>
<td>(V_{ab})</td>
<td></td>
</tr>
<tr>
<td>(V_{da})</td>
<td>-120.0</td>
<td>0</td>
<td>120.0</td>
<td>0</td>
<td>(V_{da})</td>
<td></td>
</tr>
<tr>
<td>(I_1)</td>
<td>-3.53</td>
<td>-2.06</td>
<td>3.53</td>
<td>2.06</td>
<td>(I_1)</td>
<td></td>
</tr>
<tr>
<td>(V_{ef})</td>
<td>35.3</td>
<td>20.6</td>
<td>-35.3</td>
<td>-20.6</td>
<td>(V_{ef})</td>
<td></td>
</tr>
<tr>
<td>(V_{df})</td>
<td>80.7</td>
<td>49.4</td>
<td>-84.7</td>
<td>-49.4</td>
<td>(V_{df})</td>
<td></td>
</tr>
<tr>
<td>(I_1)</td>
<td>120.0</td>
<td>70.0</td>
<td>-120.0</td>
<td>-70.0</td>
<td>(I_1)</td>
<td></td>
</tr>
<tr>
<td>(I_2)</td>
<td>-1.41</td>
<td>-0.82</td>
<td>1.41</td>
<td>0.82</td>
<td>(I_2)</td>
<td></td>
</tr>
<tr>
<td>(V_{ef})</td>
<td>-2.12</td>
<td>-1.24</td>
<td>2.12</td>
<td>1.24</td>
<td>(V_{ef})</td>
<td></td>
</tr>
<tr>
<td>(V_{df})</td>
<td>33.3</td>
<td>-49.4</td>
<td>-33.3</td>
<td>49.4</td>
<td>(V_{df})</td>
<td></td>
</tr>
</tbody>
</table>

Anticlockwise

<table>
<thead>
<tr>
<th></th>
<th>Rise</th>
<th>Fall</th>
<th></th>
<th>Rise</th>
<th>Fall</th>
<th>How derived</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.C.</td>
<td>A.C.</td>
<td>D.C.</td>
<td>A.C.</td>
<td>D.C.</td>
<td>A.C.</td>
<td></td>
</tr>
<tr>
<td>(V_{ab})</td>
<td>0</td>
<td>70.0</td>
<td>0</td>
<td>-70.0</td>
<td>(V_{ab})</td>
<td></td>
</tr>
<tr>
<td>(V_{da})</td>
<td>120.0</td>
<td>0</td>
<td>0</td>
<td>-120.0</td>
<td>(V_{da})</td>
<td></td>
</tr>
<tr>
<td>(I_1)</td>
<td>3.53</td>
<td>2.06</td>
<td>-3.53</td>
<td>-2.06</td>
<td>(I_1)</td>
<td></td>
</tr>
<tr>
<td>(V_{ef})</td>
<td>-35.3</td>
<td>-20.6</td>
<td>35.3</td>
<td>20.6</td>
<td>(V_{ef})</td>
<td></td>
</tr>
<tr>
<td>(V_{df})</td>
<td>-84.7</td>
<td>-49.4</td>
<td>84.7</td>
<td>49.4</td>
<td>(V_{df})</td>
<td></td>
</tr>
<tr>
<td>(I_1)</td>
<td>-120.0</td>
<td>-70.0</td>
<td>120.0</td>
<td>70.0</td>
<td>(I_1)</td>
<td></td>
</tr>
<tr>
<td>(I_2)</td>
<td>1.41</td>
<td>0.82</td>
<td>-1.41</td>
<td>-0.82</td>
<td>(I_2)</td>
<td></td>
</tr>
<tr>
<td>(V_{ef})</td>
<td>2.12</td>
<td>1.24</td>
<td>-2.12</td>
<td>-1.24</td>
<td>(V_{ef})</td>
<td></td>
</tr>
<tr>
<td>(V_{df})</td>
<td>-33.3</td>
<td>49.4</td>
<td>33.3</td>
<td>-49.4</td>
<td>(V_{df})</td>
<td></td>
</tr>
</tbody>
</table>

Note that the a.c. and d.c. voltages between \(a\) and \(c\) are opposite in sign.

Fig. 7. Still another version of Figs. 4 and 6, in which the rotation is reversed.

Below: **Fig. 8.** A circuit for practice in working out, using the double-subscript notation. The a.c. e.m.f. may be taken as positive anti-clockwise.

(6) Whatever method is adopted, in order to give any meaning to polarity (or sign) it is necessary to specify

(i) the direction of reckoning; and

(ii) whether reckoning in rises or falls of potential. If only relative polarities are required, as usually in a.c. circuits, the direction adopted does not matter so long as the same one is used throughout the reckoning.

The following table is the full working-out of Fig. 8 in four different ways, from which you can
take your choice! Personally I would scrap the "fall" methods as a general principle; and in this particular case would choose the anti-clockwise rotation because both the e.m.f.s are positive that way. Note that the figures are the same in all four reckonings; only the signs differ. And the "clockwise rise" signs are the same as for "anti-clockwise fall," and opposite to those of the other two. The rotation selected is indicated by the double-subscript notation: V_{ab} implies the direction a-to-b, and V_{ba} the opposite. Remember too that in the "rise" columns a positive V_{ab} means b more positive than a, and vice versa in the "fall" columns. A.c. is given in r.m.s. values; resistances are in Ω, and currents in mA. R_{a2} means the resistance of R_2 and R_4 in parallel ($=R_2R_4/(R_2+R_4)$). The current is in every case assumed to flow in the same direction as the e.m.f.; that is why voltage drops are minus current \times resistance. To avoid this minus sign some people reckon rises and falls separately, and their totals should then be equal; but by reckoning all the voltages as rises (or all as falls) one has the useful check that the total round the whole circuit must always be zero.

Unfortunately the convenient double-subscript notation cannot be applied to currents; both I_1 and I_2 flow from d to c. So some other method of identification has to be used.

SHORT-WAVE CONDITIONS

November in Retrospect: Forecast for January

By T. W. BENNINGTON (Engineering Division, B.B.C.)

During the past three months sunspot activity has been decreasing more rapidly than would have been expected earlier in the year. The result has been that, since September, the maximum usable frequencies for long-distance transmission have been considerably lower than those predicted. The autumnal increase in daytime working frequency has, therefore, been much smaller than was expected, and the higher short-wave frequencies—like the 28-Mc/s band—have never become regularly usable. How long this depression in usable frequencies will last it is impossible to say, but it is unlikely that 28 Mc/s will again become regularly usable over east-west paths during the present sunspot cycle.

The average maximum usable frequencies for these latitudes during November were somewhat higher by day, and slightly lower by night, than during the previous month, which variation was in accordance with the normal seasonal trend.

Day-time working frequencies were moderately high, but lower than had been expected, whilst those for night-time were relatively low. The 28-Mc/s band was usable on a few occasions, but never for many days in succession, and the highest daytime frequencies were more often of the order of 22 Mc/s. At night working frequencies were generally lower than 12 Mc/s.

Unexpectedly, sporadic F was more prevalent than during the previous month, though not of sufficient density to sustain propagation on very high frequencies.

Sunspot activity was, on the average, considerably lower than during the previous month.

There was a considerable amount of ionospheric storminess, and during the periods 1-st/5-th, 10-th/15-th and 24-th/30-th reception was adversely affected by such disturbances. Only one Dellinger fadeout was reported—at 1135 on 28-th.

Forecast.—Both day-time and night-time m.u.f.s during January should remain about the same as during December.

Long-distance working frequencies should thus be moderately high by day and definitely low by night. The highest regularly usable frequencies by day should be of the order of 22-26 Mc/s, whilst at night-time they will probably be as low as 6 Mc/s over most circuits. Medium-high frequencies—like 15 Mc/s—will be the most useful for long periods during the day-time.

Sporadic F capable of sustaining propagation on very high frequencies is unlikely to be very prevalent. Ionospheric storms, whilst not usually particularly prevalent during January, are likely to be troublesome when they do occur, especially at night.

The curves on the left indicate the highest frequencies likely to be usable over four long-distance circuits during the month.

Wireless World, January 1951
Flyback E.H.T. Booster

Increasing Tube Voltage in Television Sets

By A. H. B. WALKER, B.Sc. (Hons.), A.M.I.E.E.

(Research Laboratory, Westinghouse Brake & Signal Co., Ltd.)

With the present trend towards brighter pictures, aluminium-backed screens, and neutral light filters (i.e., "black screen" receivers), higher e.h.t. voltages have become general practice today. There must be many owners of somewhat older television receivers, whether commercially-built or home-constructed, who would like to improve their picture by increasing the e.h.t. voltage and substituting a modern tube designed for a higher anode voltage. In making such an improvement it is very desirable, in the interests of economy, to retain the existing e.h.t. supply (of whatever type), but to augment its output by about 30 per cent to 50 per cent while still retaining good voltage regulation.

The circuit described here allows this to be done in any conventional receiver, whatever form of e.h.t. supply it now employs, at very reasonable cost and without disturbing or overstretching the existing e.h.t. components in any way.

Form of Circuit

In any magnetically-deflected receiver, high-voltage line-frequency pulses are available at the anode of the line-scan output pentode. These pulses usually reach an amplitude of about 2 to 2.5 kV above earth, so that they are of just the right order of magnitude for providing the required boost to the e.h.t. supply, but at first sight it appears a little difficult to persuade them to add on to the existing (say) 5 kV supply without using a double-wound transformer or raising the entire line-scan generator to an uncomfortable potential above earth. Fortunately this can be overcome by making use of multiplier technique, and a suggested circuit is shown in Fig 1.*

The operation is as follows: between line fly-back pulses C, charges up to the original e.h.t. voltage through R, and point A therefore reaches (say) 5 kV above earth. When the line fly-back pulse occurs, the valve anode potential increases by (say) 2.5 kV and, since the charge in C, cannot change sufficiently rapidly, point A is also carried up an additional 2.5 kV, reaching a total of 7.5 kV. At this instant MR conducts, charging C, to 2.5 kV (since C remains steadily charged at 5 kV). No change in the operating conditions of the original e.h.t. unit is therefore caused, all the "boost" voltage being developed across C,. Any potentiometer chain should be left connected to the original e.h.t. supply output.

If the receiver already derives its e.h.t. supply from the line fly-back the most obvious way of increasing the output is to convert the rectifier from a half-wave circuit to a voltage-doubler. This can easily be arranged but it suffers from two practical disadvantages. The first is that the e.h.t. produced will usually be of the order of 12 kV which is too high.

* Virtually the same circuit has been suggested independently by L. J. Hills, who described it in a letter in the November 1950, Wireless World, p. 412 (Ed.)

Wireless World, January 1951
to enable the tube to be scanned without redesign of the scanning circuit; and the second difficulty is that the additional current burden on the line-scan transformer, when reflected into the primary, results in somewhat poor regulation. To produce the required increase of, say, 40 per cent in e.h.t. voltage it seems that the most useful circuit would be something giving a greater output than a half-wave rectifier, but less than a voltage doubler, in fact a "one-and-a-half." This result can be achieved with good regulation by using the pulse at the anode to supply a boost rectifier, and adding the output of this to the original e.h.t. derived from the transformer overwinding. Where the transformer ratio is 2:1 this does, in fact, result in about 40 per cent increase in output. The arrangement is shown in Fig. 2, and is basically similar to Fig. 1.

Since the additional rectifier is fed directly from the valve anode through C1, it adds no burden to the e.h.t. auto-transformer, and its self-capacitance is therefore only added directly to the anode circuit instead of being multiplied by π² (where π is the ratio of the auto-transformer winding). By returning capacitor C1 to the position shown and not to earth, it need only be rated for the amount of the increase in e.h.t. voltage, and not the full new value.

The form of construction adopted depends mainly on the type of capacitors used. Although not strictly essential it is more convenient to use two identical capacitors, and a suggested layout is shown in Fig. 3. This has the merit of being small and very light so that it is easily mounted in the required position.

The booster is best connected in series in the existing e.h.t. lead to the tube anode, a single new lead being taken directly to the top cap (anode) of the line-scan pentode. In most receivers this lead need not exceed a few inches in length (see photograph), but if the line-scan pentode is some distance from the present e.h.t. lead it is preferable to extend the latter and mount the booster near to the valve so that the pulse-feed lead is kept as short as possible.

The components required are only: One 2 MΩ resistor of 1 W rating, two 0.001 µF, 6 kV, capacitors (such as T.C.C. type CF535Q0) and one metal rectifier of 2.9 kV rating (Westinghouse type Y500).

After increasing the e.h.t. in an existing receiver it is, of course, necessary to increase the output of the line- and frame-scanning amplifiers slightly, and in most cases there will be sufficient output margin to deal with the increase in e.h.t. which this booster will produce. If V1 is the original e.h.t. voltage, and V, the augmented voltage, then the scanning-current output must be increased in the ratio of √(V/V1) to fill the screen again, and this adjustment can usually be made by the height and width controls. If V1/V, = 1.4, then the necessary increase in scanning output current is approximately 18 per cent.

The actual increase in e.h.t. obtained naturally depends entirely on the amplitude of the flyback pulse, and this varies considerably between receivers. The rectifier referred to earlier is suitable for any pulse up to 2.9 kV peak, but if the pulse is known to be much less than this a smaller rectifier could be used and the boost obtained would, of course, be smaller. As an example of results the following figures were taken on a receiver using a conventional fly-back e.h.t. system operated from a driven (i.e., not self-oscillating) output pentode. The "augmented e.h.t." readings were recorded after the line-scan output had been increased, so that the screen was again filled.

<table>
<thead>
<tr>
<th>Mean Beam Current</th>
<th>Original E.H.T. Voltage</th>
<th>Augmented E.H.T. Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mA</td>
<td>6.0 kV</td>
<td>8.75 kV</td>
</tr>
<tr>
<td>50 mA</td>
<td>5.75 kV</td>
<td>8.45 kV</td>
</tr>
<tr>
<td>100 mA</td>
<td>5.5 kV</td>
<td>8.05 kV</td>
</tr>
</tbody>
</table>

The interesting point which is brought out by these figures is that the regulation has not been impaired by the additional circuit, but has actually been slightly improved. This result is partly due to the helpful self-regulating action of the Type 36 EHT metal rectifier. This use of the "limiting" action of suitable metal rectifiers to improve the regulation of fly-back e.h.t. circuits was proposed by the present writer, and has since been further discussed by Cocking. 1

2 "Fly-back E.H.T."

HEAVISIDE CENTENARY VOLUME

This book is a symposium of I.E.E. papers read at the Oliver Heaviside centenary celebrations in May last year. Although it contains little of direct interest to radio engineers, one suspects that if the world of radio had not thrust Heaviside into undeniable fame as prophet of the ionosphere, the main body of his valuable work would have remained unused and there would have been no book. However, the mathematically minded will doubtless find great interest in the papers on Heaviside's Operational Calculus, his contributions to electromagnetic theory and his hitherto unpublished notes. Copies can be obtained from the I.E.E. at Savoy Place, London, W.C.2, price 10s or 4s to members, post free.

Wireless World, January 1951
Your Loudspeaker

How Many Watts Should it Need and Should the Amplifier be “Flat”?

By THOMAS RODDAM

An article which appeared in the February 1950 issue of Wireless World provoked a letter from Mr. Thomasson, who said that a mean output of 50 mW involved a peak output of 5 watts. I was rather suspicious of this figure, so I have been examining the problem more closely. First of all, there are two references which serve as a useful starting point: a paper by Disvoie (L'Onde Electrique, January 1936), the second by Pawley (Wireless Engineer, January 1937).

Disvoie measured the instantaneous level of “program material” and showed that the level, in decibels, followed the normal probability curve. From the figures given I deduce that for chamber music, the level must be 20 db above average for 1 per cent of the time. For 1 per cent of the time, too, it will be 20 db below average. Piano music gives a wider dynamic range, about 50 db instead of 40 db.

This certainly seems to confirm Mr. Thomasson’s figure of 5 watts. The only conclusion we can reach is that my figure of 50 mW mean level was wrong, because the output stage, rated at 2 watts for 1 per cent distortion, will produce quite a lot more noise without unpleasantness. What sort of level is really needed for home listening?

To begin with, let us assume that we want the news to be read at ordinary conversational level. This means that the sound intensity should be about 70-75 db above 10^-10 microwatt/cm^2. This is only 35-40 db above the miscellaneous household noises, so that the lowest sound level will drop down fairly near to noise.

The Western Electric Company has published some information on the power required to produce a given sound level in rooms of various sizes. A typical small sitting-room is about 12ft. x 15ft. x 10ft. and thus has a volume of 1800 cubic feet. To produce a level of 80 db above 10^-10 µW/cm^2, using a not very efficient cone loudspeaker, we need, according to the Western Electric Company, an input power of about 200 milliwatts (+2.3 db/1mW). As we saw above, -70 db/10^-10 µW/cm^2 represents a good mean level, and this corresponds to +90 db/10^-10 µW/cm^2 peak level when the signal has a range of 40 db. The peak power into the loudspeaker must therefore be 10 db higher than the 200 milliwatts mentioned above, or 2 watts. The amplifier is therefore required to deliver a power of 2 watts to give ordinary conversational level.

This 2 watts, however, is a peak power. The amplifier will be tested with a sinusoidal signal, which gives 2 watts peak power when the root-mean-square power, the value we usually measure, is 1 watt. From this it is clear that a 1 watt amplifier will just suffice to give us a suitable level with a dynamic range of 40 decibels.

When we turn to the reproduction of music the question of level becomes rather difficult. My own personal view is that mechanical reproduction, and that goes for radio, too, should only be used for chamber music. Mr. Rudo S. Globus, writing in Audio Engineering (February 1950), expresses a different view: he holds that symphony music is better heard from records than in the concert hall, while chamber music and jazz demand a personal contact. But symphony music demands a range of somewhere between 60 db and 100 db. For broadcasting purposes, I suspect that the range is always kept down to 60 db, in which case the peak power, assuming that we keep the mean level constant, rises to 10 watts.

Peak Limitation

The reader will have already noted that our design criterion was the level which is exceeded only 1 per cent of the time. He may ask whether we should not push our peak power up to 100 watts, so that distortion occurs only 0.1 per cent of the time. The answer is simple. Already, earlier in the chain between microphone and loudspeaker, the peaks have been chopped off. A 60-db range for symphony music means that the mean modulation can only be 3 per cent, a pretty low sideband power. The transmitter limits quite firmly at 100 per cent modulation, and if we are worried about distortion the limit is about 20 per cent. Those peaks just don’t get out.

Looking back, we see that the ordinary home, for really good reproduction of symphony music, needs a 10 watt amplifier, but that for speech and chamber music we can get along with only 1 watt. We can also see that my quiet background music is at a mean level of only about 5 mW: it does not seem very much.

The other thing, or one of the other things, about which I get into trouble, is the question of the transient response of loudspeakers. Some writers on this subject always seem to be rather starry-eyed about quality, because they never allow for the imperfections of the earlier parts of the system. Any reader who wants a shot of realism should look at the distortion figures quoted for transmitters and for disc recording.

However, I do not want to talk about non-linear distortion, but about transient response. A recent article by Moir (Wireless World, May 1950) described what happened when the driving impedance of a loudspeaker amplifier was varied, and showed how reduced impedance affected the over-swing. Unfortunately, there is more in the circuit than a loudspeaker.

At this point I must digress. At various periods of
my life I have designed amplifiers for broadcasting administrations. They always ask for a flat frequency response and for low noise. This means that the amplifiers have to be designed to cut off fairly sharply above the permitted top frequency, to keep the noise bandwidth down. There will probably be at least half a dozen such amplifiers in tandem between microphone and transmitter input. Recently I adopted the policy of using square-wave testing for adjusting a response trimming capacitor in the feedback circuit. The information obtained made it easy to adjust the response to be flat within ±0.5 db up to 15,000 c/s, and remember, there is always an input transformer. But to achieve the desired response, it was necessary to provide some overshoot. An analysis of the problem in some detail has recently been published by J. E. Flood (Wireless Engineer, July 1950), and two of Mr. Flood's diagrams are reproduced in Figs. 1 and 2. Although these curves are on the wrong scale for audio frequency working, the effect is merely one of scale. It will be seen that by rounding off the response

![Graph showing frequency response](image)

Above: Fig. 1.—Measured (solid line) and calculated (dashed line) responses for a two-stage resistance coupled amplifier with 20 db feedback. C, is in the feedback circuit. Below: Fig. 2.—Response to a 35-sec pulse of the amplifier with response curves shown in Fig. 1.

with a capacitor in the feedback circuit (C, in Fig. 14 of the article referred to), the overshoot can be reduced, and the amplifier can become over-damped. The curve and pulse response for C, = 1250 pF represent the critically damped condition, and it will be noted that the frequency response starts to droop relatively early. In an amplifier using transformers the effect is even more pronounced owing to the more rapid cut-off produced by the transformers. A really flat amplifier with input and output amplifiers will have a transient response rather like that shown for C, = 0.

The reverse is also true. If we want a transient response like that shown for C, = 1250 pF we must allow the response to droop pretty early. There is thus a conflict between the "flat response" and the "no overshoot" response. Unless the amplifier and loudspeaker are flat up to very high frequencies, when we shall no longer care.

How is this conflict to be resolved? Let us consider why the response has an overshoot. The square wave contains components of frequencies right up to infinity, in theory, and up to about 1 Mc/s with most square-wave generators. The "error" signal shown in Fig. 3(c) is made up of all the frequency components which do not pass through the amplifier, and we can say that a false signal, made up of all those components with reversed sign, has been generated. But these components are above our top cut-off, and that means that the response can go up to a reasonably high frequency and we shall still not hear the error-signal. So this set of transient responses does not matter; indeed, it shows that we have got a fairly flat response.

The reader may question whether this applies also to loudspeaker resonances, and many suspect that these will produce overshoots which somehow avoid this dependence on frequency response. The answer is that frequency response and transient response are inextricably mixed up, and a flat frequency response means that the only transients can be at the cut-off frequencies. So flatness pays.

This is only one aspect of a problem which can be approached from several stand-points. Coupled with one method used by Olson for loudspeaker design—the network approach—it can, I think, prove helpful.

Fig. 3.—The square wave with overshoot (a) can be regarded as being made up of a square wave (b) shown as the leading edge step, together with an error signal (c).
Unusual Ladder Filter

Applications in Audio and Radio Circuits

By F. G. G. DAVEY, M.A., A.M.I.E.E.

(E.M.G. Handmade Gramophones)

The possibilities of the simple ladder filter are by no means exhausted by the classical filter theory. In one sense, any stray collection of reactive components, connected together as a simple ladder, is a filter. It will only lack value for design purposes because the calculation of its performance is laborious and needs to be repeated in full for every fresh case. To be generally useful, a filter must have some regularity in its design which simplifies the formulae and makes them readily applicable to a large variety of particular cases.

Broadly speaking, in the classical filter theory this regularity is that the characteristic impedance of each section is the same. In the filter which is the subject of this article a different regularity has been chosen, which is that the impedances looking forward and backward from the central element bear a constant ratio to each other with change of frequency and maintain equal phase-angles. This condition leads to quite general formulae which are sufficiently simple for use. It also leads to a filter with some rather unusual properties which are of value in radio design.

In order to fulfil the chosen condition, it is clear that there must be an odd number of reactive elements (i.e., series and shunt arms). It is also clear that all those elements coming before the central element must be proportioned to the input terminal resistance, while all those following the central element must be similarly proportioned to the output terminal resistance. For the sake of a further simplification of the formulae, the central element itself is expressed in terms of the two terminal resistances together—in series if it is a series element and in parallel if it is a shunt element.

Let us take an example. Suppose a low-pass filter is required consisting of five reactive elements working between an input resistance and an output resistance (see Fig. 1). The nominal cut-off frequency will be called \(f_c \). The first inductor has a reactance \(2\pi f_c L_1 = ka \), where \(k \) is some constant to be determined. The next element, the shunt condenser, must then have a reactance \(\frac{1}{2\pi f_c C_1} = Ha \). The second inductor, \(L_2 \), being the central element, has a reactance \(2\pi f_c L_2 = m(a+b) \), since it is a series arm. \(m \) is another constant to be chosen. The last two elements will be fixed in the same way as the first two, but using \(b \) in the formula instead of \(a \).

First to be considered is the filter obtained by maintaining \(m = k \). It is found that varying \(k \) alters the shape of the response curve given by the filter. Some typical curves are given in Fig. 2 for a five-element filter, and in Fig. 3 for a three-element filter.

![Fig. 1. Five-element mid-series filter.](image-url)

![Fig. 2. Response of five-element low-pass filter with varying \(k \).](image-url)

![Fig. 3. Response of three-element low-pass filter with varying \(k \).](image-url)

Wireless World, January 1951
It will be seen that the higher values of k give steeper cut-off slopes, but that this is offset by an increasing amount of "sag" in the pass band. Now, in radio work filters are often required to give as level a response as possible in the pass band, with as steep a fall as possible outside it. If a response not more than 1 db down anywhere in the pass band is considered good enough, then this will be given by making $k = 1.2$ for the five-element filter and $k = 2$ for the three-element filter. If the actual cut-off frequency f_0 is taken to be the point where the response is 1 db down for the last time, it will be found that this occurs, for the five-element filter, at the frequency $f_0 = 1.3f_k$. In terms of the actual cut-off, then, the design formulae for this performance become:

$$2\pi f_a L_1 = 1.56a$$
$$2\pi f_a L_2 = 1.56(a + b)$$
$$2\pi f_a L_3 = 1.56b$$

If a mid-shunt filter had been considered (three shunt condensers separated by two series inductors) the central element would have been a shunt arm. An identical performance would then have been given by putting $k = \frac{I}{1.2}$. In this case, therefore, the design formulae would become:

$$\frac{I}{2\pi f_a C_1} = 0.642a$$
$$\frac{I}{2\pi f_a C_2} = 0.642 \frac{ab}{a + b}$$
$$\frac{I}{2\pi f_a C_3} = 0.642b$$

Fig. 4 shows the response curve for a five-element filter designed to these formulae as compared with a simple filter with the same number of elements designed to the conventional formulae. It will be seen that, apart from the 1 db dip in the pass band which we have allowed ourselves, nothing has been lost in performance—indeed there is an appreciable gain in sharpness of cut-off.

Exactly similar performance curves can, of course, be obtained for high-pass filters, and bandpass filters can also be produced on similar lines.

Right: Fig. 7. Response curve of infinitely variable filter inserted between transformer and Wharfedale "Golden" speaker. Insertion loss 0.75 db. A, minimum setting; B, approximately half way; C, maximum setting.
We come now to the property which renders these filters somewhat unusual. It can be shown (see Appendix) that the cut-off frequency is much more strongly controlled by the value of the central element than by any other single element; that is, why, at the start, the central element was given a different coefficient m from the other elements. This can be roughly illustrated by taking the simplest possible case, shown in Fig. 5. Here, the current through the output resistance b is \(i_o = \frac{cE}{ab + bc + ca} \). Obviously, changes in the value of \(c \) are going to affect \(i_o \) much more strongly than similar changes in \(a \) or \(b \). This property remains true even though \(a \) and \(b \) become more complex networks, so long as the condition defining these filters is retained.

Fig. 6 shows some typical curves that result from varying \(m \) while retaining \(h \) constant. In this case there is a variation in the pass band of 2 db, while the cut-off at 2 db down has been varied in frequency by about an octave. Better results would have been obtained by using a rather higher \(h \), but these curves show the kind of limits to variation of \(m \) that must be expected.

The five-element filter has been used in practice as a variable high-note filter for loud-speakers. In this application the terminal resistances are not constant but vary quite markedly with frequency. It happens, however, that the variations are generally such as to improve the filter performance. Fig. 7 shows the measured results.

Another rather useful property shows up in this practical case. It follows, from the fact that the central element exercises a more than proportionate control on the performance, that the other components exercise less. Hence they need not be very accurately matched to their theoretical value. Now the filter of Fig. 7 is of the five-element mid-series type such as Fig. 1. The input is the speech transformer and this contains leakage inductance which, it is found, can sufficiently represent \(L \); the output load is the speech coil and this also has inductance which can serve as \(L \). Only the two condensers and the infinitely variable central inductance have actually to appear in the filter. The curves shown in Fig. 7 are the change in db resulting from cutting these elements in and out of the circuit. The steepness of slope averages about 34 db per octave, showing that all five elements are in fact playing their full part.

The principle of these filters can be usefully applied to the bandpass filter. Here the central element contains both an inductor and a condenser—it is, in fact, a tuned circuit. Fig. 8(a) shows the circuit now being considered. When redrawn as Fig. 8(b) it is instantly recognizable as two tuned circuits bottom-coupled by a third. The tapping is introduced so that the components of the central circuit can be of the same values as those of the outer circuits, and also to give a simple means of varying the impedance which provides the coupling. There are now two independent variables in the central element—its impedance as a coupling and its resonant frequency. Again, these variations of the central element exercise a pre-

APPENDIX

Let \(E \) be the input voltage in series with \(a \). Let \(V \) be the output voltage across \(b \). Let \(W = \frac{a}{b} \).

Then the response curve of all filters of this type can be expressed in the form:

\[
V = \frac{b}{a + b} \frac{1}{A(B+CA)}
\]

where \(A, B \) and \(C \) are complex expressions independent of \(a \) and \(b \). Their values are:

- 3-element mid-series filter
 \[
 A = 1 + \frac{fW}{r} \quad B = 1 - \frac{fW}{r} \quad C = 1 \]
- 5-element mid-series filter
 \[
 A = 1 + \frac{fW}{r} \quad B = 1 - \frac{fW}{r} \quad C = 1
 \]

The mid-shunt formulae are the same with \(k \) and \(m \) inverted. \(A \) always contains a higher power of \(W \) than \(B \). The \(C \) term, therefore, is always the term containing the highest power of \(W \) present in the expression, and this is proportional to \(m \). Therefore variation of \(m \) governs the cut-off to a much greater extent than any other factor.
dominating control on the performance. Variation of its frequency shifts the centre frequency of the pass band, within limits, without unduly affecting its symmetry or width, while variation of the coupling impedance varies the width of the pass band without at all affecting its centre frequency. A variation of bandwidth of about 3 or 4 to 1 can be obtained without too bad a shape in the pass band.

This circuit has been used to provide variable selectivity in i.f. couplers. Typical curves are shown in Fig. 9. The coupler gives the full wall steepness of three tuned circuits, and the effective selectivity of all of them is controlled by only one variable. It follows also that in production these couplers can be satisfactorily ganged up to the desired i.f. frequency with one trimmer on the central circuit only, so long as the outer components are tolerably close to their designed values.

SUNDERLAND RADAR

New Port Installation to be Worked by Pilots

The application of radar aids to the movement of shipping in the harbours of the United Kingdom was carried a stage further in November last when the Minister of Transport opened a new experimental station at Sunderland.

The installation selected is a standard marine radar designed for use on board ship. The navigational requirements at Sunderland are well within its range, and a specially designed system, such as that installed at Liverpool for its 14 miles of narrow channel, is not necessary. Most of the docks are grouped just inside the harbour entrance and the navigational hazards to north and south of the entrance are adequately covered.

A marine-type radar has been in use for some time at Douglas, Isle of Man, but in this case, as at Liverpool, special observers are employed for its operation, and the traffic consists of passenger ships working to regular schedule. At Sunderland there is a big volume of general shipping, and the experiment is being tried of leaving the operation of the equipment in the hands of the pilots themselves, who can decide when and how it can be best used; for example, to help the pilot cutter to locate an incoming vessel, or to assist pilots already engaged in bringing in vessels under conditions of bad visibility.

Communication between pilots and the Pilot House ashore will be maintained by a two-frequency v.h.f. radio-telephone channel, the shore station working on 163.1 Mc/s and the pilots' transmitter-receivers on 158.6 Mc/s. The v.h.f. equipment has been supplied by the Automatic Telephone and Electric Company in association with British Telecommunications Research, and the portable units are similar in design to those employed at Liverpool. Additional coaxial resonant filters have been included in the receiver input feeders to reduce crosstalk between the transmitter of one equipment and the receiver of the other due to the close frequency spacing employed. The shore transmitter (Type PM1A) is rated for 10 watts output and employs amplitude modulation. A similar transmitter provides single-frequency simplex working on the marine International Guard Channel of 136.8 Mc/s, and Sunderland is the first port in the British Isles to be given this facility.

A continuous listening watch is kept by the pilot vessel and a 12-volt battery-operated transmitter-receiver (Type PM1C) is used, the batteries being charged from a generator on the main engine.

The radar installation consists of a Kelvin Hughes Type tA (Series 2) instrument with 12-in diameter display. The i.f. signal and locking pulse are split after the pre-amplifier to provide a second display in another part of the building for experimental work by the Admiralty Signals Research Establishment—the technical authority for the installation. The scanner unit is mounted at the top of a 50-ft lattice tower, which also carries the coaxial dipole aerials of the communications equipment.
Square-Wave Generator

By O. C. Wells

Practical Design Giving Three Repetition Frequencies at Low Impedance

A SQUARE-WAVE generator is convenient for testing a.f. amplifiers, as well as being generally useful. By means of an oscilloscope and a sinusoidal input it is possible to see when a stage becomes overloaded and to measure the input amplitude for which it occurs, but in order to measure frequency distortion we need an a.f. source of continuously variable frequency. Using a square-wave input, there is no need to make an extended series of readings, as we can gain some idea of the distortion by examining the output waveform. This method was described on page 6 of Wireless World for January 1948, to show the effect of negative feedback on the Baxandall amplifier. There is no need to have a continuously variable repetition frequency, but it is a good idea to have several “spot” frequencies, and so be able to gain an idea of the low-frequency response by means of a low-frequency square-wave, and the top response by means of a higher repetition frequency.

The following, then, is a square-wave generator designed along these lines. Three spot frequencies are available, 80 c/s, 800 c/s, and 8 kc/s, each of which can be selected by a switch. The amplitude is continuously variable from zero up to about 50 volts peak-to-peak, whilst the output impedance is of the order of 150 ohms. The mark-to-space ratio is continuously variable from about 5:1 to 1:3. Two valves are used, both type EF50.

There is a choice of several methods of producing the square wave, of which the multivibrator might seem the most suitable. But to obtain a rapid rise on the square waves it would be necessary to use at least one cathode follower, and even then we would have to add some sort of limiter. At least two double triodes would be needed. But the main disadvantage of this circuit is that it would necessitate switching two capacitors to change the frequency.

The transistor relay is capable of producing a better square-wave, using a simpler circuit in which only one capacitor needs to be switched.

Referring to the circuit in Fig. 1, V₁ is the transitron oscillator, producing a 100-V peak-to-peak waveform at its anode. As a point of interest, this valve, when connected up as shown, is unstable when the suppressor voltage lies between about −5 and −40 volts. If R₁ is returned to a bias outside this range, however, the circuit will not self-oscillate, and will only produce a pulse when suitably triggered.

R₄ alters this suppressor bias, and so controls the mark-to-space ratio—and, to some extent, the frequency. (The repetition frequencies quoted above correspond to an exactly square output.) S₃ selects the spot frequency without affecting the mark-to-space ratio, enabling R₁ to be calibrated directly. If desired R₂ can be made variable to give continuous frequency coverage, but if this is done the frequency and mark-to-space controls will interact. In practice the one control R₄ is sufficient.

The negative half-cycles produced at the anode of V₁ are by no means square, so it is necessary to add some sort of limiting circuit. V₂ is a combined triode limiter and cathode follower, having the double purpose of limiting the negative peaks and providing a low output impedance by its cathode-follower action. An EF50 was used to give a low output impedance. Almost any valve will operate effectively in this position, so if for any reason it was desired to add some additional pulse-shaping circuit, one section of a 6SN7 double triode could be used for V₂, leaving the other section for the new device.

Fig. 2 shows the output waveforms at 80 c/s and 8 kc/s. The 8 kc/s waveform is not so square as the other two, but is nevertheless still useful. To give a 50-V peak-to-peak output, 400-V h.t. and bias supplies are needed. The circuit will, however, operate from half these voltages at somewhat reduced amplitude.

Left: Fig. 1. Circuit of the square-wave generator.

Fig. 2. At (a) is the waveform produced at a repetition frequency of 80 c/s, and at (b) is the waveform at 8 kc/s.
Manufacturers’ Products

New Equipment and Accessories for Radio and Electronics

Wave Analyser
A S an aid to rapid medical diagnosis from electro-encephalographic recordings, the Edison Swan Electric Co., of 155 Charing Cross Road, London, W.C.2, have produced an instrument for automatically analysing a complex waveform in a very short space of time. When dealing with a continuous e.g. waveform it provides a complete analysis every 10 seconds and presents this in written form on the part of the record to which it refers. The problem of analysing aperiodic functions is solved by integrating the outputs of pre-tuned frequency selectors over a period of time.

Broadcast Receivers
A FEATURE of the new “Twinvicta” a.c./d.c. mains/battery portable, made by Invicta Radio Ltd., of Parkburst Road, London, N.7, is the extremely attractive and colourful material covering the cabinet, a new woven plastic called “Tygan,” which is claimed to be extremely durable and easily cleaned. The receiver weighs 9lb and costs £14 12s 6d. Two new sets with the emphasis on quality of production are the “Mayfair” radiogram, made by Ace Radio Ltd., of Tower Road, London, N.W.10, and the model “750” receiver by Rainbow Radio Mfg. Co. Ltd., of Mincing Lane and Mill Lane, Blackburn, Lancs. Both use 10-in speakers, and some attention has been given to the acoustic designing of the cabinets.

Aerial Multicoupler
THE purpose of this equipment, introduced by The Plessey Company of Ilford, Essex, is to permit the operation of up to ten communication receivers from a common aerial without cross-modulation effects or loss of individual signal strengths. It consists of a wideband amplifier with filters, giving a pass range of 2-20 Mc/s flat to within ±3db, and this arrangement feeds into ten cathode-follower stages which are designed to work into 75-Ω unbalanced loads. The amplifier will handle signals up to 250mV without overloading or excessive cross-talk, and down to 1µV without the noise becoming appreciable. It is designed to an International Aeradio Specification and is suitable for international rack-and-panel mounting.

Loudspeakers
A S a result of the considerable interest shown in their “Sten- torian” 12-in Concentric Duplex loudspeaker, Whitley Electrical Radio Co. Ltd., of Victoria Street, Mansfield, Notts, are now producing this model in an acoustically designed vented cabinet at £12 10s. It stands 3ft high and 2ft wide, and is finished in polished walnut. From E. K. Cole Ltd., of Southend-on-Sea, Essex, comes the Model ES115 extension speaker, an 8-in p.m. dustproof type in a plastic cabinet, at £2 17s 6d. It will handle a 3-watt output and has an on/off and volume control flush-fitted in the side.

Picture-telegraph Equipment
ONE feature of the picture-telegraph equipment now being made by the General Electric Company is that the transmitter can be converted for use as a receiver when required by a simple interchange of

Ediswan Mark II low-frequency wave analyser with top open. One of the chassis sections has been withdrawn and swung round on its bearings for maintenance.

Right: Ekco extension speaker, model ES115. The plastic case can be supplied in either beige or maroon.

“Twinvicta” mains-battery portables, showing two of the patterns available in the new “Tygan” covering material.
parts. At normal transmission speed a 10 in x 8 in picture can be sent over telephone line, carrier circuit or radio link in 14 minutes, although this time can be reduced to seven minutes at the expense of picture quality.

Definition is the highest possible within the limits prescribed by the C.C.I.T., and the equipment will work in conjunction with any other picture-telegraph equipment which complies with these standards. Pictures can be received as positives on photographic paper for direct viewing or blockmaking, or as negatives when a quantity of prints are wanted.

Miniature Hearing-Aid

Greatly improved intelligibility is claimed for the new "Micropak II" one-piece hearing-aid, which has a high maximum gain (53 db air-to-air) and is provided with optional a.v.c., in addition to manual volume control, to ensure a maintained comfort level and freedom from loud noise. A recessed crystal microphone is used, followed by three stages of amplification, with the output penode feeding into either air- or bone-conduction receivers. The overall response is sensibly flat, but a bass cut for tone control is introduced when on a.v.c.

Produced by Bonochord, Ltd., 38 Welbeck Street, London, W.1, this model measures 3½ in x 2½ in x ½ in, and weighs only 5 oz complete with batteries. It gives 350 hours of life on a 15-V h.t. battery, 10 hours of l.t. life on a standard "pen" cell, and costs less than $5 per hour to run. The price is 30 guineas.

Germanium Rectifier

To meet the needs of designers who want a low reverse current at a reasonable price, the General Electric Co., Ltd., have introduced the GEX 45. This has a reverse current of 10-30 mA and costs 16s, as distinct from the 19s of the GEX 55, which costs 30s. The forward current is approximately 8 mA at +1 volt and the turnover voltage is greater than 60 V.

Miniature Transformer

An exceptionally small transformer, giving an impedance ratio of 250:1, has been designed by John Bell and Croydon, of 17 High Street, Oxford. It is suitable as an output transformer for hearing-aids and the primary winding can be included in the anode circuit of the output valve, giving an inductance of 28 H at 200 mA d.c. or 12 H at 1 mA d.c. There are 5,000 turns of 48 s.w.g. on the primary and 100 turns of 38 s.w.g. on the secondary. Using "F" size laminations and a moulded bobbin, the outside dimensions work out to 0.752 in x 0.438 in x 0.55 in.

Educational Oscilloscope Units

To meet the needs of schools and colleges for a moderately priced demonstration instrument, the Equipment Division of Mullard Electronic Products Ltd., Century House, Shaftesbury Avenue, London, W.C.2, has introduced a c.r.t. unit B100 and an associated time-base/amplifier unit B101 that together provide most of the features of the modern oscilloscope. Each unit has its own internal power supply. There is a 3-in c.r.t. in the B100, with vertical and horizontal deflection sensitivities of about 0.2 mm/V. If desired, the vertical and horizontal amplifiers in the B101, which have a frequency response of 25 c/s to 30 kc/s, can be used without modification as independent general-purpose amplifiers. The B100 unit costs £12 12s and the B101 unit £15.

Transmitter Feeder Cable

Designed for handling large amounts of r.f. power, the new Telcon AS 84 A1 semi-air-spaced cable has shown itself capable of carrying 20 kW at 45 Mc/s without difficulty. Regarding its propagation characteristics on wide-band transmission, tests on a 280-yard length have shown that the voltage standing-wave ratio would not be worse than 0.98 over a 10 Mc/s band centred at 60 Mc/s. The inner conductor is a solid copper wire of diameter slightly above ⅛ in, and is supported at intervals by a series of interlocking Telcothene mouldings. The outer conductor is a seamless extruded tube of aluminium. The Telegraph Construction & Maintenance Co. are at 22, Old Broad St., London, E.C.2.
UNBIASED

Hoyle also tells us, the nearest star to us, which for the sake of argument we will assume to possess inhabited planets, are roughly three light-years, or in more homely figures 17,330,476,800,000 miles distant from us. Now since the observed maximum speed of the saucers is said to be a mere eighteen thousand miles per hour it would, less years included, take them rather more than twenty-two thousand years to do the round trip ("if in doubt, work it out" as the pedia- gogic maxim purrs it, but in the interests of domestic harmony don't "Ask your Dad" in this case). It is clear, therefore, that we must look for a home-counties planet in our own Solar System which has so far eluded the eye of the astronomer and I think I have found it by means of radar. Basing my work, like many others, on the speculations of Aristarchus and other ancient Greek philosophers, I have discovered that this new planet travels round the same orbit as that of the Earth but, as it is 180 degrees out of phase and moves at the same speed, it is always on the opposite side of the Sun to us; therefore, we can neither see it nor get a direct radar echo from it. But any of you who are interested will readily understand how an indirect radar-echo can be obtained by a simple there-and-back cannon off one of the other planets when it is in a suitable position. I am hoping, therefore, to get the Government to allow me to demonstrate this to the public at the Shot Tower radar installation which is being erected for this year's Festival of Britain. The echo from it will automatically ring the bell and return the money of successful shooters. I propose to give the planet the appropriately commemorative name of Radiaria.

Radio Jubilee

This year we enter upon the second half of the 20th century and it would surely be fitting that a section of this year's radio show should be devoted to a review of the tremendous progress made in the past fifty years. The year marks for one thing the jubilee of transatlantic wireless, as it was on December 12th, 1901, that Marconi first linked us with the New World, and it was in 1901, too, that the first British merchant ship, the Lake Champlain, was fitted with wireless.

It is, however, rather a difficult thing to stage a suitable review of the past half-century of radio and make it interesting to the general public. It can so easily degenerate into a moth-eaten dry-as-dust ex-

Power-cut Pageantry

I WONDER why no radio manufacturer has yet marketed a set which automatically switches itself over to batteries during a power cut. Such an instrument is a logical de
dvelopment of the battery/mains portable now available. Say what you will, power-cuts have come to stay. At present unavoidable, they will eventually remain as part of the rich pageantry of our national life like the posy which judging of the High Court still carry on certain occasions even though the combined efforts of the medical and plumbing professions have long since removed the necessity for it. I am surprised, too, that no effort has yet been made to enable an a.c. mains clock to keep itself going during a power-cut; surely the answer is a battery, a vibrator, a transformer and an automatic switching arrangement.

By FREE GRID

Source of the Saucers

FLYING saucers have taken the place of the Loch Ness Monster, but whereas the monster did no greater harm than to frighten a few Scotsmen out of their wits, thus leading them to forswear further indulgence in the national beverage, this new menace is far more serious. By acting as transient reflectors and so causing intermittent distortion and fleeting ghost images on our television screens, these so-called saucers are proving a very real source of trouble.

At present the trouble is not excessive because these saucers are few in number, but like Hitler, who also began in a small way, they will become uncontrollable unless dealt with promptly. Obviously the first thing to do is to find out whence they come and deal with them at the source; for when plagued by wasps it saves a lot of time if we can locate their nest.

Now it has been suggested that they come from another planet but astronomers insist that their observa-
tions show that, with the exception of the Earth, the Sun's satellites are incapable of supporting life, and who am I to disagree with such learned men? But we must not forget, as Mr. Hoyle, the erudite astrophysicist from the banks of the Cam, has reminded us over the air, that we cannot absolutely rule out the possibility that some of the myriad sparkling spheres, with which the heavens are bespangled, may possess some inhabited satellites. This, however, does not take us very much farther, for as Mr.
LETTERS TO THE EDITOR

The Editor does not necessarily endorse the opinions expressed by his correspondents

A.M. versus F.M.

HAVING been interested in this controversy for a long while, I constructed an a.m./f.m. receiver some time ago, but have only recently had an opportunity to carry out some tests on the Wrotham transmissions, particularly from the fidelity and interference angles. The results have not altogether surprised me, as I knew from experience on television sound that e.h.f. a.m. was capable of very high quality, but prone to ignition interference; however, I was agreeably surprised by the almost complete absence of this virulent interference (and, incidentally, any other kind) on the Wrotham transmissions.

Comparing the a.m. with the f.m., I find little to choose between them as regards fidelity and lack of interference; the a.m. appears to be the stronger signal, though ample pickup can be obtained on an ordinary indoor aerial from both signals. The fidelity of both seems to be effected by land-line considerations, and much of the programme material shows up badly when used to modulate these high-fidelity transmissions, though occasional "live" studio broadcasts are first-class.

I consider there is a definite future for e.h.f. broadcasting as an unlimited number of low-power transmitters would entirely solve the problem of 100 per cent coverage (which is far from being achieved with the present system) without the disadvantages of sharing frequencies, and would at the same time provide much better quality. However, to return to the a.m./f.m. controversy, considering the additional complications and extra cost of the f.m. receiver, which, in my experience, is in no way superior to its a.m. counterpart, I can see no earthly reason for the controversy. Let's have lots of a.m. broadcasting on e.h.f., and those of us with high-fidelity equipment will at least get value for their licence fee!

R. C. BURNELL.
Wallington, Surrey.

Television Load

THE recent extension of the television Children's Hour from Sundays to week-days seems likely, with the present timing, to have unfortunate results in several directions. The highest peak electricity load during the six winter months occurs around 3 p.m. At that time it is the rule rather than the exception in my own district (which is no doubt typical) for the mains voltage to be reduced 15 per cent in order to shed load. This is just the time at which the children's television is put on. To the British Electricity Authority it means that a new load, of the order of 100,000 kW, and growing rapidly, is being placed on top of their highest peak. To the radio industry it means that 6.3-V heaters of valves and cathode-ray tubes are being run at 5.35 V, a drop of rather more than double the safe maximum prescribed in the Code of Practice issued by the B.R.V.M.A., which states that low heater voltages are as much to be avoided as high voltages. To the radio dealer it means that television sets (especially the modern A.C./D.C. type) are likely to go out of adjustment and give poor results generally, so that his customers complain.

The remedy would seem to be to delay the children's television programme on Monday to Friday until, say, six p.m.

M. G. SCROGGIE.
Bromley, Kent.

"Phase Shift Oscillators"

THIS article by W. G. Raistrick in your November issue is of considerable interest in view of the unusual merits of the circuit concerned.

We feel, however, that other work on this circuit is worthy of mention. The principle of the valve phase shifter was described by Dome
d7, and an oscillator incorporating this by Villard under the title "Tunable A.F. Amplifier."2

Villard's article is particularly valuable in that it mentions the use of the circuit as a selective amplifier by the use of 180 degrees phase change. Villard claims this gives a sharper null than either twin tee or Wien Bridge networks. He also points out a unique feature of the oscillator, namely its ability to produce two outputs 90 degrees apart in phase.

One further point. For successful operation of this circuit it is desirable that cathode and anode load resistors should be fairly closely matched, and also that the im-

WIRELESS WORLD, JANUARY 1951
ADDITIONAL experiences with flashes and streaks of light on the screens of cathode-ray tubes after switching off may be of interest to your readers. The tube in question was used in a high-speed oscillograph for transient observation and photography. It was a Du Mont 5RPIA, using a gun voltage of 4 kV and a post-deflection accelerator voltage of 20 kV.

It has frequently been observed that, after switching off, luminous phenomena of various types occurred. These phenomena consisted of any or all of the following:

(a) Occasional general illumination over an area of a few sq. inches, which was of low intensity.
(b) Bright spots of varying intensity, some bright and some dim. These were oblong in shape and radial in direction, and have been observed as intermittent flashes, or as moving flashes of a few seconds duration, or more.
(c) Occasional small patches of light, which could be moved slightly by rubbing the tube face with the hand or a cloth.

Of these three types (b) was the most frequent, and could often be increased in intensity by rubbing the tube face with a cloth or by hand.

These phenomena did not always appear on switching off, the most favourable time for their appearance being when the apparatus was thoroughly warm. However, rubbing the tube face would often produce them if they had not appeared, or increase and intensify them if they were weak. It would also prolong the duration of their appearance.

A voltmeter permanently connected across the e.h.t. supply definitely indicated that such supplies were off. The phenomena appeared sometimes instantly, when it was reasonable to suppose that the cathode was still hot, but at other times they appeared some time after, or persisted for such a time that it seemed unlikely that the cathode would even be warm. The tube did not use any Perspex screen, as has a previous example given in these columns. The electrostatic charges, presumably responsible for these phenomena, seemed either to be on the outer surface of the tube or possibly internally on various parts of the tube itself. The fact that the phenomena appeared most frequently and strongly in summer with a warm, dry day, and when the apparatus had been working for a long time and was thoroughly warm, would seem to indicate that the origin of these flashes was outside the tube rather than inside.

The accompanying photograph, made accidentally owing to a mains failure at the time of exposure, shows some of the phenomena, which must have appeared shortly after the supplies were cut off, as the camera shutter was only open for a few seconds. (Note, the zero line had been previously recorded.) It illustrates equally well the phenomena which occurred much later after switching off, and lasted for a few minutes.

Zurich, Switzerland.

RICHARD G. PARR

Pickup Input Circuit

An additional input circuit for the Acos GP2o pickup may be of interest to readers in view of your article "Pickup Input Circuits" in the November 1950 issue. It is based on the article "Negative Feedback" in the March 1950 Wireless World.

I have used this circuit in an attempt to approximate to curve 3 rather than curve 2. The effective input impedance is increased by negative feedback to about 6 MΩ, and a very satisfactory bass response is obtained from 78 r.p.m. records.

Nottingham.

BEAUTY AND THE BEHOLDER

I WAS interested to read in your October issue the letter on aerials as things of beauty—or otherwise.

As to outdoor television aerials, I doubt if the "Dictators of Town and Country Planning" can control the erection of an outdoor aerial; certainly not an "H" on a short mast, anyway. Multiple elements on 50-foot masts might be a different proposition.

My reasons for this contention may be found in Section 12 of the Town and Country Planning Act, 1947, which exempts from the provisions of the Act (and therefore the dictates of local planning authorities) certain things. One of these is: works for the improvement or alteration of a building which do not materially affect the

Negative feedback applied to increase input impedance and (below) response of GP2o pickup taken with Decca Kit804 test record. 1, on open circuit; 2, with 0.5 MΩ load.

Wireless World, January 1951
Tolerances and Errors

When (in the November issue) I likened the manufacture of resistors to shooting, at a target "from a considerable distance" it was with a certain naughty provocation. So it didn't altogether surprise me when a well-known resistor manufacturer reacted. From what he says it appears that the hit-and-miss method I described is no longer practised in the enlightened modern resistor factory.

It seems, then, a good opportunity for a resistor manufacturer to tell us how he does it now. It may be that when making ±5 per cent resistors he stands nearer to the target.

I still suspect that before I bought my ±20 per cent stock someone had picked out the best ones—but perhaps they were made in the bad old days.

"CATHODE RAY."

WIRELESS WORLD, JANUARY 1951
RANDOM RADIATIONS

By "DIALLIST"

Would You Like One?
One quite often hears or reads that one of the things mankind most needs to-day is a television equivalent of the crystal set. People who air this opinion not infrequently show a few moments later that they have never stopped to think what they mean by it; for almost in the next sentence they add that much larger images than those now usual must be provided. The great advantages of the crystal set are that it can be bought cheaply, that it is very simple, that almost anyone who wants to do so can make it and that it can be run at next to no cost. Fine! But what does it do? The best that it can furnish is headphone reception of the broadcast programmes at comparatively short ranges. The equivalent television set, were there such a thing, would presumably present its images on a one-inch screen, with headphone reception of the accompanying sound. I cannot see any rush for such an instrument. Can you?

If Wishes Were Horses...
It and when you can get them down to brass tacks, you find that what those who say such things really have in mind is that the world is longing for the advent of the high-grade receiver, giving at least a 16 x 12-inch image, at a price well below £5. If that be so, the world, one learns, will go on longing, at any rate for quite a bit yet. Unless—as is quite possible—some entirely new and far simpler method of transmission and reception is evolved, television must continue to be something of a luxury. To my poor brain it seems that home television is an anemia, on a par with a good piano or a home-movie outfit, to be earned, should you desire to have it, by effort and by saving. And what you want to get for your money is a set which can be relied upon to give good results.

There's a Limit to Cheapness
What I'm driving at is that, when you come to buy a television set, you cannot expect to get more than you pay for. The bare facts are that things are at present it must contain upwards of 15 valves; include a considerable number of circuits capable of being finely adjusted and of staying put, once they are adjusted; and, if you want a big picture, have either a monster c.r.t. for direct presentation, or—if you prefer projection—a small brilliant c.r.t. plus devices for raising the e.h.t. to 16,000-20,000V., plus an optical system, plus a separate screen. The set should also be easy to operate and perfectly safe. To provide all these things the makers cannot go below a certain minimum price unless he is prepared to cut his costs in undesirable ways. There may be a real danger in that the cry for cheaper and cheaper television sets may lead to a price war and to the large-scale production of over-cheap sets which not only give a comparatively poor performance when at their best, but develop into constant and expensive sources of trouble.

Valve Symbols
It was mentioned in the November Editorial that the revised edition of the British Standards Institution's "Letter Symbols for Electronic Valves" (B.S. 1409:1950) bears on its cover a most unfortunate statement that the symbols which it lays down are intended for use mainly in manufacturers' catalogues and such like. Myself, I read this statement with a horrid sinking feeling; but I felt a bit better when I had time to think over its implications. If valve manufacturers and other members of the radio industry are going all out for the use of the symbols in their catalogues and other "literature" (and presumably they are, for they played a major part in evolving them), their customers will have perforce to be familiar with them, or they will not be able to follow what they read. The symbols, then, are bound to become established as a kind of lingua franca of radio technique in this country. Those who write or publish books and articles would be foolish indeed if they did not use them, knowing, as they must, that these symbols are parts of a language with which all their readers must have at any rate a nodding acquaintance. It would have been far better, admittedly, had the statement in question not appeared on the cover of B.S. 1409:1950. Better still would have been one recommending the adoption of the symbols by all British writers, teachers, publishers and manufacturers concerned with the advancement of electronics.

International Standards Lacking
Probably the most one can pray for is that the technical terms and symbols used in one's own country may achieve standardization, for we seem to be drifting farther and farther away from the international systems that were once inaugurated with such high hopes. A mathematical friend to whom I said something of the kind promptly pulled me up short. "In my particular branch," said he, "we have been a bit more sensible. All the signs and symbols of mathematics, which is a really international language, are completely standardized throughout the world." I pulled an old envelope from my pocket and wrote on it:

1/432 "What," I asked, "would that convey to a Frenchman or a German?" "Why, one thousand four-hundred and thirty-two," of course. I explained that it would mean one point four three two and that either of them would write the number as it had mentioned as:

1/432 Electronics, being one of the newest branches of science, probably suffers more than most from lack of international standardization, for each country tends to adopt its own set of terms and signs for advances and discoveries which it makes simultaneously with other countries.

Sunspots Again
One does not envy engineers engaged in keeping telecommunications going during disturbances due to sunspot activity, such as we had at the end of November and the Beginning of December. World traffic was very heavy at that time and there were longish periods of almost complete blackout, particularly in northerly and southerly directions. All sorts of ingenious expedients have to be adopted. I was told that on this occasion messages to Australia, which normally go direct by radio, were at times sent by cable to America, by radio across that continent and by cable to their destination.

WIRELESS WORLD, JANUARY 1951
The PERFECT TEST TEAM

The illustration depicts a set of modern "AVO" testgear being used to measure the "Q" of the secondary winding of the second I.F. transformer on a chassis of unknown characteristics—just one of many tests which can be performed by this combination of instruments.

A signal of predetermined frequency from the "AVO" Wide Range Signal Generator is being fed into the Electronic Test Unit, where it is amplified and fed to the secondary winding of the transformer. The Electronic Testmeter is connected across the tuned circuit under test and, from the readings obtained and the controls of the Electronic Test Unit, the "Q" of the circuit can be determined.

The three instruments, shown as a team, cover a very wide field in measurement and form between them a complete set of laboratory testgear, ruggedly constructed to withstand hard usage.

ELECTRONIC TESTMETER

A 56-reading instrument combining the sensitivity of a delicate galvanometer with the robustness and ease of handling of an ordinary multi-range meter, consisting basically of a highly stable D.C. Valve Voltmeter, free from range variations, and presenting negligible load on circuit under test.

Switched to measure:—

- D.C. Volts: 2.5mV to 10,000V.
- D.C. Current: 0.1 to 1 Amp.
- A.C. Volts: 11V to 2,500V R.M.S.
- A.C. Power Output: 3mW to 5 Watts.
- Decibels: 10dB to +20db.
- Zero level: 50 mV.
- Capacitance: 0.001 uF to 50 uF.
- Resistance: 20M to 10 Megohms.

Operates on 100-130V, and 200-240V, 50-60 c/s A.C. mains.

ELECTRONIC TEST UNIT

For measuring small values of A.C. voltage, inductance, capacity, and Q at radio frequencies. Although "Q" is of radio frequencies. Although "Q" is used primarily for use with "AVO" instruments, it can be used with any suitable Signal Generator.

- As a Wide Range Amplifier, it is capable of an amplification factor of 1,000 to 250 between 30MHz and 20MHz.
- As a Capacity Meter, it covers measurements at radio frequency from 5MHz to 10000PF in two distinctly calibrated ranges.
- As an Inductance Meter it gives direct measurements from 1.1H to 50mH in six ranges.
- The "Q" Meter indicates R.F. coil and condenser losses at frequencies up to 20 Mc/s.

Operates on 100-130V, and 200-240V, 50-60 c/s A.C. mains.

WIDE RANGE SIGNAL GENERATOR

An instrument of wide range and accuracy for use with modern radio and television circuits. Turret coil switching provides six frequency ranges covering 50 Kc/s to 50 Mc/s.

- Range 1: 50 Kc/s—150 Kc/s
- Range 2: 150 Kc/s—500 Kc/s
- Range 3: 500 Kc/s—15 Mc/s
- Range 4: 1.5 Mc/s—5 Mc/s
- Range 5: 5.5 Mc/s—50 Mc/s
- Range 6: 120 Mc/s—80 Mc/s

Accuracy to within 1% of scale marking. Gives sinewave form, modulated or unmodulated, over entire range. Minimum signal less than 1 mV at 20 Mc/s and less than 3 mV at 50 Mc/s and 80 Mc/s. Gives calibrated output from 100 mV to 500 mV, 1 V, 2 V and 5 V. Operates on 100-130V, and 200-240V, 50-60 c/s A.C. mains.

Battery-operated model also available.
For efficiency and fidelity each Rola speaker is indeed “one in a million” but in a more literal sense, every Rola you receive is one in ten million speakers which are proving the superiority of Rola performance throughout the world.

So let figures speak for themselves and specify Rola.

Manufacturers Enquiries to:---
BRITISH ROLA
FERRY WORKS, SUMMER ROAD, THAMES DITTON, SURREY (Emberbrook 3402-6)

Wholesale Enquiries to—SOLE DISTRIBUTORS
LONDON & NORTH:
CYRIL FRENCH LTD.,
HIGH ST., HAMPTON WICK, MIDDX. (Kin. 2240)

SOUTH:
ROBSHAW BROS.,
10, EXETER RD., THE SQUARE, BOURNEMOUTH. (Tel.: 3816-7)

LOW FREQUENCY SIGNAL GENERATOR

TYPE 702

This Low Frequency Signal Generator employs a resistance-capacity oscillator circuit to provide stable output voltages of pure waveform over the frequency range 30 c/s-30 kc/s.

A screened and balanced transformer is provided to enable balanced, unbalanced and fully floating outputs to be obtained, the source impedance under all three conditions being 600 ohms.

PRICE £75

A single level control enables the output to be set to any desired value, and a 600 ohm constant impedance output attenuator provides steps of 20, 40 and 60 db of attenuation.

The output voltage is monitored by a diode valve voltmeter which is calibrated both in open-circuit volts and in db relative to 1 milliwatt in 600 ohms.

Illustrated descriptive leaflets of this or any other Airmec instrument will be gladly forwarded upon request.

AIRMEC LABORATORIES LTD
HIGH WYCOMBE - BUCKINGHAMSHIRE - ENGLAND

TTL: HIGH WYCOMBE 2050 CABLES: AIRMEC HIGH WYCOMBE
Germanium diodes have many advantages — electrical and physical, which makes a substantial appeal to the professional radio engineer and the serious experimenter. Being so small they can be soldered directly into the part of the circuit where they are wanted and without any consideration of mounting methods or special holders.

They require no heater power and therefore the danger of introducing hum does not exist, neither has screening to be considered.

A minimum life of 10,000 hours means that they need not be easily accessible for replacement and the special sealed and robust construction ensures immunity from damage by vibration or atmospheric conditions.

As replacements for thermionic diodes, G.E.C. germanium diodes are always worth considering and the main points which have to be taken into account are reverse resistance and permissible reverse voltage. Their low shunt capacitance will always be advantageous compared with thermionic diodes.

From the point of view of the experimental worker they are invaluable because of their versatility, and they can equally well be used for say, an improvised source of bias from a heater supply, a probe voltmeter at television frequencies or in one of the many circuits of which the following are typical examples. For further information write to:

Osram Valve and Electronics Dept., Magnet House, Kingsway, W.C.2.

Vision Detector and Spot Limiter

T.V. Sound Detector and Noise Limiter

THE GENERAL ELECTRIC CO. LTD., MAGNET HOUSE, KINGSWAY, W.C.2
THOUSANDS OF USERS are convinced that the TELECASTER FA22 is Britain's foremost FRINGE AERIAL and **NOW** TELECASTER have designed an aerial for those nearer the transmitter:—

The **TS 50** an "H" with all the features you've asked for at an amazingly low price.

STUDY THIS SPECIFICATION

THE TS 50 retains the well-known TELECASTER

DIPOLE FEEDER BOX
COLLECTORS and REFLECTORS
1/2 diameter Aluminium Alloy Tube
New Type Reflector Assembly
Die-cast Mast-head casting
.15 Wave-length Seamless Steel Spreader
7ft. Seamless Steel Mast
Steel Lashing with welded joints
120. 7-strand Galvanised Lashing-Wire
3 Corner-Plates, "J" Bolts, "U" Bolts, Rope Grips, Thimbles, etc.
STOVE ENAMELLED THROUGHOUT
GUARANTEED TO WITHSTAND SEVEREST WEATHER CONDITIONS

£3.17.6 Complete. LONDON or MIDLAND.

Don't let this low price mislead you. The TS 50 is a first-class product and is GUARANTEED FOR TWO YEARS

The FA22 remains at the same price:—

£5.12.6 Complete. LONDON or MIDLAND.

SEND FOR DESCRIPTIVE LITERATURE
Contact your Wholesaler and insist on

THE NEW MAGNASTA

FOR "DAYLIGHT" VIEWING WITH NO LOSS OF BRILLIANCE

The New Filtachromatic Magnavista actually contains the filter inside the lens, thus "light-loss" is minimised and you don't have to turn up the brilliance and shorten the life of your tube. This unique development is now incorporated in Magnavista's usual high quality precision lenses at no extra cost to the purchaser. This is viewing de-luxe.

There is a Magnavista model specially designed to suit every set.

PRICES.
There are over 18 different New Magnavista Models at prices ranging from £4/14/6 to £7/17/6.

TELECASTER LIMITED

QUADRANT ROAD • THORNTON HEATH • SURREY
Tel.: THOrton Heath 2965
Depots: BIRMINGHAM, BRISTOL, MANCHESTER, WORTHING
SCOTTISH ENQUIRIES:
LOUIS GRACE, 38, Langside Place, Glasgow, S.1

METROPEX LTD

38 GT. PORTLAND ST., LONDON, W.1
and
KING'S HEATH STATION, BIRMINGHAM
The 'CINTEL' SQUARE-WAVE & PULSE GENERATOR has been especially designed for testing the transient response of both audio and video frequency amplifiers by the square-wave technique and full technical information is given in our leaflet No. SWG2/1 available on request.

But it's no use guessing about the performance of an amplifier. This can only be determined by accurate measurement.

CINEMA-TELEVISION LIMITED
A Company within the J. Arthur Rank Organisation

FOREMOST IN THE MANUFACTURE OF
- Counters & Chronometers - Metal Detectors - Oscilloscopes - Photo-Electric Cells - Cathode Ray Tubes - Geiger-Müller Tubes - Electronic Instruments

WORSELEY BRIDGE ROAD. LONDON. S.E.26
Telephone: HIlTher Green 4600

Northern Agents: F. C. ROBINSON & PARTNERS LTD.
287 Deansgate, Manchester 3

Scottish Agents: ATKINS, ROBERTSON & WHITEFORD LTD.
100 Torridale Street, Glasgow, S.2
Because we think...

modern Radio demands instruments capable of better reproduction, we have pioneered high quality push-pull circuits to sell at modest prices. The AMBASSADOR Six-Fifty Radio-gramophone is an example of such an instrument. Six valves A.C. superhet circuit with two output valves in push-pull. Twelve-inch loudspeaker. Garrard auto-record changer for all types of records. Record storage space and walnut cabinet retailing at £78. Tax paid.

Obtainable from Ambassador Agents only. Illustrated leaflet of this and other models on request to:

AMBASSADOR RADIO, PRINCESS WORKS, BRIHOUSE, YORKS

YOU CAN MAGNETICALLY RECORD using your Gramophone Motor as a Drive

Necessary parts, also usable later for a more ambitious job, plans available, 1 Spool Diamond Magnetic Recording Tape and 1 take-up spool, 2 Corner Brackets, 1 Roller, 1 Record-playback Head Kit, 1 Friction Clutch, 1 Dual-purpose Supersonic Oscillator and Two-stage Preamplifier and your Radio Chassis. Set of parts £7.15.0, or items supplied separately.

Also Constructional Data for Wire and Tape Recorders 5s.

PARK RADIO OF MANOR PARK, 676/8, 783 Romford Road, London, E.12
A Lincoln, a Hastings, a Sunderland could no more fly without its Signaller than the "Queen Elizabeth" could sail without her Radio Officer. Often flying long distances, the Signaller maintains communications by keeping in touch with other aircraft and Ground Stations. He is not only a skilled wireless operator but also an expert operator of radar navigational aids and secret radio devices. To qualify for this fascinating and important career, you must first satisfy the R.A.F.'s high standards of intelligence and physique. If you can, you will be certain of N.C.O. rank: and, later on, have a good chance of gaining a commission.

There are also special opportunities for certain Qualified Pilots, Navigators and Signallers who are above the normal age limits for direct entrants.

Fly in the
ROYAL AIR FORCE
and be trained to lead!

TO: AIR MINISTRY
(DEPT. W.D.9.B.) VICTORY
HOUSE, LONDON, W.C.2.
* Send details of (1) direct entry to Flying Branch (2) special schemes for ex-pilots and navigators (give previous rank) (3) special scheme for ex-signallers.

NAME
ADDRESS
AGE

* delete two of these.
ACE MODEL 600

AVAILABLE IN CHASSIS FORM
An outstanding achievement in radio engineering

* 9 Valves
* 9 Wavebands
* Tuned RF Stage
* Permeability Tuning on Short Waves
* Full Bandspreading on 11, 16, 19, 25, 31, 41 and 49 m Bands
* Plus Trawler and Medium or Medium and Long Bands
* 10 Watts Push-Pull Output
* Twin 10" Speakers

Price £25 0 0 plus £5 11 2 tax

LIMITED QUANTITY ONLY

Model 600 chassis and speakers in magnificent walnut cabinet of special acoustic design

Size:
40 in. x 20 in. x 12 in.
(approx.)

Price £30 0 0
plus £6 13 4 tax

MAJOR DISTRIBUTORS
7-11 CAVENDISH PLACE
LONDON W.1

Tel.: WILlesden 6713

SO SMALL—IT DOES A BIG JOB

 Mystic in Size, but big in performance.
The M.M. 2 Gang Condenser has frame dimensions of only 1 7/8 x 1 11/16 x 1 11/16".
Complete with dust cover. Cat. No. 4702.

PRICE 10/6

TYPE 604 (illustrated) is a low-loss short-wave condenser suitable for Chassis or one-hole fixing. Brass vanes are soldered to supports and electroplated.

TYPE 603 is a split stator condenser of similar construction.
The S.1 series in both types are particularly suitable for low power transmitters.

PRICES:
Type 604 .. 15/3—17/0
Type 603 .. 16/0—17/6

Replacement Scales calibrated to Copenhagen Plan now available for:

Airplane Drive .. 2/3 retail
Squareplane Drive .. 2/6 retail
Full Vision Drive .. 2/9 retail
S.L. 8 or S.L. 5 Drive .. 4/6 retail

PRECISION COMPONENTS BY

JACKSON BROS (LONDON) LIMITED
KINGSWAY WADDON SURREY

Tel.: Croydon 2754-5 Grams: Walfilco, Souphone, London
Introducing the lesser known pages of our catalogue

MARCONI INSTRUMENTS LIMITED

DIELECTRIC TEST SET Type TF 704B

We feel entitled to regard this instrument with the greatest satisfaction although its emergence in present form has not been without setbacks. Based on a National Physical Laboratory design and calibrated by the N.P.L., it is a truly immaculate measuring unit, which although of a quality to be relished by the few, well repays the care lavished upon it. Our one regret is that we have still not retained a Dielectric Test Set for our own laboratories; we succumb in the end to the plea that there are needs greater than our own!

With all the advantages of a self-contained mains operated unit, Dielectric Test Set TF 704B determines the permittivity and phase defect of dielectrics in the continuous frequency range 50 kc/s to 100 Mc/s. Capacitance variation in a tuned circuit is the method used, a square-law thermionic mirror voltmeter acting as a resonance indicator. Because frequency is not involved in the calculation, the instrument operates over a very wide frequency range. In addition to its main function the Test Set can be used for determining the properties of high-frequency cables and the radio-frequency performance of capacitors and resistors.

Relentless attention to constructional detail and a perfected measurement technique virtually eliminate all errors even at the high frequencies. Readings are therefore of an exactitude hitherto unattainable.

MARCONI INSTRUMENTS LTD., St. Albans, Herts. Telephone: St. Albans 6161/5
"Q-MAX" MODEL G.D.O.I.
GRID DIP OSCILLATOR

The Grid dip oscillator is an extremely useful instrument as it may be used for the
determination of resonant frequency of tuned circuits, and is ideal for tuning transmitters
without application of power, for the determination of coil, mutual and stray inductances,
and both fixed and stray capacitance.

This Grid dip oscillator has a built-in mains power pack.

The frequency range is 1.5 to 300 Mc's covered by means of a series of plug-in
coils.

COIL RANGES

Extra coils 3½ each.

(A) 1.5—3.0 Mc/s.
(B) 3.0—6.0 Mc/s.
(C) 6.0—12 Mc/s.
(D) 12—25 Mc/s.
(E) 25—50 Mc/s.
(F) 50—100 Mc/s.
(G) 100—200 Mc/s.
(H) 200—300 Mc/s.

9½ GNS. (WITH ONE COIL)

"Q-MAX" STANDS FOR QUALITY AND PRECISION—ESSENTIAL
IN AN INSTRUMENT OF THIS TYPE.

THE NEW BRADMASTER MODEL 5 TAPE DESK for 1951

- Built to professional standards
- Two speeds—3½ and 7½ inches per second
- Fast wind and rewind—full reel rewound in 1½ minutes
- Heavy alloy flywheel. Freedom from "wow" and "flutter"
- Double servo brakes on each hub
- Push Button control
- Three heavy duty motors
- Three shielded Bradmatic heads
- Size: 13½" x 15½" x 6½" deep

PRICE: £37.10.0

A PLUG BOX can also be fitted to the above equipment contin-
uing three compartments which provide shielding for the head leads and elimin-
ating hum and cross talk. Also fitted with three coaxial
plugs and sockets, facilitating connection of the desk to amplifiers,
etc.

PRICE (fitted underneath desk) £1.5.0

THE NEW BRADMASTER MODEL 5 TAPE DESK for 1951

- Built to professional standards
- Two speeds—3½ and 7½ inches per second
- Fast wind and rewind—full reel rewound in 1½ minutes
- Heavy alloy flywheel. Freedom from "wow" and "flutter"
- Double servo brakes on each hub
- Push Button control
- Three heavy duty motors
- Three shielded Bradmatic heads
- Size: 13½" x 15½" x 6½" deep

PRICE: £37.10.0

A PLUG BOX can also be fitted to the above equipment contin-
uing three compartments which provide shielding for the head leads and elimin-
ating hum and cross talk. Also fitted with three coaxial
plugs and sockets, facilitating connection of the desk to amplifiers,
etc.

PRICE (fitted underneath desk) £1.5.0

Hi-fidelity magnetic sound heads, type 5 R.P. (record/play head)
- type 5 E (erase head) £3.5.0

Screening Cans, best quality (all mumetal)
- composite (constructed of steel and mumetal) £3.5.0

Oscillator coils
- Tape on 7in. reels, 1,200ft. £3.5.0

Emitape, type 65
- G.E.C. Grade "A" £1.5.0

Durox type, MC I—III £1.10.0

Trade supplied. Send for lists to sole Manuf cturers —

BRADMATIC LIMITED, STATION ROAD, ASTON, BIRMINGHAM, 6
Telephone: East 0574
What's the connection?

Sound Reinforcement in the CHAMBER OF THE NEW HOUSE OF COMMONS is the answer! The top picture shows, on the Table of the House between the dispatch boxes, one of the sixteen special microphones with which the Chamber is equipped. The second shows the panel from which the operator can, if necessary, remotely control the whole system instead of from the visual operating room overlooking the Chamber. Incidentally, "The Thing" on the left of the control panel is the business end of a periscope through which the whole Chamber is visible. The bottom picture shows five of the five hundred odd "soft" speakers unobtrusively set into the panelling of the members' seats. Full technical details of this unique and outstanding Low Level Reinforcement system are available.

\TANNOY\ PRODUCTS

SOUND RENTALS LTD.
WEST NORWOOD, S.E.27 Gipsy Hill 1131
"BAKERS" High Fidelity Loud Speakers are now in constant demand by Acoustical Laborato-
ries, Gramophone Societies, and the true Music Lovers throughout the World. No finer
speaker exists today, for over twenty-five years' experience of speaker design renders each model
the finest value that money can buy.

12" and 18" "TRIPLE CONE" and "DUPLEX" Models

Write for Descriptive Leaflet giving full technical details
(or better still call for an audition) of:..."BAKERS"
SPEAKERS, RECEIVERS AND AMPLIFIERS,
ETC. A combination offering the highest possible quality radiogram unit.

BAKERS

'Selhurst'

RADIO

Pioneers of Moving Coil Speakers
Since 1925

Dingwall Road, Croydon

Telephone: CRoydon 2271
A Range of Industrial Photocells

As a result of extensive research both in material and design Mullard now make available a comprehensive range of photocells ideally suited for industrial applications.

The range falls into two main groups. The caesium-silver oxide cathode (C type) cells, with a high sensitivity to incandescent and infra-red radiation; and the caesium-antimony cathode (A type) cells, with a high sensitivity to daylight.

Brief technical details are listed below. Fuller information on these and special photocells is available on request.

<table>
<thead>
<tr>
<th>Type</th>
<th>Base</th>
<th>Max. Anode Supply Voltage (V)</th>
<th>Max. Cathode Current (μA)</th>
<th>Dark Current (μA)</th>
<th>Sensitivity to colour temp. 2,700°K (μA/l)</th>
<th>Max. Gas Amplification Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>20AV</td>
<td>B8G</td>
<td>150</td>
<td>10</td>
<td>0.05</td>
<td>45</td>
<td>10</td>
</tr>
<tr>
<td>20CG</td>
<td>B8G</td>
<td>90</td>
<td>5</td>
<td>0.1</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>20CV</td>
<td>B8G</td>
<td>250</td>
<td>20</td>
<td>0.05</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>90AG</td>
<td>B7G</td>
<td>90</td>
<td>2.5</td>
<td>0.2</td>
<td>200</td>
<td>7</td>
</tr>
<tr>
<td>*90AV</td>
<td>B7G</td>
<td>100</td>
<td>5</td>
<td>0.05</td>
<td>45</td>
<td>10</td>
</tr>
<tr>
<td>*90CG</td>
<td>B7G</td>
<td>90</td>
<td>2</td>
<td>0.1</td>
<td>125</td>
<td>10</td>
</tr>
<tr>
<td>*90CV</td>
<td>B7G</td>
<td>100</td>
<td>10</td>
<td>0.05</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>58CG</td>
<td>Wire-in</td>
<td>90</td>
<td>1.5</td>
<td>0.1</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>58CV</td>
<td>Wire-in</td>
<td>100</td>
<td>1.5</td>
<td>0.08</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

* These valves are included in the new Government list of preferred valves for the services.

Mullard

Thermionic Valves and Electron Tubes

INDUSTRIAL POWER VALVES · THYRATRONS · INDUSTRIAL RECTIFIERS · PHOTOCELLS
FLASH TUBES · ACCELEROMETERS · CATHODE RAY TUBES · STABILISERS AND
REFERENCE LEVEL TUBES · COLD CATHODE TUBES · ELECTROMETERS, ETC.

MULLARD ELECTRONIC PRODUCTS LTD., CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C.2

MVT 56A
WAVEFORM ANALYSER

TYPE A201

A simple and accurate means of measuring the individual harmonics of a complex waveform. By using a heterodyne circuit with a crystal filter, this instrument gives the high selectivity necessary for working with modern L.F. design. Input impedance is high enough to allow connection across a transmission path without disturbing the level at the point of connection. An outstanding feature of the A201 is its compactness and portability. It weighs only 4 lb. complete with carrying case. Also supplied for rack mounting. Please write for details.

M.R. SUPPLIES Ltd.

Offer some exceptional opportunities in Laboratory Equipment, etc. All in new or otherwise excellent condition. As usual each item is guaranteed to be in perfect order. All prices nett.

MANS GEARED MOTORS, 200/240 volts A.C./D.C. 1/10th h.p. motor of sturdy construction, 8in. long, 4in. dia. Final shaft speed 1,200 r.p.m. Three phase motor wound can be controlled in speed by variable resistance. The final shaft is of right- hand type in order to be double-ended. These are brand new, 4/-10/- (deals and 4/9).

SHARDED POLI INDUCTION MOTORS (Kerr) brand new 200/240 volts A.C. R.P.M. constant at 1,500, very smooth running. Suitable for very many purposes including Wire Recorders, Film Projectors, Gram. Motors, Quality and Extractor Units, Stirrers and Mixers. Body 3½ in. x 3½ in., with shaft each end, 2/9/6 (desk 1-)

EVERSLOUGH BUSHE NUGGETS (2½ in.) Second-hand, ex-Govt. Each set very accurately tested before dispatch. Bargins: Megger, 8½ megohms. Bridger, 500/100,000 ohms. These are in four digit windows, with 10/1 and 100/1 multiplier and divider. With leather carrying case, 1½ nett (desk 4/9).

FLEXMETERS (Model WY098). Calibrated in three ranges, 1,000/2,000, 2,000/4,000. Ideal for direct reading. Complete with polyamide indicator and pointer for minimum gap of 1½ in. Brand new, in portable case 2/- in. x 2½ in. x 3½ in., 25/-/0 (desk 2/6).

LABORATORY VOLTMETERS, grade 1 model, 6½/0 v. D.C. Brand new by Howard Butler Ltd., with 5½ in. scale in portable case 4½ in. square by 5½ in. Basic movement 2½ m.m. ideal for adding to combined instrument. 2½/6 (desk 2/6).

TUBULAR HEATERS. 220/240 volts, 240 watts. Makes: Murea. Length 4½ ft. Rear-cooled aluminium. Very efficient for low consumption and ideal for laboratories, workshops, greenhouses, etc. Excellent for laboratoriums, workshops, greenhouses, etc. A good tax-free bargain, 25/-/0 (desk 2-6).

HIGH CURRENT CHOKES 50 millihenrys with 10 amps. flowing. D.C. resistance 0.009 ohm. Weight approx. 90 lb. A few only at 29/-10/- each (desk 3/-). Four in bridge: 240 v. 10 amps., 2½ the pair (desk 5/-).

HIGH DUTY SELENIUM RECTIFIERS. Brand new goods below half price. Fused coated, full-wave, 30 volts 30 amps. 7½/-; 60 v. 10 amps., 7½/-; 120 v. 10 amps., 13/- each. Pair in bridge: 30 v. 50 amps. 27/-; 60 v. 30 amps. 27/-; 120 v. 40 amps. 27/- each in cases (desk 2/6). Pair in bridge: 90 v. 10 amps., 2½ the four (desk 3/6). We carry a large range of new Selenium Rectifiers at keen prices and can meet many requirements.

HIGH DUTY OTTERVA PUMP. Made to top spec. In bronze throughout for Admixture. Power required to drive approx. 1 h.p. Will pump up to 5,000 g.p.h. (according to speed 300/1,500 r.p.m.) Head 2½ ft. suction lift 5½ ft. Overall length 1½ ft. New, 2½/- (desk 4/6).

SYNCHRONOUS ELECTRIC CLOCK MOVEMENTS, 200/300 v. 60 c. Fitted spindles for Hours. Minutes and Seconds hands, single hour mount, silent running, with plastic dust cover 4½ in. dia. and fits ready for use, 27/6 (desk 9/6). Set of three prices hands for 7/6. 1½/-.

The divergent and comprehensive service.

M.R. SUPPLIES Ltd., 58, New Oxford Street, London, W.C.1

Telephone: Museum 2958

WIRELESS WORLD

JANUARY, 1951

THE WAYNE KERR LABORATORIES LTD., NEW MALDEN, SURF. PHONE: MALDEN 2202

THE TOOL WHICH PAYS FOR ITSELF ON ONE JOB!

JUNEEERO BENCH TOOL KIT

Including Juneeero Tool, Scout Tool, Screw Chuck, 8½ in. and supply of strips, rod and angle metal. VICE TO HOLD ROD FOR SCREW CUTTING.

Cutting Shears for Rod

BENDING DIE

BENDING DIES FOR STRIP

BENDING JIG FOR STRIP

KAUSTO GAUGE BAR

PROTRACTOR SLIDE PLATE

FUNG FOR STRIP AND METAL

WAVEFORM ANALYSER TYPE A201

JANUARY, 1951

THE WAYNE KERR LABORATORIES LTD., NEW MALDEN, SURF. TELEPHONE: MALDEN 2202

M.R. SUPPLIES Ltd.

Offer some exceptional opportunities in Laboratory Equipment, etc. All in new or otherwise excellent condition. As usual each item is guaranteed to be in perfect order. All prices nett.

MANS GEARED MOTORS, 200/240 volts A.C./D.C. 1/10th h.p. motor of sturdy construction, 8in. long, 4in. dia. Final shaft speed 1,200 r.p.m. Three phase motor wound can be controlled in speed by variable resistance. The final shaft is of right-hand type in order to be double-ended. These are brand new, 4/-10/- (deals and 4/9).

SHARDED POLI INDUCTION MOTORS (Kerr) brand new 200/240 volts A.C. R.P.M. constant at 1,500, very smooth running. Suitable for very many purposes including Wire Recorders, Film Projectors, Gram. Motors, Quality and Extractor Units, Stirrers and Mixers. Body 3½ in. x 3½ in., with shaft each end, 2/9/6 (desk 1-)

EVERSLOUGH BUSHE NUGGETS (2½ in.) Second-hand, ex-Govt. Each set very accurately tested before dispatch. Bargins: Megger, 8½ megohms. Bridger, 500/100,000 ohms. These are in four digit windows, with 10/1 and 100/1 multiplier and divider. With leather carrying case, 1½ nett (desk 4/9).

FLEXMETERS (Model WY098). Calibrated in three ranges, 1,000/2,000, 2,000/4,000. Ideal for direct reading. Complete with polyamide indicator and pointer for minimum gap of 1½ in. Brand new, in portable case 2/- in. x 2½ in. x 3½ in., 25/-/0 (desk 2/6).

LABORATORY VOLTMETERS, grade 1 model, 6½/0 v. D.C. Brand new by Howard Butler Ltd., with 5½ in. scale in portable case 4½ in. square by 5½ in. Basic movement 2½ m.m. ideal for adding to combined instrument. 2½/6 (desk 2/6).

HIGH CURRENT CHOKES 50 millihenrys with 10 amps. flowing. D.C. resistance 0.009 ohm. Weight approx. 90 lb. A few only at 29/-10/- each (desk 3/-). Four in bridge: 240 v. 10 amps., 2½ the pair (desk 5/-).

HIGH DUTY SELENIUM RECTIFIERS. Brand new goods below half price. Fused coated, full-wave, 30 volts 30 amps. 7½/-; 60 v. 10 amps., 7½/-; 120 v. 10 amps., 13/- each. Pair in bridge: 30 v. 50 amps. 27/-; 60 v. 30 amps. 27/-; 120 v. 40 amps. 27/- each in cases (desk 2/6). Pair in bridge: 90 v. 10 amps., 2½ the four (desk 3/6). We carry a large range of new Selenium Rectifiers at keen prices and can meet many requirements.

HIGH DUTY OTTERVA PUMP. Made to top spec. In bronze throughout for Admixture. Power required to drive approx. 1 h.p. Will pump up to 5,000 g.p.h. (according to speed 300/1,500 r.p.m.) Head 2½ ft. suction lift 5½ ft. Overall length 1½ ft. New, 2½/- (desk 4/6).

SYNCHRONOUS ELECTRIC CLOCK MOVEMENTS, 200/300 v. 60 c. Fitted spindles for Hours. Minutes and Seconds hands, single hour mount, silent running, with plastic dust cover 4½ in. dia. and fits ready for use, 27/6 (desk 9/6). Set of three prices hands for 7/6. 1½/-.

The divergent and comprehensive service.

M.R. SUPPLIES Ltd., 58, New Oxford Street, London, W.C.1

Telephone: Museum 2958

WIRELESS WORLD

JANUARY, 1951

THE WAYNE KERR LABORATORIES LTD., NEW MALDEN, SURF. TELEPHONE: MALDEN 2202

THE TOOL WHICH PAYS FOR ITSELF ON ONE JOB!

JUNEEERO BENCH TOOL KIT

Including Juneeero Tool, Scout Tool, Screw Chuck, 8½ in. and supply of strips, rod and angle metal. VICE TO HOLD ROD FOR SCREW CUTTING.

Cutting Shears for Rod

BENDING DIE

BENDING DIES FOR STRIP

BENDING JIG FOR STRIP

KAUSTO GAUGE BAR

PROTRACTOR SLIDE PLATE

FUNG FOR STRIP AND METAL

25' - PORT FREE.

Including Juneeero Tool, Scout Tool, Screw Chuck, 8½ in. and supply of strips, rod and angle metal. VICE TO HOLD ROD FOR SCREW CUTTING.

JUNEEERO STIRLING CORNER, BOREHAM WOOD HERTS

Telephone: ELStree 1936.

Accurately cuts, punches and bends steel and aluminium strip, rod and angles for chassis construction and experimental work on radio and television jobs of all kinds. Indispensible to the busy amateur or professional technician for speedily making valve holders, condenser clips, wire holders, and clips etc. etc. Wholesale enquiries invited.
Frequentite is the most suitable insulating material for all high frequency applications. Seventeen years ago we introduced the first British-made low-loss ceramic, and consultation with us before finalising the design of new components is a wise precaution.

STEATITE & PORCELAIN PRODUCTS LTD.
MARCONI-SIEMENS

Radio Telephone Terminal

TYPE B

Salient features: Semi-automatic operation with alternative manual control, two-wire or four-wire line connection, electronic voice switching, provision for privacy working, radio calling facilities, centralised test and monitoring, self-contained for A.C. supply.

MARCONI'S WIRELESS TELEGRAPH CO., LTD.
MARCONI HOUSE, CHELMSFORD

SIEMENS BROTHERS & COMPANY LTD.
WOOLWICH, LONDON, S.E.18

VALVES!! VALVES!!
RECEIVING, TRANSMITTING, MAGNETRONS, KLYSTRONS, CATHODE-RAY TUBES, PHOTOCELLS, ETC.

LARGE QUANTITIES & GREAT VARIETIES
IMMEDIATE DELIVERIES FROM STOCK
WRITE OR 'PHONE:

S. Szymanski
(pronounced SHE-MAN-SKEE)
ELECTRONIC ENGINEER & STOCKIST

95 STRODES CRESCENT
STAINES - MIDDLESEX
TELEPHONE: STAINES 3971
PROBABLY THE LARGEST ACTUAL STOCKIST IN ENGLAND
WHOLESALE & EXPORT ONLY

SERVICE ENGINEERS!
Do YOU know that the Guild of Radio Service Engineers

is the accepted Organisation representing Radio and Television Service Technicians?
It is recognised by the employers' and other Trade Organisations, and by the appropriate Government Departments, as the representative body for the Service side of the Trade.

Write for full particulars to:
H. HILL, Hon. Gen. Secretary,
2, Stevenson Street West,
Accrington, Lancs.
FOR ALL TYPES OF PORTABLES

Ediswan directly heated miniature valves are suitable for miniature battery superheterodyne receivers, or for receivers of the all-mains/battery type.

Particular attention has been paid to the production of valves which are robust enough to stand up to the rougher usage expected with portable receivers, at the same time combining a small physical size and a high performance.

ICI (American type 1R5) Pentagrid Frequency Changer
IFD9 (" " 1S5) Diode A.F. Pentode
IF3 (" " 1T4) Variable Mu-R.F. Pentode
IPIO (" " 3S4) Output Pentode
IP11 (" " 3V4) " "

Complete details and prices on request

EDISWAN

MAZDA

THE EDISON SWAN ELECTRIC COMPANY LTD., 155 CHARING CROSS ROAD, LONDON, W.C.2
Member of the A.E.I. Group of Companies
MINIATURE VITREOUS ENAMELLED RESISTOR

TYPE M.V.1

RATING 3 watts for 250°C rise.
RESISTANCE RANGE -1-4700 ohms
Full rated watts over the whole resistance range
DIMENSIONS - 15/32" X 13/64"

Agents in Belgium: Monsieur Pou
Gremineke, 43 Avenue Jean Stobbeurts
Bruxelles.

SOLVE YOUR RADIO PROBLEMS WITH

OUR HOME CONSTRUCTION UNITS!

ANYONE can build our handsome FEEDERS! And the
knowledge that the performance will equal that of commercially
built units at double the cost, will make you EXTRA PROUD!

As our delighted friends already know the secret is our ALIGNED
TUNING UNITS comprising the famous 3 band 30 or 40 Coil
packs, "MM" T.F.T.'s, new 8in. x 6in. 3 colour Dial and panel-
ALIGNED, MATCHED AND SEALED. Price £9 9s. (inc.) for 30
or 99s. for 40. J.B. S.L.B. spin-wheel Tuner 20s. extra.

*All parts and full construction Sheets available.

NOTE for Connoisseurs: - Our 40 Feeder Units, with Hi-Fi
switching for local stations, and 10w. push pull Quality Amplifier
with variable negative feedback is the TOPS!

For details, eleven circuits, data, etc., send 1/6 NOW for NEW
ENLARGED EDITION (44 pp.) of "Home Constructor's Hand-
book." All items supplied by Mail DIRECT ONLY from:

RODING LABORATORIES
70, LORD AVENUE, ILFORD, ESSEX
*phone WAS 5486

HOME STUDY
backs radio experience with sound technical knowledge

MANY men who wished to link their radio experience with
a sound technological background have received successful
instruction by means of an ICS Course. Its value has been
proved not only to amateurs but to men who already have a
professional interest in radio and television engineering,
including those taking qualifying examinations. It is invali-
able, also, to students who wish to prepare themselves for
a job in this field. Courses of instruction covering radio
and, if necessary, television, include the following:

Complete Radio Engineering. Radio Service Engineers
Radio Service and Sales. Advanced Short-Wave Radio
Elementary Electronics, Radar and Radio
Television Technology

And the following Radio Examinations:
British Institution of Radio Engineers
P.M.G. Certificates for Wireless Operators
City and Guilds Telecommunications
Wireless Operators and Wireless Mechanics, R.A.F.

Write today for our FREE "RADIO" booklet which fully
describes the above ICS Courses and the facilities for the
complete study of Radio and/or Television technology. The
ICS Advisory Department will also give free and impartial
advice on the need for and the means of instruction.

International CORRESPONDENCE SCHOOLS
Where excellent quality reproduction is essential...

.. the Metrovick

AUDIO AMPLIFIER

is the instrument to use

This instrument is designed to give excellent quality reproduction with the added advantages of being a self-contained unit, portable and attractive in appearance. Thus it will prove ideal for Public Address work, educational authorities and similar organisations.

SPECIFICATION

Supply: 200/250V 50 c/s single-phase; consumption approximately 170 VA for full output.

Input: Gramophone 0.2V for full output. Microphone 0.02V for full output. The two circuits can be mixed as required.

Impedance: 7 ohms, 15 ohms and 45 ohms.

Output: 20 watts with negligible distortion.

Tone Control: Continuously variable.

Response: ± 1 db from 30 to 15000 c/s at zero position of tone control.

Controls: These are recessed to avoid damage and are illuminated when in operation.

Dimensions: 18 1/2" X 8 1/2" X 10 1/2".

Finish: The instrument is housed in an attractive steel case, stove enamelled in cream or blue as desired. A leather carrying handle is fitted.

METROPOLITAN-VICKERS ELECTRICAL CO. LTD.
TRAFFORD PARK, MANCHESTER 17
Member of the A.E.I. group of companies
LONG PLAYING RECORDS ON STANDARD RADIOGRAMS OR RECORD PLAYERS

THE CHANCERY LONG PLAYING RECORD ATTACHMENT G33 (patents pending) is precision engineered to convert existing equipment (78 r.p.m.) to 33 1/3 r.p.m. This is effected by an epicyclic transmission and reduction mechanism, ensuring a constant speed of 33 1/3 r.p.m. necessary for true reproduction of long playing records. Elimination of "wow" and waver has been achieved to a remarkable extent.

The G.33 has been designed for simplicity of conversion, having merely to be placed on the existing turntable, and no special fixing is required.

The special Decca Crystal Micro-groove Pick-up embodies a sapphire stylus and a lightweight balanced arm, and gives an extremely wide frequency response.

Suitable for the conversion of Auto-Changers types R.C. 60, R.C. 65, R.C. 70, either A.C. or A.C./D.C. etc.

CHANCERY PRECISION INSTRUMENT SERVICE LTD.
Sales Department: 64, GEORGE STREET, BAKER STREET, LONDON, W.1

NEW PRICE COMPLETE
£4 4s. Od.
(plus P.T., £1 10s. 6d.)

NEW PRICE LESS PICK-UP
£2 10s. Od.
(plus P.T., £2 2s. 6d.)

AS SUPPLIED TO MESSRS. DECCA FOR INCORPORATION IN THEIR HIGH-FIDELITY INSTRUMENTS.

“Your’re CERTAIN to get it at ARTHURS!”

★ VALVES: We have probably the largest stock of valves in the country. Send your enquiries.
AVO METERS IN STOCK
Avo Model 7 High resistance £19 10 0
Avo Model 6 High resistance £19 10 0
Avo Model 40 £17 10 0
Valve Tester £16 10 0
Avo Minor, AC/DC model £10 0 0
Electronic Test Meter £25 0 0
Signal Generator £50 0 0
Valve Characteristic Meter £50 0 0

Demonstration of Philips Projection Televisions in our showroom.

LATEST VALVE MANUALS
Radio Post 40, each extra

Send for catalogue.

TAYLORS METERS, List on request
DECCA PICK-UPS £3 15 5
DECCA HEAD £2 19 2
ADAPTOR for Garrard £3 0 0
COSSOR DOUBLE BEAM OSCILLOSCOPE £85 10 0

Viewmaster® Television Kits in stock for Birmingham and London areas. Please state which required.

LONDON’S OLDEST LEADING RADIO DEALERS

Arthurs
PROPS: ARTHUR CRAY, LTD. Terms C.O.D. or cash with order

ELECTRICAL, TELEVISION & RADIO ENGINEERS

Here’s the Master POCKET Set!

THE TRIMMER KIT
which no Amateur or Professional Radio or Television Engineer can afford to be without.

Contains
★ 1 End Trimmer
★ 1 Side Trimmer
★ 1 Tungsten Switch
★ Contact Adjuster
★ 1 Low Capacity Trimmer
★ 1 Screwdriver
★ 1 Set of Feeler Gauges
★ 1 Set of Six Box Spanners from 1 to 8 B.A.
★ 1 Set of Four Spanners from 0 to 8 B.A.

In durable black crackle finish metal case.

Order from:
J. & S. NEWMAN Ltd. 100 Hampstead Road, N.W.1. Tel. Euston 5176
It is now nearly eighteen months since we first published details of the Corner Ribbon Loudspeaker (1). There is evidence that the use of these loudspeakers in a number of leading laboratories is undoubtedly resulting in a higher accuracy in subjective work on the ideal requirements for a monaural system (i.e. practical radio and record material).

In our own programme, we have used the speaker in an attempt to investigate the relationship of tracing distortion to the response characteristic (2). This analysis has resulted in the design of the Q.U.A.D. amplifier, the controls of which correct for the programme or recording IN FULL because the compensation for distortion is separated from the control of balance.

The problem of supplying the Corner Ribbon Loudspeaker to the public is not easy. The testing of loudspeakers for instance becomes increasingly difficult the more the loudspeaker approaches perfection. This, together with the desirability of some control over its installation, severely limits the number which can be produced and thereby prohibits general release for random trade distribution. Enquiries in the first place should be sent direct to us at Huntingdon.

Tracing distortion can be divided into three separate components. One component can (theoretically) be overcome in good pick-up design. The remaining two are fundamentally present in the recording system used and each is a definite though different function of the response characteristic. The optimum correction varies with the recording and, it appears, can best be met by controlling the balance of very high harmonics, using just sufficient slope necessary to offset the slope or rate at which distortion increases with frequency.

We suggest you write for the Q.U.A.D. booklet. Those skilled in the art of acoustics will readily appreciate the advantages of the more important developments in the specification detailed therein.

Since at least one major limitation is present in reproduced sound, it follows that final judgment of the whole can only be subjective. When listening to the Q.U.A.D. amplifier, notice particularly how the best possible quality is extracted from each and every programme and recording without upsetting correct orchestral balance.
Some people wind their own coils...

...it takes their mind off the international situation, their failure in the pools, or some other of life's little difficulties. Some people even do it for fun. So it's mainly the hard-headed business type that comes to us. Interested in such things as quick, reliable delivery, unvarying standards and strictly competitive prices, they let us do the worrying. If you need coils, write to us mentioning types and quantities. The chances are that you, too, will soon be leaving your coil problems to us.

West Hill, St. Leonards, Sussex
PHONE: HASTINGS 471

Moving Parts

The continued expansion in our production of specialised equipment has necessitated our removing from our old premises.

We have acquired modern factory buildings at Kirkby and the removal of all departments will be completed in January 1951.

J. H. BRIERLEY (Gramophones & Recordings) LTD.

KIRKBY TRADING ESTATE, LIVERPOOL
The G.E.C. Quartz Crystal Activity Test Set measures the equivalent parallel resistance of a quartz crystal when oscillating in a circuit having an input capacity of either 20 pF, 30 pF or 50 pF, the alternative capacities being selected by a switch.

The dial is calibrated and has a range of 4 kilohms to 130 kilohms and is direct reading. No calculation is necessary. Measurements can be made at any convenient amplitude of oscillation up to 10V. R.M.S. at the crystal terminals for crystals of normal activity.

The accuracy of the loss dial calibration is $\pm 2\%$.

WRITE FOR DESCRIPTIVE LEAFLET—

SALFORD ELECTRICAL INSTRUMENTS LTD.
PEEL WORKS : SILK STREET : SALFORD : LANC.S.
Subsidiary of THE GENERAL ELECTRIC CO. LTD. OF ENGLAND
foremost with
Stabilised
Power Supply
Units

Type 1930; 220 to 380v variable 0-100mA; regulation 5%; ripple 2.5mV.
Negative stabilised — 150v at 20mA. Heater supplies — 6.3v, 4v and 2.3v A.C.

FURZEHILL LABORATORIES LTD., BOREHAM WOOD, HERTS.
TEL: E. Stree 3940.

5, Shakespeare Rd., Finchley, N.3.
Phone: FLNchley 2188
INSIDE INFORMATION
—about the switch that is superior

‘OAK’ switches—both rotary and push button types—are embodied in the majority of British radio receivers.

Throughout the radio world, the time-tested basic ‘OAK’ principles are recognised and acknowledged as superior. They form the basis for the standard inter-service wafer type switch to Specification RCS.151 of the Radio Components Standardisation Committee.

The new miniature types, embodying all ‘OAK’ basic features, bring the range available in line with today’s requirements for miniaturised equipments.

Other British N.S.F. Products include:
Cutler-Hammer appliance switches; Carbon and wire-wound potentiometers for television and radio applications.
Do you want to build your own E.H.T. unit? We can supply instructions for two methods. The "Westeht" balanced voltage multiplier circuit which enables the existing 350-0-350 volt transformer to be used as a source of E.H.T. as well as the usual H.T. supply, and the pulse driven multiplier operating from the line flyback pulses. Both methods incorporate type 36EHT.

WESTALITE

MINIATURE HIGH-VOLTAGE RECTIFIERS

For a copy of "THE ALL METAL WAY," which also includes valuable information on our H.T., L.T., and H.F. rectifiers, send 6d. in stamps to Dept. W.W.1.

"WEYRAD"

B-A-N-D-S-P-R-E-A-D

UNITS

DESIGNED FOR HIGH PERFORMANCE UNDER ADVERSE CONDITIONS
FULLY TROPICALISED COILS ON MOULDED FORMERS.

6 EXPANDED RANGES 3 GENERAL COVERAGE USING 2-SECTION TUNING CONDENSER

STANDARD VERSIONS

<table>
<thead>
<tr>
<th>B.S.3</th>
<th>B.S.5</th>
<th>B.S.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Metres</td>
<td>13 Metres</td>
<td>11 Metres</td>
</tr>
<tr>
<td>16 ..</td>
<td>16 ..</td>
<td>13 ..</td>
</tr>
<tr>
<td>19 ..</td>
<td>19 ..</td>
<td>16 ..</td>
</tr>
<tr>
<td>25 ..</td>
<td>25 ..</td>
<td>19 ..</td>
</tr>
<tr>
<td>31 ..</td>
<td>31 ..</td>
<td>25 ..</td>
</tr>
<tr>
<td>41 ..</td>
<td>41 ..</td>
<td>31 ..</td>
</tr>
<tr>
<td>13-43 ..</td>
<td>43-140 ..</td>
<td>13-43 ..</td>
</tr>
<tr>
<td>43-140 ..</td>
<td>175-570 ..</td>
<td>43-140 ..</td>
</tr>
<tr>
<td>175-570 ..</td>
<td>800-2000 ..</td>
<td>175-570 ..</td>
</tr>
</tbody>
</table>

TENTH SWITCH POSITION FOR PICK-UP OPERATION

WEYMOUTH RADIO MFG. CO., LTD., CRESSENT STREET, WEYMOUTH, DORSET

T.V. in the FRINGE AREAS

A Superior

PRE-AMPLIFIER

By 'RAINBOW'

For use with CO-AXIAL or BALANCED FEEDER

Built-in Power Pack, with Metal Rectifier, E.F.91 valve, exclusive Rainbow Coils. Complete with all Plugs. Crackle Finish, Steel Case 83⁄4" x 43⁄4" x 21⁄4".

Alexandra Palace or Sutton Coldfield Model Price £5 17 6

is giving excellent results with Receivers by Bush, Pye, H.M.V., Marconi, Philips, etc.

Also available: 2-valve model for extreme fringe areas £7 10 0

It's to your advantage to write for fuller details.

RAINBOW RADIO MANUFACTURING CO. LTD.

Mincing Lane, Blackburn, Lancs., England
All you want in winding... you get from

WESTMINSTER COIL WINDERS

FULLY AUTOMATIC MULTIPLE COIL WINDER
Type 4A for precision winding of round or rectangular coils with paper interleaving. Perfect layering. Smooth acceleration and deceleration from inching to full speed. Constant tension. Simple adjustments. No gear changes.

Sole Distributors:

DUAL PURPOSE SINGLE COIL WINDER

Designed and Manufactured by
WESTOOL LTD., ST. HELENS AUCKLAND, BISHOP AUCKLAND, CO. DURHAM.

STATION WORKS, BURY ROAD, RADCLIFFE, LANCS

THE GENERAL ENGINEERING CO. (RADCLIFFE) LTD.
K5I HIGH-FIDELITY AMPLIFIER. Complete with detachable remote control, 6 watts push-pull output, negative feedback, distortion below 0.5%. Frequency range 30-20,000 cps., separate bass and treble controls. Mic/Radio/Gram(33/78) selector. Guaranteed for two years. Price £17/17/-, in Kit form £14/14/-.

RC TUNING UNIT. Combined TRF/Superhet receiver, 4 valves, 3 wavebands. High sensitivity RF stage on all bands, 2 RF stages on TRF reception, infinite impedance detector. Two years guarantee £14 18/6, inc. P.T.

RG QUALITY TUNING UNIT. Variable selectivity local station TRF receiver. Employs 2 stages of RF amplification feeding into I.I. detector. Long and Medium wavebands. Guaranteed for two years £8/14/2, inc. P.T.

CATALOGUE. Our fully illustrated catalogue makes interesting reading. May we send you a copy? Write today to:—

Charles AMPLIFIERS
(Manufacturing) LTD.

As specified for conversion of the Type 25 unit of the TR. 1196, Wartime utility receivers and others.

Your "Q"
TO EASIER ASSEMBLING
- 5 SIMPLE CONNECTIONS
- SAVES TIME
- SAVES MONEY
- SAVES WORRY
- A PERFECT JOB

The OSMOR "Q" Coilpack is the solution to the problem of coils and switching. Just five simple connections, a few minutes work, saves hours of puzzling over complicated circuits—and gives you a better job in every way, and at less cost, too! All types available for mains and battery sets. Complete with full instructions and circuit diagrams

OSMOR 'Q' COILPACKS
end stamp for new illustrated lists of Coils, Coilpacks and all Radio Components
OSMOR RADIO PRODUCTS LTD., (Dept. W.14)
BRIDGE VIEW WORKS, BOROUGH HILL, CROYDON, SURREY
Telephone: Craydon 1220

SIFAM Precision ELECTRICAL INSTRUMENTS
2" to 8"

ACCURATE measurement of time or electricity for industrial or laboratory purposes.

PROMPT DELIVERY AND TWELVE MONTHS GUARANTEE
SIFAM ELECTRICAL INSTRUMENT CO. LTD.
LEIGH COURT, TORQUAY - Telephone: Torquay 4547/8
The photograph shows 220kV 3,500 MVA Metrovick air-blast circuit breakers installed in Finland — the first 220kV air-blast breakers made in Great Britain.
McMURDO

Moulded Valvholders

B12A — Duodecal

FOR CATHODE RAY TUBES

Ref. No. B.12/U — moulded in Phenol-Formaldehyde

... B.12/U — with Polythene Cover

THE McMURDO INSTRUMENT COMPANY LTD., VICTORIA WORKS, ASHTEAD, SURREY · ASHTEAD 3401

Variable CAPACITORS

From MINIATURE TRIMMERS to HIGH VOLTAGE TRANSMITTER CAPACITORS

No. 26. A new Mica Compression Trimmer

For use in Television circuits. High stability with constant, wide, capacity swings and long life at high voltage. Bleed resistance not affected by continual setting. Low-loss Rockite base and best Mica dielectric give very efficient Power Factor. Location method prevents flashover from blade movement. Capacities up to 1,000 pF at 1,000 v. D.C. test and up to 2,000 pF for 250 v. D.C. test. 1.000 diam., 11½ high.

No. 18/S. Air Di-electric Trimmer

“PYROBIT”

ELECTRIC SOLDERING IRONS

are now supplied with new improved elements.

The Wireless Model — 22/- each

The Instrument Model — 22/- each

Try a PYROBIT Iron and you will enjoy your soldering.

Soldering efficiency depends largely on clean copper bits, and from NO OTHER SOLDERING IRON can the bit be removed so easily as from a PYROBIT.

THE ACRU ELECTRIC TOOL Mfg. Co. Ltd.

123, Hyde Road, Ardwick, MANCHESTER 12

Tel. No.: Ard. 4284
Here are some details of Model 1049 as illustrated:
The Double Beam Tube presents two simultaneous independent traces over the full diameter of a 90 mm. screen, and provision is made for the measurement of both input voltage and time upon the calibrated dials of the instrument. The Oscillograph is particularly suitable for obtaining permanent photographic records using the Cossor Model 1428 Camera for which a Motor Drive Attachment Model 1429 is available.

Widely different industries are daily finding new uses for the COSSOR Double Beam Oscillograph. Sometimes it provides the answer to an industrial problem of long standing. The tracing and measurement of noise, strain and vibration are typical everyday applications of this versatile instrument which is already helping engineers in industries as far apart as brewing and the manufacture of jet engines. Call on our technical advisory staff if you have a problem. They will quickly let you know whether the Oscillograph can help you.

COSSOR

Double Beam OSCILLOGRAPHS

Please address enquiries to:
Telephone: CANonbury 1234 (30 lines)
Difficult Problems?

Made in Three Principal Materials

FREQUELEX
An insulating material of Low Di-electric Loss, for Coil Formers, Aerial Insulators, Valve Holders, etc.

PERMALEX
A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLEX
A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.

Bullers LOW LOSS CERAMICS
BULLERS LTD., 6, LAURENCE POUNTNEY HILL, LONDON, E.C.4
Telephone : Mansion House 9971 (3 lines) Telegrams : "Bullers, Cannon, London"

VARIABLE HIGH VOLTAGE LABORATORY & GENERAL PURPOSE POWER SUPPLY

TYPE 103 PMA

Input - - 230 V.A.C. 50 c/s
Output - - 500-12,000 V 1 mA maximum
Meter - - Calibrated 0-12 KV.
Case - - Blue stove enamelled steel case, 20½" x 10½" x 10½"

Full details of our standard equipment from 2,000 to 50,000 volts are available.

HAZLEHURST DESIGNS LTD
34a, POTTERY LANE
LONDON, W.11
TELEPHONE : PARK 6955

Drayton MOTOR UNITS

The Drayton R.Q. is a miniature capacitor induction type motor with a current consumption at 230 volts 50 cycles of 0.09 amps pf. 0.9. It is available:

R.Q.G. GEARLESS for running at 2700 r.p.m. continuously or intermittently in either direction or continuously reversed.

R.Q.R. GEARED for continuous running or reversing at speeds from 27 mins. per rev. to 600 revs. per min.

R.Q.H. GEARED for high final shaft speeds for continuous running, forward or reverse.

Send for List No. N300/1.

Drayton Regulator & Instrument Co. Ltd., West Drayton, Mdx. - W. Drayton 2611
PERMALLOY "C"
SPIRAL TAPE CORES
for instrument transformers

The outstanding qualities of Permalloy "C," particularly in regard to its high flux density at low magnetising force together with very low hysteresis and eddy current losses, will appeal to manufacturers of instrument transformers. Permalloy "C" enables transformers to be made having negligible ratio and phase angle errors throughout the working range. Ageing effects which are associated with silicon steel are absent and the electrical characteristics of the core after being subjected to short-circuit conditions remain constant. High-quality spiral tape cores supplied by Standard are self-supporting and require no clamping device to retain the material in position as is the case with stampings.

A bulletin on the magnetic materials

PERMALLOY AND
PERMENDUR

is available on request to:

Standard Telephones and Cables Limited

(Registered Office: Connaught House, Aldwych, London, W.C.2)

TELEPHONE LINE DIVISION: North Woolwich, London, E.16
Telephone: Albert Dock 1401
WIRELESS WORLD

THE INSULATOR

- Watertight assembly.
- Long leakage path.
- Element rods reinforced by the inserted metal tubes, at a point where fracture is liable to occur.
- Mycalex has high surface resistivity to moisture under damp conditions.
- Great physical strength due to nature of Mycalex which is a bond of Mica and Glass.

Phone: CIRENCESTER 400 or send enquiries to
MYCALEX COMPANY LTD · ASHCROFT ROAD · CIRENCESTER GLOS

AIDS TO EFFICIENCY

S. G. BROWN Type "K" Moving Coil Headphones meet every requirement of those engaged on laboratory and DX work, monitoring, etc. Accuracy is assured by their High Quality reproduction.
D.C. Resistance 47 ohms. Impedance 52 ohms at 1,000 c.p.s. Sensitivity 1.2×10^{-12} watts at 1 Kc. 微安
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PROBLEM:
To close cooker door securely on main body, and ensure that it can be opened and shut in the fastest and easiest way.

SOLUTION:
Spire Spring Latch Type SRV and ball stud. Just a direct pull frees the ball stud.

THAT'S FIXED THAT—FASTER, CHEAPER, BETTER

Here's another cost saver. SRV type Spire Speed Clips afford a simple spring latch for removable assemblies such as doors on refrigerators, cookers, cabinets, inspection covers, etc. Spire fasteners — "the fastest thing in fastenings" — are saving assembly time and cost on thousands of jobs. Why don't you find out what they can do for you? Write direct to us.

Enquiries to:
SIMMONDS AEROCESSORIES LTD., BYRON HOUSE, 7-8-9 ST. JAMES’S ST., LONDON, S.W.1
HEAD OFFICE AND WORKS: TREFOREST, GLAMORGAN.
ALSO BIRMINGHAM, STOCKHOLM AND MELBOURNE.
TELEVISION & RADAR

SQUARE WAVES

This oscilloscope has a stepped Y-amplifier gain control compensated, on each step of approximately 6 DB., to ensure accurate reproduction of square waves.

OTHER FEATURES

Built-in wobbulator
Time-base 10-250,000 c.s.
Brilliance modulation
Shift controls, etc., etc.

Price £2.5
Model 11W
Write for details also of model 1B, £1.5
Hire purchase terms available

ERSKINE LABORATORIES LTD., SCALBY, SCARBOROUGH, YORKS.
(The developers and manufacturers of the now famous Type 13 for the Services)

Induction Motors.

FOUR POLE MOTOR FP 10
A precision engineered well balanced motor, designed to give constant, trouble free performance indefinitely. This motor is used extensively in many wire and tape recorders, and gramophone units now manufactured.

Note these features — Fully protected — Dual voltage range — Negligible external magnetic field — Oil impregnated self aligning bearings — Speed constancy and silent running.

TWO POLE MOTORS SRI & SR2.
A rugged and highly efficient motor that will stand heavy overloads, and for intermittent ratings is capable of giving up to twice the rated power. Used extensively in many motion displays, fans and gramophones now manufactured. SRI MODEL; Speed (light) 2750 r.p.m. Torque 3.0 inch ozs. — Weight 2.51 lbs. SR2 MODEL; Speed (light) 2750 r.p.m. Torque 2.0 inch ozs. — Weight 1.7 lbs.

Leaders in their field
Birmingham Sound Reproducers Ltd., Old Hill, Staffs. Tel. Cradley Heath 6112/3

Richard Allan

And a Richard Allan speaker to go with it sir?

— if you connect it with flex to your main set you will then have radio in two rooms at the same time. Now here’s the very thing sir. The Minor, yes sir, it is a lovely job — and sounds as good as it looks. Put it in the bedroom —just the job for lazy week-ends or sickness. There’s some pleasure in being miserable if you have a Richard Allan extension speaker. Yes sir, 52/6, thank you sir.

Consider these advantages and buy a Richard Allan extension speaker.

Baby ... 39/6
Minor ... 52/6
Major ... 65/-

Richard Allan

Radio Ltd., Bafflette House, Batley, Yorkshire.
Please note that “Bonnie” and “Junior” models are now out of production.
PHILCO Reconditioned 5-VALVE RECEIVERS

Long and Medium wavebands. A.C. or A.C./D.C. 200-500 v. Mains energised speaker. In walnut cabinet (slightly soiled), size 19 x 15 x 10in. Every set has been overhauled at our works.

N.B.—There is a shortage of Utility Sets but we have been fortunate in replacing them with the above excellent 2-waveband receivers.

PHILIPS 5-VALVE COMMUNICATIONS RECEIVER

£16.10.0

WALKIE-TALKIE (Transmitter and Receiver) Type 38 Mk. 11. In perfect working order. Complete with four ARP12, one ATR4 valves, one pair throat mikes, pair headphones and aerial. In metal case. Free £3.8.6

CHARGING BOARDS. Central Panels Only. 34 v. 7,500 watts. Includes five 1hm. moving coil ammeters (1, 0-40 a., 4, 0-15 a.). One moving coil voltmeter 0-60 v. Five heavy duty sliding resistances, etc., complete in Metal Case as shown with fold-back doors. Size 18 x 11 x 8in. Offered at less than half the component value. Price £4.19.6

PHILCO BP.413 DRY BATTERY OPERATED 4-VALVE RECEIVER

4in. P.M. speaker complete with one pair headphones and aerial. In wood cabinet with water-proof cover. Range 3.4 to 4 in.2/3. Size 10h x 7f x 6in. Working instruction card supplied. Brand new. £5.2.6

THE FAMOUS EDDYSTONE 350 COMMUNICATIONS RECEIVER

Great Reduction in Price

Range 31 Mc/s to 90 kc/s, 9 Plug-in coils, 7 valves and rectifier, variable selectivity, B.P.O. stand-by switch, A.V.C. switch, bandspread dial, valve check meter. In heavy black cradle finished steel cabinet with chrome fittings. Complete with 200-550 v. A.C. Power Supply Unit. Carriage and packing 17/6 extra £20

TELEPHONE LINE OR UNI-SELECTOR SWITCHES

4-bank, full-wipers 37/6
6-bank half-wipers 37/6
3-bank half-wipers 19/6

BRAND NEW ACCUMULATORS. Complete in strong case. British made. 6 v. Size 12 x 9 x 7in. Weight 20 oz. Brand new. Carriage and Packing 5/-.

NEW EXIDE ACCUMULATORS. 2-volt in black bakelite case. 16-20 amp. Size 6in. x 1 1hm. square. Weight 20 oz. Brand new. Carriage and Packing 5/-.

TWIN SLIDING RESISTANCES, 120 ohms., 2 amp. £2.12.6

EX-ADMIRALTY DOUBLE TWIN SLIDING AND TAP-PED RESISTANCES, 0.3 amp. £2.12.6

NEW INDUCTIVE POTENIOMETERS 42/6.

VOLTMMETERS. Centre zero reading 0-5 and 0-90 D.C. 17/6.

NEW NIFE ACCUMULATORS 2.5 v. 2½ amp. hours for 8 hours. Size 3 x 4 1/2 x 1hm. £1.9.6

PHOTO ELECTRIC CELLS, Type CV143

3-terminal type made by Everedge & Vineales, Ltd. Two ranges: Inner scale 0-1,000; outer scale 1,000-2,000,000 ohms and infinity. Green bakelite case, size ¾ x 4 x 2½ins deep COMPLETE with test prods. In solid leather carrying case. Price, less battery £6.10.0

EX-U.S. NAVY TRANSMITTER AND RECEIVER STATION TYPE T.C.S. 12

Manufactured by Collins Radio Coy. Output 25 watts telegraph, or 10 watts telephone. Frequency range 1,500 kc. to 12,000 kc. Complete with Power Packs for 12-24 volts D.C. or 100-250 A.C. mains. Aerials and complete range of spare parts, including meters, valves, Generators, Resistances, Condensers, etc., etc. This equipment is brand new, packed in original cases and ready for shipping abroad. Can be seen at our address.

LONDON CENTRAL RADIO STORES, 23 LISLE ST. (GERrard 2969) LONDON, W.C.2

Closed Thursday 1 p.m. Open all day Saturday and weekdays 9 a.m.—6 p.m.
There is only one Portable Pattern Generator
that will give you the B.B.C. wave-form on all channels
between 40-70 Mc/s out of viewing hours . . .

There is only one Portable Pattern Generator
which enables a T.V. receiver to be installed or serviced
with complete confidence that no further adjustment
will be needed . . .

There is only one Portable Pattern Generator
which will enable every minute of a service engineer's
time to be used profitably . . .

Find out more about the
MURPHY T.P.G.11

before you buy any other make—remember that it is not
first cost that matters, but time saved on servicing and
installation work over a period of years.

For further details and appointments for demonstrations; telephone TUDor 5877

F. LIVINGSTON HOGG
Specialists in high-grade instruments for the communications industry
65, BARNSBURY STREET, LONDON, N.1

BUILDING THE
"WILLIAMSON"?
if so, we have in stock all the specified
components to make this superlative
amplifier

Partridge Mains Output Transformers
Partridge Chokes
T.C.C. Condensers
High Stability Resistors, 1% & 5%
Precision Condensers, 1%, 2% & 5%
Matched valves
in fact "the works"

DETAILED PRICE LIST OF ALL COMPONENTS
AVAILABLE ON REQUEST

TELE-RADIO (1943) LTD.
177, EDGWARE ROAD, LONDON, W.2

Phone : PAD. 5606
PAD. 6116
Shop Hours:
Mon.-Sat. 9 a.m.-6 p.m.
Thursday 9 a.m.-1 p.m.

AS ONE MAN
SAID TO ANOTHER

Dear Sirs,
A short time ago a friend
of mine in Massachusetts
purchased one of your trans-
formers. His enthusiasm
knew no bounds so I am
sending you an International
Money Order on this date
for these transformers. I might add that I am look-
ing forward to doing business with you
sincerely yours

Savage
Transformers, Ltd.
Nurston Road, Devizes, Wilt.
BREAKDOWNS can occur. Components can fail. No TV set that has ever been made has been completely immune from trouble. Anything can happen once, but what is of importance is what is liable to happen most often.

Years ago we foresaw that the part of a television set most prone to trouble would be the "receiver" proper—i.e., the RF amplifiers, the frequency changer (which provide separate IF frequencies for sound and vision), the oscillator, the vision and sound IF amplifiers and the vision and sound detectors—because part of the circuitry was required to work in the VHF band. So we arranged to have three chassis in even our earliest post-war TV sets—the "receiver" chassis, the time base chassis and the power pack chassis. In this way faults could easily be dealt with by our Dealers' service men.

Careful statistics of faults that we have kept show that approximately two-thirds of the total faults did, in fact, occur in the "receiver" part of the set.

In our latest models we have combined the time base and the power pack, but the "receiver" chassis (or IF plate as we now term it) is still separate. It is in the form of a plate fitted to the main chassis by only two screws and is connected into the circuit by three plugs. No soldering iron is required to remove the IF plate.

Plug and socket connections cost money. They are more expensive than soldered connections, but we think the extra expense is justified.

We have never attempted to produce the cheapest television set, but rather to produce good television sets at moderate prices, ones which, in fact, are just about the best value for the money on the market to-day.

ULTRA ELECTRIC LIMITED
WESTERN AVENUE • ACTON • W.3.

ORCHESTRAL MUSIC
JOHN'S WEDDING
VARIETY
MARY'S 21st PARTY

BUILD UP A SOUND LIBRARY FOR PLAY-BACK WHENEVER YOU WISH

The Soundmirror is an amazing instrument on which you produce your own recorded entertainment. Favourite music or radio items, important events in your family's history—all these can be built up into a library for play-back whenever you wish—treasured sound memories; and unique entertainment for the future.

The Soundmirror has many other applications—it is in daily use in the professions; in teaching and for religious and political activities. Call on your local radio dealer and hear your own voice recorded or write for literature or a demonstration by appointment to the manufacturers.

Manufactured under agreement with the Brush Development Co. of the U.S.A. Licensed under the Brush Development Co., the Brush Crystal Co., Magnetone Inc., and Thermionic Products Ltd. Patent No. 454549 and others: and patents pending in all the principal countries of the world.

THE Soundmirror
MAGNETIC TAPE RECORDER

THERMIoNIC PRODUCTS LTD., Division SM-WW, HYTHE, SOUTHAMPTON.

Price from £69.10.0 exclusive of microphone

Sales and Service Centres: MANCHESTER, BIRMINGHAM, BRISTOL, LEEDS, GLASGOW, etc.

Telephone: Hythe 3265.
D. C. OSCILLOSCOPES

Model 1200 B
Tube dia. 2.3/4"
Frequency Response
. D.C.-100 Kc/s
Deflection Sensitivity
. 7 mV/mm.
Time Base 5c/s . . . 20 Kc/s
in 5 ranges

Model 2000
Tube dia. 6"
Frequency Response
. D.C.-100 Kc/s
Deflection Sensitivity
. 1 mV/mm.
Time Base 30 secs. 100 Kc/s

Write for specifications to
INDUSTRIAL ELECTRONICS
Makers of
Industrial Controls and Precision Instruments
99, GRAYS INN RD., LONDON, W.C.1

Telephone: Holborn 9873/4

VARIABLE—BUT DEPENDABLE

The value of the EGEN midget pre-set variable resistor to the television and electronics designer has been enhanced by a new double slider operating on the radius of the element, giving greater stability and making accurate adjustment easier. This reliable, precision engineered component can also be supplied mounted in a series of one, two or three on a common panel which can be suitably engraved. Available in any value from 10 ohms. to 25,000 ohms.

- Size 2" x 1/16" x 1/8"
- Worm drive for smooth action
- Ratchet action prevents over-winding
- Silver-plated solder tags

EGEN ELECTRIC LTD.
Charlton Industrial Estate, Canvey Island,
Essex. Phone Canvey 60
STILL BETTER

T.V. RECEPTION

WHEN the new "Antex" was introduced it set a new and higher standard in T.V. Aerial performance. Now the NEW "Antex" comes to provide even better television reception. Its greatly improved construction, which includes 3" diam. rods, ensures long service free of trouble.

- HIGH GAIN
- LESS INTERFERENCE
- WIDE RANGE
- EASY TO INSTALL
- RIGIDITY WITH LIGHT WEIGHT.

FOUR MODELS to meet every mounting requirement

POLE MOUNTING

Model X2P/R £2.50
5 FT. MAST MOUNTING with mast and wall mounting bracket.

Model X2W/R £3.30
with mast and chimney lashing bracket.

Model X2L/R £3.15
10 FT. MAST MOUNTING complete with 1½" Aluminium alloy mast and chimney lashing equipment.

Model X2M/R £5.00

* For Channel served odd figure as follows:
1 for London, 2 for Birmingham, 3 for Holme Moss, i.e. X2P/4 is the Pole Mounting type for Birmingham.

Full details in leaflet E/50/W sent on request.

Antiference Aerials carry a free 12 months’ insurance cover of £250 against lightning damage.

ANTIFERENCE

LIMITED

67 DRYANSTON STREET · LONDON · W.1

THE NEW "ANTEX"

12½ mA

Subminiature Output Pentode

The XFY21 is a subminiature output pentode with a filament current of only 12½ mA.

It is a robust, reliable valve suitable for the output stages of hearing aids. The output is sufficient for magnetic as well as crystal receivers.

The XFY21 has other applications in small instruments.

TYPICAL OPERATION

<table>
<thead>
<tr>
<th>Filament Voltage</th>
<th>1.25v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament Current</td>
<td>12½mA</td>
</tr>
<tr>
<td>Anode Voltage</td>
<td>22½v</td>
</tr>
<tr>
<td>Average Anode Current</td>
<td>0.25mA</td>
</tr>
<tr>
<td>Power Output</td>
<td>1.75mW</td>
</tr>
</tbody>
</table>

HIVAC

THE SCIENTIFIC VALVE

BRITISH MADE

GREENHILL CRESCENT, HARROW-ON-THE-HILL, MIDDLESEX

Telephone: HARrow 2655
Used and recommended by the Leading Set Manufacturers for use by their Authorised Service Dealers

The Radar Video & Sync Generator provides a fully synchronised and correctly proportioned television test pattern together with sound to allow any receiver to be checked and adjusted outside of transmission hours, leaving the set in perfect order so that the viewer can switch on, when the programmes are being transmitted, with the certain knowledge that the set will not require any further adjustment—hence the use of this unique instrument by both leading manufacturers and authorised dealers throughout the transmission areas. Enquire to-day for details of models for London, Midland or Northern frequencies.

ENSURE A FULL 8-HOUR SERVICING DAY with the Radar video & sync generator

Telescopic Mountings offer the most convenient means of obtaining complete accessibility of rack mounted equipment as each chassis can be withdrawn completely clear of its framework for easy examination.

WRITE FOR ILLUSTRATED CATALOGUE

Technical & Sales Agent
C. H. DAVIS
59 Brompton Road, LONDON, S.W.3
Phone KENSINGTON 4201

PUBLISHED BY
RADIO, RADAR & TELEVISION
5th Orielton Rd, New Southgate, London N.11

ESTABLISHED 1890

MANUFACTURERS

HALLAM, SLEIGH & CHESTON LTD
WIDNEY WROTH, BIRMINGHAM 6
Wharfedale

W.10/C.S. 10”

LOUDSPEAKER

The W.10/C.S. is a recent model which has been warmly received by quality enthusiasts. The response is remarkably level between 30 and 8,000 cycles (continuing to 18,000) when adequately baffled and the tone is brilliant without harshness. The cloth suspension gives refined quality but reduces the power-handling capacity to 5 watts on Baffle or 8 watts in acoustic chamber.

The W.10/C.S.B. is recommended where improved H.F. output is required, or as treble unit with crossover network.

Flux density 14,000 lines.

1” centre pole. Speech Coil 2/3 ohms or 12/15 ohms. Diameter 10”.

PRICE 150/-
SENSITIVE PANEL MOUNTING METERS

For particulars of these and our full range of measuring instruments write to:

BRITISH PHYSICAL LABORATORIES

HOUSEBOAT WORKS · RADLETT · HERTS · Telephone: RADlett 5674-5-6

All sizes available with MIRROR SCALE

1st Grade Accuracy

Size

<table>
<thead>
<tr>
<th>Range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>25μA</td>
<td>to 50μA</td>
</tr>
<tr>
<td>10μA</td>
<td>to 50μA</td>
</tr>
<tr>
<td>1μA</td>
<td>to 200μA</td>
</tr>
</tbody>
</table>

(Export prices on application)

All sizes available with MIRROR SCALE

1ST Grade Accuracy

SENSITIVE PANEL MOUNTING METERS

For particulars of these and our full range of measuring instruments write to:

BRITISH PHYSICAL LABORATORIES

HOUSEBOAT WORKS · RADLETT · HERTS · Telephone: RADlett 5674-5-6

All these high-quality features . . . yet it retails at only £5’10!

- Non-hygroscopic diaphragm
- Former-less speech-coil
- Good transient response
- Smooth response curve
- High amplifier gain without feedback
- Stable operation
- Great sensitivity
- High output voltage

Type M.C.R. Moving Coil

GRAMPIAN MICROPHONE

Get full details without delay from:

GRAMPIAN REPRODUCERS LTD

9, HANWORTH TRADING ESTATE, FELTHAM, MIDDX.

Phone: Feltham 2632 · Grams: Rumps, Feltham

Only with CO-AX R.F. CABLES

AIR-SPACED ARTICULATED

The LOWEST EVER CAPACITANCE OR ATTENUATION IMMEDIATE DELIVERIES

TRANSRADIO LTD

CONTRACTORS TO HM GOVERNMENT

1380 CROMWELL ROAD, LONDON SW7, ENGLAND

LOW VOLTAGE, HIGH POWER FLEXIBLE

SPECIALISTS IN AIR-SPACED ARTICULATED CABLES SINCE 1923

LOW VOLTAGE, HIGH POWER FLEXIBLE

SPECIALISTS IN AIR-SPACED ARTICULATED CABLES SINCE 1923

GRAMPIAN REPRODUCERS LTD

9, HANWORTH TRADING ESTATE, FELTHAM, MIDDX.

Phone: Feltham 2632 · Grams: Rumps, Feltham

The high flux nickel aluminium magnet and diaphragm assembly is housed in a spring suspended die cast case. Microphone input transformers and three types of stands, folding, table top and heavy-base, to suit this microphone, are also available.

Type M.C.R. Moving Coil

GRAMPIAN MICROPHONE

Get full details without delay from:

GRAMPIAN REPRODUCERS LTD

9, HANWORTH TRADING ESTATE, FELTHAM, MIDDX.

Phone: Feltham 2632 · Grams: Rumps, Feltham
—because we have recently completed demonstrations in the areas shown above, and proved to dealers and others that the Model 63A Folded Dipole gives an extraordinarily good picture in districts previously regarded as “black” areas.

The Model 53A has both gain AND broad bandwidth and is the foremost correctly matched high gain Television aerial today. Model 63A with 10ft Dural Mast, £10/10/- retail (extra for 16ft. mast £1/8/-).

Aerialite Limited are the actual manufacturers of all Aerial Equipment for Radio and Television, and we make a full range of Co-axial and Air-spaced Feeder Cables in our Laboratory controlled factories. Lists supplied on request.

Aerialite LTD.

CASTLE WORKS, STALYBRIDGE, CHESHIRE.
Connoisseur Products

TWO SPEED-MOTOR. At the turn of a switch you have two speeds, 33 1/3 or 78 r.p.m. The Turntable is a full 12" diameter: its main spindle precision ground and lapped, runs in phosphor bronze bearings. The synchronous motor is virtually vibrationless and is suitable for playing standard, transcription and microgroove recordings.

Retail price without pickup £13 15 0
Purchase Tax £5 19 2

SUPER LIGHTWEIGHT PICKUP for standard and microgroove recordings. The interchangeable heads are fitted with an easily replaceable armature system complete with a semi-permanent sapphire. Armature mass 20 milligrams. Extremely low mass at needle point (4/5 m.g. only) allowing for reduction in downward pressure to 10/12 grams for standard recordings, and 5/7 grams for microgroove recordings.

Prices: With one Head - £4 0 0, plus £1 14 8 Purchase Tax
Extra Heads, each - £2 10 0, plus £1 1 8 Purchase Tax
Spare armature System with Sapphire, 14/8 including Tax.

THE CONNOISSEUR Varigroove Recording Unit. 33 1/3 and 78 r.p.m. 100 to 300 GROOVES PER INCH continuously variable. MOVING COIL CUTTER HEAD of entirely new design. Patented method of suspension allowing use of large magnet system, producing sensitivity and response hitherto unobtainable. All patterning effects eliminated, allowing microgroove recordings to be made with ease.

15 ohms impedance. Frequency response 30 - 15,000 c.p.s. LESS THAN 5 WATTS required to fully modulate.

Price £130 0 0

ALSO HIGH FIDELITY AMPLIFYING EQUIPMENT

A.R. SUCDEN AND CO. (ENGINEERS) LTD., BRIGHOUSE, YORKSHIRE.

ALL the A.C. power you require from your D.C. supply with a Valradio D.C./A.C. CONVERTER

Models for Electric Gramophones from £8 0s. 0d. plus 10%

Models for Radio-Grams
- Autochange Radio-Grams
- Radios
- Televisions, etc., from £10 15s. 0d. plus 10%

Descriptive literature from the manufacturers:

Valradio Ltd. 87, Fortess Road, London, N.W.5
Telephone: GULiver 5160
Overseas Enquiries to nearest E.M.I. Organisation Depot

VALDWIN

VISUAL NULL INDICATOR for A.C. Bridges
Range 40 c/s to 20 kc/s.
The Sensitivity which is adjustable from zero is higher than that of headphones. It is very robust and will withstand considerable overloads - no acoustic shock. Operates on A.C. mains.

BALDWIN INSTRUMENT CO. LTD.
DARTFORD, KENT Dartford 2989 & 2980
A Diffuser Loudspeaker

This Philips all-metal central Diffusion Loudspeaker is for ceiling mounting or suspension. It is attractively finished in a pleasing shade of cream that will harmonise well with any type of surrounding. Dimensions are 15in. diameter, 8in. deep. The loudspeaker is fitted to Philips type 9813 unit, and has a 100 volt transformer tapped for 1, 3 and 6 watt operation.

A 100 Watt Amplifier

The outstanding features of this Philips Amplifier include: a high degree of voltage amplification; an output of 100 watts; and very little waste heat, giving cool running and long life. The output is well maintained even at extremes of the audio spectrum, and generous negative feedback taken over the output transformer provides excellent loudspeaker damping.

Send for literature covering the full Philips range of S.R.E.

PHILIPS ELECTRICAL
LIMITED
AMPLIFIER DEPARTMENT, CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C.2.

YOUR EQUIPMENT CAN HAVE THE PROFESSIONAL LOOK

BY USING WODEN POTTED COMPONENTS

Woden Potted Transformers and Chokes ensure a clean layout with uniform smart appearance. They are used by many leading Radio and Television Manufacturers and this is sufficient testimony to the high standard of efficiency which characterise these components. Available for "Wireless World," Williamson Amplifier, "Electronic Engineering," Home Built Televisor and other popular circuits.

THE EQUIPMENT SHOWN IS THE TOP BAND CABINET TRANSMITTER AS DESCRIBED IN THE "SHORT WAVE MAGAZINE."

SEND FOR ILLUSTRATED LITERATURE AND PRICE LISTS OF OUR COMPLETE RANGE

MOXLEY ROAD BILSTON STAFFS
PHONE: BILSTON 41959

A 687 A
FOR THE DISCRIMINATING PA MAN

PORTABLE BATTERY MAINS AMPLIFIER BM40

An attractive appearance and unique construction combined with first-rate performance give this instrument a hallmark of distinction. Peak power 40 watts, 30 watts undistorted. Designed for both A.C. Mains and 12-volt battery operation. Provision for independent electronic mixing of two microphones and one gramophone channel. Built-in vibrator. Special tone control circuit, with independent bass boost and cut, and treble boost and cut. These and many other features make the BM40 the most up-to-date amplifier available. List price £45.

MOBILE CAMPAIGN OUTFIT MAIS

An ideal equipment for mobile applications, giving crisp, clear messages. The outfit comprises: 15 watt amplifier for either 6 volts or 12 volts operation; hand microphone type M.C.B., and co-axial weatherproof loudspeaker. A gramophone input and battery-saver switch are incorporated. List price £42.

30 WATT PORTABLE AMPLIFIER PA30/B

A 30 watt amplifier for public address men. Inputs for moving coil or ribbon microphones and gramophone. Tone control. Illuminated panel and output signal level indicator. Outputs: 7.5, 15 ohms and 100 volt line. Operates from 200/250 volts A.C. mains, or 12-volt battery when used with battery adaptor unit type LT30. An ideal equipment for P.A. vans, general installations and outdoor requirements. Supplied in a handsome portable case. List price: PA30/B Amplifier, £35. LT30 Battery Adaptor, £12 10s.
Managing Editor: HUGH S. POCOCK, M.I.E.E.
Editor: H. F. SMITH

ANNUAL SUBSCRIPTION: Home and Overseas, £1 7s. Od., U.S.A. $4.50, Canada $4.00

BRANCH OFFICES:
Birmingham: King Edward House, New Street, 2.
Coventry: 8-10 Corporation Street.
Glasgow: 268 Renfield Street, C.2.
Manchester: 260, Deansgate, 3.

EDITORIAL COMMENT
SAFETY PRECAUTIONS. By F. C. Connelly
NERVE COMMUNICATIONS
RIBBON LOUDSPEAKER. By P. L. Taylor
PROFESSIONAL SOUND RECORDING
TEMPORARY VISION AERIAL. By F. D. Bolt
WORLD OF WIRELESS
SOCIES AND CLUBS.
VECTOR DIAGRAMS. By "Cathode Ray"
SHORT-WAVE CONDITIONS. By T. W. Bennington
FLYBACK E.H.T. BOOSTER. By A. H. R. Walker
YOUR LOUDSPEAKER. By Thomas Roddam
UNUSUAL LADDER FILTER. By F. C. G. Davey
SUNDERLAND RADAR
SQUARE WAVE GENERATOR. By O. C. Wells
MANUFACTURERS' PRODUCTS
UNBIASED. By "Free Grid"
LETTERS TO THE EDITOR
RANDOM RADIATIONS. By "Diallist"

CERAMIC SWITCHES
For applications where only the best is good enough. Stators and rotors of "Frequentite" ceramic. All contact members or silver alloy.

Wright and Weaire Limited
138, SLOANE ST. LONDON S.W.1 TEL. SLOANE 22415 FACTORY: SOUTH SHIELDS. CO. DURHAM
The double triode ECC81 has, like the nonode EQ80, been included in the Mullard World Series of television valves primarily with a view to meeting the requirements of the television systems of other countries. Although on the British television waveband the choice between a T.R.F. and a superheterodyne circuit is very much a matter of individual preference, for the very much higher frequencies employed overseas there is no alternative to a superheterodyne circuit.

For the British television band the EF80 pentode is the obvious choice both as an R.F. amplifier and as a frequency changer. For frequencies in the range 100 Mc/s to 300 Mc/s, the performance of triodes in these stages is superior to that of pentodes mainly because of their inherently low noise factor.

The ECC81 is an all-glass double triode on the B9A (Noval) base, and is intended primarily for use as oscillator-mixer or as R.F. amplifier on television sets operating on frequencies between 100 Mc/s and 300 Mc/s.

The provision of two high-quality triodes with separate cathodes in a single envelope ensures maximum circuit economy and flexibility. Normally, two ECC81 valves will be used, one as an R.F. amplifier and the other as frequency changer.

For the amplifier application several alternatives are available. For example, the two triode sections may be used separately for two different frequency bands, or may be strapped together to form a single triode with double the mutual conductance and half the anode resistance. Another arrangement is a two-stage amplifier in which one half of the valve is operated as a grounded-cathode amplifier and the other half as a grounded-grid amplifier. When a balanced circuit is required, the two sections may be arranged in push-pull.

In high-frequency, wide-band receivers, the most important features of the frequency changer are low mixer noise level and high oscillator mutual conductance. The ECC81 fulfils both requirements.
British made Stabilisers of the above types are now available from stock

Their electrical characteristics, dimensions and base connections are identical to the American Counterparts bearing the same type number.

NOTE: Some American Manufacturers code these valves

OA3/VR75
OC3/VR105
OD3/VR150

Type VR75/30
- Minimum starting voltage: 105 volts
- Nominal operating voltage: 75 volts
- Minimum operating current: 5 mA
- Maximum operating current: 40 mA
- List Price: 17/6

Type VR105/30
- Minimum starting voltage: 135 volts
- Nominal operating voltage: 105 volts
- Minimum operating current: 5 mA
- Maximum operating current: 40 mA
- List Price: 17/6

Type VR150/30
- Minimum starting voltage: 185 volts
- Nominal operating voltage: 150 volts
- Minimum operating current: 5 mA
- Maximum operating current: 40 mA
- List Price: 15/-
FOR PUBLIC ADDRESS, RECORDING, AMATEUR RADIO

TYPE MIC 22
This model incorporates the famous Acos "Filtercel" insert giving extreme sensitivity and high fidelity. Response is substantially flat from 40-6,000 c.p.s. The microphone is vibration and shock proof and is not affected by low frequency wind noises. Two alternative mountings are available for the MIC 22 head:

MIC 22-2 is supplied as a complete unit incorporating an attractive desk stand with cable side entry.

MIC 22-1 is for fitting to any British or American type standard floor stand and can also be used as a hand microphone.

PRICE £6. 6s. (Either Model)

TYPE MIC 16
Incorporates the Acos Floating Crystal Sound Cell giving a response substantially flat from 30-10,000 c.p.s. Performance is unaffected by vibration or shock and low frequency wind noise. As in the case of the MIC 22, two alternative mountings are available for the MIC 16 Head:

MIC 16-2 is a complete desk stand unit with side cable entry.

MIC 16-1 is ready for fitting to either British or American type floor stands by means of a knurled ring.

PRICE £12. 12s. (Either Model)

COSMOCORD LIMITED, ENFIELD, MIDDX.
Providing technical information service and advice in relation to our products and the suppression of electrical interference.

A New "Multirod" Kit

For those customers who require an efficient "fringe" aerial for fitting to an existing 2½-inch diameter wooden mast, we have introduced a new "Multirod" kit. This is made up of a 4-element array mast head cap and a special clamp for the support brace. 24 yards of low loss coaxial cable ready connected to a ¾ wave matching transformer is also included in the kit; this feeder is considered to be of sufficient length for all normal installations.

Coaxial cable is supplied on account of its comparatively low transmission losses.

Where it is desired to operate a receiver with a balanced input, the choice between fitting balanced feeder or coaxial cable with a "Balun" (unbalanced to balanced line transformer) must depend upon whether the length of feeder involved makes the difference between the transmission losses greater or less than the 3 db insertion loss of the "Balun."*

In view of the recent change in list numbers of television aerials, this kit will be referred to as L800/1/C (London), L800/4/C (Midland), the first suffix indicating the B.B.C. frequency channel and the second suffix the type of mounting C for cap.

Matching of "Belling-Lee" "Multirod" T.V. Aerial Array

We were recently taken to task by a more than usually technical dealer who explained that he could generally improve the matching, and therefore the signal, by fiddling with the input characteristics of an equipment whose matching, by a more than usually technical dealer who explained that he could generally improve the matching, and therefore the signal, by fiddling with the input characteristics of an equipment whose input characteristics are closely controlled.

Compare the conditions to what happens when a television aerial is set up—it feeds into a feeder of uncertain length terminating in an unknown plug to a receiver which may have balanced or unbalanced input of unknown impedance. Of course any engineer worth his salt can match a "Multirod" to a given receiver in any particular location. All we can hope to do is to supply a factory-made product which will give the best results in the greatest number of installations.

At the time of writing this particular page the preceding one has not appeared in print, but as it deals with one aspect of this all-important matter of obtaining the last ounce from a T.V. aerial we do ask readers to refer back to the last "Belling-Lee" p.g.e, and to write to us if we have not made ourselves clear.

The New Liverpool Factory.

This is now turning out a very considerable number of television aerials. The total number being manufactured by both factories and bought is a constant source of surprise.

Ease of assembly, value for money, technical service, are three of the reasons underlying the undoubted popularity of "Belling-Lee" senior and junior range aerials. Not only this, but reports have proved that satisfactory results are obtained with nearly every installation, the life of the aerials is exceptional when they are regularly maintained and that high winds do not adversely affect the elements.

Those erecting "Belling-Lee" aerials experience the greater satisfaction of knowing that a good aerial is being handled, at a competitive price.

They are produced from high tensile light alloy, fully heat treated, with maximum thought given to stability combined with ease of erection and in the case of the junior range, are supplied with lashings and brackets of light materials, and easy run corner plates.

Deliveries.

Although we are despatching aerials direct from our Liverpool Factory there is insufficient staff to deal with orders or enquiries from customers and which would eventually cause delay in deliveries.

It would therefore be appreciated if no correspondence orders are sent to our Liverpool address.

H.F. Interference with television reception.

We are constantly being asked what should be done about this. In fact it is the most common technical enquiry.

Normally our set lead suppressors are of little use at T.V. frequencies as the interference is radiated on to the main lead, aerial circuit, and/or internal wiring of the receiver.

The interference would "skip" any filters in the mains lead. When the source of trouble is known, suppression can generally be applied provided the owner of the offending appliance agrees, and that the actual source is accessible. Short leads are of paramount importance, every unnecessary half-inch reduces the degree of attenuation.

* "Balun" is a device that couples an unbalanced input to a balanced output.

Did you know? A motor car can seriously interfere with electronic research and television reception.

Fix a "Belling-Lee" suppressor L.1274 or L.630 to the distributor lead, does not affect engine performance and helps an industry
THE FINEST FOR LACQUER DISC RECORDING

The “Emidisc” lacquer recording blank fulfils the requirements of the most exacting standards of Broadcasting Authorities, Film and Professional Recording Studios. It may be used with confidence by the critical professional recording engineer and by the owner of the most modest equipment. Accurate engraving to the limits of the recording equipment is ensured by these essential qualities and characteristics.

- **SUPERIOR UPPER FREQUENCY RESPONSE** Will record up to 20,000 c.p.s. with appropriate recording equipment
- **LOW NOISE LEVEL** — Average figures:
 - -45db. ref. level 1 cm. per sec. velocity.
 - -63db. ref. level 8 cm. per sec. velocity.
(Cut at 75 r.p.m., 0" diameter using sapphire cutter with 16 micron bevel.)
- **ANTI-STATIC** Easy swarf clearance with brush or low power suction systems.
- **LACQUER THICKNESS** Constant over whole recording area.

FREQUENCY SCALE

<table>
<thead>
<tr>
<th>Frequency (c.p.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 c.p.s</td>
</tr>
<tr>
<td>50 c.p.s</td>
</tr>
<tr>
<td>100 c.p.s</td>
</tr>
<tr>
<td>200 c.p.s</td>
</tr>
<tr>
<td>250 c.p.s</td>
</tr>
<tr>
<td>1,000 c.p.s</td>
</tr>
<tr>
<td>5,000 c.p.s</td>
</tr>
<tr>
<td>10,000 c.p.s</td>
</tr>
<tr>
<td>15,000 c.p.s</td>
</tr>
<tr>
<td>20,000 c.p.s</td>
</tr>
</tbody>
</table>

Buchmann & Meyer pattern of a gliding tone, 20 Kilocycles to 25 cycles recorded by E.M.I. Studios Ltd., on an Emidisc blank (Actual photograph).

- **GOOD WEARING QUALITIES**
- **PROCESSING** Mirror-like surface ensures ideal condition for processing (on appropriate sizes of blanks).
- **PACKED IN HERMETICALLY SEALED METAL CONTAINERS** Ensures good shelf life and protection. 10" sizes and upwards have individual air separation of blanks.

Types and Sizes Available for all purposes

- **GREEN LABEL** “Standard” selected direct recording blank—6", 8", 10", 12" and 16" sizes.
- **YELLOW LABEL** “General Purpose” direct recording blank—10", 12" and 16" sizes.
- **PLAIN LABEL** “Audition” direct recording blank for experimental and general testing work—10" and 12" sizes.
- **SILVER LABEL** “Process”. The blank for processing—11", 12", 13" and 17" sizes.

Manufactured in Great Britain under exclusive licence from PYRAL S.A.R.L. France.

WRITE FOR FULL PARTICULARS TO:

E.M.I. SALES & SERVICE LTD
HEAD OFFICE: HAYES, MIDDLESEX, ENGLAND
Mk. VII

The Stereophonic Amplifier Mk. VII, according to users, gives the highest quality of any reproducer so far produced. This high quality is to be expected when the particular points of the design are considered.

The large reduction of intermodulation distortion and Dopler effect is achieved by completely separate amplifier channels for the high and low frequencies, terminating in separate speakers. The latter may be separated by any convenient distance to prevent pressure wave modulation and it is unnecessary to restrict the bass to prevent marring treble response.

In each case the speaker is damped by a minimum of 12 times at audible frequencies to prevent speaker resonance, and the crossover is very fast, approximately 28 db for the first octave. A control is provided to vary the power applied to the treble speaker, to compensate for its efficiency compared with the bass speaker, and a frequency record reveals the absence of dip or rise in output at crossover frequencies.

The treble control gives 20 db lift or 14 db cut from 3,000 cycles and compensates for long-playing records and various American and English recording characteristics.

The small improvements in the latest model amplifier result in reproduction which is extremely good and capable of pleasing all tastes.

Chassis complete with valves

Price 36½ gns

Manufactured by

VORTEXION LIMITED, 257-263 THE BROADWAY, WIMBLEDON, LONDON S.W. 19
Telephones: LIBerty 2814 and 6242-3
Telegrams: "Vortexion, Wimble, London."
12" CONCENTRIC DUPLEX
HIGH FIDELITY REPRODUCER
—now available in magnificent console cabinet

Shown for the first time at the recent Radio Show, the 12" Concentric Duplex in this handsome console cabinet, aroused great admiration. Even the experts applauded its remarkable performance. Vented and felt-lined to prevent cabinet resonances, it is designed to give the finest possible result from the high fidelity reproducer. Measuring 33" x 24" x 15", the cabinet is finished in highly polished walnut veneer.

PRICES:
- Console cabinet complete with 12" Concentric Duplex £31.10.0
- 12" Concentric Duplex with cross-over network and transformer, £15.15.0. Without transformer, £14.14.0.
- 10" Concentric Duplex with matching transformer and filter condenser, £7.7.0. Without transformer, £6.6.0.

Leaflet upon request.

A GREAT NAME
rests on public trust

The name Marconi is a household word all over the inhabited world. It has come to mean in people’s minds all that is most modern in wireless and communications. In fact, wherever the English language is spoken, the words Marconi and wireless are interchangeable. The Marconi Company is justifiably proud of the universal confidence its name inspires.

Marconi
the FIRST and GREATEST name in Wireless
The WESTON S.75 Multi-Range Test Set

53 Ranges with Rotary Switch Selection

This uniquely comprehensive Test Set has 53 ranges for measuring A.C. and D.C. current and voltage, resistance and insulation. It is completely self-contained, with internal batteries to provide power for the ohms ranges and self-contained power pack for insulation measurement at 500v. Selection is carried out by two 20-position switches. A fully-protective safety device is fitted and is operative for forward or reverse overload. The 150-division 6in. scale is uniformly divided and is fitted with an anti-parallax mirror. The set is enclosed in a handsome bakelite case and fully complies with B.S.S. No. 89, covering first-grade instruments. Full details of the ranges covered, and of the complete specification, will gladly be supplied on request.

SANGAMO WESTON LIMITED
ENFIELD, MIDDLESEX

TELEPHONE: ENFIELD 3434 (6 LINES) AND 1242 (4 LINES)
TELEGRAMS: SANWEST, ENFIELD

BRANCHES
Glasgow, Newcastle-on-Tyne, Leeds, Manchester,
Wolverhampton, Bristol, Southampton, Liverpool,
Nottingham & Brighton.
0.18% DISTORTION INCLUDING REMOTE TONE CONTROL STAGE AT 12 WTS.
AN EXCLUSIVE PERFORMANCE CERTIFIED BY THE NATIONAL PHYSICAL LABORATORY.

Price: £30-0-0 complete
Works: WEST ST., FARNHAM, SURREY
FARNHAM 6461-2-3

MODERN PRACTICAL RADIO
AND TELEVISION
This work covers every phase of Radio and Television Engineering from many viewpoints and meets a great demand. The author, C. A. Quarrington, A.M.Brit., I.R.E., with a long and wide experience of Radio Engineering, has been responsible for training a large proportion of the Radio and Television Service Engineers in this country, and is also well known as a lecturer on Radio and Cathode-ray subjects to Universities, Radio Societies, Trade Associations and other interested bodies throughout the country.

It is impossible to detail even briefly in this small space the exhaustive ground covered by this comprehensive work, but the pamphlet we can send you will show you that these few remarks are no exaggeration.

THE ILLUSTRATIONS
"Modern Practical Radio and Television" is profusely illustrated. It contains 18 full-page plates, over 400 diagrams in the text and 7 large folding insets. Each illustration has been specially selected for its practical utility.

SEND FOR FREE PARTICULARS
To THE CAXTON PUBLISHING CO. LTD., 42, Morley Hall, St. George St., Hanover Sq., London, W.1.
Please send me, free of charge, particulars of "Modern Practical Radio and Television."

Name: ... (Send this form in unsealed envelope) (ld. stamp)
Address: ...
R.T.A. ...
NEW RC/PA/U
REMOTE CONTROL PRE-AMPLIFIER

£8.15.0
For use only with LEAK "POINT ONE" AMPLIFIERS

A Leak two-stage feedback tone-control pre-amplifier of negligibly low distortion in which resonant circuits or resonant filters are not used. This pre-amplifier is a complete re-design, electronically, of the original RC/PA and of the modified versions supplied to the U.S. market during the past year. The RC/PA/U will meet world conditions of use, and it embodies not only the best features of the previous models but every refinement suggested by users in Britain and the U.S., with additions considered desirable by ourselves.

Input Control. A five-position switch selects:
1. Microphone (or other source). Response, level. Sensitivity, 3mV. r.m.s. Input resistance, 200,000Ω.
2. L.P. Records, with built-in equalisation for new Decca and Columbia (U.S.) records. Sensitivity, 15mV. r.m.s. Input resistance, 100,000Ω.
3. 78 r.p.m. Records, with built-in equalisation for British characteristics.
4. 78 r.p.m. Records, with built-in equalisation for American characteristics.
5. Radio (or other source). Response, level. Sensitivity, 50mV r.m.s. Input resistance, 100,000Ω.

Treble Control. A seven-position switch allows the choice of accurately determined boosts and losses on all inputs.
Bass Control. A seven-position switch allows the choice of accurately determined boosts and losses on all inputs.
Volume Control with A.C. ON-OFF switch to permit switching of the remotely placed power amplifier.
Panel Light as a visual reminder.

Total Harmonic Distortion: 0.02%, approx.
The sensitivities relate to 10 watts output at 1,000 c/s, with the tone-controls level, when coupled to the TL/12 power amplifier which provides the heater and anode supplies.

These amplifiers are those used by H. J. LEAK when giving the most recent of his demonstrations between a reproduced orchestra and (two minutes later) the live orchestra in the lecture theatre. The amplifiers can be used for disk recording with the assurance that total amplifier distortion will certainly be no greater than that obtaining in the major studies of the world.

** FOR YOUR LIBRARY **

A new booklet by H. J. Leak, M.Brit.I.R.E., describing the above amplifiers and containing much information of technical value to those interested in recording and reproduction in the professional and amateur fields.

FREE ON REQUEST FROM YOUR DEALER OR FROM US BOOKLET W/U

H. J. LEAK & CO., LTD. (Est. 1934)
BRUNEL ROAD, WESTWAY FACTORY ESTATE, ACTON, W.3

TL/12 12 watt Triple Loop Feedback Amplifier
£25.15.0
THE M.O.S. 'AI' AMPLIFIER KIT

A specially designed radio feeder for use with amplifier kit.

- Complete with all components, including valves, pre-drilled chassis and instruction manual.
- £4.2/6

INSTRUCTION MANUAL, if purchased separately: 3/6
HIGH QUALITY 10in. Speaker: £3.9/6

RADIO FEEDER
A specially designed radio feeder for use with the above amplifier kit available shortly. Write for details.

GUARANTEED SPEAKERS
- 2jin. P.M., less transformer: £1.7/6
- 3in. P.M., less transformer: £2.10/6
- 6in. M.E., less transformer: £4.15/6
- 8in. M.E., less transformer: £6.6/6
- 10in. P.M., less transformer: £8.15/6
- 12in. P.M., less transformer: £10.6/6

For RELIABILITY plus EFFICIENCY you must have a BURGOYNE AERIAL CONNECTOR
This is the ONE and ONLY unit available which enables a really efficient and reliable weatherproof connection to be made between dipole anu feeder.

Why continue to worry about your dipole? Come gate or hall, rain in drops or by the bucket, this connector will never let you down.

BRAND NEW IN ORIGINAL CARTONS
MOTOR ALTERNATORS
A super Admiralty equipment in grey steel cabinet. With a D.C. input of 24 v., a fully-regulated output of 239 v. 50 c/s. A.C. is obtained. The equipment incorporates a starter switch, and the output is metered by means of an A.C. Voltmeter. A control switch and fuses in the fuse box, this connector will never let you down.

The equipment incorporates a starter switch, and the output is metered by means of an A.C. Voltmeter. A control switch and fuses in the fuse box, this connector will never let you down.

R.1355 I.F. TRANSFORMER
- Replacement for 7 Mcs: 4 for £1.5/6
- I.F. Units for the 'Amour': Post Free
- R1355: Post Free

ADMINISTRATION RATES
- 1204B. A fully-suitable and smoothed power pack for use on 230 v. A.C. with a 170 m/s output. Weight 60 lbs, less valves.
- Only £2.15s.

FULL VISION DIAL ASSEMBLY
A brand new full vision dial with 3 wavebands (L.M.S.). Positive in action and non-slip. The dial is arranged for back illumination, printed in three colours on a breakable Perspex. A clever arrangement of the nylon cord drive makes this a truly non-slip action. Boxed with assembly instructions and all necessary components. Latest Copenhagen Plan Engravings.

TRADE & WHOLESALE TERMS AVAILABLE on APPLICATION

5/- SPECIAL METER OFFER 5/-
Those who have already purchased the portable test instrument illustrated have a chance to purchase another instrument to provide spares in case of damage to the main meter. The meters offered are new but arc defective in one way or another, but can be classed as "repairable.

Repairable PTI, Ubiquity 15/- each.
VOLT-ohm-Milliammeter 4.15/-, 4.3/-, 4.5/- D.C. 0-5000 ohms.

The BURGOYNE SOLDER GUN
SAVE TIME on SOLDERING!
Just press the button, count seven, and solder, and the bit will remain at soldering heat until you release the pressure, when it cools off instantly. No waiting to warm up or cool down—no element to burn out—no mica to crack or splinter—no risk of shock. Few tools possess so many advantages as the "Seven Second" Solder Gun—and certainly no engineer can consider himself up to date without one.

TAPE & WIRE RECORDER MOTORS by B.S.R.
A small induction motor specially designed for magnetic tape and wire recorders. Absolutely silent in operation and virtually free from vibration. Minimum stray magnetic field.
For A.C. mains 100–250 volts, 50 cycles
NEW PERMIER MIDGET RADIO KIT

Redesigned and easier than ever to build.
Includes an attractive walnut or cream plastic cabinet 12in. x 9in. x 11in.
The valve line-up is 6K7, 6H7 and beam power output (CV135) in the A.C. model and 6K7, 6H7 and 12A6 in the A.C./D.C. model. Both use metal rectifiers and are for use on 200-250 volt mains. The dial is illuminated and the receiver presents an attractive appearance. Medium and long waveband coverage.

Complete kit of parts with valves, speaker, cabinet and point-to-point diagrams. Please state if A.C. or A.C./D.C. is required.

GRAMOPHONE AMPLIFIER KIT.

and long waveband coverage. Complete kit of parts with the receiver presents an attractive appearance. Medium for use on 200-250 volt mains. The dial is illuminated and the A.C./D.C. model. (CV1110) in the A.C. model and 6K7, 6SH7 and 12A6 in the A.C./D.C. model. Both use metal rectifiers and are for use on 200-250 volt mains.

NEW A.C. ALL-WAVE SUPERHET KIT.

7 values (plus rectifiers) for 200-250 v., 46-50 cycle A.C. mains.
4 Wavebands, 12-60, 81-100, 130-200 and 300-9100 metres.
Pick-up input. Two 6K7, 6H7, 6SH7, 6G7 and 6G6 in push-pull, giving an output of 10 volts.
Specially designed to fit tubes to match QV0 to 2 and 15 ohm speakers.
Negative feedback is applied over 3 stages giving a high fidelity output. Tone control is incorporated. Fullwave rectification is used, except that valve line-up is 6K7, 6H7, 6Q7, 6SH7, 12A6, 6G7 in A.C. model.

In KIT form at £12 1s. 10d.

MAIN NOISE ELIMINATOR KIT.

Two specially designed chokes with three measuring windings with draw diagram. Omit two main tubes. Can be assembled inside existing receiver, full complete.

E.R.T. ELIMINATOR AND TRIPLE CHARGERS KIT.

All parts to construct an eliminator to give an output of 200 volts a.c. 50 m.m. and 3 volts to charge an accumulator. Uses metal rectifier, 85/-.

BATTERY CHARGER KITS.

Suitable for 200-250 v. A.C. 50 Cycles.
Charges 12 volt Accumulator at 1 amp. Resistance supplied to charge 2 V. Accumulator.

METER KIT.

A FERRANTI 500 MICROAMP M/C METER, with separate High Stability, High Accuracy, Resistors to measure, 15, 20 and 250 volts D.C. Scale length 14in., diameter 9in., 10/- complete kit.

TERMS OF BUSINESS

Postage and Packing is free for orders over £2 in value unless otherwise stated. Under this amount, please include 1/- for orders up to 10/- and 1/6 for orders over 10/-. C.O.D. orders cannot be sent under 20/-.

31A GOODMAN, M.C. P.M. LOUDSPEAKER.

Mounted in a cast aluminium case, 84 x 4 x 3in. with grille. 15/6 each. Transformer ratio: 1: 1.15 to 1.000/1.

With 1000/1 w.w. vol. control. 15/- each, plus 1/- carriage and packing.

PERMANENT MAGNET FOCUS POTS.

Available for all Tubes, 5/- each. These supply a specially designed White Rubber Mask for 6L6, G.T. Tubes at 6/- each. White Mask, 10/- each.

SUPER QUALITY TELEVISION MAGNIFYING LENS.

To suit 6L6, 6L6 or G.T. Tubes. Increase picture size considerably, 250/- each.

MOVING COIL LOUDSPEAKERS.

6in. Personal Type (15/6 w.w.) 9in. J.P. G.T., 3in. J.P. B.C., 3in. Travers 10/-; 10in. Real 81/2; 6in. Travers, 12/-; 8in. Faster, 14/-; 8in. Travers 13/6; 10in. Zeus, 22/-; 12in. Travers, 28/-; 8in. Travers, 38/-.

E.H.T. TRANSFORMER.

Output 1,000 v. at 1 ma. with tube 3 x 1.5. 15/6. In power supply this will drive an output of 1,500 v. hardware or 250 v. Fullwave Prite 17/6.

WILLIAMSON AMPLIFIER OUTPUT TRANSFORMERS

To specification, 45/-.

BATTERY CHARGER KITS.

All incorporate Metal Rectifiers. Transformers are suitable for 200-250 v. A.C. 50 Cycles.
Charges 6 volt Accumulator at 1 amp. Resistance supplied to charge 2 V. Accumulator.

TERMS OF BUSINESS

Postage and Packing is free for orders over £2 in value unless otherwise stated. Under this amount, please include 1/- for orders up to 10/- and 1/6 for orders over 10/-. C.O.D. orders cannot be sent under 20/-.

SPECIAL OFFER OF ADMIRALTY REFLEX-RE- ENTRANT P.A. LOUDSPEAKERS.

(see 1932). Matching transformers 6.5-1 and 6.1. Ratios with vol. control at max. Very sensitive and directional. Single unit, 50/-, 5/- each, 12/-, 10/-, packing. 15/6 each.

BATTERY CHARGER KITS.

Suitable for 200-250 v. A.C. 50 Cycles.
Charges 12 volt Accumulator at 1 amp. Resistance supplied to charge 2 V. Accumulator.

WE CAN SUPPLY THE KIT OF PARTS FOR THE LATEST VERSION OF THIS FAMOUS AMPLIFIER COMPLETE IN EVERY DETAIL FOR £6 19s. 6d. WITH VALVES, OUTPUT and MAIN TRANSFORMERS.

SPECIAL OFFER OF ADMIRALTY REFLEX-RE- ENTRANT P.A. LOUDSPEAKERS.

(see 1932). Matching transformers 6.5-1 and 6.1. Ratios with vol. control at max. Very sensitive and directional. Single unit, 50/-, 5/- each, 12/-, 10/-, packing. 15/6 each.

BATTERY CHARGER KITS.

Suitable for 200-250 v. A.C. 50 Cycles.
Charges 12 volt Accumulator at 1 amp. Resistance supplied to charge 2 V. Accumulator.

SPECIAL OFFER OF ADMIRALTY REFLEX-RE- ENTRANT P.A. LOUDSPEAKERS.

(see 1932). Matching transformers 6.5-1 and 6.1. Ratios with vol. control at max. Very sensitive and directional. Single unit, 50/-, 5/- each, 12/-, 10/-, packing. 15/6 each.

MIDGET 2-GA RO CONDENSERS.

1 x 1 x 1 x 1. For personal use only. 2/- each.

NEW 3-BAND MIDGET SUPERHET KIT.

Designed to cover the short, medium and long wavebands (10-35, 100-340, 1,000-2,500 metres) A.C. valve line-up 6K7, 6Q7, CV3130 Beam power output. A.C./D.C. valve line-up is the same excepting output valve is 12A6. Both use metal rectifiers and are for use on 200-250 v. mains.

NEW 3-BAND MIDGET SUPERHET KIT.

Designed to cover the short, medium and long wavebands (10-35, 100-340, 1,000-2,500 metres) A.C. valve line-up 6K7, 6Q7, CV3130 Beam power output. A.C./D.C. valve line-up is the same excepting output valve is 12A6. Both use metal rectifiers and are for use on 200-250 v. mains.

NEW 3-BAND MIDGET SUPERHET KIT.

Designed to cover the short, medium and long wavebands (10-35, 100-340, 1,000-2,500 metres) A.C. valve line-up 6K7, 6Q7, CV3130 Beam power output. A.C./D.C. valve line-up is the same excepting output valve is 12A6. Both use metal rectifiers and are for use on 200-250 v. mains.

NEW 3-BAND MIDGET SUPERHET KIT.

Designed to cover the short, medium and long wavebands (10-35, 100-340, 1,000-2,500 metres) A.C. valve line-up 6K7, 6Q7, CV3130 Beam power output. A.C./D.C. valve line-up is the same excepting output valve is 12A6. Both use metal rectifiers and are for use on 200-250 v. mains.
Amazing Offer of NEW BOXED MILITARY SURPLUS VALVES
Type 7193 UHF Triode, ½ each, 1½/- dozen.
Type E1148 UHF Triode ½ each, 1½/- dozen.
Type 950 Acorn VMH Pen, 2½ each, 20/- doz.
Type CV92 UHF Triode, 4½ each.
Type 1625 12v. 807, 5/- each, 40/- dozen.
Type PT 28H 4 v. 5 watt Pentode, 3½/- each, 24/- dozen.
Type CB22 High Powered Thyatrons, 2½/- ea.
Type CV71 Neon Tubes, 2½ each, 16½/- dozen.
Type 958A Acorn 1½ v. Triode, 3½/- each, 24½-dozen.

ROLA
6 lin. Energised Moving Coil Loudspeakers, 1½/- each, with pentode O.P. Transformer, 1½/- each.

PLESSEY
5½. Permanent Magnet Moving Coil Loudspeakers, with extra heavy magnet and pentode O.P. Transformer, 12½/- each.

METAL RECTIFIERS
Bridge Type with 15 volt input will charge 1½ volt batteries @ 4 amps, 1½/- each.
E.H.T. Pentode Type, output 650 volt @ 1 mA, 4½/- each.
Output 1,000 volt @ 1 mA, 6½/- each.
Outputs given are half wave. Two of either Rectifiers can be used in voltage doubling.

SPECIAL OFFER OF COLLARO ELECTRIC GRAMOPHONE UNITS
The Motor, Tonearm and Crystal Pick up in one unit with automatic start and stop. Induction motor, variable speed. For A.C. only, 100-250 volts, 50 cycles. List price £11/2/6. Limited quantity only at £4½/-, plus 2½/- carriage and packing.

ELECTROSTATIC C.R. TUBES. New and Perfect
CV1385, 5½ each to Callers only.

BLOCK CONDENSERS. Jelly Filled Electrostatic C.R.
Capacity and packing.

NEW PRE-AMPLIFIER FOR FRINGE RECEPTION AREA
We can supply the complete kit of parts to make this wide band width Pre-amplifier using 2-717A Pentodes. For use with Televisions able to supply 130 v. 20 mA, H.T. and 6.3 v., 3 amps. L.T. Completely screened. Includes valves, chassis, diagrams, etc., 2½/- each. Separate Power Supply Unit if required, 2½/-.

CORD DRIVE ACCESSORIES FOR ABOVE
Drum (21 diam.)...
Driving Head...
Double Pointer...
Spring...
Nylon Cord (yard)...
Dial Back Plate...
Dial Back Plate Bracket
6d. pair

ENAMELLED COPPER AERIAL WIRE
On 1,200ft. Reels, 7/23 swg., 25/- per Reel.

POWER PACKS
Input 200-250 v. 50 cycles. Output 330 v. 60 MA. 6.3 v. 2.3 a, and 6.3 v. 3 a for 6 x 5 Rectifier. Mounted on metal chassis approx. 6 x 5 in., fully smoothed. 19½/- each. 6 x 5 Rectifier, 5½/- each.

WAVE CHANGE SWITCHES
3-Bank, each Bank 2-pole, 4-way, one Bank with shorting Bar, 7½/-.

ROTARY TRANSFORMERS
Input 28 volt, output 1,000 volts at 350 mA. Adjust for adjustment, 2½/- each. To callers only.

BALANCED ARMATURE EARPieces
Type DLH No. 151T BARK. Highly sensitive 60 ohms Earpieces. Make excellent Sound Powered Telephones. Without Batteries or Matching, 1½/- each.

ELECTRIC GRAMOPHONE MOTORS by World Famous Makers
200-250 v. A.C. with variable, speed control 2½/- Turntable, Pick-up Arm, Auto Start/Stop. Without P.U. Head, 19½/- each.

HI WIRE AMMETERS
0-10 amps. 5½. Scale, Projecting type Meter Case, 5½/- each.

R.107 RECEIVERS
In partly dismantled condition. A wonderful spaces investment for R.107 owners, 5½/- each. Only available to Callers.

ALL POST ORDERS TO: 740 HIGH RD., TOTTENHAM, LONDON, N.17 Phone: Tottenham 3371
207, Edgeware Rd, W.2. Ambassador 4033.
Edgware Rd. is open until 6 p.m. on Saturdays.
PREMIER RADIO COMPANY
MORRIS & CO. (RADIO) LTD.

PREMIER LONG RANGE* TELEVISION KITS
FOR THE LONDON AND BIRMINGHAM FREQUENCIES

As is usual in all Premier Kits, every single item down to the last bolt and nut is supplied. All chassis are punched and layout diagrams and theoretical circuits are included.

The coils are all wound and every part is tested. All you need to build a complete Television Receiver is a screwdriver, a pair of pliers, a soldering iron and the ability to read a theoretical diagram.

Any of these Kits may be purchased separately; in fact, any single part can be supplied. A complete priced list of all parts will be found in the instruction book.

THE MAGNETIC KIT using 9" or 12" tubes
£19 - 19 - 0 (carriage and packing 15/6). Including all parts, valves and Loudspeaker, but excluding C.R. Tube.

Vision Receiver with valves
£3 16 0 Carr. & pkg. 2/6.

Sound Receiver with valves
£3 1 0 Carr. & pkg. 2/6.

Time Bases with valves
£8 5 6 Carr. & pkg. 5/6.

Power Pack with valves
£4 16 6 Carr. & pkg. 5/6.

THE ELECTROSTATIC KIT
using VCR97 Tube
£17.17.0 incl. Tube (carriage and packing 15/6)

VISION RECEIVER with valves, carriage 2/6.
£3 13 6

SOUND RECEIVER with valves, carriage 2/6.
£2 14 6

TIME BASE with valves, carriage 2/6.
£2 7 6

POWER SUPPLY UNIT with valves, carriage 5/6.
£6 3 0

TUBE ASSEMBLY, carriage and packing 2/6.
£2 18 6

* The following sensitivity figures prove that the Premier Televisor Kits are capable of reception at greater distances than any other standard commercial kit or receiver whether T.R.F. or Superhet.

VISION RECEIVER
Sensitivity 25 µV for 15 V. peak to peak measured at the Anode of the Video Valve.

Sound Rejection Better than 40db.

Adjacent Sound Rejection Midland Model. Better than 50db.

SOUND RECEIVER
Sensitivity 20µV Vision Rejection better than 50db.

WELL-MADE WALNUT
Finished Pedestal Cabinets are available from stock.

For 6in. Tube.... £5 10 0
For 9in. tube.... £6 15 0
For 12in. tube.... £8 8 0

Carriage and packing 7/6.

Fullest details are in our complete Catalogue price 6d.

all postal orders to 740, High Road, Tottenham, N.17. Phone: Tottenham 4723/4/5.

BRANCHES AT:
207, EDGWARE RD., W.2. PHONE: AMBASSADOR 4033.

EDGWARE ROAD IS OPEN UNTIL 6 P.M. ON SATURDAYS.

TERMS OF BUSINESS. CASH WITH ORDER OR C.O.D. OVER £1.
ELPREQ SPECIALS

EQUIP YOUR LABORATORY

You many times have felt the need of a device which would enable you to put resistance or capacity into circuits. We have a small quantity of resistance and capacity boxes which, by the simple manipulation of plugs, will enable you to do this. With these boxes you can put in 1 ohm, 2 ohms, 3 ohms, 4 ohms, and so on, in steps of 1 ohm, right up to 6,000 ohms. In a similar way capacity can be put into circuits by small amounts, thus making it simple for you to find optimum working conditions.

These boxes made for Government Laboratories are available while they last at 19/6 each, plus 1/6 post and packing. Don't delay—order by return.

POWER PACK TYPE 392

This is an extremely useful unit which works off A.C. without modification giving an output of 700 v. D.C. adequately smoothed. Here is a list of the components contained in the power unit: Mains Transformer for 200-250 v. 50 cycle, with secondaries of 700 v. 4 v. at 2.5 amps, 12.5 v. at 1 amp. (Note these are Adminalty ratings, the transformers will stand at least twice these figures). Also two rectifier valves type CV54, 10-watt resistors, three 4 mfd. 100 v. condensers, L.F. choke, 10 henry 100 mA., 2 stydolk fuses. The power pack is unused and is contained in a louvred case size 12in. × 51/2in. × 81/2in. Price 67/6.

“SNIPERSCOPE”

Famous wartime “cats eye” used in conjunction with a lens system and h.t. for seeing in the dark. This is an infra-red image converter cell with a silver caesium screen which lights up (like a cathode ray tube) when the electrons released by the infra-red light are then gauged by a photocell. Here then is a golden opportunity for some interesting experiments price 9/6 each, or six for 54/6. Data will be supplied with calls if requested.

CHARGING SWITCHBOARD

This contains five high-wattage slider type variable resistors, four flush meters reading up to 15 amps each, and one reading up to 40 amps. In addition there is a voltmeter with a selector switch to permit voltage checking of all circuits, two cut-outs, switches, fuses and terminal. The whole being mounted on a panel and enclosed in a metal case with doors and feet. A source of D.C. fed in will be split up to permit battery charging at varying currents. If used with a generator the field of same and hence its voltage output can be controlled by the first slider. Excellent break-down value, as any one of the sliders would cost much more than we ask for the whole unit. Price 77/6, carriage 12/6.

TELEPHONE JACK PLUGS

As illustrated 7d. each, sockets to suit, 10d. each.

METAL RECTIFIERS

Selenium 250 v. 100 ma., 4/3.

S-WAY PORCELAIN CONNECTOR BLOCKS

Hundreds of useful applications, 1/3.

METAL TRIPOD

Termodynamically strong, but not at all heavy. 3ft. high and with brass male and female thread top. Black japanned pressed steel, unused, but will need repainting. 3/6 each, plus 2/6 post and packing.

P.M. SPEAKERS

All speakers are by very famous makers such as Rola, Celestion, Goodmans, etc.

L.F. TRANSFORMERS

465 kc/s, iron dust cored very high “Q” fitted in standard size can, 6/9 per pair. 465 kc/s iron dust cored very high “Q” fitted in midsize size can, 12/6 per pair. 465 kc/s air cored, medium size can, 6/9 per pair.

L.F. CHOICES

Heavy duty types suitable for power packs and mains smoothing. These are mostly Government Surplus.

OUTPUT TRANSFORMERS

Midget pentode matching to 3-5 ohms

Medium pentode matching to 3-5 ohms

Standard size multi-ratio

VOLUME CONTROLS

All have full-length spindle and are complete with fixing nuts. We stock full range of values between 20,000 ohms and 2 megohms. Prices are less switch, 2/- each; single-pole switch 3/- each.
HOUSE TELEPHONES

Suitable for intercommunication between offices, workshops, stores, garages, big houses, kitchens, etc.

Each station consists of normal size Bakelite handsets and desk or wall mounting cabinet with built-in selector switch, buzzer and push. All stations can communicate with one another independently. Each installation is absolutely complete and internally wired. 3-station installation complete with 50 yards 5-core cable £61/10-. 4-station installation, complete with 50 yards 6-core cable, £61/10-. 2-station installation, complete with 25 yards 4-core cable, £3/17/6.

Plug and Socket

This brass cased plug and socket is extremely robust and ideal for P.A. or outside work. Ideal also for taking power to units as it insulates the ends of the wires. Contacta are quite suitable for carrying up to 10 amps, so this can be used for lighting or power. Price 3/6 per pair.

Two Super Speakers

The first is a beautifully made 10in. P.M. speaker, a real precision product made by a very famous firm. It is undoubtedly a 10in. which reproduces with all the quality of a 12in. It has three special features (1) a solid circular frame (2) a special speech coil suspension which gives wide frequency response (3) dustproof cone assembly. Speech coil is normal 2/3 ohms. Price is 16/6/4 plus 2/6 post and insurance. The second is the 8in. P.M. speaker made by the same firm whose name incidentally we are not allowed to mention but you will recognize it immediately.

Break-down Unit

At present day prices the spares in this unit would cost at least £5. Here is a list of the main contents:

- 3 tuning condensers, split-capacitor type.
- 20-watt carbon resistors, useful values.
- 1 tap 20 watt resistor, vitreous coated.
- 6 paper condensers, .05 mf. 1,000 volt working.
- 3 paper condensers, .1 mf. 1,000 volt working.
- 2 H.F. chokes.
- 4 paper condensers, .1 mf. 450 volt working.
- 2 paper condensers, .15 mf.
- 5 bakelite moulded mica condensers 001.
- 1 paper condenser, .01 mf. 3,000 volt working.
- 24 rubber grommets, assorted sizes.
- 6 resistors 1 watt, all useful values.
- 6 resistors 1/2 watt, all useful values.
- 40 resistors 1 watt, all useful values.
- 4 Paper mica condensers assorted values, including: 10, 15, 20, 40, 50, 100, 150, 300, and 500 pf. types.
- 4 English octal valve holders.
- 2 English 5-pin valve holders.
- 1 E.F.50 type valve holder.
- 3 diode valve holders.
- 1 louvreed casing, size 12 x 7 x 4in.
- 1 heavy metal chassis size 12 x 7 x 2in.
- 8 former clips, assorted sizes.
- Also an assortment of nuts, bolts P.K., self-threading screws, tag boards, chassis mounting lug connectors, screened grid caps, plain grid caps, levers, rollers, connecting rods, output sockets, etc., etc. ALL THIS COLLECTION OF PARTS FOR 6/6 only, plus 1/9 postage and packing.

Electric Heaters

Short Turns Coil Tester

You know that it is almost an impossibility to test for continuity at the same time. Here is a list of the main contents:

- 3 two-metre coils.
- 3 tuning condensers, split-capacitor type.
- 20-watt carbon resistors, useful values.
- 1 tap 20 watt resistor, vitreous coated.
- 6 paper condensers, .05 mf. 1,000 volt working.
- 3 paper condensers, .1 mf. 1,000 volt working.
- 2 H.F. chokes.
- 4 paper condensers, .1 mf. 450 volt working.
- 2 paper condensers, .15 mf.
- 5 bakelite moulded mica condensers 001.
- 1 paper condenser, .01 mf. 3,000 volt working.
- 24 rubber grommets, assorted sizes.
- 6 resistors 1 watt, all useful values.
- 6 resistors 1/2 watt, all useful values.
- 40 resistors 1 watt, all useful values.
- 4 Paper mica condensers assorted values, including: 10, 15, 20, 40, 50, 100, 150, 300, and 500 pf. types.
- 4 English octal valve holders.
- 2 English 5-pin valve holders.
- 1 E.F.50 type valve holder.
- 3 diode valve holders.
- 1 louvreed casing, size 12 x 7 x 4in.
- 1 heavy metal chassis size 12 x 7 x 2in.
- 8 former clips, assorted sizes.
- Also an assortment of nuts, bolts P.K., self-threading screws, tag boards, chassis mounting lug connectors, screened grid caps, plain grid caps, levers, rollers, connecting rods, output sockets, etc., etc. ALL THIS COLLECTION OF PARTS FOR 6/6 only, plus 1/9 postage and packing.

Liquidator's Stock

Polished walnut radio cabinet size 20 x 12 x 7in. complete with M.T.8, dial, 750 v. at 1/4in. and backplate with magic eye cutout, also with drilled chassis and hardboard back. You will find it quite a simple matter to complete this into a very handsome receiver of the 7 XE class. Limited quantity. Price 32/6, plus 2/6 carriage for the 5 items.

Main Transformers

Special Transformer

Ordinary—E.H.T.—Special.

All transformers are suitable for 200-250 v. 50 cycle mains, are fitted with primary screen, fully impregnated and complete with all necessary clamps, etc.

- 300-0-300 at 80 mA. 6.3 v. at 4 amps. 5 v. at 3 amps. Half shrouded drop through, 14/6.
- 350-0-350 at 80 mA., 4 v. at 0 amps. 4 v. at 3 amps. drop through or upright mounting, a useful replacement type for old-type receivers, 16/6.
- 350-0-350 at 100 mA. 6.3 v. at 5 amps, 5 v. at 2 amps. Fully shrouded upright mounting, 19/6.
- 260-0-260 at 60 mA. 4 v. at 4 amps. 6 v. at 2 amps. Half shrouded drop through. Price 13/9.

Filament Transformer, 6.3 v. 11-2 amps., upright, 61/2.

- 350-0-350 at 160 mA, 5 v. at 3 amps., 6.3 v. at 6 amps., 6.3 v. at 3 amps. Fully shrouded upright mounting, 36/6.
- 250-0-250 at 100 mA, 5 v. at 3 amps., 6.3 v. at 6 amps., 27/6.
- 350-0-350 at 5 v. at 4 amps., 4 v. at 6 amps., 27/6.
- 350-0-350 at 80 mA. 6.3 v. at 2 amps., 6.3 v. at 4 amps., 4 v. at 6 amps., 6.3 v. at 2 amps. 5 v. at 3 amps., 70/6.

Special MAINS/AUTO TRANSFORMER

- 6.3 v. at 2 amps., 60 v. at 200 mA., 200/220, 250/250.
- 7/6.

Liquidators Delivery

Orders under £2 add 1/6, under £1 add 1/-. Postable items can be sent C.O.D., additional charge approx. 1/-. Good stock o all items at time of going to press. List 6d.
AMPLIFIER ACIII : including rectifier (6SH7, 615, 615, 615, 2 x 6V6, 5Z4).

FACTORIES, and a host of other satisfied
AMPLIFIER ACIII:

measurements from 10 to
contained voltage ranges up to 1,000 v. A.C. and D.C.

7/6 each, 31/6, 4/6 each
7/6 each
32/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
32/350, 3/- ;
24/-32/450, 6/6 ; 60-100/350, 6/.
THE COMMUNICATIONS CORNER

I3 VALVE DOUBLER SUPER

OST100, 13 valve Double Superhet for operation from 1,600 to 10 meters covered in 7 wavebands. This receiver is a double conversion job with communication features: 2 speed slow motion drive: 13: 1 and 156: 1, R.F., I.F. and A.F. gain controls, with a Regeneration control to increase sensitivity. Variable selectivity switch, B.F.O. and phaser, A.V.C. Noise Limiter, Aerial and Oscillator trimming control. 5 3/4 meter and current consumption meter, etc. Valves include 3/615, 2/ECH35, 2/EF39, CV31, 688, 6H6, 6R7, 6Q7 and 6V6. This receiver requires only 240 v, H.T. and 100 MVA C.D. and 6.3 v. L.T. Contained in an enclosed metal frame 24 in. x 15 in. x 13 in.

CLYDESDALE'S PRICE ONLY £7/15/0 CARRIAGE POST PAID

TRAWLER BAND

R113N is the 1 155 model that all operators would love. This superb communications receiver is complete with valves: 3/VK99 (X46-X65), 3/VK100 (KTV62-KTV66), 3/VK105 (MHL50-DH63), VR102 (B623), VR103 (Y63), and fitted with the type 89 3 "E" zann reduction drive. The frequency ranges are in 5 wavebands: 13.75 Mc. (17-40 Mc.), 17.5-30 Mc. (40-100 Mc.), 3.15 Mc. (400-200 Mc.), 3300-4400 Mc. 250-500 Kics. (600-1500 Mc.). AVC Controlled R.F. switch, B.F.O., Filter and combined RF/AF gain control. Power requirements: 200 v, H.T., 160 ma and 6.3 v. L.T. Totally enclosed in a metal cabinet in black, 16 4 x 9 x 9 in.

CLYDESDALE'S PRICE ONLY £14/14/0 CARRIAGE POST PAID

We supply this receiver modified for L.S. use and complete with A.C. Mains power supply, Bl. speaker.

CLYDESDALE'S PRICE ONLY £21/0/0 CARRIAGE POST PAID

RECEIVER TYPE 6A

THIS TRANSIVI checking receiver working on 49/100 metres which includes 3/V9R1 (EF50), 1/68K, 1/V855 (EB2C3) and 1/V653 (EF9) valves. Included in the circuit is a terminal switch breaking at 86 Degrees F. Mounted in a metal case.

CLYDESDALE'S PRICE ONLY 45/- POST PAID

TELEVISION ENTHUSIASTS

VIEWING UNITS

INDICATOR TYPE 6, SERIES M. These units are brand new, in excellent condition, and are all fitted with a VCR97 CRT, the tube which many constructors have put to T.V. use. Valves include 1/VE5 (EF54), 3/VE54 (EB34), plus a group of pentode transformers and H.V. condensers, etc. The complete unit is enclosed in a metal box 18 in x 8 x 7 in.

CLYDESDALE'S PRICE ONLY £3/19/6 POST PAID

Please include 10/- for transit case to ensure safe transit of unit. Refunded on return of case.

12.25 Mc/s. I.F. STRIP

H 38 I.F. STRIP by Pre provides a very compact I.F. sub-chassis for use of SP61 valves (not included)—the chassis is wired for I.F. operation and Input leads are tag terminated at rear end of unit. Coax input and output sockets are mounted on the front panel. Dim. 18 in. x 5 in. x 4 3/4 in.

CLYDESDALE'S PRICE ONLY £3/17/6 POST PAID

VIEWING TUBES

3 in. ELECTROSTATIC 365 (EF779). This Tube is a compact unit excellent for test work or for small portable equipment where only a 1,000 to 2,000 volts is available. Filar supply required 6 v. The base is diphetal. Brand new in maker's cartons and carefully packed before shipment.

CLYDESDALE'S PRICE ONLY 22/6 each POST PAID

6 in. ELECTROSTATIC VCR79 (E331). This tube is a popular one with television constructors and has been universally used. The VCR79 is a short persistence tube employing a 2,000 volt a.c. and 4 v. filament. The base is side contact. All VCR79's are tested and carefully re-packed before delivery.

CLYDESDALE'S PRICE ONLY 35/- each POST PAID

RCA TELEPHONY AND TELEGRAPH TRANSMITTER

ET-4336

THE ET-4336 TRANSMITTER operates with a maximum input of approx. 1 kW of Phone (RT) or CW (Telegraphy) with an aerial output of 350/450 watts with respect to the frequency and antenna system used. The frequency range covers 2-20 Mc/s, with either a plug in crystal controlled oscillator unit or an ECO (VFO) unit, these are interchangeable. Features of the ET-4336 are: Built in power supplies for 110/250 volts A.C. mains, 2/813 valves for PA 2/805 valves for class B modulation.

2/813 PA 2/805 MOD 1/807 OSC 1/807 BUFF 4/866 MV Rectifiers

110/250 volts A.C. Mains Power Supply

1/807 buffer stage 1/807 in each of the Interchangeable osc. units. Separate speech amplifier with self contained 1/802/500 A.C. mains power supply. Valves include 4/637 and 2/6L6—500 ohm match to the TX. All tuned circuits are metered. Safety switches on removable side and rear panels to obviate shock hazards during inspection. The transmitter is supplied complete with both types of oscillator units, valves, speech amplifier, microphone and Morse key. Ready for immediate use on RT or CW. Rigidity crated for shipment. Dimensions : TX. 58 in x 17 in x 24 in. Amplifier, 19 in x 12 in x 6 in.

CLYDESDALE'S PRICE ONLY £120 (Carriage Paid) Gt. Britain.

CONSTRUCTING A SET ?

Walnut Wooden Cabinets. H394 ... £1 5 0
3 W/Band Dial Glasses. H410 ... 1 9
Ivy Control Knobs. H403 ... 9 0
Brown Control Knobs. H404 ... 8 9
Wl/Change Switch 3P 4W 2B. H393 ... 4 6
.00035 Mfd. 2 Gang Cond. H413 ... 5 6
162/4 Mc. 450 V. Wkg. Cond. H401 ... 4 6
8 Mfd. 450 V. Wkg. Cond. H400 ... 2 9
Mounting Clips for H401 ... 3
Mounting Clips for H400 ... 4

Orde direct from—

CLYDESDALE SUPPLY 2 BRIDGE STREET CO. LTD. GLASGOW - C5

Phone : South 27069. Branches in Scotland, England and Northern Ireland.
NEW YEAR OPPORTUNITIES

Every radio and television constructor should take the opportunity of buying goods in 1951 at 1950 prices. When our present stocks are sold, rising costs will mean an increase in selling price, so BUY NOW.

RECEIVER R. 1355 as specified for "Inexpensive Television." Complete with 8 valves VR65 and 1 each SU4G, VU120, VR92, also a copy of "Inexpensive TV."
ONLY 55/- (Carridge, etc., 75/-).
I.F. STRIP 194. Another of the units specified as an alternative for the "Inexpensive TV."
A first-class strip giving tremendous amplification, and well recommended for constructors who have built televisions but have come 'unstuck' in the vision or sound receiver.
Complete with 6 valves VR65, and 1 each VR53 and VR92, and a copy of the book, which gives full details of conversion to both stations. Size 18in. x 5in. x 5in. ONLY 45/- (Postage, etc., 2/-).
Complete with 6 valves EF50 and 1 EASO. ONLY 60/- (Postage, etc., 2/-).
RECEIVER R.1347. This contains the "PYE" Strip, which can be easily removed if desired, and also 15 valves V420, 2 of VR65, and 1 each EA50, EBC33, EF68, also hundreds of resistors, condensers, etc. BRAND NEW IN MAKER'S CASES. ONLY 120/- (Carridge 7/-6).
RECEIVER R.3844. A very sensitive unit containing 7 valves EF50, 2 of EF54, and 1 each VU192, HVR2, EASO, and also a 30 Mils I.F. Strip with 4 Mils bandwidth. BRAND NEW IN MAKER'S CASES. ONLY 75/- (Carridge 7/-6).
10 VALVE 11 METRE RECEIVER ZC931. Another very popular superhet for long distance TV reception. Contains 6 IF's of 12 Mils with 4 Mils bandwidth, and 6 valves VR65, 2 of VR92, and 1 each VR 136 and VR 137.
Complete with modification data for both stations. BRAND NEW IN MAKER'S CARTONS. ONLY 51/6 (Carridge 5/-6).
RECEIVER R.3175. Contains 7 valves EF50, 2 RL37, 1 EC52, 1 JRH2 and 1 EA50, and 30 Mils. I.F. Strip. Used but good condition. ONLY 59/- (Carridge etc., 5/-). RF UNIT TYPE 25 for use with R.1355 for London reception. ONLY 17/6 (Postage 1/-6).
RF UNIT TYPE 26 for use on Sutton Coldfield channels are now all sold, but we can supply one of the other RF Units with full details of easy modification for the TV. BRAND NEW IN CARTONS. ONLY 25/- (Postage 1/-).
INDICATOR UNIT TYPE 61 is specified for "Inexpensive TV." Complete with VCR97 CR Tube, 4 valves EF50 and 3 of EB34. BRAND NEW IN MAKER'S CASES. ONLY 90/- (Carridge 7/-6). This unit is also specified for the "WIRELESS WORLD," "General Purpose Oscilloscope," full details available price 9/6.
INDICATOR UNIT TYPE 62. Another handy unit containing the VCR97 Tube, 16 valves Type VR65, 2 of EB34, 2 of EA50, and sheets of condensers, resistors, etc. ONLY 75/- (Carridge etc., 12/-6).
MAGNIFYING LENS FOR 6IN. TUBE. First-grade oil filled. ONLY 25/- (Postage 1/-6). For 9in. Tube, 65/- (Postage 1/-6). TV PRE-AMPLIFIER for weak areas can be made from the ex-R.A.F. Amplifier 6046/6050. Contains 2 valves EF50 and gives very high signal to noise ratio. Full details of conversion for both stations supplied. ONLY 22/- (Post 1/-).

Other items of general interest available this month are:

TV PRE-AMPLIFIER for weak areas can be easily made from the ex-R.A.F. Amplifier 6046/6050. Contains 2 valves EF50 and gives very high signal to noise ratio. Full details of conversion for both stations supplied. ONLY 22/- (Post 1/-).

Other items of general interest available this month are:

TV PRE-AMPLIFIER for weak areas can be easily made from the ex-R.A.F. Amplifier 6046/6050. Contains 2 valves EF50 and gives very high signal to noise ratio. Full details of conversion for both stations supplied. ONLY 22/- (Post 1/-).

Other items of general interest available this month are:

TV PRE-AMPLIFIER for weak areas can be easily made from the ex-R.A.F. Amplifier 6046/6050. Contains 2 valves EF50 and gives very high signal to noise ratio. Full details of conversion for both stations supplied. ONLY 22/- (Post 1/-).

Other items of general interest available this month are:

TV PRE-AMPLIFIER for weak areas can be easily made from the ex-R.A.F. Amplifier 6046/6050. Contains 2 valves EF50 and gives very high signal to noise ratio. Full details of conversion for both stations supplied. ONLY 22/- (Post 1/-).
D. COHEN

RADIO & TELEVISION COMPONENTS

MAINS TRANSFORMERS

Primary 200-250 v. P. & P. on each, 1/6 extra.
- 250-0-250 60 mA, 6 3 amp., 6 5 amp., 5 7 amp., 2 10 amp., 1/2 15 amp.
- 250-0-350 75 ohm field with O.P. trans., 8 in.
- 300-0-350 800 ohm field with O.P. trans., 8 in.
- 350-0-475 960 ohm field with O.P. trans. 8 in.

MIDES BAKELITE CABINET

- 7 in. x 5 in. x 5 in.
- 5 valve S/H chassis, medium, long wave scale and back. (Taken from twin tube condenser and 3 in. speaker). 1 1/2.

LINE AND FRAME COIL ASSEMBLY

- Frame coils wound but not fitted (full instructions supplied). High impedance frame; low impedance line, matching 5 in.
- 6 in. speaker (P.M.) specially made for television with closed field complete with O.P. transformer. 11/6.

CONSTRUCTOR'S PARCEL

Comprising 5-valve superhet chassis with transformer cut-out, size 13 in. x 6 in. x 2 in. with L.M. and S. scale, size 7 in. x 5 in. Back plate, two supporting brackets, drive drum, pointer, two-speed spindle, twin gang condenser. Main transformer 250-0-250 v. 60 mA, 6 3 amp. Pri. 200-250, 6 in. speaker and 6 5 feet.

28/-

STATION SWITCHED SUPERHET COIL UNIT

- By famous manufacturer. Range as Coil Unit No. 200-300 m.; 2, 250-360 m.; 3, 250-360 m.; 4, 320-460 m.; 5, 400-550 m.; 6, 1,100-1,850 m.; no oscillator required for lining up, complete with Circuit and medium and long wave frame aerial. 21/6, post and packing, 1 1/2.

PRE-ALIGNED MIDGET 465 Kc.

Q. 120 made for the above Coil Unit. 8/- per pair, post paid.

CHASSIS TO FIT COIL UNITS AND I.F.s

- Size 11 in. x 5 in. x 1 in. 2/6.
- Size 8 in. x 6 in. x 1 1/2. 1 3/4.

MAINS TRANS. TO FIT ABOVE CHASSIS.

Pri. 200-250 volt sec. 250-0-250 v. 60 mA, 6 3 amp., 13/4, post and packing.

CONSTRUCTOR'S PARCEL 2

Comprising chassis 10 in. x 5 in. x 2 in. with speaker and valve holder cut-outs, R. and A. 6 in. P.M. with transformer, twin gang with feet, pair medium and long wave frame aerials.
- Four International Octal valve holders, wave-change switch and Erie 20k pot with switch, 25/-, plus 1 1/2 post and packing.

CONSTRUCTOR'S PARCEL 3

Comprising Midget twin gang with slow-motion drive, midget 465 Kc. I.F.s; frame aerial; medium wave osc. coil and lid, type R.T., F.T., R.T. batteries 90 v. + 12 v. 21/6, plus 1 1/2 post and packing.

STANDARD 465 Kc. I.F.s

- Iron cored Q.120, 7/- per pair.
- Iron cored Q.120, 7/- per pair.
- Iron cored Q.120, 7/- per pair.

MINIATURE 465 Kc. I.F.s

- Type M/H00. 12/6, plus 6d. post and packing.
- Miniature 465 Kc. I.F.s (slightly larger than the above items). Q.120. Per pair 10/-.

IRON CORED 465 Kc. I.F.s

- Q. 130, 2 in. x 1 in., per pair 6/-.
- Iron cored 465 Kc. Whistle Filter, screened, each 2/-.

VOLUME CONTROLS

- By famous manufacturer. Long spindle less switch, 1, 2, 4 or 6 x 5 rect.
- Metal Rectifier, 230 v. 80 mA., 60 mA. 4/-.

MAINS DROPPERS

- 2 amp, 1,000 ohms, tapped 900 ohms, 1 1/2.
- 2 amp, 717 ohms, tapped 100 ohms, 1 1/4.
- 3 amp, 520 ohms tapped 2 1/6 each.

WAVE CHANGE SWITCHES

3-pole 2-way, 1/2.
- 4-pole 4-way and 4-pole 3-way, 1 1/2.
- 1 pole 12-way, 2 1/4.
- 3 pole 12-way, 4 1/4.
- 5 pole 2-way switch, 1/9.

POST ORDERS ONLY

67 RALEIGH AVENUE, HAYES, MIDDLESEX

TELEVISION MASKS

White Rubber. 9 in. with glass, 11/6.
- White Rubber. 12 in. with glass, 1 1/5, plus 1 1/2 post and packing.

DUE TO A LARGE PURCHASE OF MANUFACTURERS' SURPLUS

WE ARE ABLE TO OFFER THE FOLLOWING —

- Heater transformer fully inter Leave and impregnated and guaranteed, 6 1/2 x 1 amp, max. input 220/240 volts, 3/-.
- Post paid.

WAVE CHANGE CHAIN WITH 6X5 RECTIFIER

White Rubber. 9 in. with glass, 11/6.

DUE TO A LARGE PURCHASE OF MANUFACTURERS' SURPLUS

WE ARE ABLE TO OFFER THE FOLLOWING —

- Heater transformer fully inter Leave and impregnated and guaranteed, 6 1/2 x 1 amp, max. input 220/240 volts, 3/-.
- Post paid.
Lasky’s Price

Record Value in 1951

Why View in the Dark? Eliminate Eye Strain.

Filters. 9in., 13/6. 10in., 15/-, 12in., 2f/-.

Filter Lens 9in. or 10in. Price 50/-.

Post free. Filters supplied on your approval for 7 days. Money refunded if dissatisfied.

Auto Trans-Ponder, Type A.U.G.

70 watts. Voltages: 100, 110, 130 and 240. Step up or down.

Lasky’s Price 7/11. Postage 7½ extra.

V.A.T. Photo Electric Cells. Requires 100 volts D.C. or peak A.C. to function, Brand new and perfect.

Lasky’s Price 12/6. Post 1/6.

371A Photo electric cell, with 9 stage multiplier. Suitable for telephoto and low light experimental work. BRAND NEW AND GUARANTEED.

Full data and details supplied with each cell. **Lasky’s Price** 25/-. Post 1/6.

Cryystals. Germanium Crystal Diodes. **Lasky’s Price** each, 3/6.

Communications Receiver Type P.G.R. By Phillips. Perfect condition. Aerial tested before dispatch. 6 valve superhet circuit: R.F., F.C., F.A. two 1F3, D.B.T. quadraode output. Frequency accuracy: 10-60 extra, 200-250 extra, 400-3000 extra. Fitted in metal case, black crackle finish, with built-in loudspeaker. Fly wheel tuning. May be used with any suitable power pack. Supplied complete with 6 brand new microphone valve: 2 x E189; 1 x ECC83; 1 x ECC86.

Lasky’s Price £10. 10. 0 Carriage 5/- extra.

Power pack for P.G.R. Receiver. 19 volt.

Lasky’s Price 39/6 Carriage 5/- extra.

Ex. A.M. Receiver Type R1155A. Brand new and unused. In Maker’s Original Wood Case. High frequency receiver. 160-1500 Kc. Complete 11 valves: one V605, one V606, four V812, two VS41, one 6J5, one 6V57 (voltage stabilizer), one 6V27. Large handle scale, slow sweep motion drive, 6-9, micro meter, R.F. and L.F., gain controls, jack sockets for line and phone. Totally enclosed in metal case, grey enamelled, with plated handles. Size: 16in. x 10in. x 11in.

Weight packed 11lb. Supplied with circuit and calibration chart.

Lasky’s Price 99/6 Carriage 10/- extra.

Ex-A.M. Communications Receiver Type RI155.

Brand new in wood transit case. Aerial tested before dispatch. Supplied complete with 10 valves: Coarse: R.F.”, A.V.C., R.F. Amplifier, two L.F. M/A/A, magic eye, etc. 3 frequency ranges: 10-2-7.5 M.C., 7.5-3.0 M.C., 1,000-500 M.C.; 500-250 M.C.; 250-75 M.C. **Lasky’s Price** £12. 10. 0 Carriage (in wood case), 7/- extra.

Full modification data and circuit details supplied free with each receiver.

Power pack and output stage for the R1155, as described in the modification instructions. Fully assembled, and supplied with output valve and rectifier. In black enamelled case ready for use.

Lasky’s Price 79/6 Carriage 5/- extra.

Lasky’s Radio

370 Harrow Road, Paddington, London, W.9

(Opposite Paddington Hospital)

Telephones: CUNningham 1979 and 7214

HOURS: Mon. to Sat. 9.30 a.m. to 6 p.m., Thurs. half day 1 p.m. Send a 2d. stamp with your name and address (in block letters please) for a copy of our current stock list, giving details of our supplies of new manufacturers’ surplus equipment and ex-Government radio, radar and valves, etc.
COMMUNICATIONS RECEIVER Type R1135. New world renowned as one of the finest superhet receivers obtainable. For those not familiar with the set we can supply an authoritative Description leaflet at 9d., post free. All our receivers are supplied complete with 10 valves. Any receiver gladly demonstrated to callers. The price is £110/6, and for an additional 10/- the set is dispatched in maker's transit case. IN BRAND NEW CONDITION.

RECEIVER TYPE 3397. Contains 15 of EF50, 1 of VR36 (EF66), 1 of VR35 (EBC33), 2 of VR116, 1 of VR292 (EBC20), 1 of VR27 (VR8), and A 45 Mc/s. "PYE" STRIP; also in- cluded are transformer for use with gear box, relays and numerous other small components all housed in a handsome mahogany case. BRAND NEW IN TRANSPORT BOXES. Only £5/9/6, carriage paid to your door.

RECEIVER TYPE 159. Valve line-up: 1 of CV66 (grounded grid type), 1 of EF50, 1 of VR65 (EPC1), 1 of VR92 (EAS0), small impulse motor, all in case size 8j x 4 x 6jin. 12/-, post paid.

RECEIVER TYPE R1335. As recommended by the authors of "Inexpensive Television." In new condition but slightly store soiled. Complete with valves. 49/-, carriage paid.

RECEIVER UNIT 2573 (TR1196). Valve line-up: 2 of EF32, 2 of EF39, 1 of EKB32 and an EBC33. Easily and rapidly converted to a very fine superhet receiver (see "Radio Constructor" "November 1950," page 501). Supplied complete with circuit and conversion data. Few only in perfect condition and offered at 35/-, post paid.

OSCILLATOR TYPE 217. Contains 2 of EF50, 2 micropack condensers 25 ml. 25 v., heavy duty resistors, 3 relays, 3 pot'meters, etc. A small unit with a large content in less than the price of the two EF50s. NEW AND BOXED. 14/6, post paid.

45 Mc/s. "PYE" STRIP. A ready made vision receiver (efficient use). Uses 6 of EF50 and an EAS0. Complete circuit data provided, in brand new condition. Less valves, 39/-6, with all valves, 62/-6.

TV PRE-AMP. Small size and complete with 2 of EF50. Easily altered to tune to London or Birmingham frequencies. Only 14/-, post paid.

AMPLIFIER TYPE 121. A class B amplifier complete with Cosior 220B valve and transformer. With circuit. Only 8/-6, post paid.

AMPLIFIERS. Marconi type 6, 15 watts output. Uses 2 of PX52 and an MF8 for multivibrator. Completely enclosed in case size 17 l x 16/1 x 10l/n. Complete with heavy duty power pack for operation from 12 v. mains. Suitable for TV. A.C.-Plains. The anode current of the PX52 is monitored by a meter in 21ln. panel mounting meter. New condition. Supplied free of cost. Only 59/-, carriage paid. Don't miss this very special bargain offer.

INDICATOR UNIT 116H. Brand new and contained in manufacturers' original wooden crate. A more up-to-date version of the famous 6A. Contents Include a VCR7 tube, 4 of EF50, 3 of EBC34 and very many other useful components. Priced at only 79/-6, plus 7/6 carriage.

AMPLIFIER TYPE 118/115. A neat and compact equipment incorporating the following valves: 2 of EF36, 1 of EBC33, and EL712. Included are microphone transformers, inter- transformers, relay transformers, condensers and resistances, etc. Are you looking for something to "break down"? Then here's your chance. An experimenter's gold mine for only 22/-6, post paid.

SCPI C.R. TUBES. Limited number only. Brand new and boxed. 25/-, carriage paid.

PACKARD-BELL PRE-AMP. Brand new and boxed, 50/-, carriage paid.

ACCUMULATORS. Heavy duty 6 v. type. Size 12 x 9 x 7in. 38 AND NEW. Capacity 85 hrs. in each case. Exceptional value at 5/-.

CRYSTAL MULTIPLIERS. By Wilcox Gray. Frequency range 2-20 Mc/s. Packaged brand new in wooden boxes and complete with 2 type 807 diodes, instruction books, spares, etc. 39/-6, plus 3/6 carriage.

HOOVER ROTARY TRANSFORMER TYPE 31. Input 12 v. output 250 v. 125 a.m. Brand new condition. Ideal for the Command Receivers advertised by us on this page, or radios, etc. 14/-6, post paid.

MOTORS

BLOWER MOTORS. For operation from 12 volts and up powers. Only 4/-6, post paid. Few only in perfect condition. Most identical to the R3084. For rack mounting. Complete with heavy duty power pack for 200-250 volts 50 c/s A.C. Mains. 50/-6, carriage paid.

Now world renowned as one of the most identical to the R3084. For rack mounting. Complete with heavy duty power pack for 200-250 volts 50 c/s A.C. Mains. 50/-6, carriage paid.

ITEMS OF INTEREST

RF/RC TYPE 116. Made for the R1155 and enables any receiver which will "break down" to be used. Complete with nine 2 v. valves and transformer. With circuit. New and boxed. 12/6, post paid.

St.K. 4/9, carriage paid.

SANDS TRANSFORMER. Ideal for TV. Uses 2 of PX25 and 1 of VR517 tubes. 2,000 v., 4 v. tapped at 2 v. for tube heater and 500-0-500 v. at 340 mA. 130 v., 6.3 v. at 6 amps., 5 v. at 3 amps. Fully shrouded top chassis mounting. A quality job. Guaranteed. 27/-6 each.

ACKNOWLEDGMENTS TO THE FACTORY

For Quality Bargains Always This is the pick for use in conjunction with our 25/73 (TR1196) Receiver. Covers the long, medium and short wavebands: 190-520 metres, 800-2,000 metres, 1,500-5,000 metres. Convert this receiver which will "break down" to be used. Complete with nine 2 v. valves and transformer. With circuit. New and boxed. 12/6, post paid.

For the ridiculous price of 22/-6, carriage paid.
R3504 RECEIVERS. Absolutely brand new, in sealed manufacturers' packing cases. Incorporates 15 valves type EF60, 2 of SP61, EF36, EBC33, 3 of EB31. Complete 45 m/c.i.P. Strip, motor dial and drive, pots, etc., etc., £6 only, plusopher-free packing and carriage. While they last! EK.R.F. INDICATOR UNIT TYPE 42. Containing VCR-97 CAT with mu-metal screen: Xtal Unit and valves 16VR65 (SP61), 2VR54 (EB34), 2VR92 (EA50), etc., etc., two deck chassis in metal case. 18 x 18 x 12 in. New condition. £7/6 each. Plus 7/6 packing and carriage.

BAKELITE RECEIVER CABINETS. An extremely advantageous purchase, enables us to offer the following:—

A bright orange bakelite cabinet, size 15 in. x 8 in. high x 7 in. deep, complete with chassis driven from one U.10 cell and one 1289 battery inside the unit. £9.50 each. Plus 9 m/c carriage and packing.

"DENCO" ALIGNMENT OSCILLATOR D.A.O.1, 4.3-6.7 m/c.s., and makes an ideal basis for an all-wave receiver, as per diagram not available. Price 45/. complete, post free.

WAVE-GENERATOR FORMATION TYPE 34. Ex. A.M. Including 6 SP61, 4 EF36, 2 EB34 and one CV16. Also relays, transformers, pots, condensers, and other accessories. The whole contained in metal box size 11 in. x 11 x 8 in. In clean condition, an absolute bargain at 25/-, plus 21/6 packing and carriage.

A.M. UNIT TYPE 159. Comprising EF50, RL37, SP61 and EA50. Coils, relay, and many condensers and resistors. The whole in metal box size 6 in. x 6 in. x 4 in. A high grade set in 18/-, carriage paid.

SPECIAL PURCHASE. Brand new H 4200 E.H.T. pencil rectifiers, 2,400 v. 3 m/a, only 15/- each. Also RECTIFIERS, 150 (new, ex-Govt.), 7/6 each. Westinghouse 36 EHT 35, 15/6, 36 EHT 100, 2/6.

SLIDER POTS. As used in all the latest T/V sets. SPECIAL PURCHASE. Brand new H 4/200 E.H.T. pencil rectifiers, from 4.2-7.5 M/c.s. Double superhet from 18-30 M/c.s. Incorporating B.O. and charge limiter. Valve line-up 7-ARPI2 (VP132), 2-AR6 (ML230D). Absolutely brand new, complete with basic. Only 45/- complete. Vibrator Power Unit for above, brand new, 17/6 only.

F. TRANSFORMERS.

- Rectifier pack. In factory's surplus. Iron-cored. 465 k/c.s. Size 4 in. x 2 in. x 1 in. Per pair 1/6 whilst they last.
- F. TRANSFORMERS.

- Rectifier pack. In factory's surplus. Iron-cored. 465 k/c.s. Size 4 in. x 2 in. x 1 in. Per pair 1/6 whilst they last.
- FREQUENCY CONTROL CRYSTALS. By American G.E. Co.—

- Oscil base fixing. Following frequencies only: 2,500 k/c.s., 2,500 k/c.s., 4,600 k/c.s., 6,200 k/c.s., 8,000 k/c.s.—at only each 7/6. New Condition. SPECIAL COIL PACK OFFER.

- SPECIAL VALUE IN MAINS TRANSFORMERS.

- 250-0-250 m/a 6.3 v. 6 in. 2 in. 2 in., half shielded, drop through type.

- ELECTRONIC & TELEPHONE EQUIPMENT.

- 150 for 10/-, 25 of 6.25 m/c. 500 v. and 25 of .25 m/c. 500 v.

- AMPLION CRYSTAL PICK-UPS, brand-new, in cartons. The last few dozen. 42/6 each.

- TUEB Tuning Units, 3000, 4500 k/c.s. less outer case. New condition, 10/-, carriage 1/6.

- BC306 Aerial Tuning Units, ceramic switch, slow motion drive, etc. Size 16 in. x 8 in. x 8 in. Brand-new, complete with circuit, a bargain at 25/- carriage 3/-.

- D.I. 1000 v. and 25 of .25 m/c. 500 v.

- Medium Wave Coils for converting BC453/4/5 to MW., 10/-, carr. paid. State which required. Tuning spindle and knob for same, 2/-, EF50 ceramic valve holders, 5/- doz. (minimum). Morse keys, new, ex-Govt., brass, fine job, 3/-, post 6d.

- AMPLION CRYSTAL PICK-UPS, brand-new, in cartons, 26/9, post paid. Type 25 receiver, with 6-6 v. valves, 2/6, carr. paid. NEW.

- CONDENSERS, waxed tubular. 50 for 10/-, 25 of .1000 v. and 25 of .25 m/c. 500 v.

KITS OF PARTS AND CONSTRUCTORS ASSEMBLY OUTLETS

KITS OF PARTS AND CONSTRUCTORS ASSEMBLY OUTLETS

Assembly Instructions and Circuit to build a
MIDGET 4-STATION "PRE-SET" RECEIVER

We now have available a complete set of detailed Assembly Instructions, showing Wiring Diagrams, Practical Component Layout, Point to Point Cabling, and Individual Component Price List, for the construction of a 4-STATION "PRE-SET" RECEIVER.

This kit is designed to receive three chosen stations on Medium Waveband and one on Long Waveband, each station being chosen by the turn of a Rotary Switch, no setting being necessary. It is of Midget size, being 6 x 4 in. 1/2 in thick, when fully assembled, and can be completely built, including Valves and Mains Supply, for approximately 20/17/6.

The Midget 4-Station "Pre-Set" Receiver is available for 1/2 (plus 6d post), and in addition to the normal Wiring Diagram, they include practical layouts to enable the inexperienced Constructor to build this set easily.

"MAINS OR BATTERY PERSONAL KIT"

A complete KIT OF PARTS and Complete Assembly Instructions for building a VALVE SUPERHETERODYNE RECEIVER for MEDIUM and LONG WAVES.

We can supply all the Components, including Drilled Chassis, Valves, Moving Coil Speaker, etc., to build this Kit as specified in the May 1950 issue of "Wireless World", at a total cost of 67/6/9. Reprint of detailed Assembly Instructions and Wiring Diagram is supplied to enable you to complete the assembly.

"WIRELESS WORLD" 4-STATION "PRE-SET" RECEIVER KIT

A complete KIT OF PARTS and Complete Assembly Instructions for building a VALVE SUPERHETERODYNE RECEIVER for MEDIUM and LONG WAVES.

We can supply all the Components, including Drilled Chassis, Valves, Moving Coil Speaker, etc., to build this Kit as specified in the May 1950 issue of "Wireless World", at a total cost of 67/6/9. Reprint of detailed Assembly Instructions and Wiring Diagram is supplied to enable you to complete the assembly.

"WIRELESS WORLD" MIDGET A.C.-Mains Valve Receiver Kit. We can supply all the Components, including Valves and McCellan Speaker to build this Receiver as specified in the April issue of "Wireless World", at a total cost of 25/15/-.

KITS OF PARTS AND CONSTRUCTORS ASSEMBLY OUTLETS

Assembly Instructions and Circuit to build a
MIDGET 4-STATION "PRE-SET" RECEIVER

We now have available a complete set of detailed Assembly Instructions, showing Wiring Diagrams, Practical Component Layout, Point to Point Cabling, and Individual Component Price List, for the construction of a 4-STATION "PRE-SET" RECEIVER.

This kit is designed to receive three chosen stations on Medium Waveband and one on Long Waveband, each station being chosen by the turn of a Rotary Switch, no setting being necessary. It is of Midget size, being 6 x 4 in. 1/2 in thick, when fully assembled, and can be completely built, including Valves and Mains Supply, for approximately 20/17/6.

The Midget 4-Station "Pre-Set" Receiver is available for 1/2 (plus 6d post), and in addition to the normal Wiring Diagram, they include practical layouts to enable the inexperienced Constructor to build this set easily.

"MAINS OR BATTERY PERSONAL KIT"

A complete KIT OF PARTS and Complete Assembly Instructions for building a VALVE SUPERHETERODYNE RECEIVER for MEDIUM and LONG WAVES.

We can supply all the Components, including Drilled Chassis, Valves, Moving Coil Speaker, etc., to build this Kit as specified in the May 1950 issue of "Wireless World", at a total cost of 67/6/9. Reprint of detailed Assembly Instructions and Wiring Diagram is supplied to enable you to complete the assembly.

"WIRELESS WORLD" 4-STATION "PRE-SET" RECEIVER KIT

A complete KIT OF PARTS and Complete Assembly Instructions for building a VALVE SUPERHETERODYNE RECEIVER for MEDIUM and LONG WAVES.

We can supply all the Components, including Drilled Chassis, Valves, Moving Coil Speaker, etc., to build this Kit as specified in the May 1950 issue of "Wireless World", at a total cost of 67/6/9. Reprint of detailed Assembly Instructions and Wiring Diagram is supplied to enable you to complete the assembly.

"WIRELESS WORLD" MIDGET A.C.-Mains Valve Receiver Kit. We can supply all the Components, including Valves and McCellan Speaker to build this Receiver as specified in the April issue of "Wireless World", at a total cost of 25/15/-.

KITS OF PARTS AND CONSTRUCTORS ASSEMBLY OUTLETS

Assembly Instructions and Circuit to build a
MIDGET 4-STATION "PRE-SET" RECEIVER

We now have available a complete set of detailed Assembly Instructions, showing Wiring Diagrams, Practical Component Layout, Point to Point Cabling, and Individual Component Price List, for the construction of a 4-STATION "PRE-SET" RECEIVER.

This kit is designed to receive three chosen stations on Medium Waveband and one on Long Waveband, each station being chosen by the turn of a Rotary Switch, no setting being necessary. It is of Midget size, being 6 x 4 in. 1/2 in thick, when fully assembled, and can be completely built, including Valves and Mains Supply, for approximately 20/17/6.

The Midget 4-Station "Pre-Set" Receiver is available for 1/2 (plus 6d post), and in addition to the normal Wiring Diagram, they include practical layouts to enable the inexperienced Constructor to build this set easily.

"MAINS OR BATTERY PERSONAL KIT"

A complete KIT OF PARTS and Complete Assembly Instructions for building a VALVE SUPERHETERODYNE RECEIVER for MEDIUM and LONG WAVES.

We can supply all the Components, including Drilled Chassis, Valves, Moving Coil Speaker, etc., to build this Kit as specified in the May 1950 issue of "Wireless World", at a total cost of 67/6/9. Reprint of detailed Assembly Instructions and Wiring Diagram is supplied to enable you to complete the assembly.

"WIRELESS WORLD" 4-STATION "PRE-SET" RECEIVER KIT

A complete KIT OF PARTS and Complete Assembly Instructions for building a VALVE SUPERHETERODYNE RECEIVER for MEDIUM and LONG WAVES.

We can supply all the Components, including Drilled Chassis, Valves, Moving Coil Speaker, etc., to build this Kit as specified in the May 1950 issue of "Wireless World", at a total cost of 67/6/9. Reprint of detailed Assembly Instructions and Wiring Diagram is supplied to enable you to complete the assembly.

"WIRELESS WORLD" MIDGET A.C.-Mains Valve Receiver Kit. We can supply all the Components, including Valves and McCellan Speaker to build this Receiver as specified in the April issue of "Wireless World", at a total cost of 25/15/-.
SUNDAY, JANUARY 14, 1951

UNIVERSITY RADIO

Offer Guaranteed Used Equipment at Attractive Prices

P.S.E., Pre-selector, built-in A.C. mains, "d.c.; complete and perfect... £10 0 0

Coxor Double-beam Oscilloscope, Type 334P, complete and perfect... £35 0 0

Sundown Sounding Amplifier, A.C., complete with valves, at new... £15 0 0

Barkerley Ribbon Pick-up, with equaliser. As new... £7 10 0

Williams & Wright V.P.O... £6 0 0

Pam 20 watt Amplifier, complete with two Pam speakers, 200/250... £23 10 0

Marlon U.S.A. Flux Meter, Brand-new... £11 0 0

Coxor Double-beam Oscilloscope, Type 334P, complete and perfect... £35 0 0

Vortext Super 50 watt Amplifier, complete with all valves... £18 10 0

Connoiseur Pick-up with transformer... £2 10 0

Coaxor Variable Power Amplifier... £6 0 0

Taylor resistance... £7 0 0

Collaro Advance E.I. Signal Generator... £9 10 0

Advance E.I. Signal Generator... £9 10 0

Altern E.I. Signal Generator... £9 10 0

Transmitter R. 1154, in perfect working order... £7 0 0

Pam 20 watt Amplifier, complete with two Pam speakers, 200/250... £23 10 0

Marlon U.S.A. Flux Meter, Brand-new... £11 0 0

WE HAVE OTHER EQUIPMENT ARRIVING DAILY!

WE NEED GOOD USED EQUIPMENT URGENTLY. PLEASE SEND, OR PHONE FOR OFFER

Taylor resistance... £7 0 0

Collaro Advance E.I. Auto... £9 10 0

Changers, A.C. New... £9 10 0

Advance E.I. Signal Generator... £9 10 0

Transmitter R. 1154, in perfect working order... £7 0 0

Pam 20 watt Amplifier, complete with two Pam speakers, 200/250... £23 10 0

Marlon U.S.A. Flux Meter, Brand-new... £11 0 0

WE HAVE OTHER EQUIPMENT ARRIVING DAILY!

ALL S.A.E. ENQUIRIES WELCOME.

CASH OR CHEQUE WITH ORDERS. ALL ITEMS LISTED ARE CARRIAGE PAID UP TO 50 MILES.

2. Lisle Street, Leicester Square, London, W.C. 2

Telephone: Lee Green 0309 Near Lewisham Hospital.
Now in full production

NOVAL and B7G

Valveholders

of all types in

NYLON LOADED

BAKELITE

B9A—NOVAL

B 7 G

We make all types of Valveholders

THE McMURDO INSTRUMENT CO., LTD., VICTORIA WORKS, ASHTEAD, SURREY

ASHTEAD 3401
OUTSTANDING OFFERS
FOR EXPORT ONLY

AMERICAN RADIO & RADAR EQUIPMENT

Our stocks comprise several hundred of each of the following:
- RCA Transmitters ET-4836
- Transmitters- Receivers BC-011
- I.F.P. Units (BC-905, EC-1900, 1-100A)
- ABK-1 to 7
- Model AN/APA-1 Aircraft Radar Repeater Indicator Equipment.

LARGE QUANTITIES of Radio Sets & Spares

- BC-005, 021, 025, 065, 069, 088, 778, 1147, 1159, 1300 etc.
- AN/TRC 1, 3, 4.
- Train Directors MK.
- Frequency Meters, Signal Generators, Motor Generators, Test Sets, Tuning Units, Power Units, Supply Units, Inverters, Control Units, Radio Compasses, Bomb Computers, Voltage Regulators, Oscillators, Dynamotors, Rectifiers (RA-84 and others), Transformers, Mast and Aerial Equipment and Fittings:
 - Junction and Resistance Boxes, Modification Kits and Spares, Terminal Boards, Sockets, Plugs, Jacks, etc.

U.S.A. Radar Equipment

- Mk. 39 (Models 5 and 9)
- BL-3 Units
- BM-Units
- BN-Units
- VF-Units
- Canadian RDF Equipment
- Accessories Control Units for SO Series Radar Equipment

Radar Spares

- Motor Generator and Alternator Units, PPI Units, Modulators, Voltage Stabilizers, Master Control Units and Bulk Spares for:
- APS/S, APS/13, APS/15, RDF, AR1, DAR.
- Also SPARES FOR MOST BRITISH RADAR.

Field Telephone Equipment

- Telephone Sets, Boom Equipment, Wire, etc.
- Airgraph & Bromide Paper

AIRCRAFT INSTRUMENTS & ACCESSORIES

- Motors-Generators—Aero-Engine Starters (Eclipse, Jack & Heintz, Rotax, etc.); Supercharger Regulator Test Stands—Airplane Propeller Balancers, Vibrators, Inverters, Filters, Magnets, Constant Rate Machines, Voltage Stabilizers, Switches, Pilots' Heads, Aircraft Lampy, Ignition Coils, Drift Meter Assemblies, Drift Recorders, Oxygen Cylinders, Regulators, and Instruments.

Over 30,000 Aviation Instruments of different types, mainly of U.S.A. manufacture—new, in original cartons and cases incl. large quantity of Bendix Autosyn instruments.

All our Equipment is either new or in a condition as new.

Individual Test Certificates can be supplied upon request.

Catalogues of our new productions sent upon request. These are available only to Foreign Govt. Depts and their appointed Contractors.

EXPORT ENQUIRIES ONLY TO
BRITISH SAROZAL LTD.
(Export Branch)
1, BRISTOL HOUSE, SOUTHAMPTON ROW, LONDON, W.C.1

OVERSEAS BUYERS ARE CORDIALLY INVITED TO VISIT OUR WAREHOUSES, SHOWROOMS AND LABORATORY

GOVT. SURPLUS UNUSED

CONDENSERS

of all types...

We can offer, FOR IMMEDIATE DELIVERY from very generous stocks, a wide range of ultra-high quality fixed paper Condensers, from 0.01 µF to 8 µF. Also STOCKS of small genuine MICA Condensers from 0.0001 (10 pf) to 0.1 µF (10,000 pf). Prices are exceedingly moderate.

Enquiries are invited for manufacturers' requirements, wholesale and export only for bulk quantities, and for scheduled deliveries over a period as required. Most condensers are now available for immediate delivery.

Please send for our Bulletin Con 550.

CLAUDE LYONS LTD
180, Tottenham Court Road, London, W.1 and 76, Oldhall Street, Liverpool 3, Lancs.

G2AK This Month's Bargains

H.T. BATTERIES. 120 v., standard size and tappings. Not old stock. Special price. 7/6 each, plus 1/6 post.

RECEIVERS. Type 18. Cover 6-9 M/Cs, and are for battery operation. New condition. Only 17/6 each. Phones to suit 4/6.

MOVING COIL HEADPHONES with moving coil microphone. Price 4/- incl. Transformer to match 2/-.

CABLE. 10 ft. length flexible T.R.S. 3-core. Fitted with 3 position switch and plug. 1/6, post free.

VIBRATOR PACKS. 6 volt input. Output 180 volts 50 m.a., fully smoothed. Price 17/6, plus post 1/6.

TWIN RIBBON FEEDER. Heavy duty 300 ohm, 5d. per yd. Standard K22 300 ohm ribbon, 6d. per yd. Co-ax cable, 1/6, per yd. 70 ohm, 6d. per yd. 1/6, per yd. 7/6 length 100 ft. Co-ax with Pre plug one end, 1/6, post free. All other Co-ax and feeder, plus 1/6 post any length.

POTENTIOMETERS. 5 watt wire wound 20 k., 5 k., 3-500 ohm and 2,000 ohm 50 watt wire wound on 3 in. dia. Ceramic former, 1/6 each. Carbon Type Potentiometers, 50 k., 100 k., 1 meg., 2 meg., 1/6 each.

BRAND NEW 807 VALVES. 6/- each or 4 for £1.

AERIAL INSULATORS. Pyrex 7 in. ribbed glass, 3/6 per pair, plus 1/6 post.

STATION LOG BOOKS. 200 pages printed one side only Size 8 in. x 11 in. First class paper and bound with heavy cover. Price 17/6.

Carriage paid on all orders over £1 except where stated. Please include small amounts for orders under £1.

Please print your name and address.

CHAS. H. YOUNG, G2AK
All Callers to 110 DALE END, BIRMINGHAM
Phone: CENTRAL 1635
Mail Orders to 102 HOLLOWAY HEAD, BIRMINGHAM
Phone: MIDLAND 3254
Axiom 150

TWIN CONE P.M. LOUD-SPEAKERS

A 12in., 15-watt High Fidelity unit with twin curvilinear diaphragm (Pat. 451754). Flux density, 14,000 gauss; Total flux 158,000 maxwells on a 12in. pole; frequency coverage 40-15,000 c.p.s., free from bass modulation effects. An ideal reproducer for the record enthusiast and connoisseur.

Axiom 22

A 12in., 20-watt unit, also incorporating Goodmans patent exponential twin cone. Flux density, 17,500 gauss. With a frequency range of 40-15,000 c.p.s., free from sub-harmonics and bass modulation effects, the Axiom 22 brings High Fidelity into the field of High Power sound reproduction.

For use with these models we recommend Goodmans High Fidelity Heavy Duty Output Transformers. Types H.4 and H.6. Nett weights, 5lbs. and 5lbs. 3oz.

Phone WEMbley 1200

Selective Transmission Measuring Set

Model RP 3110

This is a precision instrument for measurements on multi-circuit coaxial cable carrier systems by means of a comparison with locally generated signals of known frequency and level.

Frequency coverage: 60 Kc/s - 3 Mc/s in 7 ranges.

Calibration accuracy: below 0.2% or 2 Kc/s whichever is the greater.

Range of measurements:

through levels + 10 db to - 61.5 db

or terminated levels + 10 db to - 81.5 db

referred to 1mW in 75 ohms

British Communications Corporation Ltd.

GORDON AVENUE, STANMORE, MIDDX.

Telephone: GRIMSDYKE 2266.

Cables: DISC, STANMORF
STILL AVAILABLE!

THE TELEVISION SOUND/VISION RECEIVER THAT NEEDS NO CONVERSION

LONDON & BIRMINGHAM FREQUENCIES

Uses 10 of the latest type miniature valves: 6AM6 and 6AL5's.

VALVE LINE UP.

V1. 6AM6. Sound and vision R.F. amp.
V2. 6AM6. Vision 2nd. RF. amp.
V6. 6AL5. Sound detector and noise limiter.
V7. 6AL5. Vision detector and noise limiter.
V8. 6AM6. Sound output.
V10. 6AM6. Video output.

LASKY’S PRICE £6 19 6
Carriage 3/6 extra.
Complete with all valves. NO EXTRAS.

Size of unit: 10in. x 4½in. x 1in.

These units are not ex-Government, but brand new manufacturer’s surplus. May be used with any type time base and c.r. tube. The unit is fully assembled and wired, supplied with all valves and ready for fitting. Voltages required: 6.3 v. at 3 amps. and 270 v. at 80 m/a.

Send 6d. for a copy of the full data, circuits and photographs dealing with this unit.

SAVES—SPACE, TIME, CASH.

Sold only at
LASKY’S RADIO
370 HARROW ROAD, PADDINGTON, LONDON, W.9.
(opposite Paddington Hospital)

PRATTS RADIO
1070 Harrow Road, London, N.W.10
(gr. SCRUBB3 LANE)

THE THREE ‘R’s

3”, 3½”, 6”

RECTANGULAR INSTRUMENTS

by

PULLIN

These three rectangular instruments are designed on symmetrical lines, thus giving a distinctive clear open scale and pleasing appearance. Each size available in all standard ranges. The Series 65 and 36 can be fitted with dial illumination

MEASURING INSTRUMENTS (PULLIN) LTD.
Telephone ACorn 4651/3 & 4995

RECTANGULAR INSTRUMENTS

Series 30

Series 35

Series 65

ERECTING INSTRUMENTS (PULLIN) LTD.

January, 1951
For Designers who want more 'ELBOW ROOM'

Another Hunt development... the W.99 settles layout, weight and space problems—and is the first major stride forward in types of capacitors designed to allow the most efficient use to be made of the new miniature valves. In conjunction with these, it will inspire numerous applications in every possible kind of modern, compact and portable electronic, communication and T.V. equipment.

Technical co-operation with you in the adaptation and application of capacitors of all types to your requirements will be welcomed.

REGISTERED TRADE MARK

HUNTS CAPACITORS

THE TRADE MARK OF RELIABILITY

A. H. HUNT LTD., WANDSWORTH, LONDON, S.W.18 Tel.: BATTERSEA 3131 Estd 1901

W99 MIDGET MOLDSEAL METALLISED PAPER
CAPACITANCE TOLERANCE ±20% (Closer tolerances are available).
TEMPERATURE RANGE 0°C. to +71°C.
INSULATION RESISTANCE Not less than 20,000 megohms.
SELF-HEALING
CAPACITANCES up to .04 150 volt D.C.
.01 350 volt D.C.
.002 600 volt D.C.
.002 300 volt A.C.
For operation up to 100 megacycles per sec.

TELCON AERIAL FEEDERS
80 OHM BALANCED TWINS

K.12.SM LOCAL

BA. 24. PSM FRINGE

YOUR GUARANTEE of quality and perfection is the Telcon Black, Blue and Brown identification thread.

Further details of these and other R.F. Cables on application

THE TELEGRAPH CONSTRUCTION & MAINTENANCE CO. LTD
Head Office: 22 OLD BROAD STREET, LONDON, E.C.2 Telephone: LONDON WALL 7104
Enquiries to: TELCON WORKS, GREENWICH, S.E.10 Telephone: GREENWICH J291
-towards perfection-

DIAMONDS!

Polished diamond reproducing points are the nearest to perfection for quality of reproduction and durability. Fitted to a Lowther Moving Coil Pickup an extremely high ideal is attained. (Please send for leaflet.) We now offer replacement Diamond stylus for most lightweight Pickups at £7 plus 62/- Purchase Tax (either L.P. or standard). Fit your Pickup with a "towards perfection" diamond stylus, reduce wear and improve reproduction.

Obtained from your local dealer or direct

THE LOWTHER MANUFACTURING CO.
(The Laboratory Production Unit)
Lowther House, St. Mark's Road, Bromley, Kent. RAV. 5225

UNRIVALLED PERFORMANCE
THE "RD BABY DE-LUXE" AMPLIFIER

Now accepted as the most outstanding low priced amplifier, no other similarly priced amplifier has ALL these features:

* High sensitivity
* 3 inputs, mic., P.U., radio
* Push-pull output
* 24 DB N.F.V.
* Range 30-20,000 cps
* 5 watts output with less than 5 per cent. total harmonic distortion
* Complete stability
* Detachable pre-amplifier with engraved control panel
* Accurate compensation for H.M.V. and Decca standard, American NAB, and Decca LP records
* Suitable for use with the Decca 3378 playing-desk direct.

Built by craftsmen to the highest standards, this amplifier represents the finest value available in High Fidelity to-day.

PRICE :

- Main amplifier £11 10 0
- Pre-amplifier £4 10 0
- Engraved panel 10 0

Full details forwarded on request.

DEMONSTRATED DAILY

At our Greenwich premises—10 a.m.-6 p.m., also in London at Webb's Radio Ltd., Gramophone Exchange Ltd., and Tele-Radio (1943) Ltd.

ROGERS DEVELOPMENTS CO.
116, Blackheath Road, GREENWICH, London, S.E.10

B.P.L. TEST SETS
NOW AVAILABLE
AT NET PRICES

B.P.L. UNIVERSAL TEST SET
£5 - 10 - 0

B.P.L. SUPER RANGER 1,000 Ω/v.
£12 - 5 - 0

B.P.L. SUPER RANGER 20,000 Ω/v.
£14 - 10 - 0

Prices include postage and packing and are applicable to Home Market only.

Send your order direct to:

BRITISH PHYSICAL LABORATORIES
HOUSEBOAT WORKS, RADLETT, HERTS
Tel.: Radlett 5674-5-6

3 WAY PICK-UP FOR STANDARD AND LONG PLAYING RECORDS

Goldring introduces Pickup 150, incorporating the first British Magnetic Cartridge. Cartridge 150X available separately. The movement of this Cartridge is of balanced armature construction, and combines high output with wide frequency range and exceptionally low tracing distortion. Needle armature is easily replaceable by user.

<table>
<thead>
<tr>
<th>Data</th>
<th>78 r.p.m.</th>
<th>45 and 33 1/3 r.p.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armature resonance</td>
<td>16 kcs</td>
<td>9 kcs, equivalent to 150 mV</td>
</tr>
<tr>
<td>Output</td>
<td>70 mV</td>
<td>on 78 r.p.m.</td>
</tr>
<tr>
<td>Tracking weight</td>
<td>15-20 grms</td>
<td>7 grms.</td>
</tr>
<tr>
<td>Load</td>
<td>30 kΩ</td>
<td>30 kΩ</td>
</tr>
<tr>
<td>Stylus</td>
<td>0-03 code blue</td>
<td>0-01 code yellow</td>
</tr>
</tbody>
</table>

Comprehensive information service on circuitry available to users. Write for full technical information to—

ERWIN SCHARF
49-51a, DE BEAUVOIR ROAD, N.I
Telephone: CLissold 3434
LAWRENCES
NEW RADAR EQUIPMENT

PROJECTION RADAR INDICATING EQUIPMENT
MODEL V.G. TYPE CG-55AEB

Designed and produced by the General Electric Co.,
U.S.A., for installation in ships, shore stations, aerodromes
or research establishments. This Projection Type Plan
Position Repeater performs a duty similar to the con-
ventional P.P.I., except that the pattern is optically
projected on to a large flat horizontal surface, instead of
being observed directly on a cathode ray tube face. The
complete unit is approximately the size of a desk, 35in.
high, with the viewing screen occupying half of the top
surface, and is operated as a plotting table, on which the
actual map-in-motion is portrayed. Navigational calcu-
lations are made directly at will from a concealed 30 yard
roll supply.

The full screen may be employed to map an area of 4,
10, 20, 80, or 200 mile radius, the choice of range being
made by a range selector switch. Electronically generated
range marks divide the screen into concentric rings for
ranging purposes. In addition, two bearing scales are
projected on to the screen, one being fixed to present
true or relative bearing, the other rotating to present
heading. The radar pattern is therefore far more signi-
ficant, because it can be observed simultaneously with the
pattern of actual bearing.

The equipment is designed for operation with any radar
system, of repetition rates of from 60 to 1,000 per second,
and only very limited arrangements are necessary to
provide the video, trigger and synchro inputs.

BRIEF TECHNICAL SPECIFICATION

Power requirements : 115 v. A.C. Single phase, or 230 v. with
auxiliary transformer. Total consumption 1755 watts.

Input requirements : Trigger voltage 5-40 volts peak. Video voltage
3 volts peak max.

Ambient Temperature Limits of Operation : 0°C to +50°C.

Screen Diameter : 25in.

Picture Diameter : 24in.

Image Visibility : Image on Projection Screen may be observed
in the presence of approx. 1 foot candle of indirect lighting.

Optical System : Highest grade lenses and components by Bausch &
Lomb.

Range Accuracy : ± 1% of total designated range.

Bearing Accuracy : Within ±5 degrees.

Overall Dimensions : 59in. x 34in. x 35in.

Weight unpacked : 1,000 lb.

The exceptional quality of construction, together with the numerous
operational advantages, are several of many features which make
this advanced equipment of outstanding interest in the field of Radar
Engineering.

RADAR INDICATING EQUIPMENT
MODEL VE. TYPE CAY-55ADV

Manufactured by The Westinghouse Mfg. Co., U.S.A. A Plan Position
Indicator Repeater of conventional type employing a seven inch
electro-magnetic cathode ray tube. Instrument is fully enclosed in
console type housing.

BRIEF TECHNICAL SPECIFICATION.

Power requirements : 115 v. A.C. Single phase, or 230 v. with
auxiliary transformer.

Range Calibrations : Electronic, with switched selection of ranges
4, 20, 80, 200 miles radius.

Overall Dimensions : 13in. x 24in. x 26in.

Full technical details of the above equipments available on request.

LAWRENCES, 61 BYROM ST., LIVERPOOL, 3
Phone : CENtral 4430

Take Euclid...

... the man who transformed Maths from a
Lower Forum headache into
a world philosophy -
simply by concentrating
on one task.

Using the same
theory of doing one job
really well, Parmeko have
concentrated on the
design and production of
transformers for the
Electronic and Electrical
Industries.

PARMEKO of LEICESTER
Makers of Transformers for the Electronic and Electrical Industries.
E.M.I. TRAINING for the best posts

E.M.I. INSTITUTES, THE COLLEGE BACKED BY THE GREATEST ELECTRONIC INDUSTRY IN THE EMPIRE.

Daytime Attendance Courses
Radio, Television, and other Industrial Electronic subjects. Principles and Practice of Radio—1 year. Telecommunications Engineering—2 years, leading to City & Guilds Final Certificate. Electronic Engineering—3 years (including one year’s practical training in E.M.I. Factories)—leading to C & G full Technological Certificate.

★ Next courses commence April, 1951. ★
Early enrolment is advised.
Moderate terms. Facilities for easy payment.

Write for free Brochure to the Registrar, Dept. 16

E.M.I. INSTITUTES
10. PEMBRIDGE SQUARE, NOTTING HILL GATE, LONDON, W.2. TELEPHONE: BAYSWATER 5131/2

Models 44 SUBSTANDARD MULTI-RANGE METER

A self-contained precision instrument for general laboratory use and for calibrating first grade single or multi-range meters. The accuracy on the 44 range is Substandard on D.C. and within ± 0.5% on A.C.

★ These meters are made with the greatest care and have been supplied for a number of years to the leading laboratories at home and abroad.

ELECTRONIC INSTRUMENTS LTD
17, PARADISE ROAD - RICHMOND - SURREY - ENGLAND

MAINS TRANSFORMERS & CHOKEs

All “Varley” products are manufactured from the highest quality materials. Transformers, etc., are individually wound and have interleaved windings with ample insulation, ensuring freedom from breakdown.

The comprehensive range of Shielded and Open type Transformers available meets the requirements of every circuit. Write for list, etc.

MADE BY

OLIVER PELL CONTROL LTD
CAMBRIDGE ROW - WOOLWICH - S.E.18
Telephone: WOOLWICH 1422

R.C.A. TRANSMITTER ET4336 COMPLETE

NEW AIR TESTED
Available in quantity for export.

SPECIAL TERMS TO LICENSED AMATEURS.

FREQ. METERS BC 221 few still available.

TRANSMITTING TUBES — ALL TYPES.

5GR 522, VHF Trans/Rec.

BC 375E TUNING UNITS
New, with cases, TU 7/8/9/10 and 26B. 12/5 each, + 2/- carriage.
TU 5 and 6, 22/- each, + 2/- carriage.

Send for details of our compact EX/TX F-U-40. 40 watts.

(HALLICRAFTERS)
McELROY-ADAMS MFG. GROUP LTD.
46 GREYHOUND ROAD, LONDON, W.6.
When a factory needs a sound system—and it's a short few modern factories can do without—a need something that will reproduce words and music accurately and without distraction. This is the end to which G.E.C. sound systems were designed and built, and it is one of the reasons why they are so well suited to modern factories. The other reasons? They count in unobtrusive loudspeakers, simple installation, easy controls and economy too. If you need a sound system in your factory we'll be glad—without obligation to you—to give you details and estimates. You will find out address below.

SOUND SYSTEMS BY

G.E.C.

THE ENTIRE PARCEL AS LISTED FOR ONLY 21/- carriage free

(RETAIL WIRELESS WORLD)

WE OFFER THE FOLLOWING BARGAIN PARCEL OF GOVERNMENT SURPLUS COMPONENTS IN BRAND NEW CONDITION

1 Main Suppressor.
1 60kF Potentiometer.
2 50 mf. 12 v. Condensers with Back.
1 International Detal Valveholders.
2 10 Mw I.F. Transformers.
1 500 mf. 12 v. Condenser.
1 Single Pole Tangle Switch.
1 Metal Box 500 v. Paper Condenser.
1 0.1mfd. 600 v. Paper Condenser.
1 0.1mfd. 750 v. Paper Condenser.
1 0.03mfd. 600 v. Paper Condenser.
6 Yard Lengths Assorted Coloured Sleeving.
1 5/way Push Button with & Change Switch on each Switch.
1 2mfd. Paper Condenser, 1,000 v D.C. Test.

NEW ARRIVALS:

600 ohms D.C. RESISTANCE

1 MAINLY SUPERIOR COMPONENTS FROM THE FOLLOWING MANUFACTURERS:

SIEMENS & HIRSCH

D.C. COIL RESISTANCE

1,900 TYPES : 0.1 ohms to 42,000 ohms.
600 TYPES : 0.1 ohms to 9,200 ohms.

3,000 TYPES : 1.9 ohms to 42,000 ohms.
600 TYPES : 100 ohms to 9,200 ohms.

ALSO LARGE STOCKS OF DOUBLE & TRIPLE-WOUND AND SLUGGED COILS.

CONTACTS:

1 Mains Suppressor.
1 60kF Potentiometer.
2 50 mf. 12 v. Condensers with Back.
1 International Detal Valveholders.
2 10 Mw I.F. Transformers.
1 500 mf. 12 v. Condenser.
1 Single Pole Tangle Switch.
1 Metal Box 500 v. Paper Condenser.
1 0.1mfd. 600 v. Paper Condenser.
1 0.1mfd. 750 v. Paper Condenser.
1 0.03mfd. 600 v. Paper Condenser.
6 Yard Lengths Assorted Coloured Sleeving.
1 5/way Push Button with & Change Switch on each Switch.
1 2mfd. Paper Condenser, 1,000 v D.C. Test.

THE ENTIRE PARCEL AS LISTED FOR ONLY 21/- carriage free

(IRELAND 22/-)

TRANSFORMERS

L.T. TRANSFORMERS

4 v. 2 a. Tapped Pri.
5 v. 2 a. Tapped Pri.
6 v. 2 a. Tapped Pri.
8 v. 2 a. Tapped Pri.
9 v. 2 a. Tapped Pri.
10 v. 2 a. Tapped Pri.
11 v. 2 a. Tapped Pri.
12 v. 1 a.
13 v. 1 a.
14 v. 1 a.
15 v. 1 a.
16 v. 1 a.
17 v. 1 a.
18 v. 1 a.
19 v. 1 a.
20 v. 1 a.
21 v. 1 a.
22 v. 1 a.
23 v. 1 a.
24 v. 1 a.
25 v. 1 a.
26 v. 1 a.
27 v. 1 a.
28 v. 1 a.
29 v. 1 a.
30 v. 1 a.
31 v. 1 a.
32 v. 1 a.
33 v. 1 a.
34 v. 1 a.
35 v. 1 a.
36 v. 1 a.
37 v. 1 a.
38 v. 1 a.
39 v. 1 a.
40 v. 1 a.
41 v. 1 a.
42 v. 1 a.
43 v. 1 a.
44 v. 1 a.
45 v. 1 a.
46 v. 1 a.
47 v. 1 a.
48 v. 1 a.
49 v. 1 a.
50 v. 1 a.
51 v. 1 a.
52 v. 1 a.
53 v. 1 a.
54 v. 1 a.
55 v. 1 a.
56 v. 1 a.
57 v. 1 a.
58 v. 1 a.
59 v. 1 a.
60 v. 1 a.
61 v. 1 a.
62 v. 1 a.
63 v. 1 a.
64 v. 1 a.
65 v. 1 a.
66 v. 1 a.
67 v. 1 a.
68 v. 1 a.
69 v. 1 a.
70 v. 1 a.
71 v. 1 a.
72 v. 1 a.
73 v. 1 a.
74 v. 1 a.
75 v. 1 a.
76 v. 1 a.
77 v. 1 a.
78 v. 1 a.
79 v. 1 a.
80 v. 1 a.
81 v. 1 a.
82 v. 1 a.
83 v. 1 a.
84 v. 1 a.
85 v. 1 a.
86 v. 1 a.
87 v. 1 a.
88 v. 1 a.
89 v. 1 a.
90 v. 1 a.
91 v. 1 a.
92 v. 1 a.
93 v. 1 a.
94 v. 1 a.
95 v. 1 a.
96 v. 1 a.
97 v. 1 a.
98 v. 1 a.
99 v. 1 a.
100 v. 1 a.
101 v. 1 a.
102 v. 1 a.
103 v. 1 a.
104 v. 1 a.
105 v. 1 a.
106 v. 1 a.
107 v. 1 a.
108 v. 1 a.
109 v. 1 a.
110 v. 1 a.
111 v. 1 a.
112 v. 1 a.
113 v. 1 a.
114 v. 1 a.
115 v. 1 a.
116 v. 1 a.
117 v. 1 a.
118 v. 1 a.
119 v. 1 a.
120 v. 1 a.
121 v. 1 a.
122 v. 1 a.
123 v. 1 a.
124 v. 1 a.
125 v. 1 a.
126 v. 1 a.
127 v. 1 a.
128 v. 1 a.
129 v. 1 a.
130 v. 1 a.
131 v. 1 a.
132 v. 1 a.
133 v. 1 a.
134 v. 1 a.
135 v. 1 a.
136 v. 1 a.
137 v. 1 a.
138 v. 1 a.
139 v. 1 a.
140 v. 1 a.
141 v. 1 a.
142 v. 1 a.
143 v. 1 a.
144 v. 1 a.
145 v. 1 a.
146 v. 1 a.
147 v. 1 a.
148 v. 1 a.
149 v. 1 a.
150 v. 1 a.
151 v. 1 a.
152 v. 1 a.
153 v. 1 a.
154 v. 1 a.
155 v. 1 a.
156 v. 1 a.
157 v. 1 a.
158 v. 1 a.
159 v. 1 a.
160 v. 1 a.
161 v. 1 a.
162 v. 1 a.
163 v. 1 a.
164 v. 1 a.
165 v. 1 a.
166 v. 1 a.
167 v. 1 a.
168 v. 1 a.
169 v. 1 a.
170 v. 1 a.
171 v. 1 a.
172 v. 1 a.
173 v. 1 a.
174 v. 1 a.
175 v. 1 a.
176 v. 1 a.
177 v. 1 a.
178 v. 1 a.
179 v. 1 a.
180 v. 1 a.
181 v. 1 a.
182 v. 1 a.
183 v. 1 a.
Send S.A.E. for our current 20-page lists. Our C.O.D. service is cancelled for the time being. Our insulated terminals, screw filler, new unused and dry, 4/8. Post 10d., 3 for 12/-. pokit, 4 amps., 7/6, post 10d., both types are new unused. ACCUMULATORS, 2 v. 10-AH, slider knob, base mounting, 1 ohm 12 amp., 3/6. poet 10d. Ditto 14 ohms tapered 1 to 7/6, poet 7d. RHEOSTATS, variable slider type, wire-wound on vitreous steel, ebonite 2-way communication, self-energised, no battery required, new boxed, ready for use, long, new In metal containers, 15/- pair, post 1/6. TELEPHONE SETS. consists of 2 post 1/-. MAGSLIPS lie. TRANSMITTER No. 5, MS. 11, size approx. 3in. dia., tin. in metal case, plate mounted, new unused, part value approx. 12/6, our price, 5/-, electrolytic conds., 10-H to mfA, nothing choke, 400 plus 400 ohm 2-pole heavy perfect stock, these are far superior to civilian type eliminators, easily worth 90/-, our price new condenser, neon stabilizer etc., in metal cases Osise varies) approx. 11in. x Bin. >16in., output 120 v. at 30 m/A, fitted high grade transformer, rectifier (metal), chokes and TERY ELIMINATORS by "Atlas," "Ekco," etc., A.D. input 200-230-250 v., D.C. lin. long 7/32in. shafts, standard base mounting, new boxed, 10/-. poet 10d. BAT- shunt motor, 24-27 v. at 1.5 amp., 4in. oz. torque, 5,400 r.p.m., fitted double-ended GENERATORS TYPE 34. 3-commutator, input 24 v, output 6.3 v. at 2 amp. and 200 in smart metal cases 5in. x 4}in. x 2in., new boxed with circuit,12/6. Poet If-. MOTOR transformers, switch etc., operates from 6 or 12 v. L.T. and 220-290 or 350 V. H.T., AMPLIFIERS TYPE BC-212-D, complete with two 605 valves, input and output direct drive, 4-digit 9999 (last digit is 1/10th.), unused, 5/.., post 3d. INTERPHONE 1/6 set, post 3d., 15/- doz., poet 1/-. VEEDER COUNTERS, enclosed pattern with cable grip, shrouds can be changed to plugs if required, new perfect stock, 1/8 set, post 3d., 15/-, poet 1/-. VEEDER COUNTERS, enclosed pattern with direct drive, 4-digit 9999 (last digit is 1/10th.), unused, 9/-, post 3d. INTERPHONE ELIMINATORS TYPE BC-0-D, complete with two 653 valves, input and output transformers, switch etc., operates from 6 v. and 12 v. 6.3 v., 10/- doz. Ditto 6.3 v., 3 for 12/-. In small metal cases 5in. x 4}in. x 2in., new boxed, 15/- for 2 new boxed 15/- each, 10d. poet 10d. BATTERY ELIMINATORS by "Allen," "Eaton," etc., A.C. input 200-230-240 v., D.C. output 120 v. at 5 amp. or 240 v. at 10 amp., new boxed in metal cases, 9/-, poet 10d. Ditto, 10/-, post 15/-. RADIOMENDERS, LTD., 123-5-7 Parchmore Road, THORNTON HEATH, SURREY. Established 16 years. Tel. RIV 3279. We specialise in AMATEURS’ WINDINGS, TRANSFORMERS ALL TYPES, CHOKES, PICK-UP COILS, INSTRUMENT COILS, Etc.最高 workmanship Good Delivery ★ RADIOMENDERS, LTD. Television & Radio Apparatus, Transformer & Coilwinders. 123-5-9 Parchmore Road, THORNTON HEATH, SURREY LIV 2261. Trade enquiries invited. Established 16 years. MANUFACTURERS, RETAILERS AND SERVICE ENGINEERS We have in stock P.M. SPEAKERS - CONDENSERS - CHOKES - MAINS and OUTPUT TRANSFORMERS - RESISTORS and many other attractive items at low prices. SEND FOR OUR MONTHLY BULLETIN, which includes special bargain lines we have been successful in purchasing. — TRADE ONLY SUPPLIED — V.E.S. WHOLESALE SERVICES LTD. 11, GUNNERSBURY LANE, ACRON, W.3
WIRELESS WORLD Classified Advertisements

NEW RECEIVERS AND AMPLIFIERS

UNIVERSAL ELECTRONIC PRODUCTS 36, Marylebone High St. London, W.1. We buy secondhand, we offer for sale, and carry a wide range of high quality amplifiers and radio equipment. Tel: 3464.

MIDLAND RADIO COIL PRODUCTS offer a wide range of coils - transformers and chokes - tuning units - transformers and chokes. Write for details. Tel: 1539.

NEW YORK PHILARMONIC, 35 St Johns Wood Road, London, N.W.8. Specialising in high quality secondhand equipment and components. Tel: 3512.

THE WILLIAMSON AMPLIFIER

The widest possible audio range — the lowest possible distortion and an output of 20 watts... these critical demands of the designer of this new famed amplifier implied the finest that technical skill and craftsmanship could provide for every component. From the inception of the Williamson Amplifier in 1947, Partridge have specialised in transformers and chokes. The all-important output transformer was the special care of Partridge, and this "Williamson specification" component is now available for a varied range of impedances. Secondary windings are brought out as eight separate sections of equal impedance. Stock types comprise 0.95 ohm, 1.7 ohm, 3.6 ohm and 7.5 ohm sections.

WIRELESS WORLD

NEW RECEIVERS AND AMPLIFIERS

TELEVISION receiver, built to special order of the Ministry of Defence, ROCHESTER, Kent. Tel: 7822.

MANY people arrive after quality reproductions, but in most cases the price of associated equipment makes this impossible; however, we believe that the R.T.M.C. version of the new world-famous Williamson amplifier which itself cannot be improved upon and is still pre-eminent in its class, you are, however, quite safe in ordering by mail and the results will astound you (even the most critical), 7-valve model £25/10, 4-valve model with built-in pre-amps £20. Also available: speakers; tubes, etc., supplied, write for details (3d stamp) to: --R.T.M.C. (Ealing), Ltd., 34 V.H.F. telephony mobile transmitters, type 82, by Straton & Sons. £24. £14. £6. £16.

PAUL PARRY'S 12 volt vibrator power packs for National type 1-10 receivers. £12/10 for both; or with IND VCR97 e.h.t and 92 MASTERRADIO 12 volt vibrator power packs for National type 1-10 receivers. £8. £12. £12. £16.

SEVERAL radio-tuned amplifiers for disposal. 100-115 mosfet complete, terms. Delivery to London at fraction of original cost, c.a.e. details to J. Mort, BCM/HIFIDEL, W.C.1.

HALLICRAPER BOO14 speech amplifiers complete all tubes, perfect condition: £18. £20. £40. £40. £60. £80. £80. £100. £100. £110. £200. £220. £220. £250. £250. £300.

RADIO UNLIMITED, Elm Rd., London, E.17. "Williamson" amplifier (which incidently cannot be rivalled) specially priced speakers and pick-ups and there are many such components purchased. Tel: 7257.

RADIO DEVELOPMENT Co. (M.O. Dept.), 162 Blackheath Rd. S.E.10. "Williamson" amplifier (which incidently cannot be rivalled) specially priced speakers and pick-ups and there are many such components purchased. Tel: 7257.

R. ADCOCK, Clerk of the Standing Joint Committee, 16244.

GATEWAY 9 V.H.F. telephony mobile transmitters, type 82, by Ferranti, 100-165 mosfet complete, terms. Delivery to London at fraction of original cost, c.a.e. details to J. Mort, BCM/HIFIDEL, W.C.1.

ELECTRONIC PRODUCTS, 36, Marylebone High St. London, W.1. We buy secondhand, we offer for sale, and carry a wide range of high quality amplifiers and radio equipment. Tel: 3464.

WIRELESS WORLD Classified Advertisements

TELEVISION receiver, built to special order of the Ministry of Defence, ROCHESTER, Kent. Tel: 7822.

MANY people arrive after quality reproductions, but in most cases the price of associated equipment makes this impossible; however, we believe that the R.T.M.C. version of the new world-famous Williamson amplifier which itself cannot be improved upon and is still pre-eminent in its class, you are, however, quite safe in ordering by mail and the results will astound you (even the most critical), 7-valve model £25/10, 4-valve model with built-in pre-amps £20. Also available: speakers; tubes, etc., supplied, write for details (3d stamp) to: --R.T.M.C. (Ealing), Ltd., 34 V.H.F. telephony mobile transmitters, type 82, by Straton & Sons. £24. £14. £6. £16.

PAUL PARRY'S 12 volt vibrator power packs for National type 1-10 receivers. £12/10 for both; or with IND VCR97 e.h.t and 92 MASTERRADIO 12 volt vibrator power packs for National type 1-10 receivers. £8. £12. £12. £16.

SEVERAL radio-tuned amplifiers for disposal. 100-115 mosfet complete, terms. Delivery to London at fraction of original cost, c.a.e. details to J. Mort, BCM/HIFIDEL, W.C.1.

HALLICRAPER BOO14 speech amplifiers complete all tubes, perfect condition: £18. £20. £40. £40. £60. £80. £80. £100. £100. £110. £200. £220. £220. £250. £250. £300.

RADIO UNLIMITED, Elm Rd., London, E.17. "Williamson" amplifier (which incidently cannot be rivalled) specially priced speakers and pick-ups and there are many such components purchased. Tel: 7257.

R. ADCOCK, Clerk of the Standing Joint Committee, 16244.

GATEWAY 9 V.H.F. telephony mobile transmitters, type 82, by Ferranti, 100-165 mosfet complete, terms. Delivery to London at fraction of original cost, c.a.e. details to J. Mort, BCM/HIFIDEL, W.C.1.

ELECTRONIC PRODUCTS, 36, Marylebone High St. London, W.1. We buy secondhand, we offer for sale, and carry a wide range of high quality amplifiers and radio equipment. Tel: 3464.

WIRELESS WORLD Classified Advertisements

TELEVISION receiver, built to special order of the Ministry of Defence, ROCHESTER, Kent. Tel: 7822.

MANY people arrive after quality reproductions, but in most cases the price of associated equipment makes this impossible; however, we believe that the R.T.M.C. version of the new world-famous Williamson amplifier which itself cannot be improved upon and is still pre-eminent in its class, you are, however, quite safe in ordering by mail and the results will astound you (even the most critical), 7-valve model £25/10, 4-valve model with built-in pre-amps £20. Also available: speakers; tubes, etc., supplied, write for details (3d stamp) to: --R.T.M.C. (Ealing), Ltd., 34 V.H.F. telephony mobile transmitters, type 82, by Straton & Sons. £24. £14. £6. £16.

PAUL PARRY'S 12 volt vibrator power packs for National type 1-10 receivers. £12/10 for both; or with IND VCR97 e.h.t and 92 MASTERRADIO 12 volt vibrator power packs for National type 1-10 receivers. £8. £12. £12. £16.

SEVERAL radio-tuned amplifiers for disposal. 100-115 mosfet complete, terms. Delivery to London at fraction of original cost, c.a.e. details to J. Mort, BCM/HIFIDEL, W.C.1.

HALLICRAPER BOO14 speech amplifiers complete all tubes, perfect condition: £18. £20. £40. £40. £60. £80. £80. £100. £100. £110. £200. £220. £220. £250. £250. £300.

RADIO UNLIMITED, Elm Rd., London, E.17. "Williamson" amplifier (which incidently cannot be rivalled) specially priced speakers and pick-ups and there are many such components purchased. Tel: 7257.

R. ADCOCK, Clerk of the Standing Joint Committee, 16244.
THE HARTLEY-TURNER "21 SPEAKER"

As fleshed out in our last advertisement the price of the 21 Speaker must be raised. For some time the price of £9 has been subsidised out of our past earnings, but we cannot do this indefinitely. As from January 1st, 1951, the price will be £10 10s. od. but this will also include a greatly improved and stronger cone cradle. Until this is ready and while our present stock of cradles lasts we will still accept orders at £9, but there aren't many available at this price.

H. A. HARTLEY CO. LTD.
152 HAMMERSMITH ROAD
LONDON, W.6.
Riverside 7387

SOUTHERN RADIO'S WIRELESS BARGAINS

SPEAKERS. Celestion 6, 20v, 500 watts. £5. 8, 20v, 500 watts. £7.50. R. A. P. ROBBERSTEIN COMPUTERS. Complete, brand new, with motors, zero beams, blowers, etc., etc. Ideal for model motor, etc. The best component value ever offered. £5.95. each, plus J. & B. CUBRE HOLE CUTTERS. Adjustable from 1", up to 3" for use on wood, metal, plastics, etc. 8.615 CONTACT TIME SWITCHES. By Smith or Venner. 10-hour movement with the thermostatic control. 2 amplifiers per second. Complete in soundproof case. 89p. plus 1/4.

BAND GENERATORS. 4 volts at 3 amps. Complete with cond. and 6.7.6. RADIO COMMUNICATION INDICATORS, with internal Selorn motor. 140p. 150p. 160p.

INVERTER UNIT. Type: (600V) 250c. 506c. A.C. input 27 volts at 28 amperes. 4,000 watts. 140p. 150p. 160p. 8.515 CRANKCASE LONG PLAYING ATTACHMENT. For use with L.P. Records on overarm Record Player. £2.95. JR4/5.

RECEIVERS, AMPLIFIERS, SUPLUS AND SECONDHAND

MARCHION CR100 12-valve communication receiver. £29.60. JANETTE model 12, 12-valve, 120w. £49.

ALL with Breguet relay cabinet and cradle. 8.760 BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.

BATTERY chargers, 4 models. 2, 5, 6, 18 volt D.C. KIT. An7/5. 200. 8.465 NEW DYNAMOS, MOTORS, ETC.

NEW motor-driven 2200 cycles, 250v, 25a. 186/7 B.E.R. 69, Church Rd., Moseley, Bham.
A WINDOW WORTH LOOKING INTO

Meters. 0-200 microamp, 2amp, 15amp. Each.

CATHODES (R.T.S.I) single hexagon. 2 inputs, cost price £45, hardly used, sold for £10 each.

A wave-directly-calibrated modulated Rig (Gen. for 50v., but adjustable). Complete.

Valve testers. Avo type RC 60/016, complete with lightweight case and Continental mains plug, £10.

SIGNAL OSCILLOSCOPE (R.T.S.) single beam. 2 inputs, cost price £45, hardly used, sold for £10 each.

A VO valve tester £9; Mullard B100 £5; E.F.H. Diode Stage (E.A.50) and Cathode follower (E.F.O); Mullard Valve Testers.

BABY BASSOON?

Type 339 by Cox. £25.00-£25.50. Complete with valves and rubber mat.

BABY TAYLOR

Bassoon. £16.16.9 complete with lightweight case and Continental mains plug.

SPEAKER MATCHING TRANSFORMERS

ex-Govt. (or professional radio or television engineer, or Service Man, can afford to be without. Contains:

1 End Trimmer. 1 Side Trimmer.

1 Wyaxis Switch Contact Adjuster.

1 Low Capacity Trimmer.

1 Screwdriver.

1 Set of Feeler Gauges.

1 Set of six Box Spanners from 1 to 8.B.A.

In duralum. In black drake black for metal case.

APLION TEST METER

1,000 ohm per volt on all D.C. and A.C. ranges, 10 volt, 100 volt and 500 volt D.C. and A.C. 50 m.A. and 500 m.A. D.C. Resistance up to 200,000 ohms (3,000 ohm centre scale) with self-contained battery. 5,000 volt range with a 250 volt A.C. plate. Supplied with test prods, multi-contact test leads, scale easily readable.

SPYING EYES IN THE SKY

Scientifically designed detector antennas for 6 to 15Mc/s. Lists. The Aerial Engineering Co. Ltd., Lambeth, Norwick.£86

A GOOD quality condenser, 7.5 in. (202461) turntable and rubber mat. £24.11 from stock.

WIRELESS WORLD back 1'/1 cut-outs 6-24v 60a, 7/6.-Whish. Point Quay, 16300 Box 7678.

L.0036in diam, 8oz; 116, Blackheath Rd., S.E.10.

A VO valve tester £9; Mullard B100 'seo,e £3; Valve tester £5; E.F.H. Diode Stage (E.A.50) and Cathode follower (E.F.O); Mullard Valve Testers.

WIRE recorder constructional details, 1-73.

2平板 receiving set, 3.000ft reel.

3 dialling set, telephone exchange.

4 switchboard.

5 master station.

6 slave station.

7 1,000 volt battery.

8 telephone exchange.

9 switchboard.

10 master station.

11 slave station.

12 battery switchboard.

13 battery switchboard.

14 battery switchboard.

15 battery switchboard.

16 battery switchboard.

17 battery switchboard.

18 battery switchboard.

19 battery switchboard.

20 battery switchboard.

21 battery switchboard.

22 battery switchboard.

23 battery switchboard.

24 battery switchboard.

25 battery switchboard.

26 battery switchboard.

27 battery switchboard.

28 battery switchboard.

29 battery switchboard.

30 battery switchboard.

31 battery switchboard.

32 battery switchboard.

33 battery switchboard.

34 battery switchboard.

35 battery switchboard.

36 battery switchboard.

37 battery switchboard.

38 battery switchboard.

39 battery switchboard.

40 battery switchboard.

41 battery switchboard.

42 battery switchboard.

43 battery switchboard.

44 battery switchboard.

45 battery switchboard.

46 battery switchboard.

47 battery switchboard.

48 battery switchboard.

49 battery switchboard.

50 battery switchboard.

51 battery switchboard.

52 battery switchboard.

53 battery switchboard.

54 battery switchboard.

55 battery switchboard.

56 battery switchboard.

57 battery switchboard.

58 battery switchboard.

59 battery switchboard.

60 battery switchboard.

61 battery switchboard.

62 battery switchboard.

63 battery switchboard.

64 battery switchboard.

65 battery switchboard.

66 battery switchboard.

67 battery switchboard.

68 battery switchboard.

69 battery switchboard.

70 battery switchboard.

71 battery switchboard.

72 battery switchboard.

73 battery switchboard.

74 battery switchboard.

75 battery switchboard.

76 battery switchboard.

77 battery switchboard.

78 battery switchboard.

79 battery switchboard.

80 battery switchboard.

81 battery switchboard.

82 battery switchboard.

83 battery switchboard.

84 battery switchboard.

85 battery switchboard.

86 battery switchboard.

87 battery switchboard.

88 battery switchboard.

89 battery switchboard.

90 battery switchboard.
NEW COMPONENTS

E. T. Transformation Limited, 20-22 Little Britain, London, E.C. 10. Transforms are made in types, output transformers and chosen, open or closed types. Transfer types are utilized to individual specification, singles or in quantity.

WIRELESS & ENGINEERING COMPANY LIMITED, Ltd., 781, Harrow Rd., N.W.10. Ladbroke 2484. 1000 WATT TRANSFORMER FOR F.M., at $1.30 each.

OSBORNE RADIO PRODUCTS, LTD., Dept. C3, Balsall Hill, Coventry, S.1400. (See Wireless World for new addresses)

A COMPLETE TV SET—SOUND, VISION, TIME BASES, POWER PACK AND SPEAKER ON ONE 1355 CHASSIS, 54.5 x 15, 600, 600 v., 22 parts, a host of useful valves, and a host of components; ideal for scopes, etc. in sealed maker's cars, 65/-.

RECEIVER 21. A battery receiver covering 3.7-3.7 and 8-31 Mc/s, these have slighty damaged switch terminals (wires inaccessible) and are supplied complete with the vibrator pack 21 (6 v. input). Complete with 9 valves and circuit. 37/6.

TRANSFORMER 21. The transformer unit which is associated with the above receiver, covering the same frequencies, and transmitting speech, CW or MCW. Complete with valves, the PA coils and coils of these have been stripped by the Ministry of Supply, but may be replaced without difficulty. Complete with circuit, 25/-.

CONTROL UNIT 21. In sealed maker's cars, these contain 3 E505's, 2 EB34's, 12-3 A.C., 12-3 volt power, 8 pots and a host of switches etc. ONLY 19/-.

POWER UNIT S414B. Separate HT and LT transformers, each individually controlled. 200-250 v. 200, 200-250 v. 12, 3 A.C. and 3 v. D.C. make this a useful unit; they crackle (after proper tuning) and light for HT and LT and fuses make it attractivemissed by the Ministry of Supply, but may be replaced without difficulty. Complete with circuit, 25/-.

STEP-DOWN TRANSFORMERS. Auto transformers (230/115 v.), these will handle some 75 watts. OUR PRICE 6/4.

AMPLIFIER 1135A. Twin inputs, three output valves (EB33, EB32 and EB31), circuitry and our "10 min. conversion data" ALL FOR 15/-.

RECEIVER 3547. Fresh supplies of these have just arrived. With 15 E505's, 8 other useful valves, hundreds of components, and a "Pye 45 Mc/s strip," NOW ONLY 63/12.

INDICATOR 198. Complete with 3' (VCR139A) tube, eight useful valves, and a host of components; ideal for scopes, etc. in sealed maker's cars; 40/-.
THE MODERN BOOK CO.

91)

American Radio Servicing.
Short Wave Wireless Communication.
Sound Reproduction.

8.1. Condensers Carton type 8 mfd
Williamson O.P.T. co Specification at
FMI26 12.6 Tapped 6.3 v. 3 a

*F350 350/0-350 90 m/A
O315 350/0-350 150 m/A 6.3 v. 6 a., 6.3 v,
*350-0-350 70 m/A, 6.3 v. 2 a.

*Above 4 have L.T.s 3-4-6.3 v. 4 a. 0-4-5 v, 23.
*S 300 300/0-300 110 m/A
*S 250 250/0-250 110 m/A

281

Ultrasonics.

10H 150 m/A choke

HALF SHROUDED OR SUNK

BAKED.

NEW ELECTRONIC SUPPLIES Co.

22s. 6d. Terman.

2 volumes. By Dowsett & Walker.

15s. 10s. 6d.

Postage 6d.

1949-50.

By 4/9

at 4/9

at 17/3

at 22/6

at 21/3

for microphones or miniature extension speakers.

including black crackle case sire 414inx31/4in x 154in
for VCR 139 tube 2 potentiometers, various re-
delay!

gods e.w.o. only; money back guarantee; don't

-110-200/250v, 50c/s. 8 valves, 650/0.67 w., 1000/1500 m/A.
rectifiers, power supply, smoothing. 29/6; primary.
300-0-300v. 80mA. 4v 2a.

2/3; 50 25v, 1/3: 100 12v. 1/-: 50 12v 9d out-
post pd.; electrolytics. 8mf 450v, 2/3; 16+8 350v
2.0mA 5011, 210v 15mA 6.3v 5a. 12/6; all trans. post paid:
smoothing. 29/6; primary. 0-110-210/240v. 50c/s, 300-0-300v. 80mA. 4v 2a.

1/3; 500 212, 2,500/212. 2,750/212. 3.000/
2.000/212, 2,500/212. 2,750/212.

*oden cored, size 1a/sin d.a..

I have heard glowing reports of your system and am very
I have successfully passed the P.M.G. amateur's licence
,

Read these extracts from letters requesting a copy of the Candler " Book of Facts."

"I have heard such lavish praise from members of the London Correspondence School, and
looking into some Book of Facts that I write for your ' Book of Facts."

"I am an absolute beginner, but knowing of the effanbe

"I am just a beginner of Morse and I would like to improve.

know enough of your system and its merits

I could do nothing but give all the honours

be nothing but give all the honours

If I have any Technical skill, I should be glad if you would forward

"I am just a beginner of Morse and I would like to improve.

satisfaction that you have found,

read the ' Book of Facts'."

"I have been here in the country, and it is necessary to have my system of

value for money,' but also for your kindness and personal

"I would like to take this opportunity of thanking you,

for your ' Book of Facts'."

"I know of your system and its merits

satisfaction that you have found,

I could do nothing but give all the honours

my Candler system, but I am told he would be able to

 constituants."

I could do nothing but give all the honours

I have heard glowing reports of your system and its merits

I could do nothing but give all the honours

I have heard glowing reports of your system and its merits

I could do nothing but give all the honours

I have heard glowing reports of your system and its merits

I could do nothing but give all the honours

I have heard glowing reports of your system and its merits

I could do nothing but give all the honours

I have heard glowing reports of your system and its merits

I could do nothing but give all the honours
SUPACOILS - SUPACOILS MAIL ORDER OFFICE

GRAM components of I.B.SL8 SPIN WHEEL Tuning Assembly Tape & Wire Recording CHASSIS. MODEL 30 TUNING UNIT consisting of MODEL 40 coil packs, aligned at 26/9 each.

A comprehensive catalogue. A selection of servicing and constructional information which will assist you in YOUR receivers, chassis, components aligned together as matched R.F. stage, aligned, 70/3 each.

Coil Packs, aligned, 40/11 each. H.F. components, 99/6 inc. NEW Klaxon, 200-250 volt, 50 cycle, a.c. motors.

NEW NEW EX-R.A.F. English Electric electronic ignition testers, type Rs. 59.25/6. 200 volts a.c., 50 cycles, 6/1/40 volts d.c.: £8 each STEP-DOWN transformers, input 250 v., output 63.5-6.3 volts 19 amps: £12/6/6.

ADJUSTMENT pattern heavy duty 11. trans. transformers, primary 90 volts 9 amp., 15 volts 15 amp. NEW Jenson cinema speakers, screened cable. £4/10, less valves; new moving coil microphones and radio apparatus, relays, power packs, oscillograph and radio equipment, relays, power packs.

A LARGE assortment of various ex-W.D. radar, and radio equipment, power pack units, geometrical units, photostructural apparatus available, e. g. for micrometers, P. FRANKS, 58 New Oxford St., London, W.C.1. Tel. Museum 9594.

NEW Armstrong chassis are designed and built for those who demand something more than ordinary commercial receivers can offer. Very better -- very few details of the range are given below, but we'll gladly send you full specifications and data on any models that interest you if you drop us a line.

Model RF103/3. A 10-valve all-wave radio chassis for A.C. operation. 200-250 volts.

Model 125/2. A 14-valve five-band radiogram chassis with three S.W. bands down to 100 metres. A.C. 200-250 volts.

Best between Aerial and Earth

Rayco rotary converters, input 115 volts a.c., output 110 volts a.c., 50 cy., 150 watts; £4/15 each.

NEW Armstrong chassis are designed and built for those who demand something more than ordinary commercial receivers can offer. Very better -- very few details of the range are given below, but we'll gladly send you full specifications and data on any models that interest you if you drop us a line.

Model RF103/3. A 10-valve all-wave radio chassis for A.C. operation. 200-250 volts.

Model 125/2. A 14-valve five-band radiogram chassis with three S.W. bands down to 100 metres. A.C. 200-250 volts.

Best between Aerial and Earth

Rayco rotary converters, input 115 volts a.c., output 110 volts a.c., 50 cy., 150 watts; £4/15 each.
WIRELESS WORLD

WIRELESS WORLD

COMPONENTS-SURPLUS AND SECONDHAND

WALTON'S of Wolverhampton.

HAVE you received a copy of our New Year Bulletin? If not, and you desire a copy, send a s.a.e. now. You will be amazed at the value we offer.

Here are a few examples:

- SNPI Cathode Ray Tubes, brand new in makers' cases. 301. Post 4d.
- D.I. Photo Electric Cell Drifts, 60/- each, post 6d.
- 455K Ceramic Crystal Filter Drift in case. 50/-.
- Quality Tuner's Vees, 7/6 each, post 1/-.
- 2 Valve Mine Detector Amplifiers, 18/-, post 6d.
- U.F. Transmitter-Receiver with all valves, 75/-, cores, steel mast 22 ft. in sections. 20/-, carriage 5/6. Multi Ratio Mains Transformer (N.T.2). 200 Volt mains, large range of outputs from 6 to 12, 50, 119, etc., can be obtained. All instructions given. Ideal for small hall or church chargers, etc. 12/- each, post 1/-.
- 2 Valve Mine Deflexor, 18/-.
- Bush Receiving Positions with complete 6 foot Henley 3 core housed at end of handle. Under continuous soldering demand whether for the occasional household job or continuous soldering. These five models will satisfy practically every requirement. The very successful 1950 Exhibitions will again be held in 1951 and preparations have already commenced, this will be the outstanding event of the coming year and is free to members; full information is contained in the brochure and other material which, with current material, appears in the Journal; a few special issues are available.

Our Type 81 is the ideal brand for your high quality amplifier. It has a lively performance with very low distortion. Fitted variable selectivity 7C.C. and 80K.C. Water bathed output 16-50m, 150-500m, 900-1600m.

A REMARKABLE ACHIEVEMENT IN FILTER DESIGN

E.M.G.

STEAP-CUTTING

INFINITELY VARIABLE FILTER

- Ours are available at 4,000 e.p.s.
- Average sleepiness of not less than 50 per cent.
- Connects with secondary of output transformer to give 1-5 thumb, [sic] control.
- Specially valuable for use with new microphone records.
- Stutter reduces needle noise on ordinary records with minimum high note loss, and suppresses high pitched interference with no loss.
- No distortion, and no appreciable loss of volume.

Have you received a copy of our New Year Bulletin? If not, why not send a s.a.e. for one? You will be amazed at the value we offer.

The most suitable for your high quality amplifier is the Type 81. Our Type 81 is the ideal brand for your high quality amplifier. It has a lively performance with very low distortion. Fitted variable selectivity 7C.C. and 80K.C. Water-bathed output 16-50m, 150-500m, 900-1600m. Using latest Medium Valves B256, B270, EP41, EP39.

Our Type 81 is the ideal brand for your high quality amplifier. It has a lively performance with very low distortion. Fitted variable selectivity 7C.C. and 80K.C. Water-bathed output 16-50m, 150-500m, 900-1600m.

E.M.G.

HANDMADE GRAMOPHONES, LTD.

Newman St., Oxford St., W.1.

A REARKABLE ACHIEVEMENT IN FILTER DESIGN

E.M.G.

STEAP-CUTTING

INFINITELY VARIABLE FILTER

- Ours are available at 4,000 e.p.s.
- Average sleepiness of not less than 50 per cent.
- Connects with secondary of output transformer to give 1-5 thumb, [sic] control.
- Specially valuable for use with new microphone records.
- Stutter reduces needle noise on ordinary records with minimum high note loss, and suppresses high pitched interference with no loss.
- No distortion, and no appreciable loss of volume.

Have you received a copy of our New Year Bulletin? If not, why not send a s.a.e. for one? You will be amazed at the value we offer.

The most suitable for your high quality amplifier is the Type 81. Our Type 81 is the ideal brand for your high quality amplifier. It has a lively performance with very low distortion. Fitted variable selectivity 7C.C. and 80K.C. Water-bathed output 16-50m, 150-500m, 900-1600m. Using latest Medium Valves B256, B270, EP41, EP39.

E.M.G.

HANDMADE GRAMOPHONES, LTD.

Newman St., Oxford St., W.1.

A REARKABLE ACHIEVEMENT IN FILTER DESIGN

E.M.G.

STEAP-CUTTING

INFINITELY VARIABLE FILTER

- Ours are available at 4,000 e.p.s.
- Average sleepiness of not less than 50 per cent.
- Connects with secondary of output transformer to give 1-5 thumb, [sic] control.
- Specially valuable for use with new microphone records.
- Stutter reduces needle noise on ordinary records with minimum high note loss, and suppresses high pitched interference with no loss.
- No distortion, and no appreciable loss of volume.

Have you received a copy of our New Year Bulletin? If not, why not send a s.a.e. for one? You will be amazed at the value we offer.

The most suitable for your high quality amplifier is the Type 81. Our Type 81 is the ideal brand for your high quality amplifier. It has a lively performance with very low distortion. Fitted variable selectivity 7C.C. and 80K.C. Water-bathed output 16-50m, 150-500m, 900-1600m. Using latest Medium Valves B256, B270, EP41, EP39.

E.M.G.

HANDMADE GRAMOPHONES, LTD.

Newman St., Oxford St., W.1.

A REARKABLE ACHIEVEMENT IN FILTER DESIGN

E.M.G.

STEAP-CUTTING

INFINITELY VARIABLE FILTER

- Ours are available at 4,000 e.p.s.
- Average sleepiness of not less than 50 per cent.
- Connects with secondary of output transformer to give 1-5 thumb, [sic] control.
- Specially valuable for use with new microphone records.
- Stutter reduces needle noise on ordinary records with minimum high note loss, and suppresses high pitched interference with no loss.
- No distortion, and no appreciable loss of volume.

Have you received a copy of our New Year Bulletin? If not, why not send a s.a.e. for one? You will be amazed at the value we offer.

The most suitable for your high quality amplifier is the Type 81. Our Type 81 is the ideal brand for your high quality amplifier. It has a lively performance with very low distortion. Fitted variable selectivity 7C.C. and 80K.C. Water-bathed output 16-50m, 150-500m, 900-1600m. Using latest Medium Valves B256, B270, EP41, EP39.
WANTED, EXCHANGE, etc.

WANTED, BC-350, Hallicrafters transmitters.

REPAIRS AND SERVICE

MAINS transformers rewound, new transformers to any specification. MOTOR wires and complete overhauls; first-class component reconditioned.

F.M. ELECTRIC Co., Ltd., Potters Bridge, Warwick Gate, Nottingham. Est. 1917. Tel. Wood 1799

OUTBREAKS transformers and reconditioned

any make, prompt service.—Model Loudspeaker Service, 24a, Burleigh Rd. Oxford

MAINS transformers rewound or constructed to any specification; pumps delivery.

Bede Transformer Co., Ltd., Bedsey, Beds Trading Estate, Jerro

TELEVISION, radio and amplifier repairs or modifications; home-built receivers aligned and tested; quota service by return, any type transformer or coil supplied.

REPAIRS to moving coil speakers, coned.

coils fitted, field, re-call or original, new transformers, coned coils rewound; guaranteed satisfaction, prompt service.

A SMB repairs.—So delay transformers, mains, AC./DC. output, output, radio to your specification: vacuum illumination; transformers, reconditioning, new; transformers, our full-engineering facilities.

A. C. B. Ad. Ltd., Vanguard Works, Bovingdon, Herts.

REPAIRS—E.H.T. mains and O.P. transformers. Rebuilt coils and chokes; also transformers; new transformers designed to any specification; all guaranteed; fully guaranteed.

RADIO MAINTENANCE SERVICE for guaranteed reconditioned wireless receivers and large scale radio and television apparatus.

SERVICE to move and set down; home built receivers; prompt service.

SERVICE to move and set down; home built receivers; prompt service.

A REPAIR to move wireless service; reliable, neat, return of post service; your television requirements promptly executed. E.H.T. AND N.H.T. transformers; stamp for quotations—H. F. 157a, Aston Rd., Oldham.

Wiring transformer or coil supplied.

BARGAINS rewound and cones fitted; field, re-call or original, new transformers, coned coils rewound; guaranteed satisfaction, prompt service.

REPAIR AND SERVICE TO MOVING COIL SPEAKERS, CONED.

COILS FITTED, FIELD, RE-CALL OR ORIGINAL, NEW TRANSFORMERS, COIN COILS REWOUND; GUARANTEED SATISFACTION, PROMPT SERVICE.

L.S. REPAIR SERVICE, 18, TRINITY RD., UPPER TOOTING, LONDON, S.W.17. BALHAM 2559.

REPAIRS TO MOVING COIL SPEAKERS, CONED.

COILS FITTED, FIELD, RE-CALL OR ORIGINAL, NEW TRANSFORMERS, COIN COILS REWOUND; GUARANTEED SATISFACTION, PROMPT SERVICE.

L.S. REPAIR SERVICE, 18, TRINITY RD., UPPER TOOTING, LONDON, S.W.17. BALHAM 2559.

REPAIRS TO MOVING COIL SPEAKERS, CONED.

COILS FITTED, FIELD, RE-CALL OR ORIGINAL, NEW TRANSFORMERS, COIN COILS REWOUND; GUARANTEED SATISFACTION, PROMPT SERVICE.

L.S. REPAIR SERVICE, 18, TRINITY RD., UPPER TOOTING, LONDON, S.W.17. BALHAM 2559.

A REPAIR TO MOVE WIRELESS SERVICE; RELIABLE, NEAT, RETURN OF POST SERVICE; YOUR TELEVISION REQUIREMENTS PROMPTLY EXECUTED. E.H.T. AND N.H.T. TRANSFORMERS; STAMP FOR QUOTATIONS—H. F. 157A, ASTON RD., OLDHAM.

WIRING TRANSFORMER OR COIL SUPPLIED.

SUSPENSI

BARGAINS

MANUFACTURERS & BANKRUPT STOCKS

LIMITED SUPPLIES ONLY

We can offer for immediate delivery

 Receivers: RI155, 1335 and 184 Brand New in original cases. Dinghy Radio Transmitter SCR 578.

Brand New Accumulators

Charging Control Boards with Auto. cut out, 3 amp. 220 v.

2 Volt Accumulators, suitable for Radio or Model Driving, House Lighting, etc. Heavy Mass Type Plates. Pre-charged. Only need filling. Size : 7 in. x 2 in. x 2 in.

Storage Secondary Portable Canadian Hart Batteries, 6 v. 100/135 amp.

Celluloid (R.A.F.) Portable 2 x 100/135 amp. Accumulators 7 amp. H.R.S. Size : 3 in. x 3 in. x 1 in.

Your enquiries are invited

WHOLESALE AND EXPORT ONLY

For further bargains call at our Counter or write for 12-page Bulletin.
QUALITY TUNERS from £10-10-0 plus P.T.

WILLIAMSON AMPLIFIERS from £18-18-0

GOODSELL LTD.

40, Gardner St., Brighton, 1, Sussex

Phone : Brighton 26735

London Representative : Holley's Radio Stores, 285, Camberwell Road, London, S.E.5

LABORATORY TEST EQUIPMENT

High Grade test equipment supplied by Hatfield Instruments is GUARANTEED equal in every way to the maker's specification. All instruments are either New or Rebuilt in our own workshops.

We have in stock standard Signal Generators by well-known makers, with frequency ranges from 94 K/c.s. to 700 M/c.s. Three typical instruments are listed below:

2. SIGNAL GENERATOR, type TF762A, by Marconi Instruments. Frequency range 430-610 M/c.s. Modulation variable up to 50 per cent. Condition as new.

3. SIGNAL GENERATOR, type TF430B, by Marconi Instruments. Frequency range 50 K/c.s. to 50 M/c.s. Condition as new.

PRECISION WAVEMEETER, type 7248, by G.R. Frequency range 16 K/c.s.-50 M/c.s.

BEAT FREQUENCY OSCILLATOR, type TF138, by G.R.

VIDEO FREQUENCY OSCILLATOR, by Boston, type 140A. Frequency range 10 c/s-30 K/c.s., and 30 K/c.s.-35 M/c.s.

PRECISION CONTACT DRIVEN FORKS and Phonie Motors by Mullard.

For use at low frequency.

Send for comprehensive list of Signal Generators, Valve Voltmeters, Waveformers, etc.

HATFIELD INSTRUMENTS

175, Uxbridge Rd., Hanwell, LONDON, W.7.

Telephone : EAL. 0779.
POTENTIOMETERS

Manufacturing

96

POST RADIO SUPPLIES

FORMERS AND TUBES, ALL DIAMETERS.

CRYSTAL DIODES

REIJANG

B.A. SCREWS, NUTS, COTTON AND SILK COVERED

SUPREME CRYSTAL

RELIANCE

non-inductive, etc.

SEND STAMP FOR LISTS.

Wire Ends for Easy Fixing.

NOW AVAILABLE

4/6 each, postage 2fd.

Most gauges available.

LATEST, SMALLEST, TRADE SUPPLIED.

J. T. FIVLER

WIRE POLE ESTATE, BEXLEY, KENT.

Tel.: Bexleyheath 7216

SITUATIONS VACANT

SERVICE Engineer required with experience of radio or television equipment, to join a well-known firm. Apply: B. H. Morgan, Ltd., 27, Addington Square, Camberwell, S.E.5.

TESTERS for electronic equipment, experience in Government contract work desirable, good conditions and high salary. London, W.1 district. Apply in writing to Box 7710.

ASSISTANT mechanical engineer required by large, well-known firm to undertake mechanical design of interesting new electronic equipment. Good conditions and prospects. Apply, quoting Ref. DH, to Box 3735.

RADIO manufacturers require assistant general manager, must be thoroughly experienced in all departments; excellent position for first class man with initiative and ability. Write giving full details of past work and salary required, Box 7614.

ELECTRO MEDICAL Service (inside and outside) engineers required; knowledge of radio and television and ability to undertake customer's installation. Application in writing only, stating particulars of past work and salary required. Box 1232.

WHIZARDS, of Baker Street and Hampstead. need radio or television engineers of wide experience. Permanence on attractive and progressive terms for really competent men. Write fully to Service Manager, Whizards, 204, Haverton Hill, N.W.3.

ASSISTANT aerial research and development engineer required for laboratory at Hovis Abbey: must be capable of designing novel oscillators and other test equipment; salary from £175 p.a. according to experience. Write, quoting Ref. GD, to Box 1261.

K. COLE, Ltd., require radio sales representatives for North of England. Applicants must have experience of motor industry and knowledge of radio technique preferred; submit fullest details regarding experience and salary required. -E. E. Works, Southend-on-Sea.

VACANCY occurs for a senior draughtsman on a well-known M.O. standard for design of new model and test gear for use on interesting electron-electrical products. Apply to Personnel Officer, Mullard Electronic Research Laboratory, Salfords, nr. Redhill, Surrey.

K. COLE, Ltd., require technical representatives for car radio division; previous experience of car radio installations essential; must be prepared to travel and reside near London; submit fullest details regarding experience and salary required. -E. E. Works, Southend-on-Sea.

SPECIALIST scientific or experimental officer required for progressive electronic laboratory: First or Second Class Honours degree in pure or applied physics, or electrical engineering (electronics) preferred; salary according to experience. Apply to Personnel Officer, Mullard Electronic Research Laboratory, Salfords, nr. Redhill, Surrey.

E. E. Works, Southend-on-Sea.

RADIO and television installation engineer required in service dept. of E. London firm: must have experience of work with all leading agencies; must be trustworthy and able to hold a clean driving licence; salary £8 per week; permanent position. Apply (references required) to L. B., Leyton Radio, 828, High Rd., Leyton, E.13. 17.9

TECHNICAL assistant required for development of electronic test gear for vacuum tube department; qualifications similar. Apply to Personnel Manager, M.O. Valve Co., Redhill. 17.9

A NUMBER of senior and junior vacancies for radio, radar, electronic, television, development, service engineers, draughtsmen, wiremen, testers, inspectors, etc., urgently required by large television engineers. Write in confidence, Technical Employment Agency, 179 Gresham St., W.1. 17.9

QUALIFIED junior physicist required for ex- perimental work on television receiver ray tubes and allied vacuum tubes, age 21-28, previous experience of vacuum work desirable, but not essential. Full time, start at age, experience and salary required. -D. C., 24-30, Bridge Rd., Leyton, E.13.

ELECTRONIC engineer required for development work by expanding industrial electronic team of well-known manufacturing company, previous experience of servo mechanisms and industrial process control, together with degree or B.E. equivalent desirable. Write, giving details, quoting Ref. EBN, to box 7153.

RADIO valve manufacturers require sales representative, M.O. Valve Co. have vacancies for qualified engineers in connection with distribution, manufacture and application of radio valves; please apply by letter stating particulars and salary required to—Personnel Manager, The M.O. Valve Co., Osmers Works, Brook Green, W.12. 17.9

DRAUGHTSMEN (electrical) with experience of schematic or detail wiring diagrams, are invited to apply for positions in the Drawing Office of the English Electric Co., Ltd., 9, Redhill Works, Redhill, Surrey. Write, giving particulars stating ref. 140, to Central Personnel Services, English Electric Co., Ltd., 9, Redhill Works, Redhill, Surrey. 17.9

SITUATIONS VACANT

Get this FREE Book!

ENGINEERING OPPORTUNITIES reveals how you can become technically-quali-

fied at home for a highly-paid key-appointment in the vast Radio and Tele-

vision Industry. In 176 pages of intensely in-

teresting matter, it includes full details of our up-to-

theminute home study courses in all branches of

TELEVISION and RADIO, A.M. Brit.

J. R.E. City & Guilds, Special Tele-

vision, Servicing, Sound Film Projection, Short

Wave, High Frequency, and General Wireless Courses. We definitely Guarantee

"NO PASS—NO FEE"

If you're earning less than £2 a week, this enlightening book is for you. Write for your copy today.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

3860 SHAKESPEARE ROAD

17/18 STRATFORD PLACE, LONDON, W.1.

WALTON'S OF WOLVERHAMPTON

The leading Midland Depot for Ex-

Here are a few recent additions:

VEEDER (U.S.A.) COUNTERS 0-999 in steps of 1/10. Special Bargain Price, 5/- each.

EX - M E T H O D I C A L instrument engineer required 30 television service engineers.—Write in

applications for all positions with the prospects good. —Apply, quoting Ref. 17119,

“WALLTAG'S” of BRIGHTON, 17119

to Box 7312.

100 AMPS.

-24/30, Bridge Rd., Lower Sydenham.

WE assure you of the highest conditions and high salary, London, W.1.

F. T. GIBSON, Ltd., require technical

director. Ardente, Ltd., 309, Oxford St., London, W.1. 17.9

K. COLE, Ltd., require technical

representatives for car radio division; previous experience of car radio installations essential; must be prepared to travel and reside near London; submit fullest details regarding experience and salary required. -E. E. Works, Southend-on-Sea.

Terms.

EXHIBITORS

ELECTRIC AUTOMATIC SWITCHES

CLOCKWORK 1 to 100 AMPS.

35/- 7 to 35 DAYS.

All guaranteed for a year.

Write for illustrated lists:

DONOHOO, 2 UPPER NORFOLK ST., NORTH SHIELDS, NORTHERNBR.

AUTO-OFFICE

BARGAINS

“WALLTAG’S” TOUCHING DOWN. 17/18 STRATFORD PLACE, LONDON, W.1.

ALL INFRARED HEATERS ARE NOW GUARANTEED.

WE definitely Guarantee

"NO PASS—NO FEE"

If you're earning less than £2 a week, this enlightening book is for you. Write for your copy today.

WALTON'S WIRELESS STORES

203, STAVELEY RD., WOLVERHAMPTON

Callers Only)

SITUATIONS VACANT

ELECTRONIC engineers require production
experience.—Box 7619.

Prime engineering and drafting role.

WANTED: design for design and manufacture
of apparatus for production testing of
radio, television, and electronic circuits and
components; salary according to experience
in this field. Full particulars to Personnel
Manager, Mullard Ltd., Crownhill Rd.,
E.5. C.0. Co. Ltd., Middlesbrough.

A well-experienced man is required for a
position in the electronics section. The
applicant should have had practical
experience in the manufacture of vacuum
tubes. Letter of application required.

A MECHANICAL engineer required to
work on a wide variety of electronic and
electrical equipment, and to supervise
production. Full particulars to Personnel
Manager, Mullard Ltd., Crownhill Rd.,
E.5. C.0. Co. Ltd., Middlesbrough.

A WELLY-KNOWN company in the
radio industry has a vacancy for an
electronically-minded draftsman; the
applicant should have a thorough
familiarity with all modern electronic
circuitry. Croydon.

WANTED: an experienced electronic
engineer to work on high-frequency
equipment. Full particulars to Personnel
Manager, Mullard Ltd., Crownhill Rd.,
E.5. C.0. Co. Ltd., Middlesbrough.

A WELLY-KNOWN company in the
radio industry has a vacancy for an
electronically-minded draftsman; the
applicant should have a thorough
familiarity with all modern electronic
circuitry. Croydon.

A WELLY-KNOWN company in the
radio industry has a vacancy for an
electronically-minded draftsman; the
applicant should have a thorough
familiarity with all modern electronic
circuitry. Croydon.

WANTED: an experienced electronic
engineer to work on high-frequency
equipment. Full particulars to Personnel
Manager, Mullard Ltd., Crownhill Rd.,
E.5. C.0. Co. Ltd., Middlesbrough.

AN EXPERIENCED man is required for a
designing and drafting role in the design
of electronic circuits and components.

A WELLY-KNOWN company in the
radio industry has a vacancy for an
electronically-minded draftsman; the
applicant should have a thorough
familiarity with all modern electronic
circuitry. Croydon.

A WELLY-KNOWN company in the
radio industry has a vacancy for an
electronically-minded draftsman; the
applicant should have a thorough
familiarity with all modern electronic
circuitry. Croydon.

A MECHANICAL engineer required to
work on a wide variety of electronic and
electrical equipment, and to supervise
production. Full particulars to Personnel
Manager, Mullard Ltd., Crownhill Rd.,
E.5. C.0. Co. Ltd., Middlesbrough.

A WELLY-KNOWN company in the
radio industry has a vacancy for an
electronically-minded draftsman; the
applicant should have a thorough
familiarity with all modern electronic
circuitry. Croydon.

A WELLY-KNOWN company in the
radio industry has a vacancy for an
electronically-minded draftsman; the
applicant should have a thorough
familiarity with all modern electronic
circuitry. Croydon.
RELIABILITY & ACCURACY

SITUATIONS VACANT

RADIO/RADAR development engineers urgently required. Several positions available. Applications are invited from senior and junior development engineers, preferably those with experience of radar or microwave techniques, who are capable of directing research and development programs or components to service specifications. Successful candidates will enjoy high status and salaries commensurate with great national importance. Write quoting reference 176.35 to Radio & Television Laboratories, 28 Altrincham St., Coventry.

RECORD ELECTRICAL Co. LTD.

Instruments are provided for a variety of purposes.

"RECORD " ELECTRICAL INSULATION TESTING SETS are daily giving a wide range of useful and reliable service. The results obtained are more highly significant than those given by the conventional methods of testing, and these results are easily and accurately compared with those obtained on other pieces of equipment.

ELECTRICAL MEASURING INSTRUMENTS

"RECORD " ELECTRICAL MEASURING INSTRUMENTS are a valuable asset to any laboratory where electrical measurements are required to be taken with accuracy and reliability. They are supplied in a variety of types to suit a wide range of requirements, and are particularly suitable for the testing of electrical insulation.

MARCONI'S WIRELESS TELEGRAPH Co., Ltd.

A popular radio service for the transmission of messages between all parts of the world. The service is available to both civil and military operators. The company has a large network of radio stations and is well equipped to handle all types of traffic.

Magnetic tape recording is an essential part of modern communication systems. It is used in a variety of applications, from audio and video recording to data storage and retrieval. The magnetic tape is coated with a layer of magnetic material that can be magnetized to represent different bits of information.

RECORDING EQUIPMENTS AND COMPONENTS

OSCILLATOR UNIT

Constructed on small scale for use in crystal-controlled oscillators, provides r.f. for r.f. and bias at 46 kcs. Requires 250 volts, h.t., and 6.3 volts for operation. Complete with oscillator coil assembly.

OSCILLATOR COIL ASSEMBLY

Complete with oscillator coil assembly, requires 250 volts, h.t., and 6.3 volts for operation. Complete with oscillator coil assembly.

RECORD/REPRODUCE HEAD

Low impedance. High quality response. Totally enclosed. Gap length 1 mm. 32 s.p.m.

REPRODUCE HEAD

As above but gap length 0.3 mm. Suitable for 2-speed systems.

ERASE HEAD

Capable of erasing new high coercive force tape used with oscillator unit above. 80 s.p.m.

TAPE

New high coercive force tape suitable for high fidelity recording at slow speeds, 7 in. (500 ft.). write 110/-.

INSTRUCTION TRANSFORMER

Radio 1,000 ohms. Suitable for head to grid step up. Melsea core. 170a.

TRADE ENQUIRIES INVITED.

COVENTRY RADIO

Component Specialists since 1925

SPECIAL OFFER OF NEW RESISTORS -1 Watt

A selection of popular values

100 FOR 10/- POST PAID

(500 for 50/- post paid)

SEND NOW WHILE STOCK LASTS

COVENTRY RADIO, 189 Dunstable Road, Luton, Beds.
Our NEW 7-VALVE CHASSIS type RGI135 with Full details will be sent on request.

This famous chassis ranging from 7-14 valves and ARMSTRONG CHASSIS. We hold full stocks of 5-valve chassis, costing only HAYES RG/120 RADIOGRAM CHASSIS.

We have cash immediately available for laboratory use.

We have completed, or be exempt from, military service. Can...
TELEVISION

The only school in Great Britain devoted solely to training in television. Postal course: prospectus free—C checkpoints, Commercial Television School, 13, North Ave., London, W.1. [0501]

The Institute of Phonetic Radio Engineers have available home study courses in every phase of radio and television engineering, specializing in the practical training of apprentices in the radio and television component industries. Free literature. Reference: The Academy of Instructional Text. [0988]

We hold the largest and most comprehensive stock of new components and units, such as valves, transformers, etc., in the United Kingdom. Your specific requirements are invited.

Wholesale and Export only.

ANDERS RADIO LTD.

167, HAMPSTEAD ROAD, LONDON, N.W.I. E.U.S.: 1639 EST. 1928

HOME & OVERSEAS RADIO DEALERS & SERVICE ENGINEERS

are invited to write for our new 1950-51 Season's list. T. C. C. Capacitors, Eric radios, suppressors, volume controls. Tungsram valves, Brass BA Screws etc., and hundreds of other items. Postage 3d. Inland, 2/- Overseas.

Air Mail.

A. W. F. RADIO PRODUCTS

TATLER CHAMBERS, THORNTON ROAD, BRADFORD.
Condenser leadership - from the inside!

Rolled seamed and soldered joints complete hermetic sealing.

Robust fixing flanges securely fastened to can: for upright or inverted mounting.

Moulded-in terminals in high-grade material: proof against humidity and tracking.

Oil or petroleum jelly impregnation and filling giving safe performance over wide temperature range.

Uniform windings of high-grade paper and foil: non-inductive assembly: conservatively rated.

These are a development of the old green-cased types on which the T.C.C. reputation was founded and embody the experience and improvements of almost fifty years of condenser manufacture. Their features, pin-pointed above, add up to reliability under all conditions of working. The fitting of low-loss moulded bushes extends up to the 5 kV. working range; whilst up to 20 kV., high-grade porcelain insulators, and the unique method of case seaming, ensure a completely hermetic seal. Internal construction follows the well-proved T.C.C. technique of winding non-inductively two or more layers of paper dielectric to each layer of solid aluminium foil, all petroleum jelly or oil impregnated under vacuum.

Tropical Paper Condensers

The Telegraph Condenser Co. Ltd - Radio Division - London - W.3 - Tel: Acorn 0061 (9 lines)
No corrosion after the equivalent of 25 years' exposure

ERSIN MULTICORE SOLDERED RADIO OPERATES NORMALLY AFTER SEVERE HUMIDITY AND TEMPERATURE TESTS

TESTS FOR OVERSEAS TECHNICIANS. Radio technicians overseas have asked for further proof that the flux residue from Ersin Multicore Solder is entirely non-corrosive. Accordingly, Multicore Research Laboratories recently carried out a test on an Ersin Multicore soldered Roberts Portable Radio chassis.

HIGH TEMPERATURE CYCLE. The chassis was subjected to a temperature cycle of 108-118°F, dew being deposited as the temperature fell, and evaporated as it rose. The cycle was repeated at 40 minute intervals, for a period equivalent to a year's external exposure at 15° hotter than the normal peak summer temperature in the Yangtse Valley, considered to be the world's worst climatic conditions, or more than 25 years' exposure in Europe or U.S.A.

SOLDERED JOINTS FREE FROM CORROSION. Despite the extreme conditions of temperature and humidity to which the chassis was subjected, tests showed that after connection of a loudspeaker and batteries it operated normally. After careful examination, all Ersin Multicore soldered joints were found to be completely free from corrosion or fungus growth.

Leading Television and Radio manufacturers in all parts of the world know that the efficiency of their equipment depends on the quality of the solder they use—that is why they use only Ersin Multicore Solder, the Finest Cored Solder in the World.