Wireless World
 BLECTRONICS
 Radio . Television

37-way moulded-on polypole coupler.

BICC

custom-built

POLYPOLE COUPLER SYSTEMS

BICC design and manufacture to customers' specific requirements polypole coupler systems incorporating flexible multicore cables. These systems cover a wide variety of sizes and types of cable each terminated with robust moulded-on couplers.

BICC polypole coupler systems are particularly suitable for the reliable outdoor interconnection of mobile radio or electronic control equipment.

Further information is contained in Publication No. TD TPC 5-available on request.

Wirolless World

ELECTRONICS, RADIO, TELEVISION

Managing Editor:
Editor :
HUGH S. POCOCK, M.I.E.E.
F. L. DEVEREUX, B.Se.

FEBRUARY 1959

In This Issure

VOLUME 65 No. 2

PRICE: TWO SHILLINGS

FORTY-EIGHTH YEAR OF PUBLICATION

Offices: Dorset House, Stamford Street, London, S.E. 1

Please address to Editor, Advertisement Manager or Publisher, as appropriate

Telephone:
WATerloo 3333 (65 lines)
Telegraphic Address;
"Ethaworld, Sedist, London."

51 Editorial Comment

52 Time Past-Spark and Arc By P. P. Eckersley
55 World of Wireless
57 Personalities
59 Evaluating Aerial Performance-1
By L. A. Moxon
By Thomas Roddam
By T. W. Bennington
74 Letters to the Editor
79 Technical Notebook
81 Relativity
By "Cathode Ray"
85. Short-Wave Conditions

86 A Television Prompter
By R. C. Whitehead
87 Cooling Airborne Electronic Equipment By L. A. Williamson

By f. F. Young

By "Diallist"
By "Free Grid"lliffe \& Sons, Ltd. 1959. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief abstracts or comments are allowed provided acknowledgment to the journal is given.
}

Introducing

an addition to

the Mullard

Technical Handbook

Data sheets on Mullard semiconductor and photoelectric devices are now available in a separate volume of the Mullard Technical Handbook. This addition to the Handbook Service enables circuit designers to be kept fully informed of the latest developments in semiconductor diodes, transistors ${ }^{\circ}$ and photocells.
The Mullard Technical Handbook is a loose-leaf publication, issued on a subscription basis and containing data sheets on all Mullard valves, tubes and semiconductor devices in current production.
From one to twenty pages are devoted to each type. They include standard ratings, recommended operating conditions and performance figures for various applications, limiting values, characteristic and performance curves.
Subscribers receive supplementary or revised sheets automatically as they are issued and thereby have early intimation of new introductions.
The Handbook now comprises five volumes with the following contents:-

Mullard

VOLUMES I and IA

Data on current Receiving and Amplifying Valves. Cathode Ray Tubes. Special Quality Types. Voltage Stabiliser and Reference Tubes. Cold Cathode Tubes. Small Thyratrons. Miscellaneous Valves and Tubes.

VOLUME 2

Data on earlier type Receiving and Amplifying Valves and Cathode Ray Tubes still in limited production for the maintenance of existing equipment.

VOLUME 3

Data on Power Valves for Transmitting and Industrial Equipment.
Power Rectifiers. Large Thyratrons. Microwave Devices.

VOLUME 4

Data on Semiconductor Diodes, Transistors, Photoconductive Cells and Photoelectric Cells.

Full details of this service, including subscription rates and application form, will be supplied on request.

Mullard Limited, T.S.D., Data and Publications Section, Mullard House, Torrington Place, London, W.C. I.

Stereophony on Trial

FOR more than a quarter of a century the subject of stereophony has been debated in the pages of this journal. Much of the argument in the past has of necessity been of a theoretical and speculative nature, but since the introduction of stereo tape and disc records and of experimental twochannel broadcasting by the B.B.C. it has been possible to refer hypothesis to the arbitration of experiment. Far from settling matters, this seems so far to have engendered fresh and even more vehement argument.

We think it likely that a public opinion poll conducted at this stage would find roughly equal numbers "for" and "against" but a far larger entry in the "don't know" category.

Those "for" would unquestionably include all who have been privileged to hear stereophonic reproduction in the research and development departments of the leading recording companies and of the B.B.C., under controlled conditions and with the best of equipment, regardless of cost. It would no doubt also include those who were fortunate in their choice of demonstrations at the Audio Fair and the Radio Show.

Among those "against" would be found the less fortunate in their choice of demonstrations, who may be forgiven for regarding the whole business as a "gimmick" to promote sales; also many "hif " enthusiasts who are loath to admit that their single-channel equipment, on which they have recently spent large sums of money and which they regarded as the ultimate in performance, is capable of improvement. Some find the enveloping effect of stereophony tiring or even mildly claustrophobic, though they are not so affected by the multiple reflections, by the walls of the room, of the sound from a single loudspeaker. This is understandable, because the listener's aurally conditioned reflexes-the result of past experienceand the activity of his imagination are important factors influencing his judgment. Whatever the system, the sounds presented to his ear are a complex from which he can accept or reject only a fraction of the available clues to build up his perception of the information conveyed. Many people find all they need in the sound resulting from the skilfully employed microphone techniques of single-channel broadcasting and recording. The aurally literal and less imaginative welcome stereophony as an obvious necessity.

The "don't knows" include many far from "clueless" individuals who derive real enjoyment
from single-channel sound, supplemented perhaps by individual methods of dispersal by reflection or the use of multiple speakers. They find good stereophonic demonstrations equally satisfying but not obviously superior, and understandably hesitate to incur the expense of revising and adding to their equipment. Hitherto no means has been available for comparing single-channel with stereo by a direct switch-over. Test records which merely switch off one channel would be obviously useless and paralleling the outputs of microphones placed for two-channel stereophony must always give poorer results than those obtained when there is complete freedom of choice of characteristics and position for the best single-channel balance. The only fair test is a comparison of simultaneous reproduction through single-channel and separate stereo channels, each system using its own microphones placed in the optimum positions, regardless of the technique being employed in the other system. Separately recorded disc records are possible, but might meet with synchronization difficulties on playback. Simultaneous recording on three tracks of a magnetic tape would be better but would require special apparatus. Broadcasting is obviously the best medium for tests of this kind and the B.B.C.'s experimental " live" stereophonic broadcast of January 24th, although not intended for this purpose, could have been so used. The closely spaced stereo microphones supplying the Network Three and TV sound channels were introduced and used separately from the normal microphone arrangement used for the regular singlechannel broadcast of "Saturday Club" which went out as usual on the Light Programme.

A final appraisal must await the initiation of a regular broadcast service which, among other things, may depend on some modification of the two audio channels to make them "compatible" and capable of being broadcast through a single transmitter. Now is the time, however, to start to reduce the ranks of the "don't knows" by presenting for their choice a clear comparison of the best single-channel technique with the best stereophonic reproduction.

Although many high-quality enthusiasts have enough gear lying around to mount this experiment for their own satisfaction, the onus of demonstrating to the public at large must rest with the more enlightened dealers-and, of course, with the B.B.C. on whose continued co-operation the success of such tests must ultimately depend.

Time Pust _ spark and arc

By P. P. ECKERSLEY, M.I.E.E., F.I.R.E.

This is the first of a series of articles in which the first Chief Engineer of the B.B.C. indulges in what he describes as anecdotage, filling in the background with an account of how the nineteenth century scientists established - the foundations upon which pioneering inventors built their systems. In a second article the author will be concerned with the progress of the revolution caused by the invention of the valve, a progress during which he was intimately concerned with the beginnings of broadcasting. He will round off his contribution with some predictions about the future.

FIRST heard about "wireless" in 1902; Welsh Ethel said " whatever will they think of next I should not wonder." Nannie thought it was flying in the face of Providence; I disbelieved the whole story; how could the signals persist in spite of a thick fog in the Channel?

We called it wireless in those days; in spite of the almost universal adoption of the term radio there are some respectable survivals. "As well," said a pompous young friend, "call a motor car a horseless "; that was more or less what we did call it sixty or so years ago-a "horseless carriage," which was despised by carriage folk. No one despised wireless-it frightened the Cable Interests not the horses.

A fifteen-year-old schoolboy contemporary circa 1906 is boasting his acquaintances; turning to me he says "I know the man who invented wireless"-he meant, of course, Marconi. By this time I had become passionately interested in the subject of wireless and I replied, sententiously, "No one, not even Marconi, invented wireless."

Try to trace the origins of any important technical development and you will follow a path, getting ever fainter, but often without any obvious end. Wireless, radio, what you will, uses electricity for its consummation. Who discovered electricity? Was it some dry Egyptian priest rubbing a dry cat with a dry cloth? Is this myth of some Greek playing about with amber viable? Can we cite Galvani jabbing at spasmodic frogs, or Cavendish emptying the electric fluid from his jars through his body (also convulsive) as the "onlie begetters"?

In fact it was all these and more: it was the inquisitive experimenters, towards the end of the Middle Ages, breaking away from the domination of the schoolmen; it was these who created the climate in which discovery and invention flourished and may now overwhelm us.

There are, to my way of thinking, four names which prick out the main course of the original development of wireless. They are Faraday, Maxwell, Hertz and Lodge; Faraday and electromagnetic induction, Maxwell and his famous equations, 'Hertz and his experimental confirmation, Lodge, the one who saw the importance of what he called
syntony, what we know as tuning; these established the fundamentals.

It would, however, give an altogether wrong impression to say that these four were the only ones. Even before Faraday we find a few predictions, while contemporary with Hertz and Maxwell was a growing awareness of the possibilities of signalling without wires.

Here is Huygens in 1678 propounding the undulatory theory of light (I always thought the postulate was due to Young in England who got into trouble for challenging Newton's corpuscular theory, but this by the way); Joseph Henry (1843) magnetizing needles at a distance of 200 feet; Ruhmkorff and his invaluable "coil," which we know as "The Induction Coil," inventing one of the essential components of a wireless system long before it was needed for that purpose.

Perhaps the most remarkable among the prophets was Professor R. E. Hughes who, in 1879, gave a private demonstration of the transmission and reception of wireless signals over a path some sixty feet in length. Tragically enough Hughes met with a member of that self-perpetuating species "the inverted Micawbers waiting for something to turn down "; this time a Cambridge professor who told Hughes that his demonstration was no more than a phenomenon of electromagnetic induction. Hughes, discouraged, did no more; he did not even publish his results (could one not wish for a like self-denial in unlike cases?). I underline the date, it was nearly eighty years ago that Hughes gave his (alas!) private demonstration.

In 1885 Edison was convinced that it was possible to signal over short distances without using an interconnecting conductor, he was also explicit on the mechanism which was truly based on electromagnetic induction-not the wireless waves which Hughes had generated and detected. Nevertheless Edison describes aerials earthed at one end-he showed pictures of yachts equipped with such as suitable for this novel means of communication.

In 1892 Sir William Crookes is quoted as saying that "electromagnetic waves of a yard or more ir. length" will penetrate material impervious to light waves. This implication of the use of the indoor
aerial was, however, after Hertz had published his. results; results which proved that it was possible to generate waves having the same nature but far greater length than light waves-waves susceptible to reflection, refraction, focusing albeit on a larger scale but fundamentally in the same way as light.

The essential features of what we now call radio are means to transmit and means to receive electromagnetic waves so that the basic inventions cover the generator, the radiator and the detector. Inasmuch as the system would have no value were it not possible to pick up wanted and reject unwanted signals, so tuning stands out as a fundamental necessity. We cannot say that any one person invented wireless but we should give all possible credit to Sir Oliver Lodge who was the first to point out the principles and patent the method for achieving what we now call selectivity.
Lodge's patent "Improvenents in Syntonized Telegraphy Without Line Wires" was applied for in May 1897 and granted on February 1st, 1898. Later on the invention was regarded as having such outstanding merit that its life was extended from the normal date of expiry in 1911 by seven years. It was then that the Marconi company bought it.

Still concerned with the pioneers, I believe that had it been possible to create continuous waves as easily as those arising from the damped trains of spark generation then Fessenden's clear appreciation of beat, or as we say heterodyne reception, would have received a wider recognition than in fact it did.

But Marconi, the "inventor" of wireless, how far can he be so acclaimed? There is this to be said in support, that the Marconi patents, remarkably "The Four Sevens," strengthened by Lodge's patent on tuning, did for some time give the company a virtual monopoly of wireless. So much for genesis.

Maybe an incident, maybe some predilection, maybe some inborn and therefore latent talent determines a career. "What's your Alf goin' to be when 'e grows up, Mrs. Blank?" "Oh! 'e's that fond of hanimals we'll make 'im a butcher "-thus Punch many years ago.

I am not sure about any latent talent or predilection that I might have had, but like a great many boys, I made inventions (among them perpetual motion), but I doubt I could have followed the career I was driven to had it not been for the influence of my brother T. L. Eckersley. The triggering incident is clear to me still. Returning from school, I was walking up the drive (so steep that we children would suffer dire penalties did we not spare the horses) when standing on the porch steps I saw my brother engaged upon winding startlingly green wire upon a rod of shining black ebonite.

My excited question drew the answer: "It's for some experiments with wireless, come and see."
Hardly pausing to receive my mother's aff ectionate greetings, I hurried upstairs to the Playroom-now no longer rocking-horsed nor doll's-housed-to see it filled with what were at once to me sensually exciting things, things of beauty, fearfully and wonderfully made, black-polished, smooth to the touch, awful in danger, exciting in mystery.

In retrospect, it is remarkable that I became, in the summer of 1905, one of only a few thousands who knew something about wireless. Today tens of millions!

My youth, otherwise "bathed in a celestial light," was illumined by a fascinated interest that even the prison walls has failed to dim: I sometimes wonder whether today's chartered engineers enjoy the same delights.
My brother it was, from an immeasurable height above, who taught me principles and practice. I was, I am still, more interested in the latter, an aspect of incurable romanticism, even in "the first fine careless rapture" I wanted to witness transmissions over distances greater than the compass of the Playroom's forty feet. Was there not talk of bridging the Atlantic by these same wireless waves that were proclaimed by our crackling spark? But brother Tom was more interested in their measurement and the mathematical interpretation of experimental results; a clear pressage of that genius which has now made "T.L." the recognized expert in wave propagation throughout the wireless world.

I went to school at Bedales; a school in many other ways remarkable and, in relation to my story, particularly so in that it encouraged its pupils to indulge such enthusiasms as seemed to authority to be worth encouraging. With this new-found interest in wireless it was not long before Robert Best and I had set up what was, in effect, a wireless experimental station in the school grounds, a station christened by some wag as "Wavy Lodge."

The name was apt because Best supported what was then known as the Lodge-Muirhead system (the counterpoise aerial being one of the distinc-

Photograph taken circa 1907 of Mr. Eckersley receiving signals on a receiver he constructed and installed in "Wavy Lodge," an experimental station set up in the grounds of Bedales School.
tions). In schoolboy rivalry I proselytized the Marconi system, the earthed aerial, in fact. There was no serious clash of opinion between us (it was typical of the Oxford-Cambridge, Harrow-Eton, Blue Fleet versus Red Fleet contentions of those days), but it did give our enterprise a certain cachet and so made it the easier for us to attract the necessary financial backing from our parents.

From the little hut "Wavy Lodge" (presaging perhaps another hut in a field at Writtle-another story) we transmitted signals and were delighted when these were picked up by the receiver at distances of transmission greater than that over which the spark, generating our waves, was audible; we listened to the grunting of the Eiffel Tower station and experimented with detectors. It was proved that a rusty pair of pliers was a better detector than carborundum (invented by one Dunwoody of Washington, D.C., in 1906), but was rivalled, because of a greater reliability, by a piece of arc-lamp carbon bearing upon a hack-saw bladeslightly oxidized. We also built a wavemeter to a design due to Fleming, who called it a cymometer (from cyma, a wave). An accompanying photograph shows the earnest young experimenter, with an expression reminiscent of the H.M.V. dog, supposedly hearing wireless signals rectified by some loose contact embodied in the "Wavy Lodge" receiver.

My vade-mecum at this time was Fleming's " Principles of Electric Wave Telegraphy" (first published April, 1906; I still have the 1916 edition). Therein I read of exciting developments in which I longed to participate.

There was the Poulsen arc capable of generating continuous waves, an altogether too expensive and seemingly too dangerous an equip:nent for schoolboy landling; many high-frequency alternators-Tesla before the turn of the century producing frequencies of 40,000 to $50,000 \mathrm{c} / \mathrm{s}$, Duddell, 1905, Fessenden, Alexanderson, 1908, Goldschmidt, 1912 (200 kW at $50,000 \mathrm{c} / \mathrm{s}$), but all so complex and expensive as to be quite impracticable for amatcur use. Among detectors, one of which we bought, the Ferrié electrolytic was exciting. A very fine wire was in contact with an electrolyte; applying a direct potential polarized it, the high-frequency currents broke down the insulating bubble and released current so long as the signals persisted.

A painful recollection is of a despair in getting parental sanction to buy a Marconi magnetic detector and a decision to make one. I was never any good with my hands. I find matter altogether vicious and troublesome. Machinery of all kinds, from electronic complexes to fountain pens, wilts in my presence and so the magnetic detector finished up in a heap of broken bits. In a more serious scientific category (was I not the secretary of the Bedales Scientific Society?) I experimented on the resistance of a loose contact and adumbrated Eckersley's law that the breakdown was equal to the product of mechanical and electrical pressure. Unlike Hughes I published my results, in the Journal of the Bedales Scientific Society.

And so between the fascination of receiving the powerful long-wave European stations-Nauen, Eiffel Tower-(no British station!) and building portable transmitters the years passed until examinations intervened and the sterner facts of life dominated.
I suppose it is fair to characterize this first decade
in the practical development of wireless as a failure to make it, because of atmospheric interference, a world communicator, but a triumphant vindication of its powers to link ship and shore and, for military purposes, isolated combat forces with a base. It is also fair to see Marconi as the presiding genius. Marconi was neither a great inventor like Edison nor a great physicist like Sir Oliver Lodge. However, he had quintessentially that rare power to distinguish the wood from the trees. He said in effect "If Hertz can signal across a laboratory I can signal round the world "-in the end he was proved right. Marconi may have done no more than collect the mosaic pieces of invention, due to others, and use them to form his system, but it was this system that held the field and, by its protective inventions, successfully stoud up against attacks from all quarters. The "Titanic" disaster in 1912 caused the installation of wireless on ships to be obligatory and it was the Marconi system which was universally installed-some claim with the popular belief that Marconi invented wireless does lie.
"Progress" is, more often than not, due rather to a kick on the backside than a clear foreknowledge of where to go but, whatever the stimulus, it will always be with us. It is my hope that the reader's brief encounter with some of the pioneers, woven into some personal reminiscence, will impress him with the time scale and the astonishing prevision of those men of science, who, interested in discovery as well as invention, so clearly saw the possibility of signalling without wires long before practice made imperfect.

Automation in Marine Navigation

RADAR has brought not only aid to marine navigation but "a variety of complex technical and human problems," said Captain F. J. Wylie in his presidential address to the Institute of Navigation. His address was he said, "intended to span one of the gaps between bridge and laboratory and to stimulate thought by describing the needs."
Having pointed out that the only positive data which marine radar gives are range and bearing he added "this may seem rather unfair to those who have spent much initiative and energy on the development of true motion radar but it seems better to put the matter in this light because true motion can hardly be regarded as the ultimate ideal, but rather as a palliative which reduces some of the shortcomings of the P.P.I. system of display."
His address posed the question, "Can automation assist the navigator by improving the accuracy and spontaneity of radar intelligence to an extent which will keep him in control of events, and can this be done at a cost commensurate with the advantage gained?" The contributions required from automation are, Capt. Wylie said, "the removal of time lags in assessing the positions and movements of other ships to the point where they become negligible, the reduction of errors to acceptable dimensions and a reduction in the time and mental effort required of the operator to an absolute minimum. In other words, one is merely anticipating a rapid, accurate and effortless means of presenting factual intelligence in the form in which it will be of most use."
Captain Wylic did not enter the controversy in which one view is that radar identification plus radio-telephony can restore all the characteristics of full visibility except to say "the material and human difficulties which militate against 100% success seem to be insuperable."

Convention on Stereophony

STEREOPHONIC recording, reproduction and broadcasting are to be discussed during a convention being arranged by the Radio and Telecommunication Section of the I.E.E. for March 19th and 20th. The sessions of the convention, which will be held at the Institution, Savoy Place, Iondon, W.C.2, will cover basic principles; stereophonic recording on film, tape and disc; and stereophonic broadcasting techniques. Registration forms and details of the convention, which is open to non-members, are available from the Institution.

Another "Festival of Sound"

G. A. BRIGGS is planning to give his fourth, and, he adds, probably his last, Royal Festival Hall lecturedemonstration on Saturday, May 9th. As in the past, P. J. Walker will be collaborating. The programme will include both live and recorded music and the artists taking part are:-Leon Goossens (oboe), Denis Matthews (piano), Ralph Downes (organ), Harold Blackburn (bass) and Gerald Gover (accompanist).
All seats are price 3 s 6 d and tickets will be available from Wharfedale Wireless Works Ltd., Idle, Bradford, Yorks., and London dealers after March 16th, and from the Royal Festival Hall on and after April 9th.

Audio Fair

SIXTY-FOUR exhibitors are participating in the London Audio Fair being held at the Russell Hotel, Russell Square, W.C.1, from April 2nd to 5th. Tickets are again being issued free by the organizers, exhibitors and audio dealers, who will have supplies by the end of January. It should be noted that the tickets are dated for specific days.

The Fair, which is sponsored by Audio Fairs Ltd., a non-profitmaking organization set up by manufac-
turers of audio equipment, will be open daily from 11 to 9 , but on the first day admission up to 5.30 is limited to the trade.

National Radio Show.-The success of the Audio Hall introduced at last year's National Radio and Television Exhibition has made it a "must" for this year's show which will be held at Earls Court, London, from August 26th to September 5th. Over a quarter of a million people visited the Audio Hall last year.
New I.T.A. Channel Allocations.-Although definite allocations have not yet been made, the P.M.G. has stated that it is expected that the I.T.A. satellite station in Kent will radiate in Channel 10 . The proposed Aberdeen station is expected to use Channel 9 and the Solway station Channel 11.
Thermonuclear Processes.-The I.E.E. is arranging a convention on thermonuclear processes to be held in London on April 29th and 30th. Particulars of the convention, which is open to non-members, are obtainable from the I.E.E., Savoy Place, London, W.C.2.
Receiving licences in force in the U.K. at the end of November totalled 14,723,953. This total included 8,730,697 combined television and sound licences, $5,627,170$ for domestic sound only and 366,086 for car radio.

Instrumentation and Control-Collaboration in certain major projects for aircraft control and instrumentation systems is provided for in an arrangement covering all aspects of such enterprises made by Smiths Aircraft Instruments and Kelvin \& Hughes with the Sperry Gyroscope Co. The first project is the development of a flight control and instrumentation system for new civil aircraft, in particular, the de Havilland 121.
B.S.I.R.A.-A new laboratory block to house its electronics and electro-optics departments has been opened by the British Scientific Instrument Research Association at Chislehurst, Kent.
 radar demonstration vehicle, which this month begins a $\dot{0}, 000$-mile tour of Southern Europe, is equipped with two examples of the recently introduced D7 equipment. This zeries includes three with 9 -in displays and four (including two with true-motion) with 12 -in displays. The demonstrat on scanner is mounted on a hydraulic most for stowage at roof level. The vehicle also carries Decca Navigator and Marine Track Plotter.

Russian Translations.-A modified version of the D.S.I.R. "Translated Contents Lists of Russian Periodicals" is now published monthly under this title by H.M.S.O. It contains lists of translations procured and produced by the D.S.I.R. Lending Library Unit, information about translations available from other organizations, and occasionally articles on the " state of the art" in sections of Soviet science and technology. The annual subscription is $£ 213 \mathrm{~s}$. The Lending Library Unit has also introduced a new scheme for preparing translations of Russian articles, particulars of which are obtainable from the L.L.U., 20 Chester Terrace, London, N.W.1.
'Reliability.-Among the 50 or more papers at the fifth Symposium on Reliability and Quality Control in Electronics held in Philadelphia in January were two by authors from the U.K. K. Hopkinson, of the Ministry of Supply, spoke on reliable valves and performance in Service equipment and L. Knight, of the British Tabulating Machine Co., dealt with economical methods for life testing parts. Ralph Brewer, of the G.E.C. Research Laboratories, Wembley, has received the 1958 National Reliability Award for his paper "Life Tests of Electron Tubes and the Analysis of Failure Causes," which was the only overseas contribution read at last year's symposium.
R.T.E.B. Servicing Certificate.-This year's examination for the radio servicing certificate of the Radio Trades Examination Board will be held on May 5th and 7th (written papers) and May 9th or 30th (practical test). The television servicing examination will be on May 11th and 13th (written) and June 6th or 27 th (practical).
Industrial Electronics.-The second of two courses on electronics in industry begins at the Norwood Technical College, Knight's Hill, London, S.E.27, on February 17 th . It will be held on six successive Tuesday evenings (fee 10 s). The course covers electronic control, industrial television and servo systems.

ESTIMATED COVERAGE of the I.T.A.'s East Anglian stotion being erected at Mendlesham, Suffolk. It will radiate in Channel II when opened toward the end of this year, the transmissions being horizontally polarized. Its maximum vision e.r.p. will be 200 kW .

The modulating frequency of four m.f. non-directional aeronautical beacons was temporarily reduced to $400 \mathrm{c} / \mathrm{s}$ some months ago. It has now been decided by the Ministry of Transport and Civil Aviation to reduce to $400 \mathrm{c} / \mathrm{s}$ the modulating frquency of all en-route and holding m.f. non-directional beacons. The change will be made in the next month or so.
I.T.U. STAMPS.-By arrangement with the Swiss P.T.T., mail despatched from the headquarters of the International Telecommunication Union in Genevo, now bears special stamps. We reproduce one from the series of six.

E.B.U. Technical Centre.-The address of the Technical Centre of the European Broadcasting Union after March 31st will be 32 avenue Albert Lancaster, Brussels, 18.

Welsh V.H.F.-In the note in our January issue on the opening of two new v.h.f. sound broadcasting stations in Wales, the transmitter power and not the e.r.p. of Llanddona was quoted. This station actually uses a directional aerial giving an e.r.p. varying from 3 to 9 kW according to direction. Llanddona's frequencies (in Mc / s) are 89.6 (Light), 91.8 (Third) and 94.0 (Home); Llangollen's frequencies are 88.9 (Light), 91.1 (Third) and 93.3 (Home). These transmitters, and all B.B.C. v.h.f. sound transmitters are horizontally polarized (not vertically as stated last month)
"Sound," the new weekly B.B.C. programme for recording enthusiasts and audiophiles generally, covers both the professional and amateur aspects of recording on tape and disc. The programme, broadcast in Network Three on Mondays at 6.45 p.m. is presented by John Borwick.

Recorded Concert.-A number of manufacturers, including Acoustical, Leak, B.T.H., Decca, E.M.I. and Garrard, are co-operating with Lockwood \& Co. to provide a concert of recorded music-including stereo-phony-on February 27th at Blackwell Secondary Modern School, Headstone Lane, Harrow, Middx. Tickets costing from 2 s 6 d to 6 s 9 d are obtainable from Lockwood \& Co., Lowlands Road, Harrow, Middx. The proceeds are for the school.
"The History of Radio."-A new colour film strip (35 frames) with this title has been prepared by Mullard primarily for use in secondary modern schools. A comprehensive set of teaching notes is supplied with the strip which is available from Unicorn Head Visual Aids Ltd., 42 Westminster Palace Gardens, London, S.W.1, price $£ 1$. A 21 -frame coloured film strip on "The Principles of the Cathode-ray Tube," with teaching notes, has also been prepared by Mullard. They are also preparing a strip on the history of television. The Mullard Educational Service has also produced a $16-\mathrm{mm}$. sound film entitled "Vacuum Practice" which runs for 16 minutes.
British Computer Society, which was formed in May, 1957, with a membership of 450 now has 1,600 members. Two meetings are held in London each month from September to May. The Society issues The Computer Bulletin each month and The Computer Fournal quarterly.
"F.B.I. Register."-The 31st edition (1959) of this register of British manufacturers includes lists of the products and services of over $\%, 500$ member firms of the Federation of British Industries. In addition to the Buyers' Guide there are seven other sections, including manufacturers' addresses, proprietary names and trade marks, and a tri-lingual glossary. The 1,140-page register, which costs 2 gns , is published by Kelly's Directories and Iliffe \& Sons for the F.B.I.

Personalities

NEW YEAR HONOL'RS

Among the recipients of awards in the New Year Honours List are the following in the world of wireless:

C.B.

Colonel D. McMillan, O.B.E., director, external telecommunications, G.P.O.

C.B.E.

J. A. Ratcliffe, F.R.S., chairman, Radar and Signals Advisory Board, Ministry of Supply Scientific Advisory Council.
O.B.E.
R. F. Ballard, general manager, Kolster-Brandes.

Dr. L. Essen, senior principal scientific officer, N.P.L. E. F. Wheeler, superintendent engineer, transmitters, B.B.C.
M.B.E.
A. C. Emery, chief draughtsman, Telecommunications Division, Plessey Company.
G. F. R. Grenyer, stat.on radio officer, Government Communications Headquarters.
W. H. Jarvis, engineer-in-charge, I.T.A. transmitting station at Winter Hill, Lancs.
G. W. G. Martyn, radio officer, s.s. Argyllshire.
E. G. Peers, communications officer, London Airport.
R. D. Petrie, head of sound apparatus section, B.B.C. Designs Department.
P. C. Ruggles, senior engineer, English Electric Valve Company:
D. C. Walker, senior executive engineer, Post Office Research Station.
F. R. Warner, in charge of sales (Government contracts) at the G.E.C. Radio Works, Coventry.
F. C. Wells, experimental officer, S.R.D.E.
B.E.M.
F. A. Dann, of No. 4 Ground Radio Servicing Squadron, R.A.F., Chigwell.
A. J. Welberry, technical officer, Post Office Radio Station, Oxford.
J. A. Ratcliffe, O.B.E., M.A., F.R.S., M.I.E.E., who is promoted to C.B.E. in the Honours List for his work as chairman of the Radar and Signals Advisory Board of the Ministry of Supply Scientific Advisory Council, is reader in physics at the Cavendish Laboratory, Cambridge. He was recently appointed chairman for 1958/ 61 of the U.K. National Committee of the International Scientific Radio Union (U.R.S.I.). He was a member of the Television Advisory Committee from 1949 to 1952, prior to which he was for three years a member of the Radio Research Board.
L. Essen, D.Sc., Ph.D., A.M.I.E.E., who is appointed O.B.E. in the New Year Honours List, has been on the staff of the National Physical Laboratory since 1929. He is in the Electricity Division of the laboratory and has been concerned with precise microwave measurements, in particular with the measurement of frequency and time. Dr. Essen, who is 50, developed a frequency standard based on a resonance of the cæsium atom a few years go.
E. F. Wheeler, M.I.E.E., superintendent engineer of the B.B.C.'s transmitters, operations and maintenance department, who is appointed an O.B.E., has been with the Corporation since 1924. In his present position, to which he was appointed in 1943, he is responsible for the technical operation and maintenance of the Corporation's sound and television transmitters.
R. D. Petrie, A.M.I.E.E., of the designs department of the B.B.C., who becomes an M.B.E., was an engineer with the Gaumont British Picture Corporation before
joining the B.B.C. in 1935. Since 1955 he has been responsible for the design of studio and control room equipment and programme switching equipment used in the modernization of the B.B.C.'s sound studios.

P C. Ruggles, B.Sc., who is appointed an M.B.E., has been with the English Electric Valve Company since its inception, being concerned largely with research and development of microwave valves of national importance. It is for his work in this field that the award has been made.

APPOINTMENTS

K. I. Jones, Assoc.I.E.E., has joined the British Radio Corporation as chief engineer of the H.M.V. and Marconiphone Divisions. He was with Murphy Radio for a few years before joining Cossor in 1932 as chief engineer. He was appointed to the Board of Cossor Radio and Television Ltd., a few months ago. Mr. Jones is a member of the technical sub-committee of the Government’s Television Advisory Committee and of the Frequency Advisory Committee recently set up by the P.M.G. He also represents the Radio Industry Council on the B.S.I. Telecommunication Industry Standards Committee and was chairman of the B.R.E.M.A. Technical Committee from 1952 to 1954.

K. I. JONES.

N. J. CHANTER.
N. J. Chanter, M.Sc., D.I.C., A.R.C.S., A.M.I.E.E., for the past 12 years head of the microwave valve division of the Mullard Research Laboratories, has been appointed manager of the transmitting and microwave division of the Mullard Radio Valve Co. He will be in charge of the company's transmitting and microwave valve produstion unit at Waddon, Surrey, which comprises both the factory and development and applications laboratories.
H. G. Nelson, M.I.Mech.E., M.I.E.E., managing director of the English Elestric Company, has also been appointed deputy chairman of some of the subsidiary and associated companies in the group, including Marconi's W.T. Co., Marconi Instruments, Marconi Marine and English Electric Valve Co.
P. J. B. Clarricoats, B.Sc.(Eng.), Ph.D., A.C.G.I., has been appointed to a lectureship in light electrical engineering at Queen's University, Belfast. Prior to taking up his now appointment, Dr. Clarricoats, who is the son of John Clarricoats, secretary of the Radio Society of Great Britain, was engaged on microwave ferrite research with the General Electric Co. at Stanmore.
G. A. Marriott, B.A., who has been with the G.E.C. throughout his professional life, is appointed managing director of the M.O. Valve Co., of which he has been a director for some years. Mr. Marriott was president of the B:it.I.R.E. from 1956-58 and has served on the board of the British Radio Valve Manufacturers' Association (B.V.A.) for many years.
W. H. Stephens, M.Sc., deputy director of the Royal Aircraft Establishment, Farnborough, since 1956, has been appointed to the new Ministry of Supply post of Director-General, Ballistic Missiles. He joined R.A.E. in 1935 and was head of the guided weapons department from 1954-56. He is 45 .
S. F. Follett, B.Sc.(Eng.), M.I.E.E., succeeds Mr. Stephens as deputy director of the R.A.E. He joined the electrical engineering department of the Establishment in 1927, at the age of 23 , and since 1946 has held various posts in the Ministry of Supply, including that of Deputy Director-General of Aircraft Equipment Research and Development.
J. H. Phillips, B.Sc., M.I.E.E., the new Director, Guided Weapons (Techniques) in the Ministry of Supply, was a scientific officer at the Bawdsey research station (forerunner of the Royal Radar Establishment) in the early days of the war. Since 1957 Mr. Phillips, who is 49, has been with the British Joint Services Mission in Washington, prior to which he was for six years at the headquarters of the Guided Weapons Research and Development Department of the M.o.S.
Four new engineering appointments are announced by the B.B.C. R. A. Rennie, who has been with the Corporation since 1941, becomes engineer-in-charge (sound) at Glasgow in succession to J. G. W. Thompson who has retired. L. M. Robertson takes up the post of e.-in-c. of the new television and v.h.f. sound station at Orkney. He joined the B.B.C. in 1943. J. S. Clemo becomes e.-in-c. of the Rosemarkie television and v.h.f. sound station in succession to M. Clough, who recently became assistant e.-in-c. at the highpowered station at Holme Moss. M. Taylor, A.M.I.E.E., succeeds J. P. McCurdy (who has retired) as e.-in.-c. of the Lisnagarvey medium-wave transmitter. Mr. Taylor joined the Corporation in 1936 and was seconded to the Forces Broadcasting Service in the Middle East in 1948, and for two years (1951-53) was chief engineer of the Colonial Broadcasting Service in Cyprus.
F. L. Firth, B.Sc.(Eng.), engineer-in-charge of the recently opened I.T.A. station at Burnhope, Co. Durham, was a chief radio officer in the Merchant Navy during the war. Prior to joining the I.T.A. in 1956 he was with Ferranti's where he was engaged on test gear development and eventually took charge of an experimental test laboratory.
P. D. Hall, B.Sc., M.I.E.E., has been appointed manager of Ferranti's computer department following the resignation of B. W. Pollard. Mr. Hall, aged 39 , joined the company in 1951 as a senior electronics development engineer and was appointed manager of the electronics department in 1955. J. R. Pickin, B.A.(Hons.), aged 31, who was formerly chief engineer working on microwave devices, succeeds Mr . Hall as manager of the electronics department.

P. D. HALL.

J. R. PICKIN.
A. S. Marshall has been appointed to the new post of deputy secretary of the Electronic Engineering Association. He recently retired with the rank of Lt. Commander from the Royal Navy, which he joined in 1937 having previously been in the Merchant Service for over 20 years. He was at one time in the Admiralty's Radio Equipment Department and more recently the Admiralty Research Laboratory at Teddington.

A. S. MARSHALL.
F. H. Townsend, M.I.E.E., who in 1957 resigned from the managing directorship of Cathodeon Ltd., and went to America to take up an appointment with Machlett Laboratories Inc., of Springdale, Conn., has now joined Westinghouse. He is in charge of engineering on Vidicons and similar types of tube at the Westinghouse Electronic Tube Division in Elmira, New York.
V. G. Hawkeswood has joined Southern Television, the programme contractors for the I.T.A. Chillerton Down station, as head of engineering. He was for 22 years with the B.B.C. and since January, 1955, had been engineer-in-charge of television in the North Region.
E. M. Butterworth has been appointed chief engineer of Besson \& Robinson Ltd., relay manufacturers of Harlow, Essex. He was until recently chief development engineer with Magnetic Devices Ltd.

OUR AUTHORS

L. A. Moxon, B.Sc., A.M.I.E.E., whose articles on evaluating aerial performance start in this issue, studied electrical engineering at the City and Guilds Engineering College, obtaining his London University degree in 1929. After two years' research under a D.S.I.R. grant, he joined the staff of Murphy Radio and was responsible for radio receiver research and development. In 1941 he joined H.M. Signal School, Portsmouth, and is now a member of the Royal Naval Scientific Service. He has held an amateur transmitting licence since 1929.
J. F. Young, A.M.I.E.E., A.M.Brit.I.R.E., who contributes the article on page 92, served an apprenticeship with the G.E.C. at Witton, afterwards working on the development of closed-loop control systems. He then spent some time with W. \& T. Avery and Lancashire Dynamo Electronic Products on industrial electronic development, and subsequently returned to Witton to take charge of the Electronic Development Group of the Switchgear Works.

OBITUARY

R. Moxham, manager of the G.E.C. factory at Broad Oak, Portsmouth, where precision electronic work for defence is carried out, died on Christmas Day at the age of 50. Mr. Moxham joined the G.E.C. in 1933, and in 1939 was appointed chief inspector of the Radio Communications Group at Coventry. During the war he was engaged in major work on the development and production of v.h.f. equipment for the R.A.F.

Dipl.-Ing Eugen Reinhard, who died recently aged 82, was responsible for the erection of the Norddeich and Nauen transmitters in 1906 . From then until 1932 he was responsible for building most of the important Telefunken stations in all parts of the world.

Evaluating Aerial Performance

1.-Simplified Method of Calculating Gain and Radiation Resistance of Dipoles

and Small Beam Arrays

By L. A. MOXON, B.Sc. A.M.I.E.E

IN any given practical situation, what is the best type of aerial to use? The answer to this question is not always obvious, especially if the problem happens to be one of television reception in a difficult area, or achieving the best possible performance on the amateur wavelengths. In the latter case the need to cover all directions on several frequency bands, coupled with space restrictions or other peculiarities of the local terrain, gives rise to a wide variety of interesting problems. Despite the existence of excellent handbooks, the student may well find difficulty in acquiring a clear overall picture of the subject from published material. In particular he may be confused or led astray by conflicting figures for the gain of simple types of beam aerials, failure to make clear distinctions between the requirements for transmission and reception, misplaced emphasis on front-to-back ratio and standing-wave ratio, and a

Fig. 1. Current I flowing in wire $A B$ of length l produces field at P which is proportional to Ilcos angle $P O Q$. $A B$ is assumed small compared with a wavelength and OP is large compared with $A B$. Maximum radiation is in the direction $O Q$ at right angles to $A B$.
widespread belief that vertical aerials and some beam arrays provide signal enhancement, in addition to their nominal gain, if any, by "lowering the angle of radiation." He will almost certainly be intrigued by references to the "super-gain" principle, but unless he is mathematically inclined this subject is likely to remain veiled in mystery.

In discussing these various aspects of aerial design it is hoped to show that most problems outside certain highly specialized fields can be tackled with no more equipment than a few elementary rules, common sense, and simple arithmetic. It will be shown that one can, from the construction of an aerial, arrive quite easily at a rough figure for its probable gain and thus be enabled to discount extravagant claims, or to check the results of measurements against "what is reasonable" before either discarding some new arrangement as unsatisfactory or becoming unduly enthusiastic about it. This seems particularly important in view of the many problems involved in the making of accurate measurements, as discussed in previous issues of this journal. ${ }^{1}$

The super-gain principle will be shown to have a
simple physical basis which enters into the operation of all close-spaced beam aerials including the familiar H.

Radiation from Dipoles.-Any aerial system can be regarded as made up from a number of doublets, i.e. short lengths of wire each carrying a uniform current, which may be either separate or joined together. When used for transmission each such length makes a contribution to the field strength at a distant point, such as P in Fig. 1, in accordance with the following rules. These state that the field is proportional to the current I, the length of wire through which it flows, and the cosine of the angle θ. Non-mathematical readers may be alarmed at the introduction of a cosine at this early stage in the argument, but in many cases the problem can be reduced to one of arithmetic by considering only a few angles such as $30^{\circ}, 45^{\circ}$ and 60° for which the field is respectively $0.87,0.7$ and 0.5 times that at rightangles to the wire. Below 30° the field is roughly proportional to the angle POA and can often be ignored since it accounts for only a very small proportion of the power radiated, no less than 82% of this being within $\pm 45^{\circ}$ of the direction OQ. Later these facts will be used to obtain a rough idea of the radiation pattern of simple beam aerials, leading to estimates of gain, radiation resistance, and front-to-back ratio.

A doublet as in Fig. 1 bears little resemblance to a practical aerial, so let us see what happens as the wire is increased in length and the current distribution allowed to approach a half sinewave as in Fig. 2, which represents the conventional half-wave dipole. The non-uniform current distribution presents no difficulty since we merely have to imagine the wire divided up and the contributions of all the bits added together, which is the same thing as finding the average current and multiplying it by the total length. The current distribution in a half-wave dipole can be taken as roughly sinusoidal, which means that it has an average value 0.64 times the current in the centre.
So far the theory assumes that whatever the direction of P , the radiation from all the bits of the dipole can be directly added. This is not true if one

Fig. 2. Approximate current distribution in half-wave dipole. With shortened dipole (as Fig. 7) the portion bc of the sine wave occurs in the feeder and the remaining portions $a b$, cd form a nearly-triangular distribution.
considers bits which are separated by an appreciable fraction of a wavelength, as illustrated in Fig. 3. In this case the radiation adds in phase when the direction of P is at right angles to the line joining the centres of the wires, but for other directions there is a difference of path length, and a corresponding phase difference. This causes the radiation to decrease more rapidly with angle thus tending, for moderate values of d, to concentrate the radiation in the normal direction. In the case of the half-wave dipole, in free space, i.e. ignoring effects due to the presence of the ground or other objects, radiation from near the two ends, for small values of angle AOP, cancels because the path difference is nearly half a wavelength. In these directions, however, the radiation would be infinitesimal in any case, and it can be seen that for the central portion of the dipole and directions within $\pm 45^{\circ}$ of $O Q$, which account for most of the power radiated, phase differences are quite small. This means that, as illustrated in Fig. 4, a half-wave dipole produces almost the same field-strength pattern as an infinitely short dipole radiating the same power. Such an aerial could not be achieved in practice, but the conclusion is very useful since it means that each $\lambda / 2$ dipole or "current loop" in an aerial array can be treated (to a first approximation) as a point source, and this in turn simplifies the procedure for estimating the field pattern of aerial arrays.

We have seen that there is no basic necessity for making dipoles half a wavelength long, but this length usually provides a reasonable compromise between conflicting mechanical and electrical design factors. In addition it has the advantage of presenting a resistive impedance at the feed point so that direct matching to a non-resonant line can be achieved without the introduction of tuning reactances. When, for example, space or weight is at a premium, some shortening is permissible but leads, as will be seen in due course, to a narrower bandwidth, and more critical matching and tuning, and eventually to a loss of efficiency. The laws governing the transmission of power from the aerial to a receiver at P apply equally to the reception of power from a transmitter at P , but in reception the important quantity is signal-to-noise ratio and, as discussed later, this is not always directly related to the received power.

Radiation Resistance and Loss Resistance.-

 When radio-frequency power is applied to an aerial some of the energy is radiated and some of it is used in heating the wires and insulators of the aerial system. In the case of a half-wave dipole, a current of 1 A in the centre results in the radiation of 73Fig. 3. Radiation from the dipole $A^{\prime} B^{\prime}$ towards P has to travel a greater distance than that from $A B$. The difference is $X Y$, or $d \cos \theta$ and produces a phase difference (α) of $X Y / \lambda$ times 360°.

watts, and the aerial is therefore said to have a radiation resistance of 73 ohms. In principle, radiation resistance can be defined for any point in an aerial system by equating $I^{2} R_{r}$ to the power radiated, where I is the current and R_{r} the radiation resistance at the point in question. In the above example there is, of course, no actual resistance carrying a uniform current I, and it is therefore usual to regard radiation resistance as a mathematical fiction. On the other hand, from a practical point of view the aerial behaves as if the resistance is real, and the power radiated must eventually be absorbed by resistance somewhere even though some of it may escape into outer space and travel a very long way before this happens. It seems arguable, therefore, that the aerial should be regarded as a kind of transformer inserted between the transmitter and a somewhat intangible network of load resistances, R_{r} being real but dependent, of course, on the "transformer" ratio. This concept is useful in de ling with noise problems since it helps to dispose of the common error of regarding R_{r} as a generator of thermal noise at local temperature. The noise voltage at the aerial terminals may or may not be of thermal origin" but is in any case a property of "where radiation from the aerial would get to " and is usually represented by a voltage or "temperature" associated with R_{r}.

The high-frequency resistance of the aerial wire

Fig. 4. Field-strength pattern of dipoles. The relative fields ot P, when this point is moved round the dipole at constant range, is given by the length $O C$. With $\lambda / 2$ dipoles the pattern consists of two circles, or near circles (broken line)
may be estimated from Fig. 5 and comes to 1.3 ohms for a typical $\lambda / 2$ dipole (0.1 -in diameter wire) at a frequency of $14 \mathrm{Mc} / \mathrm{s}$. To find the power lost in the aerial it is necessary to multiply this resistance by the mean square current which, for a sinusoidal current distribution, is only half the value which was assumed to be flowing into the radiation resistance. For comparison, therefore, with the radiation resistance the loss resistance has to be divided by two and we thus find that the ratio of power radiated to total power is 73 to $(73+0.65)$, i.e. more than 99% is radiated. Some additional loss may occu* in insulators (if used), and in the feeder system as discussed later.
Short Dipoles.-It is instructive to consider what happens if the length of the dipole is halved, keeping the radiated power constant. We have a'ready seen that this process leaves the way in which the energy is distributed in space almost unchanged, and therefore the field strength at iny point P is unchanged. It follows that the product of length and mean current must be the same, so that the mean current must be double what it was before, and for a given shape of current distribution the radiation

Fig. 5. R.F. resistonce of capper conductors. Resistance per unit length is proportional $10 \sqrt{\text { frequency/(perimeter }}$ of conductor), provided thickness of conductor is large compared with skin depth which is approximately $0.007 / \sqrt{M c / s}$ (in cms). For non-magnetic materia's r.f. resistance is approximately proportional to $\sqrt{\text { specific }}$ resistance.
resistance is reduced by a factor of four whereas the loss resistance is only halved. In practice the situation is worse than this for two reasons. In the first place, the current distribution is no longer a complete sinewave but just the tips of one, which makes it nearly triangular; the effect of this can be estimated from Fig. 6(a) which shows that the end portion AB contributes 29% of the total field of a $\lambda / 2$ dipole. To obtain the same field as from a $\lambda / 2$ dipole therefore, we have to increase the current at B from 0.71 to $0.71 \times 1 / 0.29$ or 2.45 times the current at C . This makes the radiation resistance equal to $73 /(2.45)^{2}$ and thus brings it down to 12.1 ohms. Secondly, the impedance in the centre is now highly reactive, and the reactance must be tuned out in order to match the aerial to the transmitter. One way of doing this is to construct the short dipole by folding a half-wave one as shown in Fig. 7. It is convenient to retain CD , the original centre of the dipole, as the reference point so that if the current distribution from A to F via CD remains sinusoidal the current at $C D$ will be $\sqrt{ } 2$ times the current at BE and the radiation resistance only 6.05 ohms whereas the effective loss resistance remains very roughly at 0.65 ohms as in the halfwave case. The power wasted is now nearly 10% or a loss of about 0.4 dB , which begins to be appreciable when added to the further small loss of 0.4 dB for a short dipole, relative to a $\lambda / 2$ dipole, as indicated in Fig. 4. In a given practical situation other factors may come into the picture; for example, since there is less length to support the adverse effects of shortening may be offset by the possibility of erecting the aerial at a greater height or of using thicker diameter conductors. This illustration is probably near the lower limit of size for an efficient

Fig. 6. Relative contribution of various segments of a sinusoidal current distribution to the total field strength.
transmitting aerial since the losses increase rapidly with further shortening; for example, a further halving of the length will reduce the radiation resistance at CD (Fig. 7) by a factor of 16 to only 0.4 ohms which would entail both poor efficiency and serious matching difficulties. As we shall see, this situation becomes much worse if the dipole forms part of a beam aerial system, and the shortest acceptable length is then correspondingly increased.

The argument has been simplified by ignoring certain effects caused by the discontinuity at BE. In general, these tend to increase the length of wire required for resonance, but leave the losses more or less unchanged. The portion BE-CD can of course be replaced by loading coils but, due to the proximity effect, i.e. eddy currents induced in each wire by adjacent wires, coils tend to have a lower Q than a high-impedance transmission line such as BE-CD, and the losses are therefore higher. Another important consequence of shortening is the reduction of bandwidth. A rough estimate of this can be

Fig. 7. Short dipole loaded to resonance by open-wire transmission line $B E-C D$. Inductance of transformer winding $C D$ is neglected.

made quite easily. Suppose we have a resonant line, one quarter-wavelength long and open-circuited at the far end, as sketched in Fig. 9. If there are no losses the impedance measured between A and B will be zero, but if the length is changed by a small amount, $\pm b$ of a wavelength, a reactance of $\pm \mathbf{Z}_{0} \times 2 \pi b$ ohms will appear at the terminals, $\overline{\mathrm{Z}}_{0}$ being the characteristic impedance of the line. Opening the line out to form a half-wave dipole involves no change of principle, although in typical cases it involves an increase of about 50% in Z_{o}; this, incidentally, is the reason for the change in resonant frequency which occurs when the line is
only partly opened out, as in Fig. 7, the reactance subtracted by shortening the radiator being 50% more than that added in the form of the resonant line BE-CD. The change in length, b wavelengths in a $\lambda / 4$ line, is equivalent to a change of $4 b$ times 100% in frequency so that the bandwidth of the aerial (defined by analogy with that of a tuned circuit) may be found as follows. We first obtain the " $3-\mathrm{dB}$ down" points by equating resistance and reactance, i.e. $2 \pi b \mathrm{Z}_{o}=\mathrm{R}_{r}$ so that b is given by $\mathrm{R}_{r} /\left(2 \pi \mathrm{Z}_{\rho}\right)$. The separation of the two " $3-\mathrm{dB}$ down" points, as a fraction of the mean frequency, is therefore given by $8 b$ or $(4 / \pi) \times\left(\mathrm{R}_{r} / \mathrm{Z}_{o}\right)$. Z_{o} varies in practice from about 400 ohms for a short, thick v.h.f. dipole to 1,100 ohms for a thin wire h.f. dipole, being

Fig. 8. Example of bent $\lambda / 2$ dipole. Arrows indicate current flow.
equal to $276 \log _{10}(2 \times$ length/diameter $)-120$. (Ref. 8). For a typical " wire " dipole on Channel 1 $(45 \mathrm{Mc} / \mathrm{s})$, we find a bandwidth of about $(4 / \pi) \times(73 /$ $900) \times 45$ or $4.6 \mathrm{Mc} / \mathrm{s}$ which is reasonably adequate but allows very little margin to cope with, for example, the reduction of bandwidth which would follow the addition of a reflector.

Since a half wavelength of line is equivalent to a 1:1 transformer the total length of the system could be increased from a quarter to three-quarters of a wavelength by adding feeder, but a given small percentage change in frequency would then change the effective length by three times as much and ignoring the change of Z_{o} the bandwidth would be reduced by a factor of three. To sum up we find that shortening a dipole results in increased losses and reduced bandwidth in much the same proportion. These effects are aggravated by using resonant feeders, being roughly proportional to the total number of current loops in the system. A quarter-wave dipole would of course be quite useless for television, but is "broad band" in another sense, since with narrowband signals it can be used efficiently over a wide range of frequencies subject to adjustment of tuning and matching whenever the frequency is altered.

We have seen how Fig. 6 enables the radiation resistance of dipoles to be estimated for a sub-harmonic of the resonant frequency, and intermediate lengths can be dealt with by interpolation. Fig. 6 can also be used to deal with the case of dipoles bent into odd shapes such as Fig. 8, which shows what might have to be done to a $14-\mathrm{Mc} / \mathrm{s}$ or $7-\mathrm{Mc} / \mathrm{s}$ dipole in order to make it fit into the width of a typical suburban garden; to evaluate this situation, suppose we have available a power W which produces a current I in a normal dipole. Let \mathbf{E} be the field strength which this would produce at some point P. From Fig. 6(a) the same current in the bent dipole of Fig. 8 will give rise to a field strength 0.7 E due to the current in BC ; this corresponds to a radiated power of $\mathrm{W} / 2$
only. The currents in AB, CD produce fields which cancel at P but, due to the $\lambda / 4$-separation between $A B$ and CD, add up in phase quadrature at P^{\prime} to give a field $\sqrt{ } 2 \times 0.3 \mathrm{E}$ which at first sight corresponds to a radiated power of 0.18 W , but AB and CD on their own would constitute a beam aerial of the " 8 JK " type which, as described later, has a gain of 2.5 times. The radiation from $A B, C D$ therefore corresponds to a power of only $0 \cdot 18 / 2 \cdot 5 \mathrm{~W}$, i.e. 0.072 W . The total power radiated is therefore 0.572 W , so that for radiation of a power W the current increases to a value $I / \sqrt{ } 0.572$. This means that the radiation resistance is down to 57.2% of 73 ohms, i.e. 41.8 ohms which is still a reasonably high value, and the field strength at \mathbf{P} is reduced by only $\sqrt{50 / 57.2}$ or about 0.6 dB as compared with that from a normal dipole. What may at first sight have appeared to be an abstruse mathematical problem has thus yielded to a mixture of common sense and arithmetic, but with some loss of rigour since at intermediate angles the field due to BC is slightly modified by radiation from $A B, C D$ and this in turn will have a small effect on the radiation resistance.

When adding the radiation from two or more dipoles, due account must be paid to differences not only of phase but also of polarization. When radiation takes place from a wire, the electric vector of the wave is parallel with the wire, and radiation from a vertical and a horizontal dipole adds in quadrature. Power Gain.-The majority of aerials are nonisotropic; this means, in terms of transmission, that they do not radiate the same amount of power in all directions. It follows that relative to an isotropic aerial radiating the same total power, they provide a gain in some directions and a loss in others. Ignoring for the moment effects due to the ground, i.e. assuming the aerial to be located in " free space," its gain and radiation pattern can be obtained from its geometry provided the relative magnitudes and phases of the currents flowing in the various parts of the system are known. The main essentials of the method have already been used to prove the near equivalence between a half-wave dipole and a short dipole. The same procedure can be applied to any number of aerial elements and used to obtain a complete radiation pattern, and hence the gain which is simply the ratio of the power radiated in the desired direction to the power averaged over all directions. Calculation of gain in this way is simple enough in principle, but laborious in practice, and it is tempting to look for a short cut. It has already been remarked that most of the energy is radiated between the " $3-\mathrm{dB}$ down" directions, and there is an obvious analogy between beam width of aerials and bandwidth of filters which provides encouragement for the idea of estimating gain from a simple comparison

Fig. 9. Typical resonant line (Z_{0} $=600 \Omega$). Iflength is changed by a small fraction b of a wavelength, or the frequency by $4 b \times 100 \%$ a reactance $2 \pi b \times$ Z_{o} appears at $A B$.
of half-power beam widths. This is only admissible if the lobes which are being compared are similar in shape and account for most of the energy radiated, conditions which seem to be reasonably well satisfied with typical small beam aerials, although corrections are necessary in the case of more elaborate systems.

In the case of a receiving aerial in free space, it is plausible to suppose that the space in its vicinity is uniformly filled with signal energy so that the greater the volume occupied by the aerial, the more energy can be collected. The energy available in a given volume of space can be estimated from the field strength, and collected by filling the volume with dipoles connected together in such a way that the induced voltages are added in phase. In this way we arrive at the result that with a large array of elements the gain is proportional to the volume occupied. This is a useful concept but may need modifying to take account of multi-path and diffraction effects, or the presence of the ground, which can produce a non-uniform field distribution. Also, as will be seen, it is possible by introducing phase differences to obtain larger as well as smaller gains.

Another approach is to consider transmission from a pair of dipoles arranged so that their fields add in phase in a desired direction. If these are close together, appreciable power will be fed from one into the other; in other words there is mutual coupling, and the current in one will affect the current in the other, but for the moment let us imagine that the dipoles are far enough apart for this effect to be neglected. Suppose that a total power W is available which, when applied to a single dipole, produces a current I and in consequence of this a field E at some distant point P. If now this power is shared equally between the two dipoles, each will produce a field strength $\mathrm{E} / \mathfrak{V}^{\prime} 2$ and these fields added in phase give $2 \mathrm{E} / \sqrt{ } 2$, i.e. $\sqrt{2} \times \mathrm{E}$ which represents a power gain of 2 times, or 3 dB . Extending this argument to N dipoles gives a power gain of N . The requirement of adequate spacing means that the volume occupied by the array tends to be proportional to N , so that once again we find gain proportional to volume, but with the added proviso that it cannot exceed N. To establish this relation in numerical terms, it remains necessary to find the minimum allowable spacing between elements; this can be done with the aid of published tables of mutual impedance, but it is instructive to return to the geometrical approach, and Fig. 3 provides a good example of this. Half a wavelength is a convenient value for d since with half-wave dipoles it brings A^{\prime} and B together and allows them to be fed from a single feeder, so let us investigate the gain under these conditions.

For any value of θ, the distance XY can be determined either graphically as shown or from the relation $\mathrm{XY}=d \sin \theta$. Expressing XY in wavelengths, it can be multiplied by 360 to obtain the corresponding phase shift in degrees, and the field produced at P can be obtained by graphical addition as shown in Fig. 10 or, if $E_{1}=E_{2}$:-
(from the formula) $\mathrm{E}_{P}=2 \mathrm{E}_{1} \cos \alpha / 2$
If θ is $30^{\circ}, \mathrm{XY}$ is $\lambda / 4, \alpha=90^{\circ}$, and $\mathrm{E}_{P}=\sqrt{ } 2 \times \mathrm{E}_{1}$, which represents a 2:1 drop in power compared with direct addition of the two voltages.

It is also nesessary to allow tor the directional properties of the individual dipoles, which, as already discussed, reduce the field by 13% at 30°. The beam width between half-power points is
therefore slightly less than 60°, and the gain compared with a halt-wave dipole , based on the ratio of half-power beam widths, is therefore slight!y more than $90 / 60$, or 1.5 times. More precise calculations give a gain ot 1.6 times, the gain being less than 2 because of murual interaction between the elements which can be estimated as follows: if R_{r}^{\prime} is the effective radiation resistance of each eiement, and I the current, the power radiated is $2 I^{2} R^{\prime}$. For a single dipole, with current I_{D} and radiation resistance R_{r}, the power radiated is $\mathrm{I}_{D}{ }^{2} \mathrm{R}_{r}$. With no interaction, $\mathrm{R}_{r}=\mathrm{R}^{\prime}{ }_{r}$ so that for equal powers in the two cases $I=I_{D^{\prime}} \sqrt{ } 2$ and, as we have seen, there is a gam of 2 . If the gain is less than this, the current must also be less, otherwise we should fail to satisfy the condition that the field strength is proportional to the mean current multiplied by the length of wire through which it flows. In this case, therefore, the current is less than $\mathrm{I}_{D} / \sqrt{ } 2$ by the factor $\sqrt{1.6 / 2}$ and $\mathrm{R}^{\prime}{ }_{r}$ must theretore be equal to $(2 / 1.6) \mathrm{R}_{r}$. For a pair of half-wave dipoles, therefore, $\mathrm{R}^{\prime}{ }_{r}$ becomes $73 / 0.8=$ 93 ohms, so that the proxunity of one element increases the radiation resistance of the other by 20 ohms; in other words there is a mutal resistance of +20 ohms. This example demonstrates the interdependence of gain, beam width, radıation resistance, and mutual impedance, and shows that any one of these quantitues can, in principle, be used to obtain the others ; in particular, given the mutual resistance as a fraction of the radiation resistance the whole example could be worked backwards and the

Fig. 10. Vector addition of two fields. E_{1} represents fielo at P due to element $A^{\prime} B^{\prime}$ of Fig. 3. E_{2} represents (same scale) field due to $A^{\prime} B^{\prime}$. Angle α is the reiutive phase of the two fields and is equal to $360^{\circ} \times d^{i} \lambda \cos \theta$. The freld strength at P is proportional to length OA. Simular procedure is applicable to any number of field components when relative magnitudes and phases are known.
gain calculated exactly. In the case of beam width, however, the augument rests on rather crude assumptions and should not be applied too l.terally.

The case of a broadside array, Fig. 11(a), can be treated in a similar way except that the radiation paitern differs from that of the dipole in both horizontal and verrical planes and must therefore be estimated for both. In this case we obtain the interesting result that the gain is more than two; in other words the mutual impedance can increase the gain as well as reduce it, and in large arrays of dipoles spaced by $\lambda / 2$ such effects are tikely to even out so that the gain tends 10 N approximately. In general, for collinear and end-fire elements spaced $\lambda / 2$ the gain is between 1 to 2 dB less than N, and for broadside elements about 1 to 2 dB more than N. Large systems of this kind are unlikely to concern the non-professional reader, but the principles apply equally to small beam aerials such as those used for amateur communication or for TV
reception. These are mostly of the end-fire variety (Fig. 11(b)), using two or more $\lambda / 2$ elements with spacings between about $\lambda / 8$ and $\lambda / 4$. Assuming two such elements and working out the radiation pattern and gain as for the collinear elements, but introducing a phase shift between the currents, some interesting facts emerge. The maximum gain is relatively large (nearly 4 times), no longer coincides with in-phase addition of the two fields in the desired direction, and is critically dependent on the phase shift, being a maximum when the currents are nearly out of phase. Remembering that the dipoles can, in principle, be as short as we like to make them, and have in fact been assumed short for purposes of calculation, we reach the conclusion that an aerial of small dimensions is able to collect the signal energy from a relatively large volume of space.
At first sight this may seem contrary to nature, and to reconcile it with previous concepts requires a new physical picture; this can be obtained by going back to first principles and restating the purpose of the exercise, which is to concentrate the energy in the desired direction at the expense of others.

Fig. 11. With a broadside array (a) elements ab, cd are fed in phase. Maximum radiation takes place in direction at right angles to plane of the paper. "End-fire" array (b) is of the " 8 JK " type and elements are fed anti-phase and maximum radiation is in directions $O A, O A^{\prime}$.

This can be done either by making the fields add up in the desired direction as already described, or by making them cancel each other in the undesired directions. To make them add in one direction but not in others it is necessary, as we have seen, to have large aerial dimensions so that a small departure from the wanted direction produces substantial differences in path length for the different elements and corresponding phase shifts. With the second approach, however, there is no lower limit to the spacing; if the elements are close together, cancellation of fields in one direction obviously means near cancellation in all others, but this does not restrict the radiation of energy which is concentrated in the directions for which cancellation is least effective, for the simple reason that there is nowhere else for it to go. Since, however, the actual field is the difference between nearly equal and opposite fields, it follows that the elem :nt currents must be large, the radiation resistance and bandwidth small, and the situation analogous to the case of a high-Q circuit which is able to extract all the available energy from (or deliver its energy to) another circuit to which it is only very loosely coupled.

This can be understood more clearly by a simple example. Consider a horizontal end-fire array of
two closely spaced elements, as in Fig. 11(b), with the elements fed in opposite phase. This arrangement is well known in amateur radio circles as the " 8 JK " aerial. Radiation in the upward and downward directions is zero, but in the directions OA, OA^{\prime}, cancellation is incomplete because of the phase shift ($s \times 360^{\circ}$, where s is measured in wavelengths). In a direction such as OP radiation is reduced in the normal way by $\cos \theta$ where $\theta=$ angle POA and also by as much again because, viewed from P , the elements appear to be closer together by this amount. We thus have radiation patterns given by $\cos ^{2} \theta$ in the horizontal and $\cos \theta$ in the vertical plane. Putting $\cos ^{2} \theta=1 / \sqrt{2}$ we have (for the half-beam widths) $\theta=32^{\circ}$ so that as compared with a dipole, the horizontal lobes are narrowed in the ratio $32 / 45$ and the vertical pattern is narrowed from 360° to a total of 180° from which we might expect a power gain of $90 / 32$ or 4.5 dB .

Once again we find that this method of calculating gain, crude though it is, has given an answer very close to the right one (4.2 dB), but the main point to note is that the calculation takes no account of the length or spacing of the elements and the gain is therefore independent of the physical size of the aerial system, provided, of course, the dimensions are not too large and that the losses are constant or negligible.
Let us now assume some values for current, say 1A in each element, and spacing, say $\lambda / 8$ which produces a phase difference ϕ_{0} in the line-of-fire of 45°. Since we start with the currents 180° out of phase, this makes α, Fig. 10, equal to 135° and putting $\mathrm{E}_{1}=\mathrm{E}_{2}=1$ we find that OA is only 2 sin $22 \frac{1}{2}^{\circ}$ or 0.76 . In other words the field produced is no greater than could be obtained by a current of 0.76 A flowing in a single dipole. We now know, however, that the field strength is 4.2 dB , or 1.6 times in voltage, greater than that produced by a dipole, so that the same power applied to the dipole would result in a current of only $0.76 / 1.6$ or 0.475 A . To obtain the radiation resistance R_{r} for each element, therefore, we have to equate $2 \times 1^{2} \times R_{r}$ to $(0.475)^{2}$ $\times 73$, which makes R_{r} only 8.1 ohms. Halving the spacing would call for twice the current and bring the radiation resistance down to only about 2 ohms, the bandwidth being now very narrow and the losses probahly serious. As this process is continued, the point is reached where a small inequality in the currents produces a larger out-ofbalance component than does the phase shift, and the radiation pattern then reverts to that of a dipole. The allowable inequality is directly proportional to spacing and would appear to be in the region of 10% to 20% for a separation of $\lambda / 8$. Halving the length as in Fig 7 would bring the radiation resistance down by the same ratio as in the case of the single element, i.e. from 8.1 to 0.7 ohms.
With two modifications, the " 8 JK " aerial can be converted into a conventional H aerial. Let it be supposed that the current in the lower element of Fig. $11(\mathrm{~b})$ is given a phase lag equal to ϕ_{o}; for the direction OA^{\prime} the phase shift is now $\phi_{o}-\phi_{0}$, i.e. zero, and there is no radiation, whereas for the direction OA the phase shift is $2 \phi_{o}$, the field for a given current is twice what it was for the " 8 JK " arrangement, and the beam is now unidirectional with an infinite front-to-back ratio. As θ varies, the phase shift varies as ($\phi_{0}+\phi_{0} \cos \theta$) instead of
(Continued on page 65)
as $\phi_{o} \cos \theta$, so that the forward pattern is now broader. This, together with some radiation upwards and downwards, accounts for the energy previously radiated in the direction OA', and the gain is more or less unchanged. Because the phase shift is doubled, however, the radiation resistance is four times as large, accurate balancing of the current amplitudes is less important, and parasitic excitation of one element from the other, as in the H array, is acceptable.

REFERENCES

${ }^{1}$ F. R. W. Strafford, "Measuring TV Aerial Performance "Wireless World, February, March and June 1958.
${ }^{2}$ L. A. Moxon, "Two-Element Driven Arrays," Q.S.T. July 1952.
${ }^{3}$ A. Bloch et al, "A New Approach to the Design of Super-Directive Aerial Arrays," Proc. I.E.E. Part III, September 1953.
${ }^{4}$ N. Yaru, " A Note on Super-Gain Antenna Arrays," Proc. I.R.E. Vol. 39, September 1951.
${ }^{5}$ D. G. Reid, "The Gain of an Idealized Yagi Array " f.I.E.E. Part IIIA, Vol. 93, 1946, p. 564.
${ }^{6} \mathrm{~W}$. Walkinshaw, "Theoretical Treatment of Short Yagi Aerials "ibid., p. 598.
${ }^{7}$ L. A. Moxon, "Noise Factor," Wireless World December 1946.
${ }^{8}$ F. E. Terman, Radio Engineers' Handbook (1943), p. 864.
(To be concluded.)

Transmitting Magnetic Compass

BY comparison with the gyro compass the magnetic compass has hitherto suffered from the disadvantage that it does not lend itself readily to the addition of repeaters.

In the Kelvin-Hughes Transmitting Magnetic Compass a standard magnetic compass is used and all necessary attachments are external to the compass bowl. Below the bowl is mounted a rotatable detector unit, which is essentially a toroidal transformer wound on a Mu-metal ring with the primary covering completely the ring. The two halves of the secondary winding are comparatively short and are placed diametrically opposite each other. The primary is energized with a critical saturation current from a $200 \mathrm{c} / \mathrm{s}$ oscillator (of the ther-mistor-stabilized Wien bridge type). As the Mu-metal ring is saturated any output from the secondary coils would be at $400 \mathrm{c} / \mathrm{s}$; but no output appears as long as the field about the Mu-metal ring is symmetrical with reference to the secondaries because these are seriesconnected in opposition. This is the case when the compass magnet lies "in line" with the major axis (circumferential) of the secondary coils; but as soon as the field is disturbed so as to become asymmetrical about the secondary coils the balance between their individual outputs is disturbed and cancellation no longer occurs. With the value of primary current and wind-
ing characteristics used this output is of the order of 5 to 10 mV per degree of deflection of the compass magnet from the null point : it rises to a maximum at 90° deflection, the phase (advanced or retarded) depending on the "sense" of deflection. The $400 \mathrm{c} / \mathrm{s}$ signal from the secondary coil is passed to a power amplifier which feeds one winding of a two-phase motor whose rotation is geared to the detector coil assembly. The other phase of the motor is fed continuously with $400 \mathrm{c} / \mathrm{s}$ derived, by a bi-phase rectifier and wave-shaping circuit, from the $200 \mathrm{c} / \mathrm{s}$ oscillator. Thus the motor is caused to turn as soon as the compass magnet swings away from the null position, the direction of rotation depending on the relative phase of the two $400 \mathrm{c} / \mathrm{s}$ signals and tending to bring the detector coil to the new null position. Although the amplitude of the secondary-coils output falls to zero for the 180° out of phase condition of the follower mechanism and compass card, in practice the system cannot lock in this position as the phase of any error signal from the secondary windings tends to drive the follower motor away from this null position. In any case, it is virtually impossible to reach accidentally this state of affairs as the ship cannot turn faster than the servo system.

The motion of the detector coil is coupled to a step-by-step transmitter, whose output is used to operate the repeaters placed throughout the ship; the gear ratio on this is such that the repeater cards move in 10 -minute steps. The transmitted information can, naturally, be, used for such purposes as the control of a "north-up" radar display.
The equipment has been fully type approved by the Admiralty Compass Observatory at Slough for use as a Ship's Standard Navigational Compass and a typical installation costs about $£ 800$ to $£ 1,000$.

The Bif lar-T Circuit

An Important Filter Investigated from First Principles

By THOMAS RODDAM

0N and off during the last two years I have thought that I should write something about the circuit which television receiver designers call the bifilar-T trap. This circuit made its appearance in 1956 in an American colour television set and was immediately analysed in editorials in the April and May, 1956, issues of Wireless Engineer. You might say that it is not for the likes of me to go shoving in on the tail of better men, but the analysis there was confined to the specific needs of telcvision and did not really worry about the general protlem of design. A more recent article in the same journal (now entitled Electronic and Radio Ensineer) for July, 1958, follows much the sance lines, and at one point the authors announce cheerfully that the ratio of two inductances

Fig. 2 Overall response curve of a colour television receiver incorporating the bifilor- T circuit as a sound-channel rejector.
may be anything between 2 and 6 or, they add, presumably higher. Surely, I thought, it should be possible to find a best value.

When I came to take a fresh look at the bifilar-T I realized that if nobody was breathing down my neck and telling me how new and clever it was it became immediately recognizable as an old friend. This had, indeed, already been pointed out in the correspondence columns of Wireless Engineer (July, 1956, issue), but I, like everyone else dealing with the circuit, overlooked this reference: not everyone else, perhaps, because someone has borrowed my copy of this issue and has not returned it. However, the circuit is important enough to merit a complete survey, and this one, prepared away from all the references, has at least the merit of being based on almost first principles.

The standard way of drawing the bifilar-T circuit is shown in Fig. 1. The centre-tapped coil is wound as a bifilar structure so that the coupling between the two halves is the maximum possible. The sort of performance which this circuit gives is shown in Fig. 2 and the characteristic feature claimed for the circuit is the extremely sharp rejection at the sound carrier. I do not believe that the circuit really does give a gain of 6 dB , which was my first reaction to Fig. 2; it seems that the $34.65-\mathrm{Mc} / \mathrm{s}$ level has been taken as an arbitrary zero. Nor does the circuit provide all the rejection at other frequencies, for Fig. 2 is an overall receiver characteristic. Still, it is a good sharp notch, and they say that it's the bifilar-T that is responsible.

Given Fig. 1 and a reasonable amount of application, a series of $\mathrm{T}-\pi$ and $\pi-\mathrm{T}$ transformations brings you to a rather frightening-looking π-section having as its top arm the parallel combination of a negative inductance, a negative capacitance and a negative resistance with a positive inductance and a positive resistance. Equating the resistances and fiddling about, we finish up with an anti-resonant circuit with negative L and C. This, we must assume, will give an infinite impedance at the stop frequency: it also brings the average designer to a full stop.

Suppose that we start again and that we begin by reaching for Volume II of Guillemin, Communica-

Fig. 3 One of the classical equivalences. The transformer is ideal.

tion Networks. I cannot give a page reference because as I write I am admiring the way the rain conceals the cloud hovering over the snow on a neighbouring Alp. Some, but not all, of the hay is in. However, even though I have no reference books handy, I can give you a rather interesting circuit equivalence, and it is shown as Fig. 3. This, in fact, is a circuit which Caver found very attractive and it made a frequent appearance in his work.
This is almost the whole story. At least, so I thought until I started to sketch out the figures which form the development of the story. Let us see what happens when we try to convert Fig. 1 into a circuit we know all about. The first step is to make use of the equivalent in Fig. 3 and this you will find in Fig. 4. The loss in the coil L_{1} has now been introduced as a parallel resistance R_{1}. If there were no loss in L_{1} we should not need R : indeed there is no end to what we could do if we had a perfect coil. The assumption that all the losses can be lumped together as a single constant parallel resistance is one which we always make in these resistance compensation circuits. So long as we are only interested in the notch itself it is, of course, valid, but the reader who is concerned to see where it breaks down should refer to a paper ty W. P. Mason in the October, 1937, issue of the Rell Sjstem Technical fournal, in which Mason criticizes severely the assumption by V. D. Lendon that the advaniages of resistance cancellation could be obtained over a substantial band-width.

Another Network Theorem

Now, back to our circuit. There is another network theorem, due, I think, to Norton and shown in Fig. 5. This enables us to remove a parallel element which appears in both arms of the lattice and bring it out to the end. or vice versa as we shall see in the course of our explorations. Our first use of the theorem will demonstrate the most common application. When we look at the lattice of Fig. 4 and think about taking out the loss resistance terms we see that if we make $2 R=2 R_{1}$ the network which remains will be purely reactive. It would have led to the same result to have taken out, say, $2 R$, leaving $2 R_{1}$ and $-2 R$ in parallel in the diagonals and then to have said let's make this infinite. Anyway, we now progress to Fig. 6. The two resistance elements at the ends will be absorbed into the source and load resistances and we have a neat little reactance lattice which is pretty obviously a single filter network. Just what sort of a filter it will be I cannot for the moment remember, because one does not use lattice networks in everyday design. Fortunately, with the lattice network it is very easy to discover just what its characteristics are without doing any mathematics: someone has done the mathematics, of course, and you can always go off and read the theory in detail. What we need here, though, are some simple rules.
Consider the lattice in Fig. 3. You can unfold the network about a fold line passing through either the left-hand or the right-hand pair of terminals and you will recognize immediately a simple bridge. This bridge is balanced if $Z_{a}=Z_{b}$, so that in filter language this is the condition for infinite attenuation. If Z_{a} is nearly equal to Z_{b} the bridge is nearly balanced, the filter is giving some attenuation. Since we are thinking in terms of classical filters the

Fig. 4 Applying the equivalence of fig. 3 to the circuit of Fig. I. The dotted arms are the same as the corresponding arms shown in detail.

Fig. 5 One of a pair of network equivalences which are useful in dealing with loss and capacitance elements.

Fig. 6 Applying the equivalence of Fig. 5 to the lattice in Fig. 4.

Fig. 7 The reactance characteristics of the series $\left(X_{8}\right)$ and diagonal $\left(X_{d}\right)$ arms of the lattice in Fig. 6.

Z's are pure reactances, of course. For mnemonic purposes it is sufficient to reinember that a filter has two kinds of behaviour, passing and stopping, and that in a lattice the distinstion is made by whether the resistance signs are the same or different at the frequency in question. That is why I was not

Fig. 8 Attenuation characteristics derived from Fig. 7.

Fig. 9 The end capacitances have been added to the equivalent circuit of Fig. 6.
perturbed to find that I could not remember what sort of a filter we have in Fig. 6. We can soon find out.

The two reactance characteristics are sketched out in Fig. 7. The series arm, with its impedance of $j \omega .2 \mathrm{~L}$, is a straight line of slope 2L. The diagonal arm shows the usual $x /\left(1-x^{2}\right)$ form, with its infinite point, at which it moves across from $+\infty$ to $-\infty$, at ω_{0}. At zero frequency it is obvious that $C_{1} / 2$ cannot have any effect, so the slope of the reactance characteristic here must be simply $2 \mathrm{~L}_{1}$. As you can see, I have drawn the characteristics for the condition $\mathrm{L}>\mathrm{L}_{1}$, and as a result the two curves cross at the point ω_{∞}. If L_{1} is increased or L decreased, and in the first case C_{1} modified to keep ω_{0} constant, the point of intersection will slide to the left until, with $\mathrm{L}_{1}=\mathrm{L}$, the two curves are touching at the origin only and then, with $L<L_{1}$, they never really meet at all.
I must digress here to point out that here there is a need to distinguish between zero frequency and d.c. In circuit analysis it is best to regard d.c. as something associated with the external energy supply and having as its main feature the fact that it is
neutral, colourless, like a Chestertonian waiter or postman. Zero frequency, on the other hand, involves a pent-up dynamism which is more clearly understood if you consider the period as the basic concept. For many problems one cycle per second is as good as z.f., for most, one cycle per day. A bold man might quibble about one cycle per year and we can bid him up towards infinity without ever needing to reach it. I am dealing with this point here because it is important to ω and because misunderstanding appears to be widespread.
Going back to Fig. 7, we must try to sketch out the attenuation characteristics of the filter. Above ω_{0} the reactances X_{d} and X_{s} are of opposite sign, so that the attenuation is zero: below ω_{0} the reactances have the same sign, so that there is attenuation. The boundary between these two regions, ω_{0}, is the cut-off frequency. Furthermore, at ω_{∞} the two reactances are equal, so that the attenuation is infinite, and at zero frequency the reactances are in the ratio $\mathrm{L} / \mathrm{L}_{1}$ so that the attenuation is finite. Drawing it out we arrive at Fig. 8(a). As we make L and L_{1} more nearly equal we move ω_{∞} to the left until when $\mathrm{L}=\mathrm{L}$, we have the condition shown in Fig. 8(b). If L_{1} is greater than L we get Fig. 8(c).
You will see why I found my first sketches of these characteristics disconcerting. Fig. 8(a) is quite certainly a high-pass filter with a single frequency of infinite attenuation: Fig. 2 calls for a low-pass filter. Someone seems to have been up to some monkey

Fig. 10 Using the equivalence of Fig. $5, C_{0}$ is brought from the ends into the lattice itself.
business somewhere. With some relief I found that Messrs. Hendry and McIntosh, in the July, 1958, issue of Electronic and Radio Engineer, showed for the audio frequency basic bifilar-T circuit a response which, but for a mismatch bump we can discuss later, is very like Fig. 8(a). It is the other way up, because they have measured response, but it is the same shape.

Valve Capacitances

This situation is particularly distressing because I had hoped that at this point I should be embarking on the agreeable task of discussing the design rules which would enable us to predict rather more of the response of a bifilar-T than its notch. Now even the notch has moved over to the wrong side of the pass
We are left with the rather unpleasant thought that perhaps someone has blundered, perhaps we have been analysing the wrong circuit. We have taken no account of leakage inductance, for example. Remembering that this circuit appeared first in the intermediate frequency section of a television receiver, my own instinct leads me to suggest that
there are some valve capacitances to be considered. In the second Wireless Engineer editorial the valve capacitances are, of course, included in the calculation, but it is not pointed out that they play this rather important part in shape determination. This guess is confirmed by some of the results of Hendry and McIntosh, though I don't really find it easy to follow their mathematics. Anyway, let us draw Fig. 9, which is Fig. 6 with end capacitances added.

Now is the time to make use of the network equivalent of Fig. 5 in reverse. We can take the capacitance elements C_{0} away from the ends and put them into the lattice, to give us the network shown in Fig. 10. At first it looks as though the variations on the reactance plots of the kind we used in Fig. 7 would be so many that one might as well give up. When we come to draw them out, however, we find that with a systematic approach the reactance diagrams are quite easy to arrange into their places. For the sake of generality let us assume that the capacitance in parallel with $2 \mathrm{~L}_{1}$ is C_{0} and that it may have any value whatever. Later we can impose the condition that it should be greater than C_{0}. It turns out to be easier still it we consider just two anti-resonant circuts $L_{A} C_{A}$ and $L_{B} C_{B}$ in which $\mathrm{L}_{\mathrm{A}}>\mathrm{L}_{\mathrm{B}}$. The reader who asks, " but what if $\mathrm{L}_{\mathrm{B}}>\mathrm{L}_{\mathrm{A}}$? ${ }^{\circ}$ is requested to go smartly through the diagram : changing round the lettering: the shapes will not alter.

reactance

Fig. II Reactance diagrams for the generalized form of the lattice in Fig. 10.

The anti-resonant frequency of $\mathrm{L}_{x} \mathrm{C}_{x}$ is ω_{x}, where x is either A or B. First let us assume that $\omega_{A}<\omega_{B}$. This enables us to draw the left-hand half of Fig. 11(a). Now since $L_{A}>L_{B}$ and $\omega_{A}<\omega_{B}$ it is perfectly possible that $\mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{B}}$. The solud curves in the righthand half of Fig. 11(a) show this condition, with the
two reactance curves meeting at $\omega=\infty$. But C_{B} could be a little less or a bittle greater than C_{A} without making the other two conditions inconsistent. If C_{B}, which is the one I have chosen to vary, is less than C_{A} the reactance curves do not meet, but if it is greater than C_{a} they cross at some frequency ω_{∞}. These two possibilities are dotted on Fig. 11(a).
Suppose now that $\omega_{i}>\omega_{\mathrm{B}}$. The reactance curves must cross in the left-hand part of the diagram, as you can see in Fig. 11(b). Since $L_{A}>L_{B}$ and $\omega_{A}>$ ω_{B} there is no choice left, C_{B} must be greater than C_{A} and we can sketch in the right-hand side of Fig. 11(b). Let us consider what happens as we increase L_{B} in this diagram, keeping ω_{B} constant. C_{B} will still be less than C_{A}, so we need not worry about the right-hand half of the diagram. The cross-over point ω_{x} will slide to the teft until, with $L_{A}=L_{B}$, it occurs at the origin.

Attenuation Characteristics

Now we have all the information we need for drawing the attenuation characteristics. Making use of our rule that when the reactances are of opposite sign the attenuation is zero, and that when the reactances are equal it is infirite, it becomes a very easy matter to sketch out Fig. 12. Now we find we have a band-pass fiter with band edges at ω_{A} and ω_{B} and with a single peak which may be above or below the band.

In our bifilar-T we have $L>L_{t}$, so that L is L_{A} and L_{1} is L_{b}. Looking at Fig. 10, we obviously have $\mathrm{C}_{\mathrm{B}}>\mathrm{C}_{\mathrm{A}}$. These condicions can be satisfied by curves in both Fig. 11(a) and Fig. 11(b), but they do ensure a single attenuation peak, which may at choice be above or below the pass-band.

The attenuation curves of Fig. 12 remind us that we are dealing with filters of classical design and that all we really need to do is to take down from the shelf the appropriate reference book, work out the ladder network we want and then make use of Bartlett's bisection theorem to turn it into a lattice. I do not propose to do our example in this way, because I cannot for the moment reach the shelf. Let us stick to first principles for the moment.

Fig. 12 Attenuation curves derived from Fig. 11.

The impedance of each arm of the lattice can be written as

$$
\begin{aligned}
\mathrm{Z}_{x} & =j \omega_{x} /\left(1-\omega^{2} \mathrm{~L}_{x} \mathrm{C}_{x}\right) \\
& =j \omega_{x} \mathrm{~L}_{x} \cdot\left(\omega / \omega_{x}\right) /\left[1-\left(\omega / \omega_{x}\right)^{2}\right]
\end{aligned}
$$

We are especially interested in the point $\omega=\omega_{\infty}$, when $Z_{A}=Z_{B}$, so that

$$
\begin{aligned}
& \omega_{\mathrm{A}} \mathrm{~L}_{\mathrm{A}} \cdot \frac{\omega_{\infty} / \omega_{\mathrm{A}}}{1-\left(\omega_{\infty} / \omega_{\mathrm{A}}\right)^{2}}=\frac{\omega_{\mathrm{B}} \mathrm{~L}_{\mathrm{B}} \cdot \omega_{\infty} / \omega_{\mathrm{B}}}{1-\left(\omega_{\infty} / \omega_{\mathrm{B}}\right)^{2}} \\
& \text { so that } \frac{\mathrm{L}_{\mathrm{A}}}{\mathrm{~L}_{\mathrm{B}}}=\frac{1-\left(\omega_{\infty} / \omega_{\mathrm{A}}\right)^{2}}{1-\left(\omega_{\infty} / \omega_{\mathrm{B}}\right)^{2}} \\
&=1-\left(f_{\infty} / f_{\mathrm{A}}\right)^{2} \\
&
\end{aligned}
$$

Looking at Fig. 2 in order to put in some number we might guess

$$
\begin{aligned}
& f_{\mathrm{A}}=35 \mathrm{Mc} / \mathrm{s} \\
& f_{\mathrm{B}}=38 \mathrm{Mc} / \mathrm{s} \\
& f_{\infty}=38.15 \mathrm{Mc} / \mathrm{s}
\end{aligned}
$$

so that we cannot just use a slide rule.
If x is small, $(1+x)^{2} \approx 1+2 x$. Thus
$\frac{\mathrm{L}_{\mathrm{A}}}{\mathrm{L}_{\mathrm{B}}}=\frac{(38.15 / 35)^{2}-1}{(38.15 / 38)^{2}-1}=\frac{(1+3.15 / 35)^{2}-1}{(1+0.15 / 38)^{2}-1}$

$$
\begin{aligned}
& =\frac{1+6.3 / 35-1}{1+0.3 / 38-1} \\
& =\frac{6.3}{35} \cdot \frac{38}{0.3}=22.8
\end{aligned}
$$

If we write $L_{A} / L_{B}=\kappa$ it is a few simple steps to derive the expression

$$
\frac{\kappa-1}{f_{\infty}{ }^{2}}=\frac{\kappa}{f_{\mathrm{B}}^{2}}-\frac{1}{f_{\mathrm{A}}^{2}}
$$

So long as κ is large, therefore, the peak at f_{∞} is fixed mainly by f_{B} and only slightly by f_{A}. The form

$$
\frac{1}{f_{\infty}{ }^{2}}=\frac{\kappa}{\kappa-1} \cdot \frac{1}{f_{\mathrm{B}}{ }^{2}}-\frac{1}{\kappa-1} \cdot \frac{1}{f_{\mathrm{A}}{ }^{2}}
$$

shows that κ is not very critical, for if we moved from $\kappa=22$ to $\kappa=20$ the term $\kappa /(\kappa-1)$ would change by an amount far too small to work out on a slide-rule: it is, in fact, about $\frac{1}{2} \%$.

I must confess that this result has surprised me. Lattice networks have the reputation of requiring excessively high precision in their elements but obviously this is not true of this particular case. Notice, though, that if κ were much greater than unity both f_{A} and f_{B} would shift f_{x} a great deal, and small changes in κ would be very important.

The expression given above for the ratio of the two inductances, together with the two equations for the anti-resonant frequencies which determine the capacitances, leave us with only one factor to be determined when we are attempting to design a bifilar-T trap. The relationship between the elements
is known: what we need to find now is the scale factor. This is what we call in classical filter language the characteristic impedance and is, if my memory is correct, equal to the square root of the product of the arm impedances. We have, then,

$$
\begin{aligned}
& Z_{0}^{2}=-\omega_{A} L_{A} \cdot \omega_{B} L_{B} \frac{\omega / \omega_{A}}{1-\left(\omega / \omega_{A}\right)^{2}} \cdot \frac{\omega / \omega_{B}}{1-\left(\omega / \omega_{B}\right)^{2}} \\
& =-L_{A} L_{B} \cdot \frac{\omega_{A}^{2} \omega_{\mathrm{B}}^{2} \omega^{2}}{\left(\omega_{\mathrm{A}}^{2}-\omega^{2}\right)\left(\omega_{\mathrm{B}}^{2}-\omega^{2}\right)}
\end{aligned}
$$

This is now rearranged as
$Z_{0}{ }^{2}=-L_{A} L_{B} \cdot \frac{\omega_{A}{ }^{2} \omega_{B}{ }^{2} \omega^{2}}{\left(\omega_{A}+\omega\right)\left(\omega_{A}-\omega\right)\left(\omega_{B}+\omega\right)\left(\omega_{B}-\omega\right)}$
At the centre of the pass-band we can write

$$
\begin{aligned}
\omega & =\omega_{\mathrm{A}}+\omega_{b w} / 2 \\
& =\omega_{\mathrm{B}}-\omega_{b w} / 2
\end{aligned}
$$

and then, provided that the bandwidth $\omega_{b w}$ is fairly small compared with ω_{A} and ω_{B}, we can easily derive:

$$
\mathrm{Z}_{0}{ }^{2}=\mathrm{L}_{\mathrm{A}} \mathrm{~L}_{\mathrm{B}} \cdot \frac{\omega_{\mathrm{A}}{ }^{2} \omega_{\mathrm{B}}^{2}}{\omega_{b x}{ }^{2}}
$$

Since we know the ω 's and are going to choose Z_{0}, we rearrange this to give

$$
\mathrm{L}_{\mathrm{A}} \mathrm{~L}_{\mathrm{B}}=\frac{\omega_{b w}^{2}}{\omega_{\mathrm{A}}^{2} \omega_{\mathrm{B}}^{2}} \cdot \mathrm{Z}_{0}^{2}
$$

which combined with our previous expression

$$
\frac{\mathrm{L}_{\mathrm{A}}}{\mathrm{~L}_{\mathrm{B}}}=\kappa
$$

gives us

$$
\mathrm{L}_{\mathrm{A}}=\frac{\kappa \omega_{h w}}{\omega_{\mathrm{A}} \omega_{\mathrm{B}}} \cdot \mathrm{Z}_{0}
$$

and, of course, $\mathrm{L}_{\mathrm{B}}=\mathrm{L}_{\mathrm{A}} / \kappa$.
When we look back to Fig. 10 we see that the lattice is terminated by a "built-in" load of $2 R$ at each end. Even with ideal source and load conditions, then, we cannot work with Z_{n} more than $2 R$. Let us write $\omega_{A} \omega_{B}=\omega_{0}{ }^{2}$, where ω_{0} is near enough the middle of the pass-band. We have then

$$
\begin{array}{r}
\mathrm{L}_{\mathrm{A}}=\frac{\kappa \omega_{b w}}{\omega_{0}^{2}} \cdot \mathrm{Z}_{0} \text { and } \mathrm{L}_{\mathrm{B}}=\frac{\omega_{b w}}{\omega_{0}^{2} \cdot \mathrm{Z}_{0}} \\
\text { or } \quad \frac{\omega_{0}}{2 \kappa \omega_{b w}}=\frac{\mathrm{R}}{\omega_{0} \mathrm{~L}_{\mathrm{A}}} \text { and } \frac{\omega_{0}}{2 \omega_{b w}}=\frac{\mathrm{R}}{\omega_{0} \mathrm{~L}_{\mathrm{B}}}
\end{array}
$$

These two expressions define for us the Q-factors we must have in our coils to meet the basic requirement that the filter should be matched at bandcentre by its own losses. In practice, of course, we never design this sort of filter to match the load impedances at band-centre because this gives us a rather rounded cut-off. It is possible that in an i.f. strip we might be happy about this, because we could use a doub e-humped characteristic in (Continued on fage 7l)

Fig. 13 Parallel resonant end circuits merely modify the lattice elements without adding functional complexity.

Fig. 14 A top-coupling element, such os inter-winding capacitance, is transformed to appear in parallel with $Z_{a} / 2$ and thus appears (doubled) in parallel with the series arms of the lattice.
another interstage coupling to correct the rounding. We can make this circuit double-humped by the use of circuits of higher Q -factor than indicated by the expression above.

In the use of the bifilar-T circuit to couple together two parallel resonant circuits, everything sounds even more complicated until you look back at Fig. 5 again. Clearly it is just a matter of repeating the step from Fig. 9 to Fig. 10, but now we bring those inductances in too, putting L_{0}, the new inductance, across each bridge arm too. This operation is carried out in Fig. 13, without the final reduction of the parallel inductances to a single
value. In the analysis above the terms L_{A} and L_{B} are now

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{A}}=2 \mathrm{~L}_{0} /\left(2 \mathrm{~L}+\mathrm{L}_{0}\right) \\
& \mathrm{L}_{\mathrm{B}}=2 \mathrm{~L}_{1} \mathrm{~L}_{0} /\left(2 \mathrm{~L}_{1}+\mathrm{L}_{0}\right)
\end{aligned}
$$

You will see that when we need to have L_{a} / $\mathrm{L}_{\mathrm{B}} \simeq 20$ it will be necessary that L_{0} should be very much greater than 2 L . No doubt we must have these inductances at the ends in order to get the supplies to the valves, but they do not really add to the functional complexity of the circuit. We are therefore not getting our money's worth in extra performance because we are only using two coils in parallel to do the work of one.

One problem which may arise in the construction of a bifilar-T trap is the capacitance between the windings of the transformer. This capacitance actually appears in the lattice in quite a convenient way which can be found from another lattice equivalent given by Guillemin. I prefer, however, to draw the circuit of Fig. 3 with added capacitance in the way shown in Fig. 14, which shows very simply how C_{T} across the top becomes $4 \mathrm{C}_{\mathrm{T}}$ across $Z_{a} / 2$, and then, in its turn although I have not bothered to draw it, becomes $2 \mathrm{C}_{\mathrm{T}}$ across each Z_{a} in the lattice. We could make the structure more complicated-looking by adding an inductance in parallel, too, but Fig. 14 makes it clear that it would be a complete waste.
(To be concluded)

Commercial

Sintered Components.-An illustrated booklet outlining the general techniques of powder metallurgy and giving advice to engineers on the design of parts to suit the process. From Basildon Metal Powder Parts, Church Road, Thundersley, Essex.
V.H.F. and U.H.F, Measuring Instruments and components imported mostly from American and German firms. The first of a regular series of bulletins from Aveley Electric, Ayron Road, Aveley Industriai Estate, South Ockendon, Essex.

Industrial Television Equipment for 625/405/525 line standards using plug-in units and printed circuits. An abridged technical specification on a leaflet mainly intended for business executives, from E.M.I. Electronics, Hayes, Middlesex.

Ribbon Microphone, type 4038, with figure-of-eight polar response and substantially flat frequency response from $30 \mathrm{c} / \mathrm{s}$ to $15 \mathrm{kc} / \mathrm{s}$. This and three other well-established microphones (moving-coil) described with technical specifications in leaflets from Standard Telephones and Cables, Connaught House, Aldwych, London, W.C.2.

Transistor Pre-amplifier Mixer for control and fading facilities, intenced for use with tape recorders. Standard models (three or five transistors) are for two low-impedence microphone inputs and one high-impedance input. Power supply from a 4 -volt mercury cell. Leaflet from Penco Products, 36 Coniston Road, Kings Langley, Herts.
pH Meters, thermo-couple and d.c. potentiometers, Wheatstone bridges and other laboratory instruments. Brief descriptions in a new illustrated folder with a price list from the Doran Instrument Company, Stroud, Glos.

Loudspeakers, a range of twelve quality models including bass and treble types, with cast aluminium frames. An illustrated leaflet with brief descriptions and tabulated data from Baker's "Selhurst" Radio, 24 Dingwall Road, Croydon, Surrey.

Pulse Height Analyser for analysis of complex pulse amplitude spectra into groups of known amplitudes. Maximum mean counting rate is 1,600 p.p.s. and the storage capacity is 2,400 binary digits. Ether digital or analogue display of the store contents is possible on the c.r.t. Leaflet from Marshalls' Flying School, The Aerodrome, Cambridge.

Literature

Stereo Control Unit for reproduction from tape, disks and radio, with push-button input selector. Valves: two EF86s and three ECC83s. Also a switched f.m. receiving unit and advance information on a new three-speaker Co:umn Loudspeaker System and a table cabinet for housing various combinations of equipments. Leaflets from Rogers Developments (Electronics), 4-14 Barmeston Road, Catford, London, S.E.6.

BATTERY CLOCK RADIO

A TRANSISTOR radio receiver incorporating a bat-tery-driven clock has recently been introduced by the Zenith Radio Corporation (U.S.A.). A separate $1 \frac{1}{2}-\mathrm{V}$ cell drives the clock for about a year and four mercury cells give about 400 hours operation of the receiver, which covers the medium-wave band.

By means of a bezel ring surrounding the clock face, the receiver may be set to switch on at any given time to serve as an "alarm." The price in America is $\$ 85$.

Zenith "Royal 850'" battery clock-radio receiver.

Ionosphere Review 1958

SUNSPOT MAXIMUM

By T. W. BENNINGTON*

AS readers may have gathered from the lay Press, the International Geophysical Year has concraed with a period of remarkably high solar activity. During 1957 and 1958, the last 18 months of which constituted this period of intense scientific effort, the average activity has remained at a higher level than that recorded at any time during the previous 19 sunspot cycles, covering a period of about two centuries. This is a fortunate circumstance for the scientists, and one of which we, who are interested in the upper atmosphere mainly as a communication medium, may also take some note, for it means that durin, 1957 and 1958 it has been possible to observe radio propagation phenomena under conditions which occur relatively infrequently, at least when measured by ordinarily used time standards. However, the activity during 1958 was, in fact, somewhat lower than during the previous year.
Course of the Sunspot Cycle.-An appraisal of the situation can be made from a glance at the graphs. In this the upper graph is a plot of the sunspot numbers (indicative of the degree of solar activity) and the two lower graphs are of the noon and midnight F_{2}-layer critical frequencies as measured at the D.S.I.R. station at Slough (indicative of the level of F_{2} ionization). In all the graphs the full lines give the monthly mean, or median, values whilst the
dashed lines show the twelve-month running average of these, and so indicate the average conditions. The general correspondence in the shapes of the three dashed-line curves indicates the response of the F_{2} layer to the changing activity of its producing agent, the sun.

From the sunspot minimum epoch in April/May 1954 solar activity rapidly increased to reach, towards the end of 1957, remarkably high values and some which have not, in fact, been equalled during 1958. The peak monthly value, it will be seen, occurred in October 1957, and it is of interest to compare this with the values reached at the last sunspot maximum, which was itself a very high one. Early in 1958 there was some decrease in the activity but throughout the year it has, despite fluctuations, remained very high. The twelve-month running-average value reached a peak at the epoch February/March 1958. And, since it has not subsequently shown signs of increasing to a yet higher value we might assume that that was the epoch of sunspot maximum. But we cannot, as yet, be positively certain about this.

The noon critical frequency, it is seen, has shown but slight signs of a decrease during the year, the

[^0]Voriations in sunspot activity with corresponding variations in ionospheric conditions, 1947-1958.
summer values being of the same order as those for last year, and the winter values just failing to reach the very high values reached last winter. In the case of the midnight values they were slightly lower during the summer and of the same order this winter, compared with the corresponding values for last year. Altogether, therefore, as is shown by the flatness of the running-average curves, there has been very little change in F_{2}-layer ionization due to the sunspot cycle during 1958, and the ionospheric measurements indicate that very high frequencies should have continued to be usable for communication.
Usable Frequencies.-This has been borne out in practice, the usable frequencies for long-distance communication having remained remarkably high, indeed, frequencies far higher than the highest normally used for this purpose have been commonly received at long distances. The highest broadcasting frequency band- $26 \mathrm{Mc} / \mathrm{s}$-has, for example, remained usable throughout the year, and the $28-\mathrm{Mc} / \mathrm{s}$ amateur band has been so for the greater part of it. Over the North Atlantic circuits the highest frequencies receivable have followed a similar pattern to that for last year, decreasing from values of the order of $58 \mathrm{Mc} / \mathrm{s}$ in January to about $29 \mathrm{Mc} / \mathrm{s}$ during the summer months, and rising again to about $56 \mathrm{Mc} / \mathrm{s}$ in October and $50 \mathrm{Mc} / \mathrm{s}$ in November. The highest frequency receivable for 50% of the days during any month was, of course, considerably lower than this, but was well over $40 \mathrm{Mc} / \mathrm{s}$ during the winter and of the order of $26 \mathrm{Mc} / \mathrm{s}$ during midsummer months. The Crystal Palace sound $(41.5 \mathrm{Mc} / \mathrm{s})$ and vision ($45.0 \mathrm{Mc} / \mathrm{s}$) channels continued to be received in South Africa, reception reaching a peak in March, when, between 1000 and 1800 G.M.T. reception of the sound channel was ubained for well over 50% of the total time, and of the vision channel for about 30% of the time. During May to August this reception became relatively infrequent, but during September to November it again increased, though to somewhat lower percentage values than in the spring.
All these facts provide practical evidence of the unusually high degree of ionisation of the F_{2} layer under present conditions, and of the very high frequencies which it is capable of propagating over long distances.
Ionospheric and Magnetic Disturbances.-It is interesting to observe, at this phase of the sunspot cycle, how the incidence of ionospheric and magnetic disturbances has varied since sunspot maximum in 1945. The table gives some figures obtained from magnetic and ionospheric measurement data, accord-

TABLE

Year	1954	1955	1956	1957	1958
Days of Magnetic Disturbance	66	57	125	121	101
	18\%	16\%	34\%	33\%	28\%
Days of Ionospheric Disturbance	75	102	132	140	126
	21\%	28\%	36\%	38\%	34\%
No. of Sudden Ionospheric Disturbances	0	7	67	94	59

ing to disturbance criteria used by the author, and from reports of sudden ionospheric disturbances.

All the phencmena listed, it will be noticed,-increased from low values in the sunspot minimum year of 1954, to reach peak values in 1957, and in 1958 the incidence of the disturbances has noticeably diminished. In the case of the sudden ioncspheric disturbances, since these are intimately connected with solar flares which always occur in association with sunspots, it is expected that the decrease in their incidence will continue during the next several years, as the sunspot activity declines. The magnetic and ionospheric "storms" may, however, cont:nue to have a high rate of occurrence, or even to increase, cntil about a year before sunspot minimum. This is because, during the declining phase of the sunspot cycle, the solar corpuscles which apparently cause these disturbances appear to be emitted from the sun from regions where there is no sunspot activity. However, it was perhaps fortunate that during the I.G.Y. a large number of disturbances occurred, for, from the great mass of data obtained during their progress, the scientists should be able to learn a great deal more about them, and some of this knowledge may prove to be of benefit to those engaged in radio communication.

The Coming Year.-As for 1959 it seems probable that the solar activity is likely to decline but very slowly throughout its course. If that be so, we may expect the long-distance usable frequencies to remain much as they were during 1958. The highest receivable frequencies are likely to decrease somewhat, but these are well above the bands allocated for longdistance communication. By next winter, however, it is likely that the decline in solar activity may begin to make itself felt, principally in the necessity for somewhat lower frequencies for night-time communication.

110° CR Tubes

Two television cathode-ray tubes with the new 110° deflection angle are now available from Siemens Edison Swan, Ltd., 155, Charing Cross Road, London, W.C.2. They are the 17 -inch CME1703 and the 21 -inch CME2101. Both are eleetrostatically focused types with rectangular aluminized screens. The increased scanning angle gives a reduction in overall length, compared with E.diswan-Mazda 90° tubes, of about $2 \frac{1}{2}$ inches for the 17 -inch type and about $5 \frac{1}{2}$ inches for the 21 -inch type. Neck diameters are also reduced (to make the deflection coils as effective as possible in scanning the wider angle) and this necessitates the use of the small B 8 H base for the connections. The electron guns are straight types with no ion traps. Improved screens with silver activation (introduced also in other new Ediswan-Mazda types). are claimed to give 20% more light output for a givene.h.t. voltage than those of previous tubes. Incidentally, the firm has also brought out two new frame scanning valves for use with the 110° tubes, the 30 P 18 and 30PL13.

WIRELESS WORLD INDEX

The index to the material published in Volume 64 of Wireless World (1958) is now available. It includes both general and classified indexes, and is obtainable from our Publishers price Is. (postage 3d). Cloth binding cases with index cost 7s. 6d. (postage and packing 1s. 6 d .). Our Publishers will under cake the binding of readers' own issues, the cost per volume. including the index and binding case, being 22s. 6d., plus 2s. 6d. postage and packing.

LETTMERS TO THE EDITOR

The Editor does not necessarily endorse the opinions expressed by his correspondents

Plymouth Effect

THE Plymouth Effect which is the subject of an article* in your December issue appears to be identical with a phenomenon observed some years ago by the writer at frequencies of the order of $15 \mathrm{Mc} / \mathrm{s}$. In this case signals from a transmitter in the Portsmouth area were being received at a point on the coast about five miles to the east. Rapid and violent fading was at first attributed to scatter from a rough sea, the direct signal being attenuated by the overland path and by the co.ncidence of nulls in the radiation patterns of the aerials. With the return of calm weather, however, the effect persisted unchanged. It was also independent of the state of the tide or the time of day.

The direction of arrival of the signals was rather diffuse and consistent with an indirect path via reflections from the Isle of Wight which appeared to have an equivalent reflecting area of the order of 10,000 square metres. The signal envelope was not analysed in detail but appeared to have a Rayleigh-type amplitude probability distribution, varying between several times the mean level and a small fraction of it. Modification of the aerial systems to favour the direct overland path reduced the flustuations to something of the order of 20% of the mean amplitude.
The effect was also observed at about $7.5 \mathrm{Mc} / \mathrm{s}$, using a loop receiving aerial. Orientation of the loop to reject the direct signal produced a large increase in the fluctuations but a comparatively small drop in mean signal
level.
The mechanism of the fluctuations remains obscure, but is assumed to have involyed several signal paths subject to random phase variations. Phase-changes are known to take place at land-sea boundaries; and the random variations of these boundaries together with the fact that four of them have to be crossed by the indirect
signals is signals is suggested as a possible explanation for the fluctuations in signal amplitude. This would apply equally to reflections from the Isle of Wight and from the Channel Islands, and could account for failure to obtain correlation with sea state.

Admiralty Signal \& Radar Establishment.
Portsmouth.

* "More on the Plymouth Effect," by James P. Grant, Assoc. Brit. I.R.E.

Mr. Grant asks us to say that since the articie published last December was written the case at "Egg Buckand reported in the paragraph after the heading The "Enect" Inland" (p. 589) has since been furthsr invest:gated and it has been established that the Plymouth Effect is not the cause.-ED.

AS the author of the paper referred to by Mr. Grant in his article in the Dec. 1958 issue, may I be allowed - space for a few remarks?

The general mechanism of line-tearing which Mr. Grant finds so inexplicable may be deduced easily from a simple knowledge of how a television receiver works by anyone who has read my paper. There is a time lag, which may have any value, between a line of direct
signal and the same line of back-scattered siznal, signal and the same line of back-scattered signal, with the result that the interference may be a positive or a negative echo Let us assume that the receiver time base is adjusted, in the first instance, to lock at its leading edge with the direct transmission of the line synchronizing pulse. Depending on the modulation voltage at the end of the previous line of backscattered signal and on its arrival phase, the line syn-h:onizing pulse is rei forced or swamped. If it is reinforced, the time base remains locked, but if it is swamped, and
somewhere along the line the combined envelope of the signal and interference drops sharply to a low value, the time base is held by this trough in the modulation.
The effect on the picture is clearly a function of the modulation content, the delay to which the interference has been subjected and the characteristics of the time base circuit. The number of lines displaced is determined by the period for which each cycle of the necessary conditions prevails.
The example of 18 th November 1957 has been selected by Mr. Grant from observations made over a long period of time to illustrate his contention that actual meteorological conditions prevailing at the time of the interference do not correlate with those suggested in my paper. It is, in fact, an example where very good correlation is present. The wavefront generated by a wind
from the 180° direction lies on an east-west line and travels northward across the Channel. When it reaches Rame Head it is stopped by the land to the west, but to the east of this point it is turned in an anticlockwise direction into the Sound. It thus takes up exactly the orientation which the paper states is necessary.
"If I read Mr. Grant correctly in the pasagraph headed "Coastal Limits" he suggests that the land promontories to the east of Plymouth are illuminated by a reflection from the Guernsey aerials with an intensity comparable with that of the direct transmission from North Hessary Tor. What he is propounding as a verious 100 miles from North attenuation over a path of nearly 100 miles from North Hessary Tor to Guernsey, and the return path of over 90 miles from Guernsey to Plymouth coupled with the fact that the power absorbed and re-radiated by the Guernsey aerials is limited by their apertures, is the same as the attenuation over a direct path 15 miles in length!
It does appear that, just as an astrologer sees portents of ill in the position of a star, so the location of the Guernsey aerials fills Mr. Grant with foreboding. I I should like to assure him that there is nothing sinister in the fact that their beam points towards Plymouth or that a line drawn from them through Crystal Palace passes within 15 miles of Harwich. The sea in front of this town, though beyond the radio horizon of the Crystal Palace radiating system, does in fact receive energy foom its transmissions in the same way as do the receiving aerials in Harwich town. The estimates made here of the coefficient of back-scatter gave the value 8%. The estimate for Plymouth is 7%. The evidence at present available is derived from observations made in a number of places, some as remote as the Isle of Man and Orkney. It indicates that sea-scatter interference is present to a
greater or lesser extent along any coast where a television greater or lesser extent along any coast where a television signal is receivable (be it in China or Peru), and that the amplitude of the interfering signal is about 7 or 8% of that incident on the sea.
E. SOFAER,

Tadworth, Surrey.
B.B.C. Research Department.

Miller Sweep Circuit

I SHOULD like to point out that the circuit arrangement, described by Mr. C. S. Speight, in the January issue (p . 34), has been used in oscilloscopes now for some years. The or izinal arrangement, developed by Mr. L. Freeman a and myself several years back, is shown in the accompanying circuit diagram.

To my knowledge, this basic arrangement, in one form or another, has appeared in at least five different oscilloscopes on the home market, manufactured by some inree separate companies, one particular make of which has
been available now for three years. Transistor versions have also been used in the laboratory.

In the circuit I have shown two ECF82 valves, in order to standardize the valve types. This, of course, does not alter the circuit basically. As, however, V3 cathode is at some 200 V to earth, and V2 cathode rises to the same potential during flyback it is advantageous to have a double valve for these two positions and to use a separate heater winding for same.

The potentiometer VR_{1} can be used (with the switch in free-run position) to stabilize the repetition rate of the timebase and if retarded sufficiently (resistance decreased) the timebase becomes essentially a triggered device. Alternatively, the switch as shown could be used to distinctly switch from free-run to triggered operation and VR_{1} used as a pre-set, for optimum trigger sensitivity.

Referring back to Mr. Speight's Fig. 2, the main difference would appear to be the addition of two diodes, D1 and D2. D1, it will be appreciated, is not essential to the operation of the circuit and in the interests of economy, can well be left out, together with R_{y}, as the duration of flyback, and hence grid current in V1, is extremely short and well within the capabilities of ordinary valves.
Furthermore, I would suggest D2 is also unnecessary as its function can be performed more efficiently by V3, if negative sync. or trig. pulses were applied to its cathode. This would relieve V2 anode of any capacitive loading which is advantageous if this point is required for c.r.t. grid "bright-up," it also gives a faster initiation of run-down.
The use of V3 for trigger injection also ensures automatic gate-out of any pulses arriving during the actual run-down, which therefore cannot alter or affect the linearity of the display. V3 during this period is cut-off.

I should further like to mention the following points:-

1. This circuit arrangement does not eliminate the Miller step, other methods are required for this, see B. H. Briggs-" The Miller Integrator," Electronic Engineering, Aug., 1948, and Prov. Patent Spec. 30735/58. With this arrangement, the initial Miller step is less than in more conventional Miller circuits. However, it deteriorates slightly at the higher speeds of run-down: a further effect, due to V2 grid-cathode capacitance feeding through the switching pulse, makes matters worse. Up to sweep speeds of $30 \mathrm{~V} / \mu \mathrm{sec}$, however, this latter effect is negligible. As the initial step is essentially constant in amplitude, in common with most Miller arrangements, it is advantageous to have as much amplitude as possible of total run-down, thus keeping the percentage of step to run-down a minimum.
2. The figures of non-linearity quoted by Mr. Speight do not take into consideration the non-linearity due to the initial step at all, or its effect on the presencation displayed on c.r.t.
3. The output can be shunted if required, by a reasonable impedance, provided a similar or slightly lower impedance is shunted across V2, with no apparent loss of linearity.
4. The following advantages seem to have been over-looked:-

(a) Constant amplitude of run-down unaffected by sync. at all speeds.
(b) Superior triggering or synchronizing ability.
(c) Voltage level from which run-down commences is constant and therefore the spot always starts at the same point on the c.r.t. display.

St. Albans, Herts.

J. D. JULIAN.

Rigidity of Loudspeaker Diaphragms

IT is interesting to learn from Mr. H. A. Hartley's letter in the January issue that he manufactures what is undoubtedly a sandwich construction diaphragm speaker. I had not seen this advertised until recently, when it occurred to me that it might be of sandwich construction, but this was offset by the diaphragm being described as "wafer-thin"; this suggests that while this cone is doubtless much stiffer than the usual type, still greater stiffness could be obtained for the weight.

I am surprised that Mr. Hartley should have trouble with damp, as the pores of the expanded polystyrene which I suggested for diaphragms are not connected and the solid material itself has good water resistance. The makers claim that six weeks' total immersion in water gives only 2.8 per cent by volume absorption (which will dry out in a normal atmosphere), which is surely much better than cone paper, and simple ad hoc tests support this. There are a number of plastics which are not too resistant to water and many foams have interconnected or partly interconnected pores; the description of the bonding process suggests that the pores of Mr. Hartley's cone may be interconnected.

The statement that stiff cones do not seem to conform to conventional theory of speaker design and give a wide response is most interesting, as this is my own experience. Since writing the articile, I have constructed a number of sandwich speakers. Thus a $7 \frac{1}{2}$-in diameter flat diaphragm of total moving mass 15 gm gave ample treble, no tweeter being necessary, and response extended to the limits of audibility (and doubtless beyond). A thick $7 \frac{1}{2}$-in diameter cone, of total moving mass 30 gm , was slightly deficient in treble but still reached the limits of audibility. In each case the treble was well distributed. While these findings are most agreeable practically, they upset theory! The diaphragms are still not infinitely rigid, but it is difficult to see how they could have an even greater treble output than conventional cones of similar diameter and weight. I agree that a stiff cone seems to show up other defects in the
system, in that the above speakers show high-frequency distortion on certain types of signal for no very obvious reason.

Banbury.
D. A. BARLOW.

I WAS very intrigued by a paragraph in Mr. D. A. Barlow's article in the December, 1958 issue dealing with twin cones which states: "In an alternative design, the small cone is joined at its outer edge to the inner edge of a large one by means of a compliance, forming a composite cone." I would like to point out that I was granted a patent covering just that form of composite cone (B.P. 329, 376; Application Date Feb. 18, 1929, No. $5387 / 29$; Complete left Nov. 15, 1929; Complete accepted May 19, 1930).
A.though the so-called "theory" expounded in my application may sound a little "forced" at this later date (but what application doesn't?), I still consider the principle holds, that a diaphragm needs power to begin to move it and time, owing to its inertia. A (much) later analysis of the whole system where a component is suspended from another also suspended component resulted in indications that the response-especially with drive applied to the first component, i.e., the inner cone -was in a series of resonances. The stiffness, etc., of the coupling between the cones was of great importance, resulting ultimately in the very familiar concertrically corrugated cone.

Which reminds me, I do not seem to find the egg container to be very rigid when loaded with eggs or its similar unit when loaded with apples! "But it would appear to be another way of making a "stiff" conei.e., by dimpling sheet material and facing it with "stress skins."
There also exists B.P. 258,502 (1926) where the use of a large-diameter disc of balsa wood is driven by the inner cone to give suitable reproduction, the patentee states: "We are not prepared to state exactly what properties of balsa wood are responsible for the improved operation of the loudspeaker disclosed in this application, but undoubtedly the soft nature of this type of wood and its extreme lightness are contributing factors." Possibly the effect is as your contributor describes.

Breaston, Derby.
R. H. PARKINSON.

Printed Circuits

I WAS most interested to read "Diallist's" comments in the January issue on printed circuits in "electronic equipment" and more particularly the letter from Mr. A. G. Tucker on this subject, and it is to this letter that I refer.

It is unfortunately true that many radio service technicians are biased against the use of printed circuits, or should I say against the repair and servicing of receivers incorporating printed circuits, and Mr. Tucker's comments seem typical of so manv of the servicemen.

- In the first place, I would doubt very much whether many dealers consistently give a 24 -hour repair service, even using brute force methods of cutting out doubtful components and replacing them with good ones. If therefore, the only complaint in servicing receivers incorporating printed circuits is that a dealer would have to wait at least a week for a replacement circuit, then why not stock a replacement circuit in the same way as valves and other components are stocked.

I feel, however, that this is not the reason why service engineers are not entirely happy with printed circuits and in my opinion, it really comes down to the fact that more care and a higher degree of technical skill is required to do the job efficiently, whereas in the repair of conventionally wired receivers, there is more room for the hit-and-miss method which does not require as much experience or technical knowledge. I would give as an example, the experience in our own assembly works of the resistance to the use of printed circuits when production was first changed over, approximately nine months ago, but this position has now completely
changed and not only are fault finders and repairers keen to work with printed circuits, but they have furthermore demonstrated that their output is greater than when repairing conventionally wired receivers.

I am aware that the type of fault finding in an assembly factory is not necessarily the same as that experienced outside, but nevertheless I feel that similar conditions will prevail.

Mr. Tucker is quite in error if he assumes that the only advantage of the use of printed circuits is to cheapen production. It most certainly does that, but it furthermore reduces the cost of the complete receiver by enabling a smaller and simpler chassis to be used as well as a smaller cabinet, it improves reliability and also gives greater consistency in performance than can otherwise be achieved.
Regarding the position in the U.S.A., it is quite wrong to say that the better television receivers are advertised as "definitely containing no printed circuits". The position is that only one manufacturer has so far not made use of printed circuitry and his advertising reflects this position by making a virtue of an existing situation. It is surely not correct to assume that such American manufacturers as Westinghouse, G.E., R.C.A., Philco and many others do not produce the best types of television receivers, and since they do and since, furthermore, 95 per cent of American radio and television equipment is now printed, then to use Mr. Tucker's own words "that surely speaks for itself".

Manufacturers in this country too are increasing the number of receivers incorporating printed circuits and it is quite certain that printed circuits are here to stay. I suggest therefore, that service engineers learn to live with them, learn the snags or problems that may arise, then overcome them and they will shortly wonder how they ever managed to repair the old-fashioned receiver using "steam wiring".

Slough, Bucks.

Radio and Allied Industries, Ltd.

I WOULD like to take up a sentence (December, 1958 issue) in which "Diallist" says "He tells me that his service department reports that faults in receivers using such panels are appreciably fewer in number than they were when conventional wiring was in use.". Well now, I tried to break this statement down and in doing so came to these conclusions.

The printed circuitry must have some magical property which prevents capacitors, resistors, transformers and the like from breaking down; or this manufacturer must have had a spate of broken wires and poorly soldered joints in this department beforehand. Alternatively perhaps the design of receivers has improved and the liability to breakdown would not occur with conventional wiring either?

To round off let me say that the last printed circuit receiver I serviced within the last week required the dismantling of an i.f. transformer to trace a fault within it. The six connections requiring simultaneous application of an iron to get at the component proved too much for anyone with normal human faculties, and a request was made to the manufacturers for a new panel. They hadn't any, no sir, not one, for a current receiver which had been less than four weeks in the customer's house. So back has gone the whole receiver to their service department while the owner-waits!

London, E.4.
M. W. DONAGHUE.

WITH reference to Mr. A. G. Tucker's letter in January issue, on printed circuits, I find myself annoyed by the suggestion that the serviceman would make a guess as to which unit(s) is at fault, then having "paid his money and taken his pick" he sends the unit off to the manufacturer, only to be told he has picked the wrong unit!

As regards the suggestion that the only advantage of printed circuits is cheapness, I cannot agree. If a sensible approach is made to removing unserviceable components and fitting new ones as in the original manner
(Continued on page 77)
(not as is suggested by some manufacturers, that is by cutting u / s components out and hanging new ones on the old piece of wire) no great dificulty should be experienced.

Stevenage, Herts. A. E. SMITH.

Stereo

I WOULD like to join issue with Mr. B. Wallace on several points in his letter (December 1958).

Some would agree that the best position to enjoy an orchestra was so far back that complete blending of sound ozcurs and the orchestra almost a point source. However, even at that distance, the audience, music lovers or otherwise, don't pay their money to listen to the whole sound coming from a hole in the side of a wooden panel, however beautifully it might be polished. An orchestra is not intended to perform or be listened to in completely non-reflecting surroundings. The multiple reflections within the auditorium are an integral part of the performance, and we set great store by them, as evinced by our recognition of good, bad and indifferent halls; good, bad and indifferent seats within a hall. These reflections do not reach our ears from the same direction as the direct sound, and this vital part of our enjoyment can be achieved only by some stereophonic system.

With stereo our "view" of the orchestra will no longer be through a hole in the corner of the room. The whole wall will seem removed and our room grafted on to the auditorium-at a suitable place, if the engineers have done their stuff properly. Admittedly there is a present tendency to give us a front seat, but we should grow out of that in due course. When all is correct, the whole thing feels real the moment the studio or concert hall background noise is faded in-before even the first note is played.

Chamber music can be reproduced almost perfectly with a single channel in a suftable room, with a very good omnidirectional speaker. Few of us have a suitable music room. Ours may be too small or too heavily furnished to do it justice. In this case we transplant the chamber music studio's better acoustics into our own front room-more accurately and realistically with stereo than with a single-channel signal.
London, N.11.
RALPH L. WEST.
AS so much has recently been written decrying the advent of stereophonic records I would like to join the fray as an advocate.
During the past few years many high-fidelity enthusiasts have spent fantastic sums of money in an endeavour to achieve the maximum realism of reproduction, much of the effort having been directed towards the supersonic end of the spectrum. This has resu'ted in what may be called a "bat-eared cult."
In my opinion, single-channel reproduction has reached the limits, and yet one cannot completely get away from the "hole in the corner" effect of a single loudspeaker array. In this respect, Mr. A. D. Levaggi (Dec. 1958 issue) pays stereo the greatest compliment when he says that one soon becomes unaware of the medium. This is as it should be.
It may seem at first consideration that Mr. B. Wallace, in the same issue, is correct when he says that a solo instrument or voice, or a chamber ensemble, would not benefit from stereo. If a performance were recorded in the open air, free from studio resonances (and how empty and dull this wou'd sound), I would agree with his argument, but the studio or concert hall audience, so vital to a lively performance, is always present, and a single channel is incapable of reproducing this "presence" with the realism that stereo gives.

This presence, incidentally, is the reason why so many existing records suffer from lack of clarity or "woolliness" in the lower frequency range and explains why the bass fiddles can be reproduced much more clearly on a (good) stereo record of orchestral music.

It is now the duty of the recording companies to issue records with the highest standard of performance, as even the finest stereo recordings cannot atone for mediocre performances and, in fact, seem to show them up even more.
Leigh, Lancs.
NORMAN WATSON.
I HAVE followed the progress of stereophonic sound reproduction since its inception, and have heard numerous demonstrations, including the series of B.B.C. experiments. I am more than ever convinced that the appreciation of sterephony is as much a psychological matter as a technical one. For myself, stereophonic reproduction is far and away more satisfying than either singlechannel or two-speaker single channel, yet I have several friends, for whose mental powers I have the most profound respect, who just cannot appreciate stereophony. They say either that they can hear no difference or that it is simply the same sound coming from two sources.

Were it possible to subject a cross-section of interested persons to physical and psychological classification, I think we might be nearer to the answer. Apart from the fact that many people manage quite happily, unaware that their two ears are by no means matched einiter for sensitivity or frequency response, there is also the possibility of interaction between eye and ear. I think it is generally accepted that human beings can roughly be separated into two categories; those for whom sight is the predominant sense and those with aural predominance. In short, some folk appreciate and remember things they see and read much more easily than things they hear. Some learn much more easily by attending lectures than by reading a text book. I suggest that it is possible that the "visualists" may be those who do not appreciate stereophony and the "auralists" are those who do.
For myself, I am definitely an "auralist." I find even two completely unmatched channels on stereo much more satisfying than single-channel reproduction, yet a friend of mine who is a more than ordinarily suacessful photographer, who can spot subtle differences between two pictures which just pass me by, cannot understand what I get from stereo!
It is an interestins exercise to listen to stereophonic reproduction in complete darkness. In a lighted room, the eye is constantly telling the brain that the sound is coming from one or more point sources, conflicting with messages from the ears which say that the sound is spread out. Remove this mental conflict by eliminating this "cross-modulation" and then listen to stereo with a new perception.
Bromley, Kent. A. O. MILNE.
THE woman who cannot afford to buy diamonds is quite satisfied with artificial stones or marcasite. There is little practical difference between them beyond the psychological glitter attached to the astronomical price of the diamonds. It is very much the same with stereo reception which is almost as old as radio itself.

Loudspeakers first came into use in the carly twenties for those first music broadcasts from The Hague, Holland. It was the normal practice to use headphones with the first attempts at loudspeaker operation both for "tuning in" (quite a performance in those days!) and comparing quality from the respective mediums. One of the first things to be noted with those early efforts was that a much greater degree of realism was attained when listening with headphones and the loudspeaker simultaneously; it placed one "inside the music," so to speak. It was necessary to adjust the volume of each instrument in relation to one's distance from the loudspeaker to get the correct effect. This adjustment was positive; there was no doubt when one had hit the correct balance; it was easy to make.
If it be argued that present-day listeners do not want to be bothered with headphones, the answer is that they also are not interested in paving out large sums for something that sounds "a little different" if one sits
"just so." With music enthusiasts it is quite another matter; they are prepared to go a long way for anything new likely to add to their enjoyment. To these I strongly recommend a trial of the combined headphone and loudspeaker reception-particularly if they have never previously handled headphones. It will cost little. All that is required is a pair of low resistance headphones with a few extra yards of flex to extend them a reasonable distance from the receiver, to which they are connected at the "exiension speaker" sockets \dagger. These headphones can be had secondhand very cheaply but if you want to take this trial seriously, invest in a pair of comfortable modern moving coil headphones which are of a suitable resistance for the purpose.

A separate adjustable resistance could be arranged to control headphone volume, but in practice it will be found in most cases that adjustment of the volume control on the receiver will effect the correct balance between the two to attain what is, I have no hesitation in claiming, something quite as good as the present costly attempts at so-called stereo reproduction which is only stereo in bits and pieces.

London, S.W. 18.
B. S. T. WALLACE.
\dagger Readers of W.W. will need no reminder that the output winding and sockets should be isolated from direct connection with the rest of the circuit or chassis-ED.

WHEN stereophony was first being launched commercially a couple of years ago you published several technical papers and detailed descriptions of equipment which made it abundantly clear that stereo must be expensive. In a typical example, it was shown that a difference of only 6 dB between channels was enough to swing the sound image fully to one side or the other. Thus if "image splitting" was to be avoided the two channels had to be matched very exactly indeed at all frequencies-a requirement which could be met straightforwardly, if at some cost, in tapeheads and amplifiers, bur roaly recrired exceptional care in both design and manufacture if it was to be fulfilled in the mechanical sys.ems of pickups and loudspeakers.

Now we are being offered all manner of equipment allegedly suitable for stereo and most of it is quite cheap! Further, we are being told that the advantage of stereo overrides limitations of quality in the component channels. Who is kidding whom?

May I draw attention to fundamental considerations which are being forgotten in the excitement? In the concert hall, one deliberately chooses to sit reasonably far away from the orchestra precisely in order not to hear the sounds of the different sections from noticeably different directions. In single-channel reproduction all the sounds are blended, but a small sound source within a room is heard as such, is located by the "mind's ear," is recognized to be near and in these circumstances realism can be approximated only by reproducing at the same loudness level as the original-which is out of the question for orchestral music, although complete realism can actually be attained in the reproduction of a solo instrument or voice.

For satisfying results in the home it is necessary to find a means of pushing the sound image back through the living-room wall. The simplest expedient, which is effective to a surprising degree, is to point a conventional speaker into the corner of the room. Better, if a speaker can be used which transmits a plane instead of a convex wave-front then the apparent distance of the image becomes dependent solely upon qualities of the signal itself-notably the frequency distribution and the ratio of direct to reverberant sound selected by the transmission engineer. A pair of matched speakers gives an approximation of a plane wave-front and I submit that from purely musical considerations it is the sole advantage of stereophony and can be obtained equally by using two speakers to reproduce "monaural" sound. The analytical quality of stereo is more likely to be an irritant once the novelty has worn off. Nevertheless, stereophony is an exciting technique and seems full of possibilities for all sorts of programmes other than
straight music, particularly if it comes to be used regularly in sound radio. But for musical material, any suggestion that the stereo effect can compensate for increased distortion or other limitations of quality is nonsense; nor has the question been authoritatively answered whether present recording techniques and available pickups can give as good quality from each channel of a stereo disc as is possible with single-channel lateral recording.
London, W.11.

IAN LESLIE.

IT has long been understood that two-channel binaural reproduction is a near ideal system and the only system of stereophony capable of easy practical achievement. Such a system demands that a position is selected for listening at the " live" end and the aural context is transferred remotely by replacing the listener's ears by "long electronic ears." The main practical considerations are that the microphones have the same directional characteristics as the ears replaced and that the channels taken back to stimulate the ears of a remote listener are free of frequency and non-linear distortion overall: the only inherent system shortcoming is that no change of auditory perspective results when the remote listener moves his head.

The question is how far can the ideal two-channel system be compromised for practical convenience. My answer is very little, and that the loss of control brought about by departing from the ideal is likely to drag stereophony into disrepute.

Two views are usually proposed for the consideration of stereophony as it is usually offered with two speakers some distance from the listener. The first view is that the original sound field is being re-created between the two spaakers and the second is that each channel is intended for each ear but is laid out as it is for practical convenience. The first view is very dangerous and smacks of free-field stereophony which, although ideal, is cnly approachable in the laboratory employing large numbers of channels: alternatively it makes assumptions about listening rooms which are unwarranted and implies that freedom of movement is available in the sound field.

The second view is more useful and it remains to enquire the extent to which each channel does apply to each ear. Two related uncontrolled factors are involved, listening room enhancement and aural cross-talk between channels: these together with the microphone techniques at present employed account for the uncontrolled "solashy" sounds with a coarse sense of movement with which we are all becoming familiar. The recording companies are in a quandary and use microphone techniques not very different from those used for "monaural" purposes with exaggerated differences between channels.

I submit that two-channel stercophony should come out in the open with what it really is: viz., a method of bringing another dimension under proper control. It should be acknowledged that listeners must be tied down to some personal controlled listening device such as earphones or very closely spaced speakers. Recording companies should give their customers a controlled replica of the sound in the best seat in the auditorium.

Maldon, Essex.
W. L. GREGORY.

Save Our Shavers

I AM pleased to note that "Free Grid" uses a lowvoltage transformer to feed his electric razor, but disappointed to read of his shocking experiences with a mains voltage model in earlier days.

Other readers who are not, like myself (as a contracting installation electrician), familiar with the I.E.E. regulations, may be interested to know that the provision of outlets for portable appliances in a bathroom is strictly forbidden, except in special circumstances as defined in B.S. 3052: 1958. I do hope "Free Grid" will read this before he receives a visit from his Local Board inspector, as this might well result in immediate disconnection of the supply.

Christchurch.
MICHAEL R. BOURKE.

- Annular Electron Gun for television c.r. tubes, devised at RCA Laboratories in America, offers the advantages of high modulation sensitivity and a small spot size which (with the focusing conditions) is largely independent of the beam intensity. In addition the gun provides internal video signal amplification and an automatic inversion of white-spot interference pulses. As shown in the sketch, the construction is based on an annular cathode, annulat control grids $\left(G_{1}\right)$ and accelerating grids $\left(G_{2 A}\right.$ and $\left.G_{2 B}\right)$, an annular grid G_{3} which forms an object electrode, and a beam-bending probe. The control grid annuli are normally operated at the same potential (negative with respect to the cathode), while $\mathrm{G}_{2 A}$ and $G_{2 B}$ are at different positive potentials (around 200 V) and the

probe is at about -15 V . In a conventional c.r. tube the electronoptical object is the electron-beam cross-over point, but here the object is the uniformly "illuminated" aperture in G_{3}, which is operated at about +50 V . This 0.007 in ciameter hole gives a spot of nearly uniform intensity and with sharply defined edges. On the grid control characteristic of a 16 -inch tube using the gun, an increase of negative control grid voltage first of all produzes an increase of beam current and then the expected tail-off to zero, with maximum current occurring at about -15 V . If the tube is modulated in a positive direction on the rising current section of the characterist.c, only about 6 volts of driving signal are required for full beam modulation. Any increase of signal over full. modulation ("whiter than white") produces a reduction in beam current and so provides the automatic interference inversion. Video signal amplification is obtained by inserting a load resistor in the positive supply to $\mathrm{G}_{2 \mathrm{~B}}$. The amplified signal obtained across this could be re-applied to G_{3} or the probe to obtain a possible increase in modulation sensitivity or used for other purposes. Full details of the electron gun are given by J. W. Schwartz in

the 1958 I.R.E. National Convention Record, Part 3.
Vertical Tracking Errors in stereophonic pickups are likely with the often used cantilever, or indeed with any construction in which the stylus is connected by a rigid link of any shape to a single pivot point. Such tracking errors arise because the pivot point must lie above the surface of the record, so that the line joining the stylus and pivot point cannot be horizontal. Thus the stylus, which can move only at right angles to this line joining the stylus and pivot point, cannot move straight up and down and so cannot accurately track vertical recorded modulations, the error being about five degrees or more with practical pickup constructions. The geometrical configuration is analogous to that in the more usual type of tracking error arising with ordinary laterally-only modulated records, so that the distortion produced will depend on the error angle in the same way. Such tracking errors are equivalent to somewhat reduced errors in each of the two 45 degree modulation directions now standard for stereophonic recordings. Expressed mathematically, if θ is the vertical tracking error, this corresponds to equal tracking errors in each of the two 45 degree modulation directions of $\tan ^{-1}[(1 / \sqrt{2}) \times \tan \theta]$ which is approximately equal to $\theta / \sqrt{ }$ for small values of θ. These errors could be avoided if the recording cutter motion was made the same as the possible stylus motion. In this connection, it is interesting to note that with the American Westrex cutter the nominally vertical cutting direction is in fact inclined at 23° to the vertical, though apparently only for reasons connected with the construction of the cutter itself (see C. C. Davis and J. G. Frayne, Proc.I.R.E., Oct. 1958, p. 1689). Alternatively. true vertical motion of the stvlus can be made possible by attaching it, for example, to four freely-linked rods forming a rectang!e with one side vertical.
Simple Character Recognizer for business and industrial applications, devised by E.M.I. Electronics, achieves its simplicity, small size and low cost by being limited to a formalized type face designed specially for the machine. Twelve numerals from 0 to 11 and a few
extra signs are used. In operation the numerals are analysed into five columns, each of which is mainly black or mainly white. For the figure 6 in the sketch, for example, the columns (reading from right to left) are black, white, white, black and black, so that if black is represented by " 1 " and white by " 0 ," the numeral 6 is coded in binary form as 10011. The first digit in the code for each character is always " 1 " (i.e., the right-hand edge is always black), so the system gives four variable digits with 2^{\prime} or 16 possible combinations. In the machine a narrow vertical slit scans across the numerals and the amount of black viewed through it is measured photoelectrically to give the sort of waveforms shown in the sketch. These waveforms are squared by limiters set to operate about the datum line to give the signals shown below. Identification is carried out by sampling five times, once in each column. This process is initiated by the first appearance of black in the

slit (since the first column is always black) and continued at a rate controlled by the scanning mechanism of the machine. The scanning can be varied over a wide range of speed. With this type of system it is possible to transform with little difficulty to magnetic reading. Characte rs printed in magnetic ink are scanned by a magnetic head whose slit corresponds to the optical scanning slit. (Such magnetic characters are of use on documents which are open to the
risk of accidental or intentional defacement). The use of a single scanning slit also removes the necessity for accurate positioning of the character in the vertical direction. Accurate positioning along the line is not necessary either, for the recognition operation is triggered off by each character whenever it arrives.

Single-wire Shift Register, a computer storage system in which patterns of digits can be shifted along at will, is under development at Bell Telephone Laboratories. Based on the so-cailed "twistor" technique

described in our January, 1958, issue (p. 32), the register consists of a single wire of 0.002 -in diameter magnetic material (Permalloy), whicli has mechanical torsion (the "twist") applied to it. This wire is stretched through the centre of a ceramic tube on which tiny 8 -turn solenoids are wound (0.075 in long and spaced 0.075 in apart) for "writing" in the digit pulses and shifting them along. Owing to the twist in the magnetic wire it can be magnetized most easily in a spiral direction, and it can store pulses when subjected to a suitable magnetizing field. The amount of twist applied serves to regulate the magnetic interactions between magnetized zones. These magnetized zones can be slid along the wire under the control of pulses applied to the small solenoids. Simultaneous pulsing of three adjacent coils is necessary to insert a magnetized zone into the register. Two coils must be pu'sed to slide this zone along the wire. For example, if a binary digit is stored by pulsing coils 1,2 and 3 , it can be moved along one space by pulsing coils 1 and 4. The pulse current required for the advance operation is about 140 mA . To clear the wire after a bit has been advanced, an "erase" coil is pulsed with about 240 mA . To read out the signal at the end of the register, a pulse of
about 170 mA is passed through three "read-out" coils. If a binary digit is present, a voltage pulse appears across the magnetic wire. In the absence of a digit, no voltage pulse appears. Tests on a 5 -advance register (see picture) have demonstrated the feas.bility of this device. It is capable of storing three binary digits per inch, and calculations have shown that the capacity can be increased to ten digits per inch. Bi-directional operation can be obtained. The upper frequency limit has not been established, but a digit pulse rate of several hundred kilocycles should be possible.

Aerial Lobe Pattern Synthesis is accomplished in a new Solartron radar simulator (developed for the Italian Army) by feeding the signals synthesizing the radar echos on to one plate of a capacitor of open construction. Between this and the other plate, from which the output is taken, an earthed metal disc is rotated in synchronism with the timebase on which the synthesized "aerial" signal is displayed. By shaping this disc appropriately (i.e., making cut-outs in it in proportion to the aerial lobes) the beam-width, magnitude and position of the aerial lobes are simulated.

Single-Amplifier Stereo.-Phantom working has long been known to line engineers: the basic principle is that a balanced two-wire circuit can carry an additional unbalanced circuit between the two lines and earth, or a pair of two-wire circuits can carry an additional balanced circuit between the two pairs. The former condition corresponds to a Class-A push-pull amplifier without a phasesplitter; that is, a push-pull signal could be fed in and extracted, amplified, in the normal way. Another signal, this time unbalanced (i.e., one side earthed), could be fed to both input stages in phase and extracted from a second output transformer in
series with the h.t. feed to the centretap of the push-pull o.p. transformer: for this signal the amplifier operates as two "paralleled "singleended amplifiers.
This system is used to provide "two amplifiers for the price of one" in the American Columbia Broadcasting System's range of stereophonic gramophones. Naturally, the distortion for the same power output is higher in the "paralleled" or phantom channel than in the pushpull channel and this means that it would be unwise to feed nearly identical signals to both phantom and normal inputs. If, however, the sum signal is fed into the push-pull channel and the difference signal is fed into the phantom channel the distortion produced should be acceptable because the power required for the difference signal should be less than that required for the sum. The outputs from the amplifier can be reconstituted into left and right signals by appropriate interconnection of the secondaries of the output transformers.

Another interesting feature of the system is that no input-matrixing arrangements are necessary to produce the sum-and-difference signals provided that left-hand and righthand inputs, one phase-reversed, are available. This means that a fourterminal stereo pickup can be used, the connections to one "generator" being reversed from the normal "inphase" output condition (pickups with three terminals are suitable if "out of phase" outputs are provided). One loudspeaker, too, must have its connections reversed to restore correct phasing:

More details are given in "A TwoWay Siereophonic Amplifier" by B. B. Bauer, J. Hollywood and G. Maerkle in the October 1958 issue of Audio and further reference is made to phantom operation in "The Bi-Ortho Output Circuit" (C. Nicholas Pryor), Audio, November, 1958.

I. All Observers are Equal (and none more equal than others)

Nature, and Nature's laws, lay hid in night:
God said, Let Newton be! and all was light.
God said, Let Newton be! and all was light.
Pope
It did not last: the Devil, howling Ho!
Let Einstein ba! restored the status quo.
Squire

In the early 1920s, Einstein's Theory of Relativity was a music-hall joke-the supreme example of the incomprehensible. Even scientists had declared it unintelligible or absurd, or both. But their clamour died down somewhat and became more thoughtful when certain astronomical tests proposed by Einstein were carried out and the results of all agreed with his predictions, contrary to "classical" theory. Nowadays the consequences of the theory are not confined to a few minute astronomical discrepancies but are an everyday laboratory experience, and its truth is accepted without question. (Though in fact I did come across a book dated as late as 1932 which asserted at great length that relativity is bunk, but this could perhaps be regarded in the same class as utterances from the Flat Earth Society.)

So much is the theory of relativity taken for granted that I have from time to time referred to

$$
\text { A } \quad \text { B }
$$

Fig. 1. The wavelength and frequency of waves observed at O depend on whether the source remains at A or moves steadily from A to B, but their speed remains the same.
"the relativistic increase of mass" without being uneasily conscious of elevated eyebrows and furrowed foreheads. But perhaps I have been too insensitive. Anyway, if Ohm's law is not too obvious and established for re-examination, Einstein can hardly be taken as read.

There are two Einstein theories of relativitythe special and the general. The special theory concerns things in a state of uniform motion, and to the ordinary person is astonishing but not too difficult to follow. It can be worked out with quite moderate mathematics. The general theory includes the special and goes on to bring in non-uniform motion and gravitation. The beginning is quite easy, but all except the brighter mathematicians tend to fall out when the detailed working is being expounded.

The starting point for both is the recognition that in all the universe there is no fixed reference from which things can be measured. So everthing is relative.

Perhaps the biggest step towards this was taken a few hundred years ago, when the idea that the earth was fixed was gradually overthrown. We now know that the earth moves in a number of different ways-around its own axis; around the sun; along with the whole solar system away from the centre of the galaxy; and probably sharing an
outward movement of the galaxy itself. If there were such a thing as a fixed point anywhere there would be no means of identifying it as such, so one may well question whether the idea has any meaning.
The last hope was the aether. This was the invisible and intangible medium that was supposed to exist everywhere, as something to carry light (by which word I am going to mean all electromagnetic waves) about the place. Waves being periodical changes of state, it is admittedly difficult to see how they could exist in empty space, which has no state to change. So the aether was invented for that express purpose. Its density and elasticity were calculated by analogy with other kinds of wave medium, and it turned out that it had to be immensely stiff, yet filling all space (including that occupied by solid bodies) and offering esistance to movement. If it existed at all it wou the universe (since ligt Aletected from sources of the order of 10^{22} miles way) so presumably it could be regarded as a stationary background to all the movements of worlds and men. It should therefore enable such movi nents to be measured absolutely instead of just r. 'atively to some other moving thing.

The problem was to make contact with it. Its sole activity being as a medium for light, the only way of doing so was to measure the speed of light in various directions. The same kind of thing can be done in measuring the direction and speed of wind. If we discovered that sound travelled from A to B in 1.000 sec . and from B to A in 1.016 sec , then we would reckon that through still air it would take $1.008 \mathrm{sec}^{\star}$, and that the 0.8% gain in the A-to-B direction was due to a wind whose component of velocity in that direction was 0.8% of the normal $1100 \mathrm{ft} . / \mathrm{sec}$. at which sound travels through air, namely 8.8 ft . $/ \mathrm{sec}$. or $6 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. As it seemed probable that the speed of the aether " wind" relative to the earth (caused by movement of the earth through it) might be very small compared with that of light, very precise methods of comparison were judged necessary; and from 1881 onwards Michelson and Morley carried out a famous experiment to compare the velocities of light in different directions. It revealed no aether wind. Only last week I saw news that this result had been confirmed by experiments with a precision of 1 in 10^{12}. That would have been sufficient to detect the earth's "aether speed " as low as one thousandth of its speed around the sun. It didn't detect any.
The physicists, who by 1881 had convinced themselves of the necessity for an aether, were reluctant to abandon it, and had to invent all sorts of explanations for the failure to detect an aether wind. With one exception, these all broke down. The exception seems even now to the non-scientist something quite fantastic invented specially to explain an awkward experimental result. It was that everything, including of course the measuring appara-

[^1]tus, shrinks in the direction of motion, to exactly the extent needed to offset the difference in the speed of light. The physicists of the time must have been very tenacious in their hold on the aether not to have let go there and then rather than accept such an explanation. As it happens, belief in tine aether has since had to be abandoned for other reasons, so one might heave a sigh of relief at not having to fall back on such a far-fetched alternative. Yet the Fitzgerald or Lorentz contraction (as it is called) is now accepted as part of the theory of relativity, exact numerically but differing in viewpoint.

So even if there were an aether we would be unable to make use of it as a stationary reference for measuring absolute speeds. Whether it exists or not, the last hope of a fixed reference fails. Nobody can say "I am stationary, so my view is right and it is you who are moving ". All observers' views are equally valid. The laws of nature must be the same for all. That is the principle of relativity.

The one thing that happens in empty space is

Fig. 2. Graph of time against distance, in which movements relative to some point show as sloping lines; straight lines for constant speeds. OA represents the progress of a beam of light, and $O B$ of a point moving at one third the speed of light. The same line $O B$ is the zero-distance axis of a graph applicable to that moving point. $O D$ is the corresponding zero-time axis if the indicated speed of light is to be the same as for the first point.
light (electromagnetic radiation). And where emptiness is complete there is no likelihood of light travelling at different speeds in different directions. The only way in which sound waves can come to us at different speeds is by wind; that is to say, a movement of the whole sound-carrying medium itself. But that doesn't apply to light, which has no medium -or, if you insist that it has, one whose relative velocity is inherently unmeasurable.

Remembering the modern ideas about light being streams of photons, you might suppose that when the source of a light is coming towards us the light would be moving past us faster than when the source is retreating. That would certainly be so with bullets from a machine gun on an aircraft. But observations on the stars show that it makes no difference to the speed of the light from them whether they are moving towards or from us.

One can get quite confused between this and the Doppler effect, by which light changes colour (indicating a change of frequency) when its source is moving. This is applied in some radar systems, including those used by police to detect breaches of
the speed limit. And the equivalent in sound is heard as the familiar fall in pitch of the locomotive whistle as it goes past at speed. But these changes in frequency are not due to changes in the velocity of the waves (in still air) but changes in wavelength due to differences in the positions at which start and finish of each wave are emitted. ${ }^{\star}$

So c, the speed of light, is the same everywhere in space. Does that sound to you quite reasonable but not exceptionally interesting? If so, think about it again, alongside the other fact that no one observer can claim priority over others. Wouldn't it surprise you if you were on a platform watching a train coming in and found it made no difference to the speed of the train relative to yourself, whether you were standing still or running towards or away from it? Considered in this way the statement that the speed of light (in space) is the same for all observers seems quite absurd. Yet it is what we are driven to by the most precise experiments and by the absence of any basis for deciding who is stationary and who is moving. Is there any way of making sense of this fact that two observers moving relative to one another in the direction of a source of light both arrive at exactly the same figure for the speed of the light relative to themselves?

Speed, of course, is measured by dividing distance by time. We are accustomed to assuming that distance and time are both absolute quantities. For instance, if I say something is a foot long and you say it is 13 inches, then it would follow that at least one of us must be wrong. Time is a little trickier, because we are used to the idea of crossing over the International Date Line and finding ourselves back in yesterday. But of course time is not really altered merely by pulling leaves off a calendar. If I were to time an event and say it took 12 minutes and you said it took 13, then it would follow that at least one of our watches must be running fast or slow.

Presumably. But Einstein showed that in these matters we presume too much, and that distance and time are not absolute quantities but only relative. The arguments are put quite simply in his own books and in others (such as "The Laws of Nature" by R. E. Peierls) so I won't waste the remaining space repeating them but will show what is not so often explained in simple books-how, granting that time and distance are not absolute, they have to vary in order to preserve the absolute and unvarying nature of c.

Let us make a graph of these two quantities, distance and time; and having admitted that they are merely relative quantities we must give them precise meaning by specifying them relative to ourselves (supposed to be all together in one place). Fig. 2 shows a corner of such a graph. I have chosen the scales so that a ray of light whose velocity we are measuring would be plotted as the line OA. That line, as you see, tells us that the velocity is $300,000,000$ metres per second (very nearly).

It happened that while we were timing the light over a distance we had carefully measured we noticed another group of observers who appeared to be flying in the same direction as the light at one third of its speed. So we plotted them too, as the line OB.

[^2]

Fig. 3. Here the dotted axes in Fig. 2 are drawn at right angles to one another, as they would be by an observer at the Fig. 2 moving point. The original "fixed"point's axes are shown in solid line as before.

If we had forgotten for a moment the absoluteness of c and the relativity of time and distance, we might have thought that as the other observers were travelling along the light beam at one third of its speed the light would appear to them to be travelling at only two thirds of our c. But what we have to remember is that the measurements being carried out by the others must (if equally accurate) be showing them that the same light is travelling relative to themselves at the same rate, c, and that we are flying against it at $\frac{1}{3} c$.

The line OB on our graph, which to us represents their moving position, represents to them their own fixed position, or their zero distance (which they would naturally represent on their graph by a vertical axis through O). If their time levels were the same as ours-the horizontals through 0, 1, etc.-they would reckon that the light did the distance represented by BA in 1 sec , which would make their figure for its velocity one third less than ours.

This error can be avoided by making their time levels slope upwards; for example, their time zero would appear on our graph as OD Then lines drawn parallel to $O B$ and $O D$, at equal distances from them, to represent 3×10^{8} metres and 1 sec respectively (or any other quantities in those proportions) would intersect somewhere on OA, which we are agreed must be common to both graph systems, since it represents the common velocity c.

Stepping aboard the other observers' space ship as it flies past, we would now disapprove of the distorted axes $O B$ and $O D$ in Fig. 2 which we previously attributed to our new observation post, and would redraw them as in Fig. 3. We would note how ingeniously our erstwhile friends (now seen to be flying at 10^{8} metres $/ \mathrm{sec}$ against the light) manage to arrive at the same value of c as we do, in spite ofor by means of-their distorted axes.

But what about filling in some graph scale lines to represent what we now regard as (for example) 3×10^{8} metres and 1 sec ? We know they should be parallel to our dotted zero lines, but how far away? If we were thinking only of ourselves of course we cculd choose any scale that suited us. But we want the diagram to be applicable to both lots of observers.

Directly we try this problem we find how right
we were to abandon such old-fashioned ideas as that a yard is a yard wherever you are. For if we mark off along our new distance scale OD a length equal to that representing 3×10^{8} metres on the original scale, and draw a dotted line through it parallel to OB , the results are altogether different according to whether we use Fig. 3 or Fig. 2. In particular, in Fig. 3 the length OD, which according to the old scale represents 3×10^{8} metres (because it is on the 3×10^{8} full line) is seen from our new viewpoint to be considerably shorter than that; w hereas in Fig. 2 the new 3×10^{8} line cuts $O D$ to the left of D, so that the old 3×10^{8} distance looks a little longer.

Even modern science isn't as crazy as all that, and the only new line that makes any sense at all is FEA' in Fig. 4. We find we can draw its equivalent in Fig. 2.

In both diagrams OD, which would be read as 3×10^{8} metres on the old scale, is shorter than our new 3×10^{8} metres. And if we reckon by the old scale we see that the 3×10^{8} dotted line cuts it to the left of the 3×10^{8} mark, so by that standard the new 3×10^{8} metres looks shorter. So both lots of observers agree in thinking that the other lot are overestimating their distances, or else for some reason connected perhaps with the fact that they are travelling at high speed the dimensions of their vehicle and all their measuring rods have shrunk along the direction of motion.

For this agreement to be perfect, so that the principle that all viewpoints are equally valid for such observations is fulfilled, the shrinkage must be the same for both. That stipulation fixes the spacing of the dotted distance lines. That is to say, in Fig. 4 the ratio DO/EO must be the same as FO/GO.

On the same principle we can draw time lines, as for example the new $1-\mathrm{sec}$ line in Fig. 4. This shows that a period of time declared by the full-line people to be 1 sec . $(\mathrm{OB}$) is seen by the dotted line people to be somewhat less, so according to them the watches used by the full-line people are running slow.* And precisely the same conclusion is drawn by the full-line people about the dotted-line people's watches.

If you are thinking that these peculiar views

Fig. 4. Fig. 3 is here exterided to inciude the only 1 sec and $3^{\text {. }} \times 10^{\text {s }}$ metre lines that make each point's view of the other the same.
probably result from failure by the observers to allow for the time taken by light to communicate to them the readings of a watch at widely and rapidly varying distances, let me assure you that observers skilled enough to make such difficult measurements with high precision wouldn't overlook an elementary detail like that.
We now see (I hope) how it is possible for everyone in the universe to agree about the speed of light. They can do so by giving up the idea of time and distance being absolute quantities and admitting that the amount of either depends on the point of view. When things are moving relative to us, by our standards their distances are less and their timepieces are slow.

The next question is, How much less and how much slow? We have seen that the conversion factor from one viewpoint to the other is the fraction $\mathrm{DO} / \mathrm{EO}$ (or $\mathrm{FO} / \mathrm{GO}$) for distance, and $\mathrm{BO} / \mathrm{HO}$ for time; and the symmetry of the diagram makes these equal. Let us denote this shrinkage factor, or timeslowing factor, by α. It is not hard to see that it depends on the fraction of the speed of light with which the two viewpoints are moving relative to one another. We can call this fraction v / c, or for brevity β. Then α, which is what we want, can be related to β by means of the diagram for either viewpoint (Fig. 2 or Fig. 4), and the answer is the same either way. Let us use Fig. 4.
To avoid confusion I have repeated the relevant parts in Fig. 5, and have added a perpendicular GK from G to OE continued. Now we drew the diagram so that the velocity ratio β is represented by $\tan \theta$. That is,

$$
\begin{align*}
\beta=\tan \theta & =\frac{\mathrm{FE}}{\mathrm{EO}}=\frac{\mathrm{GK}}{\mathrm{KO}} \\
\text { So } \quad \mathrm{KO} & =\frac{\mathrm{GK}}{\tan \theta} \cdots \tag{1}
\end{align*}
$$

Likewise JÔH $=\theta$. And since we drew DG parallel to JO, and GK parallel to HO, DGK is also equal to θ. So

$$
\begin{equation*}
\frac{\mathrm{DK}}{\mathrm{GK}}=\tan \theta \tag{2}
\end{equation*}
$$

and $\mathrm{DK}=\mathrm{GK} \tan \theta$
We have $\alpha=\frac{\mathrm{DO}}{\mathrm{EO}}=\frac{\mathrm{FO}}{\mathrm{GO}}$
and (because EOF and KOG are similar triangles)

$$
\text { So } \quad \begin{aligned}
& \frac{\mathrm{FO}}{\mathrm{GO}}=\frac{\mathrm{EO}}{\mathrm{KO}} \\
\alpha^{2} & =\frac{\mathrm{DO}}{\mathrm{EO}} \times \frac{\mathrm{EO}}{\overline{\mathrm{KO}}} \\
= & \frac{\mathrm{DO}}{\mathrm{KO}} \\
= & \frac{\mathrm{KO}-\mathrm{DK}}{\mathrm{KO}} \\
= & 1-\frac{\mathrm{DK}}{\mathrm{KO}}
\end{aligned}
$$

Substituting in this from (1) and (2),

$$
\alpha^{2}=1-\tan ^{2} \theta=1-\beta^{2}
$$

and $\alpha=\sqrt{1-\beta^{2}}$ or $\sqrt{1-\frac{v^{2}}{c^{2}}}$
This is part of what is known to science as the

Fig. 5. Part of Fig 4 is repeated here, plus GK perpendicular to $O E$, for deriving by geometry the conversion formula from either viewpoint to the other.

Lorentz transformation. The same kind of formula applies to time.

If $v=0$, which means that there is no relative motion between observer and observed, $\alpha=1$, so there is no shrinkage or time slowing. Even if $v=3,000 \mathrm{~km}$ or about 1,865 miles per second, α is 0.99995 , which wouldn't look very different from 1 . But as the speed of light is closely approached the difference becomes very marked, and if we could see a watch travelling (relative to us) at the speed of light we would notice that its dimensions in the direction of motion were zero and it would appear to have stopped, though its owner (travelling with it) wouldn't see anything abnormal about it.
Besides the technical difficulties that may occur to you about making such observations, there is the additional one (which we shall consider next month) that the watch-and its owner-would be infinitely heavy! So that particular experiment is rather out of the question. In fact you may be thinking that any experiment which wou d show an unmistakable shrinkage or slowing is out of the question and so is the whole fantastic theory.
If so, you may be interested in a line of research quoted by the aforementioned Prof. Peierls in his "The Laws of Nature" (p. 263). Certain particles called mesons, produced by primary cosmic radiation at about spuinik height in the upper atmosphere, have a lifetime of only about 2 mi iroseconds, yet manage to reach the earth. If you work it out you will conclude that to do it in their lifetime they would have to move at hundreds of times the speed of light. But that is agreed by all to be impossible. Their speed is in fact unly very sl' ghtly less than c. So (as you will see from the transformation formula) the relativity effects are large. It appears that an observer travelling with a meson would confirm that its lifetime was $2 \mu \mathrm{sec}$, but to us on the ground his watch would be running very slow indeed and by earth time we would make it nearer $2 m \mathrm{sec}$, allowing ample time for the journey. The mesonbased observer would have hundreds of kilometres of atmosphere (by our standards) rushing past him at nearly the speed of light, but being subject thereby to drastic shrinkage the distance would be traversable within the $2 \mu \mathrm{sec}$ lifetime.

It is fair to mention that Prof. Cullwick has (in his "Electromagnerism and Relativity") greeted this support for the theory of relativity with some scepticism. I can't help feeling a little dubious
about it myself, for if one takes it to its logical conclusion by applying it to photons, which (being light) not unnaturally travel with the speed of light, then it appears that with a photon's-eye view all distances in the direction of motion, however greateven millions of light years-have shrunk to nothing; in other words, a photon has no need to travel anywhere because directly it starts it is already there! Which is very convenient for it, and might seem to provide an answer to the problem of how light gets across empty space! If there is a physicist in the house perhaps he would kindly come forward and state whether this is inderd implied in the special theory of relativity, or if there is a fallacy, and if so where.

That nothing can ever exceed the speed of light follows from the Lorentz transformation, because values of v / c greater than 1 lead to imaginary quantities. So we can never break the light barrier-in empty space. But in air, light travels very slightly
slower, and in glass and other transparent solids and liquids it travels considerably slower. There, the light barrier can be and frequently is broken, for example by high-speed electrons. The result is not the interesting and (to glasshouse owners) destructive bang that accompanies the breaking of the sound barrier, but an interesting (and apparently harmless) blue glow. It is known as the Cerenkov effect, after the Russian scientist who, with two colleagues, was recently awarded a Nobel prize for researches into it. Incidentally, this effect is analogous to what goes on in the now much used travelling-wave tubes, in which a beam of electrons is fired through an artificially-slowed electromagnetic wave path.
Although the strange effects of relativity on distance and time do show up directly in some modern experimental work, they are for the most part a little outside our scope. But mass and energy are also involved, and they touch us more closely. So that is to be the subject next month.

BOOKS RECEIVED

Radioastronomy and Radar, by J. G. Crowther. Short account of the development of radar and of the techniques used in radoastronomy written for the layman and illustrated by photographs and simple drawings. Pp. 64; Figs. 58. Price 10s 6d. Methuen \& Co., Ltd., 36, Essex Street, London, W.C.2.

The Face of the Sun, by H. W. Newton. General account of solar activity and accompanying terrestrial manifestations. Includes a chapter on the ionosphere and the emission of radio waves by the sun. Pp. 208; Figs. 37 and 16 plates. Price 3 s 6d. Penguin Books, Ltd., Harmondsworth, Middlesex.

Magnet:c Recording Techniques, by W. Earl Stewart. Deals with the properties of magnetic materials, the recording process and the design of recording mechanisms, mainly for use at audio frequencies, but with some reference to unconventional methods, such as boundary displacement and flux-sensitive heads. Pp. 272; Figs. 205. Price 66s. McGraw-Hill Publishing Co., Ltd., 95, Farringdon Street, London, E.C.4.

Television Servicing Handbook, by Gordon J. King, Assoc. Brit.I.R.E. Starts with each fault symptom and sets out in logical sequence the appropriate action to locate and remedy the trouble. A practical book indicating useful servicing short cuts as well as the basic theoretical background. Pp. 280; Figs. 165. Price 30s. Odhams Press, Lid., 96, Long Acre, London, W.C.2.

Telecommunications, by A. T. Starr, M.A., Ph.D., M.I.E.E. Second edition of textbook covering the syilabus of Telecommun:cations in the London University degree courses. Pp. 470; Figs. 427. Price 37s 6d. Sir Isaac Pitman \& Sons, Ltd., Parker Street, London, W.C.2.

Signal Generators, Attenuators, Voltmeters and Ammeters at Rad:o Frequencies. "Notes on Applied Science No. 19 " issued by the National Physical Laboratory, D.S.I.R., describe the equipment and procedures recommended and used at the N.P.L. for calibration. Pp. 16; Figs. 6. Price 1s 6d. H.M. Stationery Office, Kingsway, London, W.C.2.

A Television Prompter

By R. C. WHITEHEAD, A.M.I.E.E.

IT is well known that television news-readers and artists sometimes require inconspicuous aids to supplement their memories, and this has caused a type of rolling caption to be employed in the studios. These rolling captions are prepared in a special typewriter, having characters about $\frac{1}{2}$ in high, and a display measuring about 9 in $\times 7$ in is mounted just above the lens of each camera. Separate scripts are provided by carbon copies, and these are kept running in synchronism with each other by means of contacts operated through sprocket holes in the paper. An operator regulates the speed (and on rehearsal the direction) of transport of the scripts from a control console.

As this system has certain disadvantages, the writer has devised an alternative. This consists of a strip of paper $3 \frac{1}{2}$ in wide bearing conventional typescript and transported in front of an industrial television camera, the displays taking place on television receivers operated from the r.f. output of the industrial camera. There is no need, of course, to make carbon copies of the script.

Separate scripts are joined together by means of a glue pen, but provision has also been made for jointing by means of staples, which are located outside the typing width and pass through suitable troughs in the script transport channel. An area of about 2 in $\times 1 \frac{1}{2}$ in is scanned by the industrial camera. In order that the operator may select a particular point in the script at which display commences, the pressure plate holding down the script is made of Perspex.

As in the original equipment, a movable pointer is provided on the left-hand side of the scanning aperture to indicate that particular line of the script which the artist should actually be reading.
Television camera tubes should not be used pointing downwards, owing to the danger of pieces of oxide coating falling from the cathode on to the photo-electric target. The script is therefore scanned via a small mirror set at 45° to the hori-
zontal plane, the camera being mounted in the normal horizontal position. (This necessitates reversal of the frame-scan coils in the camera.) A 2 -inch f1.9 lens is employed, operated normally at about $f 2.8$. The script is illuminated by means of a 24 -watt car bulb mounted immediatcly below the lens, and the normal high-light brightness is 250 foot-lamberts.

If a fully illuminated caption is left stationary in the scanning aperture for a long period, a permanent impression may be left on the camera tube, and to guard against this the lamp is dimmed until the script is driven.

The display receivers may be mounted on the stands of normal studio cameras. With static cameras the receivers may be placed on stands and viewed through large vertical mirrors mounted on the cameras and set at 45° to the axes of the latter. Experiments conducted by the writer suggest that an angle not exceeding 4° should be subtended by the two straight lines joining the performer's eye with the centres of the camera lens and display tube.

For the writer's instrument, designed specially for television news work, the following advantages are claimed over earlier systems:-

1. No special typewriter is needed.
2. Only single rolls ara loatod into the typewriter, and finally into the scanning unit.
3. Corrections need only de inade on the single copy.
4. There is no danger of loss of synchronism between various displays.
5. For long programmes the problem of script storage is considerably eased.
6. The operator can see passages both before and after that being displayed.
7. Displays of different sizes may easily be arranged.
8. The instrument is much quieter in operation.

Finally, the writer wishes to acknowledge the interest of Independent Television News, Ltd., in this work.

Stereo Conversion
Kit
For conve ting Ferguson $389 R G$ and $601 R G$ radiograms to play stereophonic records, a second independent audio amplifier (with power supply) is provided in their type STA/l unit shown in the illustration. An ECL82 triode-pentode provides amplification in the triode section and three watts output from the pentode.

Cooling Airborne Electronic Equipment
 By L. A. WILLIAMSON,* A.M.I.E.E.

USE OF LIQUID CIRCULATING IN CHASSIS WALLS

THE cooling of electronic equipment in high-speed military aircraft has become a problem of such importance that it must be considered at the aircraftdesign stage. Inefficient cooling systems impose on aircraft needless weight and burdens in fuel consumption, burdens whose origins lie in the electric and aerodynamic loads created by excessive cooling demands.
Aerodynamic-heating effiects, associated with everincreasing flight speeds, result ultimately in the air, to which electronic equipment hitherto transferred waste heat, becoming no longer economically suitable either as a heat-transporter or as a heatabsorbing sink. This article introduces the possibilities of developing simple liquid-cooling methods, thus offering an attractive and efficient means of meeting the primary problem of transporting unwanted heat away from electronic equipment; the waste heat is ultimately removed by a heat-exchanger which must, for any cooling system, necessarily be provided as an aircraft service
Two promising technigues, in which the chassis itself becomes an air/liquid heat-exchanger, are described and attention is drawn to the ancillaries necessary to any closed-circuit liquid-cooled system. Improvements in thermal efficiency and thermally segregated layouts are not considered because their benefits are inevitably long-term and marginal compared with the need for greatly improved cooling efficiencies.

History of Cooling Methods.-Under fight conditions in World War Il, equipment cooling was hardly ever a problem. Most electronic " boxes" were of open construction, aititudes were not great and the decrease in air temperature with an increase in altitude was often more than adequate in balancing out any overheating tendencies. Flight through cloud often caused water to appear in the "cooling system" and this was troublesome.

Progress since the war on electronic aids has, in its turn, increased the problem of the removal of unwanted heat from the aircraft. The factors responsible are:-pressurization (necessary to counter flash-over and moisture troubles) which has become almost universal for British military radar; higher heat losses per unir area due to the weightand space-saving advantages of miniaturization; greater use of electronic aids; greater working powers; and, more particularly, the rap d advance in aircraft performance resulting in higher equip-ment-bay temperatures, lower air densities and aerodynamic heating.

In high-speed flight, adiabatic compression of air due to the forward passage of the aircraft causes a temperature rise roughly equal to $(v / 100)^{2}{ }^{\circ} \mathrm{C}$ (v in m.p.h.). The air taken inboard for cooling increases in temperature with increasing flight speed until eventually it becomes hotter than the equip-
ment to be cooled. If flight at a supersonic speed continues for any length of time, the temperature of the aircraft structure will rise, heat will flow into equipments and even static components and materials will exceed their ow'n temperature limits. It is well known that $+55^{\circ} \mathrm{C}$ is about the maximum ambient temperature which can be allowed for current military electronic equipment and this temperature could be attained by the arr at about 825 m.p.h. (Mach 1.25)-at Mach 2 (1,320 m.p.h.), it would be about $150^{\circ} \mathrm{C}$.

About ten years ago equipment cooling was more or less fortuitous in that natural convective and radiation losses to the aircrafi structure and thence to the outside air combined favourably to avoid overheating of most equipment. In time, pressurized units were fitted with internal fans (later external), circulatory systems and then double wall pressure cans, often containing an air-to-air matrix for forced-convective cooling. The cooling air for very many present-day equipments is obtained from a scoop in the aircraft fuselage which is connected by ducting to the equipment bay; ram-air enters the scoop, passes over the equipment (or simply into the bay) and thereafter spills to waste. Scoops have limiting pressure heads, ducts involve pressure losses, and, largely due to the reduction in air density with increasing altitude (at $60,000 \mathrm{ft}$ about

[^3]

Part-fabricated pressure-can with ducts formed on one side only. This may be used as a replacement pressure-can for existing equipment suffering from overheating due to operation outside its altitude range.
10% of its sea-level value), the mass flow of air available usually falls far more with altitude than can be compensated by the fall in temperature with increasing altitude (about $2^{\circ} \mathrm{C}$ per $1,000 \mathrm{ft}$, levelling out at $-56^{\circ} \mathrm{C}$ above $37,000 \mathrm{ft}$).
Improved sources of cooling air (e.g., low-pressure blower, expansion turbine, engine compressor-tapping and regenerative heat-exchangers) together with individual radars with well-designed air cooling systems are now appearing. Even so, overall cooling efficiencies can be very poor; at high altitude considerable power is necessary to supply an adequate mass-flow of air to maintain a rypical unit dissipating, say, 300 W at a safe working temperature. If in this situation the air becomes no longer available (except by the expenditure of more work, and hence more fuel, into a heat-pump system), other means of cooling must be explored.
Liquid Cooling.-The more practical possibilities are:-expendable methods utilizing the latent heat of vaporization, and requiring no heat-absorbing sink; closed-circuit methods using liquid coolants and refrigeration cycles using a high-temperature refrigerant
Two closed-circuit coolant methods are possible and differ only in the means used for transferring heat from the electronic equipment. Each uses a pump to circulate a liquid through the electronic equipment, where it takes up heat, and a heatexchanger, where the heat is removed. This exchanger probably would be air-cooled initially; although it seems reasonable to suppose that ultimately it would be fuel-cooled.
In one method, the electronic equipment is housed in a liquid-tight container which is then simply filled with a heat-transfer fluid of good dielectric properties; a typical British unit would have its weight doubled and the tedious business of drainingoff and drying-out, for even the most minor attention inside, would find no favour in the Armed Services.

The other method utilizes a heat-exchanger inside the unit, no wet contact being made between the electronic equipment and the coolant; as this circulates through the chassis itself the cooling is indirect and depends mainly on conductive- and convective-transfer modes. The exchanger techniques adopted provide reasonable flexibility in the construction of "hardware" and for the liquid side to

Two small pieces of ducted aluminium chassis. Left-hand example shows complex duct formations possible and righthand section is inflated on one side only.

be usable readily either in a simple closed coolantcircuit or in a high-temperature refrigerant circuit (a heat-pump application under long-term consideration).

The essential components of an air/liquid system necessary to maintain a radar at some optimum temperature up to, say, $120^{\circ} \mathrm{C}$ are given in the accompanying diagram which shows a series flow for two units, one unit having much less waste heat than the other (a frequent arrangement). Clearly, whether a series or parallel flow is desirable must depend on the merits of a particular system-e.g., several boxes of comparable dissipation would almost certainly require parallel flow. Some units in a system (e.g., junction boxes, power units) could operate at higher temperatures than others; but then pressure losses might become the deciding factor.
It is worth emphasizing that any component used in a liquid-coolant system, apart from meeting normal aircraft-design requirements, must meet the temperature-range limits of $-40^{\circ} \mathrm{C}$ up to about $+120^{\circ} \mathrm{C}$ and be acceptably compatible with the materials used in the system.
Heat-Exchanger.-A simple air/liquid heatexchanger fitted to a unit would undoubtedly promote considerable improvements in cooling efficiency but, in addition to added weight, two drawbacks arise-one, rarely being able to find room for retrospective modifications, the other difficulty being the achievement of thermal segregation without a complex layout.
Here we are interested only in the development of techniques which have early practical applications and enable the chassis itself to utilize the obvious advantages of being the heat-exchanger. Originally, no suitable material was readily available for forming matrix and chassis; sheet-metal fabrication was not seriously considered since it seemed important to keep joints, and thus fabrication difficulties and leakage risks, to the minimum.

Some early experiments in electroforming matrix valve-screens resulted in attention being drawn to a promising electroformed-honeycomb process. The Ministry of Supply provided a contract for development work on this material, with particular interest in a seamless honeycomb nickel-electroform able to withstand 80 p.s.i. working pressure and an ultimate pressure of 200 p.s.i. With walls only 0.010 in thick the material developed was remarkably strong, very light in weight and with good heat-exchanger characteristics. Subsequent electroplating developments resulted in a virtually stress-free deposit being obtained from a nickel sulphamate bath. The actual matrix is made by electroplating over a metal mandrel of low meltingpoint, previously drilled and machined to a solid "negative". of the required chassis section. After electroforming, the mandrel is melted out and any traces of internal dross remaining are removed by chemical means to leave a perfectly clean internal surface.
Some time after the work on nickel honeycomb had started, roll-bonded, ducted aluminium sheet was introduced into this country for the refrigerator industry. This material, which is comparatively cheap and readily available, is being examined as a chassis material and appears to have considerable possibilities. The ducts are integral with the sheet and the pattern can be made to suit the component layout; sheets are available in thicknesses 10 to 16

Schematic layout for simple liquid cooling system. Note series connection of units with widely different heat generation, and bypass temper-

Integral valve screen and smail section of chassis produced by the electroformed honeycomb process.
s.w.g. with an adequate range of duct section and duct pattern. (Present experiments utilize 16 s.w.g. material with $\frac{3}{8}$-in ducts. Duct volume has been 0.25 to 0.3 cc per watt overall- 80 cc for 300 W unit.)

The duct-ways are usually prepared by silk-screen printing the pattern required on one face of an aluminium alloy sheet and then roll-welding another sheet to it, face to face. Welding does not take place over the printed areas and the ducts can be formed by applying hydraulic pressure ($800-1000$ p.s.i.) to a temporary connection made by breaking into the pattern, either on the sheet edge or face. The duct walls work harden during the process and give excellent stiffening properties to the material.

Permanent inlet and outlet connections to the ducts may be made, either by cutting away panel material and utilizing a length of cuct tube included in the pattern for this purpose, or by soldering or brazing a light alloy tube into a duct. Apart from the difficulties of joining dissimilar tube materials, light alloy is advocated at this point to minimize corrosion risk which would otherwise create a vulnerable junction in the coolant circuit. Adequate soft-soldering facilities are provided by chemical plating of the chassis with nickel. Another obvious application for ducted aluminium sheet would be liquid-cooled pressure-cans to replace conventional cans on estabished equipment which presents overheating problems; a relatively simple interim method of introducing liquid cooling is thus provided.

Insulation.-The need to restrict heat-transfer through the external surfaces of a radar unit arises where the " normal" condition of heat flow away from the equipment is halted or reversed due to high environmental temperatures. Under these conditions equipment and materials would rise in temperature above their permissible maxima unless means of cooling are provided, not only to remove all waste generated in the electronic equipment, but also to carry away the inflow from external sources.

It is not practicable at present to predict the parameters which would combine to cause sufficient in-
flow of heat to an equipment to make it overheat, because several unknowns are involved-e.g., thermal inertia (both of the aircraft and equipment), flight plan, time during which the equipment is operating turn-round-time, equipment location within the aircraft, etc. (Present-day electronic equipment in a short-range fighter-ram-air temperature $150 / 200^{\circ} \mathrm{C}$ -may not necessarily overheat, while a long flight with ram-air temperature of about $80^{\circ} \mathrm{C}$ could cause serious overheating.) In fact the thermal characteristics of an equipment can only be assessed satisfactorily by means of chamber-simulated tests.

Two methods of restricting external heat flow into airborne radar units are being considered-thermal insulation and radiant-heat reflection. These are probably best described by application to a typical unit, the figures quoted being only sufficiently accurate to be illustrative. It is interesting to note that the external construction of present-day airborne radar units almost invariably takes the form of a light-alloy sheet-metal cylinder, domed at one end and arranged, at its other end, to form a pressure seal on a machined face of the front panel of the internal chassis; the unit is internally pressurized with air to about 20 p.s.i. (absolute)

A typical unit may dissipate 300 W of waste heat in a cylindrical container of dimensions about 20 in long $\times 1$ in diameter and, in the highest temperatures generally associated with subsonic flight, its "can" temperature (as customarily measured on the outer face of the pressurized can) would probably not exceed $70^{\circ} \mathrm{C}$. If an inch of thermal insulation-cork, felt, etc., is added to all external surfaces, approximately 90% of the internal waste heat must be removed (or the can temperature would run up theoretically to several hundred degrees Centigrade -and this would cause an all-round failure).

If this same insulated unit is now used in a highspeed aircraft where the environmental steady-state temperature is, say, $120^{\circ} \mathrm{C}$ and the can temperature held at $70^{\circ} \mathrm{C}$ by some cooling aid, the added inflow cooling load due to heat flow through the insulation would be approximately 30 W . Without the insulation, of course, the added cooling load would be quite impractical.

Unfortunately conventional insulation, although having a low thermal conductivity, is not, as far as weight and temperature range are concerned, a suitable material for use as an external lining to radar boxes--nor, even more important, does it lend
itself as a constructional material for this purpose. In its place the use of gass-laminate sandwich construction, using epoxy or polyester resins, is being considered as a direct substitute for the metal pressure can and front panel. The thermal conductivity for a 1 -in wall glass-laminate container would appear to lie between 1 and $3 \mathrm{BThU} / \mathrm{ft}^{2} / \mathrm{hr} /{ }^{\circ} \mathrm{F}$; this is about ten times greater than for conventional insulating materials: this would mean an infiow cooling load of about 300 W .

The other and more attractive method utilizes the considerable heat-flow restriction associated with polished surfaces. A pressure-can having a closelyencompassing, external, light-gauge aluminium jacket which need be only strong enough for handling purposes is visualized. Internal, external and mutuallyreflecting surfaces would be of poiished aluminium with an anodized finish. The pressure-can proper would be made in a clad alloy for structural strength with the jacket supported by plastic-laminate spacer rings: it may be necessary to vent the jacket annulus to avoid pressure differentials. Modern aluminium polishing is claimed to give an emissivity lower than 0.1 and, even with the hazards of normal usage, the reflecting properties should make, for the average type of unit described, an added cooling load of only about 15 W .
Both methods create constructional problems. The former offers robustness and requires little development work, but there are possible temperature limitations and comparatively high inflow loads; the latter offers weight saving, low cooiing loads and no temperature problem, but requires a fair amount of development. It is possible that a combination of both methods may become necessary.
Ancillaries.-Quick-release terminations, which automatically seal on disconnection, are self-evident necessities for both the coolant hose and the equipment. Couplings so far used are off-the-shelf, aircraft hydraulic types and these have been satisfactory for laboratory experiments. Although no existing coupling is known to meet requirements, little development should be involved in meeting the ability to seal without leaks at the comparatively low working pressures of about 20 p.s.i. and the selection of body and seal materials compatible with the coolant used.
While fixed-installation coolant-pipe runs in the aircraft may be assumed to be of copper or light alloy, it is necessary, for maintaining anti-vibration facilities and for quick release, to make the final equipment connection in flexible hose. Aircrafttype, braided, synthetic-rubber hydraulic hose has for convenience been used so far; but this does not imply its compatibility with the coolant finally selected.
Small coolant pumps may have to be designed to suit the pressure losses and flow rates required for various systems. Our experiments have utilized an aircraft-type, submerged fuel pump rated at 100 gallons per hour, 15 p.s.i. pressure-head and consuming 120 W of drive power. Little development would be necessary to modify this type of pump to meet the requirements.
The coolant reservoir or header tank would have a capacity of a gallon or so and would need to be designed as a sealed unit to withstand a working differential pressure of about ± 15 p.s.i. Altitude would create a positive pressure difference of up to about 14 p.s.i. and an "inverse-pres-

Early honeycomb-type chassis. High-dissipation valves (wire connections only are visible) are mounted in the integral type of screen shown, detached from chassis, in other photograph. Coolont-hose connections are made to the two large screwed unions on panel.: Whole chassis, without components, weighs only $1 \frac{3}{4} \mathrm{lb}$.
sure fault" of the same order could arise in the event of a leak developing on ascent and becoming self-sealing on descent. If the reservoir is not sealed difficulties would be created in the unwanted boiling of the coolant at altitude and in moistureabsorption troubles to which some coolant fluids are prone. Thermal insulation of the tank would, of course, be necessary. Apart from the pump, other necessary components to be fitted to the reservoir tank would be a constant-pressure relief valve and drier unit, coolant-level indicator and filler cap. The relief valve is necessary to compensate for the pressure variations arising from the wide changes in temperature to which the coolant is liable.
The other main component needed is a simple bypass-type temperature controller. This requires development; but it is envisaged in a quite small unit, probably being mounted on the inside of the radar-unit panel or possibly combined with the inlet and outlet unions as a composite assembly. Its temperature differential could be quite coarse-possibly 10 to $20^{\circ} \mathrm{C}$.
Choice of Coolants.-The properties required of any coolant fluid must be:-
(a) Mobility at any temperature between $-60^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$. $+100 / 120^{\circ} \mathrm{C}$; it need be fluid only above about $0^{\circ} \mathrm{C}$.
(b) High flash and fire points with no explosion hazard.
(c) Little or no toxic tendencies.
(d) Low viscosity to keep pumping power down.
(e) Good heat transfer properties.
(f) Low corrosion and/or chemical action on the commonly-used aircraft matcrials, particularly light alloys and seal ruobers.
(g) Chemical stability.

Water has everything to commend it, except for the limited temperature range in which it can be used and for corrosion tendencies. Glycol-water mixtures have been used; but these create a greater corrosion problem, particularly on "mixed" metals and steels; it would be necessary to have a system manufactured uniformly in either plated copper or aluminium throughout.
Several synthetic fluids have been considered but the only fluid even having claims to meeting all requirements is a silicate ester-based fluid produced by Monsanto Chemicals, Ltd., and known as Heat Transfer Fluid RD6195. Experiments are in progress to assess the performance of this fluid in the chassis materials described earlier. The claims made include a temperature range of $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ with specific heat about twice that of air and half that of water, and thermal conductivity. about four times that of air and a fifth that of water. Specific gravity is about 0.9 and dielectric strength is adequate.

Conclusions.-This article has not discussed improvements in thermal efficiencies because, on a short-term basis, little praciical change can be visualized in the inevitable losses associated with components such as resistors, transformers, valves, etc. Transistorized electronic units, of course, offer considerable scope in the reduction of waste heat, although, until high-temperature transistors come

Experimental ducted aluminium chassis before wiring. Note volve screens soldered to chassis and bayonet-type coolant hose unions.

irto wide use, the cooling problem is likely to remain a major one.

Raising the working ambient temperature brings about an effective improvement in thermal efficiency. Although some components working up to $500^{\circ} \mathrm{C}$ may be available, it seems unlikely that a complete range of electronic components having working temperatures much in excess of $100^{\circ} \mathrm{C}$ will ever materialize. Thus, even with well-designed and segregated layouts, the maximum working temperature is unlikely to exceed 80 to $90^{\circ} \mathrm{C}$.

While the disadvantages of a closed-circuit liquidcooled system appear to be confined to some loss of flexibility in experimental construction and the almost negligible risk of leaks, the advantages expected from liquid cooling in general may be summarized thus:-
(1) Reduction in fuel consumption due to weightsaving in ducting, air-blowers, drag, generator capacity, etc.
(2) It is the only way yet known offering ready practical application to the cooling of electronic equipment in aircraft having performance much in excess of those at present in service.
(3) Greatly improved heat-iransfer characteristics, particularly since heat can be taken into the cooling system virtually at its source.
(4) Improved reliability due to operation within much narrower temperature limits than has been hitherto standard practice.
(5) Greater thermal loading is possible.
(6) Thermal segregation is more readily achieved.
(7) The power expended in coolant circulation is a small fraction of that expended in some air systems.
(8) Small bore pipes are used, instead of large section air ducting.
(9) No special maintenance difficulties are involved.
Much experience in the use of integral-chassis heat-exchanger construction needs to be built up; but early experiments are sufficiently impressive to encourage development work on a much wider scale. The particular potential it offers to both airborne and ground equipment is simple and effective temperature control resulting inevitably in improved reliability.
Acknowledgment.-The author would like to acknowledge the work done by Mr. J. E. Green of the Royal Radar Establishment on integral-chassis heat-exchanger techniques.

[Crown copyright reserved]

B.B.C. Handbook

WITHIN its 280 pages the "B.B.C. Handbook" for 1959 presents a very comprehensive review of the past year's work of the Corporation in providing the national and external sound services and its television service. Amongst the useful reference material in the Handbook are facts and figures about transmitting stations (in which there are over 180 transmitters), programmes, licences and the B.B.C.'s income from them, and numer-ous tables, charts and maps. It is heavily weighted on the programme side but there is an interesting section covering the work of the various departments of the Engineering Division which employs a staff of over 5,000 -about a third of the Corporation's total. The Handbook costs 5 s.

Alternatives to the Wien Bridge

With Modifications Giving Improved Characteristics

By J. F. YOUNG,* A.M.I.E.E., A.M.Brt.I.R.E.

WHEN a problem arises which was met and solved many years ago, one naturally uses the same solation. However, an occasional re-examination of some of these stock solutions does no harm; in fact it is often beneficial. One of these problems where almost everyone uses the standard approach is the design of a simple variable audio frequency oscillator. Most people want to avoid the use of multi-gang controls or at least to use as few gangs as possible. Consequently they finally decide on the Wien bridge circuit which appears to have been first used around 1930^{1}.
In the early days a true bridge was used with its supply from a transformer, but in later years designers have learned to release valve cathodes from the earth (e.g. refs. 2, 3, etc.) and use the selective part of the circuit in other ways, so that the transformer is no longer required. Today many, perhaps most, precision audio oscillators use this approach. In some precision decade oscillators it has been found necessary to compensate for the impedance of the source supplying the selective circuit and one way
*Switchgear Works, G.E.C. Ltd.

Fig. I The Wien half bridge.

Fig. 2 Frequency response; A-circuit of Fig. 1; B-circuit of Fig. 7.
of doing this is given in references 4 and 5. Terman ${ }^{6}$ pointed out that if variable capacitors are used rather than variable resistors, the input impedance of the selective circuit does not vary as the oscillator is tuned. This fact has been used in some commercial oscillators ${ }^{7}$. The effects of component tolerances have been discussed by Clarke ${ }^{8}$ and of stray capacitance by Diamond ${ }^{9}$.

It will be seen from the above that a great deal of work has been done to find out the best way to use the Wien bridge in oscillators and to determine its characteristics under various conditions. Very much more work has been done on the actual design and construction of oscillators using the Wien bridge and many articles describing this work have been and are being published. This is all rather strange when it is realized that other

Fig. 3 Complete Wien bridge. circuits, rather simpler in form and more obvious in action, give exactly the same frequency response as the Wien bridge.

Basic Circuits

The basic half Wien bridge used in oscillators is shown in Fig. 1. The arrangement of Fig. 1(b) is often seen in oscillators, and at first sight it is exactly the same as Fig. 1(a). However, when the stray capacitances (shown dotted) are considered Fig. 1(b) has a disadvantage. By applying Thevenin's theorem to Fig. 1(a), it can be seen that the stray capacitance $\mathrm{C}_{\mathbf{A}}$ simply adds some attenuation which does not vary with frequency and at the same time effectively appears in parallel with the input capacitor. Since the other capacitor has a stray capacitance C_{B} across it, the increase of the input capacitor by C_{B} is actually beneficial. On the other hand in Fig. 1(b), Thevenin's theorem shows that a frequency dependent attenuation is added by C_{Δ}, and C_{Δ} effectively appears across the input resistor. This upsets the frequency response of the circuit and the stray capacitances are introduced into the coefficients of the circuit equations in a rather more complicated manner than is the case for Fig. 1(a).
If the stray capacitances are not taken into account, the frequency response of either Wien half bridge is $\frac{\mathrm{V}_{0}}{\mathrm{~V}_{1}}=$

$$
\frac{j \omega \mathrm{CR}}{1-\omega^{2} \mathrm{C}^{2}} \mathrm{R}^{2}+3 j \omega \mathrm{CR}
$$

where ω is 6.28
times the frequency of V_{1}. This can be regarded as a vector and the locus of the tip of this vector as the frequency varies is plotted in Fig. 2. For the sake of generality, the curve is marked with values of $\omega \mathrm{CR}$,

(a)

(b)

Fig. 4 Bridges with common input-output terminals.
rather than values of frequency. At a frequency where $\omega \mathrm{CR}$ is unity, the output voltage is one-third of the amplitude of, and in phase with, the input voltage. Therefore if the network is placed in the positive feedback path of an amplifier, oscillation will tend to take place at a frequency where $\omega \mathrm{CR}=1$, provided the gain of the amplifier is greater than 3 .

The rate of change of phase shift with frequency should be as large as possible at the oscillation frequency if the selective circuit is to have good control. Phase shifts in the associated amplifier then have a reduced effect on the frequency of oscillation. One way of improving the rate of change of phase with frequency is to subtract from the output of the network a voltage in phase with the input voltage. This can be done by use of a slightly unbalanced complete Wien bridge as shown in Fig. 3. This has the effect of moving the vector locus to the left. The attenuation at

Fig 5 Inverted Wien bridge. the oscillation frequency is then increased, but it is not difficult to increase the gain of the associated amplifier to compensate for this.

Some early Wien bridge oscillators used this technique. At that time circuit techniques were less developed than they are now, and it was found necessary to use a transformer at the output because of the lack of a common termunal between input and output. It is now possible, however, to use a differential amplifier as shown in Fig. 4(a) to overcome this disadvantage and at the same time provide the extra gain. Another method ${ }^{3}$, in which anode and cathode resistors are used as the resistive bridge arms, is shown in Fig. 4(b). The resistive arms of the
bridge can be made non-linear, provided that they have slow response (e.g. a thermistor or a lamp) in order to control the gain to that required for a reasonable amplitude of oscillation. Sometimes the non-linearity of the valves is used to limit the amplitude of oscillation ${ }^{10}$.

If the Wien half bridge is inverted and the output is taken from across the series capacitor and resistor as shown in Fig. 5, the output voltage V_{2} is

$$
\begin{aligned}
& V_{2}=V_{1}-V_{0} \\
& \frac{V_{2}}{V_{1}}=1-\frac{V_{n}}{V_{E}}
\end{aligned}
$$

The response of the inverted circuit is therefore one minus the response of the original circuit. This inverted circuit response is plotted in Fig. 6. The attenuation is a maximum and the output is in phase with the input when $\omega C R$ equals one. The arrangement therefore tends to reject one frequency and it will cause oscillation at this frequency if it is used in a negative feedback loop around an amplifier which has frequency independent positive feedback.
The Wien bridge is occasionally used ${ }^{11},{ }^{12}$ with dissimilar components as shown in Fig. 7. The object of this is to reduce the attenuation to two times (from three times) at the oscillation frequency. However, this approach reduces the selectivity, as can be seen from the expression for the response of the circuit

$$
\frac{V_{0}}{\bar{V}_{1}}=\frac{2 j \omega C R}{1-\omega^{2} C^{2} R^{2}+4 j \omega C R}
$$

which is plotted in Fig. 2 together with the response for the more usual component values.

Two Alternatives

It has been stated that the Wien bridge is not the only circuit giving the vector locus of Fig. 2. Two circuits which give identical results are shown in Fig. 8. These circuits seem much more obvious for application to oscillators than does the Wien bridge, so a search of the literature was made to discover if they had been used. It was found that they were suggested in a short note in 1945 by Dueno ${ }^{13}$ and have since been mentioned by Morris ${ }^{14}$, but no evidence of their use in oscillators was found. This is surprising, since the only advantage which the Wien arrangement appears to have is an increased input impedance. As with the Wien circuits, the input impedance is constant if a variable capacitor is used. Stray capacitance to earth can easily be taken into account in the circuit of Fig. 8(a), which is therefore to be preferred. While no mention has been found of these circuits being used in

Fig. 7 Wien bridge with dissimilar components.

Wireless World, February 1959
oscillators, they have been used in a selective amplifier ${ }^{15}$.

A variation of these circuits which is used in oscillators ${ }^{18}$ is the bridged T shown in Fig. 9. Comparison with Fig. 8(b) shows that the one circuit is the same as the other except that it is inverted. The relationship between the output voltage V_{2} in Fig. 9 and the input voltage V_{1} can be expressed in terms of voltage V_{0} in Fig. 8(b) in the way given above for the inverted Wien bridge, so that

$$
\frac{V_{2}}{V_{1}}=1-\frac{V_{0}}{V_{1}}
$$

The vector locus for the circuit of Fig. 9 is therefore a mirror image of that given in Fig. 2, moved over to the right one unit as shown in Fig. 6. The circuit gives a maximum attenuation of 0.66 when $\omega \mathrm{CR}$ is equal to unity. The rate of change of phase is less than that obtained with the circuits of Fig. 8, though this can be improved by subtraction of a voltage in phase with the input voltage as mentioned in connection with the other circuits. Since the attenuation is a maximum rather than a minimum at the frequency where the output is in phase with

Fig. 8 Alternatives to the Wien bridge.
Fig. 9 Bridged T.
Fig. 10 Circuit with dissimilar components.

Fig. II Effect of variation of K.
the input, the circuit is used in a negative feedback loop around a positive feedback amplifier to produce an oscillator.

If dissimilar values of capacitors and resistors are used, as shown in Fig. 10, the relationship between output and input voltage is
$\overline{\mathrm{V}}_{0}=\frac{j \omega \mathrm{C}_{1} \mathrm{R}_{1}}{1-\omega^{2} \mathrm{C}_{1} \mathrm{R}_{1} \mathrm{C}_{2} \mathrm{R}_{2}+j \omega\left(\mathrm{C}_{1} \mathrm{R}_{1}+\mathrm{C}_{2} \mathrm{R}_{2}+\mathrm{C}_{2} \mathrm{R}_{1}\right)}$
Now if we make $C_{1} R_{1}=C_{2} R_{2}=C R$ but make $C_{2} R_{1}=$ KCR , the relationship becomes

$$
\frac{\mathrm{V}_{0}}{\mathrm{~V}_{1}}=\frac{j \omega \mathrm{CR}}{1-\omega^{2} \mathrm{C}^{2} \mathrm{R}^{2}+j \omega \mathrm{CR}}-\overline{(2+\mathrm{K})}
$$

This is plotted as a vector locus in Fig. 11 for various values of K . It is seen from Fig. 11 that when K is one, the locus is identical with that given by the Wien bridge, but as K is reduced, the attenuation falls and the selectivity improves. Similar effects can be obtained with the inverted (bridged T) circuits ${ }^{17,18}$ of Fig. 9. To select actual values of the capacitors and resistors for a given frequency, we must have

$$
\mathrm{C}_{1} \mathrm{R}_{1}=\frac{1}{6.28 f}
$$

and $C_{2}=K C_{1}$ and $R_{2}=R_{1} / K$.
The disadvantage of this arrangement is that as K is reduced so the value of C_{2} must be reduced. The stray capacitance across C_{2} therefore sets a limit to the value of K which can be used if oscillation is required at high frequencies. A further disadvantage is that the two-gang tuning element, whether it uses resistors or capacitors, must have two dissimilar values which are reasonably accurately ganged.

Isolating Stages

A value of K equal to zero cannot be obtained with the circuit of Fig. 10, since this would necessitate making R_{z} equal to infinity. However, a zero value of K can be obtained by isolating the two halves of the circuit, for example by a cathode follower as shown in Fig. 12. In effect, the circuit is essentially a simple C-R high-pass filter followed by a low-pass filter, both filters having the same cut-off frequency. Once this fact is realized there are clearly many more ways of achieving the same result. For example, Fig. 13 shows how a pentode can be used both to give gain and to isolate the two halves of the circuit. Since the pentode is a constant-current generator, the output voltage is determined by the anode current and the load impedance.

$$
\begin{aligned}
\mathrm{V}_{0} & =\frac{\mathrm{I}_{a} \mathrm{R}}{1+j \omega \mathrm{CR}} \\
& =\frac{\mathrm{g}_{m} \mathrm{~V}_{1} j \omega \mathrm{CR}}{1-\omega^{2} \mathrm{C}^{2} \mathrm{R}^{2}+2 j \omega \mathrm{CR}}
\end{aligned}
$$

Hence this circuit also gives an effective zero value for K. The advantages of these circuits over Wien bridge circuits are:-

1. The attenuation at the frequency of oscillation is reduced, the output voltage being one half rather than one third of the input voltage.
2. The selectivity is improved, the rate of change of phase with frequency being greater than that of the Wien bridge.

A practical circuit using the arrangement of (Continued on page 95)

Fig. 12 Isolated circuit having $K=0$.
Fig. 13 Pentode isolated circuit.
Fig. 12 in conjunction with the differential amplifier of Fig. 5 is shown in Fig. 14. This circuit was intended for use at quite low frequencies so it is directly coupled except for the high-pass filter section. It is capable of oscillation at several hundred kilocycles per second, however, although no attempt has been made to limit stray capacitance. Since the

REFERENCES

${ }^{1}$ Scott, H. H. "A New Type of Selective Circuit and some Applications," Proc. I.R.E., 26, 226 (1938).
${ }_{2}$ Chance, B., et al. "Waveforms," p. 122, McGrawHill (1949).
${ }_{3}$ Brockelsby, C. F. "The Wien Bridge and some Applications," Electronic Engineering, 24, 450 (1952).
${ }_{4}$ Davidson, J. A. B. "A Precision Decade Oscillator," Proc. I.R.E., 40, 1124 (1952).
${ }_{5}$ Wray, W. J. "More on the RC Oscillator," Proc. I.R.E., 41, 801 (1953).

6 Terman, F, E., et al. "Some Applications of Negative Feedback," Proc. I.R.E., 26, 649 (1939).
${ }_{7}$ Dawe, F. W. "A Wide Range Audio Oscillator," Electronic Engineering, 19, 246 (1947).
${ }^{8}$ Clarke, K. K. "Wien Bridge Oscillator Design," Proc. I.R.E., 41, 246 (1953).
Proc. Diamond, J. M. Correspondence, Proc. I.R.E., 42, 1448 (1954).
${ }_{10}$ Seymour, R. A., and Smith, J. S. "Design and Performance of a Simple V.L.F. Oscillator, Electronic Engineering, 27, 380 (1955).
${ }^{11}$ Bell, D. A. "Balanced RC Oscillator," Electronic Engineering, 19, 246 (1947).

12 Sowerby, J. McG. Selective RC Circuits at Low Frequencies," Wireless World, 56, 223 (1950).
13 Dueno, B. "A Circuit Study," Correspondence, Proc. I.R.E., 33, 66 (1945).
${ }_{14}$ Morris, D. " Q as a Mathematical Parameter, Electronic Engineering, 26, 306 (1954).
${ }^{15}$ Beattie, J. R., and Conn, G. K. T. "A Simple L.F. Amplifier,"'Electronic Engineering, 25, 299 (1953),
${ }_{16}$ Sulzer, P. G. " Wide Range RC Oscillator," Radio and Television News, 44, 43 (Sept. 1950).
${ }_{17}$ Brown, D. A. H. "The Equivalent Q of RC Networks," Electronic Engineering, 25, 294 (1953).
${ }^{18}$ Sulzer, P. G. "A Note on a Selective RC Bridge," Proc. I.R.E., 40, 339 (1952).
${ }_{19}$ Ludbrook, L. C. "Step to Frequency Response Transforms for Linear Servo Systems," Electronic Engineering, 26, 51 (1954).
Engineering, ${ }^{20}$, Gillard, O . "Selective A.F. Amplifier," Electronics, 22, 77 (July, 1949).
${ }_{21}$ Raistrick, W. G. "؛ Phase Shift Oscillators," Wireless World, 56, 409 (1950).

Fig. 14 Practical ascillator circuit.
circuit is required to oscillate at frequencies below the range at which thermistors or lamps can be used in amplitude controls, a manual amplitude control is fitted. This could be replaced in a higher frequency oscillator by non-linear elements.

An ECF80 triode pentode is used as the difference amplifier, with a B309 double triode used as two cathode followers. The output is connected back through the selective circuit in a positive feedback path and through the amplitude control in a negative feedback path. There is thus direct-coupled negative feedback around the amplifier stage and this helps to stabilise the operating bias. Since, at the frequency of oscillation, the positive feedback predominates over the negative feedback, there is a resultant overall positive feedback. Therefore, although the output is taken from a cathode follower the output impedance is several thousand rather than several hundred ohms. An output voltage amplitude of 100 volts peak-to-peak is obtainable with good waveform. The circuit could be used as a selective amplifier by injecting the input voltage to the lower end of the amplitude control chain and adjusting the control to prevent oscillation.

The circuits given have advantages over the usual. Wien bridge, although they are inferior to circuits using three variable elements, such as the twin T^{1}, and to circuits using two selective bridges in cascade ${ }^{20.21}$. The circuits in which the two halves of the filter are isolated are very flexible since the a.c. coupling of the high-pass filter and the d c . coupling of the low-pass filter can be inserted at any suitable points in the oscillator loop, not necessarily adjacent. In a decade oscillator, the source impedance problem ${ }^{4}$ is reduced, since, provided both filters are supplied from equal source resistances, the overall effect is simply an attenuation.
It is seen that there are many circuits with only two-gang control capable of giving an identical, or an improved, response compared with the Wien bridge. While most of these have been mentioned in the literature, they seem to have been little used in oscillator circuits. This is surprising wher the large number of Wien bridge oscillators which have been described and manufactured is considered.

Manufaciurers' Products

NEW ELECTRONIC EQUIPMENT AND ACCESSORIES

Two Oscillators

IN the Dawe Type 441 a modified Wien bridge oscillator feeds a push-pull amplifier with a cathode-follower output of up to 100 mW , constant to within $\pm 1 \mathrm{~dB}$ over the frequency range from $5 \mathrm{c} / \mathrm{s}$ to $600 \mathrm{kc} / \mathrm{s}$ (covered in 5 decades). The output can be continuously varied by up to 40 dB using a bridged-T attenuator to give a constant source impedance of 600Ω. Negative feedback and the use of thermally sensitive resistive elements in the resistive arms of the Wien bridge to stabilize the oscillation amplitude at a level within the linear range of the amplifier together result in a distortion of 4% at all frequencies except below $20 \mathrm{c} / \mathrm{s}$ where it rises to 0.5% at $5 \mathrm{c} / \mathrm{s}$. The hum and noise is less than 0.1% of the maximum output except near the mains supply frequency where it can rise to 0.2%. A small amount of positive feedback round the output stage is used to reduce its impedance nearly to zero (the 600Ω being added to the secondary of the transformer) so that there is negligible reaction of the load on the oscillator. This instrument costs $£ 95$.

Another Dawe oscillator with a similar appearance (Type 440) gives an increased output of up to 6W (into 15 or 600Ω) with a total harmonic distortion of less than 0.5% over a narrower frequency range from $40 \mathrm{c} / \mathrm{s}$ to $15 \mathrm{kc} / \mathrm{s}$. Outside this range the distortion rises, but for 3W output does not exceed 3% at the frequency limits (for his oscillator) of $20 \mathrm{c} / \mathrm{s}$ and $20 \mathrm{kc} / \mathrm{s}$. The Type 440 costs $£ 98$.

Both these oscillators are manufactured by Dawe Instruments Ltd., of 99, Uxbridge Road, Ealing, London, W.5.

Radio Maintenance Aids

WITH the various chemical cleaning fluids now available there is no reason al all why wavechange switches, or any of the moving parts in a radio set which carry current should persistently remain noisy. A drop of one of these fluids in the right place effects a cure. A new

Right:-Bridisco radio switch cleaning fluid in 'Aerosol' (pressure-type) container with flexible dispensing tube.

Left:-Dawe type 441 oscillator.
addition is the "Bridisco" switch cleaner, available in two different forms, one in an ordinary tin (standard) the other in a pressurized container described as an "Aerosol " pack. A slight pressure on the top cap of the Aerosol container projects a controlled quantity of the fluid on to the work via a flexible plactic dispensing tube. The standard form costs $4 \mathrm{~s} 1 \frac{1}{2} d$ and the Aerosol variety 8 s 3 d . The pressurized pack is said to be very economical.

Other useful items for the professional's or home workshop is a $50-\mathrm{ft}$ card of nylon drive cord for tuning dials (6 s) and a tube of radio cement which is said to be acid proof, heat and waterproof and which will join, or repair, metal, glass, plastic, rubber, ceramic and wood among other materials. It coots 2 s .
The suppliers are British Distributing Co., 591, Green Lanes, London, N.8.

Stabilized Power Supply

THE "Loma" Type 41 stab:lized power supply is intended for use with any industral electronic equipment requiring a supply voltage of 250 V or 300 V at 0

Loma Type 41 stabilized power supply unit (Automa Engineering).
to 100 mA . It is valve stabilized and employs a highgain d.c. amplifier and operates from a.c. mains of 200 to $250 \mathrm{~V}, 40$ to $60 \mathrm{c} / \mathrm{s}$.

The output voltage is held constant at $\pm 0.1 \%$ over the full working range of load current and for input voltage fluctuations of $\pm 7 \%$. The output impedance is 0.112 and noise and ripple levels are less than $250 \mu \mathrm{~V}$.

The equipment, which consists of two units, can be assembled to give alternative dimensions of $14 \times 5 \times 6 \frac{1}{2}$ in or $10 \times 7 \times 6 \frac{1}{\mathrm{in}}$. It is made by Automa Engineering Group, Ltd., Cherry Tree Rise, Buckhurst Hill, Essex, and the price is $£ 31$.

Versatile Connector Kit

SHOWN in the illustration is a kit of parts from which a wide variety of the "Varicon" connectors made by N.S.F., Ltd., 31-32, Alfred Place, London, W.C.I, can be assembled with ro other tools than a screwdriver. The kit is intended for use of equipment makers and in experimental laboratories requiring at short notice plug and socket connectors of possibly non-standard type. The expression "plug and socket" is not strictly correct in the present case since a feature of the Varicon design

N.S.F. Varicon connector kit.
is that the contacts are flat and fork-shaped, the male and female parts mating with the flat surfaces at right angles.
A standard kit contains approximately 460 separate parts and enables connectors with up to 44 contacts to be quickly and easily assembled in a single block.

Magnetic Tape Splicer

THE photograph shows the "Easysplice" with a length of tape in the position for cuiting or splicing. With its coating downwards, the tape is fixed with one edge against a shallow step along the splicer using the springloaded clamps at the sides. The tape can be cut by drawing a blade (preferably non-magnetic) along the slot cut through the top of the step and inclined to the tape width. Alternatively, two previously cut lengths of tape can be abutted along their cats in a similar way, and spliced with adhesive tape. This splicer costs 7 s 3 d (including postage) and is avallable from E. Mayrick, 30 Lawrence Road, Ealing, London, W.5.

Coaxial Direction Coupler

FOR measuring forward- and backward-going powers up to 5 W (c.w.) to an accuracy ot 2 per cent at any chosen fixed frequency up to $600 \mathrm{M}=/ \mathrm{s}$ in 52Ω coaxial lines the directional coupler type A7092 is available from Armstrong Whitworth. The coupling is formed by a single loop which is terminated at its two ends by equal pure resistances. The currents induced in one resistor by the electric and magnetic fields are arranged to add for forward-going power and cancel tor backward-going power, these effects being interchanged for the other resistor. Thus the current in one re-

Armstrong Whitworth coaxial directional coupler.

Eddystone geared slow-motion drive unit with overall ratio of 110 to 1 .

"Easysplice" magnetic tope splicer.
sistor gives a measure of the forward-going power and that in the other the backward. S.nce ine u.renis are proportional to the power frequency, the calibration frequency must be specified when ordering. The coupling is, however, broadband, so that the instrument can be used to measure standing wave ratios at other frequencies. The directivity is about 26 dB and the coupling coefficient about 30 dB . This coupler is manufactured by Sir W. G. Armstrong Whitworth Aircraft, Ltd., Baginton Aerodrome, near Coventry.

Precision Slow-motion Drive

A WELL-MADE slow-motion drive unit (Eddystone Cat. No. 898), intended primarily for presision instrument applications, but eminently suitable also for homeconstructed communications receivers, has been introduced by Stratton and Co., Ltd., Eddystone Works, Alvechurch Road, Birmingham, 31 .
A pendant pointer $2 \frac{3}{4} \mathrm{in}$ long travels horizontally across six szales 7 in in length; five are blank for the instrument calibrations, but the botton one is engraved 0 to 500 in steps of 100 . A circular vernier scale marked with 100 divisions makes five complete revolutions for a single traverse of the main pointer, and in conjunction with the 0 to 500 scale provides 500 divisions for precise calibration, or for logging stations if the dial is fitted to a receiver.

The movement is gear-driven assisted by a loaded flywheel. giving a smooth. positive drive with an overall reduction of 110 to 1 . The dial measures $9 \frac{3}{16} \mathrm{in} \times 5 \frac{3}{4} \mathrm{in}$, weigh; apn:oximately 1 lb 4 oz , and is fitted with a Perspex window in a die-cast surround finished in glossy black. The prize is $£ 2$ 18s complete with knole, fixing screws and a drilling template for mounting, and it can be fitted to wood or metal panels of up to approximately $\frac{1}{4}$ in thick.

News from the Industry

Preformations, Ltd., has been formed by Plessey to manufacture "Magloy" cast permanent magnets These are being made in this country under an agreement concluded between Plessey and the Arnold Engineering Co. of Illinois. The new company, of which the directors are A. G. Clark (chairman) and A. E Underwood, of Plessey, and R. M Arnold of the American company, is operating from the Plessey Group factories on the Cheney Manor estate at Swindon, Wilts.

Microcel!, Ltd., who operate three manufacturing divisions - aircraft engineering, plastics and electronics -at their Camberley and Blackwater (Surrey) works, have been acquired by BTR (British Thermoplastics and Rubber) Industrics, Ltd. Their subsidiaries in the glass fibre and polyester resins fields have also been acquired.

Decca Navigator and equipment for its assoc:ated long-range system Dectra is being fitted by B.O.A.C. in their North Atlantic Comet 4 fleet. The Ministry of Supply and a number of civil airlines have been conducting tests with Dectra on the North Atlantic routes for the past 18 months. Decca Navigator is already fitted in nearly 5,000 ships and aircraft.

Avo-Taylor Merger.-Avo, Ltd., have acquired the entire share capital of Taylor Electrical Instruments, Ltd., of Slough, Bucks.

Plessey's report for the year ended last June shows a consolidated profit of $£ 1.39 . \mathrm{M}$, which is a little below the previous year's figure.

Cosmocord.-It has been pointed out that our note under the title "Pena Aftermath" in the December issue might be construed as inferring that all companies associated with Pena had boen put in the hands of a receiver. This is not so, at least as far as Cosmocord is concerned and, as we pointed out last October, the firm is continuing as usual. Several new lines, including stereo pickup cartridges have recently been introduced.

Marconi's are to supply eleven complete VOR installations for this country's civil airways. The internationally agreed frequency range of VOR (v.h.f. omni-directional radio range) is $112-118 \mathrm{Mc} / \mathrm{s}$.

Elremco.-An exhibition of electrical timing and automatic control equipment is being held by Electrical Remote Control Co., at the Birmingham Exchange and Engineering Centre, Stepherison Place, Birmingham, 2, on February 10th to 11th. It will be open each day from $10 \mathrm{a} . \mathrm{m}$. to 9 p.m.

International Rectifier Co. (Great Britain) has been formed jointly by the International Rectifier Corp., of Los Angeles, Cal., and the Lancashire Dynamo Holdings, Ltd., for the man facture of semiconductors in the U.K. The principal products to be produced at a factory being built in the Home Counties are silicon diodes and silicon power rectifiers. Until the new factory starts production towards the end of the year a temporary assembly line for semimanufactured products has been set up.
E.M.I.-Cossor Electronics is the new name of Cossor (Canada) in which Electric and Musical Industries has acquired a controlling interest. Henry Chisholm, joint managing director of A. C. Cossor, continues as chairman of the Canadian company and Clifford Metcalfe, a managing director of E.M.I., becomes president.
E.M.I. Electronics have developed, in conjunction with the U.K. Atomic Energy Authority, a transistor data recording and analysing system to assist in handling the enormous quantity of statistical data from nuclear experiments at the research establishment at Harwell. The system is made up of a number of self-contained recording units which, situated near the experimental rig, take the measured quantities and convert them into binary coded digital form. The data is recorded on 16 parallel channcls on 1 -in magnetic tape and this is fed into a central high-speed analyser.
Marconi Marine.-Among new vessels recently fitted by Marconi's with radio navigational aids and communications gear are the UnionCastle's 28,500-ton liner Pendennis Castle, the 7,700-ton cargo liner City of Hereford, and the Grimsby trawler Yesso.
Gillone Electric, Ltd., of Camberley, Surrey, are now fully recovered from their recent fire and in fullscale production again. Employing some three hundred people, the company manufactures 90° and 110° deflector coils, line transformers and a variety of coils.
Radiospares, Ltd., of 4-8, Maple Street, London, W.1, announce the appointment of Gordon Johnson as sales manager.

British Sarozal, Lid., have moved from 1-3, Marylebone Passage, Margaret Street, London, W.1, to 22 , Berners Street, W.l, with workshops and stores at 36 , Berners Mews. A showroom will also be opened in the near future. The telephone number remains unchanged (Langham 9351).

Painton \& Co., Ltd., of Kingsthorpe, Northampton, have recently concluded an agreement with Bourns Laboratories Inc. of Riverside, Cal., whereby they have the exclusive European and Australian manufacturing and distribution rights for the range of "Trimpot" potentiometers.

Saba tape-recorders, which are manufactured in Western Germany, are being handled in this country by Henri Selmer \& Co., of 114-116, Charing Cross Road, London, W.C.2, who have been appointed sole concessionaires in the U.K.

Texas Instruments, Ltd., of Bedford, the first European subsidiary of the American transistor manufacturers of the same name, announce the appointment of Cecil Dotson, of Dailas, Texas, as chairman of the board. The company is planning the erection of a new factory at Hoo Farm, Bedford.

Steatite Insulations, Lid., have moved from Edgbaston to 31, George Street, Lozells, Birmingham, 19. (Tel.: Northern 8357/8.)

EXPORTS

Norway's telecommunications network is being extended to the northern areas where only a limited telephone service at present exists Marconi's are providing four v.h.f. multi-channel terminals and two repeaters for the extension which covers a distance of about 200 miles.

Domestic sound and te.evision equipment is included in the display of some 400 British products being arranged in the Muscum of Decorative Art in Copenhagen by the Council of Industrial Design and the British Import Union of Denmark for May 2nd to 17th.

Instruments.-Displays of their equipment in Budapest and Copenhagen during February are being arranged by Dawe Instruments. Overseas exhibitions in which they plan to participate include the Leipzig Fair (March) and possibly another in Moscow in March with other S.I.M.A. members.
Ethiopia-A. \& N. Knadjian, P.O. Box 1448, Addis Ababa, would like to import U.K. manufactured portable transistor sets. They should cover the short-wave bands, especially those of 11 and 13 metres.
Ceylon.-Queen's Radio and Television Corporation, of 861, Alutmawatte Road, Colombo 15, are interes ed in representing a U.K. manufacturer of components, particularly resistors, capacitors, i.f. transformers and volume controls.

FEBRUARY MEETINGS

Tickets are required far some meetings; readers are advised therefore to communicate with the secretary of the society concerned

LONDON

4th. Brit. I.R.E.-Inaugural meeting of the Computer Group at 6.30 at the London School of Hygiene and Tropical Medicine, Keppel Street, W.C.1.
4th. British Kinematograph Society. -"Problems of Telecine" by R. Whatley (B.B.C.) at 7.30 at the Royal Society of Arts, John Adam Street, W.C. 2.
6th. IE.E. Medical Electronics Group.-Discussion on "Problems of storing transient phenomena for subsequent analysis" opened by Dr. P. Bauwens and P. Styles (St. Thomas's Hospital) at 6.0 at Savoy Place, 'W.C.2.
6th. Television Society. -" Master control room techniques" by B. Marsden (Associated Television) at 7.0 at the Cinematograph Exhibitors' Association, 164 Shaftesbury Avenue, W.C.2.
9th. I.E.E.-Discussion on "Dissemination and assimilation of technical literature-a growing problem" opened by J. K. Webb, chairman of the Measurement and Control Section at 5.30 at Savoy Place, W.C. 2 .

13th. Brit. I.R.E. Medical Electronics Group.-"Some instrumentation problems in medical electronics with particular reference to electro-myography" by P. Styles at 6.30 at the London School of Hygiene and Tropical Medicine, Keppel Street, W.C. 1.

13th. Radar and Electronics Association, Student Section--" Trends and developments in marine radar" (by a member of Marconi's) at 7.0 at the Norwood Technical College, S.E.27.
18th. I.E.E.-" Ultrasonic iconoscopes" by C. N. Smyth and J. Sayers at 5.30 at Savoy Place, W.C. 2 ,
20th. I.E.E.--" The sources and correction of errors in data transmission" by V. J. Terry and E. P. G. Wright at 5.30 at Savoy Place, W.C. 2 .

20th. B.S.R.A.-" The design of an electronic organ for the home" by G. W. Earnes at 7.15 at the Royal Society of Arts, John Adam Street, W.C. 2.
23 rd. I.E.E.-" A simple investigation of the cross-modulation distortion arising from the pulling effect in a fre-quency-modulated klystron" by D. Giessing; "Theory and behavimur of helix structures for a high-power pulsed travelling-wave tube" by G. W. Buckley and J. Gunson; "A multi-cavity klystron with double-tuned output circuit" by H. J. Curnow and L. E. S. Mathias; and "A method for the measurement of very-high Q-factors of electromagnetic resonators" by F. H. James at 5.30 at Savoy Place, W.C. 2 .
25th. Brit. I.R.E.-." Patents and the radio engincer" by E. D. Swann at 6.30 at the London School of Hygiene and Tropical Medicine, Keppal St., W.C.I.
25th. British Kinematograph Society. -"Television picture reproduction" by T. C. Macnamara and D. Styles (Associated Television) at 7.30 at the F.S.A. John Adam Street, W.C.2.
26th. Physical Society.-Discussion on "Of what use is acoustics to the musician?" opened by Professor E. G. Richardson at The Royal Academy of Music, Marylebone Road, N.W.1.

26th. Television Society.-" A solour signal encoder for laboratory use" by S. H. Cohen and P. C. Kidd (Murphy) at 7.0 at the Cinematograph Exhibitors' Association, Shaftesbury Avenue, W.C.2.

BRISTOL

10th. Television Society.-" Modern communications, methods and applications" by J. Sloan (B.C.C.) at 7.30 at the Hawthornes Hotel, Clifton.

CHELTENHAM

27th. Brit.I.R.E.-" Micro-miniaturization" by G. W. A. Dummer at 7.0 at Nerth Gloucestershire Technical College.

EDINBURGH

20th. Brit.I.R.E.-"Tru motion radar" by J. H. Beattie at 7.0 at the Department of Natural Philosophy, The University, Drummond Street.

GLASGOW

19ih. Brit.I.R.E.-" True motion radar " by J. H. Beattie at the Institution of Engineers and Shipbuilders, 39 Elmbank Crescent.

LEEDS

3rd. I.E.E.-" Survey of performance criteria and design considerations in high-quality monitoring loudspeakers" by D. E. L. Shorter at 6.30 at the C.E.G.B. Offices.

10th. I.E.E.-Discussion on "Cooperation between college and industry on industrial training schemes" at 6.30 at thie C.E.G.B. Offices.

LIVERPOOL

20th. Brit.I.R.E.-_" Electronic welding controls" by C. R. Bates at 7.0 at the Universiry Club.
26th. I.E.E.-Faraday Lecture on "Automation" by Dr. H. A. Thomas at 6.45 at the Philharmonic Hall.

MANCHESTER

4 sh Brit.I.R.E.-" Recent
astronomical research using radio waves" by Dr. H. P. Paliner at 6.30 at the Reynolds Hall, College of Science and Technology, Sackville Street.
27th. Institution of Electronics. "Electronics in industry-including computer applications" by R. S. Evans (Ferranti) at 7.0 in the Reynolds Hall, College of Science and Technology.

NOTTINGHAM

19th. Society of Instrument Technology. - "Data collection and processing " by a member of Solartron Industrial Controls at 7.0 at the Technical College, Shakespeare Street.

NEWCASTLE

1ith. Brit. I.R.E., - "Stereophonic sound from records" by P. B. Cooper at 6.0 at the Institution of Mining, Neville Hall, Westgate Road.

RUGBY

25th. I.E.E.--" Storage and manipulation of information in the brain " by Dr. R. L. Beurle at 6.30 at the College of Technology and Arts.

SHEFFIELD

4 h . Society of Instrument Tech-nology.-" The future of solid state electronics in instruments" by H. Kemhadian at 7.0 at the University.

TREFOREST

11 th. Brit. I.R.E.-" Industrial television" by E. A. Naef at 6.30 at Glamorgan College of Technology.

WOLVERHAMPTON

11th. Brit. I.R.E.-" Some aspects of the control of nuclear reactors" by L. W. J. Newman at 7.15 at the Wolverhampton and Staffordshire College of Technology, Wulfruna Street.

New Beries On Thisty Year

Old Larrels

Warmly spoken of for the last 30 years, Trix does not lounge on its laurels but grows new berries. It's the same old story: meeting exacting needs of engineers questing for high quality, long service and cost realism. We never tire of it-neither do the customers.
Our latest fruit: Trixtereo for hiphiles. It immerses breathless listeners in deep, living sound.
\star NEW DEVELOPMENTS
in amplifiers, microphones and loudspeakers for every sound system and of course TRIXADIO Passenger Address instalations as used in the Comet 4.

Satellites as Relays

THE American satellite, Arlas, which, as I write, is circling this Earth of ours, has proved that the idea of telecommunication via a satellite put forward by R. J. Hitchcock, of Cable \& Wireless, and mentioned in "Random Radiations" just over a year ago, is a practical possibility. It was, if you remember, that messages for a distant country should ne fed into a satellite when it was within range, recorded and then retransmitted as it passed over the place for which they were intended. This has been done with considerable success with Atlas. As many as seven sets of teleprinter code messages have been sent to it simultaneously and played back with excellent results when the satellite was ordered to do so. Speech-modulated signals have also been sent and received with success. At the moment there are naturally not a few snags, such as the cost of a satellite and of its launching as well as the comparatively short time that it is likely to remain in action. But it's a beginning and one can't have much doubt that these difficulties will be ironed out in time.

Easier Viewing

AS you may recall, I've more than once recommended that the height of television receivers above the floor should be made adjustable so as to
make for the most comfortable viewing conditions. So far, I haven't come across a domestic set designed on these lines, but I'm very much taken with a new idea for schools receivers due to Clarke \& Smith, of Walliagton, Surrey. The receiver is fitted into a mobile tubular steel cradle in which it can be raised or lowered to two viewing positions. The centre of the screen can thus be set at 3 ft or 5 ft from the floor. Now that the general circuitry of television receivers has become more or less standardized one hopes that manufacturers of domestic sets will give more thought to two very important things: increasing the viewers comfort and making the serviceman's job easier when he has to attend to the "works." Murphys made a move in the right direction when they produced the model whish is balanced on trunnions fitted to vertical supports at the side of the stand so that the screen can be tilted to the angle best suited to the viewer.

Give 'em Points Enough !

MUCH as I had wanted to attend the I.E.E. symposium on the Provision of Adeauate Electrical Installations in Buildings, I couldn't manage it. The ring main system of wiring was preferred by most of those who took part and I couldn't agree more: A point-and it's one of great im-portance-was made by C. A.

Belcher about the number of sockets provided in the average house. There are nearly always too few when the wiring is done, and one of the certainties of this life is that very many people will add points, often doing the job themselves and unconsciously adopting safety-last methods! Multiple adaptors are often seen in wall sockets-and if the load proves too much for a 5 -amp fuse, that's readily cured (!) by fitting one of $10-\mathrm{amp}$ wire instead. But the thing that really gives me the creeps is to see a room festooned with long trailing lengths of cheap flex. I know one house where the TV set receives its mains supply via a good 20 feet of flex. Flex is fine stuff for its proper purpose, but it's not intended to be trodden on (or tripped over!) and the do-it-yourself fixer-up of clectrical extensions too often believes that its life is pretty well unlimited.

Servicemen's Pay

OCCASIONALLY I hear of wellqualified young radio technicians who are receiving less than the standard rates of pay recommended by the Radio and Television Retailers' Association. This is a bad business. Actually, the recommended basic rate for one who has completed hịs apprenticeship, or has done five years' servicing after reaching the age of 21 is 10 gns a week. The minimum rate for holders of the Radio Trades Examination Board's final certificate in radio servicing is $£ 11$ 10s, and for those who have the Board's final television servicing certificate it is $£ 1210 \mathrm{~s}$. The recommended minimum weekly rates for apprentices rise from $£ 25$ s at 15 to £6 7 s 6d at 20.

Comprehensive

A COPY of the guarantee which his firm has been giving for some years on all domestic sound and vision receivers sold by them has been sent to me by a Radio Rentals manager. It's the sort of guarantee that I'd like to see in more general use, for it completely covers the buyer for two years from the date of purchase. It embraces the c.r.t., all valves and all components. And there's more to it than that, for it undertakes that
free servicing and maintenance shall be provided during the whole of that period. These things can't, of course, be really free-the purchase price must be so adjusted that the customer does the paying-otherwise there wouldn't be any profits. But I feel that people would rather pay a bit more for new sets if it meant that they knew exactly where they stood in the matter of running costs for two whole years-these can be no more than the price of a receiving licence and a few shillings for eectricity from the mains. And there can't be any nasty shocks in the form of large repair bills. Another good thing about so comprehensive a guarantee is that it means that the maker who gives it must be pretty confident about the reliability of his wares, if he's not going to loose money.

CLUB NEWS

Barnet. -At the meeting of the Barnet and District Radio Club on February 24th G. G. Gibbs (G3AAZ) will deal with the subject of transmitter construction. Lecture meetings are held on the last Tuesday of each month at 8.0 at The Red Lion Hotel, High Barnet.

Bexleyheath.-At the February meetings of the North Kent Radio Society lecture demonstrations on electrometry in industry will be given by R. E. Gemmil on the 12 th; and on tape recording for the amateur by R. Mallinson (G3GOG) on the 26th. Meetings are held at 8.0 at the Congregational Hall, Clock Tower.

Birmingham.-" The Human Ear" is the title of the talk being given by C. Naylor Strong to the Slade Radio Society at 7.45 on February 13 th at the Church House, High Street, Erdington.

Bradford.-Dr. G. N. Patchett will speak on colour television at a meeting on February 10th to which various clubs in the area have been invited. The meeting will be held at 7.30 at the Bradford Institute of Technology, where Dr. Patchett is head of the Electrical Engineering Department.

Halifax.--A talk entitled "DX expeditions" will be given by M. G. Whitaker (G31GW) at the February 3rd meeting of the Halifax \& District Amateur Radio Society at the Sportsman Inn, Bradshaw.

Manchester. -The design and construction of a 20 -watt transistor audio amplifier will be considered by the meeting of the South Manchester Radio Club on February fth. The Club meets every Friday at 7.30 at Ladybarn House, 17 Mauldeth Road, with a lestare meeting once a month.

South Kensington. - A Lecture demonstration on high-fidelity and stereophonic techniques will be given by Tannoy at the meeting of the Civil Service Radio Society on February 9th. The meeting will be held at 6.0 in the Lecture Hall of the Science Museum (entrance in Imperial Institute Road).

List No. K.37I/I

List No. K. 378 (60°)

List No, K. 374

List No. K. 375 (40)

List No. K. 376 (100°)

List No. K. 377 (160")

List No. K. 382 (270)

POINTER KNOBS AND

LEGENDED ESCUTCHEONS

The exceptionally popular Control Knobs and Dials illustrated, are outstanding in every respect. Normally moulded in the Highest Quality Black Bakelite (or other colours to order) with White engraved pointer line. All Knobs are fitted with a Heavy Brass Insert, suitable for operating the heaviest mechanisms (can be fitted with 2 grub screws if required). Ideal for usage on Precision radio and testing equipment, Electrical and electronic instruments (domestic and professional), and all appliances where precise indication of knob setting is wanted. The escutcheon fixing is concealed by the circular base of the knob, which registers closely with the engraved or engravable rim face of the escutcheon. Many escutcheon engravings available, details on these and any personal engravelings required, given on request. For over a quarter of a century. Bulgin Control Krobs have given unfailing service; bear this in mind, when turning your thoughts to Control Knobs and Dials.

SEND FOR CATALOGUE NO. $200 / \mathrm{C}$ GIVING FULl. technical data and illustrations of over 10,000 components. (Price $1 / 6$ Post-free, or Free to Trade Letterhead or Order.) A. F. BULGIN \& CO., LTD. BYE-PASS ROAD, BARKING, ESSEX.

Telephone RIPpleway 5588 (9 lines)

List No. K. 372
(250)

List No. K. 373 (180°)

G

\because

D

"1066 and all that"

EVERY English schoolboy knows that William the Conqueror invaded England by landing at Pevensey on 28th September, 1066, but did not join battle with Harold at Hastings until over a fortnight later, on 14th October. At least, in my young days every schoolboy knew it-or took the consequences-and even many schoolgirls knew it also.

However, one thing we didn't know was the day of the week on which the battle of Hastings was fought. I have frequently relieved the tedium of a long train journey by working out the days of the week on which important historical dates occurred as I have found it so much more entertaining than cross-word puzzles, and it at least provides me with some useful pieces of information.
I started this habit long ago when I happened to be standing on the beach at Deal where Julius Caesar landed on 25 th August in the year 55 B.C. On that occasion I got into a hopeless muddle by forgetting that the Julian Calendar did not come into existence until several years later, and I was well able to sympathize with the popular song writer who, when Eastern Europe altered its calendar in 1923, expressed his own-and other people's-bewilderment and confusion by giving us the nonsense song " When it's nighttime ,in Italy, it's Wednesday over here."
You can imagine my delight, therefore, when happening to pass the English Electric Company's stand at the recent Electronic Computer Exhibition at Olympia, I saw a notice inviting me to ask their
"Deuce" digital computer on what day of the week any particular date fell.
Unfortunately, however, "Deuce" apparently found the pre-Julian Calendar as puzzling as I did, as it restricted my queries to A.D. years. I am, therefore, still ignorant of the day of the week when Caesar landed, but I had no d:fficulty in checking that William fought Harold at Hastings on a Saturday. My question form and the machine's punched-out reply card is reproduced herewith. I also checked on several other historical dates.

Apart from this "A.D. only" restriction, "Deuce" limited its replies to dates "in England." This thoroughly aroused the ire of a Scotsman who was sitting next to me in the audience, and he remarked rather bitterly that little better could be expected of a company which called itself the English Electric Co. He added that obviously they did not wish to draw attention to the fact that England had seen the error of its ways and adopted the Scottish Calendar in 1752 despite the battle of Culloden only a few years earlier. That reminds me that I ought to have asked "Deuce" on what day of the week September 5th, 1752, fell in England. If this catches the cye of one of "Deuce's" progenitors perhaps he will tell me what reply I should have got.

Lo-Fi Tapes

I AM glad to see that more tape recorders are coming on the market with a speed of $7 \frac{1}{2}$ in $/$ sec. Since all recorded tapes on sale are made at this speed they obviously cannot be used on the average single speed
machine which caters for only $3 \frac{3}{4} \mathrm{in} / \mathrm{sec}$, or in certain makes $1 \frac{7}{8} \mathrm{in} / \mathrm{sec}$. By far the greater number of machines sold are single-speed ones and this obviously shows that most people buy recorders solely for the purpose of recording their own voices or those of their friends and not for playing commercial recorded tapes.
I cannot help feeling that there would be a very big market for commercial tapes recorded at $3 \frac{3}{4} \mathrm{in} / \mathrm{sec}$. The frequency response at this speed goes up to $10,000 \mathrm{c} / \mathrm{s}$ in the better machines, which is more than good enough for the ordinary "pop" record. I do hope, therefore, that manufacturers will soon let us have " $3 \frac{3}{7}$ " recorded tapes.

$M c / s$ and $M c / m s$

WE abandoned wavelengths in favour of frequencies partly because, with the ever lessening length of waves, we began to get involved with decimal points, and we were reluctant to measure our waves in .ingstrom units as this would have involved us in very big and unwieldy numbers.
However, frequencies are increasing so rapidly that we are once more getting involved with big numbers. Use of the Greek prefix "mega" has helped quite a bit but further progress into the realm of higher and higher frequencies will necessitate that something further be done. I wonder whether it would not be a good thing to start dividing the seconds instead of continuing to multiply the frequency 60 that 1000 Mc / s became $1 \mathrm{Mc} / \mathrm{ms}$ or, in other words, one megacycle per millisecond. Any objections?

Morse Legibility

ONE of the things which attracted my attention at the Radio Hobbies Exhibition in November was the comparatively slow-speed morse being churned out by the telegraphists at the R.N.R. exhibit. It did not seem to me to be much above 20 w.p.m. and a Petty Officer to whom I spoke said that actually it was $22 \mathrm{w} . \mathrm{p} . \mathrm{m}$. He said this enabled consistent legibility to be kept up over a long period when not using a typewriter for taking down.
If you want to try it yourself you can do so without learning morse. All you have to do is to think of some well-known words like those of the National Anthem and see how quickly you can write them down. If you do so at 30 w.p.m. you won't be able to read much of your handwriting. Taking down at 30 w.m.p. on a typewriter is not, of course difficult. The world's champion wireless operator attained a speed of 73 w.p.m., I believe.
[The speed required for the P.M.G.'s 1st Class Certificate is $25 \mathrm{w} . \mathrm{p} . \mathrm{m}$. The average number of letters in a word is 5 and the duration of the test 5 minutes.-ED.]
 modest price, suitable for use on modern electronic apparatus as well as for radio and television receivers, motor vehicles, and all kinds of domestic appliances and workshop equipment.

Readings are obtainable quickly and easily on a very open scale, and range selection is by means of a robust clearly marked rotary switch of the characteristic AvoMeter typı. Measurements of A.C. and D.C. Voltage, D.C. Current, and Resistance are made by means of only two connection sockets.

Sensitivity:	Accuracy:
$10,000 \Omega / \mathrm{N}$ on D.C. voltage ranges.	3\% of full scale value on D.C.
1,000 , "A.C.	4\% " . . . ${ }^{\text {4, A.C. }}$

To meet special requirements, instruments can be supplied to a higher degree of accuracv for a small additional charge.

List Price: $£ 9 / 10$ s.

 complete with Test Leads and Clips Size: 51 $\times 35 \times 12$ inches Weight: I lb. approx.

Leather Case if required $32 / 6$

switch to Superspeced!

In buying solder for manufacturing purposes there is only one sound principle . . . buy the best.
Otherwise you are risking the dependability of your products and the reputation of your firm.

Incorporating Enthoven's unique 6 -channel stellate core, SUPERSPEED is everywhere recognised as the most efficient cored solder wire for general assembly work on radio, television, electronic and tele-communication equipment. But there is also an Enthoven solder product that is the best for every other engineering and manufacturing application. Please write today for the new edition of our brochure
"Enthoven Solder Products"
-or consult us quite freely on your particular problems.
 requirements you are banking on the best known name in the industry-a name that represents nearly 150 years experience in non-ferrous metals and an incomparable record in research and development.

ENTHOVEN

ENTHOVEN SOLDERS LIMITED

SALES OFFICE \& WORKS: UPPER ORDNANCE WHARF, ROTHERHITHE STREET, LONDON, S.E.16. Tel : BERmondsey 2014.

HEAD OFFICE : DOMINION CUILDINGS, SOUTH PLACE, LONDON, E.C.2. Tel: MONarch 0391

Audio Transistor

$0 C 75$

gives you more

than you had before

The new general purpose audio transistor OC_{75} gives you more gain than earlier types and its large scale production gives you the assurance of immediate availability. It is a high current gain development of the widely used OC_{71} and its \propto^{\prime} range is from 60 minimum to 130 maximum at 3 mA collector current.
Transistors OC_{70} and OC_{71} will, of course, remain fully available for those instances where the characteristics of a lower current gain stage are required. The present family of three types, the OC70, OC71 and OC75, each with a comparatively narrow range of \propto^{\prime} spread, therefore covers all designers' requirements for low level audio amplifiers, low power low speed switching, low power non-linear applications, industrial control and interlock circuits and the many applications in which general purpose audio transistors are used.
Write to the address below for full data on the OC_{75} and other Mullard transistors.

INGREMENTAL INDUCTANCE BRIDGE

Designed to measure the value of iron cored chokes and similar inductors in the range 0.01 H to 1000 H of Q value not less than 2 . Provision is made for passing any current up to I Amp d.c. through the winding and selectable a.c. excitation voltages of $1,2,5,10$ and 20 V r.m.s. are provided.

Full technical information is available on request.

CINEMA
 TELEVISION LTD

A COMPANY WITHIN THE RANK ORGANISATION LIMITEC
WORSLEY BRIDGE ROAD
LONDON
S.E. 26
HITHER GREEN 4600

Transistor News

Importart Neves for Radio Manufacturers

The 'CIRCLE LINE'
 Newmarket introduces matched sets of transistors for better performance

Abstract

Newmarket, Monday. This is news that no radio manufacturer can afford to ignoretransistors in matched sets, or complements, at really competitive prices. A choice of 5 different complements is available, each complete with diode, to suit any conventional circuit arrangement.

Cheaper all-transistor radios

This bold step forward should give a tremendous fillip to the mass production of transistorized radios.

Combined performance is what counts Newmarket Transistors Limited, pioneers of transistor development in Britain, have the advantage of more than 3 years' experience both of transistor production and of the problems associated with design and production of equipment incorporating them.

This experic.-e has shown that the maintenance of adequate performance standards depends as much upon the combined performance of the transistor complement as on the performance of individual transistors.

New coloured circle coding

To distinguish these 'Circle Line' complements Newmarket have replaced their conventional type numbers by a new colour-coding system, in which a coloured circle denotes the particular series or complement and a number within the circle indicates its position in the circuit.

The following is a typical example: White Circle 6
$\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \text { Osc/mixer } & \text { IF } & \text { IF } & \begin{array}{c}\text { driver } \\ \\ \end{array} & & 0 / P \\ & & 0 / P \\ \text { (plus detector diode) }\end{array}$
The range of Circle Lines at preșent available is as follows:

Red Gircle 5
For pocket receivers with 6 v supply. Five transistors numbered from I to 5 in RED.

White Circle 6

For handbag style receivers, 6 v or 9v supply. Six transistors numbered I to 6 in WHITE.

Blue Circle 7

For handbag or general-purpose portable, 6 v or 9 v supply. Seven transistors numbered I to 7 in BLUE. Average stage gain lower than White Circle but overall performance better.

Green Circle 7

Similar to Blue Circle but one IF stage replaced by an audio stage.

Yellow Circle 8

For larger portables and domestic receivers where performance is of first importance. 6 v or 9 v supply.

Reliability of Supply

Replacements are only a minor problem in Transistor Receivers but every possible provision has been made to ensure replacement availability. When re-ordering, Circle colour and number only need be given. Prompt deliveries in almost any quantities can be guaranteed.

WEWHRTRI TRAMSISTORS

All enquiries to:
Newmarket
Transistors Limited
Exning Road, Newmarket, Suffolk
Tel: Newmarket 3381
Cables \& 'grams: Semicon Newmarket.

TWO FINE TRANSCRIPTION UNITS THREE FINE CARTRIDGES

GL 58 Transcription Unit, with arm

The extremely popular Goldring-Lenco unit with the unique vertical drive system, continuously variable speed control, and pick-up lowering device. For Stereo and Monaural reproduction. Fitted with the new Goldring G.6e fully adjustable transcription arm incorporating the unique nylon slide-in platform.

GL 60 Transcription Unit, with arm

The new de luxe Goldring-Lenco unit with die-cast non-magnetic 8 lb . turntable. Drive similar to the GL 58. Continuously variable speed control, and pick-up lowering device. For Stereo or Monaural reproduction. Fitted with the new Goldring G. 60 fully adjustable transcription arm incorporating the unique nylon slide-in platform.

The G. 60 transcription arm as fitted to these models is available separately for conversion of previous Goldring-Lenco units to stereo operation.

600
The established variable reluctance turnover cartridge for high quality monaural reproduction. Dlamond stylus for LP, sapphire stylus for 78 rom.

CARTRIDGE

Similar to the " 600 " but with sapphire styll for LP \& 78 rpm

-avallable shortly. The new variable reluctance Stereo cartHdge, with 0.0005° tip radius diamond stylus.

We are proud that Amplivox Headsets have been chosen extensively by Air-Lines and Air-Traffic Control Authorities both in this country and abroad. Remember too, that Types 13500 and 13600 are approved for use in Military Aircraft. Our Lightweight Headphones and Headsets are also used in Sound and Television Studios, in Military, Shipping, and Police-Radio Communication Systems, in Dictating and Recording Machine Installations, and in many other applications.
and other products

AIR-TRAFFIC-CONTROL
HEADSET
TYPE 2583

CAMERA CONTROL
HEADSET
TYPE $258:$

Communication Systems - Headphones and Headsets Earphone and Microphone Inserts. Communication Helmets Stethophones - Microphone Assemblies Ear-Defenders-Extruded Cordage and Cables

AMPLIVOX
 LIM1TED

INDUSTRIAI DIVISION

Beresford Avenuè, Wembley, Middlesex. Telephone: WEMbley 8991.

from Deep Blue

The Mullard range of photo-emissive cells, established for many years, has now been substantially supplemented with a variety of new semiconductor cells. The resulting new range offers a wide choice of types whose spectral responses, sensitivities and speed of operation meet the majority of photocell applications. You are invited to write on your company notepaper for a free booklet of data sheets on all types.

PHOTO-EMISSIVE CELLS
A range of both vacuum and gas-filled types is available from Mullard. They are well suited for colour control applications and they have a fast speed of response. Those with caesium/oxidised silver cathodes are sensitive to incandescent light and near infra red, while those with caesium/antimony cathodes respond to daylight.

CADMIUM SULPHIDE CELLS ORPII and ORP90
These two cells, introduced in recent months, are revolutionizin the design of much industrial control equipment. Their sensitivit is of the order of amps per lumen and they will operate larg relays direct from low a.c. or d.c. voltages. The usable respons extends through the entire visible spectrum to the near infra rec The ORPII is of "end-viewing" construction and the ORP90 i a "side-viewing" type.

to Mid Infra Red the photocell range with the widest spectrum coverage in the world

'HOTOTRANSISTOR OCP7I

Germanium p-n-p junction transistor with response extending hrough the visible spectrum to peak in the near infra red. This hototransistor will fulfil the requirements of industrial on/off pplications where it can be used to operate robust relays without mplification. In common with other kinds of transistor, the OCP7I has the advantage of being very small.

NDIUM ANTIMONIDE CELL ORPIO (UNCOOLED)
new Mullard solid state device with spectral response extending 08 microns particularly suited for high speed infra red spectrocopy including gas analysis. Of the 37 chemical groups with undamental absorption spectra in the infra red, no less than 34 an be studied with the aid of the ORPio.

COOLED LEAD TELLURIDE CELL 63TV
A photoconductive cell cooled to provide a highly sensitive detector for laboratory instruments operating in the region from 3 to 5 microns.

LEAD SELENIDE CELL GIRV (UNCOOLED)

A photoconductive cell of particular interest to the spectroscopist who requires the highest sensitivity possible over the range 3 to 4.5 microns.

LEAD SULPHIDE CELL GISV (UNCOOLED)

Another photoconductive cell, but with maximum sensitivity in the 2 to 3 micron region and of particular interest to those requiring the highest sensitivity possible in this part of the spectrum. An ideal cell for spectroscopy and pyrometry applications.

MULLARD LIMITED

GOVERNMENT \& INDUSTRIAL VALVE DIVISION mullard house - torrington place
LONDON. WC1 • TELEPHONE: LANGHAM 6633

FOR OUTSTANDING RELIABILITY ASK H.P. RADIO FOR EDDYSTONE

888A
Special Amateur Band Model. Covers six major bands. Full bandspread over 12 in . scales. Double-superhet using total of 12 valves gives high sensitivity and selectivity. Many refinements make this the ideal receiver for the serious amateur operator. List price £110. (12 monthly payments of $£ 10$);

680X

High performance receiver for general purpose applications. Coverage $480 \mathrm{kc} / \mathrm{s}$ - to $30 \mathrm{Mc} / \mathrm{s}$ (no gap). Two RF, two IF stages15 valves in all. Many refinements including crystal filter, built-in " S " meter push-pull output. Robustly constructed and very reliable. Grey finish. List price £120. (12 monthly payments of $£ 10 / 18 /-$).

Delivery Per Pass. Train Carriage Paid.

Credit and HP facilities

 quickly arranged. Very little formality.

870
Four ranges covering long, medium and short waves. Smooth drive and wide horizontal scales. Efficient, sensitive and selective. Internal speaker fitted. AC/DC operation, with built-in mains filter. Light, compact, reliable. Alternative colour finishes. List price $£ 34 / 16 /$ - (tax included). (12 monthly payments of $£ 3 / 2 / 6$).

RECEIVERS

840A
General purpose AC/DC receiver, with continuous coverage over medium and short waves. Seven valve superhet with RF stage. Features inchode BFO, noise limiter, mechanical bandspread, internal speaker, telephone jack. Excellent performance. Black finish. List price £55. (12 monthly payments of £5).

> Eddystone receivers are renowned for their fine engineering construction, excellent performance and high reliability under all conditions. All models have gear-driven and flywheel loaded tuning systems. The frequency can be read off directly from the clear horizontal scales. Brochures giving comprehensive technical in-
> formation are available on request.

SERYMCE: tio
DDYGIONE SPECIALISTS 100 Liverpool

double beam scope

The D31R is a high performance, double beam, measuring oscilloscope, designed to be built in as a permanent monitor for the operation, servicing and maintenance of all types of complex electronic equipment. It utilises an entirely new $3 \frac{1}{2}$-inch flat-faced, double gun cathode ray tube, designed to our specification and now manufactured exclusively for Telequipment. The two beams have independent brightness and focussing controls and are provided with identical Y amplifiers and a common X -sweep.

The D31R will be available for delivery early in the new year and will find many applications, especially in the missile and computor fields.

TELEQUIPMENT LTD

313 chase road southgate iondon n. 14

telephone: palmers green 7111

write for illustrated leaflet

Moving Coil Applications-2

Advertisements in this series deal with general design considerations. If you require more specific information on the use of permanent magnets, pleasa send your enquiry to the address. below, mentioning the Design Advisory Service.

One of the most important applications for permanent magnets is in moving coil indicating and recording instruments.
The majority of electrical indicating instruments use a permanent magnet/moving coil assembly, and as a result of the introduction of new permanent magnet materials having extremely reliable and stable magnetic performance, these instruments can now be made with a compactness previously unobtainable. This type of instrument consists of a current carrying coil pivoted axially allowing free rotation in narrow air gaps energised by a permanent magnet, and controlled by a suitable return spring. The uniformity of scale divisions depends on the uniformity of the magnetic field in the air gaps.

(a)

Old type 35% Cobalt magnet moving coil system.
Prior to the commercial availability of modern high performance anisotropic magnets, moving coil instruments followed closely design (a). Designs (b) and (c) using 'Ticonal' magnets are now in general use.

Typical arrangements of 'Ticonal' magnets used for moving coil indicating instruments.

Design (b) shows a sound, robust and simple mechanical construction with a magnetic efficiency of approximately 40% (i.e. 40% of the total flux produced by the magnet is usefully employed in the air gaps).

Design (c) is suitable for fast production methods but as curved magnets do not operate at $\left(\mathrm{B}_{\mathrm{d}} \mathrm{H}_{\mathrm{d}}\right)$ max. throughout, they have to be slightly larger to obtain the same magnetic field as produced by design (b).
The extremely high coercivity of Mullard 'Ticonal' magnets have made possible meters designed as shown in (d) where the magnet takes the place of the usual mild steel central core and is surrounded by a mild steel yoke ring which acts as a return flux path and is also a most effective magnetic screen. Instruments of this construction can be made very much smaller than previous designs-an important factor in these times of miniaturisation and limited space. These in-

(d) struments can be mounted close together and on steel panels without the danger of interference, interaction or loss of calibration accuracy.

Design using a'Ticonal internal core magnet arrangement.

From examination of design (d) it will be seen that small pole shoes are fitted to the magnetthese are essential if uniform scale divisions are required. Practically all the flux from the magnet becomes useful, i.e. in the order of 80% efficiency.
The problems involved in the design of instruments are complex, and specialised knowledge in the manufacture and use of permanent magnets and their inherent characteristics is of vital importance if the utmost beneflt is to be derived from the latest developments in permanent magnet techniques.

We invite designers to make the fullest uise of our specialised technical advisory service.

If you wish to receive reprints of this advertisement
and others in this series write to the address below

-

a NEW 5-Channel

VHF Radio-

Transistorised

Telephone Terminal

Compact design which at low cost

provides five high-grade telephone circuits.

Radio

Frequency range 156-184 Mc/s (other frequency ranges are available) Transmitter power output 30 watts
Deviation $75 \mathrm{kc} / \mathrm{s}$
Receiver Noise Factor 8 db
All characteristics of the transmitter and receiver conform to CCIR specifications

Carrier Telephone Equipment
 5 Telephone channels . $4 \mathrm{kc} / \mathrm{s}$ spaced Equipped with Out of Band Signalling Facilities for dialling, Ringdown or junction working Printed Wiring • Plug-in Units Crystal frequency control Resin cast components

The result of co-operative enterprise between two great organizations

---- Realifon SIEMENS EDISWAN

REDIFON LIMITED

Communications Division, Wandsworth, London, S.W. 18 Telephone: VANdyke 7281
A Manufacturing Company in the Rediffusion Group

SIEMENS EDISON SWAN LIMITED
Transmission Division, Woolwich, London. S.E. 18 Telephone: Worlwich 2020
An A.E.I. Company

Independent sideband receiver type GFR. 552

. . . developed to British Post Office specification and used on their international circuits.
This equipment is designed for operation on long distance, point-to-point short wave radio links forming part of the international trunk network. Special features of the GFR. 552 include a high order of oscillator stability and freedom from cross-modulation through which cross-talk between channels or intermodulation between wanted and unwanted signals might occur. Frequency range -4 to $30 \mathrm{Mc} / \mathrm{s}$. Nuise Factor - better than 8 dB over the band.
A.F.C. - Motor driven with exceptionally high retuning speed and low residual mistuning.
Cross-talk attenuation between channels is greater than 45 dB for modulation frequencies above $200 \mathrm{c} / \mathrm{s}$.
Output - Variable up to +14 dB relative to 1 mW into 600 ohms.

A PRODUGT of
MULLARD EQUIPMENT LIMITED
a comvany or the mullaro group

Mullard House - Torrington Place London, W.C.I
Tel: Langham 6633

(78) ME602a

I
 KEYSWITCH Present

The Greatest Advances in RELAY DESIGN

 since the introduction of the G.P.O. Type 3000

The Keyswitch Company now supply 3000 and 600 Type RELAYS with specially redesigned tags. "Solderless Jointing" constitutes a much desired and long-awaited advance in the field of RELAYS. Laborious, inconvenient soldering being rendered virtually obsolete-guarantees increased all round economy. Saves time and money. Reduces relay fitting and removal times. Other advantages are a high degree of electrical and mechanical stability plus the efficiency in performance always associated with T.K.C. products. All in all, the production of these RELAYS must be considered

A TRIUMPH FOR THE KEYSWITCH COMPANY who as well as supplying standard 3000 iype relays for all requirements always consider adapting same for special appltcations.
e.g. - A.C. operations . Mercury Switch Control . Multiple Contacts . Special Control Devices . Electrical or Mechanical Latching . Micro-Switch operation . Photo-Electric or Transistor Controlled Switching. Typical Uses-Batch counting, Computors, Telecommunications, Salety equipment. Slave relays, Liquid control, Sequence operations, Electronic and Machinery operation, Smoke abatement, Nucleonic instruments.

Our Research Department deals with
your prototype requirements immediately

TRANSFORMERS

All for 220!250 V. Input, Other Supply Voltages as Required CONTINUOUS RATING, 8hort Rating Transiormers also available

Each of the eight Transformers below:-

E5.19.0.
OUTPUTS
12 V . 40 Amps
6-12-18-24-30 V. 12 Amps 5 V. 80 Amps.
18 V .30 Amps.
$110-120 \mathrm{~V} .4 \mathrm{Amps}$
55 V .12 Amps.
6.3 V .18 Amps . or 12.6 V .9 Amps 6 V .5 Amps. and 53 V . 15 Amps . and 30 V . 1 Amp.

5 V. 140 Amps. $£ 810 \quad 0$ $110-120$ V. 10
Amps. $£ 1100$ 40 V. 25 Amps. € 100 5 V. 300 Amps. $£ 150$ $13-14-15 \mathrm{~V}$.
60 Amps. ... €ll 150 6-12V. 50 Amps $\in 8100$ 17 V. 40 Amps. $\subset 815 \quad 0$

110 V. Centre Tapped 55 V. 25 Amps 10-15-25 V. 100 Amps.

E26 0

6-8-10-18-24 V. 100 Amps. $€ 2800$

VOLTAGE REGULATING TRANSFORMERS

E28.0.0
Input $230 / 240 \mathrm{~V}$. Output 50 V . to 250 V . in 16 steps of 12.5 V . at 30 Amps . These are Auto Transformers with Quick Make-and-Break Tapping Switches.

4 V., 5,000 Amps. $£ 70 \quad 0 \quad 0$ 2 V., 10,000 Amps. 66800 $3.5 \mathrm{~V} ., 20,000 \mathrm{Amps.6110} 00$ 2 V., 30,000 Amps. $£ 130 \quad 0$ 10 V., 2,000 Amps. 66900

high voltage TRANSFORMERS

3 kV .2 mA $£ 4 \quad 0$ $10 \mathrm{kV} .23 \mathrm{~mA} . . .6980$ $4 \mathrm{kV} .2 .5 \mathrm{~mA} . . . \quad \notin 500$ 42 kV . (21 kV .- -0
21 kV .) 126 mA .65000

10 V. 1,000 Amps. $\mathbf{E 5 9}$
10 V .500 Amps. $£ 38$
10 V. 750 Amps. 648
9 V. 900 Amps. $£ 49$
12 V. 1,000 Amps. 664
15 V. 1,000 Amps. 675
20 V . 800 Amps . 680
10 V. 300 Amps. $E 28$

PORTABLE SHROUDED TRANSFORMERS
Each of the five Transformers below:£7.18.0.
6-8-12-18-24-30 V., 12 Amps.
24 V., 30 Amps.
$110-120 \mathrm{~V}, \mathrm{~s} 4 \mathrm{Amps}$.
$12 \mathrm{~V} ., 40 \mathrm{Amps}$.
55 V., 12 Amps.

Most Transformers up to 2 kVA can be supplied in steel case with protected terminals and carrying handle.

TRANSFORMERS

SWITCHED TAP CONTROL Available with one or more Switches, Ammeters, Fuses etc.
TRANSFORMERS WITH INFINITELY VARIABLE CONTROL OF

Combinations of Transformer with attached Variac for very fine control,

MANY OTHER STOCK TRANSFORMERS

All for $200 / 250$ V. A.C. (Other supply Voltages available)

Rectifier Sets with D.C. Output Control by internal taps
D.C. Volts ON LOAD are stated.

1101120 V . D.C., 10 Amps. ... 1990.0 $200 / 250$ V. D.C., 10 Amps. $200 / 250$ V. D.C., 18 Amps. $200 / 250$ V. D.C. 18 Amps $35 / 38$. D.C. 50 Amps 34 V. D.C. 10 Amps.
1,200 V. D.C. 200 mA. 1,200 V. D.C. 200 mA
60 V. D.C. 5 Amps. 60 V. D.C., 5 Amps.
$200 / 250$ V. D.C., 9.5 Amps. $200 / 250$ V. D.C., 9.5 Amps.
6.3 V. D.C. 13 Amps. and 220 6.3 V. D.C. 13 Amp
V. D.C. 110 mA.

Rectifier Sets with Control of D.C Output by Tap Switches. Fitted with Fuses. D.C. Volts ON LOAD are stated. $12 / 25$ V. D.C., 12 Amps. $\varepsilon 24500$ $2 / 25$ V. D.C., 20 Amps. $2 / 15$ V. D.C., 15 Amps. $10 / 120$ V. D.C., 25 Amps.
Internal' Rheo 5 Amps., Meter and Internal Rheo.
3 V. D.C., 13 Amps. and 220 V., 110 mA
Fitted Ammeters and Voltme.. 1810
Buit-in Rheostats

LOW VOLTAGE SAFETY TOOLS \& TRANSFORMERS

12 V. HAND DRILL, tin. cap.... $£ 6106$ 24 V. HAND DRILL, $\frac{1}{4}$ in. cap.... $£ 5186$

These drills are for use on a fully charged Battery or on an A.C. source of a higher voltage.

SAFETY TRANSFORMERS TO RUN THESE TOOLS
$200 / 250$ V. input, 20 V. A.C. output, for 12 V. drill €7. 180 200/250 V. input, 37 V. A.C. output, for 24 V. drill 67180 SAFETY TRANSFORMERS for all low Voleage hand lamps, tools and other appliances, are available for standard and non-standard outputs.

RECTIFIER SETS

350/440 V. 3 Phase Input
12 V. 400 Amps. or 24 V. 200 Amps. intermittent.
€ 60 35/38 V. D.C., 50 Amps.

SPäClFIC ENQUIRIES

are invited for Transformers and Rectifiers.
We specialise in
HEAVY CURRENT EQUIPMENT

The possibility of a component change - due to shortage of supplies, increased costs or failure to meet specific conditions - is a problem facing every designer of electronic equipment. However, one basic component can be 'tailor-made' from the start, for LAB will supply the precise type of Resistor required, ex stock and at the right price. Write for full technical data, prototype samples and price schedules to:-

THE RADIO RESISTOR CO. LTD., 50 ABBEY GARDENS, LONDON, N.W. 8.

Telephone: Maida Vale 0888

CARBON	WATTS	OHMIC RANGE	TOLERANCES土
1. Solid	1 1 \& 2	10-10M	5\% \& 10%
2. Cracked	1/30-20	1-500M	5\% \& 10\%
3. * High Stability	1/10-3	1-50M	0.5\% 1\% 2\% 5\%
4. Variable	t	$5 \mathrm{~K}-2 \mathrm{M}$	-
5. V. High Resistance	t-3	$50 \mathrm{M}-10^{13}$	5\% \& 10\%
6. V.H.F. (Rods \& Discs)	1/18-1	10-1K	1\% \& 2\%
WIREWOUND			
4. Rheostats	4-500	10-80K	-
9. Sliders	3-15	10-16K	-
8. Vitreous	3-500	1-150K	1\% 2\% 5\%
7. Cemented	1-15	1-25K	5\% \& 10\%

*The ubiquitous blue (1%) grey (2%) "HISTABS"

Do you KNOW

THAT V.H.F. rods and dises (6) can be supplied in matched pairs.
THAT Rheoscats (4) can be made up in twos and threes on a comenon spindle.

LIST PRICE $=$
Full technical details in Leaflet No. W42

The introduction of the Type "E" Series in 1946 set an entirely new standard in Signal Generators for the Service Engineer. To-day, over 10,000 models are being used throughout the world-from Antarctica to the Tropics.
Among this instrument's outstanding features are:-
Wide Frequency Range \qquad $100 \mathrm{kc} / \mathrm{s}$ to $100 \mathrm{M} / \mathrm{cs}$. Exceptionally low leakage...less than $3 \mu \mathrm{~V}$. at $100 \mathrm{Mc} / \mathrm{s}$.
Reliable Attenuator ... Output variable over 100 dB from $1 \mu \mathrm{~V}$. to 100 mV .
Force Output \qquad providing I volt at all frequencies.

Compiled by a team of 13 expert contributors, this comprehensive A-Z encyclopaedia, packed with clear, concise explanations, reliable up-to-date information and valuable reference data, has been specially planned to meet the practical radio and television engineer's everyday needs! Equally useful to the enthusiastic amateur, apprentice or student. Over 3,000 rapid-reference A-Z entries deal thoroughly with every aspect of the theory and

PRINCIPAL CONTRIBUTORS include :

S. W. AMOS, B.SC. (Hons.), A.M.I.E.E. E. J. CLAYTON
P. P. ECKERSLEY, M.I.E.E.
C. F. ELLIS. B.Sc.(Eng.)
E. T. G. EMERY, A.M.I.E.E., A.M.I.Mech.E.
j. W. GODFREY
G. A. GRAHAM, Assoc.I.E.E.
G. P. KENDALL, B.Sc.
L. F. OSTLER, Assoc.I.E.E.
J. H. REYNER, A.C.G.I., B.Sc.(Hons.), D.I.C., M.I.E.E. M.Inst.R.E.

1. ROGERS
K. ROGERS
M. G. SCROGGIE, B.SC., M.I,E.E.

SEND MO MONET NOWI

To: Dept, H.G.26, People's Home Lbrary, Othams Press Led., Basted, Sevenoaks, Kent: Please send me. WITHOUT OBLIGATION TO PITHER revirn the book in good condition, postage pald, within 8 days, OR send down payment of $11 / 6$ elght days after detivery. followed by 2 monthly instamments of $10 /$ - $\mathbf{3 1 1 / 6)}$. ALTERNATIVELY, | I will send the cash price of $30 / \cdot$ eight days after delivery.
Signature
Occupation..
(Persons under 21 will be sent a Guarantor Form) Age, if under 21...... Put tick where applicable: Cash \square Terms \square Householder \square | Lodgings \square Furnished Prems. \square Unfurnished Prems. \square Hotel Live with Parens \square

USE block letters below
Fill in form and post in 2d. stamped, unsealed envelope to Dept. H.G.26, People's Home Library, Odhams Press Ltd., Basted, Sevenoaks, Kent. Book comes on approval-if satisfied you send remittance otherwise return book in 8 days. Offer applies in U.K. only (not Eire), closes Feb. 28.

736 PAGES

NEARLY

SPECIALLY PREPARED ILLUSTRATIONS Over 3,000 A-Z Entries COVERING HUNDREDS OF SUBJECTS including:
Aerials : Amplification : Attenuation Audio-Frequency Transmission : Automatic Gain Control : Broadcasting Communication Systems : Colour Television: Demodulation : Detection Direction-finding : Distortion : Electrical Machinery : Electrical Recording : Feedback : Feeders : Loudspeakers : Matching : Measuring Instruments : Modulation: Oscillators Phase Splitting : Power Distribution Power Supply : Public-address equipment : Pulse Code Modulation Q-factor : Radar: Ratcheting Reactance : Receivers : Rectification Relay systems : Selectivity Stereophonic Reproduction : Symbols, Abbreviations : Testing and Fault Tracing : Tilt and Bend Tone Control : Transformers : Transmission (general) : Tuning : Valves Vision Frequency Transmission VHF : Wave Propagation : etc., etc.

The TF 801D is the latest addition to the Marconi family of precision a.m. generators. With a frequency range of to to 470 Mc / s, its salient features include superfine tuning with crystal checking, and oscillator 1.t. regulation for maximum stability. Spurious f.m. is less than 0.001% of carrier frequency, and its high-quality 50 -ohm output has a v.s.w.r. better than $\mathbf{I} \cdot \mathbf{2}$.
Carrier level is continuously variable from $0 \cdot 1 \mu \mathrm{~V}$ to I volt and is stabilized by an automatic level control system. Sinewave a.m. up to 90% may be applied both internally and externally; pulse modulation may be applied externally in the p.r.f. range $50 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{kc} / \mathrm{s}$.
Full details will be gladly sent on request-please ask for leaflet G_{142}

MARCONI INSTRUMENTS.

[^4]
Piease address enquiries to MARCONI INSTRUMENTS LTD. at your nearest office:

Marconi House, 24 The Parade, Leamington Spa
Telephone: 1408
23/25 Station Square, Harrogate Telephone: 67455

The new range of Ferranti Resin Cast Transformers and Chokes has been named after this famous Scottish landmark which represented a remarkable advance in engineering design when it was constructed over 60 years ago. To-day, the new techniques in manufacture and construction of ' C ' Core Transformers have enabled Ferranti Ltd. to make a significant contribution to Electronic Engineering.
The Forth series components will have particular appeal to designers of airborne equipment since savings in weight and volume of up to one-third can be achieved over the resin cast and oil-filled units now available. Moreover, the quality requirements of the Joint Service Specification RCS. 214 are met in every respect. Please write for a catalogue which gives full rating information.

FERRANTI LTD• FERRY ROAD •EDINBURGH 5

GARAGUTORS

for all applications

TYPES

DRY ELECTROLYTIC
METALLISED PAPER (HUNTS PATENTS) METALLISED PLASTIC FILM (HUNTS PATENTS) PLASTIC FILM • FOIL \& PAPER SILVERED MICA - STACKED MICA CERAMIC - POWER CERAMIC TRANSMITTING AND SPECIAL R. F. TYPES

APPLICATIONS
RADIO AND TELEVISION EQUIPMENT ELECTRONIC EQUIPMENT POWER FACTOR IMPROVEMENT CAPACITOR MOTORS • FLUORESCENT LIGHTING PHASE SPLITTING - H.F. AND R.F. HEATING IGNITION AND INTERFERENCE SUPPRESSION TELEPHONE INSTALLATIONS

How serious
 are you
 ?

The Incomparable

A Tape Recorder can be an amusin: instrument capable of giving you and your friends a vast amount of pleasure at little cost. But if you are seriously interested in good music-if high fidelity means something to you-if stereophonic sound excites your eager enthusiasm -then these are the considerations that ultimately will dictate your choice.

Remember this: there's a big difference between a Tape Recorder made for the popular mass market and one like the Ferrograph impeccably built to satisfy the most exacting requirements of professional musicians and recordists the world over.

For ten years Ferrograph engineers have dedicated themselves to the development of Tape Recording and to the attainment of the highest standards of technical excellence. Indeed many of the design features today in general use and widely copied were first developed by Ferrograph technicians. We take pride in this fact-it is our contribution to the art of tape recording.

We make no apology for the fact that the Ferrograph costs more than ordinary Tape Recorders. It costs more because it reaches a much higher standard of performance. If it is your intention to make recordings of the highest professional quality or to enjoy the utmost realism from commercial pre-recorded tapes, nothing less than the incomparable Ferrograph will satisfy you.

SERIES 68
For installation into own cabinet. Model 66 N 3 $3 \frac{3}{4} / 7 \frac{1}{2}$ i.p.s. 84 gns . Model $66 \mathrm{H} 7 \frac{1}{2} / 15$ i.p.s. 88 gns .

SERIES 35
With optional stereo sound attachment.
Model 35/N $3 \frac{3}{3 / 77} \frac{1}{2}$ i.p.s. 89 gns. Model 35/NH $7 \frac{1}{2} / 15$ i.p.s. 96 gns. Stere-Ad Unit 30 gns. extra.

STEREOPHONIC MODEL

With full stereophonic recording and playback facilities.
Model $88 \quad 7 \frac{1}{2} / 15$ i.p.s. 105 gns.

BRITISH FERROGRAPH RECORDER CO. LTD.

(A subsidiary of The Ferrogroph Compony Ltd.)

NORTHERN RADIO SERVICES for everything HI-FI

" SYMPHONY" COLUMN LOUD. SPEAKER CABINET as reviewed so favourably by Mr. P. Wilson. Technical Editor of "The Gramophone" (see below).

Price (in the white) 13 gns .
including all interior linings. Can be finished off as required. Recommended speaker, Wharfedale Super 8/FS/ AL. @ 7 gns .
"SYMPHONY" INFINITE

BAFFLE CABIN. ET provides fantastic quality reproduction yet measures only $23 \frac{1}{2} x 11 \times$ lotin. Price fin the white) $65 / 10 /$ - each. Two are very sultable for stereo or dual-monaural. Recommended speaker commended speaker | Whariedale Super $8 /$ |
| :--- |
| FS/AL |

" SYMPHONY" SWITCHED
F.M. TUNER KIT Ideal for adding very high quality very high quality
radio. Light, radio. and Third Home and Third the turn of switch. Autonatic frequency ontrol eliminates " drift." Manufocturer's brice only $9 \frac{1}{2} \mathrm{gns}$. Ready built

15 gns.

IIPPORTANT

Here is a copy of a review of our Column Enclosure by Mr. Percy Wilson, Technical. Editor of "T se Gramophone "which appeared in the July, 1958 issue of that magaine

COLUMN LOUDSPEAKER
CABINET
have been much more interested in the greaty superior 5 ft . column). White Noise tests also revealed the middle register coloraumn). White Noise tests aiso revealed the midde register colorathat they were going to be fdeally suited to stereo. They give a that they were going to be deally suited to stereo. They give a use of tweeters, and the response is surprisingly smooth, apart from the bass peak and the lower middle hump aiready noted. They take up a minimum of floor space and disperse the sound at such a height (apart from the ports which are close to the floor) that masking by room furniture (and human bodies) is not serious. I even have mine dlsposed close to two corners of a room, but not too close, behind two of my wife's china cabinets. There they are quite inconspicuous, even in the white, and have satisfied the feminine directives. I was afraid at first of exciting rateles from the glass and china, but that does not happen. Finally, the tops of the columns are free for decorative effects-vases of flowers on lighted plinths are excellent.

I find, too, that now that I have inserted damping arrange= ments in the manner described, they vie even with my best loud speakers for monaural reproduction, whether used singly or in parailel. The design, therefore, has proved to be far more successful than ever I dared to hope; and I have not yet by any means exhausted the schemes 1 have in mind for their use. For stereo, the use of two inner tweeters in parallel, as described in another Report in this issue, has already proved a useful addition. This suggests that for stereo the placing of columns in the recesses on either side of a mantelpiece, with tweeters on the mantelpiece itself, might well prove a successful arrangement. But there are obviously many other possibilities, which I hope to explore in the course of time. It is exciting to feel that no one yet knows what-will be the most successful arrangements for domestic stereo. One thing is clear: we must, and will, break through the limitations of area previously suggested as essential for good stereo listening. The use of these omni-directional speakers has shown already that it can be done

As yet I have not sufficient experience to be anything approaching dogmatic about suitable loudspeaker units. But I am not convinced that sizes above $8 i n$, are necessary, though I should rather like to have stronger magnets such as we used to use with the Voigt enclosure. As I have said, the Wharfedale Super 8/FS/AL is good. So are the W / B sin. units, especially the HF816. I should also expect the Axiom 80, the A-Z Phase Inverter Unit and the G.E.C. metal cone unit to be particularly good, though in the latter case I should want to experiment a little more with types of mid-column damping. P.W.

This Column Enclosure was originally made up at my suggestion for use in pairs for Stereo reproduction. It is a development of the Pedestal Enclosure described on page 146 of my Gramophone Handbook.

It is a column of about lft. square cross section standing 4 ft . 6 in . high, with a 6 in . reflector section on top so that the total height is 5 ft. from the ground.

The loudspeaker unit is mounted on a 12 in . square baffle fixed at the top of the column proper, so that it radiates upwards to the reflector, which then disperses the sound outwards in all horizontal directions. The column of air behind the speaker unit acts as an acoustic load, as well as separating the radiation from the front and back of the unit. Being in the form of a pipe, the surround resonance of the speaker unit (in the $30-60 \mathrm{c} / \mathrm{s}$ region), as in the case of bass-reflex cabinets. This can be controlled to a limited degree by having ports at the bottom end of the column. But resistance damping is also desirable.

Since the wave fronts from the rear of the speaker unit are symmetrically disposed to the sides of the column, panel resonances should not be significant and that in fact has proved to be the case in my experiments. On the other hand, some coloration was expected, and found, due to the odd harmonics of the pipe; since these have their points of highest acoustic pressure (anti-nodes) at the middle of the column, half-way between the driving unit and the open ports, that is the place to fix damping material to fatten out such harmonics. The actual placing is not critical, but I use a thick cellular baffle built up of half egg-trays for the purpose. Fibreglass can also be inserted in the cells.

When they sent along some columns for test, Northern Radio Services had fitted Wharfedale Super 8/FS/AL units. Since these are only rated at 5 watts for ordinary baffle mounting, wondered how they would stand up to power input when sub. iected to the heavy loading of an acoustic cold, the most remarkit considerabiy greater and I think significant, feature of my tests has been the nigh able, and efficiency at low frequencies; higher, in fact, than I should ever have expected for an 8 in . unit. Before I put in some resistance damping at the ports, there was an audible low-note peak which reminded me of the old "Listen to the Bass" slogan, though this one was much lower and not at all unpleasant. Measurement showed it to be in the $30 / 40$ cycle region for the 5 ft . column. With a 4 ft . column, which I tested later, the big peak was more than an octave higher (which at the moment I do not pretend to understand, though I have not pursued the research very far, since I

THE 3 SPEAKER SYSTEM AND THE COLUMN 8

OMNI-DIRECTIONAL 3-SPEAKER SYSTEM

This assembly gives the most natural reproduction so far attained by Wharfedale, and has been demonstrated on several occasions during lectures given by G. A. Briggs in Concert Halls throughout the world.
The 9 cu . ft. sandfilled corner panel is fitted with the W15/FS and provides full bass output down to below $30 \mathrm{c} / \mathrm{s}$ with exceptional purity and freedom from cabinet coloration.
The separately mounted twin treble assembly incorporates the Super 8/FS and Super 3 units, both facing upwards for omnidirectional radiation. A 3-way crossover network is built in with easily accessible middle and treble controls giving great flexibility of adjustment.
The overall sound has a breadth and spaciousness which cannot be achieved with smaller systems.

SPECIFICATION

Overall height 48 in

Overall width 34in.
Weight of panel with W15/FS unit 140 lb . Crossover frequencies $800 \mathrm{c} / \mathrm{s}$ and $5000 \mathrm{c} / \mathrm{s}$.

PRICE COMPLETE £73.0.0 tax free
 Sandfilled back panels to complete $£ 12.0 .0$ enclosure where required
 per pair

Frorn experience it is found that matched loudspeakers are not essential for stereo, provided that the high frequency directional characteristics are similar.
With the Corner Three Speaker System as the main loudspeaker, the Column Eight is suitable for use in the second channel since the treble radiation is omni-directional in both.

OMNI-DIRECTIONAL COLUMN EIGHT

Takes up a minimum of floor space and gives maximum results from a single 8 in. unit.
The cabinet is fitted with the Wharfedale Acoustic Filter (Patent $A-n$. No. $4483 / 56$) and treated internally to suppress the unwanted resonances usually associated with column designs. The Column Eight is specially recommended for use with the new 8 in. unit type $8 / 145$ which is fitted with a 14,500 gauss magnet, aluminium voice coil, foam surround and bakelite centring device.
The Cabinet can be obtained with a Walnut, Oak or Mahogany Veneer finish.

SPECIFICATION

Size $14 \mathrm{in} . \times 12 \mathrm{in} . \times 3 \mathrm{ft} .8 \mathrm{in}$. high. Weight, cabinet only, $34 \frac{1}{2} l b$.
PRICE 821 . 15.0 tax free

RECOMMENDED SPEAKER UNITS

8/145

£7.6.11 (including Purchase Tax)
SUPER 8/FS/AL 8" BRONZE/FS/AL
£7.6.11 Impedance $10 / 15$ ohms (or 2/3 ohms to order).

Telephone: Idle 1235/6. Grams: 'Wharfdel' Idle, Bradford.

ESSENTIAL DATA
NOMINAL SIZE
PEAK POWER HANDLING
CAPACITY
VOICE COIL DIAMETER TOTAL FLUX fREQUENCY RESPONSE BASS RESONANCE MPEDANCE AT $400 \mathrm{c} / \mathrm{s}$

15
25 watts 3^{n}
290,000 Maxwells $30-15,000 \mathrm{c} / \mathrm{s}$
$35 \mathrm{c} / \mathrm{s}$ 15 ohms.

cellefion

The COLAUDIO provides a new incentive to listening, creates a new realism in reproduced sound, adds a new beauty to music and the finer nuances of speech. Combining a 15 in . direct radiator hass loudspeaker with two direct radiator, pressure-type high frequency reproducers in column form, the COLAUDIO is the culmination of over thirty years research, development and manufacture of loudspeakers for all purposes. Its perfection of tone can be truly appreciated only by an aural test-once heard, you will never be satisfied until you instal one in your own reproducing equipment.

COLAUDIO

Rola Celestion Led. thames ditton, surrey, england.
Telephone: Emberbrook 3402/6

RADIO EXPORT

2000 types of both receiving and transmitting tubes in stock In addition, a comprehensive range of crystals and some types of transistors and trustworthy tubes are available.

PRICE AND STOCK LISTS ON APPLICATION

Your specific enquiries for special types to CV. JAN and MIL specifications are invited.

Our organisation is A.R.B. approved.

RELIANCE MANUFACTURING Co. (SOUTHWARK) Ltd., SUTHERLAND Rd. HIGHAM HILL, WALTHAMSTOW, LONDON, E. 17 GD 10

Telephone: No. (and Cables) LARkswood 3245

INTRODUCING THE COMBINED POWER PACK AND AMPLIFIER FOR THE "MAXI-Q" PRE-SET OR VARIABLE F.M. TUNER WHICH NOW OFFERS YOU A COMPLETE RECEIVER

Full constructional details, point-to-point wiring diagrams and alignment instructions for building the "MAXI-Q" COMBINED POWER PACK AND AMPLIFIER, PRE-SET F.M. TUNER and also the VARIABLE TUNED version are given in Technical Bulletin DTB.8, 1/6.
POWER PACK AND AMPLIFIER. This unit consists of Mains Transformer, EZ80 and ECL 82 valves, Volume Control complete with mains on/off switch and is housed in a gold-finished case. Power supplies available for any tuner-Heater 1.5 amps at 6.3 V H.T. from 220 V . at 50 mA to 265 V . at 20 mA .
The unit is available completely wired and ready for use at $£ 5 / 10 /-$, plus $2 / 6$ carriage or available in kit form at £5.
PRE-SET F.M. TUNER. Completely punched chassis, screens and bronze-finished cover, 19/-. Station Indicator Plate 1/1. Three-position switch, 4/3. Station Condenser Trimmers, $3-9 \mathrm{pF}, 2 /$.
RATIO DISCRIMINATOR TRANSFORMER, RDT $1 / 10.7 \mathrm{Mc} / \mathrm{s}$. Secondary winding of bifilar construction, iron dust core tuning, polystyrene former, silver mica condensers. Can size $1 \frac{13}{8} \mathrm{in}$. sq. $\times 2 \frac{1}{2} \mathrm{in}$. high, $12 / 6$. I.F. TRANSFORMER, IFT. $11 / 10.7 \mathrm{Mc} / \mathrm{s}$. Miniature I.F. of nominal frequency $10.7 \mathrm{Mc} / \mathrm{s}$. The " Q " of each winding is 90 and the coupling critical. Can size $13 / 16 \mathrm{in}$. sq. $\times 1 \frac{7}{8} \mathrm{in}$. high, $6 / 6$.
COILS, TYPE L1, T1 and T2. Specially designed for use in this unit, are wound on polystyrene formers complete with iron dust core tuning, $3 / 11$ each.
THE "MAXI-Q" PRE-SET F.M. TUNER is available completely wired, assembled, valved and housed in a sturdily made gold-finished cover at $£ 8 / 11 / 5$, plus $£ 3 / 8 / 7$ P.T. $=£ 12$ (carriage $3 /-$).
VARIABLE F.M. TUNER completely assembled at $£ 7 / 17 / 2$, plus $£ 3 / 2 / 10$ P.T. $=£ 11$ (carriage 3/-).
GENERAL CATALOGUE covering technical information on full range of components, $\mathbf{1 / 3}$, post free.
TRADING TERMS for direct postal orders, c.w.o., plus appropriate postal charge. Please send S.A.E. with all enquiries.
DENCO (CLACTON) LTD., (Dept. W.W.) $357 / 9$ Old Road, Clacton-on-Sea, Essex
STOP PRESS - WF1388. Push-Pull Blas Erase Tape Deck Oscillator Coil, for the New Mullard Type "C" Tape Amplifier, Price 29/6

IMPORTANT!

from the
20th to the 24th February 1959 The 2e salon International

de la PİCE DÉTACHEE

 CLLECTRONIOUE(The 2nd International Exhibition of Electronic Components)
will be held in

PARIS

at the
PARC DES EXPOSITIONS
PORTE DE VERSAILLES
The greatest display in the field of electronics in the World

INFORMATION FROM:
FÉDÉRATION NATIONALE DES
INDUSTRIES ĆLCCTRONIQUES(S.D.S.A.) 23, RUL DE LÜBRCK, PARIS (16.)
PAS. 01-16

THE " impossible" becomes practical with the application of flexible shafting.

We are experts in this rapidly developing field and can show you how to operate any element requiring rotation or push-pull movement, or both. Distance from control to point of application presents no difficulty.

Consult us on any of your remote control problems.

Flexible Shaft Handbook available to technicians on request to Dept. W.

ZUOUSERIAL OUCTSTON

THE S. S. WHITE DENTAL MFG. CO. (G.B.) LTD. Britannia Works, St. Pancras Way, London, N.W.I Telephono: EUSton 5393

This new journal provides today the information which management must have for higher efficiency tomorrow

AUTOMATIC AIDS TO CONTROL. ADMINISTRATION AND ROUTINE WORK IN OFFICE AND FACTORY
CAN BRING RICH REWARDS TO THOSE WHO FIRST APPLY THEM

Commercial and industrial concerns everywhere have warmly welcomed this authoritative guide to the choice of equipment and its correct application

As production becomes more automatic and research more exacting, new methods of handling industrial information are being evolved. Applications of these fresh methods throughout industry will significantly improve efficiency, increase output, reduce costs.

Every day, more and more progressive organisa-tions-at home and abroad-are subscribing to Data Processing, the new Iliffe quarterly which describes the means by which this can be achieved. The whole range of automatic aids-computers, punched-card machinery and allied equipmentis examined and the best of the current operational practices presented in a form readily applicable to particular problems. Completion of the order below is the first move in ensuring that your organisation is early among those whe benefit from these new methods.

POST THIS FORM TODAY

To: Iliffe \& Sons Limited, Dorset House, Stamford Street, London, S.E.1.
Please enter my subscription to Data Processing for one year (£4.0.0.). I will remit on receipt of your invoice.
NAME \qquad
FIRM

A RANGE TO CHOOSE FROM

stereo-twelve CHASSIS 37 GS

The most complete unit yet produced for Stereo giving 6 watts high fidelity push-pull output on each channel, 12 watts for monaural. Full VHF band, medium and long wavebands. Stereo and monaural inputs VHF band, medium and long wavebands. Stereo and monaural inputs
or records, tape and radio and a tape output for stereo and monaural tape recording. Comprehensive matching for all types of crystal pick-ups. The perfect basis for a complete monaural reproducing system or for a complete stereophonic system now or later.

Armstrong

PB 409 CHASSIS

 28 GNSA self-powered high fidelity tuner covering full VHF, medium, and long wavebands with automatic frequency control on VHF. Excellent in combination with the Armstrong A. 10 Mk . II Amplifier and Control Unit but the cathode follower stage and variable feedback output conUnit but the cathode follower stage and variable feedback output con-
trod enable this tuner to be used with virtually any amplifier available.

An AM/FM radiogram chassis with nine valves and two diodes and with push-pull output stage A nine valve $A M / F M$ radiogram chassis giving 6 watts push-pull output and fitted with attracfive piano key selectors. Covers full VHF band, medium, long and short wavebands and an output socket is provided for tape recording from radio and pick-up. Can be adapted for stereo at any time by the addition of our compact easy-to-fit converter amplifier.

Write for descriptive literature and details of Home Trial facilities. Hire Purchase terms and Guarantee or call at our chase How ms Showroom for fulls, unour Holloway Shotbroom for full, un-
hurried demonstration and professional advice on your installation.

The name ARMSTRONG is the registered
trade mark of ARMSTRONG WIRELESS \& TELEVISION CO. LTD., WARLTERS ROAD, LONDON, N.7. Tel.: NORth 3213

5TEREOPONTC HEADPHONe Coil Headphones

BROWN'S Type K Moving are now available, with earpieces Place orders as follows:- Phonic Headphones STEREOPHONIC
REPRODUCTION BROWN'S Ty

AID \& ARB

523

Stereophonic Bowl Unit

When a second High Fidelity Loudspeaker System is being planned for Stereophonic r:production, this unit overcomes the major obstacles encountered; space available-cost-per.ormance to match a good existing system. Ster ophonic Bowl Unit Model S. 23 has uniform radiation through 360° in the horizontal plane, and is so compact ($6{ }_{4}^{3 *}$ high $x 8 \frac{\frac{1}{2}^{n}}{}$ dia.) that no problem exists in siting it in the optimum position in any high $x 8 \frac{1}{2}^{\prime}$ dia.) that no problem exists in siting it in the optimum position in any
room. Full use is made of the existing loudspeaser system (e.g. Sherwood, Axiom 15/4, room. Full use is made of the existing loudspeaser system (e.g. Sherwood, Axiom $15 / 4$,
Axiette etc.) which carries both channels below $300 \mathrm{c} / \mathrm{s}$. and one chann 1 above $300 \mathrm{c} / \mathrm{s}$. Axiette etc.) which carries both channels below $300 \mathrm{c} / \mathrm{s}$. and one channclabove $300 \mathrm{c} / \mathrm{s}$.
The other channel above $300 \mathrm{c} / \mathrm{s}$. is handled by the S .23 unit. If two S .23 units are used, then the ex sting system ne ed only periorm well in the bass register, as it w. Il simply be called on to reproduce the combined s gnal below $300 \mathrm{c} / \mathrm{s}$. A separate filter unit is produced to periorm the necessary frequency mixing, isolation and division, and will accept either one or two $\$.23$ units.

Axlom

For all High Fidelity applications demanding the utmost in performance from a single un t, the choice of an Axiom 400 ($13^{\prime \prime}$) cannor be bettered. Incorporating all the outstanding features of the f-mous Axiom 300 (Aluminium voice coll, twim diaphragms with plastic features of the f mous Axiom 300 (Aluminium voice coll, twin cliaphragms with plastic
terminations, automatic mechanical crossover, cast chassis etc.) it has, in add.tion, an terminations, automatic mechanical crossover, cast chassis etc.) it has, in add. tion, an
even more powerful magaet assembly, producing a fux density of $17,500 \mathrm{~g}$ uss, and a total even more powerful magnet assembly, producing a fux density of $17,500 \mathrm{~g}$ 保g, and a total
fiux of 195,000 maxwells on the $\|^{\frac{3}{4}}$ diemeter pole. This permits a maximum power handling capacity of 20 watts with very low distortion, and superb control of transients.
Frequency range: $30-16,000 \mathrm{c} / \mathrm{s}$.
Enclosure volume required; 7,800 cubic inches, with Acoustic Resistance loading (ARU.172).
Goodmons High.Fidelity Loudspeaker Manual, which contains full information on Goodmans High Fidelity products, free on request.

...Europe's Iargest Manufacturers

 and the World's Iargest Exporters of High Fidelity LoudspeakersGOODMANS INDUSTRIES, LIMITED AXIOM WORKS, WEMBLEY, MIDDLESEX

WEMbley 1200 (8 lines) Grams: Goodaxiom, Wembley, England

TRAVELLING

WAVE TUBES FOR

 COMMUNICATIONS
AND RADAR

Quick delivery is available for our travelling wave tubes, which are designed for use in microwave links and radar receivers.

For links in the frequency bands 1700 to $2300 \mathrm{Mc} / \mathrm{s}$ and 3800 to $4200 \mathrm{Mc} / \mathrm{s}$, we are manufacturing power output tubes, low noise input tubes and intermediate driver tubes.

The table below gives brief specifications for these types as well as for low noise tubes for radar receivers. All types listed are currently in production and are giving excellent results in operational equipment.

Details of power supplies available on request.

'ENGLISH ELECTRIC'

Type	Application	Frequency band	Power Output	Noise Factor (db)	Gain (db)
Nroor	radio links	1700 to $2300 \mathrm{Mc} / \mathrm{s}$	16W	-	25
Nior3	$\stackrel{ }{9}$	1700 to $2300 \mathrm{Mc} / \mathrm{s}$	200 mW	20	33
N1002	39	1700 to $2300 \mathrm{Mc} / \mathrm{s}$	ImW	9	23
Nroo4	9	3800 to $4200 \mathrm{Mc} / \mathrm{s}$	4W	-	24
Nro23M	9	3800 to $4200 \mathrm{Mc} / \mathrm{s}$	4W	-	24
Nio25M	"	3600 to $4200 \mathrm{Mc} / \mathrm{s}$	75 mW	21	32
N1024M	"	3600 to $4200 \mathrm{Mc} / \mathrm{s}$	ImW	9	20
Nior ${ }^{\text {M }}$ M	radar input	1200 to $1400 \mathrm{Mc} / \mathrm{s}$	0.3mW	8	23
6861	\because	2700 to $3500 \mathrm{Mc} / \mathrm{s}$	1 mW	6.5	25

Type 6861 and those with subscript M are fitted with coaxial connectors for which lightweight electromagnets are available. Other types are normally used in waveguide installations

WE KNOW QUALITY

ONLY THE BEST STEREO, HI-FI, RADIO, T.V., Tape Recorders, etc. STOCKED.

- OUR EXPERTS WILL ADVISE YOU ON THE BEST EQUIPMENT TO SUIT YOU.
- UNIQUE GUARANTEES ON SECONDHAND APPARATUS (MONTHLY LISTS available upon request S.A.E.).

OVER 100 YEARS' TRADING EXPERIENCE.

Specialists in Mail Order, Part Exchanges etc.

- Tape Recorder Dept. (Folder of leaflets upon request).
- Within the WALLACE HEATON ORGANI-SATION-your guarantee to satisfaction

VISIT OUR SHOWROOMS-OUR SALESMEN WILL BE DELIGHTED TO HELP YOU and YOU CAN DEPEND ON OUR ADVICE.

CITY SALE \& EXCHANGE LTD

93-94, FLEET STREET, LONDON, E.C.4 Telephone: FLEet 9391

NEW TYPE STAND-OFF INSULATORS

There are already some 25 different types now available and these two new additions have many interesting features-namely Type " J," length $19 / 32$ inch, and " J-S," length $15 / 32$ inch.

These give the same performance as type " C," but have a smaller height and lower price.
The vee shaped top terminal permits very rapid heating and rapid connec tion for two or more wires which may be simply laid in the groove, or clenched before soldering.
registered design patent pending
PRECISION BUILT COMPONENTS
KINGSWAY - WADDON, SURREY.
Phone: Croydon 275405 Grams Wolfico, Souphone, London.

Metallised Paper Capacitors

and now Type 400

Both the Type 400 capacitors shown here are housed in phenolic resin and áre suitable for use within a femperature range $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The new extended range of valuts is listed in the table adioining each size. For complete information on every type of metallised paper capacitor pleast send for
Catalogue MP.8.
in an extended range

There's nothing so good as building it

SWITCHED

with a

Jason|kille

FM/TV SOUND TUNER JTV

OTHER JASON KITS FOR AUDIO INCLUDE STANDARD F.M. TUNER ARGONAUT AM/FM EII/IO. MERCI'RY SWITCHED F.M. TUNER E9. 20 WATT STEREO AMP \&17/8/-
6 WATT STEREO AMP. El3/19/STEREO PRE-AMPS. $£ 16 / 10 /$ FMT3 TUNER ... £8/5/-. Full list and details on request

1This highly successful kit provides excellent reception in all areas served by B.B.C. F.M. and B.B.C. and I.T.A. television sound transmissions. Reception is by a simply pre-tuned switching arrangement. The JTV unit makes it possible for the first time to make recordings of TV sound; the dangers inherent in recording from a modern TV set have hitherto prevented this. The kit includes case and ready-assembled turre The kit with ses case hitherto prears includin wire serews, Building is parts inciuding wire, screws, etc. Buld i is straightorward and copiously illustrated instructions will be found in the re-print published specially for the JTV by Hi -Fi News ($2 / 6$ post free). 4 valves extro. Kit as described
BRITISH-DESIGNED TO HIGH STANDARDS OF TECHNICAL EFFICIENCY
FROM LEADING STOCKISTS EVERYWHERE. Descriptive Literature on request. THE JASON MOTOR \& ELECTRONIC CO., 3-4 (D) GT. CHAPELST., OXFORD ST., LONDON, W. $1 \begin{gathered}\text { GERrard } \\ 0273 i 4\end{gathered}$

STEREO \& RECORDHOUSING

are made for each other

THE RONDO RANGE

Comes packed-flat and factory-fresh in a carton and is put together simply with a screwdriver in ten minutes.

SPEAKER CABINETS designed for the 8in. Axiette. Price, complete with legs, $£ 8 / 19 / 6$ (tax free).
EQUIPMENT CABINET is suitable for all auto-change and transcription turntables, plus most amplifiers and radio tuners. Price $£ 8 / 19 ; 6$ (tax paid).

Brook Road, London, N. 22
BOWes Park 7487-8

Silicon Junction Rectiffers

perform vital tasks in the

In the electric and electronic circuitry of the de Havilland Comet 4 jetliner, BTH silicon junction rectifiers are used extensively for critical rectification and control purposes.

BTH offers a wide range of silicon junction rectifiers-write for ratings and technical data.

The New "VALENCIA" MULTI-PURPOSE MUSIC AMPLIFIER

\author{

* 10 WATTS
 POWER OUTPUT
}
\star EXTRA HIGH
FLUX 9in.
SPEAKER

\author{

* SEPARATE BASS AND TREBLE CONTROLS
 * 3 SEPARATE INPUT
 SOCKETS
}

Specially designed for the up and coming player or players for use with a guitar or other musical instruments fitted with a pick-up. The outfit also has accommodation for a high impedance microphone and is finished in an attractive streamlined cabinet.

Cash Price $£ 24$. 0
Complete with waterproof slip-on.

Grampian
 GRAMPIAN REPRODUCERS LIMITED

20 Hanworth Trading Estate, Feltham, Middx.

XR9 Indirectly heated subminiature H.F. Double Triode

The XR9 is ideal for use in the most modern hard valve computers and similar circuits where the small size and inherent reliability of subminiature valves are essential. It is suitable for similar circuit applications to those of the well known 12AT7 and 12AU7 and operates under similar conditions.

Perfection in miniature

Heater	\ddots	\therefore
Ratings	6.3 V at 0.3 A	
Anode voltage	\cdots	(each half)
Anode current	\ldots	100 V
Mutual conductance	5.5 mA	
Amplification factor.	$5 \mathrm{~mA} / \mathrm{V}$	

STONEFIELD WAY SOUTH RUISLIP MIDDLESEX Phone: Ruislip 3366

The new Pye De Luxe 3-Speaker System
Fine walnut veneered cabinet houses a $15^{\prime \prime}$ bass unit, a mid-range unit and a $4^{\prime \prime}$ tweeter. Frequency range: 20-20,000 c.p.s.

Today, the design and manufacture of high fidelity equipment is a specialist business, calling for knowledge and techniques of the highest order. The Pye system featured here was produced in our High Fidelity Division -an organisation devoted solely to the production of equipment of this type-and is recog lised to be one of the finest available in its power rating.

See your Dealer

Hi-Fi Systems

Special Collaro Type 4T200
Transcription Units finished in matching copper colour are available.

The Provost 25 -watt Amplifier
A frequency coverage of 2-160,000 c.p.s. with infinite damping factor.

The Proctor Contral Unit
Provides smooth, highly flexible controls and facilities for four inputs; 5 types of pick-up compensator; selector, bass, treble and filter controls. Copper finished control pariel.

Tecnico Ltd. Sydney, Australia.
Deutsche Pye G.m.b.H., Berlin-ZehlendorfWest, Roonstrasse 2, Germany.

Pye Limited, Auckland, C.I. New Zealand.

Svenska Pye A.B.
Landsvagen 47, Sundbyberg. Sweden

Pye (Ireland) Lid., Dublin, Eire.

Pye Limited, Mexico City. High fidelity Division, Fairvisw Road, S.W. 16

Pye (Canada) L.t., Northline Road, Toronto.

Pye Corporation of America, ${ }_{1149}$ Raritan Avenue, Highland Park, New Jersey, U.S.A.

QUICK, EFFICIENT UP-TO-DATE COMPONENT SERVICE!

BUILD THE "SKX PIXIE" VEST-POCKET TWOTRANSISTOR PLUS DIODE RADIO which gives a superb periormance and to highly sensitive. size it is a THREE-STAQE receiver covering all medlum waves, working entirely off a tiny "pen-llght " battery. Every part lested before despateh! SPECIAL STEP-BZ-STEP-PLANS FOR ABSOLUTE BEGINNERS. Total building cost ineluding case, transistors, etc.-everything down to the last nut and bolt-ONLX $47 / 6$ with plans. Postage. etc. $2 /$-. C.O.D. 2f-extra. (Parts snid separately. Priced parts list and plans 1/6).
RUSH YOUR ORDER TODAY!

POCKET VALVE RADIO
Anyone Cbn Build This Besutiful Preossion Pocket Radio in One Hoar, No knowledge whatever neerled, our Simple Plotorial lang take you srep by step. You cant go wrong. Lazembourg, Elome, Light glze only 21n. $\times 31 \mathrm{n} . \times 6 \mathrm{in}$. Not a Toy! But a Real Valve Redio! Usen self-contalned battery and ls a really personal-phone, pocket radio with Detachalbe Rod Aerial. LDEAL FOR BEDROOM, GARDEN etc. We can supply all the parts necessary, including Case, Screws, Easy Step-by-Step Plans-for the Special Price of 37/6. (Plus 2/6 post, etc.) BULD YoURS NOW (All parts sold separately.) Priced parts list, etc., $1 / 9$. Big demand certain-Send Today! C.O.D. 2/- extra.

Can Be Buit For
3716

RECORD CHANGER AND PLAYER BARGAINS:
B.S.R. MONARCR, 4 -speed, mixer autochanger unit, model UAS. Fully comnew - Limited stocks Only GIFT £6/19/6. (Plus poat and packing 5/..) LATEST "COLLARO" dsppeed autochanger with Hi-Fi plek-up. Complete n maker's sealed cartons. BARGAIN £7/19/6. (Plus post nad packing 4/6.) player, with ervatal plekup, using EGP59 cartridge. OUR PRICE 92/6. (Plus 4/post and packing.)

Chnice of beautiful walnut veneared cabinet or ivory or brown bakellte. This is the lowest possible price consistent with high quality. No
radio knowledre whatever needed radio knoviedze whatever needed
built by enyone in 2.3 hours, waing our very simple easv-to-follow diagrams. The terrific new circult of the "OCEAN-HOPPER" covers all medium and long wares. has razor-edge selectivity and exceptionally good tone. Price aiso includes ready driled and punched chassis set of simple sasy-to-follinw plans-in fact, every. thing! Parts tested before despatol. Uses standard octal-base valves. For A.C. inains $200-250$ volts (low running constamiduet NOW. TOTAL BULDING COST INCLUDING PLANS, ETC, E5/D/B (Post and packing 3/6.) Parts sold separately. Priced parts list and plans 1/9. C.O.D. 2 -. EXTRA.

$$
\begin{gathered}
\text { Can Be } \\
\text { Built For } \\
\text { Bor }
\end{gathered} 107^{\prime} 6
$$

COMPONENT bargans: Red-Spot Transistors, tested, 8/6. White-Spot Transistors, tested, 15% Aso all Mullard and etandard types Atocked.
Moving Coil P.M. Speakers. 2/n. 17/6; 3tin. 18/6: 5in. 17/6: 8in. 18/6.

ALL TYPES OF COMPONENTS stocked at competitive prices

PRINTED CIRCUIT POCKET SET

BUILD THIS 3 tRANSISTOR POCKET RADIO , . PRINTED CIRCUIT VERSION: The "Companion" Is comparable in sensitivity to a three-valve battery set. It is exceptionally small tn stze ($4 \mathbf{y} \ln$. $\times 3 \mathrm{hn} . \times 1 \frac{1}{2} \mathrm{n}$.) and in a self-contalned pocket radio that does not need serial or earth. It has built-In speaker and covers medium and long waves. This unique little set CAN BE BULLT FOR ONLY $97 / 6$. everytinna incluned! (Plus post anil packing 2/6.) Ail parts sold separately. Price list, etc., fd .

PRINTED CIRCUIT POCKET SUPERHET
BUILD THIS PROFESSIONAL-LOOKING, FIRST-CLASS G-TRANSISTOR POCKET
 with engraved dial. Bet welghs only 20 oz. with batterios! Covers medium and long waves. Works of two No. 8 batteries. The second I.F. Stage is reflexed to give prohable the hest vet of its kind-it is gimple to build and reailly sensitive. ALL COMPONENTS TNCLUDING CABINET, PRINTED CLRCUIT, TRANSISTORS--IN

CONCORD
 ELECTRONICS
 ($\left.\begin{array}{l}\text { DEPT. } \\ \text { WWD. }\end{array}\right)$

69 PRESTON STREET, BRIGHTON, 1

Stereo facts for the

Model 351T (Teak) £45
Model 351M (Mahogany) £42
Model 351W (Walnut)

Lowboy-below
Model 352T (Teak)
Model 352M (Mahogany)
Model 352W (Walnut)

DU120 Duplex Coaxial
FULL RANGE LOUDSPEAKER
$£ 19$ 10s.

THERE EXISTS in our mind no doubt that the future of high quality sound reproduction lies in stereo.

Some years' experience with stereo tapes showed the importance of this medium to the spectalist: the release of stereo discs makes a vast quantity of recorded material available to the general tistener.

Stereo does not change the requirements for actual quality of reproduction; it adds to that quality breadth, spaciousness and realism.

The choice of a loudspeaker for stereo, therefore, is no less critical than before. There is no magic in stereo: two good loudspeakers still sound better than two poor ones. Whether two poor ones sound better than one good one is, perhaps, a matter of personal preference. For serious listening, the choice will almost always be for the one good one.

Satisfactory stereo performance can only be achieved by the use of loudspeakers having similar characteristics. If dissimilar loudspeakers are employed the position of solo instruments in particular will vary with frequency and the true stereo effect will be lost.

The Vitavox Type DU120 Duplex Coaxial Loudspeaker has characteristics admirably suited to stereo. HALLMARK Loudspeaker Systems incorporate this unit in an acoustically designed enclosure of elegant appearance.

The purchase of one HALLMARK Loudspeaker system now, will enable you to enjoy to the full your monophonic records and radio programme-the addition of a further one when you have installed a stereo pick-up and amplifier will unfold to you the true potentialities of this new medium.

vitavox Hallmark LOUDSPEAKER SYSTEMS
 Of the first year's production of the Type DU120 Loudspeaker, 90% were exported, 75% of them to
 and DU120 Duplex Coaxial FULL RANGE LOUDSPEAKERS

 hard currency areas where the choice of the world's loudspeakers is freely available. Your dealer should now hold this loudspeaker in stock but please approach us if you experience any difficulty in obtaining supplies.

Bullers ceramics

 FOR INDUSTRYHigh quality material and dimensional precision are attributes of Bullers die-pressed products.

Prompt delivery at competitive prices.

We specialise in the manufacture of -PORCELAIN
for general insulation REFRACTORIES
for high-temperature insulation

FREQUELEX
for high-frequency insulation
PERMALEX \& TEMPLEX for capacitors

BULLERS LIMITED

MILTON - STOKE-ON-TRENT • STAFFS
Phone; Stoke-on-Trent 24.321 (5 lines). Telegrams $\&$ Cables: Bullers, Stokeoon-Trent Ironworks: TIPTON, STAFFS London Office: 6 LAURENCE POUNTNEY HILL, E.C. 4 Phone: Tipton 1691

FOUR MODELS
TYPE A75. Range 99dB in IdB steps. Input and Output impedance 75 ohms. Price $\mathbb{C} 19$ nett in U.K.

\star
TYPE A76. Range 90 dB in 10 dB steps. Input and Output impedance 75 ohms. Price $\mathbf{E 8}$. 10 s , nett in U.K. TYPE A79. Range 99dB in IdB steps. Input and Output impedance 75 ohms. Price $\mathbf{£ 2 2}$. 10s. nett in U.K. TYPE A84. Range 99 dB in IdB steps. Input and Output impedance 75 ohms. Price $£ \mathbf{1 7}$. 10s. nett in U.K.

TYPE A94. Type A76 supplied less resistors, for customers to fit their own network.

Price £7.10s. nett in U.K
 These attenuators employ resistive ladder network and provide accurate attenuation over a wide frequency band. They are small compact units ideal for building into customers' own equipment or for bench use in the laboratory. Full details are given in leaflet No. W57, gladly sent on request.

Model "STEREO EIGHT". Pre-amplifier

A high gain precision instrument to professional standards. Incorporates every facility for high every facility for high quality REOPHON IC REPRODUCTION. 8 valves, printed circuit construction. Suitable for all types of recorders (special facilities for Stereo Conversion) and microphones Compensated for slow and fast tape speeds, independent wide range tone controls, steep cut filter, function selector for stereo, dual and individual channels. Full range balance control. Outlets for recording Stereo.

Price £23.2.0

Model "STEREO TWO" Pre-amplifiero

A high grade Stereo/Monaural instrument for use with Crystal pick-ups, tuneis and compensated tape. Independent wide range Independent wide range tone controls. Full range balance control. Two twin
triodes, printed circuit consitruction, outlets for recording Stereo.

Model S.P. 44 Twin (Stereo) Power Amplifier

A twin channel (stereo) Power Amplifier on one chassis, designed to match Stereo 8 or Stereo 2 pre-amplifiers. 8 watts (4 watt per channel). Ideal for the home, superb prrformance, adjustable speaker matching.

Price fl2.12.0

Model DPAIO/2

Both Pre-amplifiers are designed to work with either of the above Power Amplifiers.

A free pamphlet is available giving advice on the choice of Stereophonac equipment. Wrate today
THE DULCI COMPANY LIMITED
97-99 Villiers Rd., London, N.W.2. Tel: Willesden 66789

LIST No. $70 \frac{1}{8}$ BIT

THE tool for Electronic Circuits also by

(Regd. Trade Mark)

Soldering Equipment

SHARP HEAT FOR QUICK
jointing of transistors, resistors, and all classes of miniature components,

SUPPLIED IN ALL VOLT RANGES

ADCOLA
"LONG LIFE" Bits FROM STOCK

ILLUSTRATED ACTUAL SIZE

Electrical standards approved in all leading countries

Cotalogues of the Adcola patented and registered design soldering equipment on request from

Head Office. Sales and Service
ADCOLA
PRODUCTS LTD.
GAUDEN ROAD
CLAPHAM HIGH ST.
LONDON, S.W. 4

Telephones:-
MACaulay 4272 and 3101

WRITE NOW ABOUT THE CREATIVE APPROACH TO BETTER WIRING AIRCRAFT-MARINE PRODUCTS (GT. BRITAIN)LTD.
London Office: Dept. 15, 60 Kingly Street, W.I. Telephone: REGent 2517-8 and 3681-2-3 Works: SCOTTISH INDUSTRIAL ESTATES, PORT GLASGOW, SCOTLAND

MUREX LIMITED (Powder Metallurgy Division) RAINHAM • ESSEX Telephone : Rainham, Essex 3322. Telex 28632. Telegrams: Murex, Rainham-Dagenham Telex LONDON SALES OFFICE: CENTRAL HOUSE, UPPER WOBURN PLACE, W.C.I. Telephone : EUSton 8265

The Radar sets and other electronic apparatus on which high speed aircraft rely for their safety, incorporate metal bellows in the form of shaft couplings. In this application, freedom from backlash and ability to accommodate both angular and lateral misalignment is required. Hydroflex Bellows are chosen because of their outstanding reliability. For further information, write to Dept. W.W.

HYDROFLEX seamless Metal Bellows

For the closest approach to the Original Sound

RCA 15 KW TELEGRAPH TRANSMITTER

Type ET-4750-X

Frequency range-2 to 22 megacycles.
Keying Speed-up to 250 words per minute.
Power Supply requirements- 230 v. 3 phase 50/60 cycles.
Tube complement: Oscillator-807 (1), Doubler (1st) Amplifier--807 (1), Intermediate Power (2nd) Amplifier-813 (4), Power (3rd) Amplifier-889-R (2), Plate Rectifier-872A (6), Auxiliary Rectifier872A (3), Bias Rectifier-872A (2), Keyer-807 (2).

Plate Transformer 7,000 voltṣ 1,250 lbs.

We have a full range of spares for this equipment.

P.C.A. RADIO

Cffices and Works
BEAVOR LANE, HAMMERSMITH, LONDON, W. 6
Telephone: RIV 8006/7

WEYRAD P. 50 TRANSISTOR COILS AND I.F. TRANSFORMERS FOR 2-WAVE PORTABLE WITH PRINTED CIRCUIT AND ROD AERIAL

 P50/IAC M.W. OSCILLATOR COILS. For 176pF TUNING CONDENSER
 price 5/4d.
 P50/2CC Ist and 2nd I.F. TRANSFORMER. $470 \mathrm{Kc} / \mathrm{s}$ OPERATION. " Q " $=150 \ldots$. PRICE $5^{17} \mathbf{d}$.
 P50/3CC 3rd I.F. TRANSFORMER. $470 \mathrm{Kc} / \mathrm{s}$ OPERATION. " Q " $=170$
 price $6^{\prime} 0 \mathrm{~d}$.
 RA2W L.W. and M.W. ROD AERIAL 6 in. long. flying-lead connections. For 208pF TUNING CONDENSER PRICE $\mathbf{1 2}^{\prime} 6 \mathrm{~d}$.
 LFTDI DRIVER TRANSFORMER. Split Secondary Type, fully enclosed. With 6 connecting tags PRICE $17 / 6 \mathrm{~d}$.

PCAI PRINTED CIRCUIT PANEL, $2 \frac{3}{4} \times 8 \frac{1}{4} \mathrm{in}$. ready drilled with component positions and references
printed on rear

price 9'6d.
BOOKLET OF DETAILED ASSEMBLY INSTRUCTIONS AND CIRCUIT DIAGRAMS FOR 6-TRANSISTOR LONG AND MEDIUM WAVE SUPERHET
price $\mathbf{2}^{\prime} 0 \mathrm{~d}$.

ALL IN BULK PRODUCTION-TRADE ENQUIRIES INVITED

In the January issue of Electronic \mathcal{E} Radio Engineer there is an article describing how indium arsenide and indium antimonide Hall probes are used in wattmeters, oscillators, flux-density meters and mixer stages. A typical mixer stage, for use in a superheterodyne receiver, is shown in the block schematic diagram, and it has the advantage of being free from distortion.

ARTICLES
 in the february issue INCLUDE

Sampling of Signals
This article shows that a signal contained in a finite frequency band can only be sampled unambiguously at sampling frequencie ying within certain permitted bands. The ShannonHartley Law is modified so that it is applicable to all band-limited signals.
Surface Impedance
A method is given for measuring the surface impedance of conducting materials at very high frequencies, using a coaxial transmission ine.
ALSO
The unique monthly Abstracts and References feature compiled by the Radio Research Organization of the Department of Scientific and Industrial Research.

Original articles by leading authorities are a prominent feature of Electronic \& Radio Engineer. Regular readership will keep you in constant touch with progress in the entire field of electronics, radio and television.

POST THIS COUPON TODAY

ELEGTRONIG \&

RADIO ENGINEER

TO: ILIFFE \& SONS LTD., DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I.

Please enter my name as a subscriber to:-
ELECTRONIC \& RADIO ENGINEER fo 12 munths commencing with the February issue. I enclose remitance £2 9s. (U.S.A. and Canada \$7.50).

ORDERS CAN ALSO BE PLACED THROUGH ANY NEWSAGENT.

NAME
ADDRESS \qquad
\qquad

4 girls now
New techniques demand new tools. Transistors, printed circuits, sub-miniature components can now be soldered more accurately, with much less effort, without risk of damage to adjacent components with the feather-weight pencil-thin Oryx. Available in seven models for continuous working up to $470^{\circ} \mathrm{C}$. Widely used by instrument makers, electronic equipment makers throughout the world. It will pay you to give the Oryx an extended trial on your own production lines.

For QUICKER ..

 BETTER Joints at less cost !
ORYX

Write now for illustrated Folder and Price List.

Why save up for a test set?

-you can have one NOW

Don't be at a loss waiting for a test set until you have sufficient money saved to buy one. You can own one of the well-known M.1.P. Series 100 Multi-range test sets NOW. A deposit of $47 / 6$ securas. Balance is payable over 6 or 12 months. Cash price $£ 12 / 7 / 6$.

Extended Terms

Deposit $47 / 6$ and 6 monthly payments of $\mathbf{C 1 / 1 5 / -}$.
or
Deposit $47 / 6$ and 12 monthly payments of $17 / 11$.

21 SELF-CONTAINED RANGES

$10-1000$ d.c. volts
$10-1000$ a.e volts 100 Mieroamps to 500 Milliamps d.e.

All voltage measurements a.e. and d.e. are at $10,00 n$ ohms ber volt.

POST COUPON FOR DETAILS TODAY

100 Microamps a.c.
0 to I Megohm
0 to 10,000 ohms

MULTI-RANGE TEST SET-SERIES $10{ }^{\circ}$

To MEASURING INSTRUMENTS (PULLIN) LTD. Electrin Works, Winchester Sereet. Acton, London. W. 3.
Please send iliustrated leaniet of the series 100 Test Set with detoils of new eav payment scheme

NAME ..
ADORESS. \qquad

The " $730 / 4$ " receiver combines a first-class performance with robustness of construction. It is used extensively by the British Government and in professional communications systems throughout the World.

Your particular interest is directed to the following features which are important in a receiver designed for professional communica-tions:-

\star Excellent all-round performance.

* Ease of tuning; minimum of operator fatigue.
t Excellent reliability under all conditions.
* Peak performance maintained in arduous service with minimuim attention.
$\star C V$ valves used throughout.
* Suitable for 24-hours-a-day operation.
* Robustly constructed, the ${ }^{6} 730 / 4{ }^{\prime \prime}$ stands up well to hard usage in all climates.
* Easy to service-spares readily available.

PLEASE WRITE FOR COMPLETE SPECIFICATION

* Made throughout in polished stainless steel.
* Single action door openings.
* Rectangular with shelf spacings to suit.
* Double ended controls.
* Electrical interlocking of air inlet and isolation valves.
* Outer cover hermetically sealed.
\star Temperature range $0^{\circ}-300^{\circ} \mathrm{C}$ or equivalent F.
* Temperature Control: Normal $\pm 7 \frac{1}{2}^{\circ} \mathrm{C}$. Special \pm IC
* Internal Spacing 7in. x 8in. x I8in. (Can be altered to special requirements.).
* Vacuum Range: To 1^{-4}.

太 Respective Vacuum Gauges incorporated

* Automatic air inlet valve on Backing Pump.
* Visual Indicators and fuses on all switches.
* Flanged for fitting into Dry Box.

We design and manufacture Ovens to Customers' special requirements. Should you have any problems in this field our Technical Department is always willing to help you solve them.
Vacuum Ovens with temperatures of up to $600^{\circ} \mathrm{C}$ are also manufactured by us on similar lines but with Sectional Heating and Water-Cooled Ends.

VACWELL ENGINEERING CO. LTD.

The RONETTE

STEREOPHONIC PICK-UP CARTRIDGE "BINOFLUID" fitted with the NEW dual clip needle shaft system. Easiest replacement of sapphire needle.

Sole Distributors for Great Britain:

TRIANON ELECTRIC LTD.

 95 COBBOLD ROAD LONDON, N.W.IOTel: WILlesden 2116

Retail Price $\mathbf{E 2} \mathbf{1 0 . 0}$
P.T. 19/6d

Technical specifications
on demand

Hermetic Sealing

STEATITE \& PORCELAIN NICKEL METALLISING

Quality Approved (Joint Service R.C.S.C.)
WILL MEET THE MOST EXACTING REQUIREMENTS

METALLISED BUSHES

Perfect Terminations

-made readily without special precautions by semi-skilled labour, employing simple hand soldering methods, R.F. Heating, Hot Plate, Tunnel Oven or similar mass production methods.

STANDARD RANGE

Shouldered, Tubular, Conical, Disc and multi seals are included, assembled with stems if preferred.
SEND FOR CATALOGUE No. 47

TECHNICAL SERVICE

Always available, do not hesitate to consult us. Samples for test will be supplied on request.

STEATITE \& PORCELAIN PRODUCTS LTD.

AUTOMATIC COIL WINDING MACHINE

THESE MACHINES INCORPORATE THE FOLLOWING FEATURES:Infinitely variable wire gauge adjustment with easily read scale calibrated in .001". Width of coil quickly adjusted within fine limits. Adjustable tailstock fitted with spring loaded live centre and quick release lever. Machines to stop automatically at a required number of turns can be supplied. We will be pleased to send you an illustrated leafet giving a full technical specification on request.

a complete range of equipment for T/V RELAY and COMMUNAL AERIAL SYSTEMS

All round
 the

COMMUNICATIONS RECEIVER Type c864

All round the World this Airmec receiver is known and used for its remarkable performance at an extremely low cost.

Superior Sensitivity Superior Signal-to-Noise Ratio Superior Second Channel Rejection

Main tuning control showing a portion of the seven frequency scales, the coarse and fine logging scales and the movable cursor.

- Frequency coverage from $15-45 \mathrm{kc} / \mathrm{s}$ and $100 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$.
- Frequency setting accuracy better than $1 \mathrm{kc} / \mathrm{s}$.
- Film scale giving actual scale length of 4 ft . on each frequency range.
- $90: 1$ slow motion drive with logging scale.

ADDITIONAL FEATURES

- Separate incremental tuning control for use with crystal calibrator.
- Double frequency changer circuit.
- Stabilised local oscillator H.T. voltages.
- Image rejection over 100 db .
- Exceptionally high sensitivity and signal/noise ratio.
- Variable selectivity.
- \mathbf{S} meter incorporated.
- Very stable B.F.O.
- Muting facilities provided.
- Built-in loudspeaker.
- 2 watts output.
- Turret band switching.

RADIO AND ELECTRONICS

AIRMEC LIMITED

HETERODYNE FREQUENCY METERS TYPE LM14

Designed and built to United States Navy specification, these Crystal Controlled instruments combine all the advantages of the well-known BC. 221 Frequency Meter, plus many additional features which increase their usefulness.

* Frequency range $125-20,000 \mathrm{kcs}$. in 2 bands.
* Accuracy better than $.02 \%$ in $125-2,000 \mathrm{kcs}$. band, and better than . 01% in 2,000-20,000 kcs. band.
\star Voltage stabilisation circuit ensures accuracy not affected by power supply fluctuation.
* Separate power switches allow standby filament operation without HT súpply.
* Modulation switch enables instrument to be used as a Signal Generator.
* Has corrector for WWV.
\star Supplied with removable shock protection mounting.
* Size only $8 \frac{1}{2} \mathrm{in} . \times 8 \mathrm{in} . \times 8 \frac{1}{2} \mathrm{in}$., weight $11 \frac{1}{2} \mathrm{lb}$. \star Brand New and Unused.

Further details on application.

I38 Gray's Inn Road, London, W.C.I.

TAKE YOUR PICK

Our wide range of capacitors, incorporating all the latest developments, are described fully in these new leaflets...

SEND NOW for COPIES

DALY has succeeded in maintaining full capacity values and working voltages in more compact designs, specially suited to ultra modern equipment:-

PHOTO-FLASH EQUIPMENT - DEAF AIDS PRIVATE TELEPHONE INSTALLATIONS AMILIIIERS - D.C. IOWER UNITS TRANSISTOR EQUIPMENT MAGNETISATION

EQUIPMENT TEST GEAR

DALY CAPACITORS

Condenser Specialists for over 20 years.

What is High Top Response?

- Mastertape is made to carefully controlled formulas.
- Mastertape is anti-static and free from curi.
- Long Play Mastertape Folyester base is as strong as mild steel.
- Mastertape has extremely low background noise.

The wise owl knows all about high top response, for it means simply the ability to capture sounds of extremely high register, faithfully and accurately. Mastertape can both capture and reproduce every sound with the utmost clarity in a way that must be heard to be believed. High top response also means that Mastertape can record efficiently at lower speeds with maxımum possible brilliance.

Mastertape
 -MAGNET C RECORDING TAPE BY M.s.S. RECORDING CO. LTD., Colnbrook, Bucks.
 Telephone: Coinbrook 2431 (8 lines)

A new development in relays

SERIES 700
This is a new heavy duty industrial version of the well tried and proven P.O. type 3000 relay, renowned for its reliability, using the identical magnetic circuit as the type 3000 but offering up to 8 sets of contacts of either makes, breaks or changeovers at $250 v$ A.C. up to 15 amps.
All moving insulators are of P.T.F.E. Contact pressures have been increased in order to withstand severe shock and vibration conditions as encountered in many industrial applications. Coils wound from $\frac{1}{2} \Omega$ to $100,000 \Omega$ and slugged if required. Flash test 2,500 volts between contacts coil and frame. Various contact materials to specification-full tropical finish. A rugged relay designed for faultless operation and long life far in excess of its type 3000 predecessor. Prototypes within 24 hours. Quantity deliveries commencing $14-21$ days. NOW IN PRODUCTION.

POSTOFFICETYPES Manufacturers of P.O. types 3000 and 600 relays to specification. Approved by the Admiralty Post Offlce and U.K.A.E.A. All relays guaranteed made in our own works.

L. E. SIMMONDS LTD., 5 BYRON ROAD, HARROW, MIDDX. TEL: HARROW 7797/9. TELEGRAMS: SIMRELAY HARROW

M. R. SUPPLIES, Ltd.

Oniversally recogaised as suppliers of UP-TO-DATE MATERIAL whith does the Oniversally recognised as suppliers of UP-TO-DATE MATERIAL whion does the
fob properly. Instant delivery. Careful paoking. Satisfavtion assured. Brand new job properig. Instan
goods. Prices nett.
SYNOHRONOUS ELECTRIC CLOCK MOVEMENTS-again we are able to satisfy SYNCHRONOUS LECTRIC CLOCK MOVEMENTS-again we are nble to satisiy a great demand. $200 / 250$ voits 50 cycles. The most compact, enduring and sient
running unt yet produced-right up to date. Fitted with spindles for Hours, Minutes and Seconds, hands. Central hole flxing. allowing up to yin. thickness of diat. Dlameter 2 2 tn., bepth behind dial only 1ing. With dust cover. $29 / 6$ (des. $1 / 6$). Sets of thres hande to fit, in good style, for $5 / 7 i n$. dia, $2 / 6$ set, for $8 / 10 i n$. dial, $3 / 6$ set MINIATURE AMMETERS, scaled $4-0-4$ amps D.C.-charge and discharge. Dial 1 i in. diameter, round flush mount, many uses included model rail ways, $9 / 6$ (des. $1 /-$). SYNCHRONOUS TIMER MOTORS, $200 / 250 \mathrm{v}$. 50 c., compact units $2 \frac{1}{4} \times 1 \frac{1}{} \times 1 \mathrm{in}$., with lin. shaft proj. Self starting, high torque, 6 r.p.m. Sultable also for display urntables, $57 / 6$ (des. 1/6).
SYKCHRONOUS INDUCTION MOTORS (G.E.C.). 220×240 V. 50 c. $1,500 \mathrm{r} . \mathrm{p} \cdot \mathrm{m}$. cody $4 \times 3 \ddagger 1 \mathrm{ln}$., with lin. shaft proj. With capacitor, $57 / 6$ (des. 2/6).
AR BLOWERS, fitted B.T.H. Induction motor, $220 / 250$ V. A.C. 2,800 r.p.m. Duty 150 CFM (free air), 50 CFM at 1 in . W.G. Overall length sin. Dia. inlet 3 lin., out let 24n. Fificlent, quiet running units, very limited supply, £4/15/- (des. 3/6) AIR BLOWERS (Ford), 6 volt operation. Made for Ford van heaters. Overal lengin 6in. With 8in. mounting bracket (removable). Blower details as above, in mosture-proof pack, with lengths of trunking, $29 / 6$ (des. 3/6). Remarkable bargain HIGH DUTY AIR CONDITIONING FANS (Woods, G.E.C.). The highly efficient Aerofoil Two-stage Fans, each fitted with two capacitor/induction motors, 220/250 F. 50 c .1 ph., and two 12 in . dia. 7 -bladed impellers, 2,800 r.p.m. The whole unit air), 400 C.F.M. at 3 in . W.G. Two or more unites can be banked for hlgher pressures. Thesere markable unlis are Usted at approx. $£ 75$ each. We have secured a very limited supply, electrically and mechanicolly perfect, new, which we are selling at each (des. U.K. 20/- each).
MINIATURE SERIES WOUND MOTORS. 200/250 v. A.C./D.C. Approx. 1/75th H.P, at 3,000 r.p.m. Size approx. 3 in , by 3 in , by 2 in , and ideal for projector cooling fans, stirrers, etc. Open type, fitted suppressor. 25/= (des. 1/9).
MAINS RELAYS (Magnetic Devices). 230 v. A.C. coll, with 2-pole change-over 4 amp. switchins. Braud new, compact units, approx. 2 fin. by 1 in. by lin Lim ited supply at $22 / 6$ ench (des. $1 /-$).
OPERATION COONTERS (mechanical). Brand new units, with continuous rotary action, counting up to 6,000 . One rev. per digit, with $1 / 10$ th Indicator, will also count motor speeds. Counting forwards and backwards-suitable for tape recorder and flm work. 8ize 3 gin $\times 1$ in square. Very limited quantity, $38 / 6$ (despatch
EXTRACTOR FANS. Very well made units at much lower than normal price. $200 /$ 250 v. A.C, induction motor, silent rusning, no interforence. With mounting frame and back grille, ready for eaky installation. With 8 in . impeller, $200 \mathrm{cu} . \mathrm{ft} / \mathrm{min}$. E5/5/-. 10 in . impeller, 240 cu , ft./min., $85 / 12 / 6$. Aslo new minor model with 6 in . mpeher, 75 cu . ft/min., $£ 4 / 12 / 6$ (degpatch of any ohe $3 / \%$)
We invite enquiries for Efteotric Pumps, B.P.L. Measuring Instruments, Variable
Transtormers-immediate delivery.
M. R. SUPPLIES, Ltd., 68 New Oxford Street, London, W.C. 1 (Telephone MUSeum 2958)

WALMORE ELECTRONICS LIMITED

PHOENIX HOUSE, 19/23 OXFORD STREET LONDON, W. 1

Telephone: GERrard 0522 Cables: Valvexpor For immediate response Telex London 8752

EXPORTERS OF RADIO, TELEVISION AND INDUSTRIAL TUBES, HAVE PLEASURE IN INTRODUCING THEIR BRAND

RADIO Walrad
 TUBE

AND INVITE ENQUIRIES FROM BUYING AND CONFIRMING HOUSES EXCLUSIVELY FOR EXPORT

SUPPLIERS OF RADIO COMPONENTS ELECTROLYTICS, AND CATHODE RAY TUBES

TRANSISTOR PORTABLE

$$
£ 17-17-0
$$

incl. $£ 5 / 11 /$ - P.T. Delivery free U.K.
In elegant solid leather case with tasteful gold relief.
4-6 hours easy assembly and you have set in top flight of 25-30 guinea class.

* STOP PRESS

THE DX-40 TRANSMITTER

Will also be available in February
£29-10-0 Delivered free U.K.

Model V-7A
THE WORLD'S MOST POPULAR VALVE VOLTMETER
£15-14-0
complete with leads and battery. Delivered free U.K.
Model O-12U
5" LABORATORY OSCILLOSCOPE

£34-15-0

delivered free U.K.

embodies ALL latest features

HI-FI

 SPEAKER SYSTEM〔9-16-0Inc. P.T. plus 13j- carriage.

EASY TERMS AVAILABLE

We will gladly send you details of these and other models as available.

The COMPONENTS of

 E.M.G. reproducers available for separate sale

DA 24 MAIN AMPLIFIER
16 watts undistorted output
Damping factor infinite. Price $£ 29.0 .0$.
DCU 2 CONTROL UNIT
Volume and Bass \& Treble balance controls Inputs. Radio, Tape or Mic, and Gram. Two L-P compensations, and one ' 78 '. Filter with 3 frequencies and variable slope. Price £16.0.0.

DA 20 MAIN AMPLIFIER
10 watts undistorted outpuit
Damping factor infinite. Price \&16.10.0.
DCU 3 CONTROL UNIT
Similar to DCU 2, but without Filter.
Price \&12.10.0.
DCU 3 S. STEREO CONTROL UNIT
Similar to DCU 3, with all controls and selector switch ganged. Tape-in and Tape-out duplicated. Channel-balance control provided.
Price 21.0 .0 ,

DFM 1 VHFFM TUNER
Original and very powerful A.F.C. circuit
Detector distortionless up to $75 \mathrm{~K} . c . s . d e v i a t i o n$
(100% mod.). High sensitivity for fringe areas.
Price £26.2.0. Tax included.

6 NEWMAN STREET•LONDON W.1. Tel: MUSeum 9971
 quality components for design development and prototype work Engineers!

Radiospares components are delivered absolutely "by' return"

Exceeds the American EIA (RETMA) specfications.
"Stornophone 33 " offers full 6/12 volts convertibility, extremely low power consumption, 15 watt RF output, transistori.ed AF-circuits, and 6 crystal-controlled channelj. The equipment is housed in a splash- and dust-proof steel box of small dimensions.
Storno VHF sets are in daily operation in many countries from Northern Greenland in the Arctic to South Africe and South America in the tropics. Everywhere Storno sets are known for their perfect and reliable performance. Storno is represented in 30 countries all over the world.
Kindly apply for further information

Storno

Manufacturerjo Kadio Communication Equipment Div. of the Great Northern Telegrapn Co. Ltd. (Established 1869)
VED AMAGERBANEN 21-23 COPENHAGEN S DENMARK

However well-informed you are about cathode ray tubes and devices, you'll find either or both of these publications invaluable. The first, 'Cathode Ray Tubes for Industry'-
a handy source of reference to have about-deals broadly but fairly comprehensively with the wide range of tubes available. The second, 'Cathode Ray Devices'
contains information on specialized types of CRT devices, among them, tubes for computers,
very high speed oscilloscopes and TV monoscope tubes. If you would like copies, please write (or complete the coupon below), and we'll keep you posted.

G.E.C.
 'Cathode Ray Tubes for Industry' 'Cathode Ray Devices'

The M-O Valve Co Ltd Brook Green, Hammersmith, London, W. 6
a subsidiary of the General Electrlc Company Limited

Post in unsealed envelope (2d stamp)

 to: the m-o valve co. lud.. brook green, hammersmith, london w. 6 . Please put me on your mailing list for these and future publications. name.FIRM
ADDRESS.

* FULLY TROPICALISED-CLASS H 1.
* SILVER PLATED PHOSPHOR-BRONZE CONTACTS.
P.T.F.C.E. MOULDINGS HAVE SIMILAR PROPERTIES

TO P.T.F.E. BUT THEY ARE LESS COSTLY TO PRODUCE. FULL INTER-SERVICE TYPE APPROVAL TO Z.560092-Z.560094-Z.560095-Z.560134

Send for full technical details to:-
MCMURDO INSTRUMENT CO. LTD., VICTORIA WORKS, ASHTEAD, SURREY

- Illustrated above is a Type S7 Crystal Unit from a range covering $3-20 \mathrm{mc} / \mathrm{s}$ and on the right is a Type SM Crystal Unit from a range covering 3-20 mc/s.

All Brookes Crystals are made to exacting standards and close tolerances. They are available with a variety of bases and in a wide range of frequencies. There is a Brookes Crystal to suit your purpose-let us have your enquiry now.

Brookes Crystals Ltd

Suppliers to Ministry of Supply, Home Office, B.B.C., etc. LASSELL STREET, GREENWICH, S.E.IO. Phone: Greenwich $1828 / 4482$.
Grams: Xtals, Green, London. Cables: Xtals, London.

LOUDSPEAKERS 5th EDITION by G. A. BRIGGS OCTOBER 1958 assisted by
 R.E.Cooke, B.Sc. (Eng.)
 PRICE 19/6(20/9 ${ }_{\text {irce }}^{\text {prest }}$)
 Letter from Chicago

I found the 5th Edition of Loudspeakers so interesting I could not put it down, and read it cover to cover on the day 1 and the details especially enjoyed chapter onufacturing.
of your early trials in manufacturing: the style
All the material is very interesting: is
is clear and appealing, and the book is short. On the other hand, one reading does not extract all the information contained in it. I find that I refer to your books again and again; they often contain a clearer bound in on acoustical problems thats. 1958 R.F.F. the standara 17th November, 1958 R.F.F.

Whartedale

Tele: Ide $1235 / 6$
Grams: 'Wharidel'
Idle Bradford

WIRELESS WORKS LTD IDLE BRADFORD YORKS

If you have a problem that can be solved by using digital techniques-then Venner packaged circuits can help.

Their versatility can solve your development or test set problems, because either
you or we can build the equipment from fully developed circuit elements.

All the answers...

on punched tape, in $\mathbf{I}^{\prime \prime}$ figures or in print.
Some examples of 'specials' built from Venner plug-in stages are illustrated on the right.

[^5]As a general rule we can give you delivery in 6 to 8 weeks of special items built in this way. Alternatively, if you "do-it-yourself", we will give advice and provide the majority of plug-in stages within $7 / 10$ days of receiving your order.

If you are not familiar with our circuit blocks, please send for leaflet WW/104.

VENNER ELECTRONICS LIMITED Kingston By-Pass, New Malden, Surrey Telephone: MALden 2442

A member of the Venner Group of Companies.

The new sound 'belle' is
the lowest cost quality tape recorder in the world. Full frequency response and top class musical reproduction for only 26 gns!

The 'Belle' has push button operation, over I hour's playing time; twin track recording, fast rewind, magic eye recording level indicator, 3 watts output, built in speaker.

Smart and compact, the Sound 'Belle' is complete with tape, take-up spool, microphone, extension lead for recording from radio or gramophone, detachable mains lead, etc.

the tape recorder you can afford
 OTHER MODELS

'Sound" 444-a high performance lignt-weight 3 -speed recorder with newest high fidelity transcriptor deck : 3 hours playing time. Complete in two-tone carrying case with crystal desk microphone and spool of tape, 45 gns.
-Sound ' 555 -the supreme recording instrument with a suxiury speci-fication-but a moderate price. Has three loud-speaker system. Dynamic microphone, 4 watts output. Complere with $1,800 \mathrm{ft}$. long playing tape, Stethoset for monitoring and personal listening for only 65 gns.
TAPE RECORDERS (ELECTRONICS) LTD.
784-788 HIGH ROAD, TOTTENHAM, N. 17

TRANSFORMERS for every requirement

Electronics
Transmitters
Radar
Test equipment M.V. discharge tubes
R.F. heating L.V. heating

Range 1 volt- 35 K.V. 1 M/A.—1,000 amps STANDARD OR TROPICAL FINISH
We are on Admiralty and Ministry of Supply lists and A.I.D. approved

Enquiries to:
STEWART TRANSFORMERS Ltd.
75 KILBURN LANE, LONDON, W. 10 - LADbroke 22967

EXECUTIVES REQUIRE CRISP, CONGISE REPORTS-DICTATE
 THOSE DETAILS IN YOUR CAR!
 VALRADIO DC/AC CONVERTERS MAKE DIGTATING MACHINES AND TAPE RECORDERS MOBILE

For use too with Record Changers, Radiograms, Electric Gramophones, Television Electric Gramophones, Television
Receivers, and $T V$ from country Receivers, and TV. from country
house lighting plants. (Prices according to instrument.)
INPUTS . ENTREES . ENTRADAS

$6,12,24,32,50,110$ or $200 / 250$ V.
OUTPUTS SORTIES SALIDAS
OUTPUTS SORTIES SALIDAS
110 v. or 230° v. AC, 50 or $60 \mathrm{c} / \mathrm{s}, 30$ to 300 w
Pries DC/AC Converters:
From $£ 3 / 18 /$-for Small Motors.
From E12/15/- for Radiograms (including 3-speed Types).
Units c mplete and ready for use. VATARADIO. Write for des ribti e folder, WWIC. ACCE ITED AS THE STANDARD $t y$ RADIO MANUFACTURERS, the Trade and the Aircraft industry.

Les rapports destinés aux chefs de service doivent être rédigés d'une façon bien concise-dictez les donc dans votre voiture!
Les convertisseurs C.C./C.A "VALRADIO" consentent la mobilité aux machines al dieter et aux enregistreurs sur bandes.
Ils peuvent également être utilisés pour changeurs de disques, appareils combinés, électrophones, téléviseurs etc., partant d'installations d'électricite particuliéres.

Las relaciones destinadas a los jefes tienen que redactarse de modo muy conciso-dictenlas en el coche!
Los inversores C.C./C.A. "VALRADIO" les prestan movilidad a las màquinas de dictar y a los grabadores de cinta.
También peuden utilizarse para cambiadores de discos radio-combinados, gramó onos eléctricos aparatos de televisión, etc., aprovechando las instalaciones eléctricas privadas,

Specialists in converters since 1937. VALRADIO LIMITED, BROWELLS LANE • FELTHAM - MIDDX. Phone: Feltham $4242 / 4837$ OVERSEAS ENQUIRIES TO:- DEMANDES D'OUTRE-MER A:TODA INFORMACION DE EXPORTACION HA DE PELIRSE A:-

Electronic Micrometer 100-45,000 micro-inches

This is a new instrument intended for a variety of displacement measurements. Discrimination, which is inversely proportional to the distance measured, is 1 part in 1,000 at 1,000 micro-inches. Measurement is by means of an a.c. bridge operating in conjunction with a non-contacting probe. A three-terminal arrangement enables the capacitance of the probe cable to be balanced out in the bridge circuit and therefore measurements can be made on objects situated up to 75 ft . from the main instrument.

Because no physical contact is necessary, accurate determinations of temperature coefficient, moduli of elasticity, rigidity and bulk, Poisson's ratio and dilation are possible on fragile samples. The equipment is particularly suited to measurements on rotating objects and for monitoring distance with reference to a predetermined value.

Price : £200 complefe with two Probes
Other instruments in the Wayne Kerr range include:A.F., R.F., V.H.F. BRIDGES, A.F., V.H.F. SIGNAL SOURCES, A.F. WAVEFORM ANALYSER, VIBRATION METER, CENTIMETRIC EQUIPMENT

For further details write or felephone

LOW PRICE*

HIGH PERFORMANCE

VERSATILITY

The TRECOSCOPE, designed around a most modern 3 -inch cathode ray tube and new type valves, meets all the requirements for a high performance and versatile general purpose oscilloscope. Its overall size is 7 in . $\times 8 \frac{1}{2} \mathrm{in}$. $x 1 l i n$. and the specification, too comprehensive to be fully given here, is contained in our illustrated brochure, a copy of which will gladly be sent on receipt of S.A.E.

* NOT A SINGLE ITEM OF GOVT. SURPLUS STOCK IS USED IN THIS INSTRUMENT

CONTROLS: Brilliance. focus, X shift, Y shift, coarse time base, fine coarse time base, fine
time base, synchronistime base, synchronis-
ation, Y amplitude, X amplitude, Y input selector switch.

FACILITIES: Y plates via (1) high gain amplifier (2) low gain amplifier (3) direct over isolating condenser (4) direct over attenuator. Time condenser (4) direct over attenuator. Time
base covers $5 \sim$ to $150 \mathrm{kc} / \mathrm{s}$. Provision for base covers $5 \sim$ to $150 \mathrm{kc} / \mathrm{s}$. Provision for
internal or external sync. X amplifier for external sweep input. $50 \sim$ calibrating voltage. Brightness modulation. Flyback suppression

Price $\mathbf{E 1 7 . 1 7 . 0}^{2}$

Guaranteed for 12 months or $£ 2.2 .0$ down and 12 monthly payments of $£ 1.9 .7$. Postage and packing 6/-

Export Enquiries Welcomed.

THE RANGE ELECTRONICS COMPANY
CORMORANT WORKS, LETT ROAD, LONDON, E.I5

Telephone: MARyland 5266

FREQUENCY METERS

SIZES: $2 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ to $8^{\prime \prime}$ UP TO 5000 CYCLES

PROMPT DELIVERY

also the new SYNCHROSCOPE and Phase SEQUENCE METER both up to 5Kc.
and full range of Switchboard instruments

Ask for illustrated Catalogue

THE ELECTRICAL INSTRUMENT CO. (Hillington) LTD.

HILLINGTON GLASGOW
London stockists, H. A. Patterson \& Penis., Ltd., Oxford House, 23 West Wycombe Rd., High Wycombe. Telephone: High Wycombe 2769

List 21 gins.
Motel is the core of many recording machines. Manufacturers build-in Moteland then out of sight and mind-which is as it should be, for built-in Motek has built-up immense confidence from manufacturers and customers alike. And no wonder, with these five star features: Push Button Operation, Counter, Safety Erase Button, Pause Control, Three Speeds. Details on request.

Patents Pending.
MIOIDIEIRIT HIEXIEINTQTUES
Wedmore Street, London, N.l9 Tel.: ARChway 3114 DB/ 695.8

For HICHI SENSITIVITY! HIGHEST FIDELITY! MAXIMUM RELIABILITY! HEASONAIELE COST!

THE 'CONCHORD'

A HIGH FIDELITY 30 WATT AMPLIFIER INCORPORATING PRE-AMPLIFIER AND TONE CONTROLS

EMPLOYING THE LATEST MULLARD EL34 OUTPUT VALVES IN ULTRA LINEAR OPERATION AND HIGH GRADE SECTIONALIZED OUTPUT TRANSFORMER

Size approx, $13 \times 8 \frac{1}{3} \times 7$ in. Stoved gold hammered finish. Weight 141b, For operation on 200-250 v. 50 c.p.s. A.C mains. Or other voltages to order. A chrome-handled 15 Retail cover is available at 25/-.

The Following Outstanding Test Figures include Pre-amplifier and Tone Control Stages

FREQUENCY RESPONSE.
(Exc. Rumble Filter). ± 1 d.b. 20-20,000 c.p.s.
RUMBLE FILTER.
12 d.b. per octave below $50 \mathrm{c.p.s}$.
BASS CONTROL.
Continuously variable +12 d.b. to -12 d.b. at 50 c.p.s.
TREBLE CONTROL
Continuously variable $+12 \mathrm{~d} . \mathrm{b}$. to -6 d.b. at 12,000 c.p.s.
HUM LEVEL.
Referred to full output - $73 \mathrm{~d} . \mathrm{b}$.
MAXIMUM POWER OUTPUT.
In excess of 33 watts.

MAINS POWER CONSUMPTION.

 110 watts.STABILITY.
Entirely stable with capacity of .08 mfd . in parallel with loudspeaker load.
EFFECTIVE OUTPUT IMPEDANCE. 0.9 ohms across 15 ohm terminals.

INPUT IMPEDANCE.
Both inputs 500 k plus 10 pfd.
NEGATIVE FEEDBACK.
Total 28 d.b.
SENSITIVITY.
|nput (1) 20 millivolts for rated output. input (2) 200 millivolts for rated output.

HARMONIC DISTORTION.
$0.05 \pm$ at 10 watts. $0.1 \pm$ at 20 watts.
OUTPUT SOCKETS.
Provide matchings for 3 ohm and 15 ohm loudspeakers.
EXTERNAL POWER SUPPLY.
$300 \mathrm{v} .30 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v}, 1.5 \mathrm{a}$. for radio tuner VALVES.
B.V.A. EF86, EF86, ECC83, EL34, EL34, GZ34.
Due to use of Mullard EF86 valyes microphony is virtually nil.
As in our extremely successfu! 'Diatonic' two individually controlled inputs provide mixing facilities for microphone and gram., etc., etc.

The 'DIATONI' Hen fobur vo., want ULTRA LINEAR AMIPLIFIER

WITH INTEGRAL PRE-AMP AND TONE CONTROLS

Size only $9-7-6 \frac{1}{2}$ in. Weight $12 \frac{1}{2} 1 \mathrm{l}$. Power consumption 120 watts. Outputs for 3 and 15 ohm loudspeaker.

Full advantage has been taken of the latest component miniaturization developments to reduce unir size to a minimum. Two high impedance input sockets are provided by microphone and gram., etc. Each input has its associated vol. control. B.V.A. valves are employed, ECC83, ECC83, EL84, EL84, EZ81. Total 32 d.b.

Send S.A.E. for Leaflets. TRADE AND EXPORT ENQUIRIES TO-

ALSO AVAILABLE:

LINEAR
PRODUCTS
TD
ELECTRON WORKS, ARMLEY, LEEDS

Tel.: Leeds 630-126 (3 lines)

EYELETTING and light PUNCHING MACHINES

AUTOPHOENIX No: 6A. A new and improved air-operated machine for the automatic insertion and closing of eyelets. The deep throat, high vertical gap and projecting base make this an ideal machine for the eyeletting of components in radio chassis even in the closest corners and, of course, for spinnings, cylinders and plastic mouldings. It can be supplied with built-in air compressor.
We manufacture a large range of hand and automatic Eyeletting and Piercing Machines and also stock eyelets which we can supply in small or large quantities. For illustrated brochure of the "Phoenix" machines, write for leaflet W.W.2.

HUNTON LTD.

PHOENIX WORKS, 114-116 EUSTON ROAD. LONDON, N.W. 1
Tel.: EUSton 1477 (3 lines) Grams.: Untonexh, London

Elegance and simplic.ty of styling coupled with outstanding performance are the keynotes of the Tranquillo 105 amplifier.

* 10 watts UL push-pull output.
\star High input sensitivities.
* Very low distortion at all levels.
\star Spare power for tuner.
\star Loudness control for low level listening.
* Wide range tone and filter controls.
\star Elegantly finished in black and gold.
* For shelf mounting or cabinet mounting.

The Tranquillo amplifier is $£ 29 / 18 /$ - complete. The FM91 Tuner with a similar presentation is available at $£ 24 / 10 / \%$.

Full specification from your hi-fi dealer or
C. T. CHAPMAN (Reproducers) LTD.

HIGH WYCOMBE, BUCKS.
Telephone: High Wycombe 2474

ELECTRONIC ENGINEERS \& TRANSFORMER SPECIALISTS

TRANSFORMERS

Up to 50 K.V.A.

F.H.P. MOTORS ELECTRONICS

Your enquiries are invited and we shall be pleased to supply you with a complate catalogue.

ANDEC LIMITED

A.I.D., A.R.B. approved

BENNET ROAD • READING • ENGLAND Tel. 82401/2

EXTRA HIGH
 SENSITIVITY

instrument tube 5CLP1

THE FIVE-INCH instrument tube 5CLP1 has a deflection sensitivity of $1.7 \mathrm{~V} / \mathrm{cm}$ with a useful Y scan of 6 cm . A special system of shielding the post-deflection field from the deflection plates in this tube allows p.d.a. ratios as high as 15 to 1 to be used without pattern distortion. The extraordinary deflection sensitivity achieved with such high p.d.a. ratios profoundly affects oscillograph design. Bandwidths can be increased, amplifiers simplified and power supply requirements reduced. Write to the address below for full details of 'Etel' Instrument Tube type 5CLP1.

* P.d.a. ratios of $15: 1$ possible without pattern distortion.
* Sensitivity $1.7 \mathrm{~V} / \mathrm{cm}$ with useful
Y scan of 6 cm .
* Sensitivity substantially independent of final p.d.a. voltages from 10 to 15 kV . * High resolution-only 200 mV for a deflection of one spot-width.
* Versatility-by simply altering one potential the 5CLPI may be converted from a very sensitive tube to a higher writing speed tubepulses may be first examined and then a single shot photograph taken.

ABRIDGED DATA

This is tentative. Final data is being prepared. 5-inch flat faced precision oscillograph tube 5CLP1.

CAPACITANCES

X_{1} to $\mathrm{X}_{2} \quad \cdots \quad 2.5 \mathrm{pF}$
Y_{1} to $\mathrm{Y}_{2} \quad \ldots \quad 2.0 \mathrm{pF}$
One X plate to all other electrodes
less other X plate 4.0 pF
One Y plate to all other electrodes
less other Y plate 2.0 pF

COMPARE CONDITIONS SHOWN IN DATA

1 and 2

to see how deflection sensitivity is maintained over range of $\mathrm{V}_{\mathrm{a} 4}$ and $\mathrm{V}_{\mathrm{a} 5}$.
1 and 2 with 3
for an illustration of a slightly lower sensitivity condition giving higher brightness.
2 and 4
for the reduction required in V_{a4} potential to achieve higher writing speeds.

TYPICAL OPERATING CONDITIONS

	1.	2.	3.	4.
V_{as}	10 kV	15 kV	V 15 kV	15 kV
$\mathrm{V}_{\mathrm{a} 4}$	10 kV	15 kV	V 15 kV	3 kV
$\mathrm{V}_{\mathrm{a} 3}$	1 kV	1 kV	V 1.5 kV	1 kV
Vaz^{2} for focus	250 V	250 V	375 V	250 V
Va_{a}	1 kV	1 kV	V 1.5 kV	1 kV
Vg for cut-off	-60V	$-60 \mathrm{~V}$	-90V	$-60 \mathrm{~V}$
Deffection sensitivity $\left\{\begin{array}{l}\text { y } 1.7 \mathrm{~V} / \mathrm{cm} \\ \mathrm{x} \\ 7 \mathrm{~V} / \mathrm{cm}\end{array}\right.$		V / cm $/ \mathrm{cm}$	$\begin{gathered} 2.5 \mathrm{~V} / \mathrm{cm} \\ 11 \mathrm{~V} / \mathrm{cm} \end{gathered}$	$\begin{aligned} & 2.5 \mathrm{~V} / \mathrm{cm} \\ & 11 \mathrm{~V} / \mathrm{cm} \end{aligned}$
Line width 1 mm			$<1 \mathrm{~mm}$	$<1 \mathrm{~mm}$
Useful $\left\{\begin{array}{l}y \\ \mathrm{y} \\ \mathrm{cm} \\ \text { scm }\end{array}\right.$				4 cm

* No cover and cable clamp worries. We connect your cable to plug or socket and pot the assembly in polythene. * 18 connections in less than 1 inch diameter. \star Standard B9A valveholder mounting. \star Nylon loaded P.F. mouldings. * Cadmium plated or gold plated pins and contacts.

Send for full details to :-
THE MCMURDO INSTRUMENT CO. LTD., Ashtead, surrey, tel: Ashtead 3401

MODEL No. 121
The FANE $12^{\prime \prime}$ H.D.
LOUDSPEAKER UNIT

TECHNICAL	SPECIFICATION
Diameter over lugs	$12 \frac{3}{3} \mathrm{in}$
Overall depth	$6 \frac{1}{2}$ in.
Power handling	20 watts R.M.S.
Voice coil diameter	2 in.
Flux density	12,000 gauss
Total flux	160,000 lines
Main resonance	$30 / 35$ c.p.s.
Frequency response	$25-5,000$ c.p.s.
Input impedance	15 ohms

This 12 in . unit is fitted with a curvilinear cone, foam plastic surround and an extra long voice coil winding which permit large amplitude movements without introduction of harmonic distortion. it is recommended for use as a single speaker for any heavy duty requirement such as public address or home cinema or as the bass unit in a multi-speaker system.
It is suitable for use in all types of reflex enclosure, horn loading or open baffle mounting.

PRICE £9 (Carriage paid in U.K.)
Further details available from the moufacturers

HEAD HUNTERS
 (MAGNETIC TYPE ONLY!)

Please note . . . We specialise in the manufacture of magnetic recording heads of all types.

They key components in a Tape Recorder are the Heads. . . . They can make or mar the result that you get. Hence many leading manufacturers in this and other countries are coming to us for these components. They have found that our prices are reasonable and that the quality is excellent . . . in foct they hove found out that it pays to go to the specialist.

* A new type of Erase Head is now in production. This is our Type "R"' Double Field Erase Head. This is not just a double gap, but really two Erase Heads in one. . . it erases absolutely anything to a complete silence!

SEND FOR FULL DETAILS OF ALL TYPES TO

P. A. MARRIOTT \& Co.

SUNLEIGH WORKS, SUNLEIGH RD., ALPERTON, WEMBLEY, MIDDX. WEM. 7493

CHENEY MANOR
SWINDON • WILTSHIRE
Telephone: Swindon 6421/7
Grams: SEMICON, SWINDON
noeten

IF IT'S SOUND-YOU'LL FIND IT AT 189

Promipt, personal Mail Order Service

MAINS TRANSFORMER $550-0-550$ v., $150-200 \mathrm{~mA} ., 6 \mathrm{v} .30 /=$ $3 \mathrm{a}, 4 \mathrm{v} .3$ a., 200-250 v. primary

--n-----Special Offer
 MAINS TRANSFORMER

 CHOKES
 $10 \mathrm{H} ., 250 \mathrm{~mA}$., ported " C " core. $25 /-$ 20 H. ., 50 mA ., potted.
 COMPLETE SET 85/-

Carriage charged at cost

TELE-RADIO (1943)
 LTD.,

MASTER LINK M2A

TAPE PRE-AMP DE LUXE
Exclusive product of Tele-Radio (1943) Ltd., of genuinely advanced design. Recordings may be taken direct from any source. The unit may be used with decks incorporating head switching. Includes playback speed equatisation, signal and bias metering, outpur monitoring, oseillator eut-our, D.C. Solenoid supply and C.C.I.R. characteristic. Complete with external power $27 \mathrm{~g}_{\mathrm{s}} \mathrm{pack}$.

Special leaflet on request

AGESE CASES		
STEEL, WITH ALUMINIUM - SLOPING FRONT	PANELS	
$4 \times 4 \times 4 \mathrm{in}$.	95	
$5 \times 5 \times 8 \mathrm{in}$.	1411	
$6 \times 6 \times 12 \mathrm{in}$.	El 49	
SMALL		
$4 \times 4 \times 2 \frac{1}{2}$ in.	68	
$6 \times 4 \times 3$ in.	810	
$8 \times 6 \times 3 \mathrm{in}$.	110	
$10 \times 6 \times 2 \frac{1}{2} \mathrm{in}$	133	
STANDARD		
$10 \times 7 \times 7$ in.	El 49	
$12 \times 7 \times 7 \mathrm{in}$.	¢1 \\| 5	
$14 \times 7 \times 7$ in.	E1 15	
$14 \times 9 \times 8$ in.	¢2	
$16 \times 9 \times 8 i n$.	¢2 9 6	
$16 \times 11 \times 8 i n$.	$¢ 2168$	
$19 \times 11 \times 10 \mathrm{in}$.	E3 310	
Also large range of chassis afways	in stock.	

 DRIVE ASSEMBLY Ideal for the Professional \& Amateur Cat. No. 898.
This high grade assembly is designed for instrument applications. The movement is gear-driven and flywheel loaded, giving a smooth, positive drive, with a reduction ratio of 110 to 1. The pointer has a horizontal travel of 7 inches. A circular vernier scale, marked over 100 divisions, rotates 5 times for one traverse of the pointer, and, read with the main scale, provides 500 divisions.
A diecast escutcheon, perspex window, knob, fixing screws and mounting template is supplied. Size $93 / 16 \mathrm{in}$. $5{ }^{3} \frac{3}{3} \mathrm{in}$. overall List Price $£ 2 / 18 /$-.

MANUFACTURERS :
STRATTON \& CO. LTD., Alvechurch Rd., BIRMINGHAM

WAFER SWITCHES TO SPELFICATION

As we specialise only in the manufacture of small quantities of wafer switches (to individual specification) we guarantee competitive prices and fast delivery.
SWITCHES TO PUBLISHED DESIGNS (FROM STOCK)

G.E.C. 912-PLUS		Muliard Tape ,Amplifiers Amplifier "A"
SI ($14061 / \mathrm{BI}$)		
S2 (14062, BI)	14/6 pair	$\left.\begin{array}{l}\text { SS } 567 / A \\ \text { SS/567/B } \\ \text { SS } 567 / C\end{array}\right\} \quad 32 / 6$ the set
S4 (SS 556/I)	$\therefore \quad 11 / 6$	
		Amplifier " B."
S5 (SS;556, 2)	.. 10/6	SS567/A ... 16/6

Write for Price List and Design Chart.

SPECIALIST SWITCHES

23 Radnor Mews - Sussex Place London W2 - AMBassador 2308

Suppliers to the leading electronics, aeronautical and automobile companies and to research institutions, the G.P.O. and Universities.

Engineering

Every Company-and individual engineer-contemplating the use of PTFE* should send for a copy of our booklet entitled " PTFE ENGINEERING".

We were one of the first companies to process this unique material, and equally we were one of the first companies to develop methods of machining and otherwise fashioning it into a multitude of component forms.
Today we produce it in its raw material forms in very large quantities, and we have supplied many thousands of PTFE components to the electrical and allied industries ${ }_{*}$
Whether you require to buy PTFE in order to transform it into component forms in your own works, or whether you wish to buy small or large numbers of PTFE components, we should welcome your enquiries, and you would find advantage in utilising our accumulated resources of "know how" and experience in handling the material.

* PTFE (Polytetrafluoroethylene)-the basic polymer is manufactured in this country by I.C.I. Ltd., under the trade name "FLUON".

Arcolectric

SWITCHES \& SIGNAL LAMPS

T.225: Miniature Slide Switch Ideal T.V. mains switch

Samples to manufacturers
For design purposes
AT ONCE-WITHOUT CHARGE

ARCOLECTRIC

CENTRAL AVENUE, WEST MOLESEY, SURREY.
Tel.: MOLESEY 4336

HI-FI EQUIPMENT

(CABINETS See page 156)

STEREO RADIO CHASSIS

 AM/FM Stereo Radio on one chassis (as illustrated) 8 valve and 2 separate 4 -watt outputs, with STEREO AMPLIFIERSDulci SP44 Stereo power amplifier, two 4-watt outputs 12 gns. Control units available for above Dulci "Stereo 2"......... 9 gns . Empress Two 4-watt amplifier $\underset{\& 80}{ } 0$

RADIO CHASSI
Empress 9-valve de luxe AM/FM with two speakers ... 26 gns.

R.T. Beatty, MA, BE, DSC., revised by J. McG. Sowerby, ba, AMIEe. This collection of abacs is intended to cover the most frequently recurring problems in radio and electronics, the answers to which provide most of the data required for the design of radio receivers. It will be of use to those concerned with radio and allied calculations and, although the mathematical basis of the problem covered by each chart is usually stated, no special mathematical knowledge is needed for the use of any chart. 10 s .6 d . net by post 11 s .6 d .
obtainable from Booksellers

Published for Wireless World by Iliffe \& Sons Lti., Dorset House, Stamford Street, London, SEi.

Consider Model 1065 Designed for a wide variety of laboratory applications, it has a very interesting specification including: Y amplifier of sensitivity $250 \mathrm{mV} / \mathrm{cm}$ with a bandwidth of d.c. to $20 \mathrm{Mc} / \mathrm{s}$ and rise-time better than $40 \mathrm{~m} \mu \mathrm{sec}$; X amplifier: time measurement by calibrated shift and internal oscillator for timing marks; voltage measurement by calibrated shift; probe providing an input impedance of $1.5 \mathrm{M} \Omega 12 \mathrm{pF}$. We shall be pleased to send you full data on this and other equipment in the Cossor range. An export model (1065 X) is also available, Write for information to:

Thinking about

 an oscillograph? our Technical Director would be glad to hear from you.

The Instrument Company of the Cossor Group

COSSOR HOUSE, HIGHBURY GROVE, LONDON, N. 5
Telephone: CANonbury 1234 (33 lines). Telegrams; Cossor, Norphone, London. Cables: Cossòr, London, Codes: Bentley's Second.
$\sqrt{(2)=}$

AVO

 SERVICE
Farnell Instruments Ltd

Official repairers to Avo Multi-Meters.
All repairs automatically guaranteed 12 months by AVO LTD. (Our staff are fully trained by AVO LTD. and final tests and calibration of all instruments are carried out on official AVO rest consoles)

Al'refairs are sealed with the official AVO seal - Mark of Perfection.
The on'y 10 -day repair service officially accepted by AVO LTD.

FARNELL
 INSTRUMENTS LTD

WETHERBY INDUSTRIAL ESTATE YORK ROAD. WETHERBY. Telephone: Wetherby 2691/2

Absolutely No Pre-Cleanivig with the VICTOR Soldering Tool

Covered by British
and World Patents.

* Speed in operation
* Versatility
* Low-voltage safety and ecoifony

The VICTOR is revolutionary - it heats the work direct by gripping it with the twin arms of the tool. Simply press the button, the work instanrly hears up and the solder runs. No precleaning - even ot oit - is required except where the metal has been oxidised previously. Operation is trom a 6 VOLT supply.
For heavier materials and work the $6-12$ volt VENUM Soldering Tool is available. Price f4'4:-
Trade enquiries invited.

ALLIED DISTRIBUTING CORPORATION LTD.
13,17 Rathbose Si... London. W.1.
ALs.I

FOR VERTICAL OR HORIZONTAL CHANNELS
Five-element folded dipole array complete with mounting arm and bracket.
$353 \quad 32 \%$

ANTIFERENCE

COMPOSITE

FOR VERTICAL CHANNELS

Band I "V " electronically coupled to 5 Band III elements; complete with mounting arm and bracket.
Independently variable directivity on both bands.

HLS23 42:

Optional extra for Band II Addex FM/L 7/6.

VHF/FM

Three-element fo'ded dipole array complete with mounting arm and bracket.

FOR HORIZONTAL CHANNELS
HL513 42 ${ }^{\text {r. }}$

THE
 Vantemna

The ideal "SECOND AERIAL" - enabling the Television Receiver to be used in any room.

Individually packed in an attractive display carton.
Regd. Design No. 888,501

EXPORT RANGE

A specially designed range of T.V. and F.M. aerials, incorporating many new and exclusive teatures, is available for overseas markets.

* Horizontally or Vertically Polarized Single or Stacked Yagi Arrays.
* Broad Band and all-band types for International Frequencies.
* Models for 75 or 300 ohm inputs.

Supplied only through Ant iference
Appointed Wholesalers.
ANTIFERENG
LIM I TED

\star
 increasing demand for
 Connoisseur

equipment makes it necessary
for us to move to larger premises

Connoisseur Variable $\mathbf{3}$－speed Gramophone

 Motor．TYPE B

New features include a large stroboscope disc beneath the turntable， viewed through a reflecting mirror with an internal light source．
All revolving shafts are precision ground and lapped to mirror finish．These are running in new nylon graphite type bearings which are adjustable so that full accuracy can be maintained throughout its life．Price $£ 20 / 10 / 0$ plus P．Tax $£ 8 / 15 / 3$

Connoisseur Pick－up

eable heads for micro－ groove，standard，and older records， available with Dia－ mond or Sapphire Stylus．Frequency range $25-20,000 \mathrm{cps}$ $\pm 2 \mathrm{~dB}$＇s， 400 ohms Model gives 15 M．V．output from the average LP disc： 25 M．V．from a standard 78 r．p．m．recording．Pick－up fitted with diamond armature $£ 8 / 19 / 0$ plus P．Tax $£ 3 / 16 / 6$ ．

Connoisseur HQ 20 Amplifier

and Pre－amplifier

Both units are built to the highest electrical and me－ chanical standards and in－ corporate the latest de－ velopments in Audio technique．High power output allows the repro－ duction of peak passages without overload or dis－ tortion．Amplifier $£ 31 / 10 / 0$ ． Pre－Amp．fl6／0／0．

A．R．SUGDEN \＆CO．（ENGINEERS）LTD．

太 Market Street，Brighouse，Yorks， Telephone：BRIGHOUSE 2142

OVERSEAS AGENTS：

U．S．A．：Ercona Corporation，551，Fifth Street，New York，17，N．Y． CANADA：The Astral Electric Co．Led．，44，Г／anforth Road，Torontol3 Ontario．NEW ZEALAND：Tumbull \＆Jones Ltd．Head Office 12／14 Courtenay Place，Wellington．HONG KONG：The Radio People Ltd．， 31 Nathan Road，Hong Kong．
MAIN DISTRIBUTORS：
AUSTRALIA：British Merchandising Pty．Ltd．，183，Pitt Stroet Sydney and J．H．Magrath（Pty．），Ltd．， 208 Little Lonsdale Street Melbourne．EAST AFRICA：International Aeradio（East Africa） Ltd．，P．O．Box 3133，Nairobi．MALAYA：Eastland Trading Co． 1 Prince Street，Singapore．

MINIATURE CDILS

FOR TRANSISTOR RADIO CIRCUITS

These are the smallest screened coils available on the British market or the Continent．
DIMENSIONS：－
Height（excluding Lugs）．．
$\begin{aligned} & 5 / 8 \mathrm{in} . \\ & \text { Diameter（Top）}\end{aligned}$.
$9 / 16 \mathrm{in}$.
Diameter（Top）
9／18in．
$5 / 8 \mathrm{in}$.
\star Latest high－efficiency ferrite pot cores and litz windings．
\star High Q for maximum gain and selectivity．
＊Coupling ratios carefully de－ signed to match latest R．F． transistors．I．F．－460／470 Kc / s ．
太 Low－loss moulded nylon formers．

THREE TYPES AVAILABLE：－
List
735 Oscillator Coil List Price
7361 st or 2 nd I．F．trans－11／3 each former． postage
6d．extra．
737 3rd I．F．transa）rmer
Connection diagram supplied．
DELIVERY：Ex Stock．
C．W．O．or C．O．D．
（1／6d．extra）．

Trade，Manu－ facturers＇，and Export cnquiries invited．

CHANNEL ELECTRONIC INDUSTRIES LTD．

TRANSISTORWISE

＂RECO＂MIDDY ONE

（Size $4_{\text {zin．}} \times 3$ kin．$\times \frac{7}{8}$ in．）． \star Two stage receiver \star Sensitivity control \star Ferrite rod aerial \star Medium and Long Waves \star Sonotone miniature earphone \star Drilled case．Complete kit with 1.5 volt pencell 37／6， p．p．2／－．
＂RECO＂MIDDYGEN THREE（SEE ILLUSTRATION ABOVE） ＊Regeneration control．\＆Ferrite rod aerial．太 Medium and Long Waves．\＆Sonotone miniature earphone．太 Red／yell．and Green／yell． hermetically sealed high gain transistors．Complete kit with 1.5 volt pencell $72 / \ldots$ ，р．р． $2 / 3$ ．

＂RECO＂SUPER SPECIAL

太 Medium，Long and Two Short Wavebands \star Improved high gain ferrite rod aerial \star Three high gain transistors \star Sonotone Miniature Earphone or Balanced Armature Reproducer．Complete kit with 1.5 volt pencell 75／－，p．p．2／6． ＂RECO＂PUSH－PULL FOUR
 As above but with push－pull output stage and 2 tin．loudspeaker．Complete kit with standard batteries 99／6，p．p．2／6．

＂RECO＂PUSH－PULL

 ADD－ON UNITCase size as above．Complete with transistors， batteries and $2 \frac{1}{2}$ ．loudspeaker，drilled case， 69／6，p．p．2／6．
＂RECO＂TRANSIGEN THREE（Size $6 \frac{8}{8} \mathrm{in} . \times 4 \mathrm{~g} \mathrm{in} . \times \mathrm{l}_{8} \mathrm{in}$ ．）
 \star Ferrite rod aerial \star Medium and Long Waves（200 to 500 metres and 1,000 to 2,000 metres）．\star Regeneration control．On test this receiver has proved really portable．Com－ this receiver has proved realy portable，
plete wint
with
choice of
Sonotone miature earpiece or Balanced armature reproducer and 1.5 volt battery 75／．， p．p． $2 / 6$.
Parts price list，wiring diagrams and circuits $2 / 6$ set of four．Push－pull Four data 1／9．Foreign orders postage extra．

RADIO EXCHANGE CO．

27a Harpur Street，Bedford＇Phone：Bedford 2367

FOR BACK RACK MOUNTING

$$
\begin{aligned}
& \text { AVAILABLE IN } 8 \text { WAY } \\
& \text { GOLD PLATED CONTACTS } \text { WORKING VOLTAGE-750 D.C. } \\
& \text { POSITIVE POLARISATION } \text { CONTACT RESISTANCE—LESS THAN .OO5 OHM } \\
& \text { SELF ALIGNING } \text { CURRENT RATING-5 AMPS PER CONTACT } \\
& \text { EXCEPTIONALLY LOW INSERTION } \text { MOULDINGS—RED NYLON LOADED PF } \\
& \text { AND WITHDRAWAL FORCE } \begin{array}{l}
\text { FLOATING BUSHES ON SOCKET MOUNTING } \\
\text { PLATES ASSIST SELF ALIGNMENT }
\end{array}
\end{aligned}
$$

ALL TYPES AVAILABLE FOR PANEL MOUNTING WITH MK II COVERS

Send for full details to:-
THE McMURDO INSTRUMENT CO. LTD. ASHTEAD, SURREY.

Have you a Relay problem?

TYYICAL 3000 TYPE RELAY

P.O. TYPE 3000 \& 600 RELAYS

Manufactured to your specification to Post Office or Interservice standards.

AUTOMATION RELAYS

Standard 3000 T contact assemblies +1 or 2 Mercury Switches up to 50 amps . at 440 V. A.C. or 20 amps. 230 D.C.

TRANSISTOR RELAYS

PACKAGED UNITS ready to connect to any A.C. Mains. Fitted $2 \mathrm{C}, \mathrm{O} .5 \mathrm{amp}$. and screw-type terminal outlets. Sensitivity 300 micro amps. and 3 micro amps.

HUNDREDS OF USES including:-

- OVEN CONTROL
- CONTACT THERMOMETERS
- bridge circuits
- PHOTO-ELECTRIC CELLS
- LIQUID CONTROL
etc. etc.

WEST Insulating company Lid.
Telephone
? Abbey Orchard Street Wes*mirister, S.W.I. Abbey 2814 \& 7352

Selective Induction is saving time, money and worry in Offices, Factories, Hospitals, Hotels, Departmental Stores etc., all over the Country, All key personnel carry small transistorised receivers bearing a number. When they are wanted their numbered key is pressed on a small transmitter. Immediately they must respond to the URGent 'Peep peep' in their pockets which summons them and them alone to action! A verbal message can be transmitted if desired.

- Covers areas indoors or out, up to $10,000,000 \mathrm{sq}$. ft.
- Designed for the man who cannot afford to be tied to his office.
- Equally suitable for large or small concerns.
- Low purchase price-virtually no indoor wiring-low rental terms.

Write or 'phone for further particulars - WE CAN BE FOUND IN TEN SECONDS

the only staff location system worth installing

coincidence unit type 1036

DYNATRON

The new Dynatron Coincidence Unit Type 1036 C contains a 3 channel coincidence circuit which may be used in any one of the following arrangements :

I Channels 1 and 2 in coincidence.
II Channels 1 and 2 in coincidence, the output being in coincidence with channel 3 .
III Channels 1 and 2 in coincidence, the output being in anti-coincidence with channel 3.
IV Channel 3 in coincidence with channels 1 or 2 .
V Channel 3 in anti-coincidence with channels 1 or 2.

The three input channels and the coincidence mixer are sub-units which are removable from the front panel. The complete unit is constructed on a $10 \frac{1}{2}$ inch Post Office rack panel.

"DIANA"
world famous
DYNAMIC MICROPHONE

Complete with cord and magnetic base, patent pending
£4.4.0

"DIANA"

world famous

CRYSTAL MICRO-
 Phone

complete with cord and magnetic patent pending,
£2.18.0
SOME SOLE AGENCIES STILL AVAILABLE
SUPERELECTRONICSLTD
5 VIOLET HILLL, LONDON, N.W.B. Phone: MAIDA VALE 0569

For further details apply to

Send us your enquiries for all types of

QUARTZ CRYSTALS

 for:
RADIO FREQUENCY CONTROL

 FILTER PURPOSES ULTRASONIC PURPOSESMETALLIZED TO SUIT REQUIREMENTS. ANY SHAPE AND SIZE CUT TO SPECIRICATION,

PIEZO LIMITED
26 St. Albans Rd., Watford, Herts. Tel: Watford 27808

Write, phone, or call. We will put you in touch with our nearest dealer.
V.E.S. WHOLESALE SERVICES LTD. DEPT. (WW)
11. Gunnersbury Lane, Acton, London, W.3.

Acora 502%
-ANY WAY
YOU WISH. $\star \star$ WITH THE NEW .A.4. CHASSIS $\star \star$ FITS ANY WAY ANYWHERE YOU WISH! special layout enables chassis to be itted with one speaker close over chasels for amall portables or meparately in your bureau, bookcase. or cabinet. * * OPERATES ANY WAY YOU WISH Special switek provides choice ${ }^{0}$ (1) Single Monaural 3 3 (2) Dual Monuoral speaker; output with two speakers; or (3) Stereo 7 watt balanced output with two speakers. Also separate Balance Control for Btereo perfection plus Twin-ganged Tone Control and Twing ganged Volume RETAIL:
ONLY
Y.19.6

TRIGGER TUBES DESIGNED

 WITH YOUR COSTS IN MINDSpeedler production and skilful design are benefits passed to you in the form of low prices - so low as to be comparable with the cheapest components used in electronic equipment.

TUBEDIVISION
beeston - nottingham - england tubes would be uneconomle.
This range has proved particularly satisfactory when employed in slgnal storage systems, and for the operation of relays, display lamps and other electrical devices.

Without doubt, in this role, these Ericsson trigger tubes are the cheapest method of obtalining the required results reliably and simply.

For data sheets write to :-
THE TECHNICAL SERVICES DEPARTMENT

ERICSSON

We serid the best of purts of Uhe Wofrlat

TAPE SELECTION

\star RECORDERS

EVERYTHING FOR RADIO, RECORD AND TAPE

filso available Garrard, Collaro and BSR Auto-
changers with stereo or mono pick-ups.
Philips P.U. 19 gns. $\$ 41$
Go'dring 600 $£ 11+136$
Garrard Arm and P.U.... $£ 14{ }^{3} 3^{3} \$ \$ 29$ Also ORTOFON, LEAK, CONNOISSEUR,
COLLARO, ete.

t TO REMIND YOU

We corry extensive and ub-to-date stocks of tape by Britain's leading makers. Enquiries invited which we deal with by return. Also available: 24-hour repair service on customers" tape recorders.

- Large stocks always
 PROMPT DESPATCH SERVICE

- HOME AND EXPORT ENCUIRIES

WELCOMED AT ALL TIMES

- 110 VOLT ITEMS AVAILABLE

With Bevelled Former Bars
No. 1. Capacity 18 gauge mild steel $\times 36 \mathrm{in}$. wide.
No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide No. 3. Capacity 16 gauge mild steel $\times 18 \mathrm{in}$, wide End folding attachments for Radio Chassis. Tray and Box Making for 36in. model, $3 / 6$ per ft . Other models $2 /$-. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals. One year's guarantee. Money refunded if not satisfied. Send for details. A. B. PARKER, Wheatcroft Works, Wellington Street, Batley, Yorks. Tel, 426.

ELPICD manufactured by

 LEE PRODUCTS (International) LTD.ELPICO HOUSE, LONGFORD STREET., LONDON, N.W. 1. (Telephone: EUSton 5754/6).

INVITE EXPORT ENQUIRIES

for
Valves and Cathode Ray Tubes Stereophonic and Monaural Amplifiers Record Players and Tape Recorders Car Radio Aerials and Electrical Components also GELOSO EQUIPMENT (certain countries only).

[^6]
MEIRIX introduce two new instruments
 WOBULOSCOPE TYPE 230B WOEULATOR TYPE 210

Two new models designed to meet the need for inexpensive, reliable instruments of robust construction for the alignment of RF, IF and FM amplifiers and FM discriminators.

Available as either a basic wobulator or with built-in oscilloscope the instruments are of high stability and linearity of sweep.

- 5 - $220 \mathrm{Mc} / \mathrm{s}$ in one range
- SWEEP: 1, 2,5,10, $20 \mathrm{Mc} / \mathrm{s}$
- OUTPUT: 0 - 100 mV .

BRIEF SPECIFICATION
FREQ. COVERAGE: $5-220 \mathrm{Mc} / \mathrm{s}$ in one range.
SWEEP: 1, 2, 5, 10, $20 \mathrm{Mc} / \mathrm{s}$
OUTPUT : $0-100 \mathrm{mV}$ (75 $)$
SINGLE OR DOUBLE TRACE (ZERO REFERENCE TRACE ON 230B)
EXTERNAL MARKER FACILITY

ACCESSORIES

Injector and detector probes, 'low-pass filter, $75 / 300 \Omega$ adaptor.

MEIRIX instruments limited

207, EDGWARE ROAD, LONDON, W.2.

YOUR LEADING DO-IT
dramatic price reductions superhet may vebuitlor £7.7.0 plus. 3 . T.R.F. may be buit or or $£ 5.10 .0$ Dis. 3 , These two receivers use the latest type circuitry and are fitted into attractive cabinets 12 in . $6 \frac{1}{2}$ in. $X 5 \frac{1}{2} i n$. in either wainut or ivory bakelite or wood $1 /$ - extra, Individual instruction books 1/- each, post free.

> * Prealigned IF transformers. \& Sin. speaker of the latest type. H Automatic on/off switch op. erated by lid. \& Designed in our own laboratory. \& Backed by an up-to-date Technical Information Dept. H Components available separately if desired. \$ Simple to construct, using normal soldering methods. \$ Instruction book $1 / 6$.

Build the "MAYFAIR" TELEVISOR which gives complete SAFETY to the constructor!

These Televisors use a double wound mains transformer which gives you complete safety from contact with the mains supply when handling the chassis or controls.
+B.B.C. \& I.T.A.

DESIGN

WITH NEW TURRET TUNER
MAY BE BUILT FOR

- £33-7-11

PLUS COST OF C.R.T.
Build in 5 Easy Stages. Full Construction details available. Instruction Book 3/6 Post Free

SEND FOR IT NOW!

OUR 1959 FULLY ILLUSTRATED

COMPONENTS CATALOGUE

Quick reference guide to the latest and widest range of keenly priced components for:-

- RADIO - STEREO \& MONAURAL GRAM EQUIPMENT STEREO \& MONAURAL TAPE EQUIPMENT Also Comprehensive Section on:-- SPEAKERS - TAPE RECORDERS AMPLIFIERS
STIFFENED COVERS • PHOTOGRAPHIC ILLUSTRATIONS

YOURSELF SPEGIALISTS 23 TOTTENHAM COURT RD., LONDON, W.I. Tel: MUSeum 345।

Quantity Only

THE NORA AM/FM RADIOGRAM CHASSIS

Designed for the American market by a famous continental manufacturer.
CASH $916,19,6$ Plus $7 / 6$ packing and PRICE 210 - 19. carriage.
This Chassis is of the very latest design and has a much wider coverage on F.M. than Standard Receivers. It has 5 valves plus a full-wave Metal Rectifier, piano type push buttons for long, medium, F.M. and Gram, separate tuning on F.M. and A.M. and incorporating Ferrite Rod Aerial for medium and long wave-bands, also Gram Pickup switching. Output 5 watts. Dial size: $12 \frac{1}{4} \times 2 \frac{1}{1}$ in. Overall size: $12 \frac{1}{6} \times 5 \frac{5}{2} \times 7 \frac{1}{2} \mathrm{in}$.

Introducing the PHONOTRIX bATTERY TRANSISTOR MINIATURE TAPE RECORDER
Supplied complete with Microphone and small Loudspeaker, operates on 4 U2 Torch batteries, weighs only 4 lb . and plays for 30 minutes. Size $6 \frac{1}{2} \times$ $4 \frac{3}{1} \times 3 \frac{1}{2} \mathrm{in}^{2} .26 \mathrm{gns}$. complete plus $5 /-$ Retail Price 20 gns . pkg. and post.
MAINS UNTT NOW AVAILABLE
Making the Phonotrix the only tape recorder that operates both on battery and mains. Size $4 \frac{1}{8} \times 3 \frac{1}{2} \times 1 \frac{1}{2}$. Price 4 Gns.

[^7]
THE PREMIER 7 WATT STEREOPHONIC AMPLIFIER KIT

This amplifier uses two ECL82 valves, one $12 A X 7$ valve, one
EZ80 valve rectifier Provision is rande for
both 3 uhas and both 3 uhms and
15 ohms speakers. The base and treble tone controls are ganged and balance is acheved with a may be assembied on gold hammered finished chassis, with a black perspex dial with gold lettering. Complete set of parts.
Price ef $/ 19 / 6$. Instruction booklet $1 / \mathrm{m}$. Plus $5 /-\mathrm{P}$. \& P. Price $£ 7 / 19 / 6$ Instruction booklet Or assembled $£ 8 / 19 / 6$

RECORD CHANGERS

Garrard RC121
 Garrard RC120

BSR UA8
\&10 19

Junction Transistors 10/- each.

THE "TRANSIDYNE"

Printed Circuit Transistor Pocket Superhet A printed circuit pocket-Eize Transistor Receiver, profes.
gional in appearance and of outatanding performance. Incorporates T.C.C. printed circuit. six transistors (push-pull) to cover medium and long waves, utilises 2 No. 8 batterics. Attractive
 No. 8 batterics. Attractive ream and red plastic cabinet with engraved dian. Overall dimensions $7 \frac{1}{c} \mathrm{in}$. $\times 3 \frac{2}{2} \mathrm{in}, \times 1 \frac{1}{5} \mathrm{in}$. Total weight when assembled, including batteries, only 20 oz . Our price for als required components, inctuding batteries, £11/19/6. plus 2/6 pkg. and post. Complete cabinet and dial assembly, printed elrcuit, battery holder, nuts and bolts and tull
assembly instructions, $25 /$, plus pke. and post $1 / 6$.

VERDIK Tape Recorder

A genuine Hr-Pi recorder at a price all can athord. The star-studded Verdik $\$ 1$ tape recorder is made to very high standards with particular emphasis on trouble-free ong-term stability.
FIVE STAR FEATURE
Separate record and playback amplifier and 3 heat system alows playback of tape as you record. No more tuined recordings-you bear it as you record it.
ape speeds 3in./sec., finisec.
Five valves plus magic-eye level indicator
High flux internal speaker.
Frequency range $40 \mathrm{c} / \mathrm{s}$ to $12 \mathrm{kc} / \mathrm{s}$.
Dorrected output for playback through your Hi-Fi amplifier Provision for use of external speaker
Supplied complete with $1,200 \mathrm{ft}$. tape and microphone
Hire Purchase Deposit 10% of 45 gas. Reparments to suit you.

THE CONNOISSEURS CHOICE

 OF STEREO EQUIPMENT AmplifiersAVANTIC SPA II Stereo Amp. 28 gns.
Jason J2-10 10×10 watt, complete $£ 3 \% / 10 /$
Premier Stereo Outfit No. I
Comprising $32-2$ pre-amp. and 2 high quality 12 w . am plfiers, $844 / 2 /$.
Premier Stereo Outft No. 2
For those with a Monaural system comprising J2-2 pre amp, and 1.12 watt amplifler, 30 gns.
Rogers stereo pre-amp., 18 gns.
Sterco Piok-np Cartridges

B.J. Diamond
$\begin{array}{lll}\text { £2 } 6 & 8 & 3 \\ \text { ¢19 } & 8 & 6\end{array}$
All makes in stock inc.
Garrard 301.
Speakers
Corner Encl. for Goodman
Goodmans Axion 300
Goodmans Axion 400
Corner Cabinet (8in.) for Axiette 300 9 gns.
Goodmans Axiette
WB HF1016

A COMPLETE RANGE OF ALL MAKES OF EQUIP-
MENT BOTH MONAURAL AND STEREO AVATLABLE. MENT BOTH MONAURAL AND STEREO AVAILABLE.

GENEROUS H.P. TERMS AVALLABLE. MINIMUM DEPOSIT NOW ONLY 10\%. REPAYMENTS TO SUIT YOUR POCKET :
(Dept. WW) 207 EDGWARE ROAD •LONDON W.2.

ANNOUNCING THE LATEST RANGER RADIOTELEPHONE

A complete series of fixed and mobile equipment AM or FM

Whirralloss Woorld

In This Issue

VOLUME 65 No. 2
PRICE: TWO SHILLINGS

FORTY-EIGHTH YEAR OF PUBLICATION

Offices: Dorset House, Stamford Street, London, S.E. 1

Please address to Editor, Advertisement Manager or Publisher, as appropriate

Telephone:
WATerloo 3333 (65 lines)
Telegraphic Address:;
"Ethaworld, Sedist, London."

51 Editorial Comment

52 Time Past-Spark and Arc By P. P. Eckersley
55 World of Wireless
57 Personalities
59 Evaluating Aerial Performance-1
66 The Bifilar-T Circuit
72 Ionosphere Review 1958 By T. W. Bennington
74 Letters to the Editor
79 Technical Notebook
81 Relativity
85 Short-Wave Conditions
86 A Television Prompter
87 Cooling Airborne Electronic Equipment
92 Alternatives to the Wien Bridge By f. F. Young
96 Manufacturers' Products
98 News from the industry
99 February Meetings
100 Random Radiations By "Diallist"
102 Unbiased

By L. A. Williamson
By L. A. Moxon
By Thomas Roddam

By "Cathode Ray"

By R. C. Whitehead

By "Free Grid"
(C) Ilifie \& Sons, Ltd. 1959. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief abstracts or comments are allowed provided acknowledgment to the journal is given.

[^8]
Introducing

an addition to

the Mullard

Technical Handbook

Data sheets on Mullard semiconductor and photoelectric devices are now available in a separate volume of the Mullard Technical Handbook. This addition to the Handbook Service enables circuit designers to be kept fully informed of the latest developments in semiconductor diodes, transistors and photocells.
The Mullard Technical Handbook is a loose-leaf publication, issued on a subscription basis and containing data sheets on all Mullard valves, tubes and semiconductor devices in current production.
From one to twenty pages are devoted to each type. They include stanaiard ratings, recommended operating conditions and performance figures for various applications, limiting values, characteristic and performance curves.
Subscribers receive supplementary or revised sheets automatically as they are issued and thereby have early intimation of new introductions.
The Handbook now comprises five volumes with the following contents:-

Mullard

VOLUMES I and IA

Data on current Receiving and Amplifying Valves. Cathode Ray Tubes. Special Quality Types. Voltage Stabiliser and Reference Tubes. Cold Cathode Tubes. Small Thyratrons. Miscellaneous Valves and Tubes.

VOLUME 2

Data on earlier type Receiving and Amplifying Valves and Cathode Ray Tubes still in limited production for the maintenance of existing equipment.

VOLUME 3

Data on Power Valves for Transmitting and Industrial Equipment.
Power Rectifiers. Large Thyratrons. Microwave Devices.

VOLUME 4

Data on Semiconductor Diodes, Transistors, Photoconductive Cells and Photoelectric Cells.

Full details of this service, including subscription rates and application form, will be supplied on request.

Mullard Limited, T.S.D., Data and Publications Section, Mullard House, Torrington Place, London, W.C.r.

This equipment comprises a number of easily portable units forming independent frequency-modulated transmit and receive terminals operating in the frequency range $7050 \mathrm{Mc} / \mathrm{s}$ to $7300 \mathrm{Mc} / \mathrm{s}$.
The design is based on considerable experience gained since 1948 with S.T.C. portable television links supplied to the British Broadcasting Corporation. Over 70 systems have since been supplied to the B.B.C. and administrations in various parts of the world.

Suitable for 405-, 525-, or 625. line, monochrome or colour, television picture transmis. sion.

- cCIR Approved I.F. Frequency of $70 \mathrm{Mc} / \mathrm{s}$.
- Highly efficient electrical screening allows working on same mast as high-power television transmitter.
- High-frequency stability without A,F.C. Circuits.
- New light-weight aerial with waterproof transmit and receive hedd units.
- No forcedalr cooling in head units.

Has bui/t-in /lning-up equipment.

- Range 30 to 40 miles. Extended by connecting a $11 \mathrm{~m} / \mathrm{t} e \mathrm{~d}$ number of links in tandem.

> Used by the B.B.C.

Standard Telephones and Cables Limited

or
superb reproduction
of all three kinds of
records-stereo, LP and standard.
The Type 73 has already been adopted for many of the leading makes of pick-ups in this country (and abroad). As you would expect from Acos, these ACOStereo cartridges, too, are reasonably priced, and combine top value with top performance.

[^9]
ACOStereo Cartridge Type 71

will play an important part in
bringing first-rate stereo sound to many
thousands of enthusiastic hearers.
It fits several well-known makes of pick-up
arms and plug-in heads, and also serves
in the conversion of con-

"BELLING-LEE" NOTES CONTACTS

PLUGS and SOCKETS

2nd of a series
Generally one part, either the plug or the socket is resilient, and the other solid. For several years there has been a growing preference for solid plugs and resilient sockets. On the assumption that the resilient member is that most likely to be damaged, the technical argument revolved around the questionShould the socket be solid and be included as an integral part of the equipment, with the free plug resilient and capable of being reformed if damaged, or should the plug be solid, and the socket be resilient and in such a position that it would have

Fig. 1

Fig. 2

Fig. 3

1. A tapered plug tends to jump out of its socket under the slightest vibration, or to rest under its own slight weight, giving intermittent contact.
2. A plug wider at the point of entry is a great improvement. This plug is unlikely to jump out as vibration tends equally to move it in or out.
3. With an " $D-Z$ " plug multi-point contact can be expected as most of the spring surface can be expected as most of the spring surface
is moking contact. The spring allows free movement in ony direction.
to be replaced if distorted by the insertion of an oversized plug or test prod? Of course, a carefully designed resilient socket can be protected by a solid metal entry, by a strong spring circlip and/or by the design of the insulator behind which the socket is secured.

Amongst resilient plugs, probably the commercial one nearest "o the ideal is that known as the "O.Z." plug where the contact surface is a plated phosphor bronze leaf formed round a solid pin as in Fig. 3, and which tends to take the form of the socket, hugging its parailel sides and providing an exceptionally low resistance contact. Such a plug stands up to quite exceptional vibrations without faulting, but unfortunately does not lend itself mechanically for use in resilient sockets. British Standards specifications lay down certain gauging procedure, for example the limits set on a plug to mate with a nominal in. socket are such that the smallest plug must make good contact in the largest socket after repeated insertions of a plug on top timit.

Next month we will continue with multi-way plugs and sockets. Advertisement of
AELKING \& LEE LTD.
Great Cambridge Rd., Enfield, Middx. Written 11th December, 1958

66 BELLDNG-LEE99 M|N\|ATURE COAXIALUNITORS

These Coaxial Unitors are designed to be used in conjunction with our present series of 'Domino' Unitors, and may be mounted with them in two- or three-way shrouds.

Each Unitor carries two miniature coaxial connectors which are of similar design to the plug and free socket of the L. 1417 series and can be interconnected with them.
The brass shrouds (L.I404, L.I405 and L.I406) for mounting one, two or three Unitors, are each available for either flush or surface mounting.

Each Unitor is polarised by means of a flat on the locating spigot, so that the two coaxial ways cannot be accidentally interchanged.

MECHANICAL DATA Weight: 1.04 oz .29 .5 g.

Materials: Unitor body: Black Phenolic material X17163 Outer conductor: Aluminium alloy Inner conductor: Gold-plated
brass Dielectric: P.T.F.E. Circlip: Nylon
Maximum cable size over outer conductor $\frac{1}{8^{\prime \prime}}$ (3 mm .)
Withdrawal force: $4.5 \mathrm{lb} .(2 \mathrm{~kg}$.)

BELTNG E LEE 4D

GKEAT CAMBRIDGE ROAD, ENFIELD, MIDDX., ENGLAND
Telephone: Enfield 3322 . Telegrams: Radiobel, Enfield

general
PURPOSE

LONG
PLAY

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Title	Size	Length approx.	Price in EMICASE	Price without EMICASE
88/3		$3{ }^{\prime \prime}$ dia.	175'	-	7
99/3		$3^{\prime \prime}$ dia.	250	-	9
88/3N	'Message	$3\}^{\prime \prime}$ dia.	175'	-	7
99/3N		$3\}^{\prime \prime}$ dia.	250°	-	9
88/6		5" dia.	$600{ }^{\prime}$	£1 36	£1 10
99/9	J Junior	$5^{\prime \prime}$ dia.	$850{ }^{\circ}$	£1 106	£1 8
88/9	3 "Confinental"	$53^{\prime \prime}$ dia.	$850{ }^{\circ}$	£1 106	£1 8
99/12		$5\}^{\prime \prime}$ dia.	$120{ }^{\prime}$	£1 176	£1 15
88/12	'"Standard"	$7^{\prime \prime}$ dia.	1200^{\prime}	£1 176	£1 150
99/18	Standara	$7^{\prime \prime}$ dia.	1800^{\prime}	£2 126	£2 10
88/18		$8 \mathrm{t}^{\text {² dia. }}$	1750°	-	£2 17
99/24	Protessiona	8 ¢' $^{\text {dia. }}$	2400^{\prime}	-	£3 126

ココIniiceuse

now available separately!
the polystyrene container that solves tape

$7^{\prime \prime}-4 \mathrm{~s} .0 \mathrm{~d} ; 5 \frac{3}{4}{ }^{\prime \prime}-3 \mathrm{~s} .6 \mathrm{~d} ; 5^{\prime \prime}-3 \mathrm{~s} .6 \mathrm{~d}$.

the magnetic recording

tape with the highest

technical standards

* High sensitivity
* Low noise level
* Low 'print through' factor
* Anti-static
* Freedom from curl and stretch

E.M.I SALES \& SERVICE LTD (Recording Moterials Division)
HAYES.MIDDLESEX Tel: SOUthall 2468

Aspects of design

This is the eighth of a series of special features dealing with advanced problems in television and radio circuit design to be published by Siemens Edison Swan.

The Ediswan Mazda Applications Laboratory will be pleased to deal with any questions arising from this or other articles, the ninth of which will appear in the March 1959 issue.

TELEVISION LINE OUTPUT STAGES

Practically all modern television line output stages operate on the "energy recovery" or "resonant return" principle. In this operation a current in the deflector coil is caused to increase linearly with time. At the extreme limit of deflection a large current has been established in the coil and this current flowing through the coil's inductance represents a high stored energy. During the flyback interval the coil performs half a cycle of free oscillation at a frequency determined by the capacity loading of the circuit. At the end of this interval the current in the coil is almost of the same magnitude as it was at the beginning but in the opposite direction. Since every effort is made to keep circuit losses small, the stored energy in the coil will be only slightly less than at the end of the scanning stroke. The coil voltage is then clamped by the efficiency diode and the current collapses linearly, t.ansferring this stored energy to a large capacitor where it serves to "boost" the H.T. line and in so doing, provides the first part of the next deflection stroke. (See for example "Television Timebase Circuits", C. H. Banthorpe, Norman Price (Publishers) Ltd.)

In Great Britain, such circuits are usually operated with the pentode output valve behaving as a low resistance switch connecting the boosted supply potential to the inductance load. The pentode conducts for only part of the forward stroke, being switched on shortly before the current through the efficiency diode has collapsed to zero. The grid voltage is brought from a value well below cut off to a point at which it is held by grid current and thereafter, for the remainder of the forward stroke, the grid exerts no control. Typical waveforms are shown in Fig. 1.

Fig. 1

Fig. 2

Basic line output stage with EHT generation

The pentode current builds up at very low anode voltage, the working point rising up the "knee front" of the $I_{a}-V_{a}$ characteristic. If che normal practice of using a fully decoupled screen resistor is followed this results in a constant screen voltage during the whole cycle. Thus if this screen voltage is high enough for the valve to pass the current at the end of scan, then when the valve is first switched on, with anode voltage and current practically zero, the screen current could be prohibitively high. This would result in the screen dissipation limit being exceeded with consequent deterioration of performance and probably life. In order to avoid this the screen decoupling condenser is omitted so that the screen voltage is low at che start of pentode conduction and high at the end of the forward stroke when maximum anode current is required.

Under these conditions it is difficult to measure the screen wattage accurately. The most satisfactory method is to measure the screen current by means of two meters, one a normal moving coil milliammeter measuring the mean current I_{s} and the other a thermal milliammeter measuring true r.m.s. current Ir.m.s. The wattage dissipation in the screen is then given by

$$
\mathrm{W}_{\mathrm{g} 2}=\mathrm{V}_{\mathrm{HT}} \times \mathrm{I}_{\mathrm{M}}-\mathrm{R}_{\mathrm{g} 2} \times \mathrm{I}_{\text {r.m.s. }}^{2}
$$

where VHT is the H.T. line supply voltage at the high potential end of the screen dropping resistor $\mathrm{R}_{\mathrm{g} \text { 2. }}$
During the flyback interval the output valve is cut off to enable the current in the deflector coil to pertorm the half cycle of free oscillation referred to above. It is important chat the valve should be completely cut off otherwise its anode umpedance wall damp the oscillation. This is more difficult than it may appear because, during flyback, there is a hugh positive peak voltage on the anode which modifies the cut off voltage in spite of the presence of the screen grid. A peak to peak drive voltage of at least 130 or 140 volts is therefore usually required.
The rate of cut-off must be as fast as possible and the grid should be maintained at this extreme negative value until well after the positive maximum of the anode voltage. This is more easily achieved with a multivibrator rype of drive circuit than with a blocking oscillator. Lack of attention to this point results in considerable variation of performance between valves and, usually, shortage of E.H.T.

EDISWAN MAZDA 30P4

Line Output Beam Tetrode, for a.c./d.c. Mains Television Receivers

Heater Current (amps)
Heater Voltage (volts)
I_{h}
V_{b}
Base: International Octal (107)

view of free end

MAXIMUM DESIGN CENTRE RATINGS

Anode Dissipation (watts)	$\mathbf{P a}_{\text {a }}$ max)	
Screen Dissipation (watts)	$\mathrm{P}_{\mathrm{k} 2(\max)}^{\mathrm{a}(\text { max })}$	
Cathode Current (mA)	$\mathrm{I}_{\mathrm{k} \text { (mas) }}^{\text {bex }}$	16
Anode Voltage (volts)	$\mathrm{V}_{\mathrm{a}(\max)}$	40
Peak Anode Voltage-Pulse Positive* (kV)	$\mathrm{V}_{\text {a }{ }^{\text {(pk }} \text {)max }}$	
Screen Voltage (volts)	$\mathrm{V}_{\text {g2(max })}$	
Peak Screen Voltage-Pulse Negative ${ }^{\star}$ (volts)	$\mathrm{V}_{\mathrm{g} 2(\mathrm{p}))_{\max }}$	200
```Heater to Cathode Voltage (volts) (r.m.s.)```	$\mathrm{V}_{\mathrm{h}-\mathrm{k} \text { max }}$	
Grid 1 to Cathode Circuit Resistance ( $\mathrm{M} \Omega$ )	$\mathrm{R}_{\mathrm{g} 1-\mathrm{k}(\text { max })}$	

*The pulse ratings are for Television Line Scan where the applied voltage pulse does not exceed $15 \%$ of one scanning cycle or 15 microseconds duration.
$\dagger$ The absolute rating of 7.5 kV must not be exceeded.

## INTER-ELECTRODE CAPACITANCES

INTER-ELECTRODE CAPACITANCES		
Grid 1 to Earth $(\mathrm{pF})$	$\mathrm{c}_{\text {in }}$	20
Anode to Earth $(\mathrm{pF})$	$\mathrm{c}_{\text {out }}$	10
Anode to Grid 1 $(\mathrm{pF})$	$\mathrm{c}_{\mathrm{a}-\mathrm{g} 1}$	0.3
MAXIMUM DIMENSIONS		113
Overall Length $(\mathrm{mm})$	32	
Diameter $(\operatorname{mm})$		99
Seated Height $(\mathrm{mm})$		





GRID VOI.TAGE-VOLTS

Characteristic Curves of Average Ediswan Mazda Valve Type 30P4.

#  <br> <br> Marconi in Telecommunications 

 <br> <br> Marconi in Telecommunications}

The post and telegraph authorities of more than 80 countries use Marconi equipment


# MARCONI 

## Plessey

## on active service

* Plessey VHF equipment provides the clear voice communication essential to any military operation.
* Designed in conjunction with the Ministry of Supply Signals Research and Development Establishment, Plessey VHF equipment has been proved in the field by the Armed Forces.
* Plessey VHF equipment permits instant commu-nication-free from long range interception, interference, night effect or jamming. The caller's voice is easily recognisable.
* Assembled in compact, water- and weather-proof units, Plessey VHF equipment ensures complete reliability under themost strenuous service conditions.
* Plessey VHF equipment is being generally introduced in the British and Commonwealth Armies.
* 241 separate channels of communication which may be instantly selected without 'netting' procedure.


## Military V•H•F Equipment

ELECTRONIC AND EQUIPMENT GROUP THE PLESSEY COMPANY LIMITED ILFORD - ESSEX - TELEPHONE: ILFORD 3040


WIRELESS SET C. 42 (VHF Transmitter-Receiver)
The main VHF tank set for tank-to-squadron communication. It may be used alone or in conjunction with the " $B$ " sets listed below.

"B" WIRELEsS SETS (VHFTransmitter-Receivers)
These low power sets are used separately or in conjunction with the Main sets as follows:B. 45 for tank-to-tank communication. B. 47 for tank-to-infantry communication. B. 48 for artillery, O.P. vehicles and spotter aircraft communications.

## MARNESS TYPE A

There is also a complete integrated control, intercommunication and automatic rebroadcast and remote control harness, type A, for fighting vehicles.




## 



## HRTMATNGエ』

A triangle with 78 inch sides, 1,000 feet high: that's to be the shape of the new East Anglia T.V. aerial mast - the tallest T.V. aerial mast in the Commonwealth. E.M.I. Electronics Ltd., entrusted with the contract, were asked to provide a special unsymmetrical radiation pattern, strong towards Norwich, Peterborough, Cambridge and Colchester, but drastically reduced towards London, the South Coast. and the Continent.
By providing exceptionally high gain, through the use of a novel type of aerial array, E.M.I.'s engineers enabled the comparatively low input of 8 kw to give an effective radiated power of 200 kw in the desired directions, thus combining economy with a service of the highest quality. E.M.I., first with high definition television, is still pioneering broadcast and television equipment developments.

Engineers interested in working on cyr expanding aerial development poogramme are invized to zurite to our Personnel Officer.


## 

BROADCAST EQUIPMENT DIVISION
HAYES • MIDDLESEX • TEL: SOUTHALL 2488

# Vostcrion quality equipment 



Our specialised MONITOR HEAD MODEL W.V.B. has an additional head and amplifier which enables this recorder to perform a number of useful functions. The most important of these is to monitor the recorded tape a fraction of a second after it is made, and if necessary compare it by throwing a switch, with the signal before it is recorded. This allows the recording engineer to make certain that he has made a first class recording before the artists leave the studio, without the necessity of waiting while another run through is made.
Additional items may be recorded one on top of another while listening to the first, since a switch is provided for the erase, and the bias, which also acts as a partial erase, can be lowered slightly, and its new value checked on the meter. In a similar manner, the original signal may be fed back and recorded, resulting in an echo, the time constant of which is controlled by the speed of the tape and the distance apart of the heads.
VORTEXION RECORDERS use a synchronous capstan motor to ensure accurate recording and play back speed.

Many years of steady development have enabled us to still further improve the Vortexion W.V.A. and W.V.B. recorders.

All components which could contribute to noise or reliability are carefully measured and selected individually before incorporation. resulting in an exceedingly low background noise and distortion with frequency response within $\pm 1.5 \mathrm{db} 50-10,000 \mathrm{c} / \mathrm{s}$ and $\pm 3 \mathrm{db} 40-12,000 \mathrm{c} / \mathrm{s}$ at $7 \frac{1}{2}^{\prime \prime}$ per second.

* The meter fitted lor reading signal level will also read bias voltage to enable a level response to be obtained under all circumstances. A control is provided tor bias adjustment to compensate low mains or ageing va, ves.
* A lower bias lifts the treble response and increases distortion. A high bias attenuates the treble and reduces distortion. The normal setting is inscribed for each instrument.
$\star$ The distortion of the recording amplifier under recording conditions is too low to be accurately measured and is negligible.
* À heavy mu-metal shielded microphone transformer is built in for $15-30$ ohms balanced and screened line, and requires only 7 micro-volts approximately to fully load. This is equivalent to 20 ft . from a ribbon microphone and the cable may be extended 440 yds . without appreciable loss.
* The 0.5 megohm input is fully loaded by 18 millivolts and is suitable for crystal P.U.s, microphone or radio inputs
* A power plug is provided for a radio feeder unit, etc. Variable bass and treble controls are fitted lor control of the play back signal.
$\star$ The power output is 4 watts heavily damped by negative feedback and an oval internal speaker is built in for monitoring purposes.
* The play back amplifier may be used as a microphone or gramophone amplifier separately or whilst recording is being made.
$\star$ The unit may be left running on record or play back, even with $1,750 \mathrm{ft}$. reels, with the lid closed.


## FOUR CHANNEL ELECTRONIC MIXER

This is a studio quality electronic mixer suitable for any climate. The controls are hermetically sealed, and great care and selection of components to make certain reliable low noise operation, and individual screens prevent break through. The built-in power transformer is screened and potted. and all the microphone transformers are individually potted in selected heavy gauge mu-metal boxes. Front or rear inputs and outputs may be obtained to order. The normal output is .5 volt.
The 3-CHANNEL MIXER and PEAK PROGRAMME METER is similar to the above but has the additional meter fitted calibrated in 2 db steps $\$ \mathrm{rom}-20 \mathrm{db}$ to +12 relative to I.m.w. -600 ohm. The meter is fed by the full P.P.M. I second time delay circuit which includes a stabiliser valve. to ensure accurate gain and calibration. The standard

output is screened primary and I.m.w. -600 ohm balanced or unbalanced by switch. Inputs and outputs may be at the front or rear, and rack panel mounting is available at the same price.

## Caslite

## ROON DUST

CORES

Recent development in the production of Caslite iron dust powders make it possible to offer a range of cores suitable for use at any frequencies-up to $300 \mathrm{mc} / \mathrm{s}$ in favourable circumstances. Strong and light, possessing the electrical characteristics appropriate to the application, Caslite iron dust cores provide a ready answer to many of today's design and production problems, particularly in the growing fields of VHF, television and frequency modulation. They are supplied in a wide range of standard sizes and shapes, but the powders can be bonded and moulded into almost any shape to suit customers' special requirements. Comprehensive brochure on Caslite Tron Dust Cores available on request.

* Effective permeability to $\pm \mathbf{2 \%}$
* Q factor not lower than $5 \%$ below agreed standard
* Mechanical sizes held to within normal tolerances
* Standard cores include: Screw Cores, including the new self locking feature-Cup or Pot Assemblies, Standard Insert Types, Sleeves, Cylinders and Discs, Choke Cores.

CHEMICAL AND METALLURGICAL DIVISION COMPONENTS GROUP
the plessey company limited
Wood Burcote Way, Towcester, Northants. Tel: Towcester 312
Overseas Sales Organisation:
Plessey International Limited - Ilford Essex Telephone llford 3040
Plessey


Send for this brochure.

# Is your amplifier good enough for broadcasting and recording 



Leak amplifiers were the first in the world to be marketed with a distortion content as low as $0.1 \%$, a claim received with incredulity in 1945 but which was subsequently confirmed by the National Physical Laboratory and has since become an accepted worldwide standard.

LEAK amplifiers are the choice of professional engineers such as the B.B.C. (over 500 delivered), the South African Broadcasting Corporation (600), ITV and many other Commonwealth and overseas broadcasting and TV systems, who use them for transmitting and/ or monitoring (quality checking) the broadcasts to which you listen.


The First Name
in High Fidelity

Also many of the gramophone records you buy are cut via LEAK amplifiers. This acceptance by professional audio engineers has led to a demand for Leak equipment from musiclovers throughout the world.

From long experience and by extreme attention to design derails during development work on the preproduction models, we enable our craftsmen to achieve a high output per man-hour. The labour costs thus saved offset the increased costs incurred for high-grade materials, components and finishes, and this, together with quantity production (made possible only by a world-wide market), explains how quality products may be sold at reasonable prices.

Ask your dealer for a demonstration of LEAK equipment including the NEW POINT ONE STEREO pre-amplifler and STEREO 20 power amplifier.

17E. Dimmer or Regulator. To al resistance 1,000 olunus maximum rur ent of 59 amps. This is a beautiful resistance is divided into 31 soctivus earh approx. 30 ohma. In ventlated metal case, elze approx. 7 th. $\times 7$ hit. $\times$ 5iln. with wall mounting brackets and
large control knob, 276 pius 2 tol post and insurance


14E. Ins.rument transtor:ner primary 230 . . secondiries $6.3 \mathrm{at} 3 / 4 \mathrm{amp}$, and Industrial Overhead Heater


This overhead healer warms only the area ulthim itN rudiant rays, and so effects
a conside rable saving of fucl. Its benefles are felt imniediately, there is no warnuing up period. It is eeseztally a personal type of heater, having controls within ensy reach of the operalse, The conirols give four varlations of heat and "Off." At ravaimun heat the unit consumes The lnfray Major ts of partlcular use:s) In large rooms, warehouces, lofts,
machine shops, ete.. where the cost of heating the whole room to a confort able level would be too great.
(b) In rooms which in the main bave to be kept cool, eg., food storage charaIn any aituil rs, etc.
In any aruation where local heating is required quirkly,
New Model sives him, plus $7 / 5$ cart. New Model gives heat maly, uses copper ornplete with polished reflector easily. $r$ movable for cleaning, and suspension



## tmeter

With a ires clit. Can be yours for onig $10 /-$ depsit and 19 payments of
$10 /$ fortaigbtlv. Like all AVO weters it is a very the ingtrument: it the a it is a very tree ingtrument: it ins a
geumtivity of 10,000 ohms per volt and 19 thost useful ranges as pollowsand D .0 volts $0+1,000$ (serea rameen), A.C volts $0-1.000$ (five ranges). D.C. Current 0.1 ump. ( 5 ranges), resigtance $0-2$ megs. (2 ranges), (Complete witb
teat leads). Immediate delivery.
 add $3 i 6$ post and ins. abeve item this purchasers of then will receive Range Extender be tle and dala fur measuring capactty linductance etc., etc.

THIS MONTH'S SNIP
High ontput car battery charger, gives quick (car start charge) or trickte charge. Input standard A.C. majns, outpat 6 or 12 volt at $1-21$ or 9 amps. With meter and variable charge selector. Complete in hammer finish louvered case. Noy
$75 /-$ plus $4 / 6$ carriage, or $10 /$ deposit and 8 fortnightly payments ol $9 /$. New and unused, guaranteed for 2 years.


IC-MANSBRIDGE (PAPER) CONDENSER, .5 mfd . Tated at 4,000 $\%$, but sufe for




 10C-TRANSMITTING CONDENSER. Tr Me No 19701300 , American made (Aerorox) . 0012 mid., 20,000 v., size Sla. dianneler 4 la . blgh, $\mathrm{f} 4 / 15 /=-1 \mathrm{C}$-. $002 \mathrm{mid} .$, size



TABBY EGUIPMENT COMPLEIE
Complete equipuent for areling lis the dark, as fitted to Ariuy vehicies for night driving, etc. Complete working equipinent comprises: 2 lutre Hed hadiators, aljust able binoculars, powerpack for 6 or 122 volis, conirul unitu and intereermuection cables. Origing cost probably mround eluo. Ulused and in perfect order- $£ 6 / 19 / 6$ or 10/- deprest and 15 finitizhily paymenta of $10 /=$


Fluorescent Lighting Complete lighting flttings. Built-in ballast and starters-stove enamelled Whlte and remdy to work, Ieleal kitchen, workshop-anywhere. Twin 20 approximately $27 i n$, long complete with two 20W. tubes $49 \cdot 6$. Single 40 approximately 44t. loug complete with one 40 W . tube,
$39 / 6$. 1 aduct of 80 approxinately 5 ft. long complete wllh one 80 W . tube, $59 / 6$. Carriase and Insurance up to 150 mites $5 / 6$, vp to $250 \mathrm{mlles}, 7 / 6$. 21ia. Miniature, complete with 13 W . tube. Ideal for showcase or position where colniature fitting is required $39 / 6$ plus $3 / 8$ carr, and insura sce.

Yaxley Switches
4-pole, 2-way
6-pole, 3 -way
3-pole, 3 -way
9 -pole, 3 -way
2-pole, 4 -way
4-pols, 4-way
4-pols, 5 - way
4-pols 5 -कаy
2-pole, 5 -way
1-pole, 12 -way
6-position shorting switch
Morganite Potentiometers
Single and e-gang
types syallable, slan-
dard size uith good
leagth ephlarle,
new and boxed
new arn boxed
Single types $1 /$ -


Gang type, $3 /^{2}$ surg -values avallable:
$5 \mathrm{~K} .+3 \mathrm{~K}, 100 \mathrm{~K} .+100 \mathrm{~K}$. + meg. +1 $5 K .+3 K$.
meg., $1 / 6$.

Instantus Heater


Con rector heater. Made from heavy tauge sheet steel (galvanised). For gr senhouse, workshny, aplary, elc.,
500 wath, $£ 1 / 12 / 6 ; 1,000$ wath, $£ 2 / 10 / \%$ 500 watt, $£ 1 / 12 / 6 ; 1,000$ watt, $£ 2 / 10 /=:$
1,000 watt. thermostat. $83 / 17 / 6$. 2K watt free standing or wrall mounting, f3/19/6; e4/18/6. Carthage built in thermince 5 . fater. Al.L ARE GUAKANTEED FOK 5 YEARS

## ELECTRONIC PRECISION EQUIPMENT LTD.

## (6, Grove Road, Eastbourne, Sussex.

This is the correct address for pos: orders, and for prompt attention please mark your envelope Dep.. 2. Also add enough for pustage.

ELECTRONICS ELECTRONICS ELECTRONICS

Ruislip. Middx.
Eulf-day Wednesday
(Croydon) LTD.
266, London Road,
Phone: CRO. 6558
Half-day Wednesday

## Only EIMAC gives you ceramic "exiras" In more than 40 tube types



SMALLER SIZE


VIBRATION SURVIVAL


EXTREME HEAT SURVIVAL.


IMPACT SURVIVAL


EXACT DIMENSIONAL UNIFORMITY


LOWER DIELECTRIC LOSS

Write for literature on these incomparable ceramic reflex and amplifier klystrons, negative grid and travelling wave tubes.

SANCARLOS, CALIFORNIA. Eincae Firat with ceramic tubes thot can take it


The House of Anders gives you the meter service supreme. Normal moving iron, moving coil, thermo couple, electrostatic and multirange meters of all well-known makes-including AVO, E.A.C., Pullin, Taylor, Turner, Weir, Weston-available at once. Special meters prepared specially for you; any desired kind, shape, size, voltage or current range; within 7-14 days. All under the very personal supervision of the Chef. Customers' own instruments repaired.

Meters, Electronic \& Test equipment to individual specifications

## Anders electronicsuo

Tel.: EUSton 1639


SG50 SIGNAL GENERATOR covers $100 \mathrm{kc} / \mathrm{s}$ to $80 \mathrm{Mc} / \mathrm{s}$. in six ranges on fundamentals. A de luxe instrument for only $£ 9$. A few only, brand new but slightly soiled cases for $£ 8$. Carr./packing 6/extra.
CR50 BRIDGE measures 10 DF to 100 mF and I ohm to 10 Megohms in fourteen ranges. Leakage test for condensers. Desioned for bench use, measurements are quickly and accurately mnde. Price complete 28/2/6 plus $4 / 6$ carr./packing.
VV60 AUDIO VOLTMETER or checking and designing Hi-Fi audio equipment. Measures 1 milli-volt to 100 volts. Price $£ 14$. plus $4 / 6$ carr./packing.
AOJ0 AUDIO OSCILLATOR covers 20 cpz to $200,000 \mathrm{cps}$ in lour ranges. Output variabie up to 10 volts.
Details of above sent by return on receipl of stombed addressed snvelope. HIRE PURCHASF ovaíable. TRADE rmoolied direel

## GRAYSHAW INSTRUMENTS

126 Sandgate High Street, Folkestone, Kent
Ph-ne: -olkesione 78618

## FOR <br> DETAILS OF MINIATURE FILAMENT LAMPS

For Signal and Pilot lights, for Scale, Dial and Internal. Illumination WRITE
VITALITY BULBS LTD.
Meville Place, London, N. 22
Tel : BOWes Park 0016

## A.C.SOLENOIID TYPE SBM/T

 GREATLY INCREASED PERFORMANCE

Concinuous 3 3 l bs. at $\mathrm{l}^{\prime \prime}$. Instantaneous to 16 lbs . Same dimensions as Type S.B. Smaller sizes available. Greatly increased discounts for quantities. Also transformers to 7 kVA 3 phase.

## 

18 FOREST ROAD, KINGSWOOD, BRISTOL PHONE 67-4065


The range of Ediswan Industrial valves is both extensive and comprehensive. The following is a selection from the all-glass valves on miniature bases used in industry and communications. We shall be pleased to send you full particulars of these valves or any others in which you may be interested.


## Now available from stock

The first five instruments in the 'Nashton' range of miniaturised electronic test gear shown here are now available from stock. Instruments that are to become available in the near future include -The Flash Tester, Shorted Turn Detector, Transistorised Power Supply and Transistorised Quadrature Oscillator. For full information write to Nash and Thompson Ltd., Oakcroft Road, Chessington, Surrey, or to your nearest area agent.

## AREA AGENTS

SCOTLAND Elesco Electronics Ltd., 2 Fitzroy Place, Glasgow, C.3. (Tel: CENTRAL 1082/3)

NORTHERN
ENGLAND

MIDLANDS

NORTHERN
HOME
COUNTIES

Farnell Instruments Ltd., Wetherby Industrial Estate, York Road, Wetherby, Yorks. (Tel: Wetherby 2691/2)

Hawnt \& Co., Ltd., 59 Moor Street, Birmingham, 4. (Tel: CENTRAL 6871/5)
W. J. Picton Ltd., $123 a$ Neasden Lane, London, N.W.IO. (Tel: GLADSTONE 2718-4075)

## Nash and Thompsom

OAKCROFT ROAD, CHESSINGTON, SURREY. EImbridge 5252.

R.C.C. Bridge-A auick balancing bridge measuring from 5 ohms-500 megohms and $5 p F-500 \mu F$ each in three ranges.

D.C. Valve Voltmeter Micro-ammeter-A high impedance D.C. Valve Voltmeter reading $1-1.000$ Volss and $0.1-100$ microamps f.s.d. over seven ranges.


Sensitive Valve VoltmeterAn audio frequency A.C. Voltmeter providing 10 ranges from $30 \mathrm{~m} . \mathrm{V}$. to 300 Volts f.s.d.

A.C./D.C. Valve Voltmeter-Six A.C. ranges from $1-300$ Volts f.s.d. up to $200 \mathrm{Mc} / \mathrm{s}$ and seven D.C. ranges from 1-1,000 Volts fos.d. at high impedance.


Ohmmeter-A D.C. measuring instrument reading from 10 ohms-10.000 megohms with a high degree of accuracy.


This new Texas diffused junction silicon rectifier gives you full 3 -ampere output at $50^{\circ} \mathrm{C}$. with P.I.V. ratings up to 600 volts. The all-welded rugged construction with glass to metal seal, provides high resistance to shock and vibration.


Fill information on all Texas Rectifiers available on request.
Pioneers of Semiconductors
DALLAS ROAD, BEDFORD. TEL: BEDFORD 68051. CABLES: TEXINLIM BEDFORD

## The

## Suporespead soldering Iron heats up from cold

 in 6 secondsDesigned on an entirely new principle, this lightweight, versatile iron is eminently suitable for soldering operations in the radio, television, electronic and telecommunication industries. For test bench and maintenance work it is by far the most efficient and economical soldering iron ever designed.

Activated by light thumb pressure on the switch ring. When pressure is released, current is automatically spitched off-thus greatly reducing electricity consumption, wear on copper bit and carbon element. Can be used on 2.5 to 6.3 volt supply (4 volt transformer normally supplied) or from a car battery.

More powerlul than conventional 150 -watt irons; equally suitable for light wiring work or heavy soldering on chassis.

Simple to operate; ideal for precision work.

Requires minimum main-tenance-at negligible cost; shows lowest operating coets over a period.

LIST PRICES	
-IRON	
TRANSFORMER	
TRA	
All prices and trade dis-   counts subject to revision	

## ENTHOVEN SO DERS LTD.

 (Industrial Eq ipment Division)Sales Office \& Works:
Upper Ordnance Wharf, Rotherhithe Street,
London, S.E.16. Tel: BERmondsey 2014
Head Office :
Dominion Buildings, South Place, London, E.C.2. Tel: MONarch 0391

## STEREO

Independent twin channel amplifier with excess of 3 watts per channel.
Concentric volume control (optimum balance arranged immediately without additional knobs).
Cho'ce of volume and tone controls separately fixed or integral with chassis and having continental styled knobs (brown \& gold).

Stoved grey hammer chassis $9 \frac{1^{\prime \prime}}{} \times 5 \frac{1_{2}^{\prime \prime}}{} \times 66^{\prime \prime}$.
Input suiting most modern crystals; output matching 3 ohm speaker each channel.
For operation on AC mains 200/250v.

## £7.7.0

## E.K.E.

BROTHERTON, KNOTTINGLEY, YORKS.
If in difficulty obtainable direct from Manufacturers, carriage 3/6.

## technically trained by <br> 

## IN RADIO, TELEVISION AND electronics engineering

Opportunities in Radio Engineering and allied professions awatt the ICS trained man. ICS Courses open a new world to the keen student
RADIO TELEVISION ENGINEERING: RADIO AND TV SERVICING; RADIO SERVICE AND SALES; YHF AND FM ENGINEERING; ELECTRONICS. Efc.
ics Courses give very real help to the man setting up his own business or facing a technical career in the radio industry.
Examination Courses for:-British Instatution of R3dio Engineers, City \& Guiids Telecommunications, Radio Servicing \& Radio Amateurs, Postmaster-General Certificates (Marine).
LEARN-AS-YOU-BUIL? PRACTICAL RADIO 'OURSE Build vour own 4 -vasve TRF and 5-valve superhet radıo receiver, Signal Generator and Hıgh-quality Multi-tester. FILL IN AND POST THIS C\& COUPON TODAY
It brings the free ics Prospecrus containme full particulars of ics courses in Radio. Television and Electronics.



## Resistant to mechanical shock,

## vibration, moisture, corrosion

The potting of capacitors, chokes, delay lines and similar components, as a protection against mechanical and vibrational shock, moisture and corrosion, demands a potting material which possesses an exceptional combination of properties. Epikote resins provide this combination outstandingly : a high degree of adhesion to metals and other materials, with minimal shrinkage on cure; toughness; resistance to thermal cycling; excellent electrical properties over a wide temperature range (i.e., high dielectric strength, low power factor and high volume resistivity and arc resistance). It is not surprising that Epikote resins have won wide acceptance in the electrical industry. Ask for full details quoting No. E.E.4.

## EPIKOTE

## SHELL CHEMICAL COMPANY LIMITED

In association with Petrochemicals Limited and Styrene Products Limited


SHERRILL U.S.A. COMPASS, magnetic type, directional indicator. Complete with built-in variable horizon corrector, induced error corrector, variable course indicator, deviation calculator, etc., with provisions for internal lighting, Brand now. $€ 3110 \%$ ea. P. \& P. 2/-.


SOUND POWER TELEPHONE UNIT, no batteries required. Fitted with neon indicator lamp and high pitched buzzer, operated by built-in generator. Entirely self-contalned, ex Admiralty. Rebuilt and guaranteed working. Effective up to half a mile, waterproof
£ 3 Unit or $£ 5 / 17 / 6$ pr. Carr. 7/6. Master Units to take five extensions also available. $£ 4$ each,

AERIAL AS ILLUSTFATED, Ideal for Car. Overall length 33in., khaki, with flexible shaft which enables the aerial to be fixed firmly in any position. Price 8/6, plus P. \& P. $1 / 6$.
NEW WI WIRE WOUND RHEOSTAT ON CERAMIC. 58 ohms, 50 watt. complete with instrument knob. Price $8 / 6$. P. \& P. $1 / 6$.
NEW IO watt DUAL VOLUMECON. TROL. 25 ohms, plus 25 ohms, $7 / 6$ each. P . \& $\mathrm{P}, 1 / 6$.
DIAMOND STYLI. We are distributors for well-known British manufacturer of guaranteed diamond styli, which can be supplied to fit any pick-up. When ordering please state requirements. Price $£ 3$, incl. $P$. Tax.
U.S.A. 27-volt 4-pole CHANGEOVER RELAYS. Brand new and boxed. 5/6 each. P. \& P. 6d.
VEEDER REVOLUTION COUN. TER, 6 columns, fitted reduction drive, built inside smali unit. New 8/6 each. P. \& P. 2/-

HIGH SPEED RELAY. Siemens, two bobbins, 1,000 ohms each. New, lo/6 ea. P. \& P. I/-

SMOOTHING CHOKES 10 H .120 mA . New. Price 8/- P. \& P. $2 / 3$.
1200 ft . NEW RECORDING TAPE on $7^{\prime \prime}$ plastic spools. Famous make, not surplus, in manufacturers' original cartons. 22/6 per reel. P. \& P. 1/-,


BRAND NEW, EVERSHED AND VIGNOLES WEE MEGGER," in leather case, guaranteed perfect. 500 volt \& $12 / 10 /$ each. P. \& P. $2 / 6$.


EVERSHED AND VIG. NOLES Circuit testing Ohms Meter, pattern 'S Complete with resting prods, inst. book, etc. Two ranges: 0-3 and 0-30 ohms. Brand new, guaranteed perfect, as illus. Offered at fraction of maker's price, $E 4 / 17 / 6$ each. P. \& P. 2/6.

TRIPODS.Solid wooden legs 38in. long, metal top and metal toes. As new. Price 10/6 each, plus $3 /$ - carriage.
E.H.T. COILS

Vibrator type, input 12 V . D.C., output 12.15 KV . New.

Price: $17 / 6$ ea=h. P. \& P. I/6.
MUIRHEAD VERNIER DRIVE. Scaled 0-I 80 degrees, ratio $31 / 1$, dia. 3in., as fitted to R.F. 26 units. Complete with lampholder. In manufacturers' original packing, New, $8 / 6$ each. P. \& P. $1 / 6$.

PRESSURE GAUGES
U.S.A. make, new. 0-150 lbs. p.s.i. Price $10 / 6$ each. P. \& P. $1 / 6$.

AUTO TRANSFORMERS, step up, step down. 110-200-220-240 v. Fully shrouded. New
300 watt type $\mathrm{E} 2 / 2 /$ - each. P. \& P, 4/6. 500 watr type 300 watt type $£ 2 / 2 /-$ each. P. \& $P$, $4 / 6$. 500 watt type
$£ 3 / 3 /$ each. P. \& P. $4 / 6$. 1,000 watt type $£ 4 / 4 /-$ each. $£ 3 / 3 /=$ each. P. \& P. 4/6. 1,000 watt type $£ 4 / 4 / /$ each.
P. \& $P$. $4 / 6$. Also 60 watts, $14 / 6$ each, Plus $P$. \& P. 2/-.


AIRCRAFT CINE CAMERA G45B Mk. III, fully modified, fitted with $1 / 3.5$ triple anastigmatic lens, takes 25 ft . of 16 mm . film, fitted with 24 v . motor. 16 exposures per sec. Mint condition, brand new, in maker's original packing. E6/l0/- each. P, \& P. paid.


WHEATSTONE BRIDGE UNIT. 4 -stud switches $0-10,0-100$ ohms, gaivanometer centre zero, F.S.D. 2.5 mA . In oak carrying case $16 \times 7 \frac{1}{2} \times 6 \mathrm{in}$. $40 /$ each. P. \& P. $3 / 6$.


Evershed and Vignoles, Series 1 metal cased, Megger. 500 -volt used, but in good condition, with leather carrying case. © 15.

## METERS BRAND NEW <br> GUARANTEED PERFECT

## Charging Types

$2 \frac{1}{2}$ amps D.C. M.I. 2in. fi. rnd. $9 / 6$ 5 amp. D.C. M.I. 2 tin. fl, and. $11 / 6$ 7t amp. D.C.M. 3tin proi rnd $12 / 6$ 9 amp. D.C. Hot Wire W.R.
$2 \frac{1}{2}$ in. fl. rnd. .................

## Voltmeters

12 V. D.C. M.C. $2 \frac{1}{2}$ in. proj. rnd. 20 V. D.C. M.C. 2 in . fl. sq. 25 Volt D.C. M.C. 2 in . fi, rnd. 30 Volt M.I. 3in, proj. rnd. 40 Vole M.C. 2 in . fl. sq
250 Volt A.C. rectified moving coil linear scale $3 \frac{1}{2}$ in. fl. rnd.
300 Volt A.C. M. 2 tin , fl and 235
400 Volt A.C. M.I. $4^{\frac{1}{2} \mathrm{i}} \mathrm{n}$, fl. rnd. $35 /-$
Milliammeters
5 mA. M.C. 2 in . f1. sq.
30 mA. M.C. $2 \frac{1}{2} \mathrm{in} . \mathrm{fl}$. rnd
50 mA. M.C. 2 in . fl. sq.
200 mA, M.C. $2 \frac{1}{2} \mathrm{in}$. fl, rnd
500 mA. M.C. $2 \frac{1}{2} \mathrm{in}, \mathrm{fl}$, rnd.
1 mA.M.C. $2 \frac{1}{2}$ in. fl. rnd. .......... $22 / 6$
500 Microamp latest type
Ernest Turner 2 in . fl. rnd.
with mounting ring and
scaled 0-5, moving coil ......
500 Microamp ex. equip. M.C.
2 in . rnd. scaled $0-15$ and $14 / 6$
Thermo-coupled
10 amp . $2 \frac{1}{2} \mathrm{in}$. rnd. proj.
350 mA . 2 in . rnd. plug-in
500 mA . 2 in . rnd. plug-in POSTAGE ON ALL METERS
U.S.A. PRECISION SERIES $834 S^{\circ}$ MULTIRANGE TESTERS for A.C. and D.C. voles, ohms and milliamps., basic movement 400 microamps., in wooden carrying case, complete with test prods, new batteries, guaranteed perfect. Price $£ 6 / 19 / 6$. P. \& P. 2/6.


MIDGET ROTARY TRANSFORMERS. $2 \frac{1}{4} \mathrm{in}$, dia, $\times 4 \frac{1}{2}$ in. Input 11.5 volt Output $310 / 365$ volts at 30 mA . Brand new. 17/6 each. P. \& P. 1/6.
DYNAMOTOR (Rotary Convertor). 6 volt in, 250 volt out at 100 mA ex new equipment, 25/- each. P. \& P. 3/-, MICROPHONES - NEW. Throat, British, magnetic, 4/6. P. \& P. $1 /=$.
HEADPHONES. 4,000 ohms, imported new, 15/-.
H.S. 30 L.R. U.S.A., min. ear pcs. 19/. P. \& P. on above $1 / 6$ each.


MINIATURE UNISELECTOR SWITCH, two banks of ten plus home contacts, one bank continuous of normal. 30 ohms coil for 24 volt operation. Brand new, manufacturer's packing. Price 22/6 each. P. \& P. 2/6. Illustrations above and below.


MINIATURE P.M. MOTOR 12/24 volt, reversible, Itin. dia. New. Price $9 / 6$ each. P. \& P. 1/-


TWELVE PLATE F.W. BRIDGE CONNECTED RECTIFIER mounted on 200/250 volt A.C. input transformer. Output $36 / 40$ voit D.C. at 1.2 amp . New, perfect. Price $16 / 6$. P. \& P. $3 / 6$.


200/250 v. A.C. MOTORS. New 1/80 h.p., 2 drives, direct 6000 r.p.m., reduc-
tion 300 r.p.m. $22 / 6$ each. P. \& P. $2 / 6$.

## IMPORTANT FLASH. LATEST ARRIVAL.

No. 100 RM VARIABLE VOLTAGE TRANSFORM. ER. Brand new in manufacturers' original case, input $\mathbf{2 3 0}$-volt A.C. Output $\mathbf{0 - 2 3 0}$ or $0-270$-volt at 9 ampere. PRICE EI5. plus carr. I2/6d.

NO. 200 CUH VARIAC, ex units but new and unused. Input 230 -volt. Output $0-270$-volt at $2 \frac{1}{2}$ ampere. PRICE C7. 10. Od. plus carriage $10 /=$


NEW UNCHARGED UNFILLED 12 VOLT ACCUMULATOR 9 ampere in unspillable plastic cases. Comprises $6 \times 2$ volt separate cells connected by terminal Comprises $6 \times 2$ volt separate cells connected by terminal
strips. $6 \times 5+\times 4$ in. over terminals. Price $19 /-$ plus P. \& P. strips. Wooden carrying case for same with lid and strap price $3 / 6$.


12 v. D.C. AMPLIFIER, as new, for operation on 12 v car battery, 10 watts undistorted output, with 6L6 valves in push-pull. Mike/Gram input, tapped output $7 \frac{1}{2}$, 15 $62,100,250$ or 500 ohms. $\mathrm{f} 12 / 10 /-$ each. Carr. $15 /-$

L.T. JRANSFORMER, real heavy duty job, extremely well made for continuous duty. New in tremely well made for continuous duty. New in original manufacturers' cases. Input 110 v.-260 $\mathrm{V}_{\text {. }}$ multi-tapped, 50 eycles, single phase. Output 28-
$29-30-31$ vo at 21 amperes. Price 69/6. Carr. 9/-.


VARIABLE VOLTAGE TRANSFORMER. 230 v. A.C. inpur. Constantly variable output from $0-270 \mathrm{v}$. at 18 ampere maximum. Brand new in manufacturers' original cases. $\mathbf{6 2 2 / 1 0 / - \text { each. Carr. paid. }}$


VENNER 8-day clockwork Time Switch. Contacts I amp 230 volt, 24 hour phase, I hour divisions, complete with phase, Used but guaranteed perfect. Price 27/6 each. P. \& P. I/6.


BRAND NEW SELENIUM FULL WAYE BRIDGE TYPE RECTIFIERS in manufacturers' original packing. D.C. output 36 v . 10 amp , made up of $12 \times$ 110 mm . dia. plates. These fitted in cooling funnel (removable), size Ilitin. $\times 8$ in. $x$ funnel (removable), size $11 \frac{1}{2} \mathrm{in}$
$4 \frac{3}{3} \mathrm{in}$. Price $45 /-$ P. \& P. $3 / 3$.

WE ARE EXPERTS AT OVERSEAS PACKING \& SHIPPING! PERSONAL CALLERS ONLY: 9 Little Newport SERVICE TRADING Co.

## NEW! THE "QUINTET" TRANSISTOR-5 <br> A FIVE TRANSISTOR POCKET SUPERHET ON PERDIO PRINTED CIRCUIT, USING EDISWAN TRANSISTORS. <br> SENSITIVE <br> SELECTIVE <br> SUPERIOR VALUE <br> Total cost, including EDISWAN 28.10 .0 transistors, cabinet, etc. P.P. 2/6. <br> ALL ITEMS SOLD SEPARATELY. SEND FOR LISTS. <br>  <br> * Easy to ollow printed CIRCUIT. <br> * 5 EDISWAN transistors. <br> $\star$ Full medium wave coverage. <br> * Attractive moulded Cabinet. size $5 \frac{1}{2} \times 3 \frac{1}{4} \times 1 \frac{i n}{}$. (red, blue or cream) <br> $\star$ Full speaker output. <br> * Long life battery. <br> $\star$ Built-in ferrite aerial. <br> * Easy to build. <br> $\star$ Complete building instructions.

## THE "TRANSISTOR-8" COMBINED CAR-RADIO/PORTABLE PUSH-PULL SUPERHET

## This, Portable 8 Tranalstor Buperhet is tunable for both Medum and Long Faves and is comparable In pórformance to any equlvalent Commerchal Tranasitor Set. <br> simplified construction enables this set to be built easily and quickly into an attractive fightweight cablaet supplied.

## STAR FEATURES

* AZL EDISWAN TBANBISTORS.
* 250 Mullwatts Output Push-Poll. $\star$ Medium and Long Waves.
* Intemal Perrte Rod Aerial.
, 7x+Eliptical High Efficteney Speaker.
$\rightarrow$ Drilled Paxolla Chessis 8 $\times 2 \boldsymbol{1 i n}$.
$\star$ Transistor Holders.
* New Point to Point wiring and practical layout.
* Economical. Powered by 73 v. battery * Highly sensitive.
* Idead car radio.

Car Radio Conversion Compronents 8/= extra. A.V.C. $5 / 8$ exira.
325 MW version 40 i $=$ extra.

We ean eupply these lems tncluding Cabinet for $211 / 10 /=$. P.P. 2/6. Ali parto sold separately Sead for PREE clrcult diagrams assembly data, tliustrations and instructions, and full shopping lisi.


CALL AND HEAR DEMONSTRATION MODEL

## SIX TRANSISTOR POCKET SUPERHET

## STAR FEATURES

* Medium and Long Wave
* 6 Selected Transistors.
$\star$ Printed Circuit.
* Internal Ferrite Aerial.
* 30 ohms Speaker.
* Instruction Booklet.
* Low. consumprion.
* Attractive Plastic Cabinet:
* (Red, Blue and White colours).
* 9 v. P.P. 4 Battery
* Easy to Build.


This set is recommended as an ideal Portable. Highly sensitive, selective, containing the latest features giving simplicity in construstion with really amazing results.

## ALL COMPONENTS SOLD SEPARATELY. SEND FOR LISTS.

## "THE MINOR"

All items supplied special inclusive price of 89.19 .6 p.p. $2 / 6$.


The smallest transistor radio offered on the market. Case size only $3 \times 2 \times$ 子in Variable tuning over medium waves. Home, Light and Third programmes without an aerial in areas of reasonable reception. Uses a three-stage reflex circuit of high efficiency. Total cost including Personal phone; transistor; long life miniature battery, circuit and complete layout diagrams and all components: * Internal ferrite aerial.
post free 52/6 * Weight less than 2 oxs. All components sold separately. Circuit, layout diagrams and shopping list free.

PIRANI HIGH VACUUM
TEST EQUIPMENT
COMPLETE set of instruments including calibrator and PYE Scalelamp galvo.
e33/10/- Post

BRAND NEW. BOOKLET ON REQUEST.

## WAVE-GUIDE WATTMETER

 Type W821 10 cm . Complete in transit case. BRAND NEW $55 / 10 /=$ P.P.evershed vignoles wee megger 500 vole 50 Meg. BRAND NEW sealed in cartons with leather case and handbook.
12/10/

100 -valt type used but in new condition. With Leather Case $86 /=/=\begin{aligned} & \text { Post } \\ & \text { free. }\end{aligned}$

RADAR UNIT TYPE (1683) Complete with the following valves: 2-6C4; 832A; 829B; 2-5R4G; 3-6AC7; 6V6GT: 931 A photo multiplier with associated network. Also 2-blower motors. Input 30-115 volt 400 to $2,600 \mathrm{c} / \mathrm{s}$. cd 26 v. d.e. BRAND NEW and boxed.
£6/10/-

## CRYSTAL CALIBRATOR

For No. 19 Set.
$10 \mathrm{Kc} / \mathrm{s}$.; $100 \mathrm{Kc} / \mathrm{s}$.; 1 $\mathrm{Mc} / \mathrm{s}$.; spot frequencics; Crystal controlled oscillators; includes 512SC7 valves, neon modulator handbook, etc. BRAND.NEW

84/19/6 Post

## MIXER UNIT TYPE 79

Frequency range 172 to $190 \mathrm{Mc} / \mathrm{s}$. Comprising: VCRI39A Cath. ray tube; 7-EF50; EF55; 4EA50; 2-EB91: $5 \mathrm{U}^{2}$; VU120, and EC52. Standard maln input $200-250$ volts $50 \mathrm{e} / \mathrm{s}$. Ideal Seope Basis.


## WALKIE TALKIE YYPE 38 TRANS-

 MITTI R/FECHIVERComplete wish 1 ravis. In new condition. These Sets atr sold wuti, ut Guarantee, but are se viceable. $22 / 6 \mathrm{PP}$.
H/phones 7/6 pair, Junetion Box, 2/6. Throat Mike, 4/6. Canvas Bag, 4/-. Aerial Rod, 2/6

TRANSMITTER/RECEIVER,
Army Type 17 Mk. II
Complete with Valves, High Resistance Headphones, Handmike and Instruction Book and circuit. Frequency Range 44.0 to $61 \mathrm{Mc} / \mathrm{s}$. Range approximately 3 to 8 miles.
Power requirements: Standard 120 v. H.T. and 2 v . L.T.
deal for Civil Defence and com- 45/
munications. $44.61 \mathrm{Mc} / \mathrm{s}$. Calibrated Wavemeter for same, 10/- extra.

## RF WATTMETER TS/87/AP.

switched positions 0/10/15/30 watts. Complete with photo-cell spare lamps; calibration charts; leads and transit case.
BRAND NEW $£ 8 / 19 / 6$ P.P.

## SYNCHRONIZER UNIT

includes: 3- 6 L 6 M ; 12-6AC7; 6SQ7; 5-717A; 6-6SN7GT; 6H6; slow motion drive, blower motor, transformers etc. $£ 4 / 19 / 6 \begin{aligned} & \text { P.P. } \\ & 5 /-\end{aligned}$

## PACKARD BELL PRE-AMP

Complete with screened case with 6SL7GT; 28D7; leads, iack plugs; handbook ete. Sealed in carton. Only 12/6 P.P.

RCA RIBBON MICROPHONES. Brand new desk type with lead. Only $65 /=$ P.P.

MORSE PRACTICE BUZZER UNITS
On board with key and buzzer only $4 / 6$ each. Headphones $7 / 6$. Requires $4 \frac{1}{2}$ volts only.

## SCR522 TRANSMITTER RECEIVER <br> All complete in new condition less valves

$35 /=\frac{P . P}{5 /-}$

Sputnilh Special
SHORT-WAVE COMMUNICATION RECEIVER
$10-60 \mathrm{Mc} / \mathrm{s}$. (5.30 Meters) RECEPTION SET TYPE 208

Containing 6 valves: 2-6K8G, 2-EF39 7 Q6G and 6 V 6 G , Metal rectifiers, built-in mains pack and 6 v . Vibrator pack, built-in $6 \frac{1}{3}$ in, speaker. Muirhead slow motion drive. B.F.O. and R.F. stage. $2 \mathrm{Mc} / \mathrm{s}$. I.F. freq. Provision for 'phones? and muting and 600 ohm line.
Input $100 / 250$ v. A.C. Vibrator pack included for battery operation (6 volt). 26/19/6 $\begin{array}{ll}\text { Carr } \\ \text { 15/6 }\end{array}$
Complete in case.
In new condition and air tested.
PYE $45 \mathrm{Mc} / \mathrm{s}$. STRIP TYPE 3583.
Complete with 12 valves. 10 -EF50; EB34: EA50, with modification data.
ABSOLUTE BARGAIN 39/6
5riage
$5 / 6$.

## " 373 " MINIATURE IF STRIP $10.72 \mathrm{Mc} / \mathrm{s}$

The ideal F.M. conversion unit as described in May, 1957 ComMay, 1957. Complete with 6 valves, hree EF9I s, two E92's, and one EB9I.I.F.T's etc., in absolutely new condition. With circuit and conversion data.
12/6 (less valves) NOW $37 /$ FM AT ITS CHE (either type) FM AT ITS CHEAPEST!

## NEW TRANSISTORS: - PRICE

 (Junction Type PNP)Ediswan XAl04 $6 \mathrm{Mc} / \mathrm{s}$ osc/mixer,
RF..........................................
Ediswan XA 1034 Mc RF and
Ediswan XB104 Audio Outpur ere
Maeched pair XBIO4 for up to 250
mW audio output
Continental OClt $12 \mathrm{Mc} / \mathrm{s}$ ose/mixer, RF amp.
Continental OC45 $6 \mathrm{Mc} / \mathrm{s}$ If and RF amp.
Continental OC72 up to 350 mW
push-pull
New market power transistors
V15/10P; 15 volt 10 watts
VI5/20P: 15 volt 10 wate
VI5/30P: 15 vole 10 wates
V30/l0p: 30 volt 10 wates.
V30/20P; 30 volt 10 watts
V30/30p; 30 volt 10 watts.
V15/201P; 15 volt 2 watts.
V30/20IP: 30 volt 2 wasts.
Red spot $800 \mathrm{ke} / \mathrm{s}$ Audio amp.
White spot 2 to $5 \mathrm{Mc} / \mathrm{s}$ R etc.
Green/Yellow Audio Amplifier …… $12 / 6 \mathrm{ea}$.
Red/Yellow 1.5 to $8 \mathrm{Mc} / \mathrm{s}$ RF or IF etc. 15/- ea. Data sheet available on all types.
FULL TRADE DISCOUNTS ON ALL TYPES
LARGE RANGE OF SUB-MINIATURE TRANS-
ISTOR COMPONENTS IN STOCK
SEND FOR NEW FREE LIST.

## WESTON MODEL 772 TESTMETER



A.C. VOLTS	D.C.	A.C.CUR-
2.5 v.	CURRENT	RENT
10 v.	$100 \mathrm{micro} / \mathrm{a}$.	500 ma.
50 v.	1 ma	1 amp.
250 v.	10 ma	5 amp.
$1,000 \mathrm{v}$.	50 ma.	RESIST.
D.C. VOLTS	100 ma.	ANCE
2.5 v.	500 ma.	100 ohms
10 v.	OUTPUT	1,000 ohms
50 v.	METER	100 k. ohms
250 v.		10 megohm

$1,000 \mathrm{r}$.
Supplied in perfect working order complete with rexine carrying case, internal batteries and instructions, $88 / 19 / 6$ each. P/P 4/-.

COSSOR DOUBLE BEAM OSCILLOSCOPE


Operation $110 / 200 / 250$ volts A.C 120 watts. Time Base 10 positions. 6 cps, to $250,000 \mathrm{cps}$. Amplifier 10 cps . to $2,000,000$ eps. Sensitivity, YI.Y2.3.1 D.C. 1.1 v. rms. X. 2.25 v. D.C. $.8 \mathrm{v} . \mathrm{rms}$.
Supplied in good working order complete with handbook and circuit. $£ 27 / 10 /-$ each. P/P $£ 1$.


300FT. COPPER AERIAL WIRE. EX U.S.A. 3/6 per reel. P/P $1 / 1$
LEACH AERIAL CHANGEOVER RELAYS. 12 v. D.C. double pole transmitter type. New, boxed, $7 / 6$ each. P/P 9d.

MARCONI SIGNAL GENERATORS TF-517. Frequency coverage $10-18 \mathrm{mc} / \mathrm{s}$. $33-58 \mathrm{mc} / \mathrm{s}$ and $150-300 \mathrm{mc} / \mathrm{s}$. Operation $200 / 250$ volt A.C. Supplied in good working $200 / 250$ volt A.C. Supplied in good
order, $\mathbf{f} 12 / 10 /-$ each. P/P $10 /$.

750-WATT AUTO TRANSFORMERS. EX Admiralty, fine jobs. Tapped from 110 to 230 volts. Brand new, $69 / 6$ each. P/P 5/-
HEAVY DUTY MAINS ISOLATION TRANSFORMERS. 230 volt input. Output 230 volts 5 amps. Housed in ventilated metal case, unused, 55 each. P/P $10 /-$


AMERICAN SUPER LIGHTWEIGHT HEADPHONES. Res. 50 ohms. Fitted with rubber earmoulds, extremely good quality, ideal if used for long periods. 15/- per pair, brand new, boxed. P/P 1/3.

## CR. 100 SPARES KITS

Complete set of new valves $2 \times 66,2$ U50, 2 DH63, 2 KT63, 6 KTW61. Also set of resistors, condensers, pots, toggle switch and output transformer. Supplied new and boxed, 59/6 each. P/P 4/6.

## HALLICRAFTER SX-24 SKYRIDER

 DEFIANT RECEIVERSOne of the finest communication receivers made. Frequency coverage continuous from $550 \mathrm{kc} / \mathrm{s}$ to $42 \mathrm{mc} / \mathrm{s}$. Incorporates crystal filter, $\$$ meter, variable bandwidth, etc. operation $110 / 230$ volt A.C. Supplied in perfect order at $£ 30$ each. P/P $10 /-$. Further details on request.

MARCONI B. 29 L.F. COMMUNICA TION RECEIVERS. Self contained 7 valve receiver similar to CR. 100 covering $15 \mathrm{kc} / \mathrm{s}$ to $560 \mathrm{kc} / \mathrm{s}$ on 4 bands. Operation 200/250 v . A.C. Supplied in good condition and complete but not tested. Only $63 / 19 / 6$ each. P/P 10/-


LORAN INDICATORS APN4. Another release, again brand new. These units conrelease, again brand new.
tain a 5 CPI c. $5 . t ., 146 S N 7$ valves, 86 H 6 , $36 S \mathrm{~L} 7,16 \mathrm{SJ7}$, a $100 \mathrm{ke} / \mathrm{scrystal}$ and thousands of other useful components, and are readily convertible to an oscilloscope. $65 / 19 / 6$ each. P/P 10/-.


## AMERICAN GEARED MOTORS

24 volt D.C. motor fitted with precision gearbox giving twin outputs of 20 and 6 r.p.m. Also $\begin{array}{ll}\text { operates } & \text { on } 12 \text { volts. } \\ \text { new, } 19 / 6 \text { each. P/P } / / 6 .\end{array}$
$100 \mathrm{KC} / S$ CRYSTALS. $\frac{3}{4} \mathrm{in}$. spacing, 15/- each. CV967 lin. C.R.T. 4 v. HEATER. Suitable for oscilloscopes, etc., 25/- each. P/P 1/-.
CRYSTAL MICROPHONE INSERTS. Only 4/6 each. P/P 6d.

## ALKALINE NIFE ACCUMULATORS

 Banks of 10 cells giving 12 y. $45 \mathrm{~A}, \mathrm{H}$. Unused in wooden crates, $£ 5 / 10 /-$ each. P/P 7/6. Size: $26 \frac{1}{2} \times 8 \frac{1}{2} \times 5 \frac{1}{2} \frac{1}{2}$.MIDGET NIFE ACCUMULATORS. Single units, ideal for models, etc., 2/3 each. P/P 9d. I2-VOLT MOBILE AMPLIFIERS. Ex Admiraley. Mic. or gram. inputs, 10 watts output to 3 or 15 ohm speakers. Not new but in good to 3 or
working order, $£ 8 / 19 / 6$ each. P/P 5/-.
RCA ET 4336 PLATE TRANSFORMERS. Special release, brand new in original transit cases. Primary tapped $200 / 250 \mathrm{~V}$. 50 cycles. cases. Primary tapped $200 / 250 \mathrm{~V}$. 50 cycles.
Secondary, $2,000 / 0 / 2,000 \mathrm{v}, 400 \mathrm{ma}$., tapped $1,500 / 0 / 1,500 \mathrm{v}$. Price $£ 12 / 10 /-$ each. P/P E I.


## AMERICAN MULTI-RANGE TESTMETERS




ALL BRAND NEW. COMPLETE WITH INTERNAL BATTERY TEST PRODS AND INSTRUCTIONS. K5/19/6 EACH. P/P 3/-.

## ROTARY CONVERTORS



12 v. D.C. input 230 volt A.C. 150 watts 50 eycles output. Housed in wooden case and fitted with voltage control slider resistance, switch, plugs and A.C. mains voltage outpu check meter. Supplied in perfect condition, individually tested. $£ 9 / 19 / 6$ each. P/P 10/-

## R. 1155 COMMUNICATIONS RECEIVERS

MODEL "L"


Incorporates the TRAWLER BAND. Coverage 200-250 $\mathrm{kc} / \mathrm{s}$. $\quad 600-1,500 \mathrm{kc} / \mathrm{s}$. $1.5-3$ $\mathrm{mc} / \mathrm{s}$. $3-7.5 \mathrm{mc} / \mathrm{s}$. $7.5-18 \mathrm{mc} / \mathrm{s}$. Supplied in perfect working order, aerial tested, with instruction book, $£ 12 / 19 / 6$ each. P/P 7/6. Standard MODEL "B" also available fitted with improved $N$ type drive, perfect condition, $67 / 19 / 6$ each. Combined A.C. mains power supply and output stage suitable for either above, 85/- each. P/P. $3 / 6$.

UNIVERSAL AVOMETER MODEL "D"



6-VOLT VIBRATOR POWER PACKS. Output 120 volts 30 mA . Fully smoothed, uses standard 4 -pin mallory vibrator. New and boxed, 12/6 each. P/P 2/-.

## METER BARGAINS

\$0 Meroamp. D.C. M/C., flush sq. 6in.
50 Microamp. D.C. M/C., proj. rd. $\left.2 \frac{1}{2} \right\rvert\,$. 50 Mieroamp. D.C. M/C., proj. rd. $2 \frac{12}{2}$ n.
100 Mircoamp D.C. M/C., fush rd. 2 inin. 100 Mircoamp D.C. M/C., ftush rd. 2 hin.
600 Micromp. D.C. M/C., tush rd., 2 in . 500 Micromp. D.C. M/O., tush rd., 2 in.
$500 / 0 / 600 \mathrm{Microsmp}$ D.C. M/C., proj. rd. 2 It $500 / 0 / 600$ Microamp. D.C. M/C., proj.
1 Millamp. D.C. M/C., tiuth rd. $2 \frac{1}{2}$ in. Б0 Mrlizamp D.C. MC., fueh rd. 2 gin.
200 Milliamp. D.C. M/C., flush rd. $2 \frac{1}{2} \mathrm{to}$
7.5 Amp. D.O. M/L proj. rd. 3itn.

15 Volt D.O. M/C., tush rd., 1 totn.
25 Volt D.O. M/C, proj. rd, $24 n$.
120 Vole D.C., M/C., fluah rd. 34 in .
300 Volt A.C. M/L., rectifier, flush rd., 2 jli . 500 Volt A.C. M/I., flush rd, 2 In.

MARCONI TF. 373 UNIVERSAL IMPEDANCE BRIDGES. Recond, as new, 455 each. P/P $10 /-$
W.S. 88 LIGHTWEIGHT TELEPHONE HANDSETS. Ideal for intercoms, etc., $15 / 6$ each. P/P I/-. Std. Post Office handsets, $12 / 6$ each. P/P $1 / 6$.


56-PAGE ILLUSTRATED CATALOGUE NOW AVAILABLE, I/6 POST PAID.

ROTARY CONVERTORS. Input 24 volts D.C. Output 230 volts H.T. 50 cycles 100 watts. New, $92 / 6$ each. P/P/P $7 / 6$. Input 12 walt D.C. Output 230 volt A.C. 50 cycles 12 volt D.C. Output 230 volt A.C. 50 cycles Input 24 volts D.C. Output 230 volts A.C. 50 cycles 150 watts, $£ 7 / 10 /-$ each. P/P $7 / 6$.
PARMEKO MAINS TRANSFORMERS. Input 230 volts. Output $350 / 0 / 350$ volts 150 mA . 6.3 v. 4 amp., 5 v. 4 amp. Brand new, $32 / 6$ each. P/P 2/6.
ADMIRALTY POWER UNITS. 200/250 volt input. Output 250 volts 150 ma , and 6.3 volts 6 amps. Fully smoothed, double choke and paper condensers, fused and fitted with input and output plugs. Housed in grey metal case for standard 19 in . rack mounting. Supplied in perfect working order, 59/6 each. P/P 7/6.


PARMEKOTABLE TOP TRANSFORMERS. Input 230 v. 50 cycles. Output 620/550/375/ 0/375/550/620 volts 250 mA . Also 2-5 volt 3 amp. windings. Size: $6 \frac{1}{4} \times 6 \frac{1}{4} \times 5 \frac{1}{2}$ in. Brand new only 45/= each. P/P 5/-.

FERRANTI POTTED FILAMENT TRANSFORMERS. Hermetically sealed, cermmic terminations. All new and boxed, Type l. $200 / 250 \mathrm{v}$. input. Oueput 6.3 v. C. T 5.6 a., rapped 5 v .6 .3 v . CT 48 a . 4 . 5.6 v. 6.3 v. CT, 1 a. tapped $4 \mathrm{v}, 19 / 6$ each. 5 Type 2. Input $200 / 250$ v. v . V ., $19 / 6$ each. Type 2. Input $200 / 250 \mathrm{v}$. Output 6.3 v .
 P/P $2 /$-, each type.

BARGAIN GRAM MOTORS. Garrard BARGAIN GRAM MOTORS. Garrard centre drive motors complete with turntable,
$220 / 250$ v. A.C. Adjustable mechanically $220 / 250$ V. A.C. Adjustable mechanically
from $0-45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Only $22 / 6$ each. $\mathrm{P} / \mathrm{P} 3 /$ -

## EDDYSTONE MAINS POWER PACKS

 200/250 volts inpu: Output175 volts 60 mA . 175 volts 60 mA . and 12 volts 2.5 amps . Double choke and condenser smoothed, 5 Z4 rectifier. Supplied as new and unused, 32/6 each. P/P 3/6.
AMERICAN ROTARY TRANSFORMERS. 2 models available with either 6 or 12 volt D.C. input. Output 250 volt. $80 \mathrm{~mA}, 22 / 6$ each. P/P 2/6.
VARIAC TRANSFORMERS. Input 230 volts. Output variable from 0 to 250 volts 12 amps . ¢ $12 / 10 /$ each. P/P 5/-
I-OHM 12-AMP. SLIDERS, 6/6. P/P //3.
BATTERY CHARGER OF MODEL TRANSFORMERS. All new, boxed. Primaries tapped $200 / 250$ volts, $3.5,9$ or 17 v . I A. $9 / 9 ; 3.5,9$ or 17 v. 2 A. 14/3; 3.5, 9 or 17 v. 4 A. $16 / 6$; 9 or 17 v. 6 A. $26 / \mathrm{m} ; 3,4$, $5,6,8,10,12,15,18,20,24$ or $30 \mathrm{v}, 2$ A. 21/-. Add postage.
L.T. METAL RECTIFIERS. Full wave bridge connected. $12 / 18 \mathrm{v}$. I. A. $6 / 3 ; 12 / 18 \mathrm{v}$. 2 A. $9 / 3 ; 12 / 18$ v. 4 A. $13 / 9 ; 12 / 18$ v. 6 A. $18 / 6$; 30 v.I. A. 12/6; 30 v. 4 A. $27 / 6 ; 24$ v. 15 A. 62/6. Add postage.

W.II91 WAVEMETERS	
	Portable precision battery operated frequency check meters, coverage $100 \mathrm{kc} / \mathrm{s}$. to $20 \mathrm{mc} / \mathrm{s}$. Supplied complete, with all valves, Xtal and calibration charts Ł5/19/6 each. P/P 6/-.

EVERSHED VIGNOLES SERIES II 500-VOLT MEGGERS. 0 to 100 .megohm. Supplied in perfect conditinn with leather case, $£ 15$ each. Post paid.

## PORTABLE PRECISION VOLTMETERS

BRAND NEW instruments by famous manufacturer. Housed in polished teak case. Moving iron movement reading A.C. or D.C. volts on 2 ranges, $0-160 \mathrm{v}$. or $0-320 \mathrm{v} ., 8 \mathrm{in}$. mirror scale. Accuracy within $2 \%$. Supplied at a fraction of original cost, $45 / 19 / 6$ each. P/P $3 / 6$.


## UNIVERSAL AVOMINOR TESTMETERS

Small, compact,- aecurate instrument. Resistance measurements from 0 to 20 k . ohms, D.C. volts from 0 to 500 v ., A.C. volts from 0 to 500 v ., D.C. current from 0 to 500 mA . Supplied in perfect working order, complete with leather case and leads. $£ 5 / 10 /-$ each. P/P 2/6.


Telephone: MUSEUM 9594

## H. FRANKS

58-60 NEW OXFORD STREET, LONDON, W.C.I
One minute from Tottenham Court Road Station
D.C. RECTIFIER UNITS. Trpe 19, Inpu D. 200 v. A.C. 50 C.P.S. Out
 mitch, eto. Ideal for relag, telephones
 y 10 th H.P. 240 volt 50 cyclos, ktagle phase, serios wound. 2,850 s.o.m. cont rating. Overall length Bin., dis 4 in. 48/7/16 sach.
"BATCHWELL " TYPE W.O. TEERMO ETATs, Variable $15^{\circ}$ to $85^{\circ} \mathrm{C}$. Crangeove oontacts is amp. A.C. 12in stem. Now. $27 / 6$ each.
HEAVY DUTY
Prt. 230 volt able by vollage regulator stad. suljuaton primary, buile in steel case with meter reading 0.100 volts, mains suitch and 0.P. wockets. will stand $100 \%$ overlosd, supplier brand new, size of cane
$15 \mathrm{ln} . \times 21 \mathrm{in} \times 16 \mathrm{in}$. approx., welghi 1001bs. fll $5 / 10$, carr: paid.
sultable for wism. gpllne shart ner of oil, nanged mountity RTTARV VARIABLE RHEOSTATS, 300 Ohm
4ifin.
$\times 4 \mathrm{in}$. .; on twin former with 1 lin. s.u.die, th. dhm. new boxed $27 / 18$. 20 ohma, 2.3 amns., $17 / 6$.
NEW " HRGES "' ONIVERSAL METAL OASED MTORO-SWITEHES. REf. $5 \mathrm{C} /$

2.A.F. gives 45 lb . Bq. limet when coupled to hal for palat spraying, otc. $47 / 8$ ench RrW "KLAXON" STYGMRONODS CAPACITOR INDUCTION MOTORS. 230/ 240 voits A.C. 500 cycles, $1 / 40 \mathrm{th}$ b.p.. 1.500 r.p.m., romunted in metal frame,
 of mator splade, disam. $\ddagger$ lin. complete wil
 TORS. BHOCKPROOF, 3-pole plus aux. 10 amp . 440 rac . contact to 230 v . D.C.
Oolt, mounted on bakellte panel $7 \times$. 4 ina. ooll, mounted on bakellto pane $17 \times 4$ ins.
25 ;- ench. SEVSITIVE TYPE ALTMETERS. Ref 6 6/315A. 3 -potnter type reaiting max. $60, \mathrm{Mo} \mathrm{ft}$. to mic. 20 ff , adjusing knob, Unused. $42 / 6$ each.
"STEWART WARNBR" CAPTLLARYTVPE WATER TEMPERATURE GADGES
30in capllary, $40 \cdot 220^{\circ} \mathrm{F}$. 2 |in. fiush Monting dilis $25 / 1$ oark. BATTERY CHARGE TMMTNG RELAYS. TYpe MNV. 50 c.p.s. Tlming 1 to A bours: thermal


B.T.H. ADMIRALTY PATTERN 57340 SELSYN TORQOE TRANCEIVERS. Waabertight, 230 volt 50 cycles: Corque
20ib. ins. Woight 271 be. , Enindle. Now. Per pair git 5 . 230 volt A.C. operated control unlts, atted stepedow ir ansformer to rectilier giving 12 volts D.G wbich oporates two Telay operatod idoglo pole changoover
 locklng type, D.P.C.O. each wide. New chmmfum-plated bezol. 10 - each. ats tehprerature gavaes. Ref. No. 6 A/S10, Atted Mercury in Steel Capilliary Tube. Tranamitting type. Cor greenhnisen, oto. 186. . THERMOMETERS. With 20fti/50te length of capllary tube. Ref. RA/1313. Ecaled
 former 28 ohm, of amps., length 141 in . width 7in. Ideal for stage cilmming, C.T.C. METAL RECTIFIER ${ }_{2001250}^{\text {8. }}$ With A.O 50 EETS. Tnput
 hoosed in metal cabloet $12 \times 13 \times 11 \mathrm{in}$.
 HAGNETIC RELAP. Rei. GCW $/ \mathbf{3} 544$, with 4 milke $\%$ break 10 amp . contacts D.C.,
coll resistance 180 ohms, 24 volts opera. coll resistance in metal screoning can $3: \times 1$
 TMEE BWITCHES. Varlahle 10 to 30 secs. Fittod 250 voit A.C. 8 smp. or 24 volt
panel mounting slze 21 n . diam., 2 łho O.E.A. Dew 14/- each. Input 12.v. D.C Output 225 v. D.C. 100 mpar. 351 . PAOKARD-BELL PREAMPLITHER with 1-28D7, 1-6BL7GT, mindature relay nocket, switeh and jack plug, Elie Sin. $3 \mathrm{kin} . \times 4 \ln .28 / 8$.
FORMERS HGH-GRADE AUTO-TRANS FORMERS. ${ }^{220 / 120}{ }^{\text {F }}$. Completely enfonden. 8 P/ B.S.R. TAPE DEER 220 V. A.C. 50 c.p.s. , tin
 work. fitted with aln taklag 23 feat of flm, ens, carsptic mechanlem or of timo gearing and guta can be used as a clne carnera by ally
 Orisinnll deefigned to phot ngraph matio dials, unes 35 mma film, fteted 1 HIn . fil. lans, hand or electrical wind, no shattor
or IFIa diaphragm. wall talce single shota or Irls disphragm. Will take kingle whots
half-Ielca size pictures. Ideal for mod-mali-felces size pictures. Ideal for mod ATR-POSTTOK INDICATORS, itted with approx. 121b. of usefal parts, including 3 mpets of infinitely varinble gpsed gear. Diven, two 27 wot D.C. 1.5 A. mown WIth phile ghafis $83 / 5 /-$ enth. covtactors, by watlord Electric C Lid.. double pole contacts 10 carrv 20 1 n .
 MOTORs $200 / 250$ A.C. 3 watte Anal epoert ${ }^{30}$ r.p.m. 16/6. PROCES TMEES, variable 5 mitna to 30 mlns 5 -amp. make or break contacta, total
 MNRSTMAN GZAR O. \%-DAZ NINE MOVEMETS Admiralts CLCM WR final apeed 1 rev. in 3 mins. Fith contactine polnt once por minute, in molal cas 31 n . diam., 24 n . doep, stop and mfar
 MOTORs. Fitted cenififugal tan, availabl 12 volts D.C. or 110 wolts A.C./D.C Sultabl3 for car hea'e-3, projoctore 4 in $\mathrm{in} \times 34 \mathrm{in}$. appror. Price 29 L earh NEW SEWTNE MACETNE MOTORS 1001130 volts A.O.IDC. $1 / 13$ hh A.p Pittod palley, sijustable fixthe bracket ne adie lisht lamp with awtich, rubber driving belta, connecting
foot control. $37 / 6$ each
Goot control. 376 each. Ref. ist/4iof, fited with 1 kin. this le arth Irla diaphragm to p/l6, rarlable apoed shtter, takess osth of 16 mm . Airm, dine raseote and transt case, $£ 5 / 18 / 6$ PRESSURE PUMP UNITS. Operated 10 by volt A.O.ID.O. motor disvelons with loft. length of presente huse, cable and cennectors, eta. Compact unit atter
 N.8.4. In inat for laboratory nee, sta.
 PUMPA, roi. SUE/F281. 24 volts, 2 ampa giting 7 ph at 15 th to th will stye proportionately leze os 12 volte. operall longth ain. x 2in. wide approx. ideal for
 h.D.. 2n0/250 volts D.C./4.C. leagth tin. thick, unused, $27^{\prime 6}$. SOLENOTD OPERATED OLL DILUTION for alr or oll, martmum ajt pressure

 CONTACTING FLOAT SWITCBES. Rot scw/46s2, compring fiosi In mire operating make or break eealed contact Ideal for automatio blye pump control and non-cortotive Hewda, etc. 15/ each O/12 VOLT A.C.D.C. MOTORS. U.A.A. intermiktent raing. coupled to gearbox anal eppeed 100 r.p.m., fin. diam spludle, size 3Hin. x 21 n . 1 ¹In. 15/-
STEP-DOWN TRANSFORMERS
180/230 A. AC. 50 evclea: Input
 heattar spont welding. 28/6. OONTACTORS. B make 8 amp.

ILLUSTRATED MAILING LISTS PRICE I/6 POST PAID

## MIDLAND INSTRUMENT CO.

HUGEES MOTORS, shunt wound 12 v . 11 . mp ., ${ }^{\text {speed }} 5.000$ r.p.m., reversing, alze 3 k k . long. $1 \geq \mathrm{in}$. dia., tin. shaft, welgbt 20 oz, , a very superior motor desigued for antl-ralar equipment, new, unused. 10\%, post $1 / 6$. Ditto fitted re duction gear, giving a final drise (tlo. ahaft) of elther 320 or 1.
$12 / 6$. post $1 / 9$.
BARR \& STROUD RANGEFINDERS. 1-metre bsse, colncidence type, a hand-held instrument that gives range ln yards on any dletant object from 600 to 20,000 gards ( 12 miles). The varlable focus $14 \times$ rigbt eyeplece provides two Images of the object are brought into colncldence the range in yards can immediately be read In the left eveplece. Fitted two fliters and other refluementa. A very highoquality Insirument, ortginal cost 8180 , one price new or near new endition, supplied in stout Abre contalners, $£ 5$, carrlage $100-\mathrm{m}$. 7/6, $200-\mathrm{m}$. $101 \mathrm{f}, 300-\mathrm{m}$. 12/6. N.I. 20/-
CHASSIS. U.S. manufacture all alumintum. $121 \times 8 \times 5 \frac{1}{3} \times$. complete with top cover mone items have been removed, remaining are:- 25 Amphenol midget ceramic B7c type $/$ holders, complete with cans, over 70 colour onded $6 \%$ resistors, aleo many
ceramicons and other conds., trimniers, padders, flxed and varlable Inductances, transformer, v/control, otc., new, naused, hargaitu, $10 /$-, post $3 / 6$.
OPTICAL UNITS, conslats of a braas roount bolding two highograde $40-\mathrm{mm}$. dla. achromats, epch 3in. focal length, forming a Potzral aystem, lenses easily removed by un acrewing retalning ring, new and perfec
are 3 fin. focal length,
P C
R.C.A. ROTARE RELAYS, $12 \cdot v$. D.C., powerful 18 -deg. movement, actuating 2 heavy and 1 light duty 3 -pole changeover contacts. also fitted contact autornalically opening bored, well worth $50 / \mathrm{F}$. Our price $7 / 6$, poot $1 / 6$.
JOHN OSTER MOTORS. 12 v . 1.4 amp ., Inlthal drive 5,600 r.p.m. fitted onelosed reciprocatling shaft in guddes, with lin. movement the ather 24 r.p.m., Also a linear one of the finest of ex-Covt. motors, wetl worth E 12 , our price new unined $25 / \mathrm{m}, \mathrm{post} 1 / 9$. VACUUM GAUOES, panel mounting $2 \frac{1}{3} \mathrm{In}$. equare front, dlal gradusted in unts up to 6 fohes of mercury with $\frac{1}{}$ sub-divislons, back fited brass union plpe connector, bew boxed $5 /=$, post $1 / 6$.
CHARGING SETS, lightweight, 46 the, enaily carried, 4 -stroke aircooled, runs for 18 hours trom 1 gall. petrol, D.C. outpnt 12 to 18 volts at 80 watts, complete with exhaust pied in stout cases, out price $28 / 10 /$, carriage $100 \mathrm{~m} .12 / 6,200 \mathrm{~m} .16 / 6,300 \mathrm{~m}$. $80 /-$ (inland only).
TELEPHOVE SETS, consist of two comblned mlcrophones and recelvers, whlch when wired up by ordinary twin flex, prowde perfect 2 -way commundcation, excellent results at 1 mlie range have been reporied, eelfenergised, no battory required, sot complete, new namsed, 7/6, post $1 / 3$; aultable twin $14 / 3$
suppifed, postage each 20 L . fex 3d. extra.
SELENIUM RECTIFIERS. Theme are latest brand new G.E.C. supply, not ex-Govt or assembled from bitk, full-wave bridge, $12-\mathrm{w}$. If amp. cont. 2 amp. int., $10 / \mathrm{o}$, poat $1 / \mathrm{f}$
 type, $15 /=$, poat $1 / 9 ; 3 \mathrm{amp}$. type $20 / \%$, post $2 / 3$, complete with wirlig dingram.

Manv other Bargains ; send stamp'd addressed envelope for Iists MIDLAND INSTRUMENT CO., MOORPOOL GIRCLE, BIRMINGHAM, 17 I. HAR 1308

## TRANSFCRMERS FOR MUILLARD 510 AND STEREOPHONIC AMPLIFIER

ALL TRANSFORMERS. Fully guaranteed, Bbrouded. Upright mounting, Interleaved and impregnated. primarles on
T.102. For two 510 smpa, low loseling ( 6,000 ohm. output trana.) $300-0-300$ v., $150 \mathrm{~mA} .6 .3 \mathrm{v}, 4 \mathrm{z}$ dT., R. 3 v., 1 a., $34 / \mathrm{m}$. P. \& P. $3 / 9$.
T.55, For 510 Amp and Tuner, $300-0-300 \% .220$ mA .6 .3 v. 2.5 a. c.T., 6.3 v. 2.5 a., 6.3 v, 1 a., $32 / \mathrm{m}$.
$\mathrm{P} / \mathrm{P}$. T.56. For $510 \mathrm{smpa} 300-0-300$ v. 100 mA .6 .3 v.
2.5 a.c.T., 6.8 V. 1 s., $2 \% / \mathrm{P} / \mathrm{P}$ 2/6.

 SPECIAL OFFERS. T. 44 and T.55. $59 / \mathrm{l}, \mathrm{P} / \mathrm{P}$ 8/6. ONE T. 101 and T. $100^{\prime}$ s for Btaren Amplifier. $86 / \mathrm{F}$, P/P $3 / 6$

## POLYTHENE

## INSULATORS, END CAPS, PLUGS, ETC. <br> for <br> T.V. aerials

Standard Articles or Special Mouldings AMPLEX APPLIANCES (KENT) LTD. 19 DARTMOUTH ROAD. HAYES, BROMLEY, KENT (RAVensbourne 5531
All export enquiries to
ANGLO NETHERLAND TECHNICAL EXCHANGE LTD.,
3, TOWER HILL, LONDON, E.C. 3

##  See and Hear all the latest STEREO \& Hi-FI <br> <br> LASKYS <br> <br> LASKYS RADIO

 RADIO}
## IN LONDON's NEWEST DEMONSTRATION STUDIO

## AMPLIFIERS

QUAD, ROGERS, LEAK, RCA. JASON, LINEAR.
PAMPHONIC, DULCL, W/B, AVANTIC
ARMSTRONG, ETC.

## SPEAKERS

WHARFEDALE, GOODMANS LOWTHER, G.E.C., LORENZ PHILIPS, TANNOY, etc.

## PICKUPS

COLLARO, GARRARD, CONNOISSEUR, LEAK, B/J, ORTOFON, GOLDRING, etc.

Photo shows only a section of our fine new Studio at 42 TOTTENHAM COURT ROAD in the heart of London's West End. Come and have comparative demonstrations under Ideal conditions assisted by specialist staff. If unable to cali, write us. Our Technical and Mail Orders Depts. are at your service.


SPECIAL OFFERS OF FAMOUS MAKE NEW AND UNUSED MULTI-TEST METERS


AN/27. Accurate, highly sensitive 27 range Test Meter. 5,000 ohms per volt A.C. and D.C. In black leatherette-covered wood case, $7 \frac{1}{9} \times 9 \frac{1}{1} \times 33^{\prime \prime}$ deep, with carrying handle and ample room for small tools as well as leads.
Volts (D.C. and A.C.) 0-2.5-10-100-250-5002,500.
Milliamps D.C.
.... 0-500
Amperes D.C.
…... 0-1-5
Ohms (on internal batteries) 0-2500-25,000-250,000-2,500,000
Decibels... $0,+20,+28,+34$ ( $O D B=6 \mathrm{~mW}$ into 500 ohms). Leads $7 / 6$ Leads Avartable on anky tomm.

## AN/20. POCKET SIZE MICROTESTER

18 range multi-test meter for amateur or service engineer. 5,000 ohms per volt A.C. and D.C. with accurate lineal scales for the lower A.C. ranges. In black leatherette-covered case, $3 \frac{3}{3} \times 3 \frac{3}{3} \times 1 \frac{1}{2} \mathrm{in}$. deop.
Volts (A.C. and D.C.) 0-2.5-10-50-250-1.000 Milliamps D.C. ........................ 0-1.000 Ohms ... 0-15,000-1,500,000
Decibels ... 0, +13, +27
( $O D B=\mathrm{fmW}$ 'nto 500 ohms.)

## STEREOPHONIC

P.U. CARTRIDGES

RONETTE turnover $83 / 5$ ACOS 73-1a turnover
$\begin{array}{lll}\text { or 71-3 .................... } & 55 / 5 \\ \text { B.S.R. turnover ...... } & 69 / 6\end{array}$ 55/5 B.J. with diamond 7 Gns. also
with plug-in head 8 Gns.

## JASON STEREO KITS

in stock

## 7-VALVE AM/FM RADIOGRAM CHASSIS

Famous make, for $200-250 \mathrm{v}$. A.C. Output 4 watts matched to 3 ohms speaker. 7 valves: ECC85, ECH81, EF89, EABC80, EL84, EZ80, EM81. Magic eye tuning indicator. Covers medium, long and FM bands. Length 12in., height $7 \frac{3}{2}$ in., front to back $8 \frac{3}{3} \mathrm{in}$. Limited number only. Brochure on request.

LISTED AT 22 GNS. ET7.19.6
Carr. and Insurance, 12/6.
£3/12/- deposit and 12 monthly payments of $26 / 8$.

HIRE PURCHASE. Deposit and monthly terms to suit you. Call or write stating requirements.


COMBINED AM/FM TUNER, CONTROL UNIT AND AUDIO PRE-AMPLIFIER (self-powered)
Md. H11 by famous manufacturer. Note these star features:

* FM plus Long, Medjum and Short recepbion
* High Fidelity Audio Pre-Amplifier * Indenendent Bass and Treble Controls
* Pickur Matching Device and Switch poritions for LP and 78.
* Tape Record and Replay facilities * For use with any Iti-Fi amplifler * Magic Eye Tunin: Indicator.

For A.C. 200-250 v. 7 B.V.A. glass miniature valves, ECC85, ECH81, EBF89, two EF86 EM81, EZ81, and two matched Diodes. Glass dial, $11 \frac{1}{2}$ n. $x$ itin., fine readings and "LOG scale. Dimensions: length 12 in. depth oin. from dias front, 10 in . meluding knobs and eptndles height 7 in.
LISTED AT £29/3/10.

## LASKY'S <br> 20 SNS.

Carr. and Ins. 12/6.
Available on H.P. terms to suit vou
Full detajls nost free on request.

## SPECIAL

 TAPE OFFERFamous make, P.V.C. base on latest type plastic spools. Brand new, perfect, boxed and guaranteed.

1,200ft. on 7in. Spool ... 21/850 ft . on $5 \frac{3}{3} \mathrm{in}$. Spool $16 / 6$ 600ft. on 5in. Spool 400 ft . on 4 in . Spool. 225 ft . on 3 in . Spool ..

Post: 1 Spool, 1/6. Orders over 60/- post free.


Collaro RC.456. Incorporating auto and manual control Complete with Studio crystal p.u. and sapphire stylus. List e13/17/-. Post $3 / 6$.

Garrard 120, MK. II, £9/19/6. Garrard 121, MK. II, £10/19/6.
COLLARO 4-EPEED SINGLE PLAYER Model 4/564 with
Studio T or p.u.
$\quad 6.19$.

Post free,
Garrard 4SPH Single Player, Garrard
$87 / 19 / 6$. Post free.
Collaro "Junior'" 4 -spd. motor and p.u. with HGP59 89/6
cartridge. Post 2/6. cartridge. Post $2 / 6$.
Motor only $59 / 6$.
$\begin{array}{lll}\text { Motor only } 59 / 6, & \text { post } & 2 / 6 . \\ \text { Pick-up only } 29 / 6, & \text { post } & 2 / 6 \text {. }\end{array}$ Pick-up only 29/6, post 2/6.
GARRARD GARRARD Auto - Changers, Transcription Motors, Pick-Ups, all latest models in stock.

## CARRYING CASES

Large range of Cases for single Large range of Cases for single
record players, auto-changers record players, auto-changers
and tape decks, at bargain prices. and tape decks, at barg
Call or send for list.

## MULLARD 510

## AMPLIFIER KIT

All specifled components and your choice of transformers and chokes by Partridge, Haddon, Chokes by Partridge, COMPLETE KIT of parts and printed circuit as low as \%9,9,0 Details .on request. W』. 0 Book $3 / 6$ post free. Printed Circuit separately 22/6. Also available built ready for use. Price according to transformers used.

## MULLARD 3-3 AMPLIFIER

Built to Mullard's exact speciflcaBuilt to Mullard's exact specifica-
tion, with 3 Mullard valves EL84, tion, with 3 Mullard valves EL84,
EF86, EZ81, complete with front panel.
Post free.

## famous make DE LUXE TAPE RECORDER

## LISTED AT 64 GNS.

Lasky's Price

42
GNS.


Complete with Lustraphone
"Lustrette" mike and 1,200ft, tape

## Carr. and Ins. 21/-

Limited number only
Fmbodies the famous Collaro Tape Transcriptor Mk. IV. Tape deck, 6 -valve H i-Fi amplifler, and 10 in . $\times 6$ in. elliptical speaker, in handsome case superbly flished two-tone simulated lizard. Overall size: $18 \frac{1}{2} \mathrm{in} . \times 15 \frac{1}{2} \mathrm{in} . \times 7 \frac{1}{2} \mathrm{in}$.
TWO HIGH GAIN INPUTS for radio/gram and mike, each separately controlled and can be mixed, so that speech and singing can be superimposed on an orchestral background. Two outputs, monitor headphones and extension speaker. 4 WATTS UNDISTORTED OUTPUT. Frea. range at $7 \neq \mathrm{m}$ per sec., $50 / 12,000$ c.p.s. Separate bass and treble controls, automatic equalisation on all 3 speeds. Magic eye level indicator. Upper and lower track recordings can be made quiokly without spool reversal and a safety device prevents accidental erasure.
 control.
For A.C. mains $200 / 250 \mathrm{v}$. GUARANTEED FOR 12 MONTHS. Demonstrations at both addresses. Available on H.P. terms; deposil and monthly payments to suit you.
The carrying case only can be supplied for $79 / 6$ plus carriage.


## SPECIAL OFFER OF HIGH FIDELITY TAPE RECORDER HEADS

Leading make, new and unused, upper or lower track RECORD/PLAYBACK, high impedance. Double wound and will reproduce up to 12,000 c.p.8. at 5 millivolts at 1 Kc. at 7 it i.p.s. ERASE, low impedance.
Please specify upper or lower track.

"LINEAR" STEREOPHONIC GRAM AMPLIFIER with outputs for two matched $2 \mathbf{- 3} \mathrm{ohm}$ speakers. Can also be used as a straight 6 -watt amplifter Instructions supplied.
Post \& Pkg. 5/-.
£6.19.6
"LINEAR" TAPE DECK AMPLIFIER. Type LT45. A complete unit (power pack and oscillator incorporated) suitable for Collaro Tape Transcriptors (all marks), Brenell, etc.
Post \& Pkg. 5\%. 12 gns.

[^10]
## BARGAIN VALUE

 IN PORTABLE GRAM
## AMPLIFIERS

$3 \frac{1}{2}$ watts output to 3 ohms speaker. Uses one valve and metal rectifler ECC82. Incorperates tone and volume controls. Size $8 \frac{1}{2}$ in. $\times 3$ in. $\times 3 \frac{1}{2}$ in. high.
LASKY'S PRICE
complete. Post $3 / 6$
59/6
"LINEAR" "'DIATONIC.' High fidelity $10-14$-watt ultra linear Amplifier with integral pre-amp. and tone controls. Two individually controlled inputs provide mixing facilities. provide mixing racilies. 12 gins.

MICROPHONE BARGAINS
ACOS type 33/1.
Crystal hand or
table Microphone.

Incorporates spec
ally designed
response 30-7,000 response 30-7,000 c.p.8. Omni-
directional. Suitable for tape directional. Suitable for tape
recording, public address, etc. recording, public address, etc. case. Brand new in maker's cartons. List $50 /-$.

Y'S PRICE
$29 / 6$

ACOS CRYSTAL PENCIL MIKE, type MIC.39/1, complete with cable. Listed at $55 / 5 /-$
LASKY'S PRICE
Post $1 / 6$.
$59 / 6$
In presentation case with Desk Stand, 69/6. Post $2 / 6$.

ACOS Sub-min. Crystal Microphone Inserts type MIC.17 Size approx. tiv. square, $7 / 32 \mathrm{in}$. thick. Brand new and boxed. Each

3/6

## MOVING COIL

## P.M. SPEAKERS

$2 \frac{1}{2} \mathrm{in} .17 / 6$. 3 in . and $3 \frac{1}{3} \mathrm{in}$. 19/6 5in. 14/6. 6 in in. 17/6. 8 in . 19/6 10in. 29/6. 12 in . 29/6 | $6 \frac{1}{2} i n$. |  |
| :--- | :--- |
| $7 \times 4 i n$ |  |
| with |  |
| Ellinansformer ... | $21 /-$ | $10 \times 7 \mathrm{in}$. Elliptical

32/6

## TAPE DECK OFFER

COLLARO TAPE TRANS CRIPTOR, Mk. III, fitted with digital counter. Limited quantity only. List £22. Lasky's Price £17/19/6_ Post free.

COLLARO TAPE PRE-AMPLI FIER, fitted and wired. \&21. COLLARO TAPE TRANSCRIPTOR Mk. IV. 22 gns. LANE DECK £18/10/-. WEARITE DECKS £35, £40 and £45. Carr. extra.

## SPECIAL OFFER!

COLLARO 4-spd. Transcription Turntables, $4 \mathrm{~T} 200 / \mathrm{PX}$, with Studio trans. p.u. Brand new and unused. List $£ 19 / 10 /=$ Lasky's Price $\quad$ Carr. \& Pkg. $7 / 6$
2.19.6

## PICK-UP CARTRIDGES

BELOW HALF PRICE!
Your choice of ACOS, GARRARD GC2 and B.S.A." "ful-fi" TC4 turnover crystal p.u. Cartridges, complete with L.P. and standard styll. All listed at 41/7. LASKY'S PRICE 18/=
Post $1 /$.

20,000 VALVES. Brand new surplus and imported, also full stocks of B.V.A. valves and C.R. Tubes. List post free.

LASKY'S PORTABLE
GRAM AMPLIFIER KIT 2 watts. Note small dimensions,
 5in. Uses EL84 output and 6X4 rectifier.
COMPLETE KIT, including valves, printed circuit, full instructions, less Speaker. 49/6 Carr. 2/6. "Elac" Eilliptical $7 \mathrm{in} . \times$ iin. Elac

# THWTWTTWWWTTWWTWWWTT BAND III CONVERTERS 




CAN BE BUILT FOR $89.19 .6 \underset{\text { Pkg, } 3 / 6}{8}$

## TRANSISTOR PORTABLE

For Construction on PRINTED CIRCUIT 61 in . $\times 2 \frac{1}{2} \mathrm{in}$. using 7 Transistors and 1 germanlum diode; 6 v . operation; very low consumption, 200 milliwatts p.p. output; Ferrite rod aerial; fully tunable; choice of $7 \mathrm{in} . \times 4 \mathrm{in}$. elliptical or $3 \frac{\mathrm{in}}{} \mathrm{i}$, P.M. speaker: choice of cabinet. Circuit diagram and full building instructions supplied.

## LASKY'S 4-VALVE S/HET PORTABLE

FOR ONLY $27 / 7 /$ - plus $3 / 6$ carr. and pkg. you can build this battery Portabl using all brand new components and valves. PRINTED CIRCUIT, circuit diagram and full Instructions supplied. Only batteries extra.
Circuit diagram and full data $1 / 6$. FOR ONLY 29/9/- plus $3 / 6$ carr. and pkg. you can build this job as a mains and battery Portable using our specially designed build-it-yourself Power Unit for $200-250 \mathrm{v}$. A.C.



CAN BE BUILT FOR £4.19.6 Post ${ }_{5 /-.}$ Pkg. CABINET only, as illustrated, $14 /-$, plus $4 / 6$ post and pkg.

## LASKY'S TRANSISTOR SUPERHET TUNER

For construction on Printed Clrcuit, size $3 \frac{7}{3} \mathrm{in}$. x $3 \frac{1}{2} \mathrm{in}$. Uses 3 R.F. transistors, 1 germanium diode, 3 I.F. transformers, Ferrite rod aerial. Operates from 6 v . battery and 1.5 v . cell.

CAN BE
BUILT FOR
£5.12.9
Post $3 / 6$. Full details on request.

## MIDGET T.R.F.

Handsome contemporary design case, overall size $8 \frac{1}{2} \mathrm{in}$. wide, case, overall size $8 \frac{1}{2} \operatorname{in}$. wide,
4 in . deep, 5 in . high, 2 latest 4 in . deep, 5 in . high,
double-purpose valves $E B F 89$ and ECL80, contact cooled rectifler, ECL80, contact cooled rectifler,
For A.C. mains $200-250$ v. med. and long wave 5in. P.M. speaker, Plastic cablnet in cream, pastel green, pink, blue.
FULL DATA, instructions, circuit diagram shopping list, $1 / 6$

## LASKY'S TRANSISTOR

AUDIO AMPLIFER
MK. II (200/250 milliwatts) Size $5 \frac{1}{4} \times 2 \times 1 \frac{1}{2}$ in., weight $4 \frac{1}{2}$ oz. excluding battery. Operates from ${ }^{6} \mathrm{v}$. battery. Output tmp. 3 ohms.

COMPLETE KIT
including 4 transistors, all brand new components, latest T.C.C. miniaturs condensers, Printed Circuit and full instructions.

3/6.
79/6
Full data and circult diagram, $1 /$ 。

ALL TYPES OF CHASSIS

## We hold the largest

 selection.Leading makes cluding all models ARMSTRONG, EMPRESS, DULCL, etc.

## Laskys RADIO

A.M. chassis, L.M.S. from 7 Gns A.M./F.M. chassis from 14 Gns A.M./F.M. STEREO from 22 Gns

DULCI HI-FI CHASSIS TUNERS AND AMPLIFIERS New designs including:MdI. H.4. AM/FM Radiogram Chassis, 4 wavebands, including V.H.E. $224 / 6 / 6$ MdI. H.4.PP. AM/FM Radiogram chassis, 4 waves including V.H.F. 6-8 watts o.p. push-pull, MdI H4T/2. Self-powered Mdl. H4T/2. Self-powered AM/ Md1. H4T. Self-powered AM/ MdI. H4T. Self-powered AM/
FM Tuner FM Tuner
Dulci FM Tuner.......$~$
\& $17 / 10 / 3$

## 际 SPECIAL OFFER <br> MINIATURE INSTRUMENT SOLDERING IRONS

Famous make, 230/250 ष., 25 watts, complete with pencil bit and 3 -core flexible lead. Overall length 10 -in. Tell-tale light in handle shows when current is on. LIST PRICE 22/6. 16/6 LASKY'S PRICE

Post 1s. 3d.

CONDENSERS, RESISTANCES. High stablity Resistances, Electrolytics. Al values and sizes stocked.

SPEAKER COVERINGS. Large stocks of Tygan and "Someweave." Any size pfece cut. Samples and prices post free.

JASON F.M. TUNER Speclas Parcel containulng data book, chasesis front pazel, dial, drive, tuming condenser full sets of coils, I .F.s,
ratio
detector, etc.
Post
$2 / 6$$\quad 68$ ratio detector, etc. Post $2 / 6$.
DATA BOOK with price list. 2/-. This DATA BOOK with price list. 2/-. This Also in stock Jason "ARGONAUT" AMFM TUNER And JASON "MER-2/- each. post free.

ALL TYPES F.M. TUNERS DULCI, QUAD LEAK, ROGERS, etc

LASKY'S F.M. TUNER PRINTED CIRCUIT VERSION OF G.E.C. 912 "FM. PLUS" TUNER FOR HOME CONSTRUCTION
Uses 5 vaives, 2 germanium diodes and brand new T.C.C. condensers. The PRINTED CIRCUIT ensures that the I.F. and R.F. amplifiers are extremely stable at maximum gain and results are consistent on all tuners.
CAN BE BUILT FOR
(including valvos)
Post Pree.
\&7.19.6
G.E.C. FM TUNER BOOK plus our full data and shopping Last, $2 / 6$ post free. All parts available separately

Output Transformer to suit, correct ratio, matched to 3 ohms, 9/6. Post 1/.
Driver Transformer 9/6. Post 1/-.
C.R. TUBES, new, unused. 14in. 214/19/6; 17 in ., £16/19/6; 12in., \&8/19/6; 9in. 25/17/6. Carr. and ins., 22/6.

TURRET TUNERS. types-Cyldon, Brayhead, Telenge, Valradio. Describe your set and we will quote you Prices from 79/6.

## RADIO PARCELS

No. 1. Everything to build a 4 -valve 3 wave superhet for $200 / 250 \mathrm{~V}$ A.C. mains. Can be bullt for 8 g/19/6. No. 2. Everything to buikd a T.R.F 3-
valve eet for valve set for $200 / 250$ V. A.C. malns.
Med, and loag wave. Can be built for



NOW ON PRINTED CRECUIT 3-TRANELSTOR POCKET RADIO T.R.F. ctrcuit coverlag med. and long Ferrite aerial. Size $44 \times 3 \times 11 \mathrm{la}$. $\quad 99 / 6$ CAN Be BUILT FOR ONLY 99/6 Frall
iree.

POCKET VOLT TEST METERS. Two ranges D.C. $0-250 \mathrm{v}$. and $0-25 \mathrm{v}$. With leads in leather case, 12/6. Post free.

## TRANSISTORS

AUDIO P.N.P. Junction Type suitable for high gain and low freq. amplifiers, and for output stages up to $2 \overline{2} 0$ milliwarts. $7 / 6$
(Double spot-yellow ard greeli.) $7 / 6$ 3 for $20 /-6$ for $37 / 6$, post free.
R.
P. medium and low freq. Dscllatars, frea changery and I.F. amplifers $15 /=$ (1.5 to $8 \mathrm{Mc} / \mathrm{s}$.)
(Double 8 p
(Bouble spot-vellow and red Special prices for larger quanttied MOLLARD Transistors. OC14 40/-; OC45 351:- OC70 or $007121 /-$; OC72 or $0 C 73$ BrImar Transistors. T81 or T82 12/6; T83 15/-: T84 27/6: TP1 or TP2 40/-: TJ1 15/-: TJ2 16/6; TJ3 19/6.
" GOLDTOP ", POWER TRANSISTORS

All types now in stock, details on request. Example: V15/10P as illus., ideal for output stage of car radio, will give approx. 3 watts operating from 12 v . Each 17/6. Post free.





SATURDAY
Early Closing
Thurs., I p.m.
(Both addresses)

LASKY'S (HARROW ROAD) LTD.
42 TOTTENHAM COURT | 370 HARROW ROAD, ROAD, W. 1.
Nearest Station Goodge Stree MUSeum 2605

PROMPT POST SERVICE
Please address Mail Orders to Harrow Road.

RECORD PLAYER CABINETS


A practical cabinet, nicely designed, cloth covered two cone (brown and coffee). Size $15 x$ $17 \times$ Bin deep Takes B.S.R 4 . Takes B.S.R. 4 speed autochanger and $6 \frac{1}{2}$ in. round or elliprical speaker
 and ins. $4 / 6$.


## R.P.4. 79/6

Stylish cabinet by famous manufacturer. Cloth covered in contrasting colours red and grey). Gilled front $15 \times 19 \times 8 \frac{1}{4} i n$. deep. Beautifully madea cabinet of which you can be really proud Takes 4-speed B.S.R. Autochanger. $6 \frac{1}{2}$ in. round or elliptical speaker. Room tor any amplifier of your own choice. Carr. and ins. $4 / 6$.

## STEREOPHONIC AMPLIFIER £7.19.6

## 12 months guarantee

Beautifully made for portable stereophonic record players. Latest design with printed eireuit. Dimensions $3 \times 5 \nmid \times 9 \neq \mathrm{s}$ in. A.C. only. Mains isolated. Twin amplifiers each side giving 3-4 watts output. Incorporating ECL82 triode pentode valve. Full tone, volume and balance controls. Complete and ready to fit. Knobs $3 / 6$ per set extra. P. P. and Ins. 4/6.

## STURDY CASE 12/6


$8 \frac{1}{2} \times 7 \frac{1}{2} \times 3 \frac{1}{2} i n$. deep. Covered in burgundy and grey washable Rexine. Strong clasp hinges and handle. Ideal or Portable Radio chassis or Transistor set. Can be adapted as necord carrying case to hold eighteen 7in. long playing records. P \& P. 2/6.

## STRONG

PHOTOGRAPHIC SLIDE CASE 17/6 Rexine covered. Size $8 \times 12 \frac{7}{8} \times 27$ in. deep. Takes 150 slides. Numbered partitions. Plated clip. Strong
handle. P. \& Parrying $2 / 6$.


## MOTOR BOARDS. 2/6

For 4-speed Autochangers. P, \& P. I/3.

## FROM DUKE \& CO.



## B.S.R. MONARCH 4 SPEED AUTOCHANGERS £6.19.6

Incorporating auto and manual control complete with turnover crystal P.U. and sapphire stylus. P.P. and ins., 5/6.

COLLARO 4-SPEED AUTOCHANGER c7/19/6
Incorporating auto and manual control complete with studio crystal P.U. and sapphire stylus. P.P. and ins., 5/6.

## AMPLIFIERS

## 12 MONTHS GUARANTEE



Brand new. Latest design with printed circuit. Dimensions $7 \times 2 t \times$ Sin. A.C. only. Mains isolated 2-3 wates output. Incorporating EL84 as high gain output valve. Volume and tone controls. Knobs $2 / 6$ extra. P. \& P. $3 / 5$.

## PORTABLE AMPLIFIER MARK D.2.

 79/6$79 / 6$
Printed circuit. Latest design. Dimensions $7 \times 2 t \times 5$ in. A.C. only. Mains isolated $3-4$ watt output. Incorporating the latest ECL82 triode pentode output valve giving higher undistorted output. Volume and tone controls. Knobs 2/6 extra. P. \& P. 3/6.
PORTABLE AMPLIFIER MARK D.3. 89/6 De luxe model. Printed circuit. Latest design. Dimensions $7 \times 24 \times 5$ in. A.C only. Mains isolated 3 -4 watts output. Incorporating the latest ECL82 triode pentode ourpur valve giving higher undistorted output. Volume treble and bass control. Knobs $3 / 6$ extra. P. \& P. $3 / 6$.

## PORTABLE

AMPLIFIER
MARK D.4. $69 / 6$
Brand new. By famous manufacturer. Especially built for portable record players. Dimensions $4 \frac{1}{2}$
$\times 3 \frac{1}{2} \times 4 \mathrm{in}$. A.C. only. 2

lves: EList as high gain output valve, EZ80 as rectifier. Volume and tone controls. Knobs $2 / 6$ extra. P. \& P. $3 / 6$.

## * A FEW ONLY:-

Garrard stereo autochangers \$12/19/6. R.C. 121/Mk. II automatic selection for any size record. Separate heads for monaural and stereo. Carr. and ins. 516.

## ALSO

collaro conquest stereo aUtochangers. II Guineas. With turnover cartridge for stereo L.P. and Standard. Carr and ins. 5/6.

A beautifully seyled cabinet. Made by a famous manufacturer. In polka dot grey cloth with clipped lid and carrying handle. Size $16 \times 14 \frac{1}{2}$ $8 \frac{1}{2} i n$. deep. Will taxe B.S.R.
Monarch 4-speed Autochanger and $4 \times 7 \mathrm{in}$. elliptical speaker and most of the modern portable amplifiers. Carr, and ins. $4 / 6$.
R.P.5.

$59 / 6$ A well dein brown leatherette. Strong elip fasteners, easy carrying handla Takes B.S.R. Monarch autochanger and space for a $4 \times 7 \mathrm{in}$. elliptical speaker. Can be made up into an ideal Record Player. Size $16 \times 14 \frac{1}{2} \times$ $8 \frac{1}{2}$ in. deep. Carr, and ins. $4 / 6$.

## R.P.3. 79/6

A delightful looking cabinet $14 \frac{4}{4} \times 17 \frac{3}{3} \times 8 \frac{2}{4} \mathrm{in}$. in 2-tone leatherette. Will take a B.S.R. Mon. arch 4 -speed autochanger and $6 \frac{1}{2} \mathrm{in}$. round speaker. Carr. and ins. $4 / 6$.


## EXTENSION

## SPEAKERS

Polished wood cabinet a attractive appearance. Fitted with 8in. P.M. speaker W.B. or Goodmans
speaker W.b. or Goodmans of the highest quality. Standard matching to included. Ins., carr. 3/6.
IDEAL FOR STEREOPHONIC SOUND 8in. P.M. Speakers 8/9. With O.P Transformer fitted 10/., $6 \frac{1}{2}$ in. P.M. Speakers 12/6. $4 \times 7$ in. Elliptical Speakers, 19/6. Postage 2/9

## televox telephone amplifier 89/6



Invaluable in a noisy office or workshop. 3 valves: UY41, UF41, UL41. 3in. speaker and a suction type vibration microphone. A.C./D.C. Size of amplifier $7 \times \| / \mathrm{Xin}$. Fits any type of G.P.O. telephone. P.P. \& ins. $4 / 6$.

## BAKELITE CABINETS 9/9



Brand new. Colour brown. Attractive design. Size $12 \times$ $7 \times 5 \frac{1}{2}$ in. Ideal for small receivers. convertors, exc. P. \& P. 3/9.

GANG CONDENSERS. I/9
Salvage guaranteed. Standard size two gang .0003 . All tested and guaranteed. P, \& P, $1 / 3$.

## GANG CONDENSERS. I/9

Salvage guaranteed. Standard size two gang .0005 ( 500 pF ). All tested and guaranteed. P. \& P. I/3.

GANG CONDENSERS. I/9
Salvage guaranteed. 3 gang, 0005 ( 500 pF ). All tested and guaranteed. P. \& P. $1 / 3$.

## SOLO SOLDERING TOOL $12 / 6$

110 v. 6 v., or 12 y. (special adaptor for $205 / 240$ v. $10 /$ extra.) Automatic solder feed including a 20ft. reel of Ersin 60/40 solder
 and spare parts. It
is a tool for electronic soldering or car wiring. Revolutionary in design. Instantly ready for use and cannot burn. In light metal case with full instructions for use. Postage 2/9.

SOUNDIVISION AND I.F. STRIP. 25/6 Plessey. Tested, IF,'s $10.5 \mathrm{Mc} / \mathrm{s}$ sound, $14 \mathrm{Me} / \mathrm{s}$ vision. 8 valve holders. Less valves. Size $8 \frac{1}{2} \times 5 \times 4 \frac{1}{2}$ in. Circuit included. The tuner unit plugs directly into this chassis. P. \& P. 2/6.

SOUND/VISION AND I.F. STRIP. $10 / 6$ Salvaged. Complete sound and vision strip. 8 valve holders. Less valves, I.F.s $16.19 .5 \mathrm{Me} / \mathrm{s}$. Size $8 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \frac{1}{2}$ in. Drawings free with order. P. \& P. $2 / 6$.

SOUND/VISION AND I.F. STRIP. 10/6 Salvaged. Superhet. 8 valve holders. Less valves. $1 . F, s 7.25 \mathrm{Mc} / \mathrm{s}$ sound. $10.75 \mathrm{Mc} / \mathrm{s}$ vision. Vision complete from input up to video output. Sound complete from input to A.F. amplifier. P. \& P. $2 / 6$.

## TIMEBASE. 4/9

Containing scanning coils, focus unit, line transformer, ere. Less valves. Drawings free with order. P. \& P. 2/6.


SUPER CHASSIS. $99 / 6$
5-valve superhet chassis including 8 in . P.M. speaker and valves. Four control knobs (tone, volume, tuning, w/change switch). Four w/bands with position for gram. P.U. and extension speaker. A.C Ins. Carr, 5/6.

POWER PACK AND AMPLIFIER. $29 / 6$ R.F E.H.T. Not tested. Amplifier stage 6 V 6 with O.P. trans. 3 ohms matching. Smoothed H.T. 350 volt at $250 \mathrm{~mA}, 6.3 \mathrm{v}$. at 5 amp ., 22 v . at $3 \mathrm{amp}, 6.3 \mathrm{v}$. at 4 amp . and 4 v . centre tapped. Less valves. Drawings free. Size 14tin. $\times 8 \times 7$ in. Ins. carr. $5 / 6$.

POWER PACK AND AMPLIFIER. $19 / 6$ Output stage PEN45. O.P. trans. choke. smoothed H.T. 325 volt at 250 mA ., 4 v , at 5 amp ., 6.3 v . at 5 amp ., 4 v . at 5 amp . centre tapped. Valve base for rectifier. Octal or 4 pin tapped. O ave base for rectifer. Output is taken from
valves, lns, carr. $5 / 6$.

POWER PACK AND AMPLIFIER. 19/8 Tested. Output stage 6 V 6 with O.P. trans. 3 ohms. choke. Smoothed H.T. 350 v. at $250 \mathrm{~mA} ., 6.3 \mathrm{v}$. at 5 amp ., 22 v . at $3 \mathrm{amp}, 6.3 \mathrm{v}$. at 4 amp . and 4 v . centre tapped. Less valves. $i^{\text {ns., carr. } 5 / 6 .}$

IDEAL CHASSIS. $39 / 6$
5 -valve superhet. A.C. Radio or Radiogram ehassis. 3 wave bands and gram switched. 8 in. P.M. Speaker included. Set of valves $45 / 9$ extra. Chassis size $19 \frac{1}{2} \times 7 \frac{1}{2} \times 9$ in. Carr. $5 / 6$.

## REGETTERED IMPROVED

12 months'
guarantee
VACUUM T.V. TUBES

$17^{\prime \prime}$ Rect. $£ 7.10 .0 \quad 14^{\prime \prime}$ Rect. $£ 5.10 .0$

Our 12 -months' guarantee ( 6 months full replacement, 6 months progressive) illustrates our wholehearted confidence in the Tubes we offer. We sell many hundreds a week throughout the country and have done so for the past 7 years. Many of them go to the Trade, i.e., to Insurance Companies, Renters and Retailers who are thoroughly satisfied with our supplies. Remember, they also hold a 10-days' money back guarantee,
9 in ., 10 in ., 14 in ., 15 in , and 16 in . Round Tubes. Our special offer of these sizes $\mathbf{6 5}$, 12 in . TV Tubes $\mathrm{C6}$ Three months' guarantee on round Tubes. Ins., carr 15/6.
EXPRESS DESPATCH SERVICE
Please 'phone to confirm Tube in stock. Send Telegraph Money Order. Tube despatched Passenger Train same day.

## I4in, TV CHASSIS, TUBE AND SPEAKER.

 ¢15! $19 \%$As above, with 14 in . Rectangular Tube. 12 months' guarantee on Tube, 3 months guarantee on chassis and valves. Chassis with Tube and Speaker (less valves), $\mathbf{\epsilon} 15 / 19 / 6$. With all valves, $E 21 / 19 / 6$. Complete and working with Turror Tuner, £24/9/6. Ins., carr. (incl. Wube), 25/-.

## POPULAR I2in, PLESSEY TV CHASSIS.

 $39 / 6$This is a real bargain for anyone wanting to make up their own TV at a very low cost. I.F.s $10.5-14 \mathrm{Me} / \mathrm{s}$. Simply adapted for a 12 Channel Turret Tuner and can be modified to take a larger tube A chassis in one unit. Untested. less valves, tube, speaker and scanning coils. (All can be supplied as extras.! Circuit diagram available at $3 / 6$ or FREE with order. Carr. available at ${ }^{3}$
and ins.. $10 / 6$.


## HOME RADIO.

 7916A.C.ID.C. Unlversal mains 5 . valve, octal superhet, 3 waveband receiver can be adapted to gram. P.U. In attractive wooden cabiner $9+\times 18 \frac{1}{2} \times 11 \frac{t}{2}$ in Ins., carr. $7 / 6$.

## SUNDRIES

## TV AERIALS. $\mathbf{2 5 / 6}$

For all I.T.A. channels
Outdoor or loft. 3 elements. P. \& P. $2 / 6$.

## AERIALS. $15 / 9$

B,B.C. Indoor type. Folded dipole with 12 ft . Co-ax cable fitted. Post 1/9.
TV AERIALS. $7 / 9$
for all channels. Complete with Co-ax cable. for use indoors or in the loft. Postage $1 / 3$. SOLDER REELS. I/6
On plastic spools. 60/40 3-core Ersin. 20ft. for 1/6. Will fit the Solo Tool. Post 4d.
INSULATING TAPE. I/S
Finest quality $75 \mathrm{ft} . \times \frac{1}{4}$ in., in sealed metal container. Post on I tin 9d; post on 6 tins $2 \%$.

## MAINS TRANSFORMERS

DROP THROUGH TYPE. $12 / 9$
$350-0-350$ volts at $250 \mathrm{~mA} ., 6.3$ volt at 4 amp . 6.3 volt at 4 amp ., 4 volt at 3 amp ., 22 volt at .3 amp., 4 vole centre tapped at 1.5 amp Primary $200-250$ volt. 50 cyeles. P. \& P. $3 / 9$.

DROP THROUGH TYPE. $\mathbf{1 2 / 9}$
$350-0-350$ volts at $250 \mathrm{~mA}, 6.3$ volt at 5 amp . 4 volt at 4 amp. 4 volt at $7 \mathrm{amp} ., 4$ volt centre tapped at P amp. Primary $200-250$ volt. 50 cycles. P. \& P. $3 / 9$.

UPRIGHT TYPE. $3 / 9$
$350-0-350$ volt at $80 \mathrm{~mA}, 12$ volt at 1.5 amp . 4 volt at 2 amp. Primary $100-120-200-250$ volt Fully shrouded. Ideal for mains auto translormers. P. \& P. 2/9.

## MAINS AUTO. 12/6

0-205-225-245-volts at 300 mA . Isolated windings of 6.3 volt at $2-6 \mathrm{amp} ., 6.3$ volt at- 3.6 amp . 2 volt at $1-4 \mathrm{amp}$. P. \& P. $3 / 9$.
O.P. TRANS. I/3

Standard size 2 -5 ohms. Post $1 /$. 20 for $£ 1$ P. \& P. 5/6.

## HEATER

TRANSFORMER. $12 / 9$
12 volt at $\frac{1}{2}$ amp., $0-200-250$ volts primary P. \& P. I/9.


HEATER TRANSFORMER. $3 / 9$ 2-1 Ratio or 1-2 Ratio auto. transformer 2 volt at 1.4 amp . primary, 4 volt secondary $P$ \& $P$. $1 / 9$.

ELECTRIC CONVECTOR HEATER. $99 / 6$
 You can confidently instal an Electric Convector Heater in the children's bedroom. No fear of their nightelothes eatching fire. They provide a steady They provide a steady comortable heat at an swirched lor 1 or 2 kW illuminated grill 2 kW
 $26 \times 18 \times{ }^{26} \times 1 \frac{1}{2}$ in deep.
ns., carr. $10 / 6$.

## 17" T.V. CHASSIS, TUBE \& SPEAKER E19.19.6

 17in. Rertangular Tube on modified chassis. Supplied as single channel chassis covering B.B.C. Channels $1=5$ or. incorporaung Turret Tuner which zan be added as an extra, $\mathfrak{z}$ our special price to chassis purthasers of $50 /$ giving choice or any 2 channels (B.B.C. and IT.A. Extra channels can be supplied at $7 / 6$ . A.). Extra channels can be supplied at 76 each Chassis size $12 \times 14 \frac{1}{2} \times 1 /$ in. less valves Similar ehassis are used by well known =omJanies because of their stability and reliability. Nith Tube and speaker $\epsilon 19 / 19 / 6$. With all valves 25/19/6. Complate and working with TurretTun2r E28/9/6. 12 months' guarantee on the Tunar E28/9/6. 12 months' guarantee on the Tubes 3 months guarantee on the va.ves and chassis. ?ns. -arr fincl. Tube). 25/-.

OUR NEW WELL. APPOINTED AND FULLY EQUIPPED HI-FI DEMONSTRATION ROOM IS NOW OPEN AT I8,TOTTEN. HAM COURT ROAD. Continuous Demonstrations Daily WHY NOT PAY US A VISIT ? All post orders and correspondence to 162, HOLLOWAY ROAD, LONDON, N. 7

We stock equipment of Quality by all leading makers © QUAD - LEAK - ROGERS D DULCI • AVANTIC PAM - JASON • B.T.H. ARMSTRONG CHAPMAN - GRUNDIG VERDIK - HARTING - G.E.C. WHARFEDALE - GOODMAN • W.B. - T.S.L. © COLLARO - GARRARD - B.S.R. LINEAR - RECORD-HOUSING, etc., etc Leaflets available on request. Write or call for individual attention. Terms available if required.

## STEREO \& HI-FI EQUIPMENT

BUILD A QUALITY TAPE RECORDER FOR ONLY 39 GNS.

## Comprising:

 Special ready built amplifier 825 $8 \times 6 \mathrm{in}$. elliptical loudspeaker $£ 1 \frac{14}{10}$ pecial do luxe Portable Cabinet with gilt fitiings. Collaro mike (or bimilar TOTALOUR SPECIAL INCLUSIVE PRIOE ONLI 39 GNS. If al items purchased together, plus
$15 \%$ C. \& P. Full assembly $15 /-$ C. \& P. Full assembly We shall be pleased to wir the tape deck switches for yo
if you wish, ot an extra cbarg of £1. Hear this wonderfui
recorder at elther of our branche or seud stamp for branches details. Terms available.

## RECORD UNITS

COLLARO AC $3 / 554$. Three-speeds single record Player for A.C. mains, $200 / 250$ V. Cream finish, complere ineorporsting the well-known high ontput "T" type head. Strictly innited quantity at $£ 5 / 19 / 6$ plua


LATEST B.S.R. UA12, Stereo 4 -speed auto-chanker unt complete witb FUL-FI sterao cartridge for monaural or stereo records. Brand new and fully guarnateed. £12/12/- plus $3 / 6 P$. \& P.
B.S.R. MONARCE. Mixer Autocaanger is cream and gold. £6/19/6, plus P. © P. $3 / 6$. Limited Stooks and oream with studio "O "insert. E7/19/6, plus P. \& P. 3/6.
GARRARD RC. 121D MK. II STEREO MONAURAL This is the very latest unit by thia famour mauufacturer. Supplied complate with GCS plag-in turnover cryst al head and sapphire styli for 78 and L.P. ntandarr records. Brand new and fally guaranteed.
Yery linited ntocks at ONLY £11/0/6, plus s!- P. \& P. NOTE: The very lateat Garrard L.P. Stereo plug-in bead for above unit can be supplied as at optional extra for only $£ 2 / 0 / 1$ inc. P.T. Terme available.

## GARRARD 4HF

A quality 4 -speed sugle-record unit complete with TPA12 transerip tion arm and GC8 crystal plek-up. Size (gpace reqd.) $17 \% \times 134 \times 34 \mathrm{in}$. above board pad 3 lin. below. PRICE E 19
GARRARD $4 \mathrm{~S}, \mathrm{P}$
This inmous slagle-record 4 -sueed unit complete with GC2 turnover crystal head and sapphire styli available in limited quantity. Brand new and fully guaranteed. Only $£ 6 / 18 / 6$, plus $3 / 6$ P. \& P.

LIMITED SUPPLIES OF THIS FINE AND POPULAR CABINET
Instantly recognised a being of leading High stock, this trolley-type cabinet is fuished In polished dark walnut. Cam aslly be adapted to accommodate tape recorder, amplifier, radiogram, etc., etc.
External measurements 2atin. $\times 161 n . \times 291 n$. The whole is mounted upon easy run " castors. Subjeet to being unsold £5/19/6. plus 15/-C. \& P .


## EXTRA SPECIAL OFFER!!

 A small three-valve PORTABLE RECORD-PLAYER AMPLIFIER mounted on baffle $12 \times 7 \mathrm{in}$. Witib Figh Flux 6ilin. LoudapeakerValve line-up ECCB3, ELSA EF80. Incorporates separate bas 3 watts. high impodance, pick-up. Ready to use. $\quad \$ 5 / 12 / 6$ plus $3 / 6$ P. \& P

NEW STYLE CABINET Anished in two-tone LeatherAmplifter and Bantle without modification, also most types Overall kize $18 \times 134 \times 8 \psi \mathrm{n}$. Fitted with carrying hand es/9/6 plus $5 /-\mathrm{P}$, $\mathbf{P}$ chased together they will be supplied at a special inclusive price of $£ 8 / 7 / 6$ plus $6 / 6$

- all componente for building this long awaited tumer, covering insBCfFM and BBCITV sound channels, can be ONLY ex stock, at a special price of ONLY £13/19/6, P. \& P. 3/6. including FRONT END TURRET. Incorporates bnilt-in power supplies, taning indicator and series noise limiter on AM. Comprehenalve assembly instructions tozether with itemlsed component price list available separately at $3 / 6$ post free. NOTE: Please state Local Channels when ordering.

MULLARD 510 HIGH-
FIDELITY AMPLIFIER
 Our priated cirouit version of this exce]-
lent amplifier, with ULTRA-LINEAR PUSH-PULL outputstage, giving an excepilionally high quality output of 10 watts (max.). Builit-ln Controls are provided for independent bass and of signal input. Will match ali crystal of signal input. Will match ali crystal heads, F.M., A.M. or A.M./F.M. tuners or tape recorder output. All required components of best quality to Mullard Spec. are offered at a special inclusive price of $89 / 9 /$

Inetruction Book, containing full constructional details theoretical, practical wiring diagrains, itemised, price list
available separately at $3 / 6$, post free.

LOUDSPEAKERS AND ENCLOSURES We stook all leading makes including B,T,F., Whar aalo, W.B., Goodm

## JASON J.T.V. TUNER


priee of ${ }^{\text {of }}$

## PORTABLE GRAM AMPLIFIERS

RC1,A AMPLIFIER. A smal! high-quality gramophone amplifler. Very neat chassis circuitry and highly efficient miniature valves. Very neat chassis tinighed in bronze atove enamel. Slze (overal Volume, Tone/On/Off. For use on A.C. malna 200/250 v. Price £3/19/6 plus 2\%. P. \& P.

RC2A. Small PRINTED CIBCUIT single valve high-gain amplifer or the smaller type of pertable. Employs latest type ECL83 valve Further details on requent. Price only $59 / 6$ plus 2/- P. \& P. RC3A. A auperior quality 3 -walve amplifer employing E Z80, EL84 and ECC83. With separate bass and treble controls. Further details
on request. Price $£ 3 / 19 / 6$ plas $2 / 6$. $\boldsymbol{P}$. \& $\boldsymbol{P}$.

DECCA PORTABLE AMPLIFLER. As sapplied DECCAMATIC III. Complete with small cream control panel eseutcheon and knobs. Full range tone and volame controls. Employs ECL82 palve. Size $3 \times 31 \times 8 \frac{4}{4}$ in. Only $59 / 6$ plus $2 / 6$
SPECIAL CELESTION $8 \times 6 \mathrm{in}$, elliptical high flux loudgpeaker, 30/- plus $1 /$ P. \& $P$
VERY ATTRACIIVE PORTABLE CABINET in Red and White or Blaok and White polsa dot lor accommodating the above items NOTE. Supplied post free il all above items
NOTE. Supplied post Iree if all above items purchased together.


RECORD HOUSING "NORDYK" UNITS The above tllustrated cablnets are avallable at $521 / 12 /-$ inc. Plus C. \& P. \&1. Terms avalable

WE NOW STOCK THE FULL RANGE OF "RECORD HOUSING" CABINETS. These cabinuts are renowned for their excellent quality

## Our advantageous deferred terms are

 available on any single item over $\mathbf{6 5}$. Your enquiries invited.If not stated, please add postage on orders under El . Cash with order or C.O.D. (charges extra).

Open: Tottenham Court Road: 9 a.m. to 6 p.m. Mon. to Fri., Sat. I p.m. Holloway Road: 9 a.m. to 6 p.m. daily. Thurs. I p.m., Sat. 5.30 p.m.

HEADSET SPECLAL! Ereellent quallty bupar lightweight low impediance maguetic
hearlphones complete with batton inicrohearlphones complete with button inicro-
phone sttesched and plastic ear mouids by rorld fawous manufacturer. $A b s o l u t e l y$
brand new. $45 /-$ pair. Plus $1 / 6 \mathrm{P}$. \& $\mathbf{P}$ brand new. $45 /$ pair. Plus $1 / 6 \mathbf{P}$. \& $\mathbf{P}$
TRANSFORMER SPECIAL. Superio quality half shrouded drop thro' Malns Transformer. Input $20 / 250$ v. Output $350-0-350$ v. 80 mA ., 6.3 v. 3 amps .5 จ 2 amps. Nx-equipment but guaranteed O.K Only $9 / 6$ plus 1:- P. \&.
METER SPECIAL. We have a limited quantity of aircraft electrical thermofluath square fitting. These meters maver, uminous scale graduater $40-140$ degree centigrade, but the full-scate deflection is
 $12 / 6$ each only, plus J/- P. \& $P$.
POWER PACK. By leading manufacturer. Input $200 / 250$ v. Output $350-0-350280$ a. Fully amoothed. Incorporates valve $7 \ln . \times 53 \mathrm{In}$. Wt, 221 l . Few only at $\mathbf{8 4} 4 / 19 / 6$ plus 3/6 P. \& P POOD QUALITY EXTENSION LOUDSPEAKER in attractive Bakellte Cabinet (Black or Brown). Complete with input sucket and two wander plugs. Slightly
shop soiled. ONLY $27 / 6$ plus $1 / 6$ P. \& $P$. RYSTAL MTO. INSERTS. WIRTNG WIRE. 5 coll 10 varde each in different colours contained in cellophane bag. 5/- bag plai 9d. postage.

## "USWAGS"

No. 38 TRANSMITTER RECEIVER (Popular Walkie-Talkie). We have been most fortunate in obtaining a further supply of these complete stations comprising TX, RX unit hesiphones, microphone, aerial,
function box, battery satchel and fuli Junction box, battery satchel and ful
operating inatructions. Range: approx. 5 miles. Frequency coverage $7.4-9 \mathrm{mc} / \mathrm{s}$
ABSOLUTELY BRAND NEW, $65 / \mathrm{m}$ (Batteries not supplied). Fxport enquiries invited.

* BARGAIN CORNER

> A CONSTRDCTORS' MUSTI BIT SOLDERING IRON
> With antegral Stand and built-in Spot light for illuminating work. $200 / 250 \mathrm{v}$ ONLY 22/6. P. \& P. 1/6.

EX-W.D FIELD TELEPHONE SETS POWER NO, $1 \mathrm{MK}, \mathrm{I}$, As new, comple te
with handret, bell and buzzer. \&3 each or with handset,
£5/10/- parr
EX-W.D. DON MK. V FIELD TELEPEONE SET. Complete with handset, buzzer hand generator, morse key. 23 each or $85 / 10 /$
(Botb above plus 2/6 P. \& P.)
OCTAL PHUGS, EX. EQUIP. 9d. ean, plus P. \& P. 6d.

PACKARD BELL PRE-AMPLIFIER SNIP Complete with 68L7GT and 28D7 Plugs hand switch, many components contained In useful metal case. Brand new, boxed and complete with circuit diagram and motren P.P MULLARD
Mullard spec. Mullard spec. Assembled, tested, fully
88/8/- plus $3 / 6$ P. \& $P$. Lesflet on request, H.G.P. 59 CRYSTAL INSERT. Complete with LP and 8TD Rapphire Styli. Brand new. $\mathbf{B . S . B}$. Monarch, etc.
SPECLAL PURCHASE from MINISTRT. BRAND NEW No.
MITTER/RECEIVER
Bullt into strong wooden cablaet 13 in. $\times$
$14 \mathrm{fn} . \times$ complete with headphones and microphone. Range $5-8$ miles with simple acrial.
Frequency coverage $44-61 \mathrm{mc} / \mathrm{s}$, ( $5-7$ metres). Uses standard 120 V. H.T. and 2 -volt L.T. batteructions, 59/6. (Batteries not suppllied.) 4 VOLT ROTARY CONYERTERS 24 VOLT ROTARY CONVERTERS. Input
v. D.C. Output $200 / 250$ F. A.C. 100 watts. Complete io black giteel box 181 in. $\times 11 \mathrm{in}$. $x 8$ in. Welght approx. 30 lb . Completely smoothed, incorporates Sodin

POLYSTYRENE COIL OEMENT, $1 / 10$ per
bottle plus 6 d . $P$. \& $P$. 6 VOLT VIBRATOR PAOK, EX-W.D Size outy 140 at 30 ma Frily smoothed size only 6 tin. $\times 8 \ln . \times 23 \mathrm{~m}$. New con
dition $12 / 6$. Plus $1 / 6$ P. \& $P$.

## SPECIAL UNREPEATABLE OFFER!

 supplied in ortzinal condition as Figh mpedance unit with volume control, for matching domeandard Low lmpedance appros. Ilin. $x$ I4in $x$ btin etc. Size reclaimed ". Rental'" wnits in first are workjng order and are ONL $16 / 8$ complete. plus $3 / 6 \mathrm{p}$. \& p ,

## "USWAGS"

LIGETWEIGET EXCELLENT QUALITX INSTRUMENT BIT SOLDERING IRON built into handie. 2s watt element. Suritabie for use on AC/DC mains 200/250v. Brand new 18/8. Plus $1 /-\mathrm{P}$. \& P .
12 VOLT VIBRATOR PACK. Mallory. Output 150 F. 40 mA . Complete pith Synchronous Vibrator. Brand new $12 / 6$. Plus 1/6 P. \& $P$
MORSE KEYS. SUPERIOR QUALITY.
Bradd New. $2 / 6$ plus $1 /-\mathrm{P}$. $P$.

101n. RECOND. GOOD QUALITY LOUDPEAKPR Complete with O.P. trans As good as new. $17 / 6$ plus $1 / 6$ P. \& P.
12 m . BAKsRS
SELHURST LOUDSPEAKERS. 15 obm, 15 WRtt, $30-14!000$ cpl. Few only. Brand new. f4/10/12in, RICHARD ALLAN P,M, LOUDSPEAKER. 3 ohm apeech coil. Brand new Only 32/6 plus 2/6 P. \& P
10in, LOUDSPEAKER. Ex-equip, as new. plus 1/6 P \& $P$. 3-SECTION WB
3-SECIION WBIP AERIALS. Ides! for fisaing rods, etc.
$7 / 6$ set. Pius $2 / 6$ P. \& Pection 4 ft . Only NYLON DRIVE CORD. 13 yd . Reel. Beat quality $3 / 6$ plus 6d. i \& P. $5 / 6 \mathrm{pr}$. BRAND NEW MPORTED High impedance lightweight headphones. Fin
ished in cream. $15 /-\mathrm{pr}$ DLR5 Moving Coil ished in cream. $15 /-\mathrm{pr}$ DLR5 Moring Coii. Low impedance ${ }^{\text {He }}$ ill $1 / * P$.
"INTERNATIONAL RADIO TUBE ENCZ14 OPAEDIA." World-wide valve data in pages, 63/- plus $3 / 6$ P. \& P. Or Terms: 10/ deposit and 6 monthly payments of $10 \%$

## TRANSISTORS ! !

SURPLUS-P,M.P
RED SPOT (Audio/Experimental
Applications)
MC/s.
T.s.1.

OCl6 Power 3 watt.
$0 \mathrm{OC4}$
OC45 R.F. up to $6 \mathrm{Me} / \mathrm{s}$
$0 C 70$
0071
0c71 . . 0 atched palr.
NEWMARKET
V6/R4 R.F. $4-8$ Me/a....
V6/R8 R.F. 8 Mc/s.-up
ADDIO
V10/15A (Po...... $\qquad$ $\left.{ }^{150}\right)^{15}$ - eal
Data sheets avaflable.)
(ALL POBT FREE)

## TO BUILD YOURSELF

all Parts available separately

## WE ARE THE EXPERTS IN THIS FIELD AND CARRY THE MOST COMPREHENSIVE STOCKS IN THE COUNTRY

(1) New Look " RAMBLER ". all dry s'het portable
(2) "RAMBLER" Mains Unit (suitable for most
(4) "FAMILY FOUR" (our new T.R.F. Receiver)
(5) "SUPERIOR FOUR " (four valve mains receiver)
(6) GRAM Chassis 5-valve Superhet.
(7) T.S.L. F.M. Tuner (self powered)
(8) Standard JASON F.M. Tuner
(9) Fringe area JASON F.M. Tuner .......................
(II) OSRAM 912 Printed circuir F.M. Tuner
(12) JASON "ARGONAUT" AM/FM Chassis
(13) JASON "ARGONAUT "AM/FM Tuner
(14) F.M. Power pack (suitable for most runers)
(15) R.C. $3 / 4$ watt amplifier (with Bass, Middle and Treble controls)
(16) 2-amp. Battery Charger
17) R.C. Transistor/Crystal Receiver (wich phones)
18) R.E.P. I-valve Battery Receiver
(19) "CRY-BABY "' ALARM (Baby Alarm)
20) "R.E.P. MINI-7 " Transistor Portable (see opp.)
(21) MULLARD 510 Ampllfier (printed circuit) Ultra Linear
 Portable
(23) TELETRON "TRANSIDYNE "Transistor Portable
(24) "DE-LUXE" Printed Circuit Superhet
(25) JASON J.T.V. Tuner
(26) RADIO JACK
(27) MULLARD TYPE "C Tape pre-amp.
(28) TAPE RECORDER (with Collaro Mk. IV deck)
(29) JASON J. 3-3 Stereo pre-amp
(30) JASON J 4-4 Stereo pre-amp.

S.T.2. PRINTED CIRCUIT STEREO AMPLIFIER A beautirully made printed circuit stereo amplifier. Ideal for portable equipment of superior quality. Valve line-up: 2:6AQ5, 2-12AX7 and equipment of superior quality, Valve line-up: 2:6AQ5, 2-12AX7 and
1-EZ81. Ganyed volume, Bass and Treble Controls. Supplied com plete with two good-quality 8 in . loudspeaker units. All connections
clearly marked. $\$ \mathrm{Size} 4 \mathrm{4} \times 10 \mathrm{f} \times 3$ in. high. ONLY 11 GNS . plus $3 / \mathrm{i}$ clearly marked. Size $4, \times 10 \mathrm{f} \times 3 \mathrm{in}$, high. ONL
P . \& P. Or less loudspeaker units, 9 gns . plus P . \& P .
RADIO JACK. The latest addition to our comprehensive range of equipment to build yourself. Covers local Medium Wave Stations, rariably tuned. Compact selt-contalned unit requiring only connection to aerial (no power enpplies required) for first-class receptlon when used in conjunction with your tape recorder or high gain amplitier. All
 Does this mean anything to you? Ir IT
SHOULD! It means: UNRIVALLED SERVICE WITH
ABSOLUTELY GUARANTEED SATISFACTION and
is yours for the asking, whether MAIL ORDER CUS-
TOMER or PERSONAL CALLER. EVERY item sup-
plied, from the cheapest to the dearest, is covered by
our satisfaction or money back guarantee. Make AN ELECTRONIC ORGAN. Many readers will be interested a hear that we are in the process of constructing the excellent Electronio Organ designed by Mr. Alan Donglas, M.I.R.E., A.M.I.E.E. The completed organ will be on view at our Holloway Road branoh in dne course tors, all Components, Keyboards, Chokes, etc., will be available ready made. Your enquiries are invtied. Full conatructlonal detalls available in book form at $15 /=$ plus $1 / 6 \mathrm{P}$. \& $\mathbf{P}$. Please address enquiries re

## A SUPERE NEW TRANSISTOR POCKET PORT-

 ABLE (BY PERDIO). An attractive receiver employing 6 selected transistors and covering Medium and Long wavebandsHoused in mmart cream plastic case, size $5 \frac{1}{2} \mathrm{in} . \times 31 \mathrm{~m} . \times 14 \mathrm{in}$., with gilt table stand and control knobs. All necessary components for construction of thig besutiful receiver are available at a special inclusiveprice of $£ 9 / 19 / 6$. plus $2 / 6$. \& $P$. including comprehensive, easy-toprice of e9/19/6, plus $2 / 6 \mathrm{P}$. \& P. including comprehe

## ROLEX" SPECIAL HEAVY DUTY MAINS/

 BATTERY AMPLIFIER. Very smart unit housed in grey crackle finish case with chrome and cream fittings. For use on A.C. 6SL7; 2-6V6; $8 \times 5$; and 629 C Vibrator. 20 watis output to match 4 . 8,16 , 250 and 500 ohm speaker systems. Ideal for F.A. work ete. size $18 \frac{1}{2} \mathrm{in} . \times 8 \frac{1}{2} \mathrm{In} . \times 7 \mathrm{in}$. Mike and gram inputs with separate gain controle, tone control. Brand new, fully guaranieed. ONLY \&15/15/=,plus $7 / 6 \mathrm{P}$. $P$. plus $7 / 6 \mathbf{P}$. \& $\mathbf{P}$.

The following are also available assembled and tested:-
(2) "RAMBLER", Mains Unit, $£ 3 / 5 /-$; (7) T.S.L. F.M. Tuner, $£ 13 / 15 /-$; (4) F.M. Power Paek, $52 / 6$; (15) R.C. $3 / 4$ watt Amplifier, $£ 5 / 5 /-$; ( 16 ) 2 -amp. Battery charger, $45 /$; ; (19) "CRY" BABY'"Alarm, 89/6; (21) Mullard' 510, $£ 12 / 12 /-$; Instruction Books which contain full description, easy-b-follow practical wiring diagrams, theoretical diagrams, itemised price lists, etc., are supplied free of charge with all parcels but may be purchased separately if required.
NOTE: (2) The "RAMBLER " Mains Unit is suitable for use with MOST all-dry portables.

## CIYNE BADIOLTID.

162 Holloway Road, London, N.7.
and
18 Tottenham Court Road, London, W.I

STABILITE YOUR AC MAINS with the finest equipment at a fraction of the normal cost:FERRANTI $7 \frac{1}{2}$-KV MOVING COIL AUTOMATIC VOLTAGE REGULATORS
Any stabilized output voltage in the range 200-250 v . can be selected by plug-board tappings. The selected output voltage is automatically ma ntained constant within $\pm \frac{1}{2} \%$, at all loads 0 to. $3037 \frac{1}{2}$ amps., when the supply voltage is varying over the range $+8 \%$ to $-12 \%$

- Frequency compensated $45-55$ and $54-66 \mathrm{c} / \mathrm{s}$
- Excellent output wave-form
- Can also be used as a variable transformer.
- Unused. Complete with spares and instruction book.
P. B. CRAWSHAY

94 Pixmore Way. Letchworth. Herts. 'Phone I85I

## FOR THE AMATEUR AND ENGINEER

 inclutlag rial hacking plate, fly wheel and col plate, 10 - each P, \& P. $3 /$ / q.T.C. SELEVIOM RROTIFIERB. 230 ₹ 70 mA . Solace existar Valve rectile for life, $4 / 6$ each, Diatritntor SUPPRESSORS, 6 d , each.
BJTGTV SPDT TOGALE SWTTUKES 1. each PLE 3 SEY CP 75167 Frame Blocking Oscillator Tran formers, 36 each. PLESSEY KP 787711 Frame Transformers 7/- B80h. SWITURED WIRE WOUND POTS. Gtandsed with long spindle, 25 K and 50K only 5, $A$ each
COIL PACKS. Long, medium and short wave, complete with diagram, 10/6 bach
 Full range of Beraards ind Normal. Price publlestinus.


 OWTVERSAL MALIS TRANSFGRMERS. Trpoed in russ. Union TWO VACVE DInA metal reciter inter-romm. unite, with socket for malcrophone one


## RADIO HAM SHACK LTD.

155 Swan Arcade. Bradford, 1, Yo<compat>ks.
THE W. RIDING MAHLORDER SPECIALISTS

TELEVISION AERIAL COMPONENTS DESIGNED FOR CONSTRUCTING BAND I \& BAND III T.V. AERIALS ELEMENT D.MENSIONS SUPPLIED FOR ALL CHANNELS Selecting ot random from our new multi-page catalogue:

* Band III Folded Dipoles (As illustrated)
* Reflector and director rod holders * Masthead Fittings for $\frac{3^{\prime \prime}}{4}$, $1^{\prime \prime}$, $1 \frac{1}{2}{ }^{\prime \prime}$ and 2 Masts.
* Mast Coupling units for 2" Masts
* Insulators, Both Rubber and Plastic
(As illustrated)
* Alloy Tubing for Elements, Cross boom and masting.
Send II- P.O. for the revised, fully illustrated catalogue to:

FRINGEVISION LTD., Marlborough, Wilts.
Phone 657/8


## AMPLIFIERS PRE-AMPLIFIERS

COMPLETE KITS OF PARTS FOR THE "HI-FI" ENTHUSIAST Designed by MULLARD-Prosented by US strietly to their specification

THE VERY POPULAR MULLARD" 5-10" MAKN AMPLIFIER

## MULLARD'S NEW 2-STAGE PRE-AMPLIFIER TONE CONTROL UNIT

Special Price Reductions

WE OFFER


Undouhtedly the mant successful amplifler yet destgned, and used in conjunction with the os is obtained. Thoroushly recrmmended to the " $\mathrm{Bi} \cdot \mathrm{FI}$ " enthuslast who contemplates a very high quality home instalialion. In addicion the rersatility of the oquipment mak?s f quite
 TION whth gneclned salver and componente aid metuding the iateat PARMEKO Ultra
 Price for COMPleETE KIT OF PARTS
Alternativen we नuply AgeEMBLED and TEBTED. £11.10.0 We also offer this ${ }^{-5-10}$ " inomporating the tatest PARTRIDGE ULTRA-LINEAR OUTPUT TRANSFORMER for $81: 6 /=$ extra.

A compuetely new deelgn employing two EFF86 vaives, and in particular designed o operate with the Mullard ranke of Power Amplifers, but also perfectly suitable $r$ other maken
Equalisation for the lateat R.I.A.A. characteristfen
Imput for rariahlo refuctance Maguetic Pick-upan

- Indent for Cribial Pick-upe.

Inport for Tape replap.
(a) Dinect fron, Hirh Impedance Tape Head.
(b) From a Tape Aruwliter or Pre-Arapllfier.

Wenside range BAgs and TRPBI
Whde range BABA and TRPBLLE Controls. Out Kit is strietly to MUI LARN'g aPECIFICATION, Prta, COMPLETE KIT OF PARTA .................
Alta'natively we supply ASAEMBLED and TESTED
(Castiage and Insurance $\overline{5 /-e x t r a .) ~}$ £6.6.0 88.8.0
Based entirely on the present very poputar " 3.3 ". modes and desigued to operate in conjunction with the new 2-atage PRE-AMPLIFTER (phown here) thus providing reconmend it as the IDFAL. 8 MALL HOME INAT ATLATION where very high quallty is desired at che lower volume levei (up io 3 watts). We supply completely to WrrLiAARD's aPECIPICATION INCLUNA Has Powe Pailable to drive a Radio Tumus Trit Price for COMPLETE KIT of PARTE. £8.0.0 Alternatively are oupply AssEMB
(Carriage and Insurance $5 / \mathrm{extra}$.)

Please enclose S.A.E. if HiUUSTRATED snd DESCRIPTTVE LEAFLETS sre required ... altornatively the COMPLETE and practicas Drawings, contain'ng component Price Liats
(a) THE ${ }^{-3-3 " *}$ and the $2-S T A G E$ PBE.AMPLIFIER both ASSEMBLED and TESTED....... \&15.0.0 H.P. TERM8: DEP. 83 and 12 month'y payments of \&1/2/m DE DEP £5 and 12 monthiy payments of $18 / 4$. (b) THE " $\mathrm{K}-10$ " and the 2-GTAGE PRE-AMPLIFIER both AssEMBTJED and TESTED........ 218.18.0 F.P. TERM9: DEP. E3/16/- and 12 monthly paymenta £1/\%/8 or DEP. £6/8' and 12 n.onthly payments of £1/3/1.

When ordering please inciude an extra $7 / 6$ to cover the cost of carriaga and insurance


Please enclose S.A.E. with all enquarles

We nifer this popuar and pery enceeasul deqtg COMPLETE to MUSALARD's sPECTICATION, but Incorporating enme lmpmementa in the general layout. HIGH OUALITY REARODUCTION up to a maximum of in watts oufput. The CONTROL UNIT is separate and completey encinsed; it te nurmally filod to the Matn Amplifier Chasise as ahnwa in autto eaxit Hetached and used up to 2 vards datance. We incorporate SPECLFIED COMPONENTS And NEW MSCDHARD VALVEB. We alan give the purchaser the choce of two of the best ULTRA-LNEAB OUTPUT TR ANFPRRMERS Padd -frat he choce by PARMEKO ITD, and aimen the latoat by PARTBIDGE ( $£ 1 / 6 /$ - astra), whlch is geterally by PARMEKO LTD, and aike the latoat by PARTBIDGE (E1/6/- axtral, which 19 geuerally remogniged at the best ine mideat froquency range We alsn eupnly the PARMEKO MAINS THANGPORMER, and thas has extra power avallable to supply a Radio Tuning Unit

 Alternatively we supply ABREMBLED and TERTED (plus 6/6)….. £13.10.0 or Dop. $84 / 10$ - and 12 monthly paymenty of $16 / 8$. MANUAL.

A VERY HTGR QUALITY 3-WATT AMPLIFIER PROVIDING EXCELLENT REPRODUGTION AND HAV
Price for COMPLETE KIT OF PABTS (plus 6/6 carriage and
Price for
$£ 7.10 .0$
Alternatively supplied Asaembled and FULLY TESTED.
$\$ 8.19 .6$
(Plus bip ratriaze and Insurance,
The complete sperifictalon ts available for 1/6.
Deremped from the very mopilar 3 walre 3 -watt Amplifer dealgned in the Mulland Laborathries. Our kit is crmplete to the Mallard specification Including supply of spechied components, vatvee and PARMEKO OUTPUT TRANSFORMER. We alko. Inclital Tuning Unis is aleo avallable.

## The Popular

 <br> \section*{\title{Jtem fucting <br> \section*{\title{
Jtem fucting TAPE RECORDER TAPE RECORDER <br> <br> for truly "HI-Fi" Recordings} <br> <br> for truly "HI-Fi" Recordings}

PRICE
incorporating
collaro me. iv deck
£49.10.0
HIRE PURCHASE TERMS: Deposit $£ 9 / 18 /$ - and 12 months at $£ 3 / 12 / 7$ or Deposit $£ 16 / 10 /$ and 12 monthly payments of $£ 3 / 0 / 6$. PRICE WITH TRUVOX DECK INCORPORATING $\$ 52.10 .0$ REV COUNTER

HIRE PURGEASE TERMS: Deposit $£ 10 / 10 /=$ and 12 months at $£ 3 / 17 /=$ or Deposit £17/10/- and 12 monthly paymente of £314/2.
(Plus $\mathrm{E} 1 / 10 /$ carriage and insurance of whleb El is retunded on return of packing case.)

THEY INCORPORATE
Choice of the latest COLLARO TRANSCRIPTOR DECK or the NEW TRUVOX M. IV DECK.
. The model HF/TR3 "Fidelity "AMPLIFIER.

- ROLA/CELESTION IOin. x 6in. P.M. Speaker.
- 1,200ft. reel EMI tape.
- ACOS Crystal Microphone.

BEFORE CHOOSING YOUR TAPERECORDER YOU SHOULD HEAR THIS MODEL-TRULY " Hi-Fi" RECORDINGS ARE OBTAINABLE and it is comparable to much higher-priced Recorders.

Send S.A.E. for ILLUSTRATED LEAFLET.

## THE MODEL HF/TR3 TAPE AMPLIFIER

Incorporating
3-SPEEDTREBLE EQUALISATION by means of the latest FERROXCUBE POT CORE INDUCTOR, PRICE for COMPLETE © $12 / 15 /=$
KIT OF PARTS........ FULLY ASSEMBLED \& $16 / 10 / \mathrm{e}$
HIRE PURCHASE: Deposit
H/RE P $£ 3 / 6 / 6$ and 12 months at $£ 1 / 4 / 2$ or
$£ 3 / 6 / 6$ and 12 months at $£ 1 / 4 / 2$ or
Deposit $£ 5 / 10 /-$ and 12 monthly payments of $£ 1 / 0 / 2$. A very high quality Deposit $65 / 10 /-$ and 12 monthly payments of $61 / 0 / 2$. A very high quality
amplifier based on the very successful Type " $A$ " design completed in the MULLARD LABORATORIES. ONLY NEW HIGH-GRADE COMPONENTS are incorporated including MULLARD VALVES and a GILSON OUTPUT TRANSFORMER ... Other features are: Magic Eye Recording Hand Indi-cator-Effective Tone Control-Monitoring and Extension Speaker Sockets-has own Power Supply and can be used as independent Amplifier for direct reproduction of Gram Records or from Radio Tuner. Overall size Il $\times 6 \times 6 i n$-Truvox-Collaro-Lane-Brenell or Motek Decksplease specify which.
Send S.A.E. for leaflec or $2 / 6$ for the complete Assembly Manual.

THE NEW MULLARD TYPE "C"
TAPE PRE-AMPLIFIER-ERASE UNIT INCORPORATING NEW FERROXCUBE POT CORE PUSH-PULL OSCILLATOR and 3 SPEED TREBLE EQUALISATION by means of the latest FERROXCUBE of the latest FERROXCUBE POT CORE INDUCTOR.
PRICES INCLUDING SEPERATE SMALL POWER SUPPLY UNIT PRICES. INCLUDING SEPERATE SMALL POWER SUPPLY UNIT
COMPLETE KIT ASSEMBLEDAND COMPLETE KIT
OF PARTS
$\mathbf{1 1 4 . 0 . 0}$ ASSEMBLED AND $\mathbf{~} \mathbf{1 7} \mathbf{0 . 0}$
TESTED Deposit $£ 3 / 8 /$ and 12 months of $£ 1 / 4 / 11$.
ALSO AVAILABLE EXCLUDING POWER SUPPLY UNIT FOR £11.15.0 and 814 . 10.0 respectively. (Carriage and Insurance is $5 /$ - extra).
WHEN ORDERING PLEASE STATE MAKE OF TAPE DECK TO BE USED.
Mullards specification incorporating ONLY NEW HIGH GRADE COM. PONENTS and the SPECIFIED NEW MULLARD VALVES. It comprises a COMPLETELY SELF CONTAINED UNIT, all components and valves being contained in a well ventilated Box-Chassis neatly finished in Hammered gold with a very attractively engraved PERSPEX FRONT PANEL.

## TO BUILD A COMPLETE

PORTABLE TAPE RECORDER ... ALL ABOVE EQUIPMENT IS AVAILAble for SEparate sale at prices shown in brackets
WE OFFER-
(a) The PORTABLE CASE illustrated above 1,200 ft. E.M.I. TAPE, ACOS CRYSTAL MIKE. ROLA IOin. $\times$ bin. LOUDSPEAKER. 89.0 .0 AVAILABLE ON HIRE PURCHASE WITH (b) or (d) below
(b) The COLLARO MK. IV TAPE DECK and the HF/TR3 AMPLIFIER Assembled and tested.
£36.0.0
H.P. Deposit $£ 7 / 4 /$ and 12 months of $\varepsilon 2 / 12 / 6$.
(c) As in (b) above but HFTTR3 supplied as COMPLETE KIT $\mathbf{O F}$ PARTS .................................................... $\mathbf{8 2 . 1 0}$
d) The TRUVOX MK. IV TAPE DECK ineorporating Precision Rev. Counter and the HF/TR3 AMPLIFIER Assembled and Tested $£ 41.10 .0$
H.P. Deposit $£ 8 / 6 /-$ and 12 monthly of $£ 3 / 0 / 10$. H.P. Deposi Ha/G/- and 12 monthly of E/OHO.
(e) As in (d) above but the HF/TR3 supplied as COMPLETE $\$ 38.0 .0$ (Carriage and Insurance on above quotes $10 /$ extra).

## TAPE EQUIPMENT IN STOCK

- COLLARO MK. IV TRANSCRIPTOR DECK. E25.

HIRE PURCHASE: Deposit 65 and 12 months at $£ 1 / 16 / 8$.

- TRUVOX MK. IV DECK (incorporating Precision Rav. Counter) $£ 30 / 9 /$. HIRE PURCHASE: Deposit $£ 6 / 2 /-$ and 12 months at $\varepsilon 2 / 4 / 8$.
- PORTABLE CARRYING CASE (as illustrated) accommodates HF/TR3 Ampliffer and Truvox or Collaro Decks. E5.
- High Output ACOS CRYSTAL MICROPHONE $£ 1 / 15 /-$

1. $10 \times 6 \mathrm{in}$. P.M. LOUDSPEAKER $£ 1 / 10 /$.

## HOME CONSTRUCTORS SPECIAL PRICES FOR COMBINED ORDERS <br> TO ADD FULL <br> TAPE RECORDING <br> FACILITIES

To any modern " Hi-Fi " AUDIO AMPLIFIER (such as our Mullard " 5-10 " and 2 valve Pre-amplifier).. ALL YOU NEED is.. THE TYPE "C " PREAMPLIFIER and a TAPE DECK...WE OFFER.
(a) The COLLARO MK. IV TAPE DECK and the MULLARD 837.0 .0 H.P. Deposit $\lfloor 778 /: /$ and 12 months 621143 .
(b) As in (a) above but the Type "C" supplied as COMPLETE $£ 34.0 .0$
(c) The TRUVOX MK. IV TAPE DECK incorporating Precision Rev. Coun ter, and the MULLARD TYPE "C"PREAMPLIFIER and $\mathbf{8 4 2 , 1 0 . 0}$ power unit assembled and tested..................................
H.P. Deposit $£ 8 / 10 / \mathrm{m} .12$ months $£ 3 / 2 / 4$.
(d) As in (c) above but the TYPE " $C$ " supplied as COM 339.10 .0 (Carriage and Insurance on above quotes $10 /=$ extra).

- $7 \times 4 \mathrm{in}$. P.M. LOUDSPEAKER $16 / 9$ and $19 / 6$

We have a special E.M.I. $£ 1 / 15 /=$ or SCOTCHBOY TAPE $£ 1 / 7 /-$ and $£ 1 / 15 /-$ We have a special line good quality Plastic Tape, 1,200ft. reels at 21/-.
PLEASE ENCLOSE S.A.E. WITH ALL CORRESPONDENCE.

## STERN RADIO LTD. <br> 109 \& 115 FLEET ST., LONDON, E.C. 4 <br> Telephone: FLEET STREET 5812/3/4

## STERN'S FOR STEREO

OUR POPULAR MULLARD MAIN AMPLIFIERS ARE RECOMMENDED FOR USE WITH THE DULCI DUAL CHANNEL STEREO PREAMPLIFIERS


## The "STEREO TWO

 PREAMPLIFIER Price £9.9.0 (Carr. \& Ins. 5/- extra) Both Preampllfern can be supplied to correctly operate with our very popular MULLARD " 3.3" Two " are perfoctly aitable to operate with ONE metn Amplifior aud the geco and the stereo can then be sdded at any time thus transforming a standard " Bi-FI" installation over to the stereo FULLY DEACRIPTIVE LEAFLETS ARE AVAILABLE. ENCLOSE B.AE.

WE OFFER . . . ASSEMBLED and TESTED
(a) The " Stereo Two" with one " $3-3$ " mullard main amplifier
b) The "Storeo Two " with two " 3.3 " MULLARD MAIN AMPLIFIERS (This provides stereo reproduction of max. 6 watts output and is an deal Home Installation.)
(c) The "stereo Two" with one " $8-10$ " MULLARD MANN AMPLTFIER (d) The "Stereo Tro" with two " 5-10" MULLARD MANN AMPLIFIERS
(e) The " Stareo Eight " with two " $5-10$ " MULLARD MAIN AMPLFIER (Thls provides for op to 20 wath Output.)
(f) The above (e) with one MULLARD " $5 \cdot 10$

OTHER BTEREO EQULPMENT AVAILABLE
17.0 .0
grak units elted with siereo Cartrluge by Garrard, COLLARO, LENCO B.8.R
These indude Antoctangers, Single Record Players and Transcription Units.
Please enclose 8.A.E. with any enquiry.
HIRE PURCHASE REDUCED TERMS ARE AVATLABLE
! ! TO MODERNISE YOUR OLD RADIOGRAM!!


THE NEW ARMSTRONG
"JUBILEE AM/FM
RADIOGRAM CHASSIS PRICE £30.9.0
(Plus 7/6 carr. \& ins.)
HIRE PURCHASE: Deposit $£ 6 / 2 /$ and 12 monthe at $£ 2 / 4 / 8$ or deposit $£ 10 / 3 / 4$ and
Mesars. Armstrong bave alwave been assoodited with very high-class Equipment Masars. Armstrong bave always been asse chassis is undoubtedly one of the best they have ever produced. MAIN FEATURES

- 6 watts push-pull output with negative feedback.
- 9 valves and 2 diodee.
- Full FM band ( $87-108 \mathrm{mc} / \mathrm{s}$ ) plus Medium and Long waves.
- Automatic Frequency Control on F.M.
- Adjustable Ferrite Rod Aerial on A.M. Bands.
- Tape Playback and Record Facilitie
- Frequency Response $30-22,000$ cps.
- Feparate Wide-Kange Bass and Treble Contro
- Output Impedance for 3, 71 and 15 ohms 8PEAKERS.

Tuning indicawor.

- Provision for Booster Unit for Low Output Plek-upe
- A Satinised Brass Dlal Escutcheon and Veneered Facia Board are avaiable. - Size of Chasels 12in. $\times$ 8in. $\times 7 \mathrm{ln}$. high



## DULCI MODEL H.4/PP AM/FM RADIOGRAM CHASSIS

A 4 Waveband Receiver Designed for
frst-rate reproduction of Radlo and Gram.
(Plus 7/6 carr. \& ins.). 829 . 3 . 10 H.P. TERMS: Depoitt $£ 5 / 16 / 10$ and 12 months at $\mathbf{x} 2 / 2 / 10$. brief apecifications:-

- Employs Full A.V.C
- The latest 8 -valve line-up.
M. Warebands.

For 3 or 15 ohm P.M. Speakers. Excellent Tone range up to 4 watts output. PUSH-PULL Ultra Linear Internal Aerial for local stations.

## SPECIAL CASH ONLY OFFER!!

 almost any make of Autochanger and is attractively mished in Grey solour Rexine-WE ALSO gUPPLY (a) The
 (c) $61 \frac{1}{2}$, P.M. SPEAKER .............................

Wo also have a amaller PORTABLE CASE Ideal for Record Players. PRICE ONLX $£ 3 / 3 /$ - (plus carriage and ins.).

## !! HOME CONSTRUCTORS !!

A RANGE OF "EASY TO ASSEMBLE* PREFABRICATED CABINETS
Destgnod by the W.B. "STENTORLAN " COMPANY or al-FI Loudspeaker systems or to accommadarg BighCabinets contatning the very succesgful "Btentorian" speakers give reaily firat-class reproduction and are well recommended. Models are also avallable to accommodate high-quality Amplitiers. Preamplifers, Tuning Units, Kecord Players, ete. All models are vary easily ansembled, n fact only \& Screwdriver is required
Fully illustrated leafieta sre available Including complete upecificatlon of the various STENTORLAN LOUD.
BPEAKERS Plose enclose SAE
STERN RADIO MMITED
109 \& 115 FLEET STREET,
LONDON, E.C:4 FLEET ST 5812/3
!! RECORD PLAYERS!! THE LATEST MODELS ARE IN STOGK MANY AT REDUCED PRICES ! ! ! SEND S.A.E. FOR ILLUSTRATED LEAFLET.

## A FEW CASH BARGAINS

в.я. м мохавсн Jas sapeed miker Atuotarger with ${ }^{\text {crspat }}$ Plek - $\mathrm{U}_{\mathrm{p}}$
£6.19.6

The COLLARO "CONQUEST" 4-speed autochanger
Studo Pick-up
The latert CoLlaro "continental Autochanger, Btudio "C C" Pick-up The COLLARO 4 -spoed single Recor Pick-up
THE NEW B.S.R. model UA12 is in Stoc MIXER AUTOCHANGER.

UA12 also avallable fincorporating Pick-up, playa LP. and 78 Records. B.S.R. Model TU9 4-speed slagle rec with separate crystal pick-up
27.19.6
(This high output pleck-up is avallable separately for £1/12/6.)

## HIGH FIDELITY UNITS IN STOCK

The lateat Garrard transcription motor " 301 ". with stroboscopically marked E28.0.11 turntable
The new Garrard Modol itr High Quallty Bingle Record Player fitted with the latest T.P.A. 12 pick-up arm and G.C.S Crystal Cartrldge
$\$ 19.7 .10$
As above but atted with the G.M.C. 5 Moving Coil Plek-up
garrard model Tamm in single Record piter fited with high output Crystal Pick-up 89.15 .8 The GARRARD T.P.A. is TTANSCRIPTION PICK-UP ARM The GARRARD T.P.A. 12 TRANSCRIPTION PICK-UP ARM if availible separataly or with Crystal or Moviag Coil GARRARD AU Send S.A.E, Lor Leaflet.

## CAR BATTERY CHARGER

 A COMPLETE EIT OF PARTS FOR ONLY $£ 2.19 .6$ Will charge 6 or 12 volt batteries at max. 2k amps. The desigh incorporates Rellant Reslstor and Fuse and we supply complete with Metal Box container EASY-TO-FOLLOW
## THE DULCI MODEL H.4T/2

COMBINED AM/FM TUNING UNIT
INGORPORATING OWN POWER SUPPLY
is in Stock. Speclically designed for operation with High Fidelity Amplifiers and capable or very high periormance VHF/FM Transmiselons. Thoroughly recommended where completo sefropowered All wave Tuner is wanted. ${ }_{\text {PIICE }} \mathrm{f} 24$. 19.0
HIRE PURCHASE: Deposit $£ 5$ and 12 months at $£ 1 / 16 / 7$ or deposit $88 / 7 /-$ and 12 monthly payments of $21 / 10 / 5$. A fully illustrated leafet is avatlable please enclose S . E .

STERN'S MK II
"fidelity" Price \&15.0.0
(Plus ${ }^{5 /-}$ carr.
posit 23 and 12 months
f5 and 12 monthly payments of $18 / 4$
Es and 12 monthly payments of 18/4* Incorporates the lateat MULLARD PERMEABILITY TUNENG HEART and the corresponding MULLARD VALVE LINE UP comprising ECC8J, 2 type EFs5's (or EF89's), EM84 Tunfing Indicator, plüs 2 type 0.A. 79 's Germaniurn Diodes. A really frrst-class Tuner very attractively presented and comparable to many offered at much higher prices Power consumption is only 1.5 amps. at

## HOME CONSTRUCTORS !

YOU CAN BULLD TEIS TUNING UNIT FORg11.0.0 ONLY
Please send \&.A.E. for fully descriptive leaflet, or the Assembly Manual is available for $1 / 6$.

## THE JASON "MERCURY" SWITCHED

 FM TUNER IS IN STOCKPrice Assembled and Tested $\mathbf{£ 1 3 . 1 0 , 0}$
CREDIT SALE Deposit $£ 3 / y / 6$ and 9 monthly payments of alternatively the complete home consTructor's Kit is Availabie for e9/19/6" (carr. \& las is $5 /$ - extra).

## DEPENDABLE RADIO SUPPLIES LTD.

12a TOTTENHAM STREET, LONDON, W.I. (2 minutes Goodge Street Station. Opp. Heals in Tottenham Court Rood) Phone: LANg ham 739112. Hours of Business 9-6. Callers welcome.

£16.15.0 carr. $10 \%$ -
Other models available.

D.C. input 13.5 v . Output 285 v . at $75 \mathrm{~mA} .57 / 6$. D.C input 27 v . Output 285 v , at $75 \mathrm{~mA}, 37 / 6$. D.C. inpur 12 v . Output 250 v .at $50 \mathrm{~mA} 47 / 6$. Postage \& Packing on each $3 / 6$.

A lim ted quantity VIBRATOR PACKS
6 v . input, 120 v . output at $30 \mathrm{~m} / \mathrm{A}$. Fully smoothed. R.F. f. tered with Mallory 629 c Vib, enc.osed in metal box with 7 pin Buigin p.ug and socket. Price 12/6. Carr. 3/6.

## RELAYS SIEMENS

Ideal for models-very light
$250+250$ Twin Coils ..............
$850+850$ Twin Coils
$1,000+1,000$ Twin Coils
MINIATURE SEALIED
S.T.C. 4184 G.E., $2,500 \Omega 2 \mathrm{c} / \mathrm{o}$ S.T.C. 4184 G.D., $700 \Omega$, 2 c/o Post and packing 1/6.
EVERY VALUE AND MAKE P.O. TYPE 3000 and 600 FROM STOCK. ENQUIRIES WELCOMED.
LOUDHAILER SPEAKER UNIT Impedance $7 \frac{1}{2} \Omega$. ${ }^{6-8}$ watts output. Weight diam. IOin. Easy fixing Weatherproof spun Weatherproof spun finish.

PRICE $£ 3 / 10 /-$
Carriage \& Packing $7 / 6$
IDEAL FOR SPORTS


EVENTS, ELECTIONEERING


## TANNOY

Ex-Goyt. RE-ENTRANT SPEAKERS

Impedance $7 \frac{1}{2} \Omega$. Handling cap. 8 watts At a special 12/6

Post $3 / 6$.

Terms: Cash with order or C.O.D.

## ROTARY TRANSFORMERS



Made by DELCO, LEYLAND, ZENITH, Ete.


Type I. Dual voltage 12 or 24 v ., input 265 v . 120 mA . output; 500 v., 26 mA . output. Type 2. 12 v . input, $275 \mathrm{v} ., 110 \mathrm{~mA}$, output; 500 v. 50 mA . output Both types dual output. HEADPHONES
D.L.R. 2 and D.L.R.S. BRAND NEW, Low resistance Balanced armatures. $8 / 6$ pair. Single earpieces

## CONDENSERS

AR88 FLTER PACK. $3 \times 4$ mid., 500 v. (new). 25/- each. P.P. $2 / 6$.
AR88 FLEM PAPER CONDENSERS 500 V. (new) 25/- each. P.P. 2/6.
BLOCK PAPER CONDENSERS 0.2 s mid., ${ }^{2} \mathrm{kv}$. Whg., $2 / 6$ each. ${ }^{1}$
mid., $400{ }^{2}$ wkg., $2 / 6$ each. 1 mid.
 wkg., 4t-ench. 3 mifd., 400 v wig.,
 each. 4 mid., 1 kv. $\mathbf{k g}$. 518 . 518 each 6 mid., 400 ₹. wke., $5 / 6$ each 8 mid., $1.200 \quad \mathrm{~F}$. wkg., $11 / 8$ each. 0.1 each. 0,s mid..
YIBCONOL TYPES, 10 mfd.. 3 kv. wikg., 25/-each 10 mfd., $1.5 \mathrm{lv} ., 15 \mathrm{l}$ each.
 each, 716 pout. AUTO transformer to sult, $50.55,175.200,225,250 \mathrm{v}$. 200 watte, $30 \%$ each, post 5 f. D.C. MOTORS. Brand new witb atartera, If h.p., do dip,
 spidadto, 21 - each. Pre set ispes, $1 / 6$ each. Double upaced, 25 pt., $3 / 6$ each, 100 pf 4 /- each
RHEOSTATS (by Ohmites). 25 ohms, 2 amps., $17 / 6$ each (new). W/W pota, if ohms, 5 watts, 1 tin. spindle, $2 / 6$ each.


 ${ }^{2} 3$ mfd. 400 v. A.C. wkg., $5 /-$ each. ${ }_{4}$ matd., 600 wkg. $51-$ each 4 mid.,
2 kv. wkg., $6 / 8 \mathrm{each}$ 2 kV . $w \mathrm{~kg} ., 6 / 6 \mathrm{each} 8 \mathrm{mfd}$., 500 V wkg. $4 / 8$ each. $10 \mathrm{mfd}, 440$ v. 4.0 . wkg., $12 / 6$ each. 60 mfd., 300 volts A.C. $22 / 6$ each. P.P. $3 / 6$.
R.F. UNITRS, ype 26B. Brand new in cartons, $18^{\prime} 6$ each. P.P. $2 / 8$.

RECEIVER BC 824C (part oi SCR 522). This well-known recelver covers 100 to 156 Mcts., the " C " If the latest type which incorporater severas mode, over the earller models, uoteve dimiter, AVC, bquelch circuat and extra sudio siage The power oquiremente are 300 volte $70 \mathrm{~m} / \mathrm{B}$. H.T., 12 volus 3 amp L. T. Nem and complete with 11 valves, $52 / 2^{\prime} 6$ each with circuit. P.P. $3 / 6$. (As described in the Surplue Radin onnversion Manua, Vol. 1.)
BC640B TRANSMTTERS. $100-15 \mathrm{~m} / \mathrm{Mc} / \mathrm{s}$. A few complete units stlli avallable. $£ 30$.
 A.C. Workiag contunous, oil ailed Tropical rating, Atted with discharge resiator. 810 each.
TRANSFORMERS $200 / 250$ v., inpot 115 v ., at 60 amps (double woand) with all sec. fused, , steel case, etc., $\$ 15$ each P.P. \&1. Weight 31 cwt .
RANGE UONVERTER UNITS (as used with the R206), Freq. $\mathbf{1 1 5 . 6 0 0}$ kels., valves ARTE2. EF39, blow motion drive and $3 \cdot$ gang 0005 tuning con., etc., $3 \Omega / 6$ each
RRELAYS i2 voit (semi rotary) 3 P., D.T.. large silver contacts, / / 6 each.
FODULATION TRANS., as used tim the BC 640, modulate two 811 's, 60 watts. New boxed, $39 / 6$ each, Poet $3 /$.

PLE'SE INCLUDE POSTFGE ON GOODS.
TERMS C.W.O. All goods offered are ex.W.D. S.A.E. for Enquiries.

## W. MILLS

3-B TRULOCK ROAD, TOTTENHAM, N.I7
Phone: Tottenham 9213 \& 9330

## BARGAINS IN RECORDER TAPES



[^11]

SIGNAL \& PATTERN GEN:RATOR

## 

or $25 /=$ depoast, P. \& P. $5 /=$ and 6 monthly paymuents of 21/6.
Coverake 7.6 Mols.-2to Mcis. In Gve bands, all on fundamentals slow motion tuning aurtio output, 8 verlical and horizontal bars, log. ging scale. Ln grey hammer lulshed case with 200-250 v.


## PORTABLE AMPLIFIER <br> Size 61 in long, 51 m, blyh, 241 n . deed, Wils sult any type of crystal nick-up. Output approx, 2 watts Incorporsting ECC83 donble trinde Cosenr 1428T output nentode dontle trinde Consont 1428T ourpult nentore mains tranaformer for 230-250 A.C. mains. Bass, treble and volume controls.

$$
49 / 6 \underbrace{}_{\substack{\text { Plua } \\ \text { P/f }}} \mathrm{F}
$$

5" SPEAKER WITH O.P. TRA NSFORMER

## B.S.R MONARCH UAB.

4-speed, pley, 10 records 13 Hn ., 101 m , or 7 ln . at 33, 45 or 78 r.p.m. Intermixes 7in., 101 n . and 12 in . records of the same apeed. Has manral play position; colour brown Dirnen. slons: 12$\} \times 10$ Fta Space required above baseborrd $4 \% 1 \mathrm{n}$., below basebnard $2 \%$ in. Fittod with Full-kil turnover erystal head.

purchased with the above 18/6. Plus f. \& P. P. 1/6.


## 8 WATT PUSHL AMPLIFIER

COMPLETR WTTH ORYBRAL MTKE LOUDSPEAEER
 $x$ 3Hn. Incorperating 6 valren, H. F. pen. 2 troilias, "2 ontpnt pena, and rectifier. For une with all raakee and tyrem of plek-un and mike. andie and gram., and controla hr gume Aeparate controls fir Base and Treble Hft. For use with Stri, or I..P. records, musical thatruments sich an Guitars, ete.
£4.19.6 Plua P. © P. 7r. Or 35/-deposit, Plas P. \& P. 7/6, sad 3 monthly nayments of $25 / \mathrm{m}$

## PLAYER CABINET

Hnished in 3-tone featherette, will take B.S.R. [DAB, witb room for amplifer and 7 m 4 quaket. Ovcrall

£2.19.6
Ping 8/F P. \& $\mathbf{P}$.

## COLLARO  <br> CHANGER <br> Model 457. Type " O" Pick-op, size 12in. $x$ 13 tha Minimum clearance above baseboard Sin, below $2 \ell$ in, 10 redords, A.C. mains $200-250$ v. Turnover crystal head. BRAND NEW. Fully guaranteed. $25 / \mathrm{h}$ doposit plin $P$ \& $P$ $8 /$ and 7 monthly payments of $\quad 88 / 19 / 6$ Cash Plus P. \& P. B/-. <br> 

## 13 CHANNEL TUNER

34 to $38 \mathrm{Mc} / \mathrm{s}$. complete with PCF80 and PCC84. These bave been removed from chassis.

## 19/6 Plus P. PP. P. 2/8

Knobs 3/6 per set extra.


## AC/DC POCKET MULTI-METER KIT



Comprising 24n. moving coil meter, scale calibrated in A.C./D.C colts, ohms and milliampe Voltage range A.C./D.C. 0-50, 0-100, 0-250, 0-500. Milliamps. 0-10, 0.100 , Ohms range, $0-10.000$. Front panel. range gwitch, wire-wound pot (for ohms zero retting), toggle switch, resistors and rectitler. Basc movement, 2 mA . In grey hammer flinish case.
$19 / 6 \quad$ Plus Built and tes Polat to point wirlag diagram $1 /$ - iree with kit.

RADIOGRAM CHASSIS
5 valve, A.C./D.C., 3 wave-hand super. het, $195-255$ v., $19-49 \quad 200-550$ nind

 U404 and 10P14. Twin malno fllter input, 2 dial HIghts and 8in. P.M.

$$
£ 6 / 19 / 6
$$

P. \& P fl



FAMOUS MAKE "TELETUNEX"

Coverp sill Mannels, Bands 1 and 3. Valves nsed: PCC84 R.F. diouble triode, cascode R.F nsed: POC84 R.F. ithode pentode f.c. and mixer. 1.F. output $33-38$ Me/s.

Poat 2/6 59/6 Knobs 3/A per set ax'ra

## CONSTRUCTORS' PORTABLE PARCEL

Comprising case, chassas. top plate. acale, Sha. P.M penker with O.P. trans., twin gang. $2470 \mathrm{KC} / \mathrm{h}$. I.F.B trolume controt with wwitch.
$39 / 6$ Plus 3/6 postage \& pecking.

## 2 VALVE \& RECTIFIER AMPLIFIER KIT

Appme. nutpod 2 watts. negrative leed hack, tone and volnme controls. All the parta to make ahove leka chamie apeaker and O.P. transformer. Two of these would be sultable for stereophonic. 19/6. Pins P. \& P. 3-

## MAINS TRANSFORMERS


 and packine on the above $3 /-$

RADIO AND T.V. COMPONENTS (ACTON) LTD.
23, ACTON HIGH STREET, LONDON, W.3 GOODS NOT DISPATCHED OUTSIDE U.K. ALL ENQUIRIES S.A.E.


AM/FM RADIOGRAM CHASSIS, HIGH QUALITY. PUSH-PULL. 6-8 WATTS OUTPUT. Current manufacture. 12 months guarantee. For 200-250 v. mains. Covers 8 latest type miniature B.V.A. valves. Only 22 gns. plus $7 / 6$ carr. Or deposit $£ 2 / 12 /-$ and 9 monthly payments of $£ 2 / 12 /=$

AM/FM RADIOGRAM

y leading manificturer. Brand new, cartonad, 4 -ware bands including V.FI.F. Aute-changes at 3 speeds, Hi-F pick-up with duo polnt sapphatre atylus. For $200 \cdot 250 \mathrm{v}$. 30 c.p.s. A.C. mains. Limited stockn at a fraction of listed price. Only 293 cns. Or Daposit $£ 6 / 19 / 6$ and 0 monthly pagments of 3 ghas. Carr. 10/-

THE SKY FOUR T.R.F.RECEIVER
 A deslgn of a
3 valve $200-250$
v. V. A.O. Mains. T.R.F. recelver
with selenium rectifler. For inclusion in cabinet llustrated or walnut omploys valves $6 K 7$, SP61, 6F6G, and is
spectally designed for simplicity in wiring. Sensitivity and quality is well up to standard. Point-to-point wiring diagram, inntructions of $\$ 4 / 19 / 6$ including cabinet. Available in brown or cream bakellte or veneered walnut.

## SELENIUM RECTIFIERS

L.T. Types	
2/6 v. 古 a.h.w.	1/9
$6 / 12$ v. $\frac{1}{2}$ a.h w	2/9
F.W. Bridge	
$6 / 12$ v 1 a	3/11
$6 / 12$ v 2 a.	7/3
$6 / 12$ v. 3 a.	9/9
6/12 v. 4 a.	13/11
6/12 v. 5 a.	14/6
6/12 v. 6 a.	14/11
6/12 v. 10 a.	25/9
6/12 จ. 15 a.	35/9
24 v. 6 a.	35/9
H.T. Type H.W.	
120 v. 40 mA .	3/9
250 v. 50 mA .	5/9
250 v. 80 mA .	7/9
250 v. 250 mA .	10/9

BATTERY ASSEMBLED CHARGERS 6 v. 1 a $19 / 9$ 6 v. 2 a. $6 / 12$ v. 1 a $6 / 12$ v. 2 a $6 / 12$ v. 4 a mains and output leads. Cases well ventilated and finished in stoved blue hammer. Carr. \& pkg. 3/6 CHARGER
TRANSFORMERS 200-230-250 v. $50 \mathrm{c} / \mathrm{s}$, Secs: $0-9-15$ v. $1 \frac{1}{4}$ a. $\begin{array}{lllll}11 / 9 ; & 0-9-15 & \text { v. } & 3 & \text { a.. }\end{array}$ $19 / 9 ; 0-9-15$ ソ. $0-9-15$ v. 6 a., $23 / 9$.

LINEAR L3/3A STEREOPHONIC GRAM. AMPLIFIER
Designed to fit most Portable Cabinets. Outputs 3 watts on each channel (Total 6 watts). Sensi tivity $130 \mathrm{~m} v$. Controls Volume (Ganged) Tone (Ganged) and Balance, For 200 -
£6.19.6 250 v. A.C. mains. Output sockets for two 3 ohm speakers.

## STEREOPHONIC SOUND EQUIPMENT AT KEEN PRICES

 Matched speakers in polished wood cabinets, walnut finish, $6 \frac{1}{2}$ in. P.M. £3/5/-per pair. 8in. P.M. 12,000 lines, $£ 3 / 19 / 9$ per pair. 12 in. P.M., 12,000 lines, $£ 9 / 15 /$ - per pair.
 Or with pair 8 in. cabinet speakers 18 gns. Or with 12 in. speakers in cabinets 22 gns.

Carr. 15/-

LINEAR STEREOPHONIC AMPLIFIER L3/3. Sensitivity $150 \mathrm{~m} . \mathrm{v}$. for 3 watts output on each channel. Ganged Vol. and Tone Controls. Preset balance control. Outputs for two matched 2-3 ohm speakers. (Can be used as straight 6-

watt amplifier.) Provides remarkably realistic output when connected to $200-250$ v. A.C. mains point Stereophonic pickup head and good quality speakers. Instructions and guarantee included. 7 gnS.
Carr. free Send S.A.E. for leaflet.

COLLARO 4-SPEED AUTO-CHANGERS ACOS Crystal Microphone Inserts. Brand With studio pick-up with turnover head. new. Only $5 / 11$ ea. Ex. Equip. $4 / 11$ ea. BRAND NEW. Cartoned latest model. For ACOS HGP59 Hi Fi Crystal Cartridges 200-250 v. A.C. mains. Very limited number. (Turnover type with sapphire stylus.) Standard Conquest £7/19/6. Continental 9 gns. Carr. 5/6. replacement for Garrard and B.S.R. Only $19 / 9$.

## R.S.C. BATTERY TO MAINS CONVERSION UNITS

Type BM1. An all dry battery eliminator. Size $5 \frac{1}{2} \times 4 \frac{1}{2}$ 2in. approx. Completely replaces batteries supplying 1.4 v and 90 v . Where A.C. mains $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ is available. Suitable for all battery portable receivers requiring Complete kit with diagram. 39/9 or ready for use 46/9.
Type BM2. Size $8 \times 5 \frac{1}{2} \times 21 \mathrm{in}$. Supplies $120 \mathrm{v} ., 90 \mathrm{v}$., and 60 v .40 mA . and 2 V .0 .4 a to 1 amp. fully smoothed THEREBY COMPLETELY REPLACING BOTH H.T BATTERIES AND L.T. 2 v. ACCUMULATORS when connected to A.C. mains supply $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. SUITABLE
 FOR ALL BATTERY RECEIVERS normally using 2 v . accumulator. Complete kit with diagrams and instructions, 49/9, or ready for use, $59 / 6$.

## R.S.C. TRANSFORMERS

## FULLY GUARANTEED

## MAINS TRANSFORMERS

Primaries 200-230-250 v. $50 \mathrm{c} / \mathrm{s}$.
FULLY SHROUDED UPRIGET MOUNTING $250-0-250$ v. 60 mA., 6.3 v. 2 a., 5 v. 2 a. 17/6 250-0-250 v. 100 mA., 6.3 v. 4 a., 5 v. 3 a. 23/9 300-0-300 v. 100 mA ., 6.3 v. 4 a., 5 v. 3 a. $25 / 9$ 350-0-350 v. $100 \mathrm{~mA} ., 6.3$ v. 4 a., 5 v 3 a. $300-0-300$ v. 130 mA ., 6.3 v. 4 a., c.t., 6.3 v. 1 a., suitable for Mullard 510 Amplifier 350 a.0-350 v. $150 \mathrm{~mA} ., 6.3 \mathrm{v} .4$ a., 5 v. 3 a. $350-0-350 \mathrm{v} .150 \mathrm{~mA}, 6.3 \mathrm{v} .2$, 6.3 v 2 a., 5 v. 3 a.
$425-0-425$ v. 200 mA .36 .3
Ct 5 v. 3 a . . a.s c.t.,
TOP SHROUDED DROP-THROUGH TYPE 260-0-260 v. 70 mA., 6.3 v. 2 a., 5 v. 2 a $250-0-250$ v. 100 mA ., 6.3 v. 4 a., 5 v. 3 a $300-0-300$ v. $100 \mathrm{~mA} ., 63$ v 4 a., 5 v. 3 a $350-0-350$ v. $100 \mathrm{~mA} ., 6.3$ v. 4 a., 5 v. 3 a $350-0-350$ v. 150 mA ., 6.3 v. 4 a., 5 v. 3 a.

ELIMIINATOR TRANSFORMERS
Primaries 200-250 v. $50 \mathrm{c} / \mathrm{s}$.
120 v. $40 \mathrm{~mA} ., 5-0-5$ v. 15 mA.
interleaved and impregnated FILAMENT TRANSFORMERS Primaries 200-250 v. $50 \mathrm{c} / \mathrm{s}$.

6.3 v. 1.5 a. . . . 5/9	6.3 v. 3 a.
6.3 v. 2 a. ... . . . 7/6	6.3 v. 6 a
0-4-6.3 v. 2 a. . 7/9	12 v. 3 a . or
12 v. 1 v. ...... 7/9	24 จ. 1.5 a.

## OUTPUT TRANSFORMERS

Midget Battery Pentode 66:1 for 3S 4 , etc. Small Pentode $5,000 \Omega$ to $3 \Omega$

SMOOTEING CHOKES
250 mA . 5 H ., 100 ohms
$150 \mathrm{~mA}, 7-10 \mathrm{H}, 250 \mathrm{ohm}$ $100 \mathrm{~mA} ., 10 \mathrm{H} ., 200 \mathrm{ohms}$ 80 mA ., $10 \mathrm{H} ., 350$ ohms $80 \mathrm{~mA} ., 10 \mathrm{H} ., 350$ ohms
60 mA, , $10 \mathrm{H} ., 400$ ohms

All for A.C. Mains $\mathbf{2 0 0 - 2 5 0}$ v. $50 \mathrm{c} / \mathrm{s}$. Guaranteed 12 months ASSEMBLED 6 v . or 12 v . Deposit 14/11 and five monthly payments 14/11.
As above but for 6 amp. charging. 19/9 . Carr. 5/~. Or Deposit 1919. and five monthly payments of


Fitted Ammeter and variable charge selector.
Also selector plus for 6 v . or 12v. charging. Double fused. Well ventilated steel case with blue hammer finish. $75 /=$
Ready for use with mains and output leads. Carr. $4 / 6$. Or

## 4 amps.

.BATTERY CHARGER KITS ASSEMBLED
Consisting of Mains Transformer F.W. Bridge. Metal Rectified, well ventilated steel Rectified, well ventilated steel case. Fuses, Fuse-holders, Grommets, pan
Carr. $2 / 6$ extra.
6 v. or 12 v. 1 amp.
neter
$22 / 9$
$32 / 9$ as above, with ammeter $32 / 9$ 6 v. 2 amps. 6 v. or 12 v. 2 amps..... $31 / 6$ 6 v. or 12 v. 2 amps (inclusive of ammeter) 6 V. or 12 v. 4 amps... 53/9 BATTERY CHARGER KIT $6 / 12$ V.3 6 amp., consisting of Frans. and ammeter. $49 / 9$. Post $4 / 6$.

CHARGER CHARGER
6 v . or 12 v . 2 amps .
Fitted Ammeter and selector plug for 6 v . or 12 v . Louvred metal case, finished attractive hammer blue. Ready for use with mains Double Fused Only Carr $3 / 6$. 49/9

## R.S.C. A10 ULTRA LINEAR 30 WATT AMPLIFIER

HIGH FIDELITY PUSH-PULL UNIT EMPLOYING SIX VALVES. EF86 EF86, ECC83, 807, 807, GZ34. Tone Control Pre-amp. stages are incorporated. Sensitivity is extremely high. Only 12 millivolts minimum input is required for full output. THIS ENSURES THE SUITABILITY OF ANY TYPE OR MAKE OF
MICROPHONE OR PICK-UP MICROPHONE OR PICK-UP. Separate Bass and Treble controls give both "lift" and "cut" with ample tone correction for long playing records. An extra input with associated vol, control is provided so that two separate inputs such as " mike" and applied for mixing purposes. AN OUTPUT SOCKET WITH PLUG is INCLUDED FOR SUPPLY OF 300 v 20 mA and 6.3 v. 1.5 a. FOR A RADIO FEEDER UNIT. Price in kit form with easy-to-follow wiring diagrams. 11 GnS. Cover as illustrated 18/9 extra. Or Factory built with 12 months' guarantee $£ 13 / 19 / 6$. TERMS ON ASSEMBLED UNITS. DEPOSIT 24/9 and 12 monthly payments of $24 / 9$.


Type 807 output valves are used with High Quality Sectionally wound output transformer specially designed for Ultra Linear operation. Negative feedback of 20 D.B. in main loop. CERTIFIED PERFORMANCE EIGURES ARE EQUAL TO MOST EXPENSIVE UNITS AVAILABLE. Frequency response 3 D.B. $30-20,000 \mathrm{c} / \mathrm{cs}$. , Tone Controls $\pm 12 \mathrm{D} . \mathrm{B}$. at $50 \mathrm{c} / \mathrm{cs} .,+12$ D.B. to - 6 D.B. at 12,000 c/cs. Hum and noise 70 D.B. down. Good finish blue hammer Overall size $12 \times 9 \times$ 9 in . approx. Power consumption 150 watts. Fin. approx. Power consumption 150 watts. For A.C. mains $200-250-250 \mathrm{~V} .50 \mathrm{c} / \mathrm{cs}$.
Outputs for 3 and 15 ohm speakers. EQUALLY SUITABLE FOR THE CONNOISSEUR OR FOR LARGE HALLS, CLUBS or OUTSIDE FUNCTIONS. IDEAL FOR USE WITH MUSICAI INSTRUMENTS SUCH AS STRING BASS, ELECTRONIC ORGAN, GUITAR, etc. FOR DANCE BANDS, GARRISON THEATRES, etc., etc. We can supply Microphones, Speakers, etc., at keen cashprices or on terms with amplifiers.
EXPOR T. ENQUIRIES INVITED.


LINEAR LT/45 HIGH QUALITY TAPE DECK AMPLIFIER COMPLETE with POWER PACK and OSC. STAGE. Suitable for Collaro,

 thans. Outpual for siandard
required for full recording. Only 2 millivolts minimum output required from recording head. Magje Eye recording level indicator. Provision lor ieeding P.A. amplifer. Negative ieed-back equalisation. Linear frequency respons $\pm 3$ D.B. $50.11,000$ c/cs. Facilities for recordings at 151 n ., 7 fin . or 3 itin per second. Automatle equalisation at the turn a knob. When switch 12 Ready for use $\begin{aligned} & \text { Res. ing from record to playback position automatic } \\ & \text { Casr } 7 / 6 \text {, } \\ & \text { demagnetisation of beads is assured. } \\ & \text { Separate }\end{aligned}$ Or Dep. $22 / 3$ and. gain and output controls.
 Leaflet 6d. Special ofler LT/45, Collaro Tape Transcriptor, Studio Micro phone, reel of tape and 61 in , or $7 \times 4 \mathrm{in}$. apeuker. 29 gns. Carr. 10\%.

COLLARO JUNIOR 4 SPEED RECORD PLAYER with separate pick-up having dual point sapphire stylus. Only $£ 4 / 10 /=$. Post $3 / 6$.

LG3 MINIATURE 3 WATT GRAM. AMPLIFIER For $200-250$ v. 50 c.p.s. A.C. mains. Overall size only $61 \times 4$ $\times 24 \mathrm{n}$. Fitted vol. and Tone Control with mains switch. $\begin{array}{ll}\text { chasging unit. Output for } 2-3 \text { ohm speaser } \\ \text { Only } & 55 / 9\end{array}$
R.s.C. A4 4.5 WATT HIGH GAIN AMPLIFIER A highly sensitive 4valve quality amplifter club etc. homy 50 milllivolts input is required or full output so that it the latest high-fidelity pick-up heads in addlpick - ans other types of ail ruikes. Separate Bast and Treble controls are
 provided. These give ull long playing record equalisation. Hum level is negligible betng 71 D.B. down. 15 D.B. of negative feedback is
used. H. of $300 \% .26 \mathrm{~mA}$. and $\mathrm{L} . \mathrm{T}$. or $6.3 \mathrm{\nabla} .1 .5 \mathrm{a}$. is availible for the suppiy of a Radio Feeder Unit or Tape Deck pre-amplifer. For A.C. mains input of 200-230-250 v. 50 c/s. Output for $2-3$ ohm speaker. Chassis 18 not aulve. Kit is complete in overy detail and includes fully punched chassis (with baveplate) with the bue hammer falsh, and
 $25 /$ extra, plus $3 / 6$ carriage. Or Deposit $22 /-$ and ave monthly payments of $22 /$ for assembled unit.
R.S.C. A7 3-4 WATT QUALITY AMPLIFIER A highly sensituve 4-vaive ampliter using negative feedback and having an excellent frequency response. Pre-amplider Bass and Treble controls giving full tome compensation for lung playing records. Suitable for any kind of plek-up including latest high fidelity types. H.T. of 250 v .20 mA . Unit, etc. ONLY', 40 millivolts input required for full output. Fully isolated chassis with baseplate. For A.C. malns 200-250 v. 50 cycles. Output for 2-3 ohms apeaker. Complete klt of parts, point-to-potnt wiring diagrams and instructlons. Only $83 / 15 /-$, carr. $3 / 6$ or factory ballt 25/- extra.

COLlaro tape transcriptors. Mark ili. Fe only. 18 gns
STAAR GALAXY 4.SPEED MIXER AUTO-CHANGER
A precision manufactured unit with unique fingertip control. Pick-up fitted with dual sapphire tipped stylus. A very compact changer in attractive duatone finish. For A.C. mains $110-250 \mathrm{v}$. Brand new cartoned. 65/19/6. Post 4/6.
ACOS HIGR FIDELITY PIOK-UPS. GP54 with HGP99/52 cartridge. Dual point sapphire stylus. Cream finish. cortunste purchase enables us to offer these at $\begin{aligned} & \text { Only } \\ & \text { auprox. half price. }\end{aligned}$ 35/9
PORTABLE CABINETS. Inside measurements $17 \times 121 \times$ 84in. high. Clearance above baseboard $5 \frac{1}{4} \mathrm{in}$. $\begin{array}{lll}\begin{array}{l}\text { Attractive design. } \\ \text { rexine } \\ \text { coverlag. }\end{array} & \begin{array}{c}\text { Two } \\ \text { Carr. }\end{array} \\ \begin{array}{l}\text { Cone } \\ 5 /-.\end{array} & \text { Only } & 69 / 9\end{array}$
SPECIAL OFFER. Above cabinet, LG3 amplifier, 6 inin speaker and B.S.E. UAB Autochanger. 13 gns, Carr. 10/LINEAR L45 MINIATURE 4/5 W. QUALITY AMPLIFIER. Suitable for use with Garrard B.s.R. or any other record playing undt and most microphones. Total negative feed back i2 D.B. Boparate Bass and Treble controls. For A.C. maini input of $200-250$ v. 50 e.p.s. Output for $9 / 3$ ohm speaker. Three miniature Mullard valves used. Size
 and 5 monthly payments of $22 /=$. Send S.A.E. for leaflet.


## PLESSEY DUAL CONCENTRIC 12in. P.M. SPEAKERS

(15 ohms), conalsting of a high quality 12in. speaker ing a amail elliptical speater ready wired with choke and condensers to act as
t weeter. This high sdelity tweetor. This high sdelity unit is highly recommended
for use with our All or any for use with our All or any
similar ampliter. Rating is 10 watts. Gauss 12,000 lines. Price only $85 / 17 / 6$.
Or Deposit $10 / 6$ and 12 Or Deposit 1066 and
monthly payments of $10 / 6$.

## Radia supply Ca arransoo

Personal Shoppers to 5 and 7, County Arcade, Briggate, Leeds, J. Mail Orders to 29-31, Moorfield Road, LEEDS, 12.
Terms: C.W.O. or C.O.D. No C.O.D. under $£ 1$. Postage $1 / 9$ extra on all orders under $£ 2$. $2 / 9$ extra under 65 unless carriage charge stated. Full Price List 6 d . Trade supplied. Open $2 / 9$ extra under ES unless carriage charge stated. Full Price List od. Trade supplied.
to callers: $9 \mathrm{a} . \mathrm{m}$. to $6 \mathrm{p} . \mathrm{m}$. Wednesday until $1 \mathrm{p} . \mathrm{m}$. S.A.E. please with all enquiries.

## AII ULTRA LINEAR

 12-14 WATT AMPLIFIER

NEW 1958 DESIGN HIGH-FIDELITY PUSHPULL AMPLIFIER WITH "BUILT-IN" TONE CONTROL PRE-AMP. STAGES
Two input sockets with associated controls allow mixing of "mike" and gram. as in A10. High sensitdvity. Includes
 for Ultra Lipeard operation, and reliable pmall designed of current FOR BASS AND TREBLE "Lift" and "Cut." Frequency esponse 73 DB $30-30,000 \mathrm{c} / \mathrm{cs}$. Six negative feedtack loops. Eum levei fo DB down ONLY 23 millivolts INPUT required for FULL OUTPUI. Suitable for use with all with the types of plec-ups and microphones. Comparable With the very bert denigns. For STANDARD or Long
PLAYING RECORDS. For MUSICAL INSTRUMENTS fuch as STRING BASS, GUTTARS, etc., OUTPUT SOCKET with plug provides 300 v. $30 \mathrm{~m} . \mathrm{a}$. and 6.3 v .1 .5 a . For For A.C. A RADIO FEEDER UNIT. Size approx. 12-9-71n. ohms speakers. Kit is complete to last nut. Chassig is fully punched, Full instruotions and point-to-point wiring $\begin{aligned} & \text { diagrams supplied. Only } 8 \begin{array}{l}\text { Carr. } \\ \text { Gns. }\end{array} \text { (Or factory built } \\ & 45 /- \text { extra.) }\end{aligned}$ If required louvred metal cover with 2 carrying handles
can be supplled for 18/9. TERMS ON ASSEMBLED can be supplied for 18/9. TERMS ON ASEMBLED 18/9. Send B.A.E. for illustrated leatlet detailing Readytooassembled Cabinets, Speakers, Mcrophone, etc., with cash and credit terms.

LINEAR "DIATONIC" 10-WATT HGG FIDELITY AMPLIFIER. Incorporating presamp. For A.C. mains input 200-230-250 v. 50 c.p.s. A compact attractively finished unit with two separaiely controlled inputs and outputs for 3 and 15 ohmas speakers. Separate Bass and Treble conurols. Five latest type miniature Mullard valve

## P.M. SPEAKERS

$2 \cdot 3$ ohm 23in. Rola 17/9. Win. Goodmans $17 / 9,7 \times 4 \mathrm{in}$. Goodmana Elliptical $19 / 9$ Bifin. Rola 19/9. 81 n . Rola 19/9. 8in. Goodmans 21/9. 10in. R.A. 28/9. $10 \times 6$ in Elliptical Goodnans 29/9. 12in. Plessey 29/11. 12in.
Plessey 3 or 15 ohmms, 10 watts, 12,000 lines, $59 / 6$.

## SUPERHET RADIO FEEDER UNIT

Deaign of a high quality Radio Tuner Unit (specially suitable for use with any of our Amplifers.) A Triode Heptode F/changer is used. Pentode I.F. and double Diode second Dotector, delayed A.B.C. Is arranged no that A.V.C. dispotion 1s avolded. The W.Ch. Bw. incorporates Gram. wlll load most Amplifers requiring 500 mV input depending on Ae locatlon. Only $250 \mathrm{\nabla} .13 \mathrm{~mA}$. H.T. and LT, of 6.3 v. 1 amp. required from amplifer. Size of unit spprox.
gof-7in. high. Bend S.A.E. for illustrated leaflet. Total
 and instruotlons $2 / 6$.

# RADIO SUPPLY CO. (LEEDS) LTD. <br> (Dept. D) 5 and 7, Coun 

CO-AXIAL CABLE, 75 ohms, łin., 8d. yard. Twin screened feeder 11d. yard. ELECTROLYTICS (current production) Tubular Types 8 mfd. 450 v . $\quad 1 / 9$ 8 mfd .500 v . $16 \mu \mathrm{~F} 350 \mathrm{v}$. $1 / 9$
$2 / 6$ $16 \mu \mathrm{~F} 450 \mathrm{v}$. $16 \mu \mathrm{~F} 500 \mathrm{v}$ $25 \mu \mathrm{~F} 25$ v. $50 \mu \mathrm{~F} 12$ v. 50 mfd .25 v . $50 \mu \mathrm{~F} 50$ v 100 mfd 12 v 100 mfd. 25 v $\quad 1 / 9$ $\begin{array}{lll}3,000 \mathrm{mfd} . & 6 \mathrm{v} . & 3 / 9\end{array}$ $6,000 \mathrm{mfd} .6 \mathrm{v}$. 3/11 VOLUME CONT values, CONTROLS with long spindles, all EX TRANSFORMERS. Double wound $10-0$ $100-200-220-240 \mathrm{v}$. to $9-0-110-122-136-148 \mathrm{v}$ $100-200-220-240$ v. to $9-0-110-122-136-148 \mathrm{v}$.
or Reverse. 300 watts, $35 / 9$, plus $7 / 6$ carr. 2 v. 16 A.H. EX GOVT. ACC̄UMULATORS New, boxed. Only $5 / 6$ each, 3 for $15 / \mathrm{F}$, plus 2/6 carr., 6 for 27/6. Carr. $3 / 6$.
D.C. SUPPLY KITS. Suitable for electric trains. Consists of mains trans. 200-250 v. 50 c.p.s.; 12 v . lamp selenium rect. (F.W. Bridge): 2 fuseholders, 2 fuses, change direction switch, variable speed regulator, partially drilled steel case, and circuit. Very limited number, 29/9.
VLBкATOKS. Oak and Wearite, synchronous
 17/6. Audio type 7/9.
EX GOVT. METAL BLOCK PAPER CONDENSERS. 8 mfd .10 mfd .500 v. $3 / 9$. INSULATED STAPLES tin. Boxes of 100 . Only $1 /$ e each. $10 / 6 \mathrm{doz}$. $55 / 10 /$ - gross.

DRY SHAVERS. Briggate, Leeds, I. DRY SHAVERS. Brand new in carrying casc. Oper Just the thing for travel. Only $59 / 6$ (approx. half price).
RECORDING TAPE. 600 ft . reels, $9 / 9,1,200 \mathrm{ft}$. reels $14 / 9$
ELECTRIC SOLDERING IRONS. Lightweight type for radio work, 19/9.

12in. 10 WATT HGH QUALITY LOUD-
 SPEAKERS IN POLISHE WALNUT FINISHED CABINET.
Gauss 12,000 lines. Speech coil 3 ohms or 15 ohms. Only 54/19/6. Carr. 5/-.
Terms: Deposit 11/and 9 monthly payments of $11 /$-.

EX GOVT. MAINS TRANSFORMERS All 200-250 v. $50 \mathrm{c} / \mathrm{s}$. input.
Pr. 0-110-200-230-250 v., 275-0-275 v.

$$
100 \mathrm{~mA} ., 6.3 \text { v. } 7 \text { a., } 5 \text { v. } 3 \text { a. }
$$

22/9 $230-0-230$ v. 80 mA .12 .6 v. 1.5 a.s 5 v. 2a 11/9 $250-0-250$ v. 150 mA .5 v. 3 a. ........... 16/9 $350-0-350$ v. 160 mA .6 .3 v. 5 a., 5 v. 3 a. $27 / 9$ $400-0-400$ v. 250 mA .5 จ. 2 a., 5 v. 2 a. $18 / 9$ $450-0-450$ v. 250 mA. 6.3 v. 3 a., 6.3 v. 1 a., $49 / 9$
5 v. 6 a. 12.5 v. 3 a., 5 v. 3 a 0-24-26-28 v. 15 amps. A.C. conservative Gov. rating (marked with D.C. rating after rectification) 69/9. Carr. 15/-.


$$
0-10-20-25 \text { v. } 24 \text { a. (Gov. }
$$ rating) 79/6. Carr. 15/\%.

## EXTENSION <br> SPEAKERS

Limited number in handsome Walnut veneered cabinets. $2-3$ ohm sprech cabinets. $6 \frac{1}{2} \mathrm{in}$. 29/9. 8 in . 35/9.

COLLARO AC/4/564 4 Speed Single Players £6/19/6. Carr. 4/6. PORTABLE CABINETS Two tone rexine. Will take $\mathrm{AC} / 4 / 564$. Size inside $14!\times 13 z \times 6 t, 47 / 9$.

EX GOVT. SMOOTHING CHOKES $250 \mathrm{~mA} ., 20 \mathrm{H} ., 150$ ohms
200 mA ., 3-5 H., 50 ohms. Parmeko 150 mA ., 10 H ., 50 ohms.
150 mA . 6-10 H., 150 ohms, trop.
$120 \mathrm{~mA} ., 12 \mathrm{H} ., 100$ ohms.
$100 \mathrm{~mA} ., 10 \mathrm{H} .100$ ohms.
100 mA , $5 \mathrm{H}, 100$ ohms, tropicalised 80 mA ., 20 H., 900 ohms.
60 mA ., $5-10 \mathrm{H}$., 250 ohms.
$2 / 11$
EX. GOVT. CASES. Well ventilated, black crackle finished, undrilled cover Size $14 \times 10 \times 8 \frac{1}{\text { in }}$. high. IDEAL FOR BATTERY CHAARGER OR INSTRUMENT CASE, COVER COULD BE USED FOR AMPLIFIER. Only 9/9, plus 2/9 post. AMPLIFIER. Only $9 / 9$, plus $2 / 9$ post.
SPECIAL OFFERS. Small 2 gangs . 0005
 3/9 ea. Lots of six 19/6.


BRAND NEW LUCAS MOTORCYCLE BATTERIES. 6 v .22 A.H. (In sealed cartons) Limited number available at only 29/9 each. Carr. 3/6. Norma price 71/- each. 14 WATT HI-FIDELITY AMPLIFIERS. For any type of pleck -up and Mike. store wiled but tested and guarantecd
a perfect order. For $200 \cdot 250 \mathrm{v}$. A.O. Maine. Complete with 5 latest type valves. Only 6 gns., carr. 7/6.

## TECHNICAL TRADING CO.

All picture teat 12 -INCH 5 -CHANNEL TABLE TV 8ETs<br> TTA CONVERTORS. Internat power pack compact tuneable all 24 Carr free.

TRANEISTORS Lateat EDISWAN XB104. 8.A.E. detalls........... 18/T.V.TUBES Factory revacuणzed. all GUaranteed 6 months. our bup rior tolewislon tubes and the smanil number of returna we sre now able to enfect a substanual reductlon in beir pricens. Nearly all types of Mullard, Mazda Brimar. ${ }^{\text {B }}$ Coswor, Emiscope. Fmiltron, Pe-rantl, Cathodion, G.E.C. Availsble ox-stock. An gini. and 10in. Types $22 / 15 /-$. All 12in, 14in., 15lin, 16in. $23 / 18 /=$. Except those liste 1 under.
CRM123. MW31/2B, M W31/74. 3/31, 3/32, ORM143, CRM152 An Mullard 14th. Typoe, \&4/10/-. All 17in. Types, £i $/ 15 /-$. 21 in . Types. $£ 7 / 10 /$ -

 guaranteed radio valves, b4-hour service


## 12-PAGE LIST OF 750 SNIPS


350/352, FRATTON ROAD, PORTSMOUTH

## HOME RADIO OF MITCHAM EDDYSTONE

 RECEIVERS \& COMPONENTS Immediate delivery (as we go topress) of $870,840 \mathrm{~A}, 888 \mathrm{~A}$, and 680 X . press) of $870,840 \mathrm{~A}, 888 \mathrm{~A}$, and 680 X . Send 3 d . scamp for full specifications. Prices from $634 / 16 /$-. Special
artention to overseas orders. 6d, stamp for Eddystone Components catalogue.

-_- - - _-_ - THE EDDYSTONE ' $870^{\circ}$


TRANSMITTERS
Immediate delivery at present on the famous $P$. and A. EXPLORER and Cub. Full specification on request. Prompt atrention overseas orders. Agents for MOSLEY "Wavetrap" Antennes.

## THTESIS NTEW! <br> EDDYSTONE No. 898 <br> Geared slow motion drive <br> A high-grade gear-driven and flywheel-loaded movement giving smooth positive drive with a reduction ratio of 110 to 1 . The pointer has a 7 in . horizontal eravel and the vernier scale <br> 

 of 500 divisions. Die-cast glossy black escutcheon, complete with perspex window, knob, fixing screws and template. Overall size 9 tin. $\times 5 \frac{3}{d}$ in. Leafler on request.Dept. W, 187, LONDON ROAD MITCHAM, SURREY. MIT. 3282 Shop Hours: 9-6.30. Weds. 1.0 p.m.


## AMPLIFIER N24

Manufactured or the Admiralty in 1552 by Burndept this utilises 4 valves, I each 5Z4G, 6V6G, 6J7G, 6J5G and high quality components such as " C " Core Transformers and Block Paper Smoothing Condensers. Has A.C. Mains Pack for nomina. $110 / 230$ volts. Provision lor 600 ohms or High impedance Input. and has Output to 600 ohm Line. For normal use only requires changing Output Transtormer Can be used for Speech or Music, giving High Quality Reproduction. Output approximately 4 wats. Enciosed in metal case and designed for Standard I9in. Rack Mounting, having grey ront panel size $19 \mathrm{in}, \times 7 \mathrm{in}$. with Chrom:um Handles. All connections to rear panel, ront having "On/Off " Switch, Gain Control, Indicator Light, Fuses and Vaives nspection Panel. BRAND NEW IN MAKERS' PACKING. ONLY C4/9/6 (carriage 10/6).

POWER UNITS TYPE 234: Primary $200 / 250 \mathrm{v} .50$ cycles. Outputs of 250 v . $200 / 250 \mathrm{v} .50$ cycles. Outputs of 250 v .
100 mA ., and 6.3 v .4 amps. Fitted double smoothing. For normal rack mounting (or bench use) having grey front panel size 19 in . $x$ 7in. BRAND NEW. ONLY 59/6 (carriage etc. 7/6).
H.R.O. MAINS POWER UNITS. Input lis/230 v. A.C. Output 230 v. 75 mA ., and $6.2 \mathrm{v}, 3.5$ Amps. Complete in black crackled ease. ONLY 69/6 ( carriage $3 / 6$ ).
SPRAGUE CONDENSERS. Metal eased, wire ends. New, . 01 mid. $1,000 \mathrm{v}$., and . I mfd. 500 v . 7/6 dozen. Special quotes for quantities.
MAINS TRANSFORMERS. Normal Primaries $250-0-250$ v. 80 mA ., 6.3 v 3 a. 4 v. 4 a, 0-4-5 v. 2 a., 20/-; $350-0-$ $3 \mathrm{a}, 4$ v. $4 \mathrm{a}, 0-4-5 \mathrm{v} .2$ a., $20 /-: 350-0-$
350 v. $80 \mathrm{~mA} ., 6.3$ v. 3.5 a., 4 v .4 a., $\begin{array}{lll}350 \\ 0-4.5 & \mathrm{v} .2 \mathrm{~mA}, 20 /-; & 0-30 \mathrm{v} .2 \mathrm{za} \text {, tapped }\end{array}$ $\begin{array}{ll}0-4,5 \mathrm{v} . & 2 \text { a, } 20 /-\mathrm{i} \\ \text { to give } 13 \text { different voltages, } 20 /- \text {. }\end{array}$
O/P. TRANSFORMER. 5/-.
EHT TRANSFORMERS. 5.5 kV . (Rect.) with $2 \mathrm{v} .1 \mathrm{a} ., 79 / 6$. 7 kV (Rect.) with $2 \mathrm{v}$. 1 a., 79/6. 7 kV .
(Rect.)
with 2
2
 (Rect.) with $2-0-2$ v. I. 1 a., 2-0-2 $\vee$. (postage $2 /$-per trans.).

## TRAWLER BAND R 1155 s

The latest version of thie famoun Communications Recetver to je released
 $3.0-1.5 \mathrm{Mc} / \mathrm{s}$. $1.5 \mathrm{Mc} / \alpha$, $600 \mathrm{kc} / \mathrm{s}$, , $500-200 \mathrm{kc} / \mathrm{s}$ As used by Coantal Com-
mand Alf-Hea Rescue Launches, etc. Als sets thoroughly tested and in perfect working order before denpatch, and on demonatration to callers II Bee had elight use, but are in excellent condition. ONLY $812 / 19 / 6$. "B"Models blso available. As above but instead of $3.0-1.5 \mathrm{Mc} / \mathrm{s}$ band bas $200-75$ kc/s. covernge. ONLY £7/19/6. A.Q. MAIN8 POWER PACK OUXPUT STAGE, in black metal case to in, withnut any modiacatlom. Fitted with 8 in. P.M. ©peaiser $£ 6 / 10$ in DEDUCT $10 \%$ IF PURCRASING RECEIVER AND POWER PACK TOGETHER.
gend S.A.E. for Illustrated leaflet, or $1 / 3$ for 14 -page booklet which gives echuical information, circuits, etc., and lasupplied tree with each recelver Add carriage $10 / 6$ for Receiver, $5 /$ - for Power Itrlt

## METERS

F.S.D.

50 microamps D.C. 50 mitcramps D.C. $600-n \cdot 500$ mimero D.C 1 mA . D.C.
1 mA
D.C. 1 mA
1 mA
$\mathrm{D} . \mathrm{C}$. 150 mA . D.C. 200 mA . D.C. 10 amps. D. C . 20 ampe D.C. 40 ampe D. $C$. 15-6-15 amps D.C. 500 volts A.C.

SIZE AND TYPE 2thn. Plush circular 3in. Flush circular 2in. Flush circulas 2inin. Flush circular 3ifin. Flush circular 2tn. Flush square 23 in. Flush circular 3 in. Proj. circular 2 in . Proj. circular. 2in. Proj. circular 3 in. Flush square
2fin. Flush cireular 2|in. Flush cireular
2iln. Flush circular

PRICE
$\qquad$ 59 5916
$801=$
$27 / 6$
2216

RII55 SUPER SLOW MOTION TUNING ASSEMBLY. As used on all hate models 1155 s . Easily fitted to all lace models 1155 s . Easily
"A " sets etc. ONLY $12 / 6$. ROLA 6 $\frac{1}{2}$ in. P.M. SPEAKER. Mounced in grey erackled metal cabinet. $9 \times 9 \times 4 \frac{1}{i}$, and with volume control. BRAND NEW AND UN. USED. ONLY 27/6.
P.M. SPEAKERS. 3 in . $19 / 6,6 \frac{1}{3} \mathrm{in} .17 / 6$, Bin. 21/-, 12ın. 29/6.
MAINS ISOLATING TRANS. FORMER. Manufactured by Vortexion. Fully shrouded, Will provide true 1 : I Ratio from nominal 230 v. Primary. Rated as 100 watts. BRAND NEW. ONLY 22/6 (pose 2/6). 12 VOLTS AMERICAN DYNAMOTOR. Delivers 20 volts at 100 milks. Size $5 \frac{1}{2} \times 3 \frac{1}{2} 1 n$. diameser. Ideal for running Radio or Electric Shaver etc. Irom car battery ONLY $32 / 6$. I2-WAY SCREENED CABLE in loft. lengths, fitted with piugs, or ginally made for use with the 19 Set. UNUSED. ONLY $17 / 6$ per lead.
POCKET VOLTMETERS. Not exGovt. Read 0-15 v. and 0-300 v. A.C or D.C. BRAND NEW and UN USED. ONLY $18 / 6$.
6 v. VIBRATOR PACKS. Output approx. 130 v . at 30 mA ., fu!ly filtered and smoothed. Complete ONLY $12 / 6$

## AIRBORNE TRANSMITTER RECEIVER



## Type 1986

A mobile 10 channel crystal controlled V.H.F. Tx./Rx, covering 124.5/ $156 \mathrm{Me} / \mathrm{s}$.
I.F. Bandwidth $23 \mathrm{kc} / \mathrm{s}$. Complete (less externa attachments), in metal case, with all valves and 24 volt rotary power unit.
Used but in first-class condition.
ONLY $£ 8 / 19 / 6$
(carriage etc., 10/6).

## MARCONI SIGNAL GENERATORS

Type TF 517-F I


Special offer of these Laboratory Signal Gener:tors. Cover $10-18 \mathrm{Mc} / \mathrm{s}$. . $33-58 \mathrm{Mc} / \mathrm{s}$. and $150-300 \mathrm{Mc} / \mathrm{s}$. in good, used condition, with charts. Cheeked before despatch. Complete with power pack ror normal A.C. mains.

ONLY $\mathrm{El2} 10.0$
(carriage etc. 20/-)

Cash with order please, and print name and address clearly please add postage or carriage costs on all items

## HARRIS ELECTRONICS (LONDON) LTD.

Radio Corner, 138 Gray's Inn Road, London, W.C. 1 Phone TERMINUS 7937


## COMMUNICATIONS RECEIVER B28 (MARCONI CRIOO).

## PRICE-ONLY ET1.

Later Model with Noise Suppressor $£ 25$
Carriage England and Wales $30 /$-.
Send S.A.E. for further details.

## CR100 SPARES KITS.

Contents: 15 valves, 2 of U50, DH63, KT63, X66, and seven KTW61 Output transformer, Resistors, Condensers, Potentiometers, PK screws, pilot lamps, drive cord, etc., etc. ALL BRAND NEW. $59 / 6$. Post $4 / 6$.

## Best Buy at Britain's

FERRANTI TESTMETER TYPE Q. An extremely compact self-contained multimeter. Volts 0 to $30,150,600$ A.C./D.C., with additional 0-3 v. D.C. and 0.15 v . A.C. ranges; Milliamps 0 to $7.5,30,150$ and $750 \mathrm{D} . \mathrm{C}$. ; ohms $0-25 \mathrm{~K}$. Accuracy BSS first grade. 500 ohms per volt. Knife-edge pointer and clearly calibrated $2 \frac{1}{2} \mathrm{in}$, scale. Complete with leads, prods, battery, and instructions in fitted velvet-lined $4 \times 7 \times 3 \mathrm{in}$. case. Brand new condition, perfect working order. 72/6. Post 2/6.
AVOMETER MODEL D. 34 ranges. Large size AVO. For full details see previous adverts. Thoroughly overhauled. Complete with batteries and instructions. £8/19/6, post 4/-.
SANGAMO-WESTON ANALYSER E772. A useful multi-range meter in rexine covered carrying casc. Thoroughly overhauled and in perfect working order. For full details see previous adverts. $£ 8 / 19 / 6$, carr. 4/6.
WAYNE KERR BIOI COMPONENT BRIDGES. 200-2SO A.C. mains operation. 1 ohm to 500 megohms in 16 ranges; 1 pFd, to 500 mFd . in 16 ranges, 100 milli-H to 5000 Hen. in 8 ranges; $Q$ factor of 0.5 to 300 ; power factor . 015 to 1.0 ; Comparator scale plus/minus $10 \%$; I leakage from I' to 1500 mieroamps. at test voltages of $6,12,25,50,150,250,350$ and 450 . Magic-eye null indicator. A first class precision bridge. Size $14 \times 9 \times 9 \mathrm{in} . \mathrm{Wt}$. 24 lb . In perfect working order. Condition as new. £25, Carr. 10/-.
EVERSHED PORTABLE MICROAMMETERS. $0-200$ microamps, 5 in . scale. Made in stout wooden case, $8 \times 8 \times 4 \mathrm{in}$., with hinged safety cover and leather carrying handle. BRAND NEW, tested and perfect, $£ 5 / 19 / 6$, post $3 / 6$.
VOLTAGE REGULATOR TRANSFORMERS. Input 230 v. A.C. output variable from $187-250 \mathrm{~V}$. OR input $187-250 \mathrm{v}$., output 230 v - at 24 amps . Rating 5.5 KVA. Wt. 42 ib . Brand new condition. \&l5. Carr. 10/-.

## MINIATURE RELAYS

G.E.C. sealed, wire ends. 670 ohms. 2 H/D makes, M1099............... 15/G.E.C. sealed, wire ends. 670 ohms. 4 C/overs, platinum, M1092... $19 / 6$ G.E.C. sealed, wire ends. 5000 ohms. 2 C/overs, platinum, Mlos2 $17 / 6$ S.T.C. size $1 \frac{1}{4} \times$ 看 $\times \frac{3}{3}$ in. 250 ohms. 2 Clovers, double contacts...... $10 / 6$ Siemens High Speed, IK + IK ohms. I Clover............

All BRAND NEW AND BOXED.
We have an extremely large and varied selection of first-grade laboratory equipment including spectrum analysers, distortion bridges, harmonic analysers, valve voltmeters, oscilloscopes, signal generators, etc., in first-class condition and at reasonable prices. Inspection welcomed.

See advertisement opposite $\rightarrow$
COVENTRY RADIOAUDIO AND COMPONENTSPECIALISTSEstablished 1925
Have you had our 70-page Hi-Fi Catalogue yet? If not, sendnow-only !/- plus 6d. postage.

I89-191, DUNSTABLE ROAD LUTON, BEDS.
Telephone No.: LUTON 7388-9
goodmans westrex wharfedale JENSEN GEEC W.B. B.T.H. B.B.C. AMPLIFIER CONSOLE CABINETS QUALITY AMPLIFIERS CHASSIS LOUDSPEAKERS LP RECORDS
YOU CAN SEE YOUR CABINET BEING MADE IN OUR WORKSHOPS
Demonstrations Without Open till 5.30 Appointment
A. DAVIES \& CO. (Cabinet Makers) 3 PARKHILL PLACE (off Parkhill Road), LONDON, N.W.3.

GULLIVER 5775 Few minutes walk Belsize Park Underground


The finest method for cleaning records Already over 200,000 enthusiastic users THE " ${ }^{\text {Thst }} \mathfrak{J B u g}$ " AUTOMATC GRAMOPHONE RECORD CLEANER

PATENT APPLIED FOR
Price reduced to $17 / 6$ (plus 7/- purchase tax) from your local dealer or

## CECIL E. WATTS

Consultant and Engineer (Sount Recording and Reproduction) Darby House, SUNBURY-on-THAMES, MIDDX

SEE WIRELESS WORLD MAY 1958, PAGE 247 NU-LIFE TRLETUBES

## ALL MAKES ALL TYPES

## REBUILT TO MANUFACTURERS SPECIFICATIONS

Enquiries and goods to new factory:-
STONEFIELD WAY, S. RUISLIP, MIDDX. BYRON 5676
carriage, packing and insurance arranged


48 HOUR REFAIR SERVICE For the repair of that broken or damaged instrument call in the Donvin Repair 'Crash' Service and (subject to inspection) it can be put in sound working order and returned to you in 48 hours.
All types-any make. Quotations by 'phone or wire if necessary.
DONVIN INSTRUMENTS LTD.
 Midland Terr., Victoria Rd., London, N.W.IO. ELGar 7871


SELENIUM BRIDGE RECTIFIERS. Funnel cooled. A.C. input 45 v. RMS D.C. output 30 v .10 amps . BRAND NEW. Boxed, $45 / \%$ Post $3 / 6$.

## ADMIRALTY HT TRANSFORMERS Pri. $230 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. Sees. 620-550-375-0.

 375-550-620 v. ( 620 and 550 v. 200 m/amps., 375 v. $250 \mathrm{~m} / \mathrm{amps}$.), plus two 5 v. ${ }^{3} A_{2 m p}$ rectifier windings. Wr. 251b. Made 1953. BRAND NEW. Original boxes. 45/-. Carr. 5/-MAINS ISOLATING TRANSFOR MERS (Vortexion). Fully-shrouded. For esting A.C./D.C. sets in safery. 230 v , input. Output 230 v. 100 watts, 22/6. Post $2 / 6$

## DUAL PURPOSE TRANSFORMERS

 (Gresham). Pri 230/250 v. Secs. 240-$0-240 \mathrm{v}$. $1.5 \mathrm{amps} ., 5 \mathrm{v} .12 .5$ amps. 5 v . 1.75 amps . Ideal for ISOLATING TRANSFORMER, to obtain TWO 240 v .360 watt lines. Potted, oillfilled, $7 \times 7 \frac{71}{2} \times$$10 t$ in. high. Wt. SOlb. BRAND NEW. E3/10/. Carr. 10/-.

INSTRUMENT TRANSFORMERS 230 V . A.C. input. Outputs 0-65-130-195 r $85 \mathrm{~m} / \mathrm{amps},, 6.3$ v. $5 \mathrm{amps},, 6.3 \mathrm{v}$. 0.3 amps Shrouded. Size $3 \frac{1}{6} \times 3 \frac{3}{4} \times 3 \frac{3}{4} \mathrm{in}$. high. $15 /$ post FREE.

AR88D MAINS TRANSFORMERS. Input $110-240 \mathrm{~V}$. Output $345-0-345 \cdot \mathrm{v}$. $125 \mathrm{~m} / \mathrm{amps}$., $6.4 \mathrm{v}, 4.5 \mathrm{amps}$, 5 v .2 mmps. Tag ends. RCA BRAND NEW. Boxed. 29/6, post $3 / 6$.

TRANSFORMER BARGAIN. Input $0-200 / 250$ tapped. Outputs 250-0-250 v $80 \mathrm{~m} / \mathrm{amps} .5 \mathrm{v} .2 \mathrm{amps}$.; 6.3 v .4 .5 amps . Upright mtg. BRAND NEW. Boxed Ex-Admiralty made 1952 . A fine $50 \mathrm{c} / \mathrm{s}$.
mains tranny for ONLY $16 / 6$, post FREE, mains tranny for ONLY 16/6, post FREE
HEAVY DUTY L.T. TRANSFORMERS. (Gresham.) Latest type potted, oil filled, Pri. $230 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. Sec. 0-70-75$80 \mathrm{v}$.4 amps. Size $54 \times 4 \frac{1}{2} \times 6$ in. high.
Wt. I9lbs. BRAND NEW. $42 / 6$, carr. $5 /$.
MODULATION TRANSFORMERS Collins sype 20 watts 807 to $807,8 / 6$ each Post 1/6.
FERRANTI TYPE, for Tx 36 etc., pushpull 807's to plate and screen modulate push-push 807 's, ratio 2:I. Fully shrouided. push-push 807 s, ratio 2: 16
6-VOLT VIBRATOR PACKS. HRO type, 180 V. D.C., $65 \mathrm{~m} / \mathrm{amps}$. BRAND NEW. 29/6, post $3 / 6$. Type PU2, 200 v D.C. $100 \mathrm{~m} / \mathrm{amps}$. , with OZ 4 rectifier BRAND NEW. 25/-. Post FREE.
CHOKES. Parmeko $5 \mathrm{H} .200 \mathrm{~m} / \mathrm{mps}$ $6 / 6$, post $1 / 6$. HRO chokes $17 \mathrm{H} ., 80 \mathrm{~m} / \mathrm{amps}$. 7/6, post 1/6

## RESISTORS

Morgan " $T$ " ( $\frac{1}{2}$ watt) and " $R$ ". (I watt). Latest types, all BRAND NEW. 100 assorted, $10 /$-, post 11 -.

CRYSTAl.S. $200 \mathrm{Ke} / \mathrm{s}$. American GEC 10/. each. $100 \mathrm{Kc} / \mathrm{s}$. RCA bars, $15 /$ -

COLLINS TCS TRANSMITTERS
Covers 1.5-12 Mc/s. (26-200 metres) in 3 bands. Complete with 7 yalves: 8 of $12 A 6$ Ose,; 1625 Ruffer; 2 of 1625 PA; 1625 Mod. VFO or crystal control, with 4 crybial positions. C/W or R/T. Meters for plate and aerial
current. BRANO NEW internally and unused, but externally solled. 玉zy/19/6. Carr. 18/m,

## R.F. UNITS


RF26. $\quad 50.65 \mathrm{Mc} / \mathrm{s}$. super slow-motion drive Unboxed, but as nery condition. Post 3/6.

## MORSE TRAINERS

Two independent valve oscillators (one with piteh controll for one or two operators to practice simultaueously. Has provision for crealing
" atinospherlcs." in polished oak case, $124 \times 10 \times 8 i n$. Wt. 16ibs, Comatinospherlcs." In polished oak case, $124 \times 10 \times 8 i n$. Wt. 161 bs . Complote with 2 valves, leads, 2 keys, 7 -way phone terminal board circuit,
and Instructions, but lesa batteries and phones. 12/6. Carr. 7/6. ad Instructions

## MONITOR TYPE 61

3 in C.R. Tube. A.C. malns power pack. Very modern design. Ideat for conversion to oscilloscope full data supplied. Condition as new. for conversion to oscil
z\%/19/6. Carr. 18/.

MERICAN METERS. Triplett 100 microamp., 4in. meters, scaled multimeter, exactly as used in Combination Tester. BRAND NEW. Roxed. 79/8. Post $1 / 6$.
Triplett 100 miloroamp. Sin, aquare, Aush mitg. Bealed as ontput meter -1.5 and $0-6$ volts A.C. Rectifier not fitted. BRAND NEW. Boxeri. 22/6. Post 1/-. Westinghouse 0-5 Milliamp. D.C., Ausb mtg., circular in. blank back scale. BRAND NEW Boxed. 8/6. Poat, 1/:

## MEGGERS

Evershed \& Vignoles Wee" Meggers, 500 volts, complete in leather case, with leads. AS NEW. E8/19/6.
E. \& V. Series $\&$ Meggers. 500 volts, 0 -100 Megohms. In leather case First -clasy condition. ONLY 500 volts, E \& F BONDING TESTERS. O-5 Ohms it $12 \mathrm{~m} /$ Amps max. Hand generator type. In leather case. 79/6.
INSULATION IESTERS. Record' hand generator type $0-50 \mathrm{Meg}$ ohms at 500 volts pressure Complete in leather case. sy/19/6.

MINLATURE 373 IF STRIPS. For FM tuner cescribed in " Practical Wireless." Complete with 3 of EF91, 2 of EF92 and 1 of EB91. A fresh release enables us to offer these once again. BRAND NEW. Complete
reprint of conversion instructions and clrcuit supplled free, $37 / 6$. OR

## HRO SENIOR MODELS


general coverage plug-in coilsets $50 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$., instruction booklet, and circuit, but less external power supply unit. booklet, and circuit, but ess external power supply unit. Table models, as new condition, 21 GNS. Pack
riage $22 /$ - exera. Send S.A.E. for further details.
HRO POWER PACKS. $115 / 230$ v. A.C. mains input. Tested, and in good condition. 69/6, post 4/-

## METER BARGAINS

RANGE
50 Microain 100 Microamp. 100 Microamp.
1 Muliamp.
1 Milliamb.
1 Miliamp. 1 Muliamp. 1 Mtlilamp.
200 Miliazt. 1 Amp. Thermocoup 1 Amp. Thermocouple 1 Amp. Thermocouple 15 Volts 300 Volts 300 Volts
300 Volts 500 Volts A.C. M/I $2 \frac{1 \mathrm{in}}{2}$. METAL RECTIFIERS. Full wave bridge. BRAND NEW, galiord $1 \mathrm{~mA}, 8 / 6.6 \mathrm{~mA}$., $8 / 6$. $\$ T \mathrm{Cl} 2 \mathrm{~mA}$., $5 / 6$.

## CHARLES BRITAIN (Radio) LTDD. <br> 11 UPPER SAINT MARTIN'S LANE LONDON, W.C. 2. <br> TEMple Bar 0545

One Minute from Leicester Sq. Station (up Cranbourn St.) Shop-Hours: 9-6 p.m. (9-I p.m. Thursday). Open all day Saturday

HICKOCK I-I77 VALVE TESTERS Checks dynamic mutual conductance shorts, emission, gas, and noise. For UX4 UX5, UX6, UX7, Octal, Loctal, B7G and Acorn types. Portable in wooden carrying case $15 \frac{1}{2} \times 8 \times 5 \frac{1}{2} \mathrm{in}$. Wt. $13 \frac{1}{2} \mathrm{lb}$. BRAND NEW. Complete with instruction book and valve testing charts. For 117 v A.C. 10 gns. Carr. 7/6. Matching auto ransformer for 230 v. A.C., $12 / 6$.

## CRYSTAL CALIBRATORS.

${ }^{1} \mathrm{Mc} / \mathrm{s}$., $100 \mathrm{Ke} / \mathrm{s}$. and $10 \mathrm{Kc} / \mathrm{s}$. " pips " with or without modulation. Employs dual $1,000 / 100 \mathrm{Kc} / \mathrm{s}$. crystal and multivibrator circuit, and three $125 C 7$ valves. Made by Canadian Marconi Co., originally for use with the Wireless Set No. 19. Operates from 12 v .0 .45 amps . L., T. and 250 v. D.C. H.T. in neat metal case $2 \times 4 \frac{1}{4} \times 9 \frac{1}{2}$ in. deep. BRAND NEW. In original packing, complete with two spare valves, instruction book, connectors, etc. $64 / 19 / 6$.
MULLARD C. \& R. BRIDGES. 0.1 ohm. to 10 Megohms in 4 ranges; 10 pFd. to 10 mFd . in 3 ranges; Calibrate. Open Bridge, and $\%$ range. For $100-250$ A. mains. Tested and guaranteed cy/10/-. Post $3 / 6$.
HEAVY DUTY SLIDER RESISTORS.
3 ohm .10 amp ., $12 / 6$; 1.25 ohm .20 amp . 12/6; 0.4 ohm., 25 amp ., $10 / \mathrm{H}$. Post, any type, $3 / 6$. 1 ohm. $12 \mathrm{amp} ., 8 / 6$. Pose $2 / \mathrm{m}$. HEAVY DUTY FIXED RESISTORS ohm. 12 amp ., $5 /-; 1.61$ ohm. centre tapped O amp.̈ $6 /=$ Post, either, $2 /-$ quality Canadian, with chamois ear-muffs and leather-covered headband With lead and laack plus. Noise excluding lea supremely comfortable. 19/6. Post $2 / 6$. INVICTA LOUDSPEAKERS. Good quality 10 in unit (impedance 3 ohms.) In wooden cabinet $17 \times 17 \times 6$ in. Complete with 50 ft . lead and jack plug. BRAND NEW. 39/6. Carr. $5 / 6$.
BENDIX MODULATOR/POWER UNITS. Type MP-28-BA. for TA-12 transmitters. With 24 V. D.C. input, 540 v. D.C. $450 \mathrm{~m} / \mathrm{a}$. output dynamotor, 6N7met Mic. Amp., 6F6met Driver, and two 807 PP Modulators. Complete with Mic. Transf. and Mod. Transf. for modulatin wo parallel 807's. BRAND NEW. $79 / 6$ Slightly soiled 69/6. Carr. 716 .
DYNAMOTORS. As used in the above. BRAND NEW. 32/6. Used 19/6. W 131b. Carr. 4/.
Input 12 v. D.C. output 230 v. D.C. at $100 \mathrm{~m} / \mathrm{amps}$. American. $5 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{in}$. diam Wt. 5/b. 32/6. Póst FREE.
DC/AC ROTARY CONVERTERS. Input 12 V. D.C. Output $230 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. A.C. at 135 watts. Fitted with $0-300 \mathrm{v}$. A.C. $2 \frac{1}{2} \mathrm{in}$. meter and slider resistor for voltage adjustment. In stout wooden carrying case with lid. Perfect working order. 29/9/6. Carr. Mols.

RII55 RECEIVERS. With latest type super slow motion drive. In good condition and perfect working order, re-aligned and air tested. Model B © $£ / 19 / 6$. Mode L (covers trawler and shipping bands) £ $12 / 19 / 6$. Carr. (either) 10/6. Send S.A.E. or details of sets and power units, or $1 / 3$ for illustrated booklet
MARCONI LOOP AERIAL type 696. A small, compact, enclosed loop. On 5 wivel mount with degree scale. BRAND NEW. 69/6. Post 2/6. deal for RII55,

TX-36 MODULATOR/POWER UNIT. Supplies HT 500 v. $200 \mathrm{~m} /$ Amps twice, LT Supplies HT $500 \mathrm{v} .200 \mathrm{~m} /$ Amps twice, LT
6.5 v .8 Amps, and bias. Also modulator 6.5 V .8 Amps, and bias. Also modulator
$36 \mathrm{C} 5 \mathrm{G}, 2807$, and $3 \mathrm{FW} 4 / 500$ Rects. In 36 C5G, 2807 , and 3 FW4/500 Rects. In Circuit supplied. TREMENDOUS BARGAIN 44/19/6, carr. 15/6 Eng. \& Wales.


WANGAMO
VOLTMETERS
S61. Dual range $0-5$ and $0-100 \mathrm{v}$. .C. $\mathrm{m} / \mathrm{a}$ min. scale. Recent manufacture. Ideal for schools. Complete in super quality canvas carrying prods and leads BRAND NEW. Boxed $27 / 6$. Post $2 / 6$


## TELERADIO $\boldsymbol{D}$

RADIO TELEPHONE
 Only six cont
SIZE
In one attractively finished case, $9^{\prime \prime} \times 16^{\prime \prime} \times 20^{\prime \prime}$
RECEPTION
High-performance recelver tunes over a useful portion of the shortwave band, to provide general entertainment.
COMPLETE SERVICE
A.W.A. provides a complete equipment ready for connecting to the battery. Full detalls given on aerlals.
BATTERY POWER
The 5A works on a 12 Volt battery. Only 3.2 Amps. drain when receiving.
'the A.W.A. Teleradio 5.4 breaks down the barrier of isolation in outback areas. Trained operators are not required. The equipment uses the most modern valves and design features to provide simplicity of operation and efficien ry.

Made by Australia's largest manufacturer of telecommunication equipment, the A.W.A.

$(\sqrt[11]{11} 1$Wranufactured and guaranteed by -
AMALGAMATED WIREIESS (AUSTRALASIA) LIMITED

Quality

## Freq:ency Keters

BC22l Range $125 \mathrm{kc} / \mathrm{s}, 20 \mathrm{Mc} / \mathrm{s}$. In perfect condition.
Also in stock:
U.SA. BENDIX LM SERIES

Aireraft version of BC221
TSI74 $20-250 \mathrm{Me} / \mathrm{s}$.
TSI75/U 85-1,000 Me/s.
Prices and details on request.

## Signal Generators

MARCONI Type TFI44G $85 \mathrm{ke} / \mathrm{s}-$ $25 \mathrm{Mc} / \mathrm{s} . \ldots \ldots \ldots . . . . . \ldots \ldots \ldots . . . \ldots$ Type TF390G $16 \mathrm{Mc} / \mathrm{s}-150 \mathrm{Mc} / \mathrm{s} .$. RCA $710,370-550 \mathrm{Mc} / \mathrm{s}$. GENERAL Radio TyPe $605,9 . \ldots \ldots . . .1350$ Type 804,75 rype $605,9.5-30 \mathrm{Mc} / \mathrm{s}$. Measurement Corporation Type 80 $2 \mathrm{Mc} / \mathrm{s}-400 \mathrm{Mc} / \mathrm{s}$.

## British \& U.S.A. <br> Test Equipment

BSR LO50A Audio Oscillator ............ $£ 3000$ Sullivan Variable Condenser $\leqslant 2500$ Weston Electric (Thomson Varley Typs) Potential Divider (From) $\ldots \ldots \leq 5000$ MARCONI TF924 Deviation Meter ...f100 0

## ELECTRONIC EQUIPMENT

## Test Equipment

Beivulk Ravid icsi SET comprising of signal generator 1-96 A: IF Oscillator and power supply in metal bound wooden case. Frequency range $100-155 \mathrm{Me} / \mathrm{s}$. power supply $110 \mathrm{~A} . \mathrm{C}$. or batteries f5/0/0 each, plus 15 s. carriage.

## Ellictt Recording Milliameters

SINGLE PEN portable reco-ding milli-
ameters range $0-1$ AC/DC instru* 350

## Microwave Equipment

RECEIVERS
AN/APR4, 38-1000 Me/s...AN/APR5, $1000-6000$

$\mathrm{Mc} / \mathrm{s}$.
$\mathrm{R}-1294,500-3000 \mathrm{Mc} / \mathrm{s} . ~ R 1359, ~$

TS45/AP, 3CM. TSI3/AP, 3CM...TSI47B, 3CM...
TSI20/AP, X Band . TSI4/AP, S Band.
POWER METERS
TS3/AP, S Band... TS36/AP, X Band...TS56/AP, slotted line, L Band.
VALVES. Klystrons Type 723/AB, CVI29,
2 K 33 , ( 1.5 cm ).
Crystals iN21, IN23B, IN26, atc. Magnetrons 725A. ere.
Spectrum Analysers
TSX-4SE 3 cm .
MARCONI TF984... 10 cm .

## Oscilloscopes

COSSER Uoudle deam Type 339 ...... $630 \quad 0$
Rebuilt to Lab. standard prlces on request.
BROWNING Lab. Scopes ............... 625000
DUMONT Type 224A ..................... દ45 0 © 0
Meggers


## Receivers

Marconi lype CRI00, $69 \mathrm{ke} / \mathrm{s} .-30 \mathrm{Mc} / \mathrm{s} 1250.0$ Each ........................................................
Natsonal Type HRO Receivers. Complete with all coils and power supply from ….....................................
Hallicrafters, $\$ 27,27.8-143 \mathrm{Mc} / \mathrm{s} . \ldots \ldots . .6350$
Eddystone $640,740,840,750,680680 \times$
Hammarlund HQ12OX $550 \mathrm{ke} / \mathrm{s}-30$
Mc/s. ............................................. $£ 4000$
G.E.C. BRT 400 ....................................... 67500

Manuals
Technicals Manuals for recaivers as previously

## TRS FOR FULL VALUE FOR MONEY

SPEEDY MAIL ORDER SERVICE

- Try us



## QUALITY AMPLIFIER

An ideal companion untt to the JASON Tuner. A really frsi-class 3 -valve 8 -wat Ampliter givig gri-r quatity at \& reason-
able cost. Mullard's line-up: EF86, EL84, E280, H/duty mains trans. giving extra HT and LT ior tumer Dnit addition.
Variable treble out and bass boost controls, veasitivity 100 MV for 3 -watt output.
frequency response + or $-1 \mathrm{db}, 40 \mathrm{c} / \mathrm{s}$. Prequency
to $25 \mathrm{ke} / \mathrm{s}$.
Complete amplifter wired and tested with quality sectionalised outpat translormer so Mullard speciffeation.
(less speaker)
Carr. and fins. 4/6.
88/8/-
Wired Power O.Put Socket with Additional Smoothing for F.M. Tuner $10 / 6$ extra.

## JASON F.M. TUNER UNIT $87-105 \mathrm{mc} / \mathrm{s}$

Dedigner-Approved Klt of parta to build this modern bighly successful unit, drilled chasals and superior type dlal. Coila, cans and all quality components, etc., for
only 5 gus., post free. $S e t$ of 4 spec . EF9l or aquit. valves $30 / \mathrm{post}$ free, fustrated
 handbook with fuil detalle, 2/0 post free-iree with kit 48-hy. Animment Service


ELECTROLYTTCS ABL TYPES NEW STOCB TUBULAR

| $25 / 25$ |
| :--- | :--- |
| $50.50 / 12$ |
| 50 |
| v. | $1 / 9$

100/26.
81450 $\nabla$
$8+8 / 450$
$8+26 / 450$
$8+26 / 450$
$16 / 450$
$16+16 / 450 \quad$ จ. $\quad 5 / 6$
$921350 \quad \nabla$. $32 / 500$ ण. $\quad 51$ $32+32 / 450$ จ. $\quad 6 / 6$ MIDGET TRANSISTOR
$4 \mu \mathrm{~F}, \mathrm{R}_{\mu} \mu \mathrm{F}, 6$ vi, $316 ; 6 \mu \mathrm{~F}, 10 \mu \mathrm{~F}, 16 \mu \mathrm{~F}, 3 \mathrm{v}_{0}$

CONDENSERS-Silver Mica. All pral. values, 2 pl. to 1,000 pl., 6d. each. Ditto
ceramics 9 d . each. Tubnlars 450 v. T.C.c. ceramics 9 d each. Tubulars 450 V. T.C.c. $.02-1 / 500$ man. $1 / \mathrm{F}$ each. 25 Humts, $1 / 6$. 5

 $\frac{2}{2}$ w. 9d., $10 \%$ Hi-8tab.. $\frac{z}{2}$ w 5d., if w $7 \mathrm{~d} .$, 5\% w.9 ${ }^{2} \%$.
W/W RESISTORS $\{25$ ohme-10K ohms), $W w, 1 / 3,10 \mathrm{w} .1 / 6,15 \mathrm{w}, ~ 2 /=$.
PRE-SET Wiw POTS
25 ohms-30K ohms 3 -
$50 \mathrm{~K}-2 \mathrm{Meg}$ Carbon Track), 3/.
W/W POTS-Long Soldie-3 watt 100
 glied metal $8 \times$ Sin., $2 / 3: 12 \times 81 n$. 3 im :
 91 otc. Prefarred stzee only.
TYaAN PRET (MyTphy pattern), $12 \mathrm{im} . x$ 19in., $21=12 \times 18 \mathrm{in} ., 3 /=12 \times 241 \mathrm{n}$,, $4 / \mathrm{m}$ 。 LOUDSPEAKERS-P.M. 3 ohms. 24 in .


 12in. Plessey is ohms with if $x 4 \mathrm{in}$. Tweeter and Crme Over PIter. 97/6.
SENTERCEL RECTUFERS.

 Y/9: K3/100 8 kV . $13 / 6$ : etc. MA1NS
 270 ; RM4 250 v .250 mA .. 1810 ; RM4B ispe I.F. TRANSFORMERS $-485 \mathrm{k} / 200 \mathrm{~mA}$., 21/-. Brand new ex-manufacturer's moldget 1.F.T. size $2 \mathrm{in} \mathrm{in} \times \mathrm{in} . \times \mathrm{in}$, dust care
tuning, Litz wound colls, High $Q$. Bargain tuning. Nitz wo

NEW BOXED VALVES GUARANTEED




 \begin{tabular}{llll|ll}
AK8 \& $8 / 6$ \& ECL $\mathbf{N O}$ \& $12 / 6$ \& PL81 \& $14 / 6$ <br>
6 Q \& $8 / 6$ \& EFR0 \& $10 / 6$ \& PL82 \& $10 / 6$ <br>
6V6 \& $7 / 6$ \& EF86 \& $14 / 6$ \& PL83 \& $11 / 6$

 

6Q7 \& $8 / 6$ \& EF80 \& $10 / 6$ \& PL82 \& $10 / 6$ <br>
6V6 \& $7 / 6$ \& EF86 \& $14 / 6$ \& PL83 \& $11 / 6$ <br>
GX4 \& $7 / 6$ \& EF91 \& $8 / 6$ \& PY80 \& $9 / 6$ <br>
DAF96 \& O/6 \& EL41 \& $10 / 6$ \& PY81 \& $9 / 6$
\end{tabular}

DK96	$9 /-$	EY51	$12 / 6$	U25	$15 / 6$
DL96	$9 /=$	EY9	$14 / 6$	UF41	$10 / *$

1R5, 1T4. 185, 184 or 384 or 3V4, $27 / 6$ $6 \mathrm{~K} 8,6 \mathrm{~K} 7$, $807,6 \mathrm{~V} 6,524$ or $6 \mathrm{X} 535 /$ VOLUME CONTROLS-10K-8 Megohms. LONG SPLNDLES MIDGET TYPE. lila. diam. Ghar 1 yr . Farnous make LOQ. or LIN. RATIOS $3 /$ 3w. D.P. Aw. MADS AND OUTPUT TRANS.-Made in our own Wrikshops. High Grade spec. primantes rapped and impt
MAINB TRANS. - SLandard 250-n-250 \%.

etc. earh 7! 6 .
$200 \mathrm{MA}, 6.3$, $16 \mathrm{a}, 1216$.
L.F. CEOKES, $10 \mathrm{E}, 95 \mathrm{~mA}$. $5 /=15 \mathrm{~F}$ $100 \mathrm{~mA} .106 ; 10$ 日. $150 \mathrm{~mA}, 12 / 8$.
$8 P E C T A . ~$ spectal TRANS. ote., made to inOUTPUT TRANSF,-Quality EII-FI Type whit sectinaalised and resiatance balanced prlmary windings. Super Eiloor Lams. Gec. 3 aud is olhma, Primary lmp. In
indjvidual spec. Pulls shrmuded gtock ind Jidual spec. Pulls shrmurded Stock
Tvpes. Mullard 3.3, $37 / 6$; Mullard 8 wratt 49/6, ditto with ultra linear taps. 52:6. Mralard $5-10$ with uitra linear tape, 69/6, stc.
CLOSE TOLERANCE CONDENBERS. $8 / \mathrm{Mics} 10 \%$ Type. $6 \mathrm{pF}-600 \mathrm{pl}$. each 1 1-: R00 $\mathrm{pf}-5,$.000 pf., each $1 / 3.1 \%$ Type.
$1.5 \mathrm{pf} .-50 \mathrm{pf}$. (Tol 1 pt.) $1 / 8 ; 56$ pt.-
 each 2/eType 88 (Etand) Type 99 (Long Play
 REPLACEMENT AND BOXED $45 \%$ REPLACEMENT REHLS-S ${ }^{\circ}$ and T
$2 / 6$ each

ALL-WAVE RADIOGRAM CHASSIS 3 WAYEBANDS 5 VALYES LATEST MIDGET BVA GERIES ECH42, EF41, EBC41, EL41, ER4.
H.W. 16 m . -50 m .

LW. 200 m .500 m ,
Brand new and guar. A.C. 200/250 v.. 4 ons. W/C sw. Ghort-Medium-
Long-Gram P.U. oncket. HIgh $Q$ duat core mils. Iatest eircuit technique, delayed AVC and neg. jeedback $0 / P$ q watta. Chassla size $13 \frac{1}{2} \times 5 i \times 23 i n$. Dial 1 nin. $\times$
4 in. Hor. or Veat. atation namea Win. Knt. or Ve.t. aration namen and Onality at Low Cost. Carr and ins. 4 A.
Valve De Lore model whith pugh-pall EL. 41 giving 7 wate with Eeavy Ditv Maing ant Ontout Trancformer

## RECORD PLAYER BARGAINS

N.w Reduced Prices

SINGLE PLAYERS. 4 -Rpeed B8k (TUP). 92 6; 4 -sp. COLLARO Junior with ACO P. U. 90/-. 4-speed GARRARD (4SP), 2\%
 intest stereo mojol. 10 GNS. All sbove units are latest 4 -qpeed modets fitte lightweight crystal picknp sad $t$ win appuhire at yli Complete and ready to ase.

FINEST SELECT'ON AVAILABLE -ALL
BRAND NEW AND GUARANTEED
> C.R.T. Heater

> Isolation Transformers
> New im rroved tybes-mains prim. 200/250 v. tepped.
> All folation Transformers now aup plied with atternative no boost, plut $25 \%$ and olu
oxtra charge.
> 2V 2A type
> $10.5 V$. 3 A type 13 V
Other voltages in course of produm.
> $12 / 6$ (P. \& $\mathrm{P} .1 / 6$
$12 / 6$ (P. \& $\mathrm{P} .1 / 6$
106 (P. casy fiting size and tag terminated for TRANSISTOR RECORD PLATER. Ready wired Push-Pull Transistor Amplifier coing latest 4 G.E.C. Transistors. Genuline 1 w. output tpto standard: ohms speaker. Superb quality witb neg. teedback cirmult. Var. Tone and Volume controls. Special saze to fit u/to Player Cabinet. Ampliter 6 gns. $8 \times 5 i m$. Apeaker 201-. P \& P. 2/8.
Latest STAAR 45 r.p.m. Record Playe? unst with Pidelity self-cleaning stylus. Lightweight and contemporary styled -constant gpeed from $4 \frac{1}{-6}$ v. Battery Only 82/6. $P \& P$. $3 \%$.
Record Player Cahlaet to it above units. Attractively covered in red rexine with white polka dot rellef Fitted with modern styled fret and surround. Cablnet asze $13 \times 8 \frac{1}{4} \times 1 / \mathrm{p}$. Bargain Price 55 m . P. \& P. 3/6. gend for special leatiet givine 'ull detation

80 OHM COAX CABLE NOW ON.Y 8d. YARD, Hirbest Qualty. Cable. low.ope Polv. thene Aerarali: sembairir papeed feecier oseses cur $50 \%$. slactard tho dilh

 Coax. Aockets 1/-i Couplere 1/3. Out-
let Boxes. $4 / 6$. BI- BA Xever Unit. 7/P.


RECORD PLAYER CABINETS Contemporary style rexime envered cablnet $181 \times 131 \times \mathrm{hi}$. $8 \frac{1}{2} \mathrm{in}$. flted with ail soces. sories, including speaker. baffle board and plastic fet. Space avallable for all modert mopathers and sutochsurera, etc. Uncul record player momiting board $14 \times 13 \mathrm{in}$. Cabinet Price dus. Carr. and inas 3/6. cabuner), modern circulf with EL84 output, ready built, wilb fin. speaker and output ransforuer \&3/12/6, carr, and ins. 216. complete wred and lested bui mith above twin otage valve ECl R2 giving higher fidellts son qreater output. \&3/19/R and $2 / R \mathrm{P}$. \& $P$

## Re-GUMNED TV TUBES-GENUINE Offer

New Heater, Cathode and Gun Assembly can now be fitted to your old Tube-Reconditioned virtually as new. Fully Guaranteed to highest standards-as used by our own Service Dept. $12^{\prime \prime} \in 8 \quad 14^{\prime \prime} \in 8.10 .0 \quad 17^{\prime \prime} \in 10$
We regret only Mullard and Mazda types at present. Delivery approx. 7 days.

Carr. \& Ins. 12/6
Hours 9 a.m.-6 p.m., I p.m. Wednesdar
 Brand new, indi-
vidually checked
and guaranteed

A792	4/6	EA50 ......... I/6	KT2
100	4/6	EAC91 ...... 4/6	KT30
A863	4/6	EB34 ........ 1/9	KT31 ........ 8/-
A864	4/6	EBC33 ….. 6/-	KT33C ..... 7/-
950	4/6	EC52 ......... 4/6	KTW62 ..... 4/-
C/DD	2/6	EC54 ......... 3/6	KTW63 ...... $6 / 6$
C/HL	2/6	ECC32 ...... 4/-	KT241 ...... 9/-
AC/P	2/6	ECC91 ...... 5/-	L30 ......... 4/-
AC/P	2/6	EF8........... 6/-	LS5B .........12/-
C6/P	5/-	EF22 ........ 7/3	LS7B .........12/-
C/SP3	4/6	EF36 ……. 5/-	MH4
	2/6	EF39 …..... 5/6	MH40........ 6/6
R8	6/-	EF50 ......... 3/-	MH41......... 6/6
RP3	3/-	EF55 ........ 6/-	MHLD6 $\therefore$. 4/6
ARP4	$3 / 3$	EF91 ......... 7/-	ML4 ......... 4/6
RPI2	3/-	EF92 ......... 7/-	ML6 ......... 6/-
RP24	3/6	EL32 ......... $4 / 6$	MPJ42 ...... 9/-
ARP34	4/6	EL91 …..... 7/6	MS/PEN...... 6/-
ATP4	3/-	EY91 ......... 4/6	MS/PENB ... 6/-
TP7	$5 / 6$	FA15 …..... 4/-	N34 $\ldots . . . . . .81 /-$
В30.	3/6	GDT-4B..... 4/-	NRI5A ...... 3/-
BL63	$6 /$	H30 ......... 5/-	NR61 ...... 7/-
D41	3/3	H63 ……... 3/6	NT37(4033A)
D77	5/-	HL2 ......... 2/6	14/-
DB41	4/6	HL4 ........ 3/6	NT62A ...... 4/-
D0620	4/6	HL42/DD ... 6/-	OD3 ........ 6/-
DEP18	$3 / 6$	HP4101 ...... 6/-	OZ4 ......... 5/-
DET19	1/6	KBC32 ...... 5/-	OZ4A ..... 5/-
DET20	$2 / 6$	KF35 …..... 5/-	
H7	$4 / 9$	$\begin{aligned} & \text { KF35 } \ldots \ldots \ldots . .5 /- \\ & \text { KR6/1 } \ldots \ldots \ldots 3 / 6 \end{aligned}$	PEN46 ….. 5/9
DLS 10	4/6	$\begin{aligned} & \text { KR6/1........ } 3 / 6 \\ & \text { KRN2A } \ldots \ldots 15 / 6 \end{aligned}$	$\begin{aligned} & \text { PEN141 } \ldots . \\ & \text { PEN220A } \end{aligned} \text { 4/- } 3 /-$
$\begin{aligned} & \text { E1148. } \\ & \text { E1323 } \end{aligned}$	$\begin{aligned} & 2 / 9 \\ & 1 / 9 \end{aligned}$	KRN2A KRN3 KR.... $15 / 6$ $\ldots$	$\begin{aligned} & \text { PEN220A } \ldots .3 /- \\ & \text { PEN1340 } . .6 \\ & 6 /- \end{aligned}$

All orders below 10/-, P. \& P. 1/-; over 10/-, 1/6; orders over $£ 2$ P. \& P. free.

PENDD 1360 $P$
$p$
$P$
$P$
PM4DX
PM202
PT15
PT25H
PP21.....

9/6	\|A5GT ...... 5/m	606 ........ 5/-	
3/-	1823 ........11/-	676 ........ 7/	$12 \mathrm{C8}$
$7 / 6$	\|B24 .........11/-	6F6G ......... 5/-	12E1
8/-	1826 ……..11/-	6F8G ......... 8/-	$12 \mathrm{H6}$
$7 / 6$	1832 .........10/-	$6 \mathrm{Fl2}$ ……. 71-	1215 G
6/-	ID8GT ...... 6/-	6G6G........ 3/-	$12 \mathrm{SG7}$
5/3	IL4 ............ 4/-	6H6 $\ldots$...... 2/3	$125 \mathrm{H7}$
$17 / 6$	ILD5 ......... 3/6	6H6GT ...... 1/9	12517
$17 / 6$	ILN5 ......... 5/-	615 ........... 5/-	125 K 7
$91-$	2A3 …..... 8/-	616........... 5/-	12517
3/-	2A6 …….. 7/-	6K7G ........ 4/-	12 SR7
5/6	2C34 ........ 2/6	6K7GT ...... 6/-	15D2
5/6	2D4A	6K8G ….. 7/-	15E
$7 / 6$	2X2 ........ 41-	6K8GT ...... 8/-	1982
$4 / 6$	3A4 ….... 6/6	${ }_{6 L 5 G}$	28D7
$2 / 9$	3824 …… 3/-		${ }^{28 D 7}$
2/9	3E29(829B) 75/-	6L6G …..... 8/6	35 T $39 / 44$
4/-	4AI	$\begin{aligned} & \text { 6L6GA } \ldots . . .8 / 6 \\ & \text { 6L34 } \ldots . . . . . \\ & \hline \end{aligned}$	39/44 41 FP
3/-	4D1 5T4............ $10 / 6$	6N7GT ...... 7/-	45
. $12 / 6$	5U4G.......... $71-$	6SA7 ........ 7/-	53A
5/-	5Z3 …….. 8/6	6SC7GT...... 7/-	58
$4 / 6$	6A6 …….. 5/-	6SG7 $\ldots$........ 7/-	
8/-	6AB7 ……. 5/-	6S577 …….. 5/- $7 / 6$	
8/-	6AC7 $\ldots$........ 5/-	6SK7 …...... 5 5/6	
$8 /-16$	6AG5 ……. 5/6	6SL7GT ...... 7/-	
4/-	6AG7 6AK..... 8/6 716	6SN7 ........ 5/6	
8/6	6AL5 …..... 516	6SN7GT ... 5/6	83 V
2/6	6AM5......... 8/6	6SQ7 $\ldots$....... 6/6	
3/-	6AM6........ $17 /-$	6SS7 ........ 8/-	210 LF
3/-	684G ......... 4/6	6X5G ${ }^{\text {6 }}$.......6 6/-	210 V
71-	688........... 6/-	6X5G …. 6/-	217 C
7/-	6B8G ......... 3/-	8D2	220 VS
8/-			350B
6/-	6C6 ……. 4/6	11E3 ….... 5/-	446B
16	6C8G ….. 5/-	12A6 ......... 5/-	


7/0	$7158 . . . . . .97 / 6$
$7 / 6$	717A ......... 8/6
$22 / 6$	801 ........... 6/-
2/6	803........... 22/6
$3 / 6$	805 ........... $30 /-$
$6 / 6$	807AMER ... $6 / 6$
4/9	807BR ....... 6/-
6/-	813 ……. 70/-
51-	815 …….801-
61-	843 ….... $7 / 6$
6/-	872A .........35/-
8/-	954 ......... 2/-
$7 / 6$	956 …..... 3/-
5/-	1625 ......... 6/-
8/-	1626 …..... 4/6
. 301 -	1629 ........ 4/6
6/-	7193 ........ 1/9
1/9	7475 ........ 51-
7/-	8010AR ......22/6
3/-	8020 ........ 61-
6/-	9001 ........ 5/-
6/-	9004 ......... 4/-
4/6	9006 ......... 4/-
9/-	Cathode Ray
6/-	Tubes:
8-	3BP1 ..........25/-
.12-	5CPI .........42/6
.12-	5FP7 .........45/-
6/-	5MPI .........17/6
3/-	VCR97 .....10/m
. 3/-	VCR517 $\ldots$
.17/6	Special Valves:
8/-	417A .........15/-
.14/-	723AB .....52/6
.14/-	726A ........27/6
. $17 / 6$	VZ7110......15/-

BRAND NEW ORIGINAL SPARE PARTS FOR AR88 RECEIVERS.
Please see advertisement December issue. Thermo Couple Heating Element. 75 amps in bakelite housing, made by General Electric, 10/-. P. \& P. I/-.
Complete set of strong aerial rods (American). Screw-in type MP49, 50, 51, 52, 53. total length 15 ft . 10 in ., top diameter $0.615 \mathrm{in}_{\text {., }}$ bottom diameter 0.185 in . together with much aerial base. MP37 with ceramic insulator, ideal for car or roof insulation. $£ 2 / 10 /$-, post ideal
HRO Mains. 150/230 v. Power supply unit complete with valve, checked, $63 / 9 / 6$. P. \& P. 5/-.

High Resistance Headphones. 4,000 ohms. Brand new, ex W.D., boxed. Type DHR, $10 / 6$ per pair. P. \& P. I/-
Low Resistance Headphones, brand new, type CLR, 5/-; DLR $6 / 6$ per pair. P. \& P. $1 /-$.
Modulation Transformers (U.S.A. Collins), primary imp. 6,000 ohms. C.T., secondary 6,000 ohms, $20 \mathrm{~W} ., 9 / 6$ each post free.
Microphone Transformers. Balanced input 30 or 250 ohms. U.S.A. manufacture. 7/6. P. \& P. 1/6.

Avominors in leather case, with leads, fully tested, $65 / 10 /$. Packing and carriage $2 / 6$. 813 Ceramic Valveholders 3/- each. P. \& P. $1 / 6$.

Vibratory Supply Unit. Input 6 v., output H.T. 230 v .100 mA . L.T. 6 v . in metal case 9in. $\times 5$ in. $\times 6 \frac{1}{2}$ in., complete with vibrator, OZ4 valve. Checked working, E2. P. \& P. 7/6. Marconi Signal Generator. TFI44G $85 \mathrm{kc} / \mathrm{s}$., $25 \mathrm{Mc} / \mathrm{s}$. Made up to new standard. ©70, delivered free.
Telephone Hand Set. Standard G.P.O. type. New. 10/=. P. \& P. I/
AR88D and L.F. Receivers, completely overhauled and tuned, $£ 60$ and $£ 57 / 10 /$ - respectively. Completely rebuilt with P.V.C. wiring, 885.
Hallicrafter's $\$ 27$ Receivers, $27 \mathrm{~m} 143 \mathrm{Mc} / \mathrm{s}$. Fully reconditioned, $£ 30 / 10 /-$, delivered free.

## P. C. RADIO LTD. 170, GOLDHAWK RD., <br> W. 12 sHEpherds Bush 4946

Rotary Convertor Unit. Input 11.5-12.5. v. D.C. Output 300 v. 200 mA . D.C., $30 /$-ip postage and packing 15/-.
RCA. MASTER OSCILLATOR (V.F.O.) with stability of $0.0007 \%$. Frequency range $2-20 \mathrm{mc} / \mathrm{s}$. with built-in constant frequency tone generator. Regulated A.C. power supply $115 / 230 \mathrm{v}$. and fitted with plate and volt meters. Valves line-up: Electron coupled oscillation 3Q5(2). Buffer amplifier-807, tone generator-6AB7 (1), $6 F 6(1)$, regulated power supply 5U4(2), 6Y6(5), 1852(1), VR150/30(2). Brand new complete in grey crackle steel cabinat size $67 \mathrm{in} . \times 22 \mathrm{in} . \times 17 \frac{1}{2} \mathrm{in}$. Fitted with full-length door at rear with standard 19in, panels. Can be used as complete TX with existing 807 output. The bottom half of the cabinet with 3 blank panels being empty ready for installation of complete RF modulator and power unit, thus making a complete totally enelosed compact 1X. Circuit diagrams and working instructions supplied. Price complete with valves $\mathbf{E 2 7 / 1 0 / -}$ each. Supplies strictly limited.
Morse Keys, 8 amp. New 2/6. P. \& P. I/Tannoy Loudspeakers. New 15/-. P. \& P. 3/Mains Power Supply Unit for No. 19 wireless set. Made by RCA of Canada. II5 v A.C. Brand new, €15. P. \& P. \&I,

PERSONAL CALLERS WELCOME

TELETRON Miniature Transistors
Superhet coil kit (as illustrated) 42/-

$470 \mathrm{kc} / \mathrm{s}$. I.F. Transformers and Osc. coil in screening cans $\frac{z}{4} \times \frac{1}{2}$ in. dia. Dual wave Ferrite rod aerial $5 \frac{1}{2} \times \frac{5}{18}$ in. dia. For the TRANSIDYNE printed circuit $\mathrm{s} / \mathrm{het}$.
Push-pull and single ended tape oscillator coils available for most decks at $8 / 6$ each. Bias rejector available or most decks at cois and top lift inductors. Dual range T.R.F. and $X$ tal diode coils, etc. 9 d . stamps for complete lists and circuits.

The TELETRON Co. Ltd.
112B, Station Rd., Chingford, London, E. 4 SIL 0836

## FESTIVAL

RECORDED MUSIC STEREO and MONAURAL
February. 27th 1959 - 7.30 p.m. GREAT HALL
Blackwell Secondary Modern School Headstone Lane-Harrow-Mdx.
TICKETS 2/6, 3/9, 4/9,5/9 \& 6/9. S.A.E. PLEASE.

Concert given by S.L. Timms \& Allan Stagg in aid of the School's New Swimming Pool.
LOCK WOOD \& CO. (WOODWORKERS) LTD. 67, LOWLANDS ROAD, HARROW, MDX.


1. Oonsiderable reductions in your overheadel
2. Prompt Quotations and Servicef
We specialise in the repair of all types and makes of Voltmeters, Ammeters, Microammotera, Multirange Test Metere, Electrieal Thermometers, eto. As contractors to the Ministry of 8upply. General Poot Office and other Government Departments, we are the leading Filectrical Instrument Repairers in
the Industry. No enquiry is too big or too the Industry. No enquiry is too big or too small.
For prompt estinato and speedy delivery send defec. For prompt estimato and epeedy delivery send defec-
tive instrument by registered poest, or write to Dept. WW
L. GLASER \& CO., LTD.,

 15, LITTLE NEWPORT STREET, LONDON, W.C.2. GER 6794/।453 ADJOINING LEICESTER SQUARE TUBE STATION Open 9-6 Weekdays 9-I Sat.

## BARGAINS IN TEST EQUIPMENT


#### Abstract

MARCONI SIGNAL GENERATOR TYPE TF517-F/I. Covering $10-18 \mathrm{Mc} / \mathrm{s}$., $33-58 . \mathrm{Mc} / \mathrm{s}$. $150-300 \mathrm{Mc} / \mathrm{s}$ Used but in very good condition Complete with full rechnical data and instructions. Limited quantity. Unrepeatable at only $\mathbf{E} 12 / 10 /$. Carr. 20/- VALVE TESTER TYPE 4. 200/230 v. A.C. input. Ex-Gove., in good condition; with descriptive book containing circuit diagrám of instrument and how to test valves from 1.4 v . to 40 v . With valve holders for Brit., 4, 5, 7 pin and Octal, U.S., 5 and 7 pin, $1 / O$ stal, side contact large Brit, 4 and 9 pin. Acorn and diode. Housed in substantial wooden case with hinged lid. $£ 7 / 19 / 6$. Carr. 10/-. TEST SEX TS-26/TSM. This volt ohmmeter is the correct tester for EE8 telephones and all standard telephone equipment. Brand new and boxed, with full technical data and calibration charts. $67 / 10 /$. PRECISION SERIES 834-S (U.S.A.) Multi range tester for A.C./D.C. volts, ohms and miltiamps. Basic movement 400 microamps. Housed


 in wooden box with lid and carrying strap. Over-all size $7 \frac{1}{2} \times 7$ 7n, $x$ 5in. Complete with test prods, batteries, etc, Ready to use, 66/19/6. Post $2 / 6$. EVERSHED \& VIGNOLES MEGGER CIRCUIT TESTER (low reading ohmmezer). 2 ranges. $0-3,0-30$ ohms. The perfect meter for continuity and polarity testing. Complete with test leads and ready to use. Brand new. Only test leads and ready
E4/17/6. P \& P. 3/.
EVERSHED : VIGNOLES 100 v. MEGGER. Good working order. Limited quantity. ONLY 64/15/0.
EVERSHED * VIGNOLES. Series $\| 500$ v. Megger insulation Tester, with leather carrying case. As new. 620. Carr. paid.
RECORD MEGGERS. 500 v . insulation ester, $0-20$ megohms. In leather case, good condition, $£ 8$. EVERSHED \& VIGNOLES WEE MEGGER 500 v. New and unused. Only El2/10/-. Ditto 250 v. £ $10 / 10 /-$ P. \& P. 3/- on each.
AVO TEST BRIDGE. A.C. mains operated from 200-250 v. Will test resistance from 5 ohms to 50 megohms and capacity from . 0000 t to 50 mids. A most useful instrument for everyday uses. Our price ONLY $\in 7 / 19 / 6$. P. \& P $3 / 6$.

## D.C./A.C. ROTARY CONVERTERS

ROTARY CONVERTER. 230 v. D.C. input to 230 v. A.C. output at 230 watts. Brand new and unused. $£ 15$. Carr. 10/-.

ROTARY CONVERTER. 110 v. D.C. input, 230 v. A.C. output, 50 cycles, 50 watts approx. Comple:e in waterproof steel case, $£ 3 / 17 / 6$. Carr. 5/-.

ROTARY CONVERTER. 24 v D.C. to 230 v . A.C. 50 cycles, 150 watts. Brand new and unused. £8/10/. Carr. 7/6. Ditto, 100 watts, $\mathbf{6} / 9 / 6$. Carr. 7/6.

ROTARY CONVERTER. (As illus.). Ex-Govt. 12 v. D.C. input 230 v. A.C. Output, 50 cycles at 135 watts. Complete in carrying case with lid. Voltage control, sliding resistance, mains switch and 0.300 V . A.C. flush meter. Brand new and unused, ©10. Carr. $10 /=$. Motor only, without case etc. Brand new and unused, $£ 8 / 10 /$-. Carr. $5 /-$.

## TRANSFORMERS

E.H.T. TRANSFORMER. 9,500-0-9,500 at 2.9 kVA. Pri. 230 Yo, $50 / 60$ cycles. New and unused. £25. Carr. paid.
E.H.T. TRANSFORMERS. $3,850 \mathrm{v}$, at 50 mA . with two additional 4 v . L.T. windings for 230 v .50 cycles primary. New and boxed. 63/15/-. Carr. 5/-. E.H.T. TRANSFORMER. $1,800-0-1,800$ at I KVA, 230 v. 50 cycles primary. Fully tropicalised. 1 kVA, 230 v. 50 cycles primary. Fully
New and boxed. E8/l5/-. Carr. 10/\%.
HEAVY DUTY LT TRANSFORMER. 230 v. 50 cycles pri. If-12.6 v. at 70 amps. sec. Ditto $13-15 \%$. sec. at 60 amps . Both capable of carrying $\mathbf{2 5} \%$ over actual rating. Perfect condition. ONLY $1 / 5 /$ e each. Carr. 5/-.


RCA MODULATION TRANSFORMER. Heavy duty. Pri. 10,400 ohms. Sec. 4,350 ohms. New and unused. 85 . Carr. 10/
RCA PLATE TRANSFORMERS. 190 to 250 v. primary. 50-60 cycles. Secondary 1,500-01,500 or $2,000-0-2,000$ at 1.75 kVA . Brand new and boxed. $£ 12 / 101 /$. Carr. $10 /$
VARIAC TRANSFORMERS. 230 v. 50 cycles input, controlling $0-260 \mathrm{v}$. continuously at $4 / 5$ amps. Perfect order, 69 . Carr. 10/-. Ditto, at $2 \frac{1}{2}$ amps., $\epsilon 7 / 10 /-$ Carr. $10 /-$
CONSTANT VOLTAGE TRANSFORMER. $190-260 \mathrm{v}$. primary, sec. 115 v . at $1 \frac{1}{2} \mathrm{kVA}$. (listed at $2 k V A)$. Brand new and unused. $£ 25$ or $£ 45$ per pair. Carr. 20/- each.


KE-
ENTRANT LOUD (Ex-Govt.) Heavy duty 20 watts all-metal 15 ohms. Diameter 15 in . length 15 in., fect condition \&6/10/e6,10|
$10 /=$.

- BAKKERS SELHURST SPEAKERS

12 in . P.M. 15 ohms 15 watts, $30-14,000$ c.p.s. Our price $\varepsilon 4 / 10 /=$
"HI-FI MASTER" 12 in . 15 ohms. 12 watts, 20-16,000 c.p.s. Flux density approx. 14-15,000. OUR PRICE ET/IO/-.
"SUPER HI-FI 25." 12 in., 15 ohms, 25 watts 25-20,000 c.p.s. FIux density 17,600 . OUR PRICE \{9/9/-. All the above speakers are Brand New and f $9 / 9 /$. All the above speakers are Brand
full deseriptive specification is available.

## HEAVY DUTY-ALL STEEL TRIPOD STANDS

Adjustable every 6 in. to approx. 9 ft . 6in. when fully extended. (folds up to only 4 ft . 6 in . for storage). Suitable for outdoor speakers, public address systems. floodlighting, etc., etc.
OUR 28. $\mathbf{1 0 . 0}$ Carr. 5/-.


## GEE'S BARGAIN COLUMN

TUNING UNITS. For B.C. 610 Trans/ Receiver. Frequency coverages: 2.5-3.2 $\mathrm{Mc} / \mathrm{s}$; or $12-18 \mathrm{Mc} / \mathrm{s}$. Now and unused 25/- each freq.
TWIN BARREL SLIDING RESISTOR 26 ohms at 6.5 amps ., very liberally rated. Brand new and unused, 25/.. P. \& P. 3/6.
TRANSMITTER RECEIVER No. 19, Mk. II. Complete station comprising Transmitter/receiver, power supply unit, aerial, variometer, control box, head phones and microphone and all connect ing leads. Air tested, s9/19/6. Carr, 20/Two complete stations, $£ 20$ carr. paid. Any items available separately except Trans/ Receiver.
SELENIUM METAL RECTIFIERS FB 6 or 12 v . $1 \mathrm{amp} .7 / 6 ; 24 \mathrm{v} .1 \mathrm{amp}$. $13 / 6$;
 $12 \mathrm{v} .2 \frac{1}{2} \mathrm{amp} ., 15 / \mathrm{F} ; 24 \mathrm{v} .2 \frac{1}{2} \mathrm{amp} ., 225 / \mathrm{F}$ 12 v. 4 amp., $16 / 6 ; 24 \mathrm{v} .4 \mathrm{amp}$, , $30 / \mathrm{f}$ 12 v. 6 amp., 23/6; 24 v. 6 amp., $35 \%$ $12 \mathrm{v} .10 \mathrm{amp} ., 40 / \mathrm{F}, 24 \mathrm{r} .10 \mathrm{amp} ., 80 /$ AMPLIFIER. 12 v. D.C. For Mobile and Outdoor operation. Powered by Converter 2-EL35's or 6L6's in push-pull. Output 12 watts fitted for mike and gram inputs. A sound and practical unit in good condition for only $610 / 10 /-$. Carr. $5 /-$. RIO9A RECEIVERS. Freq. range 2-12.0 megs. In good working order. $84 / 7 / 6$. Carr. 10/-. A.C. mains 200-250 v., power packs available. E4. Carr, 5/6.
TELEPHONE SET. Ex-Govt. "DON Mk. V "' in good working order. Ready to use. 37/6 each. Carr. 3/6.
A.C.-D.C. RECTIFIER POWER SUP PLY UNIT. $110-230 \mathrm{v}$. A.C. 50 cycles input, $100 / 110$ v. D.C. output max. 2 amp. 84/10/-. Carr. 7/6.

## WESTAE ONLY! <br> WESTALTE TRANSFORMER

 RECTIFIER. Oil filled. Primary $380-440$ v. 50 cycles, 3 phase. Supplying 20 v. D.C. at 200 amps. Complete with original control panel. Perfect condition, unused. E200 ex-stores.ELECTRIC LIGHT CHECK METER. For $200 / 250 \mathrm{v}$. A.C. mains at 5 amps Capable of carrying $50 \%$ overload Good condition. Only 25/-. P. \& P. 3/6. MICROPHONE STANDS. 3 sections of $18 \frac{2}{2}$ in. per section. Extends to 56 in.
Stands securely on 3 legs which fold Stands securely on legs which fold together for carrying purpo
job, only 21/-. P. \& P. $2 / 6$.
C.M.G. 25 PHOTO CELLS (OSRAM). Brand new, 15/-. P. \& P. 1/-.
MINIATURE 373 I.F. STRIPS for F.M. tuner as described in "Practical Wireless." Complete with all valves, and circuit. BRAND NEW. ONLY $37 / 6$, post paid.
TELEPHONE CABLE. Twin one mile drums (Don 8), 65. Carr. 201-. Single one mile drums (Don 3), 50/-. Carr. 7/6.
RECORDING WIRE. $\frac{1}{2}$ lb. spools, $3 \frac{1}{2} \mathrm{in}$. dia. New and unused, $7 / 6$. P. \& P. 1/-. COMMAND RECEIVERS. B.C. 454 3-6 Mc/s., 455, 6-9 Mc/s., good condition, $39 / 6$ each rype. P. \& P. 3/- each.
METERS. 0-I mA. $2 \frac{1}{2}$ in, circular F/M 25/0.50 microamps D.C. m/c., projecting 0.50 microamps
2 tin. round, $49 / 6$.
$2 \frac{2}{2}$ in. round, $49 / 6$. 300 v. A.C. $2 \frac{1}{\mathrm{in}}$. F/M., 25/-
 3 in . rect. Uncalibrated 49/6, or calibrated 59/6:

Meter, 2 in., as used in AR-77 Receiver, 25/- All post paid.
ACCUMULATORS, Bakelite-cased. 2 v. 100 A.H., 75 actual. Ex-Govt. New and unused. Complete with carrying handle. Size $6 \frac{1}{2} \times 6 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{in}$., $15 /$ each. Carr. 3/6. 3 sent for $50 /$, , or 6 for 85 , carr. paid. Ditto 16 A.H., $5 / \%$; P. \& P. $2 /-.6$ for 24/-. P. \& P. i0/-. Ditto, 14 A.H. less handle, $5 /-$. P. \& P. 2/-. 6 for 24/-. P. \& P. 10/-.
10 v IOA.H. ACCUMULATORS (Exide). Glass cased, size 7in. $\times$ Sin. $\times 2$ tin. Brand new. 20/-each.
100 MIXED RESISTORS, $\frac{1}{4}, \frac{1}{2}, 1$ and 2 watts. Snip at $5 /-$.

$\star 5$ Valve Superhet.
$\star$ Long-Medium-Short Waves.

* 3-4 Watts Output.
$\star$ Ferrite Rod Aerial.
$\star$ Latest Type Valves.
$\star$ Dual Controls.
$\star$ A.C. Mains 200-250 Volts.
$\star$ Size 12" Long, 6" High, 7" Deep.
leaflet available on request
LATEST B.S.R. 4-SPEED AUTOCHANGERS
8in. SPEAKER, SUITABLE FOR ABOVE CHASSIS PRICE \&1.0.0 PLUS $3 / 6$ P. \& P.


## SUPERIOR RADIO SUPPLIES LTD.

37, HILLSIDE, STONEBRIDGE,
LONDON, N.W.10. Tel. ELGAR 3644

ILLUSTRATED LISTS. We now have avallable separate Illustrated dits on all of the following:-

GRAMOPEONF EQUIPMENT.-This list detalls no less than 14 different items including Record Changers, Elingle Record Players and Transeription Units, Some at spectal prices.
READY BULT AMPLIFIERS.-Hi-Fi and less expensive popular types.
TEST GEAR.-Tests Meters, slgnal Generators, etc., by AVO, Pullin and Taylor.

LOUDSPEAKERS.-Full details of Goodmans, Whiteley, Wharfedale, G.E.C., and
Elac types which we stock.
TAPE DECTS. -All the popular makes fneluding a special offer. RECORDING TAPES.- We have a very wide range of tape and accessorice by all the well-known makers.


## JASON FM TUNER KITS

Our kits are really complete, the instruction book, all components, palves and small items such as nuts, bolts, wire and solder being included. There is definitely nothing else to buy. All items are svailable separately if required and detalled lists are available free. Inatruction books for either tuner are avallable at $2 / 3$ each, post iree.
tlass scale and bsmmer finish front panel glass cale and bammer hush ront panel. pryments of $£ 1 / 2 / 6$. fura of a swl Not suitable for Wenvos area the front-end unit already built and tested. PRICE.- $£ 0 / 19 /$ - post free. H.P. Termo-Depolt $£ 1 / 10 /$ and $d x$ monthly payments of $£ 1 / 10 / 8$.

AV0 Model 8	Cast Price Deposit Hire		Purchase
			Purchase
	22310	¢2 70	12 of 21189
Avo Model 8 with leather cose	¢26 10	钟 130	12 of 22
Avo Model 7.	219100	£1 19.	12 of 8112
Avo Model 7 with leather case	E22 10	0 ¢2 50	12 of 2117
AVO Multiminor	¢0 100	21 80	6 of £1 96
AVO Multiminor with	21126	£1 136	6 of 21140
TAYLOR Model 71a	£12 100	£1 176	6 of £1 18.2
PULLIN Series 100	21276	61168	6 of £1 1710
TAYLOR MONTROSE	23100	¢1 0	3 of el 0
PIFCO All-in-One	$£ 1126$		

## MULLARD TAPE C AMPLIFIER

A new version of this tape amplifier ia now avallable. Detailed parts list on request
HIAE PUROHASE.-E.P. Terms are avallable on any item. Repayments may be spread over 3,6 or 12 months. Details as followe: three months: deposit $6 /-$ in the $£$ Service charge $5 \%$ but minimum charge $10 /-$. Six months: deposit $3 /-$ in the $£$ ervice charge $71 \%$, but minimum charge $15 /=$ Twelve months: deposit $2 /-$ in the $£$ ervice charge $10 \%$, but minhrum charge $20 /$.
TPRMS OF BUSINESS. - Cash with order or C.O.D. Postage extra under 23. We charge C.O.D. orders ag follows: Up to 43 postage and C.O.D. fee minimum $2 / 8$. over is and under 45, C.O.D. fee only $1 / 6$. Over in no charge.

## WATTS RADIO (\%ARDER) LTD.

54 CHURCH STREET, WEYBRIDGE, SURREY
Telephone: Weybridge 4556


## KEY SWITCHES

PROMPT DELIVERY ALL TYPES UP TO 4co/6co


MINIATURE RELAYS Siemens High Speed. Sealed. $2.2 \Omega+2.2 \Omega 1 \mathrm{CO} \mathrm{H} 96 \mathrm{~A}$

## 17/6

25/-
$1700 \Omega+1700 \Omega 1 \mathrm{CO} \underset{\text { Sealed }}{\mathrm{H96E}}$
19/6
$700 \Omega 1$ make HD 4186 ED
$700 \Omega 2$ Change over 4184GD $2700 \Omega 2$ Change over 4184 GE 22/6
$2 \Omega 2$ make SM5H1
$180 \Omega 2$ make 2 B. SM5H9 $670 \Omega 2$ make 2 B. SM5H12 $2500 \Omega 1 \mathrm{C}$ O. SM5N18
T.M.C. Carpenter Relays
$330 \Omega+1040 \Omega 4821$
$850 \Omega+2680 \Omega$ 5M32A
$300 \Omega+700 \Omega$ 5XA24
All available from stock.


## METERS GUARANTEED

F.S.D. 50 Microamps 100 Microamps 500 Microamps

00 Microamps
1 Milliamps
1 Milliamps
5 Milliamps 30 Milliamps 100 Milliamps 200 Milliamps 250 Milliamps
5 Amperes
15 Amperes
25 Amperes 50.0-50 Amp. 30-0-30 Amp. 20 Volts
 Type MC/FR $\mathrm{MC} / \mathrm{FS}$
$\mathrm{MC} / \mathrm{FR}$ MC/FR
MC/FS
$M C / F R$ MC/FR
MC/FR MC/FR
MC/FR MC/FR MC/FR MC/FR MC/FS MI/F IC/F MC/FR MC/FS
$\mathrm{MC} / \mathrm{FS}$ Price
$70 /-$
$50 /-$
$27 / 6$
$37 / 6$
$27 / 6$
$35 / 6$
$17 / 6$
$12 / 6$
$12 / 6$
$12 / 6$
$12 / 6$
$27 / 6$
$10 / 6$
$7 / 6$
$12 / 6$
$15 / 6$
$10 / 6$
$10 / 6$
CROSS POINTER METER8. With 2 separate 100 microamp movements. Brand new. 22/6.
Post $2 /$ ROTARY CONVERTER8. Input 12 volts D.C. Output 230 volts A.C., 50 cycles, 135 watts. In fitted case with variable resistance, $0 / 300$ voltmeter, mains switch. The ideal job for elevision where A.C. mains are not avallable. 110. Carriage $15 \%$

Sockets to fit the plugs on the above converters 5/- per pair. Post $1 /$.
ACK PLUGS. Cylin-
drical bakelite screw-on each, $20 /$ - doz.

\section*{SELENIUM METAL RECTIFIER} Full wave briage. Best quality 12 v. 2 amp. $\quad 8 / 6$ 13/6 24 v. 1 amp. $13 / \mathrm{m}$ | 12 v. 2 amp. | $\cdots$ | $13 / 6$ | 24 v. 2 amp. | $24 /-$ |
| :--- | :--- | :--- | :--- | :--- |
| 12 v. 3 amp. | $\cdots$ | $16 / 6$ | 24 v. 3 amp. | $28 /=$ | 12 v. 4 amp. ... 20/- 24 v. $4 \mathrm{amp} \quad 36 /-$ MAINS TRANSFORMER8 with correct output tappings, suitable for the above rectifiers to give 12 v. 1 amp., 18/9. 2 amp. 24/-. 4 amp. 29/6. 24 v. 3 amp. 25/-. Post $1 / 6$

VOLTMETERS. 0/300 Moving Iron, A.C., 6in. Flush Round, $110 /=$
AMMETERS. $0 / 50$ or $0 / 100$ Moving Iron, A.C., 6in. Flush Round, 90/-.
VOLTMETERS. $0 / 300$, Moving Iron, A.C., 21 in. Flush Round, 25/-
MICROAMMETER. 250 F.S.D., $3 \frac{1}{2} \mathrm{in}$. Flush Round, Sangamo Notel S37. Scaled for valve voltmeter, circuit available free. $55 /$.
"WEE MEGGERS," 500 volts, in leather case, 812/10/-
CIRCUIT TESTING OHMMETER. 2 scales $0 / 1000 \Omega$ and $100 / 200 \mathrm{~K} \Omega$ inf. with test prods. Brand new. $84 / 17 / 6$. Post $3 /$
Brand new. 84/17/6. Post $3 /-$.
AVO TEST BRIBGES. $220 / 240$ volt A.C. AVO TEST BRIDGES. $220 / 240$ volt A.C.
Measures capacities from 5 pf . to 50 mfd . and Measures capacities from 5 pf . to 50 mfd . and
resistances from 5 ohms to 50 megohms. Valve resistances from 5 ohms to 50 megohms. Valve
voltmeter range 0.1 to 15 volts, and condenser voltmeter range 0.1 to 16 volts, and condenser instructions supplied with instrument. $£ 9 / 19 / 6$. Post 3/.
SIGNAL GENERATOR TYPE 52A. Input 230 volt 50 cycles, complete with leads, dummy antenna. Brand new in transit case. 6 to $52 \mathrm{Mc} / \mathrm{s}$. inclusive in 4 bands with calibration charts. Coarse and fine attenuators. Int. and ext. mod. Output 0.5 volt to 100 mv impedance 70 and $100 \Omega$. \&10. Carriage 10
WHEATSTONE BRIDGE. 1 to 210 ohms in $1 \Omega$ steps with built-in galvo, 4 stud switches, in wood case with spare compartment. Ideal in wood case with spare compartment. Ideal
for extending range. $50 /=$. Post $3 / 6$. for extending range. 50/=. Post 3/6. 230 volt VENTAXIA EXTRACTION FANS,
A.C. Gin. blades. Ideal for ventilating kitchens, A.C. Gin. blades. Ideal for ventilating kitchens,
etc. Easy to fx . Silent runnimg. $130 /=$ post $3 /-$ etc. Easy to fx. Silent running. $130 /=$ post $3 /-$ 190/5, cge. $6 /$
HEATING ELEMENTS. Flat enclosed type. 230 volt 500 watt. "Bray chromalox." $10 \times 1$ 1 1 in. 7/6, post 1/6.
OSCILLOSCOPE. Type 43. With $3 \frac{1}{2}$ in. CRT. 4-8J7, 3-VR54, 1-524, 1-VU120. Brand new and complete with power pack and leads, \& $10 / 10 /=$
INSPECTION LAMP. Fits on forehead, leaving hands free, battery case clips on belt, $7 / 6$, hands free, battery case clips on belt, $7 / 6$,
post $1 / 6$. Takes E.R. Battery No. $1215,2 / 9$, post $1 / 6$.
post $9 d$.
SOLENOIDS. 12 volt D.C., with $3 \frac{1}{2} i n$. lever. Very powerful. Ideal for remote control, model railways, etc., $5 /$ - each. Post $1 / 8$.
SWITCHES. 1 hole fixing, 3 amp. 250 volt. Single pole changeover, 1/6 each, $12 /-\mathrm{doz}$.


BULKHEAD FITTING. Oin. diam. flat tripod type, suitable for lamps up to 100 watt, complete with pushbar switch farm buildings, garages, greenhouses, etc. Brand new 17/6, post Brand ROOM ${ }^{17 / \text { THERMOSTAT. }}$ Adiustable between 45 Adustable between 45
and $75^{\circ}$ Fahr. 250 v. 10 amp. A.C. Ideal for greenhouses, etc., $35 /-$. Post , 2/-
THERMOSTAT. For frost protection, on at 34 deg. F., off at 49 deg. F., $1 \frac{1}{2}$ amps. at 250 volts, adjustable, 4/6, post $1 /$-.
THERMOSTAT SWITCH. Bimetal type in sealed glass tube, $21 \times 1 \frac{1}{1}$ in., $30^{\circ}$ Cent. Ideal for Aquariums, Wax and Oij Baths, Gluepots, etc Will control 1 amp. at $240 \mathrm{v},, 5 /=$ each, post $1 /$-. THERMOSTAT. Satchwell $12 i n$. stem, $0 / 250 \mathrm{v}$. A.C./D.C. 15 amps. A.C., 10 to $90^{\circ}$ Cent., $25 /$, post $2 / 8$.
 MOBILE INTERCOM * USE IT ANYWHERE $\star$ INSTALLED IN SECONDS * NO BATTERIE8 NEEDED self energised

Set No. 1.
YOUR OWN PERSONA TELEPHONE SERVIGE that will cost you very little to install and nothing to run. The power required adefinitely. Speech is carried and will las ndefinitely. Speech is carried clearly over long distances. Consisting of two mouth/ear pieces, which you wire together with twin flex 9/- per pair, $1 / 6$ postage.
Sat No. 3. Consisting of two pairs (one pair illustrated) already connected for use with cord and plug. Complete with two sockets. 23/6, postage $2 /$-.

10 AMP BATTERY CHARGER
HERE IS YOUR CHANCE TO
PURGHASE A
BRAND NEW
UNIT WORTH £40:
FOR OUR SPECIAL
PRICE S17.10.0
Carriage 20/=
SPECIFIGATION
$\begin{array}{ll}\text { Input } 200 / 250 & \text { volts } \\ \text { A.C. } 50 \text { cycles. Out }\end{array}$
A.C., 50 cycles. Out
put 10 amps. 22 volt
put 10 amps., 22 volt
D.C. Controlled by twe
4-position switches for fine and coarse conwo which enables 6 to 24 volt batts. to be charged Brand new with 0/12 ammeter. Fused A.C and D.C.

## LOUDSPEAKER BARGAINS

 BRAND NEWELAC 5in. Permanent Magnet. 3 ohms. 0,700 gauss. Only 18/6. Post $1 / 6$. A High Quality Speaker at a Low Price
AXIOM 150 Double Cone 12 ohms., fully dust proof. Our Special Offer £7.19.6. Packing and Carriage 7/6. High Fidelity-In Maker's Cartons.
P.M. SPEAKERS. 10in., in portable case with flex and plug, $50 / \mathrm{m}$, carr. $5 /-$
TANNOY LOUD HAILERS. In slope front wood case, with 180 ohm line transformer and condencase, with 180 ohm line transformer and conden-
ser. Speech coil impedance 7.5 ohms, $19 / 6$, ser. Spe
cge. $5 /$.
RACKS-POST OFFICE STANDARD. 6ft high with U-channe! sides drilled for 19 in panels, heavy angle base, 4 ft . 10 in . in stock HEADPHONES. Balanced Armature Type DHR. 17/6 per pair, post 1/6.
HEADPHONES. High-resistance $4,000 \Omega$ Type CHR, 12/6 pair, post $1 / 6$.
CONDEN8ERS METALMITE. $350 \mathrm{v}, \mathrm{wkg}$ $.001, .002$ minjature, $12 /=$ doz., $005, .01, .02$ 10/- doz.; 05 12/- doz.; $113 / 6$ doz.; . 25 Metal pack 16/- doz.; 1.0 Metalpack, 24/- doz. Post

TERMINAL BLOCKS. 2-way
fully protected. No. $5 \mathrm{C} / 430$. $4 /$ - doz. or box of 50 for $15 /=$ $4 /$-doz, or box of 50 for $15 /=$
3 -way, $6 /=$ doz., 50 for $22 / 6$, 3 -way, $6 / 8$
post $1 / 8$.


## They know...

that their record players and radiograms will meet with instant approval from the retailer and public alike because they are fitted with world famous Garrard equipment.
Garrard is the soundest name in Sound Reproduction


For forty years the finest record playing equipment in the world.

THE GARRARD ENGINERRING and manufacturing co. Itd. sWINDON - WILTSHIRE


## IRAIID TRADERS LTD.

23 WARDOUR ST., LONDON, W.I. (Coventry Street end)
Phone No. : GERrard $3977 / 8$ Grams: "Radiotrade"

## STOCKISTS OF CARR FASTENER COMPONENTS

## ALL POPULAR TYPES OF <br>  <br> COMPONENTS SUPPLIED FROM STOCK

SPECIAL OFFES OF CURRENT MANUFACTURE ELECTROLYTIC CONDENSERS (tubular wire and P.V.C. sheathed). 8 mfd . LYTIC CONDENSERS (tubular wire and P.V.C. sheathed). 8 mfd .
$450 \mathrm{v}, 2 / 6$ each; $16 \mathrm{mfd} .450 \mathrm{v} 3 / \mathrm{m} ; 32 \mathrm{mfd} .450 \mathrm{v} .4 / \mathrm{m} ; 8 \times 8 \mathrm{mfd}, 450 \mathrm{v} .3 / 9$; $450 \mathrm{v}, 2 / 6$ each; $16 \mathrm{mfd} .450 \mathrm{v} 3 / \mathrm{m} ; 32 \mathrm{mfd} .450 \mathrm{v} .4 / \mathrm{m} ; 8 \times 8 \mathrm{mfd}, 450 \mathrm{v}$.
$8 \times 16 \mathrm{mfd} .450 \mathrm{v} .4 / \mathrm{m} ; 16 \times 16 \mathrm{mfd} .450 \mathrm{v} .4 / 6 ; 32 \times 32 \mathrm{mfd} .350 \mathrm{v} .5 / \mathrm{m}$ BIAS CONDENSERS, $2,500 \mathrm{mfd}, 3 \mathrm{v} .3 / 6 ; 250 \mathrm{mfd} .25 \mathrm{v} .2 /=; 100 \mathrm{mfd}$. $25 \mathrm{v} .1 / 6 ; 50 \mathrm{mfd} .12 \mathrm{v} .1 / 6 ; 25 \mathrm{mfd}, 25 \mathrm{v} .1 / 6$
ELECTROLYTIC CONDENSERS. Manufacturers' surplus, in perfect condition. $100 \mathrm{mfd} . \times 200 \mathrm{mfd} .350 \mathrm{v} . \mathrm{surge} 5 / 6$ each; $100 \mathrm{mfd} . x 100 \mathrm{mfd}$. 425 v . surge $5 / 6$ each; 150 mfd .450 v . wkg. $5 / 6$ each.
2 mfd .150 v . Size $2 \mathrm{in} . \times 1$ in. suitable for crossover $1 / 9$ each or $18 /$ doz.
TRANSISTORS: Junction type Red Spot by well-known manufac-
turers 10/- each. $32 \mathrm{mfd} .3 \mathrm{v}_{\mathrm{i}}, 25 \mathrm{mfd} .25 \mathrm{v}_{\mathrm{i}}, 25 \mathrm{mfd} .6 \mathrm{v}_{\mathrm{i}}, 16 \mathrm{mfd} .12 \mathrm{v}_{\mathrm{i}}, 8 \mathrm{mfd}, 6 \mathrm{v}_{\mathrm{i}}$, $5 \mathrm{mfd} .12 \mathrm{v},, 2.5 \mathrm{mfd} .25 \mathrm{v}, 1.6 \mathrm{mfd} .6 \mathrm{v}, \mathrm{I} 1 \mathrm{mfd} .12 \mathrm{v}$. All these types of condensers are $3 / 6$ each. SPECIAL DISCOUNTS FOR QUANTITIES.
AIR-SPACED TRIMMERS, 5, 10, 15, 25, 50 and 75 or pre-set and spindle types 2/- each ........................................................................ $21 /-$ MIDGET MICA CONDENSERS. .OCO1, .0002,.0C03,.0004, .0005 5\% per dozen.
200 Assorted Moulded Mica Condensers, popular values 200 Assorted Silver Mica Condensers, popular values 200 Assorted Carbon Resistors, $\frac{1}{2}, \frac{1}{2}$ and I watt. Good selecrion. $\ell 210 \frac{10}{} 10$ PAXOLIN SHEET. $18 \times 4 \frac{1}{2} \times$ in. $1 / 6 ; 10 \times 10 \times \frac{1}{3}$ in. $1 / 6 ; 20 \times 10 \times 10$ $3 / m ; 10 \times 10 \times+2 /=20 \times 10 \times$ in 4/0; Minimum P \& P1; $20 \times 20 \times \frac{1}{3} \mathrm{in}$.
T.V. TUBES. A limited quantity of 9 in . and 12 in . Magnetic T.V Tubes, brand new and boxed, by famous maker. Specification: 12 in . will replace most MAZDA $12 \mathrm{in} ., 2 \mathrm{v}$. tubes. Flat face, white fluorescence triode 1.5 a . heater current, anode voltage 10 kV . $£ 8 / 19 / 6$ including triode 1.5 a . heater current, anode voltage 10 kV . $68 / 19 / 6$ inclucing
mask. 9in. Tube, round face, white fluorescence, 4 v . lamp heater, mask. 9in. Tube, round face, white
max. anode volts 7 kV . Price $\mathrm{ES} / 17 / 6$. Both items plus $11 / 6 \mathrm{carr}$. \& pkg.
W.W. RESISTORS. 5 watt $1 / 6 ; 10$ wate $2 / 6 ; 15$ watt $3 /-20$ watt $3 / 6^{\circ}$ We carry stocks of resistors from 2 watts to 150 watts $W$.W. Your en. quiries invited.
HIGH STABILITY RESISTORS. $\frac{1}{4}$ watt $5 \% 6 \mathrm{~d} . ; \frac{1}{2}$ watt $5 \%$ 9d.; I watt $5 \% \mathrm{H} / \mathrm{H}$. A few values in $1 \%$ and $2 \%$ still available.
ALL ORDERS FOR RESISTORS C.O.D. PLEASE, AS WE CANNOT GUARANTEE TO STOCK ALL VALUES.
GROMMETS. I gross assorted tin. to lin.
WESTECTORS WX6, WXI2, W4, I/- each ......................... dor $8 / 6$ SIGNAL LAMP HOLOERS. Panel mounting, complete with Adiust -
 able Lamp Holder $2 /$ - each $\ldots \ldots \ldots \ldots$.................................................. Lee L.1033/C4 double pole $3 / 6$ ench. SPECIAL PRICES FOR BULK QUANTITIES.

> | A GIFT FOR THE SERVICE MAN. Brand new in wooden case. |
| :--- |
| The Weston Model 772 Type 6 super sensitive analyser. |
| This precision designed multi-range test instrument has a large visible |
| finely divided scale giving some of the range shown. |
| Range: $0 . C$. volts 20,000 ohms por volt or 1,000 per volt. 2.5 volt |
| range 50,000 ohms. 10 volt range 200,000 ohms. 50 volt range I |
| megohm, 250 volt range 5 megohms. 1,000 volt range 20 megohms. |
| Ohms: $0-3,000$ ohms. $0-30,000$ ohms, $0-3$ meg, $0-30$ meg, D.C. |
| milliamps: $10,50,250$, $1 \mathrm{M} / \mathrm{A} 100$ micro 10 mps . or 50 micro amps. |
| A.C. Volts: 1,000 ohms per volt. Price $~$ |
| $12 / 10 /$. Post \& Pkg. $7 / 6$. |

WEARITE COILS. PA4, PO4, PA5, POS, 1/3 each ...... per doz. 12/-4-WAY PUSH-BUTTON UNITS. $2 / 6$ each. Knobs for same, 3d. each. POINTER KNOBS. Small black with white line, $7 / 6$ per doz. Small white with black line $8 /=$ per doz. Both types $\ddagger$ in, spindle. Large price reductions for 1,000 lots and over
VALVE HOLDERS. Moulded B9A 7/6; B7G 6/-; Int. Oct. 9/m; Eng. Oct. 4/6. Valve-holders fitted with lower can 1/6 per doz. extra. SCREENING CANE for B7G and B9A 6/-per doz.

CO-AXIAL PLUGS, SOCKETS AND CONNECTORS, PYE TYPE. $10 \mathrm{H} / 3911,1 / 6$ each; $10 \mathrm{H} / 701$, $1 / 6 ; 10 \mathrm{H} / 628,1 / 6$; "Tee" con, $2 / \sim$; F. \& E. Type: JS-1-PF 2/- each; JP-1-250 c.c.t: $2 /$; JS-1BHF 4/6; PL259 DE, 4/6. LARGE QUANTITIES AVAILABLE. SPECIAL
PRICES FOR 100 and 1,000 lots.
JONES PLUGS AND SOCKETS. 4 pin $2 / 6$ pair; 6 pin $3 / 6$ pair; 8 pin $4 / 6$ per pair; 12 pin $6 / 6$ per pair. If cover required send $1 / 6$ extra per cover.
WANDER PLUGS. Red and black $\qquad$ doz. 2/PHILIPS TRIMMER TOOLS I/- each $\qquad$ daz. 10/6
CASH WITH ORDER OR C.O.D. ALL ORDERS DEPT. WH ALL ORDERS FOR LESS THAN E2 ADD POSTAGE.

We invite your enquiries for items not listed. Trade Counter open 9 to 6 Monday to Friday.

Also 9 to 1 Saturday. Callers welcomed
WHOLESALE MANUFACTURERS' AND EXPORT ENQUIRIES INVITED


# MINE DELHECHORSNO. 4 a 

## COMPLETE EQUIPMENT COMPRISES SEARCH HEAD, AMPLIFIER, headset, control box, telescopic rods for search head, SEARCH HEAD TEST UNIT AND TEST DEPTH MEASURE, AND HAVERSACK

Operation is from a standard $60 \mathrm{v} . / 1.5 \mathrm{v}$. combined dry battery. The unit will detect ferrous or non-ferrous metals to a depth of 24 in . giving maximum signal but can be used at greater depths giving lower output. Ideal for tracing underground pipes or cables and any hidden metallic objects.

COMPLETE EQUIPMENT SUPPLIED BRAND NEW IN ORIGINAL TRANSIT CASES COMPLETE WITH GIRCUIT AND OPERATING INSTRUCTIONS.


## G. W. SMETLI: \& CO ${ }_{\text {LIMITED }}^{\text {(RADO) }}$

## HAVE YOU SEEN THE NEW TUTOR TAPE RECORDER? WITH ITS THREE NEW FEATURES:-



Alternative speed range $1 \frac{1}{8} \mathrm{in}$., $3 \frac{3}{4}$ in., $7 \frac{1}{2}$ in. p.s. Mixer Unit and Superimposition at the reduced price of 59 gns.

Complete with Microphone and Tape.
Latest addition:
Efficient foot operated
remote control.
Retail price 4 gns.

Amplifier and Power Pack completely assembled and mounted on grey rexine covered wooden frame, to be used with Collaro Mark 4 Deck. Complete with instructions and diagrams £20/10/-.
Learn Languages with a Tape Recorder.
Elementary Course, £3/3/-.
Advanced Course, £6/6/-.


Enquiries invited.
TUTOR-TAPE COMPANY, 70, BREWER STREET, LONDON, W. 1 cables: tutape london

## POST OFFICE LINE EQUIPMENT

TELEPRINTERS: Perforators. Reperforators, Auto Transmitters o-unit syocem.
POWER SUPPLY RECTIFIERS: for Telegraph systems. FLLTERS: Filters Band-Pass cut-of frequencles from 300 cps to $112 \mathrm{kc} / \mathrm{s}$.
SPARES AND ACCESSORIES OF ALL TYPES FOR Rec EqUIPMENT: Attenuators, Hhe Equalizer Units. Protectors, Colis Inductagraph Relays, Bpark Gap SWITCHBOARDS: P.O. Mobile type AD-1 $240(3-6 \cdot 0)$, Universal Call 10 -line, Magneto 10 -line. FIELD TELEPEONES: Types EE-8. D, F and L. CARRIER TERMINALS AND REPEATERS: $1+1$. $1+4$, Speech a Duplex, Apparatus $2 / 4$ Tone No. S.
Diversity Combining Units and spares of sull types. LOW POWER RADIO STATIONS
(Ground use) COLLINS $18 Q$ SERIES I $1 \frac{12}{2} 12 \mathrm{Mc/s}$ RF output 25 watts. Power units for 12 v., 24 v., 115 v. D.C. and 115 . and 230 . A.C.
WIRELESS SET No. 19: 2-8 Mc/s and $235 \mathrm{Mc} / \mathrm{s}$, all neillary equipment and R.F. Amplifiers No. 2, Mk. 2. WIRELESS 8ET No. 31: Manpack Walkie-Talkie W0.48 Mc/a.

No. 62: Lightweight Communication Set $18.10 \mathrm{Mo} / \mathrm{s}$. Talkie $40 / 42 \mathrm{Mc} / \mathrm{s}, 4$ Chanoel SCR- 103 40-75 watt output Radio Station HP
LOW POWER RADIO STATIONS
(Airborne use)
SCR-522 4-Channel $100 / 156 \mathrm{Mc} / \mathrm{s}$. complete with all operating and tost equipment.
REBECCA DISTANCE MEASURING EQUIPMENT
Mk. VIII.
STR9X type $100-124 \mathrm{Mc} / \mathrm{s}$, 118 -135 Me/s, 124 -1.56 RADIO COMPASS 8CR-269G, All ancillaries and spares atocked in large quantities.
COMPONENTS: Canacttors, variable and fixed up to 2 mid . at 10.000 volts. Tranmiomers, Heary Duty, Rectifler varions, Carbon Brizhes, Magalip Hunters, Bail-races, Potentiometers, Tent Moters. TRANSMITTERS Redifon Type G1eT-Oufput 2 kilowatts C.W, 500 watts phone Frequency coverage volts 50 cycles supply. V,F.O. and crystal control with Bwitch selection of $f$ Spot Frequencles. Air Minjstry Type T1509-Output 300 watts A1, A2 and A3, Fre quency coverage $1,000 \mathrm{kc} / \mathrm{s}$ to $20,000 \mathrm{Kc} / \mathrm{s}$. Operate from 230 volts, 50 eycles supply
R. GILFILLAN \& CO. LTD.

National Provincial Bank Chambers 20 South Street, Worthing, Sussex. Tel.: Worthing 8719 and 30181. Cables:
"GIL WORTHING"
"BENTLEY'S 2nd'"


## CABINETS

FOR ANY EQUIPMENT
CABINETS TO YOUR
SPECIFICATION


LEWIS RADIO
I 20 GREEN LANES (Dept. WW29)
PALMERS GREEN, LONDON, N. 13
(Near the Cock Tavern
Telephone: BOWes Park II 55/6
M. \& J. PEARSON

## Radio, Television \& Radar Equipmen

 CLEARANCE LINES1.- $-\frac{1}{4}$ h.p. Hoover Electric Motors. Latest square model. Ball bearing. $230-250$ volt A.C. $50 \sim .1 .440$ revs. 2 in. $\times$ in, spindle. Brand new in cartons. k4/10/- each
2.- h.p. Crompton Parkinson motors il 10 volt D.C. 1,425 revs. 2 in . x sin. spindle. Brand new. $\ell 2$.
3.-Rectifiers. 110 volt, 2 amp . $6 / 6$ each.
4.-Transformers. 250 volt to 110 v . at 200 VA. A perfect job, not ex Govt. New. 25/- each
5.-Test Panel. $16 \frac{1}{\frac{1}{2}} \times 14 \frac{1}{\mathrm{in}}$. Containing 10.500 micro-ammeters. $2 i n$. surface mounting. $1050 \sim \mathrm{w} / \mathrm{w}$ pots. Knobs and terminals. In metal case. 44.
6.-Relay Panels. New. Containing 23 relays. 14 block condensers in metal case. $18 \times 15 \times 6 \mathrm{in}, 30 / \mathrm{m}$
7.- Metal Control Box with Lid. $22 \times 8 \frac{1}{2} \times$ 4tin. Grey crackle finish with 3 relays, main switch, fuse hoiders, condenser and resistor cllps. New. $12 /$ -
8.-Mirror Galvanometers. Mark II. 45 seconds. Sensitivity 2.400 M.M.S. With spares in teak case. Still a few available. Only 55/- each.
9.-Spares Boxes for Loud Hailer No. 12523. Containing 4 EL35, 2 ECC31 and 2 EF36 Valves switch. Resistors and condensers. All new, 25/-box
10.-R.F. 24 Units. New and cartoned, 12/- each. Complete with valves
$11,-2$ volt Accumulators. 3 amp hours. $5 \frac{7}{2} \times 1 \frac{1}{6} \times 17$. Bakelite with termina tops. Lats of 6 . $12 /-10 t$
12.-Large quantity of 3 and 4 pin NYPHON PLUGS AND SOCKETS.
All the above prices include post and pasking Scotland and England.

## 263 GALLOW GATE GLASGOW, C. 4

 Telephone: BELL 0729THE VICTRIX REAL NICKEL PLATING PLANT. A miniature plant for use in your own home or workshop to full commercial standards. Will nickel plate on brass, steel, copper, etc. Ideal for building up worn parts, procotype or decorative purposes. Operated from a small U2 cell. Complete and ready for use within an hour of receipt. $90 /$-, post $5 \%$. Write for special
leaflet.
FIELD. STRENGTH ABSORPTION WAVEMETERS. Type TS 509 -UR brand new surplus direct calibration, $90 / 400 \mathrm{mc} / \mathrm{s}$. Ready for immediate use, no battery or mains required. With sealed microammeter 0.50 , crystal and $t$-wave celescopic aerial. In portable carrying case with fully illustrated instruction booklet. E5/10/-, carr. $3 / 6$.
TEMPERATURE CONTROL OVENS. EX Admiralty, 230 volts A.C. Give stability of 2 parts in a million with suitable crystals, fitted thermostat and thermometer; temp. adjustable 40/60 degrees Cent. Ideal for quartz crystals, as new and lab. tested. $89 / 10 /$-, carr. $5 /$ DELAY NETWORK. 75 ohms input and ourput, maximum delay $50 \mu \mathrm{~A} / \mathrm{seconds}$. In metal case $23 \times 4 \frac{1}{2} \times 4$ in., frequency range 600 . As new. THE LESDIX ELECTROTOR. The smallest, most powerful miniature motor made. $4 t / 6$ volts D.C. Weight $\frac{7}{8}$ oz. Size $\frac{7}{f} x$ sin. dia. with lin. driving spindle. Write for illustrated leaflet. driving spindle. Write
Price only $6 / 6$, post $6 d$. Price only 6/6, post $6 d$.
VARIACS, type 50B. - 230 volts input, $0-270$ voles, 5 K.V.A. output, in new condltion and lab. tested. $£ 45$, carr. 7/6.
STROBOSCOPE by Scophony Led. 200/250 volts type L.P.S. Range 600/14,000. $\mathrm{f} 18 / 10 /=$ carr. 5 -.
HALLICRAFTER. R.B.X. Radio Receiver Equipment F.M. and A.M. $130-210 \mathrm{Mc} / \mathrm{s}$. $115 / 230$ volts A.C. 50 cycles, 100 watt input. Lab. tested and in new condition. $£ 45$, carr. 10/-.
Transformers, Variable Slider Resistances, Motors, Dynamos, Rotary Converters in stock for prompt delivery, Send us your enquirles.

## Leslie Dixon \& Co.

Dept. A, 214 Queenstown Road, London, 8.W. 8 Telephone: MACaulay 2169


## THE LITTLE

## FACTORY

## WITH THE

## BIG <br> REPUTATION

Taking delivery of a Savage Massicore Transformer is a pleasurable occasion. It arrives without fail on the promised day; its appearance delights the eye; and, electrically, it does exactly what you had in mind when you ordered it. You can be confident that you will never have to replace a Massicore Transformer.

## YOU CAN PLACE ABSOLUTE RELIANCE IN SAVAGE MASSICORE TRANSFORMERS

## Hisay

SAVAGE
TRANSFORMERS LTD.
NURSTEED ROAD DEVIZES, WILTSHIRE
relephone: Devizes 932

#  <br> Visit the City's new acoustically, designed Hi-Fl centre 

COME AND HEAR THE LEADING MAKES IN AMPLIFIERS, TUNERS AND SPEAKER SYSTEMS

AMPLIFIERS BY:		V.H.F. TUNERS BY:		HI-FI SPEAKERS BY	
VERDIK	GOODSELL	ARMSTRONG	T.S.L.	GOODMAN	W.B.
ARMSTRONG ROGERS	QEAK	LEAK	DULCI	PLESSEY	T.S.L.
DULCI	W.b., etc.	ROGERS, etc.		LORENZ, etc.	

## A REPEAT OFFER 50 ONLY

The famous Collaro Mk. 3 Transcriptor Tape Deck. Twin track, 2 record/playback, 2 erase heads on 2 levels, pause control, digital counter, 3 speeds, 2 balanced motors of low wattage input.
15 gns . WHILE STOCKS LAST
BUILD YOURSELF A HI-FI TAPE RECORDER
The Collaro Mk. 3 Tape Deck as above. A completely assembled tape deck amplifier with power pack and oscillator incorporared, negative feedback adjustment, switched for ,. Crating and carriage 22/6.

## ANOTHER WONDERFUL SNIP

The Rolex 18 watt push-pull, 6 valve amplifier, completely encased for portability. Beautifully finished in silver grey and blue. Will operate on 225-240 A.C. mains or 6 v . car battery. Specification: 18 watt undistorted output; hum level 56 D.B. below rated output; gram and impedance mic. input; 6 v , vibrator. Dimensions $14^{\prime \prime} \times 8^{\prime \prime}$ deep $\times 9^{\prime \prime}$ high. Complete and ready to use; fully guaranteed.

ONLY 16 GNS.
10 watt single ended version, simitar to above for mains and 6 v . car battery.

12 GNS. COMPLETE.

## LIMITED NUMBER SPECIAL OFFER

For the Hi-Fi enthusiast-Collaro 4-speed transcription motor and plup using the new TX88 Studio cartridge. Brand new. List price $\mathrm{E} 19 / 10 /$. OUR PRICE $£ 16 / 19 / 6$.

## ASTOUNDING OFFER

Another parcel of brand new and boxed CRT tubes by famous maker. 9 in . round face, white fluorescence, triode, 4 v . heaters. I a. heater current, max. anode voltage 7 kv . NOW ONLY E2/19/6. Crating and carriage $11 / 6$.

THE BUY OF THE YEAR! DUE TO CANCELLED EXPORT ORDER


Beautifully finished In Grey-Green Stove Ename! Provision for tuner, bass and treble, 5 -position selector for radio, mic., tape, LP and std. records.

## ANOTHER BARGAIN

Due to the popularity of this chassis, we have been able to reduce production costs and can now offer our 1958 AM/FM R/G Chassis at 19 gne . complete.


Eight-valve AM/FM chassis with printed circuit FM tuner section. Hum hated dial 4 waveband; coverage $, 000-2,000$ metres 200-550 metres, $15-50$ metres, $88-100 \mathrm{Mc} / \mathrm{s}$ Dimensions $13 \times 9 \times$ bin.; fully guaranteed. Exceptional value-only 19 gns., plus $7 / 6$ post and insurance.

## STEREO

NOW IN STOCK AND DEMONSTRATING Rogers Stereo Control Unit, designed match RD Junior Units. Price $\mathrm{E} 18 / 10 /$ Jason JSA Stereo Amplifier, 4 w ., $\mathbf{2 2 3 / 1 5}$ Jason, J2-10 Stereo Amplifier, 10 w ., $£ 37 / 10 /$ Amplion Stereo Compact Amplifier, beautifully designed, 4 w . In silver-grey case. $13 \frac{1}{2} \mathrm{gns}$. Dulci Stereo 2 pre-amp., 9 gns.
Dulci Stereo 8 pre-amp., 22 gns.
Dulci Stereo SP44 amplifier, 12 gns .
Leak Stereo 20 pre-amp., 29 gns.
Leak Point I Stereo pre-amp. 20 gns .


The "Sofia" Stereo, complete and compact amplifier in neat brown metal case, $10 \times 7 \mathrm{in}$. deep $\times 3 \frac{t i n}{}$. high, with bass, treble and balance controls. Switched for stereo and monaural $3 \frac{1}{2} \mathrm{w}$. each channel, will match stereo and erystal p/ups. for 3 ohm speaker. A.C. 200 250 v . only. 12 gns. $3 / 6$ post and pkg . This amplifier can be supplied in kit form, comprising all components, valves, case and cirzuit


## AUTOCHANGERS AT BARGAIN PRICES

Collaro Conquest 4 -speed autochanger incorporating auto and manual control. Complete with Studio crystal pick-up and sapphire stylus. OUR PRICE $67 / 19 / 6$, plus $5 /$ - post
B.S.R. UAB 4-speed mixer autochanger, manual and autochanger with latest Ful-Fi cartridge. €6/19/6, post and pkg. 5/5. Can be altered for Stereo.
4 -speed Collaro $4 / 546$ single player with studio /over pick-up. OUR PRICE E6/19/6. Post and pkg. 3/6.
Collaro Junior 4 -speed motor and $t /$ table with Acos crystal t/over cartridge featherweight p/up. OUR PRICE $89 / 6$ complete. Post and pkg. 3/6. B.S.R. TU9, 4 -speed motor and table with Ful-Fi t/over cartridge. NOW $44 / 10 /$.. Post and pkg. 3/6.
JUST ARRIVED-New Garrard 4HF, 4speed Hi-Fi motor and $t /$ table with new GC8 cartridge. $£ 19 / 7 / 6$, plus $5 /-$ post and pkg. As above, using stereo cartridge, $\{19 / 17 / 6$, plus 5/- post and pkg.
NOW IN STOCKIN LIMITED QUANTITY -日.S.R VAl2 Stereo Autochanger, Collaro Stereo Autochanger and Garrard I2I Stereo Autochanger.

DEPT. B,
152/3 FLEET ST., LONDON, E.C.4.
Telephone: FLE 2833
Business hours: weekdays 9-6. Saturdays 9-1.

## SOUTHERN RADIO'S SPECIAL BARGANS

SPECIAL OFFER
TRANSMITTER - RECEIVER
TYPE 38 MK II WALKIE - TALKIE


Complete in Metal Carrying Case. Sin. $x$ 6 gin. $\times 4$ in. Weight 6lb. Frequency 7.3 to $9 \mathrm{Mc} / \mathrm{s}$. Five valves. $\mathrm{E} 1 / 2 / \mathrm{s}$. Post paid.

These Tx-Rs are in NEW CONDITION, but owing to demand they are not tested by us and carry no guarantee, but should prove SERVICEABLE. ATTACHMENTS for Type " 38 " Transreceivers. ALL BRAND NEW: Headphones 15/6; Throat Microphones 4/6; Junction Boxes 2/6; Aerials, No. 1 $2 / 6$; No. 2 5/-; Webbing 4/-; Haversacks, 5/-; Valves-A.R.P.I2 4/6; A.T.P. 4 3/6; Set of FIVE VALVES 19/- the set. OFFER No. 2:
" 38 ," as above, complete with set of external attachments, $42 / 6$, post paid.
Fran No.
Transmicter-Receiver " 38 " Mk. II. Brand new with complete set of external attachments including Webblng Haversacks and Valves, 57/6, post paid, Fully guaranteed.
TRANSRECEIVERS. Type " $18^{\prime \prime}$ Mark III. Two Units (Receiver and Sender). Six valves, Micro-ammeter, etc., in Metal Case, untested, without guarantee but COMPLETE, $£ 2 / 18 / 6$. ATTACHMENTS for " 18 " Transreceivers. ALL BRAND NEW. Headphones 15/6; Hand Microphone 12/6; Aerials 5/-; Set of 6 Valves 301.

TII54 TRANSMITTERS. Complete in transit RECORDING BLANKS. Brand new. "EmiRECORDING BLANKS. Brand new.
disc." Ready for cutting.
|3in. $6 /$ eni- each or 15 disc. Ready for cutting.
RESISTANCES. 100 assorted useful values. RESISTANCES. $12 / 6$. NEW.
New wire end $12 / 6$. NEW. LUFBRA HOLE CUTTERS. Adjustable in. to $3 \frac{1}{4}$ in. For Metal Plastics, etc., $7 /$-; QUARTZ CRYSTALS. Types F.T. 241 and F.T.243. $2-$ pin, $\frac{1}{\frac{1}{2}}$, spacing. Frequencies beeween $5,675 \mathrm{ke} / \mathrm{s}$ and $8,650 \mathrm{kc} / \mathrm{s}$. (F.T. 243), 20 $\mathrm{Mc} / \mathrm{s}$ and $38.8 \mathrm{Me} / \mathrm{s}$ ( $F . T .241$, 54th Harmonic) 4/. cach. ALL BRAND NEW, TWELVE ASSORTED CRYSTALS, 45/-. Holders for both types 1/- each. Customers ordering 12 crystals can be supplied with lists of frequencies available for their choice.
TRANSPARENT MAP CASES. Plastic I4in, $\times$ loşin. Ideal for Maps, Display, ete., 5/6. STAR IDENTIFIERS. Type I A.N Covers both Hemispheres, $5 / 6$. ${ }^{5}$. pulses per sec., in case, $11 / 6$.
REMOTE CONTACTOR. For use with above, REM
$7 / 16$.
MOR
MÓRSE TAPPERS. Midget type, 2/9; Standard, 3/6; Heavy type on base, 5/6. ALL BRAND NEW. MORSE PRACTICE SET. TAPPER with BUZZER on base. Complete with battery, 12/6, BRAND NEW.
MAGNETS. Strong Bar type. $2 \times \frac{1}{5} \mathrm{in} ., 1 / 6$ each. PACKARD-BELL AMPLIFIERS. Complete BRAND NEW, with valves, relay, etc., etc., $17 / 6$ each.
SPECIAL OFFER. 12 ASSORTED METERS.
Slightly damaged. Mainly broken cases (perfect movements). Including 3 BRAND NEW Aircraft movements). incluments. 12 for $45 \%$
Post or carr. extra. Full list Radio Boaks, etc., 3d.
SOUTHERN RADIO SUPPIY, LTO.
II, LITTLE NEWPORT STREET
LONDON, W.C. 2.

## SELENIUM RECTIFIERS

40 ma , to $10 \mathrm{amp}, 6 \mathrm{v}$. to 100 v . Bridge, H. Wave or P.P.
WITH OR WITHOUT HIGHGRADE TRANSFORMER TO SUIT. These are new goods, best makes, not reconstructed Government surplus. Popular types, 6 v. 1 a., $4 /-, 2$ a., $7 / 6,12$ v. 2 a., $8 / 6,12$ v. 1 a., $7 / 6,12$ v. 3 a., $15 /-, 6$ a. alloyfinned type, $27 / 6,24 \mathrm{v}$.0.3 a ; $9 / \mathrm{m}$, 0.6 a., 12/6, 24 จ. 1 a., $13 / 6,2$ a., $15 / 6,24$ v. 3 a., $21 /=50$ v. 1 a., 24/=, 50 v. 2 a., $42 /-, 130$ v. 300 ma . h. wave, $38 / \mathrm{=}, 250 \mathrm{v} .300 \mathrm{ma}$. do., $65 / \mathrm{m}$, 110 v .1 a. bdge., $48 / \mathrm{m}, 130 \mathrm{v} .80 \mathrm{ma}$. bdge., 21/-. Postage 9d. extra each.

## CHARGER KITS



No. 1, a kit for 2 v., 6 v., 12 v., 3 amp. transformer, rectifier, ammeter, all high-grade new parts, not rubbish, 52/6, unique convector housing for same, as illust., $12 / 6$, p.p. $3 /$-, ditto, but 2 amp., $43 / \mathrm{m}$, case $12 / 6$, p.p. 3/-. Economy 12 v. 3 amp. kit, no ammeter needed, $34 / 6$, p.p. $2 / 6$, all with 12 months' guasantec.

## CHAMPION PRODUCTS

43 UPLANDS WAY, LONDON, N. 21 Telephone LAB 4457

## WE SPECIALISE IN TELEPHONE, TELEGRAPH AND REC./TRANS, SPARES (British and American) as used by Home and Overseas Govt. Depts. and Services.

## TELEPEONE

Switchboards and spares, 10 and 40 lines. Units Switchboard Magneto.
Telephone Units $1+3$ and $1+6$.
F. and F. Units.
J.B. Units.

Telephone Plugs and Sockets
Switchboard Cords.
Magnetic Counters.
Telephone Rec, and Transm. Insets.
Superposing Transformers and the usual YA. equipment.

## TELEGRAPE

Apparatus Telegraph.
Telephone 2 Circuit.
Repeater Carrier Telephone
Repeater Carrier Telephone
REC/TRANSMITTERS
Wireless Stations and spares for:
Nos. 17, 18, 19, 22, 31, 38, 46, 62, 77, 88
Power Supply Units.
Control Units.
Connectors.
Aerials and Bases.
Insulators.
Head and Mic. Assys
Rotary Transformers.
Variometers.
Co-axial Cable
And usual AZ. equipment.
FINSBURY TRADING CO.
12. Stoke newington high st., LONDON, N. 16

Tel. Clissold 7842.

## SAMSON'S <br> SURPLUS STORES LTD

- london's greatest dealers in ELECTRONIC AND RADIO EQUIPMENT ADMIRALTY HEAVY DUTY ISOLATION TRANSFORMERS. Type WI91, $230 \mathrm{v} . / 230 \mathrm{v}$. C.T. Very conservatively rated at 4.6 kva., Pri. 230 v. 5 ec. 230 v. Centre tapped 20 amps. Tested to earth 2,000 v. R.M.S. Completely enclosed in metal contziner. Weight 31516. Supplied brand new and guaranteed. EI7/IO/ ex warehouse.


## ADMIRALTY HEAVY DUTY STEP DOWN

 TRANSFORMERS. Double wound. Pri. tapped 200-250 v. Sec. 115 v. 6 kva. Very conservatively rated. Weight 4001 b . In guaranteed condition. $£ 15$ ex warehouse.ADMIRALTY THREE-PHASE TRANSFORMERS. Pri. $400-440$ v. 50 cycles. Sec., 50 v. 6 amp. Completely tropicalised. Size $7 \frac{1}{2} \times 14 \times 5 \mathrm{in}$. Weight approx. 60 lb ., $85 / \mathrm{L}$. Carr. 7/6. Brand new in maker's cases.
HEAVY DUTY L.T. TRANSFORMERS. No. 1. Pri. 230 v. Sec. 50 v. 50 amps . adjustable by voltage regulator stud switch on primary. Built in steel case with meter reading $0-100 \mathrm{~V}$ Mains switch and O.P. sockets, will stand $100 \%$ overload. Supplied brand new $€ i 5$. Carr. according to distance.
No. 2. Pri. 230 v. Sec. tapped 4 v., 6 v., 10 v. 200 amps., $£ 8 / 10 /$ - Cace. Lapped $7 / 6$
No. 3. Pri, $200-250 \mathrm{v}$. Sec. 50 v .30 amps , $\mathbf{6} 6 / 10 /$ Carr. 7/6.
No. 4. Pri. 200-250 v. Sec. tapped 28, 29, 30 31 volts, 21 amps, $64 / 10 / \ldots$. Carr. $7 / 6$
No. 5. Pri 150 . 50 , Sec 50 v, 20 . No. 5. Pri. $150-250$ v. Sec. 50 v. $20 \mathrm{amps} ., ~ £ 4 / 10 /-$
Carr. $7 / 6$. Carr. 7/6.
No. 7. Pri. 200-240 v. Sec. 45 v. 2 amps . 25/-
P.
P.P. 3/- Pri, 200-250 v. Sec. $6.3-\mathrm{v} .15 \mathrm{amps}$ 27/6.
No. 8. 10 Pr P.P. 3/-

No. 9. Pri, $200-240 \mathrm{v}$. Sec. 30 v .1 .2 amp . and 6.3 v . C.T. 3 amps. Tropically rated, $35 / \mathrm{o} . \mathrm{P} . \&$ P. $3 / 6$. No. 10. Powerstat variac transformers. Input 115 v . Output $0-130$ v. $7.5 \mathrm{amps} .85 /-$, carr. $5 /-$
L.T. TRANSFORMERS. New arrivals. Manufactured by Greshams. Pri. 200-250 v. Sec. 12 v . 8.5 a. Tropically rated, 27/6. P.P. 3/6. Pri. 200-250 v. Sec. 6 v. 8.5 a., 17/6. P.P. 2/6. Pri. 200-250 v. Sec. No. 1,50 v. 1 a. Sec. No. 2,6 v. 1.5 a. $27 / 6$. P.P. $3 / 6$.

USA FILAMENT TRANSFORMERS Pri. $115-230$ v. Sec. 5 volts 13 amps., tropically rated. Insulated for 15 Kv . working voltage. Brand new, 52/6. Carr. 5/-.

VOLTAGE REGULATORS. Liliput Minor Mk, II, load $3 / 0.73$ amps, II volts. Supply voltage $19 / 25$ v. Supplied brand new $12 / 6$. P.P. $3 / 6$.
U.S.A. 813 CERAMIC BASES. Post free, $3 / 6$

AMERICAN THERMOSTATS. By Fenwall Ine. Set at 50 deg. F. Switeh contacts 230 v . A. C 12.5 amps. Length 4ins., dia. \$in. 17/6. P.P. $1 / 6$ Set at 110 or 120 deg. $F$, switeh contacts 230 v A.C. 5 amps. Length 4ins., dia. 音in. 17/6. P.P. I/6
A.M. HEAVY DUTY AIR BLOWERS. A.C $220-240 \mathrm{v}$. Driven by 0.4 h.p. motor. Inlet $6 \frac{t}{2}$ in Outlet $5 \times 4 \mathrm{in}$. Complete with intake filter unit, supplied brand new, El5 ex warehouse. Other types available. Let us know your requirements
A.M. HEAVY DUTY A.C. 200-250 v. ALARM BELLS. Twin gong. Brand new, 35/-, Carr. 5/SPECIAL OFFER PERIFLEX SLEEVING 3 mm . one gross yard coils, yellow and brown 12/6. Post free.
NUTS, BOLTS, WASHERS. Special bargain offer $5 /$ - carton of $2,4,6$ and 8 . A. nuts, bolts and washers. P.P. I/. SLEEVING, mixed bundle $1 \frac{1}{2}-4$ mil., various colours. Wonderful offer 2/6. P.P.'9d.
CARBON RESISTORS. $\frac{1}{4}-3$ watt. Carton of 100. Good selection of values. $10 \%$ per carton. P.P. I/-

ROLLS-ROYCE COOLANT PUMPS. A
heavy-duty turbine pump driven directly from a splined socket, $1,000-1,50 \mathrm{i}$ g.p.h. $1 \frac{1}{2} \mathrm{in}$. bore outlet. Brand new in maker's cartons, 47/6. Carr. 4/-.
169-171 EDCWARE ROAD, LONDON, W 2 TELEPHONE: PAD. 7851 or AMB. 5125

## C.R.T. ISOLATION TRANSFORMERS

For Cathode Ray Tubes baving Heater/Cathode sbort circoit and lor
Type A. Low Lealsage wiadings. Optional Boost $25 \%$ and $50 \%$. Tapped mains primarieg


OUR LATEST SOPERIOR PRODUCT. Type A.
High Quality. Low capacity, $10 / 15$ pf.
Type B. Maios input. Low Capacity M
8, 4, 6.3, $7.3,10$ and 13 volts. Optional Malti Optput $\mathbf{2 , 4}$. Suitable for al! Cathode Ray Tubes, 21/-. RESISTORS, All preferred values. $20 \% 10$ ohms to 10
 00 ohms to 10 meg . Ditto $5 \%, 9 \mathrm{~d}, 10 \%, 6 \mathrm{~d}$
5 watt
$\left.\begin{array}{l}10 \text { watt } \\ 15\end{array}\right\} \quad$ WIRE-WOUND RESISTORS
I5,000 ohms- 50,000 ohms 5 W: $1 / 8 ; 10$ w. 10 . $2 / 3$
WIRE-WOUND $80 T S$. 3 WATT LAB. COLVERN, ETC. Pre-set Min. T.V. Type anurled Slolted knob. 10 es., $30 \mathrm{~K}, 50 \mathrm{~K}$ at Ditto Carbon Track 30 K . to 2 Meg., $3 /-$ Standard size Pots, 2lin. Spindle High Grade. Al 5/6; 100 K., 6/6. CONTROL $10 \Omega, 3 /$ -
O/P TRANSFORMERS. Heavy Duty $50 \mathrm{~mA} ., 4 / 6$. Multi ratio pugh-puil, 7/6. Miniature 3V4, ete $4 / 6$. Hygrade
 $10 \mathrm{H} 160 \mathrm{ma} .14 / \mathrm{m}$. $5 \mathrm{H} 250 \mathrm{ma} .16 / 6$.
MAINS TRANSFORMERS $200 / 250$ v. A.C. tapped 4 v. 4 a. Rectifier 6.3 or 4 v. 2 a . Ditto $350-0-350$
NIBGET, 820 v. 45 mA . 6.3 v. 2
SMALL, $220-0-220,50 \mathrm{~mA}, 0.3 \mathrm{v}$
STANDARD, $250-0-250,65 \mathrm{~mA}, 8.3$ v. 3.5 a
ALADDIN PORMERS and cores, $\frac{12}{12}$. 8d. in in. 10 d ond. FORMEAS $x$ sars and Cans Tith
SLOW MOTION DRIVES. Epicyctio ratio $8: 1,2 / 3$.
TYANA. Midget Soldering Iron, $200 \% 220$ ₹. or $230 / 250$. 16/9, FAMOUS MAKE INSTKUMENT IRON, $25 \mathrm{~W}, 18 / 6$. MAINS DROPPERS. $3 \times 1+i n$. Three Adj. Slideri, 3 amp 750 ohms, $4 / 3.2 \mathrm{amp}, 1,000$ ohms, $4 / 3$.
mer loot, 2 way simp., 6 p toots 3 , per, mid, ier tomp., 100 ohms

## CRYSTAL MIKE INSERT by Acos 6/6

Precision engineered. Size only $\frac{7}{8} \times \frac{3}{1}$ in. Bargain.
ACOS CRYSTAL DESK MIKE, $33-2$, switched. $35 \%$.
MIKE TRANSF. $50: 1,3 / 9$ ea.: 100:1. Potted, 1016 LOUDSPEAKERS P.M. 3 OHM. 2ytn. and 5in., $17 / 6$
 61 in . Rola, $18 / 6$, 10 im . R.A., $30 / \%$ 12in. Bsker 15 wt. 3 ohm and 15 ohm models $105 / \%$
12 in . 15 ohm. Plessey 10 wt. with Tweeter, $97 / 6$
l.F. TRANSFORMERS $7 / 6$ pair
$465 \mathrm{ke} / \mathrm{s}$, slug taning ministure can $21 \times 2 \times \operatorname{lin}$, Righ Qand good band width. By Pye Radio. Data abeet saplpied. Wearite M800 L.F. Miniature $465 \mathrm{ke} / \mathrm{s} .12 / 6 \mathrm{pair}$ Wearite 550 I.F. Standard $465 \mathrm{kc} / \mathrm{a} .12 / \mathrm{g} \mathrm{pair}$
CRYSTAL DIODE G.E.C. 2/- GEX34, $4 /=, 40$ Circulte, 3/H.R. HEADPEONES, 4,000 ohms, brand new. $16 / 6$ pait SWITCH CLEANER Fluid, squirt spout, $4 / 3$ tio.
 9/-: less trimmers, 8/-, Midget, 7/8; Single 50 p.d., 2/8
 B12A, CRT, 1/3. Eng. and Amer. 4, 5, 6, 7 and 9 pin, $1 /-$ 9 d . B7a with can, 1/6: B12A, 1/8. B9A with can, 2/6. CERAMIC, EF50, B7G, B8A, Oct., $1 /$. B7G with can, $1 / 8$. SPEAKER ERET, Gold Cloth 17in. $\times 251 \mathrm{~m}, 5 /$, 25 in $\times$
 Tran 54 in wide. 10/- It.
2 p. 2-way, 3 p. 2-way, short spindle
5 p. 4 -way 2 wafer, long spindle.
2 p. 6-way, 4 p. 2-way, 4 p. 3 -way, long spindle Wsve change "، MAKITS" 1 wafer $816 ; 2$ waler $10 / 6$ 3 wafer 16/-; 4 walet $19 / 6: 5$ waler $23 / 6 ; 6$ water $26 / 6$.
TOGGLE SWITCHES. S.P., 2/- D.P. $3 / 6 ;$ D.P.D.T., $4 /{ }^{\circ}$. MORSE KEYS, good quality 216.

GOLTOP TRANSISTORS Product of the Pye Group JUNCTION TYPE P.N.P. Complete Data Supplied
AUDIO V.10/15s suitable R.F. V.6/R2 suitable for for high gain and low fre- oscillators, frequency quancy amplifiers, and for changersand L. F.anplifers,
output stapen ging up to cut onit frequency 3 Mc/s.
 Power V18/10P, ap to 10W, with heat sint $80 /-1$

CONTINENTAL SIEMENS "NORA" AM-FM RADIOGRAM 3 Watt CHASSIS

MADE IN WEST GERMANY
LEAFLET


## 15 gnS. Carr. \& insurance $5 /$

FM-VHF 87 to $108 \mathrm{Mc} / \mathrm{s}$. Interference Free Medium 185 to 588 m . Long 857 to 2140 m . 5 valves ECC85, ECH81, EF89, EABC80, EL.95, metal rectifier, isolated chassis, A.C. $100-250$ v. 17 tuned circuits, A.V.C. and negative feedback, ferriteaerial. Tone and volume controls switching on-off Med., Long, VHF Pick-up Dial $11 \times 2 \mathrm{in}$., colour brown, figures gold Chassis $12 \frac{1}{2} \times 6 \mathrm{in}$., height $7 \frac{1}{2} \mathrm{in}$. Sockers for connections. Instruetion manual. Indoor VHF dipole aerial $9 / 6$. Feeder 300 ohm 6d. yd SPEAKERS, 8 in . $17 / 6,10 \mathrm{in}$. 25/. H.P. Dep. E8/10/- and eight monthly payments of El.

1959 RADIOGRAM CHASSIS
FINEST VALUE

three wavebands
S.W. $18 \mathrm{~m} .-50 \mathrm{~m}$. M.W. $200 \mathrm{~m} .-550 \mathrm{~m}$ L.W. $800 \mathrm{~m} \cdot-2,000 \mathrm{~m}$. 12 month Guarantee. A.C. $200 / 250$ EL41, EZ40 Feedbact A.V.C. and Negatre Glass Dial $124 \times 5 \% \mathrm{in}$. horzontal or $10 \times 44 \mathrm{in}$, vertical. 2 Pilot Lamps. Four Knobs, Wainnt or Ivory, aligned ad calibrated. Chassis isolated from mains.
BRAND NEW £9.10.0 Carr. 4/8. TERMS: Deposit £5/5/- and 5 monthly payments of $£ 1$.
MATCHED SPEAKERS 8 in., 17/6; 10in., 25/e; $12 \mathrm{in}, 30 /$
GARRARD 4-SPEED RECORD
GHANGERS RC121/D MKII MODELS Brand new and fully guaranteed 12 months. AUDIO PERFECTION

Designed to play 16, 33, 45, 78 r.p.m. Records 7in., 10 m.
OUR PRICE 810.15 .0 each. Post Free Optionsi Plug.in STEREO HEAD \&2 extra.
EXCEPTIONAL OPPORTUNITY COLLARO 4 -speed MODEL $4 / 564$ Single Player, heavyweight turntable and lightweight tudio O Pick-up with turnover Xtal mounted on baseplate. Autostop fitted. GomS.
OUR PRICE

Amplifier Player Cabinets. 45/
HIGH.FIDELITYAUTOCHANGER Latest Model 4SPEEDS-10 RECORDS
BRAND NEW IN MAKER'S BOXES
OUR PRICE 27-19-6
B.S.R. MONARCH UA8 4-SPEED AUTOMATIC RECORD CHANGERS

Brand new and fully guaranteed 12 months.
OUR PRICE S6-19-6 post free
STEREO MODEL UAID, $£ 11 / 17 / 6$.

THE HI-GAIN BAND ${ }^{3}$ PRE-AMP. Cascode circuit using Valve ECC84, 17db power pack kit. Plans only 6d. Also Band I version same Prices.

## Volume Controls

 Midget size Long spindles. Guaram5 K. ohms to 2 Mes No Switoh D.P.Sw. Linear or $\log ^{3 / 9}$ Tracks
## coAXIAL PLUGS

SOCKETS
80 сAm Sempair spaced Polythene insulated tin. din. Strande Losses out $50 \%$. FRINGE QUALITY AIRSPACED DOUBLE SOCKEX BALANCED TWIN FEEDER per yd. Gd. 800 or 3008 TWIN SCREENED BALANCED FEEDER $1 / 60 \mathrm{yd}$., 80 ohm TRTMMERS, Ceramic, $30,50,70 \mathrm{pf} ., 8 \mathrm{~d} .100 \mathrm{pf}, 150 \mathrm{pf}$,
$1 / 3.250 \mathrm{pi} ., 1 / 6.600 \mathrm{pf} ., 750 \mathrm{pf} ., 1 / 9$. Phillips, $1 /-\mathrm{ea}$ ALUMINIUM CHASSIS. 18 s.w.g. Plain, undrilled with 2 \}in. sides. $7 \times 4$ in. $4 / 6 ; 9 \times 7 \mathrm{in}$. $5 / 9$; $11 \times 7 \mathrm{in}$,
 BLACK CRACKLE PAINT, Air drying, $3 / 6$ tin.
P.V.C. CONN. WIRE, 8 colarrs, single or stranded, 2d. yd CORED SOI DER RADIORADE S SHS
PAXOLIN SHEET, Sin, x 10 in, , $1 / 6$. ION TRAPS 5 .

## 12/6 PURETONE RECORDING TAPE

$1,200 \mathrm{ft}$. Paper tape on 7in. metal reels
Spare Reels $5 \frac{3}{4}$ in. plastic, $3 /=$; 7in. plastic, $4 /$
SUPERIOR 1,200ft. Plastic Tape 21/-
on 7in. plastic reels. Quality guaranteed.
NSTANT" Buik Tape Eraser, 200/250v. A.C For any make and size of tape.
SENTERCEL RECTIFIERS. E.H.T, TYPE FLY-BACL
 MAINS TYPE. RM1, 125 V., $60 \mathrm{~mA} ., 5 /-;$ RM2, 100 mA
 $250{ }^{2} .50 \mathrm{~mA}, 7 / 6 ; 60 \mathrm{~mA}, 8 / 6 ; 85 \mathrm{~mA} ., 9 / 6$ coms. Wearite "P" type, 3/F each. Osmor Midget "Q" type adj. dust core from n/. each. All ranges. PRRRITE ROD AERIALS. M.W. $8 / g_{i}$; M, \& L, $12 / 6$.
T.R.F. COIKS A/HF $7 /$ pir. H.F. CROKES, $2 / 6$. T.R.F. COIIS A/HF M/ polr. H.F. CEOKES, $2 / 6$. JASON F.M. TUNER COM SET, 26/-. H.F. coil, aerial
coil. Oscillator coll, two I.F. Transformers 10.7 Me/a., coil. Oscillator coll, two I.F. Transformers 10.7 Me/a,

Detecto transiormer and heater choke. Circuit and component book using four 6AM6, 2/-. Complete kit with Jason Callbrated dial and 4 valves, £6/15/-. | Marcury Switched FM Tuner 5 valve Kit, $88 / 18 / 6$. |
| :---: |
| Mullard $3 \cdot 3$ quality Amplifier. Ready bult, |
| Sy/ | CONDENSERS. New stock. $.001 \mathrm{mld}, 7 \mathrm{KV}$. T.C.C. $5 / 6$.

Ditto $20 \mathrm{kV}, 9 / 6 ; 100 \mathrm{pl}$ to 500 pf . Mieas, $6 \mathrm{~d} ;$ Tubular Ditto 20 kV ., $9 / 6 ; 100 \mathrm{pf}$ to 500 pi . Mieas, $6 \mathrm{~d} . ;$ Tubular
 CERAMIC CONDS. 500 ₹. 3 pf . to .01 md ., 9 d . 600 pf . to $3,000 \mathrm{pf}$. $1 / 3$. $1 \% 50 \mathrm{pf}$. to 815 pf . $1 / 9 ; 1,000 \mathrm{pf}$. to $8,000 \mathrm{pf}$., $2 / \mathrm{l}$-.

NEW ELECTROLYTICS. FAMOUS MAKES. tubular

## $1 / 350$ $2 / 450$ $4 / 450$

$2 / 450$
$4 / 450$
$8 / 450$
$8 / 500$
$16 / 45$
$16 / 50$
$32 / 45$
$25 / 25$
$50 / 25$
$50 / 50$
FULY, WAVE BRIDGE SELENIOM RECTIFIERS. 2, 6 or OHARGER TRANSFORMERS.



# THE <br> E.M.I. COLLEGE <br> OF ELECTRONICS 

10 PEMBRIDGE SQUARE, W. 2

Propose to commence a further One Year Course in Radio and Television on 14th April 1959. After 29th July 1959 the E.M.I. College of Electronics will cease to exist and students will be accepted by the Pembridge College of Electronics, 34a Hereford Road, W.2. Same staff, equipment and syllabus, will be used by both colleges.

Details and enrolment forms may be obtained from-
The Registrar, Dept. No. 127,

## 10 PEMBRIDGE SQUARE

LONDON W. 2

## THE PEMBRIDGE COLLEGE Ó ELECTRONICS

This new College has been founded by Mr. J. B. McMillan, M.A., B.Sc., and other members of the present staff of the E.M.I. College of Electronics, and from September 1959 will conduct full-time One Year courses in Radio and Television, similar to those at present run by the E.M.I. College.
The first course begins on 8th September 1959 and succeeding courses in January, April and September of each year. Students wishing to start this type of course earlier than September 1959 should enrol with the E.M.I. College of Electronics, 10, Pembridge Square, London, W.2, for the One Year course beginning on 14th April, and transfer after 29th July to the Pembridge College for the completion of their course.

Details of courses and admission forms may be obtained from-
The Principal, Dept. No. P11
34a HEREFORD ROAD
LONDON W. 2

## BAKERS 'selnurst' 

The $12^{\prime \prime}$ ULTRA DE LUXE


For 20-20,000 c/s full range listening

Sales and Demonstration offices:
JOHN LIONNET \& CO. LTD. 17. CHARING CROSS ROAD LONDON, W.C.2. TRAfalgar 5575

TRANSFORMERS
for
Transistor Circuits

Power Packs

Audio Amplifiers
MADE TO
INDIVIDUAL REQUIREMENTS
by
P.A.M. LTD

MERROW• GUILDFORD SURREY
Tel.; Guildord 2211


FIDELIA range of hand-built high-idelity equipment includes two new modele having provision for replaying stereophonic records with full tone control facilltlea. Known as the Imperial Stereophonic and the Major Stereophonic from their parent modela they can be nsed with our atereoamplifers. All radlo and gramophone controls are logether simplifylng both installation and ope ration.
Some other models ing our range are:-
Imperia! (Illustrated), VEF reception plus the full gramophone replaying iacilities of a fine with our Major 10 watt amplifier, £38.
Major. VHF, Short, Medium and Long wave bands. Bass and Treble controls, Gram. prePrice $£ 28 / 10 \%$-, or with our Major 10 watt amplifier SA4.
Preciton. VHP tuner unit $£ 15$, with pre-ampliferfone control facilities, £20, or ps a sinal radiogram chasala, £22.
Fidelia, Mk. 1, Stereophodic amplifier with cootrol Unit, e25.

All Hand-Built in the Fidelia tradition.
Demonstrations by appointment any time includ-


# PROOPS Walk-Around Shop 

## GEIGER COUNTER KIT 



Identical components to production model currently being supplied throughout the world.
Three ranges-highly sensitive -light-portable-wisual and audible response-pulse output socket. Ideal for introduction to radiation measurement and nucleonic circuitry.
Circuit embodies U.K.A.E.A. patent. Specially moulded case locates components and standardizes wiring. Printed circuit plates for battery pack supplied. Batteries $£ 2 / 15 / 3$ extra. Spares, replacements and service permanently available.
Supplied complete with fully illustrated assembly instructions and 40 -page manual specially written for student, experimenter and radio amateur.


Ascurately calibrated Flowmeter for the measurement of petrol, oil, and similar fluids.
Cast light alloy Transmitter unit $10 \times 5 \mathrm{in}$. dia. feeding a $4 \times 3 \mathrm{in}$, dia. Gallons Gone meter reading to a maximum of 999 gallons in tenths. Maximum flow 10 G.P.M.
Operates from 24 v. D.C. Supplied complete with connecting pipe, securing clips, and sundry fittings.

BRAND NEW £4.10.0 post free.

## TEST GEAR

TS. 92/AP. ALIGNMENT UNIT
Modern, high-quality text set for plotting the bandwidth and adjusting the frequency response of I.F. and R.F. amplifiers. Probe signals between $15-500 \mathrm{Mc} / \mathrm{s}$ are rectified by a crystal detector and passed through a low-pass filter to the 6SA7 mixer oscillator stage of a highly sensitive conventional superhet circuit with two 6 AC7 $15 \mathrm{Mc} / \mathrm{s}$ I.F. stages and 6 H 6 detector. 115 volt 6 X 5 G power pack in separate compartment of attractive lightweight black crackle case. Brand new. Compartment of attractive lightweight black crackle case. Br
plete with circuit diagram, technical use, and test data.
£7.10.0 Plus 10/- packing and carriage.
G. 93 WAVEMETER. $2,300-3,100 \mathrm{Mc} / \mathrm{s}$.

Precision cavity in robust case with HRO type dial. Complete with calibration charts. TS. 288 'S' BAND WAVEMETER.
Exceptionally rugged silver plated micrometer tuned precision cavity covering $2,900-3,150 \mathrm{Mc} / \mathrm{s}$. Resonance shown on 100 microamp meter. Brand New.
TS. 61/AP. For 3,140-3,360 Mc/s.
BRAND NEW hand-tuned resonant cavity accurate to within $10 \mathrm{Mc} / \mathrm{s}$. Relative power and resonance indicated on microammeter.

TS. IIO/AP. ECHO BOX.
£3:10.0 Plus 7/6 packing and carriage.
As TS. $61 / \mathrm{AP}$, but covering lower frequency range.
TS. $184 / \mathrm{AP} .70 \mathrm{~cm}$. WAVEMETER. Tuning stops adjustable to any $30 \mathrm{Mc} / \mathrm{s}$ Band within $400-470 \mathrm{Mc} / \mathrm{s}$ coverage. 6 J 6 Detector. 24 -page instructions covering use as signal generator with 6 and 30 volt battery. BRAND NEW in light steel carrying case.
£2.10.0 Plus $7 / 6$ packing and carriage.
W. 1649 SIG.GEN/WAVEMETER.

Generator $140-240 \mathrm{Mc} / \mathrm{s}$. Wavemeter $150-235 \mathrm{Mc} / \mathrm{s} .4 \mathrm{xEF} .50 .1 \times D E T$ Generator $\quad 140-240 \mathrm{Mc} / \mathrm{s}$. Waveeter $\quad 150-235 \mathrm{Mc} / \mathrm{s}$. $4 \times E F .50$. $1 \times D E T .20 .5 \mathrm{Mc} / \mathrm{s}$ Xtal. 6.3 and 120 volt required.
£2.10.0 Plus 10/- packing and carriage.

## MODULATOR UNIT. Ex TR.1934/5/6.

Modern miniature unit associated with and similar to the type $3739.72 \mathrm{Mc} / \mathrm{s}$. IF strip. Only $5 \frac{1}{2} \mathrm{in}$. long $\times 3 \mathrm{in}$. wide $\times 3$ in. high with 4 screened B7G valves. Co-axial socket input to balanced primary of mu-metal microphone transformer with output from resistor bridge in secondary circuit for muting associated receiver. Microphone amplifier is a Brimar 9D6 variable-mu HF pentode RC coupled to a 7D9 pentode which feeds the centre tapped input transformer of two 6 C 4 triodes in push-pull. Output from substantial modulation transformer having alternative tap on secondary winding. Additional winding on input transformer provides output through co-ax for phone monotiring. Outputs and 6.3 and 250 volt inputs through short cable terminating in miniature multi-plug. New, complete with 4 valves, $£ 1$ post free.

## Superb 3-way 4-bank TOGGLE SWITCH.

Made by Cutler Hammer for panel mounting, these will handle heavy loads or provide good isolation on sensitive circuits equally well. 12 terminals in single bakelite block with Iuminous button on long pear dolly. Provides 4 pole change-over with central " off". position, or various other combinations. Mounted by two flush fitting screws into captive nuts on $1 \times 2 \mathrm{in}$. face plate immediately behind dolly boss. Switch block size $1_{4}^{1} \times 1 \frac{1}{2} \times 1 \frac{1}{4}$ in. deep overall. Two for the spares box by return of post (while they last) for $4 /-$.

## RECEIVER 1132A. 95-126 M/cs.

Further small supply of these well known, sensitive, highly stable, 11 valve monitoring receivers, which can be adjusted to tune Wrotham without alteration to wiring. Tuning meter, AVC or manual gain, BFO, Voltage stabiliser, 6J5 output, precision dial. rack mounting Requires 6.3 and 250 volt to Requires 6.3 and 250 volt to jones plug at rear. As New £4, cartiage $10 /-$


## 8 WATT POWER TRANSISTORS

Continental manufacture, brand new, fully guaranteed, available shortly. Details on application with S.A.E.

## HIGH VOLTAGE RECTIFIERS 1616

Brand New. Two by returh of post for $5 / \mathrm{m} .4$ pin base. Fil 2.5 v ., 5 A., 130 mA . Peak inverse voltage 6,000 .

## MEGISTORS

Glass encapsulated 125,1000 and 10,000 Megohms. 5 for $10 /-$ post free.

## TRANSFORMERS

Range of Potted "C" core Mains and Modulation Transformers just arrived. Brand New in individual cardboard "tins" at bargain prices. List for S.A.E.
TRANSFORMERS, $\mathbf{2 3 0 - 2 5 0}$ volts, $50 \mathrm{c} / \mathrm{s}$.
Heater $6.3 \mathrm{v}, \mathrm{i} 1.5 \mathrm{~A} ., 6 / 6$, plus $1 /$ - post.
Miniature mains: 230 v . at 40 mA . and 6.3 v . at 1.5 A ., $12 / 6$, plus $1 /-$ post.
Charging: 9 v . and 17 v . at $3 \mathrm{~A} ., 15 / 6$ post free.
Mains isolating: $\quad 250$ v./220 v. or 250 v. $/ 110-0-110$ v. out OR double
HEADPHONES.
High resistance balanced armature $£ 1$, post free
High resistance balanced armature $\varepsilon 1$, post free.
Low resistance balanced armature $8 / 6$, post free.
MICROPHONES. All post free.
Acos crystal inserts, 4/6. American throat mic. switch socket, 3/-. Aircrew type electro magnetic with switch, 2/-.
Carbon type in black crackle case, $12 / 6$.
POCKET MARCHING COMPASS.
In black plastic case with sighting reflector inside lid, luminous. Brand new, $12 / 6$, plus $1 /$-post.

## PRISMATIC TANK PERISCOPES.

American type, $7 / 6$, post free.
R.F. UNIT- $200 \mathrm{Mc} / \mathrm{s}$.

With three 956 valves. $8 \times 3 \times 4 \mathrm{in} .15 /$-post free.
APNI TRANSDUCER.
The heart of the "W.W." TV wobbulator (described on page 252 of June 1956 issue). Brand new, 7/6 post free.
BOLT CROPPERS.
9 in. long, extremely powerful, $2 / 6$ post free. Folding type 18 in . longwill cut through tin. bolt, $7 / 6$.

## SERVO AND ELECTRONIC SALES LTD.

MOTOR ALTERNATOR SETS. NeFton, output 200 v . 1,100 e.p.s., $3 k$ VA, input 415 च., 50 c.p.p. 3 ph. £72/10 (c.p.). Another, outpat 80 ve, 2,000 c.p.s., 60 w., 280 ץ., D.C., $170 /-$ (carr. 20/.). Ano 200 v. 400 c.p.s., 1,200 w., inpat 230 v., 50 c.p.s. 1 pl., $990 /$ (c.p.), Another, output 115 v., 400 c.p.E.p 45 w . input 26 V . D.C., 120/- (carr, 7/.). VARIABLE SPEED MOTORS. $1 / 8$ b.p., 118 v., $50 / 60$ e.p.s. with Graham variable speed gearbox gifing 0-168 r.p.m., $250 /-$ (carr. $1 \overline{1} / 4$ ). Out $12+12$ v. D.O. nt 3 Amps., $92 / 6$ (carriage 7/6). RECTIFIER SMOOTHING UNITS. Give tro doubly choke/capacity smoothed outputs of 12 च. $3 \mathrm{a}_{\text {, }}$, or one of 24 v. 6 a., 191 in . rack mounting, $37 / 8$ (cart. 7/6). INDICATOR UNITS TYPE 9922A. 1.VCR97, 3.VR91, 2.VR54, 1-CV1285, 1-V'L61, Perspex shield brilliance and focus controls, ideal for oscilloscope conversion or C.R.T. display unit, new, $37 / 6$ (carr, $5 /-$ ) HIGE STABILITX RESISTORS, all $5 \%$ tol., 50 different ratinge or ralues in every 100 at $25 /-$ (p.p. $2 / 6$ ).
1,000 nt f10/5/ . TELCON TYPE 53 C coaxial chaseds sockets, 10 - per 12 (p.p. 2/6). 100/-per gross (p.p. 7/6). CAM-CORREGTED POTENTIOMETERS TYPE CLR $8302 / 384.10 \mathrm{~K}$ at $35 /-$ (p.p. $3 / \cdot$ ). ADMIRALTY RESPONSER UNITS, complete at 22/6 (carr. $5 /-$ ). MINIATURE RELAYS Type $4184 G D 24$ v. d.p.e.c. 20/m, (p.p. $2 /-$ ) NITROGOL CAPACITORS, 400 V. wLg. 1uF, $2 / 3$ (p.p, 9d.) $2 u F, 2 / 9$ (p.p. 9d.) $8 u F 4 / 9$
(p.p. 1/6). BATTERT CHARGER TIMING RELAY8, switch 28 v. 20 a., for $240 \mathrm{c.p.s}$. operation, $42 / 6$ (p.p. $8 / 6$ ). AERIAL TUNING UNITS with $0-3$ A 2 in . R . F. meter, counter 0-9999 var. Inductance etc., 12/6 (p.p. $3 /-$ ). MINIATURE MEHCURY SWITCHES, s.p. on/ofi $4 /-$ (p.p. 6d.). TYPE 82 \& 74 INDICATOR
UNITs, used condition, $35 /-$ each. Offered to callers UNITS, used condition, 35/- each. Offered to callers only (pleage phone to ensure availability). aligning, A.C. operated. write for data shest A.R.D. (s,a.e.). MINIATURE THYRATRON SET WITH 3-2D21's, and 1-VLS631 delay switch, 22/6 per set (p.p. 2$)^{-}$) ADMIRALTY SOUND-POWERED TELEPHONE SETS, complete with mounting, generator and neon Indicator, uned, but good condition, 75/- per pair (p.p. 8/6). FULL-WAVE BRIDGE RECTIFIERS. set of tunnerecooled rectifiers to give 24 V , 40 a . Q6/5/\%, all c.p. POTENTIOMETERS, 500 ohm 5 w . 2in. dia. with knob, 2/-each, 17/- doz., \& 8 per grose (p.p. 7d., 2/6, 12/6 resp).

1, HOPTON PARADE, STREATHAM HIGH ROAD, LONDON, S.W. 16
Straatham 6165. Terms: Nett C.W.O., monthly app'd A/C's.

## J. P. WRIGHT

TERMS: Cash with order. All orders desparched same day. 6 d . per item postage. Post free over $\{3.5 \%$ discount on orders of $£ 10$ or over

IR5	$7 / 6$	EB91	$6 / 6$	EL81	$13 / 6$
IS5	$6 / 6$	EBC33	$9 /-$	EL90	$9 /-$
IT4	$6 / 6$	EBC90	$7 / 6$	EY86	$12 / 6$
6AQ5	$8 /-$	EBF80	$9 /-$	EZ80	$8 / 6$
6BA6	$6 / 6$	EBF89	$10 / 6$	EZ81	$9 /-$
6BW6	$9 /-$	ECC81	$9 / 6$	EZ90	$6 /-$
6D2	$6 / 6$	ECC82	$10 / 6$	OC45	$18 / 6$
6K7	$4 / 6$	ECC83	$9 /-$	OC71	$14 /-$
6K8	$9 /-$	ECC85	$8 / 6$	PCC84	$10 / 6$
6LI8	$12 /-$	ECH35	$10 /-$	PCC88	$18 / 6$
6X4	$6 /-$	ECH81	$9 / 6$	PCL82	$12 /-$
$7 S 7$	$10 /-$	ECL80	$12 / 6$	U26	$13 /-$
7Y4	$9 / 6$	EF36	$13 /-$	UAF42	$10 /-$
9BW6	$9 / 6$	EF39	$6 /-$	UCL83	$16 / 6$
I2AH8	$10 /-$	EF41	$9 / 6$	UF41	$10 / 6$
I2AT7	$9 / 6$	EF50	$6 /-$	UF80	$12 /-$
I2AU7	$10 / 6$	EF80	$9 / 6$	UL84	$10 /-$
I2AX7	$9 /-$	EF85	$9 / 6$	UY41	$7 / 6$
I2BE6	$9 / 6$	EF92	$9 / 6$	UY85	$7 / 6$
EABC80	$9 / 6$	EL32	$7 / 6$	Z66	$18 /-$

Collaro "Conquest " 4-speed Autochanger, f7/5/- carr. free.
About a thousand other types of valves and components. LISTS FREE.

## IA SHOTTON STREET DONCASTER



FOR 25 YEARS THE BEST ELECTRIC SOLDERING IRON

65 watt round pencil bit (Illustrated)
RELIABLE
SPEEDY
LONG-LASTING
Leaflets on request from:
W. T. HENLEY'S

TELEGRAPH
WORKS CO.LTD
Engineering Sales
Department,
59-62 High Holborn,
London, W.C.I
Tel: CHAncery 436 I

## 59 GNS.-"17"



A full specification $17^{\prime \prime}$ Television Receiver to Spencer-West standands now available at your Dealers.
Remarkable performance and priced at 59 Gns. only complete

For leaflet apply to:
SPENCER-WEST LTD. GT. YARMOUTH, NORFOLK

## NEW BOOKS ON RADIO \& TELEVISION

Servicing Transistor Radios by L D'Airo. Postage $1 /-\ldots . . . . . . . . . . . . . . .$.
Electronic Organ for the Home Electronic Organ for the Home
Constructor by A. Douglas. Postage $1 / 3$

23/-
R.S.G.B. Call Book 1959 issue. Postage 6d.
Television Engineers Pocket Book by Hawker. 2nd edition. Postage 9d. World Radio Handbook by Hans Johansen. 1959 issue. Postage $1 / 7 \mathrm{Hh}$
A Guide to Amateur Radio. 7th edition. Postage 6d.
How to get the best out of your Tape Recorder by P. Guy. Postage 8d.
Tape Recording as a Pastime by Arnison and Gardner. Postage I/Audio Measurements by Crowhurst. Postage $1 /$ -
International Radio T尸ube Encyclopaedia. 3rd edition by Baban Postage $2 / 6$
 15/A full range of Slide Rules and Drowing Instrument Sets in Stock. Send for lists.
UNIVERSAL BOOK CO. 12 LITTLE NEWPORT STREET, LONDON, W.C. 2 (adjoining Lisle Street).

## you can build a quality <br> TAPE RECORDER 'ASPDEN'

## Tape Recorder Kits

## TAPE DECK KITS

Two models, 5 in or 7 in . spools, two speeds, twin track, ferroxcube heads, finest motor, and complete assembly instructions. Compact model 582 kit ............. $£ 850$ Standard model 782 kit................ Assembled and tested RECORD/REPLAY AMPLIFIER KIT, $2 \frac{1}{2}$ watt, neon indicator, without valves, $65 / 18 /=$. POWER PACK KIT for above, less valve, E2/18/6. Carr. extra.
As Mr. R. W. M., of Plymouth, who writes Thave just completed the construction of your tope recorder and find results excellent, comparable with anything I have heard before. For lasting pleasure as Mr. P. L., of Bournemouth, who writes:
"I've had one of your decks for 2 years now and have had great pleasure from 't, the reproduction is an

Why not build one now
Send STAMP for full particulars to:-
W. S. ASPDEN

Stanley Works, Clevedon Road Blackpool, Lancs.

# RADIO CLEARANCE LTD． 

TRADE ENQUIRIES INVITED

ELECTROLYTIC CONDENSERS－WE HOLD THE LARGEST STOCK OF ELECTROLYTICS IN ENGLAND ABBREVIATIONS：C．Clip mounting tag ends．P．Prong mounting．T．Tag ended．S．Sleeved．W．Wire ended．

SINGLES				Capacity （MIds．）	Size＂	Type	Price	Capacity （Mids）	Wolts Size ${ }^{\text {S }}$			Type	Price	Caparity （Mfds）	Wkg． volts	Size ${ }^{\text {E }}$	Type	Price
Capacity   （Mds．）	Wkg．   Volts Size＂	Tуре	Price															
1	$275 \pm \times 1 \frac{1}{2}$	W／s	1\％	60	$2751 \times 3$	W		500			$1 \times 2$		10d．	$50+50$		$18 \times 2$		Price $2 / 9$
2	200	w	$1 / 0$	60	$35011 \times 2$	T／8	$2 / 6$	500			$1 \times 2$	C	1／3	$50+50$		182	P	$31 /$
2	50 ¢ $\times 1 \frac{1}{4}$	w	$1 /$	64	$2751 \times 3$	P	2／6	500		100	$2 \dagger \times 4 \frac{1}{}$	C／8	$1 / 8$	$50+50$		$1 \times 2$	T	$3 / 4$
4	150 （ $\times 1 \frac{1}{2}$	T／S	10 d	64	$3501 \times 3$	0	31	1000			$1 \times 3$	C	$1 / 6$	$50+50$	300	$\times 3$	P	31
4	150 ¢ $\times 1$ t	W	1.	75 （Rev）	） $121 \times 3$	C	10 d	3000		25	$11 \times 4!$	C	4／－	$80+100$	275	$18 \times 3$	C	4／－
8	150	W	$1 \%$	75	$12 \times 12$	T	1／0							$65+100$	260	$11 \times 3$	P	3／9
8	150	T	9 d.	80	$45011 \times 3$	W／8	2／6			DO	BL			$60+200$	275	$10 \times 4$	C	4／－
8	$45011 \times 21$	0	$21 /$	100	$12 \mathrm{f} \times 14$	W／19	1／0	$8+$	8		$1 \times 2$	T	2／6	$80+200$	275	$1{ }^{1} \times 4$	c	$4 /-$
8	450 \＄$\times 1$	W／8	$1 / 11$	100	$25 \times 1$	T	1／－	$8+$		450	$1 \times 11$	W／8	3／－	$80+250$	275	$18 \times 4$	C	$5 / 6$
10	25 ¢ $\times 14$	W	$1 \%$	100	$25 \times 14$	T／8	1／3	$8+$			$1 \times 2$	W／8	2／9	$100+65$		$18 \times 3$	P	4／＝
10	$15 \times 14$	W／8	1.6	100	$25 \times 14$	W／8	10 d	$8+1$		450	$1 \times 11$	W／S	$3 / 6$	$100+100$	12	＋2	P	$1 / 6$
10	450 ¢ $\times 2$	W／G	$1 / 9$	100	$27011 \times 2$	C	2／3	$10+10$		450	$1 \times 2$	W／8	2／6	$100+100$	275	$18 \times 3$	C	$3 / 6$
16	$150 \times 1$－	T／8	1／－	100	$2751 \times 3$	C	$2 / 9$	$16+16$		350	$1 \times 2$	0	3／－	$100+200$	25	－2	$1 P$	1／－
18	275 －$\times 2$	T	1／3	100	$27511 \times 2$	C／I	$2 / 6$	$20+10$			$1 \times 3$	C	8／－	$100+200$	250	$1{ }^{1} \times 4$	C	416
16	$350 \times 2$	P	1／6	100	$2751 \times 3$	P／8	$2 / 6$	$20+20$		150	$1 \times 2$	W／s	1／－	$100+200$	275	$11 \times 4 \frac{1}{4}$	C	$516:$
18	$350 \times 2$	T	1／9	100	$3001 \times 3$	P	$2 / 8$	$20+20$		450	$1 \times 3$	W／8	3／9	$100+200$	350	$\times 41$	C	6／0
16	$3751 \times 41$	C	21.	150	$251 \times 2$	T	1／0	$24+2$		350	$1{ }^{1} \times 2$	C	3／－	$100+400$	275	$\times 4 \frac{1}{2}$	C	416
16	$4501 \times 2$	0	2／－	150	$1501 \times 3$	W／8	1／6	$25+25$		300	$1 \times 2$							
20	$150 \times 1$	T／W	1／＊	200	$25 \times 18$	T	10 d ．	$30+30$		150	$8 \times 18$	W／8	1／2	$8+8+8$	IPL	ES E	tc．	
20	$4501 \times 2$	W／9	2／－	200	$351 \times 1 \%$	T／8	10d．	$32+16$			$1 \times 3$	P	1／6	$8+8+8$	35	$1 \times 2$	P	4／6
20	$4501 \times 2$	T／S	$2 /-$	200	$25011 \times 3$	0／8	21.	$39+16$			$11 \times 2$	T	316	$16+8+4$	27	$1 \times 2$	P	$2 \%$
85	$25 \quad 1 \times 1$	T／8	10 d ．	200	$27511 \times 3$	C	$2 / 6$	$32+16$			$1 \times 2$	T	3／6	$16+16+18$		$1 \times 2$		$21-$
25	25 杖	W／8	1／－	250	$61 \times 2$	T／8	1／－	$32+32$			$1 \frac{1}{\times 2}$	0	$2 / 9$	$25+25+25$		$1 \times 2$	C／s	$1 / 6$
25	50 退 14	W／G	1／\％	250	17 $\times 1$	W	1／6	$32+32$		350	$11 \times 2$	C／8	4！	$32+8+8$		$1 \times 2$	P	3／5
25	350 俍 $\times 14$	W	2／－	250	12 Ix 14	W／8	1／3	$32+32$		150	$11 \times 3$	W／8	4／6	$32+32+2$	27	$1: \times 2$	C	2／6
32	$2751 \times 2$	0	1／9	250	23 －$\times 2$	0	1／－	$32+32$	326／m		$11 \times$	T	3／－	$32+32+8$	27	$1 \times 3$	$\mathrm{P}_{1}^{\prime} \mathbf{O}$	3／＝
32	$9751 \times 2$	$\mathbf{P}$	1／6	250	$25 \times 18$	C	1／3	$40+20$			$1 \times 2$	T	1／－	$32+32+8$	35	$1 \begin{gathered}142 \\ \times 2\end{gathered}$	C	$3 / 6$
32	$3501 \times 2$	T／s	2\％	250	25 ¢ $\times 1$ 훈	W／T	1／3	$40+40$		150	$1 \times 3$	$P$	1／0	$32+32+25$	27512	$51 \times 3$	T	$2 / 9$
40	$150 \times 2$	W／8	1／\％	250	$25 \times 18$	W／S	1／3	$40+40$			$1 \times 2$	W／8	1／\％	$40+20+10$	35	$1 \times 3$	P	3／6
40	$3501 \times 2$	P	$21-$	250	$501 \times 2$	0	116	$40+40$			$11 \times 2$	C／IS	8／9	$40+30+20$	27	$1 \times 3$	P	$3 / 6$
40	$4501 \times 3$	W／s	216	250	$15011 \times 3$	$\mathbf{P}$	1／3	$40+40$		450	$11 \times 3$	W／s	3／－	$40+40+20$	27	$1 \times 3$	P	3／
50	$25 \times 14$	I	1／3	250	$2001 \times 2$	T	1／6	$50+30$		150	$1 \times 2$	W／9	1／－	$50+50+10$	15	1）$\times 2$	T	$1 /-$
50	$50 \times 1$	T	$1 / 3$	400 （Rev）	$61 \times 2$	P	1／－	$50+50$			$1 \times 2$		1／6	$50+50+50$	35	1\％$\times 3$	P	3／6
50	$50 \times 1 \frac{1}{4}$	W／8	1／6	500	$6 \times 1 \frac{1}{6}$	T	10d．	$50+50$		150	$1 \times 2$	W／s	1／6	$100+250+2$	027	$2 \times 4$	0	6i－
50	150	W／S	1／－	500	$61 \times 2$	C	10d．	$50+50$		275.	$1: \times 2$	P	2／8	$200+250+2$	027	$28 \times 4$	C	6／6
50	$3501 \times 2$	w／s	2／3	500	$12 \times 17$	T	1／－	$50+50$		275	$14 \times 3$	C	2／8	$40+20+10$	1035	$11 \times 2$	C	$3 / 6$

All voitages quoted are WORKING． please allow full postage and packing charges．


Mibremblaneots
Vibrators，Plessey 6 sR7aDT svinc． 7 pin，\％／6．Bulldog Clips．9d．Crocodile Clips， 4 d ．Toggle switohes． $1 /=$ Moss．Plugs and Sockets，and $8 / 6$ pair lon Traps， $1 / 6$. Wire， $130 / 170$ ץ ， 50 ma ．Sec．．4／6．Min Mains Transformer trpped Pr．z20 v． 35 ma．Sec．with 16 v． 5 amp．． $8 / 11$ ． Bayonet Pilot Lamp， 6 and 12 จ．．6d．each．T．V．Panels witb 8 pre－set sontrols 5／6．Condenser Clips，lin．and 1 in． in ． 6d，exch．Parmeko Smoothing Choke，\＄／9 Hy 100 rna．， 6／6．Thermo－couple Meters， $350 \mathrm{ma} ., 2 / 6$ ． 500 pt ．， 15 Kv ．， $2 / 6.1 .000$ of．． 20 Kv Viscoull 5／6．Sprague ． 01 mid．， 1.000 v．6d．

> FOR CALLERS ONEY

## FERRJTE RODS



 Masks．14in．Tube， $3 /=$ ohun．15 \％．
ELliptical speakers， 7 in $\times 4 \mathrm{in}$ ． $1210 / 6$ ．
M．W．Frame Aerials on alloy plate． $1 / \mathrm{ff}$ ．

## WIRE WOUND RESISTORS

5 wakt size $\frac{\bar{b}}{6} \mathrm{ml}, \times 11 \mathrm{~m} .10 \mathrm{~d}$ ．each
$7.5 \Omega .80 \quad 10 \Omega .12$ ．． $27 \Omega .30 \Omega .33 \Omega .34 \Omega .36 \Omega$ ． $43 \Omega .47 \Omega .50 \Omega .54 \Omega \ldots 55 \Omega, 5 C \Omega ., 80 \Omega .86 \Omega .67 \Omega .$,
$58 \Omega .76 \Omega . .80 \Omega . .82 \Omega .110 \Omega . .170 \Omega, 180 \Omega . .300 \Omega .$, $320 \Omega .4330$ ． 470 п．． $500 \Omega .500 \Omega . .600 \Omega ., 620 \Omega$.

 6.5 ．К．，6．8．K． 7 K．， 8.5 K ．







We have a large selection of Transformers；Droppers，Silver Micas，Trimmers，Ceramics，Waxed Paper Condensers，Min Mica Condensers，Chokes，Metallised Tubular Condensers，H1－Stab Resistors and Transistor Components far too numerous to advertise．Why not pay us a visit when next In town？TERMS OF BUSINESS：CASH WITH ORDER OR C．O．D． ON ORDERS OVER 10／．


RESEARCH AND DEVELOPMENT
LABORATORIES SITUATED NEAR
THE ATTRACTIVE SURREY KENT BORDER AT NEW ADDINGTON

The name 'Newmark' embraces a rapidly expanding group of companies with international connections, already well established in the micro precision and electronic engineering fields including such diverse applications as stabilising and autopilot equipment for fixed wing aircraft and helicopters, quality control instrumentation, components for industrial control systems and analogue computers.
Industrial Market Research Teams in the U.S.A. Europe and Great Britain are bringing in new work with interesting problems and new challenges.
The laboratories' commitments are expanding rapidly and we require to appoint-

## SENIOR

DEVELOPMENT

## ENGINEERS

DEVELOPMENT

## ENGINEERS

Qualtications An honours degree in electrical engineering or physics and experience in electronics. electro-mechanisms, instruments or servo mechanisms. Qualities of leadership and initiative required.
Qualifications Degreein electrical. engineering or physics or H.N.C: in electrical engineering or equiv-* alent. Experlence in electronics or precision engineering an advantage.

TECHNICAL WRITERS DESIGNERS DRAUGHTSMEN

All posts carry attractive salaries with excellent opportunities for advancement.

Applications should be submitted with full detalls of qualifications and experience in the first instance to-

Personnel Officer, F Division
Louls Newmark Ltd., Prefect Works, Purley Way Croydon, Surrey

## MARCONI INSTRUMENTS LTD.

Technical Personnel Required

## SENIOR \& JUNIOR ELECTRICAL DESIGN ENGINEERS <br> SENIOR \& JUNIOR MECHANICAL DESIGN ENGINEERS

DUTIES: To undertake the design of Test Equ pment covering practically the whole electronic field, including Telecommunication, Guided Weapons and Nucleonics. Considerable personal responsibility and freedom is given, and there are no set rules regarding the number of people engaged on a project, the allocation of project leaders, etc.
QUALIFICATIONS: The ability to design equipment and aggressively progress a project through to the stage where a model is made and the information is available for a production drawing office. Senior engineers are usually of B.Sc. standard with practical experience in measuring techniques, while Junior engineers are often Gradunte Members of one of the Professional Institutions, or have similar qualifications, of the Professional institutions, or have similar qualifications, but this is in no way mandatory. The ability to progress the
project through to a satisfactory conclusion is the prime requirement. Due to expanding activities, men with drive and initiative can be sure of progressive advancement.
Comprehensive pension and assurance schemes are in operation, and Canteen and Social Club facilities are provided.
Call any day including Saturday mornings at,

## MARCONI INSTRUMENTS LTD. LONGACRES, HATFIELD ROAD, ST. ALBANS, HERTS.

or write giving full details to Dept. C.P.S., Marconi House, 336/7, Strand, London, W.C.2., quoting reference WW 2970 Y.


# JOIN THE SUCCESSFUL ‘BLOODHOUND’ TEAM AT FERRANTI LTD. 



Vacancies are at the Wythenshawe (South Manchester) and Moston branches of the Company.
Write for an application form to T. J. LUNT, Staff Manager, FERRANTI LTD., Hollinwood, Lancs., quoting ref. DB.

If your interests are in RADAR, DIGITAL COMPUTERS, SERVO-MECHANISMS, CONTROL SYSTEMS, ELECTROMECHANICAL INSTRUMENTS OR TRANSISTOR APPLICATIONS, there are STAFF vacancies in

1 RESEARCH \& DEVELOPMENT, calling for a degree or H.N.C. or diploma in engineering, physics or mathematics.

2 PERFORMANCE TESTING \& TEST GEAR DESIGN. The normal minimum qualification is O.N.C. in electrical engineering, but candidates without academic qualifications may be considered provided they have good previous experience of electronic equipment.

## TWO PROTOTYPE TEST ENGINEERS

are required by the G.E.C. Applied Electronics Laboratories for work on Guided Weapons and Radar Equipment. Applicants from the Forces should be Ex-Naval R.E.A.s or R.A.F. radar fitters, men from industry should have had at least four years' Test or Maintenance experience on radar or similar types of Electronic Equipment. Qualifications will be considered an advantage but not essential. The posts are pensionable and afford good opportunities of advancement for men with ability and initiative.

## Applications should be made to the Personnel Officer,

The General Electric Co. Ltd., Applied Electronics Laboratories, Brown's Lane, Allesley, Coventry. Ref. EHM/RRB.




## FERRANTI LTD. EDINBURGH

due to increased commitments in the

## ELECTRONIC TEST DEPARTMENT

 there are vacancies for
## TRAINED ENGINEERS

in the following fields:
(1) DESIGNERS of electronic test equipment covering a very wide range and including pulse techniques.
(2) DIAGNOSERS AND TECHNICAL ADVISERS concerned with new electronic equipments.
(3) SENIOR TESTERS for prototype testing. The vacancies require men of ability and experience, preferably with technical qualifications. Graduates or engineers of equivalent status will be given preference in the first two posts. Applications, indicating the post applied for, should be addrêsed to the Personnel Officer, Ferranti Limited, Ferry Road, Edinburgh, 5, quoting Ref. ETD/ 59.

## ELECTRONIC PROCESS PLANNING ENGINEER

A well-established engineering company situated in West Middlesex has an opening for a qualified Process Planning Engineer at present engaged in the electronics engineering industry.
Applicants must be well experienced in modern production methods as related to large quantity output, in the manufacture of component parts as used in radio, television and computers ; must be accustomed to establishing production procedure in detail, the design of necessary equipment, jigs and tools, and supplying the initial instruction to production shops.
Applicants should provide full information regarding technical education, training and industrial experience, and state names of previous employers and positions held, by letter. The salary envisaged would range from $£ 800$ to $£ 1,000$ per annum, according to qualifications and experience, with excellent prospects for advancement.
Box No. 1066 c/o "Wireless World."

# sfenhy GUIDANCR AND CONTROL SPECLALLSTS 

Due to continued expansion of our Research and Development teams associated with "Scaslug" and the Long Range Ballistic Missile we have vacancies for experienced qualified personnel. The equipmeni dealt with is concerned with precision measurement, computation and instrument servo systems.
ELECTRONIC, ELECTRO-MECHANICAL AND MECHANICAL ENGINEERS at Senior and Intermediate levels for design and development posts concerned with precision navigation equipments, components, and techniques on both the L.R.B.M. and " Seaslug " projects.
DIGITAL ENGINEER to design and develop digital computors for airborne use involving integrators, multipliers, storage units and equipment for remote adjustment and setting of digital quantities
SYSTEMS ENGINEERS to co-ordinate testing of a complete electro-mechanical precision instrument servo system, and to carry out design studies for, and the design of, more advanced systems.

MATHEMATICLANS OR PHYSICISTS for theoreticai-analysis of the performance of systems, design studies, and the analysis of flight trials data
TEST FIXTURES ENGINEER to direct Technical Assistants and D.O. personnel in designing and engineering a tange of specialised complex electro-mechanical test fixtures.

TRIALS ENGINEERS for the L.R.B.M. to accept full responsibility for testing and preparation for trials of important parts of the system. After training, long periods away from base will be entailed both in the U.K. and abroad, and salary and conditions of service will be appropriately attractive.
DEVELOPMENT ASSIST ANTS with H.N.C. or O.N.C. primarily for laboratory experimental work, with a certain amount of theoretical work on occasion.
TRIALS ASSISTANTS for technical admin. and liaison duties.
PHOTOGRAPHER for technical publications and handbooks etc.
We are seeking professionally qualified experienced personnel and are prepared to reward them accordingly. Conditions of work will be first class in well equipped new laboratories. Housing is available. Pension Schome, Canteen.
Please write giving full details or requesting Application Form to R. W. H. Lubbock, B.Sc.
SPERRY GYROSCOPE CO. LTD. BRACKNELL, BERKS.

## DIGITRL COMPUTERS

 engineers, physicists and TECHNICIANS, age approximately $20-35$ years, with a knowledge of electronics, are required for technical supervision and maintenance of "National-Elliott 405" digital computer installations in London, the Midlands and the North. There are also vacancies in connection with TEST EQUIPMENT DEVELOPMENT and COMPUTER TRAINING.Experience in digital computer techniques, although an advantage, is not essential.
Please apply in writing to
The Personnal Manager, The National Cash Register Co, Ltd. 200-216 Marylebone Road, London, N.W.1.

## RESEARCH \& DEVELOPMENT

 in a
## UNIQUE \& CHALLENGING FIELD

## ELECTRONIC ENGINEERS

(Senior and Junior)
are required by
COTTAGE LABORATORIES LTD. Portsmouth Road, Cobham, Surrey.
for the expansion of work on vital defence projects of a specialised and highly interesting naiure.
The positions are permanent and pensionable with excellent prospects of advancement. Starting salaries up to £1,400.
First-class working conditions, up to the minute equipment, five-day week and all the amenities of a well-established and progressive company.
Write to the Chief Engineer at the above address or telephone Cobham 3191. All applications treated in absolute confidence.

## ELECTRONIC MECHANICS <br> are required by the <br> UNITED KINGDOM <br> ATOMIC ENERGY AUTHORITY <br> (Industrial Group) for <br> Windscale and Calder Works, Sellafield, Seascale, Cumberland. <br> Chapelcross Works, Annan, Dumfriesshire, Scotland. <br> Dounreay Experimental Reactor Establishment, Thurso, Caithness, Scotland. <br> Applications are invited from experienced men with a knowledge of electronic equipment for fault diagnosis, repair and calibration of a wide range of instruments used in nuclear reactors, radiation laboratories and chemical plant. This interesting work involves the maintenance of instruments using pulse techniques, wide band and noise amplifiers, pulse amplitude analysers, counting circuits and television. <br> Men with Services, Industrial or Commercial background of Radar, Radio or Television are invited to write for further information. Trainng in our Instrument School will be given to successful applicants. <br> There are accommodation, housing and lodging allowance arrangements. <br> Applications to:

The Works Labour Manager (at the appropriate Works address)

## WOLSEY ELECTRONICS LTD.

## Cray Ave., St. Mary Cray Orpington, Kent

## requires a

## SENIOR DEVELOPMENT ENGINEER

for Antenna and RF development. St. Mary Cray is 25 Minutes from Holborn Viaduct. Applicants must be qualified GRAD Brit IRE., GRAD IEE or at least equivalent, preferably specialising in RF work. The Company is making excellent progress in its market due to a policy of continuous improvement in design and manufacture. The Lab is adequately equipped and is considered an important unit of the business. This is a happy firm with an informal but vigorous character. Candidates should expect to use continuous effort, which however will be properly appreciated by the management. Salary for this appointment from $£ 1: 000$ upwards according to qualifications and ability. Applications originally in writing please to R. S. Roberts, M. Brit IRE, Sen MIRE, at above address.

# ELECTRONIC ENGINEER 

 with
## Advance

## PROJECT ENGINEERS

Subject to a broad and reasonable directive you will be fully responsible for the design of instruments from conception to quantity production. We feel this needs a degree, or equivalent, and some years of experience in designing for production. A post also exists for a specialist Engineer to design all types of attenuators L.F. to $4,000 \mathrm{Mc} / \mathrm{s}$.

## ASSISTANT ENGINEERS

Work with Project Engineers on interesting instrument development. You must have good experience of electronics or have qualifications to H.N.C.

## TEST GEAR ENGINEER

To assist with construction and design of special test apparatus. O.N.C. or equivalent.

If you've got drive, have the ability to overcome difficulties, and appreciate the real meaning of a "target," we offer a position in an active growing company that will earn for you the most substantial rewards.

You can do justice to your qualifications at

## Advance

Write to Robert Gooday (Chief Engineer),
ADVANCE COMPONENTS LIMITED
HAINAULT ILFORD ESSEX

## the de havilland engine COMPANY LIMITED <br> has vacancles for qualified electronic engineers

The work is concerned with special－ ised equipment applicable to development and research on Rocket Motors and Gas Turbine Engines．Interesting work in con－ genial conditions．
Applicants should preferably possess a degree，but those having exper－ ience in this field will also be considered．
Applications，quoting reference SC 809，should give full details of qualifications and experience and be sent to：

The Personnel Officer，
the de havilland engine COMPANY LIMITED
Stag Lane，EDGWARE，Middlesex．

SYSTEMS／SERVICE ENGINEER
required by Electronics Division Service Department．The duties entail re－ design of standard production equip－ ments to meet customers．special requirements，and the planning and implementation of non－standard $R, T$ ． schemes．
Applicants must be prepared to under－ take routine service work when neces－ sary，and should possess a thorough knowledge of the principles and practices concerning radio telephone equipments． concerning radio experione equipments．
Some design experience would be Some design
advantageous．
Write in the first instance giving details of age，experience and qualifications to：

Personnel Manager（E．72）
Welwyn Garden City，Hertfordshire

## －かのかのかのかのかの

## ELECTRONIC CIRCUIT ENGINEERS

are required for our
Valve Applications Laboratory，
to investigate valve behaviour in practical circuits；to determine opti－ mum operating conditions；and to deal with user＇s problems．

At present posts are available in groups dealing with large power valves and microwave valves，but previous experience in these fields is not essential as training will be given． Applicants should be of degree standard or in possession of an H．N．C．（Elec．）．

Please write with details of previous experience，to

AE／2 Personnel Officer，
M．O．Valve Co．Ltd．，
Brook Green，Hammersmith，W．6．

## E．M．I． <br> Research Laboratories require

an Electrical Engineer or Physicist for work on new Stereophonic Transmission Systems．
Applicants should preferably possess a degree or equivalent professional qualification，and should have some experience of acoustic work and circuit design at audio frequencies．

This appointment carries oppor－ tunities for original contributions in an interesting experimental field．It is permanent and pensionable．The salary offered will be assessed according to age and qualifications．
Please apply giving full details to Personnel Department，RL／26，E．M．I． Ltd．，Blyth Road，Hayes，Middx．

## ELECTRONIC INSPECTING ENGINEERS

We invite applications from young men with a knowledge of radio up to 2nd year O．H．C． to inspect radar equipments in the final stages of assembly．Apply to Personnel Officer，DECCA RADAR LIMITED， 2 Tolworth Rise，Surrey．

## BUSH RADIO LTD．

invite applications for positions in

## TEST GEAR LABORATORY

Please apply giving details of education， qualifications，experience to Personnel Manager，Bush Radio Ltd．， Power Road，W．4．

＇ENGINEERING OPPORTUNITIES＇
reveals how you can become technically quali－ fied at home for a highly pand key－appointment in the vast Radio and Tele－ vision Industry．In 148 pages of intensely inter－ esting matter，it includes full details of our up－to－ the－minute home study course in all branches of TELEVISION and RADIO，A．M．Brit． I．R．E．，City \＆ Guilds，Special Tele－ vision，Servicing，Sound Film Projection，Short Wave，High Frequency and General Wireless Courses． We definitely Guarantee

## ＂NO PASS－NO FEE＂

If you＇re earning less than $£ 18$ a week this enlightening book is for you．Write for your copy today．It will be sent FREE and with． out obligation．

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 388b COLLEGE HOUSE， ${ }_{29-31}^{38}$ WRIGHT＇S LAKE，
LONDON，W． 8

## E．M．I． <br> INSTALLATION \＆MAINTENANCE ENGINEERS

Engineers are required for interesting work in connection with the installation and maintenance of the following types of equipment：

Automatic control systems such as Machine Tool Controls，Com－ puters and Process Controls．
Studio and industrial television equipment，electronic printers，in－ struments，etc．
Stroboscopes，dynamic baiancers
vibrators，etc．
This is an opportunity for first－class radar and television engineers．The qualifications required are a good rech－ nical knowledge combined with practical experience；specialised training is pro－ vided．It is an advantage to be able to drive a car and there are arrangements for allowances for own car and subsis－ tence in the field；there is also a pension scheme．
Please apply，quoting Ref．No．EL／W22 to：

Personnel Officer，
E．M．I．ELECTRONICS L．TD．，
HAYES，MIDDLESEX．

## ELECTRONIC COMPONENTS SALES

Applications are invited for a new position in the London Sales Office of a firm producing components for the Radio，Television and Elec－ tronics industries．
The main function will be to deal with incoming enquiries，and con－ sequently some technical knowledge is required．
Applicants should write giving brief details of previous experience．

## SUFI．EX LIMITED

35，Baker Street，London，W． 1

## TECHNICAL WRITER

## age $25 / 45$ ，man or woman

Required for preparation of radio and television receiver service manuals．Sound ex－ perience in this or allied field and capacity for lucid exposition of technical information essential．
40－hour，5－day week：staff canteen ：pension and insurance scheme．
Location of office，Kew，Surrey．
Please apply by letter giving age，education，experience， salary required，to ：－

Personnel Manager，<br>Bush Radio Ltd．，<br>Power Road，Chiswick，W． 4

## CATHODEON LABORATORIES

Have several vacancies for Senior and Junior Electronic Engineers for circuit design and development in connection with the manufacture and application of piezo-electric resonators. Applicants should possess a Degree or Higher National Certificate in Electronic Engineering. A sound knowledge of circuit network theory is essential, preferably with some years' practical experience. The posts are permanent in an expanding company, with excellent long-term prospects for young men with initiative and enthusiasm. Attractive salaries according to age, qualifications and experience. Apply by letter in the first instance to:
Personnel Manager, Cathodeon Crystals Ltd., Linton, Cambridge.

## UNIVERSITY OF AUCKLAND

## New Zealand ELECTRONIC TECHNICIAN

Applications are invited for the position of Electronic Technician in the Department of Physics. Applicants should possess Higher National Certificate or equivalent, and be capable of assisting in the design and servicing of a wide variety of apparatus, especially nuclear. Experience with pulse and digital techniques, or applicam tions of transistors would be an advantage, and industrial research or similar training preferred.
Salary within scale rising from $£ 875-£ 1,005$ per annum, by annual increments, according to qualifications and experience. Superannuation rights available.
Consideration will be given to an assisted passage under the Immigration Scheme.
Conditions of Appointment avaitable from the Secretary, Association of Universities of the British Common'wealth, 36 Cordor Square, London, W.C.I, or from the Registrar, University of Auckland, P.O. Box 2553 , Auckland, New Zealand.
Applications close in New Zealand and London on the 15th February, 1959.

## WETHERBY, YORKSHIRE

## ELECTRONIC SERVICE ENGINEER

required with wide experience of Industr:al and high quality electronic measuring instruments. Excellent prospects with expanding CompanyPension system and prospects of early promotion. Send full details of past experience, academic qualifications and salary envisaged.
Apply to :-
FARNELL INSTRUMENTS LIMITED,
WETHERBY INDUSTRIAL ESTATE, YORK ROAD, WETHERBY
quoting ref: "Service," on top of envelope.

## SENIOR ELECTRONIC TEST ENGINEERS

A leading firm of electrical manufacturers is needing senior staff for a department concerned with the testing of electronic equipment in one of their Midland factories.

Men having a complete understanding of Telecommunication systems, complicated valve and transistor circuitry and delicate electronic test gear would be offered salaries from £875 to $£ 1,025$ for a $39 \frac{1}{2}$-hour, five-day week.

Whilst holders of Higher National Certificates or City and Guilds' Full Technological Certificates in Telecommunications would be preferred, men with a good background of the right type of experience would be considered.

Will those who consider themselves suitably qualified and/or experienced please apply giving full details of age, qualifications and experience to Box 1089, c/O "W. World."

We also have vacancies for Test Engineers in the salary range of $£ 775$ to $£ 850$.

TEST INSTRUMENT LABORATORY
require an engineer capable of undertaking design and development of all types of product. and laboratory test equipment. Applicants should have H.N.C. or equivalent with some practical experience in similar work, though a really experienced man in this field with lesser qualifications would be favourably considered. Please write giving details of age, experience, qualifications and salary expected to the Personnel Manager, Murphy Radio Limited, Welwyn Garden City.

## AUDIO EQUIPMENT ENGINEER

with experience of FM receivers required for responsible position in production test department.

Permanent appointment for keen and qualified man of initiative.
Apply in writing to :
The Manager,
Acoustical Manufacturing Co. Ltd., Huntingdon, Hunts.

A qualified Electrical Engineer or Physicist is required to take charge of product development at the United Insulator Division of the Telegraph Condenser Company Ltd., Oakcroft Road, Chessington, Surrey. The work involves design and pre-production work on such products as small insulators, fuse links and ceramic piezoelectric transducers.
Applications should be made to the Technical Manager.

THE MANCHESTER COLLEGE OF SCIENCE AND TECHNOLOGY
Research and Development in Computer Control of Machine Tools: A voconery exists for on

## ELECTRONIC ENGINEER

wo take charge, after inttial training, of a digital controller now under construction at the makeri works. Duttes will include commtssioning, operation and adaptation of the equipment, and participation in the geveral work of the research team. Appltcants should have sufficient experience in pulse work to enable them to assimilate the specialist computer technlques employed tn the controller Applicatsons staning quan Bursar, The Mauchestet College of Bctence and Technolugy, Backrille Street, Manchester, 1, not luter than 16th February, 1989.
REPANCO HIGH GAIN COILS
Daal Range Crystal Set Coil, Type DRX1. ..... $2 / 6$
$4 /-$
Dual Range Coil with Reaction, Type DRR2 © ..... 8 Pair Dual Range Superbet Coils, Type SH \&, pair$\begin{array}{cc}\text { Mimiature Iron Dust Cored Coils, Type "R } \\ \text { Range } \\ \text { Aerial } & \text { H. } \\ \text { Ose. }\end{array}$$\begin{array}{cllll}\text { Range } & \text { Aerial } & \text { R.F. } & \text { Ose, } & \\ 800-2,000 \mathrm{~m} . & \text { RA1, } & \text { RHF1 } & \text { RO1 } & \\ 100-550 \mathrm{~m}, & \text { RA2 } & \text { RHF2 } & \text { RO2 } & \text { each } \\ 70.230 \mathrm{~m} . & \text { RA3 } & \text { RHF3 } & \text { Ro3 } & \\ 15-50 \mathrm{~m} . & \text { RA4 } & \text { RHF4 } & \text { RO1 } & \end{array}$
Ferrite Rod Aerial, Dual Range Type pR1. RO1 Miniature LF. Transformers Type MgE (46i Kcis), pair Standard I.E. Transformers, Type TCG ( $465 \mathrm{Kc} / \mathrm{s}$ ), pair
Bend 8.A.R. for latest Bepanco Component Catalogue.
Mall Order and Trade:
RADIO EXPERIMENTAL PRODUCTS LTD.,
33 Muob Park St., COVENTRE.
Tel.: 82572
Wholesule Enquiries and Export:
REPANCO, LTD.,
O'Brien's Buildings, 203-288 Folenhill Rd., COVENTRY.

## Z. \& I. AERO SERVICES LTD.,

## 14, South Wharf Road, London, W. 2 Telephone: AMBassador 0151/2

A.R.B. Approved Stockists

RETAIL BRANCH: 85, TOTTENHAM COURT ROAD, W.t (near Goodge Street Station)

## PEN RECORDERS

ELLIOTT SINGLE PEN PORTABLE RECORDING MILLIAMMETER. AC/DC Instrument: Range $0-1 \mathrm{~mA}$. on A.C (through internal full-wave rectifier) and approx. $0=0.9 \mathrm{~mA}$., on D.C. Spring Clock
Chart Drive I inch per hour. Chart Width $3 \frac{3}{4}$ in. PRICE, perfect condition and guaranteed $£ 3500$


ELLIOTT SINGLE PEN SWITCHBOARD PATTERN RECORDING MILLIAM. METERS.
Range 0-5 mA. Chart 6 in . wide; Chart Speed 3 inches per minute: Electric Chart Drive

EVERSHED SINGLE PEN SWITCH. BOARD PATTERN RECORDING MILLIAMMETERS.
Range 2.5-0-2.5; Chart 6in. wide; Chart Speed $\frac{1}{2}$ inch per minute; Electric Chart Drive 230 V . A.C.

EVERSHED TWIN PEN SWITCHBOARD PATTERN RECORDING MILLIAMMETERS.
Range $0-5 \mathrm{~mA}$. D.C. Chart 6in. wide. Chart Drive 230 V. A.C. Chart Speed $\frac{1}{2}$ in. per minute. PRICE, unused, complete with two syphon and two gravity pens, dashpot oil, ink and charts
£65 00
EVERSHED I2-PEN TIME RECORDER Portable 12-channel instrument for simultaneous recording of II events with time marks provided by 12th pen The recording is presented in the form of "on-off" pulses. Chart Speed 2 inches per second.
PRICE, unused, in original packing. complete with accessories and a supply of charts. Packing and carr.
$\begin{array}{rll}\text { £ } 30 & 0 & 0 \\ E & 0 & 0\end{array}$ corders can be m
All the above recorders can be modified to other ranges and alternative speeds.

## SPECIAL OFFER

Only small quantity available


LAVOIE MODEL 105SM (TSI27IU) ABSORPTION FRE-

METER Frequency Range 375 to $725 \mathrm{me} / \mathrm{s}$ Aecuracy $\pm 1$ $\mathrm{mc} / \mathrm{s}$. Mieroammeter Resonance 200 microamps. F.S.D. Indicator Time Switeh or selecting operating times up to 15 min. Power supplies: dry batter1.5 V Valves: 957 is5 and

PRICE E9 196 (P.P15/-)

WESTON MODEL E-772 MULTI-RANGE TEST METER. Sensitivity 1,000 and 20,000 o.p.v. Voltage 2.5 to 1,000 V. A.C. and D.C.: current 0.1 mA . to 10 Amps. D.C.; resistance 3 k . to 30 megohms. PRICE, fully guaranteed .......................................... E12 100

COMMUNICATION RECEIVERS
MARCONI CR- $100,60 \mathrm{kc} / \mathrm{s}$, to $30 \mathrm{mc} / \mathrm{s}$., fully rebuilt to the original specification and guaranteed ........................................... p.o.a
MARCONI CR-150, $2-60 \mathrm{mc} / \mathrm{s}$., dual superhet, fully overhauled and guaranteed...... $£ 5000$ Power Supply Unit for the above...... $£ 10$ 0 HALLICRAFTER $5-27,27-143 \mathrm{mc} / \mathrm{s}$., FM-AM, rebuilt to the original specification and fully guaranteed ................................. p.o.a.
HALLICRAFTER $\mathrm{S}-27 \mathrm{C}, 130-210 \mathrm{mc} / \mathrm{s}$., FMAM, fully overhauled and guaranteed $£ 50$ 0 0 RCA AR-88LF, $75-140 \mathrm{mc} / \mathrm{s}$. and $1.2-30 \mathrm{mc} / \mathrm{s}$., fully overhauled and guaranteed...... $£ 75000$

## OSCILLOSCOPES

COSSOR DOUBLE BEAM MODEL 339, overhauled and guaranteed ............. £30 0 ERSKINE DOUBLE BEAM MODEL 13 HIGH SPEED OSCILLOSCOPE. Time base from $2 \mathrm{c} / \mathrm{s}$. to $750 \mathrm{kc} / \mathrm{s}$.; I and 10 microsecond marker; fully overhauled and guarantee $\begin{array}{rrr}\qquad 58 & 0 & 0 \\ £ 1 & 0 & 0\end{array}$

## ROTATING BEAM AERIALS. Tubular

 2 in . dia. $\times 6 \mathrm{ft}$. high with rotating handle (worm-gear drive) and azimuth indicator6ft. Extension Masts for the above (maximum of two per base), each
Packing and carriage

150
126

MN- 20 BENDIX HAND ROTATING LOOPS, for use with MN-26RD.F Equipmen Brand new .................................... $\mathbb{\text { £ } 2 0} 0$

## VARIABLE TRANSFORMERS

BRAND NEW General Radio "VARIAC" or equivalent "POWERSTAT" made by Superior Electric Co., input 230V: output $0-270 \mathrm{~V}$ max. rated at 8 Amps, max. output 9 Amps at 230 V .

Packing and carriage
$\begin{array}{lll} \\ & 15 & 0 \\ & 0 \\ & 12 & 6\end{array}$

## MIGROWAVE 10CM EQUIPMENT

TSI4/AP SIGNAL GENERATORS, 3200$3370 \mathrm{me} / \mathrm{s}$. Power Output- 100 to -20 dbm . Variable pulse modulation. R.F. Power measurements 20-200 milliwatts. Fully overhauled and guaranteed .............................. 885 0 0 WAVEGUIDE WATTMETER TYPE APW.7283, 10 cm . band............... $\leqslant 500$ MARCONI SPECTRUM ANALYSER Type TF-984/1, " S"Band (2900-3150 me/s.) Spectrum Width 1 to $10 \mathrm{mc} / \mathrm{s}$. Fully overhauled and guaranteed.

Particulars and prices on application.
KLYSTRONS $417-\mathrm{A} . \mathrm{f}=9.10 \mathrm{~cm}$. Vernier tuning $\pm 100 \mathrm{mc} / \mathrm{s} . \mathrm{min}$. Ers $=1000 \mathrm{~V}$. max. Heater Volts 6.3 V. Power 50 watts. Forced Air Cooling

## MICROWAVE 3GM EQUIPMENT

TS-I3 SIGNAL GENERATOR WITH SELF-CONTAINED WAVEMETER AND POWER MONITOR. Range 9305 to 9445 $\mathrm{mc} / \mathrm{s}$. Internal pulsing. Peak Power output 50 microwatts.
TS-45/APM3 SIGNAL GENERATOR. Frequency range $9300-9450 \mathrm{mc} / \mathrm{s}$. Power output 10 mW . average; Power meter range 5 watts. Details and prices on application.

TS-II8 R.F. OUTPUT POWER METERS. Power Range 5 to 500 Watts. Frequency Range 20 to $750 \mathrm{mc} / \mathrm{s}$. Fully overhauled, complete with three thermocouples for three ranges, manual and accessories.................. 6450 Packing and carriage

6450

RCA TYPE $301 B$ HIGH FREQUENCY FIELD INTENSITY METERS. Frequency Range $18-125 \mathrm{mc} / \mathrm{s}$. Field Intensity Range 5 to $2,000,000 \mu \mathrm{~V} /$ metre. Aural Monitoring and provision for recording on a 5 mA . recorder PRICE, complete with Field Power Supply Unit running on a 6 V . accumulator and test aerial on a tripod

FREQUENCY METERS. BC-221, $125 \mathrm{kc} / \mathrm{s}$. to $20 \mathrm{mc} / \mathrm{s}$. LM Series, 125 or $195 \mathrm{kc} / \mathrm{s}$ to 20 to $20 \mathrm{mc} / \mathrm{s}$; ; LM Series, 125 or $195 \mathrm{kc} / \mathrm{s}$ to 20 $\mathrm{mc} / \mathrm{s}$; ; TS-174, $20-280 \mathrm{mc} / \mathrm{s} . ;$ TS-175, $80-1,000$
$\mathrm{mc} / \mathrm{s}$. i LR-1 $\mathrm{mc} / \mathrm{s}$. i LR-
$160 \mathrm{kc} / \mathrm{s}$. to $60 \mathrm{mc} / \mathrm{s}$. Details and prices on application.

## SPECIAL OFFER

RECORD "MINOR" 500 V. INSULATION TESTERS, tested and guaranteed complete with leather cases............ $£ 8000$ EVERSHED SERIES 2500 V , INS ULATION TESTERS (aluminium body) in leather cases, tested and guaranteed .................... $f 1710$

14 V DYNAMOTORS 250 V 14 V . DYNAMOTORS. Output 250 V . at 60 mA ., for Command Receivers. Perfect for running a radio set or a shaver from your car battery.
p.p........... $\mathrm{ER}_{2} 156$

## VAEVES

Please write for full list of Ex-Service fully tested and guaranteed valves. Here are some of this months bargains: 3BPI C.R. Tubes, $12 / 6$; 6H6, 1/6; 6G6G, 3/6; 5R4GY, 7/6; 5CPI, 50/-. All brand new.
T.C.S. COLLINS TRANSMITTING AND RECEIVING EQUIPMENT. Frequency range 1.5 to $12 \mathrm{mc} / \mathrm{s}$., erystal controlled or VFO operation; output 20 W . voice or $40 \mathrm{~W} . \mathrm{C} . \mathrm{W}$. Complete installation consists of: Transmitter, Receiver, Remote Control Unit with built-in Loudspeaker, Antenna Loading Coil, three interconnecting cables; Power Supply Unit for 12 V., 24 V., 115 V . or 230 V . D.C., or 230 V . A.C.; Headphones, Hand Microphone and Key. These installations are especially suitable for use on board ships, small craft, etc. Large assomment of spares available. Par ticulars on application.

POWER UNITS TYPE 234A,Mains operated, output $180-270$ V D.C. at 80 mA , fully smoothed and $6.3 V 4 \mathrm{Amps}$ A.C.
p.p.
$E 2196$

CANNON AND AMPHENOL PLUGS HUBBEL CONNECTORS, AMERICAN SERIES PL AND UG CONNECTORS; BRITISH PLESSEY "STANDARD" PLUGS, A.M. CONNECTORS SECTION $5 X$ and 10 H ; P.O. TYPE 201 Plugs, etc. Please write for full list.

## LOUDSPEAKERS

All brand new and guaranteed Mains energised:
$6 \frac{1}{2} \mathrm{in} .68$ ohms field, 3.5 ohms sp. coil
$6 \frac{1}{2}$ in. $1,000 \mathrm{ohms}$ field, 5 ohms sp. coil $\ldots .$. $6 \frac{1}{2} \times 10 \frac{1}{2} \mathrm{in}, 1,000$ ohms field, 40 mms sp . coil $\quad 12 / 6$

Perm
5imanent Magnet
5 in . 3 ohms
$6 \frac{1}{2} \mathrm{in} .3$ ohms
$6 \frac{1}{2} \times 10$ tin. 4 ohms
Bin. 4 ohms
8in. 3 ohms with $3 / 7000$ matching trans. 8in. 3 $\frac{1}{2}$ ohms
8 din. 4 ohms high density magnee
P.P. 3/-exira.

Our new Catalogue of Test Equipment and Communication Receivers is now ready and available to Trade, Laboratories, Technical Colleges, etc.
WE BUY GOOD SECOND HAND ELECTRONIC TEST EQUIPMENT AND GOMMUNICATION EQUIPMENT. WE URGENTLY REQUIRE R.C.A. RECEIVERS TYPE AR-88D

## Wireless World Classified Advertisements


#### Abstract

Rate $7 /-$ lor 2 lipet or less and $3 / 8$ for every addtional  Words plas $1 /$ (Address replies: Box 0000 efo "Wireless discount details available on application. Press Day March 1959 issue, Wednesday, January 28th. No reaponsilility socepted for errors.


## WARNING

Reoders are warned that Government surplus components and valves which may be offered for sale through our displayed or classified columns carry no manufacturers' guarantee: Many of these items will have been designed for special purposes making them unsuitable for civilian use, or may have deteriorated as a result of the conditions under which they have been stored. We cannot undertake to deal with any complaints regarding any such items purchased.

NEW RECEIVERS AND AMPLIFIERS S Place, Worthing, Sussex. Tel. 30536. THE TWA/1515 stereosonic tape recording and replay amplifier, separate meter monitoring on record and playback on both channels, 13 watts ing and reproducing amplifier, 13 watts recordWearite and Collaro decks, 45 gns ; IW $\mathrm{T} / \mathrm{PA}$ recording and replay pre-amplifier, 30 gns; both with valve voltmeter monitoring; type SB/1-15E high-fidelity amplifier, exceptionally wide tonecontrol system 40 mv sensitivity, 20 gns ; with two inputs and 3 -position gram filter, 22 gns , specialized amplifiers for the musical and 20watt industries incluaing the Muliard A M/FM stereo chassis, 6w output, only £20. N.19. Bel Sound Products, Marlborough Yard,
[0182 RECEIVERS AND AMPLIFIERS-
SURPLUS AND SECONDHAND
CR 100 communication receiver, good seen week-ends.-Penfold, 14, Kings Ave., Eastbourne. HRO Rx's. etc. AR88. CR100, BRT400 Service Ashville fjld Hall stock.-R. T. \& I. don, E.11. Ley. 4986. Hall. Ashville Rd., Lon-

TV RECEIVERS AND AMPLIFIERS
PHILIPS 17in projection televisions available. not as taken in part exchange, complete, but not Guaranteed; £9/15, originally ${ }^{\text {each. Tomlins. }} 127$ - 120 Hill. S.E.23. $[0343$ $\int$ nearly all makes, $45 /$ - each, carriage paid: 12 in televisions, needing attention, $£ 5 / 10$; 15 in , ¢9/10; write for list. Tomlins, 127. Brockley Rise. Forest Eul, S.E.23.
COMMUNICATION receiver speakers; brand Gited with volume control and transformer to match 600 -ohm line; a wonderful bargain at $35 /=$ plus $2 / 6$ part post and packing (G.B. only). WALTON'S Wireless Stores, 46, 47, 48 \& 49
Stafford St., Wolverhampton. LOUDSPEAKERSDSURPLUS AND
VOIGT speaker unlt and corner horn with Lane, Hitchin 3114, Herts. DYNAMOS, MOTORS, ETC-SURPLUS AND ILECTRO dynamic rotary convertor. DC phase, as new, six months' use only. cost £35: offers.-Box 1115 .

## TRANSMITTING EQUIPMENT-

TOR sale. sh.jrt-wave transmitter, conslsting olete with 75 ft mast, purchased new only 5 mom plete with 75 ft mast, purchased new only a ew months ago.-Enquiries to Dowsett Motorway, Contract D, Crick, nr, Rugby.

TEST EQUIPMENT-SURPLUS AND ${ }^{\text {[8279 }}$ A UTOMAT SEGONDHAND
A tracer, Industrial Electronics model curve neluding stabilized power supply, input am pliner, sweeping B.F.O.; $-10,000 \mathrm{c} / \mathrm{s}$ and complete osciloscope display unit, assembled and G.E.C. valve mill! voltmeter, 9 ranges, 15 mV to 150 V: $£ 12 / 10$.
SALFORD Electrical Instruments valve voltmeter, 5 ranges, 1.5 V to 150 V : £10.
MARCONI-EKCO TF 428 A, 5 ranges 1.5 V to $15 \mathrm{~V} ;$ £10. ${ }^{\text {MULLARD v.h. valve voltmeter, } 3 \text { ranges }}$ MULLARD V.h.i. valve voltmeter, 3 ranges
500 mV to 5 . V. £10.
G.E.C. frequency meter typo B.W. $391 A_{\text {, }}$ 4 ranges 0 to $45 \mathrm{Kc} / \mathrm{s}^{\circ}$ C20. King's College Hospltal Merteal School, Den mark Hill, Lordon. S.E.5. Tel. Brixton 4744 [8298


New developments in reproduction techniques necessitate the use of only the best components for a reproducing system. Make sure your transformers are not only the best now, but good enough in company with any new developments by specifying Partridge.


Over 40 types of High Fidelity transformers ovailable from stock. Prices from 36/rating 5.100 watts. Ask your dealer or write direct for new price list.
Partridge Transformers Led.
Roebuck Road, Chessington, Surrey. Phone: ELMbridge 6737-8.

## TEST EQUIPMENT-SURPLUS AND

 SECONDHAND$B^{\text {B }}$ RIDGE Megger, 500 V Evershed and Vignoles. good conaition; £20.-Box 1112. 8285 SIGNAL generators, oscilloscopes, output meters, valve voltmeters, frequency meters,
multi-range meters, etc., etc., in stock. $R$. $T$. \& I. Service. Ashville old Hall, Ashvilue Rd. London, E.11. Ley. $4986 . \quad$ [0056 MARCONI signal generator, $85 \mathrm{~d} / \mathrm{c}-25 \mathrm{~m} / \mathrm{c}$, $0-300 \mathrm{~V}$, With leather case, $£ 8$ : ammeter slmilar, 8 shunts, $0-450 \mathrm{~A}$. $£ 10$; both as new: Marconi Elt. 4440, 111, Eitham Palace Rd., Eltham.

## NEW COMPONENTS

Crystal microphone inserts with exceptionanteed newly made and boxed, 15/6, post free. Wadio-Aids, Ltd., Dept. W, 29, Market St. Watford, Herts.

COMPONENTS-SURPLUS AND
$R$ ECONDITIONED Tubes Service, Anderson Renfrew Renfrew, Scotland. (Sole atrents: Halrst St, Renfrew. 17 Mullard Type $43 / 64$ 87/5: 17in Mazda Type 171, £7/5: 14in Muiar Type $36 / 24$, , $66 / 5 ; 141 n$ Mazda Type $141, ~ £ 6 / 5$. TV set, all tubes guaranteed bright pictures all tubes carry 6 months replacement guarantee: above prices include carriage in Scotland.
Send money with order,
CDISWAN 12 H electrostatic tube, time base Z thyrotrons, H.V. condensers, all unused offered school lab, etc., on payment cost ou

[8302 advert.-Box 1150. HOW to use Ex-Gov. Lenses and prisms; Nos for $\frac{1}{1}$ and $2,2 / 6$ ea., 10 ertical En, $21 / 4 \mathrm{in}$ sq $3 / 6$ ea., Optical Con densers and Achromatic lens to suit 33/, lists | Essex. |
| :--- |

LLUSTRATED Catalogue No. 13 containing I over 450 items of Government surplus and model radio control equipment. $2 / 2$, refunded a purchase goods, $2 /$ overseas sea man. W.W., 93, North Rd.. Brighton. [0193

MAGSLIPS at low prices, fully guaranteed, $50 \mathrm{c} / \mathrm{s}$. unused each in tin, $35 /-$, post $2 / 1$; arge stocks of these and other types.-P. B Herts. Tel. 1851 . $1008{ }^{2}$ CATHODE ray tubes, used, but in good C working orcer, with months guar ntee, Mar and Mazda or equivalent types ins. also other sizes and types available on applicatlon to:-B.H.P. Distributors (London), Ltd.. 379. Staines Rd.. Hounslow. Middx. Tel.
Hou 5144 .

NEW GRAMOPHONE AND SOUND
TAPE recorders, Ferrograph, Vortexion, Reflectograph. Wearite, Brenell, Truvox, Dulc TAPE decks. Wearite, Brenell, Truvox, Dulc Harting, Sonomag Adaptatape (Collaro). AMPLIFIERS and turners, Leak, Quad, R.C.A., Duic, Dynatron; microphones, Resio, Acos and accessories; audio service faclilitles available. Rd., Liverpool, 23. Great Crosby 4012. [7749 OR February recommendation, a Unimiser see p. 178 , to go with the tape recorder you
bol31 CINE-VOX disc recording mechanisms for 56 gns . also stanplete tape/disc or direct chan nels from 50 gns .112 gns
DEMONSTRATIONS can be arranged in Lon-don-For full details write to K.T.S, Ltd. "Coplow," Park Rd. Braunton. N. Devon.
GLASGOW.-Recorders bought, sold, ex C changed, cameras, etc.. exchanged for recorders or
Argyle St., Glasgow, C.2.-Victor Morris.
(0201 Argye HIGH quality stereo amplifier mounted on set controls with knobs, 4 watts output, $£ 8 / 15$ also Monaural amplifier as above. baffle $12 \times$ Basildon Radio Co.i Itd., Manufacturers, 73. Cricketers Lane, Herongate, Essex. Tel. Herongate 214. [8272 COLLARO AC3/544 3 -speed gram units, 2 ampliner circuats. $£ 5 / 19 / 6$ post pald. Deccamatic ECL82 A.C. amplifers. with knobs. speaker and mains lead. $£ 4 / 2 / 6 \mathrm{p}$.D. Multi-
ratio single/push-pull output trans. with ioft ratio single/push-puil output trans. With 10ft


## GOLIDERINE EQUIPMENT  <br> precision SDLDERING instruments for the ELECTRONICS INDUSTRY

- Comprehensive range

Robust \& Reliable

- Light weight
- Rapid heating
- Bit sizes $3 / 32$ in to $3 / 8 \mathrm{in}$
- 'PERMABIT' or Copper
- All voltage ranges $6 / 7 \mathrm{v}$ to $230 / 250 \mathrm{~V}$
Prices from 19/6


## Illustrated is the 25 w

 3/16in replaceable bit modelshield.

British and Foreign Patents. Registered designs. Suppliers to H.M. and Foreign Governments. Agents throughout the world. Brochure No. S. 5 sent free on request.
Sole proprietors and manufacturers:
LIGHT SOLDERNG DEVELOPMENTS
LTD.
106 George Street, Croydon, Surrey Phone: CROy yon 8589

Grams: Litesold Croydon

- AERIAL EQUIPMENT. Poles, Masts,

Dipoles, Yagi, and Microwave arrays. lin.
Dipoles to 150 ft . Masts.

- CABINETS AND RACKS. -36in. to

96 in . high, standard 19 in , wide.

- CONDENSERS up to $10,000 \mathrm{mid}$. and

OUSES. Cartridge and E.5. $\frac{1}{8}$ amp. to 600 amps.
( INSULATORS. 80 different patterns. - LOUDSPEAKERS 3 in . dia. to 50 watt

Theatre Systems.

- METERS 2 in . to 12 in . dia. 120 different types.
- POWER SUPPLIES. Generators, Rectifiers, Vibrators, Inverters, Dynamotors from 2 volts 100 amps . to $36,000 \mathrm{v}$. $\frac{1}{2}$ amp.
RECEIVERS. 80 types available from $15 \mathrm{kc} / \mathrm{s}$ to $600 \mathrm{mc} / \mathrm{s}$, including portable, D.F. Table Rack and Pedestal.
- TEST GEAR, American, over 100 different types, Meters, Calibrators, Signal Gen erators, etc.
- TELEPHONE AND TELEGRAPH EQUIPMENT. Single- and multi-channel apparatus, filters, switchboards, power supplies, perforators, printers.
- TRANSFORMERS Audio and Power. 200 types from 2 volts to 18,000 voles and up to 15 kVA .
TRANSMITTERS. 60 different types
from UF-I Handle Talkie to G-50, 2,500 watts FULL LISTS OF OVER 1,000 DIFFERENT ITEMS AVAILABLE
All packing and shipping facilities


## P. MRRIS <br> ORGANFORD, DORSET

Telephone: LYCHETT MINSTER 212

NEW GRAMOPHONE AND SOUND
EROICA" RECORDING STUDIOS (Est. Ferrograph, Brenell (Mk. V and the marvellous lightwelght Three-Star); pocket 3 -way mixer, $£ 3$ posted; installations for industry and the home; tape/disc, etc--Recorder House, Peel St., Eccles, M/c. Eccles 1624. Director. Thurlow Smith. A.R.M.C.M. 10122 GRAMOPHONE AND SOUND EQUIPMENTFERROGRAPH $3 A / \mathrm{N}$ nearly new; £68; COLLARO tape deck. Mark IV, as new and C unused, sealed maker's carton; $£ 20 .-$ H. F. Nicholls, "Kookaburra," Wash Rd., Laindon, FERROGRAPH tape, 7 in Ferrograph spool, Kingsley \&e Co., 152. Tottenham Court Rd. (corner of Warren St.). London, W.1. Eus.

TAPE RECORDING. ETC.
TAPE to तusc, Queensway Recording Studios, corders serviced and for hire. Bay. 4992. R8eTAPE recorders for sale or hire.-Edrle rards Cross, Bucks. (Tel. Gerrards Cross 2908.) EASYSPLICE magnetic tape splicer makes price $7 / 3$.-Easysplice. 30 . Lawrence Rd. Ealing

「8179
$R^{\text {ENDEZVOUS RECORDS offer comprehen- }}$ Cheaflet from 19, Blackiriars St., Man-
$T$ APE to disc service, brand new cutting satisfaction for full details.-Sunderland Sound Services, 28. Viewforth Terrace. Fulwell, Sunderland.

TAPE to dise recording: Microgroove LP from 1 27/6, $78 \mathrm{r} . \mathrm{p} . \mathrm{m}$. from 11/-, also 45 r .p.m. 48 hour service: s.a.e. for comprehensive leaflet to-A. D. Marsh, Deroy. Sound Service, Little Place, Moss Delph Lane, Aughton, Orms-TAPE/DISC/TAPE/TRANSFER.-If quality LPs) consult Britain's oldest fuil-time transfer service ( 1952 rates); delivery 3 -5 days; our Onimixers will improve your quality, Sound
News, 10, Clifiord St., London, w.1. Reg. 2745. Walve cartons by valves
$V_{1 /- \text { for all samples and list.-J. prices; send }}$ makers, 75a, Godwin st., Bradford, \& A. BoxVALVES WANTED
NEW valves wanted, any quantity, best cash Lane, West Bromwich, Stafis. Tel.' wes. 2592.
A th types of valves British or American, A transmitting and recelving; keenest cash prices paid. What have vou to offer?-Write
or call Lowe Bros., 9a, Diana Place, Euston $\begin{array}{lll}\text { or call Lowe Bros. ga, Diana Place, Euston } \\ \text { Rd.. N.W.1. } & \text { Tel. Euston } 1636-7 \text {. } \\ {[7848}\end{array}$

## WANTED, EXCHANGE, ETC.

CIRCUIT diagram and working instructions
for Televue A33.-Box 0743 .
8252

EX-GOVT. engine-driven generators $1,200 /$
Wave band switch, 4-way, suitable for vue Garage, Blackpool. A PROMPT cash offer for your surplus brand instruments, etc.-R.H.S., 155 , Swan Arcade. instruments, etc.-R.H.S., 155, swan Arcade,
Bradford 1. $W_{\text {ANTED, }}$ vacuum impregnating plant, re-nation-Electric Windings (London). Ltd.. 245. Mation-Electric E.1ndings (London). Lia.. [8210. Wanted all types of communications reR. T. \& I. Service, Ashville Old Hatl, Ashville Rd., London, E.11. Ley. 4986. [0163
 frequency meters and spare parts for all apove: best cash prices.-P.C.A. Radio, Beavor Lane,
[0079
Hammersmith, W.6. URGENTLY wanted, manuals or instruction books, data, etc., on American or British
Army, Navy or Air Force radio and electrical Army, Navy or Air Force radio and electrical
equipment. Harris, 93 Wardour St., W.1. equipment.-Harris, 93, Wardour St.,
Gerrard 2504. $W$ ANTED, good quallity communication RYS radios, record players, amplifiers. valves. components etc. 4638 Miller's Radio, 38a. Newport Court. Lelcester Sq.. W.C.2. Prompt cash for the purchase of surplus
stocks of televisions, tape recorders, radios, amplifiers anu domestic electrical appliances of every descrlption; substantial funds avall-able--Spears; 14 , Watling St, Shudehill Man-
chester, Blackiriars 1916. Bankers: Midland Bank, Ltd.

0216
MAINS REPAIRS AND SERVICE
Vormers to any specification new transMOTOR rewinds and complete overhauls: firstclass workmanshilp: fully guaranteed.
F. M. ELECTRIC
Eo.

## LYONS RADIO

ELECTRIC SOLDERING IRONS. 25 -watt instrument type with pencil bit and warning light in handle, for by famous maker. Llat price $22 / 8$. OUR PRICL ONLY 18/6, post 1
E.H.T. TRANSFORMERS. Primary 230 v. 50 cps Secondary 3,500 v. at 10 mA . Overall size 8 fin.
high $x$ ifin, sq. Ex Govt., as new. PRICE ONLY $29 / 6$, pout $3 / 6$.
L.T. TRANSFORMERS. Primary $180 / 230$ v. 50 cps Becondary 4.2 r . at 10 A. twice. Bize $6 \times 6 \times 5$ in


MARCONI'S SIGNAL GENERATORS TYPE 517F Operate fmm 200/250 F. A.C. Mains. Produce variable B.F output which may be sine or square ocillator or pulse modelated by an extemal ancernal Tualng dial callbrated in frequency and in addition carries an arbitrary scale of $\mathbf{1 0 0}$ divisions. Carrie evel monitored by un $0 / 100$ mionn-amp meter. Piaton attenuator permits a ruige of 100 dB below and 10 do above normal lavel bo obtained with scemracy ants calibrited dial. Frequency range $100300 \mathrm{Mc} / \mathrm{s}$ Valves employed are one each MU/12/14. RL18 A50, las. Euppled goch condition whi creul arriage 19/6. BATTERY CEARGER OR MODEL RAILWAY
METAL RECTIFIERS. Full wave bridge type to provide an output op to 12 v. D.C. 1 amp size $7 / 6$ $2 \mathrm{amp} 10 / 6 ; 4 \mathrm{amp} 17 / 6 ; 6 \mathrm{amp} 22 / 6$. Poot 1/6. TRANSFORMERS. Primary $200 / 250$ v. 50 cps secondary tapped at 3.5 ₹., 9 v. and 17 v. for pro viding a D.C. output when used with above rectifler 12 v., 6 V. or 12
 (tapped 9 and 17 v.) 26
provided if requested.
3 GOLDHAWK ROAD (DEPT, M.W.), SHEPHERD'S BUSH, LONDON, W. 12

Telephone: Shepherd's Bush 1729

## - ENSTEN'S <br> ARGAINS

Vibrapacks, D.C. Input 6 v to $250 \mathrm{v}, 60 \mathrm{~mA}$., smoothed fikered, cased, 22/6; ditto 12 v. input, 20/-. (Postage 10/6: ditto, 12 v . input, 11/6. (Post 3/6). Rotary Converters, 24 ₹. D.C. to 50 Y. A.C. 50 O.. 4 amps Rail 7/6), 40/\%. Indicator BC929A with CRT 3BP1 and 8 valves, new (rail 7/6), 57/6. Nedinm Wave $1.5 \mathrm{mols})$, $97 / 6$. Converaion data for nbove to radio (12 v.) with circult, 1/9. I.P. Strip 373, 3/EFY1, 2/EF92, EB91, brand new. 37/6. Power Pack. 230 nput. Output: D.C. 300 v. $80 \mathrm{~mA}, 12$ v. ${ }^{1}$ A., 34 v Outputs: D.C. 230 r., $60 \mathrm{~mA}, .36 \mathrm{v} .100 \mathrm{~mA}$. aud A.C 6.3 v . New, caved (P.P. 7/6). 2\%/6. Dives E.M R1155 " N" type, 10/6; Admiralty 200 : 1, 0-100 dial 4in. dia. 5/6. RF28t27. Good condition. Good dials Post $8 / 3.18 /$ - Metal Rectifers. HW 270 v. 80 mA D.C. $6 / \mathrm{m} ; 120 \mathrm{~mA}$. 8 quare $4 / \%$ HW 300 v .30 mA . D.C
$3 / 6.90$ v. 30 mA . $2 / 8$. EW 1 kV . 30 mA , $7 / 8$. Meter,

 \%/6. Relays, Magnetic Devices type; 4 make and oreak, 10 A . contacts, $12 / 24 \mathrm{v}$. coil, covered, $7 / 6$. G.P.O. 3000 type, 2 k . coll. DP c/o. 4/8. U.B.A. $6 / 12$ V., sembrotary action, large SILVER contacts,
DPDT and lesser BPDT and BPET, 7/6. 6 F. mall, 2 break, $30 \mu, 1 / 6$. Slemens hi-speed, $250+$ 8/6. Switches Toyme BPDT, ncw a/ DPDT 14000 ohms $1 / 1 \mathrm{~K}$, U.S. A., metal 2/6. Translormers (3/6 postage). 230 ₹. nput, 38 watte, $4-5 \cdot 6$ r.. outputs twice, 8/6. Ioput 230 v. Outputa $250-0-250 \mathrm{v}, 30-60 \mathrm{~mA} .6 .3 \mathrm{v}, 1.5 \mathrm{~A}$ 5. 2 A., new, 7/6. Input 230 v. Outputs: 620.550 -375-0-375-550-620 v. Simultaneous 250 and 200 mA . and $210 / 230 \mathrm{v}$. Out pute: 10 v (deld G.B.), $52 / 6$. input 210/230 v. Out pute: 10 F. 6 A. C.T. und 6.3 F 12 H., $150 \mathrm{~mA} ., 9 / 6,8 \mathrm{H} ., 250 \mathrm{~mA} ., 10 / 6,9 \mathrm{H}, 50 \mathrm{~mA}$ 7/6. Meters, 3in. dia. flush; 1 mA . fid., Acaled o/5. ma. $15 /=$; $5 \mathrm{~mA} ., 100 \mathrm{miA}$., 200 mA ., 300 mA . calan., each 8/6; $3 \frac{1}{2} \mathrm{~m}$. f1. rd., 20 tmicro A. shor caled. 45/-. Relay Units with 7600 type: 1 malasture nd 2 valves 8CA, 25/= (p.p. 3/6). Indicatora with fir. CaT and 12 velves, new, 30!- (rail 7/8).
LIST AND ENQUIRIES: S.A.E. pleage! Terme:
O.W.O. postare oxtra. Inmedifte despatch.
W.O. postare oxtra. Immedlate despatch.

[^12]

The above illustrates our Type wO 866. Extra wide frequency range 20.30 W . U.L Output Transformer. 6,600 A A, 43\% taps, 4 -section secondary for various loads.

Gilson transformers have been chosen by research establishments in the Aircraft, Motor, Radio and Electronic industries also by Government departments, to whom the utmost degree of reliability is essential.
We could enlarge on the qualities of our products but prefer to let the above facts speak for themselves.

Below we list some of our

## STANDARD TYPES \& CURRENT PRICES

MAINS TRANSFORMER8-With wire ends. WO 839. $300 \cdot 0 \cdot 300 \mathrm{~V}$. $60 \mathrm{~mA} .2 \times 6.3 \mathrm{~V}$. 1 A. 8200
W0 839/250. $250 \cdot 0.250 \mathrm{~V} .65 \mathrm{~mA} ., 2 \times 6.3 \mathrm{~V}$. 2A. With tag panel.
WO $741 \mathrm{~A} / \mathrm{B}$. $\quad 300 \cdot 0 \cdot 300 \mathrm{~V}$. $150 \mathrm{~mA} ., 6.3 \nabla$., $5 \mathrm{~A}, \mathrm{C} . \mathrm{T} . ; 6.3 \mathrm{~V} .1 \mathrm{~A}$, tapped at 5 V .2 A .
WO 941. For the Williamson .. $\begin{array}{rlll}£ 3 & 0 & 0\end{array}$

## CHOKES

WO $805 / 5$. 5 Hy .65 mA . d.c.
106
W0 942. Multi-purpose Choke, 70 Hy @ 5 mA . d.c. dropping to 15 Hy . @ 40 mA . d.c. $\begin{array}{lrr}\& 1 & 1 & 0 \\ 81 & 16 & 0\end{array}$ wo 724. 10 Hy . 150 mA . d.c. .. §1 160
OUTPUT TRANSFORMER8 - with panels WO 696. P-P pentode 6 or $8 \mathrm{k} \Omega, 12 \mathrm{~W}$.

wo 710. P.P U.L. $7 \mathrm{k} \Omega, 12 \mathrm{~W} . .$| \&2. 10 |
| :---: | W0 892. P-P U.L., $8 \mathrm{k} \Omega, 15 \mathrm{~W}$. .. 2326

WO 866. P.P U.L., 6.6k $\Omega, 30 \mathrm{~W}$. 5126
WO 767. With solder tags on coil. Single ended $5 \mathrm{k} \Omega, 3 W . \ldots \ldots \ldots$ \& 10
WO 1340. P.P U.L. $9 \mathrm{k} \Omega, 7 \mathrm{~W}$. for Stereo, Wire ends
$\$ 250$
200 mW . TRANSISTOR TRANSFORMERS Standard: W0 929 Driver ....... \&1 00 $50 \sim-20 \mathrm{k} \sim$ WO 930 Output .... $£ 10$ MINIATURES for Printed Circuits WO 1072. Driver \& WO 1073 Output. $130 \sim 20 \mathrm{k} \sim$

28/- per pair
Please write for information leaflets on the above.
N.B.-Retail sales through stockists or by post only. Our offices and works are closed Saturdays.

## R. F. GILSON LTD.

11a8T. GEORGE'8 RD., WIMBLEDON, 8.W. 19
Phone: WIMbladon 5965
Makers of HEAVY DUTY MAINS, NEON and FLUORESCENT LIGHTING TRANSFORMERS

TSE REPAIRS AND SERVIGE
UE the market.-Details, 170 , London Rd., Southend-on-sea.

## armstromg

# CONVERT ${ }^{\text {cos STEREO }}$ 

## WITH THE NEW

 STEREO-CONVERTER AMPLIFIER
price $£ 19.12: 6$
This equipment consists of a stereo control unit with a single high fidelity 6 -watt pushpull amplifier. The illustration shows the two units joined together but they can be separated and an interconnecting lead supplied if required. Designed to operate with a radiogram chassis or amplifier for stereophonic and monaural reproduction on records, tape and radio, it provides all that is necessary to convert your existing system for stereo with the addition of another loudspeaker and a stereo pick-up.

The control unit and amplifier are available separately if required, or two amplifiers can be used with the stereo control unit to form a complete monaural and stereophonic amplifier. The three units may be mounted separately or they may be plugged into one another to form a single compact unit.

## PRICES

PCU21 Control Unit £9.15.0
A6 Amplifier
£9.17.6
The price of the complete StereoMonaural Amplifier (1 Control Unit and 2 Amplifiers) is $£ 29.15$. 0

Post this coupon or write for descriptive literature and details of Home Trial facilities, Credit Terms and Guarantee to Armstrong Wireless \& Television Co. Ltd., Warlters Road, London, N.7. Tel.: NORth 3213.

NAME..

ADDRESS

WFS
Demonstrations at our Holloway Showroom from 9 unt:l 6 weekdays and Saturdays


## DUODE NATURALNESS

For good stereo, live stereo, really natural stereo, you rieed two new Dusdes. If you are lucky enough to own one now, then just add one more! If yours is an older model, it can be brought right up to date to match the new, at a modest cost. No Duode is ever thrown away.
If you own a a recent foam surround 12B-C or $12 C$, the new $12 D$ and $I 2 E$ will match them perfectly. To the earlier cloth surround models we can fit foam. The older 148, 148A, 150 models need the complete new frame assembly, but ALL can be brought to 1959 stereo standard.
(Every Duode is a first-class investment in good sound)

## VORTEXION THEConoms <br> P.A. Equipment. Petsonal Recordings etc. Tape to Tape/Dise. Service SALE OR HIRE <br> Griffiths Hansen (Recordings) Ltd. <br> 24/25. Foley Street, London, W.1. MUSeum 2771

## ODDIE FASTENERS

Pat. 507249


THE FASTENER WITH ENDLESS APPLICATIONS-SIMPLE-POSITIVE SELF-LOCKING. MADE IN A VARIETY OF TYPES AND SIZES. SPECIAL FASTENERS TO SUIT CUSTOMERS' REQUIR EMENTS. WIDELY USED IN THE RADIO INDUSTRY

Illustroted brochure and other information will gladly be sent on request.
Oddie, Bradbury \& Cullitd., Southampton Tel.: 55883 Cables: Fasteners, Southampton

SCUNTHORPE HATIONS VACANT
5 COMMRTE HOSPITAL MANAGEMENT LINCOLNSHIRE Radlotherapy Centre (50 PHYSICS Laboratory Technician
DUTIES concerned with application of Physics to Medical problems, maintenance and service of electrical equipment including high voltage
$X$-ray sets and electronic equipment used in radloactive isotope work. Educational qualifications Inter B.Sc. or ONC (Elect. Eng.) or
equivalent but practical experience considered equivalent but practical experience considered in 495 to $£ 625-39-h o u r$ week. Form of application from Group Secretary, war Memorial
Hospltal, Scunthorpe.
$[0321$ COTTAGE LABORATORIES, Ltd., have the 1. Coil Shop Foreman for small shop doing 1. Coil Shop Foreman for small shop doing
development work and short production runs;
must be experienced on " C , core coils and small coils and filters.
2. Technical Assistants for the construction and simple testing of experimental electronic assemblles. Draughtsmen for electronic and electro-mechanical work to Service requirements. Con ial atmosphere and ideal working conditions; five-day week, good holidays, canteen, medical services, recreation and sports facillties on thre premises; bus routes pass the door-tories, Ltd., Portsmouth Rd., Cobham, Surrey. or telephone Cobham 3191. FEDERAL BROADCASTING CORPORATION APPLICATIONS are invited for following posts. Appointment on probation for one year in first ment. Contributory pension scheme. Salary scale $£ 800$ rising to $£ 1,400$ a year. Free passages on flrst appointment and assistance towards family passages. Liberal leave on full
salary. Holiday benefit fund. Candidates, not salary, Holiday benefit fund. Candidates, not
over 35 , should possess at least C . $\& \mathrm{G}$. Inter. over 35 should possess at least $C$. \& G . Inter.
Cert. with Radio I or equivalent. TECHNICIAN-transmitters (M2C/50194/WF). Candidates must have a sound therretical and practical knowledge of broadcast M.F. and H.F. transmitters and ancllary equipment. They should have had at least 3 years' practical experience on the maintenance and operation of such transmitters with a reputable broadcasting or telecomms. organisation. Knowledge
of feeders. gerials and methods of construction or feeders, aerials and methods of construction. tical knowledge of slmple constructional workshop methodis desirable.
TECHNICIAN-installation (M2C/50206/WF). CANDIDATES, preferably single, should have a good general knowledge of broadcasting
engineering plant. They should have specialensineering prant. They should have specialised knowledge of modern practice in cape able and versatile fin the use of tools and workshop equipment.
WRITE to the Crown Agents, 4, Millbank, London, S.W.1. State age, name in block letters, fuli qualificatlons and expertence. and quote reference shown against the post applied
for.
A EROPLANE and Armament Experimental A Establishment, Boscombe Down. requires
INSTRUMENT And Electrical Crafstmen-for laboratory and aircraft instaliations work fitting and maintenance of alrcraft and ground installations. and Engine Fitters, Fitters/ Armourer, Instrument Makers for aircraft servate of pay for 44-hour 5-day week 189/8 RATE of pay for 44 -hour 5 -day week $189 / 8$
plus 10 - merit lead. or $189 / 8$ plus $38 /-$ merit lead according to experience. Prospects of re-
assessment of rate within three months. any increase awarded will be back-dated to date of entry. Merit lead can rise to $70 /$-id TWo
weeks, 88 hours) paid annual leave. Paid sick leave scheme. Hostel accommodation available for single or unaccompanied applicants.-Apply to Air Commodore (Civilian Administration Officer), (WW), A. \& A.E.E., Boscombe Down.
Amesbury, Wiltshire. VACANCIES exist in a government establishPrincipal in $_{\text {Scientific }}$ Nond Sucinghamshire for Officers. gree in Physics or Engineering, or equivalent qualifications, and have at least three years experience of working on radio or electronic equipment
GRADING according to qualifications and ex-
Serience. Principal Scientific Officer £1,370 rising to £1.950. Senior Scientific Officer §1,130 rising to £1.330. British subjects or Citizens of the Irish Republic born within the Commonwealth, or in the Irish Republic of CLOSING date for pplications 10 da cosing date for applications 10 days from the appearance of this advertisement.
WRITE, giving age, quallications and experi-
ence to: Box 0823 .

HOUSE available for first class and fully extrict Must be able to work on all types of trict ${ }^{\text {Must }}$ be able to work on all types of
repairs without supervision. Driving licence essential; permanent situation; superannuation scheme; travelling expenses incurred attending
interview will be repald.-Box 1120. [829]

## GONDON CENTRAK isADIO STOREK

## VENNER TIME SWITCHES for awitching

 on/off Lghting and power, Reconditioned as now .In iron-clad cases, 10 amp, $75 /-15$ amp. $85 / \%$; 20 imon-clad ca
20 amp . $25 / 5 / \mathrm{m}$
PHOTO-ELECTRIC CELLS, Type GB18. These cells are the gas-Alled type with caesium Cathode. Made by Clatel. Mindmuma sensit|vity $100 \mu \mathrm{~A} / \mathrm{lumen}$ work rea 16 sq . cm . Sultable for 16 mm . Home Cinems area 16 sq , cm , Sulabie for 16 mmi . Home Cinema Matching, Burglar Alarme, Automatic Counting, Doo Opening, etc., 30 -.
TELEPHONE DIALS. 0-9. Suitable for inter-office and factory installations. With fixing mount, fitted with connecting tags. 21/-.
SYNCHRONOUS A.C. MOTORS (geared meter move ment(s), $200 / 250 \mathrm{v}$. For models, ete. Approx. size $3 \times 3 \times 3$ in., weight 1 lb ., 10/-
3-OHM P.M. SPEAKERS. In good working order 10in. 27/6; 8 in . $9 / 6 ; 6 \mathrm{in}$. 9/6; 5in. 11/6.
WESTERK ELECTRIC EXTENDING TELEPEONE with single earplece and headband, complete with crew-fixing table stand, Approx. 22in. extension. Braid new, boxed, 38/6.
AVO UNIVERSAL TEST METERS. Reconditioned A new. In pertect working order. Model 40 £10/10/-. Model Z £9/9/-.
ELLCTRICITY SLOT METERS ( $1 /$ - In slot), for A.O mains. Fixed tariff to your regurements. suitable or hotels, etc. 10 A. 84/-, 15 A. 94/-, 20 A. 104/ther amperages avalable. Neconditioned tis ne QUARTERLI ELECTRIC CHECK METERS. Re conditioned as new. $10 \mathrm{~A} .42 / 6,15 \mathrm{~A} .52 / 6,20 \mathrm{~A}$ 37/6. Other amperages available
MIRROR GALVO'S. Instrument resistances, 190 ohm. External resistance 1,400 ohm. Sensitivity 2,200 t.M.S. NEW, in in. $83 / 15$
VENNER \&-DAY CLOCKWORK TIME SWITGHES 230 volts, 1 amp., 3h $\times 2 \frac{3}{4} \times 2 \frac{1}{2}$ in., with key and TFNOL BEEFTS 2 .
UFNOL 8 HEETS. in. thick, $47 \mathrm{lin} \times 471 \mathrm{in} ., 82$
All prices include carriage.
23 IISIEST. (GER, 288) [IONOON, W.C. 2
Closed Thursday 1 p.m. Open all day Saturday


## a.c.c.

## QUARTZ CRYSTAL UNITS

The Q.C.C. range of quartz crystal units covers the complete frequency spectrum from $800 \mathrm{c} . \mathrm{p} . \mathrm{s}$. to $45 \mathrm{Mc} / \mathrm{s}$.
All the standard evacuated glass, metal case, and phenolic moulded mountings are available.
We can offer prompt deliveries at competitive prices and a technical advisory service on circuitry and other problems is always at your service.
Our 1959 leaflet, giving full details of the complete range, together with fully dimensioned drawings of alf the standard mountings, has just recently been published.
Why not write for your copy today?
. WHEN IT'S QUARTZ CRYSTALS
THINK OF Q.C.C. FIRST
The QUARTZ CRYSTAL Co. Ltd. Q.C.C. Works

Wellington Crescent,
Telephones
MALden 0334 \& 2988

# EDDY'SumnulTD. (Dept. W.W.) 172, ALFRETON ROAD NOTTINGHAM 

TRANSISTORS, Yellow/green spot 6/II. R.F. ellow/red spot 13/11. Post 4d.
ACOS CRYSTAL PICK-UPS.
sapphire styli) 29/1I. Post 2/6.
MORSE TAPPERS. Good quality, plated contacts, adjustable gaps, heavy duty. Special price 3/6. Post 9d.
RECORDING TAPE. $1,200 \mathrm{fr}$. Plastic reels, 7 inch. 10/11. Post 1/-.
SUB-MINIATURE CONDENSERS (Transistor). 1.6 mfd .5 mfd ., $10 \mathrm{mfd} ., 32 \mathrm{mfd}, 2 / 6$ each. Post 4d.
TUBULAR WIRE END CONDENSERS (not Ex-Govt.), 8 mfd , $450 \mathrm{v} .1 / 9.8-8 \mathrm{mfd} .450 \mathrm{v}$. $2 / 6.16 \mathrm{mfd} .450 \mathrm{v} .2 / 9.16-16 \mathrm{mfd} .450 \mathrm{v} .4 / 3$. $32-32 \mathrm{mfd} .350 \mathrm{v} .4 / 9.32 \mathrm{mfd} .450 \mathrm{v} .3 / 9.16-8 \mathrm{mfd} .$, 450 v. $3 / 9.25 \times 25 \mathrm{mfd}$. Midget $1 / 3.50-50 \mathrm{mfd}$. 400 v. $6 / 11$. Post 6 d .
NEON MAINSTESTER/SCREWDRIVER. 4/6 each. Pose 6d.
GERMANIUM DIODES $1 /-$ each. 10/- dozen. Past 4d.
ACOS CRYSTAL MIKE INSERTS, $4 / 11$ each. High Quality. Can be used for Tape Recorders, Baby Alarms, etc. Post $6 d$.
JACK PLUGS. Standard type 1/II. Post 4d B.S.R. MONARCH 4 SPEED AUTOMATIC RECORD CHANGER. Type UA8. Complete with High Fidelity turnover head. Capacity of 10 records, plays 12 in ., 10 in . Tin. intermixed in any order. 78, 45,33 and 16 r.p.m. A.C. Mains 100-250 v. $\mathbf{6} / 119$ 6. Carriage 5/-

## MIDGET BATTERY ELIMINATORS.

convert most types portables to mains operation $57 / 6$. Post $2 / 6$. Size only $3 \frac{3}{4} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$. $\times 1 \frac{1}{1} \mathrm{in}$. extremely small (Please state make and model No.).
GUITAR PICK-UP "The Plectro." Super Hi-Fi non-acoustical, universal fitting 3in. $\left.x\right|_{\text {in }} \mathrm{in} . \mathrm{x}$ tin. High output. Complete with lead and plug.
Full and easy instructions, $39 / 11$ each. Post $1 /$ All above are New and Guaranteed.

AZI	12/6	EF91	6/9	$1{ }^{1} 5$	$10 / 6$
AZ31	10/-	EL. 41	9/6	IR5	7/6
B36	15/6	EY5I	12/11	155	$7 /-$
CY31	12/11	EY86	12/6	1 T4	$5 / 6$
DAF96	8/6	EZ80	8/6	3D6	4/6
DF96	8/6	EZ81*	8/6	3Q5GT	$9 / 6$
DL96	8/6	GZ32	12/6	5U4G	$6 / 6$
DK96	8/6	KT33C	9/6	5Z4G	101-
DM70	6/6	163	6/-	6AG5	5/6
EBC41	9/6	MUI4	$91-$	6B8G	2/11
EBF80	9/6	PCC84	8/6	6816	8/6
ECC81	8/-	PCF80	9/-	6 C 4	5/11
ECC82	8/-	PL8I	161-	6 F 1	12/6
ECC83	$9 /-$	PL82	8/6	$6 \mathrm{~F} / 3$	$12 / 6$
ECC84	9/6	PL83	10/6	6K7G	$2 / 11$
ECC85	$9 / 6$	PY80	$8 /-$	6K8G	7/6
ECH42	9/6	PY84	8/6	6L7G	6/11
ECH8I	8/6	PY82	9/-	6SN7GT	5/9
ECL80	13/6	T004	12/6	6V6G	5/11
EF40	14/-	U25	$17 / 6$	6V6GT	6/6
EF41	9/-	UBC41	9/6	6 $\times 5 \mathrm{GT}$	$6 / 6$
EF42	11/-	UCC85	$9 / 6$	12AT6	$10 / 6$
EF50	3/-	UCH42	$9 / 9$	25A6G	11/6
EF50(R)	4/11	UF41	8/6	807(B)	$3 / 9$
EF80	7/11	UL41	$9 / 6$	807 (USA)	5/6
EF85	7/-	UY41	$8 /-$	954	1/6
EF86	14/-	UY85	8/6	955	3/11
EF89	$9 / 6$	IC5	12/6	956	2/11

## NEW AND SURPLUS GUARANTEED VALVES

## All Tested Before Despatch.

C.W,O. or C.O.D. only. S.A.E. with all enquiries. Postage and packing 6d per valve extra. Over 63 free.
Any parcel insured against damage in transit for only 6 d . extra per order. All uninsured parcels at customers risk.
Send $1 /$ for 56 page illustrated catalogue.

## SITUATIONS VAGANT

Television bench and field engineers reparts of the british Isles: for varancies in most With highest salaries plus bonus for suitaple DESIGN and development of V.H.F. and London, requires man with energy and near tive to taka charge of technical side; proven background essential.--Full particulars and salary required to Box 0850 .
F. \& Eake charge, require expertenced engineer vironmont take charge of test room, engaged on environmont testing of electronic components;
good salary and prospects. Apply in writing good salary and prospects-Apply in writing
with details of past experience and qualificaWith details of past experience and qualifica-
tions, 25, Bickerton Rd., N.19. CAREERS IN TELECOMMONICATIONS. The to men between the ages of $17 \%$ and 33 years for a career in telecommunications. Free training on full pay in the latest techniques and equipment is given in the following trades:
TELEGRAPH TECHNICIAN
TGLEGRAPH TECHNICIAN.
Guaranteed Trade Tralning or Guaranteed is oftered for RADIO TECHNICIAN
LINE TECHNICIAN.
Employment varies from handling wireless sets and communication equipment used in the circuits between the commects for long range The training and experience gained are valuable assets on return to civilian life. Promotion motion to Warrant Officer or Foreman of Sionals, and to commissioned rank as Technical Officer, Telecommunications.
A desirable qualification is an apprenticeship in Radio Engineering or G.C.E. in technical subjects, but men with a reasonable standard of education and intelligence with abinty in mathematics and mechanical aptitude will be considered. For further details, write to War
Office. MP6, London, S.W.1. $\mathbb{R}^{\text {EQUIRED }}$ for servicing of electrical equipspecial study young technician having made special amat radio enthusiast with experience or mechanical engineering; living in London area: some knowledge of German useful.-Write 1159 Box
MEDICAL RESEAROH COUNCIL require a
Wi technician or senior technician at the Wernher Research Unit on Deafness, King's College Hospital Medical School, Denmark Hill, London, S.E.5, to assist in acoustical research: electrical, radio or mechanical experience
SALARY scale: technician £515-£630; sentor technictan $£ 620-£ 840$ plus London weighting. APPLICATIONS stating qualifications and ex-
perience to be sent to the Director at the above perience to be sent to the Director at the above
address.
[8297 address.
SENIOR Test Engineer required. Higher Sal Natonal Certificate, or equivalent technieal education Some experience of final inspection of high-grade instruments essential. Apply in writing to Electronic Instruments, Ref.: STE/WCB/D.
CNGINEERS with some five vears practical E Experience of radio frequency design work required for interesting new project in labora-

tory situated in South West outskirts of London, pension scheme. Write giving full par| ticulars of experience and salary required to |
| :--- |
| Box 0742 . |
| 8253 | Box 0742 .

TECHNICAL writer required for compllation and preparation of catalogues, technical data sheets. etc. ${ }^{\text {also }}$ to undertake press
lialson work; interesting and well paid post with good prospects to man with some experi-ence.-Apply Sales Director, N.S.F., Ltd.
Alfred Place, London. W.C.1. INTERFSTING position open with an important cinema organisation for a young enthusiastic engineer with practical electronic experience in a new and expanding field in the within the British Isles: state age, education. training, experience and salary required to- Box ELECTRONIC Inspectors required, Southgiven to applicants having wide, practical experience of test methods and equipment backed by reasonable theoretical knowledge: salary according to ability, ranging from £600 canteen, sports and social club facilities. - Write canteen, sports and social cub facilies.- E.C.2.
R ADIO Technicians required by International nent and pensionable posts. Normally tax-free, inclusive salary in local currency varying with differentlals. U K leave free air passages and insurance. Kit allowance. Qualified candidates to whom replies will be sent write to Personnel Officer. 40, Park St.. W.1. $A^{N}$ interesting job as a laboratory assistant pleasant surroundings in Maidenhead. Applications are invited from young men who have completed their National Service and have reached the standard of Advanced level G.C.E. in Physics with some electronic experience, cants should glve detsils of age, education and experience, and in the first instance write to
[8184
Box 8981 .

## From the NEW "Q.P." RANGE <br> 1Quantry Production <br> by STAMEORD

Product on this new Special Range are veચeered in Tola and can be polisbed to match "Q-Pian" walnut and oak. Also light walnut asd mahomy. Uanogany outs or modifications. Polished samples sent on request.


QP.E\%. Offering maximum value at minimum cost, this attractive cabinet will house any autochanger or frans28 in . $x$ 14in. Ample space ior most power amplifers controls and FM tuners. Lower section-storage for approx. 220 12in. L.P.s. Price $£ 14 / 19 / 6$ or $45 /$ - deposit and 9 monthly payments of $30 / 8$.

FROM OUR STANDARD RANGE
These standard cabinets are veneered in selected Oak,
Walnut or Sapele Mahogany. polished matt or bright
In a wide range of colonrs. Patterns sent on request.


PRJCE SR2/10/- Q.P.58
Size 38 in . wide, 30 in . high, $17 \frac{1}{2} \mathrm{Ia}$. deep. Motor
 deposit and $\theta$ monthly payments of 45/9.
Our new catalogue will be sent on request by return Correspondence only, to A. L. Etamford (Dept. C.4), 20 College Parade, Salusbury Road N.W. 6

These modele and many others ean be inspected at our showrooms (Bee address below). Business hours 9.30.6 p.m. Late night Wednesday. Open all day
Gaturdav. Hear Ingtant comprisona of the leading Saturday, Hear Instant comparisona of the leading illustrated catalogue for full details of dozens of new designs. Ensy oredit available.
We spechalize in supplying and fitting into our cabinete any equipment currently available. Dellvery England
and Walea, 12/6. Sootland, N. Ireland 25/\%.

## SHOWROOMS

A. L. STAMFORD (Dept. ©.4), 84/88 and 98 Weymouth Terrace, off Hackney Road, London. E.2.

TELEPHONE: SHO 5003
DIRECTIONE:
No. 6 bus from Liverpool Street, book to Odeon, Eackney

## AUDIO

## MEASUREMENTS

By Norman H. Crowhurs
The sage of the world of sound tells you about the test equipment you need for efficient audio measurements. He ex plains measurements techniques for amplifiers, sransformers, pickups and arms, zurntables and changers, tape recorders and microphones.
23/-. Postage I/-
SERVICING TRANSISTOR RADIOS by L. D'Airo, 23/-. Postage 1/-
AN ELECTRONIC ORGAN FOR THE HOME CONSTRUCTOR by A. Douglas. 15/-. Postage 9d

TELEVISION ENGINEERS' POCKET BOOK by J. P. Hawker. 12/6. Postage 6 d.
BASICS OF DIGITAL COMPUTERS by J. S. Murphy. 3 vols. Ser 52/6. Postage 1/3
TELEVISION SERVICING HAND BOOK by G. J. King. 30/-. Postage $1 / 3$ INTERNATIONAL RADIO TUBE ENCYCLOPAEDIA by B. B. Babani 1958-9. 63/-. Postage 1/3.
RADIO VALVE DATA 6th. Ed

## THE MODERN BOOK CO.

## 19-23 PRAED STREET LONDON, W. 2

BRITAIN'S LARGEST STOCKISTS OF BRITISH AND AMEPICAN TECHNICAL BOOKS

PADdington 4185. Open 6 days $9-6$ p.m

NEW G.E.C., S.T.C.AND"WESTALITE" SELENIUM RECTIFIERS. Largest L.T. range in Ge. Britain. ONLY Makers' LATEST GOODS supplied NOT Surplus. S.T. \& C. E.H.T. K3/15, 5/\%; K3/45, 9/4; $\mathrm{K} 3 / 50,9 / 10 ; \mathrm{K} 3 / 100,16 / 8$; all post 4 d . extra. BRIDGE CONNECTED FULLWAVE. $17 \mathrm{v} .1 \mathrm{a}, 13 / 4 ; 1.5 \mathrm{a} .26 / 6 ; 3 \mathrm{a} ., 30 / 6 ; 4 \mathrm{a}$. $38 /-; 5$ a., $38 / 6$, all post 6 d .33 v . I a., $22 / 9$; 1.5 a., $45 /-i-3$ a. $54 /-; 5 \mathrm{a}, 068 /-;$ all post $1 / 6$. 54 v. 1 a., $33 /-1.5$ a. $62 / /{ }^{2} 2$ a. $74 /-; 3$ a. $74 / / ;$ 3 a. $95 /-5$ a. $124 /-100$ v. 1 a. $61 /-1.5$ a $112 /-2 \mathrm{a}, 134 /-: 3 \mathrm{a}, 134 /-; 5^{\circ} \mathrm{a}$. $180 / \mathrm{F}$, all pose 21.

BRIDGE CONNECTED WITH tain SQUARE COOLING FINS 17 v .6 $53 / 7$; $10 \mathrm{a} .61 / \mathrm{F}$; post $2 / 6$.
BRIDGE CONNECTED HEAVY DUTY FUNNEL COOLED or $7 \frac{3}{4} \mathrm{in}$. SQUARE COOLING FINS. Both types, same price. 17 v. 20 a. 120/-; 30 a. $172 /-50$ a. 280/-; 33 v. 6 a. $89 /=10$ a. $102 /-; 20$ a. $202 / 6 ; 54$ v. 6 a. 124/-; 10 a. 144/-; 72 v. 6 a. 160/-; 10 a . 186/-; $100 \mathrm{v} 6 \mathrm{a} .227 /$.6 ; $10 \mathrm{a} .270 /-$, all post $3 /-$
"WESTALITE" (BRIDGE) 12-15 v. D.C 0.6 a. $12 /-; 1.2$ a. $30 /-$; 2 a. $32 / 6 ; 5$ a. $37 / 6$; 10 a. $64 / 6 ; 20 \mathrm{a} .117 / 6 ; 30 \mathrm{a}, 171 /-; 50$ a. 278/-; 24 v .1 .2 a. $30 / \mathrm{o} ; 5 \mathrm{a} .60 / \mathrm{F} ; 10 \mathrm{a}$. $109 / 6 ; 20 \mathrm{a}$. 208/-; 36 v. 1.2 a. $47 / 6 ; 5$ a. $82 / 6$; 10 a. $154 / 6$; 100 v. 1.2 a. $82 / 6 ; 2.5$ a. 154/6; 5 a. 195/6; 10 a. 391/-; 170 v. 1.25 a. $135 /-; 195$ v. 1.25 a. 144/6. All post extra 1/6-3/6 E.H.T. Rects. 14D.134, 25/-; 36 E.H.T. $6035 / 10$, pose 4d. 1 ma AC/DC meter, rects. $14 / 6$.
"SALFORD" (BRIDGE). 6 and 12 v. D.C 1 a. 7/6; 1.5-2 a, 8/6; 2.5 a, 11/9; 3 a. 14/9; 4-5 a. 16/6; 6 a. 23/6; 10 a. 34/-; 14 z. 42/-; 24 v .1 a. $12 / 6 ; 1.5$ a. $14 / 3 ; 2$ a. $15 / 6 ; 3$ a. $26 /-; 4$ a. 29/6; 6 a. $36 / 6 ; 10$ a. $75 / /$; other
sizes. Post, under EI add $\mathrm{I} /$., over $\mathrm{E} / \mathrm{l}$ add $1 / 6$.

Wholesale and Retail.

## T. W. PEARCE

66 Great Percy Street, London, W.C. 1
of Pentonville Rond. Between King's Cross and Angel

T ABORATORYATIONS VACANT Level standard in chemistry and physics. preferably with interest in electricity. Please Write, stating age, qualifications and experiCompany (1925), Ltd., VIstorla Road, North
Acton, W.3. CLECTRONIC engineer for development. E planning and layout of audio frequency equipment; age $25-35$; minimum qualification
O.N. and experience of P.A. and Hi-Fi; progressive post. pleasant conditions.--PamRnomper Middx wor, 4014. [8251] ELECTRONIC engineers wanted to train as contracts candldates should be single medically fit, and in age group 24-30, and be willing to work abroad tor periods up to two years, quallfications B.Sc.. H.N.C., or equivalent; practical experience in hydragraphic or other survey
work an advantage-Box 0869 .
[8260
R EPRESENTATIVES reqd. by manufacturers $R$ of international repute to promote the sale of radio components the radio and electronic industries; own car an advantage and an vacancies in the North. Midland and London areas.-Please reply in the first instance with full particulars and salary expected, in conidence, to Box 1147
OVRSEAS.-Oil Exploration Company with career to electronic technlcians; maintaining and operating field equipment; men prepared to accept responsiblity and to live in camp conditions. academic qualifications to. H.N.C. or equivalent essential or genuine practical
experience to this standard; 1fberal home leave. -Box 6478. $\quad 0331$
THE post of Chief Designer at Painton's \& come vacant: Northampton, with shortly become vacant; applications are invited from years experience designing components for the electronic industry, and capabie of taking charge of a small drawing office.-Apply to the Personnel Officer, Painton \& Co., Lid., Bem-
bridge Drive, Kingsthorpe, Northampton. [8275 bridge Drive, Kingsthorpe, Northampton. 88275 SURREY Education Grade Bmitteenired for physics and mathematics department. good knowledge of physics laboratory work required, duties include supervision of laboratory assistants in expanding department, construc
tion and maintenance of simple mechanica and electronic apparatus, etc.-Applications to the Principal, Kingston Technical Conege Kingston-upon-Thames, as soon as possible.
TELEVISION development engineers required for work in a small but expanding laboratory dealing with spectal application of tele pronuction Ag inductian, ior smans quantity production Academic qualincations are not television experience and is capable of indivi dual work under direction. Write with ful] details of age. experience, qualifications and salary expected, to the Personnel Manager City. Herts.
DEVELOPMENT perience in Television receiver design. Must be capable of working on his own initia gineers with ithes also exist for development enand qualifications to final C. \& G. standard (or equivalent, for work on all aspects of television and sound wire broadcasting. Very good security and prospects in expanding organisa-
tion-Writa, stating age, qualifications, experience and present salary, to C.E. Dept., British ence and present salary, to C.E. Dept., British
Relay Wireless, Ltd., 397. Albany Rd., Camber well, S.E. 5
A SSISTANTS (Sclentific). Pensionable posts A for men or women st least $17^{1 / 2}$ and normally under 26 on 1.1 .59 with appropriate ducational or technical qualifications (normally G.C.E. with passes at $O$ or $A$ level in 4 distinct subjects including English Language and or equivalent quallfications) and at least years experience in either: (1) engineering or physical sclences, or (ii) chemistry, bio-chemistry or metallurgy, or (iii) biological sciences, or (iv) geology. meteorology. or skilled work in laboratory crafts such as glass-blowing: starting salury (men) from $£ 320$ (at 171/9) to £530 (at 25 or over); maximum (London) \& 690 Wromotion prospects; 5 -day week generally.Audiey St., London, W.1. for application form quoting S' $59 / 59$.
R ADIO maintenance technlclan required by Department. Government of Northern Rhodesia, on agreement for one tour
of 36 months with prospect of permanency Salary according to age and expertence in scale £745 riskng to £1,260 a year, Free pas sages. Liberal leave on full salary. Candidates, preserably aged 25 to 35 must possess physics of matriculation standard, together waintenance knowledge of Installation and maintenance of mocern low and medum power V.H.F. static and mobile equipment. S.S.B. and petrol generators and diesel electric sets. A knowledge of instaliation and maintenance of teleprinters adyantageous, Write to State age, name ln block letters, full qualifcations and experience, and quote M2C $/ 50259$ /
WF.
[8256

## s.T.C. RECTIFER SUPPIV UWIT

Specification: A.C. Input $100 / 260$ volts $45 / 65$ cycles D.C. output 24 volts at 10 amps . under tropical conditions (i.e. $131^{\circ} \mathrm{F}$.) but guaranteed of full meter current of 20 amps .

No: I ZB 10234


All circuits fused and swirched for full 20 amps. or 24 volts at $125 / 350 / 700$ milliamps. (Circuit diagrams and instruction book supplied) Constructed in grey metal cabinet as illus rated the unit is 2 ft . 8 in . high $\times 2 \mathrm{ft}$. long ft. $3 \frac{1}{2}$ in. deep, and weighs 141 lbs
plant for use with S.O.SJT 3 channel charging plant for use with S.O.SJT 3 channel telephone system. AS SUCH ARE IDEAL HEAVY DUTY .T. SUPPLY UNITS for the electronics industry Supplied Brand New at
fraction of makers" price

Ex Warehouse.
ogroms, $10 \%$ dep.
VARIAC TRANSFORMERS

## Brand New



OUTPUT (2KVA) Completely Variable 0 to 270 Volts. 9 Amps.

## INPUT 230 Volts, 50/60~

A SHROUDED FULLY VARIABLE TRANSFORMER FOR BENCH OR PANEL MOUNTING.
SIZE:- APPROXIMATELY $8 \frac{1^{\prime \prime}}{2}$ CUBE
WEIGHT :- APPROXIMATELY 30 LB.
PRICE :- RIDICULOUS-ONLY \& 15.0 .0 SUPPLIED NEW AND BOXED.
HATTER \& DAVIS (RELAYS) LTD.
2, IRONGATE WHARF RD., PRAED ST. LONDON, W.2. PAD. 2231/2/3

Tells you whatis going on clearly
WEST NORWOOD - S.E. 27
Tateohone: Gipur Mill 1131 ( 7 lineit)


## AERIAL MASTS

IMPROVED TYPE 50 MK . II 36ft. HIGH
$K$ its comprine -6 2zin. dias. Tubular Bteel Sectlons of 6 ft . length. top-rection and base, TOU can purchase this hormally expensite MAST pleape add el for (returnable) wooden carryiag case. larly sultable to to ticalarly sultable to take
aerinis for Tx. Rz.
Fing and inly COMMERCLAL) and has many other uses.

## Extra Gft. sectilons can be supplied at $17!6$ per section

## £8.10.0 only foim

U.S.A.-Type 45 ft . TELECOM AERIAL MAST. ( 7 sections, 6 ft . $8 \mathrm{in}, \times 2 \mathrm{tin}$. guys, ete.) This entirely complete set in carrying Carr. extra. British Manufacture only.

ARMY TYPE 32ft. MASTS similar to above but 10 lin. screw-sections, suitable or permanent lightweight installation.

TELEPRINTER EQUIPMENT CREED (BRITISH)
Reperforators Type 7 TR/3 \& Complete Teleprinters $7 B$.
 MICRO SWITCHES burgess branonew MINISTR MEX, 4 BR UNIVERSAL
CONTAC1
Rel. $5 \mathrm{C} / 4$

RELAYS MINIATURE SEALED SIEMENS' TYPE
High Speed Single change-over


G98D, $500 \Omega+140 \Omega$
196E, 1,700 $+1,7000$
SPECIAL QUOTATIONS ON QUANTITY \& EXPORT EN QUIRIES
HATTER \& DAVIS (RELAYS) LTD.
2, IRONGATE WHARF ROAD
PRAED ST., LONDON, W. 2 PAD 2231/2/3

8ITUATIONS VACANT
CDWARDS HIGY VACUUM, Ltd., Mano for an instrumey, Sussex, have a vacancy main function will be to develop new pro jects from the research stage to full routine production; applicants (age $25-35$ ) should hold a minimum qualincation Engineering or Applied Certificate in Electrical Engineering or Applied both practical and design drawing experience COMMENCING be in accordance with age and expen will pension and bonus schemes are operated pension and bonus schemes are operated; giving full details, to the Personnel Manager.

A PPLICATIONS are invited for posts of per sound assistant "B or sound trainees at a minimum ser sinnum. or sound trainees at a minimum the training period would be a maximum of 39 weeks: successiul applicants must have a good basic knowledge of electronic theory and be capable of matntaining and operating complicated pudjo apparatus as used in a television studio; they should also be interested in tech be more than 30 years of age and must be prepared to work irregular hours. ving full details, and addressed to: writing, MR. THOMSON. Productions Manager, Alpha Television Services (Birmingham), Ltd., Television Theatre, Aston Rd. North, Birmingham. 6

MINISTRY OF SUPPLY, Royal Aircraft I Estab. Farnborough, Hants. Bedford and Aberporth, Cardigan, require:-Physicists, Mathematicians and Electronic, Aero, Electrical and Mechanical Engineers for advanced experimental work in ballistic missile, aircraft torles and filght facilities available. Apporat ments in grades (a) Experimental Officer (min age 27) (b) Assistant Experimental Officer.
Salary (a)
E920- $£ 1.130$
(b)
( 370 £645 (age 26)- $£ 800$ (male). Women's rates same by 1961 . Quals. F.S.C., G.C.E. (A.L.) pass degree. H.N.C (Physics, Elec. or Mech Eng.) or C. and G. Anal cert, of grouped motion prospects and opportunities for estabmotion prospects and opportunities 1 . Forment. Forms from M. Th. Sclentific Register (K) 26 King Street, Lon-
don, S.W.1, quoting A. $477 / 8 \mathrm{~A}$.
A SSISTANT Inspecting Engineer (TelecomOversea Governments and Admintstrations, for Oversea Govermments and Admintstrations, for
appointment to penslonable establishment on appointment to pensionable establishment on tween 2805 p.a, at age .25 and £1,085 p.a. at age 34 or over in scale, rising to $£ 1,170 \mathrm{pa}$. Fully quallifed officers at least 27 years of age may be eligible for special increase of $£ 75$ atter 2 years' service. Liberal leave. Traveland expenses, including car mileage allowance, and subsistence allowances pard. Candidates should have served an apprenticeship wing a ment and have had subsequent experience on the manufacturing and technical side of the Industry. They should be corporate members of the Institution of Electrical Engineers or have passed Duties include visiting manuiac equivalent. turer's to advise and assist in maintaining required standards and to carry out in ing required standaras and
spection and acceptance tests. Write to the
Crown Agents, 4, Millbank, London, $\$$. W.1. Crown Agents, 4, Millbank, London, S. W. tion and experience, and quote M2A/50315/WF
[8276
A ssistant Engineer (Telecommunications) A requited for their London Offlce by the Administrations for appointment to pensionable establishment on probation for 2 years, com mencing salary between £805 p.a. at age 25 and £1.085 at age 34 or over in scale rising to \&1,250; prospects of promotion; fully quallfed oftcers at least 27 years of age may be eligible vice: liberal leave; five-day week: candidates should preferably be between 25 and 35 years of age and have a degree in electrleal engineering (telecommunications) or be a graduate or cor-
porate member of the Institution of Electrical porate member of the Institution of Electrlcal Engineers: they should have recelved their specialising in all branches of telecommunica specians including telephone systems and radio transmission and have had subsequent operating or design experience on this type of equipment: previous contract experience would be an
advantage. Duties of the post will entail the advantage. Duties of the post wil entall the
purchase of all types of telecommunications, purchase of all types of tio and other electronic equipment includine the preparation of detained specincations to be invited and adjudicetion thereon. Also the preparation of reports giving advice to Administrations on problems connected with thls type of equipment. Write to the State age, name in block letters. full qualifica tions and experience and quote M2A/50168/W5

## TECHNICAL TRAINING

CITY \& GUILDS (electrical, etc.) on " No - For detalls of modern courses in all branches of electrical engineering, opplied electronics, automation, etc., send for our 148-page Fand


ELECTRONIC COMPONENTS DLS TRIBUTORS FOR OVER 25 YEARS FOUR-SIDED BLANK CHASSIS
Made in our own works from commercial quality chasids will carry components of considerable weigh and normally require no corner strengthentig. We are now able to supply same day any slze of chassis

 Post $1 / 8$
(*) Porigth plus twice depth $1 / 6$ width plas Postee depth.) in. Hanges on two sides (Inside or outside) $1 / 6$ extra Soldered corners (new process) $2 /$ extra.
Fanels any size up to 3ft. at $4 / 6$
Fanels any size up to 3 ft . at $4 / 6 \mathrm{sq}$. ft. (su. In. $\times$ \& .

## Mose Tolerance Wax-protected Silver Mio

Values stock ( pF ):
$\begin{array}{llllllllllll}5 & 22 & 47 & 75 & 130 & 180 & 270 & 370 & 515 & 635 & 815 & 3000\end{array}$ $\begin{array}{rrrrrrrrrrrr}10 & 25 & 50 & 80 & 1355 & 200 & 280 & 386 & 533 & 635 & 815 & 3000 \\ 11 & 27 & 56 & 82 & 140 & 220 & 300 & 400 & 540 & 680 & 1000 & 3300 \\ 13 & 28 & 60 & 100 & 145 & 225 & 316 & 410 & 556 & 703 & 1500 & 4000\end{array}$ $\begin{array}{llllllllllll}13 & 28 & 60 & 100 & 145 & 225 & 316 & 410 & 556 & 703 & 1500 & 4000 \\ 15 & 30 & 65 & 110 & 150 & 230 & 330 & 450 & 560 & 710 & 2000 & 4700\end{array}$ $\begin{array}{llllllllllll}18 & 33 & 68 & 120 & 160 & 245 & 340 & 470 & 600 & 750 & 2200 & 500 \\ 20 & 40 & 70 & 125 & 175 & 250 & 356 & 500 & 603 & 800 & 2500\end{array}$ Tol, up to 33 pF , 1 pF ., over 33 pF . 1 per cent PRICES: 5-300 pF.., 9d.; 316-820 pF., 10id.; 1,000 Special (limited
gumber only), 0.1 nidd. $1 \%, 12$ "RIGEH STABILITY RESISTORS. "T.S.L." $\frac{1}{2}$-wat $10 \%$ tol., b-year guarantee. Full "prefarred value within $2 \%, 3 /=$ palr
-SURPLOS STOCKS, various makes:
$f$ watt
1
wate

"ELECTROVOICE " guaranteed TRANSFORMERS AND CHOKES. Individually tested. Fully ghrouded "G" CORE 20 W. OUTPUT TRANSFORMERS. $20 \%$ Oltra-linear, type D84. $6,600 \Omega$ A-A 4 -8ectlon
$.95 \Omega$ Sec. giving $.95,3.75,7.5$ and $15 \Omega$ O/P, $85 / 10 /-$

## COOPER-SMITH HI-FI AMPLIFIERS(See p. 118, Dec. issue)

 MODEL B.P.I.A better 10 watt outfit at lower cosit.
Main Amplifier Kit 12 gns. Built $£ 14.17 .0$ Main Amplifier Kit 12 gns. Built $£ 14.17 .0$
Control Unit Kit $£ 8.3 .0$. Built $£ 11.3 .0$ THE 'PRODIGY'
For the smaller room or bank balance. Kit $\mathrm{f} 13,7,6$ complete. Built 16 gns Full stage-by-stage constructional details, with price lists, etc., for either amplifier

JIN. BROWN KNOBS (in. shait), domed front, Bd.
B9A MOULDED VALVE EOLDERS, with 2in. screen MANSBRIDGE CAPACITORS. 200 V. D.C. wk Buitable for crossover units, etc. .5 mF ., 4 d . each GENERAL PURPOSE LOW VOLTAGE TRANSFORMERS. Mains mpuit 200-230-250 V. Outpats POWER TRANSFORMERS. $300-0-300 \mathrm{~V} .100 \mathrm{~mA}$. 6.3 V. at 3.5 A., 5 V. at 2 A. Mains input $900-230 \cdot 250 \mathrm{~V}$ $27 / 6$.
20 WATT AUTO TRANSFORMERS. $105 \cdot 115-120$ FLAMENT TRANSFORMERS. 6.3 v. 3 A. 10/MINIATURE MAINS TRANSFORMER, Pri. $0-200$ $2230-240$ v. Secs. 250 v. 40 A.,
size $2 t \times 1$ I $\times 14 \mathrm{n}$., $10 / 6$.
BELLING-LEE L430 PROTECTIVE SWITCHES BELLING-LEE L430 PROTECTIVE SWITCHES
.3 amp., 13 . T.C.C. VISCONOL CATHODE RAY CONDENSERS. 01 mid .12 .5 kv . type CP57V0, $4 / 6$
LOUDSPEAKER FABRIC. Brown with gold thread, $2 / 6$ per sq. ft
DARE MAROON SPEAKER GRILLES. Moulded plastic, $7 \mathrm{f} \times 4 \mathrm{hin}, 1 / 6$ each
H. L. SMITH \& CO. LTD

287/289 EDGWARE ROAD, LONDON. W,2 Telephone Paddington 5891

## RADIO \& ELECTRONIC ENGINEERS

The MORSE CODE is still, and always will be, the basic Code for andividual Signalling, whether on visual or telecommunication circuits. So add this simple and interesting subSo add this simple and interesting sub-
ject to your qualifications. Apart from the pleasure derived from this extra knowledge, it counts for much when a stepup the ladder is under consideration. Write for the CANDLER BOOK OF FACTS and see for yourself how fascinating the Candler method of teaching the Morse Cade will prove.
CANDLER SYSTEM CO. (56W) 52D ABINGDON ROAD, LONDON, W. 8 Condler System Co., Denver, Colorado, U.S.A.


NEST OF DRAWERS
Overall: 6 inn. wide $\times$ sin. deep $x$ 10 in. high. 12 drawers, each 3 in. wide $x$ 4itn. deep $x$ 1thn, high. Useful storage for ralio components, nuts, bolts and other small parts. Qreen
enamelled, sheet steel $20 /$. P. \& P. 3/:

HARMSWORTH, TOWNLEY \& CO. 2 JORDAN STREET, MANCHESTER 15

## JEFFERY TRANSFORMER Co.

(Winders to the late GALPINS)
Leaflets sent on request
199 Edward Street, New Cross LONDON, S.E. 14

TIDeway 4458

## RADIO \& <br> TELEVISION COMPONENTS <br> We operate a prompt and efficient <br> MAIL ORDER Service. 3d. stamp (only) for catalogue. <br> James H. Martin \& Co. Finsthwaite, Newby-Bridge, Ulverston, Lancashire.

## METERS

## WE CAN SUPPLY WITHIN 7-14 DAYS

a complete range of moving coilmoving iron-electrostatic-thermo-couple-also multirange meters-meggers-pyrometers and laboratory test instruments, etc.

All to B.S. 89
Instruments tested ond standardised on our premises, and replacements supplied from our stock.

## [REPAIRS

Dellvery 7-14 days Our skilled eraftsmen carry out repairs or convert any types and makes of stingle and multirange meters.
Where desired repairs are aecepted on contract.
THE V.Z. ELECTRICAL SERVICE 9. NEWPORT PLACE, LONDON, W.C.2. Telephone: GERrard 4861 (Retail 2613)

BRIT.I.R.EECHNICAL TRAININO
Butions in Telecoms, Radio Amaters and Radio Servicing (R.T.E.B.). Learn at home trom world-famous International Correspon dence Schools,

## TUITION

FULL-TIME courses for P.M.G. Certlficates, , Telecommunications and Rada Maintenance certificates.-Iniormation from
WIRELESS.-See the world as a radio offe In the Merchant Navy; short training period, tus.-Wireless College, Colwyn Bay. [001 A LL examinations easier to pass by I.C.S. \& G. Telecoms, P.M.G. Cert. In Wireless, Telegraphy, Radio and TV Servicing, etc.Write for free prospectus: International Correspondence Schools. 71, Kingsway (Dept. 442A) London, W.C.2.
I EARN-AS-YOU-BUYLD course in basic radio electronic and electrical theory with prac-
tical training bullding a 4 -valve $T R F$ and 5 tical training bullding a 4-valve TRF and 5-
valve superhet radio recelver; signal generator and hich-quality, multi-tester; write for fre book - International Correspondence Schools
A.M.I.Mech.E., A.M.BrIt.I.R.E.E City 8 A Guilds, G.C.E., etc., bring high pay and security; "No Pass-No Fee" terms; over $95 \%$
successes.-For detalls of exams and courses in all branches of engineering, buldint electronics, etc., write for 148 -page Handbook-free--B.I.E.T. (Dept. 387B), 29, Wright's Lane London, W.8. [0118 $T / V$ and Radio.-A.M.Brit.I.R.E., City and -NO Fee terms; over $95 \%$ successes,-For detalls of exams and home training courses (including practical apparatus) ln all branches of radio, T/V and electronlcs, write for 148-
page Handbook-free-B.I.E.T. (Dept. 397 A ) page Handbook-free.-B.I.E.T. (Dept. 397A)
29 Wright's Lane, London. W.8. TNCORPORATED Practical Radio Engineers 1 home study courses of radio and TV engineering are recognised by the trade as outa limited number of students only; syllabus of instructional text is free; the Practical Radio Engineer, journal, sample only 2/; 6,000 align-
ment peaks for superhets. $5 / 9 ;$ membership ment peaks for superhets, 5/a; membersnip from the Secretary, I.P.R.E., 20 , Fairfield Rd., London. N.8. A UTOMATION, Authoratative courses are Computer avallabie in Dizital and Analague Computer Technology. Applied Electronics, Data Processing and mstrumentation up to
professional level by home study. Individual enrolment or industrial group scheme enrolments accepted. Syllaboses and prospectus sent on request. Write (Dept. S.E.11). E.M.I. sent on request.
Institutes School of Electronics,
House, Kensington. London. W.8. House, Kensington. London. W. 8.
CERROGRAPH 3AN/H No. 15392, stolen with cond.-Box 1160 .
 and 2 in $\mathrm{m} . \mathrm{k} . \mathrm{s}$. units. $10 / 6$; Radio Referencecovers every phase irom elem. to advanced techniques ${ }^{\text {Rd., Readng, Berks. }}$ 25idiford, 384, Tilehurst
[7986
"TELEVISION Explained." By W. E. Miller, E. A. W. Cantab) Spreadbury M.Brit.i.R.E. The sixth edition or a book which assumes a knowno previous knowledge of television clrcuits. It is non-mathematical. written in simple language and comprehensively illustrated by many diagrams and photographs. It will prove of great
assistance to all students of television, to radio assistance to all students of television, to radio
service engineers who wish to imbark upon service engineers who wish to rmbark upon
television work and want to understand the principles and circuits involved, and to knowwould like owners of television rece of their set. $12 / 6$ net from all booksellers. By post $13 / 5$ from Iliffe \& Sons Ltd.. Dorset House,
Stamford St., London, S.E.1. Stamford St., London, SE.1.
" SECOND Thoughts on Radio Theory."By four articles reprinted from popular Wireless World sertes, in which the author examines various aspects of elementary radio science, explains them clearly, and shows that there may be more behind them than is apparent with basic ideas; circuit eléments and techniques; circuit calculations; and some matters in lighter mood. An entertaining and helpful text-book for the student. refresher course for the engineer, and reference book for all, combined; 25/- net from all booksellers. By post $26 / 4$ from Illffe \& Sons Ltd.. Dorset House,
Stamford St., S.E. Stamiord St., B.E.
$\mathrm{M}^{\text {issing. }}$
BOOKS WANTED
"WIRELESS WORLD," Feb., May/47, Nov./ 48, Feb. June/49, Jan. Feb./51,5 Nov./52, 57.-Reply to Swedish Broadcasting Coro. Vaihallavagen 117, Techn. Dept., Stockholm.,

## "ALL your TV Components from one Source

## direch $1 V \longdiv { \text { Replacements } }$

## BONA FIDE TRADE ONLY

Non-Trode Clients-see your dealer NOWI
138 LEWISHAM WAY, NEW CROSS, S.E. 14

Instrumentation at its best


SIFAM ELECTRICAL INSTRUMENT CO. LTD.
LEIGH COURT - TORQUAY - Telephone $4547 / 8$


## We Specialise <br> CABLE FORMS HARNESSES LOOMS - SNAKES

180, ST. JOHN'S ROAD, LONDON, E.I7. LARKSWOOD 7519

## FM and HI-FI COMPONENTS

## WIRELESS WORLD FM TUNER UNIT

 DENCO FM TUNER circuits Is, 6d RADIO CONSTRUCTOR FM MULLARD AMPLIFIERS 25. 0d. G.E.C. 912 PLUS AMPLIFIERS $3 \mathrm{s}$. . 6 d . JUPITER STEREO UNIT 4s. OdSeparate price iists on request to
2s. 6d.

ra: Dartiford 4057

## LEEVERE RICH <br> PRECISION MAGNETIC RECORDERS <br> STUDIOS - INDUSTRY - . RESEARCH <br> LEEVERS - RICH EQUIPMENT. LTD.

tes Mamplesad Ad, London. N.W.I. EUSton 1481

## NYLON • P.T.F.E.

ROD. BAR. SHEET, TUBE. STRIP, WIRE
BRASS - COPPER. BRONZE
ALUMINIUM•LIGHT ALLOYS
H. ROLLET \& Co. Ltd.

6 Chesham Place, S.W.1. SLOane 3463


```
" DIPLOMA" HEADPHONES
Lightweight High Resistance (4,000 ohms). Complete with cord 17/6
Ideal for CRYSTAL SETS The 'TYANA' Standard Soldering Iron
- Adjustable Bit.
Weight approx. 4 oz
Heating time 3 min .
40 Watt economy Consumptiun
- Staǹdard Voltage Ranges. 16/9
Replacement Elements and Bits Always available.
KENROYLIMITED 152/297 UPPER ST, ISLINGTON, LONDON, N. 1
Telephone: CANonbury 4905-4663
```

PRECISION SHEET METALWORK
We specialise in manufacturing of Chassis in all metals, large or small quantities to your ownspecifications

V. W. BEAMISH

8hardeloes Garage, Shardeloes Rd., New Cross, London, S.E. 14
Telephone: TIDeway 4795

Perforators, Reperforators Teleprinters, Spare Parts

Terminals and V.F. Telegraph Multi-Channel Units; Telephone Carriers and Repeaters; Testing Equipment; Signalling Rectifiers 26B, 43A, RA87, etc. Relays, Transformers; Filters; Repeating and Retardation Coils; Racks; Relay Bases.
British, American and German equipment.

## WILLIAM BATEY \& CO.

Gaiety Works, Akeman Street, Tring, Herts
Telephone: Tring 2183
Cables: RAHNO Tring

[^13]
## AERIAL MASTS

## 75 FEET

Plywood sectional 9" dia. (U.S.A. manufacture)
$£ 35.0 .0$
85 FEET
Steel tubular sectional $2 \frac{1}{2}^{\prime \prime}$ dia. (British manufacture)
£45.0.0

## I50 FEET

Steel tubular sectional $6^{\prime \prime}$ dia. (British manufacture) £95.0.0

All above are Ex Govt NEW and UNUSED and complete with all futings
P. HARRIS

ORGANFORD DORSET
Lychett Minster 212

## PNGINEPRS!

Whatever your age or ex, weriedoe, you must read "ENGINEERING OPPORTUNITIES," Full detaile of the easiest way to pass A.M.LMech.E. A.M.I.C.E.,
C. \& (Electrical etc.), General Cert., etc., on
c. \& (Electries etc.), General Cert., intc., on

144 is tis terms and detaile of



## METERS

All types
Any make


Single and Multi-range repaired and recalibrated
Meters $2^{\prime \prime}$ to $6^{\prime \prime}$ supplied from stock. Scaled to requirements.
E.I.R. INSTRUMENTS LTD. 329 Kilburn Lane, London, W. 9

Tıl.: LADbroke 4168

## COPPER WIRE

ENAMELLED, TINNED, LITZ, COTTON AND SILK COVERED.
RESISTANCE WIRES EUREKA - CONSTANTAN

MOST GAUGES AVAILABLE NIGKEL-GHROME - MANGANIN
B.A. SCREWS, NUTS, WASHERS,
soldering tags, eyelets and rivets.
UBNNI ROD BAXOLIN TYPE COI TUFNOL ROD, PAXOLIN TYPE, COIL FORMERS AND TUBES, ALL DIAMETERS Latest Radio Publications.
SEND STAMP FOR LIST TRADE SUPPLIED.
G.E.C., B.T.H. \& WESTINGHOUSE

GERMANIUM GRYSTAL DIODES
1/= each. Postage 3d.
Diagrams and three Crystal Set Circuits Free with each diode.
A large purchase of these fully GUARANTEED diodes from the manufacturers enables us to make this attractive offer
POST RADIO SUPPLIES
33 Bourne Gardens, London, E. 4 Phone: CLissold 4688

## FERROGRAPH RECORDERS

Tandberg Stereo, Harting, etc. Personal Recordings,

Tape to Tape/Disc Service GRIFFITHS HANSEN (Recordings) LTD. 24/25 Foley Street, London. W. MUSeum 2771

Listen round the world with the

## EDDYSTONE 840A <br> Communications Receiver AC/DC 110/240 volts <br> Continuous Coverage $30 \mathrm{mc} / \mathrm{s}$ ( 10 <br> metres) to $480 \mathrm{kc} / \mathrm{s}$ ( 610 metres)

## PRICE 555

Webb's extended terms, deposit $£ 11.0 .0$ and 12 payments of $£ 3.17 .9$ or 18 payments of $£ 2.13 .4$
WEBB'S RADIO
14 SOHO STREET, LONDON, W. 1 Telephone: GERrard 2089/7308


## $\stackrel{\omega}{0}$

## LIGHT-MASTS BY-TELECRAFT LT? . KRovoon AND AERIALS for EVERY PURPOSE - FITTED ANYWHERE

## INDEX 'TO ADVEUTISERS



Quartz Crystal Co., Ltd.
Radio \& T.V. Components (Acton), Ltd. Radio Clearance, Ltd.
Radio Component Specialists
Radio Exchange Co., The
Radio Experimental Products Co.
Radio Resistor Ltd
Radio Supply Co. (Leeds), Ltd. .. 140. 141
Radio Traders. Ltd. Radiospares, Litd.
Range Electronics Co.
Rank Cintel, Ltd.
Record Housing
Relda Radio. Ltd.
Reliance Manufacturing Co.. Litd
Reproducers \& Amplifiers, Ltd.
Rola-Celestion, Ltd
Rollet, H., \& Co., Lta.
Samsons Surplus Stores
Savage Transformers, Lt
Savage Transformers, Ltd.
Semiconduccors, Ltd
Service Trading co.
Servo \& Electronic Sales, Ltd............ico,
Shell Chemical Co. Ltd. Ltd
1ع0. 12
Siemens Edison-Swan, Lid

Sifam Electrical Instrument $\mathbf{C o}$.,	Ltd. .
St	178

Simmonds, L. E., Ltd.
Skymasts
Smith,
Smith,
$H$
Smith, H. L., \& Co. Ltd.
Southern Radio Supply, Lid.
Southern Technical Supplies
Specialist Switches
Spencer-West. Ltd.
Standard Telephones \& Cables, Ltd
Steatite \& Porcelain Products, Ltd.... 99
Stern Radio, Ltd. Products, Ltd 135 , 136, 137
Stewart
Storno
Stratton \& co., Ltdd. (Engineers) Ltd 59
Super-Electronics Ltd.
Superior Radio Supplies
Tannoy Products Ltd.
Tape Parders (Electronics), Ltd
Technical Trading Co.
Telefusion (Eng.), Ltd.
Telegraph condenser Co... Ltd. ............over
Telequipment, Ltd.
Tele-Radio (1943), Ltd.
Teletron Co., The
Texas Instruments Litd.
Trianon Electric, Ltd.
Trix Electrical Co., Ltd.
T.R.S. Radio

Universai
Universal
Electronics
Vacwell Engineering Co., Ltd
Valradio, Ltd.
Venner Electronics. Litd
Vitality Bullessale Services, Ltd
Vitality Bulbs, Ltd
Vortexion, Lit.
V.Z. Electrical service
....
Walmore Electronics, Ltd.
Watts Radio (Mail Order), Ltd
Wayne Kerr Laboratories, Ltd. The
Webber. $R$ A., Ltd.
West Insulating Co., Ltd
Westwood, L. $\begin{aligned} & \text { Wadio Mig. Co., Lita., The }\end{aligned}$
Weymouth Radio Mig, Co, Litd, The 31,7
Wharfedaie Wireless Works, Ltd. (G.B.),
White. S. S., Dental M1g. Co.
Wilkinson, L., (Croydon), Lid.
Wright \& Weaire, Itd.
Z. \& I. Aero'Services, Ltd.

Page
179


## T.0.C.SCREENEG MICH-PASS

## FILTER, TYPE C.263.

This has been designed to eliminate the principal causes of I.F. interference: R.F. Heating Equipment, Diathermy Equipment, Industrial and Medical Equipment, Local Oscillators, Forward Scatter Transmissions.

Where a requirement arises for a completely assembled and screened high-pass filter, then Type C. 263 can be supplied in an aluminium can, having a co-axial socket mounted at one end and a short length of co-axial feeder, suitably terminated with a plug, at the other end. By this means the filter may be connected directly in series with the aerial feeder of a T.V. receiver and no further adjustments would be necessary.

The unit offers very high attentuation at frequencies of $38 \mathrm{~m} / \mathrm{cs}$. and below, and thereby prevents pick-up of the interfering signal by the I.F. Amplifier circuits.

This unit has been approved by and supplied to the G.P.O.

The dimensions of the can are: $4 \frac{1}{2}{ }^{\prime \prime} \times I_{2}{ }^{\prime \prime}$ diameter with a co-axial lead $9^{\prime \prime}$ long.

The unscreened units can be offered to manufacturers for direct installation in their equipments. Further details may be had on application.

List Price 29/6 each.


IF YOU are seriously interested in making high quality recordings at home you will want to be the proud owner of the Reflectograph Model 500 , which is the only recorder costing less than $£ 500$ possessing all these advantages.

- 21 features including variable speed between 8 and $3 \frac{1}{2}$ i.p.s. Stroboscope shows precise speeds of $7 \frac{1}{2}$ and $3 \frac{3}{4}$ i.p.s.
- 3 heads - separate record and playback amplifiers providing instant monitoring off the tape whilst recording.
- Frequency characteristics guaranteed to comply with C.C.I.R. standards.
- Lever controls providing instant start and stop - fast and slow forward and rewind-with inching - sound available if required.


## Service \& Maintenance Guarantee

1 year's free Service and Maintenance Guarantee (including valves) available throughout U.K. Service undertaken immediately by engineers of E.M.I. Company, Home Maintenance Ltd. Annual Service Contract available for 20 years subsequently for small annual fee.
Stereophonic Recording \& Reproduction Provision for conversion for stereo recording as well as stereo reproduction.

## Récommended by High Fidelity Manufacturers

The high quality reproduction obtainable from the Reflectograph has resulted in orders being received from gramophone recording studios, broadcasting authorities, and many industrial firms.
The majority of high fidelity amplifier manufacturers use and recommend the Reflectograph. At the last Northern and London Audio Fairs, H. J. Leak \& Co. Ltd., used the Reflectograph exclusively for supplying a tape input during demonstrations of their latest amplifiers.

FOR THE TECHNICAL MAN-Dimensions: $21^{\prime \prime}$ long $\times 14 \frac{1}{2 \prime \prime}$ wide $\times 10^{1_{4}^{\prime \prime}}$ high: Weight 50 lbs. Frequency Response: $\pm 2^{4} \mathrm{~dB}$. $50-10,000 \mathrm{c} / \mathrm{s}$ : $\pm 3 \mathrm{~dB} .45-12.000 \mathrm{c} / \mathrm{s}$. Overall Response: Strictly to C.C.I.R. recommended specifications. Signal to Noise Ratio: Better than - 45 dB . (unweighted, including hum). Output from Playback Preamplifier: $\mathbf{2 0 0} \mathrm{mV}$. R.M.S. Inputs to Record Amplifier (High Impedance): Microphone 1 mV .: Radio or pick-up $\mathbf{5 0 - 2 0 0 m V}$.-for maximum record level. "Wow", and "Flutter": Better than $0.2 \%$ R.M.S. as measured on the G.B.-Kalee Flutter Meter.

## OPINIONS OF TECHNICAL EXPERTS

P. Wilson, M.A., "The Gramophone"

This is without doubt the most versatile domestic tape recorder that I have had the pleasure of trying out, and the quality, both of its recording and its playback, is of exceptionally high standard. For quality of performance, then, I give the instrument full marks: I know of no better. For the construction I have nothing but praise. There is nothing flimsy about it either as a piece of mechanism or on the electronic side. It is a fine piece of engineering up to the highest British standards
D. W. Aldous, M.Inst.E., M.B.K.S.
"The Gramophone Record Review"
The separate record and replay amplifiers make possible the direct monitoring from the tape during the actual recording and this facility is certainly a boon. There is no doubt whatever that when one has used this type of recorder one never wishes to return to the combined record/playback type of instrument. I have never heard better quality at $7 \frac{1}{2} \mathrm{in}$.p.s. from any tape recorder that has passed through my hands. The "Reflectograph" is a pedigree tape recorder of immaculate construction and impecof immaculate con
James Moir, "Hi-Fi News'
Separate motors are used for capstan drive and both spools, all three motors being of
Garrard manufacture. The overall im Garrard manufacture. The overall impression after some months of use is that the machine is convenient and pleasant very suitable for professional use.


[^0]:    *Research Department, British Broadcasting Cerporation.

[^1]:    *There is a slight error here, quite nagligibie tor the purpose, but important in measurements with light.

[^2]:    *For instance, if a source of waves remains at A in Fig. 1, the length of each wave is still the same when it arrives at an observer $O$. But if the start of the wave is emitted at $A$ and the finish at $B$, the length as observed at $O$ is shorter by the distance $A B$, and the frequency therefore higher.

[^3]:    * Royal Radar Establishment, Malverr.

[^4]:    AM \& FM SIGNAL GENERATORS • AUDIO \& VIDEO OSCILLATORS FREQUENCY METERS - VOLTMETERS • POWER METERS DISTORTION METERS . FIELD STRENGTH METERS TRANSMISSION MONITORS • DEVIATION METERS OSCILLOSCORES. SPECTRUM \& RESPONSE ANALYSERS Q METERS \& BRIDGES

[^5]:    1 In-line readout frequency and time measuring equipment.
    23 digit counter.
    3 Frequency source for octave filter testing (12 output frequencies!.
    4 Dual channel tuned amplifier.
    5 Speedmeter with tape readout.
    6 In -line readout tachometer.
    7 So!enoid valve timer.
    83 digit batching counter.
    9 Special purpose time measuring set.
    10 Frequency source providing $10 \mathrm{kc} / \mathrm{s}, 1 \mathrm{kc} / \mathrm{s}, 100 \mathrm{c} / \mathrm{s}$, and $10 \mathrm{c} / \mathrm{s}$.
    11 Reaction time indicator.

[^6]:    $\star \star \star \star \star$ OSMOR STANDARD COILS
    
     QHF. $8 \mathrm{M} . \mathrm{W} .190 .560 \mathrm{~m}$. A $\quad 100-175$
    QO. 8 QO.8 A 65-120 QR. 9 L. W. $800-2000 \mathrm{~m}$. A $2000-2600$ $\begin{array}{lll}\text { Q1.9 L.W. } 800-2000 \mathrm{~m} . & \text { A } \quad 2000-2600 \\ 400-720\end{array}$ QA.51 M.W. $190-520 \mathrm{~m} . \quad \mathrm{B} \quad 130-210$ QHF. 51 QA. 81 M. W. 190-520 QA. 91 L.W. 800.2000
    $\begin{array}{ll}\text { SWQ. } 1 & 31 \cdot 11 \mathrm{mc} / \mathrm{s} . \text {, with reaction. } \\ \text { SWQ. } 2 & 12 \cdot 4.5 \mathrm{mc} / \mathrm{s} \text {, with reactio }\end{array}$ Q4. $170 \quad 12 \cdot 4.5$ mels., with reaction $6 / \%$ QA. Aerial Coll for car radio ects.
    $\mathrm{pr} . \quad 12 / 6$ Q08. 170 Osc. Coll
    QR.II M.W, $190 \cdot 560$ Grid. Coupling QR. 12 and Reaction

    Mag and Reaction ......ea. $4 / 8$
    QR.11D Dual range coil mith ...ea. 4/8
    $\mathbf{B}=$ Single Winding.
    QA.81T C-fapped for pre-set tuning QA.91T C-tapped for pre-set tuning L.W. Miniature push-pull QIF. 1 I.F. FIIter, $450-570 \mathrm{kc} / \mathrm{s}$, ea. 4 QC. 1 Highly effictent All-wave Choke, $15 \cdot 2000$ metres QC. 8 Choke, 8 millitienrys. QWF 1 Whistle Fiter, 300 mH . $6 / 9$ $\begin{array}{ll}\text { QAF. } 1 & \text { Scratch Fitter, 5 Henrys } \\ \text { QFA. } 10 / 6 \\ \text { M.W. Frame Aerial, size 5t }\end{array}$ QFA. $1 \quad \begin{aligned} & \text { M.W. Frame Aerial, size of } \\ & \times 3 \text { in. }\end{aligned}$ QL. 1 L.W. Loading Coil counects in series with QFA. 1 mount Band $1 \frac{\text { tin. off chassis }}{}$ Variable Attenuators Band 1 Filter Chokes
     M.W. Ferrite Rod Aerlal $8 \times \frac{6}{16} \mathrm{in} . \ldots 8 / 9$ M. \&L.W. Ferrite Rod Aerial $8 \times \frac{6}{10} \mathrm{in} .12 / 9$
    OT. 6 Blas Fiter Coll
    OT 7 Treble Boost Coll

    QT. 9 Bian Orc. Coll. QAFM Aerial Coll QRgW R.F. Coil QOSW Oac. Coll ....... QICD Ratho Diacriminato $7 / 6$
    $5 / 6$
    $7 / 6$ QICD Ratlo Discriminator .......... $25 / 6$ As used for Omor Switch-tuned F.M. Unit. Suilable for other circuite.

    SDB-MINIATURE COLLS
    QA4/EM, QAB/BM, QA6/BM, QO4/BM, QO5/GM. QO6IBM, QAR/SM, QAR/AM, Q08/SM QA9/SM, QO9/BM .... 5/- ea. (with Ferrite core
    SUB-MINIATURE I.F. TRANSFORMERS with Ferrite core and high effelency Ferrite Pot $\qquad$ Osc. for above Also speciallaed types available, eg.,
    cotls for Muilard 'C' Amplifier, etc.

    OSMOR RADIO PRODUCTS LTD., 418 BRIGHTON ROAD, S. CROYDON, SURREY

[^7]:    LORENZ MODEL PL 562 4-speed gram. motor. Price £3/13/6.

[^8]:    PUBLISHED MONTHLY (4th Tuesday of preceding month) by HIFFE \& SONS LTD., Dorset House, Stamford Street, London, S.E.1. Telephone: Waterloo 3333 (65 lines). Telegrams: " lliffepres, Sedist, London." Annual Subscriptions; Home and Overseas, 2115 s . Od. Canada and U.S.A., $\$ 5,00$. Second-class nail privileges authorised at New York, N.Y. BRANCH OFFICES: BIRMINGHAM: King Edward House, New Street, 2: Telephone: Midland 7191. COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 268, Renfleld Street, C.2. Telephone: Central 1265. MANCHESTER: 200, Deansgate, 3. Telephone: Blackfriars 442. NEW YORIK OFFICE: U.S.A.: 111, Broadway, 6. Telephone: Digby 9-1107.

[^9]:    *If you are in doubt where Type 71 can be fitted, please ask us.

[^10]:    "LINEAR" "CONCHORD." A high fidelity 30 -watt amplifier incorporating pre-amplifier and tone controls. Employs latest Mullard EL34 output valves.
    Post \& Pkg. 7/6. 15 giss.

[^11]:    TRANSFORMERS COILS LARGE OR SMALL QUANTITIES CHOKES

    TRADE ENQUIRIES WELCOMED
    SPECIALISTS IN
    FINE WIRE WINDINGS MINIATURE TRANSFORMERS, PICK-UP, CLOCK AND INSTRUMENT COILS ETC. VACUUM IMPREGNATION TO APPROVED STANDARDS ELECTRO-WINDS LTD.

    CONTRACTORS TO G.P.O., M.O.S., LE.B., ETC.
    123-5-7 PARCHMORE ROAD, THORNTON HEATH, SURREY LIVINGSTONE 2261

[^12]:    198. Rathbone Road, Liverpool, 15, (W, SEF 8 . 883

    Callers: sUPERADIO (W'chapel) LTD
    118, Whttechapel, Liverpool, 2. ROY゙ 1180

[^13]:    TUBES. Reclaimed from 63, all types Reconditioned from 66, all guaranteed.
    T.V. SETS. B.B.C. five channels from CB I.T.A. from ©I5.

    VALVES. 5,000 Reclaimed types tested and guaranteed high emission factor, from as low as $2 / 6$ each.
    SPARES. Everything you can think of, Trany's Scan Coils, I.F.'s Chassis, Yokes, Condensers, hundreds of Speakers.
    Fast reliable service in our own vans covers the British Isles.
    3d. Stamp brings free extensive lists

    ## D.H.P. \& ASSOCIATES <br> II STANHOPE PLACE LONDON, W. 2 <br> Mail order only. Collers strictly by oppointment.

