

OK, so you're a knob-twiddler

After all, you're only human, and those two big knobs on the Model 8 Avometer are terribly tempting. Just by twiddling them, you can have over 30 calibrated ranges at your command-11 current, 15 voltage, 5 resistance, and a 30 dB power scale. Twiddle yourself a good combination of accuracy ($1 \% \mathrm{fsd} / \mathrm{dcA}, 2 \% \mathrm{fs} / \mathrm{dcV}, 2 \frac{1}{4} \% \mathrm{fsd} / \mathrm{ac}$) and sensitivity ($20 \mathrm{k} \Omega / \mathrm{Vdc}$, $1 \mathrm{k} \Omega /$ Vac, except 2.5 Vac scale $100 \Omega / \mathrm{V}$). Plus automatic cut-out, fused ohms circuit, trio of ohms zero-adjustments, reverse-polarity button and antiparallax mirror. No wonder the Model 8 is the first choice of electronic, radio and TV engineers everywhere. Get yours from your local dealer or direct from Avo Ltd, Avocet House, Dover, Kent. Telephone Dover 2626. Telex 96283.

BREAK THE SOUND BARRIER

MODEL 488 SONO-BAR

WORLD STANDARD WHEREVER RELIABILITY AND
SQUND QUALITY ARE PARAMOUNT

 NOISE CANCELLING MICROPHONESWhen the chips are down, and noise levels are high, Shure Noise Cancelling microphones with their exclusive Controlled Magnetic cartridges, distancediscrimination design, and specially tailored response get the message through
even when noise level is so high the operator cannot hear himself! They have been field-tested and proved in such ear-shattering environments as: drop forges, helicopters, police power boats, "hard surface" gyms among cheering crowds, motorcycles, jets revving up, fire engines, etc.

SHURE MODEL 488 SONO-BAR
Rugged, impact resistant "Armo-Dur" case. Four types: High or low impedance; transistorized for direct replacement of carbon microphone; and FAA Certified Transistorized Aircraft version.

SHURE MODEL 419 RANGER II

New small size. Only about half the size and weight of conventional mobile communications microphones. Unsurpassed for use with portable or miniaturized equipment.
Please send me details of Shure microphones. Please recommend the best model
for use with my equipment.....
NAME
ADDRESS
TO SHURE ELECTRONICS LTD. 84 BLACKFRIARS ROAD. LONDON.SE1 Tel: $01-9286361$

Safe Journey

... when your radar is fitted with EEV magnetrons

Navigators feel all the safer for having an EEV magnetron on board. It's because they know that EEV specifically designs for a longer, more reliable life. As well as being prominent in the airborne and marine field EEV is also the only British manufacturer of magnetrons for heavy radars. The range available is wide enough for practically every requirement but if you have something special in mind EEV's long and unique experience in magnetrons shows that this is the company to make it. In the meantime details of the standard range are available on request.

ENGLISH ELECTRIC VALVE COMPANY LIMITED

If it＇s worth 3 minutes of your time to learn the state－of－the－art in Thyristors，

start here：Exclusive Multi－

Gate Thyristors When thyristors are to be operated with steeply rising current pulses and／or high repetition rates，great care must be exercised in establishing the operating conditions and selecting the device to be utilized．A self－saturating reactor may be introduced into the cir－ cuit to limit the rate－of－rise of current （dI／dt）；this will permit a conventional high－power thyristor to carry heavy load currents which exhibit high dI／dt．Where it is not practical to use such a reactor， which is often bulky and expensive，a thyristor with enhanced turn－on action must be used．Such action can be obtained by providing the thyristor with multiple gates．
IR multi－gate thyristors exhibit reduced turn－on voltage at any given instant during the turn－on period and shorter time for equalization of current flow throughout the entire semiconductor wafer．The consequent reduction in turn－ on power losses will permit increased load current to be carried and the device will exhibit faster turn－off time．It will also be able to withstand greater rates of rise of reapplied off－state voltages be－ cause of the lower junction temperature at the instant of current commutation．

MIM－Protection IR＇s epitaxial thyrist－ ors offer the exclusive feature of metal－ ion migration（MIM）protection．

During manufacture，the silicon wafer for epitaxial thyristors is contoured to improve the high－voltage characteristics of the device．This illustration shows the cross－section of a typical contoured silicon wafer．
Metal－ion migration can occur because of the electrical potential that exists at the junction interfaces at the edge of the wafer．When the device is energised， metal－ions are attracted from the metal mounting surface towards the junction interfaces．Migration may occur even though the wafer has been cleaned by etching and sealed with inert sealers or varnishers．When the minute metallic particles reach the interfaces，they can cause degradation or failure of the device． IR＇s epitaxial devices employ an exclu－ sive groove etching technique which provides needed contouring and，in addi－ tion，builds a guard－shield against metal－ion migration．
Bulk Avalanche Thyristors These de－ vices exhibit true avalanche behaviour in the bulk of the crystal，thus avalanching at approximately the same voltage in both forward and reverse avalanche modes． Bulk avalanche devices are characterised by extremely low leakage current，which is mostly bulk leakage and which does not show any drift or instability under long－term，high－voltage blocking opera－ tion．In addition，IR＇s epitaxial thyris－ tors can be repeatedly broken over into the conduction mode without detri－ mental effects as long as the power rat－ ings and the rate－of－rise of turn－off current（ $\mathrm{dl} / \mathrm{dt}$ ）are kept within the listed specifications．
As a result of the epitaxial construction， there is a substantial decrease in the for－ WW－C08 FOR FURTHER DETAILS
ward voltage drop during turn－on．This reduces the total power loss during the turn－on action，which in turn reduces the temperature of the device．Therefore IR epitaxial thyristors are well adapted for inclusion in inverter and switching applications．
Ultra Fast Turn－Off Thyristors Early last year IR implemented a major techno－ logical breakthrough by going into quantity production at Oxted of thyristors exhibiting turn－off times below 3 micro－ seconds，faster than those yet produced by any other semiconductor manufac－ turer．To date this claim remains undis－ puted．The devices designated＂RCU＂ are offered in two current ranges of 8 and 10 amperes（full－cycle－average）with voltage ratings of $50-800$ volts PR V／PFV． The turn－off times of all IR＂RCU＂ thyristors are measured at maximum base temperature．The maximum operat－ ing frequency of a thyristor circuit is obviously dependent on turn－off time， and introduction of＂RCU＂thyristors means that high－power inverter circuits may be operated at frequencies in excess of 30 kHz ．By utilizing＂RCU＂thyristors， the inverter designer may subsequently reduce the size and cost of the inverter components used in commutating circuits．
The principal applications for the ＂RCU＂thyristors also include high－fre－ quency induction heating，ultrasonic equipment and d．c．－d．c．converters． Detailed information about the world＇s leading range of thyristors and how they can solve your specific problems is yours on request from International Rectifier． Just ask．

> Stop here．Now you know，thanks to エきた

International Rectifier－Hurst Green Oxted．Surrey • Telephone：Oxted 3215 Telex： 95219 （RECFIFIER OXTED）

Mercury Vapour Rectifiers

DATA

Type	Service type	Peak inverse voltage max. (kV)	Peak anode current \max. (A)	Mean anode current max. (A)	3-phase full wave	
					Voltage (kV)	Current (A)
869B	-	20.0	10.0	2.5	19.0	7.5
AH200	-	20.0	10.0	2.5	19.0	7.5
$\begin{aligned} & \text { AH205/ } \\ & 857 \mathrm{~B} \end{aligned}$	CV2673	22.0	40.0	10.0	21.0	30.0
AH211A	CV532	16.0	8.0	2.0	15.2	6.0
AH221	CV5 CV1435	20.0	5:0	1.25	19.0	3.75
AH238	CV1629	13.0	5.0	1.25	12.4	3.75
BD10	-	1.0	25.0	8.0	0.95	24.0
BD12*	-	1.0	2×50	2×16.5	0.95	49.5

-Full wave rectifler.

This range of Mercury Vapour Rectifiers is available from your local EEV stockist. English Electric Valves production methods ensure the reliability and performance you are looking for and prices are competitive.

Coventry Factors Lid, Coronet House. Upper Well Street	Coventry Tel: Coventry 21051
Downes 8 Davies Lid, G.P.O. Box 555, 72 Chapellown Street	Manchester 1 Tel: Ardwick 5292
Edmundson Electronics Ltd. 60-74 Market Parade, Rye Lane. Peckham	London SE15 Tel New Cross 9731
Gothlc Electrical Supplies Ltd. Gothic House, Menrietta Street	Birmingham 19 Tel: Central 5060
Harder Robertson Electronics Ltd, 97 St George's Road	Glasgow C3 Tel: Douglas 2711
Smith \& Cookson Lid, 49/57 Bridgewater Streel	Liverpool 1 Tel: Royal 3154-7
The Needham Engineering Co. Ltd, P.O. Box 23. Townhead Street	Shetlleid 1 Tef: Sheffield 27161
Wireless Electric Lid, Wirelect Mouse. St Thomas Street	Bristol 1 Tel: Bristol 294313

We make our monolithic capacitors in Britain

Monobloc ; an advanced product for sophisticated applications. A tiny component that has become the most exciting prodigy this side of the Atlantic. Its capacitance is vast, its size minute - up to 1 uf in $0.3 \times 0.3 \times 0.1 \mathrm{in}$. (nine times smaller than a postage stamp). This capacitance-to-volume ratio is achieved by the unique monolithic construction. Wafer-thin ceramic dielectrics and platinum electrodes are fused into a solid, layered structure, to give a volumetric efficiency 10 to

100 times that of conventional capacitors. It's a rugged little device. The layered construction gives excellent stability and resistance to every form of shock and environmental stress.
We manufacture a preferred range, concentrated on the individual requirements of the British designer. There are other configurations available for more complicated designs : glass-encased, precision moulded, phenolic coated, and unencapsulated chips for hybrid integrated circuits.

The monolithic capacitor is already a pretty important contribution to the progress of modern electronics - our Monobloc Ceramicon design caters for projects of the future.
Contact us for the full details. Technical Sales, Erie Electronics Limited,* South Denes,
Great Yarmouth, Norfolk. Phone: 04934911
Telex: 97421
Monoblocs are to be featured in the 1968 edition 6 catalogue of S.T.C. Electronic Services. Monobloc and Ceramicon are registered trade marks

[^0]

Doctors needed a battery they could trust inside you while it worked to save your life!

Mallory made it.

What can we do for you?

Medical science needed a battery. A battery that literally could keep your heart beating. A battery to power a heart pacemakerthe electronic device that "shocks" sluggish hearts into a normal beat. A battery that would last three years or more in the surgicallyimplanted device, even in the high temperature environment of the body. Mallory made it. Mallory leads the way in miniature power sources for all needs. The high-energy of the Mallory mercury battery and its extraordinary reliability have found many uses in medical electronics. Mercury batteries can be made so small they will fit into "radio capsules" that transmit from within your stomach. The Electronic Larynx is used to transmit sound waves into the throat cavity of people whose larynx has been removed.

If you're considering a battery system for a new product, think of what Mallory can do for you. If you have portable power problems our sales and application engineers are at your service. Contact our Manager, U.K. Sales, at Mallory Batteries Limited, Gatwick Road, Crawley, Sussex-Crawley 26041-or get in touch with our nearest industrial distributor.

BIRMINGHAM Messrs. Hawnt \& Co., 112/114 Pritchett Street, Birmingham, 6, Aston Cross 4301 BRISTOL Wireless-Electric Lid., "Wiretect House", St. Thomas Street, Bristot, 1. Bristol 294313 BURNHAM-BUCKS Gawt Distributor Services Lid., The Red House, High Street, Burnham, Bucks. Orchard Grove 694
EARDIFF South Wales Wireless Installation Co. Ltd., 121 City Road, Cardiff. Cardif 23636 COVENTRY Coventry Factors Ltd., Upper Well Street, Coventry. Coventry 21051
ERAWLEY S.A.S.C.O., P.O. Box 20. Gatwlek Road, Crawley, Sussex. Crawley 28700
"SLASGOW Brittsh Electrlcal \& MIg. Co. Ltd., 183 St. Vincent Street, Glasoow, C.2. Cliy 4131
Harper Robertson Electronics Ltd,. 97 St. George's Road, Glaspow, C. 3. Douplas 2711 Harper Robertson Electronics Lid, 97 St. George's Road, Glasgow, C.3. Douglas 2711 . taRLOW Standard Telephones a Cables Ltd., Electronic Services Sub-Divislon, Edinburgh Way, Harlow, Essex. Harlow 26811
HITCHIN S.A.S.C.O. Hunting Gate, Wilbury Way, Hitchin, Herts. Hitchin 2242
Roberts Electronics Lid., 17 Hermitage Road, Hitchin, Herts. Hitchin $50551 / 2$
LEEDS A. C. Farnell Limited, 81 Klrkstall Road, Leeds, 3. Leeds 35111
LONDON Briltish Electrlcal\& MIg. Co. Ltd., 10 Rushworth Street, London S.E.1. WA Terloo 7731 Cables \& Components Lid., Coronatlon Road, Park Avenue, London N.W. 10. ELGar 2266 Lupton \& Co. Ltd., Mp. Lun, Radlo House, 209-212 Tottenham Court Rd., London W.1. Museum 3261 NEWCASTLE British Electrical \& Mig. Co. Ltd., Clavering Place, Newcastie-upon-Tyne, 1. Nowcastle 22416
J. Gledson \& Co. Lid., Newbiggin Lane, Westerhope, Newcastie-upon-Tyne, 5. Newcastle 869033 NORTHAMPTON E.M.F. (Electrlcal) Lid., Dunster Street, Northampton. Northamplon 37316 POYNTON Sclentific Furnishings Lid., Electionles Divislion, Poynton, Cheshle, Poynton 2215 SHEFFIELD Needham Engineering Co. Lid., P.O. Box 23, Townhead Street, Sheffield, 1 ,

SUNOERLAN
Sunderfand 70567 British Electrical \& Mig. Co. Lid., 16/17 Bridge Street, Sunderland.

Heathkit World-Leader in INSTRUMENTS • HI-FI • RADIO • Electronic kits

The construction manual provided with the kit ensures successful assembly

5 in. GENERAL-PURPOSE OSCILLOSCOPE, $10-12 \mathrm{U}$

- "Y" sensltivity 10 mV r.nn.s per cm . at $1 \mathrm{kc} / \mathrm{s}$ - Bandwidth $3 \mathrm{c} / \mathrm{s}-4.5 \mathrm{Mc} / \mathrm{s}$. Frequency compensated inpu attenuator $\mathrm{XI}, \times 10, \times 100 \mathrm{~T} / \mathrm{B}, 10 \mathrm{c} / \mathrm{s}-500 \mathrm{kc} / \mathrm{s}$. in 5 steps T/B range. T/B outputected pre-set sweep fr equencies in in IV callbrator - Facility ior ". $\mathrm{Z}^{\prime \prime}$ axis modulation. Electronically stabilised power supply - Power req. $200-250 \mathrm{v}$ A.C. $40-60 \mathrm{c} / \mathrm{s} ., 80$ watts - Fused - Front panel, silver and charcoal grey - Cabinet, eharcoal grey, size 8 . $\times 14 \times 17 \mathrm{in}$. deep. Net weight 2316. 56-page conseruction and operation manual.
Kit $\mathbf{£ 3 5} \mathbf{1 7 . 6}$. Ready-to-use $\mathbb{£ 4 5 . 1 5 . 0}$
Attenuator and demodulator probes available as optional extras.

6in. VALVE VOLTMETER, IM-I3U

- Modern seyling - Extra features - The ideal VVM for the Electronic Engineer - Gin. Ernest Turner $200 \mu \mathrm{~A}$. meter with multi-eoloured scales - Unique gimbal bracket allows bench, shelf or wall mounting © Measures A.C. (r.m.s.). D.C. volts -1.5. 5. 15. 50, MO wish battery Vernier range ion zero and ohms adjustment © Rolleratlnned action zero and ohms adjustment - Roller-tinne printed circuit - High input resistance (1MM) Comprehensive assembly and operation manual - Size $5 \times 12 \mathrm{H} \times 4 \mathrm{in}$. Complete with test prod and leads.

Kit £18.18.0. Ready-to-use $\mathbf{£ 2 6 . 1 8 . 0}$
 Ready-to-use £19.18.6

3in. PORTABLE GENERAL-PURPOSE SERVICE OSCILLOSCOPE, OS-2

- Modern seyling. ligheweighe and cornpace sire, make this the ideal scope for service man, laboratory technician, amateur radio enchusiast or hobbrist \bullet Y bandwidth $2 \mathrm{c} / \mathrm{s}-3 \mathrm{Mc} / \mathrm{s}=3 \mathrm{~dB}$. Sensitivity $100 \mathrm{mV} /$ cm - Push-pull vertical and horizontal ampliflers - Wide range cime-base gencrator $20 \mathrm{c} / \mathrm{s}-200 \mathrm{kc} / \mathrm{s}$ in four ranges. - Automatic lock-in synchronisation Mu-metal c.i.r shield - Printed circult board conseruction. Power req. ilver and shareoal prey Size Sin. $\times 7$ yin h plain siver and eharcoal bre

Kit $£ 23$.18.0. Ready-to-use $£ 31,18.0$

GENERAL-PURPOSE SERVICE RF SIGNAL GENERATOR, RFIU - Ideal for the alignment and trouble shooting of RF. IF and audio circuirs - Large easy-to-read of RF. IF and audio circuirs Large easy-to-read RF output of at least inillivoles $10 \mathrm{C} \mathrm{kc} / \mathrm{s}-100$ Mc / s. fundamentals up so $200 \mathrm{Mc} / \mathrm{s}$ harmonies - 400 cycle audio signal wirh 4 v . ourput Dimensions $9 \frac{1}{2} \mathrm{in}$. wide $\times 6 \frac{1}{2} \mathrm{in}$. high $\times \operatorname{Sin}$. deep.

Kit £13.18.0. Ready-to-use $£ 20.8 .0$
AUDIO SIGNAL GENERATOR, AG-9U (not illustrated)
Kit £23.15.0. Ready-to-use $£ 31.15 .0$

See these and other Heathkit models in the FREE catalogue

NEW! PORTABLE STEREO TAPE RECORDER, STR-I
back track stereo or mono record and playcircuit Record level indicator Digital counter with zero reset Stereo mic and aux. inpuls. Speaker/headphone outputs. Built-in audio amplifier gives 4 watts rms output per channel. Two high efficiency
Versatile Recording facilities. So-easy-to-
 bulld. Outstanding performance for price.

$$
\text { Kit } \mathbf{E 4 5 . 1 8 . 0 .} \text { Ready-to-use } \mathbb{5 9 . 1 5 . 0}
$$

THE CAR RADIO TO COMPLETE YOUR MOTORING
 PLEASURE CR-I
Complete your motoring pleasure with this small, compact, high output unit. Superb long and medium wave entertainment whenever you drive. For 12 v , positive or 12 v negative car earth systems.

- 8 latest semi-conductors (6 transistors, 2 diode circuit) - Powerful outpue (4 watts) will drive two speakers. - Styled to harmonise with mose car colour schemes . Supplied in ewo units, pre-assembled and aligned RF unit kit. E1.13.6 inc. P.T. IF/AF amplifier kit Ell 1.3 .6 .

Total price kit (excl. LS).... $/ 12.17 .0$ inc. P.T.
L/speakers and accessories available as extras.

NEW! PORTABLE STEREO RECORD PLAYER, SRP-I

- Compact, economical stereo and mono record playing for the whole family circuitry. Maperated All "solid scate - Dezachable second loudspeaker gives optimum stereo effect - Ausomatic playing of $16,33,45$ and 78 rpm records - Suitcase portability - Two Bin $\times 5$ in. speakers - Controls: Volume. Balance and
wide $\times 14\}$ in. high $\times 7 \frac{1}{2} i n$
deep.

Kit £27.15.0. Ready-to-use price on request.
"OXFORD" LUXURY TRANSISTOR PORTABLE: UXR-2

This superb eransistor radio is the ideal domestic or personal portable Medium and Long Wave receiver - Solid leather case and handle Easy-to read tuning seale Exera large loudspeaker. tors (7 transistors plus 3 diodes) - Sockets for personal earphones, tape recorder, car aerial Personal earphones. tape recorder, car aerial for monchs thatest printed circuit eechniques Comprehensive, easy-to-follow, fully illustrated Instruction Manual.

Kit 14.18 .0 inc. P.T. Ready-to-use price on request

Heathkit World-famous Easy-to-build

INSTRUMENTS • HI-FI • RADIO • ELECTRONIC KITS

(Deferred terms available on all orders over $£ 10$, U.K. only)

NEW: $12+12 W$ TRANSISTOR STEREO

AMPLIFIER

Model TSA-12
Luxury performance
at lowest cost

- 17 transistors, 6 diode circuir - $\pm 1 \mathrm{~dB}$., 16 to 50,000 c/s at 12 watts per channel into 80 hms - Output suitable for 8 or 15 ohm loudspeakers - 3 stereo inputs for Grams., Radio and Aux. - Modern low silhouetre styling Actractive aluminium, golden anodised frons panel Handsome assembled and inished walnut veneered cab inet available © Matches Hear AFM-2 transistor cuners.
Kit $\mathbf{2 3 0 . 1 0 . 0}$ (less cabinet)
Ready to use $\mathbf{C 4 2 . 1 0 . 0}$
Beautiful Walnut cabinet $\mathbf{E} 2.5 .0$ extra
$20+20 W$ TRANSISTOR STEREO

AMPLIFIER

Model AA-22U
An International Class amplifier which offers superb realism and beauey of music at a very competitive price. Professional, elegant, compact, slim-line styling. The best of American transistor techinques ${ }^{5}$ llow hugh output with low distortion
5 sterco inputs (five each channel) for pick-up, radio zuner, tape and two other sources. 20 transistor, 10 diode circuit. Beautiful, fully finlshed walnut veneered cabinet (optional
Kit $\mathbf{\$ 3 9 . 1 0 . 0}$ (less cabinet)
Walnut cabinet $\boldsymbol{E 2 . 5} \mathbf{0} \mathbf{0}$ extra.
Ready to use $£ 59.15 .0$ (inc. cabinet)

5 W HI-FI MONO AMPLIFIER

KIT Model MA-5

A low-priced general purpose HiFidelity amplifier based on the popular S-33 for those who do not require 2 stereophonic system. Separate bass and ereble controls. Gram and circuit simplifies conmost erystal pick-ups. A printed circuit simplifies con-
struction.
Kit $£ 11.9 .6$
Ready to use $£ 15.15 .0$

STEREO CONTROL UNIT KIT

 Model USC-I

Incorporates all worthwhile features for Hi-Fidelity stereo and mono. Push-button selection, accurately matched ganged conerols to $\pm 1 \mathrm{~dB}$. Negative feedback rumble and variable low-pass filsers. Printed circuit boards. Accepts inpuss from most cape-heads and any stereo or mono pick-up.
Kit $£ 19.19 .0$
Ready to use $\mathbf{6 2 7} 5.0$

LW/MW TRANSISTOR PORTABLE RADIO KIT Model UXR-I

Beautiful leather case. Easy-to-read seale. 7 semi-conductors. Printed circuit board 7in. Xin. AF Special oudspeaker, Pre-aligned operate batcery operate Easy to construct, excellent in performance and value.

Kit $\mathbf{6 1 2 . I I . 0}$ (inc. P.T.)

"MOHICAN"
 GENERAL COVERAGE RECEIVER KIT
 Model GC-IU

This fully transistorised receiver which includes 4 piezo-electric transfilters, is in the forefront of receiver
 lens portable or fixed station receiver. The R.F. "frons-end" is supplied as a preR.F. fromz-end is supplied as and pre-aligned unit. Its many features include a 10 -transistor circuit, printed circuit board, telescopic whip antenna tuning meter, and a large slide-rule dial giving a total length of approximately 70 inches. Housed in a steel cabinet and powered by two 6 volt dry batteries (not supplied), mounted internally, it gives frequency coverage from $580 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ in five bands; thus enabling world-wide reception. Electrical bandspread covers the amateur having a scale length of approximately 8 inches, BFO euning and Zener diode stabiliser. Size $6 \frac{7}{\mathrm{In} .} \times 12 \mathrm{in}$. $\times 10 \mathrm{in}$.
Please write for specification leaflet.
Kit $\mathbf{1 3 7 . 1 7 . 6}$ Ready to use $\mathbb{4 5}$.17.6

STABILISED POWER PACK

Models MSP-IM and MSP-IW
Specially recommended for industrial and laboratory use, meeting the need for a reliable and versatile stabilised power pack
 capable of a very high per-
formance. Inpur $200-250 \mathrm{v}$.
$40-60 \mathrm{c} / \mathrm{s} .$, A.C., fully fused. Outpur: H.T. 200-410 \vee, D.C. at $0-225 \mathrm{~mA}$, in 3 switehed ranges. Unstabilised A.C.. 6.3 V . at 4.5 A.
cenerc-tapped. Two 3 in. "easy-to-read " centre-tapped. Two jin. easy-to-read simultaneously. Separate L.T. and H.T. simulianeously. Separate ourpuc circuits are isolated. Size $13 \mathrm{in} . \times 8 \frac{1}{\frac{1}{2}} \mathrm{in} . \times 9 \frac{\mathrm{in}}{} \mathrm{in}$.
Kit £36.12.6 Ready to use $£ 43.12 .6$ MSP-IW (less meters) Kit £29.17.6 Ready to use $£ 36.17 .6$

BALUN COIL UNIT KIT

Model B-IU. Will match unbalanced

 co-axial lines to balanced lines of either 75 or 300Ω impedance. Frequency range $10-80 \mathrm{~m} . \mathrm{input}$ up to 200 watts.Kit $\mathbf{£ 5 . 5 . 6} \quad$ Ready to use E 5.18 .0

TAPE PRE-AMPLIFIER KITS

 Models TA-IM and TA-ISThe Combined Tape Record/Replay Amplifier
is available in both is available in both
 phonic model. Model TA phonic can be modified TA-IC.
TA-IM Kit $£ 19.18 .0$ Ready to use $£ 28.18 .0$ TA-IS Kit $£ 25.10 .0$ Ready to use $\$ 35.18 .0$
TA-IC Kit . . 66.15 .0
All prices are mail order and include free delivery in the U.K.
areavailableonall Derders above $£ 10$

AMATEUR TRANSMITTER KIT Model DX-100U
The World's most popular Amateur TX Kit

Completely self-contained. 150 w. D.C. inpus.
Built-in highly stable VFO and all Power Supplies
The KT88 high-level anode and screen modulator stage gives over 100 watts of audio from less than 1.5 mV input.
Keying on CW is via the VFO and buffer amplifier cathodes: she osher RF valves are biased beyond cut-off.
Provision has been made for remote control operation. Covers all Amaseur bands up to $30 \mathrm{Me} / \mathrm{s}$. "phone or CW. Kit £81.10.0 Ready to use £106.15.0

AMATEUR BANDS RECEIVER KIT

Model RA-I The ideal economically priced fixed scation, portable or mobile receiver covering the Amateur bands from $160-10 \mathrm{~m}$., each band separately calibrated on a meter cuned RF amplifier stage, halfolattice filter, admeter, euned RF amplifier stage, haliattice filer, 15 , 10 metre bands, $1 . F .1620 \mathrm{kc} / \mathrm{s}$. Kit $\mathbb{3 9 . 6 . 6}$ Ready to use $\mathbb{5} 52.10 .0$

HEATHKIT
 SINGLE SIDE BAND EQUIPMENT

Transmitters, Receivers, Transcelvers. Send for details of models. Fully illustrated American Catalogue of Heathkit range sent for only 1/-post-paid. Or see selection of models in British catalogue.

REFLECTED POWER METER KIT

Model HM-IIU Indicates reliably buc inexpensively, whether the R.F. power output of your transmitter is being eransierred efficiently to the radiating antenna. Kit $£ 8.10 .0 \quad$ Ready to use $£ 10.15 .0$

VARIABLE FREQUENCY
 OSCILLATOR KIT. Model VF-IU

Specially designed to meet the demand for the maximum possible fiexibility from an amateur transsubjecr to certain limi ations imposed by cryseal conerol. Calibrated for all
 Amateur bands $160-10$ metres. fundameneals on 160 and 40 m Ideal for Hearheis DX 40 U and similar transmitters. Ready to use 61519.

Q MULTIPLIER KIT

A reasonably priced Q Amplifier for the amateur and short-wave enchusiast. This self-powered unit ($200.250 \mathrm{v} .50 / 60 \mathrm{c} / \mathrm{s}$.) may be used with communicasions receivers to provide both additional selectivicy
 and signal rejection.
Models QPM-I for $470 \mathrm{ke} / \mathrm{s}$. IF. QPM-16 for $1.6 \mathrm{Mc} / \mathrm{s}$. IF. Kit, either model 88.10 .0 Ready to use............................... \quad 12.14.0

AERIAL TOWER KITS. Model HT-I, HT-IG
Height 32ft. sq. section 3 ft. $\times 3$ ft. at base ($n o$ stays required). Accessories available as extras HT-1G KIt (galvanised) $\mathbf{4 3 . 1 5 . 0}$ HT-I Kit (red oxide) $\mathbb{3 7 . 1 5 . 0}$

DAYSTROM LTD.

DEPT. WW.3, GLOUCESTER, ENGLAND
Member of the Schlumberger Group including the Heath Company
MANUFACTURERS OF THE WORLD'S LARGEST-SELLING ELECTRONIC KIT-SETS

WW-013 FOR FURTHER DETAILS

Outstanding British Equipment by Heathkit

(All models available as easy-to-build kits or Ready-to-use).

FM TUNER KIT, Model FM-4U

Tuning range $88-108 \mathrm{Me} / \mathrm{s}$ Flywheel tuning. Attractive perswheel tuning. Attrachive pers-
pex front panel in two tone grey pex front panel in two tone grey
with golden trim. Thermometer type tuning indicator, prealigned I.F. eransformers. Own built-in power supply. Tuning heart model FMT-4U $\mathbf{E 2 / 1 5 / -}$ incl. P.T.
1.F. amplifier and power supply, Model FMA-4U Complete with case and valves $\{13 / 13 /$. . Sold separately. Kit Total \&16.8.0.

STEREO DECODER SD-I
ideal for use with valve FM Tuners.
Kit $\mathbf{E 8} \mathbf{1 0 . 0}$ Ready-to-use $\mathbb{E} \mathbf{I} \mathbf{2 . 5 . 0}$
$3+3$ W HI-FI STEREO AMPLIFIER Kit Model S-33H An inexpensive fier with the high sensitivity necessary for lightweight miniature ceramic pick-ups (e.g., Decca Deram). De luxe version of the $5-33$ with attractive two-tone grey Perspex panel.
Kit $£ 15.17 .6$
Ready-to-use E21.7.6
MONO CONTROL UNIT KIT Model UMC-I
Ideal for use with MA-12 or similar amplifier. Outp
Kit $£ 9.2 .6$

Ready-to-use ©14.2.6

AMATEUR TRANSMITTER KIT

 Model DX-40U
Covers all amateur bands from 80 to 10 metres, erystal controlled. Power input 75 watts C.W. 60 watts
peak controlled carrier phone. Output 40 watts to aerial. Provision for VFO. Filters minimise T.V. interference. Modulator and power supplies are built-in. Single knob band switching is combined with a pi-network output circuit for complete operating convenience. A high-grade moving-coil meter indicates the final grid or anode current. Provision is made for the use of 3 crystals.
Prices now reduced to:-
Kit £29.19.0 Ready-to-use £41.8.0
GENERAL COVERAGE RECEIVER KIT RG-I
An inexpensive communications type receiver specially designed for the short wave listener with many refinements found only in receivers costing much more.
Freq. coverage $32 \mathrm{Mc} / \mathrm{s} .1 .7 \mathrm{Mc} / \mathrm{s}$. in 5 ranges also Freq. cover
M.W. band
Kit 439.16 .0
Ready-to-use $\mathbf{2 5 3 . 0 . 0}$
Optional extras available.
GRIP-DIP METER KIT. Model GD-IU
 functions as oscillator or absorprion wavemeter. With plug-in coils for continuous frequency coverage from $1.8 \mathrm{Mc} / \mathrm{s}$. to $230 \mathrm{Mc} / \mathrm{s}$.
Kit $£ \mid \boldsymbol{I} .9 .6$ Ready-to-use $£ \mid 4.9 .6$
Additional Plug-in Coils Model 341-U extend Additional Piug-in Coils
coverage down to $350 \mathrm{kc} / \mathrm{s}$. With dial correlation coverage down
curves. $17 / 6$.

TRANSISTOR INTERCOM KITS
Models XI-IU and XIR-IU
9 v , battery operated. Up co five remote stations can be operated with each Master. The Master unit can call any one, a combination, or all five Remote stations
Model $\times 1$ (Master)
Kit $£ 11.9 .6$
Model XI-IU (Master)
Kit $\mathbb{1}$ 4.9.6
Model XIR-IU (Remote)
(Remote)
Ready-to-use $£ 5.18 .0$

HI-FI STEREO AMPLIFIER
KIT Model S-99
18 w . output (9 per channel with
 0.2 per cent. distortion at 9 w . per channel). It has ganged controls Stereo/Mono gram, radio and tape recorder inputs and push-butron selection. Ultra-linear push-pull with golden surround and grey metal cabinet pane binet. Kit £28.9.6 Ready-to-use $\mathbb{C} 38.9 .6$

HI-FI SPEAKER SYSTEM KIT

 Model SSU-IDucted-port bass reflex cabi-
net "in the white." Frenet " in the white, Fre-
quency response is $40-16,000$ quency response is $10-16,000$ c/s. Power rating Matched speaker units 8 in Migh flux (12,000 lines) with hyperbolic cone and 4 in for higher frequencies.
Kit (with legs) E/2.12.0

(less legs) $\mathcal{C l 1 . 1 7 . 6}$

A.M./F.M. TUNER KIT

Tuning range 88-108 M. (FM) 16-50, $200-550, \quad 900-2,000 \mathrm{~m}$.
Flywheel tuning. Attractive Perspex front panel in two-tone
grey with golden trim. Thermometer sype tuning indicator, pre-aligned I.F. transformers. Switched wide and narrow A.M. bandwidths.
TUNING HEART Model AFM-TI E4/l3/6 (inc. P.T.) I.F. AMPLIFIER and Power Unit Model AFM-I. Complete with metal cabince and valves E22/11/6. Sold separately.
Klt Total $\mathbb{2} 27.5 .0$

ELECTRONIC WORKSHOP KIT EW-I

20 exciting experiments can be made with this one kit
Kit $\mathbf{6 7 . 1 3 . 6}$ (incl. P.T.)

SINE/SQUARE GENERATOR Model IG-82U

Covers $20 \mathrm{c} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$. in
 5 bands. Simultaneous Sine and Square Wave outputs. Less than $0.15 \mu \mathrm{~S}$ rise time on Square Wave. Less than 0.5% distortion on Sine wave. Up to 10 volts designed for maximum operating convenience. Size 13 in . $\times 8 \frac{1}{2} \times 7 \mathrm{in}$. deep.
Kit $\mathbf{2 5}$.15.0 Ready-to-use $\mathbf{4} \mathbf{3 7 . 1 5 . 0}$

OSCILLOSCOPE TRACE DOUBLER

Kit $\mathbb{1} \mathbf{3}, 10.0$ KIT Model S-3U
This device will extend the use of your single-beam ascilloscope and at a nominal cost, will give you the advantages of a double (or other multiple) beam 'scope. Ready-to-use $£ 19.10 .0$

OSCILLOSCOPE ACCESSORY KITS

Demodulation Probe kit 337-C $\mathbf{\text { E } 2 . 1 7 . 6}$ Low-cap Attenuator Probe kit Pk-I
£3.12.6
See also Oscilloscope page - Deferred Terms available on all orders above $£ 10$.

HI-FI MONO POWER AMPLIFIER KIT Model MA-12

A compact. Hi-Fidelity power amplifier (including auxiliary power supply). 12 watts output. Wide Arequency range and low distortion. fitced enabling it to be used with fitted enabling it to be used with phonic system. Other applications ncludes sound reinforcement systems, transmitter modulators, for use with tape recorders. Kit £12.18.0 Ready-to-use $\mathbb{C} 16.18 .0$

"COTSWOLD" SPEAKER SYSTEM KIT

This acoustically designed enclosure measures $26 \times 23 \times$ $14 \frac{1}{3}$ in., and houses a special 12 in . base speaker with 2 in . speech oil, ether with a pressure unit to cogether with a pressure unit to
cover the full frequency range of $30-20,000 \mathrm{c} / \mathrm{s}$. Its polar-distribu-
 cion makes it ideal for really Hi-Fi Stereo. Delivered complete with speakers, cross-over unit, level control, grille cloth, etc. Left in the white for finish to personal taste.
Kit $\mathbf{E 2 5}$. 12.0
Also available Ready-to-use $\mathbf{6 3 3 . 4 . 0}$

4in. VALVE VOLTMETER KIT

 Model V-7AUThe world"s most popular valve voltmeter with printed eircuit and I per cent. precision resistors to ensure consistent laboratory periormance. It has 7 voltage anges measuring respectively D.C. volts 4,000 peak to peak. Resistance measurements from 0.1 ohm to 1.000 megohms. ments from 0.1 ohm to 1.000 megohms, with internal battery. D.C. input resistance is 1 cale. Complete measurement has a centre-zero calising complete with test prod, leads and standardising battery. Power
$40.60 \mathrm{c} / \mathrm{s}$. A.C. 10 watts.
H.V. and R.F. Probes available as optional extras. Kit £ R 3.18 .6 Ready-to-use $\leq 19.18 .6$

DECADE RESISTANCE BOX KIT

Model DR-IU. Range 1-99,999 Ω in 1Ω Steps. Ceramic switches throughout. Current rating from 500 mA . to 5 mA . according to decades in circuit Polished wooden cabinet supplied complete.
 - Prices include Postage U.K.

DECADE CAPACITOR KIT Model DC-IU
Capacity values $100 \mu \mu \mathrm{~F}$ to $0.11 \mu \mathrm{~F}$ in $100 \mu \mu \mathrm{~F}$ steps. Precision silver-mica capacitors and minimum loss ceramic wafer switches ensure high accuracy
Kit £7.15.0 Ready-to-use £10.18.0
TELEVISION ALIGNMENT GENERATOR KIT Model HFW-I
Offers the maximum in performance, flexibility and utility at the lowest possible cose. Several outstanding leatures have been incorporated in this model which are unusual in instruments in this prise range. Frequency coverage $3.6 \mathrm{Mc} / \mathrm{s}$. to $220 \mathrm{Mc} / \mathrm{s}$. on fundamentals. Unique non-mechanical sweep oscillator system. High level ourput on all ranges. Sweep deviations up to $42 \mathrm{Mc} / \mathrm{s}$. Built-in fixed and variable
marker generator ($5 \mathrm{Mc} / \mathrm{s}$. crystal supplied).
Kit £38.18.0 Ready-to-use $\mathbf{8 4 9 . 1 5 . 0}$

- Prices quoted are Mail Order Prices; retail

DAYSTROM LTD.

DEPT. WW.3, GLOUCESTER, ENGLAND

Member of the Schlumburger Group including the Heath Company MANUFACTURERS OF THE WORLD'S LARGEST-SELLING ELECTRONIC KIT-SETS

See all these models, and many more...
 in the latest HEATHKIT Catalogue

LOW-COST TRANSISTOR STEREO AMPLIFIER, TS-23

Incorporates all the essential features for good quality sound reproduction fiom recurd, radio and other sources 16 transistor, 4 diode eircuit (15 Good flequensy response ${ }^{-} 3$ watts r.m.s. switch easity handles your record, radio or cape inputs-stereo or mono - Sepirate controls provide bass boost, ereble cur, amplifier balance and ard construction 37 in . high $\times 13 \mathrm{in}$, wide $\times 8 \mathrm{in}$. deep - Beautiful walnut veneered cabiner (optional
extra) - Attractive Perspex front panel. KIT \& 17.15 .0 (less cabinet) KIT \&18.19.0 (with cabinet) Walnut vencered cabinet $62 / 5 /$ - extra. Ready to-use price on request

THE AVON COMPACT MINI SPEAKER SYSTEM

The ideal compace system for bookshelf or other small spaces. $6 \frac{1}{2}$ in. bass speaker e 3 tin. totally enclosed treble unit - Speakers rigidly mounted to stin. thick aluminium alloy plate e Inductorfully finished walnut yeneered cabinet Cabinet resonances are minimised by stour internal bracing and special zeoustic absorbent filling - Suitable for use with amplifiers having an ourpur impedance of $8-16$ ohms, and power output of 5 to 15 wates. - Faste, easy assembly - Gives best possible performance relative to smallest possible size. Frequency response $50 \mathrm{c} / \mathrm{s}=19,000 \mathrm{c} / \mathrm{s}$. © Size: 73 in , wide $\times 13 \mathrm{din}$.
high $\times 8$ zin. deep. Comprising: W Walnus veneered cabinet kit $\mathrm{CB} / 18 /$. Loud speakers and cross-over network kit $64 / 18 /$ - incl. P.T.

TOTAL PRICE KIT 613.16 .0 incl. P.T.
Ready to-use prise on request

TRANSISTOR AM-FM STEREO TUNER, AFM-2

- 18 Transistor 7 diode circuir - AM-LW/MW, FM Stereo and FM Mono tuning - Ausomatic stereo indicator light - Stereo phase control for maximum separation, minimum distortion -. Auromatic frequency conerul for positive "lock-in" tuning - Automaxic gain control for even, steady volume - Preassembled and aligned "front end" FM unit elf.
Separats All and FM printed circuit boards Separate AI1 and Mrinted circuit boards andse powercd - Low-sithouette styling-ihatehes AA-22 amplifier © Handsome fully finished walnut veneered $6717 / 6$ incl. P.T., AFM-2A IF Amplifier and power supply kit $£ 24 / 9 / 6$.

TOTAL PRICE KIT $\mathbf{6 2 . 7 . 0}$ incl. P.T.
Optional extra: Walnut veneercd cabinet 62/5/- extra

TRANSISTOR FM STEREO TUNER, TFM-IS

(Mono version TFM-IM available)

- 14 transistor, 5 diode circuit for cool instant
operation - Mono TFMAIM and Stereo TFM-IS models
available. Automatic frequency control - Stereo distortion - 4 -stãge If iection ensures high sensitivity and selectivity: "Fitered outputs for direct "beat-
iree "stereo recording - Automatic stereo indicator
light - Prealugned, preassembled " front-end " zuner
and one circuit board for fast, simple assembly. Cabinet $\mathbf{6 2 / 5 / - \text { extra. Comprising: }}$ TFM-TIRF Tuning Heart Kit, E5/16/-inel. P.T. TFMA-IM (Mono) if Amplifier, Power supply $(15 / 3 /$. Kit or TFMA-IS (Stereo) IF Amplifier, Power supply $619 / 2 /$ - Kit. TOTAL PRICE KIT (Stereo) $£ 20.19 .0$ incl. P.T. TOTAL PRICE KIT (Mono) E24.18.0 incl. P.T.
Optional extra: Walnut veneered cabinet $£ 2 / 5 /-$ extra

All models must perform to published specification when assembled in accordance with the instruction manual. ALL MODELS COVERED BY MONEY BACK GUARANTEE.

BERKELEY SLIM-LINE SPEAKER SYSTEM

- Specially designed io obtait optimum performance from the slim elegant cabine: - Beautiful wainut veneered. fu!ly firnished cabinet - Makes attractive addition to any room Seood on end uses only 17 in . x 7 i i . of floor spase - Two specially designed loudspeakers give adequate power handling for mosc applications 12 in . Iow resonance unit and 4 in . Mid/High frequency unit covei's $30-17,000 \mathrm{c} / \mathrm{s}$. Build it in an evening - Proiessional atcractive styling - Use one for mono and a pair for stereo - Outstanding periormance at a low price - Shell or floor scanding - Use vertical or horizontal - Designed to harmonize with modern or traditional decor
KIT $£ 19.10 .0$ Ready-to-Use $£ 24.0 .0$

LOW-COST SPEAKER SYSTEM SSU-I (not illustrated) - Build it yourself in an evening All wooden parts accurately pre-cut, drilled and sanded Wide frequency response Two specially designed loudspeakers - Hi-Fi on a budget - Glue, sandpaper. etc. are included in kit Use one for mono, two for stereo. Finish is to match your own furnishing -l6 page instruction manual -7in. or ISin. legs optional extra, $14 / 6$ - Use vertical or horizontal.

KIT \&II.17.6 (less legs)
Ready to-use price on request

LOW.COST SHORTWAVE RECEIVER, GR-64E

- 4 bands-3 short wave bands cover $1 \mathrm{Mc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$, plus $550 \mathrm{kc} / \mathrm{s}$ to $1.620 \mathrm{kc} / \mathrm{s}$ AM broadcast band - Buils-in Sin . permanent magner spsaker for a big, bold sound - lliluminated 7in. slide-rule dial with extra logging dial for precise station selection . Relative signal serength indicator aids pin-polnr station suning - 4-valve superher circuit plus two
 silicon diode rectifiers - Variable BFO control for code and SSB transmissions - Built-in external antenna connections - Built-in AM rod antenna - Fast, simple circuit board construction assures stabitit/ "Handsome "low-boy" styling -charcoal grey cabines, black front panel, and green and whice band markings - Headphone jack for private listening. Power requirements: 115,230 y. $50-60 \mathrm{c} / \mathrm{s}$ A.C. 30 watts. Dimensions: $13 \frac{1}{2} i n$. wide $\times 6$ in. high $\times 9$ in. deep KIT £22.8.0 Ready-to-Use $\mathbf{E 2 7 . 8 . 0}$

GENERAL COVERAGE RECEIVER, GR-54E
Powerful 6 valve- 6 diode circuit. 3 SW bands cover $2 \mathrm{Mc} / \mathrm{s}$ so $30 \mathrm{Mc} / \mathrm{s}$ plus $550 \mathrm{kc} / \mathrm{s}$ to $1550 \mathrm{kc} / \mathrm{s} A M$ broadcast band and $180 \mathrm{kc} / \mathrm{s}$ to $420 \mathrm{kc} / \mathrm{s}$ aeronautical and radio navigation band. Tuned RF stage.
modeposition. Built-in lin. $x 6$ in. PM speaker. Power req.: $120 / 240 \mathrm{y} .50-60 \mathrm{c} / \mathrm{s}$ AC. KIT $£ 50.1 .0$ Ready-to-Use $£ 63.6 .0$

Send for the Latest free catalogue

Now with more Kits more colour. Fully models for Stereo/Hi-Fi, test wath over laboratory instruments. amateur radio gear, intercom radio educational kits. Includes helpful in formation on Hi-Fi in your home and planning your Hi-Fi system. Mail coupon or write
Dayserom Led., Dept. WW3 Gloucester.

[^1]17.18 ST. MARTINS HOUSE, BULL RING, BIRMINGHAM Open Tues.-Sat. 9 a.m.-6 p.m. inclusive.

HEATHKIT

All mail orders and correspondence
To: DAYSTROM LTD., Dept. WW.3, Gloucester. Tel.: 29451

Please send model(s).
\square Please send me FREE Heathkit Catalogue.
NAME
ADDRESS
CITY.
Prices and specifications subject to change withour notice.

SANSUI isn't just a pretty face and the vital statistics prove it!

MODEL 1000A

AM/FM Multiplex Stereo Tuner Amplifier

This is a high-quality, tubed unit that uses the latest Nuvistor devices and power tubes. Other features include High-cut and Low-cut Filters for virtually interference-free enjoyment, a Muting switch that further reduces noise, and an Automatic Frequency Control switch to eliminate 'drift'.
RMS power: $40 / 40 \mathrm{~W}$.
Music power: 100 W (IHFM).
Harmonic distortion: 1.0% at 1000 Hz RMS rated power output. Overall frequency response: $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
FM sensitivity: $1.8 \mu \mathrm{~V}$ (IHFM).

MODEL 500A
 AM/FM Multiplex Stereo Tuner Amplifier

A tubed unit with a similar performance to the 1000 A , but giving a lower power output.
RMS power: $23 / 23 \mathrm{~W}$.
Music power: 50 W (IHFM).
Harmonic distortion: 1.0% at 1000 Hz RMS rated power output.
Frequency response : $20-20,000 \mathrm{~Hz} \pm 1.5 \mathrm{~dB}$ at
normal listening level.
FM sensitivlty: $2.0 \mu \mathrm{~V} \pm 3 \mathrm{~dB}$ (IHFM).

Sansui

Sole U.K. Distributors:

Technical Ceramics Limited
Cheney Manor, Swindon, Wiltshire. Telephone: Swindon 6251.
Accredited Midiand \& Northern Distributors to the retail trade Audio Distributors Limited
4 Lion Street, Kidderminster, Worcestershire
Telephone: Kidderminster 3293

MODEL 250

AM/FM Multiplex Stereo Tuner Amplifier

A high-performance, tubed unit with many studio-equipment features. And at a modest price.
RMS power: 10/10 W.
Music power: 22 W (IHFM).
Harmonic distortion: 1.5\% RMS rated power output.
Frequency response : $30-20,000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$ at normal listening level FM sensitivity: $4.0 \mu \mathrm{~V}$ (IHFM)
AM sensitivity: $30 \mu \mathrm{~V}$ (IHFM).
MODEL 220 - AM/FM Stereo Tuner Amplifier
A similar model to the 250 , but without multiplex.

Other equipment in the superbly

 styled Sansui rangeMODEL 3000A - Solld-state AM/FM Multiplex Stereo Tuner Amplifier. RMS power: $48 / 48 \mathrm{~W}$. $\pm 1 \mathrm{~dB}$.
MODEL 2000-Solid-state AM/FM Multiplex Stereo Tuner Amplifier. RMS power: $32 / 32 \mathrm{~W}$.
MODEL AU-777-Solid-state Stereo Control Amplifier. RMS power: $30 / 30 \mathrm{~W}$.
MODEL AU-70-Stereo Control Amplifier.
RMS power: $12 / 12 \mathrm{~W}$.
MODEL TU-70-AM/FM Multiplex Tuner. FM: 88 to 108 MHz . AM: 535 to 1605 kHz.
Stereo Headphone SS-2-
Hi-Fi Speaker Systems -
SP-50 - 2-way, 2-speaker system, 25 W.
SP-100-3-way, 3-speaker system, 25 W.
SP-200 - 3-way, 5-speaker system, 40 W.
SP-300-3-way, 4-speaker system, 50 W .

For complete details and fully illustrated colour leaflets, please send the coupon below, indicating the equipment in which you are interested, to:

Technical Ceramics Limited, Cheney Manor, Swindon, Wilts. Please send me fully illustrated leaflets, and advise me of the nearest Sansui Hi-Fi dealer.

Name
Address

Valuabie new handoook Fí EE EMGINEERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES " is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date the new "ENGINEERING OPPORTUNITIES " should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT ?

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic Eng.-Applied Electronics - Practical ElecElectronics - Practical Elec-
tronics - Radar Tech. tronics - Radar Tech.
Frequency Modulation Transistors.

ELECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. Installations - Draughtsmanship - Illuminating Eng. Refrigeration - Elem. Electrical Science - Electrical Supply - Mining Electrical Eng.

CIVIL ENG.
Advanced Civil Eng. - Gen. Civil Eng.—Municipal Eng.Structural Eng, - Sanitary Structural End. - Road Eng. - HyEng. - Road Eng. - Hy-
draulics - Mining - Water draulics - Mining -
Supply - Petrol Tech.

RADIO ENG.
Advanced Radio - Gen. Radio Radio © TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio Automation - Practical Ra

MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng.
Eng. Design - Press Tool Eng. - Press Tool Design-
Sheet Metal Work - Welding - Eng. Pattern Making Inspection - Draughtsmanship - Metallurgy - Production Eng.
AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. Automobile Maintenance Repair - Automobile Diesel Maintenance - Automobile Electrical Equipment - Garage Management.

We have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase rour earning powerl A.M.1.E.R.E., B.Sc. (Eng.) A.M.S.E., R., R.T.E.B., A.M. A.I.P.E.
 GEN. CEERT. OF EDUCATION. ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

* HOW to get a better paid, more intoresting job. * HOW to qualify for rapid promotion.
t HOW to put some letters after yaur name and become a key man . . . quickly and easily.
* HOW to benefit from our free Advisary and Appointments Depts.
* HOW yau can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

> 132 PAGES OF EXPERT CAREER-GUIDANCE

PRACTICAL EQUIPMENT

Basic Practical and Theoretic Courses for beginners In Radio, T.V., Electronics, etc. A.M.I.E.R.E. City Guilds Radio Amateurs' Exam., R.T.E.B. Certificate, P.M.G. CerRificate, Practical, A , Sor vicing, Practical Electronics, Electronics Engineering, Automation.

You are bound to benefit from reading ''ENGINEERING OPPORTUNITIES," Send for your copy now-FREE and without obligation

POST COUPON NON!

TO B.I.E.T. 446A ALDERMASTON COURT, aldermaston, berkshire.

3d. stamp if posted in an unsealed envelope. OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME
ADDRESS ...

WRITE IF YOUU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

TODMORDEN LANCS
 Todmorden 2601 extension 1

INTERNATIONAL RECTIFIER
Quality Semi-Conductors.
Complete Rectifier Assemblies up to thousands of Amps, Diodes, Thyristors, Zeners, Encapsulated Bridges, Photocells, Klipsel Surge Protectors.

For experiment and teaching:ZENER KITS, THYRISTOR KITS.

PRINTED CIRCUIT DRAFTING AIDS

Save drafting time and costs. Selfadhesive shapes and tapes. Terminal circles-fillets -tees -elbows -universal corners and mounting holes.

ENGLISH ELECTRIC

GS FUSES
or the protection of rectifiers and thyristors.

Rail Mounted Terminals and Terminal Blocks 0-5-250 Amps.

Bulletins and prices on request.

TRANSFORMERS
0.25 kVA to 300 kVA

I phase and 3 phase

LOW VOLTAGE HIGH CURRENT TRANSFORMERS
with output currents of hundreds, thousands and tens of thousands of amps.
I phase and 3 phase.

DC POWER SUPPLIES

For Magnets, Accelerators, Plating, Anodising, Spectroscopy, Plasma Arc, Toronto Arc, Electron Beams, Electrolysis, Welding, Quartz Lamps, Mercury Vapour Lamps. From 100 W to 200 kW .

VOLTMOBILES

64 steps on load switching AutoTransformers. I phase and 3 phase. 200-400 Amps.

Zero to 100% Volts or 125% of Input Volts.

Voltmobiles are low-cost controllers, for furnaces, rectifier sets and other loads.

LET US HAVE YOUR SPECIFIC REQUIREMENTS

Has red tape been complicating your procurement of electronic components from the U.S.A.?

For whatever you may need in electronic components from the U.S.A., Milo International can satisfy your requirements with prompt delivery, at direct factory prices, from a huge in-stock inventory of thousands of components made by the leading American manufacturers including this partial listing:
American-made elec.

Amperex	Eimac	R.C.A.
Amphenol	Electrons, Inc.	Raytbeon
Arrow-Hart \&	Erie	Simpson
Hegeman	General Electric	Sola
Bourns	Hardwick Hindle	Solitron
Burgess	Hickok	Sprague
Cannon	I.T.T.	Stancor
Centralab	J.F.D.	Superior
Cinch-Jones	Kings	Sylvania
Clarostat	Littelfuse	Texas Instruments
Cornell-Dubilier	Mallory	Transitron
Corning	Oak	United Transformer
Dale Electronics	Ohmite-Allen Bradley	Vector
Delco Radio	Potter \& Brumfield	Xcelite

For immediate price and delivery quotations, contact Milo by mail, phone, cable or International Telex.

I I LO International

World-Wide Electronic Component Suppliers
530 Canal Street, New York, N. Y. 10013 / Tel 212-233-2980 / Cable MILOLECTRO, N.Y. / Int'l. Telex 62528 WW-019 FOR FURTHER DETALLS

MACNETIC RECORDING

TYPE＂A＂

Standard I／2 track，Record／Playback and Erase．Many special versions can be made to customers＇requirements such as narrow track－raised track－ or cut－away for cine use．Ideal head for dictating machines，etc．Size $\frac{3}{8} \mathrm{in}$ ．dia．by $\frac{\text { sing }}{6}$ ．long．The round body makes for easy azimuth adjust－ ment and takes up a minimum of space．Head has internal screen and fly leads for easy wiring．

TYPE＂R＂
Size is $\frac{7}{16} \mathrm{in}$ ．square at the front
 with body $\frac{7}{8} \mathrm{in}$ ．dia．by $\frac{5}{8}$ in．long． Curved front Itin．radius．This head is available in a wide range of Record／ Playback impedances．Also available as Erase．This novel design possesses many advantages over comparable types－higher output－lower losses－extremely good H．F．res－ ponse－very low noise pick up－has internal mumetal screen．Round body aids mounting arrangements－ easy azimuth alignment．

TYPE＂DR＂

Exactly as Type R except body is $\frac{7}{16} \mathrm{in}$ ．square along its length provid－ ing simple mounting arrangements． The Erase versions of R and DR types are double field heads．These are not just double gaps but two Erase heads in one，giving better than 60 dB erasure of a saturation（ +6 dB on full record level）， $1 \mathrm{k} / \mathrm{c}$ recording at $3 \frac{1}{⿳ 亠 丷 厂 彡}$

TYPE＂X＂

1／1－1／2－2／2 and $2 / 4$ Heads for $\frac{1}{4}$ in．tape．Record／Playback and Erase Heads for high quality tape recorders．Size only $\frac{1}{2}$ in．cube and available in a whole range of imped－ ances．Excellent HF performance， efficient screening and very low crosstalk are features of the R／P head，Mounting brackets are available for twin or triple head assemblies．

TYPE＂T＂

Built into a deep drawn mumetal case ensures complete shielding． Type T is the protruding pole type with special narrow track（as narrow as ．002in．）and can be made as a Record／Playback or Erase Head，or combined Record／Playback／Erase Head，or even Record／Playback and self－oscillatory Erase Head．The Erase track can be made wider than the R／P track on the Combo Head，a fully screened lead is incor－ porated as part of the head．

SINGLE TRACK COMBO TYPE＂X＂
Designed as a combined Record／ Playback／Erase Head for the com－ mercial market．such as telephone answering machines．Built into $\frac{1}{2}$ in． cube deep drawn mumetal case it incorporates the R／P features of R－ Type head．The Erase track is made wider than the R／P track to ensure complete erasure and to overcome machine to machine alignment tolerances．

TYPE＂Z＂

A brand new concept in combination head design incorporating all the best features of the X－Type Head combined with integral erase facili－ ties．Accurate gap alignment be－ tween tracks makes this head emi－ nently suitable for high quality stereo use．The one－piece deep drawn mumetal case（only $\frac{1}{2}$ in．cube） ensures complete screening across the front as well as the sides．

MULTITRACK
Available to special order in Two－ Four－Eight or Sixteen tracks，or to specification．These tracks are located by precision machined slots and track dimensions and positions remain consistent．The track to fixing base dimensions are held to tight limits and any tolerances are non－cumulative as each track is indexed from the base．Special purpose optical equipment ensures a high order of accuracy in the align－ ment of the head halves．Erase heads，identically slzed to the R／P head are available to special order．

TYPE＂W＂ERASE

Designed especially for the Cassette Type Recorder using ．I 5 in ．wide tape． Built－in tape guides are a feature of this head．The Standard type now in production is $\frac{1}{2}$－track but a com－ patible Stereo version will soon be
 available．The high Q factor of Type W Erase gives maximum economy in battery applica－ tions．

TYPE＂W＂R／P．

The Record／Playback Head for Cassette Recorder incorporated in a deep drawn mumetal case ensuring complete screening．As an integral part of the head the mounting plate is of tempered Beryllium copper to provide a simple azimuth adjustment．
 The winding is centre tapped to give the option of presenting a lower impedance to bias and signal sources during recording．

MARRIOTT MAGNETICS LTD．

WATERSIDE WORKS

Dial Euston 1639. Specify your meter . . . type, shape, size, F.S.D. It's almost certainly on our premises right now. It will almost certainly be on yours tomorrow (G.P.O. and/or B.R. willing). If by chance we haven't got precisely what you want, we'll tell you when you can have it. Or which stock alternative, plus or minus a few ohms, will do the job. Or how long by our stopwatch it will take us to modify a stock meter for you. You'll always get a straight answer from Anders... and 99 times out of 100 the answer will delight you.
Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery.

Prompt supply of non-standard instruments and ancillaries.
Sole U.K. distribution of FRAHM vibrating reed frequency meters and tachometers.
New comprehensive catalogue available free to manufacturers and bona-fide engineers.

ANDERS METER SERVICE

Anders Electronics Ltd • 48/56 Bayham Place • Bayham Street • London NW1 • Telephone: 01-3879092 Ministry of Aviation Approved

"Where else can you buy a counter like this for £242?"

Nowhere else. The Racal type 835 Universal Counter/Timer provides Frequency, Period, Period Average, Ratio, Time Interval, Pulse Width and Mark/Space, Totalise and Scaling in one compact instrument.

PlusIntegrated circuit construction
DC to 12.5 MHz (125 MHz with Type 810 Divider)
Sensitivity 75 mV r.m.s.
Gate Times $1 \mu \mathrm{~S}$ to 10 Sec . (with push-button selection)
Exceptionally easy to drive

- tabular control information

Built to Racal 800 series standards, and occupying precisely half standard-rack width, the 835 has a companion Type 810 Frequency Divider which extends the frequency range to 125 MHz .

RACAI
INSTRUMENTS
CUT COSTS
NOT
Pefformance

Racal Instruments Ltd., Crowthorne, Berkshire, England.
Tel: Crowthorne 5652. Telex 84166 Cables/Grams Racal Bracknell.
BAGAL

VORTEXION

C.B.L. TAPE RECORDER.

Stereo/Mono $\frac{1}{2}$ track recorder. Speeds $1 \frac{7}{6} / 3 \frac{3}{4} / 7 \frac{1}{2}$ i.p.s. or $3 \frac{3}{4} / 7 \frac{1}{2} / 15$ i.p.s. Wow and Flutter $7 \frac{1}{2} \mathrm{i} / \mathrm{s} 0.16 \%$. $3 \frac{3}{4} \mathrm{i} / \mathrm{s} .0 .2 \%$. $\mathrm{H} \& \mathrm{~N}$ (after erasure)-50db. F. R. $15 \mathrm{i} / \mathrm{s} 40 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$. $7 \frac{1}{2} \mathrm{i} / \mathrm{s}, 40 \mathrm{c} / \mathrm{s}-15 \mathrm{Kc} / \mathrm{s} .3 \frac{3}{4} \mathrm{i} / \mathrm{s}, 40 \mathrm{c} / \mathrm{s}-12 \mathrm{Kc} / \mathrm{s}$. $1 \frac{7}{6} \mathrm{i} / \mathrm{s}, 40 \mathrm{c} / \mathrm{s}-$ $6 \mathrm{Kc} / \mathrm{s}$. All $\pm 3 \mathrm{db}$. Replay char. CCIR. Inputs: mic. 10 microvolt on 30Ω, gram/radio 60 mV on $300 \mathrm{~K} \Omega$. (mixable on each amplifier). Output 15Ω at $3 \frac{1}{2} \mathrm{~W}$ each amplifier. Three motors. $8 \frac{1}{4}{ }^{\prime \prime}$ spools. Less than I minute rewind for 1750 ft . tape. Level meter. Pause control, monitoring, mixing, echo, superimpose.
Size, $16 \frac{3^{\prime \prime}}{3} \times 27 \frac{1^{\prime \prime}}{2} \times 88{ }^{\frac{3^{\prime \prime}}{}}$.
Speeds $1 \frac{7}{6} / 3 \frac{3}{4} / 7 \frac{1}{2}$ i.p.s.
Weight 69 lb .

Speeds $3 \frac{3}{4} / 7 \frac{1}{2} / 15$ i.p.s.
Price 1172 Os. Od.
Price $£ 180$ 0s. Od.

W.V.B. TAPE RECORDER. Similar to above but mono only. Professional quality recordings, checked by after record monitor during recording. Echo and superimpose facilities, 600Ω balanced or unbalanced output and $3 \frac{1}{2}$ watts output to internal or external speaker. Size $8 \frac{1}{2}{ }^{\prime \prime} \times 16 \frac{1}{4}{ }^{\prime \prime} \times 22 \frac{5}{8}{ }^{\prime \prime}$. Weight 50 lb .
Speeds $1 \frac{7}{8} / 3 \frac{3}{4} / 7 \frac{1}{2}$ i.p.s.
Price Glls los. Od.
Speeds $3 \frac{3}{4} / 7 \frac{1}{2} / 15$ i.p.s.
Price Cl 28 Os. Od.

W.V.A. TAPE RECORDERS.

This may be 2 track (FPI6) or 4 track (FP28).
Same as W.V.B. but no superimposing. An extra head for stereo playback can easily be plugged in. Size and weight as W.V.B.
Speeds $1 \frac{7}{6} / 3 \frac{3}{4} / 7 \frac{1}{2}$ i.p.s.
Price 196 7s. Od.
Speeds $3 \frac{3}{4} / 7 \frac{1}{2} / 15$ i.p.s.
Price $£ 107$ 3s. Od.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within Idb Peak Programme Meter. 4-6-8-10 and 12 way Mixers. Twin 2-3-4 and 5 channel stereo. Tropicalised controls. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 v at 20 K or alternative 1 mW at 600Ω, balanced, unbalanced or floating. Prices on application.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm I \mathrm{db}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input $1 \mathrm{~mW} 600 \Omega$. Output $100-120 \mathrm{v}$ or $200-240 \mathrm{v}$. Additional matching transformers for other impedances are available.

30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%$ distortion. Outputs $4,7.5,15 \Omega$ and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

-

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for $8 \Omega-15 \Omega$ and 100 volt line. Bass and treble controls fitted.
1 gram and 2 low mic. Inputs. Price $\mathrm{C84}$ Os. Od.
I gram and 3 low mic. inputs. Price EPO Os. Od.
4 low mic. inputs.
Price 692 Os. Od.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with $8 \Omega-15 \Omega$ and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on $100 \mathrm{~K} \Omega$. Price $\mathbf{6 7 0} 0 \mathrm{Os} .0 \mathrm{~d}$.

20/30 WATT MIXER AMPLIFIER. High fidelity all sllicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 db and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full galn with the treble and bass controls set level.
Standard model l-low mic. balanced input and $\mathrm{Hi} Z \mathrm{gram}$. Price $\mathbf{E 3 5}$ Os. Od.

The same safeguards in manufacture and control that have won government contracts for TEONEX in over forty different countries apply equally to ensure top quality for private users too. When you require valves to comply with E.V.S. or M.I.L. standards - choose TEONEX.
The TEONEX range (for use outside the U.K. only) incorporates the entire series of Britishproduced valves or their Continental equivalents, including a wide range of colour T.V. valves. Price list and technical specifications may be obtained from:-

Export Enquiries Only Please! TEOIIEK LIIIITED

TEONEX

2a, Westbourne Grove Mews,
London, W. 11
England.

Just what is this ABR, that makes such a vital difference to the 'DITTON 15'?

To achieve really impressive bass reproduction a speaker must move a large volume of air at the lower frequencies. In the usual "infinite baffle" compact system this is achieved by large excursions of the diaphragm-with good results if the designers and engineers have done their homework (listen to the "Ditton 10'). But with the 'Ditton 15^{\prime} Celestion have come up with something even better. They have given a dramatic further improvement in the bass response by a novel design idea called the ABR (Auxiliary Bass Radiator).
The $A B R$ is a rigid diaphragm with a linear suspension capable of large excursions, pressure driven by the rear radiation from the $8^{\prime \prime}$ bass unit. The acoustic mass of the $A B R$ and the response of the $8^{\prime \prime}$ bass unit are so matched that from 80 Hz down to 30 the ABR moves in phase with the bass loudspeaker cone. It progressively radiates more of the bass frequencies as the bass loudspeaker's own power output falls away. This sharing of the load results in a clarity of sound in the bass frequencies and permits a full 15 Watt power down to 30 Hz . Above 80 Hz the ABR is stationary leaving the enclosure to act as a pure infinite baffle.
And what about the high notes? They are in the care of the famous HF1300 Mk. 2. Enough said!

But don't take our technical word for it. Hearing is believing! Ask your local Hi Fi dealer to demonstrate the 'Ditton 15' and compare it for yourself. Or send in the coupon now, and we will let you have full details and technical specification-not only of the 'Ditton 15', but also of the famous 'Ditton 10', the inexpensive but most sophisticated mini-speaker on the market.

Celestion
 Studio
 Series
 loudspeakers for the perfectionist

1. Studio quality high frequency unit HF1300
2. Anechoic cellular foam wedge and lining eliminates standing waves.
3. High hysteresis panel loading material to eliminate structural resonances.
4. Auxiliary Bass Radiator (ABR)—plastic foam diaphragm of high rigidity and low mass having a free air resonance of only 8 Hz ; double roll suspension allowing excursions up to $\frac{3^{\prime \prime}}{4}$ with virtual absence of distortion.
5. $8^{\prime \prime}$ bass unit, with free air resonance of 25 Hz , and massive Ferroba II magnet structure for optimum magnetic damping and cone treated with viscous damping layer to suppress resonances.
6. Units mounted flush to eliminate diffraction effects and tunnel resonances; covered by acoustically transparent grille cloth for maximum presence.
7. Full L-C Crossover network.

Rola Celestion Ltd Ferry Works,

Tel 01-398 3402

Radio and Television Manufacturers.
Radio and Television Service Departments.
Radio Relay Companies
Audio Equipment.
Electronic Equipment.
Instrumentation.
Computers.
Marine Radar
Communication Equipment
Research and Development.
Government Departments.
Aircraft Military and Civil.

Ministry of Aviation Approved Inspection. Air Registration Board Approved Inspection.

For quality, reliability and world-wide availability, rely on Hall Electric's speed, intelligence and reputation.

hHALTRON RADIO VALVES \& TUBES

[^2]WW- 026 FOR FURTHER DETAILS

DILINGOEN

a unique sound mixing system...

KONGSBERG VAPENFABRIKK KONGSBERG NORWAY

Head office and plant: Kongsberg, Norway
Tel.: Kongsberg 37, telex: 1491, cable: Vápenfabrikken, Kongsberg
Oslo office: Drammensveien 40, VII
Tel.: Oslo 5667 70, telex: 1114, cable: Konsern, Osio
Central European office: Kongsberg Vápenfabrikk, Bonn
Walter Flex Strasse 1, West Germany
Tel.: Bonn 27 422; telex: 886505 , cable: Korakontor, Bonn

A new science project combining the fascination

 of optics with electronics . . . the new field ofDemonstrations of these devices operating as
SPEECH LINK
ON/OFF LINK are being given daily at our only address,
52 TOTTENHAM COURT ROAD, LONDON, W.1.

These new devices offer features which can be exploited in an extremely wide field of applications. Their outstanding modulation and switching capabilities, coupled with completely solid state circuit design and small physical size make them ideally suited to such purposes as short distance speech and data links, remote relay controls, safety devices, burglar alarms, batch counters, level detectors, etc.

MGA100 (1) $\sqrt{2}$

 206 Post free
Abstract

TYPE MGA 100 General Purpose Gallium Arsenlde Light Source A filamentless, Gallium Arsenide infra-red emitter, only 5.54 mm . dia. and 8.1 mm . long. Features a robust cylindrical package coaxial with the beam, facilitating optical alignment and heatsinking.

MAX RATINGS Forward current IF max. * D.C.......400mA. Forward peak current is max.* (pk)......6A Power dissipation ${ }^{*} \ldots .600 \mathrm{~mW}$. Derating foctor for $T_{\text {amb }}$ greater thon $25^{\circ} \mathrm{C} \ldots 7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Reverse valage g max. ...I I-oV Supplied complete with suitable lenses, full Technical Data and Application Sheets,including Line of Sight Speech Link.

TYPE MSP3 Solid State Photo Recelving Dovice
An ultra-sensitive infra-red and visible light detector, this device is a complete silicon photo-electric receiver with a peak spectral response at 9500 A . Size only 6.4 mm . dia. and 25.4 mm . long, yet absolutely complete, the device will generate sufficient power to drive an external relay. Chiefly intended for use in optical links based on Gallium Arsenide Light Sources, they are equally suitable for systems based on visible light. Features a robust cylindrical package coaxial with the incident light facilitating optical alignment and heat-sinking.

MAX RATINOS
Total dissipotion (in free oir, $T_{a m b}=25^{\circ} \mathrm{C}$) 100 mW . Derating Factor....... $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Oupput Current intensity..... 100 mA . Voltoge......25V. Operating Temperature...........from Supplled complete with suitable lenses, full Technical Data and Application Sheote, Including Line of Sight Speech Link.

31F2 28^{\prime}
 ost Free

Type 31F2 Micro-miniature Infra-Red Detector
Extremely small photo diodes of silicon NPN passivated planar construction and suitable for Punched Card Readers, Counters, Film Sound Track, etc.
Supplied complete with suitable lonses, full Technical Data and Application Sheets, including Line of Sight Speech Link.

\section*{PROOPS | Reorters |
| :---: | LIMITED}

52 Tottenham Court Road, London, W.1. Telephone: LANgham 0141 ($01-580$ 0141)

Pinnacle the largest single valve independent

THIS IS WHAT

WE DO
Make available the widest range of valves for commercial and industrial use. Give a personalised service based on intelligence and speed.

Ensure that we only supply values made by the world's foremost manufacturers.

Provide valves selected for your special needs.
Help out rapidly with that "awkward"' valve that nobody else seems to have heard of.

IF I'D ONLY TRIED PINNACLE FIRST. . .
Every valve in either widespread or specialised use in the fields of Entertainment, Industry, Education and Research will be found in our catalogue, together with its main equivalents, classification, and the Pinnacle " P "' number under which it may be ordered.

Specialise in European or American types which are not normally easily obtainable.

Rush you a small order, or quote for a bulk require-ment-1's or 1,000's are all the same to us.

PINNACLE ELECTRONICS LIMITED achilles Street•new cross•london s.e. 14
Telephone: All Departments-01-692 7285 Direct orders-01-692 7714

BELLING \& LEE LIMITED GREAT CAMBRIDGE ROAD ENFIELD, MIDDLESEX.

mechanized handling can halve your

operating costs!

Are you hit by rising production costs and shrinking profit margins? Is competition getting steadily tougher? Sales prospects bleaker? If these are your problems, can you ignore the productivity improvements resulting from systemized mechanization? There will be a multitude of new ideas and methods at the International Mechanical Handling Exhibition for boosting profits and increasing efficiency. It will be much more than just the world's biggest display of mechanical handling equipment - 500,000
square feet and 300 exhibitors - it will be a unique presentation of handling technology; new systems, equipment and practical ideas. An unrivalled opportunity for evaluating the latest developments in receiving goods and materials; storage inventory control; in-processing; packaging; transport; distribution; and ancillary services and equipment. Whether your company is large or small, you will find much of interest and value at this im portant event. Mail the enquiry now and note the date in your diary.

- - Hiteky

HIGH FIDELITY SPEAKERS

Whiteley Stentorian Speakers incorporate 40 years of development in acoustic technology. Their frequency response is exceptionally wide, and their overall performance is outstanding.

Stentoriant
 MODEL H.F. 1016 MAJOR

$10^{\prime \prime}$ Die-Cast Unit, incorporating 16,000 gauss magnet system and has a 15 ohms impedance speech coll. Handling capacity 10 watts. Frequency response 30-16,000 c.p.s. Bass resonance 39 c.p.s.

PRICE: £11.11.7 (inc. P. Tax)

\rightarrow NeNTVrint

MODEL H.F. 1012
10" Die-Cast Unit, incorporating 12,000 gauss magnet. Handling capacity 10 watts. Frequency response 30 c.p.s. to 14,000 c.p.s. Bass resonance 35 c.p.s. Fltted with cambric cone and universal Impedance speech coil providing instantaneous matching at $3,7.5$ and 15 ohms. PRICE: £5.13.1 (inc. P. Tax)

Stentariann
 MODEL H.F. 816

$8^{\prime \prime}$ P.M. Unit, 16,000 gauss magnet. Handling capacity 6 watts. Frequency response 50 c.p.s. to 15,000 c.p.s. Bass resonance 63 c.p.s. Fitted with cambric cone, die-cast chassis and universal impedance speech coil providing instantaneous matching at 3, 7.5 and 15 ohms. PRICE: £7.14.8 (inc. P. Tax)

Ask your dealer for full details of the Stentorian range or write to

MANSFIELD • NOTTS • ENGLAND
Tel: Mansfield 24762
London Office: 109 KINGSWAY, W.C. 2 Tel: HOLborn 3074

VARIABLE-HIGH CURRENT SMOOTHED POWER SUPPLIES WITH ACCUMULATOR PERFORMANCE DIRECT FROM A.C. MAINS

TYPES 250VRU 3020 250VRU $60 / 10$ 250VRU 120/5 250 VRU/240/2.5

PRICE:
© 131.5 .0

TYPE $250 \mathrm{VRU} / \mathbf{3 0} / \mathbf{2 0}$ provides outputs of $0-30 \mathrm{v}$. D.C. continuously variable, p to 20A. Overlad eppecity 200% for short periods Ripple Content, impedance and regulation equivalent to a.ccumulator performance. Output protected. INCORPORATES HEAVY DUTY SILICON RECTIFIERS. Complete with vole and amp meters, free standing, but suitable for 19in. racking
USED BY MINISTRY OF TECHNOLOGY: Airsraft operators, for servising 28 v . aircraft instruments, radio; within B.C.A.R.s.
FIXED OUTPUTS ALSO AVAILABLE. Smoothed 12 or 24 v . up to 24 amps Applications. operating and servicing transistorised equipments, e.g. 12-24 v. mobile r/telephone; production testing D.C. motors; heaters, wipers ignition systems, etc., etc. Direct from A.C. without accumulators.
Avoid the extra expense of super regulation you may never need.
PRICES: from $\mathbf{6 3 1 / 4 / -}$ up to $\mathbf{6 8 8 / 4 / -}$.
We shall be happy to assist with your power conversion problems. Call, write, or Tel.: 01-890 4837.

EXPORT ENQUIRIES INVITED**
DEPT. PUI3
BROWELLS
FELTHAM,
MIDDLESEX
ENGLAND.
TEL: 01-890 4242

LIMITED
**DEMANDES CONCERNANT L'EXPORTATION SOLICITÉS. SE INVITAN CONSULTAS SOBRE EXPORTACIÓN. EXPORTANFRAGEN ERBETEN.

WW-033 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days delivery.

Full information from:
HARRIS ELECTRONICS (London) LTD
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

TIMERS

 MICRO SWITCHES

 MICRO SWITCHES IMMEDIATE DESPATCH

 IMMEDIATE DESPATCH}

PROCESS TIMERS

611-T Delay Relay

$40 /$ - each,

+ 2,5,15:25 secs. Delay.
$\star 15 \mathrm{amp} . c / o$ micro-switch fitted
+ LARGE RANGE OF A.C. \& D.C. COILS.
dependent on quantity.
AT-10 PNEUMATIC TIMER delay relay
sYs MINI-TIMER

SYNCHRONOUS MOTOR \& CLUTCH
+10 MILLION OPERATIONS

* Instantaneous \& Timed out 3 AMP contacts.
\star Repeat Accuracy $\pm \frac{1}{2} \%$. 10 secs. to 28 Hrs. May also be used as impulse start and automatic reset.
£9.15.0 approx. dependent on quantity.

STP Sub-Mini Process Timer SYNCHRONOUS MOTOR \& CLUTCH Matchbox size frontal area. Automatic re-set. +PLUG-IN OCTAL BASE

- INSTANTANEOUS AND TIMED OUT 2 AMP CONTACTS + RANGES: 10 SECS. TO 36 MINS. approx. $£ 5.0 .0$ each.

YL 2 GPA
 * Fully adjustable up to 200 seconds. Fitted with 15 amp . S.P.D.T. switch.

* One model provides delay after energise or delay after de-energise.
approx. $£ 6.0 .0$
dependent on quantity.

PROXIMITY SWITCH
tFOR BATCHING, CONVEYORS, MACHINE TOOL CONTROL, PACKaGING, SORTING. etc.

+ SENSES FERROUS OBJECTS
\# MEEDS NO MECHANICAL FORCE or pressure to operate - SOLID STATE SENSING MEAO INCLUDES CONSTAMT VOLTAGE CIRCUIT
approx. \$11.0.0 dependent on quantity ${ }^{\circ}$
OTHER INDUCTIVE AND CAPACITY TYPES AVAILABLE
U.L. APPROVED (Appr. No. 32667) U.S. MIL. SPEC. ALWAYS AVAILABLE FROM STOCK

BuIllers ceramics

for the ELECTRONIC INDUSTRY (and Electrical Appliance Manufacture)

Frequelex-for high-frequency insulation.

Refractories for high-temperature insulation.

Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products.

Write today for detailed particulars.

BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 54321 (5 lines)
Telegrams \& Cables: Bullers, Stoke-on-Trent London Office: 6 Laurence Pountney Hill, E.C. 4 Phone: MANsion House 9971

Those transistors cost money! Protect them!!

36A SPACESAVER

DRAWER UNIT $42^{2 "}$ high. $24 \frac{1}{3}$
wide. $12^{\prime \prime}$ deep. 36 drawers each 3^{\prime} high, $5 \frac{1}{4}$ wide. $10 \frac{7}{4}$ deep, with identification cards.

12A POPULAR DRAWER

UNIT 9 high, 35^{*} wide. $12^{\prime \prime}$ deep 12 drawers each $3^{\prime \prime}$ high. $5 \frac{1^{*}}{}{ }^{*}$ wide $10^{\frac{7}{8}-}$ deep, with identification cards. Ideal for shelf or table-top.
£4.15.0 BRAND NEW

ORDER NOW
Send for FREE cata logue of our complete range of storage equip ment.

N.C.BROWN LTD

industrial
pacesetters in storage equipment
SALES OIVISION
Eagle Steelworks. Heywood, Lancs. Tel: 69018 London: 25127 Newton St. WC2. Tel: 01-405-7931
맘므모몽
단본
Please send \square 36A Spacesaver Drawer Unit
\square 12A Popular Drawer Unit
Tick where appiicable and send cash with orders under $£ 5$
NAME
ADDRESS
WW-044 FOR FURTHER DETAILS

FR11P Plug-in and printed-circuit version

STAND G373, IE AOLYMPIA 13-18 MAY

GEC takes you years ahead in HF communications..

... with their new RC/410/R Synthesised H.F. Receiver. Intended for the professional user its advanced features include \square Built-in full synthesis control over the complete frequency range in 100 Hz steps \square Frequency range from 2 HMz to 30 MiHz \square Continuously tuneable without "see-saw" at band edges \square Quick setting to frequency with pre-set controls \square Accurate digital display with 100 Hz resolution \square Receives A1, A2, A3, A3A and A3J transmission models \square Fully transistorised for reliability \square Exceptional R.F. performance \square Low cost \square Single selfcontaining unit available as either table model or for 19 inch rack mounting. Technical literature is available. Demonstrations can be

Electronics

Information Centre

G.E.C. - A.E.I. (Electronics) Ltd. Communications Division, Spon St. Coventry CV1 3BR. Telephone: Coventry 24155 A subsidiary of The General Electric Company Lid. of England

THE COMPLETE PORTABLE P.A. SYSTEM
15 watt, 12 volt Amplifier complete with dynamic microphone and 10 watt horn. Runs off 12 volt car battery or 8 U2's in special pack.
Separately £33-5-5
Package deal £30 post free

TOA
THE TRENDSETTERS IN PUBLIC ADDRESS will be exhibiting at the International Public Address Exhibition from 12-14th March 1968 at Harrow

Comprehensive literature and price lists from Audio \& Design the leaders in sound equipment.

G

 AUDIO \& DESIGN LIMITED 40,QUEEN STREET MAIDENHEAD BERKS. TEL. 25204

AVONCEL EQUIPMENT TROLLEYS Medium Duty from il7. Heavy Duty from 635 . Wide range of Standard Models. Quick Delivery Special Models made to order.
"AVONCEL"

AVON COMMUNICATIONS \& ELECTRONICS LTD
318 bournemouth (HURN) AIRPORT Christchurch, hants. Tel. northbourne 3774 (P.b.X.)

TRANSFORMERS

colls
GHJKES TRADE ENQUIRIES WELCOMED
SPECIALISTS IN
FINE WIRE WINDINGS miniature transformers
reLAY and instrument coils, etc.
VACUUM IMPREGNATION TO APPROVED STANDARDS
ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY
01.653 .2261

CR4.8LZ
EST. 1933
WW-0SO FOR FURTHER DETAILS

We can't show them all!

The Partridge range of Transformers for Hi-Fi circuits covers most leading published dessigns. Write now for Data Sheets, or let us have your specific enquiry-there's bound to be a model to suit your needs.

Roebuck Road, Chessington, Surrey.
01-397 4353/4/5

into pints!

—electronically speaking!

Vero are electronic packaging specialists. A wide range of standard Veroboards, Card Frames, Module Racks and Cases are available from stock. In addition we are always prepared to discuss special designs and requirements, but prefer to be consulted early so that our designers can work closely with yours. Our design experience and know-how is invaluable in electronic problems where maximum space utilization is important.

Send now for full detalls to:-

VERO ELECTRONICS LTD

INDUSTRIAL ESTATE, CHANDLERS FORD, EASTLEIGH, HANTS.
Telephone: Chandlers Ford 2921/4.
Telex 4755I
branches and agents throughout the world

...you

 can say that again!The new RC/460/S is an H.F. Frequency Synthesiser. Advanced in design and easy to operate, its advanced features include \square High stability source for transmitters and receiver local oscillators \square Full synthesis control in 100 Hz steps \square Frequency range of 1 MHz to $29.999 \mathrm{MHz} \square$ Internal frequency standard stability 1 part in $10 \square$ Provision for external drive standards \square Receiver local oscillator frequency offset can be providedRemote control \square High purity output \square Clear in-line digital display with 100 Hz resolution \square Fully transistorised for reliability \square Low cost \square Single self-contained unit available as either table model or for 19 inch rack mounting. Technical literature is available.
Demonstrations can be arranged.

Information Centre
G.E.C.-A.E.I. (Electronics) Ltd. Communications Division, Spon St. Coventry CV1 3BR. Telephone: Coventry 24155 A subsidiary of The General Electric Company Ltd. of England

NEW RANGE OF SOLID STATE A.C. MAINS AMPLIFIERS
Employing only high grade components and transistors
\qquad cabinet with Batin Teak reneer
fanim can be euppled for any mondel. Prices fromp
 excellent results at modest output levels.
Frequency Response $30-20,000 \mathrm{cps}$ -2dB.
Sensitivity 5 mv (max).
Harmonic Distortion 0.5% at 1,000 cps.
Output for $3-8-15$ ohm Loudspeakers.
Input Sockets for 'Mike' Gram and Radio Tuner/Tape Recorder

LTA15 15 WATT AMPLIFIER

High Fidelity Output switched inputs for Gram, ' Mike,' Tape, and Radio. Frequency Response $10-\neq 0,000 \mathrm{cps}$ 3 dB .
Bass Control +18 dB to -164 B at 40 cps .
Troble Control +17 dlB to -r 4 dB at 14 Kcs.
Hum and Noise - 8odB.
Harmonic Distortion 0.2% at rated output.
Please send a stomped addressed envelope for full descriptive details of above units, also TUNER/AMPLIFIERS STEREO and MONO.

Recommended 16 GNS Size $9 \frac{1}{2} \times 3$ 3 in.
Output for 3-8-15 ohm Loudspeakers.
Wholesole ond
Retall enquiries to:
LINEAR PAODUCMS MTD.

WW-054 FOR FURTHER DETAILS

Only S.M.E. Precision Pick-up Arms offer all these features. Choice of arm length Model 3009 (9in.) or Model 3012 (I2in.) for still lower tracking error-of special importance with elliptical styli . low inertia. High precision ball races and knife-edge bearings for minimum pivot friction. Linear offset chosen for lowest distortion. Automatic slow-descent with hydraulic control - Bias adjuster calibrated for tracking force. Exact overhang adjustment with alignment protractor. Precise tracking force from $\frac{1}{4}-5$ grams applied without a gauge. Shielded output socket. Low capacity 4 ft . connecting cable with quality plugs. Light-weight shell • Camera finish in satin chrome, gun-black and anodised alloy. Comprehensive instructions . Rational development-all improvements can be incorporated in any existing Series 11 arm.

For soles and service ring Steyning 2228

STUMP a new connector for the weight-andspace race

- a new connector specifically designed for a new Military project and for the race toward ever lighter, smaller equipment. It uses the very latest materials to achieve brand new standards in compact, efficient design. Just look at these features:

1. Glass filled Nylon housings and insulators for extreme light weight, high insulation properties and minimal fire risk.
2. Compact design and positive coupling with the tip of one finger - low height feature making it ideal for use on portable equipment or as low voltage, medium power connectors.
3. "Split shell" construction of cable unit housing for ease of wiring. Elimination of strain on cable joint by means of right-angle contacts.
4. Crimp type contacts in cable unit, with full width cable clamp and sealing grommet.

The Stumpi range is a new conception in design, fully sealed, meeting the requirements of DEF.5325, and is initially available in three shell sizes with nominal contact ratings of 5 , 20,40 and 60 amps .

THERE IS A THORN CONNECTOR FOR EVERY PURPOSE!

THORN SPECIAL PRODUCTS LTD, Great Cambridge Road, Enfield, Middle sex. Tel: 01-363 5353 Telex: 263201-2.3.
A subsidiary company of THORN BENDIX LIMITEO

A NEW RANGE OF SINGLE-FUNCTION PORTABLE METERS AT REALISTIC PRICES

Produced to Anders' specification, by a leading overseas manufacturer. D.C. accuracies within 1.5% F.S.D.
A.C. accuracies within 2.5% F.S.D. Mirror scale approx. $3.5^{\prime \prime}$ Case dimensions $7 \frac{1^{\prime \prime}}{4} \times 4 \frac{1^{\prime \prime}}{4} \times 3^{\prime \prime}$. Dual connection terminals. Supplied complete with robust leads. Models marked with an asterisk have varis-
 tor protection against 50% overload.
*8M-301. DC MICROAMMETER8, with * 8 M-351. AC MILLIAMMETER range selaction by roliery switch. RANGES: $50,100,250,500$ and 1,000 Micromperas.
s9.2.6 nett
*SM-311. DC MILLIAMMETERS, with range selection by rotary switch. RANGES: 1, 5, 10, 25, 100, 250. 500 and 1,000 Milliamperes. 88.0 .0 nett

8M-321. DC AMMETER, with range selection by terminals.
RANGES: 1, 2.5, 5, 10 and 25 Amperes.
88.0 .0 netl
-SM-331. DC YOLTMETER, with range
selection by rotary switch. with range salaction by rotary switch.
RANGES: 5, 25, 100, 250 and 1,000 milliamperes. $\quad \$ 8.10 .0$ nett
8M-361. AC AMMETER,with range selection by terminals, incorporating Current Transformer.
RANGES: 1, 2.5, 5, 10 and 25 Amperes. \quad E9.15.0 nett

- SM-371. AC VOLTMETER, with range selection by rotary switch. RANGES: 5, 10, 25, 50, 100, 250 500 and 1,000 Volts.
SENSITIVITY: 2,000 Ohms per RANGES: $1,2.5,5,10,25,50,100,250$. Volt.
\$8.15.0 netl 500 and 1,000 Volts. SENSITIVITY: 20,000 Ohms per Volt $£ 9.15 .0$ netl

ANDERS ELECTRONICS LIMITED • 48/56 Bayham Place • Bayham Street • London NW1
Telephone:01-387 9092

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the IC S-trained man. Let ICS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success.
Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers etc. Expert coaching for:

* INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.
* C. \& G. TELECOMMUNICATION TECHNICIANS CERT8.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFIGATE.
* RADIO AMATEURS EXAMINATION.
* P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-test meter-all under expert tuition.

POST THIS COUPON TODAY and find our how ICS can help YOU in your ${ }^{\text {r }}$ career. Full details of ICS courses in Radio. Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES.

TELEPRINTERS • PERFORATORS REPERFORATORS - TAPEREADERS EDTING \& REPROUCCING SETS

Codes: Int. No. 2 Mercurr/Pegasua, Elliot 803,
Binery and special purpose Codes. Binery and special purpose Codes.

2-5-6-7-8- TRACKAND MULTIWIRE EQUIPMENT

telegraph automation and computer peripheral accessories
Picture Telegraph, Desk-Fax, Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Coyers: Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter. Morse, Teledots Paper, Tape and Ribbons; Polarised and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone, Carriers and Repeaters; Multiplex Transmitters; Diversity Frequency Shift, Keying Equipment; Line, Mains Transporters and Suppressors; Racks and Consoles; Plugs, Sockers; Key, Push, Miniature and other Switches Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tols. Stroboscopes and Electronic Forks; Cold priner Mre, Test Equipment, Oscilloscopes; MiscelCathode Matrics; Test Eque

W. BATEY \& COMPANY

Gaiety Works, Ackerman Street, Tring, Herts. Tel.: Tring 3476 (3 lines) Cables: RAHNO TRING 8TD: 044-282 TELEX 82362

[^3]

Photo reproduced by kind permission of Women's Journal

A well paid job, security and everything that goes with it can be yours. Look at the situations vacant columns in the newspapers; notice the huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. There are many senior positions requiring just the up-to-date, advanced technical education which CREI Home Study Courses can provide.

CREI Programmes are specialised and job-related. Time spent on a CREI Technical Course pays immediate dividends in greater effectiveness and productivity on the job.
Take the first step to a better job now-enrol with CREI, the specialists in Technical Home Study Courses.

$\overline{\text { CREI }})$ PROGRAMMES ARE AVAILABLE IN:-

Electronic Engineering Technology \bullet Industrial Electronics for Automation - Computer Systems Technology Nuclear Engineering • Mathematics for Electronics Engineers - Television Engineering - Radar and Servo Engineering • City and Guilds of London Institute: Subject No. 49 and Advanced Subject No. 300.
C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London SW1

A Division of Mc Graw-Hill Inc

SPECIFICATIONS

	TYPE TA401	TYPE TAGO1	TYPE TA605
GAIN	$40 \mathrm{~dB}=0.1 \mathrm{~dB}$	$60 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$	20, $30,40,50$ and $60 \mathrm{~dB} \pm 0.2 \mathrm{~dB}$.
BANDWIDTH $\pm 3 \mathrm{~dB}$	$1 \mathrm{~Hz} \cdot 3 \mathrm{MHz}$	$3 \mathrm{~Hz}-1.2 \mathrm{MHz}$	$\begin{aligned} & 20-40 \mathrm{~dB}, 1 \mathrm{~Hz}-3 \mathrm{MHz} ; 50 \mathrm{~dB}, 2 \mathrm{~Hz}-2 \mathrm{MHz} ; 60 \mathrm{~dB}, \\ & 4 \mathrm{~Hz}-1.5 \mathrm{MHz} . \end{aligned}$
BANDWIDTH	$4 \mathrm{~Hz}-1 \mathrm{MHz}$	$10 \mathrm{~Hz}-300 \mathrm{kHz}$	$20-40 \mathrm{~dB}, 4 \mathrm{~Hz}-1 \mathrm{MHz} ; 60 \mathrm{~dB}, 10 \mathrm{~Hz}-300 \mathrm{kHz}$.
INPUT IMPEDANCE	$\begin{aligned} & >5 \mathrm{M} \Omega,<40 \mathrm{pF} \\ & \text { from } 100 \mathrm{~Hz} \text { to } \mathrm{IMHz} \end{aligned}$	$\begin{aligned} & >1 M \Omega,<50 \mathrm{pF} \\ & \text { from } 100 \mathrm{~Hz} \text { to } 300 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & >5 \mathrm{M} \Omega,<40 \mathrm{pF} \\ & \text { from } 100 \mathrm{~Hz} \text { to } 300 \mathrm{kHz} \text {. } \end{aligned}$
INPUT NOISE	$<15 \mu V$, zero source: $<50 \mu \vee, 100 \mathrm{k} \Omega$ source	$<15 \mu V$, zero source: $<40 \mu \mathrm{~V}, 100 \mathrm{k} \Omega$ source	As TA401 and TA601 at 40 dB and 60 dB .
POWER SUPPLY	PP3 battery.	life 100 hours	PP9 battery, life 1,000 hours, or A.C. Power Unit.
AVAILABLE OUTPUT	IV up to $1 \mathrm{MHz}, 300 \mathrm{~m}$ $100 \mathrm{k} \Omega$ and 50 pF	at 3 MHz , into load of	1.5 V up to 2 MHz , IV at 3 MHz , into $100 \mathrm{k} \Omega$ and 50 pF .
OUTPUT IMPEDANCE	100Ω in series with $6.4 \mu \mathrm{~F}$		
SIZE \& WEIGHT	$3^{\prime \prime} \times 1 \frac{13}{\prime \prime} \times 1 \frac{11^{\prime \prime}}{} 7 \mathrm{oz}$.		$2 \frac{1^{\prime \prime}}{} \times 4^{\prime \prime} \times 5 \frac{\frac{1}{2}^{\prime \prime}}{} 2 \frac{1}{2} \mathrm{lb}$.
PRICE with Battery and input lead	¢17.0.0	\$17.0.0	$627.0 .0$ (Optional A.C. Power Unit $\mathbf{6 7 . 1 0 . 0}$ extra)

PORTABLE INSTRUMENTS

Fully detailed leaflets are available on our complete range of partable instruments

LEVELL ELECTRONICS LIMITED

Park Road, High Barnet, Herts. Telephone: 01-4495028
WW-064 FOR FURTHER DETAILS

Mr. Harold J. Leak wishes to engage, as his personal technical assistant, an engineer of high vitality, competence and ambition.

The applicant must be capable of designing transistor amplifiers and stereo FM tuners, along guide lines given by Mr. Leak. He must also be capable of carrying out original work, again as guided, on loudspeaker transducers.

Salary £3,000 p.a. plus share of profits.
If you are certain that you are technically capable of the job and have the personality to get things done, write to Mr. Leak; please do not waste his time if you are unsure of yourself.

H. J. Leak \& Co. Ltd., Brunel Road, London, W.3.

WW-065 FOR FURTHER DETAILS

THE Galarme DE-SOLDERING TOOL

- Self-contained-does NOT require the use of air-lines or pumps
- Simple, light and inexpensive
- PERMABIT nozzle will not wear or become eroded by the solder

Standard nozzle ${ }_{6}{ }^{4} 4 \mathrm{in}$. bore. Alternative, $i_{i}^{3}+\mathrm{in}$. bore
Mains or low voltages
Please ask for colour cotologue A / S

Solid State U.H.F. Fixed Station

for $\mathbf{4 5 0}$ to $\mathbf{4 7 0} \mathbf{~ M c} / \mathrm{s}$

The Pye F450T u.h.f. base station has a fully transistorised transmitter and receiver, for maximum reliability and minimum size. The equipment is frequency-modulated, operates from 450 to $470 \mathrm{Mc} / \mathrm{s}$, with 40 to $60 \mathrm{kc} / \mathrm{s}$ channel spacing, and is suitable for use with mobile and Pocketfone radiotelephones.

* Choice of control systems.
* Elimination of relays in transmitter with the exception of aerial changeover.
* Output stage protected against 'no-load' conditions. * High-stability receiver squelch
circuit eliminates background noise in
the absence of a signal.
*4W nominal r.f. output.
*Remote control facilities.

Pye Telecommunications Limited
Cambridge, England. Telephone: Cambridge 61222. Telex: 81166.

Type 351 Rack Mounting Units, each £18.10.0.
$5 \frac{1}{4} \times 3 \frac{1}{2} \times 10$ ins., $13.5 \times 9 \times 25 \mathrm{~cm}$.

Type 361 Bench Unit, £21.10.0. $5 \frac{1}{2} \times 3 \frac{1}{2} \times 10 \frac{1}{2}$ ins., $14 \times 9 \times 27 \mathrm{~cm}$.

VNE Weir Electronics

Weir Electronics Ltd Durban Rd Bognor Regis 3606 Bognor Regis Sussex WW-068 FOR FURTHER DETAILS

CHASSIS by
 H. L. SMITH \& CO. LTD.
 Electronic Components - Audio Equipment 287/289 EDGWARE ROAD, LONDON, W.2. Tel: 01-723 5891
 We shall be pleased to quote for all your component requirenvents.
 \section*{BLANK CHASSIS}

Of iver 20 different forms made up to YOUR SIZE. (Maximum length 35 in ., depth 4 in .)
SEND FOR ILLUSTRATED LEAFLETS
or .. rder straight away, working out total area of material req, ired and referring to table below, which is for four-sided chassis in 16 s.w.g. aluminium.

Discounts for quantities. More than 20 sizes kept in stock for callers.
FLANGES ($\frac{1}{4}$ in., $\frac{3}{8} \mathrm{in}$.), 6d. per bend.
STRENGTHENED CORNERS 1/- each corner
PANELS: Any size up to 3 ft. at 6/- sq. ft. 16 s.w.g. (18 s.w.g. $5 / 3$). Plus post and packing.
and

CASES

CASES

ALUMINIUM, SILVER			HAMMERED FINISH		
	ee Size	Price		Type Size	Price
\cup	$4 \times 4 \times 4 *$	10/-	Y	$8 \times 6 \times 6$	26/6
U	$5 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \frac{1}{2}$	15/6	Y	$12 \times 7 \times 7$	41/-
\cup	$8 \times 6 \times 6$	21/-	Y	$13 \times 7 \times 9$	46/-
U	$9 \frac{1}{4} \times 7 \frac{1}{2} \times 3 \frac{1}{2}$	22/-	Y	$15 \times 9 \times 7$	48/6
U	$15 \times 9 \times 9$.	44/6	Z	$17 \times 10 \times 9$	66/-
W	$8 \times 6 \times 6$	21/-	Z	$19 \times 10 \times 8 \frac{1}{2}$	71/-
W	$12 \times 7 \times 7$	34/-		Height	
W	$15 \times 9 \times 8$	44/-		Plus post and pas	

Type U has removable bottom or back, Type W removable front, Type Y all-screwed construction, Type Z removable back and front.

what has changed?

Well, loudspeakers for one thing. Practically all loudspeakers designed in the last few years have (rightly) followed the trend towards lower efficiency and therefore require more power to drive them.
And pickups, too. The trend here is towards smaller and lighter moving parts producing lower outputs, requiring greater sensitivity and improved signal to noise ratio in the pre-amplifier.
QUAD has changed to accommodate both, and has also taken the opportunity of introducing other significant improvements in performance and facilities.

QUAD 33

QUAD 303

QUAD
 for the closest approach to the original sound

E3Gcheckmate

$10-100,000 \mathrm{~Hz}$ (4 ranges; scale length $8 \frac{1}{2}$ inches each range).
\qquad Maximum outputs: 25 Vrms sinewave, $50 \mathrm{Vp}-\mathrm{p}$ squarewave (continuously variable from 1 mV).

The new Taylor 192A L.F. Oscillator is designed to meet the requirements of engineers checking the performance of amplifiers, transformers, loudspeakers and other devices. Its low distortion (less than 0.5\% at 1 kHz) enables you to test both steady-state and transient responses through the audio band and well beyond. Its UK list price is £36.10.0. Trade prices on application.

Complete technical information available from Taylor Electrical Instruments Ltd., Montrose Avenue, Slough, Bucks. Telephone: Slough 21381. Telex 84429.

sounds

INTERNATIONAL AUDIO FESTIVAL \& FAIR

Thursday April 18th to Sunday April 21st 11 a.m. -9 p.m.

On show the finest of the world's sound reproduction equipment.

Hear continuous demonstrations of the newest equipment to keep you abreast of all that is latest and best in Pick-ups, Amplifiers, Speakers, Microphones, Stylii, Turntables, Tapes, Tape Recorders . . . plus a huge variety of accessories.

NOT ONLY SUPERIOR SOUND BUT SUPERIOR MANUFACTURE

HOTEL RUSSELL,
Russell Square, London, W.C.1.

ASK FOR COMPLIMENTARY TICKETS
at your nearest AUDIO, RECORD, RADIO or
MUSIC Shop, or send stamped addressed envelope to:
AUDIO HOUSE, 42 Manchester Street, London, W.1.

Pinnacle

The widest ranging and most comprehensive valve catalogue available from any independent supplier.
PINNaCLE ELECTRONICS LTD achlles street - hew cross - london S.e. 14
Telephone: All Departments-01-692 7285 Direct orders—01-692 7714

FUULY APPROVED

-RELAYE

A.D.S. P.O. 3000 SERIES

Through 30 years

I to 4 coils in limitless permutations from $\frac{1}{2}$ mllli-

$$
\text { amp to } 20 \mathrm{amps}(0.1 \text { to } 400 \text { voles); Fast, slow, and A.C. }
$$

versions; I to 16 contact units (36 springs max.); Standard contacts 0.3 to I amp: Alternatives for switching Dry-state, Inductive, and 10 amp circuits. Insulation from 100 to 4,000 volts; Life up to 100 million operations; Plain or tropical finishes; Approx. dimensions $1 \frac{3}{3}{ }^{n} \times 3 \frac{3}{4}$ " X $2 \frac{1^{\prime \prime}}{2}$ max. An A.D.S. 3000 Type to meet all specifications-G.P.O., E.I.D., C.E.G.B., ADMIRALTY, U.K.A.E.A., ALL COMMERCIAL, ETC.

A.D.S. P.I. PLUG-IN 3000 TYPE

Plug-in version, enabling relays to be changed in seconds. Coils and contacts to G.P.O./R.C.S. and variations: Standard contact insulation is 250 V working: $400 / 750 \mathrm{~V}$ also provided: Bases available ex-stock for immediate production: Fully approved.

A.D.S. P.O. 600 SERIES

Miniaturised 3000 with similar, but restricted specification; only $\frac{3}{3} \mathrm{in}$. chassis space (twelve = nine 3000 Type): 1 or 2 coils: 1 to 6 contact units (14 springs max.). Approx. $\frac{17}{16}$ in. $\times \frac{5}{8}$ in. $\times 1 \frac{3}{4}$ in.

A.D.S. LITTLE KING (at right)

Serew-Fix eype 1, 2, 3 and 4 pole. QuickChange (Plug-in Type) 2 and 3 pole 12 and 24 v. D.C., 100 and 240 v. A.C. Ex-stock. Litele space required: Screw-Fix 1.7 sq. In., Quick-Change 2.0 sq. in. King size switching: Screw-Fix 2 kVA , Quick change 1.5 kVA, 10 million operations (proof tessed to 27 million). Power transter $=1,500$. Max. current gain $=1.400$ (coil to all contacts). LK2C (2 pole screw-fix type)- 10 amps. $/ 400$ volts (1,000 VA max.) per pole.
A.D.S. MINI G.P.

Special ADS miniaturised 600 Type: Single or double windings; 1 to 8 contact units (24 springs max.); Ideally suited to printed circuit and general purpose uses; A sensitive miniature Relay built to suit each specific requirement; Minimum operation below 50 milliwatts (3 mA in $5,000 \Omega$ coil). A.C. coils avallable. Approximate $\begin{array}{ll}\text { avaliable- } & \text { Approximate } \\ \text { dimensions: } & \frac{3}{4} i n . \times 1 \frac{1}{4} i n . x\end{array}$ $2 \frac{1}{4} \mathrm{in}$. (plus tags).

A.D.S. RELAYS LTD.

97 ST. JOHN STREET, LONDON, E.C.1.

Telephone: 01-253 3393
WW-074 FOR FURTHER DETAILS

0.9 with decimals, lit by $6.3 v$ bulb.

* Assemble units into groups to give countless permutation of numbers.
* Maximum legibility from a wide angle through uniform intense characters.
* Applications in every industry, for instantaneous readout of anything numerical.
* Price of $84 / 5 /$ - includes post and packing.
* Size $2 \frac{1}{4}{ }^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times 5 \frac{5}{8}{ }^{\prime \prime}$ long.

Auromatic Machine Service

ACE HOUSE. FERRY ROAD, CARDIFF. CF1 4RN. TEL. CARDIFF 41456 ww-075 FOR FURTHER detalls

Precision Russian instruments

*2, 3, 6, 12 point strip chart Recorders from $\$ 126$
*Recording Ammeter and Recording Milliammeter at $£ 47$

* AC/DC Magnetoelectric Multimeter
* Milliammeters, Voltmeters, Resistance Boxes, Wheatstone Bridges \& Potentiometers.
all offered at particularly competitive prices

DERRITRON ELECTRONICS LIMTIED

Instruments Division, Sedlescombe Road North, Hastings, Sussex. Telephone Hastings 51372 Telex 95111

- HIGH PERFORMANCE © COMPACT MODULAR CONSTRUCTION © RACK OR CONSOLE MOUNTING

MODULAR AUDIO MIXERS

Model MXTT/6 Assemblies offer a combination that will fulfil every requirement for pre-amplifiers and mixing. From 4 to 22 channels can be utilised each with its own Independent Gain control and with overall Master Gain. Treble and Bass controls

MODULAR AUDIO AMPLIFIERS

Audio Power Amplifiers having outputs of from 10 to 80 watts and to operate in conjunction with MXT/6 Mixing Assemblies Silicon Transistorised throughout-stablehigh performance-overload and output protectiondistortion better than $5 \% 20 \mathrm{~Hz}$ to 15.000 Hz -output 15 ohm and 100 volt to line.

For mounting in Cabinet Rack or Console on 19^{\prime} standard panels-finished gun, metal two tone blue or to requirements - Microphone. Tape, Gramophone. Radio and Priority Tone Signal Modules

Integrated Mixer/Amplifiers Models A25-30 watts and A80-60 watts. having inputs for two Microphone Channels balanced at 30 ohm . Auxiliary inputs for Microphone, Gramophone and Tape, each channel independently controlled. Overall Master Gain Control Treble and Bass tone controls giving $\pm 12 \mathrm{db}$ lift and cut

YOU Want PARTS URGENTLY
 -almost immediately!

So what do you do?

You reach for the 'phone and dial ONO 239 8072, if it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.

Your immediate needs are our business
We exist to supply the small user quickly with standard parts made by these Companies and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components. We're geared to speedy handling and dispatch.

But you will need our latest catalogue
For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full details of the wide range of parts we stock-nearly everything of the kind that you are likely to require. Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Nottingham. Sandiacre 8072 STD ONO 2398072

WW-082 FOR FURTHER DETAILS

EDDYSTONE COMMUNICATION RECEIVERS

For the Professional or Amateur user whollikes the Best.

HIRE PURCHASE TERMS

WW-083 FOR FURTHER DETAILS

The "MIRACLE" Range of Soldering Irons fitted with the Bi-Metal, Steel held Solid Silver Bit.

> 8 Models_Any Voltage. Over 150 type bits.
> 6 v . to 240 v.
> 10 W. to 500 W.

LONG LIFE BITS.
EASY BIT/ELEMENT INTERCHANGE. NO MAINTENANCE IN USE. PERMANENT BIT SHAPE AND SIZE.

One Customer writes: " , . . This iron has been in continusus use for about EIGHT MONTHS and it would appear that it now needs a new bit."

We claim long life
Our customers PROVE it.
Now new formula Multigrade Solders.

LONDTRA LTD. Kelway Works,
Kelway Place, London, W.I4.
Tel: (01) 3857606.

Fitted with stainless steel guides-6 times the life. Larger and smaller sizes available-also transformers to 8 kVA 3-phase.
 KNAPPS LANE. CLAY HILL. BRISTOL 5. TELEPHONE 65-7228/9 WW-085 FOR FURTHER DETAILS

3A MINIATURE AXIAL RECTIFIERS
IN4I39-IN4143
NEW TO RASTRA'S RANGE
Meet all MIL S-19500 environmental specs.
Average D.C. Forward current $3.0 \mathrm{~A} @ 50^{\circ} \mathrm{C}$.
Leakage Max.@D.C. Reverse Voltage $25 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C}$.
$500 \mu \mathrm{~A} @ 100^{\circ} \mathrm{C}$.
Forward Drop@3.0A
1.2 V @ $25^{\circ} \mathrm{C}$.
1.0V@100 ${ }^{\circ} \mathrm{C}$.

IN4I39 (50V) IN4I42 (400V.)
IN4140 (100V.) IN4143 (600V.)
IN414I (200V.) Prices and data available on request, as also our Short Form Catalogue/Price List.

IMPORTANT TITLES

the tape recorder

C. G. NIJSEN. Second edition.

Abstract

Written for the growing number of enthusiasts, it shows how the best possible results can be obtained from a recorder, whether it is used for pleasure or business or educational purposes-at home or in a school. Includes chapters on sound recording and reproduction, basic principles and theory of the tape recorder, acoustics, stereophony, choice of recorder and applications. The second edition has been updated and expanded. 172 pp . Illustrated. 15 s net 15 s IId by post.

the electron in electronics

Modern Scientific Concepts for Electronic Engineers.

> ILIFFE BOOKS LTD.

42 RUSSELL SQUARE,
LONDON, W.C. 1.

M.G. SCROGGIE, B.Sc., F.I.E.E.

The author, as an electronic engineer has related the modern concepts to the things a student of electronics is likely to know already, and expresses them in familiar terms and symbols. The standard of mathematics and general physics assumed is at most G.C.E. 'A level. The book is intended to be an introduction and perhaps a supplement to more formal and mathematical treatments, and particular attention has been given to questions and difficulties that may arise. In The Electron in Electronics, M. G. Scroggie, whose books on radio and electronics have sold over a quarter of a million copies, and whose Foundations of Wireless has helped generations of students in their first steps, shows his ability to present this intrinsically difficult subject vividly and clearly. 276 pp. 132 illustrations. 45 s net 46 s Id by post.

WW-087 FOR FURTHER DETAILS
 sections for quick reference-covering comparables and equivalents and all current Mullard semiconductors, valves, tubes and components for Radio, TV, Audio and HiFi applications.

PRICE $3 / 6$ from your local TV retailer OR direct from Mullard-cash with order, plus $9 d$ for p. and p.

wW-088 FOR FURTHER DETAILS

WW-089 FOR FURTHER DETAILS

DEANSWOOD SHOPPING CENTRE, RAINHAM, KENT

comprising
SUPERMARKET-Let to Pricerite Ltd., and 25 SHOPS

Reservations include multiple retailers and banks

ONLY 6 SHOPS REMAIN

Frontages 18 ft . Depths 40 ft .
RENTS $£ 1,000$ p.a. excl.

Apply Joint Letting Agents

WEATHERALL, GREEN \& SMITH

22 Chancery Lane, London W.C.2.
$01-4056944$
and
HILLIER PARKER MAY \& ROWDEN
77 Grosvenor Street, London W.1.
01-629 7666

MODEL 50 - ATR 50 - watts AC/Bat. Transistorised amplifier

MODEL A-80 HF 100 -watts professional amplifier

TRANSISTORISED P.A.AMPLIFIERS

Ahuja manufactures 6 models to cover complete range with power outputs from 10 -watts. to 50 -watts. 3 models work from A.C mains and 12 Volt Battery. All are provided with protective circuit to ensure absolute reliability.

PROFESSIONAL P. A. AMPLIFIERS

4 Models are available with outputs from 18 - watts to 100 - watts for professional standard performance and all types of indoor \& out door installations.

WIDE CHOICE IN MICROPHONES

 Ahuja offers a microphone for every P.A application. 2 unidyne models and 2 Dynamic omnidirectional models are available.
AHUJA LOUDSPEAKER SYSTEMS

Ahuja's high quality breakdown - proof loudspeakers are availible to suit every P. A.installation

Ahuja Sound Equipments are built to international standards. . These are most competitively priced and are marketted in - over 20 countries. Ask for lotest export catologue \& prices

Manufacturers : AHUJA RADIOS, 13, DARYAGANJ, DELHI - 6 (INDIA)

[^4]LABORATORY OSCILLOSCOPE

with plug-in amplifiers

D43 is a double-beam laboratory oscilloscope with a 4 in . doublegun aluminised PDA tube, operating at 4 kv . Alternative time bases are available: T41, calibrated 18 speeds, and T42, calibrated 22 speeds with singleshot facility and a DC coupled X amplifier. Both have com. prehensive triggering systems. Six plug-in Y amplifiers are already available-General Purpose, Differential, Uitra High Gain, Envelope Monitor, General Purpose Differential, and Wide Band. With General Purpose (type A) Y amplifiers and T41 time base, D43 weighs
only 36 lbs., costs only £125. This versatile 'scope is part of a still more versatile system, which also includes the S43, a single-beam version, and the D53, an advanced instrument with rectangular double beam mesh tube and sweep and signal delay facilities. The D53 accepts all six Y amplifiers, plus two special signal delay models. The entire $43 / 53$ system is set out in our short form catalogue-together with nine other portable 'scopes, priced from £23 10 s. All prices quoted apply to the U.K. only.

Telequipment

Telequipment Ltd . Southgate • London N14. Phone: 01-822 1166

WW-093 FOR FURTHER DETAILS

ELECTRONICS, TELEVISION, RADIO, AUDIO

Trade Balance or Imbalance?

"IF these three requirements [quality, price and delivery dates] are not met the Post Office will be forced to look at the alternatives of procurement abroad and the creation of additional manufacturing capacity by the Post Office itself." This was the tough warning given to the industry by Mr. Edward Short, the Postmaster-General, at the annual dinner of the Telecommunication Engineering and Manufacturing Association in London on February 6th. He had said earlier in his strongly worded speech, "I should like to assure you also that we will do all we can to buy British provided we can get it in time". This clarion call to buy British is all very well, but how much, or how little, of some products is British? Be that as it may, there certainly seems little justification for many of the imports in the field of radio and electronics.

Although in certain sections of our industry the export record is extremely high the curve for imports tends to rise more steeply. Take for instance the capital equipment side. The total given in the Board of Trade "Overseas Trade Accounts" for telecommunications equipment exported in 1967 is $£ 83.3 \mathrm{M}$ compared with the previous year's $\npreceq 79.9 \mathrm{M}$. On the debit side, however, we find the figure of $£ 20.2 \mathrm{M}$, and moreover, this represented a $33 \frac{1}{3} \%$ increase, whereas exports rose by only 4%. It is to be hoped that the telecoms industry will rise to the challenge presented by the P.M.G. to avert a still steeper rise in the imports curve. Incidentally, last year's exports included $£ 13 \mathrm{M}$ worth of radio communications equipment, an increase of nearly 50% on the previous year.

The balance of trade in this sector of the industry is still healthy, but this cannot be said of, for instance, the domestic equipment side. Again quoting from B.o.T. figures, exports of radio and television receivers, chassis and parts, declined from $£ 7.6 \mathrm{M}$ to $£ 6 \mathrm{M}$, whereas imports increased from $£ 6.8 \mathrm{M}$ to $£ 9.3 \mathrm{M}$. Incidentally, the total number of transistor receivers and chassis imported last year was $2,452,000$ as against $1,718,000$ in 1966. A similar picture can be painted of the active component section; the value of semiconductors imported last year rose 10% to $£ 11.37 \mathrm{M}$ and exports fell 4% to $£ 2.7 \mathrm{M}$.

The picture is no brighter for valves, tubes, etc., of which last year $£ .3 \mathrm{M}$ worth were imported ($£ 5.3$ in 1966) and $£ 5.1 \mathrm{M}$ exported ($£ 5.6$ in 1966); nor for the test and measuring instruments-imports rose by $£_{5} 5.2 \mathrm{M}$ and exports by $£_{1} 1 \mathrm{M}$.

One is tempted to ask why should there be this general imbalance in our importexport trade? Is it because so many of the "British" companies are in fact subsidiaries or associates of overseas concerns and are therefore dependent on importing the parent company's output for their own "production"? Certainly, by far the highest volume of imports of electrical and electronic equipment comes from the U.S.A. whose share increased by 14% to over $£ 65 \mathrm{M}$ last year. Germany's exports to this country stood at $£^{21 M}$ last year (a slight decrease), and although the Netherlands came third her share went up by some 60% to over $\{20 \mathrm{M}$. Although much lower in value it is significant that both Italy and Japan increased their supplies to this country by nearly 50% to $£ .9 .3 \mathrm{M}$ and $£ 6.3 \mathrm{M}$, respectively.

To go back to our question "why?". Is it our industry's inability to compete in the home market with imported foreign products which are often cheaper and better than the equivalents produced in the U.K.? One reason for this often put forward by economists is the inefficient structure of British industry: too many small manufacturing units making it impossible to achieve economies of scale.

Whatever the cause, we must not only think in terms of the Buy British campaign we must also sell British.

New B.B.C. Monitoring Loudspeaker

1. Design of the low frequency unit

by H. D. Harwood, B.Sc.

Abstract

An outstanding feature of the B.B.C.'s latest studio monitoring loudspeaker is the 12 -inch low frequency unit, which has a performance believed to be superior to that of any known commercial product.

THE studio monitoring loudspeaker at present being used by the B.B.C., type LS5/1A, was developed in 1959 and employs a special 380 mm low-frequency unit and two 58 mm high-frequency units. Although some 250 of these have been built, considerable difficulty has been experienced in securing adequate supplies of low-frequency units which meet the tolerances applied. Yet, in spite of the tightness of these tolerances, comments have been made that the sound quality varies from specimen to specimen. Criticism has also been made of the reproduction, although it is conceded to be better than that of any commercially available loudspeaker.

In view of the difficulty in obtaining low-frequency units of adequate quality and reproducibility, an investigation was started in the B.B.C. Research Department into the possibility of producing a thermoplastic cone and these experiments led to the production of the 305 mm unit described in this article (also in a B.B.C. Monograph ${ }^{1}$). The listening tests were so successful that in November 1965 it was decided to commission a new loudspeaker incorporating this unit. It was clear that by employing a 305 mm unit an appreciably smaller cabinet than that of the LS5 $/ 1 \mathrm{~A}$ would suffice, and it was intended that the new loudspeaker should serve both for studios and outside broadcasts.

LIMITATIONS OF EXISTING UNITS

Wide-range loudspeakers, such as are employed for quality monitoring, generally consist of low- and high-frequency units mounted in a cabinet together with a crossover network. In the past colouration \dagger has been so prominent in the reproduction from low-frequency units
\dagger By colouration is meant a characterisuic umbre imparted to the reproduced sound by the loudspeaker; it is believed to arise from excitation of mechanical resonances.

H. D. Harwood, who obrained a plyssics degree at London University in 1941. started his career in 1938 in electro-acoustics at the N.P.L. There he helped on the first Medresco hearing aid and worked on microphone and loudspeaker calibration. Joining the B.B.C. Research Department in 1947. he has since been engaged on loudspeaker development, microphone calibrations, slereophonv requirements and the design of a free field room. He has a number of patents and is author of various B.B.C. Engineering Monographs.
that the choice of unit has been made on the basis of comparative freedom from this effect rather than on that of power-handling capacity. As an example, a 15 in . (380 mm) unit is employed in the type LS3/1A \ddagger loudspeaker when a unit of smaller diameter would have been chosen if one of the necessary quality could have been found. In addition, owing to the restricted working frequency range of the high-frequency units available, it has been necessary to use low-frequency units beyond the frequency range in which the cone and surround behave as a simple piston, i.e. up to about 500 Hz , and into the region in which the amplitude/frequency response is irregular and dependent on the modes of cone resonance and their degree of damping. Furthermore, in existing loudspeaker units the frequency range over which the response is smooth appears, for reasons not fully understood, to be almost independent of cone diameter and from this aspect there is therefore no advantage to be obtained from employing units of smaller diameter.

Cones have generally been made of a paper felt material, but in practice the characteristics of this material, especially the damping coefficient, are not accurately reproducible in large-scale manufacture, and therefore the frequency characteristics are variable in the region of resonance modes. In an effort to improve matters some manufacturers have turned to materials having a higher stiffness to weight ratio than is obtainable with felted paper, the idea being to make the cone so stiff and light that the inevitable resonances lie outside the frequency range of interest. For this purpose expanded polystyrene has been employed, generally with a reinforcing skin of some other material such as aluminium. The results are rather disappointing as resonances are found to occur within the middle-frequency band and by its very construction the cone is of such a high mechanical impedance that it is very difficult to secure adequate damping.

In the B.B.C. the monitoring loudspeakers LS5/1A, LS5 /2A,** and LS3/1A all use a special commercial 15 in . (380 mm) diameter low-frequency unit, and have a crossover frequency of about 1,600 Hz , and some difficulty has been found in obtaining units which will meet the B.B.C. test specification in the 500 to $1,600 \mathrm{~Hz}$ region where various resonances occur; furthermore, the axial frequency characteristic in this region is not as smooth as could be desired. It was therefore decided to see whether it would be possible to make, for future designs, loudspeaker units which would have more uniform and more reproducible characteristics than those of the type at present in use.

One of the difficulties restricting the development of paper cones has been the fact that the cost of a new mould has been in the region of $£ 200$, making experimental procedure very expensive. It was therefore decided to investigate the use of thermoplastic materials which can easily be made into cones by vacuum forming. For this process changes in mould shape and even new moulds can be made quite cheaply and easily; furthermore, as the raw cone material is made in the form of flat sheets, it should be very uniform and repeatable.

It was explained earlier that the existing low-frequency units were chosen on the basis that they were relatively free from colouration

[^5]

The complete studio monitoring loudspeaker (free-standing version) with and without front cover. It is a three-unit design.
although in fact they were unnecessarily large. It was therefore decided that the new units should be of 12 in . (305 mm) diameter as this size should afford adequate power-handling capacity to meet all requirements. In order to restrict the investigation as much as possible, it was decided to use commercially available chassis and magnet systems, leaving open the choice of voice coil diameter and length, spider constants, and the design of the cone and surround; for the last-mentioned two items, the influence of shape, thickness, and material were to be examined.

CONE MATERIAL

During the period of roughly forty years in which moving-coil loudspeakers have been under development, very little has been published on the various factors which influence the frequency characteristics. One factor which is known, ${ }^{2}$ however, is that cones with straight sides are much more likely to generate subharmonics than those which have curved sides and it was therefore decided to start with a cone shape having slightly curved sides, as shown in Fig. 1 (a); the voice coil diameter was 2 in . (50.8 mm).

The primary criterion which was applied to the choice of material was that it should possess a high degree of mechanical damping, for it was argued that since resonance modes were almost certain to occur in the frequency range of interest it was essential that they should be well damped if a uniform frequency characteristic was to be obtained.

The first material to be tried was expanded polythene, which is available in sheet form in various thicknesses from $\frac{1}{16} \mathrm{in}$. $(1.6 \mathrm{~mm}$) upwards. This material is very light and is characterized by an extremely high damping coefficient. The first experimental models showed axial frequency characteristics which fell off above 500 Hz owing to insufficient stiffness of the material; this result was not altogether unexpected and steps were taken to stiffen the cone. A coat of polyurethane varnish was applied to each side of the material and as a result the frequency characteristic was extended to about 1 kHz . It will be noted from Fig. 1(a) that there is a sharp bend in the cone shape near the voice coil, and it was thought likely that flexure was taking place at this point. A further mould was therefore made, Fig. $1(\mathrm{~b})$, in which the sharp bend was replaced by a gradual curve, and this resulted in a wider frequency range but the frequency characteristic was rather irregular. Coating the cone again with polyurethane would have improved matters, but as more promising results had in the meantime been obtained with other materials further experiments with this material were abandoned.

Concurrently with the experiments described above, tests were carried out on cones made of 0.02 in . (0.6 mm) thick unplasticized polyvinylchloride (p.v.c.), which is a horny type of material and also with a polystyrene material (Bextrene) of the same thickness which had been toughened by the addition of a synthetic rubber and possessed a higher degree of damping than did the p.v.c. Cones were made with the mould shown in Fig. 1(a), and the frequency characteristics were measured with the units mounted in an enclosed cabinet similar in volume to that of the type LS5/1A loudspeaker. These characteristics are shown in Figs. 2 and 3 respectively. It is evident that the high-frequency range covered was in both cases adequate for the purpose in hand and that the additional damping in the polystyrene was advantageous; further experiments were therefore confined to this material.

All the experiments so far described were made on cones having a surround made of the same material as that of the cone and the irregularities which are seen in Fig. 3 above 500 Hz are due to the presence of resonance modes. The cone can be regarded as a transmission line and resonance modes can occur with the wave motion either in a radial or circumferential direction if it is not properly terminated in a resistive surround. As the required impedance for these two directions is different and the termination must occupy a distance small compared with a wavelength, it will be seen that the problem of designing a good termination is difficult.

Fig. 1. (a) Shape of first mould; (b) shape of second mould.

Fig. 2. Axial frequency characteristic of unplasticized p.v.c. cone from first mould.

Fig. 3. Axial frequency characteristic of Bextrene cone from first mould.
Fig. 4. Shape of first p.v.c. surround.
0.375 in. rad.
(9.52 mm)

Fig. 5. Axial frequency characteristic of Bextrene cone from first mould. Fig. 1 (a). fitted with p.v.c. surround of shape shown in Fig. 4.

Fig. 6. Axial frequency characteristic of Bextrene cone from second mould, fitted with p.v.c. surround of shape shown in Fig. 4.

Fig. 7. Shape of second p.v.c. surround showing flat region.

Flat region

The first surround tried was of plasticized p.v.c. 0.02 in . (0.5 mm) thick of the shape shown in Fig. 4, this profile being chosen to allow for fairly large excursions of the cone at low frequencies. The surround was substituted for the integral surround on the polystyrene cone previously used to obtain the curve in Fig. 3 and the resulting axial frequency characteristic is shown in Fig. 5. It will be seen that the curve is considerably smoother than that of Fig. 3 but that the high-frequency response is reduced, probably due to the surround damping out resonance modes; on the other hand, as would be expected, the bass range is extended to lower frequencies. The fact that the axial characteristic rises with frequency is largely due to the directivity increasing with frequency and the concentration of more of the sound energy on the axis. Experiments with a cone material of twice the thickness, i.e. $0.04 \mathrm{in} .(1.0 \mathrm{~mm})$, showed that it was possible to recover the high frequency response, but the response was more irregular and the sensitivity lower owing to the greater mass. Cones were then made with 0.02 in . (0.5 mm) material to the second shape mould, Fig. 1(b). As with the polythene material, the change in shape resulted in an increase in the high frequency response, as shown in Fig. 6. The dip in the curve at 250 Hz was thought to be partly due to a circumferential mode and this was checked by stroboscopic examination. Further evidence was obtained by making a cone with a small turnover at the edge; this had the effect of stiffening the cone edge, thereby increasing the Q and producing an increase in the depth of the dip.

The effects of small changes in the shape of the cone and in the diameter of the voice coil were investigated and it was found that neither of these two factors was critical.

A large number of experiments were then carried out, using surrounds of differing materials, thickness, and profile in an attempt ${ }^{\text {º }}$ to damp out the mode at 250 Hz . It was finally discovered that with a suitable surround material better damping could be obtained if, as shown in Fig. 7, a small flat region was left before the turnover of the surround commenced. This flat region has the effect of introducing a shunt arm, as indicated in Fig. 8, consisting of a resistance and compliance, in parallel with the mass, compliance and resistance of the surround proper. The axial characteristic with this surround, shown in Fig. 9, is appreciably smoother than that obtained from commercial 12 in . (305 mm) units, especially in the region above 500 Hz ; the sensitivity is about the same as that of the 15 in . (380 mm) unit referred to earlier. The power-handling capacity and transient response were then tested. Mounted in a closed cabinet, the unit was able to take the full output of a 25 -watt amplifier down to 70 Hz without obvious amplitude distortion when the waveform was observed on an oscilloscope. Chopped-tone transient response tests ${ }^{3}$ showed the unit to be free from serious resonances below 3 kHz .

Four units were then made to check the reproducibility of this form of construction; the axial frequency characteristics did not differ from one another by more than $\pm \frac{1}{2} \mathrm{~dB}$ from 75 Hz to $1,250 \mathrm{~Hz}$ and $\pm 1 \mathrm{~dB}$ from 30 Hz to 2 kHz . It was therefore decided to design a complete loudspeaker employing a unit of this type for the low frequencies and to carry out listening tests.

The cost of materials for the cone and surround is only a few shillings, while the cost of production of these parts is only a small fraction of that of the magnet system. The price of the complete low-frequency unit should be no greater than that of corresponding commercial products.

TESTS

LS5 /1A (studio-type loudspeaker).-The 15 in . (380 mm) unit in an LS5/1A loudspeaker was replaced directly by the new 12 in . (305 mm) unit. A slight excess of output in the middle frequencies was corrected by means of a resistor which was originally designed to be adjustable for this purpose. A small dip in the axial response at 1,750 Hz was traced to the effect of the $7 \mathrm{in} .(178 \mathrm{~mm})$ wide slot in front of the unit.
LS3 /1A (outside-broadcast loudspeaker). -When the 15 in. (380 mm) unit in an LS3/1A loudspeaker was replaced by the new 12 in. (305 mm) unit, the response in the region 400 Hz to 800 Hz was found to be somewhat excessive as with the LS5/1A cabinet. To overcome this, it was found necessary to change the values of several components in the crossover network.

The two loudspeakers described were given listening tests in a listening room at the B.B.C. Research Department using recordings of

Fig. 8. Mechanical circuit diagram of surround

Fig. 9. Axial frequency characteristic of Bextrene cone fitted with p.v.c. surround of the type shown in Fig. 7
speech from dead surroundings and recorded orchestral items. They were judged to be significantly superior to their LS5 /1A and LS3/1A counterparts and were therefore offered for an extended field trial. Reports have been very favourable and in particular comments have been made regarding the freedom from colouration of the bass response compared with the corresponding loudspeakers employing the 15 in . (380 mm) unit.
(Next month: bass equalization and the cabinet).

REFERENCES

1. "The design of a low-frequency unit for monitoring loudspeakers" by H. D. Harwood. B.B.C. Engineering Division Monograph, No. 68, July 1967.
2. "Speaker Design" by J. Q. Tiedje. Radio Engineering, N.Y., 16, No. 1, p. 11, 1936.
3. "A Survey of Performance Criteria and Design Considerations for High Quality Monitoring Loudspeakers" by D. E. L. Shorter. Proc. I.E.E., 105, Pt. B, No. 24, Nov. 1958, pp. 607-625.

We understand that KEF Electronics Lid., who have made B.B.C. monitoring speakers under licence for several years, are arranging to manufacture the new model when field trials are completed and various technical details have been settled. The company say that production of earlier models will also continue.-Ed.

Books Received

Principles of Television Reception by W. Wharton and D. Howorth. A step-by-step tour through a television set in which basic principles are expanded into block diagrams and these into circuit diagrams that are discussed in detail. After dealing with black and white, colour television is then discussed in its various forms (N.T.S.C., PAL, SECAM). This book should be of value to anyone with some knowledge of electronics who wishes to know some more about this particular branch. Pp. 296. Price 40s. Sir Isaac Pitman \& Sons Ltd., Pitman House, Parker Street, London, W.C.2.
Measuring Hi-Fi Amplifiers by M. Horowitz. Explains the basic principles of high-fidelity amplification and the meanings behind manufacturers' data. A comparison of the various instruments available for measuring performance is made and test set-ups for determining various circuit parameters are described. Pp. 159. Price 25s. W. Foulsham \& Co. Ltd., Slough, Bucks.

Rapid Servicing of Transistor Equipment by Gordon J. King. Intended for service technicians, students and amateurs, this book provides a guide to the servicing of domestic equipment employing transistors. Initial chapters include theoretical and practical discussions on transistors, how they are biased, operating characteristics and circuitry, signal conditions and testing. The rest of the book is devoted to practical advice on servicing and includes both electrical and mechanical information. Pp. 151. Price 30s. George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.
Mathematics for Electrical Circuit Analysis by D. P. Howson. This book has been written as an introduction to the mathematics required for circuit analysis. Although not complete the material given is thought to be sufficient to cover the needs of second and third year undergraduates taking a light current electrical engineering course. Determinants, matrices and topology to assist in the evaluation of multimesh circuits and the solution of basic differential equations for linear circuits are discussed. Fourier series, Fourier integrals and Laplace transforms are also dealt with. Pp. 170. Price 17s 6d. Pergammon Press, Headington Hill Hall, Oxford.
Sound and Vision by P. E. M. Sharp. This Design Centre Publication is intended for the uninitiated who are about to purchase a radio or television receiver or a high-fidelity system and wish to know something about the subject and what is available. The book commences with a description of the technicalities of radio, television and sound and then proceeds to discuss turntables, pick-ups, pre-amplifiers, amplifiers, tuners, loudspeakers, tape recorders and accessories. Following this radio receivers, radiogramophones and television receivers are discussed. During the course of the descriptions, equipment from a large number of manufacturers is introduced. This, however, is not exhaustive. Pp. 64. Price 7 s 6 d . MacDonald and Co. (Publishers) Lid., Gulf House, 2 Portman Sireet, London, W.1.
Semiconductors--Vol. II. Linear Circuits by E. J. Cassignol. This book, from the Philips Technical Library, is divided into two sections. The first deals with the methods of studying linear circuits and discusses the properties of the semiconductors employed in this application. The second section concerns itself in detail with the practical use of linear circuits employing semiconductors. Separate chapters discuss the 1.f. amplifier, the video amplifier, the h.f. amplifier, the power amplifier and the d.c. amplifier. The feedback problem is dealt with and a section is included containing a number of practical exercises. Pp. 337. Price 104s. Macmillan \& Co. Lid., Little Essex Street, London, W.C.2.
Understanding u.h.f. Equipment by John D. Lenk. The first chapter contains answers to a series of questions that, in the author's opinion, is most often asked of instructors in the u.h.f. field. Other chapters contain information on specific items of u.h.f. equipment, circuits and components, the emphasis being placed on fundamentals and basic features. In addition comparisons between this equipment and equipment for lower frequencies is made. In the last chapter test equipment and various techniques that are unique to the u.h.f. and microwave field are described and illustrated. Pp. 144. Price 25s. W. Foulsham \& Co. Lid., Slough, Bucks.

This illustration originally appeared in an article by Arthur Mee on the future of "the pleasure telephone" in the Strand Magazine in 1898 and is reproduced in Leslie Baily's "B.B.C. Scrapbooks, Vol. 1. 1896-1914" published by Allen \& Unwin, price 40 s . In the course of his article Arthur Mee prophetically stated "Patti and Paderewski may yet entertain us in our own drawing-rooms, and the luxuries of princes may be at the command of us all. Who knows but that in time we may sit in our armchairs listening of Her Majesty's Ministers

Towards Large-Scale Integration

Design and manufacturing techniques in the U.K.

Abstract

Digital integrated circuits now commercially available include packages which are one stage higher in functional complexity than the first i.cs to appear -complete sub-systems rather than individual logic elements.

A
COMPLETE arithmetic unit of a computer on a single chip of silicon a few millimetres square is one of the projects under way at Marcon's, with whom Elliott-Automation Microelectronics Ltd. are now associated*. Performing addition, subtraction, shifting and other operations on 4-bit binary numbers, the unit will consist of 226 inter-connected field-effect devices formed by the m.o.s. (metal-oxide-silicon) integrated-circuit technology on a chip of silicon measuring approximately $3 \mathrm{~mm} \times 2.5 \mathrm{~mm}$. Some of the field-effect devices will operate as transistors and the remainder as resistors. At the time of going to press the project has reached the stage where a prototype arithmetic unit (using smaller integrated circuits) has been built and proved and the masks for making the m.o.s. chip have been designed.

[^6]This example of a digital sub-system on a single chip is what might reasonably be called "m.s.i."-medium-scale integration, a step on the way to large-scale integration. As yet there is no fixed definition of 1.s.i. Some authorities consider it as anything above 1,000 devices (for example m.o.s.ts) on a single chip: Others say that the actual number of devices is not as important a criterion as the functional complexity-the two are not necessarily in proportion-and that you cannot attach a numerical value to it. Yet others apply the description 1.s.i. to a hybrid assembly of relatively simple integrated circuits mounted on a film circuit. It all seems to depend on what people mean by "integration".

For the present it is perhaps reasonable to think of the more complex i.c. packages now commercially available-containing the equivalent of, say, fifty to several hundred discrete components-as a stage in our progress towards 1.s.i. For example, there is the SGS-Fairchild C μ L .9989 binary counter, comprising four cascaded flip-flops, which has 32 bipolar transistors and 23 resistors and is presented in a 14 -pin dual in-line package. Slightly larger is a Marconi 8-bit static register (using one flip-flop for each bit) which is formed by 88 m.o.s. field-effect devices and is encapsulated in a 40 -lead flat-pack. Considerably larger is the

MEM5014 10-bit analogue-to-digital (and digital'to-analogue) converter supplied in a 40-lead package by General Instrument (U.K.), which contains 360 m.o.s. field-effect devices.

It can be seen that such products are really digital sub-systems-one step up in functional complexity from the gates and bistables that were the first elements to appear in integrated circuit form. As with the simpler i.cs, the main benefits to be gained from m.s.i. are greater economy and reliability in the manufacture of electronic equipment. The size reduction is generally an incidental, but may be a positive end in some applications.

While the smaller integrated circuits are being manufactured predominantly in bipolar form, with increasing complexity of circuit the m.o.s. field-effect technology becomes more and more attractive and may eventually be the natural choice for m.s.i. and 1.s.i. The two main advantages of m.o.s. over bipolar are: (1) no isolation is needed between adjacent active devices (to prevent the formation of spurious transistors), so that the device packing density on a semiconductor chip can be greater; and (2) manufacturing is simpler, in that fewer masks are required (e.g. four as against eight) and there are fewer handling operations and high temperature processes. Among

How far we have come in 20 years. On the left is the first transistor, geranium point-contact, invented at Bell Telephone Laboratories, U.S.A., and patented in 1948. On the right a Marconi integrated circuit (24-bit dynamic shift register) carrying 150 field-effect devices on a chip of silicon 1.5 mm square.

An 8-bit static register in m.o.s. integrated-circuit form, showing (left) the semiconductor chip and (right) two of the registers mounted in a flat pack.

the incidental advantages of using m.o.s. field-effect devices is the fact that the gate electrode-oxide insulation-semiconductor structure (see Fig 1) can be used as a capacitance for temporary storage of binary states. Furthermore, not only is isolation between adjacent devices unnecessary but adjacent devices can be economically connected in series (as may be required for a muluple-input gate) by making the drain of one m.o.s.t. serve also as the source of the next m.o.s.t., as shown in Fig. 1. This is possible, of course, because the f.e.t. is electrically a symmetrical device and it doesn't matter which of the two terminal regions in the semiconductor channel is used as the source and which is used as the drain.

Two major problems in making and using the m.o.s. technique are: (a) the manufacturing difficulty of achieving uniformity of threshold voltage (the Vas at which I_{D} is at a specified low value) in the production of a given i.c.; and (b) the susceptibility of the thin layer of gate-insulation oxide to breakdown by spurious voltage pulses. Marconi say that problem (a) has now been largely overcome. Problem (b) is mitigated in some i.cs by building in special protection diodes or, in others, by forming a thick layer of oxide over the gate contact.

> (Leff) Using a coordinatograph to produce a mask for an $\mathrm{m} . \mathrm{o.s}$ integrated circuit.
ig. 1. Basic structure of a field-effect device in an m.o.s. integrated circuit (not to scale), showing how two of the devices can be easily connected in series by making one p-type region common to both.

1st f.e.t
2 nd f.e.t.

The accompanying photographs show some of the manufacturing processes used by the Marconi and Elliott organizations in the production of m.s.i. circuits-which are little different from those used in the production of smaller integrated circuits. With the m.o.s. technology the first stage is to grow a $1 \mu \mathrm{~m}$ layer of silicon oxide (precise chemical name, silicon dioxide- SiO_{2}) on the slices of n-type silicon, which are approximately $230 \mu \mathrm{~m}$ thick. This is done by passing oxygen over the slices while they are being heated to $1,200^{\circ} \mathrm{C}$ in an electric furnace.

To obtain the type of structure shown in Fig. 1 it is necessary selectively to etch away areas of the oxide coating, diffuse an impurity (boron) into exposed parts of the n-type silicon to form the p-type source and drain, and, finally, evaporate areas of metal film on to the upper surface to form the source, gate and drain contacts and the interconnections between devices. The selective etching is done by a photo-lithographic process. A photo-resist lacquer is applied to the oxide surface, and when this is dry it is exposed through an optical mask to ultra-violet radiation. Where the u.v. passes through the transparent spaces in the mask the photoresist is hardened-these are the areas not to
be etched. Where the u.v. is stopped by the opaque parts of the mask the photo-resist remains in its original soft state-and these are the areas that are to be etched. Thus, when the coated slice is immersed in a liquid developer, the soft, unexposed areas are etched and the remainder are left unaffected.
As can be seen from Fig. 1, in some places the oxide is etched away completely to form "windows" through to the silicon, whereas in other places the oxide layer is simply reduced in thickness. This is achieved partly by etching down to different levels, applying the process described above each time, and partly by forming fresh SiO_{2} on the silicon exposed by etching. After the necessary "windows" have been etched through to the n-type silicon, the p-type drain and source are introduced by diffusing boron into the surface of the silicon through these "windows". For this purpose the slices are placed in a furnace and a carrier gas containing the boron is passed over them. Finally, the metal contacts, and some of the interconnections, are applied by evaporating a film of aluminium over the entire i.c. and then using the photo-lithography process to etch away the unwanted areas.
Other interconnections between the field-effect devices are provided by "cross-

Diffusion furnaces in laboratories at Glenrothes. Scotland.

Bonding machine used for making connections to the mounted semiconductor chips.

unders" formed within the main body of the silicon and passing beneath the devices. These are channels of high conductivity made by diffusing an impurity into selected parts of the n-type material.

The mask patterns are, of course, designed from the required electronic circuit. Each mask starts in the form of a pattern drawn on paper about 300 times the actual i.c. size. This is then cut into a Mylar sheet, using a co-ordinatograph to transfer co-ordinates of key points from the drawing. From this the final mask is formed, by photoreduction and photo-lithographic techniques, as a pattern of chromium metal film on a thin glass substrate. Photographic emulsion masks are also used, but the etched chromium film has been found to give better definition.

The manufacturing method outlined above is an example of what is called the "hundred per cent yield" approach. This means that for economical production every device on a chip should be functioning correctly, so that all the chips in a manufactured batch can be used. In practice this ideal is not attained. If only one device on a chip fails to work the whole chip-a complete sub-system-must be scrapped. Of course, the more complex the i.c. the greater the amount of material and processing work that has to be thrown away because of a single device failure. One attempt to combat this problem, called the "discretionary wiring" approach, recognizes at the outset that some non-functioning devices are bound to emerge from the manufacturing processes. A large number of simple circuits-many more than are needed-are produced on a semiconductor wafer, which is then tested. On the basis of the test results, patterns of interconnections are designed which will include only those simple circuits shown to be functioning correctly. Another manufacturing approach is to limit the functional complexity of individual chips but assemble a number of them together to make a hybrid l.s.i. circuit.

London Physics Exhibition

FOR the first time foreign concerns are being allowed to participate in the annual Physics Exhibition which opens in the Great Hall of Alexandra Palace, London, N.2, on March 11th for four days. There will be six overseas companies among the 147 exhibitors-two each from the U.S.A. and the Netherlands and one each from Germany and Denmark.

The exhibition, organized by the Institute of Physics \& Physical Society, is again of instruments and apparatus mainly at the stages of research or development, rather than commercially available. It will be open each day at 10.00 and will close at 18.00 except on the 13 th when it will remain open until 19.30. On the opening day admission prior to 13.00 will be limited to members of the Institute \& Society and specially invited guests. Tickets are available free from exhibitors or from the Exhibitions Officer, I.P. \& P.S., 47 Belgrave Sq., London, W.1. Applicants are asked to send a stamped addressed envelope ($3 \frac{1}{2} \times 5 \mathrm{in}$.).

The Exhibition Handbook (which is more than a catalogue of the exhibits; it is a valuable reference book on scientific instruments and apparatus) can be obtained from the I.P. \& P.S. for 10 s , including postage.

As is usual lectures have been arranged for three afternoons at 15.30. The exhibition organizing committee negotiated with the Soviet Academy of Sciences for a Russian lecturer to speak on the Soviet Space Programme and in particular the successful landing of a probe on Venus. Unfortunately, this was not able to be arranged and therefore Professor R. C. Jennison, of the Department of Physical Electronics, Kent University, will lecture on "The detection of micro-meteorites in space" on the opening day. On the 12th Professor R. L. F. Boyd, of the Department of Physics, University College, London, will lecture on astronomy in space and on the 13 th G. E. Perry will talk on "A school satellite tracking station as an aid to the teaching of physics". It may be recalled that Mr. Perry described in Wireless World of March last year the Kettering Grammar Schools' activities in tracking Soviet satellites. The lecture will be illustrated with tape recordings made at the station.

At 11.30 each day, except on the 11th, there will be a programme of films in the Alexandra Room. On the 12 th will be a $1 \frac{1}{2}$-hour educational programme including a film on positron-electron annihilation. General interest films, including one on NINA the 4 GeV electron synchrotron at Daresbury, will be shown on the 13 th , and on the 14th the programme comprises five new Mullard films on semiconductors.

"Doctoring', Recorded Sound

Some Techniques Employed Recording Studios

During the past decade the equipment found in recording studios has increased in both quantity and complexity. The most obvious cause is the advent of stereophonic techniques, but there are other facets of the recording operation which may not be so familiar, and some of these are described here.

Most early stereophonic recordings were on 2 -track $\frac{1}{4}$-inch tape. This is still popular in orthodox work where there are no subsequent operations on the signal. The technique involves the use of two microphones, either laterally spaced or mounted one above the other with their major axes at 90°. It was soon found that while this approach gave excellent results on symphonic and chamber music, it was not really suited to light or popular music, where separate close "miking" of instruments or sections of the orchestra was already established for mono work. If on stereophonic recording sessions a multi-microphone arrangement was used, with some microphones disposed to the left and some to the right, the natural spread of stereo was lost. In fact, the recording was not stereo at all, but a mixture of two mono tracks having no sonic relation to each other. To overcome this "hole in the middle" defect, artificial placing of individual microphone outputs was introduced. This is accomplished by feeding varying percentages of the output of a given microphone channel to the two recording tracks: when the division is $50: 50$ the sound image appears central between the two loudspeakers. In order to avoid loss of separation between the two tracks, this splitting of a given channel has to be done by separate amplifiers. These became known as cross feed or "pan" amplifiers. This was the beginning of the end for the straightforward simple mixer, for if microphone No 1 was (electronically) positioned midway between left and centre, and echo was added to microphone No. 1, where should the echo go?

Of the two orthodox stereo microphone techniques, the spaced system was more popular in U.S.A., while the 90° pair was favoured in Europe. With the spaced system, difficulty was sometimes found in getting a good centre image, so the Americans decided to fix it firmly in place by putting a third microphone in the middle and giving that microphone a separate track on the tape. For reasons of signal/noise ratio, the tape was enlarged to $\frac{1}{2}$ in. to carry the three tracks. It was not long before the "pop" people saw in the 3-track machine a means of obtaining additional flexibility, as the soloist could be placed alone on the third track and fine adjustments could be made on the subsequent reduction from 3- to 2 -track or mono. Nowadays, 4 track working on $\frac{1}{2} \mathrm{in}$. or 1 in . tape is gaining popularity, while some small studios accommodate large numbers of musicians by recording successively on tracks 1-4, or even up to 8 tracks in some cases.

Such multiple work inevitably worsens the overall signal/noise ratio, while in the classical field the noise levels of microphones, amplifiers etc. have dropped below that of the tape itself. An ingenious method of overcoming this, patented and marketed by Elektromesstechnik (Studer), is known as the "NoisEx" system. Briefly, the dynamic range of the signal going on to the tape is compressed so as to utilize the optimum recording level for signal/noise ratio. On playback, the output from the tape machine is fed into an expander unit whose characteristics are a mirror image of those of the compressor. It is claimed that the distortions previously inherent in such a system have been overcome so that it is impossible to detect that the units are operating.

The limiter has come in for a lot of criticism (as has also the compressor), mainly because of unpleasant effects produced by its misuse. A limiter may be used to prevent overloading of the tape or
disc, such as may occur with "pop" singers given to sudden violent shouts, or when recording a public performance or outdoor event where there may be unexpected jumps in level. Alternatively, it may be used as a "ducking" limiter. Some producers of "pop" records want everything (e.g. backing instruments, backing voices, solo voices) "up at the front". This can be accomplished by using a limiter in the "backing" channel with means for controlling it from a separate "solo voice" sound channel. With no solo voice, the backing is set to record at full level. When the solo voice comes in, it feeds directly to the tape and also to the limiter control circuit. As a result the backing is automatically attenuated below the voice level by a predetermined amount, but the solo voice is not injected into the backing channel at this point. There may, of course, be an additional limiter in the solo voice channel, as mentioned above.

Most modern studio mixers incorporate variable bass and top controls in each channel prior to mixing. These often take the form of the well known Baxandall circuit*. Provision is made for the insertion of more complex filter and equalizer units (generally known as "cookers") into any channel between the output of the microphone amplifier and the mixing control. Apart from "step" circuits and highor low-pass filters, provision is often made for holes, or peaks, of varying width, depth (or height) and frequency.

When additional reverberation (or echo) was first introduced it was provided by feeding a portion of the signal into a loudspeaker placed in an empty, hard-walled, room where a microphone picked up the resultant sound and fed it back to the mixer. Cellars and other small rooms were used for this, but the method required a lot of space. A highly satisfactory artificial means is the echo plate-a sheet of tinned steel which is excited acoustically and which yields the closest approach to the random decay pattern of the ideal echo chamber. In addition, the period of reverberation may be altered by proximity dampers, motor driven and controlled from the mixing desk.

The disc record is still the eventual form of most work done in the studio. The moving-iron cutter head, apart from the B.B.C. design, has largely been displaced by the moving-coil type. A notable advance was made by Fonofilm Industri (Ortofon) when they built a movingcoil head with a second winding delivering 40 dB of feedback voltage derived directly from the motion of the cutter (as opposed to flux linkage from the drive coil). It is not at all difficult to achieve a signal /noise ratio of 60 dB on a disc, which is beyond the capability of most tape systems (but see "NoisEx" above); in fact, a saying frequently heard in disc cutting rooms is: "I can put it on: can you get it off?" Only a few very expensive pickups can reproduce the highest cuttable level without severe distortion. Trouble usually begins with the high accelerations produced by the top lift of the recording characteristic, aggravated by close microphone positions and /or cymbal clashes, etc. Some of these extremely high levels can damage a stereo cutting head, although not usually a mono head. This is because in most mono heads the coil movement is pivotal, while the coils in a stereo head are displaced en masse, thereby consuming more current.

The answer here is a form of occasional and selective top cut, preferably inaudible in action. One unit which meets these demands is the Ortofon "dynamic filter". In this the signal is fed to a frequency weighting network, the output of which is rectified and fed to the primary of a transformer. The permeability of the transformer core is affected by the d.c. field produced by the primary, and this, in turn, varies the inductance of the secondary winding. The secondary is connected in a passive low-pass filter network, the response of which varies with the inductance. The limiter is set to operate at a predetermined point (e.g. the overload point of the cutterhead) and any excessive top levels are reduced to the safe level, the remainder of the programme being passed through "flat". An extension of this principle is used in the Fairchild "Dynaliser" unit and the R.C.A. "Dynagroove" process, in which our old friends the FletcherMunson curves play a prominent part.

It is perhaps worth emphasizing that the various techniques described above do not render the engineer superfluous: on the contrary, the opportunities for mis-use are greater than ever and all the skill of the engineer is needed to prevent a diabolical mess.-D.W.S.

[^7]
Electronics in Concorde

U.K. Contribution to the Navigation, Communication, Flight Control and Other Electronic Systems

AIRCRAFT less modern than the Concorde can be considered to be divided into a large number of clearly defined subsystems, in which computations of drift, track, attitude ${ }_{2}$ airspeed and the like are carried out many times over to differing degrees of accuracy. The penalty for this approach is felt in terms of weight and cost, although, from the servicing point of view, there is the advantage that each equipment is virtually self-contained. In Concorde all major computations are carried out centrally, the results being electrically signalled to the various systems, and no really clear demarcation line exists between the different equipments.

Concorde is described as a low-wing monoplane with a slender delta wing planform. The airframe is largely constructed from a high temperature aluminium alloy although localized use is made of steel and titanium alloys at isolated "hot spots". Incidentally the nose cone reaches a temperature of $153^{\circ} \mathrm{C}$ and the main bulk of the fuselage $117^{\circ} \mathrm{C}$
during supersonic flight. Highly stressed mechanical components in the structure have been milled from solid blocks of alloy using numerically controlled machine tools. Concorde has a wing-span of 83 ft 10 in ., a length of 184 ft 6 in . and the height to the top of the fin is 38 ft . The maximum cruising speed depends on ambient temperature and has a limit of mach 2.2 at around $55,000 \mathrm{ft}$. All-up weight is $326,0001 \mathrm{~b}$.

DESIGN APPROACH

Aircraft system designers of today are, in the main, presented with four possible approa-ches-simplex, duplex, duplicate monitored and triplex. Each method has its advantages and disadvantages in terms of safety (including reliability), weight and cost. The simplex approach consists of having only one set of equipment. Any failure results in either the equipment ceasing to function or in an erroneous output. It is up to the crew to

correct the effect on the aircraft of the faulty information and to take over manually from the failed equipment. Two complete sets of equipment, operating in unison, are used in a duplex system. A failure in either set will result in conflicting outputs, causing, by means of a comparator, both equipments to switch off before the incorrect output has any effect on the aircraft. It is once again left to the crew to take over the function of the failed equipment. In the duplicate monitored system two sets of equipment are again employed but a series of monitors and comparators is fitted to each set. Although both equipments are operating continuously, at any given time only one has any authority over the aircraft. Should a fault occur in a particular channel this is detected by the monitor/comparator complex and results in the serviceable equipment being given authority. In the event of the second channel failing as well it is automatically switched cut before any effect is felt on the aircraft. Such a system is said to be "fail-operative" and "fail-soft". The triplex system employs three sets of equipments operating on a majority vote basis: a different answer from one equipment results in its being switched out. From then on the system operates as described for the duplex method. It must be stated that the above is a gross oversimplification, considerable differences arising in equipments from the various manufacturers.

The main contractors in the Concorde project, British Aircraft Corporation and the French company Sud-Aviation, decided to employ the duplicate monitored principle for the majority of Concorde's control systems. Using this technique results in the aircraft carrying about two-and-a-half times more equipment than a simplex equipped aircraft.

NAVIGATION

The degree of automation of the navigational equipment is such that Concorde does not carry a navigator, this function being performed by the pilots. Because of the long periods of acceleration and deceleration and other factors peculiar to this type of aircraft, conventional vertical gyroscopes are unsuitable as a basis for flight control and driving of instrument displays. Inertial platforms coupled to digital computers are therefore used as the central navigational element. An inertial platform can best be
described as a platform with three degrees of spatial freedom gyroscopically stabilized relative to space but tied to the earth (as will be explained). Such a platform is said to be operating in a Schuler tuned mode. Schuler stated that a pendulum with a length equal to one earth's radius suspended with its mass at the exact centre of the earth could not be set into motion by accelerating one end. An inertial platform is stabilized relative to space using three extremely accurate, low drift, flotation gyroscopes. Digital computers calculate the corrections that have to be applied to the platform to modify the space stabilization in such a way as to keep the Z axis (vertical) pointing directly at the earth's centre and the X and Y axes pointing east /west and north/south respectively. The correction terms applied to the platform are complex and must take into account the aircraft's position over the earth's surface, the relative movements of the earth and the aircraft, the earth's curvature, centripetal force etc. The platform operating in this mode can be considered to be similar to Schuler's imaginary pendulum and is therefore unaffected by acceleration and deceleration forces.

Because the platform is stabilized in this way any movement of the aircraft is relative to the platform; this is detected by sensors and the resulting electrical signals are a measure of the aircraft's attitude relative to the earth's surface.

Newton's laws of motion are exploited in an inertial platform by fitting three accelerometers with electrical sensors to it. These accelerometers are orthogonally mounted (one in each axis) and their outputs can be integrated to give velocity and integrated again to provide distance flown in a given direction. From the foregoing it can be seen that an inertial platform provides a great deal of the information that is vital to navigation.

The prototype Concordes will carry two inertial platforms, although it is thought that three may be fitted to the first production aircraft. The navigation system to be described here is as used in the prototypes and has been developed by a consortium formed by Ferranti (U.K.) and SAGEM of France. The navigation system provides the pilot with the following information: the position of the aircraft in terms of latitude and longitude; the position of the aircraft relative to the desired route (this route is decided upon before take-off and can be modified at any time by the crew); and the estimated time of arrival at a number of reference points along this route.

The major components in the navigation system are the two previously discussed inertial platforms with associated digital computing facilities, an automatic chart display and control panel. The automatic chart display has been entirely developed by Ferranti and provides an interface allowing two-way man/machine communication. It contains a 35 mm colour film 30 feet long that can store charts covering an area 8,000 $\times 2,000$ nautical miles at a scale of $1: 2,000,000$, plus two areas of $1,000 \times$ 2,000 nautical miles at a scale of $1: 500,000$ for airport terminal areas. The charts are back projected on to a screen eight inches in diameter. If required, up to 100 data sheets (approach charts, tables of frequencies,

Inertial platform, control panel and associated equipment supplied by Ferranti for the prototype.

The automatic flight system control panel fitted to pre-production aircraft. The prototype aircraft are being equipped with a more conventional selector switch type of control panel.
procedures, check lists, etc.) can be displayed on this screen. The present aircraft position is superimposed on the projected chart and can be in the centre of the screen or near the bottom to give a greater view ahead. The pilot can select either track or north orientation; with track orientation selected the aircraft's track always points to the top of the screen and as the aircraft turns the chart rotates. When north orientation is selected north always appears uppermost; in this case, as the aircraft turns the display's track pointer rotates.

Typically, in terminal areas, the chart will be north orientated, with the present position indicated centrally; in en route areas track orientation would be used with the present position marker offset. In the event of it being necessary to change the flight plan while airborne, because of weather conditions or some other factor, the chart is driven to bring the new destination to the centre of the screen using a joy-stick control, a button is pressed and the co-ordinates of the new destination will have been entered in the computer. The position outputs of both inertial navigators can be displayed simultaneously and in the event of a discrepancy the erring system can be corrected. V.O.R./D.M.E. (V.h.f. Omni-directional

Range /Distance Measuring Equipment) outputs also may be superimposed on the display face, among other things enabling the internal navigation equipments to be checked against them. The navigation computers also provide outputs for the automatic pilot to enable the aircraft to automatically fly along the predetermined flight path or along the llight path as modified by the pilot's manipulation of the automatic chart display. The inertial platforms, via servo-repeater systems, provide outputs of heading, attitude, velocity and vertical acceleration for use by other equipments in the aircraft. The charts for the display are being produced by International Aeradio Lid. and some are sixteen feet long and twenty inches wide. A big problem is going to be keeping them up to date with changing air traffic control requirements.

RADIO AND RADAR AIDS

In the Marconi doppler radar system used in Concorde four beams are employed with a time sharing technique. The doppler shift of each beam is measured by comparing it with a sample of the transmitted signal and the aerial is servo driven in both vertical and

The prototype flight deck mockup. The Ferranti automatic chart display can be seen in the lower left of the centre instrument panel next to the weather radar. Just below these, on the control console, is the automatic flight control panel, and just above the windscreen is the combined automatic stabilizer/artificial feed control panel. The large instrument containing a white semicircle in the centre of the side panels is the flight director.
horizontal planes until all four beams are experiencing the same amount of doppler shift. In this way the aerial is aligned with the velocity vector of the aircraft. Ground speed is obtained by measuring the amount of doppler shift, and the drift angle is obtained by comparing the fore and aft axis of the aerial with that of the aircraft. A major difficulty with a pure c.w. doppler system is caused by cross-coupling between the transmitting and receiving sections of the aerial array. Mechanical vibration also causes spurious modulation of the transmitted signal, making discrimination between this unwanted modulation and the doppler signal a difficult task. Frequency modulation is used in the Concorde, enabling the receiver to be made insensitive to cross-coupling and near echoes from the radome and airframe. Because the signal path from the transmitter aerial to the receiver aerial is very short the phase of the modulation on the cross-coupled signal will be practically identical to that of the transmitted signal. By mixing a sample of the transmitter signal with the received signal the receiver output can be made zero. Returns from the ground will reach the receiver after some delay, with a consequent phase difference relative to the transmitted signal. The product of mixing these signals will result in a spectrum centred on zero and sidebands on either side with a spacing equal to the modulation frequency, all sidebands being subjected to doppler shift.

The sideband power falls to zero whenever the delay between transmitting and receiving the signal is equal to one cycle of the modulation frequency, these delays corresponding to critical altitudes. If a fan-shaped aerial beam is used, returns from the ground will be subjected to a wide range of different delays and the signal strength will
seldom fall below a working level. However, signals received at near critical altitudes will have their spectra distorted, giving a false centre frequency and inaccurate speed information. To overcome this effect the modulation frequency is swept at 8 Hz between 340 and 460 kHz , causing the positions of the critical altitudes to vary and the error to average out.
In use the control unit indicates the mileage flown along the required track and an associated counter indicates the miles flown across this track, away from the required course. This information is obtained from a computer that receives aircraft heading from the navigation system, adds it to the "doppler" drift to obtain aircraft track and compares this with the required track to arrive at a track error signal. This signal together with "doppler" ground speed is fed into a mechanical ball resolver which provides outputs in terms of distance flown along and across the desired track. A signal proportional to the position of the acrosstrack counter is available for feeding to the automatic flight control system or the navigation system if required.

The d.m.e. interrogator continuously measures the slant range distance between the aircraft and a selected ground beacon within a range of 197 nautical miles. This information is combined with aircraft heading to accurately fix the aircraft's position. The interrogator operates in conjunction with VORTAC (V.h.f. Omni-directional Range TACtical) and TACAN (TACtical Air Navigation) ground stations. Once the desired frequency has been set up on the v.h.f. /navigation controller, pairs of interrogating pulses are automatically transmitted to the assigned radio beacon. The ground station, on receiving the pulse pair, replies
with a return pulse pair which is in turn received by the aircraft. By measuring the time elapsing between transmitting and receiving a reply, the aircraft equipment can compute the distance of the beacon. Should the signal be lost the equipment will continue to function in a memory mode for ten seconds, after which the interrogator initiates a "search" procedure. The transmitter provides a pulse of 1.24 kW and operates in 1 MHz steps between 1025 and 1150 MHz , and the receiver has 252 channels between 962 to 1213 MHz ; the 6 dB bandwidth is 340 kHz . This equipment is being manufactured under licence from the Radio Corporation of America by Marconi's.

The weather radar for Concorde, manufactured by Ekco Electronics Ltd., will be used to detect stormy weather conditions in the aircraft's flight path. When such conditions are detected a new course is decided upon, the details of which are read into the navigation system via the automatic chart display. If the aircraft is being flown by automatic pilot, the navigation system will supply the automatic pilot with this information and the storm will be safely bypassed. This radar operates in the X-band at 9345 MHz ; the transmitted pulse length is 6 $\mu \mathrm{S}(65 \mathrm{~kW}$ peak) and the repetition frequency is 200 Hz ; the range is 360 nautical miles (pre-production aircraft only). Each channel of the dual system carries its own transmitter-receiver, indicator and aerial stabilization system although there is a common waveguide run from the waveguide switch to the aerial.

The weather radar is one of the large number of instruments in the cockpit that can command only a small portion of the pilots' attention. When negotiating a storm this presents no problem as it becomes a prime instrument and is continuously monitored. In flight phases where the crew work load is high and weather problems are not expected, the weather radar would tend to become neglected. To overcome this problem the weather radar is arranged to continuously scan a 20 degree sector 200 miles in front of the aircraft irrespective of the setting of the indicator range scale. In the event of a target being spotted the pilot's attention is drawn to the weather radar by an "alert" indicator.

AUTOMATIC FLYING CONTROLS

After take-off Concorde will climb subsonically to some $40,000 \mathrm{ft}$ under the control of a flight director that computes the optimum climb-out path for existing conditions and air traffic control requirements. Preparation would then be made to accelerate to supersonic speed, continuing the climb until cruising altutude is reached. At supersonic speeds the aerodynamic centre of pressure moves back along the airframe, causing the aircraft to adopt a nose down attitude. To help compensate for this a computed amount of fuel is transferred from the main tanks to a rear trim tank. However, the amount of nose down tendency is a function of mach number, which is not a constant, so, clearly, a further correction is required. This could be left to the automatic pilot but
this is inadvisable for two reasons; first, the autopilot would be called upon to make a "useless" constant correction, and secondly, in the event of the automatic pilot failing the amount of correction applied would suddenly be removed, resulting in a violent change in pitch attitude. To overcome this difficulty a system has been developed known as electric trim that has three functions: it allows the pilots to electrically signal pitch trim changes; it alters trim as a function of mach number; and it relieves any pressure on the automatic pilot by sensing any constant trim being applied in pitch and correcting for it.

Aircraft tend to oscillate in all three axes by an amount determined by the aerodynamic design, air speed, altitude, etc., and it would be very tiring for the pilot, or unnecessary work for the automatic pilot, if these oscillations were allowed to go undamped. The automatic flight stabilization system employed to make these corrections uses a total of six rate gyroscopes actuating the flying controls via servo systems. A rate gyroscope is either electrically or mechanically spring restrained and has an output proportional to the rate, as opposed to the amount, of displacement. It will be realized that such a system will try to oppose any deliberate manoeuvres. However, the system has only limited authority and acts as an efficient damping mechanism.

The lateral and longitudinal control channels of the automatic pilots are completely separated and each automatic pilot is supplied with information from independent sources. A single control panel is employed for the automatic pilots, the automatic throttle systems and the flight director system. The required function is selected and a choice is made between automatic pilot and flight director. If the last-mentioned is chosen the pilot controls the aircraft in response to visual guidance information presented by the flight director. In the former case the function is carried out automatically. This would seem to imply that the functions available using the automatic pilot or the flight director system are identical. This is the case, with one exception which occurs when the automatic pilot is switched to "manual". Under these conditions the aircraft, will maintain the attitude existing at the time of engagement, the attitude references being supplied by the inertial platforms. Other functions provided by the flight system in the longitudinal axis are: altitude hold, mach and airspeed hold, vertical speed hold and altitude capture. For the first three functions, if selected, the aircraft will hold each condition as it existed at the time of engagement. Altitude, mach and airspeed references are obtained from an air data computer. The altitude capture facility allows the pilot to preselect any required altitude; when the aircraft reaches this height the flight system reverts to the altitude hold mode. Automatic vertical navigation is also possible, and in this case the automatic pilot/flight director follows information provided by a vertical navigation computer.

In the lateral axis the manual and heading functions of the flight system are self-explanatory in the light of what has already been said. Lateral navigation may be selected and in this case the flight system responds to
information received from the navigational computer. The signals used are track error and rate of change of error with respect to the programme stored in the navigational computer.
A VOR/LOC mode is available that captures and holds a VOR or localizer beam, the capture angle being selected by the pilot.

The automatic pilot is capable of carrying out landings in Category 3a conditions (visibility insufficient to land manually but good enough to steer the aircraft on the runway). The autopilot will hold the aircraft on the localizer and glide path beams and will initiate the flare and land sequence as indicated by the radio altimeter. Should it be decided to abort the landing, pushing the throttle forward will put the flight system into the "go around" mode. This disengages the automatic throttle system and causes the take-off director computer and the flight director computer to provide guidance information that ensures that a safe overshoot path is followed.

The automatic throttle system controls engine r.p.m. so that the mach number or airspeed existing on engagement is maintained, or alternatively, the desired airspeed can be pre-selected. The system obtains reference airspeed and mach number from the air data computers and a longitudinal term from the inertial platforms.

The control panel for the automatic flight control system represents a departure from standard aeronautical techniques in that push-button selector switches have been employed for mode selection; this practice has been frowned upon in the past on the grounds of reliability. Integrated circuit protection logic has been designed to work in conjunction with the push-buttons that will lock out a faulty mode even if the associated selector button is jammed in the "on" position.

The automatic flight system described has been designed by a consortium including Société Francaise D'Equipment pour la Navigation Aérienne (S.F.E.N.A.) and the Navigation and Control Division of the Bendix Corporation of America headed by Elliott Brothers as prime contractors.

COMMUNICATIONS

Airborne selective calling units, known as Selcal, are used to relieve the crew of the continuous and tiresome task of aurally monitoring the radio communications channels. To this end each aircraft is given a four-letter code, each letter corresponding to one of twelve audio tones. This code is set in on the front of the Selcal unit using two pairs of knobs which select tuned reeds. The ground station transmits a two-pulse code signal, each pulse containing two audio frequency tones in the band 312.6 to 977.2 Hz . The aircraft receives these tones and applies them to the Selcal unit, where, after amplification they are applied to the tuned reeds. In the called aircraft all four reeds will vibrate and the appropriate warning will be given to the crew.

Collins Radio Company are supplying the h.f. transceivers. These are s.s.b. equipments for long range voice, c.w., data or compatible a.m. communications in the 2.0 to 29.999 MHz frequency range. Tuning is automatic in 1 kHz steps by means of an operator's remote control box, the operating frequency being displayed digitally. Nominal transmitter power is 400 watts p.e.p. in s.s.b. or 125 watts in compatible a.m. All injections to both the transmitter and receiver are phase locked to an internal frequency standard with a stability of 0.8 parts per million per month. Channel selection time is eight seconds. The receiver sensitivity on s.s.b. is 1

One of the prototype versions of the engine control computer undergoing final test at Ultra Electronics. Western Avenue factory, prior to delivery to Bristol Siddeley Engines.

High density precision tape recording head used in the Concorde prototype accident recording system being produced by Elliott Automation. The system records 300 parameters and is protected for crash loads and is automatically ejected if submerged.
$\mu \mathrm{V}$ for a 10 dB (signal + noise)/noise ratio and for a.m. it is $3 \mu \mathrm{~V}$ modulated 30 per cent at 1 kHz for a 6 dB (signal + noise)/ noise ratio.

OTHER ELECTRONIC

 SYSTEMSThe engine control system has been designed as an electrical link between the crew and the engines. Normal control actions such as throttle opening and fuel flow are under direct crew control, but many other parameters are altered automatically by computers designed by Ultra Electronics Lid. These include controlling fuel flow during start-up and in-flight re-lighting, control of high pressure spool speed, adjustment of idling fuel flow to prevent flame out, maintaining acceleration and deceleration throttle inputs to safe levels, limiting jet pipe temperature, correcting nozzle area, air intake control and controlling many other parameters. The variable geometry air intakes controlled by the system decelerate the supersonic free air stream to a fairly low subsonic value before allowing it to enter the engine.

The Concorde prototype 001 will have two E.M.I. television cameras fitted, one of which will be mounted on the nose wheel to give an improved forward view whilst taxying. This camera has a 90° wide angle lens. The second will face the rear, enabling the landing gear and the underside of the aircraft to be viewed. In addition, for the prototype 002, E.M.I. are supplying three half-inch cameras for mounting in the engine nacelles and two one-inch cameras for viewing the wings and tailplane. During periods of high sunspot activity, solar radiation could become a problem at the altitudes at which Concorde will be flying. A radiation detector is being built by A.W.R.E. to enable the amount of radiation to be measured. Should this ever exceed a safe level, Concorde will be forced to fly subsonically at a
lower altitude. It is understood that the fuel penalty resulting from this is not high.

Aircraft instruments of the past that required inputs of height, rate of climb, air speed and mach number had to rely on a jungle of pipes relaying pitot and static air pressures to them to derive the necessary information. These pipes were very vulnerable and a good deal of servicing effort had to be spent in tracing microscopic leaks, often in inaccessible parts of the aircraft. In Concorde a simple pipe system carries the air pressures to two central air data computers that are being manufactured in France by Crouzet. These computers then provide electrical outputs for other equipments proportional to: altitude, airspeed, mach number, vertical speed, total temperature, static temperature, true airspeed, angle of attack and side slip angle.

An Elliott flight recording system is incorporated which collects speech, analogue and digital information from more than 300 points during a flight of up to twelve hours. This information is "conditioned" in integrated circuit computers before being recorded on magnetic tape. The crash-proof capsule containing the recording mechanism is ejected if submerged, whereupon it floats to the surface and a radio beacon emits a homing signal.

A good deal of the engine instrumentation is also being manufactured by Elliott's. These take the form of miniature indicators with, in many cases, a certain amount of the computing circuitry built into them. These instruments are mounted on the flight engineer's control panel with "essential service" indications duplicated on the pilot's panel.

The fuel flow system comprises a transmitter and complementary indication for measuring the quantity of fuel consumed, rate of fuel flow, and the amount of fuel remaining. The flow sensor measures the mass flow rate of fuel passing in the line, determining the heat content and thus the propulsive content. The transmitter has an accuracy better than 1% over a 9:1 flow rate range at $20^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ whilst the flow rate indicator has an accuracy of $\pm 0.5 \%$.

The electrical installation serves all other
systems and has to supply a load of up to 61 kVA. As has already been stated, all aircraft essential systems are at least duplicated, and to preserve this safety margin each equipment of a duplicated system is fed from an independent power source. The four 8,000 r.p.m. brushless alternators each have a nominal continuous rating of 40 kVA at 400 $\mathrm{Hz} 200 / 115 \mathrm{~V}$. They automatically self excite and synchronize to deliver their outputs in parallel pairs. The d.c. busbars are supplied via transformer-recuifier units and charge two standby nickel-cadmium batteries. A 1.8 kHz supply for the flying control signalling circuits is derived from two $26-\mathrm{V}$ single phase static inverters supplied from the essential services battery busbar. Loss of one generation channel leaves all services fully operational by employing transfer techniques. Loss of two channels leaves general services unimpaired but the electrical de-icing equipment becomes inoperable. In the unlikely event of a complete four engine flame out the battery capacity permits a gas turbine driving a generator to be started which will maintain essential services.
To speed up communications between Britain and France on matters dealing with Concorde a private wire circuit between London and Paris has been installed. The new link has been set up in co-operation with both the British and French Post Office authorities. It will carry a wide variety of communications traffic including teleprinter messages, telephone conservations, highspeed transmission of punched and magnetic tape data, and facsimile transmission of drawings or messages. The circuit was primarily installed to facilitate radio contact with Concorde flight test crews when prototype testing begins in the spring. It will enable ground engineers in Toulouse to operate a remote control radio-relay station at Filton, providing a three-way link between Filton, Toulouse and the aircraft. This is necessary since the range of the v.h.f. radio equipment in Concorde is limited to about 600 miles and contact with the aircraft may be lost on the proposed test flights over Northern Europe.

An example of the engine instruments used on Concorde. The photograph shows a section of the flight engineer's panel. Some of the more important instruments are duplicated on the pilot's instrument panel.

News of the Month

Employing Intelsat III

NEXT year a number of synchronous communications satellites are to be launched as part of the Intelsat III programme. Preparations are currently in hand in many parts of the world to make use of this new facility and to provide a truly global round-theclock communications system.

In Britain a second aerial is being built at Goonhilly at a cost of $£, 1.5 \mathrm{~m}$ to work the Allantic Ocean satellite. When this aerial is operational and can take over the duties of the existing aerial, the first one will be modified to enable it to communicate with the Indian Ocean satellite in 1969. Goonhilly will then be able to communicate directly with other earth stations situated over twothirds of the earth's surface.

Post Office engineers report encouraging progress on the construction of the second aerial. The larger part of the civil engineering works has been completed and the $75.5-\mathrm{ft}$ radius azimuth track has been laid and levelled; this runs from 066° to 326°. Some 200 tons of steel have so far been used in the construction of the aerial base structure which is mounted on a large central pivot and a pair of bogies which run around the azimuth track.

The dish profile is quasi-paraboloidal and is Cassegrain fed by a one-piece aluminium sub-reflector 7 ft in diameter; the main dish is 90 ft in diameter. The width of the radio beam between $3-\mathrm{dB}$ points will be approximately 10.5 minutes of arc at 4 GHz and 7.5
minutes of arc at 6 GHz . The new installation, with exception of the modulating and demodulating equipment, which is being supplied by G.E.C., is being built by the Marconi Company.

Preliminary tests of the wideband transmitters indicate that their performance will meet all the requirements for multi-carrier operation. A first production model of the parametric amplifier, to be used in the first stage of the receiver, has been demonstrated and has met the essential parameters specified, but a fully-engineered version has not yet been completed. The parametric amplifier will be cooled by a closed-cycle cryogenic system, using helium, to a temperature of $-257^{\circ} \mathrm{C}$. The amplifier will consist of three identical GaAs varactor diode stages connected in cascade. Each of the three stages will be fed from a klystron pump source through a three-way passive splitter. Incidentally, the klystrons are the only part of the receiver that is not solid-state. The amplifiers are mounted behind the aerial vertex and will provide 30 mW of pump power at 34 GHz .
A low-noise tunnel diode amplifier forms the second main amplifying stage in the receiver and will also be mounted on the aerial backing structure. The signal from this is converted to an i.f. of 70 MHz in a balanced diode mixer with a crystal local oscillator. The output of this system will be passed into a waveguide branching network which will separate the received channels and

The control room of the experimental station at Carnarvon.

pass them to separate frequency downconverters and on to further i.f. stages.

The transmitter will use wideband travell-ing-wave tubes to provide a final peak saturation power of 10 kW . A t.w.t. has been chosen in preference to klystrons since each individual carrier would require a complete klystron transmitter whereas the complete $500-\mathrm{MHz}$ band can be covered by a simple t.w.t. amplifier. A single varactor diode upconverter will be used to change each of the $70-\mathrm{MHz}$ carriers to the output frequency. The transmitting facilities available will be adequate for over 500 telephone channels and one television channel simultaneously, using a multi-access satellite of the Intelsat III type.

In the middle and far east two earth stations are being built at an estimated total cost of $£ 3.5 \mathrm{~m}$ for Cable and Wireless, one on Stanley Peninsula on Hong Kong Island and the other at Abu Jarjur, Bahrain. The Hong Kong station will be capable of operating in gales of up to 70 m.p.h., above which the dish is pointed vertically and will then withstand winds of up to $210 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. The Marconi Company are undertaking the construction of the two stations which will consist of steerable $90-\mathrm{ft}$ diameter aerials mounted on $60-\mathrm{ft}$ towers.

The Bahrain station situated at a longitude of about 62.5° east will be in continuous contact with the Indian Ocean satellite and through it communicate with four other stations. The station will be connected via a radio link with Sitra where traffic will be distributed. Bahrain will not initially have the capability of processing television signals, however, this facility can be added at a later date.

The Hong Kong station will use the Pacific Ocean satellite and will be in continuous contact with eight other stations. Information will be transmitted to Victoria for distribution.

Each station will have facilities for the transmission of up to four carriers and the reception of 32 . Each of these carriers may have a capacity of 24,60 or 132 separate communications channels. Initially Hong Kong will be equipped for the reception of eight carriers, each with a standby and Bahrain for four, also with standbys. The electronic equipment is of similar design to that used in the Goonhilly No. 2 aerial project but the aerials differ considerably in mechanical design.

In Australia the site for the Australian Overseas Telecommunications Commission's (O.T.C.) west coast satellite ground station is expected to be announced shortly. O.T.C. is currently using an experimental quasi-operational station at Carnarvon, 600 miles north of Perth. This station has provided live TV links with Britain, but it is primarily engaged in meeting communication needs of N.A.S.A. which operates a tracking station in the immediate vicinity. The west coast station will provide voice, video and data links with Africa, Asia and Europe via the Indian Ocean Intelsat III satellite.

In Sweden the four Scandinavian telecommunications administrations agreed that a proposed ground station for satellite communication with North and South America be built near Strömstad on the Swedish West coast. The station, which would increase the
number of transatlantic channels from 38 to 100, would be equipped with an aerial with a diameter of about 90 ft for reception and transmission via the Atlantic Ocean satellite. The Swedish West coast area was chosen as the site as it was considered comparatively free from interference from existing radio transmissions. Goonhilly has so far handled the satellite communications of the Scandinavian countries, who have ten channels at their disposal at this station. The Scandinavian ground station project is subject to approval by the four governments involved. It is hoped however that the new station will be ready for operation in 1970-71.

Telephone System for the Deaf

INDIVIDUALS suffering from total deafness will be able to communicate by telephone if development work at present being carried out by Bell Telephone Laboratories, U.S.A. reaches fruition. The system, known as touch-tone dialling, enables the letters and numbers printed on the buttons of a push-button dial telephone to be represented visually at the receiving end. In touch-tone dialling areas push-buttons generate pairs of tones to control dialling and switching functions. When two telephones are connected over the telephone network, the buttons still generate tones but do not interfere with normal switching functions. In the proposed system the code utilizes the arrangement of letters and numbers as they appear on the push-button dial e.g. A, B and C are sent using the " 2 " button. Pushing this button once transmits A, twice B and three times C. A readout circuit stores the signals until the required letter is fully encoded as indicated by pushing the zero button, thus to transmit A the code is 20, B is 220 and C is 2220 . Letters of the alphabet not used in dialling, namely Q and Z, are encoded using the " 1 " button, Q being expressed as 10 and Z as 110. In addition the " 1 " button is used as a word separator, 111 signals end of word and 111,111 end of sentence.

Tests with a prototype have indicated that with a little training a user may attain a coding rate of 8 words per minute and with practice this rate can be doubled. At the receiving end the characters are displayed one at a time for approximately 400 ms and it has been found, at the higher sending rates, that the display is very tiring on the eyes. Three off-the-shelf indicators are used

to display the 36 digits required and two small windows show that coding is in process and the end of word and end of sentence periods.

Instrumentation Project

THE Ministry of Technology has announced the setting up of an Advanced Instrumentation Project which will foster the development and use of industrial instruments. It is hoped that this will assist process industries to improve productivity and help instrument manufacturers to transform promising new ideas into working equipment with the minimum of delay. To this end the Ministry of Technology will be providing up to $£ 250,000$ per year for three years to be spent in sharing the cost of projects with industry. There will be an arrangement for the recovery of the investment from sales. In deciding which projects to back, the Ministry will satisfy itself as to the competence of prospective firms to carry out the necessary work and to exploit its results both technically and commercially.

Australia's First Satellite

WRESAT-1, Australia's first satellite, stopped sending signals from space after five days in orbit. The Minister for Supply, Senator D Henty, said this was the planned programme for the satellite which re-entered the earth's atmosphere after a few weeks. WRESAT-1 was launched from Woomera on November 29th from a United States Redstone rocket. The 100 lb satellite was developed jointly by the Weapons Research Establishment and the University of Adelaide. The purpose of its mission was to investigate the effects of the upper atmosphere on the weather. Senator Henty said "It appears that most of the experiments were successful and will yield valuable scientific data related to the sun's effect on the earth's atmosphere".

A 19 ft two-stage high-altitude density probe was launched from Woomera as WRE-SAT-1 was on its 29 th orbit, approaching the low point of 106 miles in its elliptical polar orbit. The experiment was to gather data on the interaction of solar radiation and the ionosphere at an altitude lower than that being investigated by WRESAT.

S.T.C. enter C.C.T.V. Market

"TOTAL system service" is the claim of Standard Telephone and Cables Lid as they enter the closed circuit television systems market. The Test Apparatus and Special Systems Division which is marketing the equipment will be able to draw, from other divisions, information on video and audio transmission, cabling technology and microwave and line transmission to build up C.C.T.V. systems of any required complexity. The display monitors follow conventional techniques and are available with 11 - or 19 -inch tubes.

The camera is of modular design that can be supplied in up to seven different configurations or if desired the basic camera can be extended to provide additional facilities by using plug-in modules. Power unit, remote focus, power-operated zoom and a $4 \frac{1}{2}$-inch

monitor viewfinder can be added in this way. The camera employs 625 lines scanning at 50 fields per second and incorporates an E.M.I. 9677C one-inch vidicon tube as standard; infra-red, high resolution and extra robust tubes are available as options. In most applications the camera will be fully automatic; a wide sensitivity range providing a constant video output over all normal variations in ambient illumination level. However, a remote, or on the camera, sensitivity control can be fitted if required. The camera may be powered from a 16 V d.c. supply or alternatively direct from the mains via an add-on power unit.

Polar Region Study

A "MASS ASSAULT" on the little understood Northern Lights aurorae and polar cap airglow is to be carried out by the American National Aeronautics and Space Administration. The investigation will entail the simultaneous use of aircraft, sounding rockets and satellites in a co-ordinated effort to study some of these phenomena. Scientists will have the opportunity to observe from four different levels ranging from the ground to an altitude of 250 miles. They hope to find causes, possible physical and chemical changes, which may fit into the theories and other observations made previously. It has been noted that electrons and protons from space follow the earth's magnetic field lines into the polar regions. It is believed that these are important in precipitating aurorae and the polar cap airglow. Another factor is probably cosmic radiation from the sun which is known to enter the atmosphere at the poles.

Victoria Line Television System

ONE of the largest supervisory closedcircuit television systems to be built in the U.K. is to be installed on London Transport's new Victoria Line by Peto-Scott Ltd, of Weybridge. The system consists of 74 television cameras, 42 monitors and a comprehensive switching network. The installation will perform three major functions: a monitor mounted at the end of each platform working in conjunction with a camera will allow the train driver to see along the whole length of the train; outputs of the platform cameras and other strategically placed cameras viewing escalators, subways and the like will be fed to a station supervisor's office-the switching network allowing any camera on the station to be selected; and
finally, the outputs of all the cameras at all the stations will be fed into a line supervisor's office who again can select any camera he chooses. The transmission from the stations to the line supervisor's office is carried out at r.f.,

Shipboard Satellite Terminal

A MILITARY shipboard satellite communications system is to be installed on H.M.S. Intrepid by the Plessey Electronics Group. This will operate in conjunction with the British military synchronous satellite Skynet due to be launched this year. The aerial will have three axes of spatial freedom with the ability to remain locked-on to the satellite when the ship is rolling at angles of up to 30°. This is achieved by sensing monopulse misalignment signals in conjunction with signals derived from a gyro stabilized platform. Error signals obtained in this way are used to control the aerial's three drive motors. Signals received by the $6-\mathrm{ft}$ diameter Cassegrain aerial are amplified in an uncooled amplifier before being downconverted, amplified and fed to subsequent demodulation and demultiplexing equipment.

2LO Again

TO celebrate the 1968 City of London Festival (July 8th-20th), the Radio Society of Great Britain is to operate an amateur radio station with the call sign GB2LO from somewhere in the City. The location has not been decided upon but when operating the station will be open to visitors. GB2LO will work on the $10,15,20,40$ and 80 metre bands on s.s.b. only.

The British Calibration Service was set up about a year ago by the Ministry of Technology to provide authenticated calibration facilities for all kinds of measuring instruments. To date four laboratories have received B.C.S. approval and these may now provide their customers with a B.C.S. Certificate of Calibration for each instrument calibration carried out under their approval. This approval relates only to specified types of measurement to given levels of accuracy as stated in the laboratory's approval certificate. Laboratories seeking to operate within the service must satisfy the B.C.S. that they are capable of meeting its criteria. So far the B.C.S. have invited applications from laboratories in four fields of measurements: d.c. and 1.f., h.f., mechanical and fluid. Preparations are being made to extend the service to optical and thermal measurements. The laboratories to receive approval are: Coventry Gauge and Tool Co. Ltd. P.O. Box 39, Fletchamstead Highway, Coventry; Pitter Gauge and Tool Co. Ltd., Market Street, Woolwich, London S.E.18; The English Electric Co. Ltd., Stafford Works (Electrical Products Group), Lichfield Road, Stafford; Ferranti Ltd (Wythenshawe Calibration Laboratories), Simonsway, Wythenshawe, Manchester 22. The first three laboratories listed have received approval for a range of mechanical measurements, while the fourth has received approval for a range of d.c. and l.f. measurements including resistance, inductance, capacitance a.c. and d.c. - voltage current and power - and frequency.

Production of their computer 'Modular One' is to commence at the Hemel Hempstead factory of Computer Technology Ltd in May and will result
in the building of 30 systems by the end of the year. Computer Technology hope to be able to supply 20 per cent of the British markel and export in quantity by the end of 1969 . Computer Technology was set up at the end of 1965 by an independent group of computer engineers after a critical analysis of the computer industry in Britain and America. The capability to build small high performance computers at low cost is creating new markets and Computer Technology believe that it is in this field that the major growth in the computer market will take place during the course of the next five years. The design of Modular One is based on the need for a general purpose digital computer that can be integrated into any information complex. It provides a range of modules that can be used by the scientist or engineer to build up a computer system. to match his requirements exactly. Modular One can perform a million instructions a second and a simple system costs in the region of $£ 10,000$.

As a result of a cost sharing project on computer aided design carried out by the Ministry of Technology and Racal Research Lid. a new service known as Racal Electronic Design and Analysis by Computer (REDAC) is available to industry. The computer programmes (REDAPs) are backed by a team of 25 engineers with development, production and computer aided design experience. Examples of REDAPs currently available are, a general circuit analysis programme, calculation of stray inductance, mutual inductance and capacitance (e.g. for printed circuit board), small signal modelling of a device such as a transistor, design of a video amplifier, manipulation of four-pole matrices, harmonic analyses of a complex waveform, filter analysis and the solution of a set of simultaneous linear equations with complex coefficients. Data for the REDAC service may be sent by telephone, telex or post and the service is completely confidential. A free brochure describing the service can be obtained from REDAC, Racal Group Publicity Dept., 26 Broad Street, Wokingham, Berks. A Users Manual is available from Racal Research Ltd., Newtown, Tewkesbury, Gloucestershire at a cost of $£ 2$.

One of the tasks of the American space craft Surveyor VII, recently soft-landed on the moon, will be to evaluate techniques for directing laser beams at objects in space. These tests are a prelude to a projected Apollo experiment in which an optical retro-reflector array will be landed on the moon to enable the distance from various points on the earth surface to the reflector to be measured. The television camera aboard Surveyor will be used in an attempt to photograph laser beams which can be directed from any one of six earth stations through various types of telescopes.

The photograph shows the surface sampler on Surveyor VII digging a twelve inch trench on the moon's surface. Surveyor VII was launched on January 7th by N.A.S.A. from Cape Kennedy. The camera that took the picture had a 6° field of view.

The green argon ion laser beams will be several miles wide by the time they have travelled the quarter of a million or so miles to the moon. Factors beyond the control of scientists which may make the detection of the beam difficult are glare from the sun entering the camera and twinkling caused by atmospheric turbulence on earth.

In order to co-ordinate traffic movement in West London the Plessey Automation Group have supplied a computer complex under a $£ 200,000$ Ministry of Transport contract. Inductive loop traffic counters spread over an area of 6.5 square miles feed information into two Plessey XL9 computers. These in turn control traffic lights in accordance with the current traffic situation and a programme prepared by Ministry of Transport and Plessey engineers. Traffic density is displayed and stored for future analysis which could result in programme modifications in the future. If desired engineers can take over manual control of given sets of traffic lights should the situation demand it.

The problem facing many users of electronic components is who makes what and where can one obtain, for instance, a capacitor of x value with a y working voltage. To assist in this, Technical Indexes Ltd, Index House, Ascot, Berks have produced an Electronic Engineering Index that lists about 1,000 suppliers and gives detailed information on about 20,000 products. The Index consists of 60 cross referenced volumes contained in a five-shelf rack $6 \times 3 \times 1 \mathrm{ft}$. The information contained in the index is brought up to date and added to once a month by a team of girls. Also included in the service which costs 50 gn a year, is a product data book that is reprinted three times a year.

A merger within the Philips-Pye Group has been announced. Pye T.V.T. Lid and Peto Scott Lid are to join forces; the new organization will be known as Pye T.V.T. and will be active in the professional market for broadcast transmitter equipment, studio cameras and monitors, industrial c.c.t.v. and audio systems, and large screen Eidophor projection.

What is thought to be the largest order for U.K. produced integrated circuits has been received by Mullard Ltd. The order is for 100,000 t.t.1. FJ series integrated circuits to be used on the new I.C.T. 1906A computer (described in "News from Industry" December 1967). Significant features from the performance of the range are a noise immunity of 1 V , power consumption of about 10 mW per gate and a typical propagation delay time of 13 ns .

The first British company to exhibit at the world's largest scientific exhibition, the American Physics Show, to be held in Chicago, will be Scientifica and Cook Electronics Lid. Products to be shown by the company include electromagnets, a range of lasers, spectrometers and a number of highfield permanent magnets.

The setuing up of a Device Development Laboratory to operate in parallel with the existing applications Laboratory has resulted in the reorganization of the research facilities at SGS-Fairchild Ltd, Aylesbury, Bucks. The new department will be responsible for developing discrete devices and integrated circuits for special applications where suitable standard components are not available. Diffusion of sample batches of new. devices, built to meet customer specifications.

Since the advertisement pages went to press an error has been noticed in the announcement of W. Greenwood (London) I.td. on p. 31. The temperature range of the 070 wirewound potentiometer is $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.

Personalities

This year's I.E.E. Faraday Medalist is L. H. Bedford, C.B.E., M.A., B.Sc.(Eng.), F.I.E.E., F.I.E.R.E., who receives it "for his outstanding contributions to the advancement of electronics engineering, and for his inspiring leadership, both in war and peace, of the industrial design and development teams by which these and other advances have been consolidated and effectively applied." After obtaining a B.Sc. degree in

L. H. Bedford
both engineering and physics in London and a B.A. degree at King's College, Cambridge, Mr. Bedford joined the Western Electric Company (now Standard Telephones and Cables Ltd.). In 1931 he took up an appointment with A. C. Cossor Lid. to initiate the development and manufacture of cathode-ray tubes and in 1937 a new department was formed under his control when R. A. Watson-Watt brought the radar receiver proposition to Cossor's. Mr. Bedford's own activities were then transferred full-time to radar projects including the development and manufacture of the first radar receivers for the "C.H." stations. He was appointed director of research at Cossor's and his name is associated with the elevation attachment which he produced for the early gun-laying radar equipment. In 1947 he joined the English Electric Company, being posted to the Marconi Company as chief television engineer. A year later he took charge of a guided weapons study
project and this led to the formation of a new division which eventually became the British Aircraft Corporation (G.W.) Ltd., of which Mr. Bedford is director of engineering.

Lord Jackson of Burnley, D.Sc., D.Phil., F.R.S., has been elected an honorary fellow of the I.E.E. "for his outstanding contributions to science and technology in the fields of research and education and in recognition of his services to the nation as an adviser to Government on these matters and on the related aspects of manpower and its deployment". After graduating at Manchester University in 1925 and lecturing at Bradford Technical College (now Bradford University) he joined Metro-Vick as a college apprentice in 1929. In 1936 Sir Willis (as he is still affectionately known) received his D.Sc from Manchester and his D.Phil. from Oxford University. Two years later he was appointed professor of electrotechnics at Manchester University. During the war Lord Jackson served on a number of Government scientific and technical committees and worked at the Signals and Radar Research Establishments of the Ministry of Supply, but he continued his teaching work at Manchester University and was responsible for a Ministry of Supply research team engaged there on v.h.f. and dielectric investigations. In 1946 he became professor and head

Lord Jackson

of the Department of Electrical Engineering at the Imperial College of Science \& Technology, London, where he remained until 1953 when he accepted an appointment as director of research and education of the Metropolitan-Vickers Electrical Company-now part of A.E.I. In 1961 he returned to his previous position at Imperial College where, in 1967, he was appointed Pro-Rector. Lord Jackson, who is 63 , was knighted in 1958 and was made a life peer last year.

Reg H. Hammans, director of engineering, Granada Television, Manchester, since April 1955, has retired from active participation in day-to-day work at the Granada Television Centre but will continue as consultant on technical and engineering matters, and as the company's representative on the technical committees of the Independent Television Authority and Indepen-

R. H: Hammans

dent Television Companies Association. Mr. Hammans was with the B.B.C. for 20 years before joining Granada previously spending four years with the International Marine Radio Company. Mr. Hammans, who operates an amateur radio station with the call G2IG, was president of the Radio Society of Great Britain in 1956/57 and also presided over the conference of the International Amateur Radio Union in Stresa, Italy, in 1956.

Wing Commander Dennis Abraham, B.Sc., M.I.E.E., head of the Electrical Engineering Department of the R.A.F. College, Cranwell, was to have taken up the post of head of the Department of Electrical and Electronic Engineering at the Borough Polytechnic last September (see April issue, p. 172) but the Ministry of Defence would not release him. He has now been appointed to a similar post at the Sheffield College of Technology from next September. Wing Commander Abraham, who graduated at the University of Wales (Swansea), served as a radar officer in the R.A.F. during World War II. He then spent some time in industry and later joined the staff of the University of Aberdeen.

The Medal of Honour - the principal award of the Institute of Electrical and Electronics Engineers Inc. - is being given to Gordon \mathbf{K}. Teal, M.Sc., Ph.D., assistant vicepresident in charge of technical development in the equipment group of Texas Instruments Inc., Dallas, "for his contributions to single crystal germanium and silicon technology and the single crystal growth junction transistor". Dr. Teal, who is 61, was for 23 years with Bell Telephone Laboratories where he worked with Dr. Shockley on the development of the junction transistor. He has been with Texas since 1953. Dr. Teal, who originated the grown junction single crystal technique, recently served for two years as director of the Institute for Materials Research of the American National Bureau of Standards.

The Council of the Royal Society has appointed Professor J. M. Ziman, F.R.S., (professor of theoretical physics in the University of Bristol), to be Rutherford Memorial Lecturer for 1968 in India and Pakistan, and to deliver lectures in these two countries during a visit of about three weeks in November/ December this year. He was elected a Fellow of the Royal Society last year "for his theoretical contributions to solid state physics, especially the study of transport phenomena, and for his work on the electronic properties of metals".
D. L. Grundy, A.M.I.E.E., recently appointed head of application engineering, integrated circuits, in the Electronics Dept. of Ferranti Lid., at Oldham, Lancs, joined the company's Application Laboratory in 1955 and worked on the applications of industrial valves. In 1957 he commenced work on the applications of silicon rectifiers with particular emphasis on the transient behaviour of high-voltage assemblies,

D. L. Grundy
and the design of units for highpower pulse duty in such devices as magnetron modulators. When Ferranti commenced the manufacture of transistors Mr . Grundy's activities turned to their application. He was co-author of the article describing a silicon transistor tape recorder in our July and August, 1965, issues.

J. A: Walker
J. A. Walker, has become head of application engineering, discrete components, in Ferranti's Electronics Dept, at Oldham. He joined the Radio and Television Dept, of Ferranti Led. in 1949. In 1959, after a short period on missile circuit design with the Guided Weapons Division, he joined the semiconductor applications laboratory and became concerned with the applications of solid state devices, with particular emphasis on the investigation of four-layer diodes, reference diodes, silicon rectifiers and r.f. transistors. Mr. Walker's current activities cover the applications of a large range of semiconductors in cluding high- and low-frequency transistors, small signal and power diodes and rectifiers, photocells, and hybrid networks using solid state devices and thin film circuits.
Ferranti's also announce the appointment of Brian Taylor as chief inspector, and Graham Latham as project and product assurance manager, in the Oldham Electronics Dept. Mr. Taylor has been with the company eight years during which time he has specialized on quality control, and Mr. Latham was formerly the chief inspector of the Semiconductor Division.

Dr. J. A. Saxton, director of the Radio and Space Research Station of the Science Research Council at Slough for the past two years, has accepted a visiting professorship in physics at University College London. Dr. Saxton was on the staff of Imperial College, London, for a short time after graduating and he then joined the Radio Division of the National Physical Laboratory (in 1938). Immediately, prior to assuming the directorship at Slough, he was director of the U.K. Scientific Mission in Washington, D.C., and a scientific counsellor at the British Embassy there.
W. T. Deuchrass has retired after 35 years' service with the Bush organization, in fact he was a founder member of Bush Radio in 1932. He was personally responsible for the production of the first batch of 30 -line mirror-drum television receivers designed by Baird Televi-
sion Lid. Mr. Deuchrass was appointed a director of Bush in 1952 and has been a director of the joint Rank Bush Murphy board.
W. H. O. Sweeny, chief engineer to Independent Television News Ltd., retired at the end of January. After five years with the B.B.C. as assistant maintenance engineer, he entered the film industry in 1929, where, with the exception of the war period (during which he was in the civilian service on the East Coast Radar Chain and later commissioned with the R.A.F. Film Production Unit), he remained until 1949. He subsequently served as chief engineer of the Near East Arab Broadcasting Station and on returning to this country in 1955 joined I.T.N. as senior sound engineer.
G. D. Gokarn, B.Sc.(Hons.), was recently appointed by the Government of India as its representative on the Commonwealth Telecommunications Board, London. Mr. Gokarn relinquished the post of director of the Overseas Communications

G. D. Gokarn

Service in New Delhi to take up the new assignment. He is also communications adviser to the India High Commission in London. He was in the U.S.A. in 1951-52 under the visitor exchange programme and studied the international communication system in the States.

Each year the Institute of Electrical and Electronics Engineers elects a few of its 160,000 members to the grade of Fellow. Among the 125 recently elected for their "outstanding professional contributions" are the following engineers in the U.K.: E. A. Ash, B.Sc.(Eng.), Ph.D. M.I.E.E., Professor of Electrical Engineering, University College, London, "for significant contributions to microwave tubes, solid state microwave devices and electron optics"'; P. J. B. Clarricoats, B.Sc.(Eng.), Ph.D., F.I.E.E., Professor of Electronic Engineering, University of Leeds, "for contributions in the field of guided electromagnetic wave propagation"; J. F. Coales, O.B.E., M.A. F.I.E.E., Professor of Engineering, (Control), University of Cambridge, "for his outstanding contributions in the field of elec-
tronics and control engineering, and particularly for major contributions to the development of automation and computer interests in the United Kingdom'; G. W. A. Dummer, M.B.E., F.I.E.E., until recently superintendent of the Applied Physics and Technical Services Division, Royal Radar Establishment, "for contributions to microelectronics and component reliability'; J. Greig, M.Sc., Ph.D., F.I.E.E., William Siemens Professor of Electrical Engineering, King's College, London, "for his contributions in the educational field, and research on the behaviour of magnetic materials, computers and automatic control processes"; E. M. Leee, B.Sc., F.I.E.E. chairman, Belling and Lee Lid., "for contributions to design, specification and safety of electronic equipment and components and co-ordination of industry and government in electronic development, production and inspection"; C. W. Oatley, O.B.E., M.A., M.Sc., F.I.E.E., Professor of Electrical Engineering, University of Cambridge, "for contributions to research in radar and electron optics, especially for development of the scanning electron microscope"; N. H. Searby, C.B.E., B.Sc., F.I.E.E., a director of Ferranti L.d., "for his contributions to research and development in the application of electronics to guided missile projects"; and P. H. Spagnoletti, O.B.E., B.A., F.I.E.E., director of business development, Standard Telephones and Cables Lid., "for contributions to the design of shortwave broadcasting equipment and single sideband telecommunications".
A. J. Martin, B.Sc., A.R.C.S., and J. C. Mitchell, B.Sc., have been appointed divisional directors of Advance Controls, Cheltenham, the industrial control division of Advance Electronics Lid. Before joining Advance early in 1967 as applications managers, Mr. Martin was a lecturer in control engineering at the College of Aeronautics, Cranfield, and Mr. Mitchell was a senior en gineer with S.T.C. The manufacture and marketing of the company's range of integrated circuit logic cards and operational amplifiers has also been transferred to the

A. J. Martin

J. C. Mitchell

Cheltenham division where Mr. Martin and Mr. Mitchell will be responsible for the application of these devices in industry

Professor Sidney W. Wilsox, who is a specialist in technical communication in the School of Engineering at the Arizona State University, Phoenix, is on a six-months' visiting lectureship at the University of Wales Institute of Science \& Technology, Cardiff. Before taking up a university appointment 12 years ago he was with the Boeing Corporation.
T. G. Clark, F.I.E.R.E., until recently technical director of Asta-ron-Bird Lid., has joined the Plessey Electronics Group. While with Astaron he was also concerned with the technical direction of Coastal Radio Ltd. Before joining Astaron Mr. Clark was for some years with the Decica organization where he was concerned with the design and development of various marine and meteorological equipments.
J. H. Court, who joined Marconi's in 1950 as a graduate apprentice in the Aeronautical Division, has been appointed marketing manager of the division. Following his appointment there has been a major reorganization of the division. Four sales managers have been appointed:Air Commodore J. A. Holmes takes charge of military sales and $\mathbf{G} . \mathbf{N}$. Thornton civil sales in Europe (which includes the U.K.); K. H. Watkins becomes sales manager overseas region dealing with both civil and military sales in Asia, Australasia, Africa and the Middle and Far East; and J. D. McColl will cover administration and planning.
J. W. M. Child, B.Sc.(Eng.), has been appointed sales director of Teknis Lid., Slough, responsible for the marketing of semiconductor and integrated circuit pieceparts and production equipment.
R. M. Mitchell has joined Plessey as marketing manager of the Semiconductor Division. Mr. Mitchell, who is 35 , has for the past seven years been with Texas Instruments L.d., latterly as field sales manager.

Announcements

A vacation school on microwave solid state devices will be held at Bodington Hall, University of Leeds, from 8th to 19th July. Registration forms may be obtained from the I.E.E., Savoy Place, London, W.C.2. (Fee f65.)
The University of Aston in Birmingham are holding a research exhibition"Aston Research 68"-between 3rd and 5th April. Detailed programmes are available from The Research Exhibition Secretary, The University of Aston, Gosta Green, Birmingham 4.
The next conference to be organized by Varian Associates Lid, on electron spin resonance and nuclear magnetic resonance, will take place from 1st to 3 rd April. The first two days will be spent at the Royal Holloway College, Egham, Surrey, and the third at Varian's laboratory at Walton-on-Thames. Applications to the Workshop Secretary, Varian Associates Lutd, Russell House, Molesey Road, Walton-on-Thames, Surrey.

- East African External Telecommunications Company Lid are inviting tenders for the construction of an earth satellite station to be situated at Mount Margaret, in the Rift Valley, Kenya. The estimated total cost of this project is $\AA 1.75 \mathrm{M}$. Operational in early 1970 , the earth station will cater for the expanding requirements of international telecommunications and will increase the capacity and range of existing services.
Pye TVT Ltd of Cambridge have been awarded a contract, worth approximately 580,000 , by the Swedish Telecommunications Administration for a number of transposers for use in the expansion of the television network. Racal Communications Ltd have won a $\{500,000$ contract for the supply of radio-communication equipment for a new meteorological telecommunication network to be built in Saudi Arabia.
Electric \& Musical Industries have made an offer to acquire the assets of Precision Electronic Terminations Ltd and Nickols Automatics Ltd both wholly owned subsidiaries of Royston Industries Ltd, which is in the hands of a receiver. Nickols Automatics are active in the machine tool control field and Precision Terminations manufacture high-power, low-loss, r.f. connectors and a range of e.h.t. connectors.
A new company has been formed from within the structure of Debenhams Electrical \& Radio Distribution Co. Ltd which is known as Technomark Ltd. It will market equipment produced by Sony; Bang \& Olufsen; and Radford Ltd (of Bristol).
A new holding company, Planned Precision Ltd, has been formed to integrate the electrical and engineering activities of the News of the World Organization. The companies concerned are Vactric Control Equipment, Vactric Precision Tools, A. P. Besson \& Partner, and Renown Engineering. Plessey Components Group has made five licensing agreements with Industrialimport, for the production of resistors and capacitors in a Romanian factory, to be equipped with British machinery. It is hoped this will increase Plessey's trade with Eastern Europe by over $£ 0.5 \mathrm{M}$.
Spectra-Physics have announced a trade-in offer for gas lasers valid until 31st March. Through their U.K. distributors, Claude Lyons, they offer \& 80 for an old laser as a trade-in against the new Model 130C costing \{356. Further information is obtainable from Claude Lyons Lrd, Instruments Division, Hoddesdon, Herts. (Hoddesdon 67161.)
A link-up has been announced between B.M.B. (Sales) Ltd, of Crawley, and Cosmocord Ltd, of Waltham Cross, for the manufacture and marketing of styli, pick-up cartridges, microphones, etc.
The internal Plessey microelectronics custom design service is to be extended and will now be available for the design of integrated circuits to the whole of industry.
Full British military approval has been granted by the Ministry of Technology to the Elliott D930 range of integrated circuits.
Litton Precision Products, of Hayes, Middlesex, have been appointed sales and service representatives in the U.K. to the following American electronics companies: Cohu Electronics; Curry, McLaughlin \& Len; Digital Devices; and Astrosystems Inc.
B \& T Designs (Richmond) Ltd, High Street, Tring, Herts, have changed the name of the company to Circuitape Limited.

Cossor Instruments Litd and Cossor Communications Co. Ltd will in future operate under the title of Cossor Electronics Ltd. The object is to have one main company for the Harlow activities.
Derritron Electronic Vibrators, of Sedlescombe Road North, Hastings, have changed the name of the company to Derritron Electronics Lid.

March Conferences

Further details can be obtained from the addresses in parentheses

LONDON

Mar. 11-14
Alexandra Palace
Physics Exhibition
(I.P.P.S., 47 Belgrave Sq., London, S.W.1)

BIRMINGHAM

Mar. 28 \& 29
Aston University
Technology, Industry, Education
(C. Fleetwood-Walker, Birmingham \& Midland Inst., Margaret St., Birmingham 3)

CRANFIELLD

Mar. 25-28
College of Aeronautics
Aerospace Instrumentation Symposium
(N. O. Matthews, Dept. of Flight, College of Aeronautics, Cranfield, Beds.)

GLASGOW

Mar. 8-16
Kelvin Hall
NORBEX-North British Engineering Exhibition
(Lintex Ltd., 226 Grand Bldgs, Trafalgar Sq., London, W.C.2)

HARROW

Mar. 12-14
King's Head Hotel
Public Address Show
(Assoc. of Public Address Engrs, 394 Northolt Rd., South Harrow, Middx.)

OVERSEAS

Mar. 5-8
Toulouse
Nuclear Electronics and Radioprotection Symposium
(Faculte des Sciences, Universite, 118 route de Narbonne, Toulouse)
Mar. 7-12
Paris
Festival du Son
(Fédération Nationale des Industries Electroniques, 16 rue de Presles, Paris 15e)
Mar 21-23
Microwave Power
(International Microwave Power Inst., Box 342, Weston, Mass. 02193)
Mar. 25-29
Paris
Colour Television Conference
(Colloque sur la Télévision en Couleur, 16 rue de Presles, Paris 15e)
Mar. 27-Apr. 7
Electronics, Television \& Radio Show \& Convention
(Rassegna Internazionale Elettronica, via Crescenzio 9, Rome)

An Evening of Sonic Effects

Concert of Electronic Music in the Elizabeth Hall Attracts Big Audience

ON 15th January in the Queen Elizabeth Hall, London, a thousand people sat down to face an empty platform, except for a computer and two loudspeakers, and listen to two and a half hours of electronic music by British composers. Considering that London has become the most musical capital in the world, it is surprising that this was in fact the first London concert of its kind. So far we have had only one or two isolated electronic works in concerts of conventional music, and have heard a few B.B.C. broadcasts of pieces by the better known Continental composers. However, to judge from the full house at the Elizabeth Hall (a small queue of disappointed people was left outside) and the rapt attention given to the performances, the dearth of electronic music does not seem to have been due to any indifference or excessive musical conservatism on the part of the British public.

The eleven works in the programme, which was organized by Redcliffe Concerts, illustrated the great variety of techniques by which electronic music can be made. The basic sounds are produced by natural sources of any kind, musical or unmusical, living or mechanical, and by synthetic sources such as electronic oscillators and noise generators. They are then electronically processed-mixed, inter-modulated, filtered etc.-and recorded. Magnetic tape is used extensively, not only for final recording but for processing operations such as changing pitch and producing choral effects from single sources. Computers are being brought in, partly to automate some of the more tedious procedures in composition and partly to introduce an aleatory element into the music. Some pieces are written as concerti, for live participation by singers or instrumentalists, while others are really compositions for conventional orchestras including live electronic effects.

In Ernest Berk's Diversed Mind, a five-section piece abstractly related to states of mind, the natural sound sources were metal strip, a bamboo stick and a tambour, while the electronic sources included sine, square and sawtooth wave generators. Processing was mainly by amplitude and frequency modulation, filtering and artificial reverberation. Some of the sonic effects, though probably intended to be abstract, were evocative (the booming of huge bells) and for this reason were exciting to listen to; others (whistling noises) seemed somehow comic-a characteristic of many synthesized sounds.

Tristram Cary's 345 was the result of a deliberate restriction of material-on the principle, perhaps, that limited means provide a stimulus for real artistry. The basic sources were electronic oscillations of 3 Hz , 4 Hz and 5 Hz and multiples of these by 10 , $10^{2}, 10^{3}$ and 10^{4}. This resulted in three subsonic tones (heard either as clicks or modulants), nine sonic tones and three supersonic tones (which produced audible sounds by intermodulation with others). The duration elements, and hence the rhythmic possibilities, were also limited-to 3,4 or 5 inches of tape at $15 \mathrm{in} / \mathrm{sec}$ speed, plus the first few numbers resulting from adding and /or muluplying these figures. More emotive was the same composer's Birth is life is power is death is God is. The basis of this piece, which used a large variety of sources, was the sound track for a multi-screen film shown in the British pavilion at EXPO '67, and, in so far as it was illustrative, might not have been considered a good example of the genre by the purists. Also highly allusive was Silent Spring by George Newson (inspired by Rachel Carson's book of the same name about the despoilation of nature). Here the basic sound sources were recordings of wild-life and machinery.

A live piano part was used in Contrasts Essconic by Daphne Oram and Ivor Walsworth, introducing a touch of aural fami- Computer Weekly.)
liarity and drawing attention to the difference between pitched (notes in a scale) and unpitched sounds. A frankly direct appeal was made by Delia Derbyshire's Potpourri, realized in the B.B.C. Radiophonic Workshop, which served as a short opener for the concert. Traditional rhythms and time-signatures were utilized in Syntheses 8, 9 and 12 by Jacob Meyerowitz and in Partita for Unattended Computer by Peter Zinovieff. Also composed by Zinovieff were December Quartet, Agnus Dei and March Probabilistic. In the last-mentioned the overall form of the piece had been specified by a programme written for an ICT 1900 computer, which had punched a paper tape giving the timing, pitch, loudness, attack or delay, and basic waveform of each note. This tape was read by a PDP-8/S computer on stage at the concert (see picture) which, using random numbers, selected during the performance the exact values to be used to control the electronic sound generators. Thus individual performances could vary slightly.

The two Lockwood monitoring loudspeakers, one on each side of the platform, performed extremely well on the demanding material, and the acoustics of the hall seemed very sympathetic to it.

For people whose musical appreciation is conditioned by the melodic and rhythmic conventions of the 19th century-and that means most of us-electronic music does not have a very direct appeal. It provides technical interest for the professional musi-cian-the Royal College of Music is starting a pilot course in the subject-and probably has real impact for people who have progressed to modern composers such as Webern and Boulez. The writer found some parts of the concert boring, but this was probably due to his own limitations or those of the composers rather than to any inherent characteristic of electronic music. As with abstract painting, it becomes more and more difficult to distinguish the work of the genuine artist from that of the clever technician, but only a philistine would condemn the whole art-form on this count.
T.E.I

Performance of Partita for Unattended Computer by Peter Zinovieff. After a programme on punched tape had been read into its store. a PDP-8/S digital computer (near the middle of the rack) calculated the exact details of the sounds to be produced and, through an interface, operated electronic generating and processing equipment-oscillators. filters. envelope shapers, reverberation units and mixing and timing units. (Courtesy

Power Supply Stabilization Module

Outputs of 6-50 V at 50 mA ; provision for currents up to 5 A

By P. R. Adby, B.Sc.

AFTER designing numerous simple power supply circuits for transistor equipment, it became obvious that the same basic stabilizing circuit is employed each time with only slight modification. A survey of past power supply requirements in the University laboratory revealed that in general, most supplies were covered by the following specification; an output voltage of 6 to 50 V and an output current of up to 5 A. Adequate stabilization was normally obtained by a simple long-tailed pair error amplifier with a Zener diode reference

Fig. 1. A typical power supply for use with the stabilization module.
but, since the supplies were internal in equipment, overload protection was not usually incorporated.
With these requirements in mind, a small plug-in module was designed for stabilization of output voltages in the above range. Cost was considered an important factor since, in most cases, at least two supplies are required for each unit. For economy, it is essential that we use (a) only one transformer winding, (b) the smallest number of subsidiary supply rails, and (c) low cost transistors, silicon for preference.

The required output voltage range being from 6 to 50 V it is assumed that the reservoir capacitor voltage lies in the range +9 V to +60 V . This range is wide, and a subsidiary h.t. rail derived from it, for the stabilizer circuit, would be limited to about +6 V maximum. Also, as the comparator is to be a long-tailed pair, an additional negative rail of at least 6 V is required. If a centre tapped transformer winding is used, the negative supply can be derived from the main output winding using two low-current rectifiers and a small smoothing capacitor. The positive and negative 6-V rails for the stabilizer are obtained from the reservoir capacitors via series resistors and Zener diode regulators. The output voltage from the long-tailed pair is limited to the range 0 to +6 V . An output amplifier and emitter follower operating from the unregulated positive supply gives the required output $(+6$ to $+50 \mathrm{~V})$ from the available drive. Output currents of up to 50 mA may be obtained either for use directly as the stabilized supply or for driving one or two emitter followers, giving 1 A or 5 A maximum respectively. A circuit of a typical power supply for use with the module is given in Fig. 1.

Paul R. Adby is an experimental officer at the University of Sussex, Falmer, Brighton, where he is responsible for the electronics laboratory which designs equipment for research in experimental physics. After graduating at Leicester University in 1960 he spent four years in industry graduating at Leicester Unversity

Fig. 2. Details of the stabilization module circuit including the two external resistors. All resistors are Erie EMI 5\%: electrolytic capacitors. Mullard C426 series: potentiometer. Painton Miniflatpot: and the $0.047 \mu \mathrm{~F}$ capacitor. Mullard C280Ae. The output from the module is taken from terminal No. 1 (positive) and terminal No. 5 (negative).

Fig. 3. The prototype module.

Fig. 4. Power supply giving an output of 24 V at 5 A . Output is raken from pins 1 and 5

Fig. 5. Power supply giving an output from terminals 1 and 5 of 40 V at 1 A .

The circuit diagram of the module given in Fig. 2 shows a number of different supply rails which may be related to Fig. 1 as detailed below:

Unstabilized positive d.c.
Stabilized positive output
Derived +6 V
Derived -6 V
Output drive
Unstabilized negative d.c.
main supply from the reservoir capacitor
stabilized output voltage
supply for comparator
supply for comparator
drive to series stabilizer
from which -6 V is derived

Also shown in Fig. 2 are two essential external resistors which are adjusted in value, dependent on the unstabilized positive and negative voltages available.

R_{1}	$=\frac{\text { unstabilized positive voltage }-7}{10} \mathrm{k} \Omega$
R_{2}	$=\frac{\text { unstabilized negative voltage }-7}{10} \mathrm{k} \Omega$

A current of 10 mA is therefore set up through R_{1} and R_{2}. The stabilized output voltage is preset by a 16 -turn trimming potentiometer giving fine adjustment over the complete range of output voltage. Limits for the module are:-
maximum output drive current 50 mA
maximum unstabilized positive d.c. 64 V
maximum difference between unstabilized positive d.c. and stabilized output

15 V
Fig. 2 shows a typical circuit for a 1 A output. For outputs between 50 mA and 1 A , one transistor emitter follower external to the module is required. For currents up to 5 A two emitter followers are necessary. Since these are power transistors mounted on a heatsink, they were not included within the module.

Figures 1, 4, and 5 give the circuit diagrams of three power supplies which illustrate the use of the module for various output voltages and currents. The performance obtained from each circuit is given below:-

	Fig. 1	Fig. 4	Fig. 5
Output voltage	$\frac{6}{24}$	40	
Output current (A)	1	24	1
D.C. output impedance (S)	0.2	0.06	0.12
Ripple peak to peak (mV)	4	2	2
Stability for 10% malns change (mV)	50	100	50

For currents below 50 mA an external emitter follower is not necessary and the output drive pin 4 is connected to pin 1 and becomes the stabilized output. The output current is not limited to 5 A by the control circuit. Further emitter followers could be added but the lack of short-circuit protection could make the circuit impractical.

Further methods of connection suggest themselves but these have not yet been tried in test circuits:-
(a) Elimination of the negative supply for higher output voltages by setting the -6 V line at zero. R_{2} and the existing zeroline would not be used.
(b) Stabilization of higher output voltages by setting the -6 V line at, for example, +50 V . This would be achieved by connecting the $2.7 \mathrm{k} \Omega$ resistor in the potential divider to a spare output on the plug. In normal operation an external link to the -6 V line would be necessary. For high-voltage operation a resistor would be connected from the $2.7 \mathrm{k} \Omega$ resistor to the supply zero in order to adjust the divider. A Zener diode working at a current of 10 mA would be inserted between the -6 V line and supply zero. The existing zero line and resistor R_{2} would not be used. This method may be limited by variations of the unstabilized positive d.c. and by possible breakdown of the module output transistor due to switching surges.
(c) Pre-stabilization circuits inserted between the unregulated d.c. and the series transistor would improve the performance.

No specific performance advantages are claimed for this stabilization module since it is intended for general purpose work covered by other similar simple stabilizing circuits. The advantages of using a plug-in module do however include interchangeability for ease of servicing, standardization of components and construction, and well-defined performance characteristics.

Kelvin Cables

RC Transmission Line Applications

by G. W. Short*

An artificial $R C$ transmission line can be made in a few seconds by wrapping metal foil round a resistor. These lines can be used in filters and phase shift oscillators at audio and radio frequencies.

THE distributed-constant $R C$ transmission line (Fig. 1) has a long history. In the early days of telegraph cables, communication engineers discovered that it takes a finite time for an impulse to pass along a cable, and that the initial sharp edge becomes transformed into a sloping edge in the process. When trans-Atlantic submarine cables were proposed, this transmission distortion was seen to be a serious difficulty. The cable companies asked William Thomson (later Lord Kelvin) to advise them how to overcome the defect. Kelvin assumed that the distortion and delay were caused by the cable behaving like a distributed series R, shunt C network, and proposed a solution accordingly. (It was, first, to reduce R by using high-conductivity copper, and secondly to use sensitive instruments to detect the rising edges of incoming pulses.) Because of Kelvin's cable-model, distributed $R C$ transmission lines are sometimes called Kelvin cables. Incidentally, Kelvin's associate, Varley, used a lumped-constant $R C$ model to predict the signalling speed which would be possible with trans-Atlantic cables. This must have been one of the earliest examples of electrical analogue computation.

The $R C$ transmission lines which are the subject of this article are millimetres rather than miles long. They are made from the type of high-stability resistor in which the resistive track consists of a layer of carbon, deposited on the surface of a glass or ceramic rod, and protected only by a thin film of paint or lacquer. The resistive track provides the series R, and the dielectric properties of the paint or lacquer provide the shunt C. The lines are unbalanced, the earthy leg consisting of a piece of aluminium foil wrapped closely round the body of the resistor. This does several jobs at once: it provides one

[^8]

Fig. 2. Low-pass filter responses. The insertion loss at low frequencies depends on the total series resistance and the terminating resistance.

plate of the shunt C, an earth connection, and in some applications an electrostatic screen as well. (Since aluminium is not readily soldered, a piece of tinned copper wire is wrapped round and the earth connection made to it.)

Obviously, a line made like this is likely to be very different from the ideal uniform $R C$ line. The capacitance per unit length is likely to vary both from one resistor to another and even along one resistor, as the paint thickness varies. The dielectric is likely to be lossy. These imperfections may cause the characteristics of a practical $R C$ line to be quantitatively different from those of a perfectly uniform line, but the general behaviour of a practical $R C$ line is what would be expected. Signals passing along it are retarded, and the amount of phase delay increases with frequency. Attenuation also increases with frequency. Input impedance decreases with frequency, and at frequencies at which the line behaves as a line and not just as a resistance it is much lower than the total series resistance.

FREQUENCY RANGE

The $R C$ line is a low-pass filter, but the useful pass-band can be moved upwards indefinitely by reducing the ratio of R to C. In practice, this means using a lower resistance to begin with, so as to reduce R. In theory it is possible to reduce C by putting an extra dielectric layer between the body and the foil, but this makes the device less like a transmission line and more like an ordinary resistor, so can only be exploited to a limited extent.

The highest frequency in my experiments was the 5 MHz generated by an R C-line phase-shift oscillator, but no attempt was made to establish an upper limit. For some purposes, such as decoupling, where the low-pass character of the $R C$ line can be used to keep h.f. signals out of h.t. lines, etc., much higher useful frequency ranges are obviously possible.

FREQUENCY RESPONSE

The $R C$ line can be connected between a signal source and a load in several ways, each of which provides a different frequency response.

The simple low-pass filter connection, of interest in audio work and decoupling, has a response which is shown in Fig. 2.

As would be expected of an $R C$ filter with an infinite number of sections, the droop in the h.f. response becomes ever more steep as the frequency is increased. There is no "ultimate slope" of so many decibels per octave as there is with lumped-constant filters. It is this characteristic which makes the $R C$ line attractive for h.f. decoupling.

Changing the termination has a marked effect on the attenuation and pass-band-the lower the termination resistance the higher the attenuation and cut-off frequency-but obviously it can have little effect at relatively high frequencies, since these vanish before they get anywhere near the end of the line. By the same token, changing the termination has little effect on the input impedance if the line attenuation is high. One result is that a quarter-wave $R C$ line shows none of the transformer-like properties of a lumped $L C$ line with the same phase shift.

INPUT IMPEDANCE AND INSERTION LOSS

The input impedance falls as the frequency rises. The phase angle of impedance has the curious property of being the same at all frequencies, namely -45°, or midway between a resistance and a capacitance. For an infinite ideal uniform line, the input impedance is
 unit length. The impedance is therefore a function of $\sqrt{(1 / f)}$, that is, it falls relatively slowly as the frequency rises.

The 45° phase angle seems potentially useful for single-sideband generation but unfortunately the fall of impedance as the frequency rises makes application difficult, since any attempt to correct the frequency response produces an additional phase shift.

At frequencies far below cut-off, the line behaves as a resistor, and the insertion loss is exactly the same as is obtained without an earth connection.

Inserting resistance into the earth lead produces a dip in the frequency response. One critical combination of frequency and resistance produces a complete null (Fig. 3). Beyond the "null" the

Fig. 3. Notch filter. A complete null is obtained only for one combination of frequency and earth-lead resistance.
response rises again and eventually exceeds the l.f. response. By cascading a normal network and a null network, low-pass filters with sharper cut-off are obtainable, but unless buffer stages are used there is a marked interaction between the two "sections".

If the "earth plane" is left disconnected (equivalent to a "null" configuration with infinite resistance in the earth lead), the attenuation is reduced at high frequencies (Fig. 4). Thus, by changing the earth-lead arrangements by means of a 3-position switch (Fig. 5), three different responses are made available: low-pass, null, and top lift.

OSCILLATORS

At one frequency the phase shift through the line is 180°. It is therefore possible to use the line as the feedback element in a phase-shift oscillator (Fig. 6). A transistor with a high gain is required, especially at low frequencies, where the low terminating impedance at the base end of the line introduces an additional loss. (Measurements in a working low-frequency circuit showed Vin $7 / V o u i 7 \approx 100$).

The graph (Fig. 7), which plots frequency of oscillation for a given style of resistor ($50 \times 8 \mathrm{~mm}$ high stability carbon) against (frequency x resistance) suggests that the frequency of oscillation may be predictable by "rule of thumb" except for high-resistance lines (over 2 megohms).

The frequency stability of these oscillators is not good, but they possess some virtues. The first, which is obvious from Fig. 6(a), is extreme economy of components. At low frequencies (high line resistance) the power drain is very low. At high frequencies, the oscillator is very tolerant of stray capacitance across the line terminations. Tests on a 1.3 MHz oscillator made from a $4.7 \mathrm{k} \Omega(50 \times 8 \mathrm{~mm})$ resistor showed that in order to stop oscillation it was necessary to load the line with 450 pF at the collector end or 1000 pF at the base end. As the loading capacitance was increased from zero the frequency first increased then decreased, which indicates that there is one capacitance for which the frequency stability is highest.

ACCIDENTAL KELVIN CABLES?

The optimum conditions for oscillation seem to favour the resistance range of roughly a kilohm to a megohm. This embraces commonly used base-bias resistances. In micro-circuits, resistances made by thin-film or surface-modification techniques seem likely to act as Kelvin cables, since there is usually an earthed screen near at hand. One wonders if designers of integrated circuits have had trouble with amplifiers which turn out to be oscillators.

By the same token, the $R C$ line, which is obviously easy to make in integrated-circuit form, seems a possible solution to the problem of making tuned circuits without inductors. A "null network" connected in a negative feedback path would produce a peaked frequency response, and so would a "low-pass" network in a positive feedback loop. If the dielectric layer were in the form of a voltage-variable capacitance, external tuning would be possible.
"Kelvin cables" are easy to make, and the associated circuits can be very simple. There are many more ways of using them than are described here. Treatment in "the literature" tends to be rich in highbrow mathematics and poor in practical circuits. They are therefore an attractive subject for amateur experimentation.

Fig. 4. Top-lift connection. When the "earth" is left off the response rises with frequency. The l.f. insertion loss depends on the resistance values.

Fig. 5. Practical circuit giving low-pass, notch, and top-lift responses. Any good high-gain low level planar transistors (2N3707, BC109, BC168B, etc.) may be used.

Fig. 6 Phase shift oscillators: (a) low-frequency. for R up to $5 \mathrm{M} \Omega$; (b) highfrequency, for R down to $1 \mathrm{k} \Omega$.

Fig. 7. Resistance-frequency product for oscillators plotted against frequency of oscillation for one size of resistor $(50 \times 8 \mathrm{~mm})$.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Stereophonic Transmissions

STEREOPHONIC transmissions to the extent of about 25 hours weekly are now put out by the B.B.C. and the whole of this new service is devoted to minority interests of serious music listeners. Already no minority interest is so generously catered for as that of the serious music listener.
I believe the B.B.C. to be confusing the serious music listener with the highfidelity enthusiast. High-fidelity enthusiasts are found from all musical interests but the greatest potential audience is without doubt the lighter music listener.

I cannot protest strongly enough at his flagrant misuse of licence money to satisfy such minority interests at the expense of all other high-fidelity enthusiasts.

Stereophonic time should now be divided proportionately between the various musical interests and a due proportion of time at weekends and in the evenings should be given to the more popular light music tastes and to the whole audience who are interested in stereo transmissions.

David Bailey
Longfield, Kent.

Future of European 1.w. and m.w. Broadcasting

WITH the spread of v.h.f. broadcasting in many European countries and its obvious advantages of excellent audio quality and relative freedom from inter-station interference, it is to be hoped that eventually, the long- and medium-wave bands may become less chaotically congested than at present. The B.B.C.'s services in this country are merely one example of deterioration to an almost unacceptable level after nightfall and the l.w. band is now dominated by high power French-speaking "pop" stations that have "helped themselves" to these valuable channels.
Many of the unique characteristics of these bands, and especially the l.w. band, not possessed by v.h.f. are at present impossible to realize. Among the most valuable of these are:-

1. Generally reliable propagation over paths of $800-1,000$ miles or more especially after darkness, providing an often excellent service for listeners outside the country of origin.
2. Relatively small effect of unfavourable geographical features on propagation.
3. Suitability for reception in moving vehicles.
4. Relative simplicity of circuitry and aerial required for reception.

In addition to these features, it is perhaps not generally recognized that very much better audio quality is available even with the present 9 kHz channel spacing than at present available in a situation where most transmitters use very high levels of modulation and automatic compression in efforts to blast their way through the background.

The following factors might be considered in the reorganization of the l.f. and m.f. bands:

1. In highly populated countries with v.h.f. services, only a small number of highpower stations, situated near the centres of the populations they serve, would be necessary in the l.f. and m.f. bands. The services of these stations could be improved in isolated areas of high population if desired by synchronized medium-power stations at the h.f. end of the m.f. band.
2. These l:f. and m.f. services offer overwhelming advantages in: (a) large areas of low population where stable but low signal strength is adequate; (b) mountainous areas; and (c) less developed countries where v.h.f. has not yet spread widely.

Consideration of the numbers of transmitters required to provide two and often three separate networks for each country show that there are adequate channels in the bands concerned given an acceptable amount of sharing by geographically distant stations.

Even without v.h.f., which of course would continue to develop alongside the new services in most areas, reorganization such as outlined would certainly provide a better service for most countries and with a smaller number of stations because of decreased interference problems.
J. G. Silcock

Totnes,

S. Devon.

British-American Business Methods

MAY an American, who is as reluctant to admit an imperfection of the United States, as Mr. Ness, in his letter printed in the February issue, is loath "to be able to paint
the U.S.A. in a better light", remark that it was not the practice at least until late 1965 for the American mail-order houses to pay postage on parts ordered. In light of the ever rising mailing fees in the United States, it is most doubtful that this since has been changed.
Perhaps Mr. Ness was the recipient of the generosity of an American firm that wished to be particularly kind to an Englishman! If this indeed be the case, might not Mr. Ness paint with a less grudging brush?

Ronald Klett
Loerrach,
W. Germany.

"Semiconductor Type Numbering"

IN the January edition of Wireless World, the article "Semiconductor Type Numbering" by Mr. T. D. Towers contained references to sources of information on semiconductor outlines.

I would like to point out that there is a British Standard on the outlines and dimensions of semiconductor devices (BS.3934) published in 1965, which Mr. Towers did not unfortunately mention. This standard includes outlines agreed by all the principal interested trade associations, the Post Office, and the Services, as well as those agreed by VASCA and mentioned in the article.
The scope of this Standard has been further increased by the recent publication of an addendum (No. 1: 1967).

Paul Spink
British Standards Institution, London, W'. 1.

Home-constructed Colour Receiver

YOU may be interested in the accompanying photograph of my home-constructed colour television receiver based on a Mullard delayline PAL circuit. It employs 15 valves, 26 transistors, 45 diodes and an R.C.A. $25-\mathrm{in}$. tube. The only sections not home-made are the u.h.f. tuner and the sound and vision i.f. strip from a monochrome set. Plessey scanning and convergence units, line output transformer and voltage multiplier unit are

Mr. Berney's colour television set

used. With a 21 -element Belling \& Lee aerial, mast-head amplifier and two other transistor boosters the receiver is giving good results 54 miles from the Wenvoe transmitter which radiates on Channel 51 .
P. Berney

Malmesbury, Wilts.

"Demonstrating Rectifier Action"

IN my article "Demonstrating rectifier action in slow motion" (February 1968) two words were omitted from the fourth paragraph, which may cause some confusion. The third sentence should read:-"Eventually the circuit will reach a state of equilibrium where in each cycle the charge flowing into C_{1} through D_{1} is equal to that flowing out of C_{1} through R_{1} ".
Readers may be interested in another application of the circuit. In stage three, after the steady-state has been reached, switch off the oscillator and observe that it takes some considerable time for the 2000 $\mu \mathrm{F}$ capacitor to discharge through R_{1}. Now switch on the oscillator and set the output control of the oscillator to give, say, a peak value of 0.5 V . Wait for the steady-state to be reached. Now adjust the output control of the oscillator, above and below the 0.5 V setting, making the adjustment very slowly: the mean value of current through R_{1} should be seen to vary in sympathy with the peak value shown on the voltmeter V_{1}. If the rate of adjustment is too high, it can be seen that the capacitor cannot discharge rapidly enough to enable the mean current through R_{1} to follow the variation of the peak voltage shown on V_{1}, when the peak value is decreasing. This illustrates "negative peak clipping" in detector circuits when a modulated wave is being rectified.

Thomas Palmer
Kew, Surrey.

Semi-stabilized D.C. Supply

MR. G. W. SHORT goes astray in his philosophy as expressed in his letter in the February issue. The Darlington compound pair, $T r_{2}$ and $T r_{3}$, will compare quite effectively the output voltage at the emitter of Tr_{3} with the secondary reference voltage at the base of Tr_{2} and apply correction for a fall (say) in output voltage by increasing the current supplied to load. The "dead reckoning" part of the circuit compensates for the imperfections left by this very simple and rather low-gain closed-loop stabilizer.

The performance of the closed-loop part of the stabilizer will be improved if the effec tive internal gain is increased. This can be done at little or no expense by using instead of a Darlington pair the "enhanced" emitterfollower arrangement, Fig. (a). Briefly the advantage is that the error voltage is now only the $\triangle V_{B E}$ required by $T r_{2}$ instead of the sum of the voltages required by Tr_{2} and Tr_{3}. Further improvement could be had by using a triple, Fig. (b). This gives increased internal

(a)

(b)

Mr. Good's suggested improvements
gain because a smaller fractional change in I_{c} is needed in Tr_{2} for a given change in load current.

The advantage of improving the closedloop part of the stabilizer should be that the dead-reckoning part will have less work to do, and so will need less accurate adjustment.

In Mr. Short's revised circuit the currentsensing resistors for overload protection are placed between the secondary reference voltage (across C_{1}) and the load voltage (across C_{2}). It seems likely, therefore, that the deadreckoning action effected by R_{4} will have to do more work in compensating for voltage drop across R_{10} and R_{11} than in compensating for non-infinite gain in $\operatorname{Tr}_{2}, \operatorname{Tr}_{3}$. It would probably be better, therefore, to put R_{10} and R_{11} in the position of the lamp in Mr. Short's original circuit (W.W. October 1967, p.482) and arrange the associated transistor to shut down the voltage across D_{1} and R_{4} when overload occurs.
E. F. GOOD

Malvern,

Worcs.

I SHOULD like to suggest an alternative current-limiting circuit for Mr. Short's "semistabilized" d.c. supply (October 1967, p. 482 and February 1968, p. 691).

The current-sensing resistor is placed in series with the collector supply of Tr_{2} and Tr_{3}, and a small junction diode, D_{3}, is connected from the lower end of this resistor to the emitter of $T r_{1}$. The diode is normally reverse-biased, but conducts when the p.d. across R_{4} and the sensing resistor exceeds that across R_{t}. When this happens, the voltage on $T r_{1}$ emitter reduces, causing a reduction in collector current and hence a fall in output voltage. The load current is therefore limited

to that value which will produce this p.d. across R_{4} and the sensing resistor.

The value of the sensing resistor is given approximately by the Zener voltage divided by the required current limit. Values obtained empirically were 25 ohms for a useful limit of 300 mA and 12.5 ohms for a useful limit of 600 mA .

A worthwhile precaution when using this method of current-limiting is the inclusion of another diode, D_{4}, connected as shown. In the event of a short circuit suddenly applied to the output terminals, there will be a slight delay in the operation of the limiting circuit, due to the charge on C_{1}, which has to leak away before the output can fall to zero. The extra diode prevents reverse-biasing of $T r_{1}$ base-emitter junction. Alternatively, reversebiasing may be allowed to occur, and any consequent Zener current may be limited by a resistor in the base lead of $T r_{1}$.
Mr. Short's circuit has the advantage of a slightly faster limiting action at higher output voltage settings (when the slider of R_{2} is at the top end) due to the additional discharge path for C_{1} provided by the transistor.
K. R. Smith

Kingston College of
Further Education,
Kingston,
Surrey.

IT is gratifying to see so many ideas for improving the performance of my simple stabilizer, and without over-complicating the circuitry.
Mr. Good is, of course, quite right; I should have made it clear, when referring to "dead reckoning", that the part of the circuit involved here is the load-current compensating system, not the compound emitterfollower, which does indeed compare the secondary reference voltage with the output voltage.

In an emitter-follower circuit, the output voltage is the input voltage (the secondary reference voltage in the present case) less the base-emitter voltage drop. (In a Darlington pair, the sum of the two base-emitter drops.) These $V_{B E}$ drops vary with load current, spoiling the regulation. In a high-current stabilizer, with an output of an ampere or more, the V_{BE} variation from no load to full load can easily be as much as 1 V . Hence the need for load-current compensation. My simple method is essentially an attempt to compensate a non-linear effect by a linear one and so cannot do more than achieve a good compromise. It is conceivable that by involving a diode in the determination of the compensation a more accurate form of dead reckoning may be obtained. However, now that Mr. Good has shown how one of the V_{BE} variations may be removed from the scene of action and the loop gain increased the simple resistance method should be good enough for most purposes.
Mr. Smith's neat and economical currentlimiting arrangement takes care of Mr. Good's other point by putting the currentsensing resistance in the positive line out of harm's way.
G. W. SHORT Croydon.

Microvolt-Nanoammeter

A RECENT letter from a reader has brought to light an error in the components list of my microvolt-nanoammeter article, which appeared in the May 1967 issue of Wireless World. The mistake is mine, and I apologize for any inconvenience it may have caused. In the list, R_{20} should be given as 4.7 kilohms, not 10 kilohms.
D. BOLLEN

Devon.

Model Motor Speed Control

IN his article entitled "Speed Control for D.C. Model Motors" (September issue) Mr. Butterworth uses a fuse for short-circuit protection. As this fuse is expected to rupture at each overload, and as the controller might be used by a child, it is foreseeable that replacing fuses could become expensive, if not just inconvenient.

For these reasons I devised a circuit to provide automatic overload protection and, with a little elaboration, visible indication of the overload. In the circuit shown here, when

Mr. Hubbard's overload protection circuit
the maximum current is reached the potential developed across R_{3} (in Mr. Butterworth's circuit) causes the OC71 and the Zener diode to conduct. In turn, the OA81 conducts and via $T r_{3}$ and $T r_{4}$ the drive to the bridge circuit is reduced. The factor which decides the maximum current is the Zener voltage of the diode. It would seem that a silicon transistor would be better for the lamp driver as it is more easily turned off and has low leakage. The transistor types are otherwise uncritical. The operation of the indicator drive circuit is too simple for words.
R. P. Hubbard

Guildford,
Surrey.

"Pin-board Construction"

IN case readers were puzzled by an unheralded reference to "terminal blocks" in the first paragraph of my article (February, p.699), it should perhaps be explained that the original text contained an earlier passage which described how, as a first attempt at making a breadboard type of construction for beginners, bits of "chocolate block" screwdown terminal strip were screwed to a wooden baseboard. This avoids the need for soldering, but it was soon abandoned because of its inflexibility: the straight lines of terminals on
the blocks force one to rearrange the circuit layout, which then moves further and further from any correspondence with the circuit diagram. This psychological difficulty, in addition to the physical limitations mentioned in the article, make it unsuitable for a beginner.

I do not yet know what is the ideal base material. Softwood has the advantage that pins can be inserted with the help of pliers, without hammering. (Special tools for pushing small carpentry pins or nails into wood can now be bought at do-it-yourself shops.) The main disadvantage of wood is its finite resistance, which can lead to mains hum in some types of circuit. Hardboard is cheaper, but unless the pins are inserted firmly they tend to work loose. (Particle board is even worse; soldering the pins melts the resin which binds the particles together.) What is needed is some uniform non-hygroscopic board soft enough to enable pins to be inserted without hammering but still able to hold them firmly. It should also be cheap! Perhaps some reader knows the answer.

There is an error in Fig. 5. The 22k resistor should not be connected to the negative rail. In constructing the receiver, the ME101 transistors should be placed upside down on the breadboard; this makes their leads conform to the theoretical diagram (Fig. 1). Incidentally, this transistor has now been renamed HK101.
G. W. SHORT

Croydon

Transistor is Twenty Years Old

TWENTY years ago the transistor was invented at Bell Telephone Laboratories, U.S.A. Wireless World reported the event in the October 1948 issue ("Amplifying Crystal' ${ }^{\prime}$, stating that John Bardeen, Walter Brattain and William Shockley had demonstrated that a small piece of germanium could be utilized to obtain power amplification of about 20 dB . In 1956, these three scientists were awarded a Nobel Prize for the discovery of the effect.

Not only is the transistor one of the great inventions of the twentieth century, but it has led to a host of advances in other scientific fields. For instance, zone refining, invented to purify transistor materials, has made available ultra-pure materials for all kinds of technical and scientific purposes. The increased interest in the properties of solids has led to other quantum electronic devices, such as lasers, light amplifiers and light modulators. The study of surface properties of materials, extremely important to transistor technology, has progressed to a point where active atoms can be detected in single layers in 1 p.p.m. concentrations.

At Bell Labs basic research on materials and on fundamental physical phenomena had been encouraged in the hope of obtaining new
knowledge that might be useful for better communications equipment. One promising field was research into semi-conductor materials. In 1940, a modest research effort was begun, but it was interrupted by the second world war. After the war, Bardeen, Brattain, and Shockley were among many scientists who turned to full-time work on semiconductor research.

Investigations were centred on the two simplest semiconductors, germanium and silicon. Experiments led to new theories. For example, Shockley proposed an idea for a semiconductor amplifier that would critically test a particular theory. The actual device proved to have far less amplification than had been predicted. Bardeen then suggested a revision of the theory that would explain why the device would not work and why previous experiments had not been accurately foretold by the older theory. In fresh experiments designed to test the new theory, Bardeen and Brattain discovered an entirely new physical phenomenon-the transistor effect.
The initial patent on the transistor was held by Brattain and Bardeen. The device described was a point-contact type, the transistor effect being produced by two pointed metal contacts on the surface of the germanium semiconductor material. When a small positive potential was applied to one of the contacts, holes flowed into the germanium surface, greatly increasing the flow of current from the germanium to the other point, which was negatively biased. Shockley patented the junction transistor in 1948.
Through the years, there were developed new types of junction transistors that performed better and were easier to construct. In the early 1950s work in the U.S.A. led to a commercial process for making germanium transistors by alloying techniques. Further impetus to the growing transistor industry was given in 1954 by the development of diffusion and oxide masking techniques for making $\mathrm{p}-\mathrm{n}$ junctions. The immediate product of this and the zone refining technique mentioned above was the diffused-base, high frequency transistor-a device that could be mass produced at low cost. In the same year, 1954, Texas was the first company to devise a method of making silicon transistors on a commercial scale.

Another important innovation, made by the Fairchild Semiconductor Company in 1960, was the planar geometry for the junction transistor, which was based on the earlier oxide masking and diffusion techniques. During the same year the epitaxial transistor was developed at Bell, further improving performance and lowering costs. Many other devices have been derived from the transistor, each having its special capabilities. Among them are devices for handling high power, generating microwaves, and detecting extremely weak signals at optical and microwave frequencies.

It was the basic transistor technology, of course, that led eventually to the development of integrated circuits and to their latest manifestation, large-scale integration. On page 6 of this issue there is a picture comparing the first transistor with a recent integrated circuit, and this shows just how far the technology has come in 20 years.

Letter from America

O^{\prime}NE of the most influential magazines catering for the American teenager is Seventeen and this magazine recently took a poll of the home entertainment habits of its readers. The results show that more than 12 million girls between the ages of 13 and 19 spend a quarter of their time listening to radio, TV, discs or tape. Not surprising perhaps-but here is a starting fact; no less than 22% own their own tape recorders-three times the national average! One reason is that tape recorders (and video systems too for that matter) are commonly used in the schools so children get used to them. As the editor of a trade journal put it, "Mother may be uninterested in the tape recorder-or even slighty afraid of it-but daughter has no such fear." These days tape recorders of one kind or another are used for all sorts of things but I must confess I would not have thought of sending in my tax returns on tape! But 450 business taxpayers did send their returns to Washington this way and it is perfectly legal! Let's hope there are no print-through problems!

ACCORDING to another poll-a national one -more than 35% of American homes have at least two television sets. Of course, one of the reasons is that the old faithful black-and-white set is relegated to the kitchen or children's room when the new colour set is installed. Incidentally, the last available figures indicate that 23% of all TV homes had colour sets. By the time this "Letter" appears in print the figure will be in the region of 30%, or a total of $16,000,000$. One of the problems of colour television is the possibility of X-ray radiation and this has caused a lot of controversy during the past year or so. The maximum safe figure generally accepted is 0.5 millirontgen per hour (mR / h). According to a recent report by a consumers' organization two of 12 different makes tested exceeded this figure when the a.c. mains input voltage was increased to 125 volts-which could be encountered in some circumstances. One set had twice the limit from the top and the other four times the limit from the back. Measurements were taken at a distance of 2 inches and it was pointed out that the radiation would decrease rapidly with distance and even at four times the stipulated maximum the radiation at 6 feet would be negligible. However, the offending sets ended up in the "not acceptable" class at the bottom of the page! The truth is, not enough is really known about the effects of radiation and the official position is a litule obscure at the present time. The Federal Government has a committee examining the current standards and at the same time another agency, the U.S. Public Health Service in conjunction with the Electronic Industries Association is also conducting an investigation. As a matter of interest, one Public Health test found that a shunt regulator valve in a GE television set could produce downward radiations. This was promply corrected by GE, but similar valves are
used by other manufacturers. If the above mentioned authorities come up with new official standards they will have to be applied to microwave ovens, klystrons, linear accelerators and laser equipment-all potentially more harmful than TV receivers. In my opinion, the programmes themselves-or, at least, some of them —are infinitely more harmful than possible X-ray radiation! But that is another story. . . . To be honest, American television can be extremely good in terms of programme content, presentation and sheer technical brilliance. But the bad programmes are almost unbelievable; they are banal, trivial, rubbishy to the nth degree. As one TV executive said "the purpose of TV is to sell", so I suppose the moronic offerings must do just that!

ONE of the most notable advances in magnetic tape recording is the invention of chromium oxide coated tapes by Du Pont of Wilmington, Delaware. These tapes, named Crolyn, use conventional Mylar polyester base with specially de-

Fig. '1. Picture recorded on an iron oxide tape.

Fig. 2. Improved picture from a chromium oxide tape.
veloped binders. Chromium dioxide is the only known ferromagnetic oxide and it has a much higher magnetic moment per unit than iron oxide so the signal output is higher for the same degree of resolution. Alternatively, the resolution is better for a given level of ourput. So in practice, slower operating speeds can be used without loss of signal quality and a greater bandwidth can be achieved at normal recording speeds. Spectacular increases in signal-to-noise ratios (up to 20 dB) are claimed. In video recorders the picture quality is really determined by the tape itself and the improvement with Crolyn is dramatic. A picture (Fig. 1) from an iron oxide tape played through a video recorder at half speed ($3 \frac{3}{4}$ i.p.s.) shows the effects of inadequate $h . f$. response and poor signal to noise. Fig. 2 shows a picture played through the same recorder at half speed using Crolyn. In the computer and instrumentation fields Crolyn can also offer worthwhile advantages such as better efficiency, improved linearity and so on. How about audio applications? Well, Du Pont say that the standard tape is not suitable for ordinary recorders and they have no immediate plans to market a modified type. On the other hand, there are firm reports of an agreement with Sony which could involve audio tape; moreover a small firm, Gauss Electrophysics, demonstrated a tape recorder using Crolyn at the Audio Engineering Society's show last October. Another significant advance comes from a Professor Meyers of Madison College who has invented a process for using both sides of the tape. This involves placing a ferrite material between the two sides to act as a barrier.
THE latest figures indicate that production of i.cs is going up by leaps and bounds. As an example, sales of digital i.cs have increased by 123% over last year's and prices have come tumbling down. Some months ago, Texas Instruments introduced a line of hybrid i.cs including a complete television f.m. sound system module equivalent to 30 components all packed in a unit smaller than a sixpence. Similar systems are now marketed by RCA, Motorola and others using different techniques and various kinds of package. Motorola have just introduced a range of miniature plastic transistors so small that 144 could fit on a $2 \frac{1}{2}$ inch printed circuit board. They are actually one-tenth the size of ordinary transistors and naturally they are ideal for hearing aids or possibly for preamplifiers that could be mounted in pickup arms or cartridges.

A NEW development by Intelectron called "neural hearing" may bring new hope to the deaf. What is neural hearing? As its name implies, it is a method of activating the nerves directly; in other words bypassing the ears. It works like this: a modulated r.f. generator is coupled to the head via electrodes so that the head becomes in effect the dielectric of a capacitor. Signals are picked up by the cochlea which converts electrical signals into mechanical ones. It is not certain just how it does this because it is a reversal of its normal function. However, the fact remains the signals are demodulated and the efficiency is quite high. The frequencies used are in the 30 to 100 kHz band. The device is the outcome of government pressure to evolve communication systems that will function under conditions of extreme ambient noise; i.e., in helicopters and tanks. Very little is known about the long-term effects on the nerves and much work has to be done before neural hearing moves out of the lab.
ANOTHER audio magazine, called $d B$, has just made its appearance here. The editor is Larry Zide, who was formerly associated with Audio, and he tells me that any British engineer who is professionally engaged in the audio field can have a free copy. The address is $d B$, Sagamore Publishing Co., Inc., 980 Old Country Road, Plainview, L.I., New York 11803, America.
G. W. Tillett

Time-Controlled Combination Lock

By J. F. C. Johnson, A.M.I.E.R.E., A.M.I.R.E.E.(Aust.)

Fig 1. A simplified circuit diagram illustrating the principle involved.

Fig 2. Complete circuit diagram. The relay would normally be employed to actuate a solenoid operated bolt.

J. F. C. Johnson attended an officers' electronic engineering course at the R.E.M.E. Training Centre, Arborfield, Berks, in 1956 after completing his studies in New Zealand. On his return in 1959 he served in various New Zealand Army technical appointments with the rank of captain. In 1965 he joined the staff of the Central Institute of Technology in Petone, North Island, where he is a tutor in radio technology. Mr. Johnson operates an amateur station with the call sign ZL2AMJ.

SEVERAL designs for electrically operated locks have already been published, all have used more than one switch and in some cases more than one relay. The design presented here requires one switch (triple-bank) resulting in only one knob being visible and accessible. The original model employed an eleven-position switch with the end stops removed allowing 360 degrees of rotation and a total of 12 possible positions. Only four of these are used for the actual switching, some being used more than once. The knob must be moved a total of eleven times before the relay controlling the lock will operate. To release the relay the knob is simply moved off this eleventh position and the complete operating sequence must then be repeated again if the relay is to be re-energized.

Not only must the switch be set to eleven different settings in the correct sequence but the timing of the switching is important. The switch must rest in each position for about four seconds before moving to the next. Any longer delay in switching and the relay will not operate. Faster switching and the relay will not operate. As there are 12 switch positions available, the number of combinations possible must reach astronomical figures. The possibility of its operation by those who do not know the combination seems remote indeed. The number of settings, the sequence, and the timing can all be adjusted to suit individual requirements, the model described here is only one of many possible variations.

A simplified diagram to explain the principle of operation is shown in Fig 1. If S_{1} is closed, C_{1} will charge to a voltage equal to the supply voltage in a time determined by the value of R_{1} and C_{1}. If S_{1} is released, C_{1} will retain its charge. Closing S_{2} will cause the charge on C_{1} to distribute between C_{1} and $C_{2} . C_{2}$ will charge to some voltage determined by the relative capacities of C_{1} and C_{2}, and the time taken to reach this voltage will be determined by the value of R_{2}. If S_{2} is now released, C_{2} will retain its charge. If S_{3} is now closed, C_{2} will discharge through the relay causing it to operate. Once the relay contacts close, the relay will hold in the operated position, the d.c. supply now being fed to the relay via the relay contact and S_{3}. The relay can be released by opening S_{3}. The practical lock is produced by making S_{1}, S_{2} and S_{3} separate banks on a wafer switch and by carefully choosing the supply voltage so that repeated operations of S_{1} and S_{2} are necessary to build up sufficient charge on C_{2} to operate the relay.

Fig 2. shows the complete practical circuit, only six of the twelve switch positions are shown in the interest of clarity. S_{1}, S_{2} and S_{3} are ganged together and form the only control. V is the supply voltage which is chosen to be about 1.5 times the minimum operating voltage of the relay. C_{1} is the first capacitor in the chain and it charges to full supply voltage when S_{1} is in position 3 . The time taken to reach full charge is approximately $5 C_{1} R_{1}$ or 3.5 seconds. Part of the charge on C_{1} is transferred to C_{2} (about half the supply voltage in a few seconds) when S_{1} is placed in position 4 . By repeating this complete operation immediately, the charge on C_{2} can be increased to three-quarters of the supply voltage. Neglect R_{3} for the moment.

If S_{2} is now put in position 2, part of the charge on C_{2} is transferred to C_{3} which charges to approximately three-eighths of the supply voltage. As this is insufficient to operate the relay, the entire sequence so far must be repeated, the charge on C_{3} being finally raised to about three-quarters of the supply voltage. Neglect R_{5} for the moment.

The final step is to switch S_{3} to position $5 . C_{3}$ now discharges through the relay which closes and is held closed by the hold-on contact.

Holographic Memory Process

THE idea that memory in humans and animals might function in a manner analogous to the storage of optical information on holograms was one of the subjects discussed at a Royal Society meeting on the logical analysis of cerebral functions held in London in February. In conventional photography there is a one-to-one correspondence between points on the object and grains on the plate. As a result, the object can be recalled by illuminating the plate in an arbitrary fashion, but loss of part of the plate results in complete loss of information about part of the object. In holography, on the other hand, the correspondence is many-to-many, so that each piece of the plate contains information about the appearance of the whole object, but this information can only be recovered by illuminating the plate in a very special way. It has already been suggested that certain types of composite stimulus may be memorized in a holographic rather than a photographic manner. Professor H. C. Lon-guet-Higgins pointed out that not only spatial but temporal patterns could be stored and retrieved in a many-to-many fashion -frequency analysis being a simple special case. If the memorization of temporal sequences did involve "holophonic" as opposed to "gramophonic" principles, then not only would some familiar perceptual phenomena be naturally explained, but those parts of the brain which held the memories in question should exhibit periodic behavioural properties, and these might be directly accessible to study by neurophysiologists.

Transducer for Cardiac Research

ORIGINALLY developed for measuring pressures on flight model wind tunnel tests by N.A.S.A., Washington, U.S.A., a diaphragm type capacitive transducer has been produced that shows promise of being extremely useful in cardiac research. The smallest of the transducer probes is less than 1.27 mm (0.05 inch) in diameter, can easily be introduced into an artery using a standard 17 gauge thin-wall hypodermic needle and then manoeuvred into the heart on the end of a thin flexible tube. Measurements can then be made inside the heart without disturbing
the blood flow. It is thought that it may be particularly useful in treating babies because of its small size. The transducers cells are made in several sizes; for instance, a cell 1.4 mm in diameter consists of a cell diaphragm 1.4 mm across and 0.0026 mm thick separated by an air gap of 0.005 mm from a film of platinum deposited on to a glass core. A central metal tube in the cell provides an electrical connection to the platinum film and allows the passage of reference air to the capacitor air space. This air reaches the device via a small diameter plastic tube contained in the centre of the interconnecting cable. The cell is linear within 1 per cent from 0 to $26.7 \mathrm{kN} / \mathrm{m}^{2}$ (200 mmHg). The electronic system connected to the transducer via the catheter consists of a capacitance bridge excited by a 100 kHz oscillator, a low noise amplifier and appropriate demodulator producing an analogue signal for a recorder or an oscilloscope. It is hoped to connect the transducer directly to a miniature radio transmitter so that the patient under observation can have complete freedom of movement.

Integrated Microwave Circuits

FOR operation at microwave frequencies, active semiconductor devices must have extremely small junctions, and a typical junction area would be of the order of $10-100$ $\mu \mathrm{m}^{2}$. Until recently junctions of this size could only be made by chemical etching or whisker contacting techniques (as in point-

contact diodes). Such methods, although providing suitable electrical characteristics, cannot, of course, be used in the manufacture of monolithic or hybrid integrated circuits. At an I.E.E. colloquium on microwave integrated circuits, C.A.P. Foxell of Associated Semiconductor Manufacturers, said that progress in planar technology had now advanced sufficiently to allow small enough active areas to be produced directly in the semiconductor. It was now possible to produce a large range of microwave devices in monolithic form or in chip form for hybrid circuits.

An example of A.S.M.'s experimental work on planar integrated microwave circuits, due to be shown at the forthcoming Physics Exhibition (Alexandra Palace, London, 11-14 March), is an X -band microwave receiver. The box shown in the photograph contains an r.f. front end using a Schottky diode balanced mixer driven by a Gunn-effect oscillator. It also contains a head amplifier for the $50-\mathrm{MHz}$ i.f. The waveguide circuit is constructed in microstrip lines, formed by $0.5-\mathrm{mm}$ wide gold film conductors on an insulating substrate 0.5 mm thick. The mixer and the oscillator, both gallium arsenide, are separate devices, and are bonded to the microstrip conductors in the manner of semiconductor chips in hybrid i.cs. The mixer is encapsulated in ceramic in li.d. (leadless inverted device) form, while the oscillator is in a standard diode package. (A.S.M. say that the two devices could be integrated on a single substrate measuring $27 \mathrm{~mm} \times 15 \mathrm{~mm}$.) The noise figure for the front end is approximately 9 dB .

Error Computation in Colour TV

THE addition of colour to television increases the number of signal parameters* that can go wrong and the number of subsystems in the television chain where they can go wrong. There are overall tolerances which must not be exceeded too often if colour picture quality is not to fall below a given subjective criterion.

Dr. R. D. A. Maurice (B.B.C. Research Department) has pointed out the advantages of using the mathematical process of convolution to obtain a meaningful and unambiguous value for the overall error that can occur in a parameter throughout the television chain. This is a matter of combining statistically the error probability distributions of the individual parts of the chain (and Maurice suggests the temporary use of rectangular, rather than Gaussian, distributions until television engineers are able to produce statistically valid performance figures for their equipments). The result can be used to produce a curve showing the cumulative probability of occurrence of overall errors from the whole television chain. From this it should be possible for a receiver manufacturer to decide, for example, whether a particular design of television set was a commercial proposition or not.
*For example, chrominance signal differential phase and
differential gain; chrominance-to-luminance amplitude differential gain; chrominance-to-luminance amplitude ratis; chrominance-to-luminance timing errors.

To release the relay move S_{3} off position 5. C_{3} has been charged to full supply voltage via the hold-on contacts and it now discharges via R_{4}. Without R_{5}, C_{3} would retain its charge and could operate the relay if S_{3} was moved back to position 5 without the switching sequence having to be followed.
R_{3} is added to discharge C_{2} to ensure that the switching sequence must be made allowing only four seconds on each switch position. Any longer delay and the charge on C_{2} cannot be built up to a high enough value to ensure eventual relay operation.

TABLE 1

Sequence No	Switch Position No.	Circuit action	Approx waiting time
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{array}$	$\left.\begin{array}{l} 3 \\ 4 \\ 3 \\ 3 \\ 4 \\ 2 \\ 3 \\ 4 \\ 3 \\ 3 \\ 4 \\ 2 \end{array}\right\}$	C_{1} charges C_{1} discharges. C_{2} charges C_{1} charges C_{1} discharges. C_{2} charges C_{1} discharges. C_{2} discharges. C_{3} charges A repeat of sequences 1 to 5 inclusive. $C_{1} \& C_{2}$ shorted. C_{3} discharges through relay. Relay operates.	4 Secs. 4 2 2 4 4 ". 2 2 \qquad \qquad
Total time required			32 Secs.

The complete sequence of events is shown in Table 1. Slight changes in sequence are possible (e.g. positions $3,4,2,3,4,2$, etc. instead of $3,4,3,4,2$, etc.) but from measurements taken it was found that these do not give such a fast charge build-up on C_{3} as the sequence quoted.

Moving the switch from position 2 to position 5 must be done in an anticlockwise direction otherwise C_{3} discharges via S_{3} position 1. Similar safeguards exist on other banks to prevent possible "round and round" switch operation from operating the relay. Note too that in position $2, C_{1}$ is completely discharged, ensuring that the full foursecond charging time is required on position 3.

When the lock is not in use, the only drain on the supply that can occur is when the switch is in position 3. The current flow is the leakage current of C_{1} which should be negligible. The supply voltage can be obtained from a battery or from mains supply via a transformer and a single diode rectifier. The supply voltage terminals should be connected to two inconspicuous "screws" or other accessible devices so that if the internal battery or the mains supply should fail, the lock can still be operated from an external source.

REFERENCES

1. A Combination Lock, V. J. Phillips. Wireless World, September 1962, P. 441.
2. Letters to the Editor, K. G. Harland. Wireless World, November 1962, P. 544. 3. The Electrolock, Murray E. Coultes. Popular Electronics, January 1966, P. 60 .
3. A Sequence-operated Lock, Gordon L. Anderson. Popular Electronics, January 1967, P. 73.

Literature Received

A 14-page handbook on time codes has been made available by the Marketing Dept., Timing and Special Products Group, Systron-Donner Corporation, 888 Galindo Street, Concord, California, 94520. Called "Handbook on Precision Time Code Generation, Synchronisation and Tape Search Systems", it describes the four principal areas of a time code system: the time code generation, time code synchronization, tape search and editing, and code formats. It illustrates various systems with block diagrams and gives complete pictorial description of eight different IRIG and NASA time codes.

W.W. 330 for further details

The Gastometer is an instrument for medical applications and is described in a leaflet received from Beaumaris Electronics Ltd., Beaumaris, Anglesey. The instrument is of value in the differential diagnosis of the origin of facial palsies. It can be used to recognize damage of the chorda tympani following operations on the internal auditory canal. Several other applications are also possible
W.W. 331 for further details

The biasing of field effect transistors for zero temperature coefficient is discussed in Ferranti application note No. 33 from Ferranti Led., Gem Mill, Chadderton, Oldham.
W.W. 332 for further details

A leaflet describing a range of loose-wound precision resistors is available from Alma Components Ltd., Park Road, Diss, Norfolk. The loose-winding technique allows the wire to expand and contract freely during heating and cooling, providing better long-term stability.
W.W. 333 for further details

Improved versions of the series BTR voltage stabilizers from Claude Lyons with lower distortion and higher stabilization accuracy without a price increase are described in a brochure which is now available. Claude Lyons Lid., Valley Works, Hoddesdon, Herts.
W.W. 334 for further details

Received from Wallis Hursant Electrotech Lid., Central Way, Feltham, Middlesex, a brochure describing their range of high voltage power supplies and e.h.t. voltmeters. Power supplies are available with outputs variable between 0 and 150 kV and meters with f.s.ds of up to 100 kV .
W.W. 335 for further details

Application note No. 32 from Ferranti describes a d.c. amplifier capable of providing 1 kW into a $10-\Omega$ load. The amplifier operates on the class D principle and has a power gain of approximately 54 dB . Ferranti, Gem Mill, Chadderton, Oldham.

W.W. 336 for further details

A solid state variable a.c. power controller is the subject of the Claude Lyons leaflet QA-15M. A brief technical description includes applications, construction, and specification. Claude Lyons Ltd., Valley Works, Hoddesdon, Herts.

W.W. 337 for further details

Simple Optical Experiments with Ferranti GP Series Laser includes a demonstration of Doppler shift using a Michelson interferometer, a demonstration of Fresnel diffraction patterns, and determination of wavelength using an engineer's rule. This 22-page handbook is, in fact, intended as a guide to simple experiments using a laser for the demonstration and explanation of optical principles and phenomena. The experiments will be of interest to teachers instructing classes in A level physics. Ferranti Lid., Kings Cross Road, Dundee.

w.W. 338 for further details

The Electronic Services Division of S.T.C., Edinburgh Way, Harlow, Essex, have produced a 230 -page "new stock lines supplement" to their 1966/67 catalogue.
W.W. 339 for further details

A two-page leaflet on sound control and associated systems has been published by Rank Audio Visual Ltd. It explains in detail the use of Rank sound control systems in schools, public halls, clubs, lecture theatres and hotels. Leaflet No. is Sfb (64), Rank Audio Visual Ltd., Woodger Road, Shepherd's Bush, London, W. 12.
W.W. 340 for further details

Micronotes for Sept./Oct. 1967, No. 3, Vol. 5, discusses the design of high-power microwave windows. Described colloquially as "poker chip" or "pill box" windows, they usually consist of a single thin disc of alumina, sapphire, beryllium oxide or quartz mounted in a short section of circular waveguide. Microwave Associates Inc., Burlington, Massachusetts.

W.W. $\mathbf{3 4 1}$ for further details

A data sheet on the Spectra-Physics (U.S.A.) 130C gas laser has been received from Claude Lyons Lid., Valley Works, Hoddesdon, Herts. It gives a full technical specification on this self-contained continuous-wave, heliumneon laser, which is intended for applications requiring a moderate amount of power (optical test and alignment polarity, demonstrations of coherent light properties).
W.W. 342 for further details

The R.C.A. Select-A-Lesson teaching machine is described in a brochure from R.C.A. Instructional Electronics. The publication entitled R.C.A Select-A-Lesson is available from R.C.A. International Marketing, S.A., 118 Rue du Rhone, Geneva, Switzerland.
W.W. 343 for further details

Duplexer devices from the English Electric Valve Co. Lid., Chelmsford, Essex, are described in a new booklet issued by them. S \& X band TR cells, protector cells, waveguide switches, TR limiters, TB cells and pre-TR cells are covered. Unusually the products are photographed against a scale grid background. A list of U.K. stockists and overseas agents is also given.
W.W. 344 for further details

World of Amateur Radio

Australis OSCARs

A TAPE recording of the telemetry information to be transmitted by the Australian amateur radio satellite AO-A has been received from Melbourne University by Mr. W'. Browning, G2AOX, who is looking after the European interests of the project organizers. In view of the complexity of the transmissions and the fact that the parameter is specified by the audio frequency of the signal, it is considered to be desirable that project collaborators should receive practice in resolving the information before the satellite is launched. To that end copies of the tape have been made available by the R.S.G.B. to national amateur radio societies in I.A.R.U. Region I who, in turn, are arranging for the tape to be copied locally and distributed to members.

Plans are being made to produce, later this year, a second Australian OSCAR, to be known as AO-B. This will carry a linear translator with an input in the 144 MHz band. Powered by solar cells the new satellite will operate for at least one year in either a low orbit (about 500 miles) or a near-stationary orbit (about 20,000 miles) depending on the type of launch-vehicle available at the time.
1.A.R.U. Region I Conference.-Proposals have been put forward by the Belgian national amateur radio society (U.B.A.) to hold the next triennial conference of the sociecies which, together, form I.A.R.U. Region I Division, at the Hote! Metropole, Brussels, during the period May 4th-10th, 1969.

Reciprocal Licensing Agreements have recently been signed by the United Kingdom with the Danish and Swedish administrations. Similar agreements have recendly been signed between Canada and Luxembourg and between the United States of America and Austria.
Moonbounce Activities.-The January 1968 issue of the V.E.R.O.N. (Netherlands) v.h.f. Bulletin (English edition) features the activities of and equipment used by most of the world's leading moonbounce experimenters. After a series of nearmisses the Australian amateur VK3ATN succeeded on December 20th, 1967 in once again effecting two-way contact via the moon with the Californian amateur K6MYC on 2 metres. Signals at both ends were 3 to 6 dB above the noise level in a 100 Hz bandwidth but were somewhat patchy.

Malta Beacon Station 9H1MB is operational 24 hours a day on 70.1 MHz . Reception reports will be welcomed by the Scientific Studies Committee, R.S.G.B., 28 Litle Russell Street, London, W.C.1.

The Canadian Amateur Radio Federation was formed recently in Winnipeg by delegates of provincial societies in Alberta, Manitoba and Ontario. The acting president is J. Rock (VE4UX) and the acting secretary/ureasurer is J. Cowprie (VE4CS).

The purpose of the new organization is "to promote the welfare of the Canadian radio amateur in the national field".
I.A.R.U. Region III.-Plans are being made to inaugurate a Region III Division of the International Amateur Radio Union at a meeting to be held in Sydney, Australia, during Easter this year. Organized by the New South Wales Division of the Wireless Institute of Australia the ultimate aim of the new organization will be to establish and maintain continuous liaison between societies in I.T.U. Region III with a view to presenting a united front at future I.T.U. Conferences and to provide a programme of assistance to developing countries. The immediate short-term aims of the Conference will be to establish an administrative and organization framework. National amateur radio societies throughout the world are being invited to appoint delegates to attend the Conference, as guests of the Federal Executive of W.1.A. who will provide accommodation and hospitality for the four-day period. All correspondence in connection with the Conference should be addressed to John Battrick (VK3OR), Federal Secretary, W.I.A., P.O. Box 365, Frankston, Victoria 3199, Australia.

Welcome to Belgium.-The annual assembly of U.B.A. (the Belgium National Amateur Radio Society) will be held at Gerval, an attractive town 15 miles south of Brussels, during the weekend May 11th $/ 12 \mathrm{th}$. The programme will include a Fox Hunting compection on 2 metres and a rally for mobile stations on 80 metres and 2 metres. U.B.A. invite amateurs from other countries to participate in the programme. Visitors will be able to obtain a mobile licence free of charge for the period May 1 st-31st, by applying not later than April 10th, to the Director of Radiocommunication, 42 Rue des Palais, Brussels 3, enclosing a photostat copy of the station licence. Further information, including details of hotel accommodation, can be obtained from Rene Vanmuysen (ON4VY), 81 rue J. Baus, Wezembeek-Oppem (Brabant).

Northern Radio Societies' Convention.-The Kent Suite at Belle Vue Gardens, Manchester, will again be the venue for the Annual Convention of the Northern Radio Societies' Association on Sunday, May 19th. The Association consists of radio societies drawn from the North of England, who will be exhibiting at the Convention, together with a number of commercial concerns. Further information can be obtained from R. M. Clarke (G8AYD), "Hillside", Quickedge Road, Mossley, Ashton-under-Lyne, Lancashire.
International Meeting in Germany.-In the past the German national amateur radio society (D.A.R.C.) has held a national meeting biennially. This year, for the first time, the meeting is to be
organized on international lines and is to be held in the West German town of Wolfsburg, near Hanover, during the Whitsuntide holiday (June $1 \mathrm{st}-3 \mathrm{rd}$).
QRA or GEOREF Locator System? -The location of the other man's station has, from the earliest days, been a matter of interest to amateurs although the question of the distance between stations becomes important only in certain contests where it is used as a points' "yardsuick". For many years v.h.f./u.h.f. contest enthusiasts have sought a simple device which will enable them to measure distances accurately. Such a device is the well-known QRA Locator, which although popular on the Continent has failed to attract full support in the United Kingdom. Now a new system, known as GEOREF, which has a military background, looks set fair to replace the QRA Locator system. Full details of the system have been sent to the v.h.f. managers of all European national amateur radio societies who will be asked to decide on the merits and demerits of the system, for amateur radio purposes, at the I.A.R.U. Region I Conference in 1969.

BERU Contest, the most popular contest in the R.S.G.B. Calendar, will commence at 00.01 on Saturday, March 9 th and end at 23.59 on Sunday, March 10 th . Competitors may use any band from 3.5 to 28 MHz and operation will be restricted to telegraphy. The contest is confined to R.S.G.B. members resident in the United Kingdom and British Commonwealth.

Faroes Activity.-Using several transmitters and a number of operators, the headquarters station (OY6FRA) of the Faroes amateur radio society (F.R.A.) made 1435 contacts and scored 410,000 points during the recent CQ World Wide DX Contest. The Society's v.h.f. beacon station (OY7VHF), now on the air continuously on $145.26 \mathrm{MHz} \pm 50 \mathrm{~Hz}$, has been heard in the Netherlands and Denmark but there have been no two-way contacts yet with the Faroes.
Equatorial Field Day.-Radio Society of East Africa held its first national field day event at Rumurati a few miles north of the Equator by courtesy of the Laikipia Country Club, but heavy rains (3.1 inches in one hour!) made travelling to the site difficult. The station operated with the special call 5 Z4RS and although several hundreds of contacts were established better results would have been achieved if the weather had been more favourable.
Polish Amateur on 6 Metres.-Eng. Wiejlaw Wysocki, SP2DX, has received permission from the Polish telecommunication authorities to transmit in the band $50-54 \mathrm{MHz}$, a band not normally available to amateurs in Europe. The permission is valid until the end of 1968.
"The FIRAC Bulletin".-The Federation Internationale des Radio Amateurs Cheminots has published the first issue of what promises to become a regular bulletin for the rapidly increasing number of radio amateurs who are directly or indirectly associated with the railways. An international call book is in course of preparation. British representative (Mr. R. Hooper, Station Masters' House, Tavistock North Station, Devon) will be pleased to hear from interested readers.

Zaragoza Convention.-An International Amateur Radio Convention is to be held in Zaragoza during the Spanish Spring Festival (May 22nd-26th) to which amateurs from all parts of the world are invited. An extensive programme of visits, business meetings, lectures and social functions has been arranged by the organizing committee (Delegation U.R.E., Apartment 86, Zaragoza) from whom full details can be obtained. Enrolments will be accepted up to April 15th.

Electronics in Typesetting

Photo-composing machines used for Wireless World

by R. F. Southall, B.A.(Cantab.)

Abstract

As well as having a new format, Wireless World is now being printed by a more modern process called offset lithography. The author describes the electronic system used with this process for controlling the photo-typesetting machines that form and assemble the characters in the text you are reading.

THE increasing demand for good-quality print, and particularly for good-quality print in colour, has led to the development and to the now widespread use of the printing process known as offset lithography. This process, with its requirement that the material to be printed be presented to the maker of the printing plates as a photographic negative or positive, has led to the development of machines which photograph the letters of text directly on to film and eliminate the slow and complicated process of casting the letters in metal, proofing them and photographing the proofs. These machines are called photo-typesetters, photo-composing machines or film-setters.

The photo-typesetters on which Wireless World is from now on to be set come from the Photon-Lumitype family of machines, the first member of which was developed in America between 1946 and 1954 by two Frenchmen, Louis Moyroud and R. A.

Higonnet. Wireless World will be set on two machines of the family: the Model 540, which works at eight operations a second and is electromechanical, doing its calculations with relays; and the Model 713, much faster, which photographs about 30 characters a second and whose calculation and control circuits are transistorized.

If photo-typesetuing machines are to be economical in use they must be very productive (since they are expensive in first cost) and they must offer a wide choice of characters (so that jobs of different kinds may be run successively without the machines having to be stopped to change the character "matrices" which carry the characters in the manner of stencils). All the machines in productive use today (with the exception of one special-purpose machine which stores its characters in digital form in a magnetic core store) use character matrices produced by photographic processes, carrying clear images on an opaque ground. The distinguishing feature of the Photon-Lumitype machines we are discussing is that the matrices they use are in continuous motion, and the letters on them are illuminated for photography by a xenon flash tube. The duration of the flash from the tubes used is less than three microseconds, and the flash starts and stops with sufficient abruptness to give sharp character images in spite of the fairly

The photographic unit of the Lumitype 540. At the upper left are three of the eight solenoids of the variable escapement; below them and to the right is the prism carriage. To the right of this are the lens turret and the matrix disc. The film magazine is not in place in this picture.

high linear speed of the matrix (the matrix in the 540 machine is a disc about nine inches in diameter rotating at $8 \mathrm{rev} / \mathrm{sec}$; the matrix in the 713 is a drum about eight inches in diameter rotating at $30 \mathrm{rev} / \mathrm{sec}$). The 540 disc carries eight circles of 180 characters each, and all of these can be reproduced, by means of magnifying lenses mounted in a turret, in any of twelve sizes. The drum used on the 713 carries eight rows of 96 characters each, which can be reproduced in any of eight sizes. Thus the Model 540 can produce a total of 17,280 different characters (1,440 characters $\times 12$ sizes) and the Model 713 a total of 6,144 (768 characters $\times 8$ sizes).

The 540 disc rotates in the vertical plane, with the flash tube and its condenser optics on one side of the disc and the rest of the optical system on the other; the 713 drum has two flash tubes inside it, each of which illuminates four rows of characters, and there is an arrangement of half-silvered mirrors and a vertically moving collimating lens which presents the correct row of characters to the optical system for photography.
Printers have been very well served almost since the invention of their craft by the people who designed and cast their types for them. The factors in the design of a typeface which make the difference between effortless legibility and eye-straining indecipherability are entirely unappreciated by nearly all readers: chief among them are the qualities which the typographer calls colour and rhythm.

In reading, the eye travels along the line not steadily from word to word but in jumps between "fixations", where it momentarily rests. To be easy to read, a line of type, no matter what the sequence of the letters in it, must present to the reader's eye the impression of an even line of grey; if there are dark spots or patches in the line the eye will tend to fixate on them at the expense of the rest of the line. To be easy to read also, the typeface must be designed so that the reader's eye is

[^9]

The matrix disc of the Lumitype 540 in position in the photographic unit. The cylindrical object overlapping the left-hand edge of the disc is the housing for the photocell which generates impulses from the slits at the periphery of the disc; these impulses trigger the firing of the flash and ensure exact lateral positioning of the characters. The arrangement directly beneath the boss of the disc is a window which limits the area of the disc seen by the optical system. In the foreground is part of the lens turret.
carried from fixation to fixation forward along the line; in crude terms, it must be obvious that the type in which the line is composed is designed to be read from left to right. At least since the time of the early Venetian printers these qualities have been so much a part of the design of most text typefaces that both printers and readers have tended to take them for granted. It was not until the development of composing machines, and particularly of photo-composition (the first entirely new method of producing type-matter since Gutenberg) that it was realized by anybody other than the minute community of typeface designers and punch-cutters* what enormous technical demands the production of well-composed type makes on the producer.

The principal problem in producing lines of type of an even colour is keeping the "weight" (broadly speaking, the thickness of line) of each character the same as the designer intended; and the principal problem in retaining the designed rhythm of a typeface is maintaining the designed intercharacter spacing. This is because both the colour and the rhythm of the line are strongly affected by the relation between the white spaces inside the character shapes and those outside, and this relation is affected in turn both by the thickness of the lines making up the character and by the inter-character spacing.

In photo-composing terms, and generally speaking, the weight of the characters in a line will be consistent if the intensity of the exposing light-source remains constant. This is not too difficult (though not entirely

[^10]simple) to achieve with electronic flash tubes, though flash variations causing density variations in the exposed parts of the film which are almost too small to measure may, with certain typefaces, have a most marked effect on the look of the end-product. It is the extraordinary high standards required in the vertical and lateral positioning of characters (standards to which, it must be said, printers have been educated by the superb performance of the best hot-metal composing machines) which are largely responsible for making the design of photo-typesetting machines both difficult and interesting. In a line of sans serif capital "I"s set close together, variations in inter-character spacing of the order of $10^{-3} \mathrm{in}$. are quite easily perceptible to the naked eye (which picks up the small alterations in the colour of the line). The clean appearance of a film of photo-typeset characters, free from the interfering effects of inking and ink squash which are present in even the best proofs from metal type, makes it necessary to achieve and maintain accuracies of positioning of this order, or better, during the whole of the time the machine is operating. Doing this with a moving matrix and other moving parts at repetition frequencies of up to 40 per second is no small achievement.
In most photo-typesetting systems the widths of characters are expressed on a "unit system" in which the body size of the type-which would be its depth from front to back if it were cast in metal-is divided into 18 "relative units" ("relative" because they change in absolute size with changes in the body size of the type). The basic unit of
the system is one-eighteenth of one printer's point ($7.685 \times 10^{-4} \mathrm{in}$. approximately) and the actual width of a character is found by multuplying its width in relative units by the body size and by the basic unit.

The Lumitype 540 control unit does its calculations in "machine units" of two basic units, since one basic unit is too small a distance for an arrangement of friction clutches and differential gears to move reproducibly. The width of each character in machine units is calculated by the 540 keyboard and is punched into a paper tape in a "frame" following the character identity code. This punched paper tape is used to actuate the control unit of the machine. (In the 540 system each character is represented by a group of three eightchannel code "frames".) At the end of each line of text the 540 keyboard also punches into the tape the "deficit" (the difference between the totalled widths of the characters and spaces in the line and the line length set up on the keyboard) and the number of inter-word spaces in the line. The machine control unit divides the one by the other and adjusts the width of each inter-word space to bring the length of the photographed line to the length set up on the keyboard-the process known as justification which ensures that the column of type has an even righthand edge. The fact that the keyboard and control unit of the 540 do all their calculations in basic units means that the operator can mix different sizes of type in the line without upsetting the justification: this is a great help in setting complicated copy.

The Lumitype 540 keyboard. In the 540 system this keyboard carries out the part of the justifying cycle which involves calculating the deficit in the line and counting the inter-word spaces. The banks of keys to right and left of the typewriter allow the operator to select typeface, size. inter-line spacing and line length.

Photographic unit of the Photon 713 machine. On the right is the matrix drum, with, leading down into it, the connections to the two flash tubes. The light-coloured oval on the extreme right is part of the magnetic pick-up for the sonic wheel on the matrix drum. Behind it is a printed circuit card carrying the character identity pulse amplifier and shaper. To the left of the matrix drum are the typeface row selection optics with their actuating solenoids, the lens turret, and the film magazine. On the extreme left is the film feed stepping motor.

The characters are imaged on the sensitive material (which may be film or paper) by a travelling lens and prism; these move along the optical axis of the machine and place the letters side by side across the film as they are flashed. The 540 reads the tape punched by its keyboard "backwards", that is, from the end to the beginning of the line, so that a character's width is read before its identity, and the first codes of a line that are read are the end-of-line group which allow the control unit to set up the value of the interword space for that line. Before each letter is photographed, the travelling prism moves by a distance equal to the width of the letter: this is achieved by the "variable escapement", an arrangement of differential gears and a rack and pinion actuated by relays set up by the codes in the tape frame containing the character's width. The variable escape-
ment is a mechanism of very high precision, but its maximum rate of operation is limited by the mass of its moving parts to $8-10$ operations a second. For the much higher repetition rates achieved by the Model 713 a quite different system of character positioning is necessary.

The 713 control unit reads its tape in the same sense as it is written; that is, from the beginning of the line. The tape is punched (or, if it is magnetic tape, written) in Teletypesetter ${ }^{\dagger}$ or TTS ${ }^{\dagger}$ code; this is a simple code, long used for the remote control of hot-metal line-casting machines, in which all the characters and certain functions of the machine are indicated by single 6 -channel code frames. The tape does not contain any width information, so the 713 must store for

[^11]Fig. 1. Simplified schematic of the electronic flash timing system in the Photon 713 machine.

itself the widths of all the characters on its matrix drum. It does this in part of the magnetic core memory in its control unit. Into another part of this memory each line of data is loaded as it is read from the tape. While the line is being read, a justification process similar in principle to that performed in the 540 control unit is carried out.

Instead of moving the prism carriage for every character photographed, the 713 moves it in steps of 48 relative units (so that the actual length of the step varies with the size of the type being photographed). The problem of carriage bounce is surmounted by slowing the carriage down as it reaches the end of its step and by inhibiting the flashing of characters for about 65 ms after the end of each step to give the carriage ume to settle down.

Since the average width of a character in a normal typeface is about eight relative units, six or so characters have to be flashed within each carriage step, and since the successive characters in a step are generally not of equal widths it is not sufficient simply to position them uniformly across the width of the step. However, the matrix drum rotates at a constant speed and the characters are equally spaced around it, so that if the correct instant is chosen to fire the flash tube the character can be correctly positioned within the carriage step.

Associated with each group of eight characters (one above the other) on the matrix drum of the 713 is a timing slit, and on the base of the drum is a "sonic wheel" which, in conjunction with a magnet and a pick-up coil, provides a pulse at each complete revolution of the drum (Fig. 1). When a character is read out of the buffer part of the memory during the "expose" cycle of the machine, two look-up operations take place. One, from the width tables stored in the lution of the drum (Fig. 1). When a character is read out of the buffer part of the 'all its calculations in half relative units). This width information is transferred into an accumulator which adds up the widths of all the characters and spaces in the line. The excess of the accumulator content over a multiple of 96 half-units is transferred to what is called the " M " register. The number of multiples of 96 half-units already in the accumulator is equal to the number of carriage steps that have already occurred in the line.

The other look-up operation gives, from the position table in the memory, the position of the character on the drum relative to the zero position defined by the pulse from the sonic wheel. This is transferred to the position register, the value in which is compared with the count of character identity pulses derived from the timing slits on the drum. When equality is reached, the drum is in the correct position to flash the character at the left-hand end (seen from the point of view of the character, which is in fact photographed inverted on the film) of the carriage step.
At this moment, pulses from a crystalcontrolled clock are gated out to count down the contents of the " M " register. The frequency of these pulses is such that during each one the image of the character moves a distance of half a relative unit on the film. When the contents of the " M " register reach zero the flash tube is fired and the character
exposed on the film; its position has been determined only by its width and the widths of the characters preceding it in the line, and is thus typographically correct.

This method of character positioning, which reduces as far as possible the intervention in the process of pieces of machinery which have to start and stop abruptly, is capable of much higher repetition rates than the escape-and-flash mechanism of the 540 . By restricting the character content of a 713 drum and repeating common characters on it so that they can be flashed more than once in each drum revolution, production speeds on normal text setting of greater than 10^{5} characters an hour can be reached.

The Photon-Lumitype family of moving matrix machines seem to have pushed the technique of direct photography on to film from a photographically prepared matrix as far as it will go in terms of speed consistent with the large repertoire of characters which printers demand, and with the excellent typographical quality which has always been the primary objective in the machines' development. What little is published on other organizations' current research efforts suggests that a great deal of work is being done on machines which use cathode-ray tube display devices; but it must be said that none of the machines of this sort, in production or announced, have yet achieved standards of typography that even approach those of the Photon-Lumitype family. It is only with good typography that true legibility, the transmission of the author's thoughts to the reader's mind without the obtrusion of the printed word itself, can be achieved.

Our Next Issue

THE April issue of Wireless World, which will be current during the London Audio Fair, will contain several features of interest to people concerned with sound reproduction: Microphone Survey: a tabular presentation of performance data of microphones available in the U.K., enabling comparisons to be made easily between the different types and makes. There will also be a technical review of recent developments in microphone design. Better Detection: an article pointing out that the detector in receivers doesn't get the attention it deserves, and presenting a new type of circuit using digital techniques and integrated circuits.
High-Quality Monitoring Loudspeaker: the second part of H. D. Harwood's article on the latest B.B.C. design is concerned with bass equalization, the cabinet, and the midrange and high-frequency units.

For constructors there will be a practical design for a Wide-Range R.F. Signal Generator. It covers the range 150 kHz to 120 MHz in six bands. Wireless World April issue will be on sale on Monday 18th March.

The South Africa-Europe Submarine cable

A NEW $3-\mathrm{MHz}$ cable is to be laid linking South Africa and Europe, a distance of some 6,000 nautical miles. This cable, which is of joint G.P.O./S.T.C. design, will start at Cape Town and will "land" at Ascension, Cape Verde and the Canary Islands where it will link with a recently laid cable to Cadiz on the Spanish mainland. It will carry 360 independent two-way telephone conversations simultaneously.

In all therefore, 720 channels are required 360 for each direction. This is achieved by using separate $1-\mathrm{MHz}$ wide bands of frequencies; 312-1428 kHz for one direction and 1848-2964 kHz in the other. Each band accommodates 360 channels 3 kHz wide. Groups of channels are assembled into blocks, each block being "stacked" side by side in the transmission spectra. This technique allows a particular block of channels to be selected at some intermediate point for transmission down a branch cable.

Groups of sixteen channels form the starting point for the translation. A separate carrier is applied to each of the sixteen channels in each group so that by choosing the appropriate sideband resulting from each modulation process $22 \frac{1}{2}$ translated groups of 16 channels reappear each spanning the range $60-108$ kHz . The $22 \frac{1}{2}$ groups, so obtained, are again split up into $4 \frac{1}{2}$ further groups each of these undergoing a similar translation process to place them in the band $312-552 \mathrm{kHz}$. A further carrier is applied to bring the combined signal into either the $312-1428 \mathrm{kHz}$ for one direction of transmission or $1848-2964 \mathrm{kHz}$ for the reverse direction.

The cable to be used is being manufactured at Southampton by Standard Telephones and Cables Ltd. The centre core consists of 41 strands of high tensile steel wire twisted together, providing the cable's strength. Keyed to this is a tube of copper which forms the inner conductor. The overall diameter is maintained within very fine dimensional tolerances. High molecular weight polyt hene is used for the dielectric and is extruded round the inner core. The outer conductor is next formed by folding a copper tape round the cable in a tubing mill, the cable being completed by the application of a further plastic sheath. In shallow water the cable is protected by heavy armouring to prevent damage by ships' anchors, etc.

Every $9 \frac{1}{2}$ miles a repeater amplifier is inserted into the cable to compensate for cable losses. These amplifiers utilize a system of high- and low-pass filters to enable amplification to take place in both directions. Power
for all the repeater amplifiers is fed down the same coaxial cable as the signal and in practice power will be fed from both ends of the cable simultaneously, a positive voltage from one end and a negative one from the other. This prevents the repeater from having to withstand the very high voltages that would be necessary if the cable was fed from one end only. Two amplifiers are used in parallel each one being able to take over in the event of the other one failing. If a valve heater goes open circuit a fusible element shorts out the heater chain for that amplifier maintaining the d.c. path.

It is essential in such a system that the gain/ frequency curve of the amplifier must exactly match the loss/frequency characteristic of the preceding length of cable. If at some given frequency this was not so the resultant error would be amplified in each successive repeater rendering the system useless, the signal either falling into the noise or driving the amplifiers into overload. It is the task of the equalizer together with heavy frequency selective negative feedback to match these two characteristics. In addition to the individual equalizers fitted in the repeaters the cable lengths in between repeaters are carefully selected to provide optimum response. Even so with a system of this size and complexity errors are bound to creep in, so, after a certain number of repeaters, typically ten, a demountable equalizer is fitted to the cable. This is divided into two sections, a fixed section and a "variable" section. The cable section and repeaters between two demountable equalizers are known as an ocean block.

As an ocean block is being laid continuous measurements are carried out from the cable ship. These would be taken at several carefully selected spot frequencies in the pass band and include a detailed "fine grain" response measurement. These measurements, taken to very small fractions of a dB , have to be completed by the time about half the ocean block is laid. The response of the unlaid section being predicted in the light of results so far obtained. The circuit of the "variable" section of the equalizer is now designed, built and tested. It is fitted into the demount able repeater, the repeater is sealed and a cable joint made. All this is carried out under shipboard conditions to a very high order of accuracy. The repeaters and cable for this $3-\mathrm{MHz}$ equipment is manufactured under clinical conditions.

A $5-\mathrm{MHz}$ transistor repeater cable system is now in production and the G.P.O. is carrying out development work on a $12-\mathrm{MHz}$ transistor system that will carry in excess of 1000 channels.

Smaller D.C. Converters and Inverters

Operating Frequencies up to 50 MHz

by J. R. Nowicki,*M.I.E.R.E., M.I.E.E.E.

Abstract

With silicon planar transistors, it is possible to design d.c. converters and inverters that will operate at high switching frequencies-typically $\mathbf{2 0 - 5 0 ~ M H z - a l l o w i n g ~ s m a l l ~ a n d ~ l i g h t ~ o u t - ~}$ put transformers to be used. Supplies between 40 V and 400 V , or higher voltages for cathode-ray and other tubes, are feasible by this technique.

PORTABLE and mobile electronic equipment is usually required to operate from some readily available battery (shown on the left in Fig. 1) but the supply voltages which are needed for the equipment (on the right) may be from a few volts to several kilovolts. It is therefore necessary to use some device which will convert the available voltage to the required value. Such a device, in this case a d.c. converter or inverter, is shown in the middle.

The recent introduction of silicon planar transistors has made it possible to design d.c. inverters and converters with switching frequencies between 20 and 50 kHz . The high switching frequency greatly reduces the size and weight of the output transformer and therefore reduces the overall size and weight of the equipment. The main application is for d.c. supplies for airborne and mobile equipment where either 12 or 24 V batteries are available. The output voltages required may be anything between 40 and 400 V or even higher voltages, as, for example, in the d.c. supplies for cathode-ray tubes, geiger counters, and image converters.

TRANSISTOR RATING

Because of the inductive nature of the collector load, the collector voltage of the transistor during the switch off period may rise appreciably before the collector current has decreased much from its maximum value. Therefore, before commencing a design, it is necessary to consider the breakdown voltage of the transistor at high currents.

When the normal collector current collector voltage characteristics of the transistor shown in Fig. 2 are plotted beyond the published limits the curves shown in Fig. 3 are obtained. At higher collector voltages, around V_{X}, there is a rapid increase in the collector current due to avalanche multiplication in the collector depletion layer. The level at which the collector breakdown occurs depends on the base drive conditions. Under forward base tias conditions, the collector breakdown voltage becomes lower as the base current increases.

The reverse base bias very much improves the collector breakdown voltage at low collector currents. At high collector currents the breakdown voltages are very much the same. It may be seen from the curves that, although the reverse base bias very much improves the collector breakdown voltage, the collector voltage curves exhibit the negative resistance characteristics. This, combined with the very fast switching times obtained with silicon planar transistors, may lead to a secondary breakdown. Therefore power transistors which are intended for use with inductive loads require a high energy capability before secondary breakdown occurs in the transistor when operated with reverse bias.

[^12]

Fig. 1. Arrangement for operating equipment from batteries.

Fig. 2. Collector current vs. collector voltage characteristic of a transistor.

Fig. 3. Transistor characteristics of Fig. 2 taken beyond published limits.

Fig. 4 shows a typical circuit of a transistor working into an inductive load. Such a condition is found in an inverter circuit. The transistor is driven by a feedback voltage derived from the collector winding, which is equivalent to a low impedance generator. If the base bias is reversed suddenly when a high collector current is flowing, permanent damage may occur in the transistor. The damage usually appears in the form of a collector-to-emitter short-circuit.

If the path taken by the operating point of the transistor is considered as shown in Fig. 5, it will be seen that, for normal loading, most of the collector current will be due to normal loading, R_{L}, shown as the continuous line. The resistive load current will normally decrease to zero by the time the collector voltage rises to $V_{C C}$, and the voltage across the load will then be zero.

For low loading conditions, however, most of the collector current will be due to magnetizing current, so that the path taken by the operating point will be that as shown by the broken line. The problem is even worse under no-load or an open-circuit load condition, as shown in Fig. 6. The current through the inductance cannot change instantaneously and remains very nearly at its maximum value while the voltage rises to twice the supply value.

If the supply voltage is too high then the operating point during switch-off may intersect the breakdown characteristic before twice the supply value is reached.
The transistor becomes a low impedance, and $\mathrm{t}^{2} \cdot \mathrm{e}$ switch-off cime is governed mainly by the inductive time-constant. The transistor remains in a high dissipation region for a comparatively long tıme and may be destroyed. Therefore the choice of the supply-voltage is very important.

INVERTER AND CONVERTER TYPES

There are many possible circuits in which transistors may be used to convert voltages from one value to another. All transistor circuits, however, are either ringing choke or transformer coupled arrangements
D.C. converters are circuits which convert a d.c. voltage of one value to a d.c. voltage of a different value. Ringing-choke circuits, being followed by a rectified output, are all classed as d.c. converters. Transformer-coupled circuits, however, are basically d.c. to a.c. inverters. An a.c. output voltage, whether it is sine-wave or square-wave, is often used. The transformer-coupled circuits become converters only if they are followed by a stage of rectification before the outpit is applied to a load.
Ringing Choke Converter-The simplest of the transistor d.c. converter circuits is one using a ringing choke principle ${ }^{1}$ shown in Fig. 7. In this circuit the energy is stored in the transformer during the " on "period of the transistor and is then delivered to the output during the " off "period.

During the input stroke of the cycle the transistor is bottomed and a linearly rising current flows in the primary winding according to the expression $V_{C C}=L \frac{d i}{d t}$. The collector current rises until it reaches its maximum value of $h_{F R} I_{B}$. The transistor then comes out of bottoming and the collector voltage rises, lowering the primary voltage, thus producing a fall in the base current and switching the transistor off. At this point, the inductance of the transformer primary contains stored energy equal to $\frac{1}{2} L_{D} I_{C M}{ }^{2}$.

During the output stroke, when the transistor is cut off, the reverse voltage rises rapidly until the secondary voltage reaches the value V_{0}. This is the voltage developed across the capacitor C during the previous cycle of operation. At this point the diode D_{2} starts to conduct and delivers the stored energy to the capacitor C and the load. When the secondary current has decayed to zero, the reverse voltage developed across the base emitter junction disappears and the transistor switches on again.
Push-pull Transformer-Coupled Inverters-All push-pull inverters are basically transformer-coupled circuits. For high efficiency, square wave oscillating systems are used of which there are three well known configurations: (a) common base, (b) common emitter and (c) common collector. Since the commonemitter arrangement is most efficient and most commonly used, the discussion will be limited to various forms of this type of circuit. The basic principles, nevertheless apply to all three.

The conventional single-transformer d.c. inverter is shown in

Fig 4 Basic arrangement of transistor work ing into inductive load. as found in inverter circuit.

Fig. 5. Path of transistor operating point for normal and low loading.

Fig. 6. For a no-load condition the path of the operating point is shown by the right-hand curve.

Fig. 8. Conventional single-transformer d.c. inverter circuit.

Fig. 10. Collector current for (a) single saturating transformer circuit, (b) twotransformer circuit

Fig. 12. Voltage and current waveforms in the inverter with $C R$ timing.

Fig. 13. (a) Equivalent base circuit of Fig. 11, and (b) its simplified version.
(a)

Fig. 8². The transformer can either be of a non-saturable type, or of a saturable type. In the case of the non-saturable transformer circuit, a considerable variation of frequency with load will be experienced and the transformer size required to handle the same power will be three to four times as big as one using a saturable transformer. The circuit with single non-saturable transformer is therefore regarded as not suitable for practical purposes.

The inverter with a saturable transformer, although widely used, suffers from three main disadvantages: (a) the design is affected by spreads in transistor characteristics because the peak collector current is determined by the gain and the base-emitter voltage; (b) for a given power delivered to the load, the ratio of the peak current to the load current is high; and (c) the transformer uses large amounts of an expensive core material.

If frequency is not important or a d.c. output is required, some of the disadvantages may be overcome by operating at frequencies in the range of 20 to 50 kHz , for which silicon planar transistors are most suitable.

In this single-transformer circuit, the transformer performs two separate functions. First, it acts as the frequency control device and, by saturation, governs the drive to the bases of the transistors. Secondly, it acts as the output transformer and handles the power from the collector to the load.
Further improvements in operation can be obtained by using a two-transformer circuit ${ }^{3}$. The two functions then are separated and handled by separate transformers, each designed for its own purpose. This circuit is shown in Fig. 9. A small saturable transformer T_{1} is used to control the switching, and a larger output type of transformer, T_{2}, working linearly, is used to provide the correct voltage to the load R_{L}.
This circuit is very much less dependent on the transistor characteristics and therefore will provide at least twice the power obtained with single-saturable transformer circuits. Provided that the transformer T_{2} is designed to reach only a small magnetizing current during the time determined by saturation of the transformer T_{1}, then the total collector current will be small even under no-load conditions.

The collector currents for the two circuits, for no-load and full-load conditions, are shown in Fig. 10.

It will be seen that in the case of a single saturable transformer circuit the peak collector current $I_{C M}$ depends on the drive conditions and is always $h_{F E} I_{B}$, whereas, in the case of the twotransformer circuits, the peak collector current, $I_{C M}$, depends on the actual load conditions.

These circuits are shown in their basic forms only. In order to make them oscillate it is necessary to provide sufficient forward bias to make the loop gain equal to or greater than one.
Although the two-transformer inverter circuit could be used at frequencies of 20 to 50 kHz , it is more suited for lower frequencies, below 5 kHz . To take full advantage of high frequencies a more elegant and more economical circuit is shown in Fig. 11.4 Here the saturable transformer of the previous circuit is replaced by a capacitor C which, in conjunction with one of the base starting resistors R_{1} or R_{3}, provides the required timing. The transformer T_{1} again is working linearly, so that the peak collector current is independent of the drive conditions and is small for no load.

The new circuit is probably one of the best arrangements known to date which can be operated at frequencies well above 50 kHz

Silicon planar transistors with fast switching times lend themselves to high-frequency inverter applications, These transistors, when used in the inverter circuit with $C R$ timing, provide one of the simplest and most economical arrangements.
With planar transistors, additional components are necessary to make the basic circuit of Fig. 11 work reliably. This, however, does not invalidate the above statement. The circuit will provide maximum output power using planar transistors, accepting their full production spreads when designed for operation with the same supply voltage, and at the same time be equally efficient.

The operation of the circuit is discussed next, and two practical examples are given.
Circuit Operation.-In the basic circuit shown in Fig. 11 it is assumed that transistor $T r_{1}$ is cut off and transistor $T r_{2}$ is on, and that the capacitor C is charged. The base current of the transistor $T r_{2}$, which is approximately equal to the discharging current of the capacitor C, will decrease exponentially until it will no longer support the collector load current. At this stage, the

Fig. 14. Circuit of 13 -watt fluorescent lamp inverter
collector current will start to fall, causing the polarities of the voltages developed across the transformer windings to reverse. This will switch transistor $T r_{1}$ rapidly on and the transistor $T r_{2}$ off. The timing is thus controlled by the exponential decrease of the base current. The voltage and current waveforms are shown in Fig. 12.
Transformer Design.-The transformer is designed around the value of the inductance required for each half of the primary winding for a given magnetizing current. The value of the inductance is given by

$$
\begin{equation*}
L=\frac{\left(V_{C C}-V_{C E S A T}\right) t_{p}}{I_{M}} \tag{1}
\end{equation*}
$$

where $V_{C C}$ is the supply voltage, $V_{C E\left(S_{A T}\right)}$ is the collector-toemitter saturation voltage, I_{M} is the peak magnetizing current, and t_{p} is the time of half a cycle.

To minimize losses, Ferroxcube cup cores are used. The cores offer higher values of inductance for a given number of turns than may be achieved with E-cores, resulting in lower copper loss and higher overall efficiency. Since the efficiency of the transformer depends on the value of the magnetizing current, the copper loss and the core loss, the transformer is designed using the thickest wire gauge possible and the lowest magnetizing current for minimum total loss.
The number of turns for each half of the primary winding is found from

$$
\begin{equation*}
N_{p}=\boldsymbol{x} \sqrt{ } L \quad \ldots \tag{2}
\end{equation*}
$$

where α is the number of turns for 1 mH for a given size of core, and L is the inductance in mH .

The number of turns needed for the secondary winding will
depend on the output voltage required, and can be found from

$$
\begin{equation*}
N_{s}=N_{p} \frac{V_{\text {out }}}{\left(V_{C C}-V_{C}\right)} \tag{3}
\end{equation*}
$$

It remains now to find the feedback voltage required for satisfactory operation and the number of turns for the feedback winding. The equations required for the design ${ }^{4}$ can be found with reference to the base equivalent circuit shown in Fig. 13, but first the minimum base current, I_{B}, required to support the peak collector current, $I_{\text {CN }}$, is

$$
\begin{align*}
& I_{B}=\frac{I_{C A I}}{h_{F E}} \tag{4}\\
& I_{1}(\min)=I_{B}+\frac{I_{B} R_{0}+V_{0}}{R_{2}} \tag{5}
\end{align*}
$$

If R_{1} is made equal to R_{2}, which is usually the case, then

$$
\begin{equation*}
V_{f}=\frac{1}{2} I_{1(p k)}+I_{1(\min)}\left[R_{2}+\frac{R_{2} R_{0}}{R_{2}+R_{0}}\right]+\frac{V_{0} R_{2}}{R_{2}+R_{0}} \tag{8}
\end{equation*}
$$

and the number of turns for the feedback winding

$$
\begin{equation*}
N_{f}=N_{\mathcal{P}} \frac{V_{f}}{V_{C C}-V_{C E(S A T)}} \tag{9}
\end{equation*}
$$

The value of the timing capacitor, taking into account the exponential decay, is given by

$$
1
$$

$$
\begin{equation*}
C=- \tag{10}
\end{equation*}
$$

Circuit Modifications for Silicon Planar Transistors. There are, however, two basic limitations of silicon planar transistors. These are (i) a lower energy capability in the avalanche region and (ii) a lower base-emitter reverse voltage rating.

The energy dissipation in the avalanche will be dealt with first. It calls for the reduction of the energy available at the time of switch-off of the collector current, especially due to the leakage inductance of the transformer. This is brought about by designing a transformer with low voltage inductance achieved by (a) bifilar winding of the primaries, (b) using the highest possible frequency so that the inductance required for the primary for certain magnetizing currents is low, (c) reduction of the number of turns and the length of wire.

A compromise is necessary in choosing the value of the magnetizing current because it will affect the overall efficiency of the circuit. The minimum number of turns has already been assured by using Ferroxcube transformer cup cores.

It has been proved that the energy capability of planar transistors is higher under forward-bias than it is under reverse-bias conditions. The reverse-bias condition should therefore be avoided as the damage to a transistor in the low-resistance region is more

Fig. 15. Circuit of d.c. to d.c. converter capable of delivering 60 W of output power from a 24 V supply.

likely to occur when the base-emitter voltage is high. The reverse base-emitter voltage could be limited by a shunt diode placed across the base-emitter junction. The diode, however, would not eliminate the reverse base current. Series diodes are therefore used in each transistor base lead together with the shunt resistor to provide a path for leakage current.

It must be noted that diodes used for this purpose must be as fast as the transistors if they are to have any effect on the operation of the circuit. They must be fast recovery types.

Because of energy return to the supply due to inductive nature of the load, especially when the inverter is lightly loaded, it is necessary to decouple the supply by connecting a large value of electrolytic capacitor close to the transistors to avoid long lead lengths which introduce appreciable inductance at high frequencies. Because of the fast switching times, additional paper capacitors may be needed to bypass the high-frequency current.

Practical Circuits-The benefit of the planar transistors, apart from the small size and reduction of weight resulting from high frequency operation, is also realized in the elimination of audible noise.

Two circuits which illustrate these advantages are an inverter for fluorescent lamps shown in Fig. 14 and a d.c. to d.c. converter shown in Fig. 15.

The inverter circuit for 13W fluorescent lamps operates from a nominal 12 V battery. The output transformer, in addition to the secondary winding, has the two heater windings required for the lamp. A choke ballast L is used to limit the lamp current. The frequency of operation is approximately 25 kHz .

The d.c. to d.c. converter is capable of delivering 60 W of output power from a 24 V d.c. supply. The same comment applies to the rectifiers used for the bridge circuit; they must be a fast recovery type. The recovery time of the rectifiers must be approximately equal to the switching times of the transistors, otherwise the efficiency will be reduced and the operation of the circuit may be affected.

TRANSFORMER DETAILS

Fluorescent Lamp Inverter	
Core	Ferroxcube FX2242
Bobbin	DT180
Primary winding, N_{p}	$12+12$ turns, 23 s.w.g enan copper wire
Secondary winding, N_{s}	228 turns 32 s.w.g enamel copper wire
Feedback winding, N_{f}	10 turns 30 s.w.g enamel copper wire
Heater windings, N_{h}	9 turns each, 30 s.w.g enamel copper wire
Choke Core	Ferroxcube FX2240 with 0.09 mm gap
Bobbin	DT2179
Winding	164 turns enamel copper wire

60W D.C. to D.C. Converter

Core Ferroxcube FX2243.
Bobbin $\quad . . \quad$ DT2206
Primary winding, $\ddot{N}_{v} \quad \ldots \quad 12+12$ turns, 21 s.w.g. enamel copper wire
Secondary winding, $N_{s} \ldots 68$ turns, 28 s.w.g. enamel copper wire
Feedback winding, N_{f}. . 11 turns, 26 s.w.g. enamel copper wire

H.F. Predictions-March

Maximum usable frequency curves are based on a predicted value for the Ionospheric Index (IF2) of 130 . This is much lower than the corresponding period of the last cycle which reached a maximum of 208 in December 1958. Daytime peaks continue around 30 MHz but these will diminish over the next few months as summer conditions approach.

Although Sporadic-E may be evident on all routes between 10.00 and 18.00 G.M.T., it is unlikely to affect circuit operation.

The curves for the lowest usable frequencies were drawn by Cable \& Wireless Ltd. for reception in the U.K. of point-to-point telegraph circuits using several kilowatts of power and rhombic aerials. Curves for domestic reception of high-power broadcasts would be similar.

Public Address Exhibition

THE annual exhibition of public address equipment organized by the Association of Public Address Engineers will again be held at the King's Head Hotel, Harrow, Middx., but will, this year, run for three days-March 12 th to 14 th. Some 40 exhibitors will be participating in the show which will be open daily from 10.00 to 18.30 . The theme is outdoor p.a. and there will be a "working display" of microphones and also a display of loudspeakers for outdoor use.

Admission will be by ticket obtainable free from the headquarters of the Association, 394 Northolt Rd, South Harrow, Middx.

Forthcoming Events

Further details are obtainable from the addresses in parenthesis

LONDON

Apr. 8 \& 9
Imperial College
Thick Film Technology
(I.E.R.E., 9 Bedford Sq., L.ondon W.C.1)

Apr. 18-21 Hotel Russell
Audio Festival \& Fair
(Rex Hassan, 42 Manchester Sq., London W.1)
Apr. 22-24 I.E.E. Savoy Pl
Interference Problems and Microwave Communications Systems
(I.E.E., Savov Pl., London, W.C.2)

May 13-18 Olympia
Instruments, Electronics and Automation Exhibition
(Industrial Exhibitions, 9 Argyll St., London W'.1)
May 14-16
I.E.E., Savoy P1

Automation for Productivity
(I.E.E., Savoy Pl., London W'.C.2)

May 20-25
Royal Lancaster Hote]
Communication-Satellite Earth Stations
(R.E.G. Back, P.O. Engineering Dept., WS2, 207 Old St., London E.C.1)

July 29-Aug. 2
Olympia
Ship's Gear International Exhibition
(Municipal and Industrial Exhibitions, 3 Clements Inn, London W.C. 2)
Sept. 9-12
Queen Mary College, E. 1
Elementary Particles
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Sept. 9-13
Grosvenor House Hotel
International Broadcasting Convention
(I.B.C., clo I.E.E., Savoy PI., London W.C.2)

Sept. 30-Oct. 2
Tropospheric Wave Progagation
(I.E.E., Savoy PI., London W.C. 2)

Oct. 2-S
R.S.G.B. Radio Communications Exhibition
(P. Thorogood, 6 Museum Hse., Museum Si., London W.C.2)

BELFAST

Apr. 1-3
Queen's University
Heavy Particle Collisions
(1.P.P.S., 47 Belgrave Sq., London S.W'1)

BIRMINGHAM
Sept. 16-20
The University
Machine Tool Design and Research Conference
(Dept. of Mechanical Engineer, The University, P.O. Box 363, Edgbaston, Birmingham 15)

BRIGHTON
Oct. 8-10
Hotel Metropole
National Electronics Packaging Conference \& Exhibition
(Gordon Savill Exhibitions, 21 Victoria Rd., Surbiton, Surrey)

CAMBRIDGE

Sept. 23-27
The University
Electronics Design
(I.E.E., Savoy I'l., London W'C.2)

CARDIFF

Apr. 18 \& 19
Cathays Park
Audio-Visual Aids Conference and Exhibition
(National Committee for Audio \& Visual Aids in Education, 33 Queen Anne St., London W.1)

DURHAM

Apr. $2 \& 3$
Semimetals and Narrow Gap Semiconductors
(I.P.P.S., 47 Belgrave Sq., London S.W'.1)

EDINBURGH

I.F.I.P. Data Processing Congress \& Exhibition
(I.F.I.P. Congress, 23 Dorest Sq., L.ondon N.W'.1)

FARNBOROUGH

Sept. $16-22$
Electronics and Air Show
R.A.E.

Electronics and Air Show
(S.B.A.C., 29 King St., St. James's, London S.W.1)

HARWELL

May 9 \& 10
A.E.R.E.

Low Energy Electron Diffraction
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

LOUGHBOROUGH

Apr. 16-19
University of Technology
Modular Education for Industry
(1.E.E.T.E. L.id., 26 Bloomsbury Sq., London W.C. 1)

MANCHESTER

Sept. 3-6
Inst. of Science and Technology
Solid State Devices
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Sept. 24-28
Belle Vue
Electronics, Instruments, Control and Components Exhibition
(Inst. of Electronics, 78 Shaw Rd., Rochdale, Lancs.)
Nov. 4-6
Hotel Piccadilly
Electronic Instruments Exhibition
(Industrial Exhibitions, 9 Argyll St., London W'.1)

NOTTINGHAM

Sept. 11-13 The University
Physical Aspects of Noise in Electronic Devices
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

OXFORD

Apr. 1-4 Playhouse Theatre
Properties and Metrology of Surfaces
(Inst. of Mechanical Engineers, I Birdcage Walk, London S.W.1)

SWANSEA

July 15-18
University College
Electrical Contact Phenomena
(I.P.P.S. 47 Belgrave Sq., London S.W.1)

WARWICK

Aug. 29-31 The University
AC Properties of Superconductors and their Applications
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

OVERSEAS

Apr. 1-6 Paris
Components Exhibition \& Colloquium also Electroacoustic Exhibition (Fédération Nationale des Industries Electroniques, 16 rue de Presles, Paris 15 e)
Apr. 9-11
Houston
Telemetering Conference
(R.H.D. Hardy, Serck Controls, Queensway, Leamington Spa, Warwick)

Apr. 22-24 Atlantic City
Frequency Control Symposium
(Mr. F. Timm, Electronic Components Lab., U.S. Army Electronics Cmnd, Fort Monmouth, N.J.)
May 8-10
Washington
Electronic Components Conference
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

May 14-17
Miami
Quantum Electronics Conference
(W.W. Rigrod, Bell Telephone Labs., Murray Hill, N.J.)

May 20-22
Detroit
International Microwave Symposium
(Dr. G. I. Haddad, Electrical Engineering Dept. University of Michigan, Ann Arbor, Michigan 48104)
June $10-14$
British Engineering Exhibition
(S. Black, London Chamber of Commerce, 69 Cannon St., London E.C.4)

June 12-14 Philadelphia
Conference on Communication
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

June 17-19 St. Louis
Microelectronics Symposium
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

June 20-22
Cleveland
Optimal Systems Planning
(Prof. T. J. Williams, Laboratory for Applied Industrial Control, Purdue University, Lafayette, Indiana 47907)

March Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned.

LONDON

4th. I.E.E.-Colloquium on "Pulsed code modulation" at 10.00 at Savoy P1., W.C.2.
Sth. I.E.E. \& I.E.R.E.-Colloquium on "Large scale integration" at 10.00 at Savoy P1., W.C.2.
6th. B.K.S.T.S.-"A new loudness analyser" by H. Blaiser at 19.30 at the Royal Overseas League, Park P1., St. James's St., S.W.1.
7th. Inst. Electronics.-"Reed switches and their applications" by B. F. Pamplin at 18.45 at the London School of Hygiene \& Tropical Medicine, Keppel St., W.C.1.

7th. R.T.S.-Discussion on "Cost versus quality in television receiver design" at 19.00 at the I.T.A., 70 Brompton Rd., S.W. 3.

8th. I.E.E.-"British contributions to telecommunication" by R. J. Halsey at 17.30 at Savoy P1., W.C.2.

11th. IMech.E. \& I.E.E.-Discussion on "Roll stabilisation and auto pilots in marine engineering application" at 18.00 at I Birdcage Walk, S.W.1.

12th. Radar \& Electronics Assoc.-"The influence of integrated circuits on equipment design" by K. H. Brinkman at 19.00 Mullard House, Torrington Pl., W.C. 1 .

12th. S.E.R.T.-"Colour television receiver de-sign-current and future trends" by P. Mothersole at 19.00 at the London School of Hygiene and Tropical Medicine, Keppel St., W.C.1.

14th. I.E.R.E.-"Engineers must manage or be managed" by H. R. Sykes at 18.00 at 9 Bedford Sq., W.C.1.

18th. I.E.E.-Colloquium on "Threshold extension techniques" at 10.00 at Savoy P1., W.C.2.

18th. I.E.R.E.-"Control: past, present and future" by Prof. H. H. Rosenbrock at 18.00 at the London School of Hygiene, Keppel St., W.C.1.

19th. I.E.E. \& I.Mech.E.-Colloquium on "Engineering aspects of satellite design" at 10.30 at Savoy P1., W.C.2.

19th. I.E.R.E.-"Integrated circuits for radio receivers" by W. D. Benson and B. Buckingham at 18.00 at the London School of Hygiene, Keppel St., W.C.I.

20th. I.E.E.- "Satellite communications" by W. J. Quill at 17.30 at Savoy P1., W.C.2.

21st. I.E.E.-Colloquium on "The role of the computer in device, circuit and equipment design" at 14.30 at Savoy P1, W.C.2.

22nd. R.T.S.-"Comparison of u.h.f. and v.h.f. coverage" by R. S. Sandell at 19.00 at the I.T.A., 70 Brompton Rd., S.W.3.

22nd. B.K.S.T.S.-"An electron-beam television film recorder" by John W. Overton at 19.30 at the Royal Overseas League, Park P1., St. James's St., S.W.1.

25th. I.E.E. \& I.Mech.E.-Discussion on "Fluidics and integrated circuits" at 17.30 at Savoy PI., W.C.2.
27th. I.E.E.-"Waves in semiconductors-possibilities for new solid state devices" by Prof. G. Kino at 17.30 at Savoy P1., W.C.2.

28th. I.E.E.-Discussion on "The engineer in society" at 17.30 at Savoy P1., W.C.2.

28th. I.E.R.E.-"Cost effectiveness and systems analysis in defence" by T. H. Kerr at 18.00 at 9 Bedford Sq, W.C.1.

BANGOR

11th. I.E.E.-"Training the electrical engineer" by Prof. Emrys Williams at 18.30 at the School of Engineering Science, Dean St.

BATH

20th. I.E.R.E. \& I.E.E.-"Microclectronics" by Dr. S. S. Forte at 19.00 at the Technical College, Avon St.

BIRMINGHAM

20th. R.T.S.-"The fully transistorised colour receiver" by S. C. Jones at 19.00 at the Medical Institute, Harborne Rd., Edgbaston.

25th. I.E.E. Grads.-"Waveguides" by Prof. E. M. Barlow at 19.00 at the University of Aston.
27th. S.E.R.T. -"Colour television" by B. J. Rogers at 19.30 at the Electrical Engineering Dept., the University, Edgbaston.

BRISTOL

6th. I.E.R.E. \& B.C.S.-"Design of circuits using a digital computer" by E. Wolfendale at 19.00 at the University.

12th. R.T.S.-"Colour TV receivers-the PAL decoder" by B. J. Rogers at 19.30 at the Reception Rooms BBC, Whiteladies' Rd.

13th. S. Inst. Tech.-"Instrumentation of inertial navigation systems" by Prof. E. B. Pearson at 19.30 at the Dept. of Physics, the University, Royal Fort.

CAMBOURNE

14th. I.E.R.E. \& R.T.S.-"Thyristors: modern applications in control systems" by G. Grimsdell at 19.00 at the Cornwall Technical College.

CAMBRIDGE

14th. I.E.E.-"The early history of radio" by G. M. Garratt at 20.00 the University Engineering Labs.

CARDIFF

4th. I.E.R.E. \& I.E.E.-"Integrated circuits" by R. Smith at 18.00 at the University of Wales Institute of Science and Technology.

20th. R.T.S.- "Colour receiver design" by G. D. Barnes at 19.30 at the Llandaff Technical College.

CHELMSFORD

12th. I.E.R.E.-"Vision, television, colour television" by N. N. Parker-Smith at 18.30 at the Technical High School, Patching Hall Lane.

DERBY

6th. I.E.E.-"Changing patterns in communication" by J. H. H. Merriman at 18.30 at E.M.E.B. Showrooms, Irongate.

DUMPRIES

19th. I.E.E.-"Radio astronomy" by I. W. Sheffield at 19.30 at the Kings Arms Hotel.

EDINBURGH

Sth. I.E.E. Grads.-"Waveguides" by Prof H. E. M. Barlow at 18.15 at the Carlton Hotel.

13th. I.E.R.E. \& I.E.E.-"Gas lasers" by G. M. Clark at 19.00 at the Dept., of Natural Philosophy, The University, Drummond St.

26th. I.E.E.-"Medical electronics" by D. W. Hill at 19.00 at Usher Hall.

GLASGOW

14th. I.E.R.E. \& I.E.E.-"Gas lasers" by G. M. Clark at 19.00 at the Inst. of Engineers and Shipbuilders, 39 Elmbank Cres., C.2.

GRIMSBY

19th. I.E.E.-"Waves, waveguides and radar" by Prof. P. J. B. Clarricoats at 19.00 at the Yarborough Hotel.

HUDDERSFIELD

7th. I.E.R.E.-"Computer aided design" by J. G. Davies at 19.00 at the Dept. of Electrical Engineering, the College of Technology, Queens St.

LEICESTER

6th. I.E.R.E.- "Numerical control of machine tools" by D. W'alker at 18.30 in the Physics Dept., the University.

LIVERPOOL.

20th. I.E.R.E.-"Educational closed-circuit television" by E. T. Blakeman and H. Barrington at 19.00 at the Regional College of Technology, Byrom St.

27th. I.E.E. Grads.-"The design of high-quality audio amplifiers" by J. Dinsdale at 18.30 at the University.

MALVERN

25th. I.E.R.E.-"An introduction to acoustics" by F. H. Brittain at 19.00 at the Abbey Ballroom.

MANCHESTER

21st. I.E.R.E.-"Microelectronics" by I. M. Breingan at 19.15 at Renold Bldg, the University Institute of Science \& Technology, Altrincham St.

MIDDLESBROUGH

26th. S.E.R.T.-"Development of electronic circuits for industry" by L. English at 19.15 at the Cleveland Scienuific Inst., Corporation Rd.

NEWCASTLE-UPON-TYNE

1st. I.E.E.-"Thin film microelectronics" by R. S. Pinder at 18.30 at the University.

13th. I.E.R.E.-"Circuit design using digital computers" by E. Wolfendale at 18.00 at the Inst. of Mining and Mechanical Engineers, Neville Hall, Westgate Rd.

20th. S.E.R.T.-"Electronic remote control" by N. S. Richardson at 1915 at the Charles Trevelyan Technical College, Maple Terrace.

28th. I.E.E.-"Medical electronics" by D. W. Hill at 19.30 at the City Hall.

NEWPORT, I.O.W.
1st. I.E.R.E.-"Optical communications using glass fibres" by Prof. W. A. Gambling at 19.00 at the Technical College.

PLYMOUTH

6th. R.T.S.-"Fleming Memorial Lecture "The strange journey from retina to brain" by Dr. R. W. G. Hunt at 19.30 at the Studios of Westward Television.

14th. I.E.R.E. \& R.T.S.-"Thyristors-modern applications in control systems" by G. Grimsdell at 19.30 at Camborne Technical College.

PORTSMOUTH

13th. I.E.R.E.-"High-order idlerless multipliers" by S. V. Judd at 19.00 at the Highbury Technical College.

READING

12th. I.E.R.E.-"Transistor noise" by Dr. E. A. Faulkner at 19.00 at the J. J. Thomson Physical Labs., the University.

RUGBY

Sth. I.E.E. Grads.-"Laser holography" by J. M. Burch at 18.15 at the College of Engineering Technology.

SHEFFIELD

12th. I.E.E.-"Medical electronics" by D. W. Hill at 19.30 at the City Hall.

SHRIVENHAM

12th. I.E.E.T.E.-"The laser beam and its applications" by C. S. Grace and L. G. Penhale at 19.30 at the Royal Military College of Science.

SOUTHAMPTON

Sth. I.E.R.E. \& Brit. Assoc.-"Modern methods of traffic control" by D. G. Hornby at 18.30 at the Lanchester Theatre, the University.

TENTERBANKS

6th. I.E.R.E.-"An approach to transistor reliability" by A. J. Melia at 19.15 at the Stafford College of Further Education.

WARRINGTON

7th. S.E.R.T.-"Electronics in nuclear power" at 20.00 at the White Hart Hotel, Sankey St.

The Parable of the P.B.X.

0NE of the more disturbing facets of the human mind is its capacity for self-deception; for maintaining its illusions in the face of contrary evidence. As an example in common experience consider the telephone, where the mental image conjured up is that of instant two-way verbal communication. This concept is often nonsense because it idealizes the circuit and takes no account of the human interfaces which can exist between the caller and his destination.

In any organization which is larger than one man and a boy, what happens? You lift the receiver and wait, meekly wait and murmur not (Moody and Sankey) until an imperious queen of your internal exchange deigns to answer; by which time your hitherto virgin blotting pad is filled with doodled fantasies and you have quite forgotten the number you wanted. This does not amuse Her Highness.

When this little contretemps has been sorted you settle down to another period of silence while (assuming you are not on S.T.D.) your queen seeks to attract the attention of the empress on the G.P.O. exchange. Two exchanges and three wrong numbers later your call is battering at the indicators of the destination private branch exchange. After another prescribed period (during which the leaves on the trees have been known to change from springtime hues to autumnal tints) an irritated "Yes?" signifies that you are within a stone's throw of success, awaiting only that blood-pressurizing moment when you are plugged in to a dead extension line and thereafter abandoned. You can agitate what is laughingly termed the recall button until smoke issues from it, and much good may it do you. . .

DELAYS AT THE INTERFACES

There are various theories to account for these phenomena. One strong school of thought holds that you have been inconsiderate enough to require a call at that critical phase when the girl at the P.B.X. is casting on stitches for a new cardigan; another visualizes her as immersed in a Yoga-type trance which has Mick Jagger as its focal point. Be this as it may (and lady operators will rise as one cardiganned body to deny that it is) there is no disputing that in a typical medium-distance call the ratio of time delays at the interfaces to those over the purely electrical part of the circuit can easily be of the order of $10^{7}: 1$ or even higher. And if you are not on S.T.D. then, brother, you are in even worse trouble.

So much then for the "instantaneous" image. If only our guesstimators could work out the manhours wasted in "trying to get through", the figures would be frightening. Hundreds of thousands of pounds, and possibly millions, wasted per annum.

But I can hear someone objecting that this is a general condition and has nothing in particular to do with electronics. Black mark, that boy! It has got everything to do with electronics; or rather it should
have-and would have, if we were on our toes. The trouble with us, I suggest, is that we immerse ourselves far too much in the business of being clever at making electrons jump through hoops, regardless of whether they perform any particularly useful service in the process. We are not engaged in pure science; we are in an industry and an industry can only prosper by providing a service to the community.

The P.B.X. interface is an admirable case in point. Whether we are doing the operators an injustice or not (and I'm sure we are) is quite beside the question. The real issue is that here we have a system of interconnection which dates back to Alexander Graham Bell; a situation which cries out for the application of electronics and automation while we continue to sit like birds in the wilderness doing nothing about it. We haven't even got the excuse that it's a new problem, because it existed even in grandad's day; even if you regard the electronics industry as dating only from World War II we've still had a quarter of a century in which to pull something out of the hat. The inescapable thought is that we're a lot cleverer at designing computers, microcircuits and the like than we are at setting them to work on something really useful.

AN INTERIM SOLUTION

One interim solution to the P.B.X. problemoffered with diffidence because it must have been doodled on hundreds of blotters by apoplectic callers-consists in essentials of the installation of a solenoid under the operator's chair in such a manner that, when energized, it causes a pin to protrude with some degree of violence through a hole in the seat. The solenoid is connected in circuit with the recall button contacts on the caller's telephone and (fair play, chaps) all users are put on their honour to refrain from using the recall device for at least 20 seconds after lifting the receiver. I should perhaps add that the apparatus described has not been protected by letters patent; it is offered without restriction for the common weal. And if this should catch the eye of those having authority over us, the C.B.E., or what have you, should be forwarded in a plain envelope, care of the Editor.

Seriously though, the P.B.X. problem is merely a symptom of the general malady that affects the industry. There are plenty of things begging for an intelligent application of electronics if only we could be bothered; road safety for one, which I mentioned a few issues ago. But no; we continue to stick to the well-trodden paths of transistor portables, television sets, record players and so forth for the consumer market while the capital goods boys confine their activities to radio communications, with radar representing their farthesi flung frontier. It's not exactly high adventure, is it?

I know it's a sacrilegious thougnt, but couldn't

TAILPIECE

If you will pardon the expression, which is not, 1 think, inapposite. After the above was written and (as I fondly imagined) put safely to bed, I came across a news item in the business section of The Times for February 2 nd which seems to suggest that the sooner someone inserts a pin under the seat of British industry the better.

You probably noticed it yourself, but in case not, it was to the effect that ten chairmen of various big British companies (including at least two identifiable with electronics) were setting sail on a luxury cruise to South Africa. The outward voyage will have taken $11 \frac{1}{2}$ days and Old Thunderer rather let itself go in its conjectures concerning lavish junketings in project aboard and dropped divers dark hints as to the mergers which might arise from the incarceration of ten business tycoons in one ship for nearly a fortnight. It also remarked that the basic cost of a suite on this particular excursion was a mere $\{2,566$. I suppose it was mentioned just in case any of you other Top Readers might want to rough it for the summer hols.

Now, the readership of The Times is not, as Mr. Bumble, the beadle, would say, parochial. It is obligatory reading at top government levels all over the world. Let's suppose some old acquaintance of yours has bitten your ear for a fiver on the strength of a hard-luck story and that same evening you find him whooping it up with a bunch of the boys in the malamuk saloon . . . see what I mean? What must have those foreign government readers thought on reading The Times report? It seems to me that all those who have lent this country money or backed its devaluation policy have every right to be doing some pretty serious thinking-not to mention the few typists who set the trend for extra work without pay and all those who followed their example to "Back Britain". For here, according to report we have ten captains of industry absent from their respective helms and indulging in assorted Bacchanalia when they should be steering the ship of commerce across the green fields of Old England (as a politician once said).

There are, of course various ways of looking at a situation like this. It can be argued (and no doubt will be) that the money expended on this fiesta is fiddling and small compared with the business which may accrue. "May" is, of course, the operative word here and in any event the sums involved would pay a tidy few weeks' salaries of those who are putting in overtime for nothing. But perhaps chairmen have never heard of that new-fangled device, the heavier-than-air machine which gets one to South Africa in hours and would have taken the whole lot for approximately the price of one stateroom?

Although it is not implicitly stated in the report the reader is left with the impression that the whole enterprise is on an expense-account basis. This may not be so. We may have eleven hard-working chairmen taking their annual holidays at their private expense and, by a beautiful coincidence, electing to go to the same country on the same date and by the same ship. If that is so, then it is surely nobody's affair but their own.

Not exactly. For these are public figures and as such should pay due regard to the corporate image they project. It was surely a bad piece of public relations to have travelled in a body in such apparent ostentation with industry in such a parlous state as it is at present. It is too reminiscent of Nero fiddling while Rome was burning and, regrettably, not nearly so fictional. Or is the new slogan "I'm backing Britain-over a precipice'?

I still think we need pins, not air cushions, for the boardroom seats.

Electrolytic Capacitors

A NEW series of high value electrolytic capacitors, in which several new techniques have been used to increase capacitance, ripple current rating and working temperature without increasing can size, has been announced by Mullard. These capacitors, type 106 and 107, are suitable for use in applications where small physical size is required. Capacitance has been increased by using deeper etched foil electrodes of a new material and high permissible ripple current rating has been achieved by using a new electrolyte and a new construction method. In this method of construction, multiple connections to the anode and cathode make the capacitor immune to damage by rapid charge and discharge cycles. Heat is transferred from the capacitor windings by means of a metal spring that also holds the winding in place. A self-sealing vent acts as a safety valve and prevents pressure building up inside the can.

Compared with Mullard capacitors type C432, these in the $106 / 107$ series have twice as much capacitance for a given can size, and at $70^{\circ} \mathrm{C}$ their ripple current ratings are three times as high. The capacitance range extends from $1,500 \mu \mathrm{~F}$ to 0.15 F . Type 106 is for working voltages of 63 V and less, and type 107 for 100 V working. Mullard Lid, Mullard House, Torrington Place, London, W.C. 1 .
W.W. 301 for further details

Multipulser

A COMPATIBLE series of modules forming a wide-range flexible pulse generator, known as the multipulser, is the first proprietary instrument to be developed and produced commercially by Nuclear Measurements. The modules are side-by-side rack mounted and may be interconnected by means of front panel connectors to provide a wide variety of timing and pulse width sequences with either single or multiple outputs. The three types of module currently available will provide repetition rates from 1 Hz to 50 MHz ; pulse width and delay from 20 ns to 200 ms ; positive or negative pulses up to 5 V in amplitude into 50Ω with a rise and fall time of $2 \mathrm{~ns} ; 100 \%$ duty cycle at all

repetition rates; and stable burst operation with a constant input to output delay. The system is d.c. coupled and all modules have true current source outputs enabling signals to be easily mixed at module inputs. Module interconnecting logic levels for a zero and a one are nominally 0 and -16 mA , respectively $(0 \mathrm{mV}$ and 800 mV into 50Ω). A standard 19-inch rack or bench crate will house up to six modules, the power supply connections being made up by a rear connector. Nuclear Measurements, Dalroad Industrial Estate, Dallow Road, Luton, Bedfordshire.

W.W. 302 for further details

Helical Potentiometers

EXTENSIONS to their range of helical potentiometers have been announced by Reliance Controls Lid, of Swindon. A five-turn version of the standard ten-turn helical potentiometer known as Type HEL 05-B05 retains all the advantages of the ten-turn unit including an end torque in excess of 100 ounce inches ($7,200 \mathrm{gm} \mathrm{cm}$). This has been achieved by incorporating the end stop mechanism as an integral part of the spindle and not relying upon the impact of the wiper upon a stop. Resistance values of up to $50 \mathrm{k} \Omega$ are available with a standard linearity of $\pm 1 \%$ or better to $\pm 0.25 \%$ if required. With a body diameter of 0.5 inches this unit is suitable for the designer who has space problems. A three-turn version of the Reliance HEL 07-05 and HEL $07-10$ helical potentiometers is now available. Designated the HEL 07-03 this potentiometer has a diameter of 0.770 inches and a length of only 1.625 inches. This new version offers a resistance range of 25Ω to $45 \mathrm{k} \Omega$ The standard resistance tolerance is $\pm 5 \%$ with a linearity of $\pm 1 \%$ or better if required. Reliance Controls Lid, Drakes Way, Swindon, Wiltshire.
W.W. 303 for further details

Bone Conduction Headset

A LIGHTWEIGHT headset has been introduced that has been designed for use in applications where normal conversation is required in addition to communication with the equipment to which the headset is connected. The bone transducer microphone is of the variable reluctance type with an essentially inductive impedance of 300Ω at 1 kHz . It has an open-circuit output of $400 \mu \mathrm{~V}$ peak at normal conversation levels. The transducer should be terminated in a load impedance of 600Ω for optimum performance over the telphony frequency band of $300 \mathrm{~Hz}-3 \mathrm{kHz}$. The loudspeaker is of conventional construction and can be supplied with impedances of $30,120,150$
or 600Ω and requires a maximum drive power of 35 mW . The headset may be worn under a variety of protective helmets. It is comfortable and weighs only 144 grammes. Spembley Electronics, Enham Arch, Newbury Road, Andover, Hants.
w.W. 304 for further details

Group Delay Measuring Equipment

AN instrument is now available from STC for assessing the suitability of circuits for data transmission. Known as the 74257 Group Delay Measuring Equipment, the instrument may be used on audio, broadcast, and multicircuit telephone systems. The test signal may be obtained either from an internal oscillator covering the range $200 \mathrm{~Hz}-29.99 \mathrm{kHz}$, or from an external oscillator with a frequency range of 200 Hz to 120 kHz . A feature of the instrument is that both the delay time measurement and the internal oscillator frequency are displayed in digital form by cold cathode indicator tubes. The frequency of the internal oscillator is set by four switches which operate the display directly. Loop measure-

ments can be made on either a relative or an absolute basis, and end-to-end measurements may be made by using two equipments which can be many miles apart. The group delay measuring range is 0 ± 20 milliseconds in 0.01 ms steps. The instrument is portable and uses solid state circuits operating from a.c. mains. Its dimensions are $22 \frac{1}{4} \times 9 \frac{1}{2} \times 16$ in ($565 \times 241 \times 406 \mathrm{~mm}$) and its weight is $601 \mathrm{~b}(27.3 \mathrm{~kg}$). Standard Telephones and Cables Lid, Testing Apparatus and Special Systems Division, Corporation Road, Newport.
W.W. $\mathbf{3 0 5}$ for further details

H.F. Receiver

BY eliminating the r.f. stage, and the overloading and noise associated with it, Granger Associates in their Model 351 h.f. communications receiver have made possible a dynamic range as wide as 100 dB , an intermodulation distortion figure of better than 40 dB and an image rejection of better than 100 dB . The r.f. end is a single pre-selection tuned circuit followed immediately by an f.e.t. mixer which, with a v.h.f. local oscillator, provides up-conversion and places the image 130 MHz above the received frequency. The noise figure is 10 dB . Following the first mixer is a 65 MHz crystal filter and i.f. stage and a second f.e.t. mixer.

The receiver provides eight crystal-controlled channels in a frequency range of 1.65 to 40 MHz . Additional frequency coverage from 200 to 500 kHz is possible by substituting an optional set of coils for the standard ones fitted. Possible modes of reception, selected by a four-position switch are: upper sideband, lower sideband, a.m. and c.w. In addition, f.s.k. and i.s.b. reception can be provided by adaptors.

Two crystal-controlled local oscillators-the v.h.f. one already mentioned (range 66.5-

105 MHz) and an h.f. oscillator (range $4.65-$ 43 MHz -are used in a double frequency conversion that cancels out the drift of the v.h.f. oscillator. A fine frequency control is provided for each crystal. Frequency stability is $\pm 20 \mathrm{~Hz}$ up to 20 MHz , and 1 p.p.m. above 20 MHz .

Audio outputs provided are 10 mW into $600 \mathrm{I} \Omega$ and 10 mW into $150 \Omega 2$. A VU meter is fitted. The receiver is designed tor rack mounting and has a $19-\mathrm{in}$. panel. U.K. address of Granger Associates is: Russell House, Molesey Road, Walton-onThames, Surrey.
W.W. 306 for further details

Thermoplastic Adhesive

A NON-STICKY adhesive that is available in thermoplastic and thermosetting forms, supplied unsupported or applied to one or both sides of a plastic film, has been introduced by G. T. Schjedahl Co. It will bond plastic and plastic films, metals and metal foils, ferrites, natural and synthetic fabrics and rubber and wood. Visible evidence of setting is given as unsealed SchjelBond is milky-white and on setting the adhesive becomes clear. It is of high resistance and dielectric strength and is suitable for overlaying printed circuits. Rolls may be obtained in widths from 0.5 to 22 inches with thickness from 0.5 mil to 12 mil . G. T. Schjeldahl Co., Eastern Road, Bracknell, Berks
W.W. $\mathbf{3 0 7}$ for further details

Storage Display Unit

THE Tektronix type 611 storage display unit permits stored, non-fading, displays of alphanumeric and graphic information from digital computers and other data transmission systems. The Tektronix bistable storage c.r.t. is used eliminating the need for memory devices for refreshing the display and providing high information density without flicker. A write-through feature allows the operator to visually position the writing beam at any point on the c.r.t. without disturbing the previously stored information. The erase, nonstore, write-through and view operating functions are remotely programmable through contacts at the rear of the instrument. An erase interval signal connector is also provided. Manual control

of erase and view is carried out from the front panel. The initial beam position can be set at any one of nine positions by means of internal switches, each of these positions being adjustable $\pm 10 \%$ of full scale both horizontally and vertically. The time taken for the beam to settle within one spot diameter of the final position is 6μ s or 4 $\mu \mathrm{s} / \mathrm{cm}$ whichever is the greater. Spot positional stability is quoted as being 0.1% or less of full scale/hour with a 75Ω source impedance at between 20 to $30^{\circ} \mathrm{C}$ ambient temperature. Spot drift will not exceed 0.4 , of full scale at the specified source impedance throughout the temperature operating range of the instrument (0 to $50^{\circ} \mathrm{C}$). Resolution in the vertical axis is 500 stored line pairs and 400 stored line pairs in the horizontal axis (screen size $21 \mathrm{~cm} \times 16.3 \mathrm{~cm}$). Tektronix U.K. Ltd., Beaverton House, Station Approach, Harpenden, Herts.
W.W. 308 for further details

A. F. Millivoltmeter

THE Si451 a.f. millivoltmeter is the first of a new range of equipment to be produced by J. E Sugden \& Co. Ltd, Bradford Rd, Cleckheaton, Yorkshire. The four position range switch (1-$10-100-1000 \mathrm{mV}$) operates in conjunction with a

scale switch that multiplies the setting of the range by a factor of $1,2,5,10$ or 20 . The calibration of the instrument can be varied so that it indicates r.m.s. through to peak-to-peak by means of a front panel mounted potentiometer. Using the three controls mentioned so far, the pointer can be positioned at any convenient point on the scale-a useful feature when making relative measurements. A dB scale is incorporated in which $0 \mathrm{~dB}=1 \mathrm{~mW}$ into $600 \Omega \Omega$. The input impedance is $1.1 \mathrm{M} \Omega$ and the frequency response is within 0.5 dB between 20 Hz and 20 kHz . The 3.5 inch meter movement carries four scales-1, 2,5 , and decibels and an auxiliary socket provides an output of up to 3 V at f.s.d. for feeding an oscilloscope. All internal ferrous material is cadmium plated and passivated and outer surfaces are p.v.c. clad with the exception of the front panel. The cost of the instrument is $\ell 30$.
W.W. 309 for further details

Laser Range

A RANGE of argon ion and krypton ion lasers have been introduced by Nutronic Lasers, a division of Solid State Nutronics Ltd. Operating in the blue-green region of the spectrum, these lasers will supply outputs of 25 mW and 200 mW when operated in the fundamental transverse mode. When filled with Krypton the output power is less than stated above. The lasers have been designed to offer a stable 1,000 hour operational life (or 1 year) and employ a water cooled discharge tube, d.c. excitation and variable output. The output
wavelengths when filled with argon are 0.4880 , $0.5145,0.4965,0.4579$ and $0.5017 \mu \mathrm{~m}$; devices producing $0.4727,0.4658$ and $0.4545 \mu \mathrm{~m}$ are available using an alternative mirror system. Delivery is from stock, 60 days maximum. Nutronic Lasers, Solid State Nutronics Ltd, 5A Voltaire Road, London S.W. 4.
W.W. 310 for further details

Log Plotting Unit for X-Y Recorders

LOGARITHMIC or a.c. plotting facilities can be added to any $x-y$ recorder by means of an accessory available from Electronic Associates Ltd. The model 5.46 .0001 is a self-contained unit which accepts two plug-in modules and provides power for their operation in an $x-y$ plotter. Accurate logarithmic plots of linear a.c. or d.c. functions are provided when the $12.1384 \log$ module is plugged in, and automatic presentations of high-frequency sine-wave signals are provided when the 12.1134 a.c. module is used. The 12.1384 generates logarithmic plots of an input a.c. or d.c. voltage function in either the arm or pen axis, and when used in the accessory unit provides d.c.-log, a.c.-log, or $\log -\log$ recording. The 12.1134 a.c. module enables the user to record sine-wave signals generated by a.c. amplifiers, transducers, audio-measuring devices and analogue computers. It can also be used in either the arm or pen axis. Electronic Associates Lid., Victoria Road, Burgess Hill, Sussex.
W.W. 311 for further details

Cartridge Tape Recorder

A CARTRIDGE tape recorder that was inspired by the EXPO '67 "talking chair" equipment developed by the Rola Division of Plessey Components (Australia) has now been placed on the market. The recorder, known as the CT80, is supplied in rack mounted, desk-top mounted, recessed, and flush mounted versions. Each version operates with either three, five or seven-inch cartridge containers and all are available as either record-and-play or playback-only models. An optional "trip cue" attachment is available that allows cue tones of different frequencies to be recorded at various intervals along the tape-either while making the recording or at a later date. On subsequent replay, these "trip cues" are used to operate associated relays performing such functions as operating a slide projector, starting a film projector or separate tape unit, or activating warning lights. The desk-top and recessed versions are intended primarily for radio stations and dimen-

sions of the desk-top model are 7.375 inches high, 12.5 inches wide, and 11.5 inches deep. The rackmounted CT80 unit is designed to fit into a standard 19 inch equipment rack and occupies 8.75 inches of vertical space. The Liaison Office Plessey Australia, The Plessey Company Lid., Ilford, Essex.
W.W. 312 for furter details

Plug-in Programmer

THE LATEST addition to the Sealectro range is a plug-in programme board for use with a 28×50 hole matrix. Programme pins are held in a single plug-in unit enabling a complete programme to be changed in one operation without the need to manipulate individual pins. With this arrangement programmes are semi-permanent although

individual pin positions in the plug-in unit can be altered if desired. The new unit is drawer mounted and requires just under 5.25 inches of vertical space in a standard 19 inch rack. Sealectro Ltd, Walton Rd, Farlington, Portsmouth, Hampshire.
W.W. 313 for further details

Rotary Stud Switch

TYPE 01 subminiature rotary stud switch with a fully adjustable stop mechanism is made by Radiatron, 7 Sheen Park, Richmond, Surrey. There are up to 12 positions and four poles per wafer. The diameter is 0.6 in . Wafer material is ceramic and it has an insulation in terms of resistance of $10^{12} \Omega$ (between wafer and earth), while contact resistance is $4 \mathrm{M} \Omega$. Maximum static load per contact is 3 A , and the switching rating is 200 V at 0.1 A. Life expectancy is said to be up to 10^{6} rotations.
W.W. 314 for further details

Pulsed Carrier Generator

THE RADA-Pulser 5071B performs three functions. It will operate as a conventional r.f. signal generator providing c.w. signal between 10 and 250 MHz in five overlapping bands with a setting accuracy of 1 per cent. It contains a video generator

that will supply pulses that can be varied from 100 ns to 100μ s in width at a repetition rate of between 50 and 5,000 pulses per second with rise and decay times of less than 20 ns . The third mode of operation entails combining the former two functions using an internal diode switch and buffer stage, the output now taking the form of a pulsed r.f. carrier of variable frequency and repetition rate with a fast risetime (10 ns). The output attenuator allows 102.5 dB of control in 0.5 dB steps. A 2.5 V (into 50Ω) sync pulse is available, preceding the output pulse by 40 ns. Kay Electric Company, Maple Avenue, Pine Brook, New Jersey 07058. U.S.A. W.W. 315 for further details

Wire-wound Resistors

RESISTORS wound to customers requirements for industrial or amateur use are available from the Planet Instrument Co., 25 Dominion Avenue, Leeds 7. Present facilities allow any value from 1 Ω to $20 \mathrm{k} \Omega$ to be wound. Fourtlead meter shunts in the range 0.1 to 20Ω are also available. Tolerances can be 0.5% or 1% with a maximum power handling of 1 W . Orders for individual components are handled.
W.W. 316 for further details

Transient Voltage Protected Rectifier

THE rectifier type A14D announced by the General Electric Company (USA) is a 1 amp device intended for general purpose, domestic and light

industrial applications. The large transient voltages associated with such applications can be safely dissipated within the device, the reverse avalanche rating being $1,000 \mathrm{~W}$ for $20 \mu \mathrm{~s}$. This surge capability together with the 400 V rating make this device suitable for 250 r.m.s. applications. Higher and lower voltage units are available. The 1 amp rating holds good at up to $75^{\circ} \mathrm{C}$ ambient temperature, the maximum surge current being 100 A . Other features include a miniature glass encapsulation and dual heatsink construction. The devices are available from Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
W.W. $\mathbf{3 1 7}$ for further details

Speaker Enclosure

THE "Standard" loudspeaker system introduced with the Ravensbourne stereo amplifier earlier this year by Rogers Developments Ltd has been joined by a new, lower cost, enclosure called the Compact. The main drive unit is 8 inches in diameter with a 15 tesla (15,000 gauss) magnet and with a 25 Hz resonance. The tweeter is the type HF1300 by Rola Celestion. A crossover unit operating at 2.5 kHz employs air cored inductors and paper foil capacitors. The cabinet finish is in teak veneer with gold Tygan fret material. Frequency response is stated as being $50-14,000 \mathrm{~Hz}$, the impedance $8-16 \Omega$ and power handling capacity $10-15 \mathrm{~W}$. Overall dimensions are 22 x 11.5×8.625 inches and the price is about $\& 30$. Rogers Developments Ltd, Rodevco Works, 4/14 Barmeston Road, Catford, London S.E.6.
W.W. 318 for further details

Press-fit Terminal

A NEW press-fit feed-through terminal is now available from Sealectro Ltd, Farlington, Portsmouth, Hants. Designated press-fit part no. FT-SM-56-L1 the component is manufactured from Teflon and has a gold plated brass lug which extends 0.370 inches above the 0.172 inch shoulder. The terminal is 0.0625 inches in diameter and has a central hole 0.040 inches in diameter.
W.W. 319 for further details

X-Band Hot Carrier Diodes

HOT carrier diodes are silicon epitaxial surfacepassivated devices that use a metal-semiconductor junction rather than a p-n semiconductor junction. With a metal-semiconductor junction (Schottky barrier) the diode has no minority carriers and hence charge storage effects are virtually eliminated. The response, therefore, to a change in bias is much faster than with p-n junctions. A series of such diodes is being produced by Hewlett-Packard Ltd. One of these devices, type HP 2511, is encapsulated in a hermatically sealed metal-ceramic package designed for use with stripline techniques and is suitable for coaxial mixer and detector applications. Package inductance and capacitance are typically 0.35 nH and 0.21 pF respectively-low values that render the diode suitable in broadband applications. The noise figure, when the device is used in a conventional s.s.b. mixer, is less than 6 dB at a carrier fre-
quency of 3 GHz . The HP 2511 can withstand 15×10^{-7} Joules and the peak power dissipation (1μ s pulses with a 1% duty factor) is 4 W . Power dissipation on c.w. is 200 mW . Mounted in a symmetrical microminiature ceramic package for waveguide, coaxial and stripline applications the diodes in the HP 2700 series are intended for use at frequencies both above and below and X-band. The package size is less than 0.06 inch in diameter and 0.05 inch in height, package inductance and capacitance are in the region of 0.3 nH and 0.13 pF . The symmetrical design allows the diodes to be inserted with either polarity into the circuit, meeting the need for forward or reverse pairs in balanced mixer configurations. The s.s.b. noise figure of the HP 2701 is less than 6 dB with a carrier frequency of 9.375 GHz . Allowable c.w. power dissipation is 100 mW . Hewlett Packard Ltd, 224 Bath Road, Slough, Bucks.
W.W. 320 for further details

Digital Test Meter

POWER FOR this instrument may be obtained from one of three separate sources; from the mains- $100 / 140 \mathrm{~V}$ or $200 / 270 \mathrm{~V}, 50-60 \mathrm{~Hz}$; from an internal 12 V accumulator which will give five hours of continuous operation on one charge (charging unit built in); or from ten U2 dry cell batteries giving 25 hours of intermittent operation. Weight without dry cells is 6.5 lb and the instrument measures $9 \times 8 \times 5$ inches. The display con-

sists of three cold-cathode type digital indicators and neons to show polarity of input and permissible over-ranging. The instrument is protected against incorrect use and overloads by a system of diodes, fuses and warning lamps. The Digjtest will measure 100 mV to $1,000 \mathrm{~V}$ d.c. in 5 ranges; 300 mV to 300 V a.c. (r.m.s.) in 4 ranges; $100 \mu \mathrm{~A}$ to 1 A d.c. in 5 ranges: $300 \mu \mathrm{~A}$ to 300 mA a.c. (r.m.s.) in 4 ranges; $100 \Omega 2$ to $1 \mathrm{M} \Omega$ in 5 ranges. Accuracy is between 0.5 per cent and 2 per cent depending on range and function selected. The price is $£ 158$. Kynmore Engineering, 19 Buckingham Street, London W.C. 2.
W.W. 321 for further details

Tape Reader

THE DDR40 tape reader has been designed by Data Dynamics to provide a low-cost unit for a wide range of applications in the business machine, data processing and industrial fields. The DDR40 is constructed on a modular basis and operates asynchronously at speeds up to 40 characters per second. Back spacing is available as a standard feature and the equipment will handle all standard grades and widths of paper tape. Reading is by means of a moulded brush system feeding into a set of gated amplifiers. Bi-directional drive is achieved by the use of a high torque stepping motor operating from a solid-state drive package. The DDR40 is fully compatible with the Data Dynamics range of Teletype page printers. Prices Wireless World, March 1968

AT YOUR SERVICE

L.E.S. AND NEON MINIATURE SIGNAL LAMPS

Bulgin Miniature Signal Lamps, whether L.E.S. or Neon, conform to the highest electrical standards and are manufactured from approved grades of material, that guarantee long and useful life. Here we show only a small selection from our extensive range all of which are only slightly larger than the lamps they hold.

Send for Leaflet I502/C

WW- 099 FOR FURTHER DETAILS

for the DDR40 range from $\{50$ for a basic reader to $\Omega 120$ for a free-standing unit complete with electronics and power supply unit. Data Dynamics Lid, Data House, Arundel Road, Uxbridge, Middlesex.
W.W. 322 for further details

Sealed Push-Button Microswitch

A SERIES of panel-mounted sealed push-button microswitches has been introduced by the Plessey Components Group's Microswitch Unit at Titchfield, Hants. Known as the 76.2510 Series, the microswitches incorporate an "O" ring panel seal and an oil-proof diaphragm actuator seal which protects the component from pressures of up to $3.46 \mathrm{~kg} / \mathrm{cm}^{2}$ ($15 \mathrm{lb} / \mathrm{sq} . \mathrm{in}$). A one- or two-pole or changeover switch is fitted as a detachable assembly. Compression of the actuator tabs enables the basic switch assembly to be removed, thereby facilitating easy installation and wiring. W.W. 323 for further details

Low Drift
 Electrometer

ZERO DRIFT on the model 602 electrometer from Keithley Instruments of America is less than 1 mV per day and the input impedance is $10^{14} \Omega$ As a voltmeter the instrument has nine ranges with f.s.ds of 1 mV to 10 V at an accuracy of $\pm 1 \%$ f.s.d. excluding noise and drift; zero offset is less than $300 \mu \mathrm{~V} /$ degree F after a 30 minute warm up period has elapsed. As an ammeter there are 28 ranges with f.s.ds of 10^{-14} to 0.3 A (accuracy varies between $\pm 2 \%$ and $\pm 4 \%$ of f.s.d. depending on range selected), offset current is less than 5×10^{-13} A. As an ohmeter 23 ranges are available from $100-10^{13} \Omega$, accuracy

is between $\pm 3 \%$ and $\pm 5 \%$ depending on range. As a coulombmeter 13 ranges are included from 10^{-13} to 10^{-6} coulombs, accuracy $\pm 5 \%$ of f.s.d., drift due to offset current is not greater than 5 x 10^{-13} coulomb $/ \mathrm{sec}$. The instrument can also be used as a variable input resistance unity-gain amplifier with an accuracy of 50 parts per million or $100 \mu \mathrm{~V}$ exclusive of zero offset. In addition voltage and current recorder outputs are provided. Keithley Instruments Inc., 28775 Aurora Rd., Cleveland, Ohio 44139.
W.W. 324 for further details

Transient Measuring Voltmeter

TRANSIENTS of the order of $1 \mu \mathrm{~s}$ may be detected and measured on the Peak Lok model 440A voltmeter manufactured by the La Jolla division of Control Data Corporation, situated in California, U.S.A. The voltmeter reads positive, negative or bipolar (highest of either positive or negative) peaks, holding the reading indefinitely or until reset by a push button or electrical signal. Nine input ranges from 0.1 V to 1000 V are

provided and the response is d.c. to 1 MHz . There is no limitation on the input risetime and no recovery period is required. Accuracy on the taut-band meter is 1.5% of f.s.d. while an electronic output of 0 to +5 V (at up to 2 mA) is accurate to 1%. Applications of this instrument include the detection of momentary overloads; in product control, the determination of maximum weight or other parameter during a production run; in quality control reading peak strain of a sample during a vibration test. For those who require a portable instrument a battery operated option is available. The equipment is distributed in the U.K. by Claude Lyons Lid, Instruments Division, Hoddesdon, Herts.
W.W. 325 for further details

Crosshatch and Dot Generator

THE TPG55 generator will provide (1) a dot partern for static convergence tests; (2) a grid pattern for dynamic convergence tests; (3) a grey scale for tracking checks; and (4) a raster for purity adjustments. It provides either an r.f. output of several millivolts tunable over bands III, IV and V or a video signal of about 1 V into 75Ω (negative sync). The signal characteristics are as

specified by the B.B.C. except that there are no equalizing pulses before and after the field pulse sync. group. The TPG55 measures 12×7.75 x 8.5 inches; weight with battery is under 9 lb ; and the price is $/ 8810$ s. The power supply needed for mains operations is extra costing $f^{4} 5$ s. Rank Bush Murphy Lid, Welwyn Garden City, Herts. W.W. 326 for further details

Parametric Amplifiers

TW'O parametric amplifiers have been announced by Mullard for use at S- and X-band frequencies. Neither of the amplifiers requires cooling and both have a noise figure of 3 dB . Type CL9010 is for use at S-band frequencies in the range 2.7 to 3.3 GHz with a bandwidth of 15 MHz ; type CL 9060 is an X-band amplifier that operates in the range 7 to 12.4 GHz with a bandwidth of 50 MHz . Because of their compact size- 15×9 $\times 9$ inches-the amplifiers can be mounted directly behind a radar aerial. Mullard Lid., Mullard House, Torringion Ilace, London W.C.1.
W.W. 327 for further details

PIN Diode Modulator
 THIS variable r.f. reflection type attenuator

 (Sanders Type $6503 / 1$) consists of a length of coaxial line containing a shunt $\mathrm{p}-\mathrm{i}-\mathrm{n}$ diode assembly to which negative bias is applied in order to increase the attenuation of the line. In this way attenuation of up to 35 dB can be achieved with a bias of 100 mA Insertion loss is 2 dB and the specification is guaranteed to within the frequency limits 0.5 to 12.4 GHz However, the makers state that the device is useful down to 100 MHz . The unit is fitted with one male and one female 50Ω type N stainless steel connector and bias is applied via a silver-plated brass b.n.c. connector. Typical applications include
sweep or signal generator levelling, as a chopper for low-level signal detection, as a pulse or squarewave modulator for laboratory or system use, or as a protection device for wideband receivers. Musto \& Sieele Lid, do Marconi Instruments-Sanders Division, Gunnels Wood Road, Stevenage.
W.W. 328 for further details

This is the

 size of the big development in connectors!This miniaturised version of the famous McMurdo Red range provides 26 connections - two more than any other connector of comparable size - plus improved reliability. Only a quarter the size of the Red range, the entire REDETTE range has $16,26,38$ and 52 way versions. Now available. Moulded in D.A.P., with hard gold-plated contacts. Current rating 3 amps per contact, contact resistance under 10 milli-ohms, minimum proof voltage 1,500 volts peak.

THE MCMURDO INSTRUMENT CO. LTE. RODNEY ROAD. PORTSMOUTH, ENGLAND TELEPHONE PORTSMOUTH 35361. TELEX 86112
LUGTON \& CO. LTD.. 209/210 Tottenham Court Road. London. W. 1 Telephone Museum 3261
SASCO. P.O. Box No. 20, Gatwick Road. Crawley, Sussex Telephone Crawley 28700
(also Chipping Sodbury 2641. Cumbernauld 25601. Hitchin 2242)

THAILAND Charray International Inc.. Ltd.. 28-30 New Road. (Siyek Phya Sri.). Bangkok
U.S.A. Trans Atlantic Electronics Lid.. 1789 Cardinal Avenue. Dorval, Quebec

WW-095 FOR FURTHER DETALLS

So doesn't it make sense to go a bundle on them?

Wrap up all electronic assembly problems in one swift operation.

We've done our best to make it easy for you by devising some 5,000 connecting devices of one sort or another. And backing them with an endless amount of ingenuity. So whether you're connecting a printed circuit, fastening a chassis, or simply linking a plug and socket we'll show you the quickest and simplest way of doing it.

And that goes for all your connecting problems - not just electronic, but mechanical and electrical as well. Our sort of ingenuity knows no bounds and accordingly, our range stops at nothing!
Go a bundle on it and you'll be helping yourself to the best connections in the business.

You can't do better than that now, can you?
the firm with the best connections

UNITED.CARA OROUP
Stapleford, Nottingham. Telephone: Sandiacre 2664. Sales Offices: Wembley, Birmingham, Sale, Glasgow

SALES NOW EXCEED £10,000,000

and one good reason is:

ECONOMY IN SKILLED MANPOWER

- Centralized station control by one man who need not be technically skilled.
- Full remote control of transmitting and receiving complex extends this concept to allow complete stations to be unmanned on a routine basis.
- Built-in MST reliability means that only a nucleus of high grade technicians required to service a full h.f complex.
- Reduction of manpower requirements can be of the order of 5 to 1 .

and other good reasons are:

Reduced capital outlay

MST designs reduce demands for space, and need for standby equipment. Installation costs are decreased.

Increased reliability
Maximum use of solid state techniques plus the use of wideband amplifiers reduces number of moving parts, gives higher reliability and longer equipment life.

Traffic interruption reduced

Frequency changes and retuning accomplished in less than one minute without loss of traffic.

World-wide acceptance

30 countries throughout the world have ordered more than $£ 10,000,000$ worth of MST equipment to improve their communications services.

Marconi telecommunications systems

There's a BRIMAR tube to meet the needs of every oscilloscope designer - ranging from general purpose tubes of medium bandwidth to tubes designed specifically for exacting applications requiring features such as short length, wide bandwidth or dual phosphors. Face plates range from $8 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ large displays to $1^{\prime \prime}$ types for numerical and indicator presentations including the latest $7 \times 5 \mathrm{~cm}$ rectangular size.

PIRRSONALISEI) TIECHNICAL SERVICE

Every BRIMAR oscilloscope tube is backed by a firstclass technical service and assistance on any type of problem involving it - from special characteristics to circuit design. BRIMAR engineers are alvays available - contact is on a personal level. Just phone or write.

The BRIMAR D13-51.GH is a modern Mesh P.D.A. $6 \times 10 \mathrm{~cm}^{2}$-area tube, which gives improved brightness, higher deflection sensitivities and higher ratios of screen to deflector voltage with no shrinkage of raster area. The D13-51 GH displays single phenomena up to 30 MHz bandwidth and is suitable for use with transistorised circuits. It needs fewer control voltages than other mesh tubes. Length is only $13 \frac{1}{4}{ }^{\prime \prime}$.
We shall be pleased to let you have full details of the BRIMAR D13-51GH and the rest of the interesting range of BRIMAR industrial cathode ray tubes.

Thorn-A.E.I. Radio Valves \& Tubes Ltd.
7 Soho Square, London W1. Telephone : 01-4375233

WW- 100 FOR FURTHER DETAILS

RECEPTION SETS R220/R220

These comprise two crystal controlled AM receivers and can be operased independent of each other on one spot frequency in the band $60-100 \mathrm{Mc} / \mathrm{s}$, , with buile-in monitor speaker. They are housed in one metal cabinet, size mains operation ($200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$.). Supplied BRAND NEW in original crate, complete with spares and manual 620 . Carr 50%. POWER UNIT TYPE 24 FOR R.216 RECEIVER. A.C. operated $100-125$ or 200-250 voles $50 \mathrm{c} / \mathrm{s}$. BRAND NEW AND BOXED. E9/19/6. Carr. 10/6.
FILTER VARIABLE BAND PASS No. I. Dual channel unit, each channel has variable slot frequency of $500-900 \mathrm{c} / \mathrm{s}$., $1,200-1,600 \mathrm{c} / \mathrm{s}$., and band pass facility. 600 ohms input and output, monitor input and high impedance output jacks. Standard rack mounting $\frac{1}{2}$ in. deep panel. Mains operation $200 / 250 \mathrm{v}, 50 \mathrm{c} / \mathrm{s}$. BRAND HRO TUNING METER.
HRO TUNING METER. 0.1 ma . New and

BC-221 FREQUENCY METERS Complete with erystal and values. In perfect working order but WITHO
charts. $89 / 19 / 6$. Carr. $10 / 6$.

X'TALS
$100 / 1,000 \mathrm{Kc} / \mathrm{s}$. 10 X size 3-pin, as used in Class D Wavemerer. Brand New, boxed. $21 /-$ each. Post $1 /$..
$200 \mathrm{kc} / \mathrm{s}$. American G.E.C. $\frac{1}{4} \mathrm{in}$. pins suitable 7/6 each. Pose 1/-.

> V.H.F. SIGNAL GENERATOR MARCONI TF-80IA/I. Covers 10 co 310 Mc/s. (4 bands). DIRECTLY calibrated. Int. Mod. at 400 , 1,000 and 5,000 c/s. Actenuated or force output. Guaranteed overhauled, accurate and in perfect working order. 435. Carr. CI.
BEAT FREQUENCY OSCILLATORS.
MARCONI TF.195M. Covers 10 cps . 50
$\begin{aligned} & 40 \mathrm{kc} / \mathrm{s} \text {. in two sweeps. } 0 \text { to } 20 \mathrm{kc} / \mathrm{s} \text {. and } \\ & 20 \mathrm{to} 40 \mathrm{kc} / \mathrm{s} \text {. Output } 2 \text { warts inso } 600\end{aligned}$
$\begin{aligned} & 20 \mathrm{to} 40 \mathrm{kc} / \mathrm{s} \text {. Output } 2 \text { watts into } 600 \\ & \text { or } 2,500 \text { ohms. Panel meter indicates output }\end{aligned}$
$\begin{gathered}\text { or } 2,500 \text { ohms. Panel meter indicates output } \\ \text { voltage. A.C. mains operation } 100 \text { to } 250\end{gathered}$
voltage. A.C. mains operation 100 to 250
620. Carr. 30/-.

AMERICAN HEADSET TYPE HS-30-U 600 impedance. BRAND NEW and boxed, $15 /$. postage $2 / 6$.

DISTORTION FACTORMETER MARCONI TF-142E. This instrument measures the percentage of total harmonic
distortion in the fundamental frequency distortion in the fundamental frequency
range 100 to $8,000 \mathrm{c} / \mathrm{s}$. The lowest scale range 100 to $8,000 \mathrm{c} / \mathrm{s}$. Witl handle 2 wates
engraving is 0.05%. Will hest engraving us) and will give satisfactory readings with only 1 mW input. Mains operated. Output impedance 600 ohms. Very good condition. E29. Carr. 20/-

R.C.A. O-500 micrommps. $2 \ddagger$ in. circular R.C.A. $0-500$ microamps. flush panel mounting: Dials are engraved -15, 0-60 vols. 19 set BRAND NEW

 version boxed $15 /-$. P. \& P. 1/6.
AR-88 SPARES

Knobs, Medium size, Ser of 8
Knobs, Large size
Condenser (3×4 mid.). Posi $4 / 6$
Mains Trans. (L.F.) (post
Escutcheons (Windows)

MINIATURE RELAYS

240 V. A.C. Coils. Contact assembly "makes" and I C.O. 5 amps. Size $2 \times 17 \frac{1}{1} \mathrm{x}$ lin. Unused and removed from brand new equipment $8 / 6$ post paid.

MOVING COIL PHONES. Finest quality Canadian with chamois ear-muffs
and learher-covered headband. With lead and jack plug. Noise excluding and supremely comfortable. 22/6. As above bur complete with moving coil microphones $25 /$-. DLR-5 Low impedance headphones wish arrached throat microphone. 12/6. All these items BRAND NEW. Postage extra $2 / 6$.

CINTEL NUCLEONIC SCALERS Nos. 36402 and 36411 . Unused with hand-
book. Lise Price $\mathbf{C 3 0 0} / \mathbf{C 3 2 0}$. Our Price 665 .
book. Lise Price $\mathbf{C 3 0 0 / 6 3 2 0}$. Our Price 665.

CRT Trpe 890 as used in the Cossor 1035
Oscilloscope. Brand New 59/6. P. \& P. $4 / 6$.

ADVANCE TEST EQUIPMENT

H1B Audio Signal Generator	230
J1B Audio Signal Genera	$\underline{3}$
J28 Audio Signal	$\underline{35}$
TT1S Transistor Tester	53710
VM76 AC/DC Valve Voltmeter	272
VM77C AC Millivoltmeter	$\$ 40$
VM78 AC Millivoltmeter (transistorised)	$\$ 40$
VM79 UHF Mllivoltmeter (transistorised)	<125
These are current production, manufactured	in U
by Advance Electronics Ltd. (not discontinued	models).
Showing a saving of approximately $33 \ddagger \%$ on	tt trade
price. BRAND NEW, all in original sealed	
Carr. 10/- extra per item. Special offer of 10\%	
r schools and technical colleges, etc.	

WIRELESS SET No. 76

A compace CW only crystal controlled transmitter. Consists of a Pierce crystal oscillator (807) and a Power Amplifier (807) Both are eathode keyed by means of a relay. Six switched crystal Cryscals ne included.) Aerial current is indicated on a panel (Crystals not included.) Aerial current is indicated on a panel
meter and iwo spare valves are supplied. Operates from 12 v . meter and two spare valves are supplied. Contalned in steel case $12 \times 12 \times 8 \mathrm{in}$. Weight 30 lbs . Ideal for 80 or 40 meters or cheap enough for breakdown. Good condition and working order. Circuis included, $£ 4 / 5 / \mathrm{m}$. Carr. 10/..

HRO RECEIVER $£ 30$

The octal valve version. In mint condicion. Complete with all nine general coverage coil sets covering $50 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$. Carriage 30%. Complece manual available at $30 /$ - exera.

PRICES NOW REDUCED CINTEL EQUIPMENT ELECTROLYTIC CAPACITANCE AND INCREMENTAL INDUCTANCE BRIDGE NO. 36601
A modern instrument, all solid state, which accurately measures the capacity of electrolytic condensers from $0.1 \mu \mathrm{~F}$ to $1,000 \mu \mathrm{~F}$ under operating condicions. Leakage current and polarizing 100 H can also be measured with current up to 100 mA . A. C .
100 mains operation. Unused with handbook. List price $£ 220$. Our Price E70.
WIDE RANGE CAPACITANCE BRIDGE, No, 1864. A matching instrument to the above. All solid state. Mains operacion. Measures from 0.002pF co
book. Lise Price $£ 250$. Our Price $£ 75$.

MARCONI TEST EQUIPMENT

PORTABLE FREQUENCY METER TYPE TF. 1026 SERIES

TF. $1026 / 4$	$2,000 / 4,000 \mathrm{Mc} / \mathrm{s}$. . TF. $1026 / 5$	$1.800 / 2,200 \mathrm{Mc} / \mathrm{s}$.,
TF $1026 / 6$	$300 / 4200 \mathrm{Mc}$.	

WIDE BAND MILLIVOLTMETER TYPE TF. 1371
 VACUUM TUBE VOLTMETER TYPE TF. 1300 A.C. measurement 0.05 to 100 v., $20 \mathrm{c} / \mathrm{s}$. to $300 \mathrm{Mc} / \mathrm{s}$. D.C. measurement sm to $50 \Omega \mathrm{~V}$. m . 2 ranges. t 45 .
SENSITIVE VALVE VOLTMETER TYPE TF.I100 $100 \mu \mathrm{v}$ to 300 v . A.C. in 12 ranges. $10 \mathrm{c} / \mathrm{s}$. to $10 \mathrm{Mc} / \mathrm{s}$. Can also be used as a wide-band amplifier. 650
provides sweep-delaying facilleies when used in conjunction with the TF. 1330 (series) or similar oscilloscope. Alsernatively, ct may be used independently as a general purpose delay generator. 635.

TF.867.A Standard Signal Generator
TF.890, A/I. R.F. Test Set
TF.1020.A/2 R.F. Power Meter
TF. 1066. B/2 U.H.F. F.M. Signal Generator
TF. 1067 Heterodyne Frequency
TF. 1102 Amplizude Modulator
TF. 1221 Amplizude Modul
TF. 1275 V.H.F. Bridge Detector
TF. $1350 / 1$ Power Unit for TF.1346/1
TF. 1400 Double Pulse Generator
Detailed technical specifications supplied upon request Offered BRAND NEW at fraction of original cose.

LOW CAPACITANCE BRIDGE
MARCON: TF. 1342 . Range 0.002 pF , to $1,11!$ pF. Accuracy 0.2%. Three serminal measuremencs. Incernal oscillator frequency $\$.000 \mathrm{c} / \mathrm{s} .12 \times 17 \times 8 \frac{1}{2} \mathrm{in}$. Weight $15 \% 1 \mathrm{lbs}$. A.C. mains 200 to 250 and 100 to 150 V . $40-100 \mathrm{c} / \mathrm{s}$. With leads and handbook. ABSOLUTELY
STANDARD TRANSFORMERS
Vacuum impregnated, interleaved.
screen. universal mounting. Size $4 \times 34 \times$
2tin. ALL BRAND NEW. 24/-each. Post 4/6
$\begin{aligned} & \text { Type 2. As above but } 350-350 \mathrm{~F}, 80 \mathrm{~mA} \text {. } \\ & \text { Type 3. } 30 \mathrm{vo} 2 \mathrm{a} .0 \\ & \text { apped } 38 \\ & 12,15,20 \text { and }\end{aligned}$
Type 3. 30 v. 2 a., apped $2812,15,20$ and

II UPPER SAINT MARTIN'S LANE LONDON, W.C.2.

01-836 0545

[^13]
PCR-I RECEIVERS

Covers 860-2080 metres, $190-570$ metres, $5.6 .18 \mathrm{Mc} / \mathrm{s}$. I R.F. and 2 I.F. stages, 6 valves. Internal speaker, requires external Power supply. Circuit supplled. Fully tested prior details upon request. Brand new external Power Supply Units, Vibrator Unit for opera. sion from 12 v . car battery, for caravans or boats $15 / 6$ or A.C. Mains Units E2. Carr. $5 / 6$.

AR. 88 VIBRATOR POWER SUPPLY UNIT. Operates from 6-8 volt D.C. supply. complere with 15/- poseage $7 / 6$

ADVANCE POWER UNIT TYPE DC4. 12 voles D.C. 4 amps ourpur. A.C Mains operation $200-245$ voles $50 \mathrm{c} / \mathrm{s}$. Brand new Boxed, 220 . Carriage 10/6

INDUSTRIAL METER, Iron clad. 0-300 volts A.C. $50 \mathrm{c} / \mathrm{s}$. Moving iron, Gin. scale FI. meg. Brand new, boxed, $59 / 6$, postage $7 / 6$.

SIGNAL GENERATOR CT-218 (FM/
AM). MARCONITF AM). MARCONI TF 937
Covers $85 \mathrm{Kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$. in 8 switched ranges. Effective length of film scale is SOft. Output level variable in I dB steps from I $\mu \mathrm{V}$
to $100 \mathrm{mV}(75 \Omega)$. Also IV Outputs down to $0.1 \mu \vee$ from an outlet at 7.5Ω. Int. mod. at $0.1 \mu \mathrm{~V}$ from 2 n outlet at 7.5Ω. It . mod. at
$400 \mathrm{c} / \mathrm{s}$. $1 \mathrm{Kc} / \mathrm{s}$., $1.6 \mathrm{Kc} / \mathrm{s}$. and $3 \mathrm{Kc} / \mathrm{s}$. FM at frequencies above $394 \mathrm{Kc} / \mathrm{s}$. Variable mod. depth and deviation. Crystal calibrator 200 Ke / s and $2 \mathrm{Mc} / \mathrm{s}$. Monitor speaker for beat detection. Fully metered, blower cooled, Panclimatic. A.C. mains 100 to 150 and 200
to 250 voles, 45 to $100 \mathrm{c} / \mathrm{s}$. $17 \times 20 \frac{1}{2} \times$ to 250 voles, 45 to $100 \mathrm{c} / \mathrm{s}$. $17 \times 20 \frac{1}{2} \times$
17 ti in. Weight 117 lbs . Fully tested and
$\begin{aligned} & \text { Wer }\end{aligned}$ guaranteed. Fraction of original cost. $\mathbf{6} 65$. Carr. S0/-
T.C.C. METALPACK CONDENSERS. 0.1 mid. 500 v. D.C. wkg at $70^{\circ} \mathrm{C}$. Brand new, polythene wrapped, 7/6 doz., or $\mathrm{E2}$ per 100 mid. (CP37N): 0.05 mdd (CP35N); 0.91 mid. (CP. 32 N) all at $5 / 6$ doz. or $32 / 6$ per 100 . SPRAGUE METAL CASED CONDEN. SERS 0.01 mfd . 1,000 v. D.C. wkg.. $5 / 6$ doz. or $32 / 6$ per 100 .
T.C.C. VISCONAL CONDENSERS 8 mid. 800 v D.C. wkg. at $71{ }^{\circ} \mathrm{C}$. CP 152 v .
5 Size $3 \times 17 \times 5 i n$. high. BRAND NEW Size $3 \times 1 \frac{1}{} \times 5$ Sin. high. BRAND NEW
(boxed), $8 / 6$ each. DUBILIER. 4 mfd. (boxed). $8 / 6$ each. DUBILIER. 4 mfd.
600 v . whg. C P I 30 T or similar it x it x 600 v . whg. CP 130 T or similar 1z \times 1 x
4 f in. high. BRAND NEW (boxed), $4 / 6$ each. All pose paid.

BRAND NEW. List Price $\mathbf{6 1 2 0}$. Our Price 645.

VIKING AMPLIFIER

50 WATT AMPLIFIER An extremely reliable general pur$\begin{array}{ll}\text { pose valve amplifier. } & \text { lts rugged } \\ \text { construction yet space } \\ \text { age }\end{array}$ and design makes it by far the best TECHNICAL SPECIFICATIONS electronically mixed channels, with 2 inputs per channel. enzbles the use of 8 separate instruments at the same time. The volume controls

for each channel are located directly above the corresponding input sockets.
SENSITIVITIES AND INPUT IMPEDENCES
$\begin{array}{l}\text { CHANNEL } 1 \\ \text { CHANNEL } \\ 2\end{array} \mathrm{~m}^{\mathrm{mV}}$. AT AT 470 K . $\}$ These 2 Channels (4 inpues) are suitable for CHANNEL 200 mV . AT 47 m CHANNEL 3200 mV . AT Im. Suitable for mose high output instruments INPAT SENSITIVITY RELATIVE TO (gram, 10 W OUner, or gan etc).
TONE CONTROLS ARE COMMON TO ALL INPUT
TONE CONTROLS ARE COMMON TO ALL INPUTS. 13 dB AT $60 \mathrm{~Hz} / \mathrm{s}$. TREBLE
 WITH BASS AND TREBLE CONTROLS CENTRAL-3dB POINTS ARE $30 \mathrm{~Hz} / \mathrm{s}$. AND $20 \mathrm{KHz} / \mathrm{s}$.
FOR SPEECH AND MUSIC 50 WATTS RMS. 100 WATTS PEAK
FOR SUSTAINED MUSIC 45 WATTS RMS. 90 WATTS PEAK FOR SINE WAVE 38.5 WATTS RMS. NEARLY 80 WATTS PEAK TOTAL DISTORTION AT RATED OUTPUT 3.2% TOTAL DISTORTION AT 20 WATTS 0.15% ATHz/s. TOTAL DISTORTION AT 20 WATTS 0.15% S SPEAKER SYSTEM.

NEGATIVE FEED BACK 20 dB AT I KHz/s. MAINS VOLTAGES. Adjustable from $200-250 \mathrm{~V}$ A.C $50-50 \mathrm{~Hz} / \mathrm{s}$. A protective iusc is located at the rear of Unit. V E LINE UP: Double purpose ECC83 $\times 3$, EL34 $\times 2$ and GZ 34 .

STAR SR 150 COMMUNICATIONS RECEIVER Frequéney range $535 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ four wave bands, four valve plus metal rectifier superhe circuit incorporates B.F.O. band spread tuning. S" meter external telescopic aerial-ferrite aerial, built-in 4 in . speaker, easy to read dial For 240v. A.C. operation, complete brand new with full instruction manual. $417 / 17 / \%+10 /=$ p. \& p.

PRCE:

Circuit and parts list $2 / 6$.
ree with parts

NEW! The DORSET

 TRANSISTOR PORTABLE RADIO with BABY ALARM FacilitiesSpecial offer-Power Supply Kit to purchasers o Dorset Portable Radio parts incorporating main tarnsformer, rectifier and smoothing condenser. AC mains $200 / 250 \mathrm{v}$. output $9 \mathrm{v}, 100 \mathrm{~mA} \ldots . .99 / 6$ extra. 600 millowate solid state 7 transistor plus diod and thermistor
Completely modulised high quality portable radio leaturing complementary N.P.N. and P.N.P. ousput stage.
The comprehensive easy-to-follow drawings supplied make this the easiest-ever transistor radio set of parts, with the following features

- Simple connections co only 6 tags on she R.F./I.F. module, 3. I.F stages, osc. cheir associated components are completely wired.
* Only 4 connections on the A.F. module to complete the 4 transistor 600 milli-watt solid state amplifier. - Pre-aligned R.F./I.F. module built and cested.
A.F. module built and sested
- Fully sunable over M.W. and L.W. bands. M.W. 540-1,640 Ke/s. (557 . 183 metres). L.W. $150-275 \mathrm{Kc} / \mathrm{s}$.
$(2,000-1,100$. (2,000-1,100 metres)
* Intermediate Frequency $470 \mathrm{Kc} / \mathrm{s}$.
- Sensitivity: M.W. at $1 \mathrm{Mc} / \mathrm{s} 10$ microvoles plus or minus 3 dB . L.W. at $200 \mathrm{Ke} / \mathrm{s}$. 40 mierovole plus or minus 4 dB
\star High Q internal ferrite rod aerial on both wavebands.
* Class " B " modulised output stage with thermistor controlled heat stabilization. Class ${ }^{\circ} \mathrm{B}^{\text {" }}$ output stage ensures long battery life. Current drain is proportional so the outpur level. Total current drain of the receiver under no signal conditions is $10-12 \mathrm{~mA}$. At reasonable listening level 20-30 mA.
Extension sockets for car aeria inpur, tape recorder output (inExt. Speaker. * All components (except speaker) mount on the princed circuit Size of cabinet 12 in . long, 8 in . high and 3 in . deep
* Fingertip controls

BRESGES Geared Motor

240 V. A.C. Mains $\$ 0 \mathrm{~Hz} .0 .49 \mathrm{amp}$ (65 wate). Ungeared speed 2,750 R.P.M. mm . (0.473 in .). Spindle length 1 tin. 7 tin. Iong $\times 4$ ilin. wide $\times 41 \mathrm{in}$. deep. Cost E 20 our price $47 / 19 / 6$. $7 / 6$ P. \& P.

RADIO AND T.V. COMPONENTS (ACTON) LTD

IIA HIGH STREET, ACTON, LONDON W. 3.

SHOP HOURS 9 a.m. to 6 p.m. EARLY CLOSING WEDNESDAY
Terms C.W.O. Goods not despatched outside U.K. All enquiries stamped add. envelope 323 EDGWARE ROAD, LONDON, W.2. Early closing Thursday. PERSONAL SHOPPERS ONLY
All orders by post must be sent to our Acton address.

‘ELEGANT SEVEN’ MK III

 SPECIAL OFFER\star De luxe wooden cabinet size $12 \frac{1}{2} \times 8 \frac{1}{2} \times 3 \frac{1}{2}$ in. Horizontal easy to read cuning scale
High "Q" ferrite rod aerial.
i.F. neutralization on each separate stage D.C. coupled push pull output stage separate A.C negative feedback
Room filling outpue 350 mW
Ready etched and drilled printed circuit boar
back printed for foolproof conseruction.
Fully comprehensive instructions and point-to point wiring diagram
Fully tunable ov
Fully tunable over medium and long wave. 168-535 metres and 1,250-2000 metre assembly mouns on princed board. \sin. P.M. Speaker.
Parts list and circuit diagrams $2 / 6$ free with parts.

Power supply kit to purchasers of "Elegans Seven " parts, incorporating mains cransformer, rectifier and smoothing condenser. A.C. main $200 / 250$ volts. Ouspue $9 \mathrm{v} .100 \mathrm{~mA} .9 / 6$ exera.
 only £4.9.6 ${ }_{2} 16$ Plus.

Buy yourself an easy to build 7 transistor radio and save al least $\{10$. Now you can build this superb transistor superhet radio for under $84 / 10 / \mathrm{F}$. No one else can offer such a fantastic radlo with so many de luxe star features.

R \& TV	FIRST			PVC TAPE					POST \& PKG.
,	5 ifin.	Sed.	850ft.	9/-	5 in .	L.P.	850ft.	10/6	ON EACH
	7 in .	Std.	1,200ft.	11/6	3 in .	T.P.	6001t.	10/6	1/6.
	5tio.	L.P.	1,200ft.	$11 / 6$	5tin.	T.P.	2,400 f.	32/6	4 OR MORE
	stio.	D.P.	1,800ft.	18/6	7 in .	T.P.	3,600ft.	42/6	POST FREE.
	7 I .	L.P.	1,800ft.	18/6	4 in .	T.P.	900 ft .	15/-	

FOUR PLUS FOUR Stereo Amplifler

A superb High Quality, yet inexpensiv stereo amplifier. Due to great demand we are now able to offer this precision made instrument at a fantastisaly fow price. Its quality, reliability and sty/ing PPECIFICATIONS Elegant styled SPECIFICATIONS. Elegant styled cabinet (sizes 16 in . wide, Sin. high, grained sides. Brushed aluminium frons panel with conerasting black/silver panel with contrasting black/silver
CONTROLS, Stereo/Mono swith. Gram/Aux. switch. Volume left Volume right. Treble (cut and lift) Bass (cut and lift).. Separate on/of switch. Neon pilot indicator.
INPUTS AND OUTPUTS (per channel). Gram. Aux., Tape out and Speaker out. A switched mains socke is also provided at the rear of unit.

Employs Mullard valves throughout. CCo3 and $2 \times E C L$ 86. With a metal TECHNICAL SPECIFICATIONS Gram sensitivity 40 mV . at I KHz Aux. sensitivity 50 mV . at 1 KHz . (sensitivities are given for rated output). 4 watts R.M.S. per Channel (8 watts R.M.S. in monoral position). speaker system. Suicable $10 \mathrm{in} \times 6 \mathrm{in}$ speakers are available ac $29 / 6$ each + S/-P. \& P. Bass control at 100 Hz lift +9 dB , cut Treble control at 10 KHz . Lift +8 dB , cut -13 dB .
Total harmonic distortion 0.35% at 3 wats and 2% for rated output at 1 KHz . Negative feedback 13 dB at 1 KHz . PRICE 13 gns. P. \& P. $15 /$.

600 mW SOLID STATE

4-TRANSISTOR AMPLIFIER

Features NPN and PNP Complementary Symmetrical Outplementary Symmetrical Out-
put scage. $2 \frac{1}{2} \times \& \times i$ in. put seage. $2 t \times$ imeand 2 ohms. 15 price $1 /$ P. \& P. Frequency response -3 dB poinks $90 \mathrm{e} / \mathrm{s}$. a
7×4 speaker to suit, $13 / 6$, plus $2 / \sim$ P. $\&$ P.

$2 \frac{1}{2}$ WATT ALL TRANSISTOR AMPLIFIER

A.C. mains 240 v . Size 7 in . $\times 4$ tin. $\times 1 \mathrm{l}$ in. Frequency response $100 \mathrm{c} / \mathrm{s}-10 \mathrm{Ke} / \mathrm{s}$.
Semi conductors, two OC $75^{\prime \prime}$ s, two AC 128's and ewo stabilizers AA129. Tone and volume controls on flying leads. $62 / 10 /-+$ P. \& P P $3 / 6$. P.
Suitable $81 n$.
X

BSR TAPE DECKS 200/250 v. A.C. mains

Type TD2. Tape speed 3 twin track, $\mathbf{6} / 19 / 6$.
Type TDIO, 2 -track, 3 speed, plus rev. counter, $\mathrm{ET} / 19 / 6$.
Type TDIO, 4-track, 3 speed, plus rev. counter, 69/5/-. P. \& P. on each type $7 / 6$.

3 TO 4 WATT AMPLIFIER

3.4 watt Amplifier, built and sested. Chassis size $7 \times 3 \mathrm{t} \times \mathrm{lin}$. Separate bass, treble and volume control. Double wound mains transformer, metal rectifier and output transformer for 3 ohms

M.I. P. PYROMETER
 Temperature Range

$50^{\circ} \mathrm{F}-230^{\circ} \mathrm{F}$ and $10^{\circ} \mathrm{C}-110^{\circ} \mathrm{C}$ Built in a robust case, ($5 \frac{3}{8} \mathrm{in} . \times 4 \mathrm{in} . \times 1{ }^{7} \mathrm{in}$.) Complete with probe and batteries. Only 65.0.0. Plus 5/- P. \& P.

A very useful inserument, directly calibrated in cencigrade and Fahrenheit on an easy to read moving coil meter.
Particularly suitable where heatrise plays an ments Cars, Cooling or Heations Syseems, ite

AC MAINS MOTOR

1400 R.P.M. Price $9 / 6$ P. \& P. P.
$230 / 250$ V.

are widely used as standards in many industries because:-

1) They are accurate (to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified)
2) They are not voltage or temperature sensitive, within wide limits
3) They are unaffected by waveform errors, load, power factor or phase shift
4) They will operate on A.C., pulsating or interrupted D.C., and superimposed circuits
5) They need only low input power
6) They are compact and self-contained
7) They are rugged and dependable

FRAHM Vibrating Reed Frequency Meters are available in miniature switchboard and portable forms, in ranges from 10 to 1700 cps . Descriptive literature on these meters, and on FRAHM Resonant Reed Tachometers, freely available from the sole U.K. distributors:-

ANDERS METER SERVICE

anOerd ELECTRONICS LTD. 48/56 BAYHAM PLACE, BAYHAM STREET LONDON NWI TEL: 01-387 9092. MINISTRY OF AVIATION APPROVEG

WW-101 FOR FURTHER DETAILS

TE ETO O COMES TO THE U.K.

Already highly successful in Belgium, Germany, Switzerland, Holland, France, and Italy, we now proudly present the finest integrated Solid-State Hi-Fidelity Equipment for your approval. Ultra-modern designs have been created according to European technical standards and popular requirements. These outstanding products are supplied exclusively to us by MITSUBISHI Shoji Kaisha of Japan.

Superbly styled in oiled walnut, TELETON Tuner/Amplifiers include AM/FM Multiplex facilities, comprehensive filtres, four inputs and up to fifty watts RMS output, at prices to suit even the most modest pocket.
As an example of unsurpassed value, the TELETON SRQ 302X Solid-State AM/FM Multiplex Stereo Tuner with integrated Amplifier (20 watts RMS) is available in a matt oiled-walnut case-price only 64 gns . retail!
There are over fifty TELETON products from which to choose, and these include Stereo Tape Recorders, Radios, Cassette Recorders, Transceivers, Memopacks and Stereo Loudspeaker Systems. Centralised bulk purchasing power enables us to compete most favourably with any Company in the U.K. and our home-based Service Department implements a full 12 months Warranty.
TELETON home-entertainment units are obtainable from most high-class specialist dealers, or from selected wholesalers. Representative brochures and price lists are available to bona-fide trade enquirers, and a comprehensive display of the products may be seen in our Showroom by arrangement.

Telephone or write for further details to:-
TELETON ELEKTRO (U.K.) CO., LTD.,
66-68 Margaret Street,
London, W.l.
Telephone: 01-636 6491

Space problems

Stabilised

 Power Units for tight spacesEspecially designed for tight spaces, three compact silicon modules, developed from the successful TSU-0500 Series.

$$
\text { Model } 13027 \quad 10-12 \mathrm{~V} \text { at } 1 \mathrm{~A} \quad \mathrm{£} 25
$$

Model $13028 \quad 10-12 \mathrm{~V}$ at $1 \frac{1}{2} \mathrm{~A} \quad £ 30$
Model 13028A 4-6V at $1 \frac{1}{2} \mathrm{~A} \quad £ 30$

Full details on request from

A.P.T

ELECTRONIC INDUSTRIES LTD.
Chertsey Road, Byfleet, Surrey Telephone : 41131
ww- $\mathbf{1 0 3}$ FOR FURTHER DETAILS

6 mm tubular midget flange S6/8 cap over-all length 14.5 mm .

It is one of the many Vitality Instru ment and Indicator Lamps that are made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of Vitality types and ratings may well be. Catalogue 66 , free and post-free, details them all.
*Many a product owes its success to the intelligent addition of an indicator light.

VITALITY BULBS

VITALITY BULBS LTD MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST. EDMUNDS, SUFFOLK. TEL. BURY 2071. S.T.D. 02842071

You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD -the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoon-type drawing. The books are based on the latest research
into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects. Each Chapter has a unique PROGRAMMED supplement for you to test and check your knowledge before proceeding.
"After reading section on Filter Circuits once, I underszood more about them than in a whole year from the obscurities of other manuals." L. G. West Wickham. "I must say they are the best books on the subject as they explain in simple language what other books make hard going of." C. B. Hartlepools. "They have a wonderful system of imparting the subject to the beginner." H. C. L. Leicester. "What a contrast to the many rext books 1 have attempted to struggle through." J. G. Rugby

A TECH-PRESS PUBLICATION.

The series will be of exceptional valuc in training mechanics and technicians in Electricity, Radio and Electronics.
WHAT READERS SAY

ONCE ONLY OFFER 2N2926 GREE \& 5 for $10 /-$
ORANGE
IN914 TESTED 12 for 10/IN914 TESTED 12 for 10/OA202 SILICON DIODES I50P IV 200 mA 15 for 10/AF RED SPOTS FULLY TESTED 10,000 ONLY 20 for 10/- FANTASTIC VALUE
BI-PAK'S FAMOUS BY100 $100 \% 800$ PIV 550 mA BRAND NEW 3/- EACH UNIJUNCTION TRANS. $7 / 6$ UT46 EQVT. 2N2646 BCIO7-8-9 4/6 Each BSY95A 3/- Each or 4 for $10 /-$
ORPI2-60 8/- Each SET OF 4 TRANS. COMPLETE WITH CIRCUIT AND BUILDING INST. FOR RADIO all boxed 5/- BOX
6 VHF TRANS. 667 EqVT. AFII6/117 10/-

BRAND NEW ALL		MARKED
20 GERM DIODES	25 PNP	OAl82 GOLD
EOVT. OA70.79-81	GERM TRANS.	BONDED DIODE
	taplue 20/-	ERVT. 8 for 10/-

important notice WE HAVE NOT You con only ebtain our

BI-PAK SEMICONDUCTORS, 8 RADNOR HOUSE, 93 -97 REGENT STREET, LONDON,W.I

EMICONDUCTORS 200 DIODES 10/-

8 RADNOR HOUSE 93-97 REGENT ST. LONDON, W.I

SILICON, GERM \& ZENERS SUB-MIN GLASS ASSORTED UNTESTED IDENTIFICATION CHART FREE 100^{\star} TRANS. ${ }^{\star} 10$ ® $/-$
 GERM-UNTESTED SUPER-VALUE OVER $\frac{1}{4}$ MILLION DEVICES MUST BE CLEARED THIS MONTH TO MAKE ROOM FOR THE NEW 1968 STOCKS NOW AWAITing delivery to our warehouse

I AMP SCR'S BRAND NEW MARKED

CRSI/400 $12 / 6$ EACH CRSI/400 12/6 EACH 7 AMP SCR's 200 PIV STYD 9/6 EACH | $0 C 81$ | $0 C 71$ |
| :---: | :---: |
| 10 FOR | 10 FOR |
| $10 .-$ | $10 /-$ |
| BRAND NEW | MARKED |

SALE PRICE FOR THESE $10 /$ - PAKS QUALITY TESTED-VALUE

LOOK
s

OA10 Dioden Muilard	High Current Trans. OC42 Equt.
29417 Eqvt AFlif	2 Power Transistorn 1 OCzer 1 Ocms
OA70 Dlodex Mullarid	581 licorth Rects. 400 PIV 250 mA
$4 \mathrm{OAst}^{\text {a }}$ Gold Bonded Dloden	OC75 Tranaistora muliard Type
12 Asmortment Germ. Dladem Marked	Power Trans. OC20 100V
4 ACise Germ. PNP Trans.	Low Noise Trans. NPN 2N929/30
1 Amp. Germ. Rect. 200 PIV	1811. Traise NPN VEB 100 2T86
ORP61 Photo-conductive cell	\% OA81 Diodes
Sidican Recta. 100 PIV 750 mA	40072 Trahisiotorn Mullard Type
AF117 Trans. Mullard Type	4 OC77 Transistors Muliand Type
OC81 Type Trans.	Metal Alloy Trannistorm Mat Type
OC171 Trans. Muliard Type	81. . Recta. 400 PIV 500 mA
GET9 Power Trans 60 VeB 8A	OET884 Trand. Eqve. OC4
25 Trans. Heatsinkn fit TO18, 8012, etc.	OET883 Trane. Eqvt. OC45
28701 8il. Trans. Texar NPN	VHF Sll. Epory Trans. NPN $100 \mathrm{Mc} / \mathrm{s}$
2 Zeners Z2Al50F. $15 \mathrm{Y} \mathrm{V}^{1} 1$ watt	${ }^{2}$ 2N708 8il. Trama. $300 \mathrm{Mc} / \mathrm{C}^{\text {NPN }}$
12 Volt Zenern 400 mW	5 OT41/45 Germ. Trans. PNP Equt. OC71
2 Drife Trans. 2 N 12225 Oerm. PNP $100 \mathrm{Mc} / \mathrm{a}$	3 GT31 LF Low Nowe Germ. Trans. PNP
6 Matched Trans, OC44/48/81/81D	8 OA95 Germ. Dioder Sub-min IN69
IW 5.6 Zeners	NPN Germ. Trann. NKT773
16 White Spot RF Trans. PNP	20022 Power Trans. Germ.
silicon Recta. 3 a $100-400 \mathrm{PIV}$	${ }^{2} \mathrm{OC} 25$ Power Trans. Germ.
10 a billicon Recta. 100 PIV	20073 Mullard Trans.
OC140 Trann. NPN Switehlng	+ ACl28 Tramm. PNP High Gain
12 A SCR 100 PIV	2 AC127/128 Comp pair PNP/NPN
811. Trans 28303 PNP	3 2N1307 PNP Ewitching Trans.
Zener Dioden 250 mW 3.12 V	20 Germ. Dioden General Purpose
$200 \mathrm{Mc} / \mathrm{s}$ 8tl. Trans. NPN B8Y26/27	$7 \mathrm{Cob2H} \mathrm{Herm} .\mathrm{Diodes} \mathrm{Equt}. \mathrm{Oa71}$
Zener Diodes 400 mW W3V 5\% Tol.	Arile Mullard Type Trans.

MATS
$100 / 120$
4 FOR $10 /-$

2G37115 FOR 10/-
\qquad

ISI30
DIODES
30 FOR $10 /-$
AEYII
TUNNEL DIODE
IO/-

4 High Current Trans. OCA2 Equt
2 Power Transitutory I OCy2f 1
Ocms ${ }^{2}$ Power Transitutorn 10 OCgh 1 OC 4 OC7s Trant istorn Mulard Type 1 Power Trans. OC20 100 V (1) 1811. Trais. NP
8 OA81 Diodes

40072 Transintorn Mullard Type
40 O 77 Transistors Mulind ${ }_{5}$ Oc77 Transistors Muliand Type ${ }_{5}^{4} 818$. Recta. 400 PIV 500 mA 3 GETB83 Tran. Eqvt. OC45
3 VMF Bnt. Epory Trans. NPN $100 \mathrm{Mc} / \mathrm{s}$ ${ }^{2} 2 \mathrm{~N} 708$ 8il. Tramn. $300 \mathrm{Mc} / \mathrm{A}$ NPN ${ }_{3}$ OTT4/45 Germ. Trans. PNP Eqvt. OC71 3 GT31 LF Low. Noien Germ. Tranh. PNP
B OA95 Gern. Dlodees Sub-min IN69 3 NPN Germ. Trann. NKT773 ${ }_{2}$ Oc22 Power Trans. Germ. ${ }_{4}$ OC73 Mullard Tranis.
 20 Germ. Dhoden General Purpone
7 Ci62H Germ. Dlodes Eqvt. 0 OA ${ }_{3}^{7}$ Cobr2H Germ. Dlodes Eqvi. O
mullard polyester capacitors. all half price

very bpectal valuel silver Mica, Cerambe, Polygtyrene Conilenmern.
Well assorted. Mised types and valuem. 10/- per 100 .
RESISTORS. Give-away offer: Mixed typet and valuen \ddagger to it well
6.6 per 100 or $55 /$ per 1.000 . Mined valuen. $7 / 6$ per $100.55 /$ per 1,000
WIRE-WOURD RESISTORS. 1 watt 3 wall. 7 watl and 10 watt 9 d . each.
CONNECTING WIRE TEIN, P.V.C. INSULATED
Valves. Brand-new and boted, Rock-bottom prices!

DY87	\cdots	5/10	EY\%	.	5/10	PCLSi	\cdots	$7 / 4$
Eabc80	\cdots	$6 / 1$	EY87	\cdots	5/10	PFL200		10/2
ECC82	.	615	Pabcso	\cdots	6.2	PL3\%	.	8/8
ECC83	.	615	PC97	.,	5/10	PL81		7/4
ECLso	\cdots	$8 / 2$	PCCA4	.	$6 / 5$	PL83	\cdots	$7 / 4$
ECLab	\cdots	$7 / 4$	PCFso	.	$7 / 4$	PLSA	.	5/.
Ep80	,	$8 / 2$	PCF86	.	$8 / 9$	PL500		1017
EFPs	.	612	PCLS\%	..	$7 / 4$	PY32	.	$7 / 10$
EFis3	.	$8 / 2$	PCL83	..	$8 / 6$	PY81		5/10
EFI84	..	812	PCLR ${ }^{\text {P }}$.	$7 / 4$	PY82		$4 / 1$
EY51	..	$5 / 10$	PCLEs	\cdots	714	PY800		5/10

Signal Injector Kit. 10/., 8ignal Tracer Kit. 10\%,
needles for record players. half price:
 CARTRIDGES
SONOTONE MONO. 10%-. ACOS $15 /-$. ACOSSTEREO SAPPHIRE 20%-, DIAMOND 25 All complete with neediles

veroboald

 Special Ofers-Cutter and s boards, $2 \| \mathrm{in} . \times 1 \mathrm{in} ., 9 / \theta$.
PIn Insert Tool 8/8.
ORDERS BY POST-TO G. F. MILLWARD, 17 PEEL CLOSE. DRAYTON BASSETT, STAFFS.

PLEASE INCLUDE APPROPRIATE POSTAGE COSTS
No Enquiries without stamped addressed envelope please
Por cuntomers in the Birmingham ares, good may be obtained from: Rock Exchangen. 231 Alum Rock hoad. Birmingham 8 (Pont Orders to Drayton)

Its Ampex.It's 91 gns

The new Ampex 753 Tape Deck (complete with pre-amplifiers) gives you these important new features

$$
\begin{aligned}
& \square \text { off-tape monitoring } \square \text { sound-on-sound } \\
& \square \text { sound-with-sound } \square \text { echo control }
\end{aligned}
$$

Plus \square rigid block construction-tapes align with heads to one thousandth of an inch, and the 753 finds every sound on the tape. \square deep-gap heads give three years' peak performance - few other makes give more than one year. \square stereo 4-track \square dual-capstan drive $\square 3$ speeds \square digital counter \square fast wind \square solid state throughout \square vertical or horizontal operation \square avallable in teak case.

For further information and list of UK dealers send coupon below, or write to Ampex Great Britain Led., (Dept. WW3), Acre Road, Reading, Berks

Please send me 753 details and dealer list.
Name

Address

SUPERIOR QUALITY NEW RESISTORS

High Stability
Carbon Film
Low Noise
tW 5% E24 series 5.1Ω to $330 \mathrm{k} \Omega 1 / 10$ doz. mixed; $14 / 6$ per 100 mixed. IW 10% E12 series 1Ω to 4.7Ω only, as above but $\frac{1 d \text {. extra per resistor } . ~}{\text { IW }}$ IW 5% EL2 series 4.7Ω to 10 Ma , doz. mixed; $17 / 6$ per 100 mixed IW 10% elz 1/6 per ion less when ordered in 100^{\prime} s of one ohmic valuan PLEASE state your choice of values in mixed quantities.
Quality carbon Skeleton Pre-sets, fie $0 . \operatorname{lin}$. matrix: $100,250,5001 k, 2 k$, $2.5 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 20 \mathrm{k}, 25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}, 2.5 \mathrm{M} 5 \mathrm{M} 10 \mathrm{M} \Omega$ horizoncal or vertical mounsing, $/ /$ - each.
Volume Controls: $100,250,500 \Omega$ and series so $10 \mathrm{M} \Omega$ linear, $2 / 3$ each. $100,250,500 \Omega$ and series to $10 \mathrm{M} \Omega$ linear, $2 / 3$
$5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k} \Omega$ and series co $5 \mathrm{M} \Omega$ log., $2 / 3$ each Electrolytics: $5,10,25,50 \mu \mathrm{~F} 10 \mathrm{~V} 9 \mathrm{~d}$. 50 V Ceramics: . $01.02, .05 \mu \mathrm{~F}, 5 \mathrm{~d}$. Mullard electrolytics, sub

PICK OF THE NEW SEMICONDUCTORS

Silicon, many eypes including

BC107 45V $3125-500$, 4/-
BC108 20 V B125-900, 3/II
BC109 20V $8240-900$ 4/.
C167 SOV B125-500, 3/
 BC109 and BC169 are low noise cypes, BC167, -8, -9 are plaselc Best value in High Power: 2N3055 $117 \mathrm{~W} 100 \mathrm{~V}, 16 / 6$. Best value in Field Effecs: MPFIO5, $2 \mathrm{~m}: 2$ to $6 \mathrm{~mA} / \mathrm{V}, 10 /$ Also: 2N3702, 3, -4, -5, 4/- each. 2N3707, 5/-. 262926 from 2/6. Germanium, many types including
Low noise: 2G308, 6/9; 2G309. 7/9; NKT275, 3/8.
General purpose old-cimers: 2NI304 (NPN), $2 \mathrm{~N} \mid 305$ (PNP), 4/- each. Best in High Power: NKT403, 1613; 2N2147. $16 / 9$.
Miniztura Silicon Diodes: 15940 , 30V 75 mA ., $1 / 3$
Other Diodes: OA47 (gold bonded), 1/9; OA91 (IISV 50mA), 1/3.
PEAK SOUND PRODUCTS
 Perforated board 0.1 lin . matrix, 5 in . $\times 3 \frac{3 i n}{} \mathrm{in}, 4 /-92 \frac{1}{2} \mathrm{in}$. $\times 3 \frac{1}{4} \mathrm{in} ., 2 / 6$. Perforated board 0.1 in . matrix, Sised Stereo Amplifier Kic type SA8-8, Eloj10/ Cabines, 63 ; Power Supply Kit, 63 . Pose free and 15% discouns!
ALL GOODS BRAND NEW NO SURPLUS FAST DELIVERY
DISCOUNTS: 10% over $£ 3 ; 15 \%$ over $£ 10$. P. \& P. $1 /$-; free over \& 1 Send $1 /$ - for 1968 Catalogue. Contains data and equivalents.

CONVECTOR HEATER
Just whew it tugrther: UNe
1,Yop watt copper clad elemen 1,Who watt copper clad element lant a ilfetime. ldealtor bedroom. enameiled caze. $89 / 8$. easilly
worth double. Carriage $\&$ inn. $8 / \beta$.

MIINIATURE WAFER SWITCHES
 WATERPROOF HEATIMG ELEMENT
2A garde length 70W. Self.regulating
teniperature control, $10 /$ poat frep.

See in the Dark
INFRA-RED BINOCULARS
 These infra red binoculara whell fed from a high voliage the ublecta are in the rays of an inira.red beam. Each eye
tube containa a complete optical lena syitem as well as the Intraered cell. These optical syatema can be used as lensen for T.V. cameran-llight eelle, etc. (detalle supplied). The blnoculare form part of the Arny nisht driting iTably workham order but wold without a guaranlee. Price $\mathrm{e} 3 / 17 / 6$. whin 10\%. carr. and ins. Handbook 2/B.

SPECIAL BARGAINS

so ohm so Watt wire wodm pot-metrr. 8/6

 driver contach ou. prom PREnET 100x by Welwyn with fntrical bakelite knob.

 HT while heaters warm up, or will enable 15 smp. loande
to be controlled by miniature switches or relays. Regular linf price over AD, price 7/ each. Twis 1000 ohm colln. Platinum points changeover contacts-EI equipnent
forech.

 gititut offered at es per 100 yard coll. pout and insurance $8 / 6$

tis ench, wap ofter itapen. Tap $18 / 8$.

 cryatal cartridge with mapphire styius only. 3/9 or $36 /$ - doz plated, 6 section extenda from 7 g 4 n . $10 ~ 47 \mathrm{~m}$. $7 / 6$ each, git dos, myoms for mains Indicatorn, etc. 1/3 each or

 each, 12i- doz

!
PPI Eliminator. Play your pocket radio trom the malnim: Sove en. Counplete component kit tances, smoothing condenmer and instructions. Oniy $8 / 8$ plue $1 /$ post.

PHOTO-ELECTRIC KIT

 Boards and chemicals. Latchlag relay Intra-red wenaitive Ploatke cane. Epentlal date, clrculte and P.C. chackis planh of io photo-electric device including suto. car parking iight, modulated light alarm. 8 shmple Invinible ray owltch alarm-profector lmmp stabitier, etc.. etc. Only $39 / 6$. plum 2/- pout and lasurance.

INFRA-RED

 HEATERSMakp top ane of there lateet lype heaters. That for bathrowa, etc. They are aitmple

白
ses bilicu enciosed ele for 750 matto element, all partm metal caning on lliustrated. 19/6. plun $4 / 6$ poot and ins. Pus

CASSETTE LOADED DICTATING MACHINE Battery operated and with ant accemooriea. Really fantantic offer aritith made esi outfit for only $\mathrm{a} / 10 / 6$ brillentiy deaigned for speed drops in and out for easy loallig-all normal

 Tobay gello/6 pin $7 / 6$ post and insurance. rootawith $18 / 6$

THE "TECHNICA
 RECORD PLAYER

4 speed, gram. motor with lithtwelght
pikeveup, molor electmnically balaucel

 32/6. Elliptical speaker $9 / 6$. Carplus $4 / 6$ port and lampance. DON'T
MIB8 TH18 TERRIFIC BARGAIN.

OZONE AIR CONDITIONER For removing inmelly and generally tmproving oppreasive

TUBULAR HEATERS

Newind unlued unde by (6.E.C.-rated at 60 wathe per fl.- theme are bleah inairing cupboards bedroorms. oftices, otorea, mreenhoves, eto. curtains or papere can touch them without fear

CIRCULAR FLUORESCENT

Bring subsbine into your home. 160 watto of ifight but Bee only 40 w . Beautiful nttinge with glaea, non platic centre. finoreacent tube and choke control. Regular price $84 / 15 /$. Apectal badget mrioe $65 /$ - plu $10 / \cdot$ carr, and lns. Plense atate colour of giam centre,
white, pinkt, blue. red, black. yellow or cream. Also whether plug into lamp holder or celling mounting

mit del 80 watt model 09/8. 10/- carr. and Ins.

SOLID STATE IGNITION

 28/15/-poot free.

BATTERY OPERATED TAPE DECK

With Capaian control. This unit is extremeiy well made and memure approx. © I 5 I 2 in . deep. Hat three plano key
type controle for Record, Play beck and Rewlad. Motor a special heavy duty ispe intended for operation off $4 / 5$ volla. Supplied complete with 2 apoor ready to install. Record, Replay head le the eenalitive Ma type Intended for use 1 ltb tr
infurance $4 / 6$.

FLUORESCENT CONTROL KITS

 tubee of the new "quolux" tubes for hoor fanks

 for rach kit underad. Kit 3t/
$3 / 6$ on each two wits ordered.

MAINS TRANSISTOR POWER PACK
Denlgned to operate transtator aeta and amplifers. Adjuat Porkink). Takee the place of any of the follo wing batleres PP1, PPs. PP4, PP6, PP7, PP9, End others. Kit comprise naind transformer rectiner, moothing and lood reaboor Dua $3 / 6$ postage. OOR INTERCOM
DOOR INTERCOM fithout leaving bed or chair. Outfit compriwe micruphone with call puin button connectory and manter intercom. Stmply pluga tugether. Originally old at 210. Bpecial unlo price 79/6. plus $3 / 6$ pontare

GEARED MOTOR HALF REV. PER

MINUTE Made by famous fimith Rlectrle, malinn operated and quite powertul. ary $31 \times 2 t \times 1 / 1 \mathrm{in}$. deep. Second witch can be mede to break circult within a perlod up to 2 mlns . 17/6. P. \pm P. $2 / 6$ uniea

RetAY swiTCHits. These enable nicro writhese, delicate thermostats or other low current devkes to control up to
30 ampa. -
deal to switch thermal storage heaters notore, etc. made by the fanwous A.E.I. group theree are price of $89 / 8$ each and we will thelude diagrams and ilata. Mounted on panel alee mpproximately $6 \times 7 \times 2 \mathrm{tr}$. deep.
 SIMMERSTAT HEATER REGULATOR
haliable to control elementa, heater. voldering irone and

GANGED POTS

standard type and aize why gool
lengit of apprater-made by Morsanite. Liet price to $10 /$ each but it you act
quickiy you can have them at $12 /-$ doz. (ur $1 / 8$ each it $100 \mathrm{~K}-100 \mathrm{~K}-500 \mathrm{~K}-500 \mathrm{~K}$ all new ind unveed. Poat $2 / 9$

When pontage in not definitely stated as an extri then ordero over 43 are poot free. Below 23 sdid $9 / 9$

ELECTRONICS (CROYDON) LIMITED
(Dept. W.W.), 102/3 TAMWORTH RD., CROYDON, SURREY (Opp. W. Croydon Stn.) also at 266 LONDON ROAD, CROYDON, SURREY.
S.A.E. WITH ENQUIRIES PLEASE

MULLARD							J.E.D.E.C.	
AAY11	2/-	HFYat	E/	0^{0182}	$4 / 6$		2N3s5A/	
ACL07	14/6	12FY51	E/-	OC82D	$4 / 3$		2 N 388 A	15/9
AC127	81-	BFY5:2	6)-	OC83	$3 / 6$		2N696	9/-
ACl28	4/-	BFIP4	81	OC84	4/-		2NT04	4/-
ACLIG	6-	B8x 79	3/-	OC123	71-		2N706A	616
AD149	11.	BTY79-400R	$27 / 6$	OC139	12/-		2NO11	$7 / 6$
ADl6	$7 / 6$	BTY87-150R	23:-	OC140	12\%	$2 \mathrm{~N} 4 \mathrm{~S}^{2 \%}$	2N1132	- 10/
ADI6:	716	BTY91-150R	35/-	OCibs	6/-	1840K10 18\%	2N1302	$\therefore 5 /$
ACY17	5/-	BSX 3 ¢-100	3/.	OC170	4/-	JB100-9103 54/-	2N1303	- 51.
ACY20	$3 / 6$	BTY87-500R	47/-	OC171	8/-		2N1304	$8 /$
ACY21	4/-	BYZ10	11.	OC200	6/\%	sinclair	2N1305	8/
ACY28	$2 / 8$	BYZ12	$7 / 6$	OC201	101-	ADT140 12/8	2N1306	. $81 /$
AFZ11	10i-	BYZ13	5/-	OC202	13/-	ST141 b/0	2N 1307	- 8/
AFZ12	11/9	BZY93 C24	12/-	OC203	8\%	ST140 8\%-	2N1308	. 10/6
AF114	4/8	BY100	5/-	OC204	11/-		2N1309	. 10/8
AF11s	49	B Y X $90-200$	8/-	OC205	$10 / 6$		2N2147	$\therefore 17 /$
AFl18	4/9	GET 102	$5 / 4$	OCP71	$18 / 6$		2N2160	- 14/9
AFl17	4/8	GET103	4/4	ORP12	8/-	-2iacmue	2N 2846	. 10/
AF118	8/-	OETI11	10%	ORP60	8/-		2N3436	. 8/8
AFI8;	18/-	CETST3	10/.	ORP63	9/.	Integrated		
AF239	12/-	OC19	$5 /$.	ORP93	18/-	cricuits		
A8Y20	5/-	Oc20	$33 \cdot$	ORP90	18/6	Epoxy Tos 10 lead	PLANA BARGA	
A8Y28	5/-	OC22	13/*	OA5	$3 /-$	4 L Poo Burer a $8 /-$	BARGA	
A8Z21	41.	OC23	25/-	0.10	4/-	HL. 914 Dual Gate	2N2928Y	. 3/-
A8Y29	${ }^{6 / 6}$	OC24	18/-	0.447	1/8		or 4 for	.. 10/-
ATZIO	38/6	0 OC 25	7 \%	OA70K	1/8	MLiop (a) 12/6		
BAL15	$2 / 6$	0026	121-	OA79K	1/8	t-page reprint	Over 2,000	trangis
${ }^{3} \mathrm{Cl} 107$	$51 /$	OC28	12/*	0.A81K	$1 / 8$	1C usage circults	tor and di	dode lypell
BClos	5/-	OC29	15/-	OA85K	1/6	data. etc. 2/6	ex stock.	
BC109	5/-	OC35	9/6	OA90K	1/6			
BCY10	20\%	OC38	13/-	0.981K	1/8	Resimtors: \| Watt s	Miniature	type, Jow
BCY^{12}	28-	OCAI	$3 / 6$	OA95K	$1 / 6$	noise-higt xtability.	0, 12, 15, 1	4, 22, 27
$\mathrm{BCY} 30^{\text {BCY }}$	$7{ }^{7}$	OCA?	4/-	OA200	$8 /$	33, 39, 47, 5n, 18, 8 1.25 pleces 4 d . 28 .		
BCY31	13/-	OC44	3/-	OA202	$8 / 0$	over, 2a. swh.		
BCY 32	8/-	OCAS	3/-	OA210	$7 / 6$	10% folerance, \& Wett	1 Meg-R. 2 M	heg., *ame
BCY83	8/-	OC71	3/-	8×631	71	price. Prenet polentioneter		
BCY84 BCY38	8/-	OC72	4/8	8×634 8×638	10/-	Preaet potentioneter miniature typen, 20%	Slamilarel tolerance.	or Buh
BCY39	18\%\%	OC78	3/\%	8X638 88200	13/\%	thal or horizontat.		
BCY 40	18/-	OC7A	3.	618v	95/-	$50 \mathrm{k}, 100 \mathrm{k}, 200 \mathrm{k}, 500 \mathrm{k} \text {, }$	2.5k. 8 k	
BCY71	15/-	0081	$3 /-$	A18C	95/-	All at 1/6d. warh. D	counte for	quanditie:
342811	10/-	0681D	$3 /-$	18 vCl	18/8	over 12 of 1 value.		

GUARANTEE: All the above-listed semi-conductor devices are Brand New, First Grade, and guaranteed. We will replace at no charge any device found to be faulty. Further: all devices offer for sale deviecs offen deseribed as "new and tessed " bers, these often have a short and unreliable life. L.S.T. COMPONENTS.

WIRELESS WORLD digital computer

Send for our complete part list. Competitive prices for all components. Transistors, Diodes, Resistors, Capacitors, Neons, Veroboard, etc.

FAIRCHILD AF 11

 2OW SOLID STATE AMPLIFIER KIT£8.8.0d Complete
Includes Printed circuits board, Semiconductors, Resistors, Capacitors. Heat tection components. S.A.E. for details

TRANSISTOR STEREO $8+8$

A really lirat-elmen Hi-Fi steren Amplither Kit. Usen 14 tranisistors giving ${ }^{8}$ watts push pull output per channel (118W. mono).
integrated
 stake tor any speakers from 3 to 15 ohnss. Conupact design, al
parth eupplied lncluding drilled metal work. Clir-K it board sttractive front panel, knobs, wire, smlder, nust, bolte-ho extras to buy. Bimple seep by sep instruct olws enable any
 approx. $10+12 \mathrm{dA}$, Treble cut approx. to 1 18dB. Negative
leedback 18 dB . Over main amp. Power requirement at 25 V . 4.6 mp

RICES

Ampliaer Kit, $£ 8 / 10 / \cdot($ Built and Tested $£ 12 / 20 / \cdot)$ P. \& P. $4 / 6$

(Special Otier- $01410 / *$, poot iree if all above kita, ordered at name time or built and tested for $£ 18 / \% /=$ poet free)
Circult dagramb, construction details and parts. list (iree wilh
HSL "FOUR" AMPLIFIER KIT 3.VALVE WATT U8ING ECC83. ELA, EZ80 VALVE8 for
A.C. matins $200 / 240$ Heavy duty double wound main trantormer with electrontatic acreen. t sepmrate bask, treble and volume controls, giving fully variable buont and cut with
minimum Insertion logan, Heavy negative leedueck loop over mintmum lnsertion losa. \# Heavy negative leedbech loop over
z ntages ensure high output at excellent quallty with very low disturtlon factor. t Sultable Yor une with fultar, microphone or record player. \# Provlation for remote mounting of controls
or direct on chansia.
All this bullds on to a chansla size only or direct on chansib. © All this bullds on to a chasyla alze only
7 in. wide x tin. deep. Overall heikht 4 tin . All component and valvea are brand new. A Very clear and concime inveructions enable even the lnexperienced arrintenr to constract wlith 100% success. © Supplicd complete with valves, output trans-
former (3 ohms only). sereened lead, wire, nuts, bolts. solder etc. (No extran to buy). PRICE 78/6. P, \& P, $\mathbf{P} /$. Comprehenulve circuil
2/6 (tree with $k(t)$.

VIBRATORS Large selectlon of 2, 4, 6, 12, and 32 woit. Non arac. 8/6:
S.T.C. SILICON AVALANCHE HALFWAVE RECTIFIERS
Typeras. 508 AF, 6 amps. 980 P.I.V. 1 in .
approx. Lint $50 /$. OUR PRICE $8 / 6$. Poal ifee.

10/14 WATT HI-FI AMPLIFIER KIT
 ame controla, and separate naws and treble controls are proyided

 input mockets. £8/5/-, P. in P. $8 / 6$.
3-VALVE AUDIO AMPLIFIER MODEL HA34

Denlgned iot $\mathrm{HI} \cdot \mathrm{FI}$ reprowiuction of
recorits. recuris. A.C. malns operation.
Ready bullt on phated heavy ysuge metal chawis, size 7 ijn . w. $x 4 \mathrm{in}$. d. x 4hin. h Incorportea ECC83.
ELL 84 , EZZ Elos. Ezino valves. Heavy duty,
souble wound maine transformer
and output transformer matched tor 3 uhm operker. .eparate base, treble back line. Output ti watts. Front panel cant be detached and been specialig dealgned for us and our quantity order elishlea ua to offer them complete with knobm. valven, etc., wired and test ed
for only $245 /-$. P. \& P. $6 /-$.

BRAND NEW 3 OHM LOUDSPEAKERS

BRAND NEW
12in. 15 w . H/D Speakers. 3 or 15 ohm

E.M,I, $3 \frac{1}{2}$ in. HEAVY DUTY TWEETGRS Powerful ceramic magnet. Available in 3, 8 or 15 ohms, 15/

HIGH GAIN 4-TRANSISTOR PRINTED CIRCUIT AMPLIFIER KIT Type TA1

- Peak output in excemo of 1f watts, All standard British - Cenerous size driver and output tranaformers, Outpul
 of(p). © volt operation, Everything aupplied, wire, battery
 puli aud tested 520 PRICE

FM/AM TUNER HEAD

Beautifully desligned and preclelon engineered by Dormer and Condenorth Ltd. Supplied ready fitted with twiln ,0005 tuning $\mathrm{xB}-102 \mathrm{Mc} / \mathrm{s}$. 1.F. output $10.7 \mathrm{Mc} / \mathrm{o}$. Complete with ECC8 (6L12) valve and full circult diagram of tuner head. Another
special bulk purchame enablen ue to oner these at $27 / 6$ emeh. - P. 3/-. Order quickly। Limited number aiso a a allable with

4-SPEED RECORD PLAYER BARGAINS Mains modele. All brand nem in maker", original packlog.
TU/12 Single Player with mono Cart.....
GU7 Single Player with mono Cart.
UA25 Chanser with mono Cart
UA25 Chanter with mono Cart.

$$
\begin{aligned}
& \text { Al plu Carriare and packior B/6. } \\
& \text { LATEST OARRARD MODELS }
\end{aligned}
$$

All typer available $1000,2000,3000$, a T80, etc. Send S.A.E. tor atest bargain price list.

QUALITY RECORD PLAYER AMPLIFIER MK. II
 ephermer matched tor 3 ohm speaker. Size 7to $\times 3 \ln$ dut
 and speaker reaily to nt into cabinet on right. PRICE $97 / 8$.

DE LUXE QUALITY PORTABLE

 RECORD PLAYER CABINETUncut motor board alze $14 \mathrm{t} \times 12 \mathrm{in}$., clearance 2 tm . Velow.
sitn. above. Will take umpliter above and any B.s.

HARVERSON SURPLUS CO. LTD. 170 HIGH ST., MERTON, LONDON, S.W. 19 Tet: $01-5603985$
S.A.E. all enquiries. Open all day Saturday (Wednesday I p.m.)

PLEASE NOTE: P. \& P CHARGES QUOTED AP PLY TO U.K. ONLY. P. \quad P ON OVERSEAS ORDERS gataged extra.

ANNOUNCING OUR NEW STANDARD
 RANGE OF BRAND NEW MULTITAPPED TRANSFORMERS. TYPES FULLY SHROUDED AND TERMINAL BLOCK CONNECTIONS. ALL PRIMARIES 220-240 VOLTS.

*Denotes Unshrouded Types.				
No.	SEC. TAPS	AMPS.	RICE	CARr.
IA	25-33-40-50.		¢8 15	10/6
1 B	25-33-40-50.	. 10	1612	$8 / 6$
IC	25-33-40-50.		6510	$8 / 6$
10	25-33-40-50.	.. ${ }^{3}$	63	$7 / 6$
2 A	4-16-24-32	.. 12	6519	7/6
2 B	4-16-24-32	.	1410	$7 / 6$
2 C	4-16-24-32		1219	6/-
2 D	4-16-24.32		119	5/-
$3{ }^{\text {a }}$.	25-30-35	40	614	5/-
${ }^{38}$	25-30-35		6817	$9 / 6$
3 C	25-30-35		6519	716
3 D	25-30-35		6312	$6 / 6$
3 E	25-30-35		6212	$6 / 6$
$4{ }^{4}$	12-20-24	.. 30	41015	10/-
48	12-20-24		6615	$8 / 6$
	12-20-24			$7 / 6$
4 D	12-20-24		6219	$6 / 6$
5A	3-12-18	. 30	6719	776
58	3-12-18		6519	716
${ }_{5}$ S	3-12-18	10	6312	$6 / 6$
50	3-12-18		62	6/6
6A	48-56-60			$5 / 6$
68	48-56-60	.. 1	62	$5 / 6$
			¢810	916
78	6.12	- 20	8419	716
	6-12			616
	6-12			516
8A	12.24	.. 1	E1	$5 / 6$
9 A	15-30	.. 1t		516
10a	9-15			$5 / 6$ $5 / 6$
11 A	6.3		62	5/6
Note: By using the intermediate taps many other voltages can be obtained.				
Example:Range one $7-8-10-15-17-25-33-40-50 \mathrm{~V}$. Range two $4-8-12-16-20-24-32 \mathrm{~V}$. Range three $3-6-9-12-15-18 \mathrm{~V}$..				

Send 6d. stamp for out latest price list giving full details of our range of L.T. transformers, L.T. and units, rectifiers, instrumeters, electric motors

Samson's Electronics Ltd.

 9 \& 10 CHAPEL STREET, LONDON, 01-723 7851 N.W.1.01-262 5125
LATEST PURCHASE. BRAND NEW WICKENHAM HEAVY DUTY L.T. TRANS FORMERS.
PRI tapped $110-220-235-255$ volts. Sec. No. I, 55 volts, 24 amps. Sec. No. 2, 14 volts 10 amps. sec. No. \mathbf{c}, 60 voles, 2 amps. Alt wind Tropically finished. Terminal consections size H9 W 7t D 7 inches weish 65 lbs Fracrion of maker's price, $\mathbf{£ 9 / 1 9 / 6 , \text { carr. } 1 5 / - 1 0}$ Brand New L.T. Smoothing Chokes.
6 MH. 24 amps, tropically finished, Size H6 W $4 t$ DS inches. Weight 18 lbs. 75/-, carr. $7 / 6$.
2 MH. 24 amps, tropically finished. Size H 51, W 4, D $3 \frac{1}{2}$ ins. Weight 9 lbs. $45 / \mathrm{F}, \mathrm{carr} .5 / \mathrm{F}$

> ZENITH HIGH VOLTAGETRANSFORMER Oil Filled. PRI 240 volts. Sec. 20,000 volts. 75 mA . Size, H 24 in . plus 8 in , insulared serminals. W. 23 in., D, ISin. One only $£ 29 / 10 /-$ ex warehouse.
HEAVY DUTY ISOLATION
TRANSFORMER
PRI 220-240 volts. Sec. tapped $70,140,210,280$
volts. $7 \frac{1}{5} \mathrm{kVa}$. Size $17 \times 13 \times 10$ inches, $£ 35 \mathrm{ex}$
warehouse. One Only.

SPECIAL OFFER OF WODEN RANSFORMERS
No. I. PRI rapped $200-250$ v. E.S. Sec. Tapped 8-15-25-28-30-33-35 v. 15 amps. Tropically finished table top connects. E5/17/6. Carr. $10 /-$.
No. 2 PR1 240 v. E.S. Sec. No. I. 50 v. 4 A. Sec. No 2. $18-0-18$ V. I A. $55 / \mathrm{F}$. P.P. 7/6. No. 3. 315 vi tapped 110 mA S. 2 . $175-0.17525 \mathrm{sec} .1 .315-0$

CT4A. 5 ec. 6.3 v. CTI2A. Sec. 6.3 v. IA
Core table rop connecrions. $50 /-. ~ P . P . ~$

BERCO REGAVOLT VARIABLE
TRANSFORMERS TYPE 31 A. Inpur max. 250 v., output $0-250 \mathrm{v}$. Current rating 75 Mounted 0.75 amp. Size 3 in. dia., D. $2 i n$ Spindie length 1łin. 63/5/-. P.P. 5/-.

PARVALUX GEARED MOTORS Shunt wound $220-240$ voles D.C. rating. Cont lbs./ins. 8, r.p.m. 150 , overall size $6 \frac{1}{2} \times 3 \frac{1}{2} \times 3$ ins direct mains in $220 \mathrm{D} \dot{C}$, out $750 \mathrm{~mA}, \mathrm{~B} / 6$.

AIRFLO A.C. $\mathbf{2 2 0 - 2 4 0}$ v. BLOWERS Capaciry 80 cu . ft. 2 tin. dia. outlet. Overall size $6 \times 6 \times$ 7ins. Brand new. 65/. Carr. 5/-

TRANSFORMERS of maker's price. All tapped primaries -250 v. Table sop connections. Enclosed type. ARDNERS Sec. $500-0.500$ v. 200 mA .6 .3 v. 4 A. 6.3 v. 3 A. 6.3 v. 2 A. 5 v. 2 A. $85 /$-. P.P. $7 / 6$. 2. Sec. $450-0.450 \mathrm{v} .180 \mathrm{~mA} .6 .3 \mathrm{v} .3$ A. 6.3 V . 3 A. 6.3 v. 3 A. 5 v. 3 A. $75 /$-. P.P. $7 / 6$. 3. Sec. $350-0.350 \mathrm{v} .180 \mathrm{~mA}, 6.3 \mathrm{v} .3 \mathrm{~A} .6 .3 \mathrm{v}$. 2.5 A. 6.3 v. 2.5 A. 6.3 v. 2 A. 6.3 v. 0.5 A. 5 v. 2.8 A. 75/-. P.P. $7 / 6$. 4. Sec. $450-0-450$ v. 95 mA .6 .3 v. 3 A. 6.3 v . 3 A. 6.3 V. 2 A. S V. 3 A. 65/-. P.P. 7/6. 5. Sec. $400-0-400$ v. 85 mA .250 v. 50 mA . 6.3 v. 5 A 6.3 v. 4.75 A. 6.3 v. 0.5 A. 6.3 v. 0.2 A. 75/. P.P. 7/6. 6. Sec. $250-0-250$ v. 50 mA .6 .3 v. 2 A. 6.3 v . 2 A. 5 r. 2.5 A. 37/6. P.P. S/ $/$ 7. Sec. $300 \vee .37 .5 \mathrm{~mA} .300 \vee .37 .5 \mathrm{~mA} .47 / 6$. P.P. 5/-. 4 kV D.C. wkg. 4 v. I A. 4 kV . D.C. wkg. 4 v. 0.3 A. 8. 5 ec. 225 v. 100 mA .6 .3 v. 2.5 A .6 .3 v. I A. 37/6. P.P. 5/- 9. Sec .45 v. 87 mA .6 .3 v. 4.5 A .6 .3 v. 1.5 A . 6.3 v. 1 A. 6.3 v. 0.2 A. $29 / 6$. P.P. $4 / \mathrm{F}$ 10. Sec. capped $450-470$ v. $275 \mathrm{~mA} .42 / 6$. P.P. $5 /-\mathrm{F}$	

[^14]
MARCON: AUDIO TESTER, TYPE TF89

 This directly calibrated AF oscillator from $50 \mathrm{c} / \mathrm{s}$ to$12 \mathrm{kc} / \mathrm{s}$ has a maximum ourpur of 300 mW into 600 ohm and is fitted with an output level meter and 600 ohm ladder attenuator of $0-50 \mathrm{~dB}$. An alsernative $5,000 \mathrm{ohm}$ outlet is provided and the level in each case is consinually variable. AF measurements: the voltmeter may be used for AF inputs (external) over the ranges of o to 80 V in 4 ranges, providing 2 very useful iacilicy. only $£ 18.10 .0$. Power supply 240 V a.c. (internal).

COSSOR DOUBLE BEAM OSCILLOSCOPES TYPE 1035

An ateractive end of conerace run enables us so offer these fine professional scopes in perfect working order $2 t$ only 625 each plus $25 /-$ P. \& P. Brief rechnical spec.: 4in. Hat face C.R. Gandwidch 20c/s to base repetitive, triggered or single stroke 1 susec to
150 msec ; size 16 in . XIllin. X 19 in . Also Cossor 1049 DC Coupled DB Scope same size and appearance as 1035. Price 630 plus $25 /-$ P. \& P.

DIGITAL VOLTMETER

For the first sime ever, we proudly present a three digit a.c./d.c. voltmeter for less than $\{100$! Manufactured by she world-famous Hawker Siddeley Group at its Gloucester Works, the Digimeter Type B.I.E. 2123 is 2 fully transistorised multi-range instrument possessing the following distinctive features: Electrical Characteristics: D.C. ranges: 10 mV to 400 V in four ranges ($1,000 \mathrm{~V}$ for positive volsages) Accuracy: the greater of $\pm 0.1 \%$ of \pm digit. A.C. the greater of $\pm 0.5 \%$ or ± 1 digit over the frequency range $30 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$.
Range change is manual.
Inpur impedance: D.C.-15M Ω on two lower ranges. IM Ω on two higher ranges.
A.c.-a.c. coupled, approximately equivalent to a shune impedance of $8 K \Omega$ in series with the parallel impedances $180 \mathrm{~K} \Omega$ and 550 pF .
Input characteristics: Single ended, floasting. The potential between terminal connected so OV and earth should not exceed 400 V d.c. or 250 V a.c. Conversion time: 300 msec .

Sampling rate: 1 reading per 2 sec or manually con crolled.
Power Supply: $100 / 120 \mathrm{~V}$; $200 / 250 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$
Mechanical Characteristics: wide $\times 13 \mathrm{in}$. deep. Dimensions:
Display details: Three digit with decimal point indication.
Character height lin.
At the price we can offer these instruments no laboratory can afford to be without one! They are ideally suited to production and inspection application.
Brand new in manufac-
£92.10.0
turer's packing. With Corriage extra ot cost
Handbook. IMMEDIATE DELIVERY!

SOLARTRON LABORATORY OSCILLOSCOPE TYPE 711/52

This magnificent scope will take pride of place in any service dept., college or university, offered as one-fifth of manufacturer's price, in perfect working order and excellent condition, 680 plus carriage. Brief specificacion: bandwideh DC-7Mc/s: sensitivity $3 \mathrm{mV} / \mathrm{cm} / \mathrm{co}$
$100 \mathrm{~V} / \mathrm{cm}$; sweep velocity $0.33 \mathrm{~cm} / \mathrm{sec}$ to $3.3 \mathrm{~cm} / \mathrm{sec}$. X expansion variable up ro $X 10$ size 16 in . X I3in. X 27 in . deep.

MARCONI AF ABSORPTION WATTMETER TYPE TF938/CT44

Designed to measure she power output of all audio equipment in the range of 10 micro watts $t 06$ watts in 3 ranges. Impedance 2.5 to 20Ω swithed in 11 ranges. Indication to large 5 in . meter, a 3 mal por
inserument. Price $\mathbb{2 5}$ plus P. \& P. $12 / 6$.

SOLARTRON CALIBRATING UNIT AT203
Providing an ouspus range $10 \mu \mathrm{~V}$ to 10 V , in the frequency range of $D C$ to $300 \mathrm{kc} / \mathrm{s}$. An extremely useful instru. ment of hizh accuracy for callbracing meters, and research work where the voltage output must be easily selected and of high standard. Offered in first class condition, fully tested, for 240 V a.c. supply at $£ 50$.

P. F. RALFE
 Radio Electrical Supplies
 423 GREEN LANES, MARRINGAY, MOUNTVEW 6939 LONDON, N. 4.

SPECIAL OFFER OF COLVERN 10 TURN HELIPOTS TYPES CLR26/1001/9 Values: 1000Ω and $100 \mathrm{k} \Omega$. Brand new stock Price $30 /$. P. \& P. 1/6

POWER RHEOSTATS

3 ohms 8.5 A $35 / \%$. P. \& P. $3 / 6$
7.5 ohms 5.5A, 35/- P. \& P. $3 / 6$
$3 \mathrm{k} \Omega 75 \mathrm{~W}, 12 / 6$, P. \& P. $1 / 6$.
All heavy dusy types Torodial wound on ceramic formers.

COMMUNICATIONS RECEIVERS

 Marconi CR150/3. $2-60 \mathrm{Mc} / \mathrm{s}$. Double-conversion crystal calibrator, esc. C/w case in as new condition. Only f35. Mains P.S.U. E5.AR88D, like new, $540 \mathrm{kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s} \mathrm{E} 55$
Murphy $840640 \mathrm{kc} / \mathrm{s}-30.5 \mathrm{Mc} / \mathrm{s}$. Recond. to maker's specification, 637. dision, E75.

INDUSTRIAL POWER AMPLIFIER
Ousput 175 wates can be supplied with variable frequency oscillator $10 \mathrm{c} / \mathrm{s}$ to $14 \mathrm{kc} / \mathrm{s}$. C/w with all usual facilities for, 19 in . rack mounting supply voles 250 V a.c. Price 675 plus carriage.

CAPACITANCE BRIDGE

ELECTROLYTIC

B.P.L. Cat. No. ZDOO506. Measures capacitance under full working loads (varlable volsage selection), easy to operate. C / W voltmeter, leakage current meter, to $2,200 \mathrm{mfd}$. A modern instrument in new condition, and guaranteed accurate. Price ©35, P. \& P. 20/-

STC MOVING COIL STUDIO

 MICROPHONES TYPE 4035AA limited quantity of these superb low impedance microphones for sale at approx. one-third of maker's price. C/w type 4069A, jack plug in
condition. Price $67 / 10 /-$. P. \& P. $3 / 6$.

WESTON RF AMP METERS 0-3A

Two inch flush round panel mounting, black scale, white polnter. These first grade meters are offered new at $25 /-$ P. \& P. $2 / 6$.

AUDIOTRINE HIGH FIDELITY

 frequency range. Impedance 3 or 16 ohine. Reaponse $40-18000$ c.p.E. Highly recommendey

RECORD PLAYING UNITS

RP2 Consisting of Garrand 8P25 Mk. II wlit hes.
 AUDIOTRINE PLINTHS

 suiteble for Buper 15 and 30 . $£ 6 / 18 / 11$ Inc. cover. Carriage $8 / 6$.
Persper cover veld separately ht 3 Ons. Limited number, slightly
dannaged but repared by manutiturer. $38 / 9$ to clear.

HIGH FIDELITY LOUDSPEAKER UNITS
 DORSET \qquad
£8.19.9

8
8
8DORCHESTER ${ }^{\text {Blize }} 24 \times 1.1 \times 10$ in. Filted

 STANTON K. Hit Bize $18 \times 11 \times 10 \mathrm{~m}$ Ratling 10 matt. Incopporatling Audbotrine HP815 Bpeaker with rohied presurised cablinet. Respone $30 \cdot 20,000$ c.p.a. Impedance. 3 or 15
ohras. The deep excuraions of the cone produce powerful bash notes. Migh fiux tweeter extenda frequency rance above audibility. 16 G GS.

 plete kit of parts with full wiring diagrams and instructions. Or 6 GnS.
R.S.C. A11T 15 WATT HIGH FIDELITY AMBPLIFIER dual punpose

品

SENSATIONAL VALUE IN HIGH FIDELITY STEREO SYSTEMS
 Oarrard BP2s Mk. II PLAYER UNIT 4-gpeed with Fitted Goldring C8 90 P.U. Cartridge. Ready wired on Pilitit AMPLIFIER fully wired and fitted in cabinet
above. (3) PAIR OF BTANTON MK. III
LOUDPEAKER UNITS. Pertormance compar able with equipment at twlee
aving over \&18 on above unte.
avallable. gend B.A. E. tor leafet.
HI-FI LOUDSPEAKER ENCLOSURES All typea of pleaning modern denirn. acoustically TEs, 8 gre $20 \times 11 \times 8 \mathrm{xin}$. Given
plesing resulth with any
4 Gin.
 H1
SE8.
Inan
ipea
15
SE
S Bize 2
 LINEAR LP/I TAPE PRE-AMPLIFIER Switched Equalisation. Positions for nd Playback. EVBA, Recording Tee sec icator. Designed primarily as the link icator. Designed primarily as the link
between a Magnavox Tape Deck and Hi:Fi mplifier suitable most Tape Decks Terms available. $\quad 10 \frac{1}{2}$ Gns.
INTEREST CHARGES
REFUNDED
 FR3 3 SPEAKER SYSTEM Inc. Audiorthe HP12b, Iomm. Ban

aUdIOTRINE HIGH FIDELITY MODULES 10 Gns.

Model at $\mathbf{T} 5$

 AND FURNITURE IN STOCK

HI-FI TAPE
RECORDER KIT

Consisting of Magnavox speed Tape	$24 \frac{1}{2}$
Carr. Deck, Matched	

soldered joints plus mains. Save approx. 10 Gins. on pack age deal. 4 track version, 27 kns

RSC. TITM1 TRANSISTORISED VHI/TMRADIOTUNER

 \# Sharp A.M. Rejection.. \& Drist Iroe reception. \# Out-
put ample for any amplifer (appror. $500 \mathrm{~m} . \nabla$.$) . Sjuple$ aligament instructiona. (Output availabie for Peeding tuning meter. * Outpat for leeding Stereo Multiplezer. Tuner head oumag Silicon Flanar Trangistors. \& De-
 circultry. Only frat grade cornponents uned. A quast and prodmplicity of const ruction. Printed

R.S.G.SUPERTEDFIGMPLIEB RS.C.SUPER3OSTEREOAMPLIERS

 POSITION INPOT SELECTOR SWITCB ACA, AC ginlisation to standard R.I.A.A.

SOLID

 STATETHESE UNITS ARE EMINENTLY SUIT-
ABLE FOR USE WITH ANY MAKE OF ABLE FOR USE WITH ANY MAKE OF
PICK-UP OR MICROPHONE Ceramic, Magnatic, Dynamic or Ribbon) CURRENTLY AVAILABLE SPECIFICATIONS COMPARABLE WITH UNITS AT
ALMOST TWICE THE COST

A Dual channel version or the super 15. Employing ponent. CROSS TALE -
 Switch Maina switch. INPOT SOCKETS
 of the Ipput selector Bwitch awures appropriste equane. Operal

BRADFORD 10 Norsh Parade (Hall-day Wed.) Tel. 25349 BRISTOL 14 Lower Castie St. (Half-day Wed.) Tel. 22904 BIRMINGHAM ${ }^{30 / 31} \mathrm{Ge}$. Western Arcade opp. Snow Hillseation DERBY 26 Osmaston Rd., The Spot (Hali-day Wed.)' Tel. 41361 DARLINGTON ${ }_{T} 13$ Poss House Wynd (Half-day Wed.) EDINBURGH 133 Leith Street (Half-day Wed.) Tel. Waverley GLASGOW 326 Argyle 5t. (No halif-day) Tel. CITy 4158 HULL ${ }^{91}$ Paragon Street (Hall-day Thursday) Tel. 20505

BASC
 MI-FI CENTRES LTD.

 Mall ORDERS TO: 102 Henconner Lane, Bramley teeds 13. No C.O.D.under CI, tage 4/6 extra under $\mathrm{E} 2,5 / 9$ extra under 65 . Trade supplied. S.A.E. with enquiries please. open Mill day Satoge except Hish

32 High Street (Half-day Thurs.) Tel. 56420 LEICESTER 5-7 County (Mecca) Arcade Briggate (No hali-day) Tel. 28252LEEDS 73 Dale Se. (No hall-day) Tel. CENeral 3573 LIVERPOOL 238 Edgware Rd. W2 (Hallfday Thurs.) Tel. PAD 1629 LONDON
96 High Holborn, WCI Tel. HOL 9874 (Half-day Sac.) LON 60A-60B Oldham St. (No hall-day) Tel. CENtral MANCHESTER 106 Newpors Rd (Hall-day Wed) Tel. 47096 MIDDLESBROUGH 11 Blackest Se. Opp. Fenwicks Store NEWCASTLE UPON
(Hali-day Wed.) Tel. 21469 (Halr-day Wed.) Tel. 21469 hange Street, Castle Market Bldgs
(Haif-day Thursday) Tel. 20716
R.S.C. COLUMN SPEAKERS Covered in two-Lone RexineN nair idea. Type C48. $25-30$ WATTS. Fitted four 8 in . high flux 7 watt apcakern. Overail nize approx. $42 \times 10 \times$ 5 in . Or Deporatt 44 - and 9 raonthly 15 Gns. papmenta $34 / 8$.
(Total $£ 18 / 1 / 8$) Type c412. 40 WatTs. Fitted four 12 in . 12.000 line 10 watt mpeakers. Orerall size approx. 22 Gns.
bif $\times 14 \times 9$ in. Carr. $15 / /$. Or Depoait $83 / 13 /-$
50 -
I2in. HIGH QUALITY LOUDSPEAKERS
10 w un enered cablnets.

20 Watl Model. 13 ohm. Blze $18 \times$ $18 \times 10 \mathrm{~m}$. Gaum 12,000 lines. 8 Gns.

Terma available. Rexine covered. $10 /$ extra.
30 Wall Yodel. Rexine covered
10 gns LOUDSPEAKERS Limited number at ime. LOUDSPEAKERS tlon of liot 12 in .20 WATT DUAL CONE
£5.11.9
12in. 30 WATT DUAL CONE
£6. 19.9
ISin. 40 WATT carr. 10 .
12 Gns.

R.S.C. AIO 30 WATT HIGH FIDELITY
AMPLIFIER
renultive. Puab-Pull highout put with Pre-amp./Tone Control Perages Prilable. Humitevel Agure: 70 dB Equal to most expenslve $\mathbf{a m b l} 30 \cdot 20,000 \mathrm{c} / \mathrm{m}$. Sect lonally wound ultre lnear output trantormer with s07 output valven. All frst grade component. Salvea. EF88, EF8B, ECC83, 807, 807, GZ34. Separate Bass and Treble Controlm. Senitivity 12 mililivolte
so that any kind of Microphone or Pick-up is auitable. Dengned for Clubn, Schools. Theatres, Dance Ealla or Ontdoor Functions, etc. For use with Electronic Organ, Gultar, String Bans, elc., Gram.t Redio or
controls. $200-250$
v. 50 c/a. A.c. mains. For 3 and
I $\mathbf{2}$ Gns. 15 ohm apeakera. Complete kit of parta with
point-to-point wiring diagrams aud instructions. point-to-point wiring diagrams and instructions. Curr. $12 / \mathrm{A}$
 paymenta of $28 / 9$ (Total $£ 17 / 11 / 9$). Twin hatulled
cover can be supplled for $25 /-$, Send s.a.e. for leatlet.
R.S.C. GRAM AMPLIFIER KIT

Serative feedback. Controls: Vol., Buss, Treble and Mat ts output. For $200-250$ va.C. mal ha. Fully isulated chamily. $\quad 59 / 111$
Clrcuit ctc. mupplied.
POWER PACK KIT
Conininting of mains tranntorme

 R.S.C. BATTERY/MAINS CONVERSION
 UNITS Type BMi. An all dry battery approx. Completely replacen batterien mup. $200 / 250 \div 50 \mathrm{c} / \mathrm{k}$ jo ju allable. Complete k / l with rlagrani $47 / 9$ or ready for use $59 / 11$.

AMERICAN

TEST \& COMMUNICATIONS EQUIPMENT
suitable for navigation or Scope conversion, price from £5. S.A.E. for details
AN/ARC-33 Transceivers $225 / 399.9 \mathrm{Mc} / \mathrm{s}$. AN/VRC-19 F.M. Transceivers. 152/174 Mc/s. £10.
AN/URC-11 "Handy-Talkies" AN/ARN-44 Compass Re-AN/ARN-6 \& AN/ARN-44 Compass Re
AN/TRC-8 U.H.F. Radio Relay Sets.
AN/FPN-13 X band Radar Beacons.
CU-168/FRR $2 / 32 \mathrm{Mc} / \mathrm{s}$ Antenna Couplers AN/PSM-2A "Megger" Insulation Testers $500 \mathrm{~V} 0-1,000 \mathrm{Meg}$.
AN/URM-30 Test Set for AN/URC-4s. AN/PSM-6 Multimeters $1 \mathrm{~K}-20 \mathrm{k} \Omega / \mathrm{PV}$. AN-URM-61 Signal Generator $1 \cdot 8 / 4 \mathrm{Gc} / \mathrm{s}$. TS-47 \quad Test Oscillator $40 / 500 \mathrm{Mc} / \mathrm{s}$. T-216/GR Xtl Synthesizer Signal Gener ator $225 / 399.9 \mathrm{Mc} / \mathrm{s}$.
AN/UPM-11A X Band Range Calibrators. AN/USM-24A Measuring Oscilloscopes. TS-413C/U Signal Generators $75 \mathrm{Kc} / 40$ Mc / s.
TS-497B/UUR Signal Generator $2 / 400 \mathrm{Mc} / \mathrm{s}$. TS-147A/UP Radar Test Sets.
TS-917A/CG (Stelma TDA-2) Telegraph Distortion Analysers.
ME-22/PCM Decibel Meters-45/+25 DBM Tektronix 541, 543 \& 545 spare Tubes Type BHP2A Price $£ 14$.
AN/APN-9 Loran Receiver Indicators, AN/UPM-19B Test Sct for AN/APW-11
I-177B Valve Tester,
I-193C Relay Test Sets.
LA-230 Measuring Oscilloscope,
BC-614() Speech Amplifier.
NEW GENERAL CATALOGUE * AN/103 1/-

SUTTON ELECTRONICS
Salthouse, Nr. Holt, Norfolk. CLEY 289.

Learn at home... First Class Radio and TV Courses

After brief, intensely interesting studyundertaken at home in your spare timeYOU can secure a recognised qualification or extend your knowledge of Radio and TV. Let us show you how. FREE GUIDE
The New Free Guide contains 120 pages of information of the greatest importance to both the amateur and the man employed in the radio industry. Chambers College provides first-rate postal courses for Radio Amateurs' Exam., R.T.E.B. Servicing Cert., C. \& C. Telecoms., A.M.I.E.R.E. Guide also gives details of range of certificate courses in Radio/TV Servicing, Electronics and other branches of engineering, together with particulars of our remarkable terms of
"Satisfaction or Refund of Fee" Write now for your copy of this valuable publication. It may well prove to be the turning point in your career.
Founded 1885-Over 150,000 successes
CHAMBERS COLLEGE (Incorp. National Inse. of Engineering)
(Dopt. 855 F), 148 Holborn, London, E.C.1.

NEW

BOOKS

JANUARY
 Controlled Guidance Systems
 by Hal Hellman
 Tape Recording for the Hobbyist 26/by Arthur Zuckerman
 Know Your Sweep Generators
 by Robert G. Middleton
 FEBRUARY

35/-

26/-

Bridges and Other Null Devices 26/by Rufus P. Turner

ABC's of Vacuum Tubes
20/-
by Donald A. Smith
ABC's of Transistors 20/-
by George B. Mann
Fet Circuits 25/-
by Rufus P. Turner

MARCH

Transistorized Amateur Radio
Projects 25/-
by Charles Caringella
ABC's of Radio and TV
Broadcasting 20/by Farl J. Waters

Fundamentals of Digital

Magnetic Tape Units 21;by the Field Engineering Department. UNIVAC Data Processing Division, Sperry Rand Corporation

Radio and TV Trouble Clues 16/-
by the Howard W. Sams
Engineering Staff

Please send for a complete catalogue of over 100 titles dealing with Electronics and allied subjects.

FOULSHAM-SAMS TECHNICAL BOOKS
(W. FOULSHAM \& CO. LTD.)

YEOVIL RD., SLOUGH, BUCKS, ENGLAND

LOOK - TRANSISTORS 1/- EACH sILICON \star PLANAR \star N.P.N. \star P.N.P
$3 \mathrm{~N}_{2} 29$
28501
2 NY 2 S
28 SOL
2 N 2411
2 N 726 tan
2 N 70 S
2 N 70 A

28131 28512 28102 29103 28104 28104 2 N 2220

 2N2:04t
287304
28731
28723 28731
28782
28733 ALL TESTED AND GUARANTEED TRANBISTOREPAK range.
BRAND NEW SAVE E's WE TELL YOU DON'T TAKE
UNTESTED \star TEST THEM \star WHAT TYPES \star CHANCES ON
TRANSISTORS YOURSELF THEY ARE UNKNOWN LOTS

25	$\underset{\text { PrP } 95}{\text { gilicos }}$	TRANSISTORS 10/-	10		ECTIFIERS 10/-
10		DIODES 10/-	25		TRANSISTORS 10/-
25		TRANSISTORS 10/-	40	inglatic.	DIODES 10/-
10		ZENERS 10/-	50	mine gebmaniz quality	DIODES 10\%
25		TRANSISTORS $10 /-$	25		TRANSISTORS 10/-

FREE \rightarrow >
 Packs of your own choice

 to the ralue of $10 /$ withall orders over 64 .

LARGE RANGE - LOW PRICE SILICON CONTROLLED RECTIFIERS. SEND FOR FULL RANGE AND CIRCUIT DIAGRAMS.
FREE OF CHARGE.

GREAT NEWS $\rightarrow \star$ We now give a written guarantee with all our

FIRST EVER LOBIC KITS. Learn for yourmelt how com putera work, even make one tor yourselt. Funl instruct lon.

Makea hev. counter for your car. the tacho. BLOCK.' This encapsulated block whil turn any 0.1 mA meter Into a perfectly ilnear snd accurate 20/- each

NO CONNECTION WITH ANY OTRER FIRM. MINIMUM ORDER 10/. CABH WITK ORDER PLEABE. Add $1 /$ post and packing per order. OVERsEAS ADD EXTRA
FOR AIRMAIL

NO EXCUSES! NO DELAYS! FROM STOCK! URAILBLE vOLTAGE TRANSFORMERS

50 AMPS

OPE関 TYPES

Designed for Panel

 Mounting.Input 230 v. A.C. $50 / 60$ Output variable. $0-260 \mathrm{v}$.
 P. \& P. $7 / 6$ $\frac{1}{\frac{1}{2}} A M P$. $I A M P$

INPUT 230 v. A.C. 50/60 BRAND NEW. Keenest prices in the country. All Types (and spares)
from $\frac{1}{2}$ to 50 amp. available from stock. $0-260 \mathrm{v}$. at 1 amp . $0-260$ v. at 2.5 amps. $0-260$ v. at 4 amps . $0-260 \mathrm{v}$. at 5 amps. $0-260 \mathrm{v}$. at 8 amps. $0-260$ v. at 10 amps. $0-260$ v. at 12 amps. $0-260 \mathrm{v}$. at I'5 amps. $0-260 \mathrm{v}$. at 20 amps .
$0-260 \mathrm{v}$. at 37.5 amp $0-260 \mathrm{v}$. at 37.5 amps
$0-260 \mathrm{v}$. at 50 amps. 20 different types available FOR IMMEDIATE DELIVERY.

5 Amp. AC/DC VARIABLE VOLTAGE OUTPUT UNIT Inpur 230
V. A.C.
Outpue $0-260$
Output $0-240$
V. A.C. Fitted large scale ammeter and volcmeter. Neon indicator, fully cive metal case 15 in. x cive metal case
8 tin. $\times 6 i n$. Weight 24
 16. Infinitely variable. age variation over range
7 Amp. A.C./D.C. Variable Output Power Unit 260 v . A.C. OR 0 to 230 v . D.C. at 7 a. Robusely constructed in metal case, complete with safecy fuse, neon indicator, voltmeter and ammeter. Size 17 in . $\times 12 \mathrm{in}$. X 7 in . Weight 36 lb .

SERVICE TRADING COMPANY

SERVICE TRADING CO

Pootege and Carrlage abown
 lever ataloren of sim

LIGHT SENSITIVE SWITCHES Kit and parts including ORP. 12 Cadmium Sulphide Photocell. Relay Transistor and Now supplied with Hish Speed Relay for 6 or 12 voli oper ORP 12 and Circuit $10 /-$ post paid

C. MAINS MODEL

incorporates mains transformer rectifier and special relay with $3 \times 5 \mathrm{amp}$. mains c/o contacts. Price inc. circuit $47 / \mathrm{S}$, plus $2 / 6 \mathrm{P}$. \& P .

PHOTO ELECTRONIC COUNTER Can beset for counts of up to 500 per minute, $210-250 \mathrm{~V}$. A.C. powerte. Kit of Components, including photo relay etc., together with clear circuit diagram, $\Theta 3 / 2 / 6$,
 plus
$3 / 6$.

UNIVERSAL DEMONSTRATION
positemplecom-

posite apparatus, comprising a robustty buite Transformer and electro-magnat
with removable coils with removables, coil and pole pieces, coil
 ${ }^{2 .}$ A. 12 . These coils are A.C. used for D.C. experiments. Clus $15 /-$ carp. Leaflet on request.

PHOTO MULTIPLIER

Type CV337, this supersedes Type 931 A , complete with special P.T.F.E. base and divider network. 57/6, incl. P. \& P.

RESETTABLE HIGH SPEED COUNTERS 3 fisure, 24 v. D.C. operation (illustrated). preaset to above, but may be pre-set to any number up to
999 reducing to zero. Either type 32/6, P. \& P. 2/6.
figure, 1,000 ohm coil, $36-48$ Y. D.C. operation. e3/10/-. P. \& P. $1 / 6$.

LATEST HIGM-SPEED MAGNETIC
COUNTERS (NON-RESETTABLE) 4 figure, 10 impulses per second. Type $100 \mathrm{~A}, 500$ ohm coil. Type $100 \mathrm{~B}, 2,300$ ohm coil. Either $15 /-$ each. plus 1/6 P. \& P.

230 VOLT A.C., GEARED MOTORS Type Disg 5 r.p.m. i.7ıb. inch, $2 / 9 / 6$, P. E. P. $3 / \mathrm{s}$ Trpe DI6G 13 r.P.m. I.45Ib, inch, $12 / 17 / 6$. P. A P. P. $3 /-$

PRECISION FLATPOT

Manufactured by M.E.C. 50 k., 45 turn. Fly leads. Manufactured by M.e.c. So io/6. Plus. $1 / 6$ P. \& P .
$-\infty-\infty-\infty-\infty$ SEMI - AUTOMATIC "BUG"

SUPER SPEED MORSE REY
adjustable $10 \mathrm{w} . \mathrm{p} . \mathrm{m}$. co as high as desired. Weight $21 / 16$. , $4 / 1 / 2 / 6$, post paid
TRANSISTORISEDMORSE OSCILLATOR. Fitted 2 if. Moving Coil Speaker. Uses eype PP3 or equiv. 9. battery. Complete with latest design Morse key. 22/6, plus 1/6 P. \& P.

> SUPER POWER ALLOY
 34 SILICON SOLAR $4 \times .5$ volt unit series connected, output up to 2 V . at
30
30
times the e inciency of 30 times the efficiency of
Earth Satellites, 39/6. P. \& P. 1/6d.
"SOLAR CELL AND PHOTO-CELL
EXPERIMENTERS' GUIDE"
Teaches the principles of light sensitive devices and
their application. 20/: post paid.

BYZ 13200 PIV 7/| BYZ12 400 PIV... 8/- |
| :--- |
| BYZ10 800 PIV...$~$ | NICXEL CADMIUM BATTERY … sintered Cadmium Type 1.2 v. 7AH. Size: hoisht 3 tin., width 2 ilin. x lifin. Weight: approx. 13 ozs. Em-R.A.F. Teated 12/6. P. B P. 2/6.

100 WATT POWER RHEOSTATS

(NEW) Ceramic construction, winding heavy duty brush assembly designed or continuous duty. THE FOLLOWING II VALUES: $1 \mathrm{ohm} 10 \mathrm{a}, 5 \mathrm{ohm} 4.7 \mathrm{a} ., 10 \mathrm{ohm} 3 \mathrm{ar}$. $25 \mathrm{ohm} 2 \mathrm{a} ., 50 \mathrm{hm}$ l.4a. 100 ohm la., 250 ohm

30 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1.000 / 1,500 / 2,500$ hm, 21/-. P. \& P. I/6.
25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ hm, 14/6. P. \& P. I/6

- DRY REED SWITCHES

New special offer of Dry Reed Switches, \& amp. coneace, if \times ifin., 4 for $10 /-$, post paid.

VENNER ELECTRIC TIME

SWITCH

200-250 v. A.C. 20 amp. contacts twice on, twice off, at any manually pre-set cime. Spring reserve (in case of power
cut) fully zested, $\varepsilon 3 / 9 / 6$. P. \& $\rho .4 / 6$. Or complate in weather-proof metal case (illustrated). ©3/19/6. Plus 4/6 P. \& P. Can be supplied with solar dial. on at dusk-offat dawn. Prices as above.
 (Integrating) Motor. The
Mocor fitced with sold brushes and drawing only 900 microamp at 24 v . D.C. drives swo precision pots with latinum wipers through close tolerance gear-trains, platinum wipers through ciose toterance sear-craing miniature slipping eluteh. combined with including miniature slipping clutch, combined with two sub-miniature pots for calibrating the electrical aperture indicating one rev. per revolution of pointer with maximum of 5 revs., gives an effective scale length of approx. 30in. Offered at fraction of Manufacturer's price: $32 / 6$, plus $6 /-$ P. \& P.

SANWA mutit range meters

Acknowledged throughout the world as the
 NEW MODEL U.S0D MULTI-
TESTER, 20,000 O.P.V. MIRROR SCALED WITH OVERLOAD PROTECTION. Ranges: D.C. volts: 100 mV ., .5 v., 5 v., 250 v., 1,000 V. A.C. voles.
 Complete with batteries 86.10 .0 Post paid. and test prods. leaflet on request.

GEARED MOTORS
Input 230/250 A.C. Output 135 r.p.m. 81b./in. Reversible British made toBSSI70. Used but individually tested and
guaranteed. $6 / \%$. P. \&. P. $6 / 6$.

VAN DE GRAAF ELECTROSTATIC GENERATOR fitted with motor drive for 230 V. A.C. giving a potential of approx 50,000 volts. Supplied absolutely complete including accessories for carrying out a number of interesting experiments, and full instructions. This instrument is completely safe, and ideally suited for School demonscrations. Price

SANGAMO WESTON

Dual range voltmeter. $0-5$ and $0-100$ v. D.C.s prods and lesads. $\mathbf{3 2 / 6}$. P. \& P. 3/6.

AUTO TRANSFORMERS. STED UP SeD Down $110-200-220-240$ v. Fully shrouded. New. 300 watt

SLIDERRESISTANCE

200 ohm 1.25 amp. 37/6. P. \& P. 3/6.
5 ohm 10 amp . $37 / 6$. P. \& P. $3 / 6$.
210 v. A.C. RELAY. 2 c/o 2 amp. contacts., $9 / 6$ ex new equip. P. \& P. $1 / 6$. THYRISTOR 400 piv, 5 amp., $14 / 6$ post paid.
THYRISTOR 400 piv, 8 amp ., 28/6 post paid.
Condenser $5,000 \mathrm{~m} / \mathrm{d} 50 \mathrm{v} .17 \times 4$ inn., $12 / 6$. New
LATEST TYPE SELENIUM BRIDGE RECTIFIERS 30 vole 3 amp., $11 /-$ plus $2 / 6$ P. \& P
MOVING COIL HEADPHONEAND MIKE Soft rubber ear-pieces with M/C Mike fitced 5-way
plug as on No. 19 sec. New, in meker's packing, $16 / 4$, plus $3 / 6 \mathrm{C}$. \& P .
A.C. AMMETERS $0-1,0-5,0-10,0-15,0-20$ amp. F.R 2 fin. dis. Allat $21 /-$ each.
A.C. VOLTMETERS $0-25$ v., $0-50$ v., $0-150$ v. M.I 2 tin. Flush round all at $21 /-$ each. P. \& P. extra.
$0-300$ v. A.C. Rect. MoCoil 2 tin. 29/ $0-300$ v. A.C. Rect. M-Coil $2 t i n . ~ ~$
$0-300$ v. A.C. Rect. M-Coil 3tin. Type $23 /-. .$. ss
 LEtEEE EYp: VARLEY MINIATURE $700 \mathrm{ohm}, 14 / \mathrm{b}$. Base $4 / \mathrm{l} .2 \mathrm{c} / \mathrm{o} 700$ ohm coil. Size $\times \frac{1}{2} \times$ lin. $15 /-$
inc. base. YARLEY TYPE YP4 (similar to illus.), $5,800 \mathrm{ohm} 4 \mathrm{c} / \mathrm{o}$ New, 12/b, less base.
Similar to above. Mid. by GRUNER $4 \mathrm{c} / \mathrm{o}, 2,400 \mathrm{ohm}$ coil. New. 10/-, less base.
UNISELECTOR SWITCHES
NEW 4 BANK 20 WAY
25 ohm coil. 24 v. D.C. operation
14/17/6, plus $2 / 6$. P. \& P.
— BANK 25-WAY FULI

BANK 25-WAY FULL WIPER
24 v. D.C. operacion, ET/io/, Plus 4/-P. aP. SWITCHES USED
75 ohm coil, 24 v. D.C., 6 bank 25 position. 5 non bridging, I bridging wiper
6 bank arranged to give 3 bank, 50 positions ex-equipment, 35/-each. P. \& P. 2/6.

MINIATURE UNISELECTOR

SWITCH

3 banks of 11 positions, plus homing bank. 40 ohm cuil $24-36$ v. D.C. operation. Carefully removed from equipment and
tested. $22 / 6$, plus $2 / 6$ P. \& P.

AIR BLOWER

Highly efficient blower uniz fitted with cotally enclosed $200 / 250$ A.C. 50 cycles. so h.p. motor producing $2,800{ }^{2} \times$ r.p.m. outlet $2 \frac{1}{} \times$ If, used, but in first class condition and te

ULTRA VIOLET BULBS
Easy to use source of U.V. for dozens of practical and experimental uses.
2 vole 36 wate A.C./D.C. SBC, $6 / 6$.
 2 volt 60 wate A.C./D.C. SBC. //b Transformer to suit she above. Input 200-240 P. A.C. 12
 Set of 4 Colours FLUÓRESCENT PAINT. Red yellow, green and cerise. In or jars. Ideal for use with the above Ultra Violet Bulbs, $11 / /-$ plus $2 / 6$ P. \& P.

NEW SOUNDPOWER OPERA-TEDEX-ADMIRALTYHEAD AND BREAST SETS
Two such sets connected up will proquired. Will operace up to t mile. Price $17 / 6$ each. plus P. \& P. $4 / 6$, or 32/6 per pair. P. Al P. 6/-.

SPECIAL OFFER OF FIRST GRADE GUARANTEEDTRANSISTORS. OC83-3 for $12 / 6$. OC8I4 TED TRANSISTORS. OC83-3 Ior 10% OC8ID-4 for $10 /$ OC. OC 4 . $10 /-$ 4 for $10 /-$ OC810-4 for
OC4- 3 for $10 /-. ~ P o s t ~ p a i d . ~$
20-WAY STRIP containing standard Post Office telephone Jack Sockets. Overall siza llin. x jfin. x tin NEW PRICE 15/- each. P. \& P. $2 / 6$.
S.T.C. SILICON POWER RECTIFIERS RS300 Series. All rypes 1.5 amp. wire ended.
RS310, 100 v. P.I.V. $4 /-\quad$ RS350, 500 v. P.I.V. \%/$\begin{array}{llll}\text { RS310, } 100 & \text { v. P.I.V. 4/-* RS350, } 500 \text { v. P.I.V. 8/- } \\ \text { RS330, } 300 & \text { v. P.I.V. } & \text { RS360, } 600 \text { v. P.I.V. } /=\end{array}$ $\begin{array}{lllll}\text { RS330, } & 300 & \text { V. P.I.V. S/-. } & \text { RS360. } 600 \text { Y. P.I.V. I/- } \\ \text { RS340, } 400 \text { v. P.I.V. 7/. } & \text { RS380, } 800 \text { v. P.I.V. } 10 /-\end{array}$ 4 can be used to make 3 amp. bridge. Not Seconds. Brand New Stock. Post paid.

SERVICE TRADING CO. SHOWROOMS NOW OPEN Many Bargains for the caller. ample parking

personal caleas onty
 Q LITTLE NEWPORT STREET,

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8 Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED CONTRACTOR TO H.M. GOVJ

WW-108 FOR FURTHER DETAILS

ADVANCE TEST EQUIPMENT

VM76 Valve Voltmeter
R.F. measurements in excess of 100 mHz and d.c. measurements up to $1,000 \mathrm{~V}$ with accuracy of $\pm 2 \%$. D.c. range- $300 \mathrm{mV}-1 \mathrm{kV}$ f.s.d. A.c. range- $300 \mathrm{mV}-300 \mathrm{~V}$ r.m.s. Resistance in 8 ranges, 0.02-500 Megohms.
Manufacturer's price £90: Our price $£ 72$
VM77C: A.C. Millivoltmeter
$1 \mathrm{mV}-300 \mathrm{~V}$ full scale in 12 ranges. Freq. range $15 \mathrm{c} / \mathrm{s}-4.5 \mathrm{Mc} / \mathrm{s}$. Input impedance 10 Megohms 20 pf . Calibrated in r.m.s. volts for sine wave input and dB. 100-250 V a.c. input.
Manufacturer's price £55: Our price $£ 40$
VM78: A.C. Millivoltmeter
Transistorised. $1 \mathrm{mV}-300 \mathrm{~V}$ in 12 ranges. Freq. $1 \mathrm{c} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$. Input impedance 2 Megohms 60 pf. Calibrated in r.m.s. for sine wave and input dB.
Manufacturer's price £70: Our price $£ 55$
TT1S: Transistor Tester (CT472)
Suitable for measuring medium and low powered transistors. Current gain (B) can be measured in range 10 to 500 for p.n.p. and n.p.n. types, either in circuit using the clip-on probes provided. Small, compact instrument.
Manufacturer's price £57: Our price £37/10/-

VM79: UHF Millivoltmeter
Transistorised. A.c. range $10 \mathrm{mV}-3 \mathrm{~V}$ f.s.d., 10 ranges. D.c. current range $0.01 \mu \mathrm{~A}-0.3 \mathrm{~mA}$ f.s.d. 10 ranges. Resistance $1 \mathrm{Ohm}-10$ Megohms in 7 decade ranges. Complete with probe. Manufacturer's price £180: Our price $£ 125$
J1B: Audio Signal Generator
$15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$ in 3 ranges. Output 600 Ohms, $0.1 \mathrm{~mW}-1 \mathrm{~W}(0.25-24 \mathrm{~V})$, variable. Attenuation $20 \mathrm{~dB}-600 \mathrm{Ohms}$ (Attenuator is incorporated), output 10 mW (2.5 V). $100-250 \mathrm{~V}$ a.c.
Manufacturer's price £46: Our price £30
J2B: Audio Signal Generator
Same specification as for the J1B except that this model has an additional 2 in . meter calibrated $0-40 \mathrm{~V}$ a.c.
Manufacturer's price £50: Our price $£ 35$
H1B: Audio Signal Generator
$15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$ in 3 ranges. Sine wave $200 \mu \mathrm{~V}$ 20 V r.m.s. Square wave $1.4 \mathrm{mV}-140 \mathrm{~V}$ peak to peak (approx.). 100-250 V a.c.
Manufacturer's price £42: Our price £30
Special offer of 10% discount for schools and Technical Colleges, etc. These were manufactured in U.K. by Advance Electronics Ltd. BRAND NEW, all in original sealed carton. Carr. 10/- extra per item.
S.A.E. for all enquiries. If wishing to call at Stores, please telephone for appointment.
W. MILLS

3-B TRULLCK ROAD, TOTTENHAM, N. 17
Phone: Tottenham 9213

SIGNAL GENERATORS:

MARCONI TF-144G: freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$, internal and external modulation, power supplies $200 / 250 \mathrm{v}$. A.C. (secondhand cond), price $£ 25$ ea.; or available in transit case, complete with spares, in first class condition, $£ 30$ ea., carr. on both 30/- ca.
TS155c/UP (as new): price $£ 75$ each, carr. £1.
CT53. Freq. range $8.9-300 \mathrm{Mc} / \mathrm{s}$, with Calibration chart. Output $1 \mu \mathrm{~V}-100 \mathrm{mV}$. internal square wave and sinewayc modulation at $100 \mathrm{c} / \mathrm{s}$., external modulation $50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}, 230$ v. A.C. Complete with chart, etc., price 227/0/- ca.
carr.

MARCONI TFs01A/1 Freq. $10-300 \mathrm{Mc} / \mathrm{s}$, 4 bands, output 200 mV , Atten uator $0-110 \mathrm{~dB}$. Input 75 ohms . £65 cach, carr. £1.
MARCONI TF516-F/1: Covering $10-18 \mathrm{Mc} / \mathrm{s}$, $33-58 \mathrm{Mc} / \mathrm{s}$, , $150-300 \mathrm{Mc} / \mathrm{s}$. £12/10/- each, carr. £1.

MARCONI CT2 $28:$ price $£ 65$ each, carr. $30 /$-i.
CT. 480 and $478: 1.3-4.2$ Mc/s., F.M. or A.M., price $£ 75$ each, carr. $30 /$ -.

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW., reception crystal fileer, with phasing control. AVC and signal strength meter. Freq. range $50 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{mc} / \mathrm{s}$;,
with set of with set of nine coils. Receiver only in working order, $18 / 10 /-\mathrm{c}$ carr.
each. Set of nine coils, $£ 12 / 10 / \mathrm{F}$, available only with set. Power unit for HRO each.Set of nine coils, $£ 12 / 10 /$ ava
$100 / 240 \mathrm{v}$ A.C., $£ 2 / 15 /-$, carr. $10 /-$.
SPECIAL OFFER: Complete HRO SET (Receiver, Coils and Power Unit) for $£ 30$, plus 30 - carr.
HRO-M-SETS available with UX type valves; secondhand cond., with 5 coil and power unit, £20 each, carr. 30/-.
COMMAND RECEIVERS : Model $3-6 \mathrm{Mc} / \mathrm{s}$. and $6-9 \mathrm{Mc} / \mathrm{s}$, as new, price ع5/10/- each, post 5/.
BC-433G COMPASS RECEIVER: Freq. $200-1,750 \mathrm{Kc} / \mathrm{s}$. in 3 bands, suitable for aireraft, boats, etc. Complete with 15 valves, power supply inpur 24 v. D.C. at 2 amps . Receiver only $£ 5$ each. Carr. $15 /$-.
RECEIVER TYPE S.27: UHF: freq. $35-143$ tunable Mc / s., AM/FM $100 / 250$ A.C. $£ 25$ secondhand cond., $£ 50$ as new, $30 /$ - carr.
AIRCRAFT RECEIVER TYPE 1392: freq. $100-150 \mathrm{Mc} / \mathrm{s}$. tunable, with power unit for $200 / 250 \mathrm{v}$. A.C. mains. In serviceable cond., $£ 10$ each, carr. 25/*.

ROTARY TRANSFORMERS: 24 v . input, 175 v . at 40 mA output, $25 /$., plus $2 /-$ post. 12 v . input, 225 v . at 100 mA output, $25 / \mathrm{m}$. plus $3 /$ - post (All the above are D.C. only).
ROTARY CONVERTERS: Type 8a, 24 v. D.C., 115 v. A.C. @ 1.8 amps. ROTARY CONVERTERS: Type 8a, 24 v. D.C.; 115 v. A.C. @ 1.8 amps. $400 \mathrm{c} / \mathrm{s} 3$-phase, £6/10/- cach, 8 .
$60 \mathrm{c} / \mathrm{s}$ output, E 15 each, $\mathrm{f1}$ carr.
AVO MULTIRANGE No. 1 ELECTRONIC TEST SET: $£ 25$ each, carr, £1,
AVOMETERS: Model 47A, £9/19/6 each, 10/- post. Model 7x, £13/10/- each, 10/-post. Excellent secondhand cond. (Meters only). (Batteries and Leads extraat cost).
OSCILLOSCOPE Type 13A, 100/250 v. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope, $£ 22 / 10 /-$ each, $30 /$ - cars
COSSAR 339 OSCILLOSCOPE, double beam, 110 each, $30 /$ - carr

RELAYS: Relay Unit (with 9 American relays) 24 v. D.C., 250 ohm coils,
heavy duty, M. \& B. $30 /$ each, $4 /=$ post. GPO Type 600,10 relays @ 300 heavy duty, M. \& B. $30 /$ each, 4 - post. GPO Type 600,10 relay
ohms with 2 M and 10 relays $@ 50$ ohms with 1 M ., E 2 each, $6 /-$ post.

CALIBRATION TACHOMETER Mk. II: Maxwell Bridge Type 6C/869, £25 each, $£ 2$ carr
ROTAX VARIAC \& METER UNIT: Type 5G.3281. Reading $0-40$ v, $0-40 \mathrm{~mA}$ and 0.5 amps., all on 275 deg. scales, $£ 30$ each, $£ 2$ carr.
MARCONI IMPEDANCE BRIDGE, TF-373: inductance $5 \mu \mathrm{~h}-100 \mathrm{H}$ in 5 ranges capacity $5 \mathrm{pF}=100 \mu \mathrm{~F}$ in 5 ranges, resistance .05 meg. $\cdot 1$ meg., power supply 250 N . A.C., $£ 37 / 10 /$ each, carr. 15%

HEWLETT PACKARD TYPE $400 \mathrm{C}: 115 \mathrm{v} .230 \mathrm{v}$. input $50 / 60 \mathrm{c} / \mathrm{s}$. Freq. range $20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}$. Voltage range: $1 \mathrm{mV}-300 \mathrm{v}$. in 12 ranges. Input impedance range $20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc}$. s .
10 meghohms . Designed for rack mounting, $£ 30$ each, carr. $15 /-0$
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price 25/-, post 5/-.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price $10 /$-each, post $2 / 6$. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mfd}$ and M.98034-
$4 \times 3 \times 0.01$ mid. 3 for $10 /$ post $2 / 6$. Trimmers, $95534-502,2-20$ p.f. Box of 3 , 4, 3×0.01 mid. 3 ior $10 /$ post $2 / 6.4$ mid. $600 \mathrm{v},. \mathrm{E} 2$ each, $4 /-$ post. Filter $10 /-$ post $2 / 6$. Block Condenser, 3×4 mid. $/$ - post.
Choke, L45 and $50, K 901433-501,25 /-$ each, 4,
CONDENSERS. $10 \mathrm{mfd} .1,000 \mathrm{v}, 12 / 6$, posi $2 / 6.8 \mathrm{mfd}$., 1,200 volts, $12 / 6$, post $3 /-.8 \mathrm{mfd} .600$ volts., $8 / 6$ post $2 / 6.0 .25 \mathrm{mfd} ., 2 \mathrm{kv}$., $4 /-$ post $1 / 6$.
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, relays, magnetic clutches,
price $£ 7 / 10 /=, ~$
. carriage.

TELEPHONE EQUIPMENT:

DESK TELEPHONES with dial, in excellent secondhand cond. $\mathbf{E 2 / 1 0 / -}$ a pair, 10/-post.
TELEPHONE WIRE: 220 yds . $£ 1$ a roll, post $6 /$ -
GPO TERMINAL BLOCKS, $7 / 6$ each, FUSE AND PROTECTOR, $9 / 6$ each. Post on both $2 / 6$.
TELEPHONES (PORTABLE) TYPE "F". Suitable for all outdoor activities up to a range of 5 miles. Price $\mathbf{£ 7 / 1 0 / - e a c h , ~ a s ~ n e w , ~ c o m p l e t e ~ w i t h ~}$ carrying case. Price $5 / 10 /-$ each, secondhand. Carr. $10 /$ -

TELEPHONE EXTENSION CORD. Brown, 3 -way; come in lenghts of 6 ft . and 14 ft ., $9 / 6$ and $15 /-$ respectively. Post $2 / 6$.

NIFE BATTERIES: 6 v. 75 amps., new, in čases, f 15 each, fl carr.; 6 v .160 amps., new in cases, $£ 25$ each, $£ 1 / 10 /-$ carr.; 4 v . 160 amps , new, in cases, $£ 20$ amps., new in case
each, $\mathrm{E} 1 / 10 /-\mathrm{carr}$.
L.R. 7 Cells, only 1.5 v . 75 amps., ncw, f 3 each, $12 /$ - carr
The above batteries are low resistance designed to give a heavy surge for starting and can be stored for long periods without any effect to their performance.
WAVE GUIDES FLEXIBLE CG-182/APM40. Length 18 inches. Price $£ 2$ each, pest 4/-
MACHMETERS: Range $0: 1$ and $0: 1.2,6 \mathrm{~A} / 3384$ and 5325 respectively, price 30/- each, postage 5/-.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in. diameter case. Price 0-9999, with locking
$30 /-$ each, postage 5 -.
DRY BATTERIES, No. 1. HT 90 v . and 7 t v . size $2 \mathrm{k} \mathrm{in} . \times 3 \mathrm{fin} . \times 5 \mathrm{in}$, 5/- each, or 5 for $£ 1$, post $4 /-$ and $7 / 6$ respectively.
BATTERY NO. 4 (suitable for bells, etc.). $4 \frac{1}{2} V .$, size $4 \| i n . ~ \times 6 i n . ~ \times 2 k i n .$, 5/. each, post 3/.
UNISELECTORS (ex equipment): 10 Bank 50 Way, alternate wipe, $£ 2 / 5 /-$ ea. 6 Bank, 25 Way, alternate wipe, £2/2/6 ea. 8 Bank, 25 Way, £2/5/- ea. 6 Bank 25 Way, £2 ea. 4 Bank, $25 \mathrm{Way}, 35 /-\mathrm{ea}$. All the above are 75 ohm coil. Postage 4/- per uniselector.
FREQUENCY METERS: 1M 13 or BC-221; 125-20,000 Kc/s., £25 each., carr. 15/ $=$. TS. $175 / \mathrm{U}$, £ 75 each , carr. £1. TS323/UR; $20-450 \mathrm{Mc} / \mathrm{s}$, £75 each, carr. 15/-FR-67/U: This instrument is direct reading and the results are presented carr. directly in digital form. Counting rate: $20-100,000$ events per sec. Time Base Crystal Freq.: $100 \mathrm{Kc} / \mathrm{s}$. per sec. Power supply: $115 \mathrm{v}, 550 / 60 \mathrm{c} / \mathrm{s}$. , floo each carr. £1.
CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq, range $450 \mathrm{c} / \mathrm{s}-$ $22 \mathrm{Kc} / \mathrm{s}$. , directly calibrated. Power supply $1.5 \mathrm{v} .-22 \mathrm{v}$. $\mathrm{D} . \mathrm{C}$. $\mathrm{E} 12 / 10 /=$ each, carr. $15 / \mathrm{m}$.
AMERICAN EQUIPMENT: Power supply, PP893/GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical CY 1288/GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast Erection Kits, 1186/GRC; Receiver
type 27 8B; Directional Antenna CRD.6: Comparator Unit, CM.23; Directional type 27 8B; Directional Antenna CRD.6: Comparator Unit, CM. 23; Directional Test Set URM.44, complete with Signal Generator TS.622/U, £100 each, £2 carr.
CATHODE RAY TUBE UNIT: With 3 in, tube, colour green, medium persistence complete with nu-metal screen, $£ 3 / 10 / \cdot$ each, post $7 / 6$.
TRANSMITIER/RECEIVER TCS-12: Freq. $1.5 \mathrm{Mc} / \mathrm{s}-12 \mathrm{Mc} / \mathrm{s}$, output 25 W , complete stations available with antenna equipment, mast, and petrol generator, cart $2710 /$ 'Perol Generator aerial systems, £ 10 each, carr. £2.

TACAN. Trans./Receiver, same as ARN21, British made, STC, TR9171 complete with five 2C39As with associated valve-holders. As new price, $£ 25$. Used condition, $£ 15$, carriage $£ 1$,
APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 v. D.C. Dynamotor and 3 relayü, 11 valves, price f3 each, carr. 10/=.

GEARED MOTORS : 24 v. D.C., current 150 mA , output 1 r.p.m., $30 /$ - each 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., \&2 each, 5/-post.
MOTORISED ACTUATOR: 115 v. A.C. $400 \mathrm{c} / \mathrm{s}$. single phase, reversible, thrust approx. 3 inches complete with limit switches, etc. Price £2/10/- each, postage 5/-(ex equipment).
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. 25 lbs ., rating intermittent, price $£ 3$ each, post $5 /-200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. current consumption approximately 6 amps . Price 28 V. D.C. 200
£ $3 / 10 /=$, post $7 / 6$.
FRACTIONAL MOTORS \& FANS: Low inertia Motor 5UD/5361, Type 903, 24 v. input D.C., £2/10/- each, 5/- post.
Model PM84: 28 v. D.C. @ $2 \mathrm{amps}, 4,500$ r.p.m., output 40 watts continuous duty complete with magnetic brake. Price N 2 each, postage 4/-.
Model SR-2: 28 v. D.C. 7,000 r.p.m., duty intermittent, output 75 watts, price $25 /$ - each, postage $4 /$ -
A.C. Motor 115 v. $50 \mathrm{c} / \mathrm{s} .1 / 300$ H.P., 3,000 r.p.m. Capacitor 1 mfd , $25 /-\mathrm{post}$ 3/-. Dalmotor SC5, 28 v. D.C. at 45 amps; 12,000
(approx. 1 h.p.), brand new, £2/10/- each, post $7 / 6$.

BENTLEY ACOUSTIC CORPORATION LTD. 38 CHALCOT ROAD, CHALK FARM, LONDON, N.W THE VALVE SPECIALISTS Telephone PRIMROSE 9090 47 NORFOLK ROAD, LITTLEHAMPTON, SUSSEX. Littlehampton 2043 Please forward all mail orders to Littlehampton

$0 \mathrm{OA}^{2}$	5 y	6887	18/6	6x	3/8	$20{ }^{2} 2$	21/8	306	131-	$\begin{aligned} & \text { DM71 } 9 / 8 \\ & \text { DW }+/ 350 \end{aligned}$		EC
OB2		6BW6	7/-	6x5at	5/3	$20 \mathrm{L1}$	13,		11/8			Eclan
OZ4	$4 / 3$	6Bw7	5/6	6470	12/6	20 Pl	17/8	956			8/6	ECL82
$1{ }^{1} 3$	$2 / 6$	6 C 8	3/9	${ }^{786}$	10/9	20 P 3	17/-	1821	10/6	DW*		ECLA3
1 A5	5/-	6C8	10/9	787	\%-	20 P 4	$17 / 6$	5763	101-		$8 / 6$	ECLA 4
1a7gt	$7 / 6$	6CD69	19/6	7 Cb	401-	20P5	17/-	7475	$2 / 6$	DY86	8/9	ECLAs
1 C 5	4/9	6 CH 6	8/-	768	8/-	25466	$7 / 6$	A1834	201-	DY87	5/8	ECL86
$1{ }^{106}$	$8 /-$	$6 \mathrm{CWH}_{4}$	12/-	7H7	5/-	25160	$4 / 9$	ACO4	$4{ }^{14}$	ESOF	24/-	
1 D6	$9 / 6$	6D3	7/8	7R7	12/8	$25 Y 5$	6/-	AC2P E	EN	E83F	21)-	
$1 \mathrm{PD1}$				787	$8 /=$	25 YbG	$8 / 6$		19/6	E88CC	12/-	EF22
1FD9	3/3	6 Fl	9/8	7 Y 4	8.6	25 zta	8/3	AC2P		E180F	1718	EF36
106		. 6 F6G	4/-	98w6	$9 / 6$	2525	7/-		1816	EAB0	1/8	EF37A
1 H 5 CT		.6F12	3/3	9D7	$7 / 6$	25860	$8 / 8$	AC6P	EN4/9	EA76	$13{ }^{-}$-	EF39
1 L	2/8	6 F 13	3/6	10 Cl	\%1-	30 Cl	7/-	AC/PE	EN (5)	EABC8	80 81-	EF40
12D5		6 F14	18/-	1002	121-	30C15	121-		19/6	EAC91	$3^{3 / 3}$	EF41
1LN5	4/8	6F15	$10 / 9$	10D1	\%-	30 Cl 7	18/-	AC/	N(7)	EAF42	2 7/8	EF42
INsGT	7/9	${ }_{6} \mathrm{~F}^{17}$	18/6	10D2	11/8	30 Cl 18	$9 / 8$		19/6	EB41	1/9	EF50
1 RS	4/8	${ }_{6}{ }^{18}$	$8 / 6$	10 Fl	15/-	30F5	11/6	AC/TH		EByl	23	EF54
194	4/8	$6 \mathrm{~F}^{2} 3$	11/6	10 F 9	\% $1-$	30 FLl	15/-		10/-	EbC3	20,8	EF80
185	3/8	6F24	10/-	10F18	81-	30 FL12	15/-	AC/TP	19/6	Ebcs3	3	EF33
1U4	5/8	6 P 28	$10 / 6$	10LD 11	10/-	$30 \mathrm{FL14}$	12/6	AC/VP	P122/-	EBC4	7/3	EF80
1U5	5/3	6F32	3/-	10P13	14/8	30 L 1	8/-	AC/VP	P211	Ebics	8/3	EPS
2D21		6060	$2 / 6$	10P14	15/6	30 L 15	14/-	ATP4	$2 / 3$	EbC90	3/9	EF89
3 A 4	3/8,	6H607	T $1 / 6$	12A6	\$/	$30 \mathrm{L17}$	13/-	Az1	8/-	Ebic91	5/-	EF91
3 A 5		$6 J 50$	$3 / 8$	12AC6	8/-	30P4	11/6	AZ31	7/9	EBF80	8/9	EF92
387	5/-	6.J59T	//6	12 a 66	9/-	30 P 4 MR		A 711	6/6	EbF83	$37-$	EF97
3D6	3/9	6 J 6	3/-	12AE6	7/8.		18/-	BL63	10/6	EBP89	5/8	EF
304	$8 / 8$	6.370	$4 / 0$	12AT6	4/8	30P12	11/-	CL33	10/6	EbL21	10/3	EFP183
3 CSGT	6/6	6J79T	$8 / 6$	12AT7	3/6	30 P 19	11/-	CYIC	6/6	EC52	4/3	EF184
384	4/9	$6 \mathrm{K6GT}$	T	12aU8	4/8	$30 \mathrm{PL1}$	15/-	CY31	$7 / 9$	EC53	18/6	EH90
3 V 4	5/6	6 K 70	$1 / 8$	12AU7	4/6	30 PL13	15	D15	18/6	EC64	8/-	EL32
5 RiGY	$8 / 9$	$6 \mathrm{K7GT}$	$4 / 6$	12ave	6/8	30 PL 14	15/-	D63	8-	EC70	4/9	El33
	$4 / 9$	$6 \mathrm{K8G}$	${ }^{-1}$	12AX7	4/8	30 PL 15	15/-	D77	2/3	Ec86	11/6	EL34
5 V 4 C	8 -	$6 \mathrm{K8GT}$	$7 / 6$	12AY7	9/9	35A5	${ }^{15}$!-	DAC32	27	EC88	12/-	EL35
6Y3GT	8	6 L 1	$101-$	12BA8	6/-	35 L6GT	1 8 /3	DAF91	$13 / 3$	EC91	6/-	EL36
$5 \mathrm{Z3}$	$7 / 6$	6L18	7/6	128E6	5/3	35 W 4	$4 / 6$	DaF96	8/=	EC92	$8 / 8$	EL37
5240	716	6L19	18/-	12E1	17/8	3523	10 -	DCC90	$81-$	ECC31	15/6	EL41
6/30L2	12/6	6LD20	$6 / 8$	12 J 50 T	2/6	35740 T	4/8	DD4	1016	E0c32	4/8	EL42
6A8G	$7 / 6$	6N7GT	7-	123707	6/6	3526 CT	8/8	DD41	12/6.	F.CC33	29/1	EL81
${ }^{6 A C 7}$,	6 Pl	12/-	12 K 5	8/-	30AS	21/10	DDT4	7/6	ECC34	29/8	EL83
6 6al	$5 / 9$	6P25	12/-	12K70T	3/6	5085	8/3	DF33	7/9	ECC35	4/8	EL84
6AK5	1/日	6P26	12/-	12K80T	7 719	50C5	619	DF91	2/8	ECCA0	9/8	EL85
6ak6	8/-	6P28	25/-	12Q76T	3/6	50CD6G	41/-	DF96	$8 /-$	ECC8 1	3/6	EL86
6AL5	2/8	8870	5/-	128 A 7 G		50L60T	8/-	DF97	101-	ECC82	4/8	EL91
6A314	18/8	6970T	8/9		819	72	8/6	DH63	8/-	Eccs3	4/6	EL95
6AM8	8/3	${ }^{6} \mathrm{R} 7 \mathrm{G}$	8/6	128c7	4/-	85a2	$8 / 6$	DH76	$3 / 6$	ECCS4	8/-	ELL80
6A95	4/8	88a70	7/	12887	3 3-	90 A 9	67/6	DH77	3/8	ECC85	5 -	EM71
6atio	$201-$	$68 \mathrm{C7}$	8/6	128517	5/-	90 AV	67/6	DH81	$10 / 9$	FCC88	71	EM80
6 AT6	3/9	6897	7/9.	128 K 7	3/-	9006	34/-	DK32	7/6	ECC189	9/-	EM81
6aU8	3/8	68 H7	3/-	12897a	T8/-	90CV	33/6	DK40	10/6	ECFPo	71-	Emb4
6av6	8/-	6837	\$1-	12887	8/-	90 Cl	18/-	DK91	4/9	ECF82	6/8	EM85
6BA6	4/6	68 K 7	4/6	12 Y 4	2/-	15082	14/6	DK92	$7 / 6$	ECF86	8/6	EM87
6 BEC	4/4	68NTOT	T $1 / 6$	1487	$9 / 6$	$150{ }^{2} 2$	$8 /$	DK96	8/8	ECH3	23/3	EYE1
6 BH 6	8/6	68970T	T 8 /-	1487	$19 / 6$	181	15/-	DL33	8/6	${ }^{\text {ECH}} 21$	9/8	EY81
${ }^{6} \mathrm{BJ} 6$	7/18	$68 T 7$	12/6	18	12/6	188 BT	35/-	DL35	$4 / 9$	ECH33	22/8	EY83
6BQ5	4/8	6U40T	9/6	19	10/6	301	$201-$	DL92	4/8	ECH36	$0 /$	EY84
$6 \mathrm{BQ7A}$	7 -	6U5G	5/-	19AQ5	5)	302	16/6	DL94	5/6	ECH42	$8 / 8$	EYB
$6 \mathrm{BR7}$	$9 /$	6U79	7/-	20 Dl	13/-	303	16)-	DL96	6 -	ECH81	5/6	EY87
$6 \mathrm{BR8}$	8/-	6 Vbg	3/6	20 D 4	20/5	30	18/8	DM70	-	[CH83	7-	EY8

 M100000089

Ther SIS THE STADDAD

Used and acclaimed by:SCIENTISTS ENGINEERS TECHNICIANS TEACHERS \& STUDENTS

This new, better-thanever edition of the famous Home Radio Catalogue is the result of ten years of most careful selecting, compiling and indexing.

Of course, no catalogue is ever really finalised. As soon as we have one edition off the press, our researchers get busy finding out what is the latest and best in the world of Radio and Electronicsready for the next printing.

This new edition is without doubt the finest, most comprehensive we have ever produced-it has 256 pages, over 7.000 items listed, over 1,300 illustrations. It really is a must for anyone interested in radio and electronics. With each catalogue we supply our unique Bargain List, a Book Mark giving Electronic Abbreviations, an Order Form and an addressed envelope. All this for only $7 / 6$ plus $2 /$-post and packing. By the way, every catalogue contains 5 vouchers. each worth $1 /-$ when used as directed. Send the attached coupon today, with your cheque or P.O. for $9 / \mathrm{F}$. You'll be glad you did!

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

TE-55 VALVE VOLTMETER

 D.C. volts $1.5 \cdot 1,500$
A.C. volt 1.51 .500
Reaistance 1.9 in 1,0
 Complete W1th probe and
invituctions $£ 15$. P. \& P . 6/dditional Proben aval
Able: H.F. 35/: able:
42/6.

AVOMETERS

 Supplied in excellem condition fully testedand checked. Com. plete with prons
leads and instruc $\begin{array}{lll}\text { tions. } & & \\ \text { Mordel } & \text { 47A } & \text { £8/19/6 }\end{array}$ $\begin{array}{lcr}\text { Model } & \text { f7 } & \text { £819/6 } \\ \text { Model } & 7 & £ 1310 / 0 \\ \text { Model } & 8 & £ 18 / 0 / 0\end{array}$ Model is £20/010

SINCLAIR EQUIPMENT

NOMBREX Transistorised Equipment
ALL Post Paid With Battery

$\begin{array}{lll}\text { Model } & 22 & \text { P.s. } U . \\ 0.15 . & \text { D.C. } & \text { \&14. } \\ \text { Model } & 30 & \text { Aurlio } \\ \text { Generator } & 10\end{array}$

 Bridge $£ 9$ Model 66 Inductance Bridge $£ 18$.
Model 61 P.s.U. $0.5 \cdot 15$ v. D.C. $£ 6 / 10 /=$

AMERICAN RECORDING TAPES

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE

A band reveiver covering $550 \mathrm{Ke} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{sa}$.
continuous and eiect rical bund continuous and electricel bund uDread on 10 ,
15 . 20.40 and so metres. $\%$ valve plum 7 dioale
tirce.

 Bain controls. $115 / 250 \mathrm{~V}$. A.C. Mains. Beautifully designed. Size: $7 \times 13 \times 10 \mathrm{inn}$. Whith
instruction manual and nervice dals. $£ 3 / 10 / 0$.

18 transistors, 8 diodes, 1HF music power 30 watts at 8 ohns. Response $30-20,000 \pm 2$.
dB at 1 w . Distortion 1% or less. Inputs dB at 1 w . Distorion 1% or less. Inputs
3 mV and 250 mV . Output 3.16 ohms. separate L. and R, volume controls. Treble and bass controls. Stereo phone jack.
Brushed aluminium, gold anodised extruded Brushed aluminium, gold anodised extruded
front panel with complementary metal front panel with complementary metal
case. Size $104 \mathrm{in} . \times 3$ nin. $\mathrm{in} \times 7$ lin. Operation case. Size $101 \mathrm{in} . \times 38 \mathrm{nin} . \times 7 \mathrm{lin}$. Operation

* TRANSISTORISED FM TUNER 大

THYRISTOR
SLIIIONONTROL RECTIFIERS
SOOP.IV. 3 amp.

 F.M. WIRELESS MICROPHONE 94-104 Mc/g. Translatorinerl Operates from 9 v . hatlery. Complete with zulditional becret tie-clip miderophone.
\qquad
AVO CT. 38 ELECTRONIC MULTIMETERS

ineash quality 07 range instrument which ineasures A.C. and D.C. Voltage. Current,
Resistance and Power output. Ranges D.C. volts $250 \mathrm{mV}-10,000$ v. 10 meg $10-110$ meg input). D.C. current $10 \mu \mathrm{~A}, 25 \mathrm{amps}$. Ohms: R.F. measuring head up to $2: 0 \mathrm{M} / \mathrm{Mc} / \mathrm{s}$). A.C R.Frent $10 \mu(-25$ atmps. Power output 50 micro-watts- 5 watts. Operation $0 / 110 / 200 / 250 \mathrm{v}$. C.
Supplied in perfect condition complete with circuit lead and R.F. probe £25. Carr. $15 /-$
AVO CALIBRATION TEST UNIT TYPE CT. 155.
For use with CT. 38 Multimeter. Gives 7 standard voltages $230 \mathrm{mV} . / 1 \mathrm{v} . / 2.5$ v. 10 in 2 gom v. A.C. Brand new $\mathbf{2 7} / 10 \%$ D.C. \& R P internal standard coll. Operation $0 / 110 / \% 00$

MARCONI TEST EQUIPMENT

EX MILITARY RFCONDITIONED.
 TF.329G. " O"" METER. BRAND NEW, COM-
PLFTE WITH ALL ACCESSORIES, £75, carr. 301 T.F.195M. BEAT FREQUENCY OSCILL.ATOR.
 All alove offered in excellent condition fully testewl and checked.
rF 1100 VALVE VOLTMEJER, Brand New. £50. TF. 1267 TRANSMISSION TEST SET, Brand New, $\mathbf{8 7 5}$. TF. 675F/I PULSE GENERATOR, Brand New, £45

Varioble Voltage Thansfinwilis mes

S.T.C. I WATT ZENER DIODES
BRAND NEW. LIST $17 / 6$ each Ilable $2.4 / 2.7 / 3 / 3.9 / 4.3 / 13 / 16 / 18 / 20 / 30 / 33$ each type. P. \& P.extrs.

LAFAYETTE HI-FI STEREO HEADPHONES

- Air curbioned beadband \& Solt rubber ear pads \star Frequency response. ${ }^{25}$
to 15,000 cyclea. \star High nenalitivity. Impedance 8 complete phone. Supplled complete whit all cables,
wiren, overhem brox and 3 -connection plug
$79 / 8$.

PRINTED CIRCUITS

Five ansoried printed
circuit lands with trinsilitors. dlodes. reaistora. condenseru, mum or trannistors.
Ideal for expertherie.
ters. IO Puards for 10/.

CD7IIS.2. DOUBLE BEAM OSCILLO. SCOPE
An extremely hish

CAFAYETTE TE 46 RESIST ANCE CAPACITY

ANALYSER

${ }_{\text {Br nd }}$

\& Co. (Radio) Ltd. 3-34, Lisle St., W.C. 2. also see opposite page

MODEL TE-70, 50,000 $1400 / 1,200$ ४. D.C. $0 / 6$ $30 / 120 / 600 / 1,200 v$ +.C. $0 / 30 \mu \mathrm{~A}$ । $3 / 30$ $300 \mathrm{~mA} .0 / 16 \mathrm{~K}!160 \mathrm{~K}$ $1.6 \mathrm{M} / 16$ Meg. Ω. 25/10/- P. \& 1'3/-

MODEL TE-10A. 200 kS Volt, $5 / 25 / 50 / 250 / 500 / 2,500$ v. D.C. 10/50/100/500/1,000 V. A.C.

O/SOMA/2.5 mA./250 miA.
D.C. 0/GK/R meg. ohm D.C. 0/BK/A meg. ohm $-2010+22 \mathrm{~dB}$. mid. 69/6. P. \& P. 2 6.

$1 / 6$.
MODEL
ZQM
TRAN.
SISTOR
CHECKER t has the fulles capacity for checking 3 and Equally adaptble for check ing
 diodes, etc.

0.9967 .

200. Ico: 0/50 micro-amps. 0.5 mLA . Resistance for diode $200 \Omega+1$ MEG. Supplied complete with instructions. battery and leads. 5/19/8. P. \& P. 2'6.

SOLARTRON MONITOR

 OSCILLOSCOPE TYPE 101.An extremely high quality oscilloscope with time base of $10 \mathrm{p} / \mathrm{sec}$. to $20 \mathrm{~m} / \mathrm{sec}$. Internal y ampliner. eparate inains power supply 200 . Supplied in excellent condition with cables, probe, etc., as riceived

R.C.A. ARBS SPEAKERS

 f", 3 ohm speakers in metal case. Black crackle finish to match our es Receivers. Available Brand Carr.-7!6.
HOSIDEN HS-00 2-WAY HOSIDEN HS-606 2- STEAEO HEADSETS
 STEREO HEADSETS
 Each headphone coneains a $2 t \mathrm{in}$. woofer and a fin . eweeter. 8 Buile-in individual level controls. 25-18.000

HEW MODEK 500. 30,000 O.P.V. with overload protection Mirror scale.
$0 / .5 / 2.5,10 / 25 / 100 i$ $250: 500$ 1,000 v. D.C. 0 /2.5 $10,25 / 100$ ' $250 / 500 / 1,000$ v. A.C. $0 / 50 \mu \mathrm{~A} / 5 / 50 / 500 \mathrm{~mA}$. 12 amp. D.C. $0 / 60 / \mathrm{K} 8$. Meg./60 Meg. 8. 88/17. 6.
Post paid.

KODM. TE 80. 20,000 O.P.V. $50,100,500$ 1.000 V. A.C. $0 / 5225 / 50 /$ $0-50 \mu \mathrm{~A}$. $5 / 50 / 5100$ DIA $0 / 6 \mathrm{~K} / 60 / \mathrm{K} 600 \mathrm{~K} / \mathrm{B}$ Meg. 4/17/6. I'P. 3ヶ-

PROFESSIONAL 20,000 o.p.v. LAB. TYPE MULTITESTER

With auto- matic overload

 Protection. Mirror
Ranges
$0 / 10 / 0$ $50 / 200 / 500 /$
1,000 v. D.C. and A.C. O-
f.00 $\mu \mathrm{A} .10 \mathrm{~mA}$. 250 mA . Cur rent $0 / 20 \mathrm{~K}, 200 \mathrm{~K}, 2$ megohm. Decibels -20 to +22 dB . $25 / 10 \%$.

TEP-51. WEW 80,0001 TE51. VEW 20,000 YOLT $0 / 601120,1,200$ V. A.C $0 / 6 / 60 / 120,1,200$ v. A.C.
$0 / 3 / 30 / 60 / 300 / 600 / 3,000 v$ D.C. $0 / 60 \mathrm{~K} / 6 \mathrm{MEG}$. OHM $85 /=$ P. \& P. 2/6.

MODKL 250J. 2,000 O.P.7. $0 / 10 / 50 / 500 /$ 2,500 v. D.C. 0110150 500/2,000
$0 / 2$ Meg. Ω.
$0 / 250 \mathrm{miA}$.
-20 to +36 dis 49/8. P. P. $2 / 6$

AUTO TRANSFORMERS
O/I $15 / 230 \mathrm{v}$. Step up or step down. Fully shrouded

500 W. \&3/io/0, P. \&. $6 / 6$
$.000 \mathrm{~W} .65 / 10 / 0$, P. \& P. $7 / 6$

$1,500 \mathrm{~W}$. E6/10/0, P. 2 P. 8/6
$3,000 \mathrm{~W}$.
$7 / 10 / 0$ P. 2 P. $12 / 6$

7.500 W. \&15/10/0, P. \& P. 20/-

OUBILIER NITROGEL CONOENSERS. Brand new. 8 mid. 42/6, P. P. 5/

GARRARD DECKS
TWO SPECIAL OFFERS! Brand new and guaranteed. less cartridge LAB 80 Mk. II less cartridge.

catalogue

* ELECTRONIC COMPONENTS
* TEST EQUIPMENT
* COMMUNICATION

EQUIPMENT

* HI-FI EQUIPMENT

We are proud to introduce our first comprehenEquipment. Over 150 pages, fully illustrated, listing thousands of items, many at bargain prices Fres discount coupons with every catalogue. Everyone in electronics should have a copr. Send for your copy now.

LAFAYETTE MODEL HA-500 SSB/AM/CW
80 THROUGH 6 METER RECEIVER

New outstanding Hant Bands only reseiver covering the $80 / 10 \cdot 20115 / 10 /$ in inter thands. Incorporates 10 valves, product detector two meerhaniciil hiters,
SMeter, dual conversion on all bands, crystal calibrator, V.F.O, noise limiter, aerial trimner, I.F.S 2.m08 Mc s. and 455 Kc is. Output 8 ohnus and 500 ohms. Operations $220 / 240$ volts A.C. Supplied brand new and guaranterd with handbook 42 Gns. 100 Kc 's. crystal, 85/-.

TWO-WAY RADIOS

SUPERB QUALITY, BRAND NEW : GUARANTEED
3 TRANSISTORS 26 15 - PAIR. IS TRANSISTOR $5 M$ 4 TRANSISTORS 26 TRANSISTOR E8.12/8 I.AFAYETTE $218,100^{\circ}$ PAIR
10TR INSISTOR $822 / 10$ - PAIR.

UNR-30 4 BAND
 COMMUNICATION RECEIVER

Covering $550 \mathrm{Kc}, \mathrm{s}-34 \mathrm{M}$ Mr/s. Incorporates variable BFo for ($\mathrm{W} / \mathrm{SSB}$ reception. Built in speraker and phone jack. Metal cabinet. Operation 220/240v. A.C. Supplied brand new, guaranteed with in instructions. 212/10 -. Carr. \%/8.

NEW LAFAYETTE MODEL HA700 AM/CWSSB AMATEUR COMMUNICATION RECEIVER
8 valves, ${ }^{3}$ bands incorporatink 2 MECHANICAI, ivity. for exceptionalage on 5 bands 150 . 400 Kc 's., $\quad 550-1,600 \mathrm{Kc} / \mathrm{s}$. $1.1 \mathrm{t}-4.0 \mathrm{Mc} / \mathrm{s}$. 4.8 4.5 Mc/s., $10.5-30 \mathrm{Mc} / \mathrm{s}$. Circuit incorporates R.F. stage, aerial trimmer, noise limiter, B.F.O. product detector, electrical for phones, low to 2 K ' or speaker 4 or 8 ohms. Operation $220 / 240$ volt A.C Size 7 in $\times 15$ in $\times 10$ in Supplied brand
 A.C. Size 7 in. $\times 15 \mathrm{in} . \times 10 \mathrm{im}$. Supplied bran
new and suaranteed with handbook. 36 ars. C

NEW SOLID STATE HIGH FIDELITY EQUIPMENT POWER AMPLIFIERS - PRE-AMPLIFIERS
 POWER SUPPLIES-BRITISH MADE

FULLY ILLUSTRATED BROCHURES II \& 2I FREE ON REQUEST.

We PROUDLY PRESENT THIS RANGE OF AUDIO EQUIPMENT developed from DINSDALE Mk. II-each unit or system will compare favourably with other professional equipment selling at much higher prices.
Brief details are below:-

SYSTEM	COMPRISING	SYSTEM PRICE
A	5 watt mono for 3 to 5 ohm speakers	\&10.3.0
1	12 watt mono for 3 to 5 ohm speakers.	\&13.17.6
2	12 watt mono for 12 to 16 ohm speakers.	C14.12.6
4	24 watt mono two channel for 12 to 16 ohm speakers.	<20.15.0
8	20 watt mono/btereo for 12 to 16 ohm speakers.	124.0.0
9	24 watt mono/stereo for 3 to 5 ohm speakers.	126.15.0
14	40 watt mono/stereo for $7 \frac{1}{1}$ to 16 ohm speakers.	629.10.0

87/105 Mc/s Transistor Superhet. Geared tuning. Terrific quality and sensitivity. For valve or transistor amplifiers. $4 \times 3 \frac{1}{2} \times 2 \mathrm{fin}$. Complete with dial plate. 5 Mullard Transistors, Plus 4 Dlodes. (Cabinet Assèmbly 20/- extra). TOTAL COST $£ 6.19 .6$ P.P. $2 / 6$
TO BUILD

7 Mullard Transistors. Printed Circuit Design with Stereo Indicator. For use with any valve or transistor FM. Uses pot cores to Mullard design and ger. and silicon transistors. As used by B.B.C. and G.P.O. $\$ 5.19 .6$ P.P. $2 / 6$

BUILD A QUALITY
TAPE RECORDER

using

MARTIN RECORDAKITS

* TWO-TRACK. Deck $210 / 10 / 0$ Martin Amplifier, $\langle 14 / 19 / 6$. Cabinet and speaker 7 gns . Completekits with microphone, 7in. 1,200ft. tape, spare spool.
Today's Value 445.29 gns. P.P. 15/-
t FOUR-TRACK. Deck $\{13 / 10 / 0$.
Martin Amplifier $815 / 19 / 6$. Cabinet and speaker 7 gns. Complete kits with microphone, 7 in . $1,200 \mathrm{ft}$. tape, spare spool.
Todar's Value 650. 32 gns. P.P. 15/-
MW/LW QUALITY

TRANSISTOR RADIO TUNER | Fully eunable superhet |
| :--- |
| wizh excellent sensizivity |

and selectiviey. Com-
plete wleh frone panel, 9
volt operated. For use
with any amplifier or or
tape recorder.
TO BUILD ©3.19.6

MANUFACTURERS We wish to Purchase large quantities of NEW TRANSISTORS * DEVICES - Please write or phone (01) 723-1008/9, EXTN. 4.

QUARTZ CRYSTALS $1 \mathrm{Mc} / \mathrm{s}$. HC6U sub-min. $6 / 12$ volt 80 C oven Cathodeon $22 / 6$ $1 \mathrm{Mc} / \mathrm{s}$. plus $100 \mathrm{kc} / \mathrm{s}$. 3 pin .. 22/6 Send for list of 500 types. 1/- post paid	NUMICATORS Mullard Z520M with base Hivac YN3 wire leads. 931A photo mule, with base. Z801u Tube
MAYFAR PORTABLE ToTAL cost	
ORGAN	99 gns
BELGRAVIA	
CONCERT	Deferred
ORGAN	terms
details on	available
request	SEND FOR
BROCHURE 10	(BROCHURE 9

* Fully TRANSISTORISED POLYPHONIC British design.
* Build this superb instrument STAGE BY STAGE in your own home
* Call in for a DEMONSTRATION

ORGAN COMPONENTS
We carry a comprehensive stock of organ components for TRANSISTOR AND VALVE FREE PHASE deslgns: complete details on request.

AUTO-BAN TRANSISTOR CAR RADIO British Made BUY NOW:

8 -Transiwh MW/LW Car Redio. ILL voll operated. bullt, boxed, ready to we with gpeaker supplited Car fring kit and manutacturers' current guarantee. 3 peciai Bargain Offer. Positive or Negative Earth. LIST PRICE 12 GNS. Semi for detalis on Puah-buthon version $\subset 9.19 .6$ Radlos.

SALFORD I93A XTAL CHECKER

110/250v A.C. In new condition. E12.10.0 plus carriage 10%

TRANSISTORS SEMICONDUCTORS
SEND FOR NEW 1968 free List Ho. 36 OF 1,000 TRANSISTOR DEVICES We have the

* LAROEST RANGE-OVER 1000 TYPES la ORTITIVE PRICES Foliy odaranteed

24-PAOE LLLUSTRATED BROCHURE LISTing 2.000 DEvices. Data and cliccuit neleding Valive and Quariz crystal libth. 1/- poat pald.
bUILD These pwipe desions
I.C. F.M. TUNER (with CA3014) .. 99/8 ANTI-DAZZLE MIRROR 78/6 EXPLORER e4/5/= With drilled chasuia and cabinet BTABILISED POWER SUPPLY. $49 / 6$ PHOTO FLABH SLAVE UNIT .. $42 / 6$ SOLID STATE IGNITION £6:19/6 SWITCHED F.M. TUNER......... 77/8 THYRIBTOR POWER CONTROLLER.
Parts List and prices on requegt*

latest edition 240 PAGES. 6,000 ITEM 1,000 illustrations.

* 20 pages of transistors and semi-conductors devices, Valves and Cryotals.
* I50 pages of components and equipment.
* 50 pages of microphones, decks and Hi-Fi equipment.

The most COMPREHENSIVE-CONCISE—CLEAR COMPONENTS CATALOGUE in GT. BRITAIN. Complete with $10 /$ worth DISCOUNT VOUCHERS.

FREE WITH EVERY COPY.
Send today $8 / 6$ paid

303 EDGWARE ROAD
LONDON, W. 2

WE CAN SUPPLY FROM STOCK MOST
OF THE PARTS SPECIFIED ON CIRCUITS im This magazine. send list for PHONE OL-
PHONE 01-723 $1008 / 8$
OPEN MON.-GAT. 9 E.m. 6 p-m, THURS. 9 \&. rf. -1 ロ.m.

IMWEDIATE DESPATGH
 FULL SPARES AND SERVICE AVAILABLE

20 Amp. LT. SUPPLY UNIT

As supplied to Min. of Defence and Crown Agents for overseas Gavt. LATEST DESIGN HEAVY DUTY $12 / 24$ VOLT D.C.
Output: Adjustable up to $\mathbf{2 0}$ AMPS CONTINUOUS at $12 / 24$ volts FULLY FUSED, Neon indicator $0-20$ amp. meter. Size $16 \times 12 \times 20$ in high, in heavy gauge steel cabinet Grey Hammer finish-Weight 50 lb input: 220/230/240 v. A.C. 50 cycles ONLY $£ 32.10 .0 \begin{gathered}\text { Plus } \\ \text { G.B. (inland) }\end{gathered}$

30 Amp. LT. SUPPLY UNIT

UP TO 18 v. D.C. WITH SMOOTH STEPLESS VARIATION Designed for CONTINUOUS use at max. loading
\star Fitted voltmeter and ammeter. \star Instaneaneous overload cur-our. Input: Mains A.C. Robust construction, 2 tone finish, steel case

$$
\text { 555.0.0. } \begin{aligned}
& \substack{\text { Entirely suitabble for plating plants. } \\
\text { Laboratory supplies, etc. }}
\end{aligned}
$$

VARIABLE VOLTAGE TRANSFORMERS

Modern styling for modern equipment
'SLIDE-TRANS' \& 'SLIDUP'MODELS

Fully rated current consistent at all points along the winding

AVAILABLE ONLY FROM I.M.O.

* SMOOTH CONTINUOUS ADJUSTMENT
* ALL MODELS SHROUDED FOR SAFETY
(IDEAL FOR EDUCATIONAL AUTHORITIES)
* BENCH OR PANEL MOUNTING
* UP TO 260v. AVAILABLE FROM ALL MODELS

All models 230v. A.C. 50/60 c.p.s. input

I Ampr	$£ 5 \cdot 15 \cdot 0$
2.5 Amp.	$£ 6 \cdot 17 \cdot 6$
5 Amp.	$£ 9 \cdot 19 \cdot 0$
8 Amp.	$£ 14 \cdot 15 \cdot 0$
10 Amp.	$£ 18 \cdot 10 \cdot 0$
12 Amp.	$£ 21 \cdot 10 \cdot 0$
20 Amp.	$£ 38 \cdot 10.0$

C. \& P. EXTRA

ONCE AGAIN WE CAN EXPECT THE USUAL VOLTAGE DROPS OUE TO THE COLD WEATHER
) Noattention VARIABLE HIGH t No Maintenance VOLTAGE SAMPLING * Corrected Wave

Input: $190-250$ v. A.C. Output: 240 v. A.C Accuracy: $+1 \%$ A. Capacity. 250 . A. Maintain " spot-on" test-gear readings at all times Weight: 21 lb . Fitted signal lamp and switch Size: $11 \times 6 \frac{1}{2} \times 6 \mathrm{in}$. high.
£12.10.0 cis

VARIABLE HIGH VOLTAGE

 SAMPLING TESTERDIELECTRIC BREAKDOWN TESTER

* Range: Infinitely variable up so 3,000 volss 0 . Entirely suitable for coneinuous testing \star Automatic safety cus-out. Input: Mains voleage. Inpur and test leads with clips: $\mathbf{M 1 5}$

CONSTANT VOLTAGE TRANSFORMERS

BEAT WINTER!
AUTOMATIC MAINS STABILISER

new Latest patrenn Tubular mast

* Made from 6×11 in. Sheradized steel sections Eor durability and strength.
* Extra strong locating base.

太 2 sers (8) Rorproof Guys.
ỐnLY \&15.0.0 ex
Carr. 20\%. Returnable wood case $40 /$.

PORTABLE VARIABLE A.C. POWER Destgnedfor engineers SUPPLY UNIT whose requirements cation of volts applied. OUTPUT: 0.260 . 1 1 amps.

NPUT
230 v. A.C. $50 / 60$ e.p.s Fitted with fuse, volt meter, safety indicato ize B $\times 5 \times 5$ in. high price £9.2.6. c.\&p. I2/6

LATEST SOLID STATE VARIABLE VOLTAGE CONTROLS

* COMPLETELY SEALED * COMPACT AND COM. PLETE - PANEL MOUNTING 230 A.C. Input $25-230$ volts outpu 5 amp . model $\mathbf{6}$ 10 amp . model $413 / 5 /-$

PORTABLE TRANSISTOR TESTER suitable for production \& laborayory use SPECIFICATION
Alpha 0.7 to 0.997
Beta 5-300
CO $0-50 \mu \mathrm{~A} .5 \mathrm{~mA}$
Capable of measuring GERMANIUM AND SILICON DIODES.

DESIGNED WITH RESIS TANCE SCALE 200 ohms to Megohm as an ADDED FEA. TURE. Housed in heavy ducy plastic case. c/w interna

Oniy
£6.19.6
Plus $7 / 6$ C. \& P

- A D A M ELECTRONICS-ROTTERDAM, HOLLAND

MOS-FIELD EFFECT TRANSISTORS

$\begin{array}{cc} 3 \mathrm{~N} 128 & \text { N } \\ 3 \mathrm{~N} 140 & \text { N dualgate } \end{array}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0(8) \quad- \end{aligned}$	$\begin{aligned} & 5-30 \\ & 5-30 \end{aligned}$	$\begin{gathered} 0.05 \\ 1 \end{gathered}$	$\begin{array}{r} 100 \\ 150 \end{array}$		$\begin{array}{ll} 000 & 800 \\ 000 & 300 \end{array}$	$5.8 / 0.2$	$\begin{array}{ll} \ell 1 & 0 \\ \& 1 & 2 \end{array}$	4
Thyristors	PIV Volts	If cont A	${\underset{A}{\text { If }}}_{\substack{\text { peak }}}$	Ig peak	$\underset{\mathrm{W}}{\mathrm{P}_{\mathrm{C}}-\mathrm{G}}$		$\begin{aligned} & \text { lgt } \\ & \mathrm{mA} \end{aligned}$	$\begin{aligned} & \text { Vgt } \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & \text { Iho } \\ & \mathrm{mA} \end{aligned}$	Price	
C106-YI	30	2	25	0.2	0.1		0.5	0.5-0.8	8	16	10
TIC3I	400	4	125	2	5		25	0.25-3.5	25	620	0
2N4441	50	8	80	2	5		30	0.7-1.5	40	19	4
2N4442	200	8	80	2	5		30	0.7-1.5	40	¢1 6	9
2N4443	400	8	80	2	5		30	0.7-1.5	40	6117	0
2N4444	600	8	80	2	5		30	0.7-1.5	40	6315	0
MCR2304-6	400	8	100	2	5		20	0.2-1.5	25	625	3
MCR2305-6	400	8	100	2	5		20	0.2-1.5	25	628	2
Triac's											
40527 no diode	400	2.5	25	0.5	0.15						0
40430 no diode	400	6	80	1	0.2		20	1.0-2.2	30	¢2 5	3
40432 with diode	400	6	100	1	0.2		-	20-40	30	E2 12	5
MAC2-6	400	8	100	2	10		30	0.9-2.0	30	¢4 11	7

Trigger diode: MPT32 for Triac types: 40527, 40430 and MAC2-5. $11 / 4$.
Silicon Diodes

LINEAR INTEGRATED CIRCUITS

CA 3000 Differential amplifier, TO-5. Bandwidth $0-30 \mathrm{Mhz}$. Gain $37 \mathrm{~dB} / 10 \mathrm{Mhz}$. Max. Output 6,4 volt peak-peak.
CA 3012 High Frequency Amplifier, TO.5. Bandwidth $100 \mathrm{Khz}-20 \mathrm{Mhz}$. Gain 55-61 dB/10, 7 Mhz .
Price $43 / 18 /$-.
Price $\mathbf{4} / \mathbf{1} \mathbf{8} /$-.
CA 3018 Includes: 2 single transistors, TO.5 1 cascade pair Application = High Frequency Amplifier/Mixer/Oscillator Gain cascade pair $=1500-3500$ Gain single transistor $=30-67$.

Price 1 1/19/-.
CA 3020 Low frequency amplifier Bandwidth 6 Mhz, TO-5. Gain max. 52-58 dB. Sensitivity 35 mV . Output max. 700 mW . Inpur Impedance 40 Kohm. Output Impedance $65+65 \mathrm{ohm}$ (push pull).

Price 22/6/6.
PA 222 Low Frequency Amplifier. Bandwidth 20 Khz (dual in line). Gain typ. 50 dB . Sensitivity 65 mV . Output max 1 Watt. Input impedance $40-55 \mathrm{Kohm}$. Output impedance 22 ohm (single ended push pull).

Price $\mathbf{1 2} / 19 /$-.
MC 1429 G Differential amplifier TO-5. Bandwidth $0-250 \mathrm{Khz}$. Differential gain $\mathbf{4 5 - 7 5} \mathrm{dB}$. Max. Output swing 5 Vole pp. Price $\mathbf{f 3} / \mathbf{l} \mathbf{3} /-$.
MC 1430 P (dual in line) Differential input, single ended output. Bandwidth $1,3 \mathrm{Mhz}$. Gain 75 dB max. Offset Voltage $2 \cdot 10 \mathrm{mV}$. Input impedance 5-15 Kohm. Output Impedance 25-50 ohm. Output voltage max. 2.5 Volt pp. Price $\mathbf{4 4} / 13 /-$
uA 702 с TO-5 Differential input, single ended output gain max. 2000-6000. Bandwidth 0-30 Mhz.
uA 703 TO-5 High Frequency Amplifier, bandwidth 150 Mhz . Gain $36 \mathrm{~dB} / 10,7 \mathrm{Mhz}$. Gain $20 \mathrm{~dB} / 100 \mathrm{Mhz}$.
Price 43/4/3.

MIC 709 c TO-5 Differential amplifier, bandwidth $0-500 \mathrm{Khz}$. Voltage gain $45,000 \mathrm{typ}$. Output voltage max. 13 V pp. Price $\mathbf{4} \mathbf{4 / 6 / -}$.
DIGITAL INTEGRATED CIRCUITS. (All circuits dual-in-line)
RTL-series (resistor-transistor-logic)

DTL-series (diode-transistor-logic)

MC 717 P 4×2 input gate $\quad . \quad . . \quad . \quad . \quad$ il 30 MC 718 P dual 3 -input gate MC 719 P dual 4 -input gate MC 788 P dual buffer
MC $789 \mathrm{P} \quad 6 \times$ inverter
MC 790 P dual J/K Flip-Flop
MC 792 P triple 3-input gate
RTL-series (TO. 5 case)
uA 923/926 J-K flip flop

MC 830 P dual 4-input gate MC 831 P clocked flip-flop MC 832 P dual buffer
MC $844 P$ dual 4-input gate
MC 845 P clocked flip-flop $\begin{array}{lllllllll}\text { MC 845 P } & \text { clocked flip-flop } & \ldots & \ldots & . & \ldots & \text { \& } & 4 & 3 \\ \text { MC } 846 \mathrm{P} & \text { quad 2-input gate } & . . & . . & . & . . & \text { \& } & 15 & 6\end{array}$ -

SPECIAL OFFERS:

Kit: Complete Decade Counter. Max. counting frequency 10 Mhz . Noise immunity I Volt or better. Required input: square wave 3.5 Volt. Output 3,5 Volt. Including Printed Circuit, Integrated Circuits. Diode Matrix, Nixie drivers, Nixie tube with socket, Circuit diagram, mounting schematic, etc. Price $\mathbf{1 1 1 / 2 / .}$.

Sllicon Transistors: BC 171 b Vce 45 Volt. Ic 100 mA . Pc 200 mW . Hfe 250-500 Ft. 300 Mhz . Price $\mathbf{2 / 6}$ BC 172 c same items except Hfe 470-900. Vce 20 Volt. Price $\mathbf{2 / 6}$. Both types pro 100 pieces. Price $\mathbf{6 1 0 / 1 5 / - .}$
The noted prices include all taxes etc.

Inestrars Izaclio

DON'T MISS THIS!

have you got your copy of our great '35th Birthday" CATALOGUE? FREE! Printed in large 16×11 in, modern magazine format different items from our vast stocks of Radio, Hi-Fi TV, Test Gear, Components, Communications and
PLUS many bargain offers and prices exclusive AND in addition every copy of the "Birth AND day Pictorial " is numbered and auto matically enters you in our great "Birthday Draw" with over $\& 100$ in Gift Vouchers to be All goods shown in the "Birthday Pictorial" are available over the counter from any of our branches bringing the benefits of shopping at Lasky's to you in bringing
SECOND REPRINT ISSUE NOW AVAILABLE

A MUST FOR EVERY ELECTRONICS \& HI-FI ENTHUSIAST

COMMUNICATION RECEIVERS

TWO GREAT NEW TRIO RECEIVERS MODEL JR-500SE Thim hirh performance receiver in maite experinaly to cover the animeteur handd and nitilineen acryatial
controlled double heterodyne circult for extra

 - Remote control nockel for connection to and control las

Lasky's Price £61.19.0

Lasky's Price $£ \mathbf{E 3 6}$.15.0
CONSTRUCTORS BARGAINS
THE SKYROVER DE LUXE

 covering the full Medlum Waveband and Short Waveband
$31-94 \mathrm{M}$ and also 4 meparite switched band apread rahges, 13 M .
16 M .19 M , and 96 M . Wlth Band 8premi Tuning for 16M, 19M, and som. With Band 8premi Tuning for accurate
station Selection. The coll pack and tubing beart in factory sanembled. Wired and tented. Superhist $470 \mathrm{Kc} / \mathrm{s}$. Mullari Tran-

Can now
Can now buill for ©8.19.6
H.P. Terme: 60-deg., 11 mthn, at $12 / 9$. Total H.P.P.
$21010 / 3$
Data $2 / 6$. Refunded if you purchase parcel. Four U2 batts. $\$ / 4$ estra. All componenta avall. eeparately, with conatruct ton data. Only $\mathbf{1 0 1}$-extra. Post Free. This convertion is suita ble for receiveris already constructed.
LASKY'S PRECISION PANEL METERS

Type Mx-		mk-		Type KR-52		Type KR-65		Type Mm-65A
		1mac						A DC
1 ma DC	${ }_{\text {22/8 }}^{29 / 8}$	${ }_{3}^{1} \mathrm{mAA}$ DC	${ }_{851 /}^{25 / 5}$	$\mathrm{S}_{\text {nin }} \mathrm{DC}$	${ }^{31} 8$	5 mA D		3 mADC
300 V DC	22/8	300 V DC	2s/	${ }^{300} \mathrm{~V}$ DC	${ }^{328} 8$	${ }^{300}{ }^{\text {V DC }}$	${ }^{331 / 8}$	${ }_{5} 300$
${ }_{5}^{50 \mu \mathrm{~A}} \times \ldots \ldots$	${ }_{27 / 6}^{36 / 8}$	1 mAs Meter		${ }_{100} 10$	47/8	${ }_{100 \mu}^{1024}$	4916	1 mAs м
1 mA s Meter	$29 / 6$				${ }^{37 / 18}$	$3 \operatorname{loma}$		

TEST EQUIPMENT

TMK Model 500
A compact and reliable instrument designed for use in the proequipment. Measures a wide range of voltages, currents, resistance and audio power. Specification: Movement sensitivity $30 \mu \mathrm{~A}$. D.C. volis range: $\mathbf{0 - 0 . 2 5}, 1,2.5,10,25,100$, $250,500,1,000$ volts at 30 K OPV. A.C. volts ranges: $0-2.5$, $10,25,100,250,500,1,000$ volts at 15 K OPV. dB scale: 6 ranges -20 to +56 dB . D.C. current: $0-50 \mu \mathrm{~A}, 5,50,500 \mathrm{~mA}$. 12 A . Resistance ranges: $0-60 \mathrm{~K}, 6,60 \mathrm{M} / \mathrm{c}$. Test buzzer for continuity testing. Size 6 fin . $\times 3 \frac{1}{4} \mathrm{in} . \times 2 \mathrm{fin}$.
Lasky's Price $£ 8.17 .6 \underset{\text { Pred }}{\substack{\text { Port }}}$

Model C-I000 Mili Tester
A really tiny meter with " big " meter performance. Brief Specification: Movement sensitivity $400 \mu \mathrm{~A}: \mathrm{DC}$ volts ranges: $0-10,50,250$, 1,000 volts, $+3 \%$ fsd at 1 K OPV. AC volts ranges: $0-10,50,250$, ,0e rolse. 0 50K 15 mm Size 2 in $\times 3$ in \times lin m . Resis
Lasky's Price 39/6
Port $2 / 6$
FIELD STRENGTH METER
TRANSISTOR

SIGNAL
INJECTOR
MODEL C-3003
Self-contained 1 in. dia.
5 in . long, with light and est probe. For faul finding in radios, ampli-
fiers, etc. Complete with batteries and extension probe.
Lasky's Price 29/6 $\begin{gathered}\text { Pose } \\ \text { fred }\end{gathered}$
Designed for checking the
radiation from adjacen radiation from adjacent transmitter. A sensitive
and compact unit that requires no battery or other power supply. Frequency
range: 1 to $250 \mathrm{Mc} / \mathrm{s}$. Telescopic aerial extends to $9 \frac{1}{2}$ in. $1 n$ metal case. with 1 in. square meter, also earpiece for audible
check. Magnet in base, for check. Magnet in base, for
 Lasky's Price 45/- Post $1 / 6$ NEW SPECIALISED TEST GEAR
 RF SIGNAL GENERATOR Model TE-20
A new high quality factory tested and callibrated RP Bignal Generator offerling full frequency range cover
of 120 Kola to 260 Mc/a in band plum one harmonic band. Dual High/Low RF output terminale provided and aeparate varimble Audbo out put. Etched clreular scale-aceuracy
$\pm 2 \%$-read againat hatr-line on perpex cursor. Power ${ }^{*}{ }^{2} \%$-read agatant halr-line on perper cursor. Power

 able). Power requiremeate $105 / 12 \mathrm{~b}$ V, $50 / 60 \mathrm{c} / \mathrm{A}$ A.C. Waive line-up: $12 \mathrm{BH} 7 \mathrm{~A}, 6 \mathrm{ARB}$ and selenlum rect iner Lasky's Price $£ 12.10 .0$ Poot 5/-
AUDIO GENERATOR Model TE-22

VALVE VOLT METER - Model TE-65
 VAr nore eccurate degree of meanurement than normal test ineters and alen compared to any other Peak. Peak
 indand probe and Instruction book.
Lasky's Price $\mathbf{£ 1 5 . 0 . 0}$

Branches
207 EDGWARE ROAD,LONDON. W. 2 Tel.: 01-723 3271 Open all day Saturday, eallv closmg 1 pm Thus sdov
33 TOTIENHAM CT. RO., LONDON. W. 1 Tel. $01-6362605$ Open all day 9 a $\mathrm{am}-6 \mathrm{p} . \mathrm{m}$ Monday to Sarurday 152/3 FLEET STREET, LONDON, EC. 4

Tel. FLEet St. 2833

42 TOTIENHAM CT. RO., LONDON. W. 1 Tel.: $01-5802573$ Open all dav Thurssav, eatly closing 1 pon Salurday

118 EDGWARE ROAD, LONDON, W. 2 Tel.: 01-723 9789 Open all day Saturday, early closing it pm Thursday

BARGAIN OPPORTUNITIES FROM

Amplifiers

IN KIT FORM AND COMPLETE MULLARD
10-10
STEREO

Valve amplifier to
exact Mullard spec
With preamp, tapped
op transformer 3 and
15Ω all controls. H.T. and L.T. ourles. mono,
stereo and speaker phase stereo and speaker phase switching. Complete
with escutcheon, knobs, plugs, etc. Ready with escutcheon, knobs, plugs, ere. Ready
built.
(p. \&. 12/6)
(p. \& p. 12/6)

5 valve 10 MULLARD 5-10 MONO basic amplifier, complete with $\begin{array}{ll}\text { valves and instructions. } \\ (\mathrm{p} . \& \mathrm{p} .7 / 6) & \text { ©9.19.6 }\end{array}$ (p. \& p. $7 / 6$)
.19.6
panel
(p. \& p. 7/6)
Ell. 19.6
2 valve preamp and control assembly, complete kit with valves and instructions.

E6.12.6
SPECIAL MULLARD $2+2$ PREAMP Stereo preamp and control unit. Complete with valves and instructions. S.A.E. brings details. BUILT-13 gins. (P \& \& P. 7/6).

Please send cash with Order or pay C.O.D. Please mention "Wireless World."
POSTAGE. Unless stated add $1 /$ - on 1 ll . orders, $1 / 9$ on $11 \mathrm{lb.} 3 /$.6 on $21 \mathrm{~b} .5 / \mathrm{s}$ on $6 \mathrm{lb} .6 / 6$ on llb. $8 /$ on li lb. Over, $10 / 6$.

SAVE ON THIS FINE 'PEAK-SOUND' STEREO AMP

AMPLIFIER KIT. £9/10/-
(P. sP P. 4/-)

POWER PACE KIT. £R/10/-

NEW "CIR-KIT

Now incorporated 0.1 in . matrix board with improved "Cir-Kit" atrip, Easier than ever to use.
No drilling necessary. St. spool of "Clr-Kit",

FREE TAPE WALLETS
With each reel of cape we give you FREE A beautifully mate wallet in olmulated leather with apace for two reels of tape. Professional quality
(ull frequency tape with metallised leader/otop olin. reel, 1200ft., $17 / 6$. Bin, reel 900/t., $12 / 6$. 7 in . reel 18004 t ., $22 / 6$. \mathbf{P}. is \mathbf{P}. $1 / 6$ per reel, inc. tee wallet.

ALL SINCLAIR LINES AS ADVERTISED

FOR ONLY Gd.
To can obtain the latent TRE 8 -page printed

7 VALVE AM/FM RG CHASSIS Powerfin high performance instrument for keen
enthusiumb. Long, med. and P.M. Permeability
 $220 / 250 \mathrm{v}$, Circuit diagram available. Aligned, tented and ready for use (Carr. and the. 7/6).
B.A.E. bring n full details.
£13/19/6.

0/-

14 Tranabtor Kit bulla into superb miff amp. 8 W per
channel (16 W mono) with integrated pres: amp to take hilt channel (16 W mono) with integrated preamp to take high quality ceramic p.u. Unusually easy to build by follow. ing the instructions ($1 / 6$ purchased separately and refunded when kit is bought). This makes one of the beat and moat econonikal stereo translator amps., we have er offered. When built the SA 8 -8 equals the best in modern styling.

SPECIAL SPEAKERS AND ENCLOSURE OFFER

Owing to demand for our previously advertised $44 / 15 / 6 \mathrm{~d}$ enclosure, it is now "Pack Flat" an even better bargain as a o a fine professional looking enclosure All wood accurately machined. State if for 10 in ., or 8 in . unit. Holes for bass unit $\begin{array}{ll}\text { and tweeter included. } & 72 / 6 \\ \text { Now (Part P. \& P. 5/-) }\end{array}$

15 OHM UNITS
Suitable for above
Goodman Sin. Axiette
Goodman $8 i n$. Twin Axierte Goodman Axiom 10 W.B. HF. 812

WB HF1012
E.M.I. 3 in. Tweeter 3 or iss -overs from $16 / 9$
$\begin{array}{lll}66 & 0 & 0 \\ \text { EC } & 16 & 0\end{array}$
$\begin{array}{lll}26 & 16 & 0 \\ 67 & 5 & 0\end{array}$

EA	12	0
	12	6

At the aboveprizes while stocks lost.

IRS RADIO
COMPONENT SPECIALISTS
70 BRIGSTOCK RD., THORNTON HEATH, SURREY.

Telephone:
THO 2188
Established 1946

GARRARD UNITS AND PLINTHS
AT KEENEST PRICRE-SEE
LATEST TBS LIST ${ }^{\text {LM } 3000 \text { Record Player with }}$ 9T. A. Stereo Cartridge. Brand AT 60 Mk II DeAT. 80 Mk . II De-luze Auto-
changer, decant tumtable. Lean cartridge.
SP. 25 Do luxe angle record player, decent turntable Less cartridge.
Packing and carriage on any Om above, 7/6 extra.
Garrard Plinth. Ideal mount-
ing for the Gerard ing for the Gerard Units any hl-h set-up. In fine Teak Complete whit useful soft plastic dust cover. Carriage Qarrard clear-wiew right per apex cover, $57 / 6$.
(carriage $3 / 6^{\circ}$

CARTRIDGES

 MONO17/6.
tAcos OP $91-1$, 19/8. STEREO
Rosette
Ronette 105s, 32/
DECO with diamond. 47/8. asylum. Lint 94/8. Our price
$79 / 6$. 79/6

VALVES

SAME DAY SERVICE NEW! TESTED! GUARANTEED!

Abstract

1ATGT

DF96 DH 77 | | $7 / 6$ | P |
| :---: | :---: |
| 3 | $8 / 6$ | P |
| | $8 / 6$ | P |
| | $8 / 6$ | P |

\section*{READERS RADIO}

85 Torquay Gardens, Redbridge, Ilford, Essex. $\begin{gathered}01-550 \\ 7441\end{gathered}$ Postage on 1 valve 9 d . extra. On 2 valves or more, postage 6 d . per valve extra. Any parcel Insured against Damage in Transit bd. extra.

KEYSWITCH
 RELAYS

vive la differencevive le keyswitch

It's just a little difference, but it means a lot! With Keyswitch relays, the extra attention given to details, the stringent testing at every stage of manufacture means you can be that little bit more sure of the outcome. Relays to BPO 3000 specificationminiature or sub-minlature relays (all from stock)It's the same difference. Get to know Keyswitch relays, you'll find you can trust them.

always to price $\triangle \triangleleft$ always to specification $D<a l w a y s$ al time KEYSWITCH RELAYS LTD CRICKLEWOOD LANE LONDON NW2 Telephone: 01-452 3344 Telex 262754

OUTSTANDING SINCLAIR DESIGNS FOR THE ECONOMY MINDED

SINCLAIR MICROMATIC

the
smallest radio in the world

PLAYS
ANYWHERE
As easy to take with you as the wrist watch you wear. The Micromatic is amazingly powerful and better than ever in quality now that its output feeds to the hi-fi quality magnetic earpiece supplied with it. It tunes over the medium wave band to bring in RADIO I and many other stations to make it the best of all personal radios ever. This smaller-than-a-matchbox radio is in a tiny black case with aluminium front panel and matching slow-motion tuning control. Very easy to build, or available ready built.
Complete kit with
ear piece, in
structions, 49/6 $\begin{aligned} & \text { Reody built with } \\ & \text { earpiece. }\end{aligned}$ 59/6 MALLORY MERCURY CELL RM. 675 (2 required) each 2/9.

YOUR SINCLAIR GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded In full at once FACILITIES AVAILABLE TO ALL SINCLAIR PURCMASERS.
If you prefer not to cut this page, please quote WW368 when writing your order.

SINCLAIR RADIONICS LIMITED

22 NEWMARKET RD., CAMBRIDGE Tel: OCA3 52996

A BRILLIANTLY EFFICIENT LOUDSPEAKER

When Sinclair Radionics decided to design and manufacture a new loudspeaker, it was required from the start that its performance should be worthy of co-day's best high fidelity standards and be so reasonably prised that the greatest numbers could afford is. By using ultra-low resonant materials so form its acoustically contoured housing, outstandingly brilliant pertormance resulted. Furthermore, the unusual form of the Q. 14 meant is could be used as a free-standing shelf speaker, as a wallcorner sound radiator or flush mounsed singly or in multiple unius on a flas surface such as a wall. The correceness of the design of the Q .14 has amply proven itself since within a few months of ics introduction, it is already amongst the lour most demanded louds peakers irrespective of price. Independent laboratory tests have already shown that the Q .14 has amazingly good periormance characteristics. As a iudge of good sound yourself, your ear will confirm this instantly. Ac its price, there is nothing to stop you changing to Sinclair at once.

> RESPONSE-Exceptionally smooth from 60 to 16,000 $\begin{array}{ll}\text { Tested and guaranteed in } \\ \text { MAXIMUM LOADING-In excess of } 14 \text { watts. } & \text { fitted corton. (Your money and } \\ \text { IMPEDANCE-IS ohms. } & \\ \text { fied). }\end{array}$

- ImPEDANCE-15 ohms.

SIZE ANO FINISH— 9 tin. square $\times 4$ tin. deep. Matt black with solid aluminium bar embelllishment

- all-british manufacture

£6.19.6

IDEAL FOR BATTERY OPERATION

SINCLAIR

COMBINED 12 WATT HI-FI AMP \& PRE-AMP

No contructor's eransistor amplifier has ever achieved such success as the Sinclair Z.12. It favours the user in so many ways-with fantastic power-tosize ratio, with far greater adaptability, with freedom to operate it from

Built, tested and guaranteed. 89/6 batteries or mains power supply unit (the new PZ. 4 is ideal for this) and with the opportunity to obtain superb stereo reproduction for very little outlay. Countless thousands of Z.I2s are in use throughout the world in hi-fi installations, electronic guitars and organs, P.A. installations, intercom, systems etc. This true 12 -watt amplifier is supplied ready built, tested and guaranteed together with the $Z .12$ manual which details a number of control circuits enabling you to match the $Z .12$ to your precise requirements. For complete listening satisfaction, use your Z. 12 system with Q.14 loudspeakers. It assures superb quality with substantial saving in outlay.

SINCLAIR STEREO $25 |$| STABILISED MEAVY DUTY |
| ---: | ---: |
| POWER UNIT |

De luxe pre-amp/control unit POWER UNI
De luxe pre-amp/control unit
for $\mathbf{Z . 1 2}$ or other stereo systems.
Brushed and polished aluminium
pesigned specially for
$\mathbf{Z . 1 2}$ assemblles. 18 V . built. $£ 9.19 .6$ O.C. at

TO: SINCLAIR RADIONICS LTD., 22 NEWMARKET ROAD, CAMBRIDGE

please send POST FREE

For which I enciose cash/cheque/money order.

CHSTRUMENT

WE ALSO PROVIDE ADDITIONAL SERVICE FOR THE ELECTRONIC INDUSTRY WITH SHEETMETAL WORK ENGRAVING COIL WINDING, ASSEMBLY AND WIRING OF ELECTRONIC EQUIPMENT PROTOTYPES OR PRODUCTION RUNS.

OLSON ELECTRONICS LTD., FACTORY NO. 8
5.7 LONG ST. LONDON E2.

TEL: 01-739-2343

transistor television receivers

T. D. Towers, M.B.E., M.A., B.Sc., M.I.E.E. A.M.I.E.R.E.

This book covers virtually every aspect of transistors in television receivers, with examples drawn from the United Kingdom, U.S.A., France, Germany, Russia and Japan. Although transistor sets may never entirely displace valve operated, mains-driven, large screen sets, for personalportable sets the transistor has no rival.

194 pp. 188 illustrations. 55s net 56s 3d by post.
' For the designer, and the interested serviceman, this is a book packed with information.
radio and electrical retalling

- He (the author) has done the job so thoroughly that his book-the first in the field-is likely to remain first in the field for quite a while.' music trades review
- gives the reader a clear perspective of the subject and provides an important chapter on servicing methods.
electrical and radio trading
available from leading booksellers
ILIFFE BOOKS LTD
Dorset House, Stamford St., London, S.E.I.

MARCONI SIGNAL GENERATOR TYPE TF BOIB/3/S
Frequency range $12-485 \mathrm{Mc} / \mathrm{s}$ in
five ranges.
Directly ealibrated five ranges. Directly calibrated
frequency dial. Output waveform: frequency dizl. Output waveform:
$C W$. sine wave $A M$. (from sine wave A.M., pulse A.M. modulation frequency $1,000 \mathrm{c} / \mathrm{s}$. Output: a normal - oneinuously variable directly calibrased from $0.1 \mathrm{Luv}-0.5 \mathrm{v}$.; b, high-up to 1 v . modulated for 2 v . unmodulated. outpur impedance 50 ohms. Fine frequency tuning control, carrier onloff switch, built-in crystal calibration for $2 \mathrm{Mc} / \mathrm{s}$ and $10 \mathrm{Mc} / \mathrm{s}$. Stabilised voltage supply. In excellent "" as new" condition. Laboratory checked and guaranceed. 6115. Carr. 30/Including necessary connectors, plugs and instruction manual.

Abstract

MARCONI SIGNAL GENERATOR TF BOI/A/I. $10-300 \mathrm{Mc} / \mathrm{s}$. in 4 bands. Internal at $400 \mathrm{c} / \mathrm{s}$. $1 \mathrm{kc} / \mathrm{s}$ External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$. Output $0-100 \mathrm{db}$ below 200 mV from 75 ohms source. Completely new with accesP.. \& P. 20\%. instruction book. 685

MARCONI SIGNAL GENERATOR TYPE TF $144 \mathrm{G} .85 \mathrm{kc} / \mathrm{s}, .25 \mathrm{Mc} / \mathrm{s}$. Excellent laboratory tested condition, struction manual, \&45. P. E P. 15/-

SIGNAL GENERATOR PORT. ABLE TS $13 / A P$, with self-contained wavemeter and power monitor. Freq. $9305-9445 \mathrm{Mc} / \mathrm{s}$. Peak power outpue, W pulsed 1 , , per 5,200 . Puising $350-4,000 \mathrm{~s} / \mathrm{s}$. 650 . P. \& P. 20\%.

BC 221 FREQUENCY METERS. $125-20,000 \mathrm{kc} / \mathrm{s}$. Accuracy 0.01%. Complete with individual Calibration book. In brand new condition with £45. P. \& P. 20/- Mains P.S.U. for above, $\mathbf{C l l} / 10 /$-. Carriage 5/-

TEST SET TS I2AP STANDING TEST SET TS I2AP STANDING
WAVE INDICATOR EQUIPMAVE INDICATOR EQUIP. cuit components. Should be used with a suirable signal source such as above described TS 13 Signal Generator. 625. P. \& P. 10/-

MARCONI VIDEO OSCILLATOR TF 885A. Sine wave output $25 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{Mc} / \mathrm{s}$ in 2 bands, Squarewave output $\pm 2 \%+2 \mathrm{c} / \mathrm{s}$. Power supply $100 / 125$ / $200 / 250$ v. A.C. 675 . Carriage 40/.

SIGNAL GENERATOR TYPE TS 418. Signal frequency $400-1,000 \mathrm{Mc} / \mathrm{s}$. direct calibration. Putse rate $40-400 \mathrm{c}$ (XI or XIO), putse delay variable, less than $3 \mu \mathrm{sec}$. to more than $300 \mu \mathrm{sec}$. Pulse width variable less than lusec. to more than $10, u s e c$. Polarity-Internal or external sources, positive or negative pulses. AM \& CW. Output attenuator 0.2μ in fully 200 mV continuously variable. In fully tested condition,
fiso. Carriage paid.

PRECISION VHF FREQUENCY METER TYPE 183, 20-300 Mc/s with accuracy 0.03% and $300-1,000 \mathrm{Mc} / \mathrm{s}$ with accuracy 0.3%. Additional band on harmonics $5.0-6.25 \mathrm{Mc} / \mathrm{s}$ with accuracy $+-2 \times 10^{-4}$ Incorporating calibrating quartz $100 \mathrm{kc} / \mathrm{s}$ + $-5 \times$ Carriage $\mathbb{E} 2$.

UHF OSCILLATOR TF 924/1 TOGETHER WITH P.S.U. TM 4230. $2,100-3,750 \mathrm{mc} / \mathrm{s}$. (14.28-8.00 c/ms.) Klystron Oscillator with automatic tracking. Ousput power 10-50 mw Reflector modulation can be applied. E210. Carriage paid.

PHASE MONITOR ME-63/U. Manufactured recently by Control Electronics Inc. Measures directly and dis plays on a panel meter the phase angle signals within the range from 20 20,000 c.p.s. to an accuracy of $\pm 1.0^{\circ}$. Input signals can be sinusoidal or nonsinusoidal between 2 and 30 v . peak. In excellent condition together with handbook and necessary connector. 645 Carriage 30/-.
V.H.F. CIRCUIT MAGNIFICATION METER TYPE TF 886B Apart from directly reading Q in the range $20-260 \mathrm{mc} / \mathrm{s}$ (in 4 bands) this instrument may be used for indirectly measuring induction of coils, phase defects of capacitors, dielectric losses. ecc. by resonance mechods. Magnification ranges 5-50; 50-500; 200-1.200. Tess Circuir Capacizor 7.5 zo 100 pF calibrated in loF divisions, with 2 pF interpolating disions. Power supply 200 to 250 v and 100 to 150 v. 490. Carriage $30 /$

NOISE GENERATOR MARCONI TYPE TF Il06. The TF $\| 06$ provides standard noise outputs for determining the noise factor of A.M. \& F.M. receivers as any frequency from to $200 \mathrm{mc} / \mathrm{s}$. It is catibrated directly in noise factor, making measuremencs a routine oper in four ranges. Accuracy +0.5 dB in four ranges. Accuracy \pm Ourpur impedance 52 or 71 ohms. Power supply $100-125 \mathrm{v}$. or $200-250 \mathrm{v}$. 655 .

AVO VALVE TESTER, with instruc tion book, E35. Carriage 30\%.

END OF RANGE ITEMS

 Offered at special low prices as only 3 few left, all are in fully cested guaranceed condition c10/10\%.BOONTON STANDARD SIGNAL GENERATOR MODEL 80. Frequency 2 $400 \mathrm{Mc} / \mathrm{s}$. in 6 ranges. AM., nal modulation. Provision for pulse modulation. Piston type attenuator $0 . i_{\mu}-100 \mathrm{mV}$ separate meter for modulation level and carrier level. Precision flywheel tuning. 117 v. A.C. inpue. With instruction manual, 695. Carriage $30 /$-.

P. C. RADIO LTD. 170 GOLDHAWK ROAD, W. 12

VALVES AC/H1
AL60
AR8
ARP3
ARP1
ARTT
ATP4
AZ31
BD78
RLA3
BT35
BT45
BT83
CV102
CV103
CV315
FW4/600
范四:

$2 / 6$
$9 /-$
$7 / 6$
30
$8 /-$
30
$8 /-$
$7 /-$
$8 /-$
$9 /-$
$8 /-$
$7 / 6$
$7 /-$
$8 /-$
$8 /-$
$8 / 6$
$1 /$
$20 /-$
$20-$
$12 /-$
$30-$
$8 /-$

anNo

 CaMP the valve with a outraxtee

 718

 -

 ${ }_{T T 11}^{\text {TP25 }}$
30 FL12 19/6
 \section*{
 \section*{
 -}

RADIO FREQ. THERMO-COUPLE METER METERS, 4 in $\times 4$ itin 4 in . long 350 mA 2 m . round plug-in
amp. 2 itin. sq. panel
5 amp. 2in. round pane
D.C. MOVING COIL METERS
$50 \mu \mathrm{~A}, 2 \mathrm{in}$. round proj.
200μ A. 2 in . round panel, sealed calibro- 30 $750-0-750 \mu \mathrm{~A} .2 \mathrm{in}$. round plug-in
1 mA. 2 tin. square panel
mA. Lin. round panel sealcd
5 mA .2 in . round clip-fix pan
$10.0-10 \mathrm{~mA}$ 2tin, round panel
0-30 mA. $2 \frac{1}{2}$ in. round panel
$10 \mathrm{~mA} .2 \frac{1}{\mathrm{in}} . \mathrm{sq}$. panel
2.5 mA . 2lin. sq. pane
$50 \mathrm{~mA} .21 \mathrm{in}, 5 \mathrm{~s}$. panel
75 mA .2 tin. plug in
100 mA . Ifin. proj.
100 mA . If in. round panel
$100 \mathrm{~mA} .2 \frac{1}{2}$ in. round panel
100 mA . 3 tin. round panel
2 mp . 2 in in. round panel
$5-0.5$ a mp. $2 \frac{1}{2} \mathrm{in}$. round panel
$8 \mathrm{amp} .2 \frac{\mathrm{in}}{} \mathrm{m}$. round panel
25 amp . 3 i in. round proj.
20 VDC 2 in. square panel
BOVDC 2 ilin. round panel
150 VDC 4 in. round panel
1.5 KV with res. 2 in . round panel.........
$0-1500$ v. 2 in. elects. plug in, round panel

MOVING IRON METERS
15 VAC $2 \frac{1}{2}$ n. round panel .
500 VAC 2 itin. round clip fix
$14 / 6$ METERS. $4 t i n . x 4 t i n$., tin. long, $17 / 6$ mirror scale panel moned calibrased with spe

17/6 LABORATORY TYPE VOLT.
METERS. 160 v.A.C./D.C. Bin mirror
scale in wooden boxes, $9 \frac{1}{2}$ in, x gtin.
seale in wooden boxes, $9 \frac{1}{\frac{1}{i n}} \times 8 \frac{1}{2} \mathrm{in}$.
$\times 3$ tin. with carrying handle, brand new $\times 3$ in. with carrying handle, brand new
$32 /$. P. \& P. $3 /=$.
25/-
22/6 MINIATURE METERS. General 30/- Electric Itin, round flush, elip mounted:

$$
\begin{aligned}
& 1 \mathrm{~mA} \text { D.C., } 22 / 6 \\
& 25 \mathrm{~mA} \text { D. C., } 20 / \mathrm{m}, \mathrm{P} .8 \mathrm{P} \\
& 65 \mathrm{~mA} . \text { D.C., } 18 /-, 3 /-. \\
& 150 \mathrm{~mA} . \text { D.C., } 15 /-.
\end{aligned}
$$

"S" METER FOR H,RO. RE-

paid U.K.

14/- SUB - MINIATURE "PENNY 17/6 SIZE" METERS.. lin. round, flush \$/16 ring nue mounted $500 \mu \mathrm{~A}$ FSD, cali$19 /-$ brated $0-1 \mathrm{~mA}, 20 /$. P. \& P. 3/-.

COMPLETE V.F.O. UNIT from

 TX53. Freq. range in 4 switched bands - from 1.2-17.5 Mc/s. Two V.T. SOls as 16 osciliator and buffer. 807 as driver, two 5130 s as voltage stabilizers. Output sufficient to drive two 813s in parallel. Slow motion drive directly calibrated in 25/- Mc/s. Provision for crystal control, $27 / 6$ metering of buffer and driver stage. Power requiremenes 400 y and 6.3 . D.C. Can also be used as low power transmitter. In excellent condition $27 / 6$ with valves and circuic diagram 49/10/-. selection.29/41FT. AERIALS each consisting of sen 3 fr. . Tin. dia. rubular screw-in sections. llfe. ($6-s$ accion) whip aerial with adaptor to fit the 7in. rod, insulated base, stay plate and stay assemblies pegs, reamer, hammer, etc. Absolusely brand new and complete ready to erect in canvas bag. 63/9/6. P. \& P. $10 / 6$.
CRISO RECEIVER, $2 \mathrm{Mc} / \mathrm{s}-60 \mathrm{Mc} / \mathrm{s}$.
with specially buile PSU for mains,

SPARES FOR AR.880. RECEIVERS. Ask for your needs from our huge

VARIOMETER for No. 19 sets, $17 / 6$.

TELEPHONE HANDSETS. Stan-

 dard G.P.O. sype; new 12/., P. \& P. 2/e.INSET MICROPHONE for telephone handset, 2/6. P. \& P. 2/\%.
LIGHTWEIGHT, LOW RESIST. COLLINS TCS. Complete installaANCE, HEADPHONES. Type H.S. 27/6. P. \& P. 3/Housed in portable wooden cases. Excellent for communication in- and including bacteries and $1 / 6 \mathrm{th}$ mile field cable on drum. Completely new. 66/10/-. Slightly used, $\mathbf{2 5} / 10 /$-. Carriage FIELD TELEPHONES TYPE "‘L" As above but in portable metal cases. mile field cable on drum. and $1 / 6 \mathrm{sh}$ Carriage $10 / \mathrm{c}$.
FIELD 10 LINE MAGNETO TELE. No. 19 HP SETS. Amp output PHONE SWITCHBOARD (YA.
6733). Withseanding all climatic
conditions. Price on application.
HARNESS E'A" "B" control units, junction boxes, headphones, microphones, etc.

FIELD TELEPH POE SETS Ideal for

FOR EXPORT ONLY

Installation Kits for CII/R210 Sets 53 TRANSMITTER made up to "' 2

FIELD TELEPHONE SETS TYPE ropical climates.
R.C.A. TRANSMITTER TYPE ET 4336. $2-20 \mathrm{Mc} / \mathrm{s}$., complete with M.O. fully sesced and guaranceed. All spares available.

BC GIOE TRA NSMITTER. Complete erial speech amplifier 939 A biat units, sank coils, etc. Fully tested and uaranteed. All spares avaitable. installations supplied.

RONTGENS/HOUR MICRO
AMMETERS. FSD $100 \mu \mathrm{mmp} .3 \mathrm{in} . \times 31 \mathrm{in}$.
x lin. width with s witching dials, 32/6.

WE ARE INTRODUCING FIRST CLASS (1.5\% ACCURACY) MOVING COIL METERS OF CURRENT MANUFACTURE. THESE STURDILY BUILT INSTRUMENTS HAVE HIGH TORQUE MOVEMENTS AND ARE
 CAREFULLY ADJUSTED FOR CORRECT AMOUNT OF DAMPING

The Meters are calibrated for use on anti-magnetic panels, in vertical position.
At present only the sizes listed below are available ex-stock. We hope to increase the range in the near future to include further sizes and types.

TRANSISTORS

R.S.T. Valve mail order co. 146 Wellfield road, streatham, s.W. 16

 ,
 $15 /-$ $15 /-$ $11 /-$ 718

[^15]-

ENGINEERS AND TECHNICIANS

U.K. AND OVERSEAS

for installation and maintenance of
IELEPHONESWITCHING \& TRANSMiSSION SYSTEMS
and the maintenance of
COMPUTER \& RADAR INSTALLATIONS

If you have experience in step-by-step crossbar, airfield radar maintenance, computer maintenance or transmission (particularly P.C.M.) you can well be the person we are seeking. Why not find out by contacting

Stan Yates,
STC, Chester Hall Lane, Basildon, Essex.
Tel. Basildon 3040
Interviews can be arranged outside normal office hours.

```
All valves brand new and
boxed
Speclal }24\mathrm{ Hour Express Moil
    Postage 6d. per Valve
SENDS.A.E. FOR LIST of 2,000 TYPES
```


JJ JUNIOR DECADE BOXES

RESISTANCE
ACCURACY $+0.4 \%$

Suitable
MODEL.

J1 5 Decade 0 to $1,111,100$ ohms
125 Decade 0 to $111,110 \mathrm{ohms}$
44 Decade 0 to 111,100 ohm
153 Deeade 0 to 11,100 ohms
J6 3 Decade o to 1,110 ohms
s.

CAPACITANCE BOXES ACCURACY $\pm i \% 500$ V. DC WkE.
MODEL
JC1 100 pf to 0.111 u

1. J. LLOYD INSTRUMENTS LTD, Brook Ave, Warsash Soushampton
$\begin{array}{lll}10 & 8 & 0 \\ 11 & 4 & 0\end{array}$

CLASSIFIED ADVERTISEMENTS

DISPLAYED SITUATIONS VACANT AND WANTED: £6 per single col inch.
LINE advertisements (run-on): $7 /$ - per line (approx. 7 words), minimum two lines
Where an advertisement includes a box number (count as 2 words) there is an additional charge of $1 /$ SERIES DISCOUNT: 15% is allowed on orders for welve monthly insertions provided a contrac is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors

```
Advertisements accepted up to MARCH 8 for the APRIL issue, subject to space being available.
```


FOR SALE AND WANTED ADVERTISEMENT FORM
TURN TO PAGE No. 119

R adio Enaineers required by the National Guard \mathbf{R} of Saudt Arabia, Intial contracts for one year,
 apmarried men preserre. Salary and allowances
approximately 83.300 per annum net.
snould have good knowlede of modern HF SSB com should have good knowledge of modern HF SSB communications equipment and VHF techniques. Previous
expericnce of petrol engines and teleprinters an experinuce of petrol engines and teleprinters an
advantake. Duties involve repair and mantenance of static. mobile and portable radio equipment throughout Saudia Arabia, and iraining of local personnel as
and radio mechanics and operators. Frequent air and road details of qualifications, experience and past
 Watson, c/o H.Q... National Guard, P.O. Box 182,
Ryadh, Sal'di Arabia. by civil air mail at full postage
[1961 rates.

TECHNICAL OFFICER. Home Omice Police Research Technical Officer. Grade 111, with knowledge and experience of workshop practice and electronic equipment; the successful candidate will work in the equip
ment group which is concemed with assessment ment group, which is concerned with of equipment trials and development of a wide range of equipment cation and test work in co-operation with police oflicers. Qualifications: Ordinary National Certificate or evi-
 three years' practical experience. Salary $£ 895-£ 1,149$ (age 28 or over) $\mathcal{L} 1.283$. plus $\& 125$ inner fondon
Welghting. Applications should be made to the Welghting. Applications should be made to the Princlpal Establishment Offcer. Room
Whitehall. London. S.W.1, by 29th March, ${ }^{3} 968$, ${ }^{2} 969$

The Civil Service

(Professional and other appointments)

RADIO AND ELECTRONIC ENGINEERS
 BOARD OF TRADE (CIVIL AVIATION)

Qualified engineers required as Assistant Signals Officers in the field of Civil Aviation for the provision and ullion of advanced electronic equipment-including the latest type of radar, telecommunications, navi gational aids, etc
QUALIFICATIONS: Degree with 1 st or 2nd class honours in El
AGE. 23 and normally under 35 on 31 st December 1968 (extension for Forces and Overseas Civil Service) AGE: 23 and normally under 35 on 31 st December 1968 depending on age and qualifications. Pensionable
SALARY (Inner London): On the scale $£ 1,160-£ 2,092$ den appointments. Good prospects of promation
(Reference: S/85/ASO)

EXECUTIVE ENGINEERS AND ASSISTANT EXECUTIVE ENGINEERS POST OFFICE

EXECUTIVE ENGINEERS are required for research, development and design work for electronic tele phone exchanges, satellite communications, submarine telephony, novel he and radio iransmissi
management ofirect and control the provision and maintenance of There are also posts in engineerg. plant entres.

ENGINEERS are required in London and provinces for work on the devel ASSISTANT EXECUTIVE ENGINEERS are Required ial service equipment
QUALIFICATIONS: Executive Engineer: Degree or Dip. Tech. in Mechanical or Electrical Engin eering, or Physics or Applled Physics, or have achieved Corporate Mernbership of the I.E.E., I. Mech.E. or I.E.R.E. Final year students may apply. Assistant Executive Engineer: G.C.E. (or equivalent) pass in English language, and one of the following: H.N.D., in Electrical or Mechanical Enginecrh.E; a pass in Physics; a pass in (or exemption from) Parts 1, 2 and 3 of the examinations or in (or exemption from) Parts (or exemption from) Sections 2 of the examination of the Council of Engineering Institutions, in subjects acceptable to one of the Institutions named above.
SALARIES (national): Executive Engineer: 4906 (at 21)- $£ 1,677$ (at 34 or over)- $£ 1,884$. Assistant SALARIES (national): Executive Engineer: £ 1,097 (at 25 or over) - $£ 1,631$
Executive Engineer: $£ 734$ (at 18 or under) $£ 1,5125$ Inner London, $£ 75$ Outer London. Non-contri-

butory pension. Promotion prospects 21 and under 35 on 31st December 1968. (Some extensions for service AGE: Executive Eng ineer: At Cast in . Forces or Overseas Civil Service.)
in H.M. Forces or Overseas Civil Service.) posts from well qualified older candidates will be considered.
Reference: $\mathrm{S} / 353$)
APPLICATION FORMS are obtainable from the Secretary, Civil Service Commission, Savile Row, London, W.I. Please quote appropriate reference.

RADAR SIMULATION

Resulting from

 continued expansion, the following vacancies now exist at Crawley.
PROJECT MANAGER

Applicants should have a minimum of five years' experience in control of projects involving digitalised equipment. They must understand applications of network theory to project control.

DESICN ENGINEERS

Preferably with experience of radar systems or simulators and analogue computers. Experience of digital techniques and design of computer interface systems would be an advantage.

DICITAL PROGRAMMER

Applicants must have a sound background in engineering and/or physics, and have a logical mind. Some experience of digital computers and software would be an advantage. Training on the solution of real time problems will be given.

Our products have an assured future in an expanding market. We offer good conditions of service, including contributory pension scheme, coupled with free life assurance.

Apply to: General Manager,

REDIFON LIMITED

A CAREER IN THE SUNSHINE

RADIO TECHNICIAN TRAINING

in the

RAAF

Vacancies exist in the Royal Australian Air Force for men who are interested in being trained in the Technical Radio fields. Applicants should be United Kingdom citizens residing in the U.K. and aged between 18 and 33 years. Qualified personnel up to the age of 43 years are also invited to apply.

Free passage to Australia is provided for families and pay commences from date of enlistment in London.

Further information can be provided by writing or phoning:
RAAF CAREERS OFFICER Dept. (wwI) AUSTRALIA hOUSE STRAND, LONDON W.C.2. Telephone No: 01-836 2435

VICKERS
ENGINEERING GROUP

TECHNICIANS

required by the Radiation and Nuclear Engineering Division at South Marston Works, Swindon, Wiltshire, for the installation, commissioning maintenance and service of Electron Accelerators. The work is mainly connected with Electron Linear Accelerators for medical research and industrial applications, and with Cobalt Radiation Units and Nuclear Reactor equipment. Applicants must have a minimum of equipment. Applicants must have a minimum of O.N.C. and preferably H.N.C. or be trained to
Technical Sergeant standard in H.M. Forces. ExTechnical Sergeant standard in H.M. Forces. Ex-
perience with this type of equipment or in radar is perience with this type of equipment or in radar is
desirable but not essential. Applicants must be prepared to travel anywhere in the world. These positions provide for Life Assurance, Pension and sickness benefit with excellent career prospects. The Works are pleasantly sited on the outskirts of Swindon with first-class sports and social amenities.
Please reply giving a resumé of career and experience to:

Mr. J. Barber (Ref. 4054), Vickers Limited Engineering Group, South Marston Works, SWINDON, Wiltshire.

PYE T V T LIMITED

Can offer the following opportunities:-

INSTALLATION ENGINEERS

Senior and Assistant Engineers to install and commission Colour T.V. Transmitting equipment at home and abroad. The posts offer opportunities for travel.
Applicants for the SENIOR ENGINEER posts should have an H.N.C. or equivalent, but candidates without such qualifications who have considerable experience of installation of T.V. broadcasting or other transmitting equipment will be considered.
Applicants for the ASSISTANT ENGINEER posts should have an O.N.C. or equivalent trade or services qualification in electronic engineering. Some experience of installation work on electronic equipment would be an advantage.
Attractive salaries will be paid, according to experience and qualifications. Travelling expenses are paid in addition.

ELECTRONIC DEVELOPMENT ENGINEERS

Engineers for development of Colour Television Transmitters and associated equipment. The vacancies fall into two categories:-
Applicants for the first category are expected to be aged between 24 and 34 , with H.N.C. or equivalent qualifications and design experience in at least one of the following activities:-

1. Video and radiofrequency amplifiers up to 1 GHz using solid state and microwave tube techniques.
2. Amplitude and phase equalising networks.
3. High power coaxial networks and feeders.
4. Other work connected with television transmitters. Applicants for the second category will be aged between 20 and 26 , with O.N.C. or equivalent, with some experience in the electronics industry.
Attractive salaries will be paid to Engineers able to provide immediate contribution to a comprehensive work programme.

TRANSMITTER TEST ENGINEERS

Senior and Assistant Engineers to test Colour T.V. Transmitting equipment. This includes a wide range of U.H.F. Transmitters of powers up to 40 kW .
Applicants for the SENIOR ENGINEER posts should have an H.N.C. or equivalent, but candidates withour such qualifications who have considerable experience of T.V. Broadcasting or other Transmitting equipment will be considered.
Applicants for the ASSISTANT ENGINEER posts should have an O.N.C. or equivalent trade or services qualification in electronic engineering. Some experience of test work on electronic equipment would be an advantage.

Attractive salaries will be paid, according to experience and qualifications.

Enquiries should be addressed to the Personnel Officer, Pye T V T Limited, Coldham's Lane, Cherry Hinton, Cambridge. Write or telephone Cambridge 45115.

VIDEO ENGINEERS
 Careers for RS

Service and Commissioning Engineers CROYDON AREA

Additional engineers are required with thorough knowledge of professional television equipment for studio and industrial applıcations, Video recording and some knowledge of colour television techniques. Training in the last two fields can be arranged.

Electronic Tests Engineers

WEYBRIDGE AREA

For work on colour equipment we seek services of experienced Video Engineers. An understanding of transistorised pulse circuitry
Conditions of employment are attractive.

> Apply in confidence to Plant Personnel Officer, Peto Scott Limited, Addlestone Road, Weybridge, Surrey. Tel: Weybridge 455II. Addlestone Road,

GOVCnmmuent ofi IESOTHO REQUIRES TRAINING OFFICER (TELECOMMUNICATIONS)

for the Posts and Telecommunications Department, on contract for one tour of 24 months resident service in the first instance. Commencing basic salary according to experience in scale Rands 3324 rising to Rands 3684 a year ($£$ Stg. 1939-£Stg. 2149) plus Inducement Allowance £Stg. 277-£Stg. 319 a year. Gratuity 25% of total salary drawn. Liberal leave on full salary. Free passages. Quarters provided at reasonable rental (or an allowance paid in lieu). Children's education allowances. Contributory pension scheme available in certain circumstances.

Candidates should possess at least Intermediate City and Guilds Group Course Certificate in Telecommunications, and be able
to give some formal classroom instruction as well as practical tuition in one or more of the following fields:
(i) small manual and automatic telephone exchanges, including P.A.B.Xs:
(ii) line transmission including carrier systems:
(iii) subscribers installations:
(iv) external plant, including local distribution planning.
Apply to CROWN AGENTS, M, Dept., 4, Millbank, London, S.W.r., for application form and further particulars, stating name, age, brief details of qualifications and experience, and quoting reference M3D/64523/

Another member is needed for the editorial team of

WIRELESS WORLD

Readers (25/35) with a flair for writing and an interest in the presentation of technical information are invited to send details of education and experience to the:

> Editor-in-Chief,
> Wireless World, Dorset House, Stamford Street, London, S.E.1.

- INDUSTRIAL ELECTRONICS', a leading monthly journal for users of electronics, require an editorial assistant to fill a vacancy in their team.
The work is interesting and stimulating; it involves a combination of desk work and visits to industrial plants.
Applicants should be able to write clearly and should preferably have had some formal training in electronics.

Applications should be made to The Editor,
'INDUSTRIAL ELECTRONICS',
Dorset House, Stamford St.,
London, S.E.I.
(Phone 01-928 3333 Ext. 178)

PRODUCTION TEST ENGINEERS

Our activities in the field of telecommunications are substantially increasing, and as a result we have a need for a number of Production Test Engineers capable of fault finding on V.H.F and U.H.F. mobile equipment involving both transistorised and valve circuitry.
There are also a limited number of vacancies for Systems and Microwave Engineers.
Selected applicants will be based either in Cambridge or Haverhill (Suffolk), and realistic salaries will be offered for these positions.

All enquiries initially should be made to:
THE PERSONNEL MANAGER, PYE TELECOMMUNICATIONS LTD., NEWMARKET ROAD, CAMBRIDGE. Telephone: Cambridge (OCA3) 61222

RADIO ENGINEER GRADE II

GOVERNMENT OF TAN7.ANIA
Qualifications:A.M.I.E.R.E., or M.I.E.E (new regulations) and at least two years qualified experience in the operation and maintenance of broadcasting studios and transmitting stations
Duties: To be responsible to Radio Tanzania for the running of Studios and transmitter stations. This includes small installations and modifications to the general layout of equipment.
Age: preferably under 35 years.
Terms of Appointment: On contract for one tour of 21-27 months; Basic salary is in the scale £ Tanzania 918-1,314 p.a. (£ Sterling $1,071-1,533$) p.a. subject to local income tax and in addition an allowance normally tax free, ranging, from $£ 768$ to £936 will be paid by the British Govern ment direct to the Officer's bank accoun outside East Africa. Entry point according to experience. Terminal gratuity also payable. Free family passages, educational allowances. Generous leave.

Applicants, who must be nationals of the United Kingdom or the Irish Republic should apply quoting RC 237/173/04 for further details giving full names, qualifications, age and experience to:-

The Appointments Officer,
Ministry of Overseas Development,
Room 301, Eland House,
Stag Place
Victoria,
London, S.W.1.

gateshead and district hOSPITAL MANAGEMENT COMmItTEE

SENIOR ELECTRONIC TECHNICIAN

Applications are invited for the above post, 10 carry out duties in the Gateshead district, N.W Durham, Hexham district and Prudhoe groups of Hospitals. Qualifications should preferably include the H N.C. (Electronics or Light Current Electrical Engineering Certificate, or of similar academic level The person to be appointed should have wide experience in the electronic field includint telecommunication radio frequency transmission/and reception, audio frequency systems, domestic and public entertainment, pulse generation, automatic control systems and electro-medical appar
The Technician will be based at Gateshead and be esponsible to the Group Engineer, Gateshead and District H.M.C. for organising a system of routine maintenance covering a wide variety of electronic equipment. Nationthin the scale $£ 980-£ 1,300$.
Applications giving full details of age, education experience, qualifications and present salary together with names and addresses of three referees should be sent to the Malagement Committe and Eistize Co. Durham, NE9 6SU.

The 5 GeV Electron Synchrotron (NINA) is operational and is being used for research into high energy physics by University and resident groups. The Synchrotron is housed at Daresbury in north-west Cheshire.

EXPERIMENTALISTS

who have experience of radio frequency techniques at U.H.F. and S. Band or of high voltage pulse forming systems, or alternatively a strong interest and experience in electronics or accelerator physics, are required for the Machine Group.

For part of the time they will provide specialist advice as members of the operating crew of the synchrotron and some three shift working will be involved in this aspect of the work.

For the remainder of the time they will carry out research and development aimed at maintaining the linear accelerator and synchrotron in a high state of efficiency, and as a leader in the field of nuclear physics.

Appointments will be made on the following salary scales and starting salaries will be assessed according to age, experience and qualifications:-

Senior Experimental Officer $£ 1,977-£ 2,411$;
Experimental Officer $£ 1,365-£ 1,734$;
Assistant Experimental Officer $£ 803$ (age 22)— 8862 (age 23),
$£ 916$ (age 24)- $£ 970$ (age 25),
£1,017 (age 26 and above),
rising to $£ 1,243$.
Additional payments are made for shift working.
Applicants should have a pass degree or H.N.C. in electrical engineering or applied physics or possess equivalent qualifications.

The superannuation scheme is non-contributory. Advice and assistance to obtain 100% house loans is available

Write for application form, quoting reference number $\mathrm{DL} / 210 / \mathrm{M}$, to Personnel Officer,
Sclence Research Council,
Daresbury Nuclear Physics Laboratory,
Daresbury, Nr. Warrington.
Closing date:- 28th February, 1968.

Trained in electronics? Interested in aircraft?

Combine both these interests at the Marconi London Airport Service Depot.

Technicians at the depot undertake major servicing of all types of Marconi airborne electronics equipment including navigational aids and V.H.F and U.H.F communication systems, During 1968 there will be an expansion into a new building giving excellerit opportunities for rapid promotion.
Applicants should possess a City and Guilds Certificate in tele conmmunications, equivalent qualification or experience.

Marconi 缕

Please write quoting reference WW/AV/7, giving details of age, qualifications and relevant experience to: Mr B K Overy, Divisional Personnel Officer, c/o Directorate of Personnel, English Electric House, Strand, London WC2.
The Marconi Company Limited
AN 'ENGLISH ELECTRIC' COMPANY

DEVELOPMENT

ENGINEERS

We are a Public Company in the Radio Industry and require Development Engineers for our planned expansion programme. We have a ycung enthusiastic management team and the successful candidate will be expected to play a full part in furthering the progress of the company by being involved in the preparation of the new models on which the company's expansion will be based.

Applicants must be qualified in radio and/or telecommunication engineering with at least five years experience of RF, IF, FM and audio layout design.

Realistic salaries will be offered to suitable candidates.

Please apply to:-
Personnel Manager,
DANSETTE PRODUCTS LTD.,
Dansette House,
Honeypot Lane, Stanmore, Middx.
Telephone: 01-907 0021

An electronic or electrical engineer with H.N.C. qualifications is required by BISRA to work in the Automatic Control Section of the Plant Engineering Division at our Battersea Laboratories.

The emphasis will be on the practical nature of the work; the ability to construct electronic equipment being particularly important.

Salary will be according to age and qualifications. Conditions of employment in our well-equipped laboratories are good and include a subsidised canteen. There is a contributory pension scheme.

Applications, briefly outlining career history and present salary, should be sent in confidence to:

Mr. A. B. Driver,
Personnel Officer,
BISRA-The INter-Group Laboratories of the
British Steel Corporation,
24, Buckingham Gate, London, S.W.I.
Please quote reference $P E / A C / I$ in your reply.

NEWCASTLE REGIONAL HOSPITAL BOARD

ELECTRONIC ENGINEER

in Regional Engineer's Department. He will be responsible to Regional Engineer for advice and guidance on the selection, use and maintenance of all electronic equipment in hospitals in the North East and in Cumberland. pitals in the North East andicians in a small, well equipped laboratory under his control and he will supervise electronic technicians employed by hospital management committees in eight outstations. He will advise the Regional Engineer on choice, design and development of electronic equipment and controls needed in mechanical and electrical projects, as part of the Board's capital propramme of $\mathrm{\varepsilon 6}$ million per annum. This is a new section of the Board's staff and the work may grow.

Applicants must be Chartered Electronic Engineers with wide practical and administrative experience. Work will demand breadth of vision, initiative, energy and tact. Hospital experience not essential.

Salary within the scale $£ 1,640$ to $£ 2,300$ according to age and experience.

Applications, giving details of age, qualifications, experience, present salary and three referees to the Secretary of the Board, Benfield Road, Walker Gate, Newcastle upon Tyne, NE6 4 PY, by 29th February 1968.

Abstract

enthusiasts Have you considered a career in Technical Authorship? If you have sound experience in electronics or communications and ability to write clear concise English we would train applicants as Technical Authors. The commencing salaries range from $£ 1,300$ to $£ 1,700$ depending on experience with the prospects of high future rewards and earnings. Box No. 5039, c/o Wireless World

RADIO TECHNICIANS

A number of sultably quallfed candidates are requited for Unestabllahed posts. lemding to permanent and pensionalile
employment (in Cheitenham and other parts of the U.K. including London). There are also opportunithes for servive abroad. Applicante must be 19 or over and be familise with the use of experience. Preference will be given to candldates who can offer erperteve. Pnd GCE paves in English language. Mathan andfor Phyatcs. or hold the Clty and Guilde Telecomanunications Techalcal Intermediate Certiticate or equivalent technical quabitice. thons. age pay on entry).
Proapects of promotion to grades in salary range $\mathbf{2 1 , 1 5 9 .}$ Q1,941. There arc a few poste carry logg higher salaries. Annual leare allowance of 3 weeks 3 deya riafog to 4 weeks 2 days. Normal Clvil Service sick leave regulations apply Application forms available trom:Recruitment Omect (RT), Government Communications Headquarters, Cheltenham, Glon.

ENGINEERS

IBM will train you for a responsible career indata processing

To become a successful IBM Data Processing Customer Engineer, you need more than engineering qualifications. You need to be able to talk confidently and well to any level of customer management, and to have a pleasing personality in your work. As a DPCE, you work in direct contact with your customers, on some of the world's most advanced data processing equipment.

You must have a sound electronic and electromechanical background, such as ONC/HNC Electronic or Electrical, or Radar/Radio/Instrument Fitters course in the Armed Services.

You will get thorough training on data processing equipment throughout your career. Starting salaries depend on experience and aptitude, but will not be less than $£ 1,100$ a year. Salary increases are on merityou could be earning $£ 1,900$ within 3 - 5 years. Drive and initiative are al ways well rewarded at IBM ; promotions are made on merit and from within the company.

If you are between 21 and 31 and would like this chance to become part of a rapidly expanding and exciting computer industry, write to IBM.

However, if you are between 18 and 21, IBM can offer you the chance of a challenging career as a Junior Customer Engineer.

You need five G.C.E. ' O ' levels, an aptitude for mechanics, a good understanding of electrics, a clear logical mind, and the ability to get on well with people.

Send details of training, experience and age to Mr ' D. J. Dennis, IBM United Kingdom Limited, 389 Chiswick High Road, London W4, quoting reference E/WW/262.

IBM

Electronic/instrumentation technician engineers

The Atomic Energy Research Establishment at Harwell has vacancies for Technician Engineers in several sections giving instrumentation support to the scientific work of the establishment.

The posts are in the following fields:
(i) Assistance in applied research, development, design, commissioning and diagnostics of instrumentation. data processing and control as applied to scientific research.
(ii) Assistance in design, development diagnostic work and commissioning of electronic control equipment associated with particle accelerator machines or research reactors.
(iii) Assistance in experimental and development work concerned with research on semiconductor radiation detectors, special semiconductor devices and microelectronic techniques for nucleonic and other applications.
(iv) Design and development of electromagnetic devices and the application of these to a variety of equipment; e.g. solid state $D C$ to $D C$ converters.

For this stimulating and interesting range of work we are looking for technicians who possess qualifications in Electronics or a related subject at least equivalent to
O.N.C. and who preferably either hold, or is dependent on the shift system being are currently studying for, a higher quallfication. In addition applicants should have served a recognised apprenticeship or have had equivalent training. Appointments will be made in the Technical Class Grades II and III depending on age and experience. Salary scales are shown below.

PARTICLE ACCELERATOR OPERATORS are also required to join small teams engaged in the control and faule rectification of these machines. The work is novel and interesting and calls for sound technical judgment. Applicants should have served a recognised electrical engineering apprenticeship or have had equivalent training and possess an appropriate Ordinary National Certificate or equivalent qualification. The work involves the use of

High voltage equipment;

vacuum systems and
electronics and control circuitry.
Some specialised training will be given.
Appointments will be made in the Technical Class Grade II and after initial training, shift working will be required. Details of the shift system, which is based on an average 40 -hour week will be available at intervlew. The shift allowance payable
is dependent on the shift system being 20% of salary.

SALARY Technical Class Grade II; $\mathbb{A 1 , 3 7 5}$ to $\mathrm{El}, 595$ per annum. Technical Class Grade III; $\{1,040$ (at age 23) to (1,230 (at age 28 or over on entry) to $\{1,375$ per annum.

HOUSING to rent, or assistance with house purchase, will be available for successful married candidates from outside the Harwell transport area.
HOLIDAYS. 22 working days a year for Grade II, 18 days for Grade III, rising with service, plus public and privilege holidays. Also good sick leave scheme.
CONTRIBUTORY SUPERANNUATIONEXCELLENT HOME T'O WORK TRANSPORT SERVICE.
For further details of the above posts and other information please send a postcard, quoting reference E.3442/4S, for the Technical Engineer or E.3428/4S for Operations posts, to Appointments Section 'E' United Kingdom Atomic Energy Authority, A.E.R.E., Harwell, Didcot, Berkshire or telephone Abingdon 4141, Extension 2408 or 2482.

COLLEGE OF 1.M.R. COMMNS. Brooks' ably qualified persons for the following:
ASSISTANT LECTURER IN MARINE
RADIO. P.M.G. Cert., and up-to-date knowledge of the technical syllabus essential. Radar and other qualifications and/or teaching experience an advantage, taken into account when fixing salary, based
on the Burnham Scale.

ASSISTANT LECTURER IN MARINE RADAR. Applicants must hold the B.O.T. Radar Maintenance Cortificate, and should also have had Radar experience as a marine Radio Officer and/or service enginecr.
Both positions available September 1968 or earlier by arrangement.
Write Principal, giving in confidence full details of experience, education, present salary, etc.

BERRY'S RADIO

Require

COUNTER SALES STAFF AND
STENORETTE ENGINEERS
(fully experienced applicants only)
5 day week, LVs., PERMANENCY
25 HIGH HOLBORR, LONDON, W.C. 1

THE NATIONAL INSTITUTE OF AGRICULTURAL ENGINEERING.
TW 111 required to assist a small team investigating problems associated with the measurement of light and control of temperature and carbon dioxide concentration in greenhouses. Practical experience in electronics necessary and some knowledge of modern recording
equipment desirable.
Salary Scale: $£ 895$ p.a. at age 21 rising to £ 1,149 p.a. at age 28 or over with a maximum of $£ 1,283$ p.a.

Ref.: $68 / E C D / 22$.
FIVE-DAY WEEK SUPERANNUATION CANTEEN
Application forms from: The Secretary, N.I.A.E., Wrest Park, Silsoe, Bedford.

Computer Engineers

Due to continued expansion NCR require additional ELECTRONIC and ELECTRO-MECHANICAL ENGINEERS
for Computer Maintenance. Posts are available for men wishing to become Site Engineers.
Training Courses are arranged for suitably qualified men. H.N.C. Electronics, City \& Guilds Final or equivalent standard required. Men from forces with radar experience welcome.
Knowledge of electronic or electro-mechanical equipment necessary. Good Pension and Bonus Plan in operation.
Please write for Application Form to The Personnel Officer.
NCR, 1000 North Circular Road, London, NW2, quoting Publication and month of issue.
Plan your future with

TELEVISION ENGINEER

Rapidly expanding Company in CCTV requires an engineer to control its Sales/ Servicing operations in the London area. Ability to maintain one inch helical scan video VR 7003 recording machines, T/V monitors and vidicon cameras essential. In addition to servicing CCTV installations, he will be required to promote new business in his area. Estate car will be provided and there is a pension scheme. Write giving full details to:-

Technical Director, Television Applications Ltd., 9/11 Windmill St., London, W1

ELECTRONIC ORGANBUILDERS REQUIRE DRAUGHTSMEN with at least 5 years' Electromechanical and Electronic experience, minimum qualification ONC or equivalent.

These positions carry good salaries and prospects.
Applications, giving age and career details to
Mr. J. Meredith, COMPTON ORGANS LTD., Chase ROAD, London, N.W.10.

DEMONSTRATION cabinet to house four decks and Danclllary equipment. Record Storage 58 ft . 6 in. plate glass top. ©45.-A. L. Stamford, Ltd. 98 , Weymouth
Terrace, London. E.2. Tels.: 01-739 5003 , $01-3630042$. HEATHKIT Mohican communications RX GC-10 With power undt: total cost $\mathcal{E 5 0}$, only 6 months old, still has 6 months guarantee snd is in brand new
condition; ${ }_{8}$ bargaln at $\& 30$. O . Headridge, 31 .
 MARCONI signal generator, type 995A, $1.5-220 \mathrm{MHz}$. quirements; cost $£ 325 \mathrm{in} 1964$; manual, 110 .-Westrex Co.. Lidd. Service Division, Coles Green Rd.. London,
N.W.2. Tel. 01-452 5401. Quantities of Barretter valves Cl33, CY31 and QCIC. Wanted, new and boxed; have for exchanke
new 6 ES 5 EL84, 6887 and ECC8 valves, or will
 DLANAR transistors $2 N 2369$ G50 MHZ, 6/6; PEPS PLANAR transistors 2N2369 650 MHZ $500 \mathrm{MHZ} 5 / 6$; E88CC, $10 / 6$; tape pre-amp, less alves. 54 o.n.o. F.M. tuner less crystals, $\& 3$; preclsion reststors; details and itsts, s.a.e.-Box WW210
Wireless World.
B.B.C. 2, TV, RADIO, TAPE REC. SERVICE SPARES BUHF/625, modify your set to B.B.C.2. Manufacturers conversion kits \& tuners, list available. Philips
625 conversion kit. new including 7 valves o circuit.
£ $4 / 28 / 6$ (less valves $39 / 6$). p/o $6 /$ GEC/Sobeli £4/18/6 (less valves $39 / 6$). p/p $6 /-$.sis GEC/Sobell
Dual $405 / 625$ IF amp and output chassis, new, incl
 new, Incl. 6 valves $55 /$ - (less valves $17 / 6$), $p / \mathrm{P}^{4} 4 / 6$.
New UHF tuners, incl. valves $32 / 6$ (less Valves $12 / 6$) or transistorised 70/\% p/R. 4/6. New VHF tuners. Brayhead $300350 /$. Cyldon c $20 /=$, K-B, $16 \mathrm{Mc} / \mathrm{s}$ or $38 \mathrm{Mc} / \mathrm{s} 10 /-\mathrm{p} / \mathrm{p}$ 4/6. Many others available. Fire-

 and UAF battery free, L.O.P.Ts.. scan colls, frame output transf, mains droppers. etc., for all popular makes. CRTs 14, 17, bape recorder belta, heads, motors, etc Salvageed components. largee selectlon transformers scan colls. turrets. etc. Enquiries invited, C.O.D despatch avallable-MANOR SUPPLIES, 64, Golder Manor Drive, London, N.W.11: callers. 589b, High RIIL, 9118 (day). SPE. 4032 (evg.). Early closing Thursday 1 p.m.

TELEVISION ENGINEERS

A number of suitably qualified candidates are required for field television servicing by Radio Rentals at many branches. The positions are permanent and colour training will be given to suitable candidates. Car allowance or Van supplied. Noncontributory pension scheme. Good salary plus commission, etc. Apply in first instance to:

$$
\begin{aligned}
& \text { Personnel Manager, } \\
& \text { RADIO RENTALS, } \\
& \text { Empire House, } \\
& \text { 414, Chiswick High Road, } \\
& \text { London, W.4. } \\
& 01-9946411 .
\end{aligned}
$$

MICROWAVE SYSTEMS ENGINEERS

As a result of continuing expansion of this company's business, we are looking for leading Installation, Commissioning and Testing Engineers who are experienced in the field of high capacity telephony and television microwave links.
We want the best engineers who can show evidence of their successful management of projects overseas or in the U.K. and we are prepared to pay attractive salaries to the right men.

目For further details 'phone or write in strict confidence to: David A. D. Smith,
PYE TELECOMMUNICATIONS LTD.,
Newmarket Road, Cambridge.
Phone: Cambridge (OCA3) 61222
If you are currently earning less than $\{1,600$ p.a. you might not yet have the experience we are seeking for these posts, but we should still like to hear from you.

BLECTRONIC ENGINELRS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic electronics with experience in electronics, Radar, Radio and TV or similar field. Position is permanent and pensionable. Comprehensive training, on full pay, will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

A founder-member of the Associated Engineering Group is the foremost m>nufacturer of Diesel Engine Piston Equipment in the world, and employs $\$, 000$ people in six factories in the South of England-and offer the following career opportunities at their modern, up-todate Research and Development Laboratories in Lymington.

SENIOR ELECTRONICS ENGINEER

Responsibilities would include full responsibility of the Electronics Laboratory, which is concerned with a wide range of activities in engIneering, metallurgy, chemistry and plastics.
Preference given to person with previous experience in the field of General Electronics, as applied to diesel engine testing, instrumentation, strain gauge applications, or the application of electronics to automatic machine tools.
Minimum academic qualifications would be H.N.C. in Electrical Engineering or Electronics. This is a permanent pensionable career appointment, assistance with housing may be available.

Please write to:

> The Employment Manager Wellworthy Limlted,
> Radlal Works,
> LYMINGTON, Hampshire.

B) $5 \longdiv { T }$
 This Private School provides full \& part day training in the following professional subjects
 RADIO \& TELEVISION SEKVICING RADAR THEORY \& MAINTENANCE RADIO TELEGRAPHY

International Publishing Corporation Ltd.
require a

TECHNICIAN to work on electronics in their Development Division located at Feltham, Middlesex. The work is applied to advanced clectronics in the printing industry. Applicants should have, or be near to attaining, ONC (Electronics) and further time for studies will be available for the right candidate. Salary according to age and experience.
Write in confidence to: Director of Research \& Development, IPC (Group Management) Ltd., Astronaut House, Hounslow Road, Feltham, Middlesex.

OUTSTANDING OPPORTUNITIES FOR ABOVE AVERAGE DESIGN AND DEVELOPMENT ENGINEERS

To earn not less than $£ 2,500$ p.a.
Qualified Engineers are urgently required to work on advanced engineering contracts in the Home Counties and Provinces, with experience in one or more of the following fields:-
$\begin{array}{ll}\text { (1) Analogue and Digital Equipments } & \text { (3) Radar and Navigational Aids }\end{array}$
(2) Microwave and Communications (4) Instrumentation

This is a first-class opportunity to work on exciting projects at exeeptional salary levels.

STRAND TECHNICAL CONTRACTORS LIMITED NORMAN HOUSE, $105-109$ STRAND, LONDON, W.C. 2 $01-8365557$

Pleaze quote: EW

WESTMINSTER 10 spindle iully automatic trans Wormer winding machine, automatic paper inter leaving and provision for parting off colls by rotating blade, exceptional condition; very, reasonable. -102
Parrswood Rd., Manchester 20, Tel. Rusholme 3553 . Parrswood Rc., Manchester 20. Tel. Rusholme 5509 M ${ }_{1: 5}$ ARCONI a.m./f.m. signal generators TF995/A2. Me $1: 5 \mathrm{mcs}$ to $220 \mathrm{mcs} £ 65$; CT218.85 Kcs to 30

 Model D. \&5; carriage extras.-Box WW211. Wireless World.
ULTRASONIC ampliflers by British maker. 35 Watt models, $200 / 245 v$ mains operation compodiodes, 1 mains transformes topped 200/220/240/250 $230 \mathrm{v}, 0.85 \mathrm{mmp}, 1$ mains transformer $220 / 240 \mathrm{v}-450 \mathrm{v}$

R OTAX rotary converters, Inpul 24 V d.c.; output olage ; 3ph. 400 cycles, 1.8 amps. $£ 6$; carbon pile pack
 $0.1 \mathrm{mfd} . . \quad$ \&2. Redifon iransmitter inductances, \&4
 chokes in stock; carriage pald.-Box WW1988. Wireless
INSTRUMENTS for sale:-Solartron laboratory amplifier Model AWS-51-A, banduidth $5 \mathrm{c} / \mathrm{s}-800 \mathrm{Kc} / \mathrm{s}$
 cis stens, $k 40$; Dawe wide rance oscillator. Type 400 B $20 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}$ with output V.V., £25: Dawe wide rang monitor scope, $£ 20$ Muirhead volt ratio box. Type A-202-A. reststance 50 Kn . max. voltage 1 Kv, $\mathrm{K}^{2} 5$ these instruments are in good condition and working order from private laboratory: postage not included.
Box W1987, Wireless world.

EEGTIV

film recordists

BBC Television requires fully qualified and experienced technicians as Hơliday Relief Film Recordists ($£ 29$ I4s. per week) and Assistant Film Recordists ($£ 21$ 18s. per week) for the summer months.
Initial appointment for two months. Possbility of extension for further four months.

Based in London.
Write, giving age and full particulars of relevant experience, to General Manager, Film Operations and Services, Television Film Studios, Ealing Green, London, W.5.

TELEPRINTER MECHANIC

Responsibility will initially be for the installation and maintenance of \& sophisticated teleprinter systems involving some logic switching
This position will appeal to a man with a sound knowledge of Telegraphic and logic switching who seeks the opportunity to commence a career with a fast expanding company. Driving licence desirable.
Our business is telecommunications.
A good salary will be offered commensurate with experience. The Company has an excellent pension and life assurance scheme. Substantially reduced holiday air fares are available to most parts of the world.
Please apply in writing stating details of age and experience to-

General Manager, Personnel (WW/TM),
INTERNATIONAL AERADIO LTD.,
Aeradio House,
Hayes Road,
Southall, Middlesex

PROGRESS IN DIELECTRICS Series

Edited by J. B. Birks, B.A., Ph.D., D.Sc., F. inst. P., A.M.I.E.E. (General Editor) and J.H. Schulman, Ph.D. (American Editor. Vols. 1 \& 2) and Professor J. Hart (American Editor, Vol. 3)

The aim of this six volume series is to provide a common meeting point for all interested in dielectrics - the electrical engineer, the physicist, the electronics engineer, the molecular chemist, the biologist and the technologist in the whole range of the newer dielectric materials. It will seek to coordinate current knowledge of dielectric phenomena, materials and techniques and to review recent progress.

Please send for full details

ILIFFE BOOKS LTD., DORSET HOUSE, STAMFORD STREET, LONDON, S.E.1.

UNIVERSITY OF BIRMINGHAM

Department of Physiology
Senior Technician for expanding electronic workshop. This interesting work is concerncd with development and maintenance of equipment used in physiological research, and for teaching medical and dental students. Experience of similar equipment and/or H.N.C.
Salary scale £942-£1,230 per annum. Applications quoting reference PH/ST/108 to Personnel Adviser, P.O. Box 363, University of Birmingham, Edgbaston, Birmingham 15.

Abstract

Better deal for cash customers. We do not provide interest free credit but offer a generous discount of 15% tor cash. Equipment despatched brand new in sealed cartons on receipt of remittance with order sealed cartons on receip of remittance with ordet guidance.-Write or 'phone. Callers welcome. Open all day Saturday. Thursday half day,-Audio Services. Ld., 82. East Barnet Rd., New Barnet. Herts. Tel. Lid. $82 .{ }^{8}$ Eas A Litte STAMFORD, Ltd. Clearance Lines. Enclosure Whartedale Axlom 201 £22/10. Corner enclosure fitted Shartedale three speaker system: Super 121 n .- $8 \ln$. and variable tuner ©3i \&45. Rogers Cadet Mk. II And variable tuner 834 . Australlan walnut cablnet Llne £60. Chapman 55E/FM 4 bend tuner \&20. Armstrong A20/PCU 25 \& 20 . GL $58 /$ Deram E15/15. Dulci stereo amplifier, and control \& $15 / 15$. Rogers Junlor control. new. $£ 7$. Rogers Junior tuner and power pack E9.-A. L. Stainord. Ltd. 98 , Weymouth Terrace. London. E.2. Tels.: 01-739 5003, 01-363 0042. [1990

THE LONDON HOSPITAL MEDICAL COLLEGE

(University of London)

ELECTRONICS TECHNICIAN

Applications are invited for the post of ELEC TRONICS TECHNICIAN in the PHYSIO LOGY DEPARTMENT. Duties include construction and maintenance of electronic equipment in the College. H.N.C. or equivalent qualification desirable but a student technician could be considered for training provided he had A level Physics. Initial salary will be according to age, qualifications and experience and based on Whitley Council Scale for Medical Laboratory Secretary, The London Hospital Medical college Turner Street, London, E.1, within fourteen days.

IS EDISON YOUR MIDDLE NAME?

If so, we need you to work on development of microcircuit input-output devices for the printing industry, mainly as personal assistant to designer/director.
Industrial experience not csiential. We are looking for an original mind and practical competence as a breadboard engineer. Location: N.W. 9.
The job is an exceptional opportunity for a determined young man who wants to get somewhere. (Gcod pay, tco.)

CRYPTON EQUIPMENT LIMITED BRIDGWATER, SOMERSET.

We invite applications from suitably qualified technicians to fill a vacancy for a Field Service Engineer in the Surrey/Middlesex area. Candidates should have a good electronics back ground and be familiar with servicing equipment which incorporates a Cathode Ray Tube An experienced Television Engineer may be suitable for this position, which is a Staff suitable for this position, which is a Staff
appointment and a vehicle will be provided appointment and a vehicle will be provided. Letters of application should be forwarded to
the above address and marked for the attention the above address and m
of the Service Manager.

MOBILE RADIO TELEPHONES

 can you say wholed the world with?The first high-power solid-state FM mobile to meet the GPO type test specification-at 25 watts.
The first high-power solid-state AM mobile to meet the GPO type test specification-at 12.5 kHz channel spacing.
The first AM base station to meet GPO type test specification for 12.5 kHz channel spacing, at 50 watts.
If you can say who won these "firsts," you are deeply interested in VHF development. But are you closely enough concerned to merit a place in our development labs at Croydon, and help us produce more "firsts"?
Send relevant details in strict confidence to:-
Pat Webster, Rel. WW 4106
Hudson Electronics Led.
Peall Road, Croydon. CR9 3ax.
01-684
A division of Stondord Telephones \& Cobles Limited

BRITISH EAGLE
 INTERNATIONAL AIRLINES

SIMULATOR ENGINEER

This leading Independent Airline has a vacancy for a qualifed and experienced Engineer to work on its Britannia Simulator at London (Heathrow) Airport. He should have Civil or Service Simulator experience, and will have undergone training with a Manufacturer. He should have qualified in two of the following subjects: Theory of Flight, Control Loading, Radio Aids, Engines Jet or Turbine. And have a good background in Amplifier Theory, Motors, Generators and Power Supplies, and practical experience of Control Diagrams and Servo mechanisms would be helpful. The work is interesting, and the Company can offer excellent conditions of employment and generous travel concessions.

Please apply in writing to the Personnel Manager, British Eagle International Airlines Limited, London (Heathrow) Airport, Hounslow, Middlesex.

You get a good deal from Marconi MABINE...

COMMUNICATIONS ENGINEER

for the maintenance of communications equipment which is located mainly on North Sea oil drilling rigs. The Engineer will be based at Chelmsford and will be required to travel at short notice to remote sites.
Experience of H.F. I.S.B. communications equipment, teleprinters and automatic error-correction systems, together with experience in V.H.F. maintenance work, is essential.
Hours 8.30 a.m.-4.54 p.m., five day week. Facilities available include social club, staff restaurant and pension scheme.
Applications in writing to :
Personnel Officer (Shore Staff),
The Marconi International Marine Co. Ltd.,
Elettra House, Westway, Chelmsford, Essex.

You get a good deal from Marconi Marine...

. . . There is a vacancy for an EXPERIENCED RADAR SERVICE ENGINEER

with initlative and ability, to define methods of installation and maintenance of modern marine radar equipment, and conduct post-development investigations.
Ex-Service Radar Engineers would be considered for this position. Please write giving details of experience and qualifications to: Personnel Manager (Shore Staff),
The Marconi International Marine Co. Ltd., Elettra House, Westway, Chelmsford, Essex.

DESIGN STANDARDS ENGINEER

This post is for an engineer to assist in the formulating of Engineering Standarde relating to electronic and electro-mechanical equipment.
Considerable detail work in analysing the requirements of existing National Standards will be required.
Preferably applicants should have had 1 or 2 years experience in a similar position although consideration will be given to other applicants with suitable backuround. Our Company is well known for its personnel policy on working conditions, hours. holidays, pension and sick pay arrangements.

NCR
Please apply to: Personnel Officer. NCR, 1,000 North Circular Rd.. London NW2

NEW GRAM ANO SOUND EQUIPMENT
G LASGOW.-Recorders bought. sold. exchanged verss.-Victor Morris. 343, Argyle St., Glaskow. C.2

VALVES

Valve cartons by return at keen prices: send $1 /$ Godwin Bt., Bradiord.

To meet the technical requirements of our production programme, and to provide for a situation arising during the next $12-18$ months consequent on the retirement of long service staff, we are steking the services of

ELECTRICAL INSPECTION PERSONNEL

In Supervisory and Technical grades

We are looking for specific experience in the use of sophisticated measuring instruments, the interpretation of test specifications and good theoretical knowledge and training in telecommunications or similar allied branches of electronics (e.s, Radio and T.V, test, fault finding etc.)

Salaries will recognise experience and ability.
W
Please write briefly with request for form of application to
Personnel Manager,
PHOENIX TELEPHONES LIMITED
Grove Park, London, N.W. 9

We buy new valves, transistors and clean new com-
ponents, large or small, quantities, all details,
quotation by return, Walton's Wireless Stores, 55 .
Worcester St.. Wolverhampton.

CAPACITVAVAILAELE
 A IRTRONICS, Ltd., for coil winding, assembly and A wiring ot electronic equipment. transistorised sub unst sheet metal work, ${ }^{33}$, Walerand Rd., London, $8 . E .13$. Tel. $01-852$ 1706.

TEST EQUIPMENT - SURPLUS
 ANDSECONDHAND

 HALLiCRAFTER SX62 AmericanRecelver with RA6 Speaker: aun
wave coverage,
crystal oscillator, high fidelity sound; crystal oscillator, high fidelity sound; \quad £60.-Rowe ${ }^{23}$,
Tangler Rd., Guildord. Surrey. SIGNAL generators, oscllloscopes, output meters, wave etc., etc., in stock.-R. T. \&eters, multi-range meters. vilie Old Hall, Ashville Rd.. London, E.ll. Ley., 4986 Well known units by leading makers! Oscilloscopes to E195; secondhand but in good condition. A.C. main operated, $31 / 1 \mathrm{ln}$ screens, twin beams. long persistance
C.R.T.s on gome models; few only, not to be mlssed C.R.T.s on some models; few only, not to be missed-ham Court Rd., W.1. $01-5804532$ (callers welcome).
[1970

RECEIVERS AND AMPLIFIERSH
 SURPLUS AND SECONDHAND

HRO Rx5s. etc, AR88, CRI00, BRT400, G209, S640 Ashvit., etc.. In stock.-R. T. \& I. Electronics. Ltd.
Ashe
4986.

HECHNICAL TRAINING

CITY \& aUILDS (Electrical, etc.), on " Satisfaction For details of modern courses in all branches of electrical engineering. electronics. radto. T. V automation etc. send for 132 -page nandbook-fret-B.I.E.T
(Dept. 152 K). Aidermaston Court. Aldermaston. Berks
$B^{E C O M E}$ "Technically Quallfed" in your spare time $B_{\text {guaranteed diploma and exam, home-study courses }}$ in radio. TV servicing and maintenance. R.T.E.B. City \& Gutids, etc. highly informative $120-$ page
Gulde-iree. Chambers Colleze (Dept. 837 K). $148, ~$ Holborn. London. E.C.1. P.M.G. Certificates, City de Guilds and I.E.R.E In Radio, TV and Electronics. Study at home with world Iamous ics. Write for free Prospectus statin subject to-International Correspondence Schools (intertext House. Parkgate Rd.. London, SW11

Abstract

PATENTS WE proprietors of Patent No. 950,830 for "o Improve ments in Antennae desire to commerctal explota t.on in the United Kingdom by Hicence or otherwise tion in the United Kingdom by licence or otherwise Replles to: Sydney E. M.Caw \& Co.. Saxone House 52-56.

BUCKS WATER BOARD
 ENGINEERING ASSISTANT (Electrical \& Control)

Applications are invited from preferably qualified Electrical Engineers for the above post in the Mechanical and Electrical Section of the Engineer and Manager's Department to assist with all electrical work and the supervision of automatic and centralised production control.

The salary will be within scale £1,560 to $£ 1,980$ per annum (Grades V/VI of the Water Supply Industry Staff Conditions). The appointment will be subject to a medical examination and two references. Full details and application forms can be obtained from the undersigned to be returned not later than 1st April, 1968.
R. Pownall, Esq.

Engineer and Manager,
Bucks Water Board,
Byron Road,
Aylesbury, Bucks.

Ideal opportunity to further your experience and be associated with Aeronautical Research and Development

ELECTRONIC CRAFTSMEN royal aliciaft establishment BEDFORD

Electronic Craftsmen are required to work in a wide range of new and interesting fields in electronic engineering, covering instrumentation associated with model aircraft, digital data measurements and recording, digital computer techniques, radio telemerry systems coupled to research flying, aircraft simulation involving servo systems and analogue computing, closed circuit television systems, aircraft radio! radar systems with particular reference to automatic blind landing of aircraft and also ground radio/radar systems associated with Air Traffic Control. In all these fields Craftsmen work very closely with research scientists and engineers, and are given every opportunity to expand their experience. Craftsmen are mainly employed in the construction, testing and maintenance of equipments. Encouragement is given to craftsmen to further their technical education. Men who have had an approved apprenticeship or training in electronics, telecommunications, light current electrical engineering or H.M. Forces training in radio, radar and wishing to further their experience should apply. Radio/T.V. service experience would be an advantage. R.A.E. can offer excellent working conditions with good prospects for promotion. Ministry housing scheme available for married candidates from outside the area.

Applications should be made to:-

The Labour Manager

Royal Aircraft Establishment Bedford
Tel. No. BEDford 55241. Ext. 7594

BUILD YOURSELF A QUALITY TRANSISTOR RADIO!

SRARSONA FIVE MED. LONG \& TRAWLER BAED. B transistors and 2 diodes,
ferrite nod merial. tunlag con. ferrite nod aerial. tunlag con-
denser, volume control. 3in. denser, volume control. 3in.
apenker, $f i x+1 \times 1$ th. Totsi Bulding Conts 48/6. P. \& P. 3/6. Plane und Parts list $1 / 6$ (free with partu).

MELODY SIX MED * LONG WAVES. 6 traminatore and 2 dhodes. Pishh-pull out. put, tuntag conderser, ferrite rod serial, 3in, speaker, elc..
$61 \times 3\{\times 1 \mathrm{fm}$. Total Building
 Plan ind parts lint $2 /-$ (Iree with parts).

RADIO EXCHANGE CO. LTD.

61 High Street, Bedford.

'Phone: 52367

ROAMER SIZ. G wavetiandoMW1, Mw2. SWI, swa, KW and Trawler Mand. "t iransishors and 2
dhoden. Ferrite rod and telescopla merimis. 3 in, upeaker. Top grude corn-

 Plans and
parts). Callers side entrance Barrats Shoe Sbop Open 9—5p.rn. (Sat. 8-12.30 s.m.)

Solve your communication problems with this new 4-station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to 8 ubs and 8 ubs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hos pital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. $7 / 6$ in U.K.

Same as 4 -Station Intercon for two-way instant conversation. Ideal as Baby Alarm and Door Phone. versation. witeal as Baby Alarm and Door Phone.
Cormplete with 66 ft . connecting wire. Battery $2 / 6$. P. \& P. $3 / 6$.

7-STATION INTERCOM

(I MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. $3 \frac{1}{2} \mathrm{in}$. Speakers. Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory. Conplete with 50 yards cable and batteries. Price 21 gns . P. \& P. 12/6 in U.K.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De. Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without telephone messages or converse without
holding the handset. A useful office aid. A holding the handset. A useful office aid. A
must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one $9 \quad \vee$. battery which lasts for months. Ready to operate. P.\& P. 2/6 in U.K. Add 2/6 for Battery. Full price refunded if returned in 7 days.

WEST LONDON DIRECT SUPPLIES (W.W.).
169 Kensington High Street, London, W. 8

HAWSON
 Complete fitting instructions are supplied with every tube. Terms: C.W.O. Carriage and insurance 10%.

HRAND NEW
TUBES

dawson TUIBES

18 ChURCHDOWN ROAD MALVERN, WORCS.

Tel. MAL 2105

The contumally increasing demand for mbes of the very highest performance and reliability is now being met by "Century 99" ar: absolutely brand new tube, throughour manufactured by Britain's iargest C.R.T. mamufacturers. They are guaranteed to give absolutely superb performance with neelle sharp definition screens of the very latest type giving maximum Contrast and l.ipht out.tut: wsether twith high reliability and zerv lous tife.
"Century 49 " are a complete range of rubes in .II sizes for all Brinish sets manufachured 1947-1967.

2 YEARS FULL REPLACEMENT GUARANTEE,

12"-14: 10:0 $14 *-55: 10: 0$
17 "-c5:19:0 19"-16:19:0 21"-67:15:0

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:
RADIO/TV ENG. \& SERVICING AUDIO FREQUENCY

- CLOSED CIRCUIT TV

ELECTRONICS—many new courses

- ELECTRONIC MAINTENANCE

INSTRUMENTATION AND
SERVOMECHANISMS

- COMPUTERS

PRACTICAL RADIO (with kits) NEW PROGRAMMED COURSE ON ELECTRONIC FUNDAMENTALS
Guaranteed Coaching for:
Inst. Electronic \& Radio Engs. C. G. Telecom. Techns' Certs.
C. G. Electronic Servicing
R.T.E.B. Radio/T.V. Servicing Cert.

Radio Amateur's Examination
P.M.G. Certs. in Radiotelegraphy

General Certificate of Education

Archaeologist requires a modern Mine Detector capable of detecting Non-Ferrous and Ferrous metals. Will collect suitable instrument anywhere in Britain and pay cash.
Phone or write:-
D. G. Cotton. Cotton T.V. Service,

63-65, Oundle Road, Peterborough.
Phone: Peterborough 2888.

LINEAR I.Cs, M.O.S.F.E.Ts

RCA: CA3020, push-pull amp, d.c. to 83 Hz , up to 550 mW output. With data, 33/-. CA3011, high-gain i.f. amp/limiter TAA263, 75 dB amp. in small transistor can, 27/-; 320TAA, unity gain impedance can, 27/-; 320TAA, unity gain impedance
converter, m.o.s.f.e.t. input, 18/9; 101TAB, converter, m.o.s.f.e.t. input, 18/9; 101TAB, transistor quad for ring modulators, $21 /-$
100 MHz M.O.S.
F.E.T. High slope ($7.5 \mathrm{~mA} / \mathrm{V} \mathrm{min}$.), low noise, leakage, crossmod. RCA 40468. 10/6. SEE ADVERT JAN, p. 135 for OTHER TRANSISTORS Mail order only. Orders over 10/-, U.K., post paid.
AMATRONIX LTD. (Dept. WW3), 396 SELSDON ROAD, CROYDON, SURREY, CR2 ODE.

DAMAGED METER?

Have it repaired by Glaser
Reduce overbeads by having your damazed Electrical Measuring Instruments repaired by L. Glases \& Co. Lidd. We specialise in the repair of all types and makes of INSTRUMENT ammeters, Mmultirange Test PFPAIRS \quad Recording Instruments, Leak Detectors, Temp. Controliders all Testers, etc.
As contractors to various Government Departments we are the leading Electrical Instrument Repairers in the Industry. For prompt estimate and speody delivery send defective instruments by registered poat, or write to Dept. W.W.:-

> L. GLASER \& CO. LTD.
> 1 -3 Berry Street, London, E.C.1.

WIRELESS Servicing Manual.' W. T. Cocking. Which s.ince 1936 has been known to radio serviceman everywhere as a rellable. thorough and comprehensive guide to solving most of the problems that arise in the radio recelver. In the present edition a major addi. tion is a chapter devoted to transistors and trainsistor sets. The guthor of Wireless servicing Manual ${ }^{\text {is }}$ editor of "Electronic Technology". and now of : in dustrial Electronics." His crisp. lucid style makes this handbook of utmost value to the service man and amateur alike. $25 /-$ net, $26 /$ by post from Iliffe
Books Lid. Dorset House. Stamiord St., London Books
8.E.1.

R ADIO Designer's Handbook," Editor. F. Lang(U.S.A.). A.M.I.E.
book. the work of 10 authors and 23 collaborating enbook the work of 10 authors and 23 collaborating en accessible form: the book is intended especially fo those interested in the design and application of radio
receivers or audio ampliners. Television, radio trans mission and industrial electronici have been excluded in order to limit the work to a reasonable size. $65 /$ net from all booksellers. By post $67 / 9$ from 1 iffe
Books Lid., Dorset House. Stumford St.. Iondon. S.E.1.

GENUINE BRAND NEW PRODUCTS AT LESS THAN HALF PRICE

BRAND \%EW BRITISH RECORDIMG TAPES-P.V.C. POLYESTRE AND MYLAR. Wlth Hitted leaters in pols:

 Bramt new jre-recoried heglonery. and brush upp courace
on tapee in FRENCH, iEHMAN. ITALAAN. APANIBH
 our uriee junt 18/6. retail $89 / 4$.

TRAMBESTORS MATCHED EETS
1 OCA4 +2 OCLS, per eet. $101-$
 1 OCS11 +2 OC81. per set. 9/6.

DIODES. OA81 4/\%. OA95 4/\%, O \1N2 4/=, OA2M2 $4 /=$ SILICOI DIODES

ELAC SPEAEERS. $7 \times 4 \mathrm{in}$. I'rice 12,6 .
1 TRAMSISTOR PUSG/PULL OLTRA. Lin ampliner, 1 watt
output. battery operatel. deakned for electronic ingtru mients, microphoncs and public address. Manzor other usees Price 15/6.
cabinet to match above. 10/-.
VoLOME COMTROLs. with switch, price $3 / 6$.
TRAMBLETOREED CAR RADIOB, norimaliy cie/lo/. Our price 28.
ALL GOOD SATIFPACTION ODARAMTEE
Portage on all orders 1/.
TARMAK. 28, Linkerolt Arende, Albiord, Midares

TECHNICAL * LONDON- 10 Tottenham Court Rd.

* PORTSMOUTH- $350-352$ Fratton Rd. \&
\&
SOUTSMOUTHAMPTOM- 72
East
St.
 t Whighton-Devonian Court, Park Crescent Place
All Moil Order and 24-hour Robophone service Brighton 680722
BULK STEBEO DECODERE (Arema ${ }^{6}$ tranictor complete). 7 Gas.

P. P. 8 or ans 9 volt batiery.
Note: A will A mplifer of rery interesting specifection in ine course of mreparsetion.

Quartz Grystal Units

For
ACCURACY
RELIABILITY
PRICE ECONOMY
you can

THE QUARTZ CRYSTAL CO. LTD.
Q.C.C. Works. Wellington Crescent,
New Malden, Surrey (01-942 $0334 \& 2988$)

WW-119 FOR FURTHER DETAILS

A BACS of Nomorrams." By A. Giet. Translated A irom the French by H. D. Phippen and J. W. Head. Most engineers have made use of nomgrams at
some thme in their careers, and are fully allve to the some thme in their careers, and are fully allve to the same formula has to be solved repeatedly for several sets of varlables. It is fair to say, however, that only a small proportion of even those who habltually employ nomograms know how to construct them for thetr own use. Most of the comparatively small literature on the subject is written for mathematiclans and is extremely difficult for the practical engineer to comprehend. This book is essentially practical and not only demonstrates the many and varied applica-
tions of the abac of nomorram, but shows how even tions of the abac of nomogram, but shows how even ledge may construct thelr own charts. 35/- net from all booksellers. By past 36/- from Iliffe Books Lid.. Dorset House. Stamford St., London. S.E.I.

LATEST ELECTRONIC BREAKTHROUGH. CUT YOUR ELECCRICITY BILLS BY HAALF, FINGERTIP CONTHOL OF ALLLELECTRICAL HEAT. Vary the heat of your UP TO 3000 WATTS. HEAT, Vacy the heat of your
ELECTRIC FIREB, and nave electricty. Ideal lor ELECELECTRIC FIRES,
TRIC BLANKETS, houvehold IRONS. Ammer your
ELECTRIC KETTLE. Excellent for SUN. RAYLAMP8. ELBCTRRC KETTLE. Excellent for SUN. RAY LAMPA
LIGHT. Control the brghtean of all hounehold LAMPG,
from a from a gllmmer to full bright ness. Jdeal for gpot LAMPA,
ARC LAMPS, etc. Unetul for FLOODLIGHTS. SPEED. Controls the apeed of ANY ELELTRIC DRILL, for any appltation. 8uper for LATHEB, CHINDERA, FOOD MIXERS, YACUUMCLEANERS, WASHINGMACHINES
BPIN DRIERS, HEDGE CUTTERS WILL CONTROL SPIN DRIERS, HEDGE CCUTERS WILL CONTROL
ALL UNIVERBAL MOTORS UP TO 2 H.P. These UnIt must not be confused with ordinary rempatances and rheoatats that watte power. Contained in a strong metal case. TO USE. No njpecialihed knowledge required. A unlque electronic achbevement, containn 7 tranamiors and thyristors and ecores of micico ministure electronic componente
COMPLETELY BAFE AND APPROVED. Brand new and remdy to ure Improved de-luxe model. Price 10 GNS. carriage and insurance $10 /$.. C.O.D. $3 / 6$ extra. Trade enquirles invited. Free demonatration at our preminem.

A Superbly desioned POWER CONVERTER (de luxe model). A 12 volt INP UT gives a $200 / 240$ volt OUTPUT.
Enables you to run up to 220 watt AC/DC TELEVIBION lighting und equipment. Thousands of ueen. Indippensable to caravanners. Workihopis and Garagen. The unth is contained in a compact lourred steel case. Complete with connecting leann, batcery.
Nod to beconfused with Heary Duty Dynamolors.
Priee $£ 818 / 6$. Carriage 12/6. C.W.O. C.O.D. $3 / 6$ All orders to: Dept. P.W. $\mathbf{\theta}$

F) CIOBE SMENTITM

24 CAWOODS YARD, MILL STREET, MARSH LANE, LEEDS ${ }^{\prime}$.
WW-121 FOR FURTHER DETAILS

WW-120 FOR FURTHER DETAILS

ELECTRONIC BROKERS LIMITED

precision helical potentiometers

BECKMAN MODEL J. Continuous Instrument Potentiometer, 2 in . dia., $10 \mathrm{k} ., 35 / \mathrm{F}$. Brand new. Res. col. $+5 \%$. Lin. $201 .+0.15 \%$

BECKMAN MODEL A. 10 turn Preclsion Wirewound Potentiometers, available in the following values: $50 \Omega 100$ ohms, 100 k . Offered at $50 / \mathrm{k}$. Well below list price. Also Colvern types 50 k ,

BECKMAN MODEL 7216. 10 turn Precision Potentiometer, idia., 2 k., 60/-. Brand new. Miniature Beckman Multi-turn Continuous Dial, adjustable up to 15 surn, with separate brakelocking lever, 7 dial. Will fit most pots. 45/-. Halflist price.
SINE/COSINE POTENTIOMETER. By Kelvin \& Hughes, SCP4 33 k . Offered at a sixch of manufacturer's price, $112 / 10 /$ -
PLUG-IN PRECISION DUAL SPEED DRIVE D.S.D. 7
0.1° accuracy (dial calibration). Readings one from 0° so 360
ments of 10 and fine increments of 0.1 . Miniature coupling provided to transmit rotation ene synchro. This precision drive permits rapid positioning and extremely accurate repositioning of of the drive, also available DSD 40 Gear ratio 10 : 1 , $\mathrm{Cl} / 9 / 10 /$-.

"MINICUBE" BLOWER. Sub-miniature, only lin. square. Operates on 26 V 400 c.p.s. input power, 1 or 2 pH. Output 2.2 cfin . as free air wt. It oz. Brand new. Made by

GEAR BOXES. By Vactric, Size $11.149 .1: 2$ and $300.2: 144 / 10 \%$
INSTRUMENTS FOR DYNAMIC ANALYSIS. INSTRUMENTS FOR DYNAMIC ANALYSIS components of a signal voltag
Frequency Range: $0.5 \mathrm{c} / \mathrm{s}=1 \mathrm{Kc} / \mathrm{s}$

Signal Voltage Ranges: $50 \mathrm{MV}, 150 \mathrm{MV}, 500 \mathrm{MV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}$ and 150 V with either balanced or unbalanced ipput. Signal Input Resistance: $10 M \Omega$ unbalanced. $20 \mathrm{M} \Omega$ balanced. Reference Inpue
Four-phase reference energisation is required, each phase having a level of 10 V r.m.s. with respect to virtual earth Reference Inpur Resistance: $6.2 \mathrm{M} \Omega$ per Phase.
Harmonic and Unrelated Frequency Discrimination better than 40 dB . Mains voltage $90 / 130$ or 230/240 V. Standard Rack
T.F.A. A.C. CARRIER CONVERTOR JX67IA by SOLARTRON-For direct use with resolved component indicator VP 253.2 for the testing of A.C. servo systems, demodulation of the outpus from Synchros and orher forms
of plek-off. Modulation or
Modulation of Carrier to provide signals for Magnesic Amplifier, Synchros, etc. Carrier Input Frequency: $50 \mathrm{c} / \mathrm{s}, 60 \mathrm{c} / \mathrm{s}$, , VP. A. REFERENCE RESOLVER 5×746 by SOLARTRON-For use with resolved component indicato A.C. carrier conversor JX 746 for A.C. Carrier amplifier design elerometer Transducer and in conjuction with T.F.A

MINIATURE PRECISION SAMPLING SWITCHES, $100-C H A N N E L$. Consisting of 4 eracks
 48-CHANNEL. Consisting of 2 tracks of 24 contacts driven by E.M.I. precision motor and gearbox, 6.3 V D.C. through a E.M.I. S. 31 gearbox, $\mathrm{E} \mid 2 / 10 \%$

HIGH TEMPERATURE PRESSURE TRANS DUCER-Type NT4-317, by Solartron. Highly accurate and stable performance. Suitable for uses in explosives and mining, research, moulding, pressing and extrusion research. High temperature environmental instrumen-$0-75$ p.s.i., $100,150,160,250$, 500 absoluce. 1,000 , 1.500 5,000 p.s.i. Gauge $0+150$, p.s.i. differensial, $\in 19 / 10 /$ Size fin. dia. Iin. Iength. It should be nosed that although these transducers are offered new condition, in manu facturer's packing, shey do require individual calibration.

SOLARTRON PRESSURE SCAN NING VALVE NT.999.3-This unis enables a single pressure transducer to pressures in one second. For inler pres sure range of 0.1 p.s.l. to 40 p.s.i depending on which eransducer is used The cransducer is housed inside the valve and is exposed to the unknown pressures in order. This unit is offered with Vactric synchronous motor 400 box ratio of 149.06 : 1 . New condision, Offered as a fracsion of the original coss Ci9/10/.
A variety of Size 11 mocors and gear heads can be fitced instead bus we regres this will have so be undertaken by the

SE LAB. LINEAR ACCELERATION TRANS DUCER. Type SE S5/A \pm IG. E19/10/.. Brand new E29/101.
J. LANGHAM THOMPSON T10370. Pressure Inducsive Transducer 0-2500 p.s.i. £9/10/\%. Also SB4/0-30
 4410%
SOLARTRON PLATINUM RESISTANCE THERMOMETER PROBES. NT4-1039/l Probes in a stain less steel case <tin. dia. Resistance as $0^{\circ} \mathrm{C}$. is $130.0+0.3$ ohms. Time responses <3 seconds. Temperacure range $-42^{\circ} \mathrm{C}$ to 500 C . Length of Probe fin. New condicien. Lise price $\mathbf{2} 25$. Our price $£ 4 / 10 /$
ELECTRONIC BROKERS LIMITED 8, bROADFIELDS AVENUE, EDGWARE, middX.
TEL. 01-958 9842
Callers by appointment only please
FIVE DIGIT COUNTER, complese with Sangamo 57 synchronous motor $200 / 250-1 / 10 \mathrm{~h}$ rev per hr. and I rev per hr. $\mathbf{3 5} /$., only New.
PEN RECORDER. Two pens activated mechanically by $6 K \Omega$ S.P.S.T. Relay Deviation O.lin. Chart wideh 1.3 in Oriven by Synchronour Motor Sangamo Weston 57 Motor \& rev. per hr.*
-It should be noted a wide range of chars speeds can be achieved by the replacemens of the Motor $£ 7 / 10 /$. MARCONI VALVE VOLTMETER TF 428B/1 Frequency response on probe $10 \mathrm{Kc} / \mathrm{s} / 3-100 \mathrm{Mc} / \mathrm{s}$. Five separace Volsage Ranges Overload Projecsion $100-250$ A.C. I.P. Inpue IM Ω Acc. $\pm 2 \%$ or 0.02 V . Size $10 \times 16 \frac{1}{2}$ \times 9in-ISIbs. $E 14 / 10 \%$.
TF329C. MARCONI Q METER CIRCUIT MAG NIFICATION. Freq. range $1.5-50 \mathrm{Mc} / \mathrm{s}$. $50-1500 \mathrm{Kc}$ Magnification $\mu \mu \mathrm{F}$ € $\mathbf{6 9} / 10 /$.
SELENIUM "KLIP-SEL" TRANSIENT VOLT. AGE SUPPRESSOR. Type KLGDBF 234 V IS amp Size 2in. sq. 25/.

GRAPHICORDER '9 by a high resolution Miniasure nine channel Galtrace recorder. Two ranges of five speeds
$0.15,3,6,1.2,2.4$ or $1 \frac{1}{2}, 3,6,12 \mathrm{in} .1 \mathrm{sec}$ Sensftivityfrom 20 micro amps/em at a natural frequency response of
80 c.p.s.
Frequency response D.C. so I,000 c.p.s. nac. freq. 24-28 D.C. 300 mA .

Sire 4.12 in . high $\times 9.8$ lengeh, 2.75 width, weight 8 lbs Our price for' chis remarkable instrument, $\mathbf{4} 125$, Lise price exceeds, $\mathbf{Z 7 0 0}$.

WE PURCHASE
PLUGS AND SOCKETS, MOTORS, TRANSISTORS, VALVES AND KLYSTRONS, RESISTORS CAPACI TORS, POTENTIOMETERS, TEST EQUIPMENT, RELAYS TRANSFORMERS, METERS, CABLES, ETC. PROMPT PAYMENT AND COLLECTION TURN YOUR CAPITAL INTO CASH

LOW FREQUENCY RESOLVED COMPONENT INDICATOR BY SOLAR TRON-TypeVP 253.2A for the analysis of Dynamic Response of syssems and components so the highest accuracy with rejection of harmonics and noise over the loss. Performance of synchros and fraccional motors and other electro mechanical units. Also design and testing of Feedback Amplifier, Filters, etc. This inserument willindicate by means of two centre zero 6 in . scale meters the resolved components of a signal voltage with respecs to the applied reference energisation.

A Boon to Aircraft Motor. Elect-Power, E.-Medical, R. \& D, and Production units. From Sole Patentees and makers,
A.A. TOOLS, 197A, Whiteacre Road, ASHTON-U-LYNE.

> NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logic modules. CONTIL and BRIGHTLIFE products are all ex-scock. For details see February and April 1968 issues, advertisements. For further details use reader service card. New prices on new leaflet. All customers on mailing list will recelve these automatically. WEST HYDE DEVELOPMENTS LIMITED.
30 HIGH STREET, NORTHWOOD, MIDDX.

Telephone: Northwood 24941
WW-123 FOR FURTHER DETAILS

ADJUSTABLE HOLE \& WASHER CUTTERS

The right Adjustable

tool for trepanning holes $I^{\prime \prime}-12 \frac{1}{2}$ in diameter mour range of 17 hole and washer cutters 18\% Tungsten High Speed Tool bits

Write for illustrated brochure of our full range with straight or Morse taper 1-4 or Birstock shank AK URATE ENGIN EERING

Cross Le. LTD. , Hornsey, London, N. 8 TEL. FITZROY 2670

WW-I24 FOR FURTHER DETAILS

RESISTANCE WIRES

EUREKA-CONSTANTAN most Gauges Available

NIGKEL-CHROME
 MANGANIN

NICKEL-SILVER
COPPER WIRE
ENAMELLED, TINNED, LITZ, COTTON AND SILK COVERED
SMALL ORDERS PROMPTLY DESPATCHED-
B.A. SCREWS, NUTS WASHERS, SOLDERING TAG'S, EYELETS and RIVETS
EBONITE and BAKELITE PANELS.
TUFNOL ROD, PAXOLIN TYPE COIL FORMER ROD, PAXOLIN TYPE COIL F
AND TUBES, ALL DIAMETERS
SEND STAMP FOR LIST. TRADE SUPPLIED
POST RADIO SUPPLIES 33 Bourne Gardens, London, E. 4

Telephone 01-254-4688

SWANCO PRODUCTSLTD.
asmap AMATEUR RADIO SPECIALISTS o3Peo

-
SWANCO PRODUCTS LTD.
Dept. W 247 Humber Avenue COVENTRY

Telephone:
Coventry 22714 Hours: Mon.-Sat.9a.m.-6p.m.

NEW 1968 EDITION WORLD RADIO/TV HANDBOOK

 42/-Postage I/-
COLOUR TELEVISION. PAL SYSTEM by G. N. Patchett. 40/-. Postage I/-
SILICON ZENER DIODE \& RECTIFIER H'BOOK—Motorola. 16/-.
Postage I/-
Inter. GEC S.C.R. MANUAL 4th ed. 25/-. Postage 2/-
TRANSISTOR POCKET BOOK by R. G. Hibberd. 25/.. Postage I/
T.V. FAULT FINDING 405/625 Lines Data Pub. 8/6. Postage 6d.

COLOUR TELEVISION SERVIC ING H'BOOK. Vol I by W. Hartwich. 50/-. Postage $1 / 6$.

RAPID SERVICING OF TRAN-
SISTOR EQUIPMENT by G. J. King. 30/-. Postage 1/-.

RADIO VALVE DATA 8th ed. Compiled by "WW." 9/6. Postage $1 /$.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-2। PRAED STREET
LONDON, W. 2
-Phone PADdington 4185
Closed Sot. I p.m.
WW-125 FOR FURTHER DETAILS

"SKANOIA" VHF/UHF AM/FM

Handy / Portable / Mobile / Stationary Transceivers

"Mariner", 6 Ch. VHF FM, RF Output power 1 W , Portable Transceiver
other items offered 1

* Cassette stereo tape recorders, w/AM/ FM Stereo receiver, Portable \& Home
* Stereo 8 player w/FM Stereo receiver, Automotive \& Home
Tomura Bussan Kaisha, Limited C.P.O. Box No. 118 Nagoya, Japan Cable add.: "SKANDIA" Nagoya

EXCLUSIVE OFFER

PERMANENT OR TRANSPORTABLE STEEL 60-FOOT AERIAL TOWERS
 As supplied to British and other Governments

\star Unique design
\star Scientific Construction
having the following remarkable features.

 screwn and adjuntmenta are folly protected Irom ruint and to designed to be free from damese when transported or left loose on the kround.
\& Foolprool the Tower cannot be orected if not assembled ar is reguired and no apecia
cols are micoira.
removed as many times ared. arected and dismantied and
\star Everything necenary for the complete tower to be pu into use and raised and lowered is provided ; Iull dra wing and inatrnetions.
These Ane Towert were made in England by B.I.C., and con
the Goverament $£ 2.200$ each. They are BRAND NEW the Government £2.200 each. They are BRAND NEW at ous premises.

Cost $£ 2,200$
Price Brand New £345

40-page list of over 1,000 different thems available koed one by you	tock
* Uniselectora 10 Bank 25 Way	cl 15
$\star 7$ Track Tape Readera	E12 10
* 7 Track Tape Punches	£12 10
* Bit. Encloned Rack Cabineta	$\underline{5} 5$
*T-200 Panadadaptora 450/470 Ke/n.	£30
* A-1 Multi-Core Cable Tenters 2 K F .	£40
$\dagger^{\text {Narda }} 500 \mathrm{w}$. Uitranonic Cleaner	£85
* Slidiner Shelven rack mouatink	
*Marnetic Recording Wire. i-br, reel	
*3M Video Recording Tape, ${ }^{\text {d }}$ in.	¢5 10
- Marconi S.S.B. Receivera $\mathrm{HR}-22 \mathrm{~L} / 32 \mathrm{mc} / \mathrm{m}$.	¢80
\pm R.C.A. $420 \mathrm{mc} / \mathrm{s}$. Yanis el. Beame	£2 10
* Model 15 Teletype Pace Printeri	£2810
1 mile	¢14 10
\star Metro-Vickers Vacuum Pumpa 230 v. A.C.	£22 10
*Precision Mains Fiter Uulta	0
* E.m.I. Recording Bridgea	¢12 10
+ Avo Geiner Countera	
*Philco W.S. No. 43 Tranamittera 3s0W	
*E.M.I. 3794 Wavelorm Monitors on trollega	£45 0
* Motoroia 6 v. Mobile Transmittera $30 / 40 \mathrm{mc} / \mathrm{L}$.	21210
* Pen-type Pethonal Dosemeteri	15
- Monitor Type 56 and Power Untte	c7 10
- Marconj TY 1053 Noine Meters	
-AN/OPM 17 spectram Analysers 10/18000 me/s.	P.U.R.
(ANFORM-33, 34, 35 Sifnal Generators $1000 /$ $8000 \mathrm{Mc} / \mathrm{I}$.	P.ס.R.
Carriake extra at coat on all above.	
We have a large quantity of "bits and pieces" we cannot list-Nease send us your requirementswe can probably help-all enquiries saswered.	

P. HARRIS

ORGANFORD - DORSET
WFSTBOURTE 85051

SURPLUS HANOBOOKS

\author{

19 net Circait \& Notes
 H. R.O. Technical Instructiono
 | 38 set Technical Inatructiona |
| :--- |
| 48 |
| 18 set Working Intructions |

 Wivemeter Clise D Tech
 18 set Circuit \& Notes

BC. 1000 (s1 met) Circuit a Notes
 R. 107 Circait A Notes
 A. R. 88 D Instraction Ma
 62 aet Circuit anoten...............
 Rircait (116/A. R.1224/A. R.1355, RF.24, 25 \& 26, A.1134, T.1154, C. B. $300, \mathrm{BC}, 342 . \mathrm{BC} 348 \mathrm{~J}, \mathrm{EC.M.P}.{ }^{\circ}$ R,' BC. 624,22 SET. Ronistor Colour Code Indicstor, 2
Postape rates apply to $\overline{\text { V }}$, . oniy
 Yail order only to:
 TALBOT BOUSE, R8 TADEDOOX EUPPLIES. Dept. W.w.
}

DINSDALE MK II AMPLIFIERS

Printed circuits and parts for mono and stereo versions. Special new power amp. printed board BAILEY 20 WATT AMPLIFI
BAILEY 20 WATT AMPLIFIER. All parts available for this unit including Radiometal-cored Driver Transformer and recommended bi-filar
wound Mains Transformer. MULLARD IOW. A.B. TRANSISTOR AMPLIFIER. SPECIAL CLEARANCE
Printed Circuit Boards to Mullard specification, fully drilled and fluxed. Price $4 /$ - each or $7 /$ - for two post free.
Layout Diagrams 9d. each. All other parts
available. Please send S A

HART ELECTRONICS

32I Great Western Street, MANCHESTER 14

GODLEYS

SHUDEHILL, MANCHESTER 4
Telephone: BLAckfriors 9432
Sole Manchester Distributors for world famous BRYAN AMPLIFIERS
Agencs for Ampex, Akai, Ferrograph. Tandberg, Brenell, B \& O, Vortexion, Truvox, Sony, Leak, Quad, Armstrong, Clarke \& 5 mith, Lowther, Fisher, Goodmans, Wharfedale, Garrard, Goldring. Dual, Decca, Record Housing, Fierobe, G.K.D., etc.
Any combination of leading amplifiers and speakers demonstrated without the slightest obligation.

BUILDING A "SCOPE"

Indicator unit type 10Q53. One of the finest units to appear on the surplus market, modern manufacturer, 10.B.7.G. and 3.10, valves, buit in EH.T. unit producing
modern
3 kV ,
version of the $5 \mathrm{jn} . \mathrm{V} . \mathrm{C} . \mathrm{R} .517$ tube, brilliance, focus, X and Y shift. Controls on front panel, circuit diagram supplied. Ideal for conversion to an oscilloscope. Size of unit 7 in. $\times 7$ in. $\times 19 \mathrm{in}$. long. Used but good condition 60/-, carriage 19/-. Circuit diagram sold separately, 3/9, Post Free.
New Catalogue No. 17. Government and manufacturers surplus. Also new components,

MINIATURE KEY SWITChES. (P.O. Lever Type 1000). RE-SETTABLE HIGH SPEED COUMTER
3 digit. $12 / 24 / 48 \mathrm{~V}$. (state whieh), $32 / 6 \mathrm{ea}$. P.P. $2 / 6$. HIGH SPEED MAGNETIC COUNTERS ($4 \times 1 \times$ lin. $) 4$ digit. 6/12v. 24/48v. (state which), 6/6 ea., P.P. 1/-.
SOLARTROM OSCILLOSCOPES. CD7IIS. CSO Carr. 70/-; CD643 6S0, carr. 70/:; QD910 C75, carr. CS. All units in
R.F. AMMETERS 31 n . Rind. $0 / 6 \mathrm{amp}$. $10 / \mathrm{ea}$. P.P. $2 / 6$. COPPER LAMINATE PRINTED CIRCUIT BOARD ($8 \frac{1}{2} \times 5 \frac{1}{2} \times$ $\frac{1}{1}$ in.), $2 / 6$ sheet, 5 for $10 /-$

BULK COMPONENT OFFERS

100 Capacitors (latest types) 50 pF to $\mathrm{S}_{\mu \mathrm{F}}$.
250 Resistors t and t watt.
250 Resistors and ite. wate.
250 Resistors and i watt.
150 Hi-Stab Resistors, $\frac{1}{4}$. $\frac{1}{\frac{1}{2}}$ and 1 watt.
25 Vitreous W/W Resistors, 5%
25 Vitreous W/W Resistors, 5%.
12 Precision Resistors 1% (several standards included).
12 Precision Capacitors 1 and 2% (several
12 Electrolytics (miniad.
ANY ITEM $10 /$. ANY 5 ITEMS \&2 sizes).
VENNER LIGHTWEIGHT ACCUMULATORS (1 oz. I $\frac{1}{4} x$ $\left.1 \frac{1}{3} \times+\frac{1}{2}.\right) 2$ v. $1.5 \mathrm{a} . \mathrm{h} ., 12 / 6 \mathrm{ea}$. (with electrolyte and rging inse.).
CARPENTER POLARISED RELAY 18,000 turns at 4000Ω 15/- (with base). ALL Trpes of G.E.C./SIEMEN5/ S.f.C. Sealed relays stocked.

MAINS RELAY (240 v. A.C.) 12 H.D. make contacts, 20/. ea., P.P. $2 / 6$.
REED RELAYS (2 Herkons) S.T.C. 2426-582-15, 2 make. 10-15 volt coil. $15 /-\mathrm{ez}$.
3000 " TYPE RELAYS (Ex. New Equip.) 10 for 25/. RESOLVED COMPONENT INDICATOR (5olartron VP253-2A Condition new, 835 (with manual), carr. $50 /$ -
TELEPHONE HANOSET (Type 706) I7/6 ea., P.P. 2/6.
ZENER DIODES 3 to 50 volt. 5%. 1.5 watt, $3 / 6 ; 10$
BLOWER/EXTRACTOR FANS (BY PAPST Motors) it x
$4 \frac{1}{2} \times 2$ in. cast moulding. 450 C.F.M. Engineered to very fine limits. 50/- ea., P.P. 2/6.
THYRISTOR LAMP DIMMER/SPEED CONTROL KITS. 200 watt kit, 27/6, P.P. 2/6; 500 watt kit, 37/6, SILICON CONTROLLED RECTIFIERS (Thyristors) BTY87 (100r) 100 p.i.v. 12 amp . 15/- ea.; TBY91 (150 r) 150 p.l.v. 16 amp., 20/-; CRS25/10 100 p.i.v. 25 amp. 200 p.i.v. I amp., $5 / 6_{i}$ C.i.v. 25 ampl/40 400 p p.i.v. I amp..
SILICON DIODES R52202I $2 /$ ea., if doz.; RS240 3/- ea.,
$30 /-$ doz.; RS280 $4 /-$ ea. 40% doz.; IS103/BY100 30/- doz.: R5280 4/- ea.3. 40/. doz.; $15103 / \mathrm{BY} 100$ 4/- ea., 40\% doz.; RAS310af (avalanche) 6/- ea.,
 RS640 20/- ea., RSBI2
PRODUCTION BATCH COUNTER (BURNDEPT) BE403,
COndition: New 15 , Condition: New $\leqslant 15$ ea., P.P. 20/.
OSCILLOSCOPES Cossor 1035, \&17/10/; 1049, 620;
Solareron D $300, ~ 220$, P.P. any unit $2 / i 0 /-$ Solareron D $300, \$ 20$, P.P. any unit $\mathrm{E} 2 / \mathrm{i} 0 /$.
E.M.I. MINIATURE RELAYS ($24 \mathrm{v}, \mathrm{I}$ c/o) $\frac{1}{2} \times \frac{1}{2} \times \mathrm{in}$. TELEPHONE DESK SETS (eype 706), Brand new, 95/\%. TELEP. $5 /$,
SILICON BRIDGE UNITS. GEX541 80 p.i.v. $10 a ., 37 / 6 ;$ EIIBD-RC 100 p.i.v. 10a., 37/6; GA33-A (Germ)
SORENSON VOLTAGE REGULATOAS. TYPE LT-1000-25. 425 ea.
P.C. CONNECTORS (13 way in-line), $4 / 6$ pair

LARGE CAPACITY ELECTROLYTICS. $2,000 \mu F$. 150 v . $4,000 \mu \mathrm{~F}, 90 \mathrm{v} .7 / 6$ ea. $6,300 \mu \mathrm{~F}, 63 \mathrm{v}$. $10,000 \mu \mathrm{~F} 30 \mathrm{v}$ $16,000 \mu \mathrm{~F} 15 \mathrm{v}$. : $25,000 \mu \mathrm{~F} 15 \mathrm{v}$. $10 / \mathrm{e} \mathrm{ea}$. All $4 \mathrm{f} \times 2 \mathrm{in}$ SPEAKER BARGAINS. E.M.I. $13 \times 8 \mathrm{in}$. with double
Tweeters 15 ohm, $65 /$. P.P $5 /$. As above less Tweeters is ohm, 65/-, P.P. $5 / /$. As above less
tweeters 3 or $15 \mathrm{ohm}, 45 /-\mathrm{ea.}, \mathrm{P.P} 5 /$.m . FANE 12 i . 20 watt (Dual Cone). 95/-, P.P. 5/-
PHASE SENSITIVE VOLTMETERS (Solartion UP250/253) 665.

TRANSFORMERS L.T. 50v. at 5 amp. 19-0-19v. $\frac{1}{}$ amp. 25/., P.P. 5/-
TRANSFORMERS H.T. $625-0.625 \mathrm{v}$. at $110 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$. at 2a., 6.3v, at 3a. c.e. Parmeko Neptune series, 35/-
ELECTRIC SLOTMETERS (1/-) 25 amp. L.R. 240v. A.C., 85/. ea., P.P. 5/
QUARTERLY ELECTRIC CHECK METERS, 40 amp .240 v . A.C., 20/- es., P.P. S/-.
TRANSISTOR POWER SUPPLY. $2 \times 12 \mathrm{v}$. at 250 m .2
$240 \mathrm{v}, 50 \mathrm{c} / \mathrm{s}$, input, $25 /-$ ea., P.P. $5 /-(\mathrm{made}$ by E.M.i. $)$ $240 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. input, $25 /$ - ea., P.P. $5 /$ - (made by E.M.t.). STEP-DOWM TRANSFORMERS. PR1. $200 / 250 \mathrm{v}, 5 \mathrm{ec}, 1$
115 v . at 1.25 amps,; 5 Sec .2 .25 v , at 5 amp., $25 /-\mathrm{ea}$. 115 v, at 1
P.P. $5 /-$.

PATTRICK \& KINNIE

81 PARK LANE, HORNCHURCH, ESSEX
Tel.: ROMFORD 44473.

DUXFORD ELECTRONICS (W.W.)

DUXFORD, CAMBS.
C.W.O. P. E. I/-. Minimum order value 5/ ELECTROLYTIC CAPACITORS.

POLYESTER CAPACITORS.
Mullard tubular Tolerance $\pm 10 \%$
$160 \mathrm{~V}: 0.01 \mathrm{uF}, 0.105 \mathrm{uF}, 0.022 \mathrm{uF}, 6 \mathrm{~d} .0 .033 \mathrm{uF}, 0.047 \mathrm{uF}, 7 \mathrm{~d}$. $0.068 \mathrm{uF}, 0.1 \mathrm{uF}, 8 \mathrm{~d}, 0.15 \mathrm{uF}, 10 \mathrm{~d}$. $0.22 \mathrm{uF}, 11 \mathrm{~d} .0 .33 \mathrm{uF}, \mathrm{i} / 2 \mathrm{~d}$ $0.47 \mathrm{uF}, 1 / \mathrm{sd} .0 .68 \mathrm{uF}, 2 / \mathrm{Id} .1 \mathrm{uF}, 2 / 6 \mathrm{~d}$.
$400 \mathrm{~V}: 0.001 \mathrm{uF}, 0.0015 \mathrm{uF}, 0.0022 \mathrm{uF}, 0.0033 \mathrm{uF}, 0.0047 \mathrm{uF}$ $0.0068 \mathrm{uF}, 0.01 \mathrm{uF}, 6 \mathrm{~d} . \quad 0.015 \mathrm{uF}, 0.022 \mathrm{uF}, 7 \mathrm{~d} .0 .033 \mathrm{uF}, 8 \mathrm{~d}$ $0.047 \mathrm{uF}, 0.068 \mathrm{uF}, \mathrm{d}$. $0.1 \mathrm{uF}, 10 \mathrm{~d}$. $0.15 \mathrm{uF}, 1 / 1 \mathrm{~d}$. 0.22 uF , $1 / 5 \mathrm{~d}, 0.33 u \mathrm{~F}, 2 / \mathrm{dd} .0 .47 \mathrm{uF}, 2 / 6 \mathrm{~d}$.
POTENTIOMETERS (Carbon): Long life, low noise
 per decade 10 O 10 M . Logarishmic: $5 \mathrm{k}, 10 \mathrm{k}$. 25 k , ecc. per decade to 5 M .
SKELETON PRE - SET POTENTIOMETERS (Carbon): Linear: 100k, 250k, 500k, etc., per decade to 5 M Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \% \leq \pm \mathrm{M}, \pm 30 \% t>\mathrm{M}$. Horizontal ($0.7 \mathrm{in} . \times 0.4 \mathrm{in}$, P.C.M.) or Vertical $(0.4 \mathrm{in} . \times 0.2 \mathrm{in}$. P.C.M.) mounting $1 /-$ each.

Submin. $0.1 W$ as $70^{\circ} \mathrm{C} \pm 20 \% \leq 1 \mathrm{M}, \pm 30 \%>1 \mathrm{M}$. Hori zoncal ($0.4 \mathrm{in} . \times 0.2 \mathrm{in}$. P.C.M.) or Versical ($0.2 \mathrm{in} . \times 0.1 \mathrm{in}$. P.C.M.) mounting, lod. each

RESISTORS (Carbon film): High stability, very low noise, iW. at $70^{\circ} \mathrm{C}$. Body $\ddagger \mathrm{in}$. \times tin. Values in each decade
$10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43,47$ $10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43,47$ $51,56,62,68,75,82,91$ from 4.7Ω to $1 \mathrm{M} . \pm 5 \%, 2 \mathrm{~d}$. each
$1.2 \mathrm{M}, ~ 1.5 \mathrm{M}, 1.8 \mathrm{M}, 2.2 \mathrm{M}, 2.7 \mathrm{M}, 3.3 \mathrm{M}, 3.9 \mathrm{M}, 4.7 \mathrm{M}, 5.6 \mathrm{M}$ 1.2 M,
$6.8 \mathrm{M}, 8.2 \mathrm{M}, 10 \mathrm{M}+10 \%, 2 \mathrm{~d}$, each.

SILICON RECTIFIERS: $0.5 A$ at $70^{\circ} \mathrm{C}$. 400 P.I.V, $3 /-$ 800 P.I.V. 3/3, I. 250 P.I.V. 3/9, 1,500 P.I.V. 4/-.
SEMI-CONDUCTORS: OAS, OA8I, 1/6. OC44. OC45 1/9. OC71, OC72, OC73, OC81, OC81D, OC82D

SEND S.A.E. FOR JANUARY 1968 CATALOGUE

SEMICONDUCTOR DEVICES							
Fully guaranteed devices at competitive prices							
2N 404	8/6	28103	$7 / 8$	BFY51	$5 / 6$	NKT261	4/6
2N696	5/-	28104	716	BFY82	5/6	NK T282	9/6
2N697		28131	$8 / 6$	BFY ${ }^{\text {a }}$	8/6	NK T3a4	$4 / 6$
2N698	416	28501	5/6	B8740	8/-	NKT271	
2N706	4/6	28502	8/8	B8741	8	NKT272	\% 18
2N 706 A	4/6	$2 \mathrm{S503}$	8/9	B8x19	6/8	NK T274	
2N708		28731	4/8	B8x20	8/8	NKT275	$1 / 6$
2N728	5/-	28732	/\%	B8Y26	$1 / 8$	NKT281	$5 / 8$
2 N 727	$5 /-$	28733	4/6	B8Y27	$4 / 6$	NKT603	8
2N743	$4 / 6$	AC107	9/-	B8Y28	4/6	NKT813	8/8
2 N 764	4/6	AC126	4-	B8Y29	4/6	NKT674	8/-
2N753	4/6	AC127	4/-	B8Y38	1/6	NKT677	
2 N 914	8/6	ACl28	/-	R8Y39	4/8	NKT713	8
2N916	8/6	ACY^{17}	/-	BBYE5A	\$/8	NKT734	
2N929		ACY18	/-	BY100	$4 / 8$	NKT736	
2N930	818	ACY19	4/-	BYZ10	9/6	NKT773	8/6
2N1090		ACY20	5/0	BYz11	$8 /$	NK T781	8/-
2N1091	$8 / 8$	ACY21	5/6	BYZ12	$8 / 6$		2/-
2 N 1131	$9 / 6$	ACY22		BYZ13	\$/6		
2 N 1132	$9 / 6$	ACY28	/-	GETIO2	t-	0A47	1/6
${ }_{2} \mathrm{~N}^{2} 302$	418	AD140	$81-$	GET103		0A81	
2 N 1303		AD149	$8 /$	GET113		0A88	1/8
${ }^{2} \mathrm{~N} 1304$		AF114	4,1-	QET118	$8 / 6$	OAlR2	
	\%/6	AFlis	4/-	OET118.	/-	OA200	
2N1307	6/8	AF16	4-	OET119	4-	OA202	
2N1308		AF17	/-	GET120	816	OC82	-
2N1309	8/-			GETb87		OC23	
2 N 1507	$8 / 8$	AFI25	\%-	GET873	$8 /-$	Oc24	8
${ }^{2} \mathrm{~N} 1613$		AF127		GET881	4/6		
${ }_{2}^{2 N 1711}$	$88 / 6$	AFZ12	8/6	GET887	48	${ }^{0}$	6/6
		A8YES	4/6	GET888	46	0cso	
2 N 2193 A	8/8	Abysb	/1/6	GET890	4.6	Oc3s	8/6
2N2194A	5/6	A8z21		OET897	$4 / 6$	0	
2 N 2220		BC107			416		18
2 N 2221		BC108	$8 / 6$	O		0 CH	
$2 \mathrm{Nrz22}$	8/-	BClos	$8 / 6$	NKT125		0 CL 5	/8
2 N 2297	8/8	BC742	$8 / 8$	NKT126	$8 /-$	OC46	
2N2368		BC743	$8 / 8$	NKT135	5/6	0070	-
2N2369		BCY10	$8 / 8$	NKT210		$0 \mathrm{C7} 1$	8
2 N 2369 A	$81-$	BCY12	$5 / 0$	NK T211	8/-	${ }^{\text {OC72 }}$	2/6
2 N 2411	8/8	${ }^{\text {BCY32 }}$	816	NK T212	5/6.	OC75	
2N2412	${ }^{6 / 6}$	$\mathrm{BCY}^{3} 3$	$6 / 6$	NKT213	4,	${ }^{0077}$	
2 N 2483	$5 / 8$	BCY 34	816	NKT214			
${ }^{2} \mathbf{2 N} 2484$		- ${ }_{\text {BCY }} \mathbf{8 8}$		NKT215		0788D	3/-
2N2904		BCY70	8/6	NKT223	$8 /-$	OC81	
2N2904A	8/-	BCY71	1016	NKT224	$5 /-$	OC81D	-
2N2905		BCY72	8/6	NKT225		0 C 82	3/-
2N2905A	8/-	BFils	$4 / 6$	NKT229	$8 /-$	OC82D	
2N2906		BFX12	8/6	NKT238			
2N2906A	8/-	BFX13	$8 / 6$	NK T239			
2 N 2907		BFY10	$5 /-$	NK T240		OC200	18
2N2907A	B/-	BFY11	5/-	NKT241		OC202	18
2N3011		BFY18	8/-	NKT242		$0{ }^{0} 203$	18
2N3063		BFY19		NKT244		OC204	
28102	7/6	BFY50	5/6	NK T245		$0 \mathrm{C20} 7$	8/6
VEROBOARD: $2 \frac{1}{3}$ in. $\times 3$ in., $3 / 6 ; 2 /$ in. $\times 3$ ín., $4 / 3$; Cutcer, $9 /$. Post \& Packing $1 /=$ per order. Quancity discounts available. A. MARSHALL SON (LONDON) LTD, 28 CRICKLEWOOD BROADWAY, N.W. 2 Tel: 01-4520161 Dept. WWI6							

ALL GOODS GUARANTEED

AIRMEC OSCILLOSCOPES
3 in . tube TB $40 \mathrm{c} / \mathrm{s} 40 \mathrm{kc} / \mathrm{s} 50-0-50 \mathrm{Micro} / \mathrm{amp}$ meter calibrated for Y deflection. Y amplifier DC ${ }^{\text {to }} 250 \mathrm{~m}$ volt $50 \mathrm{cs} / \mathrm{s}$ input. Mint condition. Only $250 / 120 /-$. P. \& $\&$ P. $£ 1$ extra.
CONVERTOR/BATTERY CHARGER
Input 12 V DC -output $240 \mathrm{~V} 50 \mathrm{c} / \mathrm{s} 170$ watt max Input $240 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}-$ output 12 V 5 amp . D.C. Fully fused with indicator lamps. Size $9 \times 10 \times 41$ Weight 19 lbs. An extremely compact unit that win give many years reitable service supplied with
and leads. Only $\& 4 / 10 /-$, P. $\&$ P. $15 /-$ extra.

DISTRIBUTED WIDE BAND AMPLI. FIERS avaitable. Various types, e.g. EMI type 2 C complete with power unit, Frequency DEKATRON SCALER/TIMERS various models from $\mathrm{E} 6-\mathrm{E} 12$
BINARY/DECIMAL SCALERS 99 scaled on neons followed by 4 digit resettable counter
RATEMETERS. Various types available with or without EHT Power supplies.
SCINTILLATION equipment available. Units or complete assemblies.

WRITE FOR DETAILS.

TRANSISTORS-Not remarks.

BROOKS CRYSTALS $500 \mathrm{kc} / \mathrm{s} 2,5,10 \mathrm{mc} / \mathrm{s}$ -

RELAYS

American miniature gold contacts, 4 pole co 48 V , brand new, boxed, $6 / 6 \mathrm{ca}$.
Carpenters type 51A1/50. 200T 0.75 ohm 200T 0.75 ohm , brand new, boxed, $8 /-$ ea.

3000 Series $5 \mathrm{~K} / /{ }^{2} \mathrm{hms}, 2$ pole make HD contacts $3 / 6$ ea. 3000 Series 1000 ohms, all multi bank state min. requirement, $2 /-$ ea.
Siemens sealed $H S ~$
Siemens sealed HS 48 V spco type $\mathrm{H96E}, 3 /-$ ea. Siemens miniazure with dust cover, 6 pole make or American miniature 4 pole co $12 / 24 \mathrm{~V}$. 200 ohms sealed, $5 / 6$ ea.
FRACTIONAL H.P. MOTORS $240 \mathrm{~V} .50 \mathrm{c} / \mathrm{s}$ Brand new, Ideal models, fans, etc. $8 / 6$ ea. TRANSFORMERS. All 200/250 inputs, tapped 0-6-12-18, 3 mm , $15 /-$ ea.; 7 amp . 30/- ea.
INVERTOR TRANSFORMERS. CT primary High and low impedance feed back windings for use with OC35/36 ransistors with $0-200-250$ volt
isolated output windings 200 W. rating, $£ 2 / \mathrm{s} /-$; isolated output windin
$4 \rho 0 \mathbb{W}$. rating, $\mathrm{E} 3 / 10 / \mathrm{l}$
H.T. TRANSFORMERS. e.g. 450-400-0-400-450 $250 \mathrm{ma} .3 \times 6.3-3 \mathrm{amp}$. $1 \times 5 \mathrm{~V} .3 \mathrm{amp}$. Potted Parmeko/Gardiners, as new, $50 / \%$. Potted EHT also available.
Write stating requirements.
SELENIUM RECTIFIERS.
Double bridge 12 V. 6 amps. continuous rating, 12/6 ea.
Quad bridge 12 V .12 amps . continuous rating, 21/- ca.
NEW DIODES Mullard genuine OA81, 1/6 ea. CV448/425, 1/- ea.
METROSILS. Ideal pulse suppression, $2 /-\mathrm{ca}$. EHT CONDENSORS. 7.5 KV working, with clips. $0.1 \mathrm{mfd}, 5 / 6 \mathrm{ea} . ; 0.25 \mathrm{mfd}, 8 / 6 \mathrm{ca}$.

Cash with order. Post paid over 10/-

CHILTMEAD LTD.

22 Sun Street, Reading, Berks.

Tal. No.: Reading 65916 (9 a.m. to 10 p.m.)

SUREIUS BABTनีind

 COLLINS ($\mathrm{U} . \mathrm{S} . \mathrm{A}$.) RECEIVER. 7 valve super- het (Int. Octal valven). Exceptionally stable for 88 B . Frequency coverage $1.5-12$ Me/s. Power required. 250 v D.C. 80 mA . $12 \mathrm{v} . \mathrm{A} . \mathrm{C} .1 .25 \mathrm{~A}$

famous mo. 19 set tranb/receiver
 tranmith 500 V. D.C. Slighty used. 55\%., Belected conditon,
 volta bathery operation, 7010 . $40 / 42 \mathrm{Mc} / \mathrm{m}$. Crystal controlied.
No. 88 . TWO-WAY RADIO. B44. VHF RADO TELEPHONE. B0-95 Mc/a. Cryutal con-
 Or cryatal contrilled $12 ;$ D.C. operation. $218 / 10 /-1$.
R.C.A. C2 TRA TMITTER RECEIVER. 2.8 Mc/s. \qquad

5ft. 812. 22 n . dia. interiocking ateel nectionm (7 sections make

YYLON OUY ROPES, with semi-automatic tensioner. 3sit. B/6TARY TRANGFORMERS BY HOOVER. 12% D.C. Imput. Output 200 v. D.C. at 125 mA ., $25 /-.12 \mathrm{v}$. D.C. inpit, Output REJECTOR CMIT. For rejecting unwanted signals. Switchert
 MOVING COIL HEADPHONESS, Boft rubber earpads. $19 / 6$ D.L.R. BALANCED ARMATORE HEADPHONES. $12 / 6$.
HEADSET WITH BOOM MICROPHONE. AB theed wih B8 set.

82/6.
MOVING COLL HEADPHONES AND MICROPHONES. 21/6. TRANSMITTER. 1.78 .16 Me/6. 3 wayent tuneable S13PA. Complete with all vaiven. and circuit. \&7/10/a
POWER SOPPLY. 12 . D.C. Input. 285 and 1300 . D.C 300 mA butput. Incorporates $240 \mathrm{\psi}$. D.C. 80 mA whatator pack clrcult. 27/10/
ALL ITEMS CARRIAGE PAID MAINLAND ONLY Lists giving fuller detalls of these and many other surplus bargain
A.J.THOMPSON (Dept. WW)
"Eiling Lodke," Codieote. Fitchin, Herin. Tel.: Codicote 242 Hours of Business: Monday to Friday 8-5 Saturday 8-12.

- HAMMERTE HAMMER -	
R DRYING - JUST BRUSH ON	TRIAL TIN
7t $8 /-$ p/p. 1/9.	r!
PRIMERE NEEDED. Just try	
ushed sample, Interesting list FP	
DUSTRIALISTS ! ! ! SAVE Tl	

HORSTMANN2OANP
 ELECTRICTIWESWIITCH
 为

200/250 polts, 20 amp. contacts.
ON/OFY twice every 24 hours at any
manually pre-get times. By.pank over.
 nilpplied with Bolar diu if requiredin on at dunk. all at ilnwn. Wned but perlect. LImITED QUAKTITY.
FRACTION OF USOAL PRICE. $69 / 6$ P. \&P. Waterproit thelal cane appocs. 8 in . $\times 32 \mathrm{in}$. $\times 33 \mathrm{in}$. $10 /-$ extra Jewelledl morement. Once ONjOFF every 24 hours at any ulanually pre-3et times. Key and mounting brecket. Used but
perfect. 5 amp model. Fouly glaranteel. $35 / \mathbf{P}$ \& P.\&/6. VENNER $200 / 250 \mathrm{~V}$. PLASHER UNITS containing mains geared motor. ON/OFF everyisecond. $200 \mathrm{~W} \quad 39 / 6 \mathrm{inc}$. pookt. Box 365, KINGSWOOD \$UPPLIES (w.w. II) 4, SALE PLACE, LONDON,W.2. Tel:01-723 8189.

SLYDLOK FUSES 15 amp .230 v . D.C. 440 v. A.C. 1/6 ea., 15/- per doz.
HEADPHONES. Carban H/Mics., 5/- ea. P. \& P. with ear muffs and wired M/C Pic $15 /$ P \& P . 36

TANNOY LOUDSPEAKERS. Re-entrant type, ideal for public address. enclosed in waterproof wooden case, complete with steel baffe designed 10 produce
directional reproduction at 5 watts. $7.5 \Omega \quad 27 / 6$ each. Carr. 5/
SMALL GEARED MOTORS. 12-24 v. D.C., reversible, with gesrs attached, $15 /-$ en. with blow TRANSMITTER. BC 625, part of T/R. SCR52 For spares only. Chassis only. Complete with valves SIEMENS HIGH SPEED RELAYS. H96B type, 5 +50 ohms. $6 /-$ ea.: Type H69D, $500+500$ ohms, 6/: ea.; Type H\%E, $1,700+1,700$ ohms: $7 / 6$ ea. Carr. 1 .
"TELE L" TYPE FIELD TELEPHONES. These telephones are fitted in strong atel case complete with
$\mathrm{H}_{\text {and }} \mathrm{Gen}$. condition and teated. 70/= per pr. Carr. $7 / 6$.
POST OFFICE TYPE RELAYS, 3,000 sers. $2 \mathrm{c} / \mathrm{o}$ ohms. Allat at $6 /$-each. Cerr. $1 /$-l.
3,000 Type. by Ericsson Telephones. $21,000 \Omega$
 MORSE KEYS. No. 8 assembly complete with leads, VIBRATORS. 12 v. 4 pin; 12 v. 7 pin. Syn. All 6/w each. Carr. $1 /-$
ELECTRO MAGNETIC COUNTERS. Register up to 9999 , coil res. 300Ω 5/- each. Carr. $1 /$. Ex-
equipment.
MODULATION TRANSFORMERS. 150 watt, suitable for pair 813 s, driving 313 s. ${ }^{3}$ Size 6 in. $\times 5$ in.
$\times 3$ itin. Brand new, boxed. Price $27 / 6$, Carr. $4 / 6$. MEGGER INSULATION TESTER 500 v . with Contest range from 0.1 ohm to infinity. Bakelite case with
hand gen. $£ 9$ ea. Carr. $5 / 6$. 2 ranges, ex.Hoover hack.
CUT OUT. 12 v . or 24 v . operation. Heavy duty silver LIGHTWEIGHT HEADSET (part of " 88 " W. Set Equipt.) Complete with Boom mic., carbon made 10 highest Ministry Spec. Moving coil earpieces. Our
price $35 /-$ set. Carr. 3/-. Al so Super Lightweight hand price $17 /-$ eat. Carr. $2 /-$-.
set. $17 / \mathrm{MP}$. 200 AMP. 24 v. D.C. GENERATORS. Type P3.
ex-Air Ministry, $\mathrm{f} 9 / 10 /$ - ea. Carr. $10 / 6$. ex-Air Ministry, 59/10/- ea. Carr. 10/6.
P.C.R. 12 V. VIBRATOR POWER PACKS. Brand CONDENSERS. Paper, Sprague 1 mfd 500 v., 5/doz. I mfd. I,500 v., 7/ doz. (incl. P. \& P.). HEAVY DUTY TERMINALS. Ex-equipt. Black only, will take spade terminals and wander pluq. $1 / 6 \mathrm{pr}$.
$\mathrm{L} 5 /$. doz. pairs. P. \& P. $1 / 6$ ea. doz. 15/- doz. pairs. P. \& P.
FATIGUE METERS.
496 D Relays.
$500 \times 500 \Omega$ v.
$6 \times 300 \Omega$ 496 D Relays. $500 \times 500 \Omega$. $6 \times 300 \Omega$ Electro Mag.
eounters, etc. $£ 3 / 10 /-\mathrm{ea}$. Carr. $4 / 6$. RELAYS. 3,000 Series $2 \mathrm{C} / \mathrm{O} 2 \mathrm{M} .140 \Omega$ slugged ${ }_{5002} 002 \mathrm{C} / \mathrm{O}_{3}$ slugged coil, $6 /-$ P. $\&$ P. $1 /-$ ea. item. Also a few Erics son Telephone 3, $1 / 000$ types in stock.
$10 /$ ea. Brand new. P. \& P. $/ \ldots$. AMERICAN AUTOPULSE 24V PUMPS for mounting between carb. and main fuel tank as auxiliary
pump. New- $30 /-$ ea. P. P P. $5 /-7 \mathrm{~g} . \mathrm{ph}$. Size pump. New 7 in. $\times 2$ in. $\times 2 \mathrm{in}$.
W. SETS, No. 19 Mk. III. New. $\mathbf{5 5} / \mathbf{1 0} /$-, incl. carr. POWER SUPPLY UNITS, 12 v . for " 19 " Sets. $35 /-$ incl. corriakee
Complete Units. 19 Set, Variometer, 12 v. B.S. Contral Box. H/Phones and Leads. 10 GNS. inel. cart
 As supplied with "19 W.S. 25/\%. P. \& P.
W.S. 19 VARIOMETERS. 17/6. P. \& P. 4/6 S.T.C. MINIATURE SEALED RELAYS, TYPE $4184 \mathrm{GD}, 700 \Omega 24$ v. (will workeffciently on 12 v. D.C.)
(ex equipment). 2 C/overs. $7 / 6$. P. \& P. $1 /-. \quad 6$ or (ex equipment)
more post paid.
SMALL D.C. MOTORS. $2 \mathrm{in} \times 1 \frac{1}{2} \mathrm{in} . \times 1 \frac{1}{2}$ in. Rated 24 v., will work on 12 v . Iin. length drive shaft. Ideal for model makers, etc. 10/6 ea
POCKET TRANSISTOR SETS-6 Transistor Med. Wave. Complete with earpiece and plastic carrying
case. Boxed, brand new. $\mathbf{E 2}$ ea. P. \& P. $5 /-$.
S.A.E. all enquiries.

R, C \& L BOXES

CAPACITY 15pf to $111 \mu \mathrm{~F}$ RESISTANCE 0.1Ω to $100 \mathrm{~K} \Omega$ INDUCTANCE 1 mH to 10 H VOLTAGE DIVIDERS and WHEATSTONE BRIDGES

LIONMOUNT \& CO. LTD. bellevue road, new southgate,

LONDON, N.II, ENGLAND Tel: Enterprise 7047,
WW-134 FOR FURTHER DETAILS

WW-135 FOR FURTHER DETAILS

REDUNDANT OR SURPLUS RADIO - ELECTRONIC STOCKS WANTED OSMABET LTD.

46 KENILWORTH ROAD, EDGWARE, MIDDX. TEL: STONEGROVE 9314

SELMER TRANSISTOR AMPLIFIER
ONE WATT Portable Cabinet size $12 \times 4 \times 9$ ins. fitted 7×4 Speaker, Volume Control Standard Jack Sockes, OUR Uses PP9 battery. Will increase the volume and performanceofTransistor
Radios, Record Players, Radios, Record Players, for Guitar practice.

79/6 POSE 5/6. WORTH DOUBLE SMITHS PRECISION SIX MINUTE DELAY ACTION SWITCH
Clockwork actuated
$10 / 6{ }_{\text {Post } 2 / 6}^{\mathrm{EACH}}$ (3 or more post free).
Separate s witching up to 6 mins. 15 mpps . 250 volts MADE FOR ROLLS WASHERS. Ideal photographic sequence switching operations, etc., etc. Brand new units at a fraction of their value.

SPECIAL PURCHASE STELLA RECORD PLAYER Amplifier and Loudspeaker-all transistor-top performance of LP xtal cartridge. Smart red or bue plastic cabinet. WORTH DOUBLE

"SONOCOLOR" CINE RECORDING TAPE Superior quality S $^{\prime \prime}$ reel, 900ft. L. P. with strobe markings, also cine light doflector-mirror. Suitablealltape recorders and OUR
cine projectors. Lise $28 /$. PRICE /4/- PACH $2 / 6$
THE INSTANT BULK TAPE
ERASER AND RECORDING HEAD DEMAGNETISER $\begin{array}{ll}\text { 200/250 A.C. } \\ \text { Leafet S.A.E. }\end{array} \quad 35 /-{ }_{2}^{\text {Post }}$

TRANSISTOR BOOSTER-

double your volume
Black plastic cabinet speaker with 201 t. lead for transistor radio, intercom, mains radio, tape recorder. $30 /=$ Pos Size: 7 tin. $x 5$ tin. \qquad $30 /-{ }_{2 / 6}^{\text {Po }}$
RADIO COMPONENT SPECIALISTS 337 WHITEHORSE RD., CROYDON. TOI: 01-684-1665

WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, ete.) Electronic Componens P.V.C. Wires and Cables, Bakelite sheet, etc., etc.

Good prices paid
J. BLACK

44 Green Lane, Hendon N.W. 4
Tel. $01-203$ i85s and 3033
RESISTORS
\$watt carbon film 5\%
All preferred values in stock from 10 ohms to
10 megohms, 2d. each.
Send S.A.E. for free sample.
Mullard Miniature Metallised Polyester P.C.
Mountiag, all 250 V . D.C. working. 0.01 mf ,
0.022 mf ., 0.047 mf ., 0.1 mf ., 0.22 mf ., all at 6 d . each
Hunts tubular 0.1 mf . 200V. working at 3d. each
Send 6d. stamp for extensive list of low-priced
Electronic Components, Instruments \& Equipment
Please include $1 /$ postage \& packing on all orders
under $£ 1$.
Dept. Ww9.
BRENSAL ELECTRONICS LIMITED,
CHARLES STREET, BRISTOL, 1.

WW-137 FOR FURTHER DETAILS

LANCASHIRE COUNTY COUNCIL

Tenders are invited for the supply of the following: 20 No. Hudson F.M. 660 Radiomobile Sets.

Tender documents are obtainable from the County Surveyor and Bridgemaster, County Hall (P.O. Box 9), Preston, on payment of a deposit of 550 s . Od. (refunded on receipt of a tender not subsequently withdrawn). Cheques must be made payable to "Lancashire County Council."

Tenders to be received by the Clerk of the County Council, County Hall, Preston, by $10.00 \mathrm{a} . \mathrm{m}$. on Tuesday, 9th April, 1968.
423/97 Wireless World.

WW゙-I36 FOR FURTHER DETAILS
WW-138 FOR FURTHER DETAILS

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

```
- Rate: 6/- PER LINE. Average seven words per line.
Name and address to be incuded in charge if used
    in advertisement.
- Box No. Allow two words plut 1/.
Charges etc., payable to "Wlreless World" and
    crossed " a Co."
- Press Day 4 March for April 1968 issue.
```


[^16]NUMBER OF INSERTIONS.

‘Hike-Mike’ really started something the finest range of radio microphone systems in the world
 From the very successful general purpose unit Hike-Mike has developed a whole range of special purpose microphone transmitters each one precision made for precision performance. Suitable for both hand-held and Lavalier operation. Write now for descriptiveliterature of these and the full range of Audac Audio Equipment. Demonstrations with pleasure.
 AUDAC radio microphone and sound reinforcement systems audac marketing company limite $/$ Carey road / wareham / dorset / telephone wareham 2245.

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 99-110

page	page	Page
A.A. Tools 114	Harris Electronics (London), Lt	Quariz Crystal Co., Ltd. 113
	Harversons Surptus Co., Ltd. ${ }^{76}$	Rasco . ${ }^{\text {a }}$. 58
Ahula Radio Lh. ${ }^{\text {a }}$ (Hatteld Instruments. Ltd. 44. 54	Racal Instruments, Ltd.4....... 18
Akurate Eng. Co., Ltd. 114	Henty's (Radio). Lid. ${ }_{88}^{88}$	Radford Electronics. Ltd
Amatronix Ltd. 112	Home Radio (Mitcham), Ltd.	Radio of T.V. Components
	Howells Radio. Ltd.	Radio Component
	H.P. Radio Services, Lid. 56	Radio Exchange
A.P.T. Electronics		Radiospares, Ltd. 112
	Ilffe Books. Ltd. 57, 94. 98	Rastra Electronics. Lid. 57
Audio Fair		R.C.A. Colour Tubes, Ltd. 32
Audix, B. B., Led. 53	Industrial Instruments. Led	Readers Radio ${ }_{117}^{92}$
Automatic Machine Co. ${ }_{\text {Avo }}$ Ledd ${ }^{\text {a }}$		$\underset{\text { Rota }}{\text { R. }}$ \& Celestion. Radio
Avon Communtcations \& Electronics, Ltd. 38	International Rectifier Co., Lid. ${ }_{4}$	${ }_{\text {R.S.C. }}^{\text {R.S. Halves }}$ Hentres, Ltd.
	John's Radto 72	
		16
Benter Acoustic Corpn., Ltd. 84		Samsons (Electronlcs). Ltd. ${ }_{30}^{77}$
B1-Pak Semiconductors .a................... ${ }^{73}$	Kingswood Supplies 118	S.D.C. Products
Bl-Pre-Pak, Led.i1if, 119		Service Trading Co.
Brensal Electronics		Servo \& Electronic Saies, Ltd. 119
	Lancs; C.C. 119	Shure Electronics, Sinclair Radionics, Ltd. $_{\text {Sta }}$
Britec, Lid. Institute of Ensineering Tech -	Lasky's Radio. Ltd. 91	
British nology mstitute of engineering		Smith, G. W. (Radio). Ltd. 86.
Broadnelds Disposals, Ltd. 117	Ledon Instruments. Ltd. 82	Smith. H. L., Co.. Ltd. 48
	Lewls Radio	Starman Tapes 112
	Lind-Alr Electrontcs. Led.	Super Electronics 36
		Sutton Electronics, Ltd. ${ }^{79}$
	Lionmount st Co.. Ltd. 119	Swanco. Ltd. 11
Carr Fastener Co.. Ltd. ${ }^{64}$	London Central Radio sto	
Chambers ${ }_{\text {Chiltmead }}$	London Microphone Co., Lid. 54	Taylor Elec. 1nst. Co.. Ltd. ${ }_{112}^{50}$
	Londtra Components	
	L.S.T. Components 76	
		Teleton \ldots.................................. ${ }_{71}$
		Teonex. Ltd . ${ }^{\text {a }}$ (
Daystrom, Lid. 8, 9, 10, 11	Marriort Magnetics, Lid. ${ }^{\text {M }}$	Thorn, AEI Radio Valves \& Tubes, Lid. 66
Derritron, Ltd. .	Marshall A. \& Son (London) Lid. 16	Thorn' Spectal Products, Ltd., ${ }^{415}$
Drake Transtormers, Ltd. ${ }_{117}^{33}$	McMurdo instrument Co. Ltd	Tomura Bussan 115
		T.R.S. Radio 92
	Mllward, ©. F.	
	M1lo international 15	Unifab Structures. Ltd. 72
	M.R. Supplles, Lid. ${ }^{29}$	United-Carr Supplies. Ltd. ${ }_{\text {S }}{ }^{56}$
		Universal Book co. 177
Electro-Winds, Ltd. 38	Multicore Solders. Ltd. Cover iv	
Eminus, Itd. ${ }_{\text {English }}$ Elecric Valve Co.. Ltd. ${ }^{\text {a }}$		Valradio. Ltd. 28.3 , 31
	Nombrex, Ltd. 117	
	Nombrex, Ltd. 117	Vitallty Bulbs, Ltd.
Finnigan Specialty Paints, Ltd. 118	Olson Electrontes, Led. 94	
Foulsham Books, Ltd. 79	Olymplc Transformers, Ltd. 119	Watts, Cecil E.. Lid. 117
		Webber. R. A., Ltd. 57
		West Electronics ${ }^{\text {Weil }}$ Ltde
Glaser, L., \&t Co., Litd. 112		
Globe. Scientific, Ltd. 113		
Godiey's Rrandial Reproducers, Lid. ${ }_{118}^{116}$	P.C. Radio, Lid 94, 95	Wingrove \& Rogers. Ltd. 58
	Pembridge College ${ }^{\text {a }}$, 44	
Greenwood, W. (London), Ltd. 29, 31	Pinaracle Electronics. Led. 25, 51	Yukan 116
	Plessey Co. Ltd. ${ }_{\text {Post Radio Supiles }}$	Yukan .. 116
Hall Electric. Ltd. 22	Proops Bros., Ltd,	
Harmsworth, Townley \& CO. 14	Pye Telecommunications, Ltd. 47	Z. \& 1. Aero Services. Lid. 96, 97

[^17]

THE ANCIENT GREEKS LEARNT THE ART OF SOLDERING AND CREATED BEAUTIFUL THINGS BUT LACKED THE ADVANTAGE OF USING ADCOLA SOLDERING EQUIPMENT. ADCOLA NOW PRODUCES THE FINEST AND MOST COMPREHENSIVE RANGE OF SOLDERING EQUIPMENT IN THE WORLD TODAY WITH OVER 250 VARIATIONS FROM WHICH TO CHOOSE, WRITE FOR OUR FULLY DESCRIPTIVE CATALOGUE FOR MODERN SOLDERING EQUIPMENT.

ADCOLA PRODUCTS LTD ADCOLA HOUSE, GAUDEN ROAD, LONDON, S.W. 4.

In aditition to Ersin Multicore 5 Core Solder we make these products to help industry and laboratories

special products for the soldering of printed circuits

A complete range of products for the soldering of printed circuits, including:
P.C. 2 Dip Cleaner P.C. 10A Activated Surface Preservative P.C. 21A Printed Circuit Liquid Flux P.C. 51 Finishing Enamel. Solid Solder Wire, Solder Sticks, Solder Ingots and Ersin Mülticore 5 -core Solder Wire for direct application to panels.

Mark 2 solderability test machine

Incorporates many new features, including semi-automatic electrical timing, proportional temperature control, remote controlled specimen
 lowering system and a temperature meter calibrated 10 an accuracy of 0.25% full scale deflection at the test temperature.
The machine can reduce production costs by instantly checking the solderability of components with wire terminations.
It complies with B.S.I. and proposed M. of D. and International Solderability Test Specifications.

solder tape, rings, preforms, washers, discs, and pellets
Made in a wide range of solid or cored alloys. Tape, rings and pellets are the most economical to use.

3a automatic soldering machine

Specially designed for manufacturing processes involving repetitive soldering operations. An exact quantity of

Ersin Multicore Solder is
automatically fed at each downward stroke. It can be opera ted by foot treadle or compressed air system, or may be connected to form part of an automatic assembly sequence 5

liquid fluxes

7 standard non-corrosive Ersin Liquid Fluxes, all comply with D.T.D. and Mil specifications.
Arax Acidic Liquid Flux, the residue is easily removed, is faster than zinc chloride types but much less corrosive. In 1 -gallon or 5-gallon non-returnable containers.

Arax 4-core acid cored solder

Used in 38 industries it has replaced tinman's and blowpipe solders, fluid and paste fluxes and killed spirits for rapid and precision soldering in metal fabrication processes.
Arax Flux-exclusive to Multicore-has the fastest speed of flux in any cored solders. Flux residue is easily removable with water or, where flame heating is employed, is entirely volatilised. Residue will not contaminate plating baths. No pre-cleaning is necessary and the speed ensures that the solder will flow between the laps by capillary action, thus using the minimum amount of solder. Not recommended for wire to tag joints in radio or electrical equipment.

For further information please apply on your Company's note paper mentioning the product references Dept: WW, Muiticore Solders Limited, Hemel Hempstead, Herts. Télephone : Hemel Hempstead 3636

[^0]: -Formerly Erie Resistor Limited.

[^1]: VISIT THE HEATHKIT CENTRES
 233 TOTTENHAM COURT ROAD, LONDON, W.
 Open Mon.-Fri. 9 a.m. -5.30 p.m. Sat. 9 a.m. -1 p.m. AND

[^2]: Hall Electric Lid., Haltron House, Anglers Lane, London, N.W.5.
 Telephone: 01-485 8531 (10 lines). Telex: 2-2573. Cables: Hallectric, London, N.W.5.

[^3]: WW-059 FOR FURTHER DETAIIS

[^4]: Issued by: Engineering Export Promotion Council, Calcutta (India)
 WW-092 FOR FURTHER DETAILS

[^5]: \ddagger The LS3/1A is used for outside broadcast monitoring and has a small lightweight cabinet. The design is intended to provide the best compromise between quality and portability.
 ${ }_{*} *$ The $L S S / 1 \mathrm{~A}$ is the normal floor-standing version, while the LS5/2A is designed to hang above picture monitors in telcvision control rooms.

[^6]: * See note on D.G. Smee in "Personalities", January 1968 issue, p. 640 . This new British organization has a total investment of $£ 5-6 \mathrm{M}$ in microelectronics and employs about 800 people.

[^7]: * "Negative Feedback Tone Control" by P. J. Baxandall Wireless World, October 1952, pp 402-405

[^8]: -Amatronix Ltd.

[^9]: Richard Southall graduated from Cambridge University with a B.A. in natural sciences in 1960. After four years as a book designer and a short period as a scientific information officer, he joined Crosfield Electronics Ltd. in 1965. This company, makers of electronic machinery for printers, manufactures the Lumitype 540 and sells under licence the Photon 713 phototypesetting equipments described in the article. Mr. Southall's work is concerned with customer liaison in the typographic field.

[^10]: *The artist-craftsmen who engraved the steel punches used for striking the matrices from which metal type was cast.

[^11]: †"Telecypesetter" and "TTS" are the registered trade marks of Fairchild Graphic Equipment Inc.

[^12]: - Mullard Led.

[^13]: Near Leicester Sq. Station.
 (Opposite Thorn House)
 Shop hours 9-6 p.m. (9-1 Thursday)
 Open all day Saturday.

[^14]: GARDNERS LOW TENSION ISOLATION TRANSFORMERS
 PRI $6.3 \mathrm{v} . \mathrm{Sec} .2-0-2$ v. $4 \mathrm{amps}, 5,000 \mathrm{v}$. wkg. Potred type, 17/6. P.P. 3/6

[^15]:

[^16]: Please write in block letters with ball pen or pencil.

[^17]:

 at a price in excess of the recommended maximum price shown on the cover: and that it ahall not we lents, resold, hired out or otherwise disposed of in a mutiated condition or in ang unathorised cover by was of Tiade, or altisedt to or as part of any pubilication or advertioing, literary or pletorial malter whatsoever.

