something NEW FOR THE DESIGNER
 FERRANTI ELECTRICAL CONNECTION SYSTEMS
 LFC Connectors

 -FERRANTI 24V LOGICTo supplement the existing range of 6 V and 12 V Logical Circuit Elements, Ferranti now introduce a range designed to operate from a single 24 V supply.
Designers thus have complete freedom to choose the most suitable supply voltage for their systems. A wide range of standard circuits is available-non-standard circuits can be made at reasonable prices.

Ferranti 24V Logic Features:

- EASY TO HANDLE AND MOUNT
- operates from single 24 V SUPPLY
- COMPACT
- HIGH NOISE IMMUNITY AND GOOD DRIVING CAPABILITY
- EPOXY ENCAPSULATION RESISTS INDUSTRIAL ATMOSPHERES

Call at the Ferranti stand and discuss the Ferranti range of Logical Circuit Elements or write for full technical specifications.

Ferranti LFC Connectors have proved themselves to be outstandingly reliable in service-in equipment having 460,000 LFC contacts, no failure occurred during an operating period of $1 \frac{1}{2}$ years. Recent indications are that this standard of reliability is being maintained. LFC Connectors are designed for use as rack and panel connectors, or, when used with the appropriate connector cover, as a free plug or free socket. Available in 35, 50, 70 and 91 pole sizes. TYPE APPROVED DEF 5325-4 PATTERN 109.

EWD Edge Connectors

The latest range of Ferranti Edge Connectors offer even greater reliability. The design incorporates a unique rollingleaf spring contact, which has a low rate stress limiting characteristic, giving controlled contact piessure and remarkably low insertion and withdrawal force.
AVAILABLE WITH 8, 16, 24,32 or 40 POLE POSITIONS SINGLE OR DOUBLE SIDED CONTACTS.

G.P.O. APPROVED.

Integrated Circuit Sockets

Ferranti S-range Sockets are available for use with 8 or 10 lead TO-5 and 14 lead Dual-in-line encapsulations. The sockets are particularly useful in the environmental testing of integrated circuits where the test equipment used is subjected to high temperatures and high standards of endurance. The S -range sockets have proved extremely reliable in this type of test equipment. These sockets are also ideal for use in experimental and prototype equipment. Ease of insertion and withdrawal ensures rapid replacement of integrated circuits.

Wrapping Tools

The Ferranti range of Wrapping Tools enable wrapped joints to be made quickly and easily with the minimum of staff training. Wrapped joints are the most reliable joints known, take less space and completely eliminate the possibility of damage caused by heat. A full range of Hand and Power operated tools is available for making standard or miniature joints. Standard power tools are driven by compressed air and miniature power tools by low voltage rechargeable power packs.

Stand G 67

FERRANTI LTD.,
KINGS CROSS ROAD, DUNDEE.
Tel: 0382-89311

When is an Avo meter not an Avometer?

When
 irs an Avo Digital System

That's new! Yes, and it has full multimeter and print-out facilities and other plug-in capabilities.

See it on IEA Stand G35

Avo Limited

Avocet House • Dover • Kent Telephone Dover 2626 Telex 96283
THORN

- HIGH PERFORMANCE © COMPACT MODULAR CONSTRUCTION O RACK OR CONSOLE MOUNTING

MODULAR AUDIO MIXERS

Model MXT/6 Assemblies offer a combination that wil fulfil every requirement for pre-amplifiers and mixing. From 4 to 22 channels can be utilised each with its own independent Gain control and with overali Master Gain. Treble and Bass controls.

MODULAR AUDIO AMPLIFIERS

Audio Power Amplifiers heving outputs of from 10 to 80 watts and to operate in conjunction with $\mathrm{MXT} / 6$ Mixing Assemblies. Silicon Transistorised throughout-stable high performance-overload and output protectiondistortion better than $5 \% 20 \mathrm{~Hz}$ to 15.000 Hz --output 15 ohm and 100 volt to line.

For mqunting in Cabinet Rack or Console on "19" standard panels-finished gun metal two tone blue or to requirements-- Microphone. Tape, Gramophone, Radio and Priority Tone Signal Modules

CRTs off the shelf

(Specials take a little longer)

EEV is probably the best source of specialised CRTs. The standard range is wide and deliveries 'off the shelf'. 'Specials' take a little (but not much!) longer. Use this service in CRTs. It's the most flexible on hand.
ENGLISH ELECTRIC VALVE COMPANY LIMITED

The "New Look" In From Heathkit

The newest ond most proctical innovation in electronic instrumentation is the exciting new ultra-functional styling format from Heath. New instruments feoture a unique cabinet frome consisting of the front and rear ponels and side rails which completely supports the component chassis independently from the top and bottom cabinet shells. This allows complete freedom from assembly, check-out, and calibration The sturdy side rails conceal retractable carrying handles. The die-cas front panel bezel styled in chrome and block, the black side rails, and the beige front panels and cabinet shells give the new instruments an appearance as up-to-date as their functional performance. See these new instruments and more in the new 1968 American Heathkit catalogue.

New Solid-State High-Impedance Volt-Ohm Milliammeter . . . IM- 25

- 9 A.C. and 9 D.C. voltage ranges from 150 millivolts to 1500 volts full scale 07 resistance ranges, 10 ohms centre scale with multipliers $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$, and $\times 1 \mathrm{meg}$. measures from one ohm to 1000 megohms - II current ranges from $15 \mu \mathrm{~A}$ full scale to $I .5 \mathrm{~A}$ full scale - II megohm input impedance on D.C. 10 megohm input impedance on A.C. A.C. response to $100 \mathrm{kHz}-6 \mathrm{in} .200 \mu \mathrm{~A}$ meter with zero-centre scales for positive and negative voltage measurements without switching - Internal battery power or $120 / 240$ volt A.C., $50-60 \mathrm{~Hz}$ - Circuit board construction for extra-rugged durability.

New Solid-State Volt-Ohm Meter, IM-I6

- 8 A.C. and 8 D.C. ranges from 0.5 volts to 1500 volts full scale - 7 ohm-meter ranges with 10 ohms at centre scale and multipliers of $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$, and $\times 1$ megohm - II megohm input on D.C. ranges, 1 megohm on A.C. ranges Operates on either built-in battery power or $120 / 240$ volt A.C., $50-60 \mathrm{~Hz}$ - Circuit-board construction.

New Variable Control Regulated High Voltage Power Supply . . . IP-I7

- Furnishes 0 to 400 volts D.C. @ 100 mA maximum with better than 1% regulation for 0 to full load and ± 10 volt line variation - Furnishes 6 volt A.C. @ 4 amperes and 12 volt A.C. @ 2 amperes for tube filaments Provides 0 to - 100 volts D.C. bias @ 1 milliampere maximum - Features separate panel meters for continuous monitor for output current and voltage - Terminals are isolated from chassis for safety - High voltage and bias may be switched " off " while filament voltage is "on" - Modern circuit board and wiring harness construction e $120 / 240$ volt A.C., $50-60 \mathrm{~Hz}$ operation.

New Improved Version of the famous Heathkit Solid-State, Voltage-Regulated, Current-Limited Power Supply . . . IP-27

- New zener reference - New improved circuitry is virtually immune to overload due to exotic transients 0.5 to 50 volts D.C. with better than ± 15 millivolts regulation Four current ranges $50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}$ and 1.5 amperes Adjustable current limiter: 30 to 100% on all ranges Panel meter shows output voltage or current " "Pin-ball" lights, indicate "voltage" or "current" meter reading - Up-to-date construction - Unequalled performance in a laboracory power supply.

Instrumentation is

Ready to use prices on request of all models.

£28.8.0

KIT IP-17
£37.4.0

KIT IP-27
£46.12.0

Heathkit for Quality Test Instruments

(All models available in Ready-to-Use or Kit Form)
5in. WIDE-BAND GENERAL PURPOSE OSCILLOSCOPE IO-I2U

- " Y " sensitivity 10 mV .

Kit $\mathbf{E 3 5 . 1 7 . 6}$ Ready-to-use $\mathbf{E 4 5 . 1 5 . 0}$
Attenuator and demodulator probes available as optional extras.
6in. VALVE VOLTMETER, IM-I3U

- Modern styling The ideal VVM for the Electronic Engineer - 6in. Ernest Turner $200 \mu \mathrm{~A}$ meter with multi-coloured scales - Unique gimbal bracket allows bench, shell or wall mounting (2. Mea sures A.C. (r.m.s.) D.C. volts $0-1.5,5,15,50,150$ 500, 1,500 Resistance range 0.1 to $1,000 \mathrm{M} \Omega$ with int battery - Vernier action zero and ohms adjustment Roller-tinned printed circuit High input resistance (IIM Ω) Size $5 \times 12 \frac{1}{16} \times$ $4 \frac{3}{4} \mathrm{in}$. Complete with test prod and leads.

$$
\begin{aligned}
& \text { Kit } \mathbf{1 8 . 1 8 . 0 \text { Ready-to-use } \mathbb { 2 } \mathbf { 2 6 } . [8 . 0} \\
& \text { HV anc } \mathrm{FF} \text { frobes available as extras. }
\end{aligned}
$$

3in. PORTABLE GENERAL PURPOSE SERVICE OSCILLOSCOPE, OS-2

- The ideal 'scope for service man, laboratory technician, amateur radio enthusiast or hobbyist " Y " bandwidth 2 $\mathrm{c} / \mathrm{s}-3 \mathrm{Mc} / \mathrm{s} \pm 3 \mathrm{~dB}$ - Sensitivity $100 \mathrm{mV} / \mathrm{cm}$ - Push-pull vertical and horizontal amplifiers Wide range timebase generator $20 \mathrm{c} / \mathrm{s}-200 \mathrm{kc} / \mathrm{s}$ in four ranges Automatic lock-in synchronisation Mumetal c.r.t. shield Printed circuit board construction Power req. 200-250 v. $50-60 \mathrm{c} / \mathrm{s}$ A.C. 40 watts Fused Front panel silver and charcoal grey. Size 5 in . w. $\times 7 \frac{3}{4} \mathrm{in}$. h. $\times 12 \mathrm{in}$. deep. Weight: $9 \frac{3}{4} \mathrm{lb}$.

Kit £23.18.0 Ready-to-use £31.18.0

GENERAL PURPOSE
 RF SIGNAL GENERATOR
 RFIU

An outstanding generator for service test, lab. and hobbyist. Ideal for the alignment and trouble shooting of RF, IF and audio circuits Large easy-to-read dial Pre-aligned coil and bandswitch assembly RF output of at least millivolts - $100 \mathrm{kc} / \mathrm{s}-100 \mathrm{Mc} / \mathrm{s}$. fundamentals up to $200 \mathrm{Mc} / \mathrm{s}$ har-
 monics 400 cycle audio signal with $4 v$, ourple Dimensions $9 \frac{1}{2}$ in. wide $\times 6 \frac{1}{4} \mathrm{in}$. high $\times 5 \mathrm{in}$. deep.

Kit: \&3.18.0 Ready-to-use $\mathbf{1 2 0 . 8 . 0}$
 Full specification sheet available on any HEATHKIT model

VOLT-OHM-METER - Solid-state circuit FET dput, 4 silicon transistor, 1 diode 4 A.C. voltage ranges 4 D.C. voltage ranges 4 ohm ranges $\| 1$ megohm input on D.C. I Megohm input on A.C. $4 \frac{1}{2}$ in. $200 \mu \mathrm{~A}$ meter - Battery powered - Rugged polypropylene case with self cover and handle - Storage space for test leads - PCB construction.

Kit $£ 12$. 12.0
NEW, HANDY PORTABLE TRANSISTOR/DIODE CHECKER IT-27

Ideal test bench or service kit Checks shorts, leakage, open element, and current gain.

Kit $£ 4.10 .0$

Other instruments in range include:
$4 \frac{1}{2} \mathrm{in}$. VALVE VOLTMETER V-7AU
7 A.C. 7 D.C. 7 ohms ranges $4 \frac{1}{2} \mathrm{in} .200 \mu$ A meter measures r.m.s. and pk-to-pk I'l megohm input resistance.

Kit $£ 13$.18.6 \quad Ready-to-use $£ 19.18 .6$

$4 \frac{1}{2} \mathrm{in}$. MULTIMETER, MM-IU

- $50 \mu \mathrm{~A}$ meter - 22 voltage, current and resistance range $20,000 \mathrm{ohm} / \mathrm{volt}$ D.C. and 5,000 ohm/volt A.C. sensitivities Polarity reversing switch. Kit $£ 12.18 .0$ Ready-to-use $£$ I8.II. 6

SINE/SQ. GENERATOR, IG-82U

Covers $20 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{Mc} / \mathrm{s}$ in 5 bands - Simultaneous Sine and sq. wave outputs - Separate attenuator controls.

Member of the Schlumberger Group including the Heath Company MANUFACTURERS OF THE WORLD'S LARGEST SELLING ELECTRONIC KITS

Heathkit for value in Hi-Fi-Audio

Outstanding Fully Transistorised

$12+12 W$ STEREO AMPLIFIER, TSA- 12

This luxury-quality amplifier utilises transformerless output circuitry using complementary transistors giving superior pertormance, lower phase shift, wider response and lower distortion. All power transistors are adequately heat-sinked for cool operation and longlife. It delivers 12 watts R.M.S. per channel into 8 ohms over an easily handles your records range of 16 to $50,000 \mathrm{c} / \mathrm{s}$. A six-position source switch of one channel relative th the or or are Baxandal! type tone concrols for Bass bed Treble by the Balance control and there are mounted on the rear panel for gram and reble boost and cut. Input level controls is matched only by its sleek and atrractive low silhpuetce sthlinclass performance gold-anodised-aluminium frons panel and matching brown knobs with spun-gold insets.
Ready to use $£ \mathbf{3 8 . 0 . 0}$ Kit $£ \mathbf{3 0 . 1 0 . 0}$ Cabinet $\boldsymbol{£ 2 . 5 . 0}$ extra Outstanding Fully Transistorised AM-FM STEREO TUNER, AFM-2

The purity of FM, the stirring realism of FM stereo, or the music, news and sports of AM...t this quality tuner has them allat the turn of a switch. 18 transistors and 7 diodes for cool. instant performance, and long, dependable life. Freedom from distortion, erisp, clear reproduction... and all at a price far below comparable models! A built-in stereo decoder separates the stereo signal into two channels. A stereo indicator lamp lights when a stereo signal is received.

There is a phase control for minimum distortion with maximum stereo separation A hinged lower front panel protects the secondary controls, adding to the neat, overal appearance, and greatly simplifying the operation of the unit. This is a high-quality precision instrument which will add sophistication and efficiency to your hi-ff system.

Ready to use price on request Total price kit $£ 32.13 .0$ Cabinet $£ 2.5 .0$ extra $20+20 W$ STEREO AMPLIFIER, AA-22U

Outstanding Fully Transistorised

This high-performance "International Class" amplifier has all the hallmarks of professional elegance.
pick-up, radio-tuner, tape recorder, and accommodate a stereo magnetic or ceramic terminals for 4,8 or 16 ohm loudspeakers. Sto other sources. There are outpur for tape recording from the amplifier. All controls are on sockets are provided secondary ones-to avoid the possibility of inadvertent adjut the front panel, the concealed behind a slim hinged cover. The major controls include a 3 -position mode switch (Mono-Stereo Rev.), a 5-position input source selector switch olume, bass, and treble controls, and a push-push A.C. on-off switch. A brushed-golden anodised front panel and matching brown knobs with spun-golden insets complete
the unit, putting this amplifer undoubtedy ints the unit, putting this amplifier undoubtedly into the top class.
Ready to use $\mathbf{£ 5 9 . 1 5 . 0}$ Kit $£ \mathbf{3 9 . 1} \mathbf{1 0 . 0}$ Cabinet $£ 2.5 .0$ extra

While stocks last, Low Cost Transistorised
STEREO AMPLIFIER, TS-23

The TS-23 is a self-contained stereophonic amplifier designed for use with high-quality ceramic pickups. It provides a good frequency response ($15 \mathrm{c} / \mathrm{s}$ to $18 \mathrm{kc} / \mathrm{s}$) at lowest possible cost. A 6 -position source selector switch easily handles your record, radio or tape inputs. .. stereo or mono. Separate controls provide bass boost, treble cut, amplifier balance and volume. 16 transistors 4 diode circuitry gives cool, instant operation...no warm-up time. The output of 3 wates per channel is adequate for small and medium-sized rooms. Compact, slim-line styling with attractive gold/brown Perspex ront panel! Choice of 2-way installation ... in a cabinet or freestanding (cabinet available optional extra) on a bookshelf.

Ready to use price on request K it $£ 17.15 .0$
Cabinet $\mathbf{E 2 . 5 . 0}$ extra

Outstanding Fully Transistorised

FM STEREO TUNER, TFM-IS
This de-luxe 14 transistor stereo tuner receives both mono and stereo signals. automatic stereo indicator lamp lights whenever a stereo signal is received. The switched A.F.C. (automatic frequency control) ensures that the station remains at all signal strengths, all four stages act as limiters on strong signals ensuring noise-free reception. The unit includes a phase control to ensure maximum stereo separation. Accidental system setting changes are minimised. Only the tuning knob and on/off switch are in open view on the front panel. The hinged lower front panel protects the secondary controls. The whole unit is sleek and attractive, and like the other HEATHKIT models in this range incorporate an anodised "brushed-golden" aluminium front panel and matching brown knobs with open golden insets.

HEATHKIT Home Entertainment products

All models are available in ready-to-use or kit form

Latest Portable Stereo Tape Recorder STR-I

No other British model offers this specification for this price. Not only tape recorder but a completestereo $\frac{1}{4}$-track stereo or mono record and playback at $7 \frac{1}{2}, 3 \frac{3}{4}$ and $1 \frac{7}{2}$ i.p.s. Latest 18 transistor circuit. Recording level indicator Well known British deck with digital counter. Stereophonic mic. and aux. inputs Speaker/headphone outputs 4 Built-in audio amplifiers give 4 watts output (rms) per channels $\mathbf{5}$ in cording facilities. So-easy to build. Artractive black Rexine cabinet with pastel grey matching panels.

Kit $\mathbf{6 4 5}$.18.0 Ready to use $\mathbf{6 5}$. 10.0

Complete your motoring pleasure with a

LUXURY CLASS CAR RADIO, CR-I

A imall, compact, high output unit. Superb long and medium wave entertainment whenever you drive. For 12v. positive or 12 v . negative car earth system. © 8 latest semi-conductors (6 transistors, 2 diode circuit) - Powerful outpur (4 wates) will drive two speakers. - Styled to harmonise with most car pre-assembled and aligned RF unir kit pre-assembled $E / 13 / 6$ inc. P.T. IF/AF amplifier kit E $11 / 3 / 6$
Total price kit (excl. LS) . . . ¢ 12.17 .0 inc. P.T. L/speakers and accessories available as extras.

LOUD SPEAKER SYSTEMS

A wide range of speaker systems available from model SSU-I kit. To the Corswold De luxe system at.
$\begin{array}{llll}f 11 & 17 \\ 633 & 6 \\ 4 & 0\end{array}$

for example:-

AVON Mini SYSTEM

Excellent periormance from a smallest possible size. Ideal for housing in a bookcase or other small spaces. Features: Special $6 \frac{1}{2}$ bass and 3 mid/High frequency units olductor/capacitor cross over net work. Very strongly constructed with 12 mm . plywood. Fully finisted walnut veneered cabinet. Supplied in two parts, both required. Cabior $\mathrm{f} 4 / 18 /$.

Total price kit $\{13.16 .0$

BERKELEY slim line SYSTEM

The system you have all heard and read about.

- Beautiful walnut veneered, fully finished cabinet - Two specially designed 12 in . and 4 in . speakars. - New compact "slim line" size. Build it in an evening. - Professional attractive styling. - Use one for mono and a pair for stereo. Outstanding periormance at a low price. Shelf or floor standing. Use modern or traditional decor. Takes up less than 1 sq. ft. of floor space.

Kit $£ 19,10.0$ Ready to use $\mathbf{\ell} 24$

Latest Portable Stereo Record Player SRP-I

This stereo, fully transistorised, mains operated player offers new standards of reproduction. Automatic playing of 16, 33, 45 and 78 r.p.m. records. All transistor- COO instant operaion. Dual LPR stylus. Plays case portability. Detachable speaker enclosure for best stereo effect. Two 8in. $\times 5$ in. special loudspeakers. For 220 250 V . a.c. mains operation.
Overall cabinet size $15 \frac{9}{10} \times 3 \frac{7}{6} \times$

Otyin. Choice of handsome two-
tone blue and grey or red and
grey fabric coverings. Compact, playing for the whole Family - plays anything econo the Beatid-state circuiery gives room filling volume.

Kit $\mathbf{2 7 . 1 5 . 0}$ incl. P.T. Ready to use price on request

Portable Radios to

Entertain you wherever you are

UXR-I—Portable

Serang, robust construction with reliable periormance. 6 transistor, I diode circuit provides the power and range you can't get from miniatures Covers long and medium wavebands. Cabinet finished in beautiful real leather or in the attractive colours Navy Blue, Coral Pink, Lime Green (please state second choice).

Kit E11.19.0-colour case

Kit£12.18.0-real leather
UXR-2—Portable
A De-luxe 7 transistor, 3 diode circuit offers big-set sound. Battery saving circuitry batteries last for months. Push buttons for Long and Medium wave coverage and tone control. Easy-tune slide-rule dial. Doubletuned I.F. stage. Outpur for phone or tape recorder. Choice of real brown or black leather case and handle. Kit $£ 14.18 .0$

LOW-COST AUDIO AMPLIFIERS

5 watt Mono Amplifier, MA-5

- Built-in pre-amplifier. Two switchselected inputs. Separate bass, treble and volume controls. 5 watt r.m.s. output. - Less than 0.5% distortion at 5 wate struction. Easy-to-build. Outputs for 3 or 15 ohm speakers.
Kit £11.9.6 Ready to use $£ 15$.15.0
$3+3$ watts Stereo Amplifier, S-33H
A Versatile Inexpensive Stereo/Mono Amplifier. Three stereo inputs ... ceramic crystal pick-up, radio tuner and auxiliary. - 3.5 watts per channel. Separate bass; treble, volume and balance controls. Artractive, printed circuit construction. 3 or 15 ohm elegant sty
speakers.
Kit $\mathbb{E} 15.17 .6$ Ready to use $£ 21.7 .6$

The AIM Modular Pulse Generator triumphs again

Power

20-20voltsinto50ohns

and amazing Versatility

> New CGU202 Clock Generator, 1 MHz to 1GHz, 2Vinto $50 . \Omega$, 300 picoseconds rise at 1 GHz .

at the IEA Stand G354
AIM Electronics Ltd., 71 Fitzroy Street, Cambridge. (0223) 62560

NOW

 design engineers can

 design engineers can have

 have}

$50 \mathrm{ppmTC} \pm 0.5 \%$ tolerance

-off the shelf!

Give us a ring, and you can have new Filmet ${ }^{\circledR}$ resistors in development quantities as soon as the postman can get them to you.

The new standard Filmet range meets all the requirements of DEF $5115-\mathrm{r}$ Style RFG7... and at a price that certainly isn't standard for the kind of stability it offers. But this you'll find out for yourself. When you ring, or write.

Resistance range:
Power rating:
Temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

metal film resistors

PYE

-the first name

in mobile radio

PYE POCKETFONE

Pye Telecommunications Limited designed, tested and produced the Pocketfone, Britain's first truly-portable u.h.f. radiotelephone system. Performance, reliability and impressive signal penetration in built-up areas have been proved under arduous service conditions by police and security services in Britain and overseas.
The Pye Pocketfone has a myriad applications in government, industry and commerce. Export orders emphasise Britain's lead in this vital field of radio communication. Pye and Pye alone are organised and able to meet demands for any applicationanywhere in the world.

This year, our two travellers are really going places.

Our travelling portables are a big success.

Since we announced LM 1619 and CD 1642 last year, they've been taken all over the world.

But we're not surprised. They can do so much. And they're so easy to take.

Look at LM 1619. It's a

floating input, its own internal Weston cell for calibration, and a frequency range from 40 Hz to 10 KHz . Its accuracy is 0.2% on a.c. and 0.1% on d.c. Yet it's rugged and compact, weighs only 11 lbs . and fits into a brief-case.

Or look at CD 1642. It's not often you'll see a portable oscilloscope with lab standard performance. With a trace this clear.

Its bandwidth is better than 15 MHz at $10 \mathrm{mV} / \mathrm{cm}$. It weighs only 22 lbs. And plugs into any power supply from 100 to 130 V a.c. or from 200 to 260 V d.c., 44 to 440 Hz .

But you're not stuck with the nains. You can run CD 1642 from its own
battery. Or from any

OSCILLOSCOPE USERS here is the answer to your calibration problems!

A new instrument, the BRADLEY Oscilloscope Calibrator 156 provides all the facilities required for the calibration of modern precision oscilloscopes. Simple to use, it is designed to calibrate vertical amplitude and sweep speeds, and to check risetime. A unique feature is the direct reading of percentage deviation from true values.
See this important new instrument on Stand E. 258 at the I.E.A. Exhibition, or write for a data sheet.

The same safeguards in manufacture and control that have won government contracts for TEONEX in over forty different countries apply equally to ensure top quality for private users too. When you require valves to comply with E.V.S. or M.I.L. standards - choose TEONEX.
The TEONEX range (for use outside the U.K. only) incorporates the entire series of Britishproduced valves or their Continental equivalents, including a wide range of colour T.V. valves. Price list and technical specifications may be obtained from:-

Export Enquiries Only Please! TEDAEK LIIITED

TEONEX

VORTEXION

For the finest in their class

Visit us at

Semi-Professional Recorders Studio Mixers
also
10-200 watt Amplifiers at $<0.1 \%$ distortion

High quality

Audio Equipment

International Audio Festival and Fair

HOTEL RUSSELL 18/21st April

Demonstration Room 334 Booth 2

VORTEXION LIMITED

257-263 THE BROADWAY, WIMBLEDON, LONDON, S.W. 19

Photo reproduced by kind permission of Women's Journal

A well paid job, security and everything that goes with it can be yours. Look at the situations vacant columns in the newspapers; notice the huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. There are many senior positions requiring just the up-to-date, advanced technical education which CREI Home Study Courses can provide.

CREI Programmes are specialised and job-related. Time spent on a CREI Technical Course pays immediate dividends in greater effectiveness and productivity on the job.

Take the first step to a better job now-enrol with CREI, the specialists in Technical Home Study Courses.

$\overline{\overline{C R E I}})$ PROGRAMMES ARE AVAILABLE IN:-

Electronic Engineering Technology Industrial Electronics for Automation - Computer Systems Technology • Nuclear Engineering Mathematics for Electronics Engineers Television Engineering Radar and Servo Engineering • City and Guilds of London Institute: Subject No. 49 and Advanced Subject No. 300
C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London SW1

A Division of Mc Graw-Hill Inc

PRECISION MINIATURE SOLDERING IRONS

Antex, Grosvenor House, Croydon, CR9 1 OE.
To Antex, Grosvenor House, Croydon, CR9 1 QE. Please send me copies of the Antex
Precision Soldering Catalogue.

NAME: POSITION:

COMPANY:
ADDRESS:

We make our monolithic capacitors in Britain

Monobloc; an advanced product for sophisticated applications. A tiny component that has become the most exciting prodigy this side of the Atlantic. Its capacitance is vast, its size minute - up to 1 uf in $0.3 \times 0.3 \times 0.1 \mathrm{in}$. (nine times smaller than a postage stamp). This capacitance-to-volume ratio is achieved by the unique monolithic construction. Wafer-thin ceramic dielectrics and platinum electrodes are fused into a solid, layered structure, to give a volumetric efficiency 10 to

100 times that of conventional capacitors. It's a rugged little device. The layered construction gives excellent stability and resistance to every form of shock and environmental stress.
We manufacture a preferred range, concentrated on the individual requirements of the British designer. There are other configurations available for more complicated designs : glass-encased, precision moulded, phenolic coated, and unencapsulated chips for hybrid integrated circuits.

The monolithic capacitor is already a pretty important contribution to the progress of modern electronics - our Monobloc Ceramicon design caters for projects of the future.
Contact us for the full details. Technical Sales,
Erie Electronics Limited,* South Denes,
Great Yarmouth, Norfolk.
Phone : 04934911
Telex: 97421
Monoblocs are to be featured in the 1968 edition 6 catalogue of S.T.C. Electronic Services. Monobloc and Ceramicon are registered trade marks.

[^0]
Why do they call plugs and sockets

 connectors?

And why do they call these
UECL ones miniature, subminiature and microminiature when they could call them small, ever so small and ever so ever so small? And why do they make so many different kinds and call the pins contacts and have all sorts of numbers from 5 to 104? And why do some have solder cups or taper pins and polarising guides or screwlocks and some have hoods and some have shells? I'm sure I'll never understand. And what did daddy mean when he said they had positive locking
because gran had to wait hours on the doorstep when it happened here.

Daddy keeps on saying you wauldn't understand and keeps on reading his brand new UECL catalogue which isn't fair because it tells him everything and he won't tell me. If you filled in the reader reply card you could get a new catalogue too and I bet you wouldn't be mean and you'd tell me.

Ultra Electronics (Components) Limited
419 Bridport Road, Greenford, Middlesex, England. Tel: 01-578 5721/7

RACAL INSTRUMENTS LIMITED Crowthorne. Berkshire, England. Tel: Crowthorne 5652 Telex: 84166 Grams: Racal Bracknell

Kingston College of Technology. Chief engineer.
Keen badminton and
tennis player-the sportsman
of the team. Also very keen week-end grower of weeds in his Sussex garden.

Tony ('Tactless Ton') Boxall 34
Wandsworth Technical College.
Design draughtsman. Is considered a
faster communicator of news than any
known system and for knowing what
goes on before it happens.
Also follows a football team no one's ever heard of.
van Hurst 25
B.Sc. (Eng.) London University.

Design engineer. Self-styled
lady-killer. Once drank a Chelsea pub dry (with a little help) but now feels 18 pints a sitting is sufficient to maintain his bon viveur reputation.

John Bailey

Marketing Manager and Member of Institute of Marketing. Age
indeterminate, but high. Reputed to have delayed retirement to take up post. Known as 'father' of the group. Says he was in RAF.
Group say it was RFC-and that he won an Iron Cross for shooting down more of ours than theirs.

Malcolm ('Scissors')
Sizmur 32 B.Sc. (Eng.)
Newcastle University.
Senior design engineer. Religion: Emitter follower No hobbies. Says the financial fight to keep his home going occupies all his time.
Grew beard to cut and sell to wigmakers to eke out income. more of ours than theirs.

Dynamco $7114^{\prime \prime} \times 6$ weighs 28 lbs.

These six men live, breathe and sleep oscilloscopes and in one year produced the 71 range

How's that for teamwork!
Now what they've got to show for it is something that measures $14^{\prime \prime} \times 6$! and weighs $28!\mathrm{lbs}$, plus ambitious plans for the future.

And a lot of satisfaction in a good job well done (together).

Dynamco got together the best men for the job in the country. Made them the first team in this field.

The 71's new plug-in concept enables the width of each module to be determined by the panel area needed for the controls, and by the volume needed for the components. Not by a fixed 'pocket-size'.

This means that simple modules plugged into the 71's display unit give you an instrument 12 " in width (30 cm) with a more comprehensive module combination attached, a width of no more than $14^{\prime \prime}(35 \mathrm{~cm})$.

And the display:
A new short 5 " rectangular laceplate cathode ray tube operating at 10 KV gives sharp, crisp displays.

Brightness is consistent with band width to give strain-free viewing under high ambient light conditions.

Plug-in modules enable single or multi-trace displays to be obtained.

Alternative phosphors available Camerafixing centres are standardised.

Dynamco Limited, Dynamco House,
Chertsey, Surrey.
Telephone: 2636

FOR QUALITY, RELIABILITY AND WORLD-WIDE AVAILABILITY, RELY ON HALL ELECTRIC'S SPEED, INTELLIGENCE AND REPUTATION

VALVES FOR:
Radio and Television Manufacturers.
Radio and Television Service Departments. Radio Relay Companies.
Audio Equipment.
Electronic Equipment.
Instrumentation.
Computers.
Marine Radar.
Communication Equipment.
Research and Development. Government Departments. Aircraft Military and Civil.
Ministry of Aviation Approved Inspection. Air Registration Board Approved Inspection.

Hall Electric Ltd., Haltron House, Anglers Lane, London, N.W.5.
Telephone: 01-485 8531 (10 lines). Telex: 2-2573. Cables: Hallectric, London, N.W.5.

Dial Euston 1639. Specify your meter . . . type, shape, size, F.S.D.
It's almost certainly on our premises right now. It will almost certainly be on yours tomorrow (G.P.O. and/or B.R. willing). If by chance we haven't got precisely what you want, we'll tell you when you can have it. Or which stock alternative, plus or minus
a few ohms, will do the job. Or how long by our stopwatch it will take us
to modify a stock meter for you. You'll always get a straight answer from Anders ... and 99 times out of 100 the answer will delight you.
Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery. Prompt supply of non-standard instruments and ancillaries.
Sole U.K. distribution of FRAHM vibrating reed frequency meters and tachometers.
New comprehensive catalogue available free to manufacturers and bona-fide engineers.

ANDERS METER SERVICE

Anders Electronics Ltd• 48/56 Bayham Place•Bayham Street • London NW1 • Telephone: 01-387 9092 Ministry of Aviation Approved

Has red tape been complicating your procurement of electronic components from the U.S.A.?

Procurement of
American-made elec
tronic components used to be thought of as a complex, timeconsuming procedure with a myriad of red tape details and problems. Not anymore - now you can join the growing list of companies that rely on the technical skills and services of Milo International, world•wide distributors of electronic components. Our team of experienced specialists will process your order with speed and efficiency from start to finish - immediate price and availability quotations, product information, application data, import certificates, export licenses, declarations, export packaging, delivery expediting, etc. And this all-inclusive service is provided for each order, no matter how small or large.

For immediate price and delivery quotations, contact Milo by mail, phone, cable or International Telex.

Pinnacle the largest single valve independent

THIS IS WHAT
 WE DO

Make available the widest range of valves for commercial and industrial use. Give a personalised service based on intelligence and speed.

Ensure that we only Supply valves made by the world's foremost manufacturers.

Provide valves selected for your special needs.
Help out rapidly with that "awkward" valve that nobody else seems to have heard of.

Specialise in European or American types which are not normally easily obtainable.
Rush you a small order, or quote for a bulk require-ment-1's or 1,000's are all the same to us.

IF I'D ONLY TRIED PINNACLE FIRST. . .
Every valve in either widespread or specialised use in the fields of Entertainment, Industry, Education and Research will be found in our catalogue, together with its main equivalents, classification, and the Pinnacle " P " number under which it may be ordered.

PINNACLE ELECTRONICS LIMITED ACHILLES STREET• HEW CROSS•LONDON S.E. 14

Telephone: All Departments--01-692 7285 Direct orders-01-692 7714

'Astrolite' combines all that's good in performance with reliability and a world beating design. Light in weight (6.5 oz approx). New high level phones (1 mW gives comfortable listening level). Partial noise exclusion.
Communications or high fidelity versions - magnetic, carbon or moving coil. 'Personal tension adjustment' gives fingertip control of microphone boom arm. Nylon and stainless steel unbreakability. Tropicalised. New design cable minimises crosstalk. Get details in full, today, from

Ferrograph,1949-1967

Now, another major event in tape-recording and Hi-Fi

Ferrograph New Generation Series 7

Ferrograph quality Ferrograph reliability Ferrograph fidelity plus a unique combination of 30 features

Ferrograph Tape Recorders were the first designed and made in Great Britain-in 1949. Since then they have set the standard of fidelity and unfailing reliability; over the years, Ferrograph have continually improved and added facilities from Series 1 to Series 6, but making no basic changes.

Continuous research and development have now produced a radically new family.

Now, Ferrograph present to you the New Generation, Series 7. Look at its superb new styling, look at its unique range of facilities. As soon as you can, listen to it, There is no finer instrument in its class!

To create it, engineers have tested and evaluated every new development. Market research has established what you, the user want by way of facilities -and all have been incorporated. Industrial designers have evolved a most appealing presentation and the whole new family is solid state.

Ferrograph New Generation Series 7

This basic Ferrograph instrument is available in Mono, and in Stereo with and without end amplifiers. Each version as a portable, or in elegant hardwood, all with concealed, flush-carrying handles and a new closure design. Every Series 7 instrument is a self-contained chassis-mounted unit, easily fitted into rack or cabinet, easily removed for servicing. Prices from $£ 110$.

30 features

Never before have all these facilities been combined in one tape recorder.
Some you know, many you have so far only wished for:

1. An entirely new design-with facilities resulting from a study of users' needs gathered over 17 years.
2. Modern styling of great functional dignity.
3. All silicon solid-state electronics with FET input stages and wide input overload margins.
4. Vertical or horizontal operation.
5. Unit construction: The 3 individual units i.e. tape deck, power unit and amplifier complex are mounted on a single frame easily removable from cabinet for service or installation in other cabinets or racks.

6. 3 motors (no belts).

7. 3 tape speeds.
8. Variable speed spooling control for easy indexing and editing.
9. Electrical deck operation allowing pre-setting for time-switch starting without need for machine to be previous$l y$ powered.
10. Provision for instantaneous stop/ start by electrical remote control.
11. Immediate access head block for editing and cleaning.
12. Single lever-knob deck operation with pause position.
13. Independent press-to-record button for safety and to permit click-free recordings and insertions.
14. Adjustable reel height control.
15. Damped tension arms for slur-free starting.
16. $8 \frac{1^{\prime \prime}}{}$ reel capacity.
17. Endless loop cassette facility.
18. Provision for signal operated switching units.
19. Internal loud speakers (2) - 1 each channel on stereo, 2 phased on mono. 20. 4 digit, one-press re-set, gear-driven index counter.

20. 2 inputs per channel with independent mixing (ability to mix 4 inputs into one channel on stereo machine).
21. Signal level meter for each channel operative on playback as well as record. 23. Tape/Original switching through to output stages.
22. Re-record facility on stereo models for multi-play, echo effects etc., without external connections.
23. Meters switchable to read 100 kHz bias and erase supply with accessible preset adjustment.
24. Three outputs per channel i.e. (1) line out - level response. (2) line out -
after tone controls. (3) power output -8-15 ohms.
25. Power output 10 W per channel.
26. Independent tone controls giving full lift and cut to both bass and treble each channel.
27. Retractable carrying handle permitting carrying by one or two persons. 30. Available in several alternative presentations.
FERROGRAPH
the tape recorder with the hearing-is-believing sound
WW-033 FOR FURTHER DETAILS

Listen for yourself

To know the Ferrograph New Generation Series 7 you must look at it, listen to it, for yourself. You will find New Generation instruments soon in stock at many of the best tape-recording and Hi-Fi specialists in the country, including the following:

Ferrograph stockists

LONDON AREA
Chiswick
Masseys Centre of Sound
121/123 High St. W4
Holborn
Tape Recorder Centre
82 High Holborn WC1
Larg's of Holborn Ltd.
76/77 High Holborn WC1
Imhofs Lid.
New Oxford St. WCl
Paddington
Teletape Ltd.
33.59 Edgware Rd. W2

Richmond
F. Cave

27 Hill St.
Streatham
Francis of Streatham
169/170 Sireatham High Rd. SW16
Tooting
R.E.W. (Earlsfield) Ltd

266 Upper Tooting Rd. SW17
Tottenham Court Rd.
Telesonic Ltd.
92 Tottenhain Court Rd. W1

Aberdeen
C. Bruce Miller

51 George St.
Banstead
Raylec Ltd.
43 Buff Parade, High St.
Bath
C. Milsom \& Son

Northgate
Birkenhead
James McKenzie Ltd.
Grange Rd. West

Birmingham

C.H. (High Fidelity) Ltd.

167/169 Bromsgrove St. 5
Griffin Radio Ltd.
94 Bristol St. 5
C. H. Young Ltd.

170 Corporation St. 2

Blackburn

Holdings of Blackbufn Ltd
39/41 Mincing Lane
Black pool
F. W. Benfell Ltd.

17 Cheapside
Bognor Regis
Tansley \& Cooke Ltd
Tansley \& Cooke
Sandymount Ave.
Brighton
Averys
77 St. James' St.
Lanes Radio
11 Gardiner St.
John King Films Ltd́.
East Sireet
Bristol
Sound Selection
361-363 Gloucester Rd. 7
Audio Bristol Ltd.
Audio Bristol Lidd.
Park Sireet Ave.
Bristol \& West Recording Services Ltd. 6 Park Row l

Bournemouth

Tape Recorder Co. (B'mouth) Ltd 374 Old Christchurch Rd.

Cambridge
H. S. W. Speechley \& Co.

25 High St. Linion
Cardiff
Sound Film Services
27 Charles Si.
Cheltenham
University Audio
24 Winchcombe St.
Chester
Lloyd \& Wylie Ltd.
42 Bridge St.

Chichester
G. A. Colbourne Ltd.

10 Southgate
Crewe
Charlesworth (Crewe) Lid.
14 High Town
Derby
Verby
41/49 London Rd.
Edinburgh
J. Nicolson

1 Haddington Place 7
Gerrards Cross
Edric Films Ltd.
34/36 Oak End Way
Glasgow
C. H. Steele

141 St. Georges Rd. C2
Goodmayes
Unique Radio
6 The Facade
Guildford
P.J. Equipment

3 Onslow St.
liford
Ilford Music Shop Ltd.
Pioneer Market Ilford Lane
Barking
Davis \& Kays
21 London Rd
Kirkcaldy
Caithness Brothers
Caithness Bro.
270 High Si.
Leeds
Becketts Film Services Ltd.
The Headrow 1
P.W.B. Audio Ltd.

33 Call Lane
Leicester
United Film Services
7 Kings St.
Liverpool
Beaver Radio Ltd.
60 Whitechapel

Manchester
Godleys Radio \& T.V. Ltd.
8 Shudehill
Lancs Hi-Fi Ltd
Lancs Hi-Fi Ltd
8 Deansgate 3
8 Deansgate 3
Kendal Milne Ltd.
Deansgate
Newcastle-on-Tyne
Turners Ltd.
Turners Ltd
Pink Lane
Nottingham
Audio Centre
Pelham St.
Oxford
Westwoods
45 George St.
Plymouth
A. E. Ford Ltd.

84 Cornwall St.
Redcar
McKenna \& Brown Ltd.
135 High St.
Salford
Stephens
348 Gt. Cheetham St. East 7
Sheffield
Sheffield Photo Co. Ltd.
6 Norfolk Row Fargate
Southampton
University Audio
4 Bargate St.
Southport
Wayfarers Radio Ltd.
Burton Arcade
Teddington
Daytronics Ltd.
119a High St.
Torquay
D. \& B. Davies Ltd.

Castle Chambers Union Street
Watford
E.M.E. (Watford) Lid.

188 Queens Road
Worthing
Bowers \& Wilkins Ltd
1 Beckett Buildings, Littlehampton Rd

the tape recorder with the hearing-is-believing sound

If none of these is near enough to you, in case of difficulty, or for free literature, send us the coupon, or give us a ring on WATerloo 1981.

TIMERS MICRO SWITCHES IMMEDIATE DESPATCH

SYS MINI-TIMER

SYNCHRONOUS MOTOR \& CLUTCH

- 10 MILLION OPERATIONS
* Instantaneous \& Timed out 3 AMP contacts.
\star Repeat Accuracy $\pm \frac{10}{2} \%^{\prime}$. 10 secs to 28 Hrs. May also be used as impulse start and automatic reset.
£11.0.0 approx. dependent on quantity.

TEMPERATURE CONTROLLER TYPE THP - thenmistor operated octalbase plug in COMPACT
Temperature ranges up to $240^{\circ} \mathrm{C}$
Accuracy contacts .4 amp
Complete with Ther misto
Coll
Approximately is dependent on quantity sTP Sub-Mini Process Timer SYNCHRONOUS MOTOR \& CLUTCH

YL2 GPA

|floatless liquid level control

$\rightarrow 5 \mathrm{amp}$. OUTPUT CONTROL CONTACTS \star Solid State
\star Octal-Base plug-in
The most compact unit available, meas-

Approx. £4.0.0.
dependent on quantity.
SINGLE AND TREBLE STAINLESS ELECTRODES AVAILABLE.
 MAINS OPERATED PROXIMITY SWITCH \star FOR BATCHING, CONVEYORS, MACHINE TOOL CONTROL, PACKAGING, SORTING, etc. \star SENSES FERROUS OBJECTS * NEEDS NO MECHANICAL FORCE OR PRESSURE TO OPERATE * SOLID STATE SEMSING HEAD INCLUDES CONSTANT VOLTAGE CIRCUIT
approx. $£ 12.10 .0$ dependent on quantity.

OTHER INDUCTIVE AND CAPACITY TYPES AVAILABLE

LEVEIL VOLTMETERS

TRANSISTOR A.C.

 MICROVOLTMETERS Response from 1 Hz to 3 MHz with ampli-fier output available. Two versions fier output available. Two versions switch on type TM3B.

TYPE TM3B $£ 63$ Complete with put lead.

OPTIONAL
EXTRAS
Leather Case 65
A.C. Power Uni
£ $7 / 10 /=$.

VOLTMETER RANGES
$15 \mu \mathrm{~V}, 50 \mu \mathrm{~V} .150 \mu \mathrm{~V}$. . . 500 V f.s.d.
Accuracy $\pm i \% \pm 1 \%$ i.s.d. $\pm 1 \mu \vee$ at $1 k H z$.

dB RANGES

-100 dB to +50 dB in 10 dB steps. Scale
-20 dB to +6 dB . $0 \mathrm{~dB}=1 \mathrm{~mW}$ into $600 \Omega 2$.

FREQUENCY RESPONSE
Above $500 \mu \mathrm{~V}$: $\pm 3 \mathrm{~dB}$ from IHz to 3 MHz . $\pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz On $500 \mu \mathrm{~V}$: $\pm 3 \mathrm{~dB}$ from 2 Hz to 2 MHz . On $150 \mathrm{MV}: \pm 3 \mathrm{~dB}$ from 4 Hz to 1 MHz .

AMPLIFIER OUTPUT
150 mV at f.s.d. on all ranges. Will drive a load of $200 \mathrm{k} \Omega$ and $50 \mathrm{p} F$ without loss.

POWER SUPPLY

One type Pp9 battery. life 1000 hours; or.
A.C. mains when Power Unit is fitted.

$$
\star \star \star \star \star \star \star \star \star \star
$$

BROADBAND VOLTMETERS
As A.C. Microvoltmeters plus H.F. probe to extend response to 450 MHz . Two verbandwidth switch on type TM6B.

TYPE TM6A 285

Complete with battery and in put lead. OPTIONAL EXTRAS

Leather Case
$£ 4 / 10 /-$
A.C. Power Unit

TYPE TM6B $£ 99$

Complete with battery and in put lead.
OPTIONAL EXTRAS

Leather Case
A.C. Power Unit
£7/10/-
H.F. VOLTAGE RANGES
$1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}$. . . . 3 Y f.s.d. Square law scales. Accuracy $\pm 4 \%$ of reading $\pm 1 \%$ of f.s.d. at 30 MHz .
H.F. dB RANGES
$-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB} \ldots,+20 \mathrm{~dB}$.
Scale -10 dB to $+3 \mathrm{~dB}, 0 \mathrm{~dB}=1 \mathrm{~mW}$ into 50Ω.
H.F. RESPONSE
$\pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz $\pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz . $\pm 6 \mathrm{~dB}$ from 400 MHz to 450 MHz .
L.F. RANGES

As TM3A and TM3B except for the omis-
sion of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$.

POWER SUPPLY
One type PP9 battery, life 1000 hours on L.F. ranges and 400 hours on H.F. ranges; is'fitted.

LEVELL

PORTABLE INSTRUMENTS
LEVELL ELECTRONICS LTD., Park Road, High Barnet, Herts. Tel.: 01-449 5028 High Barnet, Herts.
WW-038 FOR FURTHER DETAILS

BuIllerss ceramics

for the ELECTRONIC INDUSTRY (and Electrical Appliance Manufacture)

Frequelex-for high-frequency insulation.

Refractories for high-temperature insulation.

Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products.

Write today for detailed particulars.

BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 54321 (5 lines)
Telegrams \& Cables: Bullers, Stoke-on-Trent London Office: 6 Laurence Pountney Hill, E.C. 4

Phone: MANsion House 9971

Only S.M.E. Precision Pick-up Arms offer all these features. Choice of arm length Model 3009 (9 in .) or Model 3012 (I2in.) for still lower tracking error-of special importance with elliptical styli - low inertia. High precision ball races and knife-edge bearings for minimum pivot friction - Linear offset chosen for lowest distortion. Automatic slow-descent with hydraulic control. Bias adjuster calibrated for tracking force. Exact overhang adjustment with alignment protractor. Precise tracking force from $\frac{1}{4}-5$ grams applied without a gauge. Shielded output socket. Low capacity 4 ft . connecting cable with quality plugs : Light-weight shell . Camera finish in satin chrome, gun-black and anodised alloy. Comprehensive instructions - Rational development-all improvements can be incorporated in any existing Series II arm.

For sales and service ring Steyning 2228

S ME LIMITED • STEYNING • SUSSEX • ENGLAND

WW-041 FOR FURTHER DETAILS

ILIFFE BOOKS

RADIO AND ELECTRONIC DATA HANDBOOK

G. R. WILDING

This book fulfils two aims. First it provides a complete short course in basic electronics, with worked examples throughout, to give real insight into the functioning of Radio, Television and Electronic circuits. Secondly, a new style of presentation permits rapid reference to concise but complete explanations of every subject from Ohm's Law to Transistor Output Stages. With a wide background of both teaching and practical experience, the author finds that a knowledge of basic theory, so vital for examinations and for practical design and rapid fault diagnosis, often presents students and technicians with the greatest difficulty. A new format has been adopted, therefore, both for maximum learning impact and to crystallise textbook coverage into separate, easily assimilable sections that more than amply cover all practical requirements. Mathematics are reduced to the minimum, assume no special knowledge, and are always fully explained step by step. 149 pp. plus 4 pp. plates. 17s 6d net 18 s 4 d by post.
obtainable from leading booksellers
ILIFFE BOOKS LTD.
42, RUSSELL SQUARE, LONDON, W.C.I

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1
Phone: 01/837/7937

THIS IS WHAT NORMAN EISENBERG WROTE ABOUT BOOKS BY G. A. BRIGGS IN HIGH FIDELITY MAGAZINE

(U.S.A.) JANUARY 1968

Is there any reason why audio books can't be written in high style? G. A. Briggs has been doing it ever since High Fidelity first emerged from the exclusive domain of engineers and began to be cultivated by the cultivated. Consider his temerity in opening a chapter on distortion in his classic Sound Reproduction with a quotation from Milton: ". . . dire was the noise of conflict." Or recall his wit in replying to a le:ter from a man who asked why " the body was missing" from the sound when he put a back on his home-made speaker enclosure, and why the speaker sounded better when he took the back off again . . Briggs wrote: " when you leave off the back... you obtain... reflection from the wall . . use the system which sounds best, even if contrary to every textbool. In any case, as the body has disappeared, there would not be much point in screwing down the lid of the coffin. Nobody else writes then with quite that flair."

The BRIGGS books listed below are still obtainable.

AERIAL HANDBOOK (second edition)

176 pages, 144 illustrations.
Price (semi-stiff cover) 15/- (16/- post free).
Cloth bound $22 / 6$ ($24 /$ - post free).

CABINET HANDBOOK

112 pages, 90 illustrations
Price 7/6 (8/6 post free).

AUDIO BIOGRAPHIES

344 pages, 64 contributions from pioneers and leaders in Audio. Cloth bound.

Price 25/- (26/6 post free).

MUSICAL INSTRUMENTS \& AUDIO 240 pages, 212 illustrations. Cloth bound. Price 32/6 (34/- post free).

LOUDSPEAKERS

Fifth edition-336 pages, 230 illustrations Cloth bound
Price 25/- (26/6 post free).

A to Z in AUDIO
224 pages, 160 illustrations. Cloth bound. Price $15 / 6$ ($17 /$-post free).

MORE ABOUT LOUDSPEAKERS
I36 pages, 112 illustrations.
Price 8/6 (9/6 post free).
PIANOS, PIANISTS AND SONICS
190 pages, 102 illustrations. Cloth bound. Price $18 / 6$ ($20 /$ post free)
AUDIO AND ACOUSTICS
168 pages, 140 illustrations.
Price $12 / 6$ ($13 / 6$ post free).

ABOUT YOUR HEARING
132 pages, 112 illustrations.
Price (semi-stiff cover) $15 / 6$ (16/6 post free). Cloth bound $22 / 6$ ($24 /$ - post free).

Sold by Radio Deolers and Book Shops or in case of difficulty direct from the Publishers
RANK WHARFEDALE LTD. IDLE BRADFORD YORKSHIRE. Tel. Bradford 6/2552

WW-045 FOR FURTHER DETALLS

PFRFEETIONHERE WECOME

Start with one of the new "Series Four" Microphones, add our new Multi-Impedance Mixer, and feed into LUSTRAPHONE'S 50 watt (RMS) Silicon Transistor Amplifier. Finally, connect to the finest Loudspeaker you can find, and you will be a Stage Closer to Perfection. The Multi-Impedance Mixer, which can be used for both Mono and Stereo operation, employs plug-in modules for the utmost versatility. Advanced, but brilliantly simple, circuitry ensures that distortion, signal to noise ratio, and spurious breakthrough are of professional standards. Inputs of 50 Ohms, 2000 hms and 2M Ohms are provided on each channel.
Like the LUSTRAPHONE Multi-Impedance Mixer, the LUSTRAPHONE 10 watt (RMS) and 50 watt (RMS) Silicon Transistor Amplifiers incorporate "State of the Art" circuitry resulting in unequalled performance and reliability.
Brief Specification of LUSTRAPHONE Silicon Transistor Amplifiers:

Power Output: $\quad 10$ watt RMS or 50 watt RMS. Frequency Response: $\quad 20 \mathrm{HZ}$ to 20 K Hz within 1 db .
Total Harmonic Distortion: 0.5% at full rated power.
Signal to noise ratio: $\quad 74 \mathrm{db}$ (Mixer).
Signal to noise ratio: 102 db (Power amplifier).
Send for free literature giving full details of LUSTRAPHONE "Series Four" Microphones, Multi-Impedance Mixers, and Silicon Transistor Amplifiers.

lustraphone

THE FOREMOST NAME IN MICROPHONES
Lustraphone Limited,
Regents Park Road, London N.W. 1 Tel:01-722 8844 ww-046 For further details

STRONGHOLD steel shelving that adjusts every inch of its height!

Immensely strong - completely adjustable, every inch. Delivered free, mainland, with spanner provided for erection in minutes. Buy it by the bay!
$73^{\prime \prime}$ high $\times 34^{\prime \prime}$ wide $\times 12^{\prime \prime}$ deep unit with six shelves in heavy-gauge steel, stove enamelled grey or green! £3.15s.-Brand New! See the rest of the N.C. Brown range!

맘모옹 N.C. BROWNLTD.
 pacesetters in storage equipment

```
Send your FREE BRO- Name
    CHURE }\square\mathrm{ or Send }\square\\mathrm{ Address
    (how many) bays of
    sleel shelving 'g E3.15s
    Steel shelving 'd E3.15s
    in green }\square\square\mathrm{ grey (uck
l in green प| grey (uck
Dept.WWW Eagle Steelworks, Heywood, Lancs
Tel: 69018. London. 25-27 Newton St..W.C.2
| Tel: 01-4057931
```

WW-048 FOR FURTHER DETAILS

Variable-high current SMOOTHED POWER SUPPLIES WITH accumulator performance DIRECT FROM A.C. MAIMS

TYPE 250VRU/30/20 provides outputs of $0-30$ v. D.C. continuously variable, up to 20A. Overload capacity 200% for short periods Ripple Content, impedance and regulation equivalent to accumulator performance. Output protected INCORPORATES HEAVY DUTY SILICON RECTIFIERS. Complete with volt and amp meters, free standing, but suitable for 19 in , racking.
USED BY MINISTRY OF TECHNOLOGY: Aircraft operators, for servicing 28 v .aircraft instruments, radio; within B.C.A.R.'s.
FIXED OUTPUTS ALSO AVAILABLE. Smoothed 12 or 24 v . up to 24 amps Applications. operating and servicing transistorised equipments, e.g. $12-24 \mathrm{v}$ mobile r/telephone; production testing D.C. motors; heaters, wipers ignition
systems, etc., etc. Direct from A.C. Without accumulators.
Avoid the extra expense of super regulation you may never need.
PRICES: from $\mathbf{\text { E }} \mathbf{3 1 / 4 / - \text { up to } \mathrm { E } 8 8 / 4 / \text { -. }}$
We shall be happy to assist with your power conversion problems. Call, write, or Tel.: O1-890 4837

EXPORT ENQUIRIES INVITED**

DEPT. PUI3
BROWELLS LANE,
FELTHAM,
MIDDLESEX,
ENGLAND.
TEL: O1-890 4242

LIMITED
**DEMANDES CONCERNANT L'EXPORTATION SOLICITEES. SE INVITAN CONSULTAS SOBRE EXPORTACIÓN. EXPORTANFRAGEN ERBETEN

YOU WANT PARTS

 URGENTLY -almost immediately!So what do you do?
You reach for the 'phone and dial ONO 239 8072, if it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.
Your immediate needs are our business
We exist to supply the small user quickly with standard parts made by these Companies and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components. We're geared to speedy handling and dispatch.
But you will need our latest catalogue
For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full details of the wide range of parts we stock-nearly everything of the kind that you are likely to require. Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Nottingham. Sandiacre 8072 STD ONO 2398072

WW-049 FOR FURTHER DETAILS

WW-050 FOR FURTHER DETAILS

$\mathrm{KR} 8 \mathrm{~S}_{\substack{\text { pluglin }}}^{2 \text { pole change-over }} \mathrm{KR} 11 \mathrm{~S}_{\substack{\text { plugein } \\ \text { plonange-over }}}^{3 \text { pol }}$

KR12S $\begin{gathered}\text { AMP.connections } \\ \text { A poler }\end{gathered}$

BRITEC LIMITED
17, Charing Cross Road London - W.C. 2

STAND G373, IEA, OLYMPIA, 13-18 MAY WW-051 FOR FURTHER DETALLS

You could buy 5 bridges

or one autobalance component bridge

The B421

 will measure...

RESISTORS
from 0.01 ohm to 100 megohms, direct reading. Accuracy 0.25\%.

CAPACITORS
from 0.01 pF to 10 microfarads. Accuracy 0.25%. Pushbutton for instant reading of loss (shunt) resistance.

INDUCTORS
from 1 microhenry to 100 henrys. Accuracy 2\%. Push button for measurement of series resistance.

ELECTROLYTICS
10 microfarads to 10000 microfarads with d.c. applied.
Also leakage from 1 micro-amp to 10 milliamps.
TOLERANCE
from -25% to $+25 \%$, for L. C and R.
in seconds

NEW MALDEN \square SURREY $\square E N G L A N D$ TEL: ロ1-942 22ロ2[TTELEX262333

WW-052 FOR FURTHER DETAILS

TOWNTHy

INTERNATIONAL RECTIFIER
Quality Semi-Conductors.
Complete Rectifier Assemblies up to thousands of Amps, Diodes, Thyristors, Zeners, Encapsulated Bridges, Photocells, Klipsel Surge Protectors.

For experiment and teaching:ZENER KITS, THYRISTOR KITS.

PRINTED CIRCUIT DRAFTING AIDS

Save drafting time and costs. Selfadhesive shapes and tapes. Terminal circles-fillets - tees-elbows-universal corners and mounting holes.

ENGLISH ELECTRIC

for the protection of rectifiers and thyristors.
Bulletins and prices on request.

Rail Mounted Terminals and Terminal Blocks 0.5-250 Amps.

Bulletins and prices on request.

WW-049FOR FURTHER DETAILS TO COMPONENTS DEPT ONLY
HARMSWORTH, TOWNLEY \& CO TODMORDEN LANCS

TRANSFORMERS
0.25 kVA to 300 kVA

1 phase and 3 phase

LOW VOLTAGE HIGH CURRENT TRANSFORMERS
with output currents of hundreds, thousands and tens of thousands of amps.
1 phase and 3 phase.

DC POWER SUPPLIES

For Magnets, Accelerators, Plating, Anodising, Spectroscopy, Plasma Arc, Toronto Arc, Electron Beams, Electrolysis, Welding, Quartz Lamps, Mercury Vapour Lamps. From 100 W to 200 kW .

VOLTMOBILES
64 steps on load switching AutoTransformers. I phase and 3 phase. 200-400 Amps.
Zero to 100% Volts or 125% of Input Volts.

Voltmobiles are low-cost controllers, for furnaces, rectifier sets and other loads.

LET US HAVE YOUR SPECIFIC REQUIREMENTS

PHONE TODMORDEN 2601
AND ASK FOR EXTENSION 3

PERMANENT MACNETS

Manufactured from the best cast magnetic alloys in a wide range for all applications

SEE US ON STAND G370 • IEA EXHIBITION
Ross \& Catherall Ltd (formerly Marrison \& Catherall Ltd) FORGE LANE • KILLAMARSH • SHEFFIELD Telephone: Eckington 2404

EDDYSTONE COMMUNICATION RECEIVERS

For the Professional or Amateur user who likes the Best

H.P. Terms gladly arranged. Quick Delivery. Carriage Paid.

Telephone: AINTREE 1445

SEND od STAMP FOR UTERATURE TO
The Eddystone Specialists SERVICES LTD. 51 COUNTY ROAD, LIVERPOOL, 4

ESTAB. 1935

Manager U.K. Sales
Battery Engineering Manager • Applicátions Engineering Manager

So what do we stand for? Outstanding imaginative thinking in batteries

Along with our engineers we'll be on stand $G .85$ at the I.E.A. to show you what we mean and talk about your problems, We'll be there throughout the Exhibition or contact us at Crawley 26041/9.

TECHNICAL TRAINING by

ICS

 IN RADIO, TELEVISION AND ELECTRONIC ENGINEERINGFirst-class opportunities in Radio and Electronics await the IC S-trained man. Let ICS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success.
Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers etc. Expert coaching for:

* IN8TITUTION OF ELECTRONIC AND RADIO ENGINEERS.
* C. \& G. TELECOMMUNICATION TECHNICIANS CERTS.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS EXAMINATION.
* P.M.g. GERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO COURSES
8 uild your own 5 -valve receiver, transistor portable, signal generator and multi-test meter-all under expert tuition.

POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES

Solder mith the NEWEIMPROVED PRIMAX OR PRIMAXA SPOTLIGHT SOLDERING GUN

Distributors:

S. KEMPNER LIMITED

384A Finchley Road • LONDON • N.W. 2

Tel: Ol-794 2371—01-435 6365

THE NEW WHITELEY INTEGRATED AMPLIFIER SYSTEM

A fully transistorized integrated amplifier designed for use with all types of pickup cartridges, it has facilities for tape and microphone inputs and the bass, treble, volume and balance controls are included. Input selection and mode of operation is by push-button switches. Available in its own specially designed teak veneered cabinet for shelf or bookcase mounting or in the new compact equipment cabinet illustrated. Come and see the full range of Whiteley Stentorian speakers and cabinets and discuss your particular hi-fi problems with our technical representatives.

WE ARE EXHIBITING AT
THE AUDIO FAIR
STAND No. 85
DEM. ROOM No. 304

LOUDSPEAKER SYSTEMS

LC93

A $19^{\prime \prime} \times 12 \frac{1}{2}^{\prime \prime} \times 8 \frac{1}{2}^{\prime \prime}$ completely enclosed acoustically loaded cabinet housing a $9^{\prime \prime}$ graded Melamine paper cone with siliconized cambric suspension giving a frequency response of 60 Hz to 20 KHz .

LC94

A $29 \frac{1}{2}^{\prime \prime} \times 23 \frac{3}{4}^{\prime \prime} \times 6 \frac{1}{8}^{\prime \prime}$ acoustic Labyrinth enclosure fitted with acoustic resistance in the pipe, using the same highly efficient $9^{\prime \prime}$ speaker unit used in the LC93. Frequency response 45 Hz to 20 KHz .

LC95

The LC95 loudspeaker system is an acoustically loaded Bass Reflex cabinet, measuring $31 \frac{1}{2}^{\prime \prime} \times 20 \frac{3}{4}^{\prime \prime} \times 13 \frac{1}{2}^{\prime \prime}$. fitted with two loudspeakers and a crossover network. The bass loudspeaker being used is a newly developed $12^{\prime \prime}$ unit having a Melamine treated paper cone with a cambric surround. The middle and high frequency unit is a new $8^{\prime \prime}$ loudspeaker having a Melamine treated paper ribbed cone and surround.

WHITELEY ELECTRICAL RADIO CO. LTD.

MANSFIELD, NOTTS.

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 132 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses, administered by our SpecialistElectronics Training Divisionexplains the benefits of our Appointments Dept. and shows you how to qualify for five years' promotion in one year.

SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford to miss reading this famous book. If you are earning less than $£ 30$ a week, send for your copy of "ENGINEERING OPPORTUNI-

BRITISH INSTITUTE
OF ENGINEERING TECHNOLOGY
(Dept. 303B), Aldermaston Court, Aldermaston, Berkshire

PRACTICAL EQUIPMENT

Basic Practical and Theorotic Courses for beginners in Radio, T.V., Electronics, etc.
A.M.I.E.R.E. City $\&$ Guilds Radio Amateur's Exam. R.T.E.B. Certificate P.M.G. Certificato Practical Radio
Radio \& Television Servicing Practical Electronics Electronics Engineerins Automation

INCLUDING TOOLS!

POST COUPON NOW!

Please send me your FREE 132-page "ENGINEERING OPPORTUNITIES"
(Write if you prefer not to cut page)
NAME
ADDRESS

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

WW- 062 FOR FURTHER DETAILS

FRAHM vilibraing reed friduency MEIERS

are widely used as standards in many industries because:-

1) They are accurate (to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified)
2) They are not voltage or temperature sensitive, within wide limits
3) They are unaffected by waveform errors, load, power factor or phase shift
4) They will operate on A.C., pulsating or interrupted D.C., and superimposed circuits
5) They need only low input power
6) They are compact and self-contained
7) They are rugged and dependable

FRAHM Vibrating Reed Frequency Meters are available in miniature switchboard and portable forms, in ranges from 10 to 1700 cps . Descriptive literature on these meters, and on FRAHM Resonant Reed Tachometers, freely available from the sole U.K. distributors:-

ANDERS METER SERVICE

ANDERS ELECTRONICS LTD. 48/56 BAYHAM PLACE, BAYHAM STREET LONDON NWI TEL: 01-3879092. MINISTRY OF AVIATION APPROVED

6 mm tubular midget flange $56 / 8$ cap over-all length 14.5 mm .

It is one of the many Vitality Instrument and Indicator Lamps that are made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of Vitality types and ratings may well be. Catalogue 66 . free and post-free, details them all.
*Many a product owes its success to the intelligent addition of an indicator light.

VITALITY BULBS

VITALITY BULBS LTD MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST.EDMUNDS, SUFFOLK. TEL. BURY 2071. S.T.D. 02842071

Pereless

HI-FI BAFFLE SPEAKER SYSTEMS FOR MONO AND STEREO

The new Peerless systems are engineered to the high quality standards that have made Peerless pre-eminent in high-fidelity design over the past years. Our experience, together with the most careful selection of materials and strictest manufacturing controls, assure performance of highest quality.

All the speaker systems are mounted and wired on a front board covered with plastic fabric grille and ready for cabinet mounting. Available in 4 ohm , 8 ohm or 16 ohm impedance.

4-30 PABS

4-30 PABS (also available as KIT, see below).
is a 3-way speaker system consisting of 4 speakers and crossover network Max. Power Input: 30 Watts.
Frequency Range: 30-18000 c.p.s. in 50 litres ($1.75 \mathrm{cb} . \mathrm{ft}$.) cabinet.
Speakers Woofer D 120 W. special. Mid. Range O 570 MRC.
Tweeters $2 \times$ MT 23 HFC .
Crossover Frequencies: 500 and 3500 c.p.s
Dimensions (inside) for 50 litres cabinet: Approximately $24 \frac{4}{6} \mathrm{in} . \times 13 \frac{3}{8} \mathrm{in}$. $\times 9 \frac{1}{4} \mathrm{in}$. $(630 \times 340 \times 234 \mathrm{~mm}$.).
Brown coloured plastic fabric grille.

2-8 PABS (also available as KIT, see below).
is a 2 -way speaker system consisting of 2 speakers and crossover network.
Max. Power Input: 8 Watts.
Frequency Range: $50-18000 \mathrm{c.p.s}$. in 16 litres (0.57 cb . ft.) cabinet.
Speakers: Woofer B 65 W. Tweeter MT 25 HFC.
Crossover Frequency: 4000 c.p.s.
Dimensions (inside) for 16 litres cabinet: Approximately $15 \frac{9}{16} \mathrm{in} . \times 9 \frac{5}{8} \mathrm{in}$. $\times 6 \frac{1}{2}(395 \times 245 \times 165 \mathrm{~mm}$.)
Specify grey or golden coloured plastic fabric grille.
2-I0 PABS (not available as KIT)
is a 2 -way speaker system consisting of 2 speakers and crossover network.
Max. Power Input: 10 Watts.
Frequency Range: 50-18000 c.p.s. in 6.5 litres (0.23 cb . ft.) cabinet
Speakers: Woofer O 525 WL. Tweeter MT 20 HFC.
Crossover Frequency 3500 c.p.s.
Dimensions (inside) for $6 \frac{1}{2}$ litres cabinet: Approximately $9 \frac{9}{16} \mathrm{in} . \times 6 \frac{1}{4} \mathrm{in}$. $\times 6$ 最in. $(252 \times 158 \times 167 \mathrm{~mm}$.).
Dark coloured plastic fabric grille
3-15 PABS (also available as KIT, see below).
is a 3-way speaker system consisting of 3 speakers and crossover network.
Max. Power Input 15 Watts
Frequency Range: $45-18000$ c.p.s. in 30 litres ($1.06 \mathrm{cb} . \mathrm{ft}$.) cabinet.
Speakers: Woofer P 825 W. Mid Range GT 50 MRC. Tweeter MT 20 HFC.
Crossover Frequencies: 750 and 4000 c.p.s.
Dimensions (inside) for 30 litres cabinet: Approximately $203 \mathrm{in} . \times 8 \frac{5}{8} \mathrm{in}$. $\times 10 \frac{1}{2} \mathrm{in}$. $(515 \times 218 \times 270 \mathrm{~mm}$.).
Specify grey or golden coloured plastic fabric grille.
3-25 PA8S (also available as KIT, see below).
is a 3 -way speaker system consisting of 3 speakers and crossover network.
Max. Power Input: 25 Watts.
Frequency Range: $40-18,000 \mathrm{c}$. p.s. in 100 litres (3.5 cb . ft.) cabinet.
Speakers: Woofer CM 120 W . Mid Range G 50 MRC. Tweeter MT 20 HFC.
Crossover Frequencies: 750 and 4000 c.p.s.
Dimensions (inside) for 100 litres cabinet: Approximately $25 \mathrm{in} . \times 15 \mathrm{in} . x$ $16 \frac{4}{4} \mathrm{in}$. $(635 \times 380 \times 4.12 \mathrm{~mm}$.).
Specify grey or golden coloured plastic fabric grille.

Percless
 LOUDSPEAKER SYSTEMS IN KITS FOR MONO AND STEREO

If you want to spend a little extra time to establish your high-fidelity sound system and at the same time save money, you can get four of our PABS systems in KITS.
A KIT system consists of speakers, crossover network, drawing of cabinet as well as mounting instructions, but without baffle.
Available in $4 \mathrm{ohm}, 8 \mathrm{ohm}$ or 16 ohm impedance.

T1PRELSS FI-FI CABINET SPEAKERS

A trio of 2-way and3-way compact speakers systems in oiled teak cabinets of bookshelf type, Danish design and technique at its very best.
Available in $4 \mathrm{ohm}, 8 \mathrm{ohm}$ or 18 ohm impedance.

2-10A MEDIUM SIZE SYSTEM

2-10 COMPACT SYSTEM

is a 2-way speaker system in cabinet with dark coloured plastic fabric grille. Combines one special woofer ($5 \frac{1}{4} \mathrm{in}$.), one closed-back tweeter (2 in .) and a crossover network. Crossover Frequency: 3500 c.p.s. Frequency Range: 50-18000 c.p.s. Power Capacity: 10 W atts. Cabinet Size: $10 \frac{1}{4} \mathrm{in} . \times 6 \frac{3}{16} \mathrm{in} . \times 8 \frac{8}{1} \mathrm{in} .(260 \times 156 \times 213 \mathrm{~mm}$. $)$.

2-IOA MEDIUM SIZE SYSTEM

is a 2-way speaker system in cabinet with brown coloured plastic fabric grille. Combines one special woofer ($6 \frac{1}{2} \mathrm{in} . \times 10 \frac{1}{4} \mathrm{in}$. elliptical), one closed-back tweeter ($2 \frac{1}{2} \mathrm{in}$.) and a crossover network. Crossover Frequency: 3500 c.p.s. Frequency Range: $40-18000$ c.p.s. Power Capacity: 10 Watts. Cabinet Size: $19 \frac{3}{4} \times 9 \frac{7}{6} \mathrm{in} . \times 10 \frac{5}{8} \mathrm{in} .(500 \times 250 \times 270$ mm .).

4-30 MONITOR SYSTEM

is a 3-way speaker system in cabinet with brown coloured plastic fabric grille. Combines one special woofer (l2in.), one special mid range ($5 \mathrm{in} . \times 7 \mathrm{in}$. elliptical), two closed-back tweeters ($2 \frac{1}{2} \mathrm{in}$.) and a crossover network. Crossover Frequencies: 500 and 3500 c.p.s. Frequency Range: $30-18000$ c.p.s. Power Capacity: 30 Watts. Cabinet Size: $25 \frac{9}{16} \mathrm{in} . \times 14 \frac{3}{16} \mathrm{in} . \times 11 \frac{7}{1} \mathrm{in} .(650 \times 360 \times 300 \mathrm{~mm}$.

MADE BY

PEERLESS FABRIKKERNE A/S
 COPENHAGEN • DENMARK

Distribution in the U.K. by
C. E. Hammond \& Co. Limited, 90 High Street, Eton Windsor, Berkshire.

Please send me details of Peerless
\square CABINET SPEAKERS
\square PABS
\square KITS
Mr. ..
Address

Post to C. E. Hammond \& Co. Ltd., 90 High Street, Eton, Windsor Berkshire.

Chetesulat

20 WATT SOLDERING INSTRUMENT

- CONTROLLED TEMPERATURE Design holds max. temp. of $380^{\circ} \mathrm{C}$. within close limits.
- EASY BIT REPLACEMENT

Simple, fast replacement of low-cost copper bits. Non-wearing PERMATIP bits cut servicing costs.

- BEAUTIFULLY COMPACT

Length $7 \frac{7}{B}$ in. Weight $1 \frac{1}{4}$ oz.
Max. handle dia 0.715 in .

- UNEQUALLED PERFORMANCE Ideal for fast production soldering on the majority of modern electronic equipment.
- ALL VOLTAGES
- NEON INDICATOR
$10,18,20$ \& 25 watt models supplied to special order with Neon Indicator

The LITESOLD range includes six other models (10, 18, 25, 30,35 and 55 watts), and many accessories. Please ask for colour catalogue L5.

LIGHT SOLDERING DEVELOPMENTS LTD.

28 Sydenham Road, Croydon, CR9 2LL
Tel. 01-688 8589 \& 4559
WW-066 FOR FURTHER DETAILS

GORES

for grain
oriented silicon iron transformer cores of ' C ', ' E '
or circular
form

SEE US ON
STAND 6370
I.E.A. EXHIBITION

Ross \& Catherall Ltd (formerly Martison a Cotherall Ltd) FORGE LANE • KILLAMARSH • SHEFFIELD Telephone: Eckington 2404

WW-067 FOR FURTHER DETAILS

AEI • diodes, transistors, thyristors
SPRAGUE \cdot capacitors, resistors, inductors, integrated circuits transistors, TEXAS• integrated circuits, transistors, diodes, thyristors GREMAR
co-axial RF connectors
GE•semi-conductor devices

QUICKLY

TELephone 073440616
$\because v 7]$ [Components Limited
35-37 Greyfriars Road. Reading, Berks. Tel: Reading 40616-9
 WW-068 FOR FURTHER DETAILS

Nothing

 matches Belling-Lee sub-miniature R F Connectors- A low cost range of precision subminiature R.F. connectors.

暲 Impedance 50 ohms nominal.
V.S.W.R. less than 1.1:1 at 400 MHz .

露 Easily loaded with a variety of subminiature coaxial cables up to $0.067^{\prime \prime}$ overall.

- PTFE insulation and choice of gold or silver plated body.
- Three plugs and three sockets. Types available to suit all installation requirements.
- Available from stock.

LABORATORY VACUUM PUMPING GROUP
A vacuum pumping group designed to serve all vacuum points in a laboratory, interconnected to allow one or both pumps to operate, according to demand.
vacuum equipment from General

genevan mobile

 PUMPING PLANTSelf-contained, combined pumping plants, supplied as manually or semiautomatic operated units.

GENEVAS COATING UNITS
Manual, semi-automatic or automatic coating units with $12^{\prime \prime}, 19^{\prime \prime}$ or $24^{\prime \prime}$ work chambers. Available with a wide variety of pumping systems.
Special plants to caus. tomes' requirements.

KINNEY TRIPLEX HIGH VACUUM PUMPS SERIES G.K.T.
A range of oil sealed vacuum pumps producing pressures of 1 torr and below. Operating on the rotary piston principle and utilising a new balancing system, these pumps offer unparalleled compactness and vibration free operation

better baluns...
 Hatfield Baluns provide a simple and effective solution to the problem of matching unbalanced to balanced impedances of different values. lustrated, left so right. are: 2 kW RF Transmitter Matching Unit, Type 852 Receiver Antenna Matching Unit and Type RT40, the latter being one of a range particularly suitable for matching rhombic antennae

 to coaxial systems. Ask for Folder B4/4 and for the latest edition of the Hatfield Short Form Catalogue.

SOUTH EAST ASIA-for prompt service and deliveries, contact HATFIELD INSTRUMENTS (NZ) LTD., P.O. Box 7I7, Napier, New Zealand.

HATFIELD INSTRUMENTS LTD., Dept. WW, Burrington Way, Plymouth, Devon:. Telephone: Plymouth (0752) 72773/5. Telegrams. Sigien Plymouth.

We can't show them all!

The Partridge range of Transformers for
 Hi-Fi circuits covers most leading published designs. Write now for Data Sheets, or let us have your specific enquiry -there's bound to be a model to suit your needs.
$01.3974353 / 4 / 5$

We now have a new range of wet slug tantalum capacitors, the 69 F900 series, with performance to match our successful 69F series, but they are a lot skinnier! The result? An 85% loss on weight and volume and a slender new look. But more important, they give the highest Volt/Microfarad product per unit of any capacitor you can buy. They are fit enough to meet top professional and military specifications, and home grown in Britain like their big brothers - the 69F series.

Basic range : 6-60V @ $85^{\circ} \mathrm{C}, 1-470 \mu \mathrm{f}$.
Operating range: $\quad-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

* Retains well proven porous anode-gelled electrolyte system of 69F series.
* Very low stable leakage current.
* No voltage derating required to achieve reliability.
* Excellent shelf and operating life.

For further information please contact our sales office:
EMIHUS MICROCOMPONENTS LIMITED,
Glenrothes, Fife, Scotland.
Sales Office:
Heathrow House, Bath Road, Cranford, Hounslow, Middlesex. Tel: 01-759 9584/9961

WW-073 FOR FURTHER DETAILS

Key to Britain's Future

Britain's future depends entirely on technological progress. The key industries to this vital progress are those concerned with instruments, electronics and automation.
At Olympia; London, you can see how these industries are forcefully backing Britain.
The 1968 International Instruments, Electronics and Automation Exhibition-the biggest of its kind ever staged-needs a quarter of a million square feet of stand space to demonstrate the dramatic advances in technology on which our future depends.
The International IEA presents, for instance, the entire picture of automation and automatic control ; how whole industries can be computer-operated and, at the other end of the scale, examples of small-business automation. A brilliant new allBritish computer costs only $£ 4,000$ and has no equivalent in the world.
Electronics holds the key to the future of all industry. Everything, from the smallest component to the greatest machine, can be seen at the International IEA at Olympia.

SEE THE KEY TO PROGRESS BEING TURNED

Times: 10 a.m. to 6 p.m. daily
0 EO
INDUSTRIAL EXHIBITIONS LIMITED 9 ARGYLL STREET, LONDON, W. 1

Just what is this ABR, that makes such a vital difference to the
'DITTON 15’?

Studio auality
unit (HF1300 Mk. 2).
Anechoic cellular foam wedge and lining eliminates standing waves
3. High hysteresis panel loading material to eliminate structural material to
4. Auxiliary Bass Radiator (ABR) -plastic foam diaphragm giving -plastic foam diaphragm giving high rigidity and low mass; double roll suspension allowing excursions up to ${ }^{\frac{2}{4 \prime}}$ with minimal
distortion. distortion.
5. High compliance bass unit with
massive Ferroba II magnet structure for optimum magnet damping and cone treated with viscous damping laver to suppress resonances.
6. Units mounted flush to eliminate diffraction effects andtunnel resonances; covered by acoustically transparent grille cloth for maximum presence
7. Full L-C half-section Crossover network.

It's an interesting story and worth enquiring about.

Fill in the coupon

Studio
Series
loudspeakers for the perfectionist

ROLA CELESTION LTD.

```
Ferry Works, Thames Ditton, Surrey
```

Tel: 01-398 3402
Please send me the full story on the 'Ditton 15'
I NAME
ADDRESS \qquad I

make for electrosil on stand G26 at the IEA for an Oxide, Fluidic, Integrated treat

OK! 1 know glass-tim-oxide is the best resistor-but why doI need three types? ton So pom Two Nec

Cherom you need oxide rellablifty
signetics solves the IC interface problem

Fluidic industrial control modules
get the facts now
New glass-tin-oxide resistors and networks The latest in fluidics technology Interesting developments in Signetics integrated circuits High performance glass-capacitors Augat IC breadboarding systems

You've seen the Ads-now see the goods

Electrosil
LIMITED
Electrosil Limited P.O. Box 37 Pallion Sunderland Co. Durham Telephone: Sunderland 71481. Telex 53273

Aspects of S.N.S.

No. 1 New Radiomicrophones

S.N.S. are proud to announce the first British made G.P.O. approved Radiomicrophone to sell complete, Transmitter, Receiver, Carrying Case and microphone, at under $£ 100$.
This unit known as the Type 12 Mk 11 joins the range of systems which have proved their worth over the past 4 years, including both wide and narrow band systems, special studio systems developed for Broadcasting and T.V.Authorities and used extensively in the Film Industry.
Because of this wide range and our ability to meet customer "specials" at a reasonable cost we have been increasingly successful in this field, quite apart from the other aspects of S.N.S. and are now able to offer this new system, designed for both good looks and optimum performance, at a really reasonable cost.
We are always pleased to arrange demonstrations and provide quotations against your requirements and would ask you to note the wide range of our products noted below, which enable us to engineer complete sound systems of any size and complexity.
For further details on the new Type $12 \mathrm{Mk} \mathrm{1I}$, or any other of our products please write, phone or telex.
J.V.H. ROBINS, Marketing Director S.N.S. Communications Limited,

Tropical Works, 851 Ringwood Road, West Howe, Bournemouth, Hants, England. Telex 41224. Tel: Northbourne 4845.
Manufacturers of: Transistor Amplifiers, Crystal AM and FM tuners, cabinet and line source loudspeakers, Loudspeaking Intercom Systems, Hotel Radio and Intercom Systems.

modulators from stock

The extensive Hatfield Range of Modulators now includes the restyled Type MD4, a compact V.H.F. Double Balanced Modulator using " Hot Carrier" diodes and capable of very good performance as an amplitude modulator, mixer, phase detector or current concrolled V.H.F. attenuator. input and output frequency range, $0.5-300 \mathrm{MHz}$.
The newest development, Type MD6, has similar features to Type MD4, but is fully encapsulated and suitable for direct mounting on printed circuit. boards. Large-scale production of this type makes possible a most competitive price.
Deliveries of both these types can be made from stock. Write now for detailed literature on the Hatfield Range of Modulators and for your copy of the new edition of the HAT.

SOUTH-EAST ASIA-for prompt service and deliveries contact MIELD SHORT FORM CATALOGUE.

SOUTH-EAST ASIA-for prompt service and deliveries contact HATFIELD INSTRUMENTS (NZ) LTD., P.O. Box 717, Napier, New Zealand, sections for quick reference-covering comparables and equivalents and all current Mullard semiconductors, valves, tubes and components for Radio, TV, Audio and HiFi applications.
PRICE $3 / 6$ from your local TV retailer OR direct from Mullard-cash with order, plus $9 d$ for p. and p.
Mullard Limited, Distributor Sales Division, Mullard House, Torrington Place, London, W.C.1.

ww-079 FOR FURTHER DETAILS

RCA COLOUR TUBES two totally unique advantages

New Rare Earth Red Phosphor

These new red phosphors-exclusive to RCA-combined with efficient sulphide blue and green phosphors produce pictures at their brightest and most dependable. They completely overcome the imbalance of the three guns which cause red blooming, colour fringing and failure of the red gun due to overwork. RCA's New Rare Earth Red Phosphor achieves UNITY CURRENT RATIOS -equal beam current from each electron gun; higher brightness, picture contrast and highlight; much longer tube life.

Perma-Chrome

This is a four-point, temperature-compensated shadow mask assembly which accurately adjusts and sets the shadow mask position relative to the screen. Shadow mask expansion limits the performance of a rectangular colour-tube-Perma-Chrome renders this problem negligible. Perma-Chrome produces full-colour fidelity and temperature equilibrium throughout normal operation. It maintains excellent field purity and uniformity.

RCA 'HI-LITE' COLOUR PICTURE TUBES ... THE BRIGHTEST IN THE INDUSTRY

For full technical specification and application information, write to: RCA COLOUR TUBES LTD • PINFOLD PLACE • PIMBO • SKELMERSDALE • LANCS • TEL: TAWD VALE 4951

BASIC
You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoon-type drawing. The books are based on the latest research into simplified

ELECTRICITY (5 vols.) ELECTRONICS (6 vols.)
learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects. Each Volume has a unique PROGRAMMED supplement for you to test and check your knowledge.

To The SELRAY bOOK C0., 60 Hayes Hill, Hayes, Bromley BR2 7HP
Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets, on 7 DAYS FREE TRIAL. I will \&ither return set, carriage paid in good condition within 7 days or send BASIC ELECTRICITY including Programmed Supplement. Cush Price $95 /--\quad$ BASIC ELECTRONICS including Programmed Supplement. Cash Price 112/-. All prices include P. \& P
Deferred Terms readily available. This offer applies to UNITED KINGDOM ONLY. Overseas customers Cash with order
Tick Set required (Only one set allowed on free trial.)
BASIC ELECTRICITY - BASIC ELECTRONICS
$\underset{\text { Programmed Supplement }}{\text { BASIC ELECTRICITY }} \quad$ - $\quad \underset{\text { Programmed Supplement }}{\text { BASIC ELECTRONICS }}$
Signature
(If under 21 signature required of parent)
NAME
BLOCK LETTERS
MDL PRETAL

POSTNOWFORTHIS OFFER!

multi-range testing... mini style

A pocket size instrument with big performance. Measures A.C. and D.C. volts, D.C. current and resistance. Clear scale, knife edge pointer and tough Melamine cover. The movement is built into a pressed steel case, effectively screened from external magnetic fields.
Look at these features:-
\square D.C. sensitivity 20,000 ohms per volt. \square D.C. accuracy $\pm 21 \%$ F.S.D
\square A.C. sensitivity 2.000 ohms per volt. \square A.C. accuracy $\pm 2 \frac{3}{4} \%$ F.S.D
\square Small size, $5 \frac{?^{\prime \prime}}{} \times 3 \frac{3}{4}^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{} \quad \square$ A.C. accuracy maintained up to $20 \mathrm{kc} / \mathrm{s}$. \square Weight 180zs. $\square 20$ ranges.

minitest multi-range test set
 50 uA movement 20,000 ohms per volt

Leaflet on request.

ST 파 SALFORD ELECTRICAL INSTRUMENTS LIMITED

Peel Works. Barton Lane, Eccles. Manchester. Tel.: ECCles 5081. Telex: 66711
London Sales Office Brook Green. Hammersmith. W.6. Tel: 01-603 9292
A Subsidiary of the General Electric Co. Ltd of England.

Cartridge recorders

from the world wide Plessey organisation meet the exacting demands of the broadcasting industry and other professional users-

CT80P Replay Model

Desk top or recessed desk mounting

CT80R Record/Replay Model
Desk top or recessed desk mounting

Made to the world's highest professional standards, the CT80 range of endless-loop cartridge recorders offer the user peak performance and long term reliability. Radio and TV programming is simplified with the versatile CT80! Here are some of the important features:
Precision engineered models are available for continuous, heavy duty Replay or Record/Replay applications \square Loading standard NAB type A, B or C endless-loop cartridges is a split-second, one hand operation \square The unique capstan motor, actuating solenoid and puck wheel assembly, as illustrated, gives instant start with direct tape drive \square The CT80 Series is constructed in interchangeable, modular form to allow fast changeover of assemblies for maintenance purposes \square Individual plug-in epoxy circuit boards are fully silicon solid state with telecommunication grade components \square Complete head assemblies and motor/transport assemblies are available, pre-aligned and ready for use \square All operating, cueing and remote control facilities meet the needs of the professional user for simple, efficient and thoroughly reliable operation \square Further information is available now by contacting us or your local Plessey office direct.

CT80R Record/Replay Model
Standard 19" Rack mounting

PLESSEY

Sales and Service - Technical Ceramics Limited Cheney Manor Trading Estate Swindon Wiltshire Telephone Swindon (OSW3)6251 Telex 44375 Cable PIEZO Swindon or the manufacturer Plessey Components Australia Rola Unit The Boulevard Richmond Australia 3121 Telex 30383 Cables ROLA Melbourine

TOA PUBLIC ADDRESS EQUIPMENT IS HERE

THERE'S MORE TO

THAN MEETS THE EYE

Tough compact construction utilising the latest advancements in printed circuitry mean that TOA stationary or mobile P.A. system gives clear powerful
amplification plus maximum adaptability and convenience with minimal maintenance.

TOA specialists in SOUND.

For full details:

AUDIO \& DESIGNS (SALES) LTD.

40 Queen street, Maidenhead, berks
Tel. Nos. 25630 or 25204.

Wholesale and
Retail enquiries to
LINEAR PRODUCTS LTD., electron works,
ARMLEY, LEEDS

Jack Peters knows the quality and reliability of the Weller soldering equipment he uses during the dayso he naturally chooses Weller for all the soldering jobs around the house. The same technical know-how and perfection go into both.
The world's widest range of quality soldering tools offers:
TEMPERATURE CONTROLLED IRONS with iron plated tips which control temperature without limiting
performance. For mains or low voltage.
RAPID SOLDERING GUNS. Instant heat models. Just reach for the solder ... 4 seconds and the job's done.
LOW INITIAL COST. The range of Marksman Irons$25,40,80,120$ \& 175 watt,-all have pretinned nickel plated tips.
There's a Weller soldering tool for every job and every pocket. Send for full details of our range.

Pinnacle

The widest ranging and most comprehensive valve catalogue available from any independent supplier.

PINNACLE ELECTRONICS LTD ACHILLES STREET • NEW CROSS - LONDON S.E. 14

Telephone: All Departments-01-692 7285 Direct orders-01-692 7714

Quality Components

 from $4=$
 \title{
Send for free
 \title{ \section*{Send for free

 Thorn Bendix

 Thorn Bendix}

Great Cambridge Road, Enfield, Middlesex. Telephone: 01-3635353

- RADFORD

AUDIOLABORATORYINSTRUMENTS

LOW DISTORTION OSCILLATOR (Series 2)
An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.

Specification

Frequency Coverage: $\quad 5 \mathrm{~Hz}-500 \mathrm{kHz}$ (5 ranges). Output Impedance:
Output Voltage:
Output Attenuation :
Sine Wave Distortion: 600 Ohms.
10 Volts r.m.s. max. $0-110 \mathrm{~dB}$ continuously variable. 0.005% from 200 Hz to 20 kHz increasing to 0.015% at 10 Hz and 100 kHz .
Square Wave Rise Time: Less than 0.1 microseconds
Monitor Output Meter: Scaled 0-3, 0-10, and dBm.
Mains Input: $\quad 100 \mathrm{~V} .-2.50 \mathrm{~V} .50 / 60 \mathrm{~Hz}$.
Size: $\quad 17 \frac{1}{4} \times 11 \times$ Bin.
Weight: $\quad 25 \mathrm{lb}$.
Price: \quad <150.
Rack mounting version available

DISTORTION MEASURING SET (Series 2)
A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use Capable of measuring distortion products as low as 0.002%. Direct reading from calibrated meter scale.

Specification

Frequency Range:
Distortion Range:
Sensitivity:
Meter:
Input Resistance:
High Pass Filter:
Frequency Response:
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges). $0.01 \%-100 \%$ f.s.d. (9 ranges). $100 \mathrm{mV} .-100 \mathrm{~V}$. (3 ranges)
Square law r.m.s. reading. 100 kOhms.
3 dB down to 350 Hz .
3 dB down to 35 Hz .
$\pm 1 \mathrm{~dB}$ from second harmonic of rejection frequency to 250 kHz Included battery.
$17 \frac{1}{4} \times 11 \times 8$ in.

15 lb .
(120.

Size:
Weight:
,
Rack mounting version available.

VOLTMETER (new item)
A transistor operated voltmeter satisfying the requirements for audio frequency measurement

Specification

Sensitivity:
Calibration Accuracy:
Frequency Response:
Input Impedance
Meter Scaled:
Power Requirements:
Size
Weight:
Price:
$1 \mathrm{mV} .-300 \mathrm{~V}$. f.s.d. (12 ranges). 2\% f.s.d. $\pm 1 \mathrm{~dB} .10 \mathrm{~Hz}-500 \mathrm{kHz}$.
| MOhm. I mV.-300 mV. $10 \mathrm{MOhm} .1 \mathrm{~V} .-300 \mathrm{~V}$ $0-3,0-10$, and dBm. Included battery. $11 \frac{1}{2} \times 6 \frac{1}{2} \times 6 \mathrm{in}$.
7 lb .
635.
Ashton Vale Road
Bristol
3

foundations of wireless

M. G. SCROGGIE, B.SC., F.I.E.E.

seventh edition Apr. '58.
This standard work covers the whole basic theory and, starting from the most elementary principles and assuming no previous knowledge on the reader's part, deals with receivers, transmitters, amplification, valves, transistors, aerials, power supplies and transmission lines. The treatment of frequency changers has been brought into line with modern practice, while common-grid and cascode v.h.f. amplifiers, e.h.t. generators and transistor d.c. voltage raisers are also covered. $8 \frac{3}{4} \mathrm{in} . \times 5 \frac{1}{2} \mathrm{in}$. 388 pp. 278 diagrams. 21 s net 22 s 5 d by post.

sound and television
 broadcasting: general principles

A BBC Engineering Training Manual

K. R. STURLEY, PH.D., B.SC., F.I.E.E.

Head of the BBC Engineering Training Department
After an introduction dealing with basic physical principles and their application to broadcasting, the book deals with sound and television studios, telecine and telerecording, covering among other topics apparatus, techniques and procedures; outside television broadcasting, including "Eurovision"; amplitude and v.h.f. modulated transmitters; the problems of conveying the sound and television programme frequencies and communicating between the various studio centres and transmitting centres. 382 pp .248 illustrations. 45s net 46 s 5 d by post.

ILIFFE BOOKS LTD.

42 RUSSELL SQUARE,
LONDON, W.C.1.
available from leading booksellers

A new science project combining the fascination of optics with electronics . . . the new field of

from

Demonstrations of these devices operating as
SPEECH LINK
ON/OFF LINK
are being given daily at our only address,
52 TOTTENHAM COURT ROAD, LONDON, W.1.

These new devices offer features which can be exploited in an extremely wide field of applications. Their outstanding modulation and switching capabilities, coupled with completely solid state circuit design and small physical size make them ideally suited to such purposes as short distance speech and data links, remote relay controls, safety devices, burglar alarms, batch counters, level detectors, etc.

MGA100
 (4)

 186EACH
TYPE MGA 100 General Purpose Gallium Arsenide Light Source
A filamentless, Gallium Arsenide infra-red emitter, only 5.54 mm .
dia. and 8.1 mm . long. Features a robust cylindrical package
coaxial with the beam, facilitating optical alignment and heat-
sinking.
Forward current $I_{F} \max . *$ D.C...... 400 mA . Forward peak current $I_{1:}$ max.* ($p \mathrm{k}$) 6 A
Power dissipation*.....600mW. Derating foctor for $T_{\text {amb }}{ }^{*}$ greoter thon $25^{\circ} \mathrm{C}$.... $7.5 \mathrm{~mW} \mathrm{l}^{\circ} \mathrm{C}$.
Reverse voltage $V_{R} \max$. I-OV.
*When mounted on on oluminium heat sink lin. $\times \frac{1}{4} i n . \times \frac{1}{4}$ in.
Supplied complete with suitable lenses, full Technical Data and Application
Sheets, including Line of Sight Speech Link.

TYPE MSP3 Solid State Photo Receiving Device
An ultra-sensitive infra-red and visible light detector, this device is a complete silicon photo-electric receiver with a peak spectral response at 9500 A . Size only 6.4 mm . dia. and 25.4 mm . long, yet absolutely complete, the device will generate sufficient power to drive an external relay. Chiefly intended for use in optical links based on Gallium Arsenide Light Sources, they are equally suitable for systems based on visible light. Features a robust cylindrical package coaxial with the incident light facilitating optical alignment and heat-sinking.

MAX RATINGS

Total dissipation (in free air, $T_{a m b}=25^{\circ} \mathrm{C}$) 100 mW . Derating Factor...... $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Output Current Intensity...... 100 mA . Voltage......25V. Operating Temperature.............. -30° ta $+125^{\circ} \mathrm{C}$.
Supplied complete with suitable lenses, full Tech nical Data and Application Sheets, including Line of Sight Speech Link.

3172 $2 \bar{\pi}$

Type 31 F2 Micro-miniature Infra-Red Detector
Extremely small photo diodes of silicon NPN passivated planar construction and suitable for Punched Card Readers, Counters, Film Sound Track, etc.
Supplied complete with suitable lenses, full Technical Data and Application Sheets, including Line of Sight Speech Link.

LIMITED

52 Tottenham Court Road, London, W.1.
Telephone: LANgham 0141 (01-580 0141)

85^{\prime} - ссн
Post Free

TELEQUIPMENT LTD. 313 CHASE RD, SOUTHGATE, LONDON N14 TEL: 01-882 1166
WW-088 FOR FURTHER DETAILS

Wireless World

Electronics, Television, Radio, Audio

Volume 74 Number 1391

Contents

93 What is an Engineer?
94 30-watt High-fidelity Amplifier by A. R. Bailey
98 Announcements
99 Sensitive F.E.T. Voltmeter by D. E. O'N. Waddington
101 Transversal Filter
102 Physics Exhibition
108 Europe's Show-case for Components
110 News of the Month
Prince Philip Advises Young Engineers
PAL-SECAM Rapprochment
Computer Merger
111 W. W. Colour Television Receiver Announcement
112 Personalities
113 Russian Colour Sets
114 New B.B.C. Monitoring Loudspeaker: 3 by H. D. Harwood
118 The Human Computer by 7. R. Brinkley
122 Radar Pulse Compression by B. A. Wyndham
124 Holographic Store
125 Public Address Exhibition
126 Relay-semiconductor Control Circuits by T. D. Towers
130 I.E.A. Exhibition
133 Letters to the Editor
134 Letter from America
135 World of Amateur Radio
136 New Products
140 Literature Received
140 H.F. Predictions
141 May Meetings
142 Real \& Imaginary by "Vector"

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; $£ 2$ 6s 0d. Overseas; $\mathbb{K} 215 \mathrm{~s} 0 \mathrm{~d}$. Canada and U.S.A.; $\$ 8.00$. Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 401, Lynton House, Walsall Road, 22b. Telephone: Birchfields 4838. BRISTOL: 11 Marsh Street, 1. Telephone: Bristol 21491/2. COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265-6. MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412. NEW YORK OFFICE U.S.A.: 300 East 42nd Street, New York 10017. Telephone: 867-3900.
(C) Iliffe Technical Publications Ltd., 1968 Permission is writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Iliffe Technical Publications Ltd. Managing Director: Kenneth Tett Editorial Director: George H. Mansell Dorset House, Stamford Street, London, SE1

Lock-fit transistors stay where they're put

Putting transistor leads through boards, cropping them and hoping they'll stay put until soldered is out of date. Now just push a Lock-fit transistor in and it stays there. The leads are shaped to grip.

And they won't bend or break. They're designed to pop straight into standard printed circuit grids and p.c. boards of both standard thicknesses.
The transistor itself-many of the
wide range of Mullard silicon types -is protected in an epoxy encapsulation which gives good heat conduction. The special epoxy used by Mullard maintains the low spreads of the silicon chip. The shape ensures that operators or machines put the transistor into equipment the right way round. So Lock-fit is easy to mount, gives better solderability and simplifies handling. Lock-fit will save you assembly time and costs. For the full Lock-fit range story manufacturers should tick the coupon.

You may think capacitors inexpensive. But have you worked out the cost of a dud on your line?

We're not going to start the old price v. quality argument again. We'd just like to make sure that you're getting the whole picture. It's up to you to judge what's right for your particular job. But Mullard will help you as much as possible.
So bear in mind that, as well as price and technical information, Mullard can also give you the most detailed life/performance data.

This information is fundamental to us if our AOL* is to be maintainedhow else could we improve our products? And this information is available to you. Take electrolytics for example. We found that they represent about 70% of all capacitor failures in the life of a TV set. So we produced a detailed report and recommendations on the best way to use electrolytics. You're welcome
to a copy-it covers polyester capacitors too. Just tick the coupon. By getting all the information before you select you can be really sure that you are going to make savings by choosing the particular component to meet your design parameters.
*AOL =Acceptable Quality Level.

Time well spent

There can"t be many firms who've been in business as long as we have who have used the time to such advantage. Our past experience guides our future plans; provides us development-and thereby provide modern, technically excellent products ready for the demands of tomorrow. We have co-operated in
so many consumer electronics projects that it's quite likely we are working along similar lines to yours. So why not get in touch ?
with an insight into the industry we serve ; allows us to anticipate needs and deploy our resources over the most fruitful areas of research and

What is an Engineer?

Editor-in-chief:
W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL

Assistant Editors:

B. S. CRANK
J. H. WEADEN

Drawing Office:
H. J. COOKE

Production:
D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)
J. R. EYTON-JONES

We make no apology for once again returning to the subject of the engineer; we are prompted to do so by two recent incidents. The first was when H.R.H. The Duke of Edinburgh was addressing a gathering of about 600 graduate and student members of the 14 constituent societies of the Council of Engineering Institutions. As recorded elsewhere in this issue the Duke stated, without any reservations, that he saw no reason why technicians should be forced to join a separate institution. This is particularly interesting in view of the efforts now being made by the C.E.I., of which the Duke is president, to "establish the qualifications of non-chartered engineers", and also of the possibility of setting up a technician counterpart to the C.E.I*.

The second was the announcement by the C.E.I. that the meeting to be addressed by the Duke would be attended by "young professional engineers [our italics]...... drawn from the graduate and student sections of the professional engineering institutions". Was this a slip of the pen of the writer of the announcement or was it inspired prophecy? In the present situation no graduate or student would dare to call himself a professional engineer, which would of course be comparable to a medical student calling himself, a doctor.

Great efforts have been made, especially over the past few years, to improve the "image" of the engineer and to give him a status comparable with other professional men, for instance doctors, barristers and lawyers. But are we in danger of overplaying our hand? What is expected of an engineer? It would appear from pronouncements from the hierarchy of some institutions that their chartered engineers are the theorists who know the "how" and "why" of, for instance, electronic engineering but do not get their hands dirty as practising engineers. Whether we like it or not the term engineer conjures up in the mind of the layman one who gets down to doing the job. This fact was borne out by the remark of one of the students at the meeting addressed by Prince Philip who said that he told his friends he was a scientist, because to them, an engineer was one who "went around repairing television receivers". Where have we as engineers gone wrong? Have we tried to over glamorize the profession?

Speaking at the annual dinner of the I.E.E. at the end of February Sir John Wolfenden, chairman of the University Grants Committee, was deploring the shortage of suitable boys and girls to fill the vacancies in the technological disciplines in Universities. He blamed the prejudices of parents and schoolmasters and also the distorted "image" so often portrayed in the press. He instanced how that when a spacecraft is successfully launched it is hailed as a "triumph of science" but if it fails to go into orbit it is a "failure of engineering"! This image, he said, must be changed.

What is the answer to this whole question of the engineer in society? We would venture to say that it will not be solved by a proliferation of societies for various stratas of engineers, nor by merely raising the academic standards required for membership of the "professional" institutions.
The answer is in the hands of the professional institutions who should let the public see that the "general practitioner" is as much a professional as the "Harley Street specialist".

[^1]
30-watt High Fidelity Amplifier

Output stage using complementary transistors

by Arthur R. Bailey*, M.Sc., Ph.D., M.I.E.E.

It is only recently that matched complementary output transistors, capable of high dissipation, have been available at a reasonable price. In the past this has had the effect of concentrating high power amplifier design into two main streams. The first uses a driver transformer with a pair of identical output transistors in a series connection. The use of a driver transformer is undesirable mainly on account of the cost, as the bandwidth of a well designed component may well extend from the sub-sonic region up to several megahertz. Nevertheless a circuit that does not require the use of such a component will obviously be an advantage.

The alternative circuit that has been used by many designers is the quasi-complementary output stage. In this design identical output transistors are used and a complementary pair of driver transistors is arranged so as to give phase-inversion to the bases of the two output transistors. These two circuits are shown in Figs. 1(a) and 1 (b) respectively. A correctly designed fully complementary output stage (Fig. 1(c) shows the basic arrangement) is capable of better performance than either of these common circuits and the reasons for this will be examined.

Compared with the quasi-complementary amplifier, the transformer-driven amplifier has the great advantage that the input impedances to the two sides of the output circuit are identical. This means that if a suitable quiescent current is used in the output transistors, cross-over distortion will be almost completely absent.

The quasi-complementary amplifier, however, gives greater overall distortion even if identical output transistors are used. This increase is due to the different input impedances of the two halves of the output stage in the quasi-complementary circuit. In the upper half of Fig. 1(b) the input impedance is due to two emitter-base junctions in series, whereas in the lower half the signal feeds into only one transistor. The effect of this is an extremely marked asymmetry between the input impedances of the upper and lower halves of the output stage.

- University of Bradford
Specification

Sensitivity
Rise time
Distortion

Load stability
Abnormal load protection
Noise

Hum volt for 20 watts into 8 -ohm load
approximately 0.7 microsecond load
below 0.1% over the whole of the
audio-frequency range at rated power
outputs
unconditional
provided adequate heat sinks are
used the amplifier will not be damaged
by operation into incorect loads
better than 80 dB down on full power
output
depends on layout if stray hum fields
exist. Negligible hum in output if
normally smoothed supplies are used.
predominantly third harmonic, cross-
over distortion being absent.

Fig. 1. Direct-coupled output stages: (a) with driver transformer; (b) quasi-complementary; (c) fully complementary.

Unfortunately the two input impedances cannot be equalized by the use of a series resistor as the curvature of the two stages is completely different. This dissimiliarity of curvature can be seen in Figs. 2 and 3, these being the transfer characteristics of the upper and lower halves of an output stage using matched transistors.

The dissimilarity in input impedance is most marked at low values of collector current. Hence in the case of a class B output stage there is an abrupt change in slope at the cross-over point, giving rise to the well known phenomenon of cross-over distortion. This distortion may not be particularly serious when measured on an r.m.s. basis, but as it unfortunately occurs mainly within a small part of the overall output swing, the peak value of the distortion can be surprisingly high. Also the distortion does not normally decrease appreciably as the output swing is reduced, since the effect is occurring at small signal levels. The overall effect is quite serious, therefore, and the ear seems to be very sensitive to such types of distortion.

This then is perhaps the reason why two amplifiers may sound quite different even though their "paper" performance may be identical on the basis of normal amplifier measurements. Very few valve amplifiers suffer from cross-over
distortion, and this may be the reason why the best valve amplifiers are difficult to evaluate on subjective tests. Certainly there are much greater subjective differences between the performances of current transistor amplifiers.

If cross-over distortion is present it would appear that the common 0.1 per cent harmonic distortion rule for an acceptable limit at peak output is no longer valid, and at least one manufacturer is working on the basis of far lower distortions being necessary.

There appear to be two ways of tackling this problem. The first is to use a larger value of overall feedback so as to reduce the effect to inaudible proportions. The main drawback with this method is that high values of overall feedback make the amplifier closer to instability, and it may be difficult, if not impossible, to achieve a reasonable stability margin. Stability may then be obtained by decreasing the cut-off frequency of a stabilizing step-network, but this has the effect of decreasing the available power at high frequencies as well as degrading the distortion characteristics at high frequencies.

Complementary Symmetry Output Stage

In view of these considerations the author decided that the best line of approach was to use a fully symmetrical output based on complementary transistors. With such a symmetrical system, there is no difference between the input impedances in the upper and lower halves of the circuit. From the basic circuit in Fig. 1(c) it will be seen that both halves of the circuit have the same input impedance characteristics because of their identical configurations. By a suitable choice of standing quiescent current, cross-over distortion can be reduced to levels where it is extremely difficult to detect. This absence of cross-over distortion means that perfectly satisfactory results will be obtained if the overall distortion factor of the amplifier is similar to that commonly found in valve amplifiers, i.e. about the 0.1 per cent mark. In fact lower distortions than this are possible while maintaining both unconditional load stability and good high-frequency performance.

During the development of this amplifier it was discovered that the overall performance was not as good as might have

Fig. 2. Transfer characteristic of upper half of Fig. 1(b).

Fig. 3. Transfer characteristic of lower half of Fig. 1(b).
been expected from the output stage characteristics. This distortion increase was traced to the common-emitter amplifier stage that drives the output stages. This is transistor Tr_{3} in the complete amplifier circuit shown in Fig. 4. The effect was found to be caused by "Early effect", the high collector voltage swing modulating the gain of the stage. In fact the overall distortion was approximately three times that which would have been expected. As this effect depends entirely on

Fig. 4. Circuit of complete power amplifier. The transistors used are: $\operatorname{Tr}_{1}-40361$ (R.C.A.); $\operatorname{Tr}_{2}-$ BC109 (Mullard); $\operatorname{Tr}_{3}-40362$
 child); $\operatorname{Tr}_{9}-40362$ (R.C.A.); $\operatorname{Tr}_{10}-$ Mf491 (Motorola). Note that C_{7} is a reversible electrolytic and could be made up of two $4000-\mu F$ polarized electrolytics connected "back-to-back".

Fig. 5. Distortion characteristics of amplifier with 16 -ohm load.

Fig. 6. Distortion characteristics of amplifier with 8 -ohm load.

Fig. 7. Variation of distortion with output power level.
the design of the transistor in use, it was necessary to select a suitable transistor type for this position in the amplifier. This source of distortion seems to have been largely overlooked in the past, but it is obviously a possible source of extremely bad distortion. In addition, the high-frequency distortion was found to increase more rapidly than was expected and this was traced to the modulation of the collector-base capacitance of this transistor. The high collector voltage swing was causing non-linear capacitive feedback, and this in turn was increasing the high-frequency distortion. Again the only cure is by transistor selection. The type used appears to be the best currently obtainable, and the distortion introduced by these effects is below that of the output stage proper, over the whole of the audio-frequency range.

For low distortion at high frequencies, it is essential that the transistors should have، as high a cut-off frequency as possible. Planar transistors are used in all but the output stage to give this bandwidth. The output transistors used have a cut-off frequency of several megahertz and this enables low distortions to be obtained at 20 kHz at full power output.

The design of the remainder of the amplifier circuit is fairly straightforward. The input stage is a common-emitter amplifier, but the current and voltage swings associated with it are very small, so there is little difficulty in the operation of this stage. To correct for the emitter-base voltage change of this input stage with temperature, a transistor is used to regulate the base supply current. This transistor Tr_{2}, operates as a rather crude temperature-sensitive Zener diode and also as a hum filter. The net effect is to stabilize the d.c. base current of the
input transistor, the supply voltage to the base of this transistor decreasing with increased temperature. This stabilization of the d.c. operating conditions enables the amplifier to deliver full output over a wide temperature range.

The bias for the driver and output transistors is produced by means of a transistor, $T r_{4}$, rather than a string of diodes as is commonly used. This is mounted in the heat sink of one of the output transistors, being as close to the output transistor as possible. This method of compensation works extremely well, and the transistor type is not critical provided a silicon one is used. The standing current in the output stage can easily be adjusted to its correct value (which is not critical) by slightly adjusting the ratio of the two resistors in the base circuit of the transistor.
For full power output from the amplifier the d.c. potential existing at the output of the amplifier proper should be as low as possible. This can be adjusted by the potentiometer in the base of $T r_{1}$. If this is not done the amplifier will not be able to swing equally in the two output polarities.

The quoted figures for the amplifier were obtained using regulated supplies. Unless the amplifier is to be called on to deliver large sustained outputs, this is not really necessary. On the other hand, reduced mains voltage will severely restrict the power output of an amplifier with unregulated supplies. Commercially, a thyristor regulated supply is being utilized, and this has the two advantages of small heat dissipation and saving in components.

Constructional Points

The overall bandwidth of the amplifier is extremely wide and the stabilizing step-network necessary only becomes operative in the ultrasonic region. Equally the inductor in series with the output lead, which improves the stability with capacitive loads, need have only a very small inductance. This wide bandwidth gives exceptional high-frequency performance as can be seen from the distortion figures in Figs. 5, 6 and 7. Unfortunately, however, wideband amplifiers are very susceptible to layout,

Fig. 8. Layout of suitable printed-circuit board, actual size. (Courtesy Radford Audio Ltd.)

Fig. 9. Reverse side of Fig. 8 showing component layout. If the power supply leads exceed 6 inches in length it is advisable to connect $8 \mu \mathrm{~F}, 50 \mathrm{~V}$ capacitors between +30 V and 0 V , and between -30 V and 0 V .
particularly common coupling leads. Provided lead lengths are kept very short there should be no difficulty, but the author experienced tremendous variations in high-frequency stability when "rats-nest" construction was used. For this reason the safest course is to use a printed-circuit, so that the strays can be kept to a minimum. The design of a suitable board along with its component layout is shown in Figs. 8 and 9. The performance details given were measured using this particular layout. The leads to the output transistors should be as short as possible, preferably no longer than 3 to 4 inches. The size of the heat sinks for the output transistors is a matter of personal choice, the author having used sinks of finned aluminium about 4 in . by 4 in . square. This size is not really necessary for high-fidelity use, and sinks of half this size would be adequate provided that extended periods of testing were not undertaken.

The overall performance of the amplifier is very good, considerably better in fact (on paper) than the best valve amplifiers. Unfortunately, listening tests have shown that the performance of the amplifier is only slightly, if any, better than the best valve amplifiers. Extensive listening tests indicate only a very slight improvement in audible results, the subjective effects being almost identical. It would therefore appear that any further improvement will be of no real benefit for highfidelity applications, the main need for work here definitely being in the field of loudspeakers, discs, etc.

Owing to the absence of cross-over distortion, the distortion at low levels is very difficult to measure and the curves appear in Fig. 7. The wide bandwidth can be seen from the curves in Figs. 5 and 6 , where it will be observed that the amplifier will deliver full power output from 20 Hz to 20 kHz with less than 0.1 per cent of distortion. Indeed it is possible to obtain about 15 watts of power at 200 kHz . The square-wave tests are far better than with any known valve amplifier. Even with pure capacitive loads there is no tendency whatever towards instability. The waveforms are shown in Figs. 10, 11, 12, and 13.

The protection circuits of the amplifier operate very satisfactorily, short-circuits and 50 microfarad capacitors giving no
distress to the amplifier whatever. One word of caution is necessary however; extended tests on low impedance reactive loads and short-circuits can cause high junction temperatures in the output transistors because of the finite heat-sink size. Unless one uses very large heat sinks, it is therefore undesirable to run the amplifier at full drive for extended periods when applying such abnormal load conditions. If 16 -ohm load opera-

Fig. 10. Square-wave response, 1 kHz and 8 -ohm load.

Fig. 11. Square-wave response, 50 kHz and 8 -ohm load.

Fig. 12. Square-wave response, 10 kHz and $0.1-\mu \mathrm{F}$ load.

Fig. 13. Overdrive with sine-wave input, showing clean limiting (1 kHz and 8 -ohm load).
tion only is to be used, then the emitter resistors in the output stage can be increased up to 0.4 ohm , with a corresponding halving of the transistor dissipation under abnormal load conditions.

The specification is shown on page 94 . The overall sensitivity may be either doubled or halved by doubling or halving the value of the 1000 -ohm feedback resistor. This has the effect of increasing the sensitivity at the expense of distortion if the increased amplification is felt to be necessary. With the increased feedback the overall distortion is halved, and even with this value of overall feedback the amplifier is still unconditionally load stable.

When the amplifier is operated in the reduced feedback condition for 500 -millivolt sensitivity, the author cannot hear any difference in performance as compared with the halved distortion characteristic obtained with the 2 -volt sensitivity. It appears therefore that no further improvement in amplifier performance will be detectable until other limiting factors are greatly improved. In fact the author has a sneaking suspicion that this may be the end of the road so far as amplifier design for sound reproduction is concerned, further improvements being limited to power and cost.

In conclusion the author would like to acknowledge the interest and comments of the many readers who wrote to him after the publication of the previous article on transistor amplifier design. There were often delays in replying, but short of employing a full-time secretary such delays are sometimes inevitable. One obvious question is whether the earlier germanium circuit sounds as good as the one just described. Personally the author cannot hear any appreciable difference, but on such a controversial point it is unwise to be dogmatic!

Reference

1. "The Transistor" by E. Wolfendale. Heywood \& Co., London (1963), p. 24.

Announcements

A special course entitled "Tape Transport and Systems"' has been organized by the Department of Electronics and Communications Engineering, Northern Polytechnic, Holloway Road, London, N.7. The course comprises twelve lectures to be held each Thursday from 6.30 to 9 p.m. commencing 25 th April.

The I.E.E. and I.E.R.E., in collaboration with the University of Southampton, are arranging a conference on computer aided design. It will be held under the aegis of the United Kingdom Automation Council at Southampton University from 15 th to 18th April 1969.

Home Radio (Components) Ltd, of 187 London Road, Mitcham, Surrey, have been appointed as retail stockists for Lektrokit electronic rack and chassis construction systems manufactured by A.P.T. Electronic Industries Lid.

Cole Electronics Ltd., Lansdowne Road, Croydon, Surrey, have been appointed U.K. distributors for Bosch television test equipment. The range of equipment includes level oscilloscopes, video test signal generators, group delay test sets, colour bar
generators etc. generators etc.

The Ever Ready Company (Great Britain) Lid has acquired from the receiver of
Royston Industries the factory and assets relating to the telecommunications section of
Burndept Electronics Ltd, at Erith, Kent. The company will continue under the
name Burndept Electronics (E.R.) Ltd.
Aveley Electric Ltd, of South Ockenden, Essex, have been appointed U.K. representatives for Systron Donner products, previously handled by Dynamco Lid.

A marketing agreement has been signed between the Decca Navigator Company and Atlas Electronik, of Bremen, whereby Decca will handle the non-European sales of the Atlas AN 6014 survey echo sounder. This instrument is unusual in that two frequencies are employed, 30 kHz and 210 kHz , giving very high penetration and an accurate narrow beam.

Radiall S.A., of Paris, have formed a new company to market their products in the U.K. The company, Radiall Microwave Components Ltd, will operate from Station Approach, Grove Park Road, Chiswick, London, W. 4.

Add-a-Vision, the electronic viewfinder for film cameras developed originally by the Livingston Group which recently went into liquidation, is now being produced and marketed by Prowest Electronics Lid, of Maidenhead.
T. J. Sas \& Son Ltd, of Victoria House, Vernon Place, London, W.C.1, have been appointed U.K. distributors for the COBEM range of motors manufactured in Belgium.

Greenray Industries Inc., the American manufacturers of oscillators, have appointed G. A. Stanley Palmer, Island Farm Avenue, West Molesey Trading Estate, Surrey, as U.K. agents for their products.

The Copenhagen firm Radiometer \mathbf{A} / \mathbf{S} have appointed Omega Laboratories Ltd., 57 Union Street, London, S.E.1, as sales and service agents in Britain for their range of test equipment. This follows the recent collapse of the Livingston Group who used to fulfil this function.

Semicomps Ltd., have added semiconductors produced by Motorola to the range of products marketed by them.

The American company, Electro Scientific Industries have appointed D. A. Pitman Ltd, of Mill Works, Jessamy Road, Weybridge, Surrey, as U.K. representatives for their complete range of precision laboratory standard measuring instrumentation.

The Marconi Company have signed an agreement with the Sylvania Division of G.T. \& E. International for marketing their microelectronic microwave devices in the U.K.
S.C.E.E. Ltd, of Reddicap Trading Estate, Sutton Coldfield, Warwickshire, have changed the name of the company to Cressall Printed Circuits Lid.

The West German company SABA Gmbh and General Telephone \& Electronics International, of the U.S.A., have agreed on a programme of technical and economic co-operation aimed at providing research and export facilities for SABA and further European engineering facilities for GT \& E.

Sensitive F.E.T. Voltmeter

$50 \mathrm{M} \Omega$ input resistance volt/ohmmeter utilizing f.e.ts in a balanced circuit employing negative feedback

by D. E. O'N. Waddington*, A.M.I.E.R.E.

The transistor millivoltmeter is now a firmly established instrument for measuring alternating voltage from a few hertz up to several megahertz. To date very few circuits exist for high input resistance millivoltmeters which measure direct voltage. This is almost certainly because of design problems. Simple direct coupled transistor amplifiers are temperature sensitive and consequently suffer from zero drift. Balanced circuits ${ }^{1}$ offer a considerable improvement in performance but, because of leakage current effects, the input resistance is limited to a few tens of thousands of ohms. It is possible to side-step the problem ${ }^{2}$ by chopping the input voltage with some form of switch thus converting it to alternating voltage for subsequent amplification and detection. This type of circuit has its own problems, not the least of which is noise and, unless synchronous detection ${ }^{3}$ is used, there is no way of knowing the polarity of the input. For some time it has been apparent that the f.e.t. should provide the answer as its characteristics are very similar to those of a thermionic valve, i.e. high input impedance, $\beta \rightarrow \infty$, etc. But, until fairly recently, prices have been prohibitive. Now reasonably priced junction f.e.ts are readily available.

Specification

The basic amplifier used is a modification of the well known long tailed pair, but instead of a single stage for each half of the pair, a two stage amplifier of the type shown in Fig. 1 is employed. The voltage gain of this circuit is approximately equal to $\left(R_{1}+R_{2}\right) / R_{2}$ and provided that this is set fairly low (e.g. <5), changes in f.e.t. and transistor parameters have very little effect. Two of these amplifiers are combined to make the long tailed pair used (see Fig. 2). The voltage gain of each half of the amplifier is now approximately $\left(R_{1}+R_{2}+R_{4}\right) /\left(R_{2}+R_{4}\right)$ and $\left(R_{3}+R_{2}+R_{4}\right) /\left(R_{2}+R_{4}\right)$ so that if $R_{1}=R_{3}$ and $R_{2}=R_{4}$ the effective gain of the amplifier will be $\left(R_{1}+R_{2}\right) / R_{2}$. In order to set the gain precisely, a variable resistor R_{5} in series with a fixed resistor R_{6} is shunted across R_{2} and R_{4}. This method of gain control has the advantage that adjustment does not affect the meter "zero". In order to ensure that the resistance of the "tail" has negligible effect on the gain setting components and at the same time to keep the supply voltage within reasonable limits, a transistor $T r_{5}$, connected as a constant current source, is used. The absolute value of the current provided in this way is not critical so long as it is not affected at all by the input signal. As the performance of the circuit would deteriorate if this current were to change drastically (e.g. very low battery voltage), a Zener diode is used to stabilize the base voltage thus keeping the current sensibly constant.

[^2]The voltmeter zero is set by adjusting R_{7} so as to balance the currents through each half of the circuit. To achieve this balance it is essential that a matched pair of f.e.ts is used. Matching of the transistors, on the other hand, is not really necessary.

Voltmeter Ranges

Although it is not so important to have logarithmically compatible meter scales for direct voltage measurement where dBs are seldom if ever used, it was decided that scales in the sequence $1, \sqrt{10}, 10,10 \sqrt{10}$, etc., should be used. This choice helps to simplify the range switching as will be seen.

The amplifier just described serves two functions-voltage amplifier and resistance transformer. The voltage gain is set to be $\sqrt{10}$, the input resistance is very high, $10^{9} \Omega$ and the output resistance is only a few ohms. As there is only 1 mA flowing through each of the output transistors, it is only possible to

Fig. 1 The basic two-stage amplifier used to make up the long tailed pair.

Fig. 3 The technique employed to measure resistance. $V / V_{5}=\mathrm{R}_{x}\left(R+R_{x}\right)$ where R_{x} is the unknown resistance.
divert up to about $500 \mu \mathrm{~A}$ through the meter but the available voltage swing is up to $\pm 5 \mathrm{~V}$. In this design a $100 \mu \mathrm{~A}$ meter movement is used. For the lowest range the meter resistance was made up to $1 \mathrm{k} \Omega$ thus giving a full scale sensitivity of 100 mV for the meter on its own and 31.6 mV with the amplifier. Ranges up to 1 V are obtained by switching resistors in series with the meter as shown in Fig. 3. In order to obtain yet higher voltage ranges, the input is switched so as to give an attenuation of $\sqrt{1,000: 1 \text {, the } 100,300 \text { and } 1,000 \mathrm{mV} \text { ranges are then used }}$ to give f.s.ds of effectively $3 \mathrm{~V}, 10 \mathrm{~V}$ and 30 V . The 100 V , 300 V and $1,000 \mathrm{~V}$ ranges are obtained in a similar manner by switching the input to give an attenuation of $1,000: 1$. It will be noticed that the most sensitive meter/amplifier combination is only used for the 31.6 mV range. In this way, zero drift effects on all other ranges are reduced by a factor of at least $\sqrt{ } 10$ and thus become insignificant.

For a long time the author has felt that it would be very useful to possess an ohmmeter which applied so little potential to the circuit under test that it did not "switch on" semiconductor junctions. This would make it possible to measure true resistance values with transistors or diodes connected in circuit.

TABLE ONE
Meter scale calibration in terms of the percentage of full scale deflection. Ohms ranges

Ω	\%	Ω	\%	Ω	\%	Ω	\%
20	. 95.5	2.5	. 71.4	0.9	.. . 47.4	0.35	
	. 91		. 66.6	0.8	.. . 44.4	0.3 .	23
	. 89	1.8	.64.0	0.7 41.2	0.25 .	. 20
	. 85.8	1.6	. 61.5	0.6	.. . 37.5		. 16.7
	.. 83.2	1.4	. 58.2	0.5	.. . 33.4	0.15 .	. 13.2
	. 80	1.2	. 54.4	0.45	. . . 31	0.1 .	. 9.1
	. 75	1	. 50.0	0.4	... 28.5	0.05 .	. 4.8

0-1 V range						
V \%	V	\%	V	\%	V	\%
0.05 ... 5	0.3	. 30	0.6	. 60		90
0.1 ... 10	0.4		0.7		1	100
0.2 . . . 20	0.5	. 50	0.8	. 80	-	

$0-3 V$ range

V \%	V	\%	V	\%	V	\%
0.2... 6.3		. 31.6	1.8	. 56.9	2.6	. 82.3
$0.4 \ldots 12.6$	1.2	. 38		. 63.3	2.8	. 88.6
0.6... 18.9	1.4	.. 44.3	2.2	. 69.7	3	. 94.9
0.8... 25.3	1.6	. 50.6	2.4	. 76		

This millivoltmeter provided the opportunity as 31.6 mV is sufficiently low not to switch on most junctions. To measure resistance, therefore, the necessary excitation voltage is picked off from the potential divider which supplies the base of the constant current source. The actual metering circuit is of the form shown in Fig. 3. This method relies on the meter resistance being very high in comparison with the resistance being measured. The meter calibration is shown in Table 1.

Practical Considerations

The construction of this meter is not critical. It should be remembered that the circuit includes, and depends on high value resistances for its performance (some of the order of 10^{9} ohms e.g. input resistance of the f.e.t.). The leakage resistance across paxolin circuit board and switches may be much less than this. The critical components are best mounted on ceramic stand-off insulators and it is advisable to use a ceramic switch wafer for the input range switch. Ideally the two f.e.ts should be in the same encapulation but, as neither dissipates much power, keeping them in the same draught-proof box appears to be adequate. External a.c. fields could prove troublesome so it is advisable to enclose the circuit in a metal box and to screen the input lead. One unforeseen effect encountered by the author during setting up was a mysterious input voltage which appeared to depend upon the position of the instrument. This was traced to photo-electricity developed by the input diode.

While it is relatively easy to obtain the low value resistors to the required degree of accuracy, the $50 \mathrm{M} \Omega$ may constitute a problem. The author found that the easiest way out was to obtain a $50 \mathrm{M} \Omega$ cracked carbon resistor, measure it and to adjust the values of R_{9} and R_{10} to suit. Metal oxide resistors should be avoided in building this circuit as most types generate thermo-electric voltages which could cause problems.

Input Protection

Fig. 4 shows the protection circuit used. With a high positive input, the gate source diode of $T r_{1}$ is turned on hard and the current flow into it is limited to a safe level by the $1 M \Omega$ series resistor R_{15}. For large negative voltages protection is provided by D_{1} in a similar manner.

The performance of the diode used here is very important as, if the effective reverse resistance is not high enough, a voltage will be developed across the input divider chain by current flowing through this diode from the negative rail. If none of the recommended diodes can be obtained, the best thing to do is to try out several until a suitable one is found.

The method of testing the diode is to connect the diode into the meter circuit in its normal position. Switch on, and with the input short circuited, set the zero on the most sensitive range. Remove the short circuit and connect a $2.2 \mathrm{M} \Omega$ resistor across the input. If the leakage of the diode is low enough, the meter zero will not shift by more than 0.5%. Care should be taken to ensure that a.c. pick up or thermal or photo-electric effects do not affect the measurement.

All resistors should be 5% cracked carbon $\frac{1}{2}$ W. For greater accuracy the tolerances of the resistors marked with an asterisk in Fig. 4 should be tightened, in particular R_{17}, R_{18} and R_{19} should be selected to be $2.162 \mathrm{k} \Omega, 6.838 \mathrm{k} \Omega$ and $21.62 \mathrm{k} \Omega$.

The accuracy of a meter of this type depends mainly upon the accuracies of the resistors used and the accuracy to which the gain may be set. In practice it would appear that 5% is relatively easy and, if 1% resistors are used, 2% accuracy may be obtained with a fair degree of confidence. The zero drift is very small-of the order of 2% of f.s.d. on the most sensitive range over a period of three hours with an ambient temperature change of about $5^{\circ} \mathrm{F}$.

References

1. "Transistor Multirange D.C. Millivoltmeter", Mullard Technical Communications, Vol. 5, No. 48, June 1961.
2. "D.C. Nano-ammeter and Microvoltmeter" by D. Bollen, Wireless World, Vol. 75, No. 5, May 1967, p. 206.
3. "A Transistor D.C. Chopper Amplifier" by P. L. Burton, Electronic Engineering, Vol. 29, August 1957, p. 393.

Transversal Filter

Tapped delay-line principle

A transversal filter with individual delay sections made up of hybrid thin film and integrated circuit networks, was demonstrated to us by A.E.I. The transversal filter is a tapped delay line, the outputs taken from the taps being added, with weighting, in a summing amplifier. It is mainly used for the equalization of the combined amplitude and phase distortion suffered by signals in transit, and has particular application in television and high speed data links. Earlier filters for this purpose employed bulky LC networks that only approximated the required delays and often caused dissipation problems.

Individual delay sections of the line are made up from gated capacitance store delay networks of the type shown in the simplified circuit. In principle, the input signal charges a capacitor selected by an electronic commutator or switch and after a delay the charge on the capacitor is read out into a high impedance amplifier. In the circuit shown a three stage ring counter controls six m.o.s.ts., forming the commutator, which in turn control the charge and discharge of the capacitors. The delay is variable by altering the sampling time (clock rate) and is equal to two clock periods. The delay obtained with the circuit shown could be varied between 2 and 70μ sor signal frequencies from 1.5 Hz to 6 kHz .

The transversal filter demonstrated will accept a variety of analogue and digital input signals and was seen equalizing severe distortion on a pulse train resulting from its having been passed through an all-pass phase shift network substituted for the transmission medium. It is thought that the filter could easily be automatically controlled and would then compensate for varying transmission conditions without the need for manual adjustment.

Simplified circuit of the gated capacitance store. A delay of two sampling periods is obtained.

Physics Exhibition

Some of the more interesting of the developments seen at Alexandra Palace, London, where there were 150 exhibitors

Semiconductor doping by ion implantation

Three organizations, Associated Semiconductor Manufacturers, United Kingdom Atomic Energy Authority and the Services Electronics Research Laboratories, had exhibits concerned with doping semiconductors by the use of ion beams. Although the technique is still very much in its infancy initial results are very promising. In the process ions obtained from the desired impurity material are accelerated to a high velocity.

After being mass analysed in a powerful magnetic field to remove unwanted ions they are allowed to bombard the semiconductor slice through a slot in an opaque mask. The ion beam will not be of uniform density, so to ensure an even distribution in the semiconductor slice the beam is magnetically scanned in both the x and y directions.

The technique has a number of advantages over doping using the conventional diffusion methods; for instance, the depth that the impurity ions penetrate can be accurately predicted and controlled by altering the energy of, and the orientation of the crystal lattice relative to, the ion beam. The impurity material to be planted does not have to be chemically soluble, as is the case with diffusion, a feature that widens the choice of possible dopants considerably and, who knows, could lead to the development of entirely new devices. The maximum temperature that the crystal is subjected to is in the region of $650^{\circ} \mathrm{C}$, well below that at which diffusion takes place, resulting in few unwanted impurities being introduced and in bulk carrier lifetime, under the implanted region, being less degraded than for higher temperature processes. The heating is carried out after ion implantation has taken place to allow those parts of the crystal that have suffered radiation damage to recrystallize epitaxially and to render the impurity ions electrically active. The directional property of the ions penetrating the crystal is such that the lateral spread of impurities through the slit in the mask is very much less than with diffusion, which after all, is essentially a threedimensional process. In bi-polar transistors "push-over" effect, the tendency for the base region to push into the collector region during diffusion, is entirely eliminated, a fact that allows very narrow width bases with a high impurity content to be fabricated, reducing base resistance.

Work carried out at the U.K.A.E.A. in collaboration with A.S.M. has produced what is called an autoregistered m.o.s.t. The transistor is a p-channel device with parallel thermally diffused source and drain regions 37 microns apart. The gate electrode is placed between the source and the drain regions on the stable gate oxide, before ion implantation. The source and drain regions are now extended up to the gate by implanting boron ions through the oxide on either side of the gate into the silicon below. The metal of the gate electrode
acts as a mask against the ion beam (autoregistration). The device is annealed at $500^{\circ} \mathrm{C}$ to repair damage and make the implanted boron electrically active. The precise alignment of the gate electrode (better than 0.2 microns) results in a fifteen times reduction in gate/drain feedback capacitance.
Many other devices have been made which include high voltage diodes with breakdown voltages approaching the theoretical maximum, variable capacitance diodes with closely controlled $C V$ characteristics and an h.f. bi-polar transistor.

Dielectric motors

The School of Engineering Science, University College of North Wales, demonstrated a novel type of electric motor, on which they have been doing research. Described as a dielectric motor, it comprises an insulated high permittivity cylindrical rotor and fixed electrodes, all immersed in a bath of semi-insulating fluid, a hexane/ethyl alcohol mixture.

When a suitable voltage is applied to the electrodes, charge carriers migrate through the fluid and establish a distributed charge layer on the rotor surface as shown by the shaded area

The dielectric motor, fully immersed in a tank of hexanelethyl alcohol mixture and above, in a separate compartment, a small electric generator which it drives via a belt and pulleys.

Symmetrical pattern of the electrical charge layer distributed round the high permittivity rotor, illustrated by the cross hatch area in this end-on diagram of the dielectric motor.
in the diagram. The electrical stress and charge distribution patterns are symmetrical around the rotor, and the motor exists in a state of unstable equilibrium. If the rotor is given a small angular displacement (i.e. started mechanically) the resultant disturbance of the associated distributed charge is followed by conduction in the fluid in an attempt to re-establish the charge distribution equilibrium. The axes of charge maxima on the rotor and the nominal electric stress can thus be displaced from one another so that a net torque acts on the rotor. Rotation continues until steady-state conditions are established, depending on the time constant of this process. The time constant is significant because of the high resistivity of the fluid. An optimum conductivity exists for maximum torque.

Rotational speeds in excess of 2,500 r.p.m. were observed for an unloaded motor when a voltage of 10 kV was applied. Power input was then one or two watts. The rotor speed varies approximately linearly with the applied voltage. The motor was coupled via a belt drive to a miniature generator, and with approximately 20 kV applied between the electrodes of the motor, the output from the generator approached $\frac{1}{2} \mathrm{~W}$, sufficient to light a torch bulb. Power input was then about 5 W .

The dielectric motor is not inherently self-starting and has no preferred direction of rotation, but at high electrical stress, random fluctuations in conduction near the rotor can result in its starting without external assistance. Maximum torque is achieved by the choice of a suitable fluid. The alcoholdoping level is critical, and if this level is either increased or decreased, the rotor speed for a given applied voltage is reduced.

Optical store

A large capacity random access store being developed by I.C.T. relies on a simple kaleidoscopic effect for its operation, information being permanently stored as a pattern on a photographic plate. For read-out a spot of light 0.178 mm in diameter is formed on the face of a short-persistence c.r.t. The position
of this spot on the tube face is determined by a servo system which locates it in any one position in a 256×256 matrix, covering an area 58.4 mm square. The size of the light spot is reduced by a factor of four in a minifying lens and focused into one end of an internally mirrored tunnel of square crosssection. The tunnel dimensions are so arranged that the multiple reflections that take place within it form 69 geometrically related apparent light sources when viewed from the far end. These are focused by a projection lens on to the photographic plate. Movement of the spot on the c.r.t. face within the 58.4 mm square matrix causes each of the 69 spots to take up the corresponding position within 69 squares on the photographic plate. Each of these squares is coupled to a photo multiplier via a light collecting material.

Each of the 69 squares on the photographic plate contains a 256×256 matrix (measuring 25.4 mm square), and each matrix consists of a pattern of opaque and transparent areas forming the stored information. With the spot in a given position each photo multiplier reads one bit from each matrix, the combined parallel output being in the form of a 69 -bit word. The store capacity is therefore $63,536(256 \times 256) 69$-bit words or almost 4.5 million bits. The time between successive accesses is less than $3 \mu s$.

An interesting feature of the servo system that positions the c.r.t. spot is that movement of the c.r.t. electrodes due to vibration or ageing or, in fact, movement of the whole c.r.t. is automatically compensated for and does not affect the correct operation of the store. Part of the light output of the c.r.t. is diverted and formed into two bands (one horizontal and the other vertical) of one spot diameter wide. These bands are projected on to two Gray coded plates, one specifying the x and the other y matrix address. The address demanded by the interrogating computer is compared with the spot address as defined by photocells reading the coded plates and the difference is used to drive the spot to the correct position within the matrix. The coded plates are rigidly fixed in relation to the photographic plate (which is interchangeable between stores) rendering the system immune to effects caused by changes in the c.r.t. geometry. It is thought that the new store will be at least 50% cheaper than a ferrite core store of comparable capacity.

Magnetic visual display

Television bandwidth compression and visual presentation of computer data are among possible applications of a magnetically controlled display device being developed at the University of Sussex under the sponsorship of N.R.D.C., on whose stand it was exhibited. The principle is based on the ability of yttrium iron garnet (y.i.g.) crystals when they are magnetized to produce the Faraday effect (rotation of the plane of polarization of

Principle of the magnetic display. The light pattern (right) depends on the magnetic states of the cores.

electromagnetic radiation in a magnetized material). The y.i.g. elements used in the display are cut from the bulk material in such a way that they have square hysteresis loops and can be switched between two stable magnetic states, in a manner similar to the switching of ferrite cores in stores. An array of these elements is wired so that individual elements can be selected (magnetized) by coincident-current pulse techniques. The crystal material is transparent to radiation in the near infra-red region, so that by placing an infra-red source behind the array and by interposing correctly oriented polarizers as shown in the diagram it is possible to obtain an infra-red pattern corresponding to the magnetic states of the individual y.i.g. elements. This pattern is then converted into a visible light pattern, and the visual information so produced is retained (without electrical regeneration) until the states of the elements are changed. The time required for an element to be switched between states is $3 \mu s$. The digital addressing of the display, of course, makes it very suitable as a data output device, and it is the storage facility which suggests the idea of television bandwidth compression since this would allow one television field to be compared with the next and only the difference between them transmitted.

The work being done is a feasibility study to demonstrate the basic principle of the display.

Light modulator

Faraday effect in an yttrium iron garnet crystal is exploited in an anfra-red modulator developed by Mullard which was demonstrated in an optical communications link with an effective range of 2 km . Faraday effect is the rotation of the plane of polarized light in a material by applying a magnetic field.

The y.i.g. modulator operates in the 1.1 to 4.5 micron region at modulation frequencies of up to 100 kHz and consists of a single crystal 5 mm in diameter and 2 mm thick wound with a suitable coil (see diagram). Infra-red radiation generated by an incandescent bulb is passed through the crystal via a polarizing filter. The beam is subjected to polarization-modulation by passing modulating current through the coil. This is converted to intensity modulation by passing the beam through a further polarizing filter. The beam is then focused on to the receiving photo-cell and amplified in the normal way. The maximum modulation depth obtainable is determined by the saturation Faraday rotation and the thickness of the crystal. For the crystal specified the modulation depth for a rotation of $\pm \theta$ is $\sin 2 \theta$ and is therefore linear (within 5%) with drive current for modulation depths of up to 50%. The coil used consisted of 1000 turns of 46 s.w.g. enamelled copper wire and required a drive current of 12 mA r.m.s. for 50% modulation.

Showing the construction of the y.i.g. modulator.

Magnetoresistive potentiometer

A potentiometer without wiping contacts, offering long life, low noise and high electrical resolution, was shown in experimental form by G. V. Planer Ltd. It is based on the magnetoresistive effect (increase of resistivity of semiconductor materials when they are placed in a magnetic field) and arises from new techniques in producing thin film elements of high sensitivity to magnetic fields. The potentiometer comprises two such elements of indium antimonide joined in series, and a leadscrew mechanism for moving a permanent magnet with respect to them so that one element is entering the field while the other is emerging. (In another version the elements are moved with respect to a fixed permanent magnet.) The shape and thickness of the elements and/or the geometry of the magnetic field (flux density 2 tesla)

Exploded view showing potentiometer construction.
are adjusted to give the required potentiometer law. A linear type was actually shown. The resistance values of the elements available at present range from 100Ω to $2-3 \mathrm{k} \Omega$ but higher values are said to be possible. The power rating is $\frac{1}{2}$ watt.

Parametric 'electrometer' amplifier

The well-known low noise characteristic of parametric amplification is utilized in an equipment developed by Devices Ltd. for use in measuring small voltages or currents, as required in physiological or electrochemical work. It is a transistor d.c. amplifier with a performance comparable to that obtained with electrometer valve amplifiers, but avoids the $1 / f$ noise associated with valve circuits by using a low-frequency parametric input stage. The parametric elements are silicon diodes and the pump frequency is 4 MHz . This input circuit is coupled to the succeeding stages by a transformer, thereby allowing the input to be isolated from earth-a useful facility for some measurements. Input resistance of the amplifier is greater than 10^{11} ohms and input current is 10 pA . The bandwidth of the amplifier is approximately 20 kHz .

Waveform recovery from noise

Various techniques exist for recovering repetitive signals from noise of amplitude greater than the signal level, and they are usually based on the principle of integration over an interval of time: the signal values are integrated while the noise values average to zero. If the signal is sinusoidal a phase-sensitive detector can be used. An apparatus for use on non-sinusoidal

COMMUUIICATIONS

COSSOB
Cossor Electronics Limited, Cossor Communications (Industrial Products Group)
The Pinnacles, Elizabeth Way, Harlow, Essex, England.
Telephone: Harlow 26862 Telex: 81228 Cables: Cossor Harlow.

A new concept in Solid State Timing modules presenting many new features to Low Cost Automation and Process Control Engineering.

* Exceptionally low cost. * Fully solid state. * Snap action S.C.R. output switch. * Full sinusoidal a.c. output. * Will directly switch inductive or resistive loads up to 0.8 amps 240 V a.c. ${ }^{*} 240 \mathrm{~V}$ a.c. input as standard. Lower values available. * Small dimensions. Unit measures only $1 \frac{7{ }^{\prime \prime}}{8}$ square by $3^{\prime \prime}$ deep. * Adjustable time ranges up to 60 seconds as standard.

For further details write to :-
ELECTRICAL REMOTE CONTROL CO. LTD.,
P.O. Box 10, Bush Fair, Harlow, Essex. Tel: Harlow 24285. Telex: 81284 Telegrams: ABAcontrol, Harlow.
repetitive signals, known in American jargon as a boxcar integrator, was demonstrated by Brookdeal Electronics Ltd. In this a high speed gate regularly samples the signal at a given point in the repetition cycle, and this sampling point is made to gradually scan the signal waveform so that successive values of the cycle are sampled. The open period of the gate can be adjusted from 50 ns to 5 ms . The gate is connected in a negativefeedback loop which acts to hold the voltage sampled to zero and as a result the negative feedback voltage is accurately proportional to the sampled value of the signal, with a linearity of better than 0.1%. The feedback voltage is then integrated over a number of signal cycles, averaging the noise towards zero, and the output of the integrator is fed to the y channel of a pen recorder. The x-direction movement of the pen recorder is synchronized with the scanning of the signal waveform, so that a facsimile of one cycle of the signal waveform is gradually drawn as the scan proceeds. Of course, the improvement obtained in signal-to-noise ratio depends on the number of cycles of the signal waveform over which integration is performed at a given sampling point.

New signal processing method

To demonstrate their work on signal processing using time reversal techniques to effect phase correction, the City University showed apparatus which reduced the method to its simplest form, and which consisted essentially of two identical tape decks modified to reproduce in the reverse direction as well as in the forward direction.

During recording on a conventional tape recorder, equalization is applied to provide a level amplitude characteristic over the working frequency range. Normally no attempt is made to equalize the phase distortion, introduced by filtering and by the

Fig. 1. The conventional recording cycle is illustrated in (a), while in (b) the recording cycle of the time-reversal method is shown. In the diagram (b), TB=time reversal.

(a)

(b)
recording process itself. These recorders therefore are not suitable for recording signals where preservation of the waveform is of importance. By using the "time reversal" method this disadvantage can be overcome. When recorded through a conventional tape recording process as illustrated in Fig. 1(a), the original waveform from a waveform synthesizer, shown in Fig. 2(a), receives the severe phase distortion shown in Fig. 2(b). If the recording is now played back and re-recorded in reverse, phase errors present in the first recording introduced by the recording process, will again be present, but this time the reverse-recorded waveform will be distorted by exactly the same degree of error in the opposite sense, thus cancelling out the original phase error. For example: Assuming a phase distortion angle of 60° lead is produced in the forward recording, this becomes a $60^{\circ} \mathrm{lag}$ in the reverse recording. It now only remains to reverse the tape again and play back to obtain a waveform close to the original but with some amplitude distortion, as

Fig. 2. The original waveform (a) is reproduced as (b) after conventional taperecording, and as
(c) when taperecorded with time reversal.
(a)

(c)

shown in Fig. 2(c). The complete time-reversal recording cycle is illustrated in Fig. 1(b).

Time reversal techniques can be applied to any linear system that can be divided into two identical halves, and where, with the aid of suitable storage or recording devices, signals can be reversed in direction before passing through the second half. Readers will recognize the similarity between this technique and the PAL colour television system, where chrominance channel phase errors are cancelled out by reversal of the $R-Y$ signal phase and storage on successive lines.

Vitreous state devices

Peŕhaps a new name in electronics, vitreous state devices are solid state devices which make use of the imperfections in vitreous materials for the transport of electrons. Standard Telecommunications Laboratories demonstrated a twoterminal component in which they exploit the novel type of electrical properties peculiar to these materials, comprising two metal electrodes separated by a thin layer of special glass. The device can be in either of two resistive states: an "off" state with a resistance in excess of $10^{8} \Omega$, and an "on" state with a resistance of less than 10Ω.

It is essentially a fast switch. Switching from the "off" to the "on" state takes place when the terminal voltage exceeds

Vitreous switch (a) and simplified switching characteristics (b). Both states of the switch are stable at zero volts.

a critical value, typically 20 V , and switching from the "on" to the "off" state is effected by a step-edged pulse from a low impedance source. Switching speed was given as being better than 10^{-8} second in both directions. In its application as a memory element, the device will retain imformation indefinitely under open-circuit, short-circuit or load conditions.

Cheap portable data-logging system

Developed by the University of Reading, a prototype datalogging system was demonstrated, which could be used in a sailplane to record its height and speed. This information could then be subjected to computer analysis to determine the sailplane's performance. The equipment's principal advantage in this application is its light weight (20 lb for the complete system including transducers, recorder and batteries). It also has the added attraction of low cost.

A cheap commercial tape recorder is used to record one quantity per second with an accuracy of ± 1 part in 5,000 , the quantity recorded being converted to frequency by a suitable transducer. The transducers shown were all phase-shift oscillators in which the frequency was controlled by a single $R C$ time constant. In the height and air-speed transducers the capacitance of a parallel-plate capacitor was varied by the movement of aneroid capsules similar to those used in standard aircraft equipment. A temperature transducer used a fixed

Schematic diagram showing the set-up of the cheap portable data logging system.

This photograph shows the complete airborne equipment comprising transducers, tape recorder and batteries.

capacitor and thermistor. All the transducers were adjusted to a frequency range of $4-10 \mathrm{kHz}$ to suit the recorder. Although the calibration curves of these transducers are not quite linear, it was said that this could easily be corrected by the computer.

To avoid the necessity of maintaining a constant tape speed, each transducer signal is gated for a defined time and the gated signals are recorded in turn on the tape with blank tape between. All gating signals are obtained by counting down from a 5 kHz crystal oscillator so that the record, for example, of height is the number of cycles contained in the "height-pulse" on the tape. For analysis, the tape is played back into a squaring circuit which interrupts a computer once per cycle. The computer counts the cycles in each pulse and stores each count for subsequent processing. Because the lowest data frequency used is 4 kHz , there is room on the same track of the tape for a speech channel with a bandwidth of, say, $100-3,500 \mathrm{~Hz}$.

Sensitive TV camera tube

Most of the English Electric Valve stand was devoted to a demonstration of a new 3-in Image Isocon tube producing pictures from a scene too dark to be discernible by the naked eye. It was housed in a specially designed prototype TV camera. First announced at last year's International Broadcasting Convention in London, the Image Isocon is capable of producing good TV pictures when the photocathode illumination is only 10^{-3} lux, and even when the photocathode illumination falls as low as 10^{-5} lux, acceptable pictures can still be produced.

Designated P880, the tube is designed for special television purposes and can handle scenes having a very wide range of light levels. The image section is the same as in a normal image orthicon tube, but the scanning beam is made to follow a helical path to the target by two pairs of "steering" electrodes. On reaching the target, the beam divides in three ways. One part lands on the target to neutralize the charge at that point. Anbther part is specularly reflected and ultimately discarded, and a third part is scattered. This third beam of scattered electrons does not possess the helical motion of the original forward beam. Its magnitude is dependent only upon the charge present at that point of the target. Returning from the target to the gun, and influenced by the axial magnetic field, this beam passes through the steering electrodes and so acquires a helical motion. The radius of this helical path is such that the beam passes through the aperture in the separator electrode and enters a conventional image orthicon electron multiple system.

Thus it is the beam of scattered electrons which provides the signal. The magnitude of the beam increases with the light level, unlike the image orthicon where the specularly-reflected beam (the beam which is used) has its maximum value for zero light input. Signal-to-noise ratio of the Isocon is much better than that of an image orthicon and it is claimed that noise in the darker parts of the picture is virtually eliminated. In the demonstration booth the Image Isocon camera was mounted on a fixed tripod and focused on an inanimate subject, so that it was not possible to judge if a moving picture would be affected by lag.

Autocorrelation pattern recognizer

An apparatus capable of distinguishing between different photographic transparencies (e.g. letters of the alphabet or human faces) by means of optical autocorrelation was demonstrated by Hawker Siddeley Dynamics Ltd. The image of an incandescent lamp filament is focused on to the transparency and the resulting transmitted light pattern is directed by mirrors back through the same transparency. What then emerges

Principle of autocorrelation pattern recognizer.
is an optical pattern across which the variations of light intensity represent correlation coefficients between different parts of the original subject-a spatial autocorrelogram. This is then focused on to a detecting device-a photovoltaic cell divided into four sectors. The outputs from the four sectors are amplified and fed to three comparators. Each comparator is set to accept a code of voltages, and deviations from this code are detected and the moduli added. The output of each comparator is thus an indication of the total deviation from the pattern for which that comparator was adjusted to accept. The comparator outputs are fed into a display unit which has acceptance limits preset, and this indicates recognition.

Hydrogen/oxygen fuel cell

A fuel cell which, while measuring only $17.5 \times 17.5 \times 9 \mathrm{~cm}$, can deliver a current of 100 A at 0.6 V continuously, was shown by Research and Development Laboratories of Manchester. Fuel cells are devices which continuously convert energy from various chemicals directly into electrical energy, and in this instance the cell was a low-temperature, low-pressure, hydrogen/oxygen unit and the electrolyte was a 30% potassium hydroxide solution. Four hydrogen electrodes and five oxygen electrodes were interleaved alternately. The cell operates at a constant temperature (normally $60^{\circ} \mathrm{C}$) and the electrodes are supplied by oxygen and hydrogen gas at a pressure $4 \mathrm{kN} / \mathrm{m}^{2}(3 \mathrm{cmHg})$ above atmospheric,

The top manifold, through which the hydrogen and oxygen gases are fed in, distinguishes the fuel cell from the otherwise conventional "battery" appearance.
via a manifold in the cell lid. A $0.99 \mathrm{~m}^{3}$ ($3.5 \mathrm{cu} . \mathrm{ft}$) capacity cylinder of each gas was estimated to give 30A for 7 hours.

The overall efficiency of the cell is 60%. There is no intermediate stage in the conversion process where energy must be expended to produce heat and there are no moving parts. The only by-product of the reaction is water and since this causes dilution of the electrolyte, some arrangement is necessary for removing the excess volume of liquid and adding sufficient potassium hydroxide pellets to bring the solution up to full strength. Batteries of up to 3 kW output have been produced.

High-speed electron-optical camera

A camera with electronic shuttering shown by John Hadland (P.I.) Ltd. presents on a fluorescent screen a sequence of frames showing the development of some high speed event such as the build-up and decay of ignition of a flash tube. The shuttering can be at any speed from 10^{5} to 6×10^{7} frames per second and the actual number of frames presented-

The high-speed camera showing the shuttering sine-wave oscillator module on the left.
to the eye almost simultaneously-can be anything from 8 to 32 . This is achieved by means of an image converter tube, the English Electric Valve Company type P856, which uses a sinusoidal shuttering technique developed by U.K.A.E.A. There are three pairs of deflector plates between anode and screen. The first pair of plates act as shutter plates: when a sinusoidal oscillation is applied to them they deflect the electron beam up and down across a slit in an aperture plate. The beam can only pass through the plate when it is traversing the slit and this results in repetitive shuttering. Because the electron beam is moving as it passes the slit it produces blurred pictures on the fluorescent screen. To arrest this blurring movement a second sinewave of the same frequency and amplitude, but of different phase, is applied to a second pair of deflectors on the far side of the aperture plate. As shuttering takes place each time each sine wave passes through zero voltage there are two exposures per cycle. Images are produced in superimposed pairs at the screen. To separate them a staircase voltage is applied to a third set of deflectors, and the staircase is synchronized so that its steps occur between alternate exposures. Thus two rows of pictures are produced, the framing rate being twice the frequency of the applied sine waves and the number of pictures twice the number of steps.

Sinewave oscillators for different shuttering speeds are provided as plug-in modules, as can be seen in the photograph.

Europe's Show-case for Components

Paris exhibition is truly international

"For the first time I feel proud to be French," said the proprietor of a small Paris firm, an agency handling imported equipment, as we walked round the huge 11th International Electronics Components Exhibition at the Porte de Versailles, Paris. He was in fact contrasting the intransigence of the French Government in world affairs with the realistic and outward-looking attitude of the French electronics industry, which has sacrificed its pride and deliberately opened itself to competition in order to run a first-class international exhibition displaying the best components technology from all over Europe. This is, however, consistent with the French Government's open-door policy of encouraging foreign firms to set up plants in the country so that France can benefit from the advanced technologies they bring in. Notably this means American technology. As a result the native French electronics firms are feeling severe competition. Some have been taken over, in varying degrees, by American giants (for example, 40% of the semiconductor firm SESCO is owned by General Electric), while others are defensively merging (for example, C.S.F. and Thomson-Brandt). Yet another U.S. semiconductor manufacturer, Motorola, is opening a factory in France. This is near Toulouse and will have close links on fundamental research with Toulouse University -in fact a former professor of physics at the University, Dr. E. J. Cassignol, has beeh appointed general manager of the plant.

At one time it would have been possible for the British components industry to transform their R.E.C.M.F. Exhibition into an international show of the calibre of Paris, but the opportunity was lost through insularity or fear of competition on the part of those in
Showing shape and construction of Yamaha loudspeaker.

Motorola r.f. power transistor, also showing electrode structure on the chip.
charge. Now the more progressive of the British components manufacturers regard Paris as the show at which they must be present before all others.

The following notes are on items selected as being of particular interest to Wireless World readers. British exhibitors are not mentioned as information on their products will be given in other ways.
Loudspeakers. One gets used to seeing strange loudspeakers in France, but the oddest looking one at the exhibition was in fact a Japanese moving-coil unit, shown by $\mathrm{Hi}-\mathrm{Fa}$ of Paris and on the Japanese industry stand. Made by Yamaha of Hamamatsu, it has a large, flat, expanded polystyrene diaphragm of asymmetrical shape measuring, for example, in one model, $82 \mathrm{~cm} \times 57 \mathrm{~cm}$. This is fixed rigidly at the periphery to an aluminium frame and driven by a conventional voice coil (6.6 cm diameter) and magnet system (1.4 tesla flux density). Yamaha are perhaps more widely known as makers of pianos, and they say, in fact, that they got the idea for the diaphragm from the sounding board of a grand piano. Sound is produced not by straightforward piston action as in a cone loudspeaker but by flexural motions of the diaphragm similar to those of the sounding board of a musical instrument. Thus each part of the diaphragm vibrates separately and the radiation tends to be less directional than in a cone loudspeaker. The pressure/frequency response curve is extremely ragged because of the multiplicity of resonant structures, but the makers argue that colouration is a fact of life and anyway, this is how musical instruments produce their sound. (The device is called the 'Natural Sound' loudspeaker.) The purpose of the irregular periphery of the diaphragm is to prevent the formation of standing wave patterns, which would of course give undue emphasis to particular frequencies. To im-
prove the efficiency at high frequencies the back of the diaphragm is moulded to form a number of radial ribs but Yamaha say that reproduction is not satisfactory in the treble and that equalization and an additional highfrequency loudspeaker should be used. Bass resonance of the largest model is 55 Hz while continuous power handling capacity is 25 watts (100W instantaneous).

Another unusual loudspeaker, called the Projecteur de Son and shown by l'Automatic, has a moving-coil drive unit mounted in a cylindrical plastics enclosure (diameter 12 cm , length 13 cm for one model) which contains two cavities "inductively" coupled by a port to form a double resonator. This acoustic system is designed to damp the bass resonance and control the cone movements in such a way that the speaker will handle high power without distortion. Response (for the model mentioned) between 120 Hz and 8 kHz is $\pm 5 \mathrm{~dB}$.

Miniature inductor, shown by Orega of Paris, compared in size with a match-head.

Power Transistors. One of the heaviestduty transistors at the exhibition was undoubtedly the Westinghouse type 177 which will operate from supplies up to 140 V , carry collector current up to 50 A and dissipate up to 300 watts. The f_{T} is as high as 25 MHz . SESCO (Société Européenne des Semiconducteurs) had a range for collector currents up to 30 A , collector-base voltages up to 500 V and dissipations up to 200 W . Obtaining power amplification at v.h.f. and u.h.f. is, of course, more difficult, but R.C.A. were showing an overlay transistor with strip-line connections, type TA7344, which will provide a power output of 16 W with a gain of 6 dB at 400 MHz and a power of 20 W with a gain of 10 dB at 225 MHz . It operates from a 28 V supply, is hermetically sealed in a

Line output transformer and e.h.t. generator for colour television receivers, shown by La Radiotechnique-Compelec of Paris.
ceramic-metal package, and will work over the temperature range $-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Motorola had a range of r.f. power transistors constructed on an interdigitated principle that gives more uniform distribution of current through the devices. For this reason, it is stated, they cannot easily be damaged in operation even with mis-matched loads. One type will give a power output of 40 W with a gain of 7.5 dB at 175 MHz and another 20 W with a gain of 4.5 dB at 400 MHz .
Return-beam vidicon, called the Rebicon, in which the sensitive layer ($23 \times 23 \mathrm{~mm}$) is a photoconductor but the electron beam returns from it, modulared, as in an image orthicon, was shown by RCA. The signal is produced from the return beam by anelectron multiplier. Limiting resolution is 4,000 lines.

Microwave devices. By the use of double diffusion epitaxial technology SGS-Fairchild have produced a range of n-p-n transistors, BFW73 to BFW79, which offer useful performance as microwaves. As amplifiers the devices are said to be capable of providing gains of 3 dB at 4 GHz and 6.5 dB at 3 GHz . A typical noise figure is 6 dB at 1 GHz . As oscillators the transistors can be used to generate frequencies up to 3.5 MHz , a value which is normally only obtainable by frequency multiplication using a series of transistors and varactor diodes. Among other applications these transistors look promising as replacements for the klystrons (which, of course, are bulky and of limited life) used as pump oscillators in microwave parametric amplifiers. Another type of semiconductor replacement for the klystron in this application is the avalanche diode, and Sylvania were showing one, mounted in a tuning structure, which will generate a minimum of 10 mW of r.f. power at any frequency in the X -band (8.2 to 12.4 GHz). Called SYA-3200, it requires a d.c. bias in the region of $50-90 \mathrm{~V}$ (current $10-25 \mathrm{~mA}$) and can be continuously tuned over a range of $\pm 100 \mathrm{MHz}$. This firm also had, as did Texas Instruments France, examples of Schottky barrier diodes for operation at microwave frequencies. The Sylvania ones were beam-leaded devices available as single diodes, pairs or quads (for use in balanced modulators). Texas microwave transistors included an L-band amplifier giving a gain of 8.5 dB and noise factor of 6 dB at

2 GHz and an S-band oscillator allowing an output of 75 mW at 4 GHz to be obtained.
Colour TV tubes. One of the major criticisms of colour television sets has been the lack of brightness from shadow-mask tubes-particularly noticeable on black-and-white programmes. Sylvania have been tackling this problem by bringing into use phosphors of greater efficiency. In particular the red fluorescent material is a europium activitated yttrium vanadate phosphor treated with activators, while the green brightness improvement is obtained from not only a change in chemical composition but an alteration in particle size and distribution across the screen. The result, in a tube demonstrated at the exhibition, is a brightness on white claimed to be 23% greater than that of the nearest competitive tube ($25-69 \%$ brighter than various other makes). Another feature of this tube is a method of shadow-mask mounting which compensates for the expansion, caused by electron heating, that tends to degrade colour purity during operation. In fact the mask moves forward as it gets hot. An

General Electric i.c. audio amplifier giving $1 W$ into a loudspeaker (scale in cm).
alternative method of compensation, used by Standard Elektrik Lorenz, is to fix the shadow-mask symmetrically at four points (instead of the normal three) using bi-metal elements so as to obtain a uniform expansion starting at the centre.

A further criticism sometimes levelled at television tubes is that the screen aspect ratio (usually 5:4) does not correspond to the 4:3 aspect ratio of the transmitted picture. Telefunken were showing a new colour tube, the A56-11X, in which this discrepancy has been corrected, the lengths of the sides of the tube face being 44.7 cm and 33.7 cm . Also the faceplate is flatter than normal. A completely flat faceplate is used in the glass bulb of the French grid type colour display tube, since the fluorescent screen is now deposited on the

Digital voltmeter with five ranges $(0.3 \mathrm{~V}$ to 2 kV) and reading accuracy of $\pm 5 \times 10^{-4}$ shown by Schneider of Ivry, France.

Instrument for measuring distortion on telegraph circuits, including a signal generator for signal speeds of 50-2400 bands (Laboratoire Electro-Acoustique of Paris).
back of the faceplate instead of on a separate glass plate mounted within the bulb. A specimen envelope was shown by Sovirel of Paris but the complete tube was not on view.

Reactive circuit devices. A small component called the Isoductor, functioning rather like a lumped-element version of a microwave circulator, can be inserted into v.h.f./u.h.f. signal circuits as a non-reciprocal attenuator, providing low forward loss (about 1 dB) but high reverse loss (e.g. above 20 dB). It can thus be used to make transistor or varactor circuits insensitive to load variations. Shown by Melabs, it is available in three models, covering between them the range $100-600 \mathrm{MHz}$. Physically it is a 2 cm diameter cylinder with three 120°-spaced connections-the circulator "ports". Power flows from Port 1 to Port 2 with low loss but power reflected from any varying load fed from Port 2 circulates to Port 3 and is dissipated in a resistive load connected to it. The ports "look" inductive and have to be tuned externally by capacitors.

Miniature inductors measuring $2.8 \times 4.0 \times$ 7.0 mm shown by OREGA can be adjusted by a magnetic core to provide a control range of $\pm 20 \%$ of nominal value. Inductances range from $25 \mu \mathrm{H}$ to $100 \mu \mathrm{H}$ and temperature coefficient is said to be very low. Pins are provided for mounting on printed circuits.

A "Monolithic" crystal filter shown by Collins Radio is a compact device combining properties of the crystal filter and the mechanical filter. It consists of a thin plate of quartz with pairs of electrodes arranged along it. Each pair of electrodes (one on top, one underneath) constitute a crystal resonator, while the quartz areas separating the pairs provide mechanical coupling between the resonators. Connections are made to the resonatorat each end of the plate. The electrical analogue of the system is a row of $L C$ resonant circuits coupled by inductors. Filters of this type, in tran-sistor-type or flat packages, are available with centre frequencies of 3.5 MHz to 20 MHz and with bandwidths of 0.005% to 0.2% of centre frequency.

PAL-SECAM

Rapprochement

The long-standing rivalry between the PAL and SECAM colour television systems has now been resolved, at least in a commercial sense, by a Franco-German receiver manufacturing agreement between Compagnie Francaise de Television, which holds patents on SECAM, and A.E.G.-Telefunken, which owns the PAL patents. At the same time there has been a major reorganization of those sections of the French industry concerned with colour television in general and SECAM in particular.

By the C.F.T.-Telefunken agreement, the French set manufacturers have been given a licence to make and sell PAL receivers and the German set manufacturers have been given a licence to make and sell SECAM receivers. Thereby the royalties normally charged by both sides are cancelled. This affects both single-system receivers and also combined PAL/SECAM sets, of which there is a growing number in Europe.

It is being said, notably by C.F.T., that this agreement was precipitated by the fact that C.F.T. owns a patent, not actually used in SECAM, which is somehow connected with the phase-error correction principle at the heart of the PAL system. In the past Telefunken have strongly denied this contention. Wireless World has asked C.F.T. for details of the critical patent, but the company has declined to give further information. At any rate it emerges from the agreement, according to C.F.T., that C.F.T. will now no longer "engage in proceedings against the manufacturers of PAL receivers".

As for the reorganization in the French colour television industry, C.F.T., which was set up in 1958 originally to develop and exploit SECAM but started to expand into development and manufacture of hardware (e.g. the grid colour tube), has now become a company devoted solely to the commercial exploitation of patents. Its new president is M. Jean Cahen-Salvador, a member of the powerful Conseil d'Etat which advises the French Government. All R \& D and manufacturing work had been hired off to established French firms, principally to a new organization formed by the merging of television interests of C.S.F. (Compagnie Générale de Télégraphie Sans Fil) and C.F.T.H.-H.B. (Compagnie

[^3]Francaise Thomson-Houston-HotchkissBrandt). As for the grid colour tube* hitherto handled by C.F.T., this has now been taken over by a new company, France-Couleur, set up by a private financier and entrepreneur, M. Sylvain Floirat. Opinions differ on the development status of this tube, but some French sources say that France-Couleur is going to build a factory to start manufacture as soon as possible. (Incidentally the Floirat group have a 25% interest in the new C.F.T., the rest being owned jointly by C.S.F. (25%), the French government (25%) and Compagnie de Saint Gobain, the glass manufacturers, who owned 50% of the original C.F.T.)

Finally there has been established a non-profit-making organization called Intersecam, the purpose of which is to protect and promote the SECAM colour television system throughout the rest of the world. This means, in fact, trying to persuade those countries which have not settled on a colour television system to adopt SECAM. In this work the organization will be assisted by the O.R.T.F. (the French broadcasting organization) and the French industry. President of Intersecam is M. PaulRoger Sallebert.

Prince Philip Advises Young Engineers

The idea that membership of the professional institutions should be denied to engineers and technicians who do not aspire to a defined strata level in the academic training structure, was criticized by the Duke of Edinburgh speaking at a meeting last month attended by 600 -odd young engineers.

Replying to a question during an open discussion which followed his talk, the Duke indicated that as he saw it, Institution membership should include all who were "attached" to that particular "subject", and he could see no reason why technicians should be forced to join a separate institution

In his opening address the Duke urged engineers to get themselves into the decision-making side of industry; in management, or in politics, and not just be content to remain as "boffins" all their lives. He suspected that too often in the past major projects have failed because of a de-cision-making gap, rather than because we were technically inferior. Company executives should be trained engineers, able to discuss technical matters with prospective customers. Customers should not be told to refer their
enquiries to the "technical boys". On a national level, decisions made by the political process, our decision-making machinery, were far too important to be ignored by scientists and engineers.

Arranged by the Council of Engineering Institutions, the meeting was held at the Institution of Electrical Engineers, and a tailpiece concerns the solitary contribution to the discussion from an I.E.E. delegate, which perhaps illustrates the way in which our social behaviour influences our claims to engineering prowess. This young man wondered what was wrong with the engineer image. He was an engineer, but he said he always told his friends that he was a scientist, because if they were told he was an engineer, they would get the impression that he went around repairing television receivers!

The Computer Merger

In a recent statement to the House of Commons the Minister of Technology said "I am pleased to be able to inform the House that, with the backing of the Government, the commercial and scientific computer businesses of I.C.T. and English Electric Computers are to be brought together into one company to be called International Computers Ltd (I.C.L.). I.C.L. will be by far the largest company outside the U.S.A. specializing in commercial and scientific computers. Plessey, a major manufacturer of telecommunications equipment, will participate in the new group and will also form a joint development company with I.C.L. to study and develop the convergence between computers and communications."

The new company is going to be faced with a number of headaches, not the least of which is to ensure that the new computer system to be produced by them is compatible with both the I.C.T. 1900 series and English Electric's System 4 range. Representatives of the two companies say that this is a software problem and although a "knotty one", far from being economically insurmountable.

The Government will be participating in the financing of the new company to the extent of $£ 17 \mathrm{M}$ over a period of five years. Of this amount the Ministry of Technology will be providing $f 13.5 \mathrm{M}$ over the next four years towards I.C.L's research and developments costs. The remaining $£ 3.5 \mathrm{M}$ is to be subscribed for ordinary shares of $£ 1$ each, which will be issued to the Government at par; 2s per share will be payable on issue and balance in 1972. The current market value of these shares substantially exceeds the amount subscribed for them. As a.result of this arrangement the Government will initially hold 10.5% of the ordinary shares and other shares will be held; 53.5% by former I.C.T. shareholders, 18% by English Electric and 18% by Plessey.

Technology Co-operation Agreement

An agreement has been signed between the U.K. and Czechoslovakia which will allow the exchange of specialists and information, and facilities for study and research between the
two countries. In addition exchange of other forms of industrial co-operation may be agreed upon. This follows agreements that have been signed with Rumania, Hungary, Poland and the U.S.S.R.

As a result of the Russian agreement representatives of the Scientific Instrument Manufacturers' Association (S.I.M.A.) and industry have flown to Russia for talks with government officials and technologists. At the same time the largest exhibition of British instruments ever held outside the U.K. is taking place in Sokolniki Park, Moscow. This exhibition has been mounted by S.I.M.A. in collaboration with the Board of Trade at the request of the U.S.S.R. Chamber of Commerce.

World Engineering Federation Formed

In order to encourage co-operation between the engineering organizations of the world it was decided at a meeting in Paris of representatives of the engineering profession from all parts of the globe that the World Federation of Engineering Organizations should be formed. In all, 120 representatives from 60 nations and four regional federations were present at the meeting in UNESCO House. The decision to form the organization was unanimous. This constitutive assembly was then immediately followed by the first general assembly of the new federation and decisions were taken to carry out the programme of work on the qualification and development of professional engineers and of their supporting technical staff. Arrangements were also made to draw up a world-wide code of professional conduct for engineers.

Dr. Eric Choisy, of Switzerland, who had taken the chair at the constitutive assembly, was elected president of the Federation. Dr. G. F. Gainsborough, secretary of the I.E.E., was appointed secretary general. The next meeting of the Federation is due to be held in Beirut in October 1969.

Firms wishing to exhibit their goods outside Western Europe are now eligible for substantial financial assistance from the Board of Trade. The Board will in future contribute up to 50% of the cost of translating sales literature for distribution at the exhibition, they will pay up to 50% towards the return fares of two representatives manning each firm's stand and up to 50% of the cost of returning unsold goods from the exhibition. Up until now these facilities have been available only to exhibitors taking part in international trade fairs under the Board of Trade's joint venture scheme or in British Pavilions organized by the Department.

A marine radar beacon that is used to positively identify obstructions, lighthouses, drilling rigs and the like has undergone its first sea trial. Designed and built by Ether Engineering the beacon has been called URSA Minor (Unattended Racon Semiconductor Apparatus) and is claimed to be the first to use semiconductors entirely. In operation the equipment receives output pulses from any standard marine radar in the 9.39.5 GHz band and will then transmit in reply
a coded pulse which will appear on a p.p.i. display as a series of dots and dashes. This means without modifications to existing shipboard radar systems an operator can identify obstructions in his vicinity.

The Electrical and Electronic Industries Benevolent Association is the amended title of the organization formed in 1905 to help non-manual workers in the electrical industry. During 1967 the association paid over $£ 83,000$ to pecple in need-workers, former workers or dependants--and towards the costs of retired beneficiaries living in the association's own establishment at Broome Park, Surrey. Among the contributors to last year's income, which totalled nearly £ 130,000 , were British Radio Valve Manufacturers' Association, Electronic Valve and Semiconductor Manufacturers' Association, Radio Industries Club, Radio and Television Retailers' Association, B.B.C., A.T.V. and a number of "light current" manufacturers.

A self-testing and repairing digital computer is to be installed in the jet propulsion laboratory of the California Institute of Technology in Pasadena, U.S.A. An error detecting code is applied to all instructions and data within the computer. Should an error be detected part of the programme is repeated and if the error persists the power supply to the faulty section is removed and applied to a spare serviceable section. The process is controlled by a triplicated repair control module operating on a majority vote basis. In the event of a split decision being made ($2: 1$) the faulty repair control module is disconnected and a new one substituted.
D. B. G. James, author of the "Simple F.E.T. Pre-amplifier" article published last month, is on the staff of Swansea College of Technology not the University College, Swansea, as stated. Incidentally, the C94 f.e.t. referred to in this article is manufactured by Semitron Ltd., Crickdale, Near Swindon.

Wireless World colour television receiver

Constructional details of a colour television receiver will be given in a series of articles starting in next month's issue of Wireless World. The photograph shows the set, with some units removed, during its development.
A colour receiver is a complex piece of electronic.apparatus and its proper initial adjustment requires the use of quite a lot of test apparatus; even with this, skill is needed. It must be emphasized, therefore, that its construction should be attempted only by those who are thoroughly familiar with all aspects of black-and-white apparatus.

In order to simplify the equipment as much as possible no provision is made for the reception of 405 -line transmissions. The complications which arise when this is included are not so much electrical as mechanical, since the provision of a large number of mechanically linked switches in many different units raises almost insuperable problems when standard components must be used.
A 19 -inch colour tube is used, but the 23inch can be employed with little electrical alteration, and the receiver is of hybrid design; that is, both valves and transistors are included. All the low-power circuits have transistors, but the high-power circuits and all circuits feeding the c.r.t. use valves.

Personalities

Sir Francis McLean, C.B.E., B.Sc., F.I.E.E., director of engineering in the B.B.C. for the past five years, retires in May after 31 years with the Corporation. He graduated at Birmingham University and was with Standard Telephones \& Cables from 1925 until joining the B.B.C. in 1937. He headed various groups in the Engineering Division before being appointed deputy chief engineer in 1952. In 1960 he became deputy director of engineering. Sir Francis was created a knight bachelor in the 1967 New Year honours.
T. S. Crabtree, managing director of Arrow Electric Switches Ltd., has been appointed a vice-president of the parent company Arrow-Hart \& Hegeman Electric Co., of Connecticut, U.S.A. Born in Colne, Lancs., he is the first non-American vice-president to be appointed by the 72 -year-old parent company, which formed its British subsidiary in 1932. It was in 1932 that Mr. Crabtree joined Arrow as their works manager. He has been managing director since 1951.
J. H. Head, deputy managing director of Racal Instruments Ltd, has become managing director of Racal-Andec which is the new name given to Andec which joined the Racal group in 1962. Mr. Head joined Racal Instruments as director and general manager on its formation in 1959. He was at one time
f. H. Head

with Sydney S. Bird Ltd, and from 1951/59 general manager of Advance Components.
D. T. N. Williamson, the designer of what has become known as the Williamson amplifier originally described in Wireless World in 1947, is among 32 recently elected Fellows of the Royal Society. The citation reads "distinguished for his work on sound reproduction, and for his extensive achievements in the design and numerical control of machine tools". Mr. Williamson, who has been technical director of Molins Machine Company since 1961, joined the M. O. Valve Company in 1943 after studying at Edinburgh University and from 1946 to 1961 was with Ferranti, Edinburgh, working mainly on precision measurement and control.

Also among the 32 recently elected Fellows of the Royal Society are Eric Eastwood, C.B.E., Ph.D., M.Sc., F.I.E.E., director of research of the English Electric Group, whose "contributions to the technology and applications of radar" are mentioned in the citation; Antony Hewish, lecturer in physics at the Cavendish Laboratory, Cambridge, "distinguished for his contributions to radio astronomy, especially by using the scintillation of radio sources to obtain information both about the interplanetary plasma and the structure of the radio sources themselves"; Donald E. Broadbent, Sc.D., director of the Medical Research Council's Applied Psychology Research Unit Cambridge, "distinguished for his researches in experimental psychology, especially on problems of perception"; and David P. Craig, professor of physical chemistry at the Research School of Chemistry, in the Australian National University, Canberra, Australia, "distinguished for his theoretical contributions to the interpretation of electronic spectra and to solid state chemistry".
A. Brian Close, Grad.I.E.R.E., has joined Radionic Products Ltd, manufacturers of electronic and radio teaching aids, as technical manager. Mr. Close, who is 25 , spent the first seven years of his career with S.T.C. He then taught for a year in a technical college. He was until
recently a development engineer with M.E.L. Equipment Company. Radionic also announce the appointment of Michael J. Howell, B.Sc. Assoc. I.E.E., as marketing manager. A graduate of Leeds University, where he studied electrical and electronic engineering, he was at one time on the production staff of Texas Instruments but more recently with Ferranti, Edinburgh, working on guidance systems. He is 25 .

Ralph E. G. Keon, A.M.I.E.R.E., recently joined AIM Electronics Ltd, of Cambridge, as European marketing manager. Mr. Keon, who studied on the Continent, worked for eleven years in the valve indus-try-first with S.T.C. then M.O. Valve and subsequently Elliott

R.E.G. Keon

Brothers on microwave valves-was overseas sales manager of Airmec Instruments from 1962 until he joined AIM.
W. J. Bray, M.Sc. (Eng), D.I.C., F.I.E.E., director of research at the General Post Office, has had the Fellowship of the City \& Guilds of London Institute conferred on him "for eminence in the field of radio communication, particularly in the design of microwave and radio systems, including communication satellite ground stations". Mr. Bray, who joinęd the Post Office Engineering Department in 1934, has spent most of his career in the Research Station at Dollis Hill. Since 1960 he has concentrated on space communications systems but previously was concerned mainly with ionospheric and tropospheric scatter. He has been director of research since 1966.

John C. Gladman, B.Sc. (Hons.), aged 48, has become manager of English Electric's Industrial Computer Division at Kidsgrove (North Staffs.), where he will be responsible for the design, development and manufacture of computer equipment for industrial control and automation systems, as well as associated peripheral equipment and "soft ware" He studied at Manchester University in $1938 / 39$, and after a period of
war-time service with the Royal Corps of Signals, gained an honours degree in electrical engineering in 1948. He then joined Metropolitan-Vickers and on the formation of the A.E.I. Electronic Apparatus Division was appointed asst. manager and later manager of the computer engineering department. Mr. Gladman joined E.E. Computers Ltd, in 1967.
K. D. F. Chisholm, A.M.I.E.R.E., has been appointed chief engineer of English Electric's Industrial Computer Division. He joined E.E. Computers in 1955 as senior development engineer working on the DEUCE computer and at the beginning of 1967 became deputy chief engineer of the Central Processor Department. He is 43 .
A. H. Sage, B.Sc. (Eng.), who joined English Electric as a graduate apprentice in 1950, with a degree in electrical engineering from Bristol University, is appointed deputy general manager (commercial) of English Electric's Industrial Control and Automation organization.

The $1968 / 69$ president of the Electronic Engineering Association, who will for the first time also auto matically assume the active position of chairman of council, is Commander H. Pasley-Tyler, a director and group general manager of Elliott Automation Ltd. He joined Elliott Brothers (London) Ltd., in 1950 on retiring from the Navy in which he had served for 25 years. Commander Pasley-Tyler, who is 58 , specialized as a signal officer after training at Dartmouth Naval College and was for some time after the war in command of a training establishment. He later went to Washington as a member of the British Naval Mission. The retiring president is Sir John Toothill, C.B.E., D.Sc., general manager of Ferranti's Scottish group of factories, and the retiring chairman is Group Captain E. Fennessy, C.B.E., director of Plessey Electronics Group.

John Gosman Scott, B.Sc., has rejoined Ferranti Ltd., Edinburgh, as sales manager of the Information Equipment Group. Mr. Scott, who is 40 and graduated in physics at St . Andrews University, originally joined Ferranti on coming down from the University in 1951. In 1960 he went to Hughes International (U.K.) as technical manager in charge of semiconductor manufacture. For the past two years he has been with Electrosil, of Sunderland, as technical director.

OBITUARY

Jack White, distributor sales manager of SGS-Fairchild Ltd, died recently at the age of 53 . He joined the company in 1965 after spending four years with Texas Instruments at Bedford, prior to which he was for five years with Mullard's semiconductor division.

An unusual service is worth an unusual look so look twice at our facilities.
You see, we care, and that's unusual enough these days.

CHEMICAL MILLING DIVISION

mD A new ultra-efficient factory
mD Three times our old capacity
mD Impeccable quality
mD Step-and-Repeat, accurately
mD Country-wide Technical Representatives

PRINTED CIRCUIT DIVISION

mD Better quality and finish than usual
mD Superior technical methods
mD Plating-through-Holes service
mD Flexible or rigid boards
ID Gold plating to close limits
A.I.D. and A.R.B. Approved. A wholly independent British enterprise offering a Confidential service, and using modern management techniques.

MICROPONENT DEVELOPMENT LIMITED

P.O. Box 162, Priory Works,

39/43 Belmont Row, Birmingham 4, England

Telephone: 021-359 3556 Telex No. 338754
Telex Code: M.D. B'ham.

Meet The Rededtegaang!

 Let us introduce you to to provide you with the finest miniaturised connector range. The Redette range, moulded in D.A.P. with $16,26,38$ and 52 ways, designed by these to give greater reliabilityThe cable entry champ!
Thank him for the versatile cable get-away . . straight out the top, or by the side exit! When he gets to grips with a problem he just wont let go.
'The bodyguard'
to his friends. this guy protects the chassis-mounted plug-pins with his flexible plastic shroud.
A real bouncer!

The undercover man! That's the A.B.S. plastic cover doing a professional protection job - to keep things clean till the dust dies down. Even a truncheon cant touch him!

This is the bullion specialist ... with all the best connections! His contacts are gold plated, each has a 3 amp current rating resistance under 10 milli-0.m proof voltage of 1,500 volts peak!

Clip-jointoperator! Double-jointed nickel plated phosphor bronze retaining clips. to be precise. As easy to get out
of as in to... when you know how

THE McMURDO INSTRUMENT CO. LTD., RODNEY ROAD, PORTSMOUTH, ENGLAND. Telephone: 35361 Telex 86112

[^4]
Russian Colour Sets in Production

Four models using shadow-mask tubes for SECAM III transmissions

Colour television programmes on a limited scale are now being broadcast in the U.S.S.R., using the SECAM III system, and $625-$ line compatible colour receivers are being produced in several factories. At a recent international conference on colour television in Paris details of four models available to the Russian public were given by Professor S. Novakovsky, of the Ministry of Radio Production. All use shadow-mask colour tubes manufactured in a recently established Soviet plant, have 12 -way channel selectors, use flywheel sync, operate from 127 V or 220 V supplies and are designed for a reliability of 1500 hours m.t.b.f. Circuitry follows normal SECAM practice, which means of course that the receivers contain a delay line and electronic switching arrangement to change the sequentially transmitted chromaticity components of the signal into simultaneous form. Since in SECAM III transmissions these colour components are carried by frequency modulation of a subcarrier $(6.5 \mathrm{MHz})$ the decoding section of the receivers also contains frequency discriminators, one for $\mathrm{R}-\mathrm{Y}$ and the other for $\mathrm{B}-\mathrm{Y}$. Three of the sets have hybrid circuitry while the fourth, a smaller, cheaper model, uses valves only.
Roubin-401 has a rectangular tube of 59 cm diagonal and 90° deflection angle. The hybrid circuit contains 24 valves, 15 transistors and 45 diodes. Two loudspeakers are provided. The transistors are utilized mainly in the chrominance and sound

Record-101, low-price 40 cm set.

channels, except for their respective output stages. Sensitivity ($50 \mu \mathrm{~V}$ in both vision and sound channels) is said to be sufficient for satisfactory reception in fringe areas. Automatic screen "degaussing" and vertical geometrical distortion correction are included The delay line and associated circuitry are constructed as a separate module allowing lines of different types to be used. In the luminance channel there is a rising frequency characteristic above 4.9 MHz , which is normal practice in Russian television receivers. Besides the usual brightness and contrast controls there is a colour saturation control, which varies the peak-to-peak amplitude of the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ chrominance signals. The set consumes 400 watts and weighs 70 kg .
Radouga-5 has the same 59 cm rectangular colour tube as the Roubin- 401 but its circuit is more transistorized: 14 valves, 46 transistors and 53 diodes. As a result the power consumption is lower (280W). Sections entirely transistorized are the vision and sound i.f. amplifiers, the a.f. sound amplifier, the vertical scanning circuits and the luminance channel (except for the output stage). The chrominance section contains 15 transistors, with 3 valves for the three colour-difference signal output stages. This set is also lighter- 60 kg .
Radouga-4, a smaller receiver, has a tube of 40 cm diagonal and 70° deflection angle. The circuitry and valve/transistor ratio are similar to those of Radouga- 5 , except of course for the scanning arrangements for the narrower-angle tube. Because of this smaller deflection angle, no geometrical distortion correction circuitry has been included, and this has reduced the power consumption to 260 W . Weight is 40 kg . Sensitivity of the two Radougas is $150 \mu \mathrm{~V}$.
Record-101, using a 40 cm diagonal 70° tube, has been specially designed as a lowprice receiver, and for this reason has an all-valve circuit. As a result the set is relatively big for its screen size, and its power consumption is higher (360 W). The frequency characteristic of the whole vision channel is determined by a filter inserted before the vision i.f. amplifier, and as a result the characteristic of this i.f. amplifier does not have to be adjusted, so that tuning procedures are simplified in manufacture. In the luminance channel the frequency characteristic falls off rapidly above 3.6 MHz . In the chrominance section each frequency discriminator has
controls to set the zero-frequency position and adjust the frequency band between the two peaks of the characteristic: this allows good linearity to be obtained and simplifies adjustment during manufacture. Wherever possible cheap readily-available valves have been used to keep the price down. Sensitivity is relatively low at $200 \mu \mathrm{~V}$.

It will be noted that these receivers use the shadow-mask type of colour tube. This is understandable since the problems of manufacturing this kind of tube are now well understood and much experience has been gained with it all over the world. At the same time Professor Novakovsky mentioned that the U.S.S.R. has acquired a licence to make the new French grid tubet developed by C.F.T. (Compagnie Francaise de Television) and is about to set up a factory to produce it in quantity. This is part of the general Franco/Soviet agreements on technological exchange. In view of what is known about the state of development of this tube in France, however, it seems unlikely that the tube will appear in Russian colour receivers for some years.

It was clear from Professor Novakovsky's remarks that the techniques and problems of manufacture, testing and after-sales maintenance of colour receivers are much the same in the U.S.S.R. as in capitalist countries. The main difficulty, in a country where there is very little machinery for advertising and sales promotion, seems to be the purely commercial one of geting people to buy the product. In Professor Novakovsky's own words: "The manufacture of large numbers of colour television receivers raises the problem of selling them." It seems to be exactly the opposite problem to the one we have in Britain.
+Outlined in "French Rival to Shadow-mask Tube" W.W. May 1967, p.236. See p. 110 this issue.

Roubin-401, with 59 cm screen.
Radouga-4, with 59 cm screen.

New B.B.C. Monitoring Loudspeaker

3. Three designs, using different combinations of units

by H. D. Harwood* B.Sc.

As mentioned last month, three designs of loudspeaker were possible with the units available. Design A was similar to the type LS $5 / 1 \mathrm{~A}$ construction and employed the plastic cone 305 mm unit and two of the 58 mm units; type B used the 305 mm unit for the bass, the 200 mm unit for the middle frequencies and a single 58 mm improved unit for the high frequencies; type C was similar to type B but used the 110 mm unit for the middle-frequency range. As it was not possible to determine from a study of the units which would give the best reproduction it was decided to build a prototype of each and carry out final listening tests.

Type A Loudspeaker. The design of the type LS5 / 1 A will not be described in detail; it is sufficient to mention here that the lowfrequency unit is employed up to about 1.7 kHz , and above this frequency two high-frequency units operate in parallel up to approximately 3.5 kHz . Above this the output from one is attenuated, leaving one only to cover the remaining part of the spectrum. The response/frequency characteristic of the 305 mm plastic cone unit is smoother than that of the 380 mm cone used in the LS5 $/ 1 \mathrm{~A}$ and the design of the crossover network is therefore somewhat simpler; a 100 mm slit, described last month, was fitted over the front of the 305 mm unit. The response/frequency characteristics achieved are shown in Fig. 21 for the horizontal plane. The axial response is smooth but it will be observed that in spite of the 100 mm slit the response / frequency characteristic at 60° in Fig. 21 is not uniform and is rather like that of the LS $/ 1 \mathrm{~A}$ in this respect.

Type B Loudspeaker. In the type B design the 305 mm plastic-cone bass unit is employed up to a frequency of 400 Hz . Above this frequency the 200 mm middle-frequency unit operates up to 3.5 kHz where a change is made to the 58 mm improved unit. As already mentioned, the bass resonance frequency of the middle-frequency unit is about 50 Hz and it is necessary to enclose the rear to prevent it acting as a vent at low frequencies. In order to make use of the sensitivity of the middle- and high-frequency units the high-flux-density version of the low-frequency unit is employed. In this design the relative voltages applied to the units are adjusted by meagns of an auto-transformer placed ahead of the crossover networks; by this method the relative levels can be adjusted without having to change components in the crossover network as was the case with the LS5 $/ 1 \mathrm{~A}$. It also has the advantage that the nominal impedance of the loudspeaker can be adjusted to any convenient value to suit amplifiers commercially available. Fig. 22 shows the response /frequency characteristics in the horizontal plane and Figs. 23 and 24 those in the vertical plane above and below the axis. It will be observed that the curves in Fig. 22 are smooth and close together.

Type C Loudspeaker. This design is essentially similar to that of type B but employs the 110 mm diameter unit for the middle-frequency range. The lower crossover frequency in this case is about 450 Hz , the upper crossover frequency remaining at 3.5 kHz . As the middle-frequency unit has a bass resonance of about 400 Hz the mechanical
impedance at low frequencies is high and it is not necessary to enclose the rear. Owing to the lower sensitivity of this middle-frequency unit there is no advantage in employing the high-flux-density low-frequency unit and the lower-flux-density type is therefore used. As with the type B design, an auto-transformer is inserted ahead of the crossover network.

The response/frequency characteristics in the horizontal plane are shown in Fig, 25. It will be seen that the curves in Fig. 25 are smooth and except at the highest frequencies very nearly coincident.

Listening Tests

The three prototype loudspeakers were given a listening test and compared with a type LS5/1A and a still earlier experimental model known as the R.M.L. which was included because some observers considered it to be superior to the LS5 $/ 1 \mathrm{~A}$. The tests, which were carried out by experienced members of B.B.C. operational and programme staff, included speech from both dead and reverberant surroundings and recorded and live orchestral items, the latter from the B.B.C.'s Maida Vale 1 studio. For the live music test the loudspeakers were checked in turn in two rooms both of which communicate directly with the studio, and direct comparisons with the live programme were thus possible. The quality of reproduction of all three prototypes was judged an improvement on that from both the LS5/1A and the
*B.B.C. Research Departmenı.

Fig. 21. Response/frequency characteristics of type A loudspeaker in horizontal plane.

Fig. 22. (top), Fig. 23. (middle) and Fig. 24. (bottom). Response/frequency characteristics of type B loudspeaker in horizontal plane, vertical plane above axis and vertical plane below axis.

Fig. 25. Response/frequency characteristics of type C loudspeaker in horizontal plane.
R.M.L. It was further agreed by all that the sound quality from the type B loudspeaker was outstanding, being better than that from types A and C but that from the type C was very slightly coloured by the remains of the resonances around the 1.5 kHz region mentioned last month. The wide angle of radiation of type B in the horizontal plane was also favourably commented on.

In view of this verdict the remaining measurements were confined to the type B model. Two variations of this design have been constructed; one, designated LS5/5, is floor based with a rectangular cabinet mounted on a plinth; the other, designed for hanging, is lozenge shaped and is coded LS5 /6. In the LS5/6 the vertical positions of
the units are reversed with respect to those of the LS5/5, the bass unit being mounted uppermost, as in the LS5 /2A. This is done in order to keep the bass unit near to the main reflecting surface in the room, in this case the ceiling.

Repeatability in Production

Some experience of the repeatability of the low-frequency unit has been obtained and was described in reference No. 1 in the March issue. There has been considerable production experience with the 58 mm high-frequency unit. The 200 mm unit was, however, hand made specially for this proto-
type and there was no experience of its repeatability in production. To speed up acceptance tests a number of pre-production models of the LS5 $/ 5$ loudspeaker were built and advantage was taken of this to determine the spread in frequency characteristics likely to be obtained in practice.

Fig. 26 shows the spread in the unequalized axial frequency characteristic of six middle-frequency units measured in the cabinet without the rear enclosure; in the figure the curves were arbitrarily lined up at 750 Hz . It will be seen that the spread is very small over the operating frequency range of 400 Hz to 3.5 kHz .

Fig. 27 shows the spread in axial frequency characteristics of six complete loud-
speakers. It should be noted that the trend of the curves is more uniform and the spread is appreciably smaller than that to be expected in practice from moving-coil microphones and even from many electrostatic microphones. In the past, the monitoring loudspeakers have been the least predictable link in the studio chain, but with the introduction of these new loudspeakers this should no longer be so.

Directivity

The variation in mean spherical radiated power as a function of frequency was -measured by the use of octave bands of noise. It is shown in Fig. 28. The corresponding directivity index* is given in Fig. 29; the variations of both quantities with frequency are less than those of the LS5/1A and LS5/2A and very much less than those
*The directivity index of a loudspeaker is the logarithm to base 10 of the ratio of the sound power which would be ratiated if the free-space axial sound pressure were constant over 4π steradians to the actual sound power radiated.
found with any other loudspeaker which has been tested.

Impedance and Distortion Characteristics

Fig. 30 gives the circuit diagram of the cross-over network. The inductors in all cases have Radiometal cores and operate well below the saturation level. Fig. 31 shows the modulus of the impedance of the loudspeaker measured on the 25 -ohm tapping of the auto-transformer. In explanation of this curve it should be mentioned that, although the circuit of Fig. 30 appears to be conventional, in fact the L to C ratios employed are not such as to give simple low pass, band pass and high pass filters. These ratios are chosen to give non-uniform pass band characteristics in such a way as to equalize those of the loudspeaker units, e.g. Fig. 15 (b), and so yield a uniform axial frequency response. It is noteworthy that the equalization can be performed by this simple means and without introducing any further components; it does, however, result in the irregular impedance characteristics of Fig.
31. Adjustment for differing sensitivities of units in production is of course made by changing the appropriate tap on the autotransformer.

Early tests on the 305 mm unit indicated that it would deliver a higher level of sound without overloading than would the 380 mm unit employed for the LS5/1A loudspeaker. Fig. 32 shows the curves of harmonic distortion measured on the axis of the complete LS5 $/ 5$ loudspeaker at 1.5 m for a sound level of $1 \mathrm{~N} / \mathrm{m}^{2}$ and Fig. 33 gives the corresponding curves for intermodulation tests; these curves include the effect of the variable impedance load on the power amplifier, and were obtained by special apparatus ${ }^{1}$ designed for this purpose.
To those unaccustomed to such curves attention is drawn to three points. The first is that the curves, particularly of the . higher harmonics, are at least an order more irregular than is that of the fundamental. The second, which is related, is that although the mean level of the curves is fairly clear the average level of distortion cannot be obtained by measurements at spot frequencies. For example, at 83 Hz the level of 8 th harmonic is

Fig. 26. Spread in axial responselfrequency characteristics in six 200 mm units in large cabinet.

Fig. 27. (Above) Spread in axial response/frequency characteristics of six LS5/5 prototypes.

Fig. 28. (Left) Mean spherical response of LS5/5 loudspeaker measured in octave bands.

Fig. 29. (Left) Directivity index of LS5/5 loudspeaker measured in octave bands.

Fig. 30. (Left) Circuit diagram of crossover network of LS5/5 and LSS/6 loudspeakers. All component values are $\neq 2 \%$.

Fig. 31. (Above) Modulus of impedance of LS5/5 and LS5/6 loudspeakers.

Fig. 32. (Below) Harmonic distortion of LS5/5 loudspeaker measured at $1 \mathrm{~N} / \mathrm{m}^{2}$ at 1.5 m .

8 dB above that of the 6 th while 2 Hz farther up the scale the position is reversed to the extent that the 6th is 28 dB above the 8 th harmonic, a relative change of 36 dB in 2 Hz ! Finally, the levels of distortion shown are inaudible.

The level of the sixth intermodulation product was too low to measure. It will be seen that the distortion levels are quite low even at the lowest frequency at which each unit is used, thus indicating that they are being operated well within their limits. The distortion curves shown in Fig. 14 of reference No. 1 were taken on the type LS3/1 loudspeaker at the same sound pressure and comparison with Figs. 32 and 33 shows that the distortion levels of the new loudspeaker are appreciably lower than those of the old design in spite of the fact that this used a larger (380 mm) low-frequency unit.

Power Amplifier

A commercially produced transistor power amplifier is used, capable of supplying 25 watts into a 25 ohm load. Associated with it is a pre-amplifier, designed by the B.B.C, Designs Department, which provides the usual balanced bridging input impedance and also the bass pre-emphasis circuits, mentioned last month, which give a rise of 4 dB at 40 Hz for the $L S 5 / 5$ and 7 dB at 40 Hz for the LS5/6.

Fig. 33. (Right)
Intermodulation distortion of LS5/5 loudspeaker measured at $1 \mathrm{~N} / \mathrm{m}^{2}$ at 1.5 m .

Dimensions

The LS5 / 5 loudspeaker cabinet is approximately 350 mm wide by 430 mm deep by 660 mm high, giving an external volume of $0.1 \mathrm{~m}^{3}$. It is mounted on a plinth, 520 mm high, which houses the power amplifier. The LS5/6 cabinet is of irregular shape but has the same volume as that of the LS5 $/ 5$.

The weight of the LS5/5 loudspeaker together with the power amplifier is 47 kg , that of the LS5 / 6 without amplifier is 35 kg .

Acknowledgements. The author wishes to express his thanks to the Director of Engineering of the British Broadcasting Corporation for permission to publish this article.

Reference

1. "Apparatus for measurement of non-linear distortion as a continuous function of frequency" by H. D. Harwood. B.B.C. Engineering Monograph No. 49, July 1963.

The Human Computer

An examination of life processes in terms of communication theory

by J. R. Brinkley, FIIE.R.E

Modern genetic theory postulates that genetic information is passed from parent to child in the form of coded molecules. By similar precept it is reasonable to assume that environmental information received via the senses and the sensors for subsequent processing also has a molecular basis.

These precepts about human (and animal) information pose for the specialist in communication theory, and in particular for the communication systems analyst, certain challenging questions. The questions follow from the further assumption that the individual may be regarded as a computer or information processor, processing information with the object of survival, that is individual survival, group survival and overall species survival.

The first question is: what kind of information process is the individual carrying out?

The process must in detail be almost unimaginably complex, handling as it does millions of millions of "bits" of genetic and environmental information. The fact that vast quantities of information are processed does not necessarily mean, however, that the computer system is complex in principle.

I should like to suggest that the individual may be represented by the simple system diagram of Fig. 1.

The individual, represented by the circle, has two inputs and two outputs. G in represents genetic input, the information received by the child, at the time of conception, from its parents. G out is the information passed on in cell form to the subsequent generation. Genetic information in this definition includes growth and repair information, system operating information and instinctive behaviour patterns. It includes all information not learned by nor taught to the individual.

Environmental information may be defined on a similar basis as information received via the senses and body sensors and not inherited from parents.

J. R. Brinkley is executive director of the Radio Group of Standard Telephones and Cables. He received his early training at the Post Office Research Station. During the second world war he was seconded to the Home Office where he was responsible for many of the first mobile radio systems. He joined Pye Telecommunications Ltd. in 1948 and became Technical Director and Managing Director in 1956. Mr. Brinkley is a member of the P.M.C"s Frequency Advisory and Mobile Radio Advisory Committecs.

The analyst is now asked to accept that the individual has these two sources of information and no others. This does not preclude the acquisition of mystical or religious information but requires only that it should arrive via one of the two

Fig. 1. The individual represented in terms of its information processing functions. $G=$ genetic information, $E=$ environmental information, NLM $=$ non-linear mixer.
prescribed paths. The next question he has to answer is, what kind of process is performed inside the circle upon the two kinds of information? The answer would appear to be that the process is one which fits the general classification of non-linear and that the individual may be classified in communication terms as a non-linear information mixer.
In communication systems there are two general classifications of information mixer, the linear and the non-linear. Linear mixing is distortionless mixing as in a mirror or a high fidelity amplifier. The outputs are the simple addition of the inputs and no new products occur. It is, characteristically, a sterile process.

Non-linear mixing on the other hand is distorted mixing of the kind which takes place in a one-way conductor such as a diode or in an over-loaded transistor circuit or in a distorting amplifier. This kind of mixing is multiplicative and it is characterized by the appearance of new information products not present in the original inputs. It is important to note that these new products have a precisely defined harmonic relationship to the original parental frequencies which caused them to be generated.

Of the two kinds of mixer, the individual clearly belongs to the non-linear class. His outputs are not simple replicas of the inputs. If they were, no new information could result and the process would be sterile in the information sense. The individual may thus be described as a non-linear mixer of genetic and environmental information and as such may be expected to behave in the manner characteristic of non-linear mixers.

What are these characteristics? First the individual's behaviour will depend not just on the two sets of information
presented to him, but also on the characteristic and the degree of the non-linearity encountered at the interface between the two types of information where the mix takes place*. This non-linearity will not necessarily have a constant value and it may be characteristically different in different persons.

Second, for maximum output of new information (and the production of new information to solve the new problems that are continually arising must be a prime objective of the system) the characteristic behaviour of non-linear mixers suggests that the genetic and environmental information inputs should be equal. An excess of one type of information over the other (which may frequently exist) will be wasteful and will produce no new information. The implication of this characteristic should perhaps cause educationalists to reconsider their ways. For the sociologist, heredity and environment should be seen as of precisely equal importance to progress. The social, political and economic implications of this deduction may be formidable.

Third, the new information produced by the mixing process will have outward looking characteristics. It will tend to produce divergent rather than convergent behaviour. As an example of what is meant by divergence, when two musical notes are mixed in a non-linear mixer the new tone products do not lie between the two parent tones but above and below them. The pattern of distribution of these new products is shown in Fig. 2. Thus the non-linear mixing of the two sets of informa-

(a)

(b)

Fig. 2. Non-linear mixing of two units of information: (a) the two units of information before non-linear mixing; (b) after non-linear mixing, showing new divergent products at equally spaced intervals.
tion conveniently generates a supply of divergent new information which can be explored for the purposes of solving new problems. Put in another way, non-linearity will programme the individual to explore the outer limits (e.g. scale new heights) rather than the inner limits of his genetic and environmental inputs. Such an outward looking system will have important survival value since a purely inward looking programme would tend continuously to narrow the field of search, a trend which would have a dangerous bias towards over-specialization and which could fail to detect shifts in environmental situations.

Fourth, the new information will not be thrown up in a random manner differing in a random way from its parent information. It will be generated in a systematic way obeying harmonic laws and spaced at intervals equal to the difference between the two sets of input information. The individual would appear to be programmed not only to explore outer limits but to explore them in a systematic rather than a random fashion. This does not exclude the possibility of random factors or "noise" playing a significant part in the process but it would suggest that systematic exploration is its main characteristic.

It will not be difficult to accept that new environmental output in Fig. 1 results from the environmental input being modulated, i.e. non-linearly influenced by the genetic input from G in. It will immediately be asked, however, whether G out is influenced by E in. This is of course the hundred years old Darwin-Lamarck-Lysenkoe et al controversy, namely,

[^5]does our day-to-day experience influence the genetic information passed to our immediate offspring?

The communication analyst may perhaps make a contribution to this difficulty by saying what he would expect an effective survival-oriented processor to do. He would certainly not expect detailed environmental experience to be passed on genetically to the next generation, since much of it would be irrelevant and all of it would be some thirty years out of date. On the other hand, it would not be unreasonable to expect a measure of "appraisal" information to be passed on as to whether the many parts of the parent's programme had been found to be either efficient or defective. Such information would have to be "weighed" against the corresponding information presented by the other partner and the preceding hierarchies. It would certainly seem wrong to draw genetic information from all previous generations except the last. The matter would seem to the communications analyst to be one for critical analysis rather than for polarized controversy.

A further interesting suggestion may be made, namely that the strange effects of halucinogen drugs (e.g. LSD) could beaccounted for quite simply in terms of the non-linear mixing concept of Fig. 1. If the effect of these drugs is simply to reduce the individual's non-linearity then under their influence his environmental inputs would no longer be "distorted" by his genetic inputs. Sounds and colours could then be expected to become unusually clear and vivid. There would be no genetically generated inter-modulation products to distort or "fuzz" the perception. This is apparently a characteristic of one stage of such drug taking experience. The mixer might also be expected to become temporarily unstable due to the presence of the drug and the perception of dimensions could be expected to become distorted and variable because the normal transfer characteristics of the mixer would be upset.

The effect of moral detachment from and irresponsibility towards one's environment could also be accounted for by the "uncoupling" (linearization) of the individual's normally nonlinear coupling between genetic and environmental information. Lastly, the weird hallucinations experienced could simply be due to a breakdown of the mixer resulting in a random and meaningless confusion of genetic and environmental information. This "doping" of the mixer interface by LSD could well carry the risk of permanent deterioration of the individual's ability to process information.

The source of creative ability

Fascinatingly enough, the system diagram of Fig. 1 also offers a rational answer to the long standing mystery regarding the source of creative ability and its concentrated form, creative genius. Creativity may be defined as the generation of successful new information and if the system diagram of Fig. 1 is accepted then new information generation can only take place within the circle. On the face of it , it must be due to non-linear mixing of the information inputs. When it is remembered that the action of a highly non-linear mechanism tends to be stiff, awkward and somewhat unstable rather than smooth, regular and predictable it will become apparent that the commonly observed association of non-conformist behaviour and creative ability may well be due to the high degree of non-linearity present in individuals capable of major creative output. It is of course true to say that non-conformity or non-linearity by itself will not ensure successful innovation since it will only give rise to possibilities and not necessarily to correct solutions.

The laws of non-linear mixing may also be used as the basis for analysing the process of sexual conception, which may be represented as an information mixing process as in Fig. 3.

At the time of conception the male parent presents one set of information and the female a corresponding set. Once again the mixing process would appear to be a non-linear one. If it were
linear the child would receive twice as much information as required. No new information would be produced and evolution could not take place. If, however, the process is non-linear, then any two corresponding parental units of information representing a unit of detail required by the child will produce a divergent set of new products in the same way as the two musical notes of Fig. 2. Thus the inherent characteristics of non-linear mixing will in effect programme each new generation with a tendency to diverge genetically in a systematic rather than a random way. This surely is the correct answer to the enigma of the natural divergence of species, the enigma with which Fleeming Jenkins taunted Darwin, without solving the problem himself.

It is also interesting to note that the non-linear mixing concept of Fig. 3 may also be used to explain the phenomenon of genetic dominance. In a non-linear mixer a strong signal will

Fig. 3. Sexual conception. $G_{m}=$ male genetic information, $G_{f}=$ female genetic information, $G_{c}=$ information generating new child, $N L M=$ non-linear mixer.
weaken but not eliminate a weak signal. The effect is known in communication theory as capture effect in a hard limiter and demodulation in a soft limiter. This opens the way to the idea that genetic dominance is not random but systematic and in any event a more involved and elegant process than currently envisaged.

Non-linear mixing at conception will tend to suppress weaker information and noíse. This phenomenon can explain how the life force is able to defeat the second law of thermo-dynamics by suppressing the weaker signals and noise in the parental mix. The action is analogous to the regenerative non-linear repeaters which enable communication signals to be "cleaned up" at intervals and re-transmitted over indefinitely long distances. Without such non-linear processing the species would continuously accummulate noise. It would "age" progressively and eventually die out submerged in acquired noise.

It is interesting to note that non-linear mixing at conception will give each child a substantial quota of new information not

Fig. 4. System diagram for human behaviour. $G_{m}=$ maternal information, $G_{f}=$ paternal information, $G_{c}=$ genetic output to child, Ein $=$ environmental information input, Eout $=$ environmental information output, Gout $=$ genetic information output.
present in either parental chain. By the same token, since the child may be assumed to have approximately the same amount of information as any one parent, a substantial quota of parental information must also be "retired".

A more complete system diagram for human behaviour is shown in Fig. 4. In this diagram the two non-linear mixing processes are conjoined and a feedback error-correcting path is added to show the error-correcting process inherent in human survival behaviour. This, I suggest, is the basic communication system diagram from which human behaviour analysis should proceed.

Molecules of the life process

Up to this point I have attempted to describe the individual and the phenomenon of conception as information processes. Using the same approach it is interesting to consider the characteristics required of molecules if they are to act as the basic information carriers in such processes. Much brilliant work has been carried out in recent years with the DNA and RNA molecules to show how these molecules store genetic information. The molecules of the life process, must however, do much more than store information to make a living information system possible. As information processors they must in fact be versatile in the extreme.

In particular they must be able to receive information, both genetic and environmental, for storage and subsequent processing. They must re-transmit information substantially free from noise and presumably at the correct playback speed. The latter requirement is remarkable in itself since it should be remembered that while some of the genetic information "played back" by the individual was recorded one generation ago, the remainder goes back in stages millions of years to the origins of living matter.

The molecules must also be able to take part in a regeneration process to ensure that life information does not become progressively more noisy with time and they must be able to participate in an innovation process of the kind already described. Most remarkable of all, perhaps, they must be able to identify "wanted" as opposed to "unwanted" information and subsequently perform an information organization function, the end result of which is the successful creation and operation of a human being.

Perhaps the most challenging characteristic of these molecules to the communication engineer is, however, that the signals they process are comparatively low speed signals, complex waveforms no doubt, but requiring low frequency rather than high frequency oscillators for their synthesis and low frequency resonators for selection and noise exclusion. For example, the highest frequency received by the ear is 20 kHz . The voice does not transmit usefully much above 5 kHz . The eye achieves its great information capacity by paralleling great numbers of comparatively slow speed input channels.

Now molecules are made up of collections of atoms, and atoms in turn are made up of atomic particles, protons, neutrons and electrons. Experiments show that the frequencies associated with molecular and atomic vibrations are extremely high. These frequencies are many millions of times too high to be used directly in the synthesis and processing of the low frequency signals required for the life process. Yet the communication engineer is bound to ask, where do the low frequencies first appear and how are they generated? The problem is not eased by the fact that by his normal standards low frequency generators and resonators are physically large. Thus a 10 kHz radio aerial may be $50,000 \mathrm{ft}$ long. A 256 -hertz organ pipe is 1.1 ft long. Quartz resonators and $L C$ circuits, though smaller, are still substantial in size. The search for low frequency resonators to match in size his integrated micro-circuits is as yet unsuccessful. Yet nature
apparently knows how to process low frequencies using single molecules. Restating this point briefly, the individual atoms give rise, so far as is known, only to very high frequency oscillations, much too high for the life information process, yet when they are put together in molecular form the necessary precision low frequency characteristics suddenly appear. There would seem to be only two explanations of this apparent mystery. Either the new low frequencies are synthesized from the very high atomic frequencies or they have some other basis for which there is at present no explanation. Under such circumstances the possibility of a synthesis process should be examined.

Following this line, the first thing to note is that life is never produced by any single element. Significantly it needs a minimum of four kinds of atom in combination. Moreover, it is always the same four kinds of atom which are used. The four vital constituents are hydrogen, carbon, nitrogen and oxygen \dagger.

Now each of these four elements has its own electron shell structure. For example, the electrons in the outer shells are in the number sequence $1,2,3$ and 4 . Each atom will also have its own characteristic frequencies of radiation. Moreover, the atoms are bound together under strain which if it is to vary will vary in a non-linear manner. The living molecule may therefore be considered as a non-linear combination of the H , N, C and O atoms each with their own frequencies. The non-linear combination of multiple frequencies of this kind is in turn well known to the communication engineer as the basis of frequency synthesis.

Moreover, four oscillators in non-linear combination are known to have prodigious possibilities in terms of new frequency generation and will readily produce low frequencies down to and including if necessary zero frequency. Those of us who have designed receivers or transmitters with three oscillators will know only too well of their propensity to produce low frequency whistles. Receivers with four oscillators are eschewed because of the unavoidable proliferation of unwanted new frequencies.

Characteristics of atomic frequencies

Thus the possibility suggests itself that the life frequencies may be synthesized from atomic frequencies of $\mathrm{H}, \mathrm{C}, \mathrm{N}$ and O and a close examination of these atoms for suitable frequency characteristics is indicated.

The appropriate characteristics of the atomic frequencies required in such a system can be listed as follows:
(a) The body's processes are vitally concerned with or influenced by temperature. The atomic frequencies involved would be expected to vary from a mean frequency at blood heat over a range of perhaps a few kilohertz when ambient temperature varies from, say, $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, the temperature extremes in which life can be supported.
(b) Similarly, the ambient pressure range under which life can survive should also produce precise atomic frequency variations ("beats") in the low kilohertz range.

Both these characteristics call for atomic frequency stability of an extremely high order but not for "infinite" short term stability. The atom, in other words, would have to be minutely and accurately responsive in terms of frequency to its environmental temperature and pressure.
(c) For the systematic production of low frequencies it would seem preferable for the frequencies associated with the elements $\mathrm{H}, \mathrm{C}, \mathrm{N}$ and O to be in some simple mathematical relationship. The most suitable arrangement would perhaps be equal frequency spacing. More correctly it would be minute

[^6]divergence from a simple mathematical relationship which would generate the vital low frequency signals.

These suggestions may seem novel and perhaps strange to those not familiar with frequency synthesis processes. Yet either the low frequency signals of the life process are synthesized from atomic frequencies in this manner or in some like manner or their generation is an unexplained phenomenon.

If, on the other hand, it can be shown that the system is based on atomic oscillation and resonance then its extreme miniaturization and its long term stability could be readily explained.

To sum up

In conclusion, the main ideas being proposed by the writer are as follows:

1. Man has two separate and distinct sources of information, genetic and environmental, and no others.
2. The "system" diagrams of the life process are as shown in Figs. 1, 2, 3 and 4.
3. His survival process is based on mixing the information inputs and the key to the process is that the mixing is non-linear.
4. Non-linear mixing imparts characteristic patterns to all human behaviour.
5. It is non-linear mixing which generates all new information and imparts the hitherto unexplained outward-looking characteristics to the process.
6. Sexual reproduction is a further example of non-linear information mixing, and in this role non-linearity is a key mechanism in the human and animal evolutionary process.
7. Genetic and environmental information are of exactly equal importance to the generation of new information and hence to human progress.
8. If it is accepted that life information is carried by molecules, then the atoms $\mathrm{H}, \mathrm{C}, \mathrm{N}$ and O must be examined more closely to see how their molecular combinations provide for this phenomenon. In particular their ability to handle low frequency signals must be explained.

In a more general summing up, a new theory of human behaviour and the life process is proposed, which is based upon the non-linear mixing of the information streams involved. The theory provides an explanation, for the first time so far as I am aware, of how new information is generated. This could be of great importance since a recognition of the mechanism involved should enable the process to be fostered.

The new theory suggests, again I believe for the first time, that genetic and environmental information are of precisely equal importance to the progress of the human race. In this respect it will be ironic if the age-old debate which has occupied man's mind and energies for centuries and which has been the cause of bitter controversy and bloodshed, the argument of heritage versus education and training, can be resolved by a simple deduction based on communication theory. It is even more ironic, yet surely not altogether surprising, that the deduction appears to call for a perfect compromise.

More speculative, but perhaps equally important, is the proposition that the now widely accepted theory that molecules act as the carriers of living information suggests the need for a modification or a development of atomic theory. The modification is required to explain how atoms and molecules are able to generate and process with great precision and efficiency the low frequency signals which make up the life process. A possible modification of atomic theory to account for such processing has been put forward.

This contribution is a preliminary one from a more extensive work on the subject in course of preparation.

Radar Pulse Compression

The relationship between pulse length, bandwidth and range resolution.

by Brian A. Wyndham, M.I.E.R.E.

QUITE early in the history of radar, it was appreciated that if one wished to increase range resolution it would be necessary to reduce pulse length. It can be shown that for a matched filter

$$
\frac{S}{N_{\max }}=\frac{2 E}{N_{0}}
$$

where $S=$ max. instantaneous output signal power
$N=$ output noise power
$E=$ received signal energy
$N_{o}=$ noise spectral density
(watts/cycle/second)
By definition, a matched filter is one which maximizes the output peak-signal to meannoise power ratio. The relationship given above shows that the ability to detect signals in the presence of noise is a function of the received pulse energy and not on the shape or form of the signal.

For the simple pulse radar, the matched filter takes the form of a filter having a bandwidth approximately equal to (Pulse Length $)^{-1}$. The shorter the pulse is, the wider the bandwidth of the filter and, as a result, more noise appears at the output of the filter.

Because the shorter pulse has to compete with this extra noise in order to be detected, its peak power must be larger to overcome it. However, the pulse energy (Peak Power \times Pulse Length) remains unchanged if the required signal-to-noise ratio is the same. Since the maximum useful range of a radar is determined by a certain minimum signal-tonoise ratio, it follows that a short-pulse radar having the same maximum range as a longerpulse radar, also requires to radiate a higher
peak pulse power. This being the case, the ultimate practical limit is set by the peak power-handling capability of the transmitter output valve. In large radars, this is usually of the order of a few megawatts. Once the maximum range and the range resolution are specified then the peak power demanded of the transmitter can be determined. This may or may not be feasible according to the state of the technology.

The relationship between pulse length, bandwidth and range resolution allows us to infer that better range resolution is available if the bandwidth of the pulse is increased. The problem then is to increase the bandwidth of a relatively long pulse and in some way extract the extra range resolution information. Patents relating to such a system were awarded in both Britain and Germany in the 1940s, but the practical solution was found in the United States in the following decade.

The solution to the first part of the problem, that of increasing the bandwidth of a long pulse, is relatively easy to solve. One has only to sweep the frequency of the carrier over the required bandwidth during the duration of the pulse. The simple way of doing this is directly to modulate the frequency of the transmitter oscillator with a sawtooth waveform so as to generate a linear frequency sweep, either upwards or downwards. This is called active generation as opposed to passive generation, which presumes a knowledge of pulse compression techniques for its understanding and will be mentioned again later.

The second part of the problem, that of extracting the extra information from the increased bandwidth, is more difficult and

Fig. 1. A pulse whose carrier frequency increases linearly is sketched in (a) while the relation between pulse duration and frequency is shown at (b). The characteristic of a special circuit elepent which introduces a frequency-dependent time delay is depicted at (c).

is best understood by reference to Fig. 1 in which (a) and (b) show, diagrammatically, a pulse whose carrier frequency changes linearly during its period. Fig. 1(c) shows the frequency/time characteristic of a specially constructed circuit or device whose function is to introduce a time delay which is frequency dependent, in other words a dispersive network. This network is shown to introduce longer delays to low frequencies than it does to high frequencies. If, therefore, a signal having the characteristics of Fig. $1(\mathrm{~b})$ is fed to a network having characteristics like Fig. 1(c), the earlier and lower frequencies are kept waiting, so to speak, for the later and higher frequencies to catch up. If both signal and network functions are similar but in opposite directions (i.e., matched) all the frequency components of the input signal add in phase at the output of the network. It would appear, therefore, that all the frequency components of the input pulse of duration T, appear simultaneously at the output, implying an extremely short pulse. Actually, nothing can happen so instantaneously as the infinitely short pulse suggested by this simple concept, and for a complete picture one must examine the spectrum of the input pulse and calculate the effect of the network on it. Since the purpose of this article is to describe simply what pulse compression is and how it works it is not intended to delve deeply into the mathematics.

Supposing that the amplitude/frequency characteristic of the input pulse is rectangular (i.e., all frequencies within the pulse are of equal amplitude) then the pulse shape at the output of the network is given by the inverse Fourier Transform as shown in Fig. 2(a) and (b).

The envelope of this pulse shape tends to the form $(\sin \pi T \delta f) /(\pi T \delta f)$ as $T \delta f$ (pulse length \times frequency sweep) increases. The diagram shows that the pulse length at the output is $2 / \delta f$ between the first zeros, and such a pulse is shorter than the input pulse and pulse compression is achieved. In practice, the process of compression will take place in

Brian A. Wyndham is an experimental officer at the Royal Radar Establishment, Malvern, uhich he joined in 1953. His main field of interest is in radar receiving systems. Before joining R.R.E. he was a customs officer with the East Africa High Commission in Kenya.
either the r.f. or i.f. circuitry of the receiver, the input signals being the target echoes. The final detector of the receiver will then produce a video pulse having the envelope shape of the compressed pulse, as shown in Fig. 2 (c). For comparison, the shape of the original uncompressed pulse is also shown, and it is seen that the peak amplitude of the pulse has increased. Note also that the main pulse is accompanied by smaller ones, called range sidelobes.

The compression ratio can be expressed simply as ($T \delta f$) and the peak pulse power increases by the same factor, or since one usually examines the pulse voltage, a factor of $\sqrt{ } T \delta f$.
Having now produced a compressed pulse at the receiver output, it can be seen that two such pulses can be much closer together than the original longer pulses before they merge into one another. If, however, one of the pulses is of smaller amplitude, it may become confused with one of the range sidelobes flanking the main pulse. In practice, therefore, a shaping filter is incorporated to reduce the size of the sidelobes without affecting the main pulse too much. This shaping process is analogous to the technique of tapering the energy distribution across an aerial aperture in order to reduce sidelobe levels. For pulse compression, it is the energy distribution across the frequency spectrum which is tapered by means of a shaping filter. Just as the aerial beam-width is increased by energy tapering, so also is the compressed pulsewidth, but this is worth while in order that small targets can be seen close to larger ones. Fig. 3 shows how two targets, one large and one small, can be separated by pulse compression, whereas the original uncompressed pulses would have caused overlapping and confused signals.

Dispersive Networks

It will be appreciated that the nucleus of any pulse compression system lies in the dispersive element, this representing the matched filter referred to earlier.

For simplicity, it can be assumed that the frequency/time characteristic of the transmitted pulse is linear (i.e., linear f.m., sometimes called "Chirp"), while the amplitude remains constant. Dispersive delay lines matched to such a characteristic may take many forms.

Lumped constant networks comprising multisection $L C R$ transmission lines were among the first to be used successfully. ${ }^{1}$ Generally, these operate at tens of megaherz and can be made to work with compressionratios ($\boldsymbol{T} \delta f$), of up to 100 or so, a factor which determines the number of sections in the network. Parasitic elements and the greater losses incurred, tend to set an upper practical limit. ${ }^{2}$

Ultrasonic devices, operating at the receiver intermediate frequencies, have been exploited successfully, and dispersive systems have also been constructed for use in the $10-\mathrm{kHz}$ to $100-\mathrm{kHz}$ range, a region not of particular interest to the radar engineer.

Two types of disperser have been developed

Fig. 2. These diagrams show the input pulse spectrum at (a), the envelope of the output pulse at (b) and the shape of the output detected pulse at (c).
under this heading. One of these uses a grating arrangement of transducers on quartz. ${ }^{3}$ By using a wedge-shape quartz crystal and placing the arrays of contacts on opposite faces, an ultrasonic wave is caused to propagate between one face and the other. One array is fed with the frequency-swept i.f. pulse, the ultrasonic wave being received by the other set of contacts and passed on to the remainder of the receiver. The dispersive effect arises because the component frequencies are guided into that portion of the wedge whose thickness, and therefore the delay, is appropriate to the frequency. Frequencies requiring a longer delay are guided across the thicker portion of the wedge.

The other type of ultrasonic disperser is simpler in construction and comprises a long strip of metal. An ultrasonic wave is launched into the strip through a transducer placed at one end and received at the other with a second transducer. The cross-section of the strip may be either circular or rectangular, the effective velocity of propagation of waves in such a structure being a function of the frequency. ${ }^{4}$

High- and low-pass filters possess dispersive properties near their cut-off frequencies. The former type introduces less delay for the lower frequencies while the reverse is the case for the latter. A particularly interesting application of this effect may be exploited at microwave frequencies, rather than at intermediate frequencies. In this case, waveguide is used, but of somewhat smaller dimensions than normal for the frequency of the signals. Waveguides are used to support the transmission of microwave signals over a band determined by their cross-sectional dimensions. The upper frequency limit is fixed by the point at which higher-order modes may be propagated, corresponding to a wavelength equal to the broader dimension of rectangular waveguide. The lower-frequency limit, or cut-off frequency, occurs when the broad dimension is equal to a half wavelength. Normally, waveguides are used with signal frequencies well within these limits, and the propagation velocity varies but little over the useful band. It is in the region near to cut-off that the velocity changes rapidly with frequency and by using a waveguide size smaller than normal for a particular band of frequencies, a simple dispersive line is obtained. One such system employs 91.5 metres of No. 11 A waveguide, short-circuited to give an effective length of 183 metres, and compresses a pulse of 1.05 microseconds to one of 8 naneseconds centred at $2,725 \mathrm{MHz}$. This permits a resolution of 10 ft and is therefore capable of
separating the wings, propellers and tail plane of a single aircraft. ${ }^{\text {s }}$

Many other devices have been tried out and it is not possible, nor necessary, to refer to them all in an article of this nature which is intended only to give a broad outline of the potentialities.

The transmitted pulse may sweep up or down in frequency, but if the sweep slope is not matched to the disperser, then it may only be necessary to invert the signal by choosing the local-oscillator frequency, which may be lower or higher than the signal frequency. If the local oscillator is higher, then the i.f. signal sweep will have the reverse slope.

Passive Generation

Reference was made earlier to passive generation. It has been assumed until now that the transmitter carrier frequency has been swept by direct modulation of the oscillator. An alternative arrangement may be used in which a short pulse is applied to a dispersive line, whose output will be a longer frequencyswept pulse. This latter may be amplified to a higher power level and radiated as the transmitted pulse. On reception of the target echo, sideband inversion must be used to allow the same disperser or a similar one to be used to restore the short pulse. In case the reader feels this to be a pointless exercise, having started with a short pulse in the first place, it should be remembered that the reason for using pulse compression is to exploit the peak power capabilities of the transmitter, and more energy can be packed into the pulse if it is of longer duration at the transmitter output.

For passive generation it is essential that the disperser is linear. Sideband inversion is necessary at some point between the generation of the frequency-swept pulse and its reception and re-application to the disperser. If the

Fig. 3. Without pulse compression two radar targets produce a single confused pulse (a), but with compression two distinct echoes (b) can be seen.

disperser were not linear, the inverted signal would be unmatched since any non-linearity effect is also inverted. The waveguide disperser cannot therefore be applied to passive generation, since the rate at which the group delay increases rises rapidly as the cut-off frequency is approached. This non-linearity of the waveguide system does, of course, present a problem in the design of a suitable active-sweep system, but this can be overcome. ${ }^{5}$

Sub-Clutter Visibility

Up to now, only one aspect of pulse compression has been mentioned: that of improved range discrimination. There is another bonus which in some cases is more important, and this is the improved sub-clutter visibility.

Unlike an aircraft, rain is an extended target system which may be large enough to fill the entire beam width and deep enough in range to fill the equivalent pulse length. The radar pulse can be assumed to occupy a volume or resolution cell bounded laterally by the beam edges and longitudinally by the leading and trailing edges advancing in range at the velocity of propagation. A small isolated target in the path of this pulse will return an echo of basically identical characteristics, but extensive rain, consisting of large numbers of small scatterers returns an echo whose energy content is related to the volume occupied by the pulse. It is to be expected, then, that a short pulse will return less energy from the rain than the longer one. With pulse compression, a similar situation arises since the overall effect is that of a short-pulse system. The rain, which to the radar consists of large numbers of small closely spaced targets, is not resolved into individual targets even by pulse compression techniques and the signals retain their noiselike characteristics. Unlike the isolated
target, the mean level of a rain echo is not increased by the factor $\sqrt{T \delta} f$, so that the effective signal-to-clutter ratio is increased. This is shown in Fig. 4. The photographs were obtained by applying pulse compression to alternate pulses of a radar and the upper traces show the results on an A scope with, and the lower without, pulse compression. The uncompressed pulse length was $5 \mu \mathrm{sec}$ and the compression ratio was $25: 1$.

In conclusion, one should compare the performance of a pulse-compression radar with a simple radar having the same final pulse width.

Owing to the presence of range sidelobes, better range resolution is obtained with the simple radar. The use of a shaping filter in the pulse-compression receiver reduces the signal-to-noise ratio as well as deteriorating the range accuracy. The wideband nature of the transmitted pulse, which must be swept in frequency in an accurately controlled manner, forbids the use of a fixed-frequency magnetron, and a high power klystron must be used instead. Furthermore, the complexity of a pulse-compression radar places it at a disadvantage compared with the conventional short-pulse radar. However, where ultimate range performance is required with improved resolution, accuracy and good sub-clutter visibility, pulse compression is a most useful technique.

I would like to thank my colleagues at R.R.E. for their assistance in providing material for this article and to Mr. K. F. Slater for his helpful suggestion during its preparation.

References

${ }^{1}$ Klauder, Price, Darlington and Albensheim, "The Theory and Design of Chirp Radars", B.S.T.7., Vol. 39, pp. 745-808, July 1960.

Fig. 4. With and without pulse compression; the upper pair are of a snowstorm approaching a group of targets and the lower pair taken 10 minutes later, are with the storm over the same area as the target. (Crown copyright).
${ }^{2}$ Brandon, P. S., "The Design Methods for Lumpconstant Dispersive Networks suitable for Pulse Compression Radar", Marconi Review, No. 159, 4th Quarter 1965.
${ }^{3}$ W. S. Mortley, "Pulse Compression by Dispersive Gratings in Crystal Quartz", Marconi Review, No. 159, 1965.
${ }^{4}$ J. C. May, Physical Acoustics, Vol. 1, Part A, pp. 417-483 (edited by W. P. Mason).
${ }^{5}$ R. A. Bromley and B. E. Callan, "Use of a Waveguide Dispersive Line in an F.M. Pulse-Compression System", Proc. I.E.E., Vol. 114, No. 9, September 1967.

Holographic Store

A high-density storage system which employs alkali-halide crystals as the storage medium and holography as the means of storing and retrieving data was described by Gabor U. Kalman of Carson Laboratories, Connecticut, at a recent I.E.E.E. convention in New York. Apparently alkali-halide crystals can be made photo-sensitive in a high-temperature diffusion process that creates local photon absorbing irregularities in the crystal which are called colour centres. In a potassium bromide crystal (KBr), for example, a representative colour centre would be formed by replacing a Br ion with an electron in the lattice structure enabling this portion of the crystal to absorb a photon at red wavelength. In doing this the crystal becomes transparent and, thereby, records information. The potential of this technique may be realized when it is stated that it is possible to create 10^{18} colour centres in a typical crystal. If the crystal is now illuminated from an ultraviolet source it returns to its original state and the process may be repeated. The main disadvantage encountered so far, results from the relatively low sensitivity of the crystal to light, however, this can be overcome by using high-power light sources such as lasers.

To read in information a thick treated crystal is placed in the interference pattern or holograph, produced by a reference and information laser beam. The hologram will be recorded three-dimensionally in the crystal by changes in the colour centres. A large number of independently recoverable holograms can be stored in the same volume of the crystal by rotating the crystal between successive exposures. Over 100 holograms have been stored in a single crystal in this manner.

To retrieve information from the crystal the hologram can be read out from a narrow angular range centred round the incident angle of the reference beam. A thick crystal stored hologram can be reconstructed, in a typical case, a few minutes of arc on either side of the reference angle.

In practical experiments a 2×2 inch crystal has been used to store hundreds of documents by dividing the crystal up in a mosaic fashion. The technique has also been used with colour holography and a full colour image has been stored and retrieved from a crystal using the methods outlined.

Public Address Show 1968

Wide range of modern p.a. systems and ancillary equipment shown at the A.P.A.E. exhibition

Held as usual at the King's Head Hotel, Harrow-on-the-Hill, Middlesex, for three days, March 12-14, the 20th International Public Address Exhibition, organized by the Association of Public Address Engineers, attracted entries from several European countries, Japan and the United States, as well as from most leading makers of p.a. equipment in the U.K.

In the larger rack and panel type installation, Shure Electronics demonstrated an audio level controller which they call "LevelLoc". It is basically a low-noise unity gain pre-amplifier with input and output matching functions, with the additional capability of reducing its gain as the input signal increases. This maintains the output signal reasonably constant and permits the speaker greater freedom of movement when using the microphone. It also removes the effect of "popping p's" from speech, although under demonstration conditions, the long recovery time-constant robbed the listener of the following word or two. Under very low signal conditions, the gain is nearly unity, but with a large applied signal a reduction approaching 100 times may be obtained, without introducing significant distortion. The degree of reduction is determined by the input signal itself. A distance selector switch, calibrated to show the distance from the microphone at which gain reduction becomes effective, determines the input level at which reduction commences. High and low input and output impedances are provided.

The trend towards smaller physical size of p.a. equipments, coupled with their smaller appetities for operating power without cost to the available output, has resulted in a big increase in systems shown under the general heading of portable p.a. intended for outdoor or indoor use and not requiring special transport. In most cases they could be run from a car electrical system and they ranged from equipment which requires a small tripod support, through the shoulder-strap carrying type to the megaphone type. Worthy of mention is the smallest of these, the Japanese TOA CA-500, shown by Audio \& Design. This little 12 V amplifier is capable of delivering a $10-\mathrm{W}$ rated output while measuring only about $3 \times 2 \times 6$ inches and weighing 2.2 lb . It can be run either from an external $10-16 \mathrm{~V}$ source or from an optional snap-on battery pack which takes eight U2 cells. A matching hand microphone and loudspeaker are available. A portable system
shown by Fi-Cord International comprised a microphone, amplifier and loudspeaker in a container carried like a briefcase.

There were signs that the public address engineer would increasingly be expected to carry more ancillary equipment to cover field events. On the one hand, there was a range of low vollage fluorescent lighting equipment shown by C.T.H. Electronics, and on the other a display of sports timing devices and digital clocks by Hird-Brown who specialize in this type of equipment and who were exhibiting for the first time this year. Special timers were shown for sporting events including a battery operated timer to actuate stop-watches automatically and print-out timers operated by photo-cells.

A new application for p.a. equipment was seen in the form of under-water communication equipment by Partech International. This equipment allows direct conversation to take place between a diver and his base boat. Sound from the boat unit transducer, which is submerged over the side, can be picked up at distances up to

400 ft . by a receiver unit worn by the diver. A transmitter element carried by the diver permits two-way communication. The underwater transducers used in the equipment were developed by Goodmans Loudspeakers.

The familiar Acos sound level meter shown by Cosmocord can now be extended in range by the addition of an external amplifier module which enables sound pressure levels of $35-120 \mathrm{~dB}$ to be investigated. Also available is a self-contained calibrator unit which enables the sound level meter to be calibrated, with accuracy over the temperature range -10 to $+60^{\circ} \mathrm{C}$. Calibration level is 87 dB . The calibrator unit is designed to screw on to the ineter, thus providing a fully enclosed cavity connection. The background music theme of last year's show was continued by the appearance of a number of new continuous tape cassette machines typified ty the Philips music player LGC 2000, shown by Peto Scott.

Full use was made of the advantages offered by transistor circuitry to develop compact units, and integrated amplifiers were much in evidence with the mixer, pre-amplifier, power output and speaker selection stages housed in a single case. In this category were the C.T.H. Electronics MA25, MA50 and MA100 models, the Vortexion CP50, Ultra Electronics TA10, and a $100-\mathrm{W}$ model by S.N.S. Communications.

In an exhibition which was totally concerned, one way or another, with sound reinforcement, it came as a surprise to find one exhibitor, Amplivox, proclaiming the benefits of wearing a pair of earplugs which formed part of their show. These they called "car defenders", and the makers claim that while they reduce the general noise level to $1 / 1,000$ part of its original intensity, the wearer is not prevented from conversing or from hearing warning signals.

A selection of integrated radio microphone transmitters shown by Audac.

Shure M62 "Level-Loc" audio level controller.

Hird-Brown high speed electronic timer.

Philips model LGC 2000 cassette loaded music player.

Relay-semiconductor Control Circuits

How semiconductors are used in conjunction with electromechanical relays or even as substitutes for them

by T. D. Towers*, M.B.E., M.A.

Broadly, a relay is an electrical switch whose load contacts are actuated by an armature controlled by a coil electromagnet, with the control voltage applied across the coil. Relays are available for both d.c. or a.c. operation. Coil control voltages usually range between about 1 V and 250 V , with a preference for $6,12,24,48,110$ and 240 V , although there are relays that operate as low as 25 mV . Drive coils may have resistances from a few ohms up to $50 \mathrm{k} \Omega$, and inductances from a few mH up to 50 H . The resistance and inductance tend to be related with a coil L / R time constant between 1 and 10 ms . Operating powers usually range from a few mW to 20 W . The actual mechanism may take many forms from the simple P.O. type of relay where the switch points are actuated by a separate armature to the modern reed relay where the armature itself is in the switch contact.
For non-inductive loads, light current relay contacts commonly handle up to 5 A up to about 30 V . Above 30 V , particularly with d.c. switching, the contact ratings must be reduced. For inductive loads, ratings are always much less than for non inductive. Empirical derating rules you can use are: (a) for contacts rated at a current I_{M} for 30 V non-inductive switching, reduce the rating for higher voltages, V, to $I_{M}(1-V / 500)$, and (b) for inductive loads, take only a quarter of the non-inductive ratings.

Relay Contact Protection

When the switch in an inductive circuit is opened, the magnetic field in the coil collapses and a voltage is generated equal to $L d i / d t$, where L is the inductance and $d i / d t$ the time rate of change of current decay. Across the switch contacts this voltage transient is added to the load rail voltage. If not suppressed, it tends to lead to pitting and unreliable operation.

Standard electronic textbooks will give you details of C and R networks often used to reduce switching transients across opening contacts. Semiconductors too can be used for spike suppression. In Fig. 1(a) a germanium or silicon diode is fitted across the load with polarity as indicated . . . "pointing to

[^7]

Fig. 1. Relay switching transient suppression circuits: (a) Load contactsdiode across load. (b) Diode protecting drive coil control switch. (c) Transistor spike suppressor.
positive". When the high positive voltage spike starts to appear across the load on switch off, the diode forward-biases as soon as the spike voltage exceeds the positive rail voltage and thereafter clips the spike. The reverse voltage rating of the diode is unimportant, so long as it is greater than the rail voltage. As to the current rating, my own generous rule is to select a diode with a peak current rating of not less than 25 times the relay "on" current. Sometimes a varistor (voltage dependent resistor) such as one of the S.T.C. CZ series or the Mullard E299DD series is used instead of the diode. The varistor should have a $20{ }^{\circ} \mathrm{C}$ resistance greater than 10 times the load resistance at the relay drive voltage.

To protect the relay coil control switch contacts, a diode can equally be used as shown in Fig. 1(b), just as for the load contacts. Note again the diode "points to positive". The main disadvantage of this form of diode suppressor is that it tends to lengthen the release time of the relay.

A further refinement is a transistor cir-
cuit of the type shown in Fig. 1(c) across the actuating switch of a 12 V relay. With no suppression circuit across the switch, reverse spikes of about 600 V occurred. A $0.25 \mu \mathrm{~F}$ capacitor across the points reduced these to about 300 V , while the transistor circuit shown cut them down to about 25 V . In this arrangement, when the points are opened, the capacitor (discharged while the points were closed) holds the BFY50 silicon n-p-n transistor hard on until it has charged ip sufficiently through the transistor base-emitter diode and the $1 \mathrm{k} \Omega$ resistor to cut the transistor off completely. This is equivalent to the points opening slowly so that $d i / d t$ is small and the $L d i / d t$ voltage spike is also small.

Relay-driver Linear Amplifiers

Transistor linear amplifiers are in common use to operate a high-current relay from a low current signal source. Fig. 2(a) shows the basic arrangement. When switch S is open, no base current is available to the transistor, $T r$, and it is cut off. As a result, no current passes through the relay coil. When S is closed, the current supply from the control voltage $V_{B B}$ via the resistor R_{B} drives the transistor hard on, so that it becomes a virtual short-circuit connecting the lower end of the relay coil to the negative rail. This causes the relay to pull in. One refinement often used is to make S a changeover switch (as shown dotted) so that it connects the base of the transistor to the negative rail in the off position. This is usually done if the equipment is likely to work in high ambient temperatures, where the leakage currents with the base open circuit are liable to become excessive, particularly with germanium transistors.
More sensitive control of the relay is achieved by adding additional transistor amplifier stages. Fig. 2(b) shows an arrangement in which, when no input signal is applied, the 2N1304 Tr is cut off and the BFY50 $T r_{2}$ is switched hard on, pulling the relay in. When a positive voltage of about 0.5 V with a current demand of about $40 \mu \mathrm{~A}$ is applied to the input, the 2 N 1304 saturates and the BFY 50 cuts off, allowing the relay to fall out. The driver transistor is made a germanium one whose bottoming voltage ("on" collector-to-emitter voltage) is considerably lower than the forward base-

Fig. 2. Relay driver linear amplifiers: (a) Single stage. (b) Two-stage inverting. (c) Two-stage non-inverting (d) Three stage non-inverting.

Fig. 3. Relay-driver regenerative amplifiers: (a) Single-stage Schmitt trigger. (b) Single-stage bistable. (c) Multistage Schmitt with preamplifier. (d) SCR control of relay.
emitter operating voltage of the BFY50 silicon transistor.

Fig. 2(c) shows another two-stage linear transistor amplifier operating a relay, but this time the circuit is non-inverting. When the ORP12 cadmium sulphide light cell is not illuminated, it has a very high resistance and practically no base current is supplied to the 2 N 1307 . The output ACY20 transistor is held cut off, and the relay is not pulled in. When the ORP12 is illuminated, base cur-
rent is supplied to the 2 N 1307 , which in turn drives on the ACY 20 and operates the relay. The purpose of the variable resistance network from the base of the ACY20 to +1.5 V is to adjust the threshold voltage for the particular ORP12 being used. It also ensures that under high-temperature conditions the ACY20 does not pass sufficient leakage current when cut off to operate the relay spuriously.

A single-power-supply, three-stage, linear
d.c. relay-driving amplifier is shown in Fig. $2(\mathrm{~d})$. The relay comes on when the ORP12 is illuminated. The $50 \mathrm{k} \Omega$ linear potentiometer permits adjustment of the relay operating threshold. Although the circuit diagram shows the circuit operated by an ORP12 light cell, equally well it could be controlled by a mechanical switch in series with a resistance in the light cell position and passing only microamps. In the non-operating state, all the transistors are turned off and the current consumption is negligible, so that the circuit is well suited to dry battery operation.

Relay-driver Regenerative Amplifiers

The linear relay-driver amplifiers described above suffer from the failing that the threshold signal which pulls the relay in can vary with temperature, and also can hold the relay for some time hovering between on and off, i.e. "chattering". It is therefore, common to use a regenerative amplifier to drive the relay. Then the operation is a positive snap action with the relay either on or off.

Fig. 3(a) shows a Schmitt trigger with the relay coil as the load of the right hand transistor, Tr_{z} So long as the input level is less than 6 V , the left hand transistor is cut off and the right hand transistor is turned full on, with the relay pulled in. When the input signal exceeds about $6 \mathrm{~V}, \operatorname{Tr}_{1}$ is driven rapidly into conduction and Tr_{2} cut off, so that the relay falls out with certainty. The 50 k potentiometer is used for precise setting of the threshold operating point.

Another regenerative amplifier system that is used is illustrated in Fig. 3(b), where the relay coil forms the load of one side of an Eccles Jordan bistable multivibrator. The Eccles Jordan is a fairly conventional design, except for the $C R$ network connected from the 12 V rail to the base of $T r_{1}$. This is included to ensure that, when the power supply is first switched on, $T r_{1}$ is driven hard on and $T r_{2}$ cut off, with the result that the relay is not pulled in. A positive signal on the "reset" terminal to the base of $T r_{2}$ drives the relay sharply on, and a positive signal on the "set" terminal to the base of Tr_{1} cuts it off.

For higher power relays, it is usually necessary to add a buffer power stage between the regenerative circuit and the relay. Fig. 3(c) illustrates a typical arrangement. Here the Schmitt trigger $\left(\operatorname{Tr}_{\mathrm{p}} \operatorname{Tr} r_{2}\right)$ is coupled to the output power transistor, Tr_{3} via a 12 V Zener diode. When a negative control signal of sufficient amplitude is applied to the input, $T r_{1}$ turns on and $T r_{2}$ off. Current then passes through the 330 ohm Tr_{2} collector load resistor and the Zener diode into the base of Tr_{3} and drives the power transistor hard on, thus operating the relay. As the bottoming voltage of the NKT401 at 1.5 A is less than 0.5 V and the free-air dissipation of this power transistor is not less than 1 W , the transistor can be operated without a heat sink. However, if it is to work at high ambient temperatures inside equipment, it should be mounted on a two inct square of $16 \mathrm{~s} . \mathrm{w} . g$. aluminium.

Another form of regenerative relay driver commonly uses a thyristor or s.c.r., for which a basic circuit is shown in Fig. 3(d).

Initially S_{1} and S_{2} are both open, and, as no trigger potential is supplied to the gate of the thyristor, it is cut off and no current passes through the relay coil. If now S_{1} is closed, a positive voltage is applied to the gate via resistor R and turns the thyristor on. In its "on" condition, the thyristor is a virtual short circuit and current flows to operate the relay coil. If now S_{1} is opened, the thyristor will continue to conduct, but C charges up virtually to rail potential. Subsequently closing S_{2} applies a negative pulse to the anode of the thyristor and cuts it off. For cutting off the thyristor, an alternative to S_{2} is to connect a transistor from its anode to cathode as shown dotted in Fig. 3(d). If a positive switch-off voltage is applied to the base of this transistor, the device bottoms and reduces the voltage across the thyristor below its hold voltage with the result that it switches off. The relay falls out then when the transistor base control voltage is removed.

Fig. 4. Relay time-delay circuits: (a) Thermistor-controlled slow-on/fast-off. (b) Thermistor fast-on/slow-off. (c) Transistorcontrolled slow-on/fast-off. (d) Transistor fast-on/slow-off. (e) Very slow-on u.j.t. relay control circuit ($40 \mathrm{sec} \pm 1 \mathrm{sec}$, from $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$).

(b)

(c)

(e)

Relay Time-delay Circuits

Semiconductors are in common use for providing time-delay periods in the operation of electromagnetic relays. One simple way to delay the "on" switching time of a relay is to place a thermistor (negative temperature coefficient resistor) in series with the coil as shown in Fig. 4(a). When the switch S is closed, the thermistor has initially a high resistance, but, as it heats up, its resistance reduces until the current through the coil is sufficient to pull the relay in. The variable resistance $R V$ may be included to enable some variation of the delay time. The series thermistor should have a resistance at room temperature of about three to five times thi relay resistance. The Mullard VA series of thermistors is suited to this application. For example, the VA 1070 with a cold resistance of about 400 ohms dropping to 25 ohms at 300 mA can be used with conventional 12 V , 80 mA relays.

The arrangement of Fig. $\psi(\mathrm{a})$ gives slow turn on and fast turn off. For fast turn on and slow turn off, a shunt thermistor can be used as in Fig. 4(b). Again the thermistor should have a cold resistance three to five times the relay coil resistance.

A transistor circuit to give slow-on, fastoff relay operation is shown in Fig. 4(c), Switch S is normally closed, earthing the base of the transistor and cutting it off, so that the relay is not pulled in. When S is opened, capacitor C begins to charge up with a time constant approximately $C(R+R V)$ via the resistance string from the h.t. rail, until the potential on the base of the transistor is sufficient to turn it on. Thus the relay turn on is delayed. Now when switch S is closed again, the capacitor C discharges instantly and the transistor Tr is turned off extremely sharply.

Fig. 4(d) shows a rearrangement of the elements of Fig. 4 (c) to give a circuit with a fast-on and slow-off time. Switch S is normally open and the capacitor blocks off any current to the transistor base, so that no collector current flows to operate the relay. When S is closed, the capacitor discharges and base current through the resistance string from h.t. turns the transistor full on so that the relay pulls in sharply. When S is re-opened, the capacitor continues to supply base current until it is charged up via the resistor network thus giving a slow turn-off action.

Many nore refined variants of these arrangements are possible, such as the very slow turn-on circuit given in Fig. 4(e). Normally switch S is open and all the capacitors are discharged. When S is closed, C_{1} charges up through R_{1} with a long time constant until the potential on the emitter of the unijunction transistor, $T r_{1}$, rises above its firing potential. At this the unijunction becomes low resistance and applies a firing pulse to the gate of the thyristor $\operatorname{Tr}_{\mathrm{r}}$. The thyristor then turns on and switches operating current into the relay coil. When S is opened again, the thyristor supply voltage is removed, so it ceases to conduct and the relay falls out. This circuit has been used to provide a 40 second operating delay (± 1 second) in a relay over the range of $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

Fig. 5. Close-differential-operation relay drivers: (a) Single-stage transistor/Zener. (b) Two-stage f.e.t./transistor.

Close-differential Operation Relay Drivers

Many of the relay driver circuits given earlier have the limitation that the control signal operation point is uncertain and may have considerable backlash, i.e. the relay may not fall out until the control voltage is well below the pull in voltage. One way to get close-differential-operation, i.e. with the fall-out signal level close to the pull-in level, is to design the Schmitt trigger circuits used in Figs. 3(a) and (c) to have very small hysteresis or backlash. The easiest way to do this is to replace the common emitter resistor of Schmitt with a Zener diode of the same voltage as the common emitters reach when the relay is pulled in.

An interesting circuit giving closedifferential operation is given in Fig. 5(a). Here, as the input signal is increased negatively, no base current flows in the transistor until $V_{i n}$ is greater than the 10 V breakdown voltage of the 1N701 Zener diode plus the base-emitter forward voltage drop required for the NKT401 to come on (which is about $0.3-0.5 \mathrm{~V}$). Thus, when $V_{i n}$ reaches about 11 V the power transistor turns full on and its collector current operates the $12 \mathrm{~V}, 1.5 \mathrm{~A}$ relay. The 1 N 4001 silicon diode across the base-emitter of the NKT401 prevents overdriving the output transistor. Up to 0.6 V on the transistor base, the diode does not conduct significantly, but above that level it begins to do so and shunts excess current away from the base of the transistor. Because of the sharp breakdown characteristics of the Zener diode the fall-out signal voltage of this circuit is within a few hundred mV of the pull-in voltage.

Fig. 5(b) illustrates the use of a p-channel enhancement-mode m.o.s.f.e.f. with a threshold voltage of about 5 V to give closedifferential operation of a relay. When $V_{\text {in }}$ is greater than 6 V , the Zener diode conducts through the $2 \mathrm{k} \Omega$ resistor to the positive rail, but so long as the input voltage is less than 11 V , the voltage drop across the resistor is less than 5 V and the m.o.s.f.e.t. does not

So doesn't it make sense to go a bundle on them?

And that goes for all your connecting problems - not just electronic, but mechanical and electrical as well. Our sort of ingenuity knows no bounds and accordingly, our range stops at nothing!

Go a bundle on it and you'll be helping yourself to the best connections in the business.

You can't do better than that now, can you?
the firm with the best connections

UNITEO-CARRGROUP
Stapleford, Nottingham.
Telephone: Sandiacre 2661
Sales Offices: Wembley,
Birmingham, Sale, Glasgow
the company that has produced so many outstanding cable accessories now makes its greatest contribution yet to efficiency and cost saving with the extension of the Tyton systems.

Many companies have proved for themselves that the low cost components and the speed of binding of the Tyton System cuts produc-
 tion costs. Tyton is quick and easy to use and so versatile - you can bind any size of cable loom without adjusting the tool - that it supersedes every other method of permanently binding cables and wires.
These Hellermann Tyton Systems are the most advanced available anywhere in the world to-day- don't delay get full details now!

World leaders in cable accessories
HELLERMANN ELECTRIC LIMITED
conduct. So long as the m.o.s.f.e.t. is not conducting the 2 N 1613 transistor is cut off and the relay is not operated. When the input voltage is greater than 11 V , the m.o.s.f.e.t. gate voltage rises above 5 V and it conducts. The current in the $5 \mathrm{k} \Omega$ variable drain resistance then takes the base voltage of the 2N1613 transistor positive and turns the relay on. For $V_{i n}$ smaller than 11 V , the relay is non-operative, and for $V_{i n}$ greater then 12 V the pull in action is certain. By cascading a second f.e.t. after the first, it has been possible to reduce the difference between turn-on and turn-off to 0.1 V .

A.C. Relay Drive Circuits

You can adapt any d.c. relay to work from a.c. by combining it with rectifier diodes. In Fig. 6(a) the series diode D_{1} permits only positive current to pass through the relay and cuts off on negative half cycles. It should have a current carrying capacity several times the operating current of the relay. The clamp diode D_{2} shown is optional and is the surge suppression diode discussed earlier. In this case it not only protects the switch contacts, but also prevents excessive reverse voltage being applied to the series diode D_{1} on switch off.

Another arrangement of diodes used for a.c. driving of a d.c. relay is shown in Fig. 6(b). Here four diodes are used in a fullwave bridge.

Where it is desired to operate a true a.c. relay other than by a mechanical switch, it is common nowadays to use a thyristor in some circuit such as Fig. 6(c). When switcł S_{1} is open, the s.c.r. has no trigger potential applied to its gate, and it is non-conducting. Meanwhile current passing through the transformer T is rectified by diode D and builds up a smoothed d.c. voltage at the top

Fig. 6. A.C. relay drive circuits: (a) Operating d.c. relay on a.c. with single diode. (b) Operating d.c. relay on a.c. with diode bridge. (c) Thyristor drive of a.c. relay.

(c)

Fig. 7. "Static" (non-mechanical) relay substitutes: (a) Basic blocking oscillator control. (b) Simple practical circuit. (c) Highly sensitive overload-protected static relay input circuit.
of capacitor C. If now S_{1} is closed a positive potential is applied to the gate of the s.c.r. and turns it on. So long as S_{1} is held closed, the s.c.r. remains conducting. When S_{1} is opened, the s.c.r. cuts off when the a.c. line volts next change from positive to negative, and the relay drops out, and stays inoperative.

Static Relays

A static relay differs from a static switch in that there must be isolation between the control and load circuits, and on /off snap action must occur. So far, the design of static relays using only transistor circuits has required the inclusion of an oscillator. Fig. 7(a) is typical. In this, a blocking oscillator is arranged so that it oscillates on the application of a d.c. control signal. The output from an isolated tertiary winding on the blocking oscillator transformer is then rectified and used to turn on a transistor switch.

Fig. 7(b) shows one version of the static relay where an input of 3 mA at 10 V causes the blocking oscillator, $T r_{1}$ to fire at about $10 \mathrm{kc} / \mathrm{s}$. The secondary output is rectified by D_{3} and smoothed by C_{2} and turns $T r_{2}$ and $T r_{3}$ on to switch current through the load resistor $R_{L^{\prime}}$ from the 28 V load supply. The 9 V Zener diode D_{2} together with the forward base-emitter voltage drop of the silicon
transistor, $T r_{1}$ ensures that the relay does not come into operation until the 10 V d.c. is applied to the input. The Zener D_{1} ensures that input overloads are bypassed.

In the circuits of Fig. 7(b), the collector voltage for the blocking oscillator transistor, $T r_{1}$, must be supplied from the signal source. If the collector voltage for $\operatorname{Tr} r_{1}$ could be supplied separately and an extra stage of amplification introduced, a much more sensitive relay would result. Such a circuit is shown in Fig. 7(c). Here an extra stage of transistor amplification, $T r_{0}$, is introduced before the blocking oscillator. Overload protection is now not by Zener diode but by a forward-biased silicon diode D_{1} backed off by a potentiometer R_{2}, R_{3} across the 10 V rail. This 10 V d.c. rail supply to the blocking oscillator is provided by a d.c./d.c. converter from the 28 V load supply voltage. The circuit of Fig. 7(c) can be designed to operate on a 0.7 V input signal.

If you are intersted in more detail of the design of static semiconductor relays you should consult "Static Relays for Electronic Circuits" by R. F. Blake, Chapman and Hall Ltd., London. Anyone interested in examining electromagnetic relay characteristics and circuits should consult standard reference works such as "Telephony" by J. Atkinson, Pitman, London and "Connectors, Relays and Switches" by G. W. A. Dummer and N. E. Hyde, Pitman, London. He will also find much useful information in such books as "Electronic Apparatus for Biological Research" by P. E. K. Donaldson, Butterworth, London.

May Conferences and Exhibitions

Further details are abtainable from the addresses in parentheses

LONDON

May 13-18
Olympia
Instruments, Electronics and Automation Show
(Industrial Exhibitions, 9 Argyll St., London W.1)
May 14-16
I.E.E., Savoy Pl.

Automation for Productivity
(I.E.E., Savoy PI., London W.C.2)

May 20-25
Royal Lancaster Hotel
Communication-Satellite Earth Stations
(R.E.G. Back, P.O. Engineering Dept., WS2, 207 Old St., London E.C.1)
May 25
Hotel Russell
Professional Audio Exhibition \& Symposium
(Assoc. of Professional Recording Studios,
47 Wattendon Rd., Kenley, Surrey)
HARWELL
May 9 \& 10
A.E.R.E.

Low Energy Electron Diffraction
(I.P.P.S., 47 Belgrave Sq., London W.1)

OVERSEAS

May 6 \& 7
Washington

Human Factors in Electronics

(H.P. Birmingham, Code 5630B, Naval Research

Lab., Washington, D.C. 20390)
May 8-10
Washington
Electronic Components Conference
(I.E.E.E., 345 E. 47 th St., New York, N.Y. 10017)

May $14-17$
Miami
Quantum Electronics Conference
(W.W. Rigrod, Bell Telephone Labs., Murray Hill, N.J.)

May 20-22
Detroit
International Microwave Symposium
(Dr. G. I. Haddad, Electrical Engineering Dept.,
University of Michigan, Ann Arbor, Michigan 48104)

I.E.A. Exhibition

Olympia, London, May 13-18, 10 a.m. to 6 p.m. Admission $5 s$.

Stand	d Number
AB Bofors	G 60
A. B. Electronic Components	G 57
$A B$ Engineering $C o$.	E 634
AB Nordquist \& Berg	G 60
AEG (Great Britain)	N 167
AEI Automation	G 49
AIM Electronics	G 354
A. K. Fans	G 23
A.P. Electronics	G 60
A.P.T. Electronic Industries	G 315
Acbars	N 192A
Accles \& Pollock	N 163
Adams \& Westlake Co.	G 324
Addo	G 339
Advanced Products Co	N 407
Advanced Transducer System	G 61
Aertech	E 622
Air Control Installations	E 614
Airmec	G 51
Airtech	N 429
Aladdin Components	N 479
Alfred Electronics	N 460
Allied International Co.	N 184
Allspeeds	N 428
Alma Components	G 347
Alroy Microwave \& Electronics	E 622
Amphenol	N 166
Anacon Inc.	N 178
Analytical Measurements	N 472
Andrew Antenna Systems	E 630
Anelex Corp.	N 178
Antenna \& Radome Res Assoc.	E 622
App. Professional Radioelectrique	G 60
Appliance Components	G 361
Applied Microwave Lab. Inc,	E 622
Aristo-Werke	N 167
Arkon Instruments	G 102
Arrow Electric Switches	G 310
Assmann. F. W. \& Sohne	G 385
Associated Electrical Industries	G 49
Assoc. Nazionale ind. Elettrotechnich	che E 542
Astralux Dynamics	N 474
Aumann. Willy, KG	E 247
Auriema G 43 \&	\& G 380
Austin, Charles. Pumps	G 302
Automated Printed Circuits	G 25
Automatic Control Engineering	E 549
Automatic Punched Tape	G 311
Automatic Systems Laboratories	E 608
Autonetics \& Co.	N 442
Autronic Developments	N 181
Avery, W. \& T.	G 97
Aviation Activities	E 263
Avo	G 35
Axion Corp.	E 611
BICC-Burndy	G 74
B \& K Laboratories	N 184
British Manufactured Bearings	N 433
B \& R Relays	G 324
BTU Engineering Corp.	N 178
Bailey Meters \& Controis	E 265
Baird \& Tatlock	E 511
Bakelite Xylonite	E 529
Barbie Engineering	N 481
Barden Corporation	G 363
Barnes Engineering Co.	N 178
Barr \& Stroud	G 362
Barringer Research	G 61
Bass. John	N 436
Bedco	G 59
Bell \& Howell	G 78
Belling \& Lee	G 52
Benedict \& Jager	G 324
Benson-Lehner	G 10
Beulah Electronics	G 13
Bishop Instrument	E 259
Blackburn Instruments	G 25
Blakeborough, J. \& Sons	G 44
Bogen. Wolfgang. G.m.b.H.	E 247
Bonnella, D. H. \& Son	G 320
Bourns (Trimpot)	N 447

Dale Electronics	0
Dana Laboratories	
Dana Laboratories	G 90
ansk Incustri Syndikat A/S	E 552
ta Laboratories	E 554
Datwyler A.G.	N 182
Davu Wire \& Cables	E 272
Dawe Instruments	G 326
Day-Impex	E 522
Daystrom	N 418
Degussa Hanau	G 300
Deita Controls	E 512
Delviliem (London)	N 469
Derritron	N 423
Deuta-Werke G.m.b.H.	G 342
Deutsche Export-und Import	G 69
Devices Sales	E 273
Di/An Control Inc.	E 528
Diamond H Controls	E 506
Digital Equipment Corp. (U.K.)	E 555
Digital Systems inc.	N 178
Digital Systems	E 521
Digitizer Techniques	G 336A
Disc Instruments inc.	N 178
Dominitwerke G.m.b.H.	G 345
Dranetz Engineering Labs.	E 612
Draper, B. \& Son	G 24
Drayton Controls	G 41
Dr. Durrwachter Doduco KG	G 309
Dresser Europe S.A.	G 107
Du Pont Co. (United Kingdom)	E 623
Dubilier Condenser Co.	G 365
Dukes \& Briggs Eng.	G 329
Dunfermline Corporation	E 548
Dymar Electronics	G 304
Dynamco	G 82
Dytronics Inc.	N 460
ECCO	E 550
EFEN, Firma	G 385
E.I.-NIS	G 60
EMC Group of Companies	E 263
EPEC Industries Inc.	N 178
ERO-Tantal G.m.b.H.	G 354
East Grinstead Electronic Comps.	s. G 323
Edicron	G 83
Eddystone Radio	N 169
Efco	E 260
Ekco Electronics	G 72
Elcom (Northampton)	G 80
Electrautom	E 528
Electricity Council, EDA Div.	E 538
Electro-Chemical Engineering	E 260
Electro/Data Inc.	E 622
Electroglas Inc.	E 611
Electro-Inductors	G 60
Electro Mechanisms	G 12
Electrolube	G 371
Electronic Applications Corp.	E 259
Electronic Associates	E 254
Electronic Components	E 550
Electronic Control Corp.	E 259
Electronic Development Corp.	E 528
Electronic Flo-Meters	G 346
Electronic Instruments	G 62
Electronic Space Products Inc.	E 528
Electronic Swwitchgear	N 413
Electrosil	G 26
Electrons Inc.	E 259
Electroprints	G 80
Electro-Rohren GmbH	G 385
Eiectrosyn Technology Labs.	N 178
Electrothermal Engineering	E 271
Electrovac	G 309
Elekon	E 528
Elesta Britec	G 373
Eletronica Veneta S N.C.	E 542
Elgenco Inc.	E 259
Elliott Automation	G 64
Ellis Optical Co.	E 263
Eltromet	G 47
Emerson \& Cuming (U. K.)	E 646
Endress + Hauser G.m.b.H.	G 329
Engineering Enterprises	N 438
English Electric Co	N 172
English Electric Valve Co.	G 111
English Glass Co.	E 637
English Numbering Machines	N 165
Enraf-Nonius	N 435
Environmental Equipments	E267A
Epak Associates	E 611
Epsylon Industries	G 100
Erba Carlo S.p.A.	E 643
Erem S.A.	E 528
Erg Industrial Corp.	G 384
Erie Electronics	G 32
Ether	G 72
Eurogauge Co.	N 456
Europa Engineering Co.	E 647
Eurotherm	N 408
Eurotherm (Eurotima Div.)	E 648
Ever Ready Co .	E 505
Evershed \& Vignoles	G 47
Facit-Odhner Electronics	G 356
Fairchild Instrumentation	E 629
Fairev Surveys	E 639
Farnell Instruments	E 262
Farris Engineering Feedback	G 64 G 352

Feinmechanische Werstand
Fenlow Electronics
Fenlow Electronics
Fernseh G.m.b.H.
Fernsteuergerate Ohg
Ferranti
Ferritronics
Fielden Electronics
Fife County Councis
Filhol, J. P
Fine Tubes
Finnish Cable Work
Finnish Fair Corp.
Fisher-Governor Co.
Fiskars, OY AB, Electronics
Fisons Scientific Apparatus Flight Refuelling Fiuid Equipment Co
Fluke Manufacturing Co. Inc Formica
Foster Instrument Co.
Foster, W. \& J.
Foxall, T. \& Sons
Foxall, T. \& Sons
Foxboro Yoxall
Frako G.m.b.H
Fry, John
Fry's Metals
nd Number

G 324
 G 324

G 307
E 247
N 459
G 67
G 61
G 47
E 548
G 94
G 98
N 424
E 266
G 64
E 266
E 266
N 190
N 190
N 449
N 481
N 178
E 252
E 515
N 441
N 462
G 28
G 385
E 620
G 335
G.E.C.-A.E.I. (Electronics) G $33 \& G 49$
G.K.N. Screws \& Fasteners G 103

Garcia, S.
Garcia, S
E 620A
General Electric Co. U.S.A. N 178
General Instrument U.K. E 503
General Post Office G 328
General Test Instruments E 267 A
$\begin{array}{ll}\text { Gerber Scientific Inst. Co. } & \text { E } 600 \\ \text { Gesellschaft Fuer Elektrotechnik } & \text { E } 247\end{array}$
Geselischaft Fuer Elektrotechnik E 247
Glenrothes Development Corp E 548
Gordos Development Corp
E 548
G 324
Gore W \& Associates E 540
Gow-Mac Instrument Co. (Ireland) E 550
Granger Associates
Graphic Displays
Greenpar Engineering E 528
Gresham Lion Electronics \quad G 532
Gudebrod Bros. Silk Co. Inc N 407
Guest Electronics
Guildine Instruments
$\begin{array}{ll}\text { Gulton Industries (Britain) } & \text { G } 106 \\ \text { Gult. } & \text { E } 528\end{array}$

Haddon Companies E 545
Haddon, Thomas, \& Stokes G 103
Hallam. Sleigh \& Cheston \quad N 168
Harrison, Clark
Hassett \& Harper
Hatfield Instruments N 188
Hawker Siddeley Dynamics E 535
$\begin{array}{ll}\text { Hawthorn Baker } & \text { E 644A } \\ \text { Hayes Furnace Equipment } & \text { E } 528\end{array}$
Hellermann Electric G 21
Helmut Fischer G.m.b.H. G 343
Helmut Schlegel K.G. N 183
Hendrey Relays
Hengstler, J. Co
Hesto (Henkels-Stocko
Hewlett-Packard
Heywood Temple Industrial Pubs.
Highland Electronics
Hird-Brown
Hoffmann. J. H. (G.B.)
Hokuyo Automatic Co.
Honeywell Controls
Houchin
Huber, J. J.
Hugh, James Instruments
Hunt, A. H. (Capacitors)
Hyltern Controls
Hymatic Engineering Co.
BM United Kingdom
Cl Mond Division
I.E.E.
I.E.E.T.E.

IMAC Corp.
M.O. (Electronics)

Ide. T. \& W.
liffe Technical Publications
mhof, Alfred
Impectron
mperial Typewriter Co.
mperial Chemical Industries N 470
Imperial Smelting Corp E 55
mport Export Maching
Indata
Industrial Control Systems
ndustrial Staff
ndust-ri-chem Laboratory Inc.
Information Displays Inc.
Information Handiing
Ingenieur Digest
nstitute Dr. Ing. R. Straumann
insuloid Manufacturing Co
Intek Charts
Intercole Systems

G 54
G 322
N 406
N 406
G 63
G 350
G 350
G 105
G 105
N 424
N 424
E 514
E 514
N 459
N 459
E 604
G 381
E 638
G 32
E 513
E 616
N 183
N 183
E 551
E 633
$N 443$
N 443
N 178
N 178
E 244
E 244
G 112
G 112
E 246
E 246
G 301
G 43
E 551
E 546
N 483
N 478
G61
E 651
E 528
E 528
E 654
N 414
N 414
E 259
E 612
E 612
G 21
G 21
N 445
E 642

Stand Number		Stand Number		Stand Number	Stand Number	
Intercontinental Instruments Inc.	E 259	others	G 325	Raychem N 467	TEM. Sales	G 348
Intermeasure	G 25	Motorola Semiconductors	G 50	Record Electrical Co. G 47	T. R.G. inc.	E 259
International Electronics	G 306	Muirhead Instruments	G 61	Recording Designs E 533	Tally Corp.	G 311
Int. Eng. Concessionaires	N 417	Muidivo	E 547	Rectrics E 528	Taylor Electrical Instruments	G 35
Int. General Electric Co	N 174	Mullard	N 185	Redifon-Astrodata E 517	Taylor Instrument Companies	G 45
International Instruments Inc	N 430	Multitone Electric Co.	E 516	Redpoint E 544	Techna (Sates)	G 382
International Light Inc	E 259	Murex	G 109	Reliance Gear Co. G 337	Technical Encapsulations	G 336A
Intertherm Iskra Kran」	E 628	Mycalex \& T.I.M.	N 470	Republic Electronics Corp. G 345	Technical Products Co.	E 267A
	G 60 ,			Resco (M.P.C.) G 110A	Technical Representations	N 434
		NSF	G 340	Research Council, The N 420	Techniques Mondiales	N 414
Jautz, Karl, G.m.b.H.	G 385	Nalder Brothers \& Thompson	G 96	Research \& Industrial Insts. E 534	Technograph \& Telegraph	G 359
Jermyn Industries	N 174	Nash \& Harrison	G 61	Research Instruments G 89	Technology. Ministry of	N 171
Jonker Corp.	N 178	National Provincial Bank	N 450	Research Instruments Co. Inc. E 611	Tecnica Elettronica System	E 542
Joseph Electronics	G 309	National Semiconductor	E 602	Resista G.m.b. H. G 345	Tectonic	G 314
Jutie Research Laboratories	N 178	National Semiconductors	N 424	Resistances G 347	Tekelec-Airtronic	G 60
		Neles Oy	E 266	Reutlinger. Dr. \& Sohne E 247	Tektronix U.K.	G 70
K. D.G. Instruments	N 173	Neison-Ross Electronics Inc.	E 612	Richmond Hill Laboratories G 61	Telectron	E 550
K.G.M. Electronics	N 175	Neofiex	G 385	Rivlin Instruments G 25	Telequipment	G 70
K. \& M. Electrical Appliances	N 485	New England Instrument Co.	E 528	Roband Electronics E 251	Telerelay (Sales)	N 400
K. \& N. Electronics	G 383	Newport Instruments	N 181	Roberts Electronics E622	Telonic łndustries UK	N 480
K.S.M. Electronics	N 482	Nitine	E 550	Robinson, F. C. \& Partners G 32	Telsec instruments	N 466
Kalle Controls (GB)	N 458	Norbatrol Electronics Corp.	N 178	Rocke International Corp. N 178	Tempilo Corp.	N 178
Kandem Electrical	N 183A	Nore Electric Co.	E 622	Rosemount Engineering Co. N 455	Tenney Engineering Inc.	E267A
Keithley Instruments Inc.	N 178	Norgren, C.A.	G 11	Ross \& Catherall G 370	Teradyne Inc.	N 178
Kelk. George	G 61	Normalair-Garrett	E 601	Ross. Courtney \& Co. G 336	Terminal Radio Internationa	N 178
Kenbar Electrical Co.	E 260	Norton International Inc.	N 178	Rotameter Manufacturing Co. G64	Thermal Syndicate	G 316
Kennedy Co .	N 178	Norron (Eberle Kohier)	G 385	Rotron Manufacturing Co. G 43 \& G 380	Thermionic Products	G 51
Kent. George	G 47	Nuclear Enterprises	E 609	Royal Worcester Ind. Ceramics E 617	Thermo-Electric International	N 444
Kerry's (Ultrasonics)	E 500	Nutec Electronics	N 182	Royce-Thermo E 260	Thorn AEI Radio Valves \& Tubes	G 30
Keyswitch Relays	N 412			Rueger, S. A. E 638	Thorn-Bendix	G 48
Kinetrol	N 405	Oliver Pell Control	G 333	Russenberger, S.A. G60	Thousand \& One Lamps	G 24A
Kirkcaldy Corp.	E 548	Omega Laboratories	N 184	Rycom instruments N 460	3 M Co .	E 653
Kistier Instrumente AG	N 451	Omron	E 244		Time Sharing	E 636
Klippon Electricals	N 454	Optical Works	G 18	SASCO G 317	Tinsley. H. \& Co.	G 318
Kodak	G 110	Optimized Devices Inc.	E 612	SGS-Fairchild G 75	Toolex Precision Equipment	E 641
KOVO Foreign Trade Corp.	G 83	Orba. Alexander	N 407	SK Instruments N 403	Topper Cases	G 378
Kumag AG	E 247	Outokumpu Oy	E 266	SP Elettronica S.p.A. N 404	Tothill Press	E 507
Kynmore Engineering Co.	E 520	Oxley Developments Co.	G 335A	Sage Laboratories Inc. E 622	Toyota Central Res. \& Dev. Labs.	267A
	20	Oy Fima	E 266	Sagem G 311	Transistor Automation Corp.	E 528
L. \& R. Manufacturing Co.	N 178	Oy Labbko AB	E 266	Salford Electrical Insts. G 33	Transitron Electronic	G 334
LSM Controls	G 66	Oy Nokia Ab, Elektronikka	E 266	Sanken Electric Co. G 87	Trumeter co.	N 189
Lambda Electronics	E 256			Sangamo Electric Co. N 178	Trygon Electronics Inc.	E 259
Lan-Electronics	E 627	P.C.D.	N 471	Sangamo Weston G 27	Turner Electrical Instruments	N 192
Landis \& Gyr	G 355	P. \& H. Engineering Co .	G 331	Saunders Electronics E 508	20th Century Electronics	G 22
Leach Relais und Elektronik	G 312	P.M.D. Chemicals	G 343	Saunders, N. Metal Products N 473	Twickenham Transformers	336A
Lectropon	G 303	PRD Electronics Inc.	E 622	Savage \& Parsons E644	Tylors	E 603
Leeds Meter Co.	G 47	P.S.B. Instruments	G 372	Schmersal. K. A.. \& Co. G 56		
Leeds \& Northrup	E 253	Packard Instrument	G 14	Schuemann, Heinrich E 247	U. K. Atomic Energy Authority	G 53
Leland Leroux	N 430	Painton \& Co .	G 80	Schutte \& Koerting Co. N 459	Ulitra Electronics (Components)	G 58A
Lemo S.A.	N 182	Palmer Aero Products	G 308	Sealectro E 267	Uitronix Inc.	E 528
Levell Electranics	E 257	Palmer, G. A. Stanley	G 345	Semikron Rectifiers \& Electronics G 16	Unachm della Start S p.A.	E 542
Levermore, A. \& Co.	G 95	Panax Equipment	E 263	Sencom N 422	Unicorn Panels	E 621
Light Laboratories	E 518	Pape KG	N 167	Sensitised Coatings E626	Unimax Switch	G 361
Lindor International Corp.	N 178	Papst-Mororen KG	G 380	Serck Controls G 40	Union Apparatebaugesellschaft	E 643
Lindsey, C. S.	G 369	Parmeko	E 249	Service Electric Co. G 374	Union Carbide U.K.	G 321
Linton \& Hirst	E 544	Partridge Wilson \& Co .	N 439	Servo Consultants N 191	Unit Data	E 647
Lionmount \& Co .	N 481	Pedoka	N 411	Servo-Contact N 430	United Trade Press	G 377
Lippke. Paul, KG	N 421	Penco Co.	N 476	Servomex Controls E 525	Unitek Corp.	E 528
Litton Precision Products	N 463	Penny \& Giles	E 632	Shackman. D. \& Sons G 379	Universal Control Equipment	N 459
Lloyds Bank	G 101	Perena	G 60	Shaw Publishing Co. G 36	Universal Voltronics Corp.	E 622
Luft Instruments Inc.	N 178	Perfection Pars	N 184	Showa Measuring instruments Co. E 267A		
Lucas, Joseph	E 258	Pergamon Press	E 631	Siegert. Dipl--tng. Ludwig N 182	Vactrić Control Equipment	G 17
Lund Brothers \& Co.	E 502	Perivale Controls Co.	G 56	Siemens E 247	Vacwell Engineering Co.	E 263
Lyons, Claude	E 259	Perkin-Elmer	G 46	Siemens AG G 324	Valmet O_{Y}	E 266
		Permanoid	G 92	Sierra Electronics N 178	Varelco	G 81
M.B. Metals	G 330	Permark Service	G 93	Sifam Electrical Instrument G 42	Varian Associates	N 177
M.C.P. Electronics	G 360	Philbrick/Nexus Research	N 178	Simmonds Relays G 324	Varian Data Machines	N 178
M.L. Industrial Products	N 461	Photain Controls	G 87	Simplifix Couplings G 91	Veco Zeefplatenfabriek $\mathrm{N}, ~$ V	E 655
M-O Valve Co.	G 33	Photoelectronics (Arcall)	G 88	Sims-Worms International N 178	Vectron Laboratories	G 60
McMichael	G 33	Picard. Henri \& Frere	G 357	Singer Co. E 612	Veeco Instruments	E 256
McKettrick-Agnew Co.	E 619	Pictorial Machinery	E 269	Sivers Lab N 427	Veeder-Root	G 353
Magnetic Devices	G 81	Pignone Sud. S.p.A.	G 79	Skan. H. V. G 313	Velonex Div. of Pulse Eng.	E 612
Maier, Karl	G 385	Pilkington Perkin-Elmer	G 46	Sloan Instruments Corp. E 611	Venner Electronics	N 193
Maihak. H., A.G.	G 349	Planer. G.V.	N 416	Smail. Sons \& Co. G 349	Vero Electronics	G 319
Maine-Lea	E626	Plannair	G 99	Small Power Machine Co. E 527	Versa N.V.	G 324
Mallory Batteries	G 85	Plasmoulds	N 464	Smart \& Brown (Connectors) G 57	Vibration Instruments Co.	E 267A
Manex Technical Services	E 644	Platon, G. A.	N 176	Smith Medley Instruments E 638	Vickers loco	E 504
Marconi \& Elliott Microelectronics	E 255	Plessey Co.	G 31	Smiths Industries E 501 \& G 351	Victoreen Inc.	N 178
Marconi Co.	N 172	Poddy, Paul	E 606	Societa' Eletrronica Lombarda E 542	Vision Engineering	G 107A
Markem (U.K.)	G 358	Polarizers (United Kingdom)	E 640	Sola Basic International N 178		
Markovits, I.	G 20	Polaron Equipment	N 469	Solatron Electronic Group N 187	W.H.S. (Pathfinder)	E 260
Marston Excelsior	E 551	Potter Instrument Co. Inc.	N 426	Solidev E 615	Wadsworth, Leonard \& Co.	G 95
Mast Development Co.	E 267 A	Praxis ${ }^{\text {Prexious }}$ Metal Depositors	E 621	South London Electrical Equip. E 250	Wallac Oy	E 266
Materials Data	E 654	Precious Metal Depositors	G 343	Southern Instruments	Wandel \& Gotermann (U.K.)	G 71
May Precision Components	G 47	Precision Electronics Comp.	G 61	Sovirel N 453	Watanabe Instruments Corp.	E 267A
Measurement Research	E 267A	Precision Instrument (U.K.) Precision Products \& Controls	N 419 N 176	$\begin{array}{ll}\text { Spear Engineering Co. } & \text { G } 376 \\ \text { Spectra-Physics Inc. }\end{array}$	Wateriow Automation Services	E 514
Mec-Test	G 327	Precision Products \& Controls	N 176	Spectra-Physics Inc. E 259	Watesta Electronics	E 261
Mercantile Credit Co.	N 457	Precision Produkter A.B.	G 345	Spembly Technical Products E 519	Watkins Johnson	N 460
Metrimpex	E 610	Precision Themometer \& Inst. Co.	E643	Sperry Rand Corp. E622	Waycom	G 84
Metronex, Polish Foreign Trade	E 510	Precision Tool \& Instrument Co.	G 19	Speytec	Wayne Kerr Co.	G 37
Meyer, Wm. A	E 607	Prestel S.r.L. ${ }^{\text {Prem }}$ \& Reprition	E 542	Sprague Electric (U.K.) N 446	Weidmueller, C. A.	N 454
Micro Tech. Mfg. Inc.	N 178	Premier Screw \& Repetition Co.	G 103	Spyri AG Standard	Weinschel Engineering Co.	N 172
Microlab/FXR	N 460	Printed Motors	G 359	Standard Telephone \& Cables N 186	Welwyn Electric	G 305
Micromanipulator Co.	E 528	Pye Switches	N 486	Startronic G 336A	West Instrument Div. Gulton Ind.	G 106
Microwave Products Group	E 622	Pye Telecommunications	G 72	Steatite Insulations E 541	Westinghouse Electric Int. S.A.	G 78A
Midland Bank	E 248	Pye, W. G. \& Co.	E 643A	Stocko Metallwarenfabriken N 406	Westminster Bank	G 332
Mills \& Rockleys (Electronics)	N 415	Pyrofilm Resistor Co. Inc.	E 528	Stow Electronics Group Stow Laboratories Inc.	Westool	N 432
Milletron Inc.	N 424			Stow Laboratories Inc. G 336A	Westrex Co.	N 487
Millivac Instruments Inc.	E 259	Qualitrol Instruments	N 437	Sullivan, H. W. G62	Wetzer. Hermann. Vertrieb	G 108
Milton Ross Co.	G 375	Quantum Engineering	E 612	Superheater Co.	Weyfringe	N 470
Mimic Diagrams \& Electronics	E 549	Quickdraw Co.	G 104		Whiteley Electrical Radio Co.	G 77
Miniature Bearings	N 417			$\begin{array}{lll}\text { Surrey Steel Components } & & \text { N } 409 \\ \text { Svenska-Diamant Bergborrings AB } \\ \text { E } 259\end{array}$	Wire Products \& Machine Design	N 431
Miniature Electronic Components Minimotor S.A. (Switzerland)	G 3278	RCA Great Britain	$\begin{array}{r} \text { G } 65 \\ \mathrm{~N} \quad 178 \end{array}$	$\begin{array}{lr}\text { Svenska-Diamant Bergborrings AB E } 259 \\ \text { Svenska Hogtalare Fabriken AB } & \text { G } 60\end{array}$	Witte \& Sutor Kondensatoren	G 309
Minimotor S.A. (Switzerland) Mining \& Chemical Products	G 324 G 360	RFL Industries Inc. R O Associates Inc.	$\begin{gathered} \text { N } 178 \\ \text { E } 612 \end{gathered}$	Svenska Hogtalare Fabriken AB G 60 Symonds, R, H. 407	Worthington Controls Co.	E 625
Model \& Prototype Systems	G 338	Racal Electronics	G 39	Systems \& Components E 643	Yellow Springs Instrument Co. Inc.	N 178
Mohawk Data Sciences Corp.	N 178	Radiall Microwave Components	E 650			
Montford Instruments	N 477	Radiatron	N 164	TEAC Corp. E 267A	Zeal, G. H.	
Moore Reed \& Co	E 635	Radiometer A/S	N 184	TEC G 345	Zenith Watch Manufacturing	N 441

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

How Important is Detection?

The one disadvantage of Dr. Macario's otherwise admirable"'homodyne detector"described in the April issue, is that it fails at the very time when it is most needed; that is, when the carrier level is very low. The synchrodyne, on the other hand, provides a locally regenerated carrier of constant level, but, as Dr. Macario observes, it is subject to phase errors which may cause distortion.

There would seem to be some scope for improvement by means of a system which behaves as a homodyne (in Dr. Macario's sense) when the carrier level is adequate but as a synchrodyne when the level drops. This would minimize noise breakthrough and distortion. My grounds for believing this are as follows. If the oscillator in a synchrodyne were exactly in phase with the incoming carrier then the synchronizing signal could be removed without upsetting the system. No practical oscillator has the required stability, of course, but two important points follow. First, the more stable the local oscillation the less synchronizing signal is needed. Secondly, if the synchronizing signal is removed, the local oscillation does not immediately slip out of phase. A perfectly stable oscillator has, by definition, an infinite "memory" for phase. A practical oscillator has some degree of phase memory, depending on how nearly correct its tuning is. It follows that if a synchronized oscillator is placed after the limiting amplifier in Dr. Macario's circuit it will tend to fill in the gaps of carrier during deep troughs of modulation or fading. The Schmitt trigger will always operate at approximately the correct instants.

Two refinements to this proposal suggest themselves. First, since the oscillator is not required for most of the time, and is a potential cause of phase errors, it would be useful to arrange that when the incoming carrier is strong the tuned circuit is heavily damped. Secondly, since the oscillator's only function in this circuit is to provide phase memory (unlike the synchrodyne, where it has to suppress the modulation as well) it could in principle be replaced by a passive high-Q tuned circuit. The absence of a continuous oscillation would then avoid the tuning-in whistle of the synchrodyne. It is obviously impracticable to make a passive circuit with a sufficiently high Q to cope with relatively long periods of loss of carrier during fading, or even during deep low-frequency modulation troughs: some form of positive feedback
(Q multiplying) circuit is required. Common sense suggests that the arrangement most likely to succeed is a circuit which oscillates freely in the absence of an incoming carrier but is progressively damped as the carrier amplitude increases.

With such a system, the receiver operator could forget about synchronization when reception was good, but if fading or distortion manifested itself he could try to improve matters by adjusting the fine tuning control. The degree of improvement obtained in practice would depend on the short-term stability of the high-Q circuit and on the relative phase shifts undergone by carrier and sidebands in the transmission path.
G. WAREHAM

London, W.C.2.

The author replies

Mr. Wareham's ideas are very interesting. We have carried out some experiments with an oscillator synchronized to the incoming signal in the manner suggested, and as Mr. Wareham points out, if the coupling is strong the circuit behaves almost exactly as the circuit described; if the coupling is weak one soon loses lock and moreover if the oscillator is very stable it is extremely difficult to pull it very far, so that one has the dual problem of needing very accurate tuning and a stable local oscillator in the receiver.

By carrier fade I am presuming this is the case of fade relative to the sidebands and consequent overmodulation. This case and that of the total signal fading into the noise were discussed in a short note elsewhere ${ }^{1}$, and in the case of overmodulation one can run the synchronizing oscillator at twice the i.f. and it may be shown that, in theory at least ${ }^{2}$, this leads to correction of the over modulation effect. However with a strong lock any noise during the signal crossover points tends to cause oscillator jitter and cancel any correction. This again points to the need for a very high Q (stable) oscillator and accurate receiver tuning facility.

We have recently developed some frequencyfollowing carrier selection filters with bandwidths of a few tens of cycles (at 470 kHz) which will enable us to just select the carrier and remember it through a modulation trough, and so avoid having another oscillator in the receiver.

The circuit described in the article is of
course broad band and whereas it detects the presence of carrier fade it can do nothing about it. To do something about it one must add more circuits ahead of, or following, the system. Many alternatives suggest themselves, but each will be equally complicated, though equally interesting.
R. C. V. Macario

University College of Swansea.
'"Homodyne Reception", Electronics Weekly, November 15th, 1967.
${ }^{2}$ F. G. Apthorpe (letter) Electronic Engineering, July 1947, p. 238.

Stereophonic Broadcasts

Mr. David Bailey's somewhat caustic letter about stereophonic broadcasts and the minority interests of serious music listeners, seems to me rather off target. The valid point, surely, is not that the serious music stereophonic broadcasts be curtailed, but that the hours of stereophonic transmission be extended, and include all kinds of source material. After all, the special multiplexing equipment is in service and the present transmissions are compatible on monophonic receivers, so there would seem to be no insuperable difficulty in extending transmission time. This would enable Mr. Bailey's complaint to be met in a constructive way.

While on the subject, I believe that Holme Moss and Sutton Coldfield will soon be transmitting stereophonic programmes, but there will still remain very large areas of the country served with monophonic transmissions only. Presumably the stereophonic service will not be extended in coverage (and probably not in time either) unless there is a public demand that makes itself known to the B.B.C. and the Post-master-General. May I therefore appeal to other readers to write about extending the service and, when stereo transmissions are introduced, be vociferous in their welcome?

Colin A. Ronan
Newmarket, Suffolk.

'Invention'" of the Transistor

Now that the celebration of the "invention" of the transistor is under way, perhaps it might be fitting to celebrate the 50 th anniversary in 1980.

On October 22nd, 1925 and October 8th, 1926, Dr. Julius Edgar Lilienfeld applied for patents concerning a solid-state method for controlling electric currents. The patent was granted on January 28th, 1930 and is U.S. Patent No. 1,745,175. The patent clearly describes what today would be called an n-p-n transistor. Dr. Lilienfeld developed his device and was granted two more patents: No. $1,877,140$ on Sept. 13th, 1932 describing an n-p-p-n transistor, and No. 1,900,018 on March 7th, 1933, describing another n-p-n device. He also described the use of a reversedbiased p-n junction as a variable capacitor!
A. J. Watts
J. H. ORCHARD-W EBB

Letter from America

Radio and electronics shows seem to follow the same kind of pattern on both sides of the Atlantic. For the first few years everyone co-operates and all the sales managers, engineers even the accountants are happy. Then what happens? First firm A decides that the money spent is not really justified so they pull out. Then firm B begins to have doubts and they reduce the size of their stand to something a bit larger then a 'phone booth and put their money in a lavish exhibition-cum-cocktail party at a neighbouring hotel. The following year they are joined by many other firms who finally decided to move out to opulent hotel suites where they presumably discuss deliveries and dispense technical information over martinis and chicken sandwiches. And so those interested not only have to walk around the stands at the main exhibition but have to make the rounds of the local hotels too!

Although the I.E.E.E. Show held recently in New York's Coliseum was probably larger than last year's, with some 900 exhibitors and 1300 stands, there were signs of dissension. For instance, nearly 100 exhibitors who were there in 1967 did not return. These included several major semiconductor companies. Motorola and IRC led the way last year and it is thought that many other firms will break away and possibly join the extra-mural affairs at hotels like the Plaza, Warwick and Americana next year. However, if semiconductor firms could be said to display a certain lack of interest in the Show, the same could not be said of the instrument firms who occupied the whole of one floor (the exhibition spread over four floors). Some very elaborate equipment was on show including a new solid state phase angle voltmeter with wideband coverage from Gertsch, and a new Recipromatic Counter by General Radio. This instrument has no range controls and it measures the period and automatically computes the reciprocal and displays the frequency on a six-digit readout. Digital read-out meters were well in evidence and a typical example was the Trymetrics Model 4243 which is a four-digit multimeter with a range up to 999.9 volts and an accuracy of 0.01%. Triolab had a similar instrument with a range of 1 mV to 1 kV in four ranges plus current and resistance ranges. The input impedance is 10 megohms and accuracy was stated to be 0.1% of reading plus one digit. It is fitted with rechargeable batteries and priced at
\$895. Instrulab were showing a temperature indicator with digital read-out that should find many applications. Tektronix had a new oscilloscope plug-in amplifier using f.e.t. input stages and Telonic were demonstrating an unusual sweep generator which had an output of 8 watts! Four models are available covering the ranges from 20 to 1000 MHz .

One floor was given over to production equipment and here were automatic soldering conveyors, computer-programmed coil winders and so on. Much space was devoted to printed circuits and one of the most interesting exhibits was a circuit engraver by Graphic Electronics. This machine will make a small quantity of p.c. boards for the cost of the board material only and it runs completely unattended. It works like this: the hand-drawn copy is placed on a scanning cylinder, the machine scans the image, simultaneously cutting a standard epoxy or fibreglass copper-clad blank which is attached to another revolving cylinder. The engraving stylus is tungsten and no chemicals are used. When all the boards are completed, the machine switches itself off. The cost of this machine - called the Directron, is $\$ 3,750$ which is not unreasonable considering the time it could save. BTU Engineering had a thick-film furnace which could deliver 12,000 circuits an hour! This sort of output has increased the demand for reliable automatic test equipment and there are now several firms specializing in this field. As an example, Teradyne have a computer operated automatic test system which comprises a digital computer teletypewriter and measurement system for i.cs at $\$ 65,000$. Such a machine can carry out very complex tests extremely quickly in fact they can test quite complicated circuits in a few milliseconds.

In another part of the Show were sections for microwave equipment, components, materials, complex systems and semiconductors. Mallory introduced a stereo i.c. pre-amplifier - their first venture into this field. RCA had a new unit measuring $\frac{3}{4}$ inch by just over $\frac{1}{4}$ inch with 14 leads. This contained a wideband i.f. amplifier, f.m. detector, and a.f. amplifier and is intended for television or f.m. receivers. The tiny package consists of 14 transistors, 5 diodes, 3 Zeners and 20 resistors! In 1965 total sales of i.cs were $\$ 79$ million and this year they are expected to reach $\$ 325 \mathrm{M}$ with a forecast of
$\$ 500 \mathrm{M}$ by 1970 . To put these figures into some kind of perspective-the total American sales of all electronics last year was approximately $\$ 22$ billion and the growth rate is about 6%.

One of the most interesting features of the I.E.E.E. Show is the big programme of lectures. This year there were nearly 300 papers, on a wide variety of subjects, delivered during 60 sessions. Some were so popular that overflow meetings were held in adjoining rooms with C.C.T.V.-naturally!

As already mentioned, the total number of exhibitors was around 900 . Of these, 21 were Japanese, 15 Canadian, 12 German and only 6 British. Should more British firms be represented? I would say a definite 'yes' but, of course, the products must be backed by efficient distribution and service; cspecially service.

More on X-ray radiation from colour TV; The Public Health Service recently looked at some 1124 sets and only 66 showed a radiation greater than the accepted standard of 0.5 millirontgen per hour at a distance of 5 cm from the set. The main causes of the excessive radiation were shunt regulator valves, rectifiers and the picture tube itself. It was stated that all sets emitting X-rays above the standard level could be corrected by reducing the tube voltage or replacing valves. There is still no agreement on the 'safe standard' and on methods of measurement but optimists hope this will be cleared up at the meetings between the National Council on Radiation Protection \& Measurements and the Electronic Industries Association.

Solid state, or varactor tuners have been used in Germany for some time now but problems in channel separation have prevented their adoption here in America. Both Fisher and ADC use varactor tuning on f.m. receivers introduced last year and no doubt similar receivers will appear very soon. Meanwhile, progress has been made with television tuners and several firms will be able to market them within a few weeks. Oak have a model with continuous u.h.f./v.h.f. coverage and Standard Kollsman are working on a similar unit. Varactor diodes are now available with high capacitance swings and it is possible to utilize them in ordinary medium waveband receivers. So the familiar ganged capacitor will soon disappear-but no doubt we will have other problems!

An enormous amount of money is spent on space research by agencies like NASA and -as might be expected-engineers often come up with inventions that find applications in other fields. One of the most interesting of recent 'spin-offs,' as they are called, is due to a Goddard Space Centre scientist, Edward Thomas. This invention is a reversible fuse or circuit breaker that might well replace conventional type fuses. It consists of a special epoxy resin impregnated with silver-plated copper particles and at operating temperature the particles are in close contact and resistance is about 0.1 ohm . At higher temperatures the expanding epoxy separates the metal particles and the resistance increases sharply to something like a megohm.
G. W. Tillett

AMplusFM-plus solid-state stability

NEW MARCONI HF SIGNAL GENERATOR TF 2002 AS

All the advantages of TF 2002, the first fully solid state quality signal generator-versatility, freedom from interdependent controls-are retained in $\mathrm{TF}: 202 \mathrm{AS}$. Now we have added F.M. and four other new features.
These-together with facilities such as a built-in variable frequency a.f. oscillator, four-range crystal calibrator with its own loudspeaker, and r.f. output down to 10 kHz with 0 to 100% a.m. - add up to an extremely powerful combination and, incidentally, make TF 2002 AS unique.

NEW FEATURES

Frequency Modulation
In addition to the normal a.m, the TF -200.4 S has fully monitored, internal and external frequency modularion facilities.
Extended External Frequency Shift
A cont rol signal of ± 1 volt d.c. now gives $\pm 1.5 \mathrm{kHz}$ whift at 100 kHz rising to $\pm 50 \mathrm{kHz}$ at 10 MHz or above.
Directly Calibrated Incremental Frequency
The incremental frequency control is now directly calibrated at all carrier frequency settings, with the facility for standardising against the crystal calibrator for maxinum accuracy
Symmetrical Levelling
The external carrier level control facility now gives $\pm 100 \%$ variation for ± 6 volts d.c. control voltage.

Separate Modulation On/Off Switch
The internal variable frequency a.f. oscillator can now be switched off without distumbing its fiequency range seting.
Frequency range: 10 kHz to 72 MHz
Output Level: 0.1 以V to 2 voltse.mif.
A.M.: $\quad 0$ to $100 \%, 20 \mathrm{~Hz}$ to $\because 0 \mathrm{kHz}$.
F..M.: $\quad 1.5 \mathrm{kHz}$ deviation at 100 kHz .

Pice 50 kHz deviation above 10 MHz
Full envirommental specification. Adopted for military use, Please write for full technical details.

IEA exhibition stand N172

MARCONIINSTRUMENTS LIMITED

Longacres, St. Albans, Herts, England. Tel: St. Albans 59292. Telex: 23350

Model 174.0 50 watt SSB. Base or Mobile Station

Granger Associates introduce a new range of Teletransceivers

The world's leading suppliers of Wideband HF Antenna Systems now introduce a range of Single Sideband Teletransceivers utilizing the most modern solid state techniques.

Granger Associates Teletransceivers provide a high quality, economical H.F. Radiotelephone service for industry, security, mining, government departments, marine, etc. Compact, reliable, rugged, easy to operate instruments give the user a
transmitting power equal to much larger and more expensive AM units. A full range of matching accessories is available for all models, 10 db Linear Amplifier available for 50- and 100watt models.

Fully detailed specifications sent on request.
I.E.A. EXHIBITION May 13th-18th

World of Amateur Radio

Beginners' Licence Coming The P.M.G. announced on March 11th, that a new "Beginners' Licence" is to be introduced in the autumn. The details have not yet been settled but its stated purpose is to encourage interest in amateur radio in people, especially young people, who have not yet reached the standards of qualification needed for a Class A or Class B licence. The new licence will, presumably, be valid for a short period only (possibly 12 months), after which time the holder will be required to qualify for a Class A or Class B licence. A Novice licence has been available in the United States for several years but it is by no means certain that it has proved very successful. It is doubtful whether the introduction of a "Beginners' Licence" will be welcomed by many U.K. amateurs of long standing, few, if any, of whom have been invited to express an opinion on the idea. It is generally felt that the Class B licence, which permits telephony operation above 427 MHz , goes far enough to meet the wishes of those who, although technically competent, are not able to pass a Morse test at 12 w.p.m. This view is further strengthened by another announcement by the Postmaster General that holders of the Class B Licence will shortly be authorized to operate in the $144-\mathrm{MHz}$ band. Regular users of this very popular band will watch this de-velopment-erosion it has been called-with interest.

Reason for Scarcity

It has always been difficult for European radio amateurs to understand why certain parts of the United States are harder to contact than others. Especially is the "scarcity" apparent in the case of those who aspire to qualify for the Worked All States (WAS) Certificate issued by the American Radio Relay League. A recent census of amateur radio licences in the United States reveals that Wyoming (539), Delaware (619), North Dakota (755), Nevada (789) and South Dakota (789) have the lowest number of licensed amateurs per state with the District of Columbia recording 734. In contrast California (Sixth District), with 39813 licensed amateurs, outnumbers even the combined strength of New York (24438) and New Jersey (13049) which, together, form the U.S. Second District. The eight Southern States, which form the Fourth District, are placed third with a total of 36978 of which number,

Florida alone accounts for 10165. Other five-figure totals are recorded in Massachusetts (1 1276), Pennsylvania (15067), Texas (15166), Ohio (16274), Michigan (10195) and Illinois (15444). At the time of the census, (published in the Autumn 1967 edition of "The Radio Amateur Call Book") there were 284,439 licensed amateurs in the U.S.A. and 137,038 in the rest of the world.

Transarctic Expedition.-The experimental station call sign G7AE is being used by a group of well-known British amateurs who have been authorized by the British Post Office to maintain contact with Sir Vivian Fuchs' British Transarctic Survey Expedition base station MPE. Telegraphy operation takes place on 13999 kHz on Saturdays and Sundays from 09.30 GMT.

New World Record on 13 cm .-Radio communication by amateurs over a record distance of 274 km (209 miles) on a wavelength of $13 \mathrm{~cm}(2300 \mathrm{MHz})$ was achieved by the Swiss station HB9RG and the West German station DJ4AU on January 21st. Communication was established on telephony (s.s.b.) and telegraphy. The previous record distance for the $13-\mathrm{cm}$ band was 170 miles established by two U.S. amateurs in 1963.

Mobile Rallies-Clash of Dates.-Due to an unfortunate clash of dates two of the best-known and most popular Mobile Rallies of the summer season are to be held on the same day-Sunday, June 30th-one at Longleat Park, near Frome, Somerset, and the other at the U.S. Air Force Base at R.A.F. Mildenhall, Suffolk. The former event is being organized by the Bristol Group of the R.S.G.B. and the latter by the Amateur Radio Mobile Society.
U.K.-France reciprocal licensing agreement has been concluded permitting the radio amateurs of one country to operate in the territory of the other. Application forms for a French reciprocal licence in the series F0, are available, on receipt of a stamped and addressed envelope, from the General Manager, Radio Society of Great Britain, 28 Little Russell Street, London, W.C.1. Mr. Gerald Lander, G3OOH, of Peacehaven, Sussex, and now licensed to operate as F0FR, was the first U.K. amateur to obtain a French reciprocal licence.

South Yemen.-Aden and the rest of the South Arabian Federation was granted Independence as the People's Republic of South Yemen on November 30th, 1967, and became the 123 rd Member of the United Nations on December 14th, 1967. Radio amateurs in the new Republic are now operating under the prefix 70. Included in the new Republic are Kamaren (formerly VS9K) and Perim (formerly VS9P) as well as Socotra (formerly VS9S), now part of the Sultanate of Qishn, and Kuria Muria (formerly MP4M) now part of the Sultanate of Muscat and Oman.

Botswana has a new Prefix.-Radio amateurs in Botswana, formerly Bechuanaland, will, in future use a prefix in the block 80 AA to 8 OZ instead of the prefix ZS9. The change has been authorized by the International Telecommunication Union at the request of the Botswana Government.
V.H.F./U.H.F. Convention.-The 14th Annual International V.H.F./U.H.F. Convention organized by the Radio Society of Great Britain is to be held, for the second year in succession, at The Winning Post Hotel, Whitton, Twickenham, Middlesex, on Saturday, April 27th. Manufacturers are providing an exhibition in the morning, followed in the afternoon by a lecture session and a new feature called "shop window" when trade exhibitors will discuss their products. The Convention will conclude with the customary banquet and raffle. The all-in price has been fixed at 30 s . or 25 s .6 d . for the dinner only. The organizing secretary is Mr. Frank Green, G3GMY, 48 Borough Way, Potters Bar, Herts. Ladies will be welcomed at the banquet.

GB Call Signs.-United Kingdom radio amateurs who wish to set up special stations at exhibitions, mobile rallies and the like or who wish to operate as an expedition may obtain a special licence in the GB series upon application to the G.P.O. Every effort will be made to issue a call-sign to suit the event. Applicants for a GB licence should state a preferred letter group and give an alternative. Simultaneous operation on two or more frequency bands is permitted when specially requested.

VERON Radio Camp.-Visitors to the Netherlands during Whitsun (May 31st-June 3rd) will be warmly welcomed at the annual radio camp organized by the Dutch national amateur radio society. A special station (PA6AA) will be on the air continuously on all bands and modes. Details from W. H. Kerstens, PA0UHS, Nachtegaalspad 2, Arnhem, Holland.

Australis Oscar.-Further to our report in the December 1967 issue we now understand that the satellite is likely to be launched in June. More accurate details cannot be given as such information carries the "classified" tag until after the launch. Special report forms are still available from W. Browning (G2AOX), 47 Brampton Grove, Hendon, N.W.4, on receipt of an S.A.E.

John Clarricoats G6CL

Differential Operational Amplifier

Amplifier series 183 by Analog Devices of Kingston-upon-Thames are chopperless differential operational amplifiers designed to solve problems where low drift, very low noise, low thermal intertia, predictable low term stability and low cost are primary considerations. Because no single operational amplifier can meet all the widely divergent specification requirements without becoming expensive, the 183 is not recommended for applications involving signal manipulation from sources with more than $100 \mathrm{k} \Omega$ imbalance, or in applications involving fast slew rates and fast settling time.

Special transistors and thermal design techniques are used to reduce the effects of thermal gradients, and long term drift due to resistor ageing is overcome by the use of high stability metal film resistors. Stabilities of better than $100 \mu \mathrm{~V} /$ year are obtainable, and warm-up drift is less than $20 \mu \mathrm{~V}$. The 183 series can be connected to give gain without change of sign and used in this mode

the amplifiers will have an impedance of $1,000 \mathrm{M} \Omega$. Principal features are: open loop voltage gain $2 \times$ 10 ; output 20 V p-p at 5 mA ; initial voltage offset 0.5 mV (max) at $25^{\circ} \mathrm{C}$; input impedance $2 \mathrm{M} \Omega$ and common mode impedance $1,000 \mathrm{M} \Omega$. Common mode rejection is 100,000 and common mode voltage range is $\pm 10 \mathrm{~V}(\mathrm{~min})$. Analog Devices Ltd., 38-40 Fife Road, Kingston-uponThames, Surrey.
WW 314 for further details

Microminiature Connector

Available in strip configuration with 1 to 40 pin and socket contacts on 0.025 -in centres, a new connector by Cannon (which they call the "Nano") has been designed for applications where

extremely close centres are necessary. It is claimed to be the smallest connector of its type in the world.

Straight-through construction of contact area to termination point eliminates unnecessary electrical interfaces and the contact alignment design assures positive mating of the pin and socket contacts. These are of the twisted-pin type used throughout the Cannon microminiature range. Corrosion-resistant metal alloys are employed in the contact construction and the connectors are available with standard pigtails for easy termination to printed circuit boards, modules or flat conductors. Rated at 1A, the contacts can be preharnessed at the Cannon factory to customers' specifications. Cannon Electric (Great Britain) Ltd., Lister Road, Winchester Road, Basingstoke, Hants.
WW 311 for further details

D.C. Bench Units

Designed around the two basic criteria that the performance should be sufficient for a multitude of engineering applications and that this performance should be achieved at the lowest practical price, Liberty Controls stabilized bench supplies type A1025 and A2025 have a fully variable output with overload protection and cost $\{32$ and $\not\{39$ respectively.

The units have identical specifications except in respect of output current. Maximum output current of the A1025 is 1 A and that of the A2025 is 2 A . Output voltage is variable from 0 25 V and output resistance is less than 0.015Ω. Output impedance below 300 kHz is less than 0.4Ω. Ripple and noise is less than 2 mV peak-to-peak

and stabilization ratio is $2,000: 1$. Input voltages are single phase $210-250 \mathrm{~V}$ or $100-125 \mathrm{~V}, 45-55 \mathrm{~Hz}$. Dimensions $12 \times 8 \times 8 \mathrm{in}$; weight 13lb. Two modular variants of the units less meters are available, type AC1025, $£ 27$, and type AC2025, $\{33$. These have the same electrical specification as type A but the physical design is modified. Liberty Controls Ltd, Cadwell Lane, Hitchen, Herts. WW 318 for further details

Aero Band Equipment

Two items announced by Park Air Electronics are, a higher power version of their 50 X v.h.f. a.m. aeronautical band transmitter and a new portable mobile receiver for the v.h.f. aeronautical band.

Type 100X transmitter has an r.f. output of 20 W and is complete with power supply and modulator. It has a frequency coverage of 118156 MHz and is intended as a compact transmitter for use by airport authorities in conjunction with existing receivers, or with the Park Air model 60A receiver system. The assembly is available in either cabinet form or for 19 -in rack mounting.

Type 40 A receiver is a crystal-controlled portable receiver for the v.h.f. aeronautical band designed for simple operation by unskilled personnel. All silicon solid state circuitry is used and it is claimed that input signals of $1 \mu \mathrm{~V}$ or less can be resolved. Audio power delivered to the built-in loudspeaker is 0.5 W . The 40 A incorporates its own internal power supply, but provision is made for the connection of an a.c. mains auxiliary power unit if required. A telescopic aerial is included and provision is made for using an external aerial. Of die-cast aluminium construction, the receiver is complete with carrying handle and measures

$27.5 \times 17.5 \mathrm{~cm}$. Weight including batteries is 2.3 kg . Park Air Electronics Ltd., Red Lion Square, Stamford, Lincs.
WW 312 for further details

Modular Sound Mixers

Specific requirements of smaller broadcasting organizations and recording studios, are met in a new six-channel modular mixer offered by Peto Scott. The mixer may also find use in other applications, particularly in education establishments, where it is desirable to use multiple microphone channels to select individual voice sources in order to overcome the problem of extraneous unwanted noise in classrooms.

By adopting a modular unit method of construction, it is possible to assemble the mixer to provide a required number of channels for a wide variety of installations, either in a free-standing desk top enclosure or for assembly into existing consoles. A rack mounting version is also available. Features include, up to 20 pre-amplifier input channels, variable pre-set gain, two independent group output channels, peak programme meter, full pre-fade and monitoring facilities, loudspeaker muting,

forward and reverse cueing and talkback to three studios. All modules use transistors throughout.

The provisional specification shows an overall frequency response of 40 Hz to $15 \mathrm{kHz} \pm 3 \mathrm{~dB}$ and 100 Hz to $8 \mathrm{kHz} \pm 1 \mathrm{~dB}$. It is emphasized, however, that the upper limits of the frequency response curve can easily be tailored to suit particular circumstances. For example: recording studios may require the h.f. response to be extended to 20 kHz or even higher, whereas broadcasting organizations may require the high frequencies to be attenuated in some circumstances. It is the flexibility of the design which the makers consider is of importance to the user, particularly where ad hoc studio control facilities are often required at short notice.

Overall distortion is $<0.5 \%$ at +6 dB output, and overall gain 100 dB nominal. Input to the preamplifier modules is 600Ω or 150Ω, and two completely independent output channels from the line amplifier module can be 600Ω or 150Ω each. Mains supply voltage is 115 or 230 V 50 Hz . Peto Scott Ltd, Addlestone Road, Weybridge, Surrey. WW 324 for further details

D.C. Comparator Bridge

Made in Canada by Guildline Instruments Ltd., and distributed in the U.K. by Claude Lyons, type 9920 d.c. comparator bridge is particularly suitable for comparison of resistors of $1,000 \Omega$ and below, and for the scaling of low resistances, under which each resistor functions at its own power level. For example: a 1Ω standard resistor carrying 100 mA and dissipating 0.01 W may be directly compared to a 0.001Ω shunt carrying 100 A and dissipating 10 W , to an accuracy of 1 part per ten million. Accuracy is dependent only on the linearity of a transformer turns ratio, and calibration is permanent. The design completely eliminates the effects of thermal e.m.fs, lead resistance and switch con-

tact resistance. No critical resistors are used. Internal power supplies provide currents of one and two amperes respectively, and an external power supply delivering up to 100 A is provided. Claude Lyons Ltd., Instruments Division, Hoddesdon, Hertfordshire
WW 303 for further details

Wide Range Sound Spectrograph

Kay Electric of New Jersey say they have adapted the proven techniques of previously produced spectrographs and introduced them in the new model 7029A which is claimed to have the wide range of 5 to $16,000 \mathrm{~Hz}$. It is a solid state

unit offering a choice of sonogram time scale to enable short duration sound or signals to be expanded and longer signals or phrases to be compressed. Printed circuitry is employed with plug-in modules allowing all systems to be housed in a single compact cabinet. Plug-in units can be used to provide a wide variety of analyses. The standard filter can be interchanged with plug-in filters to provide a wide range of widths for more demanding analyses. Tape recorders having a good mechanical "pause" feature can be synchronized by a start-stop control on the spectrograph. Kay Electric Co., Maple Avenue, Pine Brook, New Jersey, U.S.A.
WW 307 for further details

A.C. Digital Voltmeter

Digital presentation of the true r.m.s. value of any input without respect to the waveform is the claim made by Fluke International for their model 9500A automatic a.c. voltmeter. The new instrument accepts voltages from 0.001 to $1,100 \mathrm{~V}$ r.m.s. in five ranges, and accuracy is said to be $\pm 0.05 \%$ from 50 Hz to 10 kHz . Range selection can be automatic or manual. A crest factor of 10 virtually eliminates effects from voltage spikes or pulse trains, and a low capacitance, high resistance input minimizes loading effects. Frequency response is

20 Hz to 700 kHz . Calibration is automatic when the instrument is turned on. On-line calibration is either automatic or manual, selected by a front panel control. Complete remote control is possible if required. Fluke International Corporation, P.O. Box 102, W'atford, Herts.

WW 322 for further details

Magnetron Power Supplies

Power supply equipment designed to operate $2,450 \mathrm{MHz}$ continuous wave magnetrons is available from Hirst Electric in two basic forms, a " P " series for general industrial applications, and an " M " series for lower power applications such as microwave ovens etc. Both types have the magnetron heater transformer supplied as a separate unit to allow for positioning in close proximity to the magnetron and they are thyristor controlled.

Phase angle in the e.h.t. primary circuit is advanced gradually so that the applied voltage to the e.h.t. transformer is "ramped up", thus avoiding non-synchronously applied mains inrush current. The magnetron is not shock excited by the sudden application of full e.h.t., which is conducive to longer life.

The " M " series is supplied in module form, allowing the equipment manufacturer choice of layout, and consists of control chassis, e.h.t. trans former, e.h.t. rectifier and series impedance resistor. The control chassis is fitted with an 18-way plug and socket for wiring to interconnection diagrams supplied. The "P" series is supplied complete in a case with front panel instrumentation. Hirst Electric Industries Ltd., Gatwick Road, Crawley, Sussex
WW 313 for further details

Module Counter System

An advanced single-wheel counter module system, consisting of three basic modules: the series 7049 counter unit, series 7050 predetermining counter unit and series 7051 switch unit, comes from Veeder-Root. Used either singly or in combination, these decade module units can provide practically any counting configuration requirement. They can be supplied in back-of-panel or panel mounting arrangements, and being of standard width, can provide tailor-made set-ups. If required, specially made-up unit combinations can be supplied to specific applications.

Large read-out figures, gold-plated printed circuit, positive non-overthrow, magnetic circuit, and silver contacts are some of the features, with $2,400 \mathrm{c} . \mathrm{p} . \mathrm{m}$. speed for the counter modules. The 7049 counter unit measures approximately 4.35 in . deep $\times 2.38 \mathrm{in}$. high $\times 0.5 \mathrm{in}$. wide, the 7051 single-pole 10 -position switch unit has similar height and width but is 2.8 in . deep and the 7050 predetermining counter is 4.35 in . deep $\times 3.8 \mathrm{in}$. high $\times 0.5 i n$. wide. All units operate on 12,24 and 48 V d.c. Veeder-Root Ltd, New Addington, Surrey.
WW 319 for further details

Video Monitors

Plug-in sub-chassis construction is a feature of a new range of valve type television monitors announced by J.D. Jackson Electronics. Designated M14/V1, M16/V1, M17/V1, M19/V1 and M23/V1, each size of monitor uses three standard chassis which enables a service replacement scheme

to be operated. The M14/V1 (illustrated) measures $19 \frac{3}{4} \times 16 \frac{1}{4} \times 14 \frac{3}{4} \mathrm{in}$. and this model in common with the M16/V1 and M17/V1 is available in a rack mounting version.

Designed for $525 / 625$ lines, 50/60 field scanning standards, the video monitors have a bandwidth of 8 MHz and an input impedance of 75Ω or higher. Signal-to-noise ratio is 40 dB . The plug-in sub-chassis comprise (1) line and field timebases, (2) video amplifier, and (3) power supply unit. Operation is from 115 or $230 \mathrm{~V} 50-$ 60 Hz a.c. mains supply. J.D. Jackson Electronics, Egglestone Works, Lombard Street, Newark-onTrent, Notts.
WW 308° for further details.

Power Transistors

Two low-cost germanium power transistors announced by Motorola are suitable for television deflection circuits and industrial power supply designs. They are types MP3730 and MP3731, priced at 9 s 6 d and 12 s 6 d respectively for quantities of 100 .

Both devices are capable of 56 W and will operate in temperatures up to $110^{\circ} \mathrm{C}$. The 320 V type MP3731 is capable of providing efficient operation in 1 kW output invertor designs with frequency regulation changes no greater than 20% over a 6:1 input voltage variation. The devices are packaged in TO3 cases. Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middx. WW 320 for further details

Audio Mixer

Designed specially for location recording with quality tape recorders, a new four-channel portable mixer model 2880 by Sela, of Stockholm, is now available from their U.K. agent, Carston Electronics. The mixer can be powered from mains or battery, and the four balanced transformer microphone inputs are able to accept outputs over

a wide range of levels from moving-coil or capacitor microphones with impedances from 50 to 200Ω. A five position 0 to -25 dB attenuator provides control over input levels from 10 mV maximum in the -25 dB position. Input impedance measured at 1.5 kHz is $3.8 \mathrm{k} \Omega$ and noise level is better than -125 dB at 170Ω. Frequency response is within 0.5 dB from 40 Hz to 16 kHz and 5 dB down at 20 kHz . Distortion is less than 0.1% at normal level and better than 0.2% at maximum output. Features include $\pm 10 \mathrm{~dB}$ bass equalization at 100 Hz and $\pm 10 \mathrm{~dB}$ treble equalization at 10 kHz . Designed to be carried by hand, the Sela mixer weighs 12 lb and costs $\{225$. Carston Electronics Ltd, Electra House, Wiggenhall Road, Watford, Herts.
WW 327 for further details.

Professional Communications Receiver

Marconi announce a completely new h.f. communications receiver for international point-to-point links which, they believe, has unbeatable performance and reliability for its size and cost. Named Hydrus, the receiver is a compact and versatile equipment designed for operation in a wide range of transmission modes. Extensive use is made of f.e.ts, in the solid state circuitry chosen because of their advantage over conventional transistors of reduced damping effect on timed circuits, by reason of their high input and output impedance.

Although there are many versions of the receiver available, a dual diversity Hydrus, with

independent sideband facilities handling two separate channels, will cost approximately $\{3,500$. Other standard versions cost less. The receiver covers the 1.5 to 30 MHz band in four ranges. Tuning is by decade switches followed by a continuously variable final tuning control. A sophisticated a.f.c. system locks on to signals drifting up to $\pm 250 \mathrm{~Hz}$. A.g.c. circuits operate over a 90 dB variation of signal strength, controlling the output to within 6 dB .

Component stability is said to provide for long periods of unattended operation on "main line" telephony and telegraphy circuits. Fast re-tune by decade switching in 0.1 MHz steps, facilitates rapid operating and an interpolating variable oscillator, covering 100 kHz between these decade steps, is calibrated directly with the signal frequency on the front panel. The set comprises three basic units; a receiver unit, a synthesizer and a telegraphy/telephony unit.

These units are mounted in 19 in . wide cabinets, $5 \frac{1}{4} \mathrm{in}$. high, for fitting into a bench mounted cabinet for single receiver installations, or into free standing cabinets for more extensive set-ups. For servicing purposes the units can be drawn out on extension runners. Operating power requirements are $100-125 \mathrm{~V}$ and $200-250 \mathrm{~V}, 45-65 \mathrm{~Hz}$ single phase a.c. $\pm 6 \%$. Over 300 different versions of the receiver can be supplied. The Marconi Co. Ltd., Chelmsford, Essex.
WW 315 for further details

Measuring Instrument

A highly sensitive centre reading instrument combining the functions of voltmeter, ammeter and null detector, the M.L. nanoammeter and microvoltmeter permits accurate readings as low as $5 \times 10^{-6} \mathrm{~V}$ and $5 \times 10^{-9} \mathrm{~A}(0.005 \mu \mathrm{~A})$. Twelve ranges of voltage from $100-0-100 \mu \mathrm{~V}$ to $30-0-30 \mathrm{~V}$, and twelve ranges of current from $100-0-100 \mathrm{nA}$ to $30-0-30 \mathrm{~mA}$ are selected by a multi-way switch on the front panel. Generous overload conditions exist on all ranges and a floating input is provided, with a common mode rejection of better than 100 dB . The instrument can be used on a.c. supplies of $100-125 \mathrm{~V}$ and $200-250 \mathrm{~V}$. M.L. Industrial Products Ltd., Electronics Division, 292 Leigh Road, Trading Estate, Slough, Bucks.
WW 306 for further details

Transistors for Aerial Amplifiers

Three new silicon planar n-p-n transistors specially developed for use in television and f.m. receiver aerial amplifiers have been announced by Mullard. Types BFW'16, BFW17 and BFW30, they can also be used in applications which have severe intermodulation requirements such as wideband amplifiers for telephony or wideband amplifiers for oscilloscopes. Common features are a high gain with a high $f_{T}(1.6 \mathrm{GHz}$ for the BFW30) and a very low intermodulation factor. Mullard Ltd., Torrington Place, London W.C.1. ww 310 for further details

Rebuilt Colour C.R.T.

The successful rebuilding of a 25 -in domestic colour TV tube by Vacuonics is believed to be the first operation of its kind by an independent firm in the U.K. It is envisaged that rebuilt tubes of this type will cost about half that of a new one and, because the tube is the most expensive single item in a colour receiver, it should represent a considerable saving in cost to the customer. Because the materials required for the process were unobtainable in Europe the necessary components were supplied by Griffiths Electronics Inc., Linden, New Jersey, U.S.A., through their agents in this country the C.E.A. Group of Birmingham. Vacuonics Lid., Newtown Street, Old Hill, Staffs.
WW 317 for further details

Digital Voltmeter

This integrating digital voltmeter (500 Mk II) incorporates an integrated-circuit amplifier, has a basic accuracy of 0.2% of f.s.d. and a zero drift typically better than two least significant digits per eight hours in normal environments. The instrument, which employs a f.e.t. input stage in the input chopper-stabilized amplifier, can tolerate inputs of up to 1 kV on all ranges without damage; common-mode rejection is better than 120 dB . Output readings are displayed on decade number tubes and decimal-point indicator lamps. A 10% over-range facility extends the scale length

to 1100 on all ranges. Four ranges are incorporated from $\pm 1 \mathrm{~V}$ to $\pm 1000 \mathrm{~V}$ d.c., the input resistance is $>10 \overline{\mathrm{M}} \Omega(>1 \mathrm{M} \Omega$ on the 1 V range). An internal calibration standard has an accuracy of $\pm 0.001 \%$ /year. The price is $£ .120$. Weir Electronics Ltd, Durban Road, Bognor Regis, Sussex.
WW 325 for further details

High-dissipation Isolatedcan Transistors

In the quest for high-dissipation in small packages, transistor manufacturers generally attach the active element to the device casing. "Live can" devices of this sort have proved an embarrassment to users over the years because they can cause accidental circuit shorts. Newmarket Transistors Ltd, Exning Road, Newmarket, Suffolk, have developed a technique by which they eliminate the fine-wire connections to the transistor emitter and collector, which have previously limited the permissible power dissipation, and have left the base connection isolated from the device case. The resultant device has no electrical connection to the transistor element other than through the connection leads. One example of this is the Newmarket ACY 17-21 (NKT237-241) series of germanium, p-n-p, TO5, 1-A, low-frequency transistors.
WW 323 for further details

Lightweight Magnetrons

A lightweight, X-band, pulsed magnetron is available from Mullard for use in small marine radar installations. It weighs 456 g and has a smooth outline, eliminating moisture traps. The magnetron (type YJ 1240) will deliver a peak output power of 900 W , its low anode voltage, 2 kV , means that it can be used in solid-state equipments without much difficulty. Operating fre-

quency is $9.345-9.405 \mathrm{GHz}$ and the rate of rise of the pulse voltage is $100 \mathrm{kV} / \mu \mathrm{s}$. Mullard Ltd, Mullard House, Torrington Place, London W.C. 1 .

WW 301 for further details

Also from Mullard an X-band magnetron intended for airborne long range radar for operation at altitudes of up to $25,000 \mathrm{ft}$ is the type YJ 1250. Weighing 1.9 kg it can be used with pulses of up to 6μ s duration at a peak output power of 90 kW . It has a permissible anode voltage of 15 kV and a long life cathode that will give a minimum of 5000 operating hours.
WW $\mathbf{3 0 2}$ for further details

Miniature Potentiometer

A low cost, single-turn potentiometer intended for industrial applications has been introduced by Bourns (Trimpot) Ltd, Hodford House, $17 / 27$ High Sureet, Hounslow, Middlesex. The potentiometer, model 3365, is 0.5 inches in diameter by 0.225 inches long and is available in two printed-circuit mounting styles. Rated at 0.5 W at $40^{\circ} \mathrm{C}$ the potentiometers are available from 10Ω to $50 \mathrm{k} \Omega$ and are capable of operating in the temperature range $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. The standard resistance tolerance is $\pm 5 \%$ with a resolution of 0.09 to 0.88% and a temperature coefficient of 70 parts per million per ${ }^{\circ} \mathrm{C}$. Price for quantities around the 200 mark are 19s 5d per piece
WW 304 for further details

Laboratory Capacitors

Two precision capacitance boxes with very low residual capacitance and a high accuracy setting capability are available from J. J. Lloyd Instruments, Brook Avenue, Warsash, Southampton. The first instrument, known as type PVC 1 is a triple-range, air-spaced capacitor with a minimum

setting of 5 pF inclusive of strays. The capacitor dial has a slow-motion drive and each range is calibrated directly in pF inclusive of residuals. A double scale is incorporated to indicate either absolute capacitance when the instrument is used in the floating two-terminal mode or for threeterminal use with one terminal connected to the screen. The capacitance ranges covered are 5-50, $15-105$, and $30-200 \mathrm{pF}$ and the accuracy at 20 ${ }^{\circ} \mathrm{C}$ is $\pm 0.5 \%$ or $\pm 0.5 \mathrm{pF}$; d.c. working voltage is 700 V . The second capacitor box, type PVC 2, has a single-range air-spaced capacitor directly calibrated in pF and fitted with a slow-motion dial. It also has a single decade of aged silver-mica capacitors to extend the range up to 1100 pF (minimum setting 15 pF). The accuracy is again $\pm 0.5 \%$ or $\pm 0.5 \mathrm{pF}$; d.c. working voltage is 500 V .
WW 321 for further details

Differential Data Amplifier

An encapsulated differential data amplifier suitable for use with load cells, resistive strain-gauge bridges and thermocouples that can be soldered directly on to printed-circuit card is available from Analog Devices, 38-40 Fife Road, Kingston-on-Thames, Surrey. The amplifier (model 601) is fully screened and guarded-the guard shield
being driven by an operational amplifier to give common-mode rejection of 40×10^{6}. The gain is variable from 20 to 2000 with an accuracy of 0.01% and a stability of better than 0.02% per month; temperature coefficient is $0.003 \% /{ }^{\circ} \mathrm{C}$. A d.c. linearity of better than 0.2% is claimed. Frequency response is within 1% up to 1 kHz and is 3 dB down at 30 kHz ; harmonic distortion is less than 0.05% for all frequencies up to 2 kHz . The output settles to 0.1% in $100 \mu \mathrm{~s}$ for a full-scale input step. Wideband noise from d.c. to 50 kHz is $4 \mu \mathrm{~V}$ r.m.s. referred to the input plus 1 mV referred to the output.
WW 309 for further details

Heat Absorbers

Soldering accessories now available from Henri Picard \& Frere include heavily-insulated heat absorbers for protecting delicate components dur-

ing soldering. Two sizes are available. One type, 34 L , is 2.75 inches long and is made of plated steel with copper jaws. The other, type 34 S , is only 1.25 inches long, and is made entirely of a highly-conductive copper alloy.
WW 326 for further details

Electrostatically Focused Vidicons

A new range of vidicons which incorporates a gun structure for electrostatically focusing the electron beam is available from English Electric Valve Co. Ltd. These electrostatically-focused vidicons are for application where small camera size and low power consumption are important. Because there is no magnetic focusing field the strengths of the deflection fields can be as little as one quarter of those normally required. Low power ($95-\mathrm{mA}$) heaters are also used. The construction of the vidicons is such as to allow deflection coils to be mounted directly on the glass bodies, further reducing camera size. The use of electrostatic focusing gives freedom from the " S " distortion and focus-induced image rotation normally asso-

ciated with magnetic focusing, thus making this type vidicon suitable for multi-tube colour cameras. A uniform "beam landing" characteristic provides good signals from the whole picture area. An example of the tubes in this range is the 8134 VB which has a high blue sensitivity intended to overcome the difficulties normally associated with tungsten filament lighting.
WW $\mathbf{3 0 5}$ for further details

Literature Received

E.E.A. Capacitor Guide is the first of a series of publications to be produced by the Central Technical Committee of the Electronic Engineering Association. The publications will be, as this one, in the form of guides on the use of electronic components, the aim being to improve the reliability of electronic equipment by assisting in the choice of components. Each guide will consist of a resumé of the salient features of a particular component family It will discuss physical construction emphasizing points that the designer should bear in mind while making a choice and it will give workshop notes on assembling the components into equipment. The Capacitor Guide classifies components by dielectric into the following groups: paper, plastic film, mica, ceramic and vitreous, and electrolytic-including "solid" aluminium and tantalum capacitors. Copies of the publication (price 15 s) are available from the Information Office, Electronic Engineering Association, Berkeley Square House, Berkeley Square, London W. 1.
Mullard have published the 1968 edition of their Data Book; this differs on three counts from previous issues. For the first time it embraces the complete ranges of the company's valves, c.r.ts, semiconductors and components for entertainments applications. The main sections have been made easily distinguishable by using different coloured pages for each of them. Also for the first time, it has been decided to make the book available to electronics enthusiasts outside the trade, through the dealers at a retail price of 3 s 6 d . Equivalents and replacement types are given for valves, c.r.ts and semiconductors.

W.W. 340 for further details

A 120 -page booklet giving full data on all the E.E.V. vacuum capacitors currently being produced is available from the English Electric Valve Co., Chelmsford, Essex.
W.W. 341 for further details

We have received a leaflet entitled "Systemised Products" from Vero Electronics Ltd., Industrial Estate, Chandler's Ford, Eastleigh, Hants., that describes the various forms of equipment practice available from them. Also included is a summary of other products in the Vero range.
W.W. $\mathbf{3 4 3}$ for further details

The 1968 condensed catalogue from Westinghouse Semiconductors, 1-3 Regent Street, London S.W.1, gives abridged data on transistors from low current plastic encapsulated devices to a 250 A power type. Data is also given on s.c.rs, rectifiers and rectifier assemblies.
W.W. 344 for further details

Technical Bulletin No. 4 from Bakelite Xylonite Ltd., Manningtree, Essex, discusses a new electrical grade of Bexphane E. This is a balanced biaxially orientated polypropylene film developed as a capacitor dielectric. The bulletin summarizes the features and advantages of the film and gives details of electrical and physical properties and yield data.
W.W. 345 for further details

We have received a catalogue describing servo-control, induction, reluctance and hysteresis synchronous motors from Amphenol Ltd., Thanet Way, Whitstable. Each of the four types of motors is available with one of twenty standard gear trains from 0.67 to 1800 r.p.m.
W.W. 346 for further details

Palladium, lightest of the platinum-group metals, has a large number of applications from dentistry and jewellery through to electronics. Facts pertaining to palladium are contained in a 20 -page booklet produced by International Nickel Ltd., Thames House, Millbank, London S.W.2.
W.W. 347 for further details

The one-inch vidicon tubes being manufactured by E.E.V. are described in a twelve-page brochure available from the English Electric Valve Co., Chelmsford, Essex. The vidicons are suitable for a wide range of applications in broadcasting, process control and military fields.
W.W. 342 for further details

A compound for applying to the threads of nuts and bolts ensuring that they can later be easily dismantled is described in the leaflet "Kern Antionic Compound" available from Special Product Distributors Lid., 81 Piccadilly, London W.1. The compound resists corrosion and is effective in the temperature range -212° to $+1642^{\circ} \mathrm{C}$.
W.W. 348 for further details

Details of a 25-A thyristor, type 27TX, are given in Technical Publication 26-127 available from the Westinghouse Brake and Signal Company Lid., 82 York Way, Kings Cross, London N. 1 .

W.W. 349 for further details

Magnetic pick-ups that produce an electrical output when brought into close proximity to moving ferrous objects are discussed in a leaflet from Trio Instruments Ltd., "Allington", Dartford Road, Farningham, Kent.
W.W. 350 for further details

The Audio Equipment Catalogue produced by R.C.A. consists of 155 pages describing the range of professional audio equipment produced by the company. Details are given of microphones, consoles, custom made audio equipment, amplifiers, power supplies, racks and accessories, turntables, tape recording equipment, loudspeakers and test equipment. Broadcast and Communications Products Division, Radio Corporation of America, Camden, New Jersey, 08102.
W.W. 353 for further details

H.F. Predictions-May

The prediction charts show median standard MUF, optimum traffic frequency (FOT) and the lowest usable frequency (LUF) for reception in the U.K. Unlike MUF, the LUF is closely dependent upon such factors as transmitter power, aerial gain and type of service. LUFs shown were drawn by Cable and Wireless, Ltd., for commercial telegraphy using power of several kilowatts and aerials of the rhombic type.

Seasonal changes are most striking on the Hong Kong route, the peaks of recent months are depressed giving an FOT below 20 MHz which changes litule throughout the 24 hours. Montreal route shows the same characteristic as it is also an East/West path in the same hemisphere. Daylight FOTs for the transequator paths to South Africa and South America continue at about 25 MHz .

Predictions are based on an ionospheric index (IF2) of 133, an increase of one over the previous month.

May Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON

1st. I.E.E.-Annual general meeting of London Graduate \& Student Section followed by "The design of high-quality audio amplifiers" by J. Dinsdale at 18.30 at Savoy P1., W.C.2.
1st. B.K.S.T.S. \& R.T.S.-"The work of Alan Blumlein", an appreciation by several speakers, at 19.30 at the Royal Overseas League, Park P1., St. James's St., S.W.1.
7th. Soc. Relay Eng.--"International standards for wired television" at 14.30 at the I.T.A., 70 Brompton Road, S.W. 3.

7th. I.E.E.-"Memory in the nervous system" by Prof. J. Z. Young at 17.30 at Savoy PI., W.C.2.
8th. B.K.S.T.S.--"Stereo radio reception" by J. W. W'anden, at 19.30 at the Royal Overseas League, Park Pl., St. James's St., S.W.1.

13th. I.E.E. \& I.E.R.E.-Colloquium on "Specialpurpose digital machines" at 18.00 at Savoy Pl., X'.C.2.
15th. I.E.E.-"Integrated p.c.m.-telephony bit by bit" by H. B. Law at 17.30 at Savoy PL, W.C.2.

16th. I.E.E.-Discussion on "Frequency scanning aerials" at 17.30 at Savoy PI., W.C.2.
20th. IE.E.-"Novel techniques for beam steering and compensation of distortion in large reflector aerials" by A. W. Rudge and T. Pratt at 17.30 at Savoy PI., W.C.2.

22nd. Inst. of Navigation.-"Surface guidance on airports" by G. Harrison at 17.00 at the Royal Institution of Naval Architects, 10 C'pper Belgrave St., S.W.1.
23rd. S.E.R.T.-Discussion on "Education and training for maintenance" at 19.00 at London School of Hygiene and Tropical Medicine, Keppel Street, w.C. 1 .

GLASGOW

17th. S.E.R.T.-"Reminiscences of a service engineer" by R. T. Frost at 19.00 at Examinations Hall, Stow College, 43 Shamrock Street, C. 4 .

HORNCHURCH

8th. 1.E.R.E.--"Solid state bulk effects" by C. P Sandbank at 18.30 at the Havering Technical College, 42 Ardleigh Green Road.

MANCHESTER

7th. I.E.E.-"Some problems of the organisation of science in the modern world" by Lord Bowden at 18.15 at U.M.I.S.T.

MIDDLESBROUGH

1st. I.E.E.-"The place of the technologist in modern society" by Prof. M. W. Thring at 18.30 at Cleveland Scientific Inst.

NEWCASTLE-UPON-TYNE
1st. S.E.R.T.-"Microwaves in industry" by J Bilbrough at 19.30 at Charles Trevelyan Technical College, Maple Terrace.

PLYMOUTH

1st. R.T.S. - "Recent developments in video tape recording" by R. E. Nether at 19.30 at the Studios of Westward Television Ltd

PRESTON

2nd. S.E.R.T.-"Industrial electronics" at 20.00 at Harris College, Corporation Street.

TORQUAY
9th. I.E.E.-" The engineer and the law" by H. B. Morton at 14.30 at Electric Hall.

THE CHOICE of CRITICS Precision Electronic Cmmponamils

THE I.E.A. EXHIBITION OLYMPIA MAY 13-18 1968

Collet Kneba. Over 20 varieties.

SEND FOR NEW 200 PAGE CATALOGUE No 206 A. F. BULGIN \& CO. LTD BYE PASS RD, BARKING, ESSEX. 01-594-5588

"Come and join us"

I see that in a recently published study of manpower in the electronics industry* some concern is expressed at the shortage of scientists in industrial research. According to the report, a large proportion of high quality graduates is drawn instead into academic and government institutions (although it doesn't specify what kind of institutions).

This situation isn't really surprising when you come to think about it. After all, a graduate scientist is a high-souled creature who throughout his university life has been conditioned to regard anything less than pure research as sordid. He knows vaguely that there is such a thing as industrial research but would consider the prospect of entering it with the same degree of enthusiasm which a Victorian Lord of the Manor would have exhibited for going into trade. He equates industry with unspeakable things like muck, oil and grease and, above all, harbours a horrid suspicion that, once in it, he would be expected to do something specific in the way of work (which is a wild surmise if ever I heard one). But there it is; that's the image and you can't really blame him for not wanting to join. Very few wild rabbits enter cages voluntarily.

The shortage is made even more acute by the status-symbol aura associated with the possession of a research department. If an electronics company hasn't got one it is generally considered not to have arrived, so naturally there comes a danger period in the life of every small but up-and-coming manufacturing concern when the situation goes critical.

The first symptom shows when the chairman gets a touch of the March Hares and is observed stomping up and down his sanctum cutting a fresh swathe in the carpet pile with each new stomp. It would convey nothing to describe his countenance as expressing grave dissatisfaction because all chairmen look like this all the time anyway. Let us say therefore that our chairman's expression is several orders of magnitude graver and more dissatisfied than is its wont. Which is scarcely surprising because, to put the matter in a TO5 can, he is gravely dissatisfied. He has suddenly discovered that something in life is missing but he wots not what.
Then, like St. Paul of old, he is smitten by

[^8]a blinding light, paralysing him in his tracks. In lesser men it would be diagnosed as epilepsy but when it occurs in chairmen it is called inspirational genius. Instantly with crystal clarity he knows just what is wrong. It is his company. It hasn't got a research department. Unthinkable!

Characteristically, he trumpets for his general manager and demands the reason why. The G.M. replies nervously that electronic baby alarms, the company's main product, have never seemed to him to call for much in the way of research; he adds that in his experience as a father of 10 it doesn't need a research team to find out how to alarm a baby. He is thereupon sacked on the spot, not for his hazy grasp of the function of the company's product but for failing to wave a magic wand and materialise a gleaming glass palace out of thin air.

Once the fatal decision is made, the first step is to acquire an asylum of laboratories. The only point on which the planners called in to do the job will agree is that the laboratories must be sited in pleasant rural terrain, for it is well known that scientists are intensely sensitive to atmosphere and will only thrive in congenial surroundings. In due course an imposing edifice arises, architecturally part early nuclear and part late Bayswater Road. It is so deep in the heart of the countryside that no road exists within miles. The chairman regards the inaccessibility as an advantage; he has always wanted an excuse to buy a helicopter. The lack of an access road will not bother the scientists as their little hooves never quite touch the ground anyway.

Phase two of the operation is to stock the buildings with physicists and, as with jugged hare, the first thing to be done is to catch them. Frankly, this is no task for the amateur; better by far to leave it to a reputable physicist-trapper, for not every one which is caught is suitable and considerable expertise is necessary to know which to keep and which to throw away. The main features the professional will look for are the distinctive markings (known in the trade as 'hons') which an expert eye can categorise as first, second or third class. There are three main breeds of physicists to go for, namely the "Oxon", the "Cantab" and the quaintly-named "Redbrick". The first two varieties are highly prized by fanciers and have an additional scarcity value
but the Redbrick is said by some to be more industrious.
Physicists in captivity are frequently intractable at the outset and are prone to pine for their natural habitat, the university, but provided that the laboratories are plentifully equipped with complicated and expensive toys they usually settle down, given time and patience. Do not fuss them; put them in their glass-walled cages at 9 a.m. and let them play or sleep until 5 p.m. when they should be put out for exercise.

The great moment comes when, after a short quiescent period (often as little as six or seven years), one of them produces something he or she has made. It will bear no resemblance whatever to the equipment which is urgently required by the Works but then, life is like that. If, for instance, the desired end-product is a Mark II baby alarm the nearest you are likely to get to it is an experimental electronic mousetrap. The idealist or the inexperienced may be forgiven for feeling that the whole exercise has been pretty futile.

Not so, however. The realist accepts the mousetrap gratefully and then casts around for a mousetrap manufacturer whose own laboratories have produced an experimental baby alarm. The two then come to an amicable cross-licensing agreement and in this fashion science and industry can be linked in happy wedlock.
If this should catch the eye of any emerging young scientists I hope enough has been said to show that research in industry can be every bit as jolly as on the campus; in fact, the chances are that you won't know the difference. You may even get the chance of roughing up an M.P. or two because, having got himself a research department, the chairman will naturally want to show it off to visiting V.I.Ps. It will be just like home.

By comparison

I am most grateful to Bob Eldridge of Vancouver, B.C., for his comments on my March contribution. He writes:

First let me say that I enjoy your column immensely, and it is evident that you enjoy writing it.

If what you say about telephoning in Britain is anything like the true state of affairs, then Britain really is in a very serious condition. Surely you must be exaggerating beyond all belief!

If I want to talk to co-workers I dial the last four digits of their telephone number. If I want to call someone not on our PABX I dial 9 to pick up the normal dial tone, then dial their number. Another part of our company, 15 miles away has a similar PABX. If I want to call someone on that one I dial 2, followed by their extension digits.

If I want to call another city I dial 112-514-870-2175 for example which takes me straight into an extension on a PABX there. If I want Montreal information I dial 112-514-555-1212 which takes me direct to the information operator there at no charge. I can do the same to Dallas (Texas), Miami (Florida) or any other major city in north America.

When the new electronic exchanges come along we will be able to . . ., but that is tomorrow. I am sure glad our today is less tedious than you say yours is.

true-to-specification
 SILCLAIR DESGISS
 COMPACT HIGH-FIDELITY LOUDSPEAKER

This amazing little set, easy to take with you as your wrist watch, costs no more in spite of budget increases. Tuning over the medium waveband, it plays anywhere with fantastic power and quality. Complete
with hi-fi quality magnetic ear piece.
Complete kit of piece, case, alpiece, case, aluminium front 40
with earpiece,
tested and panel, etc.
 $50 / 6$
Mallory Mercury Cell (2 required) each 2/9.
Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at AVAILABLE TO ALL SINCLAIR CUSTOMERS.

SINCLAIR RADIONICS LIMITED

22 NEWMARKET ROAD, CAMBRIDGE
Tel.: OCA3 52996

SIZE—93 ${ }^{2} i n . \times 9 \frac{3}{4} i n . \times 4 \frac{3}{4} i n$. plus pedestal base.

- IMPEDANCE—15 ohms.
- LOADING—up to 14 watts.
- FREQUENCY RESPONSE -16 to $16,000 \mathrm{~Hz}$ with well sustained response below and above these levels.
- DRIVING UNIT-Special cone suspension provides exceptionally high compliance. Massive ceramic magnet; aluminium speech coil.
- PRESSURE CHAMBERsealed, seamless formation made from special high-density low resonance materials.
- FINISH—Black matt, embellished with solid aluminium bars.
- POSITIONING-The Q. 14 can be used as a free-standing unit, a corner radiator or flush mounted singly or in units on to a flat surface such as a flat wall.

Try the Q. 14 in your own home to-day. If you are not completely satisfied with this fully guaranteed loudspeaker, your money will be refunded in full including the cost of posting it back to Sinclair Radionics. Price (post free)

COMBINED 12 WATT HI-FI AMP \& PRE-AMP

12 WATTS R.M.S. CONTIN. UOUS SINE WAVE OUTPUT (24 W. peak)

- 15 WATTS MUSIC POWER (30 W. peak)
- INPUT SENSITIVITY-2mV into 2K ohms.
- OUTPUT MATCHING-Suitable for 15, 8, 5 or 3 ohm speakers. Two 3 ohm speakers may be used in parallel.
- FREQUENCY RESPONSE—15$50,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
P PZ 4 STABILISED POWER PACK.

99/6

Please send POST FREE

8 Transistors
Signal to noise ratio better than 60dB.

- POWER REQUIREMENTS- 6 to 20V. D.C.
- Complete with $Z .12$ manual of mono and stereo matching control and switching circuits.

Ready built, guar-
anteed and with
Z. 12 manual

89/6

CHASSIS by
 EDGWARE BR $O A D$

H. L. SMITH \& CO. LTD.

Electronic Components - Audio Equipment
287/289 EDGWARE ROAD, LONDON, W.2.
Tel: 01-723 5891
We shall be pleased to quote for all your component requirements.

BLANK CHASSIS
 SAME DAY SERVICE

Of over 20 different forms made up to YOUR SIZE. (Maximum length 35in., depth 4in.)
SEND FOR ILLUSTRATED LEAFLETS or order straight away, working out total area of material required and referring to table below, which is for four-sided chassis in 16 s.w.g. aluminium.

48 sq. in.	$5 /-$	176 sq. in.	$10 / 4$	304 sq. in. $15 / 8$	
80 sq. in.	$6 / 4$	208 sq. in.	$11 / 8$	336 sq. in.	$17 /-$
112 sq. in.	$7 / 9$	240 sq. in.	$13 /-$	368 sq. in. $18 / 4$	
144 sq. in.	$9 /-$	272 sq. in.	$14 / 4$	and pro rata.	
P. \& P. $3 /-$.		P. \& P. $3 / 6$.		P. \& P. $4 / 6$.	

Discounts for quantities. More than 20 sizes kept in stock for callers.
FLANGES ($\frac{1}{4} \mathrm{in} ., \frac{3}{8} \mathrm{in}$.), 6d. per bend.
STRENGTHENED CORNERS I/- each corner.
PANELS: Any size up to 3 ft . at $6 /-\mathrm{sq}$. ft. 16 s.w.g. (I 8 s.w.g. $5 / 3$). Plus post and packing.
and CASES

CASES

ALUMINIUM, SILVER HAMMERED FINISH						
Ty	pe Size	Price		Type	Size	Price
U	$4 \times 4 \times 4^{*}$	11/-	Y	8×6	6*	29/-
U	$5 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \frac{1}{2}$	17/-	Y	12×7	7	45/-
\cup	$8 \times 6 \times 6$	23/-	Y	13×7		50/6
\cup	$9 \frac{1}{4} \times 7 \frac{1}{2} \times 3 \frac{1}{2}$	24/-	Y	15×9		53/6
\cup	$15 \times 9 \times 9$	49/-	Z	17×10	$\times 9$	72/6
W	$8 \times 6 \times 6$	23/-	Z	19×10	$\times 8 \frac{1}{2}$	78/-
W	$12 \times 7 \times 7$	37/6		Height		
W	$15 \times 9 \times 8$	48/6		Plus	and	

Type U has removable bottom or back, Type W removable front, Type Y all-screwed construction, Type Z removable back and front.

WW-100 FOR FURTHER DETAILS

WW-101 FOR FURTHER DETAILS

WHEN THE SQUEEZE IS ON THE PRESSURE IS OFF

FEATURE-REVERSES TWEEZER PINCH!

Save time. Increase efficiency. Cut operator fatigue in assembly of miniature electronic components and equipment. No more dropping of tiny parts at critical moments with time loss and risk of damage.
Operator squeezes to pick-up or release parts Precision points exert uniform grip-adjust able to handle most delicate parts.

REVERSE ACTION TWEEZERS

K651-Stainless steel, an K652-General-purpose nickel silyer alloy anti-magnetic-fine points. K654-As 651 but coated with Teflon' for heat and chemical

K655-Extra fine points miniature parts. Stainless steel Full minit parts stail of KONTAKT AEROSOL aids to industry and of the Diacrom range of diamonded spatulas from: U.K. Distributors SPECIAL PRODUCTS DISTRIBUTORS LIMITED 81 Piccadilly, London, W.I Tel. 01-629 9556

In addition, the 150 -page RTS Catalogue provides easy reference to a comprehensive selection of electronic components. All are available 'byreturn' and we will gladly send you a copy of the latest edition on request.

A DIVISION OF
COMBINED ELECTRONIC SERVICES LTD.
P.O. Box 11 - Gloucester Street - Cambridge.

Tel: Cambridge (OCA3) 51471 - for orders
Cambridge (OCA3) 59101 - other business

Space problems

Stabilised Power Units for tight spaces

Especially designed for tight spaces, three compact silicon modules, developed from the successful TSU-0500 Series.

Model 13027	$10-12 \mathrm{~V}$ at 1 A	$£ 25$
Model 13028	$10-12 \mathrm{~V}$ at $1 \frac{1}{2} \mathrm{~A}$	$£ 30$
Model 13028A	$4-6 \mathrm{~V}$ at $1 \frac{1}{2} \mathrm{~A}$	$£ 30$

Full details on request from

A-P.T

ELECTRONIC INDUSTRIES LTD.

Chertsey Road, Byfleet, Surrey
Telephone: 41131

quartz crustal fiters $10 \cdot 7 \mathrm{MHz}$

OVERALL SIZES:
QC $10621.42^{\prime \prime} \times 1.05^{\prime \prime} \times .75^{\prime \prime}$
QC $11211.496^{\prime \prime} \times \cdot 708^{\prime \prime} \times \cdot 59^{\prime \prime}$

OC 1062

OC 1062	A	B	c	D	E	F	G
Channel Spacing	25 kHz	25 kHz	50 kHz	50 kHz	20 kHz	25 kHz	12.5 kHz
Pass Band	$\begin{gathered} \pm 7.5 \mathrm{kHz} \\ \mathrm{~min} . \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 7.5 \mathrm{kHz} \\ \text { min. } \\ \hline \end{array}$	$\begin{aligned} & \pm 15 \mathrm{kHz} \\ & \text { min. } \end{aligned}$	$\begin{array}{\|c\|} \pm 15 \mathrm{kHz} \\ \text { min. } \end{array}$	$\begin{gathered} \pm 6 \mathrm{kHz} \\ \underset{\text { min. }}{ } \end{gathered}$	$\begin{gathered} \pm 10 \mathrm{kHz} \\ \text { min. } \end{gathered}$	$\begin{array}{\|c} \pm 3.75 \mathrm{kHz} \\ \mathrm{~min} . \\ \hline \end{array}$
Stop Band loss	$\begin{gathered} 90 \mathrm{~dB} \\ (10.4 \mathrm{~N}) \\ \text { min. }^{*} \end{gathered}$	$\begin{array}{\|c\|} \hline 90 \mathrm{~dB} \\ (10.4 \mathrm{~N}) \\ \text { min.* } \\ \hline \end{array}$	$\begin{gathered} 90 \mathrm{~dB} \\ (10.4 \mathrm{~N}) \\ \text { min.* } \\ \hline \end{gathered}$	$\begin{gathered} 90 \mathrm{DB} \\ (10.4 \mathrm{~N}) \\ \mathrm{min} .{ }^{*} \end{gathered}$	$\begin{array}{\|c\|} \hline 90 \mathrm{~dB} \\ (10.4 \mathrm{~N}) \\ \text { min.* } \end{array}$	85 dB (9.8N) min.*	$\begin{gathered} 90 \mathrm{~dB} \\ (10.4 \mathrm{~N}) \\ \min . * \end{gathered}$
For frequencies beyond	$\pm 25 \mathrm{kHz}$	$\pm 25 \mathrm{kHz}$	$\pm 50 \mathrm{kHz}$	$\pm 50 \mathrm{kHz}$	$\pm 18 \mathrm{kHz}$	$\pm 25 \mathrm{kHz}$	$\pm 12.5 \mathrm{kHz}$
Maintained to	$\pm 300 \mathrm{kHz}$						
Terminating Impedence	$\begin{array}{\|l\|} \hline 820 \mathrm{ohms} \text {. } \\ \text { in shunt } \\ \text { with } 25 \mathrm{pF} \end{array}$	1300ohms. in shunt with 25 pF	$\begin{gathered} 2000 \text { ohms } \\ \text { in shunt } \\ \text { with 25pF } \end{gathered}$	26000hms. in shunt with 25 pF	$\left.\begin{array}{\|c\|} \hline 1200 \text { ohms. } \\ \text { in shunt } \\ \text { with } 25 \mathrm{pF} \end{array} \right\rvert\,$	2000ohms. in shunt with 25 pF	560 hms . in shunt with 25 pF

QC 1121	A	B	C	D			
Channel Spacing	25 kHz	50 kHz	25 kHz	12.5 kHz			
Pass Band	$\begin{gathered} \pm 7.5 \mathrm{kHz} \\ \text { min. } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \pm 15 \mathrm{kHz} \\ \text { min. } \\ \hline \end{array}$	$\begin{gathered} \pm 7.5 \mathrm{kHz} \\ \mathrm{~min} . \end{gathered}$	$\begin{gathered} \pm 3.75 \mathrm{kHz} \\ \text { min. } \end{gathered}$			
Stop Band loss	$\begin{gathered} 55 \mathrm{~dB} \\ (6.3 \mathrm{~N}) \\ \text { min.* } \\ \hline \end{gathered}$	$\begin{gathered} 55 \mathrm{~dB} \\ (6 \cdot 3 \mathrm{~N}) \\ \min . \end{gathered}$	$\begin{gathered} 80 \mathrm{~dB} \\ (10.4 \mathrm{~N}) \\ \min .^{*} \end{gathered}$	55dB (6.3N) min.*			
For frequencies beyond	$\pm 25 \mathrm{kHz}$	$\pm 50 \mathrm{kHz}$	$\pm 25 \mathrm{kHz}$	$\pm 12.5 \mathrm{kHz}$			
Maintained to	$\pm 300 \mathrm{kHz}$	$\pm 300 \mathrm{kHz}$	$\pm 300 \mathrm{kHz}$	$\pm 300 \mathrm{kHz}$			
Terminating Impedence	910ohms. in shunt with 25 pF	9100 hms . in shunt with 25 pF	910ohms. in shunt with 25 pF	560 ohms. in shunt with 25 pF			

- Loss figures are relative to the maximum transmission level.

Send for leaflets
SALFORD ELECTRICAL INSTRUMENTS LIMITED
Peel Works, Barton Lane, Eccles, Manchester. Tel: ECCles 5081. Telex 66711 London Sales Office: Brook Green, Hammersmith, W.6. Tel: 01-603 9292 A Subsidiary of the General Electric Co. Ltd. of England.

WW-105 FOR FURTHER DETAIIS

AVONCEL

 EQUIPMENT TROLLEYSMedium Duty from $£ 17$. Heavy Duty from $£ 35$. Wide range of Standard Models. Quick Delivery Special Models made to order.
"AVONCEL"

AVON COMMUNICATIONS \& ELECTRONICS LTD 318 BOURNEMOUTH (HURN) AIRPORT Christchurch, hants. Tel. northbourne 3774 (P.b.X.)

LONDON microphones

Quality sound-at low cost
The London Microphone range offers you quality microphones, good characteristics-and good looks, too, at remarkably little cost. All made in Britain.

NEW to the range: LM 200S Dynamic cardioid microphone. Balanced output. Like its counterpart, the LM 200, it eliminates unwanted background noise. Gives good recordings even under difficult conditions, but with this important
extra-casily manipulated extra-diasily
recording.

			Lowi imp.	High imp.	
LM 200S	$£ 5$	19	6	$£ 615$	0
LM 200	$£ 419$	6	$£ 5$	15	0
LM 100 (Omni)	$£ 3$	3	0	$£ 3$	18

Home or overseas trade enquiries evelcome. Write or ring for details:
LONDON MICROPHONE CO. LTD.
182/4 Campden Hill Road, London, W. 8 .
Tel: 01-727 0711. Telex 23894
WW-108 FOR FURTHER DETAILS

Valhadio TRANSVERTORS

(TRANSISTORISED D.C. CONVERTERS/INVERTERS)

TYPE: B12/I50T
PRICE: $£ 24.3 .0$
OTHER TYPES AVAILABLE from 10w up to $1,000 \mathrm{w}$ FOR I2-24-50-1IOv DC inputs. PRICES: E4.10.0. up to $\mathbf{8 9 9 . 1 5 .}$ THE "T" RANGE of units are economical, efficient and provide an output with a squarewave form. Suitable for oper-ating:-VHF R/T-Radar-Echo Sounders-Ultra-violet Re-corders-Fluorescent Lighting-Refrigeration in Boats and Caravans, etc. and are designed to provide the starting loads of F.H.P. motors and the high initial power in rectifier circuits. SINEWAVE AND SQUAREWAVE, stable frequency ($\pm \frac{1}{4} \mathrm{~Hz}$) outputs are available in the " S " and " Q " ranges. WE SHALL BE HAPPY TO ASSIST WITH YOUR POWER CONVERSION PROBLEM.
CALL, WRITE OR TEL: 01-890 4837
EXPORT ENQUIRIES INVITED-Demandes concernant l'exportation solicités-Se invitan consultas sobre exportación-Exportanfragen erbeten.

VALRADIO LIMITED, Dept. CIO
BROWELLS LANE - FELTHAM - MIDDLESEX ENGLAND Tel: 01-890 4242
VALRADIO and STEREOSONOSCOPE are the registered trade marks of VALRADIO, LTD.

WW-109 FOR FURTHER DETAILS

USED THROUGHOUT THE WORLD, SANWA'S EXPERIENCE OF 30 YEARS ENSURES ACCURACY, RELIABILITY, VER. SATILITY. UNSURPASSED TESTER PER. FORMANCE COMES WITH EVERY SANWA. 6 Months' Guarantee • Excellent Repair Service Model P-18 Model JP SD Model 360 -YT Model 380-CD 6376
$\begin{array}{rrr}67 & 17 & 6 \\ \mathrm{E} 13 & 5 & 0\end{array}$
Please write for illuscraved leaflets of these Sanwa Meters
SOLE IMPORTERS IN U.K

HOUSEMOLD ELEGTRIX LTD. 47-49 HIGH STREET, KINGSTON-UPON - THAMES, SURREY. Tel: 01-546 4585 WW-110 FOR FURTHER DETAILS

COIL WINDING MACHINERY Kolectric present
 STAND N178
 AT I.E.A.
 their New 1968 Models

Model KL4 Front Loading Machine

The Kolectric four spindle front loading machine is ideal for long production runs of coils having relatively high turns count such as relays and solenoids, though short batch productions can also be economically wound. One operator can control two machines situated side by side in the bench space normally allocated to one conventional machine. Ease of coil set-up is featured with the option of programming multisection bobbins.

* FOUR SPINDLE OPERATION - The spindles are connected by timing belt drives ensuring low noise, slip-free winding of up to four coils simultaneously.
* VARIABLE SPEED AND PITCH SELECTION A variable speed motor is fitted to allow for winding speeds to over 10,000 r.p.m. while the improved Kolectric friction drive allows infinite variation of the pitch without the use of change gears.
* BOBBINS AND WIRE SIZE RANGE - Coils from ${ }_{32}^{1}$ " to 10 inches in length set by digital indicator calibrated in thousandths of an inch. Up to $3 \frac{1^{\prime \prime}}{}$ in diameter can be handled and wire sizes from 25 SWG to 50 SWG are catered for as standard. Heavier and finer wire gauges can be accommodated.
* PREDETERMINING COUNTER - A $12,000 \mathrm{rpm}$ direct reading counter with push-button predetermining feature is fitted as standard and operates a highly efficient electromagnetic brake with stopping to 1 turn. A special

LOW COST HIGH PRODUCTION

counter is available when exact turns count and spindle positioning to within 10 degrees is required.
\star
BOBBIN SUPPOR'T - The spindles on the machine are $\frac{1^{\prime \prime}}{2}$ diameter with a $1^{\prime \prime}$ flat and are bored $5^{5 /}{ }^{\prime \prime}$ dia. and fitted with a locating screw. A set of 4 detachable tailstocks are available for use with long coils or solid core types where outer cheek support is necessary.

* MEASUREMENTS - Width $21^{\prime \prime}$. Depth 21". Height $12^{\prime \prime}$. These machines are for bench mounting and are completely integral. Motor is $\frac{1}{2}$ H.P., 240V., single phase supply, or to customer's specification.

Model KLK Turret Transfer Machine

Based on the standard Kolectric Automatic Winding Head and combined with the foremost American turret transfer mechanism by the COIL WINDING EQUIPMENT CO., of New York, the Model KLK embodies advanced principles of design and manufacture hitherto unobtainable at such competitive prices. Models are available ranging from basic hand operated transfer with predetermining counter to fully programmed two-speed automatic transfer machines. The latter have the option of several winding heads and ancillary equipment to completely automate the winding process.

Coil handling time is markedly shortened through having all operations performed on a stationary work spindle. There is the facility for further windings, or waxing, spraying, taping and wire cutting being performed at another station whilst the winding is taking place. No limit is imposed on the number of turns, layers or part layers as automatic spindle positioning is available.

On receipt of coil specifications we will be pleased to quote in detail.
A wide range of standard automatic and hand coil winding machines are available.

HAYES ROAD, SOUTHALL middlesex
Tel. SOUTHALL 6002/3

FANTASTIC SCHALUB-LORENZ MUSIC CENTRE-MODEL 5001

Complete stock purchased from world famous German manufacturer COMBINED 4 WAVEBAND RADIO AND 126 TRACK TAPE RECORDER GIVING 46 HOURS OF RECORDING TIME

ORIGINAL PRICE OUR BARGAINPRICE 275 cNS OUR OAR GNS, GARER: 275 cns.

AS FEATURED ON T.V.

An amazing piece of equipment combining a 4 -band radio and a 126 track tape recorder in
one modern compact unit 3 lin . $\times 1$ 3in. $\times 1 \mathrm{lin}$
The recorder section gives 46 hours of continuous unrepeated playing timefantastic but true-46 hours of music can be yours at the touch of a switch.
Brief Specification: Incorporates 27 transistors and 15 diodes. Four wavebands VHF/MW/LW/SW, with exclusive "Auton Control" to give precise station tuning. Separate Bass and Treble Controls. A wide magnetic tape records 126 separate tracks of 22 minutes each. Every track is able to record/replay so that you need not touch the machine for the total 46 hours record/replay time. Rewind time for each 22 minutes track only 25 seconds. Tape speed 10.5 cm . sec. Inputs for direct recording from microphone and record player. Pause control fitted. 10 watts quality output. Built in lOin. speaker and tweeter. Sockets for extension speakers. Beautifully housed in wooden cabinet. Complete with switched audio input adaptor for mike and gram. All units Brand New in maker's original packing.

Don't miss this genuine offer, the value is absolutely fantastic, the radio section alone is worth more than our are limited and price for the complete unit-stocks ONLY OBTAINABLE FROM

LODGE TRADING CO.
21 LODGE LANE, NORTH FINCHLEY, LONDON, N.I2
Telephone: 01-445 0749 or 01.4452713.
CALLERS WELCOME-DEMONSTRATIONS DAILY
Open a.m. to 6 p.m.
(Sats. a.m. so 4 p.m.)

WW-113 FOR FURTHER DETAILS

WW-114 FOR FURTHER DETAILS

MF1000

GD972

Celestion powe
loudspeakers for the perfectionist

-for guitars and organs

Write for Catalogue No: RCS 162

Rola Celestion Ltd.
Ferry Works, Thames Ditton, Surrey, England. Telephone: 01-398 3402

Telex: 266135

IMMEDIATE DESPATOH ful spares and service available

20 Amp. LT. SUPPLY
As supplied to Min. of Defence and Crown Agents for overseas Govt. LATEST DESIGN HEAYY DUTY $12 / 24$ VOLT D.C. Output: Adjustable up to 20 AMPS. CONTINUOUS at $12 / 24$ volts. FULLY FUSED, Neon indicator, $0-20$ amp. meter. Size $16 \times 12 \times 20$ in high, in heavy gauge steel cabinet. Grey Hammer finish-Weight 50 lb. input: $220 / 230 / 240$ v. A.C. 50 cycles.

30 Amp. LT. SUPPLY UNIT

UP TO 18 v. D.C. WITH SMOOTH STEPLESS VARIATION Designed for CONTINUOUS use at max. loading

* Fitted voltmeter and ammeter. 太 Instantaneous overload cut-out Input: Mains A.C. Robust construction, 2 tone finish, steel case.
£55.0.0
C. \& P. 40/=. G.B. (Inland).
Entirely suitable for plating plants, Laboratory supplies, etc.

5 AMP. A.G. \& D.G. VARIABLE SUPPLY UNIT
Specification: Output: $0-260$ v. A.C. $0-240$ v. D.C

* Smooth stepless voltage variation from O-Max.
* Current consistent throughout the controlled
- range.
* Ammeter and voltmeter fitted, and neon
indicator
ut and output.
rong steel case, with carrying handle and rubber feet $\times 7 \times 14 \mathrm{in}$. high. Made in England.
 \$30.0.0 C. \& P. 40/. Ge. Britain (nland).
CURRENT PRODUCTION - bUY DIRECT FROM MANUFACTURER

VARIABLE VOLTAGE TRANSFORMERS

Modern styling for modern equipment 'SLIDE-TRANS' \& 'SLIDUP' MODELS

Fully rated current consistent at all points along the winding AVAILABLE ONLY FROM I.M.O.

* SMOOTH CONTINUOUS ADJUSTMENT
* ALL MODELS SHROUDED FOR SAFETY (IDEAL FOR EDUCATIONAL AUTHORITIES) * BENCH OR PANEL MOUNTING
* UP TO 260v. AVAILABLE FROM ALL MODELS

All models 230 v . A.C. $50 / 60$ c.p.s. input

mp	£5.15.0
2.5 Amp.	£6.17.6
5 Amp .	¢9. 19.0
8 Amp.	<14.15.0
10 Amp.	t18.10.0
12 Amp.	421. 10.0
20 Amp.	438.10 .0

C. \& P. EXTRA

TRANSISTORISED MEGOHMETER
\star PUSH BUTTON TO READ
500 v. - 1,000 Megohm
vor- 1,000 Megohms. Superb portable instrument. Supplied case.
ONLY 225.0 .0 C. \& P. $7 / 6$

36 FT. AERIAL MAST

NEW
latest pattern
TUBULAR MAST
Check these vital points:

* Made from $6 \times 1 \frac{3}{3} \mathrm{in}$. Sheradurability and strength
* Extra strong locating base
\star Top cap with fitted pulley and
$\star 2$ sets (8) Retproof Guys. \star Rustproofed Steel Picketing Stakes.
ONLY £15.0.0 ex works Carr. 20/
case $40 /=$

VARIABLE HIGH VOLTAGE

 SAMPLING TESTERDIELECTRIC BREAKDOWN TESTER

* Range: Infinitely variable up to 3,000 volts 0.1 amp.
* Entirely suitable for continuous testing.太 Automatic safery cut-out. Input: Mains voltage. Input and test leads with clips.
Model T30
C. \& P. 25/-

COMPLETE PHOTO-ELECTRIC SENSOR in one unit

* SENSES ANY OBJECT-INCLUDING THICK SMOKE
Operares from 12 V . A.c. Output signal 10.2 mmp .100 V . Approximazely $£ 5.10 .0 \begin{gathered}\text { dependent } \\ \text { on quanticy }\end{gathered}$

CONSTANT VOLTAGE TRANSFORMERS AUTOMATIC MAINS STABILISER
\star No attention \star No Maintenance * No Moving Parts * Corrected Wave Input: 190.250 A.C. Accuracy $\pm 1 \%$. Capaciry: 250
 watts. Maintain "spot-on" test-zea Fitted signal lamp and switch. Size: $\times 6$ $\mathbf{~} 12.10 .0{ }^{\mathrm{c}} \mathrm{c}_{20 /-\mathrm{P}}^{\mathrm{P}}$.

LATEST SOLID STATE

 VARIABLE VOLTAGE CONTROL* COMPLETELY SEALED \star COMPACT AND COMPLETE * PANEL MOUNTING

230 volts A.C. Input $25-230$ volts output. 5amp. model $\notin B / 7 / 6$
10 amp. model \& $13 / 15 /$

PORTABLE VARIABLE A.C. POWER Designed for engineers SUPPLY UNIT whose requirement cation of volts applied eation of vo 0.260 v. it $\frac{1}{2}$ amps. INPUT:
230 V. A.C. $50 / 60$ c.p.s. Fitted with fuse, voltmeter, safery indicator on-off switch and lead.

$$
\text { PRICE EQ.2.6. C. \& P. } 12 / 6
$$

PORTABLE TRANSISTOR TESTER

SUITABLE FOR PRODUCTION \& LABORATORY USE SPECIFICATION:
Alpha 0.7 to 0.997
Beta 5-300
ICO 0-50 $\mu \mathrm{A}$. SmA.
Capable of measuring GERMANIUM AND SILICON
DIODES.
DESIGNED WITH RESIS-
TANCE SCALE 200 ohms to
TUegohm as an ADDED REA. plastic case, s/w internal plastic
battery. case, c/w internal

£6.19.6

AS USUAL WE WILL BE EXHIBITING AT THE "INSTRUMENTS ELECTRONICS AND AUTOMATION" EXHIBITION AT OLYMPIA

LINEAR INTEGRATED CIRCUITS

CA 3000 Differential amplifier, TO-5. Bandwidth $0-30 \mathrm{Mhz}$. Gain $37 \mathrm{~dB} / 10 \mathrm{Mhz}$. Max. Output 6, 4 volt peak-peak.
Price $63 / 18 /$.
CA 3012 High Frequency Amplifier, TO-5. Bandwidth $100 \mathrm{Khz}-20 \mathrm{Mhz}$. Gain 55-61 dB/I0, 7 Mhz .
Price $\mathrm{f} / / 18 /$.
CA 3018 Includes: 2 single transistors, TO-5 I cascade pair Application = High Frequency Amplifier/Mixer/Oscillator Gain cascade pair $=1500-3500$ Gain single transistor $=30-67$.

Price $\mathrm{f} 1 / 19 /$.
CA 3020 Low frequency amplifier Bandwidth 6 Mhz, TO-5. Gain max. $52-58 \mathrm{~dB}$. Sensitivity 35 mV . Output max. 700 mW Input Impedance 40 Kohm . Output impedance $65+65 \mathrm{ohm}$ (push pull).

Price $\mathbf{£ 2} / 6 / 6$
PA 222 Low Frequency Amplifier. Bandwidth 20 Khz (dual in line). Gain typ. 50 dB . Sensitivity 65 mV . Output max I Watt. Input impedance $40-55 \mathrm{Kohm}$. Output impedance 22 ohm (single ended push pull).

Price $\mathbf{1 2 / 1 9 / -}$
MC 1429 G Differential amplifier TO-5. Bandwidth $0-250 \mathrm{Khz}$. Differential gain $45-75 \mathrm{~dB}$. Max. Output swing 5 Volt pp. Price $\mathrm{E} 3 / \mathrm{l} 3 /-$. MC 1430 P (dual in line) Differential input, single ended output. Bandwidth $1,3 \mathrm{Mhz}$. Gain 75 dB max. Offset Voltage $2 \cdot 10 \mathrm{mV}$.

Input impedance 5-15 Kohm. Output Impedance 25-50 ohm. Output voltage max. 2.5 Volt pp. Price $\mathbf{6 4 / 1 3 / -}$
uA 702 c TO-5 Differential input, single ended output gain max. 2000-6000. Bandwidth 0-30 Mhz. Price $\mathbf{£ 3 / 4 / 3 .}$
uA 703 TO-5 High Frequency Amplifier, bandwidth 150 Mhz . Gain $36 \mathrm{~dB} / 10,7 \mathrm{Mhz}$. Gain $20 \mathrm{~dB} / 100 \mathrm{Mhz}$.
Price $\mathbf{1 2 / 1 6 / -}$
MIC 709 c TO-5 Differential amplifier, bandwidth $0-500 \mathrm{Khz}$. Voltage gain 45,000 typ. Output voltage max. 13 Vpp . Price $\mathbf{6 4 / 6} /-$
DIGITAL INTEGRATED CIRCUITS. (All circuits dual-in-line)
RTL-series (resistor-transistor-logic)

MC 717 P	4×2 input gate	\ldots	.	.		± 1	3	0
MC 718 P	dual 3 -input gate	.	\cdots	.		t	1	4
MC 719 P	dual 4 -input gate					1	3	0
MC 788 P	dual buffer					± 1	9	
MC 789 P	$6 \times$ inverter		.	.		11	6	0
MC 790 P	dual J/K Flip-Flop		.	-		E2	3	0
MC 792 P	triple 3 -input gate		.	.	.	\&	6	0
RTL-series (TO-5 case)								
uA 923/926	J-K flip flop		£	I	5

DTL-series (diode-transistor-logic)

SPECIAL OFFERS:
Kit: Complete Decade Counter. Max. counting frequency 10 Mhz . Noise immunity I Volt or better. Required input: square wave 3.5 Volt. Output 3, 5 Volt. Including Printed Circuit, Integrated Circuits. Diode Matrix, Nixie drivers, Nixie tube with socket, Circuit diagram, mounting schematic, etc. Price $\mathbf{f l 1 / 2 / - .}$

Silicon Transistors: BC 17 I b Vce 45 Volt. Ic 100 mA . Pc 200 mW . Hfe $250-500$ Ft. 300 Mhz . Price $\mathbf{2 / 6}$ BC 172 c same items except Hfe 470-900. Vce 20 Volt. Price $\mathbf{2 / 6}$. Both types pro 100 pieces. Price $\mathbf{1} 10 / \mathbf{1 5 / -}$.
The noted prices include all taxes etc.

Abstract

RCA TE-149 HETERODYNE WAVEMETERS Employs V-eut I Me/s cryszal (0.005%). Over allaccuracy better than 0.02%, Dial DIRECTLY calibrated every $1 \mathrm{Kc} / \mathrm{s}$ from $2.5-5 \mathrm{Mc} / \mathrm{s}$. Useful harmonics up to $20 \mathrm{Mc} / \mathrm{s}$. Provision for fitting internal dry batteries. BRAND NEW \& internal dry batteries. BRAND NEW a BOXED and complete with Manual and Spares. (10/.

GERMANIUM BRIDGE RECTIFIER

 Maximum rating 50 volts 5 amps. 4 in. 59 . NEW \& BOXED. 22/6. Postage 2/6.POWER UNIT TYPE 24 FOR R. 216 RECEIVER. A.C. operated $100-125$ or 200-250 volss 50 c/s. BRAND

FILTER VARIABLE BAND PASS No. I. Dual channel unit, each channel has variable slot frequency of $500-900 \mathrm{c} / \mathrm{s} ., 1,200-1,600 \mathrm{c} / \mathrm{s}$. and band pass facility. 600 ohms input and output, monitor input and high impedance output jacks. Standard rack mounting $3 \frac{1}{2} i n$. deep
panel. Mains operation $200 / 250$ v. $50 \mathrm{c} / \mathrm{s}$. BRAND NEW. L5/19/6. Carr. 10/-

HRO TUNING METER. $0-1 \mathrm{ma}$. New and boxed $25 /$. Post $2 /$

BC-22I FREQUENCY METERS

 Complete with crystal and valves. In perfect working order. butcharts. $£ 9 / 19 / 6$. Carr. $10 / 6$

> X'TALS
$100 / 1,000 \mathrm{Kc} / \mathrm{s}$. 10X size 3 -pin, as used in Class D Wavemeter Brand New, boxed 21/- each. Post $1 /$. .
> $200 \mathrm{kc} / \mathrm{s}$ American G.E.C. $\frac{1}{2}$ in. pins suitable for crystal calibrators, etc. Brand new, boxed,

V.H.F. SIGNAL GENERATOR

 MARCONI TF-80IA/I. Covers 10 to 310Mc / s. (4 bands). DIRECTLY calibrated. Int. Mc / s. (4 bands). DIRECTLY calibrated, Int.
Mod. at $400,1,000$ and $5,000 \mathrm{c} / \mathrm{s}$. Actenuated Mod. at $400,1,00$ and $5,000 \mathrm{c} / \mathrm{s}$. Actenuated.
or force output. Guaranteed overhauled. accurate and in perfect working order. 635. Carr. fl .
BEAT FREQUENCY OSCILLATORS.
MARCONI TF-I95M. Covers 10 cps. to
$40 \mathrm{kc} / \mathrm{s}$. in two sweeps. 0 to $20 \mathrm{kc} / \mathrm{s}$. and
20 to $40 \mathrm{ke} / \mathrm{s}$. Output 2 watts into 600
or 2,500 ohms. Panel meter indicates output
voltage. A.C. mains operation 100 to 250
volts. First class condition. Fully tested.
E20. Carr. $30 /-$.

AMERICAN HEADSET TYPE HS-30-U 600 impedance. BRAND NEW and boxed, 15/-. postage $2 / 6$
DISTORTION FACTORMETER
MARCONI TF-I42E. This instrument
measures the percentage of total harmonic
distortion in the fundamental frequency
range 100 to $8,000 \mathrm{c} / \mathrm{s}$. The lowest scale
engraving is 0.05% Will handle 2 watts
(continuous) and wiligive satisfactory readings
with only I mW input. Mains operated.
Output impedance 600 ohms. Very good
condition. E29. Carr. $20 /-$.

MINIATURE RELAYS
MIN 240 v. A.C. coils. Contact assembly "makes " and 1 C.O. 5 amps. Size $2 \times 17 \frac{1}{2} \times$ lin. Unused and removed from brand new equipment $8 / 6$ post paid.

MOVING COIL PHONES. quality Canadian with chamois ear-muffs and leather-covered headband. Noise excluding and supremely comfortable. Complete with moving coil microphone 25/-. DLR-5 Low impedance headphones with attached throat microphone. 12/6. All these items
BRAND NEW. Postage extra $2 / 6$.

CINTEL NUCLEONIC SCALERS

 Nos. 36402 and 36411 . Unused with hand book. List Price $£ 300 / \mathrm{E} 320$. Our Price $£ 65$.
PACKARD-BELL PRE-AMPLIFIER

 Fitted with 6SL7GT and 28D7 Valves. Brand new and boxed with manual. 12/6. PostageCRT Type 89D as used in the Cossor 1035

ADVANCE TEST EQUIPMENT

Abstract

H1B Audio Signal Generator £30 0 J1B Audio Slgnal Generator J2B Audio Signal Generator TT1S Transistor Tester £30 0 £35 0 VM76 AC/DC Valve Voltmeter £37 10 VM77C AC Millivoltmeter ± 420

\section*{VM78 AC Millivoltmeter (transistorised)} 0

\section*{(transistorised)} $£ 1250$ These are current production, manufactured in U.K. by Advance Electronics Ltd. (not discontinued models). Showing a saving of approximately $33 \frac{1}{3} \%$ on nett trade price. BRAND NE W, all in original sealed carton. Carr. 10/- extra per item. special offer of 10% discount for schools and technical colleges, etc.

COSSOR OSCILLOSCOPE TYPE XT476
 Detailed specification sent upon request. Offered in first class con dition at $\mathbf{6 3 5 0}$. List price approximately $\mathbf{6 8 0 0}$

WIRELESS SET No. 76
A compact CW only crystal controlled transmitter. Consists of a Pierce crystal oseillator (807) and a Power Amplifier (807).
Both are cathode keyed by means of a relay. Six switched crystal Both are cathode keyed by means of a relay. Six switched crystal
channels are available in the frequency range of 2 to $12 \mathrm{Mc} / \mathrm{s}$. (Crystals not included.) Aerial current is indicated on a panel meter and two spare valves are supplied. Operates from 12 V . car battery via internal rotary transformer. RF output 9 watts.
Contained in steel case $12 \times 12 \times 8$ in. Weight 30 lbs . Ideal for 80 Contained in steel case $12 \times 12 \times 8 i n$. Weight 30 Ibs. Ideal for 80 or 40 meters or cheap enough for br
Circuit included. $£ 4 / 5 /$. Carr. $10 /$.

HRO RECEIVER $£ 30$

The octal valve version. In mint condition. Complete with all nine general coverage coil sets covering $50 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$. instruction Booklet and circuit, but less external power supply Carriage 30/-. Complete manual available at 30/- extra.

PRICES NOW REDUCED CINTEL EQUIPMENT ELECTROLYTIC CAPACITANCE AND INCREMENTAL ELECTROLYTIC CAPACITANCE AND INCR
INDUCTANCE BRIDGE No. 36601
A modern instrument, all solid state, which accurately measures
the capacity of electrolytic condensers from $0.1 \mu \mathrm{~F}$ to $1,000 \mu \mathrm{~F}$ the capacity of electrolytic Leakage current and polarizing voltage are separately metered. Inductances from 100 mH to 100 H can also be measured with current up to 100 mA . A.C. mains operation. Unused with handbook. List price 1220 . Our
Price E70.
WIDE RANGE CAPACITANCE BRIDGE. NO. 1864. A matching instrument to the above. All solid state. Mains operation. Measures from 0.002 pF to $100 \mu \mathrm{~F}$. Unused with handbook. List Price $\mathbf{1 2 5 0}$. Our Price $\mathbf{\ell 7 5}$

MARCONI TEST EQUIPMENT

PORTABLE FREQUENCY METER TYPE TF. 1026 SERIES $\begin{array}{lllll}\text { TF. } 1026 / 4 & 2,000 / 4,000 & \mathrm{Mc} / \mathrm{s} ., & \text { TF. } 1026 / 5 & 1,800 / 2,200 \mathrm{Mc} / \mathrm{s} . \\ \text { TF. } 1026 / 6 & 3,800 / 4,200 \mathrm{Mc} / \mathrm{s} ., & \text { TF. } 1026 / 7 & 1,700 / 2,100 \mathrm{Mc} / \mathrm{s} .\end{array}$ $\begin{array}{lll}\text { TF. } 1026 / 9 & 3,8005 / 4,200 \mathrm{Mc/s} \text {., } & 2,425 / 2,525 \mathrm{Mc} / \mathrm{s} . \\ \text { T } 40 \text { each. }\end{array}$ $100 \mu \vee$ to 300 BAND MILLIVOLTMETER TYPE TF.1371
 A.C. measurement 0.05 to $100 \mathrm{~V} ., 20 \mathrm{c} / \mathrm{s}$. to $300 \mathrm{Mc} / \mathrm{s}$. D.C measurement 0.1 to 300 v . Each over 5 ranges. Willalso meas ohms, 50Ω to
SENSITIVE VALVE VOLTMETER TYPE TF.ll 100 $100 \mu \mathrm{v}$ to 300 v . A.C. in 12 ranges. $10 \mathrm{c} / \mathrm{s}$. to $10 \mathrm{Mc} / \mathrm{s}$. Can also be used as a wide-band amplifier. 650 .
Provides sweep-delaying facilities when used in conjunction with the TF. 1330 (series) or similar oscilloscope. Alternatively it may be used independently as a general purpose delay generator. it ma
635.
TF.867.A Standard Signal Generator.
TF. 1066. B/2 U.H.F. F.M. Signal Generator
TF. 1067 Heterodyne Frequency Meter.
TF. 1102 Amplitude Modulator
TF. 1221 Heterodyne Unit.
TF. 1274 V.H.F. Bridge Oscillator
TF. 12753 A X-Band Siznal Generator. Se
TF.1350/1 Power Unit for TF.1346/I
TM 5683 Attenuator
6156 Attenuator
Derailed technical specifications supplied upon request
Offered BRAND NEW at fraction of original cost
Carriage and Postal Charzes to N. Ireland and Eire extra
(HARLES BRITAIN (Radio) LTD.
II UPPER SAINT MARTIN'S LANE LONDON, W.C.2.
01.8360545

Near Leicester Sq. Station.
Opposite Thorn House Opposite Thorn House)

PCR-I RECEIVERS

Covers 860-2080 metres, 190-570 metres $5.6-18 \mathrm{Mc} / \mathrm{s}$. | R.F. and $21 . F$. stages, 6 valves
Internal speaker. requires external Power Internal speaker. requires external Powe supply. Circuit supplied. Fully tested prior
to despatch. $£ 7 / 19 / 6$, Carr. $10 / 6$. Fuller details upon request. Brand new external Power Supply Units. Vibrator Unit for operation from $12 v$. ear battery, for caravans or
boats $15 / 6$ or A.C. Mains Units $£ 2$. Carr. $5 / 6$

AR. 88 VIBRATOR POWER SUPPLY UNIT. Operates from 6-8 volt D.C. supply. Output 300 volts, 90 ma . Brand new, boxed.
complete with leads. $15 /-$. postage $7 / 6$.

ADVANCE POWER UNIT TYPE DC4. 12 volts D.C. 4 amps output. A.C Mains operation $200-245$ volts $50 \mathrm{c} / \mathrm{s}$. Brand new.
Boxed, $£ 20$. Carriage $10 / 6$.

INDUSTRIAL METER, Iron clad. $0-300$ volts A.C. $50 \mathrm{c} / \mathrm{s}$. Moving iron. 6 in . scale

RUTHERFORD PULSE GENERATORS

 MODEL B7B. Produces trains of 50 volt pulses having repetition rates to $2 \mathrm{Me} / \mathrm{s}$., pulse delaysand widths to $10,000 \mu$ secs., rise and fall times of 15μ millisecs. and a permissible duty factor of up to 30% at full amplitude.
MODEL B7D. Simultaneously produces two trains of 50 volt pulses (positive and negative polarity) having repetition rates from $20 \mathrm{c} / \mathrm{s}$ per sec. to $2 \mathrm{Mc} / \mathrm{s}$ per sec.. pulse delays and
widths to $10,000 \mu$ secs., rise and fall times which are separately and independently controllable at the front panel from 15 nanoseconds to approximately one (1) $\mu \mathrm{sec}$ and a permissible Ofty original cost, complete with Manual. 220 volt original cost, complete with
A. C. operation. $£ 55$ each.
T.C.C. METALPACK CONDENSERS. 0.1 mid. 500 v. D.C. wkg. at $70^{\circ} \mathrm{C}$. Brand new. polythene Wrapped, $7 / 6$ doz. or $\in 2$ per 100 .
T.C.C. METALMITE 350 v . D.C. wk. 0.1 mfd. (CP 37 N): 0.05 mfd . (CP35N): 01 mfd mfd. (CP37N): 0.05 mfd . (CP35N): 01 mfd . SPRAGUE METAL CASED CONDEN. SERS 0.01 mfd ., 000 v. D.C. wkg., 5/6 doz. or $32 / 6$ per 100 .

T.C.C. VISCONAL CONDENSERS.

 8 mfd. 800 v . D.C. wkg. at $71^{\circ} \mathrm{C}$. CP 152 v . size $3 \times 1 \geqslant \times 5 i n$, high. BRAND NEW BRAND NEW. $5 / 6$ each. DUBILIER. 4 mfd
600 v . Wkg. CP 130 T or similar $1 \frac{3}{3} \times 1 \frac{3}{2} \times$ 600 v . wkg. CP 130 T or similar 13 $\times 1 / \frac{3}{4} \times$
$4 \frac{3}{4} \mathrm{in}$. high. BRAND NEW (boxed), $4 / 6$ each. Postage I/6.

WESTINGHOUSE PULSE TR FORMER CAT. NO. 4 P43 L42174I
 Primary 5.5 kV . Secondary 22 kV . 0.5 to Primac. Postage $7 / 6$.
 THOMSON-VA TIAL DIVIDER
 TIAL DIVIDER 4 decades- 70,000 ohms Non inductive. 4 decades- 70,000 ohms resistance. Accuracy 0.01%. 350 v. maximum voltage. Brand new and boxed, E30. Carr. 10/-.

STANDARD TRANSFORMERS Vacuum impregnated, interleaved. screen, universal mounting. Size $4 \times 3 \frac{1}{2} \times$ $2 \frac{1}{2} \mathrm{in}$. ALL BRAND NEW. 24/-each. Post $4 / 6$. Type I. $250-0-250$ v. 80 mA .6 .3 v. $3 . \mathrm{S}$ a., $6.3 \mathrm{v} .1 \mathrm{a} .$, tapped at 2 a . Type 2. As above but $350-0-350 \mathrm{v} .80 \mathrm{~mA}$. Type 3. 30 v .2 a., tapped at $12,15,20$ and 24 v . to give $3 \mathrm{t}-5-6-8-9-10 \mathrm{v}$., etc. Type 5. $0-6-15 \mathrm{v}, 4 \mathrm{a}$. Ideal for chargers.

MORSE REPERFORATOR.
CREED TYPE 7W/3
200/240 volt D.C. motor. BRAND NEW.
in original crate. El5. Carr. 30/-.

LOW CAPACITANCE BRIDGE
MARCONI TF. 1342 . Range 0.002 PF . to
$1,11 \mid \mathrm{pF}$ Accuracy 0.2%. Three terminal Accuracy 0.2%. Three terminal
transformer ratio arm bridge allows "in situ" measurements.
1000 cmternal oscillator frequency
12
 A.C. mains 200 to 250 and 100 to $150 \mathrm{v} .40-100 \mathrm{e} / \mathrm{s}$. With leads and handbook. ABSOLUTELY

The FIRST Bargain Package of its type AND ANOTHER GREAT FIRST FOR LASKY'S! An extremely flexible closed-circuit system made by Britain's largest manufacturer of electronic equipment. The basic system comprises two units-camera and control monitor. The units are fully transistorised with a wide use of printed circuitry making for compact size, simple installation and high reliability (both in and out of doors). High sensitivity and 625 line resolution ensure excellent picture quality under normal lighting conditions. Closed circuit television provides the penetrating, all-seeing eye that scans, inspects, controls and directs-that is today accepted as invaluable in almost every aspect of industry, commerce, transport and education. A wide range of accessories are available which further increase the system's

ALMOST LIMITLESS APPLICATIONS

KEY

SYSTEM SPECIFICATION Scanning standards: 625 line, 50 fields, $2: 1$ interlace. Horizontal resolution: 600 lines. Bandwidth $8 \mathrm{Mc} / \mathrm{s}$ over complete system. Linearity: $\pm 2 \%$ positional error. Geometry: $\pm 2 \%$ of rectangle averaged over picture. Auto Sensitivity: over the range $60: 1$ in light value-normal picture obtained with illumination of only 2 ft . candles (50% subject reflectance) at lens aperture of $\mathrm{f} / 2$. Spectral Response: Panchromatic. Ambient Temperature: Max. temperature for all units -30 C. to +55 C . Power requirements $90 / 130 \mathrm{v}$. and $200 / 240 \mathrm{v}$. A.C., $50-60 \mathrm{c} / \mathrm{s}$. Consumption: 45 watts including camera. Camera Lenses: Standard 16 mm . cine lenses with " C " mounts are normally used. Accessories: See under Camera and Control Monitor.

CAMERA

Totally enclosed duscproof unit only $3 \frac{3}{4} \times 4 \times 10 \frac{1}{2}$ in., weighing 4 lb . Finished in two-tone blue/grey. Vidicon tube. Automaric sensitivity control enables the camera to maintain full picture quality over a brightness range of $60: 1.625$ line scanning All supplies are obrained from the contol moniror (consumprion 5 wats) $\mathbf{~ M c / s}$. All supplies are obtained from the control monitor (consumption 5 watts).

CAMERA ACCESSORIES

Lenses: Superb quality 25 mm . (1 in .) $\mathrm{f} / 1.8$, " C " mount lenses made especially for this system are available, also a limited Remotely Controlled Weatherproof Pan and Tilt Heads: Pan 340 at 6 per sec., Tilt 50° at 4^{\prime} per sec. $230 / 250 \mathrm{v}$., $50 \mathrm{c} / \mathrm{s}$ operated.
Remotely Controlled Pan and Tilt for Indoor Use Only: Details as above.
Weatherproof Camera Housing: Windscreen Wiper, 75 W . heater, internal circulation fan, mounting bracket for camera housing (the latter items are extras for the Weatherproof Housing).

CONTROL MONITOR

14 in . screen, overall size $16 \times 14 \times 18 \mathrm{in}$. (excluding Remote Control Unit on which Monitor is shown), weight 30 db . Pane controls provided: Mains on/off, Contrast, Brightness, Remote Focus. Preset controls (under side panels) include: Frequency lock, Monitor height, Frame linearity, Camera height, Camera width, Auto sensitivity, Camera linearity, Cable correction Video gain, Beam current, Y shift, Electrostatic focusing for camera and monitor. Additional inpur: Video - 100 mV peak white positive into 50 ohms; Synch. 2 v . peak/peak negative. Ourput: 100 mV peak white positive; 2 v . peak/peak negativeAmbient temperature range 30 C . so : $55^{\circ} \mathrm{C}$.

ACCESSORIES

Remote Control Switching Unit (shown under Control Monitor): Controls auxiliary functions at the camera. i.e. pan/tilt room, windscreen wiper, etc. Size $18 \times 14 \times 3 \mathrm{in}$., weight 8 lb . Distribution Unit: Used for selecting the required picture from those available on the control monitors and distributing it to the appropriate viewing monitor. Size $19 \frac{1}{2} \times 13 \frac{1}{2} \times 8 \frac{3}{4} \mathrm{in}$., weight 30 lb .
Viewing Monitors: These are conventional domestic type receivers-19 in. and 23 in . models available.

I-camera (complete with Vidicon) less lens, I-Control Monitor, 25 yds, of cable. PRICES FOR LENSES AND ACCESSORIES ON APPLICATION. PLEASE NOTE-THESE SYSTEMS ARE AVAILABLE ONLY FROM OUR HEAD OFFICE 3-15 CAVELL STREET, TOWER HAMLETS, LONDON, E. 1 Tel. 0I-790 4821/2 A demonstration system is available for your inspection by appointment.

Trensticy's lizecio

NOTE

TAPE RECORDERS WE HAVE EXTENSIVE STOCKS OF ALMOST EVERY TYPE OF RECORDER AT PRE-BUDGET PRICES SEND DETAILS OF YOUR REQUIREMENTS NOW!

RECORD PLAYERS

GARRARD

autochangers

PTG TT00 Mk. 000 LM with ateren 70
 lab. A Monojsteren
 A 1000
 TRANSCRIPTION MOTORS ARRARD H01 $^{\text {M }}$ GARRARD BASES

Auto start and stop. Complete with pick-up arm ARRARD SP25 Mk \qquad £10/18/6 GARRARD SPי25 Mk. II Heary t/table £11/19/6 GARRARD SRP12 $\begin{array}{r}\text { £4/7/6 } \\ \text { f4/18/6 }\end{array}$

CONSTRUCTORS BARGAINS
 CONSTRUCTORS BARGAINS THE SKYROVER DE LUXE

 16 M . 19 M , and 25 M , with Band Spread Tuning for accurat station Selection. The coil pack and tuning heart is factor ${ }^{\text {sistars. Uses }} 4$ U2 batteries. 5 in . Ceramic Magnet P.M. Speaker Tone circuit in wool cabinet, size $111 \times 6 \% \times 3$ in, covered with$\begin{array}{ll}\text { Can now } \\ \text { be built for } \\ \text { \&8.19.6 } & \text { Post } \\ 5 / \text {-extra }\end{array}$
H.P. Terms: $60 /$ dep. 11 miths. at $12 / 9$ Total H.P.P. £10/0/3.

$£ 22 / 11 / 6$ $£ 1319 / 6$ $£ 9 / 19 / 6$ $£ 13 / 19 / 6$ $£ 14 / 19 / 6$ $£ 1519 / 6$ $£ 7 / 7 / 0$ £7/7/0 £7/17/6

£27/19/0
£25/0/0

Data 2/6. Refunded if you purchase parcel. Four U2 hatts. $3 / 4$ extra. All components avanl. separately

 ruction data. Only 10/- extra. Post Free. This conversion is suitable for receive
LASKY'S PRECISION PANEL METERS

Pracision made in Japan by hioki. Each meter bozed and fully guara P. On each. Special quotation for quiantities

Type mK-38A
ifin. qq.
imin. sq. $20 / 8$
man DC

ma s mtr 29/6

TRANSISTOR FM TUNER CHASSIS

Fully tunahle-rarige 88 to $108 \mathrm{Mc} / \mathrm{g}$. Completely wired

LASKY'S PRICE $\quad \mathbf{6 . 1 0 . 0}$ Poat 5 -extra.

MULTIPLEX ADAPTOR

Outrut 150 mV Self powed

LASKY'S PRICE $99 / 6$ Post $\overline{5 / 6}$.
DON'T MISS THIS
HAVE YOU GOT YOUR LASKY'S CATALOGUE
FREE Second Great Reprint Issue Now Ready Containing over 1,500 items from our vast stocks. Just send your name, address and $1 /$ for post only.

COMPLETE SYSTEMS

 ECONOMY PACKAGEAt a time when catue for money must ran especially high in importance we are intro. Ucing Package Deal complete Hi.Fi gystems These are carefully matched for compatibility acrificing nothing in quality with the grea dvatitage of the considerable cash saving hat our Packace Deal planning allowanter ide price range.
Philips GH925 Rteren amplifier $\mathbf{1 2 4} 30$ Garrard ATB0 Mk. II, 4 apeen
antochanger
firige
£2 1211
Garrard WB. 1 teak plinth
$£ 3160$
Foster FCS 104 hookgtheli
total this price e66 18 6
Lasky's Package Price £61. O. O
Package Price with 2 Philips GL 559 loudspeaker systems 664 0. 0
AMPLIFIERS
T R I O
TK-150E STEREO AMP.

Trio equipment is renowned the worl

 over for quality-now this famous comabsolutely new budget priced Hi-F
stereo amplifer giving 40 watts music power. 13 W RM8 power per channel. Inputs are proviled for Magnetic pick-up (2.2 mV .), Tuner (130 mV), and \& Auxiliary Inputs (130 mV . each) for use with another Tuner or
Tape Recorder, gep. input for tape recorder (130mt.). Built-in tape monitoring circuit. Outputs for
speakers, atereo head

Lasky's Price 32 Gns. carriage free in u,k
MODEL KT-55 TRANSISTORISED STEREO AMP.
Male by well-known British manufacturer
and incorporating the very lat eat transistor 14 trankistors. (' putput shatts per channel:
 are aiso suitable higher output crystal cartridges); output mitehng for Mono or stereo and tape monitor; outlet eocket for tape recorder. For $115 / 250 \mathrm{v}$. A. C
 List Price 25 gns.
Lasky's Bargain Price £16. 19. 6 SPECIAL INTEREST ITEMS! PHOTO ELECTRIC RELAY

Lasky's Price Only £7.19.6.

Branches
207 EDGWARE ROAD. LONDON, W. 2 ' Tel.: 01-723 3271
 33 Tomenham cr. AD. LONDON, W. 1 Tel: 01-636 2605 $152 / 3$ FLEET STREET, LONDON, C.4 4 Tel: FIEerS. 2833 Open all cave Thussav. entry clominy ' pan Smutrav

[^9]

NO EXCUSES! NO DELAYS! FROM STOCK! URIIABLE VOLTAGE TRADSFORIUERS

50 AMPS

5 Amp. AC/DC VARIABLE VOLTAGE OUTPUT UNIT Input 230 v. A.C.
Output $0-260$ v. A.C.
Ourpur $0-240$ v. D.C.
Fitted large scale am-
meter and voltmeter meter and voltmeter.
Neon indicator, fully fused. Strong attractive metal case $15 \mathrm{in} . \times$
$8 \frac{3}{3}$ in. $\times 6 \mathrm{in}$. Weight 24 lb. Infinitely variable,
 smooth stepless volt-
age variation over range.

Amp A C.D. Mk Input 230 v. A.C. Output continuously VARIABLE from 0 to 260 v . A.C. OR 0 to $230 \mathrm{v}. \mathrm{D.C}$.at 7 a. Robustly constructed in
metal case, complete with safecy fuse, neon indicator, voltmeter and ammeter. Size 17 in . $\times 12 \mathrm{in}$. $\times 7 \mathrm{in}$. Weight 36 lb . and ammeter. Size $17 \mathrm{in} . \times 12 \mathrm{in}$,

OPEN TYPES Designed for Panel Mounting. Input 230 v. A.C. 50/60 Output variable. $\frac{1}{2}$ AMP. I AMP.	PORTABLE Input 230 v. A.C. Output variable $0-260$ A.C. at 1.5 amp . Fitted in beautifully finished steel case. Complete with voltmeter, pilot lamp, fuse, switch, carrying handle. £9/5/-. P. \& C. 10/-. Also 2.5 amp as above. \& $11 / 7 / 6$. P. \& C. $10 /-$	CONSTANT VOLTAGE TRANSFORMER	L.T. TRANSFORMERS All primaries $220-240$ volts INSULATION TESTERS (NEW) Test to I.E.E. Spec. Rugged metal construction, suitable for bench or field work, constant speed clutch. Size L. Bin., W. 4in., H. 6 in. Weight 61 b . 500 volts. 500 megohms. Price 622 carriage paid. 1,000 volts, 1,000 megohms, 628 carriage paid.

36 volt 30 amp. A.C. or D.C. Variable L.T. Supply Unit INPUT 220/240 V. A.C. OUTPUT CONTINUOUSLY VARIABLE 0-36 v.
Fully isolated. Fitted in robust metal case with Voltmeter, Ammeter, Panel Indicator and chrome handles. Input and Output fully fused. Ideally suited for Lab. or
Industrial use. $£ 55$ plus $40 /=p . \&$. $\left\{\begin{array}{l}\text { Industrial use. } £ 55 \text { plus } 40 / \mathrm{F} \text { P. \& c. } \\ \text { Similar in appearance to above }\end{array}\right.$ \{ illustration.

SERVICE TRADING CO

Postage and Carriage shown below are inland only. Fo

LIGHT SENSITIVE SWITCHES Kit and parts including ORP. 12 Cadmium Sulphide Photocell. Relay Transistor and
Circuit. Now supplied with new Siemens High Speed Relay for 6 or 12 volt oper ations. Price 25/\%, plus $2 / 6 \mathrm{P}$. \& P ORP 12 and Circuit $10 /$ post paid

20/240 A.C. MAINS MODEL incorporates mains transformer rectifier and special relay with $3 \times 5 \mathrm{amp}$. mains c / o contacts. Price inc. circuit 47/6, plus $2 / 6$ P. \& P.

- PHOTO ELECTRONIC COUNTER

PHOTO ELECTRONIC COUNTER
set for counts of up to 500 per minute. $210-250 \mathrm{v}$ Can be set for counts of up to 500 per minute. 210-250 A.C. powered. Kit of Components, cell, high speed non-resettable councer, tram, $£ 3 / 2 / 6$.
relay, etc., together with clear circuit diagra plus $3 / 6$.

LIGHT SOURCE AND PHOTO CELL MOUNTING
 Precision engineered light source ith adjustable lens assem with adjustable lens assembly and

 ventilated lamp housing to cake Separate photo cell mounting assembly for ORP. 12 or similar cell with optic window. Both units are singie hole fixing. Price per pair $£ 2 / 15 / 0$ plus $3 / 6$ P. 3
 UNIVERSAL DEMONSTRATION
 TRANSFORMERS

 posicomplete com posite apparatus, comprising a robustly buile Transformer and electro-magnet with removable coils and pole pieces, coil tapped for 230 tapped 220 v, for $110 \mathrm{v} ., 115 \mathrm{v}$, A.C. These coils are
 exp plus $15 /-$ carr Leaflet on request

A.C. CONTACTOR

2 make and 2 break (or $2 \mathrm{c} / 0$) 15 amp
contacts. $230 / 240$ v. A.C. operation
Brand new. 22/6 plus I/- P. \& P.
230/250 v. A.C. SOLENOID
Heavy duty type. Approx. 31b. pull.
12/24v. D.C. SOLENOID

$=-\infty-\infty-2$ CONDENSER
$4,000 \mathrm{mfd} .25 \mathrm{v} .10 / 6$ plus $1 / 6$ P. \& P.
RESETTABLE HIGH SPEED COUNTERS 3 figure, o/999 24 v. D.C. operation (illus- \quad, crated). Similar, but may be pre-set to Either type $32 / 6$. P. \& P. $2 / 6$.
4 figure, $1,000 \mathrm{ohm}$ coil, $36-48$ v. D.C. operation, $£ 3 / 10 /-$ 4 figure, 1,000 ohm coil, $36-48 \mathrm{~V}$. D.C. operation, $23 / \mathrm{KO}-$
P. \& P. $1 / 6$. LATEST HIGH-SPEED MAGNETIC
COUNTERS (NON-RESETTABLE) 4 figure. 10 impulses per second. Type 100A, 500
ohm coil. Type $100 \mathrm{~B}, 2,300$ ohm coil. Either $15 / \mathrm{e}$ each, ohm coil. Type
plus $1 / 6 \mathrm{P} . \& \mathrm{P}$.

TRANSISTORISED MORSE OSCILLATOR. Fitted $2 \frac{1}{2}$ in. Moving Coil Speaker. Uses type PP3 or equiv 34R SILICON SOLAR CELL
$4 \times .5$ volt unit series con-
nected, output up to 2 V nected, output up to 2 V
at 20 mA . in sunlight 30 times the efficiency o
Earth Satellites, 39/6. P. \& P. I/6d
"SOLAR CELL AND PHOTO-CELL EXPERIMENTERS' GUIDE'
Teaches the principles of light sensitive devices and

GENUINE NEW MULLARD GAM SILICON DIODES. Not Rejects or Seconds. BYZ13 200 PIV $\ldots . .7 /-\quad$ BYZ12 400 PIV $\ldots . .8 /-$ BYZII 600 PIV.... $9 /-\quad$ BYZ10 800 PIV.... $10 /-$ NICKEL CADMIUM BATTERY Sintered Cadmium Type 1.2 V . 7AH. Size: height $3 \frac{1}{1}$ in., width $2 \frac{5}{3} \mathrm{in}$. $\times 1 \frac{3}{16}$ in. Weight: approx. 13 ozs. Ex-R.A.F. Tested 12/6, P. \& P. 2/6.

100 WATT POWER RHEOSTATS

(NEW) Ceramic construction, windEnamel, heavy dury brush assembly designed for continuous duty. THE FOLLOWING II VALUES: 1 ohm 10a., 5 ohm 4.7 a ., 10 ohm 3 a. . 25 ohm 2a., 50 ohm 1.4a., $100 \mathrm{ohm} 1 \mathrm{a} ., 250 \mathrm{ohm}$ 7 7a., 500 ohm 45 a ., 1,000 ohm 280 mA ., 1,500 ohm 230 mA . 2,500 ohm 2a. Diameter $3 \frac{1}{4} \mathrm{in}$. Shaft length $\frac{3}{4}$ in. dia. ${ }^{255} \mathrm{in}$, 27/6. P. \& P. $1 / 6$.
50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,00$ 50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 /$ 25 WAT'T $10 / 25 / 50 / 100 / 250 / 500 / 1.000 / 1.500 / 2,500$ $25 \mathrm{hm}, 14 / 6, P, \&$ P, $1 / 6$.

VENNER ELECTRIC TIME SWITCH

200-250 v. A.C. 20 amp, contacts twice on, twice off, at any manually pre-set cut) fully tested, $£ 3 / 9 / 6$. P. \& P. $4 / 6$. Or complete in weather-proof metal case (illustrated), $£ 3 / 19 / 6$. Plus $4 / 6$ P. \& P. Can be supplied with solar dial. on at dusk-offat dawn. Prices as above.
 RADIO ALTIMETER This precision instrument,
built to highest Ministry specification, is based on a
24 v . D.C. LOW INERTIA
(Integrating) Motor. The I
Motor fitted with gold brushes and drawing only 800 Motor, fitted with gold brushes and drawing only 800
microamp at 24 v . D.C. drives two precision pots with platinum wipers through close tolerance gear-trains, placluding miniature slipping clutch, combined with two sub-miniature pots for calibrating the electrical bridge circuit. The 3in. calibrated dial, with a number aperture.indicating one rev. per revolution of pointer with maximum of 5 revs., gives an effective scale length f approx. 30 mn . Offered at fraction of Manufacturer's price: 32/6, plus 6/- P. \& P.

SANWA multi range meters

Acknowledged throughout the world as the ultimate in test meter
NEW MODEL U.50D MULTI TESTER, 20,000 O.P.V. MIRROR
SCALED WITH OVERLOAD PRO. TECTION. Ranges: D.C. volts: 100 mV .

$$
\begin{aligned}
& \text { TECTION. Ranges: D.C. volts: } 100 \mathrm{mV} \text { V., } \\
& 0.5 \mathrm{v} ., 5 \mathrm{v}_{2}, 250 \mathrm{v} ., 1,000 \text { v. A.C. volts. } \\
& 2.5 \mathrm{v} ., 10 \mathrm{v} ., 50 \mathrm{v},, 250 \mathrm{v}, 1,000 \mathrm{v} \text {. D.C. current: } 5 \mu \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& 2.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \text { V., } 250 \text { V., } 1,000 \text { V. D.C. current: } 5 \mu \mathrm{~A} . \\
& 0.5 \mathrm{~mA} ., 5 \mathrm{~mA} .50 \mathrm{~mA}, 250 \mathrm{~mA} \text {. Size: } 5 \frac{1}{6} \times 3 \frac{1}{2} \times 1 \frac{3}{4} \mathrm{in} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Complete with batteries } \\
& \text { and test prods. }
\end{aligned} \quad \$ 7.5 .0
$$

and test prods.

Three other models available from stock. Descriptive eaflet on request. .

220/240y. A.c. COOLING UNIT 2,300 r.p.m. Gin. blade size. Smooth powerful motor. All metal construc-
tion. Continuously rated. Individually tion. Continuously rated. Individually tested. Offered at fraction
price, $£ 2 / 15 /-$ P. \& $P, 7 / 6$.

THYRISTOR 400 piv, 5 amp., $14 / 6$ post paid. THYRISTOR. 400 piv, 8 amp ., $28 / 6$ post paid

- SANGAMO WESTON

Dual range voltmeter. $0-5$ and $0-100 \mathrm{~V}$. D.C. FSD 1 mA . In carrying case with
tests prods and leads. $32 / 6$. P. \& P. $3 / 6$.

AUTO TRANSFORMERS. Step up, step down $110-200-220-240 \mathrm{v}$. Fully shrouded. New. 300 wat type, 63 each. P. \& P. $4 / 6$. 500 watt type, $£ 4 / 2 / 6$ each.
P. \& P. $6 / 6$. 1,000 watt type, $£ 5 / 5 /$ each. P. \& P. $7 / 6$.

PRECISION INTERVAL TIMER

From 0-30 seconds (repetitive). Jewelled balanced movement. Lever re-set.
Operates 230%. A.C. 5 am . c/o micro-

20 amp. LEVER MICRO SWITCH

 Brand new lever operated micro switch. 20 amp. A.C. cio contacts. Price $4 /$plus $1 / 6$ P. \& P. 5 for $\xi 1$ post paid.

200 ohm $1.25 \mathrm{amp} .37 / \mathrm{s} . \mathrm{P}_{\mathrm{F}} \&$ P. 3/6.
$5 \mathrm{ohm} 10 \mathrm{amp} .37 / 6$. P. \& P. $3 / 6$.
PRECISION FLATPOT
Manufactured by M.E.C. 50 k., 45 turn. Fly leads all metal sealed construction. io/6. Plus $1 / 6 \mathrm{P}$. \& P LATEST TYPE SELENIUM BRIDGE RECTIFIERS 30 volt 3 amp., $11 /-$, plus $2 / 6 \mathrm{P} .8 \mathrm{P}$ 30 volt 5 amp., $16 /$, plus $2 / 6$ P. \& P
MOVING COIL HEADPHONE AND MIKE Soft rubber ear-pieces with M/C Mike fitted 5-way plus $3 / 6 \mathrm{C} .8 \mathrm{P}$.
A.C. AMMETERS 0-1, 0-5, 0-10, 0-15, 0-20 amp. F.R
 $2 \frac{1}{2}$ in. Flush round all at $21 /-$ each. P. \& P. extra.
$0-300$
v. A.C. Rect. M-Coil 2 tin.
 Latest type VARLEYMINIATURE
RELAY in Transparent Case. 4 c/o $700 \mathrm{ohm}, 15 \%$. Base $4 / \mathrm{C}, 2 \mathrm{c} / 0700$ ohm coil. Size $\times \frac{3}{5} \times 1 \frac{3}{3} \mathrm{in}$. $12 / 6$ inc. base. VARLEY TYPE VPA (similar to illus.). 5,800 ohm $4 \mathrm{c} / \mathrm{o}$ New, 12/6, less base. Similar to above. Míd. by GRUNER $4 \mathrm{c} / \mathrm{o}, 2,400$ ohm coil. New, $10 /$
less base.
UNISELECTOR SWITCHES
NEW 4 BANK 25 WAY
25 ohm coil, 24 v. D.C. operatio
8-BANK 25-WAY FULL WIPER
$\frac{24 \mathrm{v} . \text { D.C. operation, } 66 / 10 /- \text {. Plus }}{\text { UNISELECTOR SWITCHES \& } \mathrm{S} \text {. } \mathrm{P} \text {. }}$
75 ohm coil 24 v DC. 6 bank 25 position, 5 non
bridging, I bridging wiper. 50 positions ex-equi 6 bank arranged to give 3 bank
ment, $35 /-$ each. P. \& P. $2 / 6$.
ment, 35/- each. P. a P. $2 / 6$. MINIATURE UNISELECTOR SWITCH
3 banks of 11 positions, plus homing bank. 40 ohm cuil. $24-36$ v. D.C. operation. Carefully
removed from equipment and removed
tested. 22/6, plus $2 / 6 \mathrm{P}, \& \mathrm{P}$.

AIR BLOWER Highly efficient blower unit fitted with totally enclosed 200/250 A.C. 50 cycles. in h.p. motor,
producing 2,800 r.p.m. outlet $2 \frac{1}{2} \times 1 \frac{1}{2}$, used, but in
condition and £3/15/-. P. \& P. 7/6.

230 VOLT A.C. GEARED MOTORS Type D15G 5 r.p.m. l.71b. inch, 62/9/6, P. \& P. 3/Type DI6G 13 r.p.m. 1.451 b . inch, $£ 2 / 17 / \mathrm{h}$. P. \& \& P. $3 / \mathrm{m}$

GALVANOMETER

300-0-300 microamp. Calibrated
30-0-30. Mounted insloping front case
t2/10/-. P. \& P. 3/6. D.C. Voltmeter $0-3 \mathrm{~V}$ and $0-15 . V £ 2$ plus $3 / 6 \mathrm{P} . \& \mathrm{P}$. D.C. Ammeter,
$0-.6 \mathrm{amp}$ and $0-3 \mathrm{mmp}, £ 2,3 / 6 \mathrm{P}$ \& P . The set of 3 mat 0.6 amp. and -3 amp. E , \& F P. $6 / 6$.

SOLAR OIL-FILLED CONDENSER
240 mfd . for 230 V. A.C. or 600 volt D.C.
Overall size $14 \mathrm{in} . \times 9 \mathrm{in}$. $5 \frac{1}{\mathrm{t}} \mathrm{in}$. plus feet.
Weight 46 lb . Guaranteed periect. ManufacWeight 46 lb . Guaranteed periect. Manufac
DRY REED SWITCHES

New special offer of Dry Reed Switches, $\frac{1}{2}$ amp.
contact, It \times Itin., 4 for $10 / \mathrm{H}$, post paid.

NEW SOUNDPOWER OPERA. TEDEX-ADMIRALTY HEAD AND BREAST SETS
Two such sets connected up will provide perfect intercom. No batteries Price $17 / 6$ each, plus P. \& P. $4 / 6$, or 32/6 per pair. P. \& P. 6/-.

S.T.C. SILICON POWER RECTIFIERS

 RS300 Series. All types I.5 amp, wire ended. | RS330, 300 | v. P.I.V. 6/\% RS360, 600 | V. P.I.V. |
| :--- | :--- | :--- | :--- | :--- |
| RS340, 400 | v. P.I.V. $7 / \ldots$ | RS380, 800 |
| v. P.I.V. $10 /-$ | | | 4 can be used to make 3 amp. bridge. Not Seconds

Brand New Stock. Post paid.

Q LITTLE NEWPORT STREET,
LONoON, WYC.
Tel: GER 0576

VAIUES／SENIT：GONOUCTORS BRAND NEW \＆GUARANTEED

OAL	8／－	6 6．3	3．	3 McIP	14／．	ECC84	8／8	Ez	8／6	PY	9／－				
	磳／－		$1 \cdot 6$	3015	${ }^{15 /-}$	ECO	8	Eza	${ }_{5 / 8}^{8 / 8}$	${ }_{P}^{\text {PY }}$	s				
18.8	$4 / 6$	${ }_{6} \mathrm{~K}^{8}$		30 L	15／－		$7 / 8$	EZ	${ }_{5 / 8}$		${ }_{8}$				
17	3／．	${ }_{6} \mathrm{LL}$	9／6	30 P	$14 /$	ECH：	11.	GZ3	$11 / 8$	PY					
	6／－	60	8／3	30 PL	15／．	ECH	11.	GZ	11／6						
		686．	8／0	${ }^{301}$	181－	ECH	3／3	Mc							
	5	t83	\％	33 L			8／6		76						
	10\％	68 L	8／－		$8 \cdot 6$		$7 / 9$	PCC							
894	7 7－	${ }^{\text {as }}$	$5 \cdot 6$	35 W 4	5／3		7／－	PCO							
	S\％	$6{ }^{6}$	21.	20185	8／8		10／8	PCCA							
${ }^{\text {x／7 }}$			9．－		${ }^{6 / 8}$	ECL	，	Pct	18	U801	－				
	9		3	1231	10%		81．			cabcro					
	8			，			1								
Ys	59	${ }_{\text {Cii }}$	d	D ${ }^{\text {dr }}$	$\stackrel{1}{4}$	EF4	10／6	Pct	${ }_{8 / 6}$	UBrタo	－				
87.4	8.	i 44	8／8	${ }_{\text {Dr }}$	3／．			РСяю	9／6	UBr99	\％				
	12／6	10C：	15\％	DF	\％	${ }^{4}$	816	crsin	713	1	0／－				
				ркя1											
	8		13／．		$8 / 9$	ку\％	8／3	PCF\％ 4			16				
$\mathrm{bak}^{\text {b }}$		${ }^{10 \mathrm{Pr} 14}$		109	5－	Er9	4.			リCb	0／－				
${ }_{6 \text { GAM }}^{6 \text { ch }}$	4／－	${ }^{12 A A T G}$		DL	\％	${ }_{\text {EFI }}^{1 \times 3}$	\％／\％	Pcrann	151.	TCHal	$1 /$				
6.905	61－	12AU7	5／0	DL996	8 8i－	EFI	7.	PCrson＇	10／－	UCL	10／－				
$6{ }^{686}$	8／－	12 Ax 7	8i－	DY8i	$8 / 8$	el	12／6	PCPr85	14／．	UF41	0／－				
fati	8／	12B	8,9	E8sCC	12／8	EL3	11．－	PCL	18		\％				
	5／9		6／3	E．abc80		EL		PCL	918		6				
${ }_{6}{ }^{\text {B A }}$	$4 / 9$	12 BH	8／6	E180\％	15\％－	ELA	11．－	PCL8	－	UF					
${ }_{68 \mathrm{~Eb}}$	5／3		5／6	EAF	9／6	ELA	／－	PCL	6	UL					
${ }_{6} 6 \mathrm{BHG}$	8／－	1298	$7 / 6$	Eb91	3 －	ELS	5－1－	PCL		UL	－				
${ }_{6834}$	8．－	19 A	$8 /$	EBC4	$9 / 6$	fle	$8 / 6$	${ }^{\text {PFLL2 }}$	$12 / 8$	UY	6				
${ }_{68 R}{ }^{\text {\％}}$	11.	20 F 2	14．	Erical	71	EL9	4.	${ }^{\text {PL3 }}$	10.8	UY					
${ }^{\text {fiBzt }}$		20	13／－	Ebr	$7 / 6$	EL9	／8	PLs		＇R105／					
6 C 4	$3 / 6$	20	12，－	EBFs3	9，－	EM80	8	PL82	71	VR150／3					
8		20	12\％－	Ebrid	18	L：48		${ }_{\text {PLR3 }}$	$1 \cdot$	3ns					
	2	25 Lb	${ }_{8 / 8}$	Mck	$4 /-$	EM8：	${ }_{81} 18$	${ }_{\text {Plison }}$	${ }_{14 / 6}$	от					
gclis	10.	25		ECC\％	5 5－	EYj1	716	PY33	9／8	TYPEA					
ging	3／－	30．15	13／6	kcc：83	8／－	EY86；	$7 /$	PY80	5／8	stock．					
TRANSISTORS								SILICON POWER DIODES							
2N 753	4／6	B8Y26	$4 / 8$	Ociz3	5\％	x．1104	18								
曷 2160	14／11	Y	$4 / 6$	OCT	5，6	X．112	${ }_{4 / 8}^{4 / 6}$								
${ }_{\text {ackiof }}$	4／6	${ }_{\text {B8Y }}^{\text {B895．}}$	\％／6	－	$4_{4 / 6}^{6}$	（	4／8 ${ }^{4 / 8}$								
${ }^{\mathrm{ACO}} \mathbf{A} 26$	$4 / 8$	GET106	S／6	${ }^{\text {OCP }}$	4／8	Xc141				${ }^{100}$ imp ${ }^{\text {a }}$					
${ }^{4 \mathrm{ACH2}}$	${ }_{4}^{4 / 8}$	${ }_{\text {GET }}^{\text {GET }}$	518 518		5／．	PHOTO									
ACV19	$3 /$	GET874	${ }_{4 / 8}$	ocsim	2／6	токs	12／6	185Mi 1／－		800 P．1．1．					
ACY21	5／－	matioo	7／9	OC81				${ }^{250} 95$ AMP 10／		800 P．IV．${ }^{\text {d }}$					
A	${ }^{8 / 8}$	MA	${ }_{79}^{88}$	${ }^{\text {OCd }}$		SIGNAL									
A	157－	MATI	${ }_{8 / 8}$	${ }^{\text {OC8 }}$	${ }_{5 /-}$			${ }^{6} \mathrm{AMD}^{5}$		1000 P．L．以．					
${ }_{\text {AF114 }}$	8／6	OL23	8／8	$\mathrm{OCl}^{\text {O }}$	8／8	DIOD	ES								
${ }_{\text {AF115 }}$		－	8178	${ }_{0}^{\text {OCC }}$	11／6										
${ }^{\text {AF17 }} 1$	4／8	OC	8／6	Oc	$4 / 6$	OAJ	3／8								
－${ }_{\text {4F118 }}$		OC	5	Octil	$4 / 8$	Oat	$4 / 6$	THYRISTORS							
（1928	4.6	OC4	，	Ocmot	11%		2 2－								
C107	5／6	O	$4{ }^{1 /}$	Oten	12／6	O．	2／－	SILICON CONTROL RECTIFIERS							
（3C108	5／8，	OCT3		sT1＋0		O．	${ }_{8 / 8}^{2 / 6}$								
ZENER DIODES															
Azz200	12／－	O．	8／6		8／8										
A，Z201	10．														
${ }_{\text {a }}^{\text {AZ } 2 \times 203}$	${ }_{8 / 6}^{8 / 8}$	－	8／8／8	－ $0 \times 1 / 210$				PLEASE							
STC． 1 WATT SERIES 5\％								ADD							
ea． $7 \mathrm{w} .5 /-$ cauth．								POSTAGE							

STC． 1 WATT SERIES 5%
7 geries．All colta
ea． $7 \mathrm{w} .5 / \mathrm{couth}$

POWER RHEOSTATS

LAFAYETTE TE－46 RESIST－ ANCE CAPACITY

ANALYSER
$\begin{array}{ccc}2 & \text { pr－}-2.000 & \text { mfit } \\ 2 & \text { ohims－200 } & \text { mees }\end{array}$ whons．Also checks
impeilance
 $200 / 250$ צ．A． Brand Wew． 215
Carr．J／b．

ARF－100 COMBINED AF－RF SIGNAL GENERATOR
 2\％／10／－（arr．

SIGNAL GENERATOR
gnal generator cover
 calibrated．Variable R．F．Fat ienuator
Operation $200 / 240$ ．c．Brand new wit

TE22 SINE SQUARE WAVE AUDIO GENERATORS
 0）cpar．to $30 \mathrm{kc} / \mathrm{s}$ 5.000 obma， 200 ／ 250 v．A．C．operation Supplied brand new and guaranteed with instruction manlua and leads， $\mathbf{2 1 5}$ ．Carr．
$7 / 6$ ．

ADMIRALTY
B． 40 RECEIVERS

Weiglit 11 flb ．Offered in gooll working condithm，
 700 Keta ．217／10．Carr． $30 /$

CD7IIS． 2. DOUBLE BEAM OSCILLO． SCOPE
（11）at melthat origiually＂oxtilligetion switeher bean hing tlen

$10 \mathrm{H} / \mathrm{sec} \mathrm{cs}$ ，（alibrator． S amplifter D $2.3 \mathrm{M} / \mathrm{s}, \mathrm{M}$ 人ulatur $110 / 200 / 250$

AVO CT． 38 ELECTRONIC MULTIMETERS

MARCONI TEST EQUIPMENT

 SET，Brand New，\＆75．

TYPE I3A DOUBLE BEAM OSCILLOSCOPES BARGAIN

群
 senaitivity $33 \mathrm{Mv} / \mathrm{m}$ ．Oper－ at ing vollage $0 / 1 \mathrm{tw} / 200 / 25 \mathrm{t}$ 1． A．A．Anbplienl in excellent
warking connlition． $222 / 10 /-$ Or complete with all act £25．（＇arithge 3：1／－

Vavieble Voltage Thandrandinif

Hiph

MULTIMETERS for GUERY purpose/

MODEL TE-10A. $200 \mathrm{k} \Omega$ Volt $5 / 25 / 50 / 250 / 500 / 2,500$
D.C. $10 / 50 / 100 / 500 / 1,000$ A.C. $0 / 6 \mathrm{~K} / 6$ meg. obm. -20 to $10-0,1$ 89/8.

OODEL TE-70. 30,000 1,200 v. D.C. $0 / 6 / 30 / 120$ $600 / 1,200 \mathrm{~V}$. A.C. $0 / 30 \mu \mathrm{~A}$ $130 / 300 \mathrm{~mA} .0 / 16 \mathrm{~K} / 160 \mathrm{~K}$

MODRL 2503. 2,000
 $500 / 2,500$
$0 / 2$
Meg. $0 / 250 \mathrm{ma}$. $-20 / 6{ }^{2}+36 \mathrm{~dB}$.
 CLEAR PLASTIC PANEL METERS First mrade quality Moving Coil panel ine PANEL METER First grade quality Moving Coil panel meters available ex-stock. S.A.E. for ilfustrated

MODEL TE-12 20,000 OPV $0 / 0.6 / 6 / 30 / 120 / 600 / 1,2001$
$3,000 / 8,000$ V.D.C. $0 / 6 / 901$
 $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{~mA} .0 / 6 \mathrm{~K}$ / P00K/6 Meg./60. Meg. $\mathbf{0} 50$
PF. 2 MFD.
$\mathbf{8 5 / 1 9 / 6}$

MODEL TE.80. 20,000 O.P.V. $10 / 50011000$ A.C. $\quad 0 / 5 / 25 / 50 / 250 / 500$ 1.000 v. D.C. $0.50 \mu \mathrm{~A}$. $50 / 500 \mathrm{~mA} .0 / 6 \mathrm{~K} / 60 \mathrm{~K} / 600 \mathrm{~K}$

MEW MODET 50080,000 O.P.V. with overload
protaction, mirror scale protection, mirror scale.
$0 /=/ 2 / 5 / 10 / 26 / 100$
$250 / 500 / 1,000$. $250 / 500 / 1,000$ v. D.C. $0 / 2.5 /$ $10 / 25 / 100 / 250 / 500 / \mid$
$1,000 \mathrm{v} . \mathrm{A} . \mathrm{C} .0 / 50 \mu \mathrm{~A} / 5 / 50 /$ 500 mA . 12 amp. D.C. ¢8/17/6.
. Pogt paid.
.

 ohm. 85/- P. \& P. $2 / 6$.
0

MODEL PT-84. 1.000 O.P.V. 0/10/50/250/ D.C. $0 / 1 / 100 / 1500 \mathrm{~mA}$. D.C. $01100 \mathrm{~K} \Omega 39 / 6$.
P. R. $1 / 0$.

152 Page CAIALOCUE

\star Ei-Fi Equipment
 \star Electronic

 ComponentsFully illustrated catalogue listing thousands of items, many at bargain pric
conpons with every catalogue

SEND NOW-ONLY 5-PRP1.

UNR-30 4 BAND
COMMUNICATION RECEIVER
Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}^{\cdot}$. Incorporates variable BFO for CW/SSB reception. Built-in speaker and phone jack. Metal cabinet. Operation 220/240 v A.C. Supplied brand new, guaranteed with in structions. £12/10/-. Carr. 7/6.

LAFAYETTE MODEL HA700 AM/CWSSB AMATEUR COMMUNICATION RECEIVER 8 valves, 5 bands incorporating 2 MECHANICAL FILTERS for exceptional selectivity and sensi
 R.F Mc/s., $10-\mathrm{S}-30 \mathrm{Mc} / \mathrm{s}$. Circuit incorporates R.F. stage, aerial trimmer, noise limiter, B.F.O product detector, electrical bandspread, S meter, slide rule dial. Output for phones, low to 2 KS
or speaker 4 or 8 ohms. Operation $220 / 240$ vol or speaker 4 or 8 ohms. Operation $220 / 240$ volt
 new and guaranteed with handbook 36 Gns . Carr

10/- S.A.E. for leaflet

LAFAYETTE MODEL HA-500 SSB/AM/CW 80 THROUGH 6 METER RECEIVER

New outstanding Ham Bands only receiver covering
the $80 / 40 / 20 / 15 / 10 / 6$ inetre bands. Incorporates 10 valves, product detector. two mechanical filters. S Meter, dual conversion on all bands, crystal calibrator, V.F.O. noise limiter. aeria! trimmer, I.F.s $2.608 \mathrm{Mc} / \mathrm{s}$ and $455 \mathrm{Kc} / \mathrm{s}$. Output 8 ohms and 500 ohms. Operations $220 / 240$ volts A.C. Supplied brand new and guaranteed with handbook, 42 Gns. Carr. $10 / \mathrm{F}$ $100 \mathrm{Kc} / \mathrm{s}$. crystal, 35

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

19 transistors, 8 diodes, 1HF music power 30 watts at 8 ohms. Response $30-20,000 \pm$ db at 1 w . Distortion 1% or less. Inputs mV and 250 mV . Output $3-16$ ohms. Separace L. and R. Stereo phone jack Brushed aluninium, gold anodised extruded ront panel with complementary inctal case. Size $104 \mathrm{in} \times 3 \frac{\mathrm{~g}}{\mathrm{in}} \mathrm{in}, \times 7$ 格in. Operation $115 / 230$ volt A.C. 825. Carr. $7 / 6$.

+ TRANSISTORISED FM TUNER
 G TRANBISTOR
HIGH QUALITY
TUNER BIZE
ONLY 6 in. $\times 41 \mathrm{In} \times$ 2!in. 3 I.F. stager.
Double tuned ds.
crininator crininator, anple
output to feed most output to feed most
amplifers. Operates
$88-108$ Mc/s. Ready on 9 volt battery. Coverage $88-108 \mathrm{Mc} / \mathrm{s}$. Ready built ready for use. Fantantic value for money
ع6/7/6. P. \& P. $2 / 6$. BTEREO MVLTIPLEX f0/7/6. P. \& P. $2 / 6$.
ADAPTORS, 5 Gns.

GARRARD DECKS SPECIAL OFFERS!

lsrand new and guaranteed.
SPes Mk. II, less cartridge, $£ 11 / 11 /$ LAB80 Mk. II, less cartridge, £23/10/0. LA B80 Mk. 11, less cartridge, with WB2 base, $£ 2 \% / 10 /-$
401 Transcrip
401 Transcription, less cartridge, $227 / 6 /$ -

RECORDING HEADS

Reuter $\frac{1}{8}$-track. As fitted to Collaro Mk. IV and Studio Decks. High imp, record play pair. Post Extra.
MAGNAVOX 363 3-SPEED TAPE DECKS
4-track, £13/10/-. 2 -track stereo, $£ 12 / 10 /$.
Carriage Extra.

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE

4 band receiver covering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ cont inuoua and electrical band spread ot 10 ,
$15,20,40$ and 80 metres. 8-valve plus 7 diode ircuit. $4 / 8 \mathrm{ohm}$ output and phone jack. SB-CW ANL - Variable BFO Q mete Sudio output 1.5 W . ains controls. $115 / 250$ V. A.C. Mains. Beaut ully deaigned. Size: $7 \times 15 \times 10 \mathrm{in}$. With
natruction nianual and service data. $83 \% / 10 /$ ingruction
Carriage $12 / 6$.

COSSOR DOUBLE BEAM

 OSCILLOSCOPES TYPE 1035General purpose A.C. coupled. TYl'E $104!$
L.F. D.C. conpled, $£ 35$ each. Carr. 30^{\prime} P. \& P. 3/4. 25

ADVANCE TEST EQUIPMENT

VM76 Valve Voltmeter

R.F. measurements in excess of 100 mHz and d.c. measurements up to $1,000 \mathrm{~V}$ with accuracy of $\pm 2 \%$. D.c. range- $300 \mathrm{mV}-1 \mathrm{kV}$ f.s.d. A.c. range- $300 \mathrm{mV}-300 \mathrm{~V}$ r.m.s. Resistance in 8 ranges, 0.02-500 Megohms.
Manufacturer's price £90: Our price £72
VM78: A.C. Millivoltmeter
Transistorised. $1 \mathrm{mV}-300 \mathrm{~V}$ in 12 ranges. Freq. $1 \mathrm{c} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$. Input impedance 2 Megohms 60 pf . Calibrated in r.m.s. for sine wave and input dB.
Manufacturer's price £70: Our price £55

TT1S: Transistor Tester (CT472)

Suitable for measuring medium and low powered transistors. Current gain (B) can be measured in range 10 to 500 for p.n.p. and n.p.n. types, either in circuit using the clip-on probes provided. Small, compact instrument.
Manufacturer's price £57: Our price £37/10/-

VM79: UHF Millivoltmeter

Transistorised. A.c. range $10 \mathrm{mV}-3 \mathrm{~V}$ f.s.d., 10 ranges. D.c. current range $0.01 \mu \mathrm{~A}-0.3 \mathrm{~mA}$ f.s.d. 10 ranges. Resistance 1 Ohm-10 Megohms in 7 decade ranges. Complete with probe.
Manufacturer's price £180: Our price £125
J1B: Audio Signal Generator
$15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$ in 3 ranges. Output 600 Ohms , $0.1 \mathrm{~mW}-1 \mathrm{~W}(0.25-24 \mathrm{~V})$, variable. Attenuation $20 \mathrm{~dB}-600 \mathrm{Ohms}$ (Attenuator is incorporated), output $10 \mathrm{~mW}(2.5 \mathrm{~V}) .100-250 \mathrm{~V}$ a.c.
Manufacturer's price £46: Our price £30
J2B: Audio Signal Generator
Same specification as for the J1B except that this model has an additional 2 in. meter calibrated $0-40 \mathrm{~V}$ a.c.
Manufacturer's price £50: Our price $£ 35$
H1B: Audio Signal Generator
$15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$ in 3 ranges. Sine wave $200 \mu \mathrm{~V}$ 20 V r.m.s. Square wave $1.4 \mathrm{mV}-140 \mathrm{~V}$ peak to peak (approx.). $100-250 \mathrm{~V}$ a.c.
Manufacturer's price £42: Our price £30

Special offer of 10% discount for schools and Technical Colleges, etc. These were manufactured in U.K. by Advance Electronics Ltd. BRAND NEW, all in original sealed carton. Carr. 10/- extra per item.

Latest release of RCA COMMUNICATIONS RECEIVER AR83: Brand new and in original cases-A.C. mains input $\mathbf{5 3 5 \mathrm { Kc } / \mathrm { s } - 3 2 \mathrm { Mc } / \mathrm { s } \text { . Output impedance } 2 . 5 - 6 0 0 \mathrm { ohms } \text { . Complete with crystal }}$ filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price: $£ 87 / 10 /-$ each, new. Carr. £2. Same model as above in secondhand cond. (guaranteed working order), £45. Carr. £2.
SET OF VALVES: new, £3/10/- a set, post $7 / 6$; available with Receiver only. SPEAKER: new, £3 each, post 10/-. HEADPHONES; new, £1/5/-a pair, 600 ohms impedance. Post $5 /$.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. By-pass Capacitor K.98034-1, $3 \times 0.05 \mathrm{mfd}$. and . 3 , $10 /=$ plock Condenser, 3×4 mfimers, 95534 each $4 /$ post Box of $3,10 /=$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v ., £2 each, $4 /-$ post

> HRO RECEIVER. Model 5T. This is a famous American High Frequency supernet, suitable for CW, and MCW., reception crystal filter, with phasing $\begin{aligned} & \text { control. AVC and signal strength meter. Freq. range } 50 \mathrm{kc} / \mathrm{s} \text {. to } 30 \mathrm{mc} / \mathrm{s} \text {.; } \\ & \text { with set of nine coils. Receiver only in working order, } £ 18 / 10 /=\text {, carr, } 15 /-1\end{aligned}$ each. Set of nine coils, $\mathbf{£ 1 2 / 1 0 / \mathrm { H }}$, available only with set. Power unit for HRO $100 / 240$ v. A.C., $£ 2 / 15 /-$, carr. $10,-$.
> SPECIAL OFFER: Complete HRO SET (Receiver, Coils and Power Unit) for $£ 30$, plus $30 /$-carr.
> HRO-M-SETS available with UX type valves; secondhand cond., with 5 coil and power unit, $£ 20$ each, carr. $30 /-$
> COMMAND RECEIVERS : Model $3-6 \mathrm{Mc} / \mathrm{s}$. and $6-9 \mathrm{Mc}$'s., as new, price f5/10/- each, post 5/-
> BC-433G COMPASS RECEIVER: Freq. $200-1,750 \mathrm{Kc} / \mathrm{s}$. in 3 bands, suitable for aircraft, boats, etc. Complete with 15 valves, power supply input 24 v. D.C. at 2 amps. Receiver only $£ 5$ each. Carr. 15/-.
> AIRCRAFT RECEIVER TYPE 1392: freq. $100-150 \mathrm{Mc} / \mathrm{s}$, tunable, with power unit for $200 / 250 \mathrm{v}$. A.C. mains. In serviceable cond., £ 10 each, carr. 25/-.

ROTARY TRANSFORMERS: 24 v . input, 175 v. at 40 mA output, $25 /-$ plus $2 /$-post. 12 v . input, 225 v , at 100 mA output, $25 /-$ plus $3 /$ - post (All the above are D.C. only).
ROTARY CONVERTERS: Type $8 \mathrm{a}, 24 \mathrm{v}$. D.C., 115 v . A.C. @ 1.8 amps $400 \mathrm{c} / \mathrm{s} 3$-phase, £6/10/-each, $8 /-$ post. Converter 12 v . D.C. infut, 110 v . A.C $60 \mathrm{c} / \mathrm{s}$ output, £ 15 each, £1 carr.
AVO MULTIRANGE No. 1 ELECTRONIC TEST SET: £25 each, carr. £1
AVOMETERS: Model 47A, £9/19/6 each, 10/- post. Model 7x, £13'10/-each, 10/- post. Excellent secondhand cond. (Meters only). (Batteries and Leads extraat \cos).
OSCILLOSCOPE Type 13A, $100 / 250$ v. A.C. Time base $2 \mathrm{c} / \mathrm{s},-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope, $£ 22 / 10 /-$ each, $30 /$ - carr.
COSSAR 339 OSCILLOSCOPE, double beam, $£ 10$ each, $30 /-$ carr.

RELAYS: Relay Unit (with 9 American relays) 24 v. D.C., 250 ohm coils. heavy duty, M. \& B. 30/-each, 4/-post. GPO Type 600, 10 relays @ 300
ohms with 2 M and 10 relays @ 50 ohms with 1 M ., £2 each, $6 /$ - post.

CALIBRATION TACHOMETER Mk. II: Maxwell Bridge Type 6C/869 £25 each, £2 carr.
ROTAX VARIAC \& METER UNIT: Type 5G.3281. Reading 0-40 v., 0-40 mA and 0.5 amps., all on 275 deg. scales, $£ 30$ each, $£ 2$ carr.
MARCONIIMPEDANCE BRIDGE, TF-373: inductance $5 \mu \mathrm{~h}-100 \mathrm{H}$ in 5 ranges capacity $5 \mathrm{pF}-100 \mu \mathrm{~F}$ in 5 ranges, resistance .05 meg. -1 meg., power supply 250 v . A.C., £37/10/- each, carr. 15/-.

HEWLETT PACKARD TYPE 400C: 115 v. 230 v . input $50 / 60 \mathrm{c} / \mathrm{s}$. Freq range $20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}$. Voltage range: $1 \mathrm{mV}-300 \mathrm{v}$. in 12 ranges. Input impedance 10 megohms. Designed for rack mounting, £30 each, carr. $15 /-$
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price 25/-, post 5/-
CONDENSERS. $10 \mathrm{mfd} .1,000 \mathrm{v}, 12 / 6$, post $2 / 6$. $8 \mathrm{mfd}, 1,200$ volts, $12 / 6$, post $3 /-.8 \mathrm{mfd} .600$ volts., $8 / 6$ post $2 / 6$. $0.25 \mathrm{mfd},{ }^{2} \mathrm{kv} ., 4 /-$ post $1 / 6$.
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price $£ 7 / 10 /-$, £ 1 carriage.

FOR EXPORT ONLY: B. 44 'Irans-ceiver Mk. 11I. Crystal control, 6095 Mc s .

AMERICAN EQUIPMEN'I: 5C-640 Transmitter, 100-156 M: s, 50 wat output. For 110 or 230 v . operation. ARC-27 trans-ceivers, 28 V . d.c. input. Also have associated equipment. BC-375 Transmitter. BC-778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893/GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical CY 1288/GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast Erection Kits, 1186/ GRC; Receiver type 278 B ; Directional Antenna CRD.6; Comparator Unit, Control Units, 260;CRD. Test Set URM.44, complete with Signal Generator TS.622 U.

SIGNAL GENERATORS:

MARCONI TF-144G: freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$, internal and external modulation, power supplies $200 / 250 \mathrm{~V}$. A.C. (secondhand cond), price $£ 25$ ea.; or available in transit case, complete with spares, in first class condition, $£ 30$ ea., carr. on both 30/-ea.
TS $155 \mathrm{c} / \mathrm{UP}$ (as new) : price £75 each, carr. $£ 1$.
CT53. Freq. range $8.9-300 \mathrm{Mc} / \mathrm{s}$. with Calibration chart. Output $1 \mu \mathrm{~V}-100 \mathrm{mV}$. internal square wave and sinewave modulation at $100 \mathrm{c} / \mathrm{s}$., external modulation internal square wave and sinewave modulation at $100 \mathrm{c} / \mathrm{s}$. , external modulation
$50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s} ., 230 \mathrm{v}$. A.C. Complete with chart, etc., price $£ 27 / 10 /=$ ea., $\begin{array}{ll}50 \mathrm{c} / \mathrm{s}-10 \\ \text { carr. } & \text { £1. }\end{array}$

MARCONI TF801A/1 Freq. $10-300 \mathrm{Mc} / \mathrm{s}$., 4 bands, output 200 mV , Attenuator $0-110 \mathrm{~dB}$. Input 75 ohms. $£ 65$ each, carr. $£ 1$.

MARCONI TF516-F/1: Covering $10-18 \mathrm{Mc} / \mathrm{s} ., 33-58 \mathrm{Mc} / \mathrm{s} ., 150-300 \mathrm{Mc} / \mathrm{s}$ £12/10/-each, carr. £1.
MARCONI CT218: price $£ 65$ each, carr. 30/-
CT. 480 and $478: 1.3-4.2 \mathrm{Mc} / \mathrm{s} .$, F.M. or A.M., price £75 each, carr. 30/-.
AN USM44, T.S. 510^{\prime} U Signal Generator (Hewlett Packard), 115 v. A.C., $10-420 \mathrm{Mc}$; s in 5 Bands, $£ 85$ each, carr. £1.

NIFE BATTERIES: 6 v. 75 amps ,, new, in cases, $£ 15$ each, $£ 1$ carr.; 6 v .160 amps., new in cases, $£ 25$ each, $£ 1 / 10 /-$ carr.; 4 v .160 amps , new, in cases, $£ 20$ each, £1/10/- carr.
L.R. 7 Cells, only 1.5 v. 75 amps ., new, $£ 3$ each, $12 /$ - carr.

The above batteries are low resistance designed to give a heavy surge for starting and can be stored for long periods without any effect to their performance.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in. diameter case. Price 30/- each, postage 5/-.

UNISELECTORS (ex equipment): 10 Bank 50 Way, alternate wipe, £2/5/ea. 6 Bank, 25 Way, alternate wipe, $£ 2 / 2 / 6$ ea. 8 Bank, 25 Way, £2/5/-ea. 6 Bank, 25 Way, £2 ea. 4 Bank, 25 Way, $35 /-$ ea. All the above are 75 ohm coil. Postage 4/- per uniselector.
FREQUENCY METERS: 1 M 13 or $\mathrm{BC}-221$; $125-20,000 \mathrm{Kc} / \mathrm{s}$., £25 each., carr. 15/-. TS. $175 / \mathrm{U}$, £75 each, carr. £1. TS323/UR; 20-450 Mc/s., £75 each, carr. 15/-. FR-67/U: This instrument is direct reading and the results are presented directly in digital form, Counting rate: 20-100, K . per sec. Power supply: $115 \mathrm{v} ., 50 / 60 \mathrm{c} / \mathrm{s}$., £100 each, carr. £1.

CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. range $450 \mathrm{c} / \mathrm{s}$ $22 \mathrm{Kc} / \mathrm{s}$., directly calibrated. Power supply $1.5 \mathrm{v} .-22 \mathrm{v}$. D.C. £12/10/-each, carr. 15/-.
AMERICAN EQUIPMENT: Power supply, PP893/GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical CY 1288/GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast Erection Kits, 1186/GRC; Receiver type 27 8B; Directional Antenna $568 / \mathrm{CRD}$. Azimuth Control Units, 260/CRD. Test Set URM. 44, complete with Signal Generator TS. $622 / \mathrm{U}$, $£ 100$ each, $£ 2$ carr.

CATHODE RAY TUBE UNIT: With $3 i n$. tube, colour green, medium persistence complete with nu-metal screen, $£ 3 / 10 /-$ each, post $7 / 6$.
APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s} .$, complete with all valves 28 v. D.C. Dynamotor and 3 relays, 11 valves, price $£ 3$ each, carr. 10/-.

GEARED MOTORS: 24 v. D.C., current 150 mA , output 1 r.p.m., $30 /$ - each 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., £2 each, 5/-post.
MOTORISED ACTUATOR: 115 v. A.C. $400 \mathrm{c} / \mathrm{s}$. single phase, reversible, thrust approx. 3 inches complete with limit switches, etc. Price £2/10/- each, postage 5/-(ex equipment).
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. 25 lbs., rating intermittent, price $£ 3$ each, post 5/-

FRACTIONAL MOTORS \& FANS: Low inertia Motor 5UD/5361, Type 903, 24 v . input D.C., £2/10/- each, 5/- post.

Model PM84: 28 v.D.C. @ 2 amps., 4,500 r.p.m., output 40 watts continuous duty complete with magnetic brake. Price $£ 2$ each, postage 4/-.
Model SR-2: 28 v. D.C. 7,000 r.p.m., duty intermittent, output 75 watts, price $25 /$-each, postage $4 /-$ -
A.C. Motor 115 v. $50 \mathrm{c} / \mathrm{s} .1 / 300 \mathrm{H} . \mathrm{P} ., 3,000$ r.p.m. Capacitor $1 \mathrm{mfd} ., 25 /-$ post A.C. Motor 115 v. $50 \mathrm{c} / \mathrm{s} .1 / 300$ H.P., 3,000 r.p.m. Capacitor $1 \mathrm{mfd}, 25 /-\mathrm{post}$
3 i. Dalmotor SC5, $28 \mathrm{v}$. D.C. at 45 amps; $12,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$, output 750 W . (approx. 1 h.p.), brand new, £2/10/- each, post $7 / 6$.
T.S. 382 U AUDIO OSCILI.ATOR; 115 v . A.C., freq. range 20-200,000 c / s T.S. 382 in 4 ranges. Continuous wave vutput volis $0-10$ in 7 ranges, $£ 40$ each, per sec. in
T.S.155c/U PULSE GENERATOR; 115 v . A.C., freq. range 2,700-3,400 Mc / s. Pulse output trigger repetition rate $80-2,600$ per sec. £ 75 each, carr. $£ 1$.
TELEPHONES (PORTABLE) TYPE "F." Suitable for all ourdoor activities up to a range of 5 miles. Price $£ 7 / 10 /$ - each, as new, complete with carrying case. Carr. 10/.
TELEPHONE WIRE; 220 yds., $£ 1$ a roli, post 6/-.

 Anished in Satin Teak Veneer Tinted Perspex binged lid with

 HIGH FIDELITY'Plan 2' 30 Watt System \star Garrard 8P8s My. II Turntable. \star Goldring cs90 Ceramic P. ס. Cartridge. \star Sapor 80 Ampliner. \star E8 Equipment Cabinet * Peir Btanton Mk. IIIS L/Bpesker Unita.
 Saring 818 on total cos:

TA6 6-7 WATT HIGH FIDELIT

 olid State Circuitry main! oporated

Frequency Response 30-20,000 c.p.s. -2 dB Earmonie "bift" and "cut" controls. 3 inputs sockets for Mike Gram, Radio or Tape Input Belector Switch. Output
$3-15$ ohm apeakers. Max. Bensitivity 5 mV . Fully en
 Complete kit of pats with full wiring diagrams and
instructions. Or tatory built with 12 mithe. 6 Gis,
HI-FI LOUDSPEAKER ENCLOSURES All typet of pleasing modern deikn, Beosutically line

ALL LEADING MAKES HI-FI EQUIPMENT IN STOCK
INTEREST CHARGES REFUNDED
LINEAR LP/I TAPE PREAMPLIFIER

aralable. AMPLIFIERS
Speakk and listen with both handa
tree, Conipact, solid state, stand-
trat PPB better opera
ation. Rxcellent ralue at

\section*{TOMT

TOMT
 RSC. IFM1 TRANSISTORISED VHIFEW RADIOTUTNER

\star High Senuitiv1ty. $\star 200-250$ v. A.C. Mains oporation \$ Sharp A.M. Rojection. \star Dritt tree reception. \star Ortallgament lastructlong. \star Output avallable for foeding tuning meter. * Output for feeding Storeo Malitplozer \star Tuner head ualng silicon Planar Traneistors. \star Designed for standard 80 ohm co-srial inpat, Visually

STANTON Incorporating Audiotrine HF815 Speaker with rolled cabinet. Response $30-20,000 \mathrm{c} . \mathrm{p} . \mathrm{a}$. 1 Impedance 3 or 15 ohmb. The deep excurations arequeney range sbove audibulity. Excellent transient reaponae 16 Gns
R.S.C. AIIT 15 WATT HIGH FIDELITY AMPLIFIER DUAL PURPOSE PA. or H-HI

 ocal and Instrumental groups. Frequency respons
$20-40,000 \mathrm{c.p.s}-.3 \mathrm{~dB}$. Hum Level 80 d B. Harmonis Digtortion 0.2% at 10 watts R.M.S. Operation on $200-250 \mathrm{v}$. A.C. mains. Size $9!\times 2$ 9 Gns. Caid Or Factory built with 12 mihs. guarantee. 13 gni. Carr. $9 / 6$. Term
Deposit $k 4$ and 9 monthly payments $25 / 6$ (Totai e15/9/8).

R.S.G. SUPGRIS HDFI AMPUFISR

FULEYTRAESLETORISED 200/250 ©. A.C. Mains.

US 10 WATT8 R.M.S. cont. into 15 ohms.

LATMET HULLARD TRAMBISTORB. AD149, AD149,
 EQUALIBATIOR to standard R.IA.A. and C.C.I.R. Characteriatica

FOR USE WITH ANY MAKE OF PICK-UP OR MICROPHONE (Crystal, Ceramic, Magnetic, Dynamic COMPARABLE WITH UNITS

A DUAL CHANHEL VRRSION OF THE SUPER 15. Employ ing Twin Printed Circuita, Clope tolerance Ganged Pots Matched Componenta. CROBS TALE:- 52 dB at 1,000 c .p. Control, Volume Control, Balance Control, Stereo/Mono Switch Tape Monitor 8witch, Maine Switch,
ITPUT 800 KKFP (Matched Paira). (1) Magnetic P.U. (2)

Coracteriatica for Gram and Tape Heada
SEMAITIVITIEs: Magnetic P.U. 4 mV . Crystal or Ceramic P.U. 400 mV Microphone 4.5 mV . Tape Head 2.5 mV . Radio/Aux. or Ceramic P.U. 110 mv TREBLE COMTROL +15 dB to -14 dB at $10 \mathrm{Kc} / \mathrm{s}$. NEG. FEEDBACE: 52 dB GARMOHIC DIgTOETIOH at 10 watt R.M.s. 1,000 c.p.a. 0.25%. Carr. 12/8 Complete Kit of paria with full conatructional detaila and point || $\frac{1}{2}$ Gns. Carr. 12/6. Terme: Deposit 4 Gns, and 9 monthly payments $31 / 1$ (Total $\mathbf{2}$ E18/3/9)

[^10]BRISTOL 14 Lower Casste St. (Hall-day Wed.) Tel. 22904
BIRMINGHAM ${ }^{30 / 31} \mathrm{Gt}$. Western Arcade opp. Snow Hill Station DERBY 26 Osmaston Rd., The Spot (Half-day Wed.) Tel. 41361
DARLINGTON 18 Priestgate (Hall-day Wed.) Tel. 680-43.
EDINBURGH ${ }_{5766}^{133}$ Leith Street (Half-day Wed.) Tel. Waverley GLASGOW ${ }^{326}$ Argyle St (No. Half-day) Tel. CITY 4158 HULL 91 Parazon Street (Hallf-day Thursday) Tel. 20505

IVPUT sockers (Matched Paira). (1) Magnetic P.U. (2)
Ceramic or Cryatal P.U. (3) Radio/Aux. (4) Tape Head
Microphone. Operation of the Input Selector 8witch Milamopho
alisation.

Rigid 18 aw or Cheal size

Figid 18 a.w.g. Chasisia. Size approx. $12 \times 3 \times 8 \mathrm{in}$. Neon Panel Yndicator. Attractive
 MEAT. All required parts, point to point, wiring dia-
grama and detalied instructions. Send \mathcal{S} A.E. for leafet. gramis and detailed Instructions. Send S.A.E. for leafet. 19 Gins. Carr. 15/-
 32 High Street (Halif-day Thurs.) Tel, 56420 LEICESTER 5-7 County (Mecta) Arcade Brizgate (No Halfoday) Tel. 28252 LEEDS 73 Dale St. (No Halfodzy) Tel. CENtral 3573 LIVERPOOL 238 Edgware Rd., W2 (Half-day Thurs.) Tel. PAD 1629 LONDON
96 High Holborn, WCl. Tel. HOL 9874 (Hall-day Sat.) 60A.60B Oldham St. (No Half-day) Tel. CENArral MANCHESTER 106 Newport Rd (Half-day Wed) Tel. 47096 MIDDLESBROUGH 11 Blackett St., opp. Fenwicks Store NEWCASTLE UPON
(Half-day Wed.) Tol. 21469
TYNE 13 Exchange Street, Casstle Market Bldgs.,
xchange sereet, Caste Mark
(halfoday Thurs.) Tel. 20716.

HI-FI TAPE RECORDER KIT

Tap', 'mpts i inspool Hiqhquality, Thon $7 \times$ tin Lomppeaker and rireuit. Full weront and playback facilities, Magie sue kerel hatiatar pairs of soldercd joints plus mains, sate apprax

R.S.C. COLUMN SPEAKERS

 Total \&18/1/6)

12in. HIGH QUALITY LOUDSPEAKERS

R.S.C. AlO 30 WATT HIGH FIDELITY AMPLIFIER AMifitic. Pranl. Pull high Might

 sut that any kind of Mierophone or Piek-up is suitable. Dexigned
far Clubs, Schools. Theatres, Dance Halls or Outdoor Funetions,

POWER PACK KIT

R.S.C. MAINS TRANSFORMERS

FULLY GUARANEED. Inter
$200-250$ V. 50 e/f. Screentind
MIDGET CLAMED TPE 2

14/11

TOP SHROUDED DROP-THROUGH TYPE

2/11
$\because 130$

SHROUDED DROP-THROUGH TYPE

SHLAMENT OO TRANSISTOR POWER PACK TYpe
 Charger transformers 0.9 -11. 1 a. 1311 16/11.

OUTPUT TRANSFORMERS

$12 / 9$ 9.11 $9 / 19$

 BEC
ELECTRONIC BROKERS LIMITED

PRECISION HELICAL \& CONTINUOUS INSTRUMENT POTENTIOMETERS
 Colvern CLR 7304-
5 k . Plastic Film, 45 5 k . Continous, $30 /$ -

Colvern CLR
$22 k+22 k$
50
BECKMAN MODEL A- 10 turn, 100 ohms, $100 \mathrm{k}, 50 /$ - BECKMAN MODEL A-- 10 Turn 25 ohms +25 ohms, $80 /$. Colvern CLR $240210 \pm$ Turn, 2 watts $30 \mathrm{k}, 1 \times 3$ in dia., $30 /$. Colvern
 BECKMAN
 SINE/COSINE PO 50 Eatt continuous potentiometers, 25 k ,. $E 6 / 10 /$-. Ferranti Precision Continuous Wire Wound Potentiometer, Type P4A, Size 15, Seven Sections. Ganged, giving seven different pre-determined values, $\mathbf{E 2 5}$ PULLIN D.C. MOTOR' PM/1, 24 .., $45 /$-.
SPERRY LI 6951 A.C. Tacho., with 600 : 1 gearbox.
SPERRY LI6951 A.C. Tacho., with 600 :
SPERRY LI847? A.C. Tacho., $612(10 /-$.
MUIRHEAD SYNCHRO, 11 CT4c-- 26 volt, $66: 10 /$
MUIRHEAD SYNCHRO
PLUG-IN PRECISION DUAL SPEED DRIVE D.S.D. 7
ments of 10 and firce synchro. This precision drive permits rapid positioning and extremely accurate repositioning of rotational components such as synchros and resolvers, which can be mounced directly to the frame of the drive, also available DSD 40 Gear ratio 10 : $1, \underline{E} 19 / 10$

"MINICUBE" BLOWER 400 c.p.s. input power, I or 2 pH . Output $2.2 \mathrm{c.f} \mathrm{f}$. at free air wt,
Saunders Associates. Offered at tenth of manufacturer's price $£ 6 / 10$ /-
GEAR BOXES. By Vactric. Size 11. 149.1: 2 and 300.2:1 £4/10/
INSTRUMENTS FOR DYNAMIC ANALYSIS
LOW FREQUENCY RESOLVED COMPONENT INDICATOR BY SOLAR-TRON-Type VP 253.2A for the analysis of Dynamic Response of systems and components to the highest accuracy with rejection of harmanics and noise over the frequency range. Used for the measurement of transformer magnetising and core loss. Performance of synchros and fractional motors and other electro mechanical units Also design and testing of Feedback Amplifier, Filters. etc.
This instrument willindicate by means of two centre zero bin. scale merers the resolved components of a signal voluge with respect to the applied reference energisation components of a signal voluge
Frequency Range: $0.5 \mathrm{c} / \mathrm{s}-1 \mathrm{Kc} / \mathrm{s}$.
Signal Voltage Ranges: $50 \mathrm{MV}, 150 \mathrm{MV}, 500 \mathrm{MV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}$ and 150 V with either balanced or unbalanced input. Signal noput Resistance: $10 M O$ unbalanced. 20 M ! balanced. Reference inpur
Four-phase reference energisation is required. each phase having a level of 10 V r.m.s. with respect to virtual ealth Reference Input Resistance : 6.2 MO I per Phase.
Harmonic and Unrelaced Frequency Discrimination betcer than 40 dg . Mains voltage $90 / 130$ or $230 / 240 \mathrm{~V}$. Scandard Rack Panel, 19 in $\times 12 \frac{1}{4}$ in high, $\mathbf{6} 175$ new condition. complece with manua
MINIATURE PRECISION SAMPLING SWITCHES, $100-C H A N N E L$. Consisting of 4 cracks

48-CHANNEL. Consiscing of 2 tracks of 24 contac
HIGH TEMPERATURE PRESSURE TRANS-
DUCER-Type NT4-317, by Solartron. Highly accurate and stable performance. Suitable for uses in explosives and mining, research, moulding, pressing and extrusion
research. High temperature environmencal instrumenresearch. High temperature enviromencessures only. tation, etc. Available in the following pressures only:
$0-75$ p.s.i., $100,150,160,250,500$ absolute. $1,000,1,500$ 5,00 p.s.s.i. Gauge 0 , 150 p.s.t. differential, $E 19 / 10 /-$ size $\frac{\text { sin in. dia. I in. length. }}{}$

SOLARTRON PRESSURE SCAN NING VALVE NT.999.3-This unit be used to measure up to 24 separate pressures in one second. For inlet pressure range of 0.1 p.s.i. to 40 p.s.i.
depending on which transducer is used The transducer is housed inside the valve and is exposed to the unknown wish Vactric sylichronous motor 400 with Vactric $5 y$ lichronous motor
cycle $30 / 60 \mathrm{~V}$. 8,000 r.p.m., with gearcycle 30,60 ratio of 149.06 : 1. New Nondicion, Offered at a fraction of the original cost £49/10:-
A variecy of Size 11 motors and gear heads can be fitted instead but we regret
this will have to be undertaken by the intended purchaser
SE LAB. LINEAR ACCELERATION TRANSDUCER. Type SE 55/A IG. $\mathbf{f 1 9 / 1 0 / \text { -. Brand new }}$ SE 150/B/5945 Sp.s.i. with Demodulator amplifier £29/10/
J. LANGHAM THOMPSON T10370. Pressure
 E4/10/
MARCONI VALVE VOLTMETER TF $428 \mathrm{~B} / 1$. Frequency response on probe $10 \mathrm{Kc} / \mathrm{s} / 3-100 \mathrm{Mc} / \mathrm{s}$. Five separate Voltage Ranges Overload Projection 100-250 A.C.I.P. Input 1 MS Acc. 2% or 0.02 V . 5 ize $10 \times 16 \frac{1}{2}$ $\times 9 \mathrm{in}$.-15|bs. $\mathbf{6 9 / 1 0 /}$
FIVE DIGIT COUNTER, complece with Sangamo 57
synchronous motor $200 / 250-1 / 10$ th rev per hr. $55 /-$, only
synch ronous motor $200 / 250-1 / 10$ th rev per $\mathrm{hr} .55 /-$, only
New.
PEN RECORDER. Two pens activated mechanically
PEN RECORDER. Two pens activated mechanically
by $6 K \Omega \Omega S . P . S . T$. Zelay Deviation $0 . \operatorname{lin}$. Chart width 1.3 in. Driven by Synchronour Mangamo Wescon $\$ 7$ Motor $\frac{1}{3}$ rev. per hr.* $\mathbf{~} 7 / 10$ /
*It should be noted a wide range of chart speeds can be
TF329C. MARCONI Q METER CIRCUIT MAG
NIFICATION. Freq. range $1.5-50 \mathrm{Mc} / \mathrm{s}$. $50-1.500 \mathrm{Kc} / \mathrm{s}$
AGENIUM "KLIP-SEL" TRANSIENT VOLT AGE SUPPRESS
Size 2 in. sq. 25 -.

PEN RECORDERS
Evershed \& Vignole Single Pen Recording Ammete Evurday system. No. 440972. 15-0-15 M/A. $\mathbf{2 0}$ Everett \& Edgcumbe $500 y$ a $\frac{1}{2}$ in. -12 in per hour or $\frac{1}{2}$ in. 12 in per minute. Sin. charr. Brand new. Single Pen $£ 45$. Everett \& Edgcumbe "Inkwell Minor" Grapher Single Pen F.S.D. 185 Mv D.C. 5 in . chart. 22 Reco. D. 5 mA complete with Sweep \& Recording Unit Type 1168 A
 Southern Instruments Two Pen Recorder. Complet with Amplifier and 4 -speed gearbox, $£ 89$
EMI PROFESSIONAL TAPE CONSOLE
\& 30 in . Excellenc condition. A muse for the professiona user or Recording studio. $\mathbf{6 9 0}$ /10/-. Original cost ove

FIVE DIGIT ELECTRO MECHANICAL TOTAL
LING COUNTERS. Composed of a coll, a Five-whee black on white figures counting mech anism and a pushwith a window. Stepping Speed will respond to impulses having a speed of 6 steps per second. Brand new. Price
per quantity $1.9,25 /-$ each: $10-99,20 \%$ each. per quantity $1-9,25 /-$ each; Coil voltage 2.5 k . or 500
$4 \frac{1}{16} \times 1 \frac{1}{16} \times$ lin. Wt. $4 \frac{3}{4} \mathrm{oz}$. Coil
HAYDON ELAPSED TIME INDICATOR. Type D22543.P4. 40 V., 50 cycles, $£ 410$ -VEEDER-ROOT SMALL RESET RATCHED COUNTER FIVE-DIGIT, Type 1341 . Adds one for each oscillation through 40 . Reset by knob. Size of figures 0.1661 n . high. $1.3 \times 1.25 \times 0.96 \mathrm{in}$, finished biack SYNCHROVERTER NON - RESONANT SWITCH by ELLIOTT GI280. A miniature S.P.D.T ERICSSON CHOPPER Type DN23432DI. Doubl Pole each.

WE PURCHASE

PLUGS AND SOCKETS, MOTORS, TRANSISTORS VALVES AND KLYSTRONS, RESISTORS, CAPAC TORS, POTENTIOMETERS, TEST EQUIPMENT, RELAY TRANSFORMERS. METERS, CABLES, ETC
PROMPT PAYMENT AND COLLECTION
TURN YOUR CAPIYAL INTO CASH
ELECTRONIC BROKERS LIMITED 8, BROADFIELDS AVENUE, EDGWARE, MIDDX. TEL. 01-958 9842

per 100.
TRANSISTOR BARGAIN SALE! NEW STOCK AT UNBEATABLE PRICES:

OC44, OC4., ()Cx11) now only	16 cach!	86.0.0 per 10\%
OCT1, Octe cquivalent	1- rach!	£3.0.0 per 100
ASYog Switching Transistors	2/6 cach!	£10.0.0 prer 100

 AFZI2 P.N.1. Germanium Alloy Diff. Low mise V.H.F. anulitier - $\quad . \quad 2.6$ cach! Complele sets of transistors for radio:

Transistor Joriver Transformers
2/6 each!

 doz: £\%.10.0 per 100; $£ 50.0 .0$ per 1,000. light sensitivity trausistors similar to OC1:
 Silicon dioxles. Make exedlent detectors. Aso suitable for keying electronic organs, 1/-each: 20 for 10 -
13100 typr rectitiers. SPECIAL REDUCED PRICE! ONLY $2 / 6$ each; 24/- doz.; £\%.10.0 pirt lıf; $£ 50.0 .0$ per 1,000 .

ELECTROLYTIC CONDENSER FANTASTIC SELECTION;

VEROBOARD. All sizes in stock.

2 2in $\times 1 \mathrm{~m}$	0.10. matrix	.	\cdots	1/1	$1 \mathrm{Bin} \times 3$ 3in	0.10̄ matris		14/8
$\underline{21}$	0.15 matrix	\cdots	.	3/3				
$2 \mathrm{th} \times 5 . \mathrm{Ln}$	0.15 matrix	\ldots	\because	$3 / 11$	$\overline{\text { an }} \times \overline{\mathrm{a}}$! n	f. 1 matrix		3/11
	0.15 matrix	.	\cdots	3/11		$0^{1.1} 1$ matris		$3 /$
3 3in $\times 5 \mathrm{in}$	n.log matrix	.	.	5/6	sin. $\times 3$ ¢! 11	(1.1) matrix		$5 / 2$
	0.15 matrix	.	\cdots	11/-	\%30, $\times 34$	6.1 matrix		3/11

SPECIAL OFFER:

BARGAIN OFFER!

Onders ly post to:-
G. F. MILWARD, 17 PEEL CLOSE, DRAYTON BASSET, Staffs.
llease inchade stitable amount to cover postage. Stamped addressed envelope must be included with any enguiries. Regret mable to accept orders below $10 /$ by post. 231 Alum Rock Road, Birninghan x. (All Posf orders to Drayton)

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS EDITING \& REPRODUCNG SETS

Codes: Int. No. 2 Mercury/Pegasus, Elliot 803 Binery and special purpose Codes.

2-5-6-7-8- TRACKAND MULTIWIRE EQUIPMENT

tElegraph automation and computer peripheral accessories
Picture Telegraph, Desk-Fax, Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter. Morse, Teledots Paper, Tape and Ribbons; Polarised and specialised relays and Bases; Terminals V.F, and F.M. Equipment; Telephone, Carriers and Repeaters; Multiplex Transmitters; Diversity Frequency Shift, Keying Equipment; Line, Mains Transporters and Suppressors; Racks and Consoles; Plugs, Sockets; Key, Push, Miniature and other Switches Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Oscilloscopes; MiscelCathode Matrics; Test Equip
laneous Accessories and Spares.

W. BATEY \& COMPANY
 Gaiety Works, Ackerman Street, Tring, Herts.
 Tel.: Tring 3476 (3 lines) Cables: RAHNO TRING
 STD: 044-282 TELEX 82362

WW-118 FOR FURTHER DETAILS

HOWELLS RADIO LTD. ministry of aviation inspection approved

TRANSFORMERS
STANDARD RANGE OR DESIGNED TO YOUR SPECIFICATION. 0-50KVA, "C" CORE, PULSE, 3 PHASE, 6 PHASE, TOROIDS, ETC.
Transformers for 20W Transistor Amplifier (W.W., Nov. 1966).

Driver	22/6	Carr.	$2 /-$
Mains	$29 / 6$	Carr.	$4 / 6$

L.P. Filter, Chassis Mounting 11/6. Carr. 1/-
L.P. Filter, Printed Circuit Mounting 14/6. Carr. 1/-
*MAINS TRANSFORMERS
350-0-350 v. 60 mA., 6.3 v. 2 A. $£ 1 / 15 /-. \quad$ Carr. $4 / 6$.
500 v. 300 mA .6 .3 v. 4 A., 6.3 v. 1 A. £3/12/6. Carr. 5/6. $500-0-500$ v. 0.25 A., 6.3 v. 4 Act., 6.3 v. 3 Act., 5 v. 3 A. £4/10/6. Carr. 6/6.
$525-0-525$ v. 0.5 A., 6.3 v., 6 Act., 6.3 v., 6 Act., 5 v. 6 A. 55/5/-. Carr. 6/6.
*LOW VOLTAGE

$30-0-30 \mathrm{v} .4 A.$.	$£ 2 / 5 / 6$.	Carr. $5 / 6$.
15 v. 2 A.	$£ 1 / 12 / 6$.	Carr. $3 /-$.
15 v. 6 A.	$£ 2 / 1 /-$.	Carr. $4 / 6$.
15 v .10 A.		$£ 2 / 15 / \mathrm{m}$.

TRANSISTOR POWER SUPPLY TRANSFORMER 0-2-4-6-8-10-20-30-40-50 v. 2 A. £4/10/-. Carr 6/-
*PRIMARIES 10-0-200-220-240 v.
CHASSIS, CABINETS \& PRECISION METALWORK
ELECTRONICS - DEVELOPMENT \& ASSEMBLY
CASH WITH ORDERS PLEASE
Cariton Street, Manchester 14, Lancashire
TEL. (STD 061) 226-341I

SLIDEWIRE WHEATSTONE BRIDGE

Battery Powrect Portanle Resistance Bridge. Range 0.a to
 THYRISTORS

 DRY REED INSERTS

24-WATTS $210-240 \mathrm{~V}$. SOLDERING IRONS lecentiy imported, extremely attractive and sturlily built
soldering irons, with angle bits. Chromiun plated steel body soldering irons, with augle bits. Chromiun plated steel body
and polished woodean haudle. No Bakelite or breakable plastics and polished woode Prlce
Spare bits Spare bits.............
Handling airi

SEMICONDUCTORS
Apart from full range uf semitunductors listed in our catalugue. COMPLEMENTARY PAIR8 COMPLEMENTARY PAIRS AM/FM/8W SETS \qquad $13 /-:$
$12 /-$
$2 \times 697 / 2 \times 1132$ sil. $27 / 0$
 GERRMAMIUMA GEFERRALPORPOSE TRANSISTORS

WHEN ORDERING BY POST PLEASE ADD 2/6 IN \&FOR HANDLING AND POSTAGE NO C.O.D. ORDERS ACCEPTED.
ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TORETAIL SHOP

MOVING COIL METERS eatet on requeat quality panel meters. . ivailaile from stock Leatiet on request.

Here are a fow examplen from our atook of over 2.500 typos. l'rices are for direct export, for valves type
mik bikeket, in lins of 100 per type minimum,

0.12	0.36	ricew in U.S. Iollary.				${ }^{6 \times 60} 9$	0.38
0.13	0.69	aldal	0.45	615E6	0.26	6×54	0.3
OC3	0.55	0゙4	0.59	fbaba	0.70	310A	
0 O3	0.52	5Y3tit	0.42	6CadT	0.56	311.1	3.5
$1 \mathrm{B3a}$	0.42	3744	0.49	HCY_{5}	0.45	328:	
\cdots	7.70	万\%40'T	0.52	BJ4	0.73	3294	2.8
-0.1	0.45	fi.dK,	0.42	6J5\%T	0.42	807	0.77
3 B 2 x	3.50	hiasil:	1.40	6.56	0.26	811.1	4.20
3 BPI	5.60	(\%Bl1;	0.22	ELACC	0.58	813	9.80
3529	8.30	6334:	1.50	68L7GT	0.45	8293	.
5154 :	0.35	$¢_{\text {bat }}$	0.21	6SN7GT	0.38	832.4	5.95
FULL	XP	P PRIC	LIST	Vall	Le	REg	

Head Office:
44a WESTBOURNE GROVE, LONDON, W.2.
Tel: PARK 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only) 85 TOTTENHAM COURT RD., LONDON W.2. Tel: LANgham 8403

WE WANT TO BUY:

23A/B; 2K25; 4C35-40/- paid subject to test. Please offer us your special valves and tubes surplus o requirements.

2N4285 pnp high reverse base-emitter voltage rating BVcbo, BVceo, BVebo all over 35 V . $\mathrm{fr}=7 \mathrm{MHz}$ minimum
hife 35 to 150 @ $\mathrm{Ic}=10 \mathrm{~mA}$. Vce (sat) 0.5 V .max. @ $10=$ $10 \mathrm{~mA}, \mathrm{Ib}=1 \mathrm{~mA}$.
2N4286 npn high gain hFE $=100 \mathrm{~min}$. (a) Ic $=10 \mu \mathrm{~A}, 150$ to 600 @ $\mathrm{cc}=1 \mathrm{~mA}$.
BV cbo over BVcbo over 30 V ., BVceo over $25 \mathrm{~V} ; \mathrm{f}_{\mathrm{T}}=280 \mathrm{MHz}$ typ @
2N4289 pnp high gain $\mathrm{hpe}=100 \mathrm{~min}$. @ Ic $=100 \mu \mathrm{~A}, 160 \mathrm{~min}$. $@$ typ @ Ic $=2 \mathrm{~mA}$. 2N4291 pnp large signalcbigh gan 40 V , BVceo over 30 V , Vce (sat) 1.5 V max. @ $\mathrm{Ic}=100 \mathrm{~mA}, \mathrm{Ib}=10 \mathrm{~mA}$.

2 N 4292 npn UHF, low noise. $\mathrm{fT}=570 \mathrm{MHz}$ typ Ic $=2 \mathrm{~mA}$, $\mathrm{Vce}=5 \mathrm{~V}$. hre $=50$ typ. Bucbo over 30 V ., BVceo over 15 V , N.F. 6 dB max. $@ I c=1 \mathrm{~mA}, f=100 \mathrm{mHz}$.

2N3794 npn large signal high gain (complementary to 2N4291). 100 mA .
All of the above are rated at 500 mA max. Ic, 200 mW max. @ $25^{\circ} \mathrm{C}$. Size $0.175 \times{ }^{\circ} \times 0.090$ POWER type on T066 size base, npn high gain. Collector isolated from mounting surface (500 V) insulation). Dissipates 14.3 W . max. @ $\mathrm{Tc}=100^{\circ} \mathrm{C}$ and $\mathrm{Vce}=10 \mathrm{~V}$. Vceo $($ max $)=$ $35 \mathrm{~V} .$, Ic $($ max. $)=3 \mathrm{~A}, \mathrm{Ib}($ max. $)=1 \mathrm{~A}, \mathrm{Ti}(\max)=.150^{\circ} \mathrm{C}$. $h_{\text {PE }}=100$ to $175 @$ Ic $=0.5 \mathrm{~A}$ (yellow selection). Vce (sat) $=1.2 \mathrm{~V}$. max. @ $\mathrm{Ic}-1 \mathrm{~A}, \mathrm{Ib}=50 \mathrm{~mA}$.
The seven types above are offered at the following low prices
2N4285 to 2N4292, 2N3794, 3/3 each; B5001 (ycllow) 13/6.
\star PEAK SOUNDS PRODUCTS
CIR-KIT No. 3 Pack, 12/6; adhesive copper strip, $5 \mathrm{ft} . \times$ in. or 1 in . 3
TRANSISTORISED STEREO AMPLIFIER AND PRE-AMP SAS-8

Complete kit of this very popular and 16 watts total outpur Power supply kit Cabinet,
15% DISCOUNT on whole order and post free when purchasing an SA8-8

- EXTRA VALUE IN SEMICONDUCTORS

 $20 \mathrm{~V}, \beta 240-900,2 / 9: \mathrm{BC} 167,50 \mathrm{~V}, \beta 125-500,2 / 6: \mathrm{BC} 168,20 \mathrm{~V}, \beta 125-$ $900,2 /:-\mathrm{BC1} 69,20 \mathrm{~V}, 8240-900,2 / 6$.
BC 109 and BCl
$\mathrm{BC109}$ and $\mathrm{BC1} 69$ are low noise types, $\mathrm{BC} 167, \mathrm{BC} 168$ and BC 169 are plastic. ${ }_{\text {Best }}$ value for High Pow
OVV., fT 25 MHz typ. E 1 . Field Effect: MPF105, gm 2 to $6 \mathrm{~mA} / \mathrm{V}, 8$:-. $2 \mathrm{~N} 3819,14 / 6$. VHF and fast switching: BSX20, fT $600 \mathrm{MHz}, 4 / 6$.
High gain : 2 N 3390, B400-1250, 6/-. Low Noise: $2 \mathrm{~N} 3707,4 / 6: 2 \mathrm{~N} 3391 \mathrm{~A}$ $250 \mathrm{MHz}, 1 \times 1.5 \times 2 \mathrm{~mm}$., $6 / 6$. Low cost: $2 \mathrm{~N} 2926,18 \mathrm{~V}, 120 \mathrm{MHz}$, 2/6 (our colour selection). Also: $2 \mathrm{~N} 3702,4 /-: 2 \mathrm{~N} 3703,3 / 9: 2 \mathrm{~N} 3704,4 /-$ 2N3705, 3/8: BFY50, 5/3.
GERMANIUM; many types in stock including
RF, VHF: NKT603F, 6 : NKT613F, $5 / 9$: NKT677F, 4/5. Low noise: $2 \mathrm{G} 308,6 / 9: 2 \mathrm{G} 309,79: \mathrm{NKT} 275,3 / 8$. Still running well: 2N1302, $2 \mathrm{~N} 1303,3$ 3:
High Power: NKT403, 14/10: 2N2147, 16/9: matching, 1/- pr. Comple-
 $150 \mathrm{~V} .160 \mathrm{~mA}, 2 /-: \mathrm{BY} 238,850 \mathrm{~V}, 500 \mathrm{~mA}, 3 / 11: 1 \mathrm{~N} 5054,800 \mathrm{~V}, 1 \mathrm{~A}$
 GERMANIUM DIODES: OA4
\star SUPER QUALITY NEW RESISTORS

$1 / 4 W$	4.7Ω	to $10 \mathrm{M} \Omega$		E 2	$1 / 9$
12 W	5%	4.7Ω	to $10 \mathrm{M} \Omega$	E 24	$13 / 6$
1 W	10%	4.7Ω	to $10 \mathrm{M} \Omega$	E 24	$2 / 2$
		$17 / 3$	$25 / 10$		

$1 / 6$ per 100 less in complete 100^{\prime} s of one ohmic value. 1 W type 4 d each
Please state values required. $500 \Omega, 1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega, 2.5 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$, $250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 2 \mathrm{M} \Omega, 2.5 \mathrm{M} \Omega, 5 \mathrm{M} \Omega, 10 \mathrm{M} \Omega$. Available in 100Ω to $10 \mathrm{M} \Omega$ lin., $5 \mathrm{k} \Omega$ to $5 \mathrm{M} \Omega \log$. $2 / 3$ each. Log stereo: $100 \mathrm{k} \Omega$, $250 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 2 \mathrm{M} \Omega, \mathrm{L} . \mathrm{S} ., 9 /$, D.P. sw. $12 / 6$. Ceramics: $100,220,470,1000,2200,4700 \mathrm{pF}, 500 \mathrm{~V} .5 \mathrm{~d}: 0.01,0.02,0.05 \mu \mathrm{~F} 50 \mathrm{~V} .3$
5 d. Electrolytics $: 5,10,25,50 \mu \mathrm{~F}, 10 \mathrm{~V} . ; 5,10 \mu \mathrm{~F}, 25 \mathrm{~V} ., 9 \mathrm{~d}: 100,200 \mu \mathrm{~F}$ Sd. Electrolytics: $5,10,25,50 \mu \mathrm{~F}, 10 \mathrm{~V} . ; 5,10 \mu \mathrm{~F}, 25 \mathrm{~V} .9 \mathrm{~d}: 100,20 \mu \mathrm{~F}$
$10 \mathrm{~V} . ; 25,5 \mu \mathrm{~F} 25 \mathrm{~V}, 1 / \mathrm{N}$
SUB-MIN C426 RANG $1.6 / 25,1 / 40,0.64 / 64,1 / 8$ each. $40 / 2.5,32 / 4,25 / 6.4,16 / 10,10 / 16$, $6.4 / 25,4 / 40,2.5 / 64,1 / 6$ each $500 / 2.5,400 / 4,320 / 2.5,320 / 6.4,250 / 4$,
 $80 / 25,64 / 4,64 / 10,50 / 6.4,50 / 125,50 / 46,40 / 16,32 / 10,32 / 40,32 / 64$, 25/25, $20 / 16,20 / 64,16 / 40,12.5 / 25,10 / 64,8 / 40,5 / 64,1 / 4$ each.
ALL GOODS BRAND NEW . NO SURPLUS FAST DELIVERY Discounts: 10% over $£ 3 ; 15 \%$ over $£ 10$. P. \& P. $1 /-, 3$ over $£ 1$. CATALOGUE: Send $1 /$-stamps-includes data on all types in stock and many equivalents.

ELECTROVALUE

6 MANSFIELD PLACE, ASCOT, BERKSHIRE

LONDON'S LOWEST PRICES!

FULLY DETAILED LISTS ON APPLICATION.

GEE LINP-AIR OPPOSTIE

 25 \& 53 TOTTENHAM CT ROAD LONDON W. 1.
 Open 9-6 p.m. Monday to Saturday inclusive
 Tel: 01-580 4534/7679
 Open Thursday until 7 p.m.

ALL POST ORDERS TO Dept. WW568 25 Tottenham Court Road, London, W. 1

SELECTOR DRIVE

cationn. Wisectrocalionn. Eliectro-
magnet and brama
tinath tuinth wheel.
wwitch waler and contactais are corupled to thin
sinit arrangeet to
be ail for to pulnex and ofl for
15 . An annullary
cintact is liny cmatact is hor-
mally on hut of
1 in every 25.

 SYNCHRONOUS CLOCK MOTORS

fespell for to remen
lutions per hemr 230% on yclex wese size approx dia. " DELAY ACTION TIME SWITCH

 Mains and Owtpul Trankiormer Liats available

SEE OPPOSTE

UNREPEATABLE BARGAINS:

efficiency Angh
Nitrople Perrite

 EMI COMBIHATIO
OUDSPEAKERS
$13!\times 8: \mathrm{in}$. Fllipt kal with
$3!$ in. dia. Twpeter. Imp.
8 ohma. Power liamulling
10 watte. Brantl new and
glaranteel. Likt priee
ea/ol-. LIND-UR PRICE:

59/6. P. \& P. $\overline{1} /(1)$
Pane 301 ain. TWEETEPS

Brabil new and gwarantent
Lint price e:3/15/-. L1ND-木ll
GODMIAIS SPEAKER BARGADE

AERIALS. TV/UHF/VHF/STEREO

NEW J-beal F.M. Aerial for steriv. Recolition, Aelement mitdoor hand 11 VHFis illun.). With Muat Clamin
CRESTA Romb teriat $1 \mathrm{kami} 1 / 11 / 111$
or black. 28/6.
VeEBAETER Table Tol VHF/UHF Tinalal Aerial. Chronte or grey. 78/6.
Yagal All Chamel Table Top Aerial, abctiel

 HEW MAJOR IO-slement BBEC aerial for Ioft or mutdior tixing. "
up to 24.
 EI EXPLORER. IR-elemint BIBGe serint. an Lluw 68/-
LOPT SIE
cutdenis thing. With armi amu brackel. $37 / 6$.

MODEL TTC. 1030. En,000 O.P.Y. D.C. Volt: $0.3,12$. tio. 120, 300,
 B, 30, 1:0, Hitho, 3,2000 . D.e. mid. nos.3nn. With prots and carrying tane. ONLY £l1/18/6. P^{P}. \&

STEREO HEADPHONES

 Fnfor 8lereo sound as you hare never heard it soft padded earphones. Aldjnstable headband. trupedance 8 ohnup per phone. Frequency range AKAI. A8E8S, 8 ohme, \&B/B/-1, COBAL E10

 Ready buitt for use with most ant
plitiers. 9 y . battery operatin
 LIND-AIR PRICE 7 gns.

\section*{| Mult iplex aliaytor for :lavive for $\quad \mathbf{~ 5 . 1 9 . 6}$ |
| :--- |}

MAGNAVOX-COLLARO: 363 TAPE DECKS

BARGAIN OFFER! FANTAVOX CASSETTE TAPE PLAYER

Specially designed to replay the well-known and popular Music:arnettes prerecorled tape cassette offering a wide choice of all types of music from pop to clasaical. U1i to 40 minutes of quality reproduction through built-in speaker simple off/play and volume controls. Fully transistoriset operating on 6 penlight batteriea. Modern compact atyling with carpleve socket and wrist atrap. Size $8 \frac{1}{4} \times 4 \frac{1}{4} \times 2 \mathrm{in}$. IIND-AIR PRICE £9/19/6. (Citr. Pkg. \& Ins. $5 /$.
 no mechancteal knowledge required. Build a no mechanleal knowledge required. Build a
Police Siren. Met ronome, Mose Code smplifler,
Elet Electronic Masaager, W/T Tranamitter, Radio Kadio, Electronic Music Kit. Completely saieRadio, Electronic Music Kit. Completely saiesimple atep ly atep instructions. ONLY 69/6.

EXTENSION

 TELEPHONESComplete with lead, automatic dial numbered $1-10$ and internal bell. Guaranteed perfect working order. Made by famons manufacturer to G.P.O. Specification

PP3 Eliminator, Play your pocket radio from che mains! Save fs. Complete component kit tances, smoothing condenser and instructions. Only 6/6 plus 1/- post, MINIATURE WAFER SWITCHES

WATERPROOF HEATING ELEMENT
26 yard length
temperat. Self-regulating
temperane control.

 (approx.) $3 / 6$ each, charger for two cells, $12 / 6$.
OIL THERMOSTAT, Teddington type, T.B.B. with capil lary tube and sensor adjustable by knob (not supplied) controis $\mathrm{h} . \mathrm{p}$. motor or up to 15 amp . resistive load, $9 / 6$.
5 PUSH $\mathrm{SW} T \mathrm{CH}$, one push operates mains on $/ \mathrm{oft}$ switch the other four, operate various on/off and change/over
switches, $2 / 6$. QUICK CUPPA Mini Immerrion Heater, 350 w wo minutes Vile any socket or or tes, baby's food, etc. 19/6, NO SOLDERING POCKET 3
Lots of fun to build and good
esults when finished, com pete kit with detailed in iece, batteries, crystal ear £5 value for only $19 / 6$.

MAINS MOTOR
recision made-as uned i record decks and tape re-
corlers-ideal alan for ex. corders-ideal alan for ex
tractor fan-blower, heater

INFRA-RED BINOCULARS

These infra-red bincculars when fed from a high voltage source will enable objects to be seen in the dark. provided
the objects are in the rays of an infra-red beann. Each eye tube contains a complete optical lens system as well as the for T.V. cameras-light cells, etc. (details supplied). The binoculars form part of the frmy night driving (Tabb equipment). They are unused and believed to be in goo working order but sold carr, and ins MAINS TRANSISTOR POWER PACK
Designed to operate transistor sets and ampliffers. Adjust-
able output 6 v., 9 v., 12 volts for up to 500 mA . (class working). Takes the place of any of the following batteries: maing transformer rectifier, smoothing and load resistor condensers and Instructions. Real snip at only 16/6,
plus $3 / 6$ FLOOD LAMP CONTROL
Our dim and full switch is ideal for controlling photo flood lamps; it gives two lamps in
series, two lamps full brilliance and lamps off. Similar control of other appliances can be arranged where used in pair or where circuit can be split exactly in half. Technically the switch is k nown as a double-pole change over with off. Our price 4/6.
Clock Motor, 230 v . 50 cps synchrowous-self stating Pentode Output Transtormer. Standard size. 40.1. $8 / 6$ equipment but o.K. $4 / 3$ each, $48 / \mathrm{l}$ - doz. Post paid. E.H.T. Condenser, 0.1 mid. $5 \mathrm{KY}, 8 / 6$ each.

Noon Maing Tester. $1 / 3$ each, $12 /-$ dor.
Power Pack Transiormer. 12 v. anp. 240 v. primary $\theta / 6$ each.
MAINS TRANSFORMER. L'pright mount ing with primary tapped $200,220,240 \mathrm{v} . \mathrm{H}, \mathrm{T}$, qecondary is $250.0-250 \mathrm{v}$. at
100 mA . and it hag two L 100 mA . and it has two L.T. secondaries of 6.3 Y . 1 f anp-
unused (removed from equipment). 15/- plus $3 / 6$ port and inused (re

When postage la not defnitely Atatel as an extra
then orders over $£ 3$ are post freo. Beluw $\& 3$ add $2 / 9$
then orders over $£ 3$ are post frer. Beluw $£ 3$ add $2 / 9$.
Semi-conductors add $1 /$-post. Semi-conductory add $1 /-$ post
S.A.E. with enquiries pleake.
N) LIMITED (Dept. W.W.), IO2/3 TAMWORTH RD., CROYDON, SURREY (OPP. W. Croydon Stn.)
alsc at 266 LONDON ROAD, CROYDON SURREY. S.A.E. WITH ENQUIRIES PLEASE

VALVES
 SAME DAY SERVICE NEW! TESTED! GUARANTEED!

READERS RADIO

85 Torquay Gardens, Redbridge, Ilford, Essex. ${ }_{741}^{01-550}$
Postage on 1 valve 9 d . extra. On 2 valves or more, postage 6 d . per valve extra. Any parcel Insured against Damage in Transit 6d. extra.

LOOK - TRANSISTORS 1/- EACH SILICON \star PLANAR \star N.P. N. \star P.N.P.

${ }_{2}{ }^{\text {N299 }}$	${ }_{2}^{28131}$	${ }^{2}$ N 696	${ }^{2 \times 2906}$
${ }_{\substack{28501 \\ 2 \mathrm{~N} 2411}}$	28812 ${ }_{28102}$		${ }_{2 \text { 2N743 }}$
${ }_{2 \text { 2N726 }}$	${ }_{28103}^{28102}$	${ }_{2}^{2 N 1507}$	${ }^{28731}$
${ }_{2 \text { 2N706 }}$	${ }_{2 S 104}$	2N1711	${ }_{28733}^{28131}$
2N706A	2N2220	2N1893	BFY10
2N3011	2N2483	2N2484	2N2194

ALL TESTED AND GUTARANTEED TRANBIBTORGPAMARKEJ. PAK range.

PRE-PACKS	
${ }_{\text {No. }}^{\text {No. }}$	6-Silicon rectifiera BY1
${ }_{\text {A }}$.	20-Mixed marked and tested trans
A1s.	2-Power Comp. Pair. AD1612 ${ }^{\text {a }}$.
A19.	5-Zener diodes inc. Book of Instructions
B1.	$50 \rightarrow$ Unmarked untested. trane., new
B_{2}.	4-Solar celle, inc. Book of Instructlons.
${ }^{\text {B3. }}$	4 -OA6 gold bonded, diodes Mullard
	7 -Matched set, OC44, 45/81D/81 + diode
в ¢ $^{\text {. }}$	$15-$ Red spot AF. trans. or white apot RF
в8.	2-Power trans. OC26/35 type
в9.	1-Light sensitive cell, ORP12 type
B10.	10-50V trans. germ. PNP latest type
B21.	2 -sil. recs. 10 smp ., $50-100$ PIV
B42.	$5-$ switching trans. TK22C sTC
${ }^{866 .}$	150-Germanium diodes, untested
c2.	1-Ini junction, 2 N 2160 or 2 N 2646
c4.	${ }_{2-R F}$ power trans., OC22 and BUY11
C31.	$4-$ sil. recs. 800 PIV $\frac{1}{\text { a amp }}$ top hat
C32.	
	70 mp .400 PIV SCR

First ever logic kits. Learn for yourbelf how com puters work, even m ke one for yourself. Full instructions L1 5 gna., L2 10 gns No need to purchase both kitg, you ca

SEMICONDUCTORS DISTRIBUTED

EXCITING NEW PAKS FOR AMATEURS, PROFESSIONALS, FACTORIES, ORGAN BUILDERS AND THOSE PEOPLE THAT JUST USE LARGE QUANTITIES OF TRANSISTORS.

ra pax Germanium PNP type translstors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72, 81, etc. PRICE E5 per 1000	XB PAE	
	Silicon TO-18 CAN type transistors	Silicon diodes ministure glass
	NPN/PNP mixed lots, with equiralents	finished black with polarity marke
	to 0c200-1, 2Ni 706 a , BSY95a, and	equivalents to 0.4200, OA202, BAY3
	PRICE $85 / 5 /$ - per 500	39, DK 10, etc.
	PRICE \&10 per 1000	

All the above untested packs have an average of 75% or more good aemiconductors. Frae packs suspended with these orders
THESE YERY POPULAR UNTESTED BRAND NEW TRANSISTOR PACKS ARE STILL AVAILABLE.

make a rev. counter for your car. the "tachobLock." This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter Into a pertectly linear and accurate
rev counter for any car. State 4 or 6 -cylinder rev counter for any car. state 4 or 6 -cylinder $20 /$ = each andmail.

No CONNECTION WITH ANY OTHER FIRM. MINIMUM ORDER $10 /$, CASH WITH ORDER PLEASE. Add $1 /$ - post and packing per order. OVERSEAS ADD EXTRA FOR

AMPLIFIERS

ALL SLIICON

 SEMICONDUCTORS*Designed to deliver full rated power to typical highquality loudspeaker loads.
*H.F. transistors with multiple feedback loops for controlled flat response from 15 Hz to 50 KHz .
*Low-noise preamplifier incorporated. 150 mV into 500 K Ohms for full rated output. (Typical).
Type 7/15. 7 Watts r.m.s. in 15 Ohms
£5 00
Type 10/8. 10 Watts r.m.s. in 8 Ohms

Type 20/4. 20 Watts in 2×8 Ohms in parallel, or 12 Watts in 8 Ohms
£8 0
(Ratings are continuous, with 36 Volt D.C. supply).
Terms C.W.O., or write for technical details to: DRUMCRAIG DEVELOPMENTS,
266 High Street, Dalbeattie, Kircudbrightshire.

PROBLEMS SOLVED

BY

NYLON SCREWS, NUTS. ETC.
THEY DO NOT WORK LOOSE • NOR CORRODE • NOR ARC NOR REQUIRE PLATING

SAMPLES ON REQUEST

GRICE \& YOUNG LTD.

PRECISION ENGINEERS
CHRISTCHURCH
HANTS
EST. 1933
Tel: 636.637. 616

WW-121 FOR FURTHER DETAILS
WW-122 FOR FURTHER DETAILS

Wilkinsons FOR RELAYS

 P.O. TYPE 3000 AND 600

 P.O. TYPE 3000 AND 600}
 BUILT TO YOUR REQUIREMENTS—QUICK DELIVERY COMPETITIVE PRICES-VARIOUS CONTACTS DUST COVERS—QUOTATIONS BY RETURN LARGE STOCKS OF MINIATURE SEALED RELAYS, DETAILED LIST ON REQUEST

LEDEX SOLENOID DRIVEN WAFER 8 WITCHE8. SIZE 5S. From 90/-. 11 Way and off, 3 to 24 Pole also 4 Pole 12 Way and 54 Pole on/off. Commutating PRE88URE TRAN8DUCER8 SE152A 20 Transformer 215
LINEAR TRAN8DUCER8 IT-1-4F 23. MINIATURE BUZZER8 (as illus.). 12 volt with tone adjuster, $7 / 6$.
HIGH NOTE BUZZER HIGH NOTE BUZZER8 24 v. A.C./D.C. with tone adjuster, 23 in . dia. Bakelite case,
10//. Post $2 /-$
8UBMINIATURE MICRO SWITCHES 8UBMINIATURE MICRO 8WITCHES
HONEYWELL 11SM1-TN13. SP.D.T. HONEYWELL 11SM1-TN13. S.P.D.T
Size. $781 \mathrm{in} \times .250 \mathrm{in} . \times .356 \mathrm{in}$., $6 / 6$ each
MICRO 8WITCH. Buryess MK4BR,
 MICRO 8WITCH. Burgess MK4BR, robust die cas casing, $8 / 6$ each. Post 9 d .

4 CE Non Lock $/ 4 \mathrm{C}$ C Non Lock,

4 C Non Lock/4 C Non Lock,
${ }_{2}$ C Non Lock/2 C Lock, 12/6.
4 C Lock/4C Lock, 17/6.
Stop/4 C Lock, 12/6.
Stop/8 C Lock 17/6.
Stop/8 Change over Muirhead, 17/6.
8 Change over Muirhead, $17 / 6$.
Stop/2 C Lock, $7 / 6$. One liole fixing Stop/4C Non Lock, 10/6. One hole fixing 2 C Lock/6 C Lock, 17/6. One hole fixing. RECTIFIER UNIT A.C. to D.C. Input $200 / 250$ v. A.C. Output 6 v. D.C. at 15 amps, full regulation. Meter, Fuses,
Westinghouse, $28 / 10 /$. Carr. $20 /-$.
BLOWER MOTOR8. 200/250 volt
Capacitor Type 2,800 r.p.m. CylinCapacitor Type 2,800 r.p.m. Cylindrical casing 7in. $\times 7$ in. $\times 7$ in. with open flange each
end, 210 . Larger size $\& 14$. Carr. $10 / 6$. ROOM THERM08TAT. Adjustable between 45 and 75 deg. Fahr., 250 v. 10 amp . A.C. Ideal for greenhouses, etc., $35 /-$. Post $2 / 6$.

TRANSISTOR8 DIODES SCR'S ZENNER8 VALVE8 \begin{tabular}{llll|llll}
ASZ 20 \& $7 /-$ \& $2 N 698$ \& $5 /-$ \& SX 68 \& $4 / 6$ \& OA10 \& $3 /-$

GET875 \& $5 / 6$ \& BZY 88 \& $3 /-$ \& SX 645 \& 15 \& 15 \& AA 91

$2 / 6$

GET875 \& $5 / 6$ \& BZY88 \& $3 /-$ \& SX645 \& $15 /-$ \& OA91 \& $2 / 6$

OC44 \& $3 / 6$ \& $2 N 1997$ \& $5 /-$ \& SXB41 \& $3 /-$ \& OAZ242 \& $4 / 6$

OC44 \& $3 / 6$ \& 2N1897 \& $5 /-$ \& SXB41 \& $3 /-$ \& OAZ242 $4 / 6$

OC45 \& $3 /-$ \& $2 N 1305$ \& $3 /-$ \& ZT42 \& 10/- VR525A-B6/-

OC4 \& $3 /-$ \& $2 N 1305$ \& $3 /-$ \& ZT 42 \& $10 /-$ \& VR525A-B6/-

OC71 \& $3 /-$ \& 2 N 1613 \& $4 /-$ \& ZT83 \& $11 / 6$ \& ECC 81 \& $4 /-$

OC200 \& $7 /-$ \& 2 N 1596 \& $29 /-$ \& 1 S131 \& $2 /-$ \& E88CC \& $12 /-$
\end{tabular}

 Small madietc countrs $3 \frac{1}{2} \times 1$ in., 10
counts, per second with 4 figures. Tlse following D.C voltages
available available, 6 v .
12 v, , 24 v .

MULTI-INDICATOR8 KGM Type M5 illuminated by 28 v . cartridge cap lamps, $50 /-$ each. Post $2 /$ PTANDARD RACK8 8 ft . U channel sides clrilled for 19 in . panels, heavy angle base $150 /-$, carriage $20 /$ LIGHT TYPE 51t. high, 25 .
JACK PLUG8. 2 Point, with screw-on cover, $2 / 6$, post 9 d PO 201 with cord, $3 /-$, post $1 / 6$. PLUG-IN RELAY8. Londex 4 change-over HD contacts 28 v. D.C. or 240 V. A.C. with base and cover, $35 /-$ each RATIO ARM UNIT8. Sullivan $600 \Omega+600 \Omega, 50 /-$ RE8I8TOR8, wire wound or carbon, potentiometers, condensers, quantities ex-stcock at low prices.
[. CILKIISON (CROYDON) LTD longly house longley rd. croydon surrey

METER8 GUARANTEED. Complete list available

Microamps $0 / 100$ 21in. MC 40 $\begin{array}{llll}\text { Mieroamps } & 0 / 500 & 2 \mathrm{in.} \mathrm{M.C.} 25 /-1 \\ \text { Microamps } & 0 / 500 & 21 \mathrm{in} \text { MiC } & 376\end{array}$
 $\begin{array}{lllll}\text { Milliamps } & 0 / 50 & 2 t \mathrm{in} . & \text { MC } & 35 /- \\ \text { Milliamps } & 0 / 500 & 31 \mathrm{in} . & \text { MC } & 54 /-\end{array}$

 Amps 0/5 2in. MC. Volts $0 / 20$ 2in. MC Volt 0/5 A.C. 31 in . MI $\mathrm{MI}_{85 / 2}^{37 / 6}$ Volts $0 / 10$ A.C. 31 in . MCR $70 /$ | Microamps $0 / 50$ scaled in Milli Rontgens 21 in . MC 45 |
| :--- |
| Millivolts $350 / 0 / 350$ |
| 5 | Millivolts $350 / 0 / 350$ (3.5/0/3.5) MilliA $2 t \mathrm{in}$. MC $35 /$

PORTABLE VOLTMETER8, $0 / 250$ Moving Iron A.C. D.C PORTABLE VOLTMETER8, $0 / 250$ Moving Iron A.C./D.C BOR. scale, in polished wood case, $87 / 10$ / FREOUENCY METER8, 0/3.A.C.ID.C. 3in., 35/-, p. 3/-FREQUENCY METER8. $45 / 55$ cycles per second CELLTESTIMG VOLTMETERS Ceather leather case with prods. 36/- each. Post $3 / \mathrm{\beta}$.
HOUR COUNTER8 9999.9. 230 volts A.C. 33 n , fush round, 85. DIAL THERMOMETER. 3in. with capil lary tube $70 / 160^{\circ}$ F., $35{ }^{3}$-, post $2 /-$. HAIR HYGROMETER. tin. round
 $10 \mathrm{kV}, 5 / \mathrm{F} ; .002 \mathrm{mf} 15 \mathrm{kV.} 9:,-02 \mathrm{mff} 10 \mathrm{kV}, 10 /$ $.025 \mathrm{mf} 2.5 \mathrm{kV}, 5 /-; .05 \mathrm{mf} 5 \mathrm{kV}, 0 /-\mathrm{i} 0.1 \mathrm{mf} 4 \mathrm{kV}, 9 /$ BLUE LINE Heavy Code AAI 13 with extras, also C1B Switches Naimer Code AAL213 with extras, also Click GRIDGE MEGGER 8ERIE8 1. With
leads 1,000 v., 0-100 megohms. Usual price f189. Our
price \&75. GEARED MOTORs, 3 r.p.m. or 1 r.p.m. \& watt Operated from 230 , Operated from
HIRROR GALVANOMETER8 BB 3000 . N.E.P.
Focal length 20 cm ., 218 .

Solve your communication problents with this new 4 -Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/ofi switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connerting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.

Same as 4 -Station Intercom for two-way instant con versation. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery $2 / 6$. P. \& P. $3 / 6$.

7-STATION INTERCOM

(I MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. $3 \mathbf{i n} \mathrm{in}$. Speakers. Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory. Price 27 gns. P. \& P. $12 / 6$ in U.K.

Why not increase efficiency of Office, Shop and Warchouse with this incredible be-Loxe Portable Iransistor TELEPHONE AMPLIFIER which enables you to take down long FIER which enables you to take down long
telephone messages or converse without tclephone messages or converse without
holding the handset. A useful office aid. A holding the handiset. A useful office aid. A must for every telephone user. Useful for
hard of hearing persons. On/off switch. Volume Control. Operates on one $9 \quad \vdots$ battery which lasts for months. Ready 10 operate. P. \& P. $2 / 6$ in U.K. Add $2 / 6$ for Battery. Full price refunded if returned in 7 days.

WEST LONDON DIRECT SUPPLIES (W.W.). I69 Kensington High Street, London. W. 8

TRANSISTOR STEREO $8+8$

A really first-class Hi-Fisteren Amplifer Kit. Usee 14 tranx istor giving 8 wattis push pull output per clamel (16 W . nonn),
integrated pre-anp. with lsass, Treble awi volume controles. Suitable for use with Ceranic or Crystal cartridges. Ont pual stare for any speakers from 3 to 15 oifus. Compact design, all parts aupplied including drilled tmetal work. Cir. Kit boaril.
attractive front panel killobs, yire, solder, nuts. bolts--no

 fication: Freq. response $\pm \$ 113,20 \cdot 20,000 \mathrm{c} / \mathrm{s}$. Bass boont
approx. to +12413 . Treble cat appros $10-16.18$. Negative
 .6 mmp .
PRICES:
 abinet (as illus.), $£ 2 / 10 /-1$. $\mathrm{P} .5 / \mathrm{f}$,
(Special Ofter- $£ 14 / 10 /-$, post free if sil abave
same time or buit and testel for $£ 18$ post free)
Circuit diagran, construction details ansl parts list (free with
kit) $1 / 6(\mathrm{~B} . \mathrm{A} . \mathrm{F}$.$) .$
HSL " FOUR" AMPLIFIER KIT 3-VALVE 4 WATT USING ECC83, ELR4, Ez80 VALVPR for
A.C. mains $200 / 240$ v. Heavy duty double-wound mains A.C. mains 2007240 , Heavy duty double-wound mains and volunte controls, giving fully variable boost and cut with minimun insertion loss, \& Heary hegative feedback loop over
2 gtages ensure high output at excellent quality with very low distortlon factor. \star suitable for use with gnitar, mierophone or record player.
or direct on chassis. Provision for remote mounting of controls or direct on chassig. \star All this builds on to a chassis nize unly
$T!$ in. wicle $× 4$ int deep. Overall height 4 in. \star All compunenths 7 in. Wicle $\Varangle 4$ in. deep. Overall height $4!\mathrm{in}$. A All compunents
and valvea are brand new. \star Very clear and concise instractions enable even the inexperienced anateur to construet with 100% success, * Bupplied complete with valves, output trans-
 Comprehensive circuit diagram, practical layont and parta fixt
2/6 (free with kit).

VIBRATORS
Non sync. 8/6; 8ync. 10/-. P. \& P. 1/6 per vibrator. S.A.E. with
S.T.C. SILICON AVALANCHE HALFWAVE RECTIFIERS

10/14 WATT HI-FI AMPLIFIER KIT

3-VALVE AUDIO AMPLIFIER MODEL HA34

Designerl for Hi-Fi reprosluction on
 Ruetai chansie, sive Guth

 3 hour speaker, separate bass, trehte back line. Output $4 \frac{1}{4}$ wath. Front panel can he tetackell all

BRAND NEW 3 OHM LOUDSPEAKERS

BRAND NEW 1vinu 15 w . H/D) Apeakers, 3 or 1 ñ olun.
 list urice at $89 / 6$.
SPECIAL OFRER: PLESSEY TYPE 29 TWIN TUNING GANG

HIGH GAIN 4-TRANSISTOR PRINTED CIRCUIT AMPLIFIER KIT Type TA1 - Peak output In excess of 1, watts. - All starylaril lerition

 FM/AM TUNER HEAD
Beantifully deaigned and precision enpineered ty lorruer and ondenker ior $\mathbf{A M}$ comenection. Prealiguel HM weetion wnver.

 ATCHED PAIR AM/FM IF.

4-SPEED RECORD PLAYER BARGAINS Maina modela. All brand naw in maker't orizinal packing.
LATEST B.S. Of12 Siagle Player with mono cart
07 Single Player with nuono Cart.
All plus Carriage and Packing bib
LATEST GARRARD MODELS
All types quailablet 1000, 2000, 3000, AT60, etc. Send S.A.E. for
latest barkain prices.
QUALITY RECORD PLAYER AMPLIFIER MK. II
 Separate bask, trelle and volume controis. Complete with nutpun

DE LUXE QUALITY PORTABLE
DE LUXE QUALITY PORTABL

E.M.I. $3 \frac{1}{2} \mathrm{in}$. HEAVY DUTY TWEETERS

HARVERSON SURPLUS CO. LTD. 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel: $01-5403985$
S.A.E. all enquiries. Open all day Soturday (Wednesday I p.m.)

Please note: P. \& P. charges quoted apPLY TOU.K. ONLY. P. \& P. ON OVERSEAS ORDERS
CHARGED EXTRA.

JOHN SMHTH LTD.
209 SPON LANE WEST BROIAWICH • STAFFS. TEL. $021-5532516$ (3 LINES) WOODS LANE-CRADLEY HEATH - WARLEY WORCS. TEL. CR 69283 (3 LINES)

SURPLUS SEMICONDUCTORS

Manufacturers Over-Runs and Surplus Devices at a Fraction of Manufacturing Cost. Weare QUANTITY DISPOSAL AGENTS for the Manufacturers and offer the Largest and Cheapest Range of Transistors, Diodes, etc. For use in Industry, Teaching, and Amateur Electronics.
HIGH QUALITY SILICON PLANAR DIODES. SUB-MINIATURE DO-7 Glass Type, suitable replacements for OA200. OA202, BAY 38, ISI30, I\$940. 200,000 to clear at $£ 4$ per 1.000 pieces. GUARANTEED 80% GOOD.
SUPERB QUALITY TESTED SILICON PLANAR DIODES (Surplus Gove project). $250 \mathrm{~mA} 150-200$ p.i.v. DO-7 sub-min glass. finished black eqve. OA202

MICRO-MINIATURE SILICONFAST-SWITCHING DIODES. Type IN9I4, QUALITY TESTED. 75 p.i.v. 75 mA . 100,000 available. 100 pieces, $£ 2$ IN914, QUALITY TESTED. 75 p.i.v. 75 m
500 pieces, $£ 7 / 10 /-; 1,000$ pieces, $\mathrm{E} 12 / 10 / \mathrm{c}$
GERM. GOLD BONDED DIODES. High quality subminiatures D0.7 Glass 80% good devices guaranteed. Substitutes for OA5, OA47. LG80H. CG90H -
VAST MIXED LOT OF SUBMINIATURE GLASS DIODES. COMPRISING OF SILICON GERM. POINT CONTACT AND GOLD BONDED TYPES PLUS SOME ZENERS: 500,000 available
pieces, $£ 13 / 10 /=10,000$ pieces $£ 23$.
BRAND NEW FULLY TESTED EPOXY CASE UNIJUNCTION TRAN SISTORS. Type similar to TIS43 and BEN3000 and replacement for 2N2646 Full date available. LOWEST PRICE AVAILABLE ANYWHERE. 100 off $4 /-$ each. £20; 500 off $3 / 6$ each $£ 87 / 10 /-: 1.000$ off $3 /-$ each $£ 150$. Sample devices $7 /$
each on request. TEXAS SILICON ALLOY TRANSISTORS.
25302 Eqvt. OC200 VeB40 Hfe 15.50
$2 \$ 303 \quad$ OC201 VcB25 Hfe 25.75
PR1CE
$1-49$ off $3 / 6$ each
$2 S 30$ OR̈ND 100 off $2 / 6$ each
ANTEED AND MARKED.
$5-99$ off 3/- each

GERM ALLOY AF TRANSISTORS PNP. Manufacturers fall out, ideal OC7I OC75 OC81 type from 2 G 300 Series untested, approximately 80% good. 500 off E7/10/-: 1,000 off, E12/10/-.
MIXED LOT OF TRANSISTORS ALL GERM. MAINLY PNP. AF/RF 50% good. Further 35% good for diodes, only 50,000 left out of $2,000,000$. Ridiculous price of E3. Per 1,000.
MIXED SILICON PLANER TRANSISTORS NPNTO-18 CASE. Transistors to fill a number of requirements like 2N706. 2N708, BSY27, BSY95A, etc. 500 off 55; 1,000 off $\mathbf{E 8 / 1 0 / -}$
Terms. CASH WITH ORDER, all goods sent by return. Please add $2 / 6$ cowards post and an official Order.

EXPORT ORDERS AND ENQUIRIES RECEIVE IMMEDIATE ACTION All correspondence, cheques, postal orders, etc, to:-

DIOTRAN SALES,
P.O. BOX 5, 63 HIGH STREET, WARE, HERTS. TEI.: WARE 3442

GUARANTEED SURPLUS ALL BY FAMOUS MAKERS

No. 1. Pri 240v. sec. 24 v . 12.5 amps. Conservatively No. 2. Prited table top connections. 89/6. Carr. 7/6 type table top connects, 47/6. Carr. 5/= No. 3. Pri 240 v . sec. tapped 53.655 .2 v . 10 amps . "C'" core terminal block connections, 75/Carr. 7/6.
No. 4. Pri 220-240v. sec. tapped $75-80 \mathrm{v} .2 .4 \mathrm{amps}$ and 6v. I amp. "C"" core. Table top connections 79/6. Carr. 7/6.
No. 5. Pri 200-250v. sec. rapped 8-15-25-28-30-33Tropically finished t5/19/6. Carr. 10/-
No. 6. Pri 240 v , sec. 50 v . 5 amps and $18-0-18 \mathrm{v}$.
No 7. Pri 200 Tropically finished, 65/-. Carr. 7/6.
No. 7. Pri 200-240v. sec. 30 v .5 amps . Fully enclosed
No. 8, Table top connections, 55/-. Carr. 5/-
No. 8. Pri 240v. sec. 45 V 25 mA and iv $\frac{1}{2}$ amp.
No. 9. Pri 240 v . sec. 22.3 v .0 .9 amp . and 21 v .60 mA .
No. 11. 230 v . sec. tapped 65130 v .85 mA and 6.3 v
No. 11. 230 v , sec. tapped 65 mpr . 85 mA and 6.3 v . amp . Tropically finished $\begin{array}{ll}5 \\ \text { T.T. connections. } 25 /-. & \text { P.P. } 5 /- \text {. }\end{array}$ No. 12. Pri 6.3 v . sec. 2 2-0-2v. 4 amps. 5000 v . wkg.
ported rype, $17 / 6$. P.P. $3 / 6$.

HEAVY DUTY L.T. TRANSFORMERS

 PRI 190, $210,230,250$ volts. Sec. 55 volts, 50 amps Size $10 \times 8 \times 8 \mathrm{in}$. $18 / 10 /$, ex warehouse. PRI 220-240 v. sec. 12 volts 90 amps. Flying leadBRAND NEWTWICKENHAMHEAVY DUTY L.T. TRANSFORMERS

PRI rapped $110-220-235-255$ volts. Sec. No. 1,55 volts, 24 amps. Sec. No. 2, 14 voles 10 amps . Sec. No. 3, 60 volts, 2 amps. All winding very conservatively rated. 19 . Wropically finished. $7 \frac{1}{4}$ D. 7 in ., weight 65 lbs . Fraction of
Size maker's price. $99 / 19 / 6$, Carr. $15 / \mathrm{H}$. Brand new L.T maker's pr
Smoothing.

TWICKENHAM HEAVY

DUTY L.T. SMOOTHING CHOKES 6 MH 24 amps conservatively rated 0.2 hm , tropicall finished. Terminal block connection, $75 /=$. P. P. $7 / 6$.

PARMEKO HT TRANSFORMERS

Pri 230 v . sec. 920 v . CT 100 mA 6.3v. 8 amp
$5 \mathrm{v} .6 \mathrm{amps}, 5 \mathrm{mps} 2 \mathrm{~m}, 75$-. Carr. $10 /$-.

Samson's Electronics Lttd.

9 \& 10 CHAPEL ST., LONDON, N.W. 1 Tel. PAD 7851
 AMB 5125

	BRAND NEW AMERICAN BLOCK CAPACITORS		
Med.	D.C. wkg.	Price	Carr.
8	1000 v .	15/-	3/6
8	600 v .	10/6	3/-
8	500 v .	$7 / 6$	3/-
7	600 v .	7/6	3/-
1	600 v .	3/6	1/6

A.C. SYNCHRONOUS MOTORS 220 volts 50 cycles 6 r.p.m. ideal for display purposes. Weight
P.P. $2 / 6$.

A.C. SYNCHRONOUS

A.C. 200-240 v. 50 cycles 40 r.p.m. Very powerful Size $2 \frac{1}{2} \times 2 \frac{1}{2} \times$ lin. Easily adapted to oscillate up to half a revolution. $15 /-$. P.P. $2 / 6$.

TEDDINGTON AIR PRESSURE SWITCHES Type $T 8 / A / A 3$. Single pole change over 15 amp 50 A. 3in. dia. $17 / 6$. P.P. $3 / 6$.

BRAND NEW 3000 TYPE RELAYS

 75Ω ICO IB, IM, 100 , I CO. IM. 500Ω ICO. IM 5000Ω ICO. IM. All one price 6/- each. P.P. $2 /=$BRAND NEW W.D. TELEPHONE CABLE Single D3. $\frac{1}{3}$ of a mile drums, ideal for outside telephone systems, fraction of maker's price. 50/ Carr. $7 / 6$.

AUTO TRANSFORMERS
$240 \mathrm{v} .-110 \mathrm{v}$. Completely Shrouded fitted with 2 Two pin American Sockets or terminal blocks. Please state which type required.
Wattage
$1000 . .$. .
e6 12
$\begin{array}{ll} & \text { Carr } \\ 6 & 7 / 6 \\ 0 & 6 / 6 \\ 6 & 6 /- \\ 0 & 5 / 1 \\ 6 & 4 / 6\end{array}$
$80 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
2,250 watt completely enclosed in beautifully meta case fitted with two 2-pin American sockets, neon indicator, on/off switch, and carry handle. t16/10/

Variable d.c. supply units type se. 4
$0-48$ volts, 10 amps. continuous from 240 V . A.C. Silicon full wave bridge rectification, Lsolated transformer with Variac
controlled prinary 3 inch scale roltmeter and ammeter controlled prinary 3 inch acale voltmeter and ammeter. Neon
indicator. \quad Housed in strong metal case. 8 size $17 \times 7 \times 6 \times 1 \mathrm{in}$. indicator. Housed in
£29/10 $/$. Carr. 15%.

L.T. SUPPLY UNITS TYPE 8.E.5.
 A.C. input $220-240$ v. D.C. Output 12 or 24 v. 10 amps . con-解 Size $17 \times 7 \times 6$ in. $\mathrm{f} 14 / 10 / \mathrm{H}$. Cars. $1 \overline{\mathrm{w}} /$. in strong metal case

ADVANCE COMPONERTS LTD.

 200-210-230-245. Outpht 22.1 .20 at al $55^{\circ} \mathrm{C}$, atabilised withi Ripple lese than $1.5{ }^{\circ} \mathrm{o}$ R.M.A. of total output. Supplied brand

STEEL CABINETS

Designed to house racket count down equipnient. size H. 5ft. Sin 2th. 2in. D. Zft. Zin. Full length hinged doors back and one wide. Threequarter Jength dokr in front. Abbestos lined inside.

SPECIAL OFFER OF BLOCK CAPACITORS BRAND NEW IN MAKER'S CARTON G.E.C. 8 mfd . 600 v . D.C. wkg. at $71^{\circ} \mathrm{C}$. Six for $29 / 6$ Carr. 7/6. S.T.C. 5mid. 400 v . A.C. wkg., three for 22/6. Carr. $7 / 6$. Aerovox 1 mfd . 600 v . D. .C. wkg six for 12/6. P.P. 4/6. T.M.C. 2 mfd . 100 v . D.C. wkg., six for 7/6. P.P. 4/6.

WATER TANK

THERMOSTATS
Sunvic Type TQP. $70-190^{\circ} \mathrm{F}$
250 y A C
250v. A.C. $15 A N C 5 A$. No.
D.C. max., 29/6. P.P. $4 / 6$.

ILIFFE BOOKS

THE TAPE RECORDER

Second Edition

by C. G. NIJSEN

This book has been specially written in clear, simple nontechnical language for the rapidly growing band of enthusiasts for whom the tape recorder is as indispensable as a radio, a record player or a camera. It shows how the best possible results can be obtained from a recorder, whether it is used for pleasure or education purposes.

In this second edition a chapter on cassette recorders has been added explaining the principles and the advantages of this system for the user who above all wants " simplicity of operation."
Because of its practical approach, this book, by an author with many years of experience in all branches of sound recording, will be easily understood even by those new to the subject, and will assist all those reading it to improve the standard of their recording.
172 pp., illustrated, 18s. net, 18s. Ild. by post.
obtainable from leading booksellers
ILIFFE BOOKS LTD.
42, RUSSELL SQUARE, LONDON, W.C.I.
 7-14 DAYS
We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89.
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT

Jordan-Watts Loudspeakers - The roice of high fidelity

COSMOCORD	
TEST EQUIPMENT	
Scoop purchase enables us to offer these at $\frac{1}{2}$ NORMAL PRICE	
$\text { I.D. } 1100$	' g ' meter (0 - 1000 ' g ') List Price $£ 30$. OUR PRICE $£ 15$. ea.
I.D. 1102	Bearing Analyser with overload cut-out. List Price $\mathrm{E3}$ I. OUR PRICE $£ 15.10$ s. ea.
I.D. 1104	' g ' meter with overload cut-out. List Price $£ 40$. OUR PRICE $£ 20$. ea.
I.D. I200E	Pocket oscilloscope educational (12 volt). List Price $£ 25$. OUR PRICE $\mathbf{E l 2}$. 10 s. ea.
I.D. $1200 / \mathrm{C}$	Pocket oscilloscope commercial (6 volt). List Price $£ 25$. OUR PRICE $\mathbf{f} 12.10$ s. ea.
I.D. 1203	A.C. Millivolt meter (12 volt). List Price 630 . OUR PRICE $£ 15$. ea.
Full details on above items sent on application please enclose S. A.E.	
SOUTH SUPPLIES (Electrical) LTD., 72, BOROUGH HIGH STREET, LONDON, S.E. 1 and at 90, HIGH STREET, EDGWARE, MIDDLESEX	

COSMOCORD TEST EQUIPMENT

Scoop purchase enables us to offer these at $\frac{1}{2}$ NORMAL PRICE
I.D. I 100 ' g ' meter ($0-1000$ ' g ') List Price $£ 30$. OUR PRICE £15. ea. cut-out.
List Price $£ 31$. OUR PRICE $£ 15.10$ s. ea.

THE NEW SOUND

 fromWYE ELECTRONICS LIMITED STEREO 500 HI-FI SYSTEM

MATCHED UNIT SYSTEM HOUSED IN DELUXE VENEERED TEAK CABINETS

AMPLIFIER
Fully transistorised 10 watts R.M.S. per channel for $1 \frac{1}{2} \%$ total harmonic distortion at l kHz into 4 ohms. Input: 50 mV into IM . Frequency response $\pm 3 \mathrm{~dB}, 40 \mathrm{~Hz}-30 \mathrm{kHz}$. Tone controls: Bass, $+8 \mathrm{~dB},-12 \mathrm{~dB}$ at 12 kHz . In case for free standing use. Price: $\{30 / 9 /-$.

TURNTABLE AND PICKUP

SP. 25 player unit mounted on plinth of same width as amplifier. Cueing device and side thrust compensator included. Head shell fitted with Sonotone 9TA high quality ceramic cartridge. Optional transparent dust cover for plinth unit. Price: £22/12/10 (Dust cover $\mathbf{£ 3 / 1 5 / 9}$ extra).

LOUDSPEAKERS

Pair of totally enclosed systems measuring $13 \frac{1}{4} x$ $8 \frac{1}{2} \times 8 \frac{1}{2} \mathrm{in}$. Each speaker incorporates $6 \frac{1}{2} \mathrm{in}$, high flux bass unit specially designed for this enclosure with matching $3 \frac{3}{8} \mathrm{in}$. tweeter. Teak finish matches plinth and amplifier. Price: $£ 27 / 15 / 3$.

WYE ELECTRONICS LIMITED

Queen Street North, Whittington Noor, Chesterfield, Derbyshire Tel. Chesterfield 51116

Please send me your illustrated leaflet.
Name
Address \qquad

FAN-COOLED LOADING RESISTOR

Immediate delivery on all J.J. instrumentswhy wait for quality that cannot match ours?

decade capacitance box
All J.J. instruments are always immediately available from stock. And every J.J. instrument is made to the highest British standards of reliability and design. Prices are very competitive, too.
The range includes Laboratory Capacitators, Potentiometer Bridges, Volt Ratio Boxes, Galvanometers, Eddy Current Dynamometers, Decade Resistors and Inductors, and Power Loading Resistors. Please write for descriptive literature to the manufacturers.

J.J. LLOYD INSTRMMENS LTD.
 Brook Avenue, Warsash, Southampton Tel: Locks Heath 84221

M.S.E. FOR QUALITY COMPONENTS AT COMPETITIVE PRICES . . . ALL GOODS NEW \& UNUSED

PLESSEY "MULTIWAY" CONNECTORS

 80-WAY PLUG \& SOCKET. For Teleprinter \& V.F. Rooms-Railway Signalling Systems-Television Equipment-Radio \& Radar assembliesTelephone \& Line Equipment.PLUG. Pt. No. $2 C Z 108605$. S.R.D.E. No.: YA 11030.
SOCKET. Pt. No: 2 CZ 108602 S.RD.E N. YA 11035. SOCKET. Pt. No: 2 CZ108602. S.R.D.E. No.: YA 11035. Contacts Silver-Plated. Spigozting ensures that connections cannot be
reversed.

WORKING DATA:

Flash Test Voltage: 1,500 Volts D.C.
Working Voletage: 250 Volts D.C. or 180 Volts A.C. Insulation Resistance: 100 megohms at 500 Volts D.C.
Current carrying capacity: Up to 2 amps. Contact resistance: Less than 1 milliohm. Temperature range: $40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

$$
\text { PRICE PER PAIR: } 150^{\prime}=\quad \text { Post free. }
$$

Plugs can be supplied separately at $100 /$ - each. No spare Sockets available. Both units supplied complete with high grade Polythene protective caps.
PLUG dimensions: Length 4.120in. Depth 2.740in.
Special quotations for quantities of 10 pairs and over. For multicore cable to S.R.D.E. spec. TS/834A and can also accept smaller multicore and unicore cables.
Miscellaneous PLESSEY Components:-
$508 / 1 / 00$ I II 26 -way Socker assy. Series $220,5 / 6$ d
508/1/08808 Plug 2-way G.P.O. Type 51, 10/-doz. plus 1/6 P. \& P.
CANNON CONNECTORS
RSK-19-31SL. 19-pole Socket, wall mounting receptacle 25/- each RFK-37-22C-7". 37-pole Straight Plug with pin inserts, 45/- each RLK-A50-22C-1*. 50-pole Straight Plug with pin inserts, 55/- each GK-S3-2IC-1/2. 3-pole Straighe Plug with Socket inserts, 20/- each M.S.3106E-16-11.S. 2-pole free plug socket inserts $\}$ 22/6 pair M.S.3102.E-16-1I.P. 2-pole fix receptacle pininserts $\int \underset{\text { post free. }}{\text { por }}$
PAINTON CONNECTORS, "Multicon" series
31118624 -way Plug with Panel Mounting flange? $15 / 6$ pair plus $3 \mid 1463$ 24-way Socket End entry cover $\quad 1 / 6$ post \& pkg. $\left.\begin{array}{l}310070 \\ 311525 \\ \text { 12-way Plug Top entry cover } \\ 31\end{array}\right\} \quad 8 / 6$ pair plus Mounting Flange $\quad \int 1 / 6$ post \& pkg. We also hold stocks of HEAVY DUTY MULTICONS \& STANDARD SERIES Connectors
MANUFACTURERS . . . Any surplus to requirement or Redundant STOCKS? WE PAY TOP PRICES. Kindly forward Tenders or Lises.

PAINTON BOURNS "TRIMPOT" SUBMIN.
IATURE ADJUSTABLE POTENTIOMETERS. TYPE 224-1 watt.
22 turn screw-driver adjustment-completely sealed and meets specification to MIL-STD-202A and MIL-E-5272A. Operating temperature 65 C to $175 \mathrm{C} . \mathrm{W}_{\mathrm{t}} .0 .1 \mathrm{oz}$
224S-1-101. Solder Lugs 100 ohms. $15 / 6$ each.
224 S-l-101. Solder Lugs 100 ohms. $15 / 6$ each.
$224 S-1-503$. Solder Lugs 50 K ohms. $20 /$ each.
224L-1-101. Flying Leads 100 ohms. $15 / 6$ each
224P-1-102. Printed Circuit pins. I Kohms. $15 / 6$ each. 224P-1-203, Printed Circuit pins. 20 Kohms. $17 / 6$ each. 224P-I-503. Printed Circuit pins. 50 Kohms. 20/- each. All Post Free.
M.E.C. "MECPOT" MINIATURE TRIMMING POTENTIOMETERS.
Flat mounting type. I watt. 45 turn screw-driver adjustment. One piece Aluminium anodised case. Operating temperature 537 L Flying to
500 ohms-। Kohms- 2 Kohms- 5 Kohms- 10 Kohms. Al at $16 /$ each. Post free.
037S. Solder Lug type. 50 Kohms. 20/- each. Post free. 040. Printed circuit pins, plastic case. 20 ohms. 16/- each Post free.
062L. Dual type with flying leads. 200 ohms/5 Kohms. 30/- each. Post free.

Also available:-PLESSEY Miniature qualification approved POTENTIOMETERS
Type "G" Mk. 2. Qualification approved to RCL 122 B Mk. 5a. Qualification approved to DEF 5122.
Types MHI and MH2. All available from 1.5 Kohms to 1 megohm. Please send for details for the above items. WELWYN subminiature Potentiometers. Type P. 31 only in 100 Kohms. 2/6 each
ANCILLARY DEVELOPMENTS. Pre-set wire wound Resistor- 250 ohms I watt. 5/- each.
ands, x 时

BURNDY "BANTAM"
BURNDY "BANTAM" CIRCULAR BAYONET
COUPLING TRI-LOCK CONNECTORS.
Meets specification to MIL-C-0026482A.
BTO2E-14-19P. 19-pole Wall mounting receptacle Pin TOEE
BTO6EC-14-19S. 19-pole Free straight plug, socket PRICE 32/6 pair.

DISTRIBUTION PANELS

from
OLSON
COMPLETE WITH FIXING BRACKETS AND 4 PLASTIC FEET, GFT. CABLE 13A. PLUG AND SPARE FUSE

OLSON ELECTRONICS LTD.

5-7 LONG STREET
LONDON, E.2. TEL: 01-739 2343
SPECIALS TO ORDER

Super-Electronics Ltd.

5 Violet Hill
London, N.W. 8
Tel. Maida Vale 828I

RECEIVERS

EDDYSTONE 77 O.U. $/ 2$, AM/FM. $150-500 \mathrm{Mc} / \mathrm{s}$. 6 Bands. As new. $£ 100$.
EDDYSTONE 770.R/1. AM/FM, $19-165 \mathrm{Mc} / \mathrm{s}$. 6 Bands. $£ 80$. A.R. 88 L.F. £30. A.R. 88D. £45. EDDYSTONE 840 A. £35. R.D.D RECEIVER with 2 Tuning Units $30-300 \mathrm{Mc} / \mathrm{s}, 600-1,000$ Mc/s. £50.
PANORAMIC ADAPTOR. Model RCX. Input Freq. 450-475 Kc/s. £30.
R.209's. As new. 12 volt. $1-20 \mathrm{Mc} / \mathrm{s}$. 4 Bands. Internal Speaker. Complete with headset and spare valve kit. £15. MARCONI B. 29 $15-260 \mathrm{Kc} / \mathrm{s}$. 4 Bands $£ 6 / 10 /-$
CR.300. $15 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$. $250 \mathrm{v} . \mathrm{H} . \mathrm{T}, 24 \mathrm{v}$. Heaters. Require power unit, £12.
R. 52 and Transmitter. £25. R107. Good selection £15. PCR RECEIVERS. L.M.S. Wave, £8. Large selection inoperative 19, 22 and 31 Sets.
AERIALS \& MASTS. Various sizes up to 3 in . diameter and 50 ft . complete with guys and pegs.
WAVEMETERS. Standard Telephone R.502, complete with charts. $100 \mathrm{Kc} / \mathrm{s}-480 \mathrm{Mc} / \mathrm{s}$. covered by 9 plug-in coils. $£ 10$.
MARCONI "Q"METER. Type TF.329G, New boxed with manual, $£ 70$.
VALVE MILLIVOLTMETER. Type VM. 6351 by B.P.L. £12. AVO ELECTRONIC TESTMETER. $0-250 \mathrm{v}$. A.C. $/ D . C .10 \mu \mathrm{~A}-$ 1 Amp. A.C. $/ \mathrm{D} . \mathrm{C} .50 \mu \mathrm{~W}-5$ watts. $£ 20$.
PHILIPS VALVE VOLTMETER. Types GM. 6010 and GM. 6014 and others. From $£ 13$.
PROCESS TIMERS by Chamberlain \& Hookham, \&3.
TRANSMITTER. By G.E.C. 75a. AM/FM. Frequency 277.1 $\mathrm{Mc} / \mathrm{s}-282.8 \mathrm{Mc} / \mathrm{s}$. 10 Channel. Mains Power Unit, as new, £9. Receiver to match, £9.
GALLENKAMP LABORATORY CENTRIFUGES, £18.
GALLENKAMP LAB OVENS. Various. VACUUM OVENS. complete with Edwards IS 50 Pump, internal size 2 ft . 3in. \times 18ins. diam
EDWARDS OIL DIFFUSION PUMPS. 1 in . and 2 in .
OSCILLOSCOPES. Cossor 1035 and 1049 Mk. III, Philips, Furzehill, Solartron, Nagard.

SHOP: 38, MEADOW LANE, LEE
Tel. : 26026
WORKS: TROY ROAD, MORLEY Tel.: 2334

A.C. SOLENOID TYPE SCM
 Continuous Rating 3oz. at $\frac{1}{2}$ in Instantaneous up to $2 / b$.

Larger sizes available-also transformers to 8 kVA 3-phase

KNAPPS LANE. CLAY HILL. BRISTOL 5. TELEPHONE 65-7228,9

TRANSFORMERS

COILS

CHOKES

LARGE OR SMALL QUANTITIES

SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC
vacuum impregnation to approved standards
ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC
123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01.653 .2261 CR4.8LZ

COLOMOR (ELECTRONICS) LTD.
170 Goldhawk Rd., London, W.I2.
Tel. (OI) 7430899
 riage 30/-.

MARCONI SIGNAL GENERA TOR TYPE TF 144G. $85 \mathrm{kc} / \mathrm{s} .-25 \mathrm{Mc} / \mathrm{s}$ Excellent laboratory tested condition, with all necessary accessories with in-
struction manual, $£ 45$. P. \& P. $15 /-$

SIGNAL GENERATOR PORTABLE TS 13/AP, with self-conrained wavemeter and power monitor. Freq
$9305-9445 \mathrm{Mc} / \mathrm{s}$ Peak power C W pulsed $50 \mu \mathrm{~W}$ per $\frac{1}{2}$ F.S.D. Pulsing $1-2 \mu \mathrm{sec}$. wide, delay $5,200, \mu \mathrm{sec}$. PRR $350-4,000 \mathrm{c} / \mathrm{s}$. $£ 50$. P. \& P. 20/-

BC 221 FREQUENCY METERS $125-20,000 \mathrm{kc} / \mathrm{s}$. Accuracy 0.01% Complete with individual Calibration book. In brand new condition with headphones P. \& P. 20/-. Mains P.S.U. for above, $£ 11 / 10 /$ - Carriage $5 /$ Stabilised PSU for above $£ 16$ Carriage $5 /-$.

TEST SET TS I2AP STANDING WAVE INDICATOR EQUIPWAVE. Used for testing 3 cm . cir-
MENT. cuit components. Should be used with a suitable signal source such as above described TS 13 Signal Generator
$£ 25$. P. \& P. $10 /-$.

MARCONI VIDEO OSCILLATOR TF 885A Sine wave output $25 \mathrm{c} / \mathrm{s}$ $\begin{array}{ll} \\ 50 & 5 \mathrm{Mc} / \mathrm{s} \text { in } 2 \text { bands, Square wave output } \\ 50 \mathrm{c} \text { to } 150 \mathrm{c} / \mathrm{s} \text { in } 2 \text { bands. Freq accur }\end{array}$ $+2 \%+2 \mathrm{c} / \mathrm{s}$. Power supply $100 / 125$

MARCONI SIGNAL GENERATOR TF 801/A/I. $10-300 \mathrm{Mc} / \mathrm{s}$. in 4 bands. Internal at $400 \mathrm{c} / \mathrm{s}$. kc / s.
External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$. Output $0-100 \mathrm{db}$ below 200 mV from 75 ohms source. $£ 85$. P. \& P. 20/-, including necessary connectors, plugs, and in struction manual.
R.F. METERS. 300 mA . 2 in . clip fix 19/-. $300 \mathrm{~mA} .2 \frac{1}{2}$ in. flush. 27/6

SIGNAL GENERATOR TYPE TS 418. Signal frequency $400-1,000 \mathrm{Mc} / \mathrm{s}$ (XI or X10) pulse delay variable less than $3 \mu \mathrm{sec}$. to more than $300, \mu \mathrm{sec}$ Pulse width variable less than $/ \mu \mathrm{sec}$. to more than $10 \mu \mathrm{sec}$. Polarity-internal or external sources, positive or nega-
tive pulses. AM \& CW. Output tive pulses. AM \& CW. Output attenuator $0.2 \mu \mathrm{~V}$ to 200 mV continuously variable. In fully tested condition
€150. Carriage paid.

ENGLISH ELECTRIC INSULATION TESTER. IOkV D.C. with built in ionisation amplifier. $£ 35$ Variable Condenser 200pF., 1,000 y. 12/6. P. \& P. 5/-
U.H.F. SIGNAL GENERATOR 110A. MADE BY R.C.A. Output irequency 370 to $560 \mathrm{Mc} / \mathrm{s}$. Output voltages $1 \mu \mathrm{v}$. to 90 mv . Directly calibrated in megacycles ($.5 \%$ accuracy) 400 cycles internal modulation, exbe applied by means of the input cable supplied with the instrument. Power supply 105/125 v. In excellent condition and guaranteed £42/10/-. Carriage 30/.

PRECISION VHF FREQUENCY METER TYPE 183. 20-300 Mc/s with accuracy 0.03% and $300-1,000 \mathrm{Me} / \mathrm{s}$ with accuracy 0.3%. Additional band on harmonics $5.0-6.25 \mathrm{Mc} / \mathrm{s}$ with acalibrating quartz $100 \mathrm{kc} / \mathrm{s}+-5 \times$ $10^{5} 120 / 220$ v. A.C. mains. 685. Carriage $£ 2$.

HASE MONITOR ME-63/U. Manufactured recently by Control Electronics Inc. Measures directly and displays on a panel meter the phase angle signals within the range from 20 signals within the range from $20-$
20,000 c.p.s. to an accuracy of $+1.0^{\circ}$. nput signals can be sinusoidal or noninusoidal between 2 and 30 v . peak. In excellent condition together with handbook and necessary connector. $£ 45$. Carriage 30/
V.H.F. CIRCUIT MAGNIFICA-

TION METER TYPE TF 886A. Apart from directly reading Q in the range $15-170 \mathrm{mc} / \mathrm{s}$ (in 4 bands) this instrument may be used for indirectly neasuring induction of coils, phase defects of capacitors, dielectric losses, etc. by resonance methods. Magnifica-
tion ranges $6-180 ; 150-450$; $400-1,200$. Test Circuit Capacitor 12 to 85 pF calibrated in IpF divisions, with additional interpolating dial. Power supply 200 to 250 v. and 100 to 150 v. 695 . Carriage 30/-.

NOISE GENERATOR MARCONI TYPE TF IIO6. The TF 1106 provides tandard noise outputs for determining at any frequency from 1 to $200 \mathrm{mc} / \mathrm{s}$. It is calibrated directly in noise factor, making measurements a routine operation. Noise output calibration 0-30 in four ranges. Accuracy $\pm 0.5 \mathrm{~dB}$. Frequency range $1-200 \mathrm{mc} / \mathrm{s}$. Output ply $100-125$ v. or $200-250 \mathrm{v}$. E55.

AVO VALVE TESTER, with instruction book, $\mathbf{4 5}$. Carriage 30/-

AIRMEC FREQUENCY STAND. ARD METER TYPE 761. 10c, 100c, lokc, 100 kc , IMc. $\mathbf{t 8 0}$. Carriage $30 /-$ SLATKON CD C13 riage 40/1049. E45. Carriage $30 /-$

As above but Type 885a/1, $0-12 \mathrm{mc} / \mathrm{s}$ in 3 bands. E85. Carriage 40/-

END OF RANGE ITEMS Offered at specia! low prices as only few left, all are in fully tested guarVALVE VOLTMETER TS 428B/I. E10/10/-. P. \& P. 5/-

Valves

$\begin{array}{lr}{ }^{\text {PL36 }} & 19 / 9 \\ \text { PLa3 } & 18 / 3\end{array}$

	00000000000000000000000000\%	
Ot		\%

AK8	$6 / 5$
AL5	$3 /-$
AL5W	$7 /-$
AM5	$2 / 6$
AM6	$8 /-$
AQ5	$5 / 6$
AQ5	$9 /-$
AB6	$6 /-$
AS7G	$14 /-$
AT6	$4 / 6$
AC6	$6 / 9$
AX4	$8 /-$
B7	$5 / 6$
B4G	$16 /-$
B8G	$2 / 6$
BA6	$4 / 6$
BA7	$12 / 6$
BE6	$5 / 8$
BJ6	$8 / 6$
BJ7	$7 /-$
BQ7A	$4 /-$
BR7	$9 /-$

the valve with guarantee

0000x

-

P. C. RADIO LTD.
170, GOLDHAWK RD., W. 12

01-7434946

BARGAINS FROM

TRS LOUDSPEAKER ENCLOSURE

Owing to demand for our previously advertised $\{4 / 15 /$ loudspeaker enclosure, it is now offered as an even better fine professional looking enclosure. All wood accuratel machined. State if cut-out hole for 1Oin., or 8 in . unit is required. Hole for tweeter included. Now (Part P. \& P. 7/6)
COMPREHENSIVE RANGE OF SPEAKERS BY W.B., GOODMANS, ETC.

TRS MULLARD AMPLIFIERS STEREO 10-10
 Valve amplifier to exact Mullard spec. With pre3 and 15Ω, all controls, H.T. and L.T. outlet, mono, stereo and speaker phase switching Complete with escutcheon, knobs, plugs, etc. Ready built. (P. \& P. 12/6) £21.0.0 Kit
 (P. \& P. 12/6) £17.10.0 $2+2$ VALVE Pre-amp/Contro! Unit. Ready Built, 13 gns. (P. \& P. Unit
 3-3 MONO
 3 valve, 3 W amplifier with controls absolutely complete kit includin
 panel, knobs, etc (P. \& P. $7 / 6$)
 £7.12.6
 5-10 MONO
 5 valve, loW basic amplifier kit (P. \& P. 7/6). £9.19.6 with passive control network and panel $£ 11 / 19 / 6$. 2 valve pre-amp

GARRARD UNITS \& PLINTHS

See latest TRS list
LM3000 Record Player with 9T.A.Stereo Cartridge. Brand new as from factory
SP. 25 De-luxe single record player, die-cast turntable. Less cartridge.
Packing and carriage on any one of above $7 / 6$.
GARRARD PLINTH WB
Units offered here. Will readily suit any hi-fi set-up the Garrard Packing and carriage 5/-
Garrard clear-view rigid perspex cover (carriage 3/6) 63 CARTRIDGE OFFER TO PURCHASERS OF ABOVE TEMS-STEREO Sonotone 9TA/HC Ceramic with diamond 47/6; Decca Deram with diamond 79/6; MONO Acos GP91.-1

PEAK SOUND SA 8-8

14 Transistor Kit builds into superb hi-fi amp. 8W per channel p.u. One of the best and most economical stereo transistor amps. we have ever offered. When built and fitted in its special cabinet, the SA 88 equals the best in modern styling.
AMPLIFIER KIT £9.10.0 (P.P. 4/-)
POWER PACK KIT £2.10.0 (P.P. 4/-)
Modern Slimline Wood Cabinet £2.10.0 (P.P. 5/-)
Complete assembly $£ 14.10 .0$, post free, if ordered at same time.

TRS RADIO
 COMPONENT SPECIALISTS
 Established 1946

70 BRIGSTOCK ROAD, THORNTON HEATH, SURREY.

R.S.T. valve mail order co.

146 WELLFIELD ROAD, STREATHAM, S.W. 16

TRANS/RECEIVER TWO-TWO

This is one of the Latest Releases by the Gove. of an extremely recent R / T set covering $2-8 \mathrm{Mc} / \mathrm{s}$ in two switched Bands, containing 13 Valves (3 EL32s in TX Output) which can be used for Morse CW or R/T. Also has Netting Trimmer, BFO, RF \& EF Controls, Switched Meter for checking all parts of set, Size $17 \mathrm{in} . \times 8 \mathrm{in}$. $\times 12 \mathrm{in}$ Power required LT 12 volts DC, HT 325 Volts D.C. Supplied Brand New and Boxed with Headphones a Mike, also Two Spare Valves and
Circuit of set. Few only at $£ 5 / 10 /$ Circuit of Carr. 30 - New Plug in Power Supply Carr. $30 /-$. New Plug in Power Supply
made by us for either 12 volts D.C made $€ 5 / 10 /$ - or $200 / 250$ Volts A.C

General information. This set is normally carried in the life jacket of Airmen it is a complete miniature lightweight radio Trans/Receiver, which is used to give a Beacon plus two way speech communication in the event of finding themselves in the sea. It comprises a Transmitter-Receiver, a speech unit, 2
 coding unit and a power supply either Battery OR Transistor. These three items are permanently interconnected and all units are completely sealed and watertight using a combined speaker/Mike, Press to talkepower-Beacon is Watts, Talk 3 Watts . Supplied in maker's power required in condition singly at 45/-, post $5 /$ - with circuit. New batteries if available $7 / 6$ each.

FAMOUS ARMY SHORT-WAVE TRANSRECEIVER

This set is nade up of 3 separate units: (1) a two valse amplifier using a 6 V6 output valve: (2) (some only. not
puit in the very lateat modela) a V.H.F. transreceiper huilt in the very latest modelas a V.H.F. transreceiper covering $229-241 \mathrm{Mc} / \mathrm{s}$ using 4 valves; (3) the mainghort
 (approx. $160-37.5$ metres) using 9 val ves. For R.T..C.W andM.C.W.Thereceiver is superhetrolyne having 1 R.F ntage, frequency changer. two I.F. (465 Kc/日) signa for C.W. or *ingle side-band reception. T.X. output valve 807 , other valves octal bases. Many extras, e.g
netting switch. quick flick lial settinge. squelch, etc. netting switch, quick flick lial sett inges. squelch, etc.
Power requirements LT 12 volts, HT receiver $27 \overline{0}$ volts D.C. HT trankmitter 500 voits D.C., size approx 171 x It x 11 ius. Every set supplied int new or as new E4/10/- or Grade 2 slightly vined $50 /$-n or Grade usel but complete, 35/-. Carr. ALL 15/. WE MAKE
A MAINS $200 \% 250$ VOLT POWER UNIT in louvreil metal case to plug direct into set power socket to rump 11
receiver, $70 /-$ post 5
 40/-, Carr. $5 /-$. A charge of $10 /$ - to unpack and test the phones \& Mike, $15 /-$, new and boxed

This is a modern self contained tunable V.H.F. low powered frequency modulated transreceiver for R.T communication up to 8-10 miles. Made for the Ministry of Supply at an extremely high cost by well - known British makers, using 15
midget B.G. 7 valves, receiver midget B.G. 7 valves, receiver incorporating R.F. amplifter Double superhet and A.F.C
 channels each $200 \mathrm{kc} / \mathrm{s}$ apart the dial calibrated in 41 $39 \mathrm{mc} / \mathrm{s}-48 \mathrm{mc} / \mathrm{s}$. Also has buil frequency covered is which gives pips to coincide with marystal calibrato dial. Power required T 41 vits Harks on the tuning at 90 volts for receiver. Every, H.T. 150 volts, tapped with valus for receiver. Every set supplied complet adjustable whip aerial, and circuit. Price $4410 s 0 d$ adjustable whip
carriage 10 s.
V.H.F. TRAMSRECEIVER MX. I/I

DRIGHLINGTON, BRADFORD.

HAMMERLUND EPGOOJX COMMUNICATION RECEIVER High quality communication receiver. Frequency range $40 \mathrm{kc} / \mathrm{k}$.
$54 \mathrm{Mc} / \mathrm{a}$. in 6 switehed banuls, also ficystal controlled channels. $54 \mathrm{Mc} / \mathrm{s}$. in 6 switched banis, aleo 6 crystal controlled channels.
Stability of 0.01% or better. Second channell rejection of 7118 down and spurioug reaponses are are least 100d ls tlown. Bant
 Perfect warking oriler, £125 ex works.

Hallicrafter 36A. 27.8 to $145 \mathrm{Mc} / \mathrm{s}$ in 3 hands. A.M. F.M. and variable B.F.O. $110 / 250$ V. $50 / 60 \mathrm{c} / \mathrm{s}$. Firat class condition.
Full| testel, $£ 50$. P. $\&$ P. 40%.

R209 COMMUNICATION RECEIVER 1 to $20 \mathrm{Mc} / \mathrm{s}$ in 4 bands. A.M. F.M. variable B.F.O. Built-in speaker and 6 V. D.C. power

CRIOO MARCONI COMMUNICATION RECEIVER. $60 \mathrm{Kc} / \mathrm{s}$ to
 P. 40%.

CR 300/2 KARCONI COMMUNICATION RECEIVER. 1s̃ Kc/s to $26 \mathrm{Mc/s}$ in 8 bands. Bullt-in cryatal calibrator. A.V.C. C.W.
bypass fitter.
Built-in P. \& P: 40/-.

B40 MURPEY COMMUNICATION RECEIVER. High quality

 BC221 FREQUENCY METERS. 126 to $20 \mathrm{Mc} / \mathrm{s}$, with built- in Ministry stabllised $230 / 250$ V. A.C. Power pack In first. class
condition with calibration charts. Fully tested. $£ \mathbb{4} 5$. P. \& P. $15 /-1$
T.F.B01B/8/S MARCONI SIGNAL GENERATOR. Frequency range $12-485 \mathrm{Me} / \mathrm{s}$ in five ranges. Directly calibrated trequency
dian. Output waveform: C.W. sine wave A.M., internal nodu. lation frequency 1,000 c/s output: 3 normal, continuously yari-
able directly calibrated from $0.1 \mu \vee \cdot 0 . \overline{\mathrm{V}} \mathrm{V}$: b , high-up to $1 \mathbf{V}$. able directly calibrated from $0.1 \mu v \cdot 0.5$ V: b, high-up to $1 \mathbf{V}$.
Modulated for $2 \mathbf{V}$. unmodulated, output impedance 50 ohms. Modnlated or 2 , Frequency tung control, carrier. On/off switeh, built-in.

CTE18 MARCONI SIGNAL GENERATOR T.F.937. Covers $85 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ in 8 日witched ranges. Effective length of film
scale is 50 ft . O utput level variable in ldB steps from 1 uV to $100 \mathrm{mV}(75 \Omega)$. Also 1 V . output down to $0.1 \mu \mathrm{~V}$. from an outlet
 quencies above $394 \mathrm{ke} / \mathrm{s}$. Variable mod. depth deviation. Crystal
calbrator $200 \mathrm{ke} / \mathrm{s}$ and $2 \mathrm{Mc} / \mathrm{s}$. Monitor speaker for beat detec. calbrator $20 \mathrm{ke} / \mathrm{s}$ and $2 \mathrm{Mc} / \mathrm{s}$. Monitor speaker for beat detec
 Weight 117 bss. Fully tested and guarianteed. In new condition.
$\mathbf{£ 6 5}$. P. \& P. 50/.

TF885 MARCONI VIDEO OSCILLATOR. Sine wave out put $25 \mathrm{c} / \mathrm{s}$.
 banis. with calibrated output meter. Power supply $100 / 125 /$
$200 / 250$ V. A.C. Firrt class contition. Fully tested, $\mathrm{E110}$.
P. « P. 45.

Dodrle beam osctlloscope TYPE BA. Tinie lasar 2 c/a to $750 \mathrm{ke} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers up to $100 \mathrm{Ke} / \mathrm{s}$ and $1 \mathrm{Mc} / \mathrm{s}$. Complete with prolse, operation instructions
and circuit. $100 / 250 \mathrm{~V}$. $50 \mathrm{c} / \mathrm{s}$. First class condition. Fully teated, and circuit. $100 / 250$. $50 \mathrm{c} / \mathrm{s}$. First class condition. Fully tested,
$\mathrm{f} 22 / 10 /$ P. \& P. $3 \mathrm{~F} / \mathrm{F}$. Avo Valve TESTER. Will test old and moderin valves.
campying case. New condition. $£ 15 / 10 /-$. P. $\$$ P. $17 / 6$.

COLLINS T.C.s. TRANBMITTER AND RECEIVER. Freq. 1.5 to $12 \mathrm{Mc} / \mathrm{s}$ in 3 bands. V.F.O. and crystal control, 25 W . output.
In gocel conilition, in pairs, $£ 16$. P. of 1 . $30 /$.

CANADIAR MARCOII C5s. Fred. 1. is Mc / s. $\mathrm{to} 16 \mathrm{Mc} / \mathrm{m}$ in 3 bands. Power ouptut 75 W. R.T. 110 W. C.W. Conplete atation.
111 uew coullion. 12 V. D.C. Working. Fully tested. $£ 50$. lit new condt
P. \& P. $60 /$.

31 SETS MK. II TRANS-RECEIVER V.H.F. 40 to 48 M.W.C. 31 SETS MK. II TRANS-RE
tunable. $70 /-$. P. \& $\overline{7} / 6$.

B44 V.H.F. RADIO TELEPRONE, fo to $95 \mathrm{Mc} / \mathrm{x}$. Built-in 12 V . D.C. power pack. £7. P. \& P. 15

No. 52 RECEIVERS, FIRST CLASS CONDITION. TESTED INVERTERS, LELAND AIRBORNE PRODUCTS. 28 V. Y.C.

STANDCO FIBRATING REED FREQUENCY METER. 392 to $408 \mathrm{c} / \mathrm{s} .1 \cdot 0 / 130 \mathrm{~V}$. Patnel mounting. $3 \frac{1}{2} \mathrm{in}$. Alia. Ex-equipment.

BECKMAR EXPANDED SCALE VOLTMETER. $10 \overline{\text { E }}$ to 125 V.
CORNELL DUBILIER RADIO NOIBE FILTER. 9 amps. 0 to

HRLIPOTS V 1,000 OHM LIN. TOL. $3 \%, 30 /=$ P. \& P. $2 / 6$. ELAPSED TME INDICATORS. 9,999-9 hrs. 115 V. \quad 60 c/s. $2.5 \mathrm{~W} .25 /=110 \mathrm{~V}_{3} 380-420 \mathrm{c} / \mathrm{ps} .30 / \mathrm{F}$. P. \& P. $3 / \%$. Panel
inounting 18 in .

ALLIED CONTROL CD. ITC. RELAYS. 4 PDT sealed contacts. 1 amp. 26.5 V. D.C. 200 o
equip. $30 /=$. P. \& P. $2 / 6$.

6 PDT CONTACTS 5 AMP. 26.5 V. D.C. 200 ohru. $40 /$. P. \& P. 2/6.
ELECTROMIC SPECIALITY CO., VOLTAGE SEMSOR SEALEDD. 3 PDT. Adjustable drop out, piek up, 24 to 50 V . 3 in. length, CUTLER \& HAMMER RELAYS, SEALED. 3 P.S.T. 100 AMP CONTACTS, 28 V. D.C. $45 /-$. P. \& P. $5 /$
1 P.S.T. 200 AMP. CONTACTS, 28 V. D.C. $25 /$. P. \& P. $3 /$. 1 P.S.T. 50 AMP. CONTACTS, 28 V. D.C. $20 /=$ r. \& P. $3 /-$ 3 P.S.T. 25 AMP. CONTACTS, 28 V. D.C. $30 /-$ P. \& P. $3 / 6$. 1P.S.T. 200 AMP. CONTACTS. Also D.P.S.T. 10 amp. contacth, 28 V. D.C. $35 /-$. P. \& P. 4/.
All above relays will work satisfactorily on 12 voits D.C.
1 P.S.T. 50 AMP. CONTACT COIL. 115 V. A.C. 50 or 400 c.p.g., A.G.A. OF AMERICA TIMR DELAY RELAY. 2 P.D.T. Range P. $050-10$
P. 10.
A. W. Haypon co., INC. Time delay relays. 4 P.D.T. We have these relayn in the following times: $1-2-10-15-30-115-180-240-$
$360-600$ secs. 28 V. D.C. $21 \times 1 \mathrm{f} \times 1 \mathrm{ln}$. Pricc on application.

WE HAVE A SELECTION OF MINIATUBE SYECRRO. REGEIVERS, TRANSM

Variable resistors, 10 ohms, $4 \mathrm{amps} . \quad 17 / 6$. P. \& P. 3/-
SMITHS 8-DAY WALL CLOCKS. Jewelled escapement. Excellent timekeeper. $50 /-$. P. \& P. $3 / 6$

SEND 3/6 P.O. FOR CATALOGUE

G. BURT

13 PROSPECT PLACE,

 HYTHE,NR. SOUTHAMPTON, HAMPSHIRE.

M. R. SUPPLIES, LTD.,

(Established 1935)

Universally recognised as appliers of UP.TO.DATT MATERIAL, which does the job properly.
Instant delivery. Satisfaction assured. Prices nett.
ansfow EXTRACTOR FANS. Undoubtedly to-da's greatest bargain for domestic or ind uastrial which open when motor is switched on and closed when off. Only finin. dia. Our nett price only $£ 8 / 15 /$ ((despateh $4 / 6)$.
ELECTRIC FANS (Papst), for extracting or blowing. The most exceptionsl offer we have yet
 SMALL GEARED MOTORS. In addition to our well-known range (List GM.564). We offer small projection each side and enclosel gearhox. Suitable for display work and many industrial usee. Only $69 / 6$ (1es. $3 /$).
SYNCHRONOUS TIME SWITCHES. (Our very popular speciality). 200/250 r. 50 c. for accuratc pre-get switehing operations. Satugano 8.254 rrovidng up to 3 on-off operationg per 24 hours
at any chosen time with dar-omitthg device (use optional). Capacity 20 ampa, Conpaetly at any chosen time with day-omitthig (levice (use optional). Capacity 20 amps. Compretly
housel 4 int dia., $3 \frac{1}{2} \mathrm{in}$. deep, $£ 5 / 18 / 6$ (des, $4 /(\mathrm{i})$. Also same excellent make new Domestic Model no wiring and easy setting and installation. Portable with lead and 13 -amp. plug same duts av abole (less Day:omit ting). £4/9/6 (les. 4/6). Fult instructions sent with each.
MINIATURE COOLING FANS. $200 / 250$. A.C. With open type induction motor (no interference). Overall 4in. $\times 3 \frac{3}{}$ in. $\times 2 \ell$ in. Fitted \mathfrak{j}-bladed metal impeller. Idesl for projection lamp cooling, light duty extractors. etc., still mly 28/6 (des. $4 / 6$)
MINIATURE RUNNING TIME METERS (Sangamo). unit and can now supply immediately from stock. $200 / 250 \mathrm{vv}$. ©0 e. synchronous. Counting up
to 9,999 hours, with $1 / 10$ th indicator. Only $1 / \mathrm{in}$. square, with veloncter dial depth 2 in . M , industrial and domestic applications to indicate the running time of any electrical apparatus, casy to install, 60/-(post paid).
AIR BLOWERS. Highly efficient units Atted induction totally enciosed motor $230 / 260 \mathrm{~F} .50 \mathrm{c}$.

SYNCHRONOUS ELECTRIC CLOCK MOVEMENTS (as mentioned and recommended in many national journals). $200 / 250 \mathrm{v}$. 50 c . Seli-starting. Fitted spindles for hours. minutes and central
 black dust cover. 35
For $8 / 10$ dia. $3 / 6$ st
SYNCHRONOUS TIMER MOTORS (Sangamo). $200 / 250 \mathrm{v}$ v. $50 \mathrm{c} / \mathrm{s}$. Self-atarting 2 in . dia. $\times 1 \mathrm{zin}$.
 (des. 1/b).
COUNTERS (Veeter-Root) Electronagnetic, 24 v. D.C. 4 digit (9999) with puah-hution rease miniature $2: \times 1 \times 1$ inin. Very limited quantity avallable at $£ 3 / 15 /-\operatorname{cach}$ (tles. $1 / 6$)
 Ideal for operating small shunt wound motors from A.C. $8 / 6$ (des. 1/6).
Immediate delivery of Stuart Centrifugal Pumps, including stainless steel (most modela).
Pbilipz Variable Transformers (all models).
M. R. SUPPLIES, Ltd., 68 New Oxford Street, London, W.C. 1
(Telephone: 01-636 2958)

the information is here-

Elecirical \& Electronic Trader YEAR BOOK 1968

All sections of the new edition have been revised and brought up to date in this important reference book to the radio, television and domestic electrical industries, the aim of the publishers being to assist traders to keep abreast of constant changes in the industries.
CONTENTS
TECHNICAL SECTIONS, LEGAL GUIDE
TECHNICAL LITERATURE
GENERAL INFORMATION, SERVICE DEPOTS
WHOLESALERS BUYERS' GUIDES
PROPRIETARY NAMES, ADDRESSES

35s. net by post 36s 9d 496 pp.
obtainable from leading booksellers
Published by
ILIFFE TECHNICAL PUBLICATIONS LTD.
DORSET HOUSE STAMFORD STREET LONDON SEI

"SKANDIA" VHF/UHF AM/FM

Handy / Portable / Mobile / Stationary Transceivers

"Mariner", 6 Ch. VHF FM, RF Output power 1 W , Portable Transceiver
other items offered!

* Cassette stereo tape recorders, w/AM/ FM Stereo receiver, Portable \& Home
* Stereo 8 player w/FM Stereo receiver, Automotive \& Home

Tomura Bussan Kaisha, Limited
C.P.O. Box No. 118 Nagoya, Japan Cable add.: "SKANDIA" Nagoya

THE ELECTRONIC mUSICAL INSTRUMENT MANUAL

A comprehensive guide to the theory and design of electronic musical instruments. The properties musical instruments, and in the various chapters there are many circuits using semi-conductors in different ways.

55/-.
by A. Douglas
Postage 1/-.

RCA LINEAR INTEGRATED CIRCUITS
20/-. Postage 1/-
nter GEC S.C.R
$\mathbf{2 5} \%$ Postage $2 /-$.
THE RADIO AMATEUR'S HANDBOOK 1968 ed. 45/-. Postage 4/-
COLOUR TELEVISION. PAL SYSTEM by G. N. Patchett. 40/-, Postage 1/-

ELECTRONIC COUNTING by Mullard.
WORLD RADIO TV HANDBOOK, 1968 ed. 2/-. Postage $1 /-$.

DATA BOOK, 1968 by Mullard 3/6d, Postage 6d.
FET CIRCUITS by R. P. Turner.
25/-. Postage 1/.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET
LONDON, W. 2
Phone: PAD dington 4185
Closed Sat. I p.m.

DUXFORD ELECTRONICS

DUXFORD, CAMBS.

C.W.O. Pr \& P.I/-. Minimum order value 5 /(Trade inquiries invited) CAPACITORS (Tubular, Axial Leads): Electrolytic (Mullard): -10% to $+50 \%$ 6.4 V : $6.4 \mu \mathrm{~F}, 25 \mu \mathrm{~F}, 50 \mu \mathrm{~F}, 100 \mu \mathrm{~F}, 200 \mu \mathrm{~F}, 320 \mu \mathrm{~F}$ 10V: $4 \mu \mathrm{~F}, 16 \mu \mathrm{~F}, 32 \mu \mathrm{~F}, 64 \mu \mathrm{~F}, 125 \mu \mathrm{~F}, 200 \mu \mathrm{~F}$ $16 \mathrm{~V}: 2.5 \mu \mathrm{~F}, 10 \mu \mathrm{~F}, 20 \mu \mathrm{~F}, 40 \mu \mathrm{~F}, 80 \mu \mathrm{~F}, 125 \mu \mathrm{~F}$. 25V: $1.6 \mu \mathrm{~F}, 6.4 \mu \mathrm{~F}, 12.5 \mu \mathrm{~F}, 25 \mu \mathrm{~F}, 50 \mu \mathrm{~F}, 80 \mu \mathrm{~F}$ $40 V$: $1 \mu \mathrm{~F}, 4 \mu \mathrm{~F}, 8 \mu \mathrm{~F}, 16 \mu \mathrm{~F}, 32 \mu \mathrm{~F}, 50 \mu \mathrm{~F}$. 64V: $0.64 \mu \mathrm{~F}, 2.5 \mu \mathrm{~F}, 5 \mu \mathrm{~F}, 10 \mu \mathrm{~F}, 20 \mu \mathrm{~F}, 32 \mu \mathrm{~F}$. All values $1 / 3$ each.
OLYESTER (Mullard): $\pm 10 \%$. 606: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 6 \mathrm{~d}$. $0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 7 \mathrm{~d}$. $068 \mu \mathrm{~F}, 1 / 5,68 \mu \mathrm{~F}, 11 \mu \mathrm{~F}$, 0 d . $0.22 \mu \mathrm{~F}, 1 \mathrm{~d} .0 .33 \mu \mathrm{~F}, \mathrm{I} / 2$
 $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033 \mu \mathrm{~F}, 8 \mathrm{~d}$. $.33 \mu \mathrm{~F}, 2 / 1 \quad 0 \mathrm{~F}, 9 \mathrm{~d} .0 .1 \mu \mathrm{~F}, 10 \mathrm{~d} .0 .15 \mu \mathrm{~F}, \mathrm{I} / \mathrm{I} .0 .22 \mu \mathrm{~F}, \mathrm{I} / \mathrm{s}$
 33pF, 47pF, $56 \mathrm{pF}, 68 \mathrm{pF}, 100 \mathrm{pF}, 150 \mathrm{pF}, 220 \mathrm{pF}, 330 \mathrm{pF}$, $3,300 \mathrm{pF}, 4,700 \mathrm{pF}, 5,600 \mathrm{pF}$, 1 d , 100 pF , $15,000 \mathrm{pF}$ 22,00 pF, 4,700pF, $5,600 \mathrm{pF}, 7 \mathrm{~d}$. $10,000 \mathrm{pF}$, 8d. $15,000 \mathrm{pF}$ OOTENTIO
W at $70^{\circ} \mathrm{C}$ METERS (Carbon): Long life, low noise
 etc., per decade to 10 M . Logarithmic: 5k, 10k, 25k, etc., per decade to ${ }^{\text {SMELETO }}$ SKELETON Carbon) : PRESET POTENTIOMETERS 100, 250, 500 ohms, etc., per decad Miniature: 0.3 W at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leq \frac{1}{4} \mathrm{M}, \pm 30 \%>\frac{1}{4} \mathrm{M}$.
 P.C.M.) mounting, $1 /-$ each.

Submin. $0.1 W^{\text {at }} 70^{\circ} \mathrm{C}$. $\pm 20 \% \leq I M, \pm 30 \%>1 \mathrm{M}$ Horizontal ($0.4 \mathrm{in} . \times 0.2 \mathrm{in}$. P.C.M.) or Vertical ($0.2 \mathrm{in} . \times$ O. lin. P.C.M.) mounting, 10d. each

RESISTORS (Carbon film): High stability, very low noise, $t W$ at $70^{\circ} \mathrm{C}$. Body 9 in . x in. Values in each decade $10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43$, 47, $51,56,62,68,75,82,91$ from 4.7Ω to 1 M . $\pm 5 \%$, 2 d . each, $1.2 \mathrm{M}, 1.5 \mathrm{M}, 1.8 \mathrm{M}, 2.2 \mathrm{M}, 2.7 \mathrm{M}, 3.3 \mathrm{M}, 3.9 \mathrm{M}, 4.7 \mathrm{M}$.6M, $6.8 \mathrm{M}, 8.2 \mathrm{M}, 10 \mathrm{M} \pm 10^{\circ}$. 2d. each. OC44, OC45, 1/9. OC71, OC72, OC73 OAS, OA81, $1 / 6$ OC82D, OC170, OC171, 2/3, OC13, OC8I, OC8ID (OCl40, AFIIS. AFII6 SILICON RECTIFIERS: 0.5 A at $70^{\circ} \mathrm{C}$. 400 P.I.V., $3 /-$ 800 P.I.V., 3/3. I, 250 P.I.V., 3/9. I, 500 P.I.V., 4/. SEND S.A.E. FOR JANUARY 1968 CATALOGUE

CLASSIFIED ADVERTISEMENTS

DISPLAYED SITUATIONS VACANT AND WANTED: £6 per single col. inch
LINE advertisements (run-on): $7 /$ - per line (approx. 7 words), minimum two lines
Where an advertisement includes a box number (count as 2 words) there is an additional charge of $1 /=$ SERIES DISCOUNT: 15% is allowed on orders for tweive monthly insertions provided a contract BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

Advertisements accepted up to MAY 10 for the being available.

SITUATIONS VACANT
CAPE recorder engineer required.-01-636 $8177_{[200}$ LV Field Service Engineer, £1.000, London area. EXPERIENCED cinema sound engineer required for E service and installation, good
GRAMPIAN REPRODUCERS, Ltd., Hanworth Trading Estate, Feltham, Mment with audio frequenc equipment.-Apply Dept. RB.
$\mathbf{R}^{\text {ADIO and tape }}$ shooters required; canteen, texcellent and trouble 8 a.m. to 5 p.m.. 5 -day, week. - Elizabethan Electronks. BRITISH ANTARCIIC SURVEY requires wireless be able to transmit and recelve at 20 w.p.m. is salary
according to qualifications. Applications to 30 , Gilling-
I2005 $\mathbf{B}^{\text {RITISH ANTARCTIC SURVEY has vacancles for }}$ Byoung men to operate and maintain automatic lonosonde in Antarctica, commencing salary trom, $\begin{aligned} & \text { Gil- } \\ & \text { according to qualifications.-Applications to } \\ & \text { lingham } \\ & \text { St., London, S.W.1. }\end{aligned}$ [2006
 sary equipment to commence Radio Workshop. Alterdetails to-White, Waltham Airffeld, near Maidenhead Berks
$\mathrm{E}^{\text {LECTRONIC }}$ mechanics required by G.L.C. varied repair of 16 mm projection equipment, P.A. systems repair of 16 mm projection equipment, P.A. systems, ence desirable; $\kappa 19 / 11 / 6$ for 40 -hour week, plus in centive bonus.-Write, Riving detans of age ald ex Services (Estab.) 1 . Queen Anne's Gate Buildings,
[2009
Dartmouth St., S. THE University of Leeds:-Technician or senior techChe mician required for Electronics Workshop of Chemistry; it will be an advantage o have had ex-
perience in construction of electronic units: 5 -day
week of $371 / 2$ hours: salary in range $£ 722$ to $£ 1,225$: week of $371 / 2$ hours: salary in range $£ 722$ to £ $£ 1,225$;
starting point according to experience and qualifca-tions.-Applications in writing to Mr. S. Walke Essex Technical College and Nof Art, Sheepen Road, Colchester, Essex. De Department of Science. Lecturer Grade (i-A graduate to teach physics to mainly O.N.C. (Sciences) and
H.N.D. (Engineering) courses is required for the 1st september, 1968 ; applicants should preferably have
 be riven towards removal expenses.-Further details turned within fourteen days of the advertisement.
$\mathbf{S E N F O R}_{\text {physics and }}$ and junior laboratory staff required for in the construction and development of apparatus for new experiments and projects; senior technician (ref ST. ET) to take charge of electronics teaching laboratory and be responsible for supervising and training tor physics and electronics teaching laboratories: experience in electronic circuitry and construction or vacuum techniques an adrantage; salary scale (includ-
ing London Allowance) senior technician $£ 10,47-£ 1,335$ p.a.: technician $£ 722$ - $£ 1,117$ p.a.: junior technician \& $402-\kappa 655$ pa.. depending on age qualifications and experience: day release facilities; further details (quote
reference) and application forms from the Laboratory reference) and application forms from the Laboratory
Superintendent, Department of Physics. Cheisea College of Science and Technology, Manresa Rd., London,
S.W.3. $01-352$ 642].

BOOKS INSTRUCTIONS, ETC.

 $\mathrm{B}^{\text {OUND }}$ volumes of " Wireless World." 1947 to 1964 , East. 11. Empress Ave, Farnbercuits of all British ex-W.D. 1939-45 R.E.M.E. instructions; s.a.e. for list, over 70 types.-W. H. Bailey. 167 a . Moffat Road. Thornton Heath,
[66

TAPE RECORDINQ ETC.

TAPE to disc transfer using latest feedback disc High Bank Carntorth Lancs

SERVICE $\&$ REPAIRS
 R EPAIRS.-Our modern service department equipped R with the latest test equipment including a wow is able to repair $\mathbf{H i}$ mi and tape recording equipment to manufacturers standard.-Telesonfc Ltd... 92, Tot- tenham Court Rd.. London. W.1. $01-636$ 8177. [21
 FOR SALE AND WANTED ADVERTISEMENT FORM

 TURN TO PAGE No. 125

The Civil Service

Professional and Technical appointments

RADIO AND ELECTRONIC ENGINEERS

BOARD OF TRADE (CIVIL AVIATION)
Qualified engineers required as Assistant Signals Officers in the field of Civil Aviation for the provision and installation of advanced electronic equipment-including the latest type of radar, telecommunications, navigational aids, etc.
QUALIFICATIONS: Degree with or 2nd class honours in Electrical Engineering or Physics, or have passed all examinations for M.I.E.E., A.M.I.E.R.E. or A.F.R.Ae.S.
AGE: 23 and normally under 35 on 31st December 1968 (extension for Forces and Overseas Civil Service). SALARY (Inner London): On the scale $£ 1,160-£ 2,092$ depending on age and qualifications. Pensionable appointments. Good prospects of promotion.

EXECUTIVE ENGINEERS AND ASSISTANT EXECUTIVE ENGINEERS POST OFFICE

EXECUTIVE ENGINEERS are required for research, development and design work for electronic telephone exchanges, satelia communitand postal mechanisation. Most of these posts are in London.
There are also posts in engineering management to direct and control the provision and maintenance of moricals provincial centres.
ASSISTANT EXECUTIVE ENGINEERS are required in London and provinces for work on the development and design of communications systems and postal service equipment.
QUALIFICATIONS: Executive Engineer: Degree or Dip. Tech. in Mechanical or Electrical Engineering, or Physics or Applied Physics, or have achieved Corporate Membership of the I.E.E., M.Mech.E., or . E.Rlish Final year students may apply. Assistant Exa a pass in (or exemption from) Parts 1,2 and 3 of the examinations of I.E.E., or I.Mech.E.; a pass in (or a pass in (or exemption from) Parts 1 , 2 and 3 of the examinations of in (or exemption from) Parts 1 and 2 of the examination of the Council of Engineering Institutions, in subjects acceptable to one of the Institutions named above.
SALARIES (national): Executive Engineer: $£ 906$ (at 21)- $£ 1,677$ (at 34 or over)- $£ 1,884$. Assistant Executive Engineer: $£ 800$ (at 18 or under)- £1,200 (at 25 or over)- $£ 1,790$.
Salaries increased for officers serving in London. Non-contributory pension. Promotion prospects to higher grades with maxima of $£ 2,484$ and $£ 3,105$.
AGE: Executive Engineer: At least 21 and under 35 on 31st December 1968. Assistant Executive Engineer: At least $17 \frac{k}{2}$ and under 27 on 31 st December 1968. Applications for both posts from well qualified older candidates will be considered.
(Reference: $\mathbf{S}_{i} 353$)
TECHNICAL CLASS GRADE III OFFICERS AND DRAUGHTSMEN
MINISTRY OF DEFENCE (NAVY DEPARTMENT)
About 30 posts for men as Technical Class Grade III Officers and Draughtsmen at Belfast, Copenacre (Wilts.), Gosport, Llangennech (Carms.), London and Perth.
DUTIES: Problems associated with the support, maintenance and repair of naval aircraft, involving inspection, diagnostician work, rate-fixing planning, work study, preparation of repair schedules, technical administration and drawing oftice duties.
QUALIFICATIONS: Full apprenticeship or equivalent plus practical experience in above field(s); O.N.C. in mechanical or electrical engineering, or an appropriate City and Guilds Technicians Certificate, e.g., the Mechanical Engineering Technicians Part II (Advanced) Certificate (No. 293), the Electrical Technicians Final Certificate (No. 57), or the Telecommunications Technicians Final Certificate (No. 49), or equivalent or higher qualification.
SALARY (national): Technical Class Grade III $£ 895$ (at age 21) - $£ 1,040$ (at 25)- $£ 1,149$ (at 28 or over)£1,283. Draughtsman $£ 776$ (at age 21)- $£ 1,030$ (at 25)- $£ 1,154$ (at 28 or over)-£1,263. Salaries somewhat higher in London. Promotion prospects. Non-contributory pension.
(Reference: Sif6896/68.) Closing date 3rd May, 1968
APPLICATION FORMS are obtainable from the Secretary, Civil Service Commission, Savile Row, London, W.I. Please quote appropriate reference.

Engineers

a career

 in data processingTo become a successful IBM Data Processing Customer Engineer you need more than engineering qualifications. You need to be able to talk confidently and well to any level of customer management and to have a pleasing personality in your work. As a DPCE, you work in direct contact with your customers, on some of the world's most advanced data processing equipment.

You must have a sound electronic and electromechanical background, such as ONC/HNC Electronic or Electrical, or Radar/Radio/Instrument Fitters course in the Armed Services.

You will get thorough training on data processing equipment throughout your career. Starting salaries are excellent. Salary increases are on merit-you could be earning £1900 within three to five years. Drive and initiative are always well rewarded at IBM; promotions are made on merit and from within the company.

If you are between 21 and 3I and would like this chance to become part of a rapidly expanding and exciting computer industry, write to IBM.

If you are between 18 and 21, IBM can offer you the chance of a challenging career as a Junior Customer Engineer

You need five GCE ' O ' levels, an aptitude for mechanics, a good understanding of electrics, a clear logical mind, and the ability to get on well with people.

Send details of training, experience and age to MrD. J. Dennis, IBM United Kingdom Limited, 3^{80} Chiswick High Road, London W4. Quote reference E/WW/38ı.

百 TELECOMMUNICATIONS

We have vacancies for Fault Finders, Testers, and Inspectors to work on interesting and advanced equipment including H.F SINGLE SIDEBAND, YHF RADIO TELEPHONES, U.H.F. MINIATURE EQUIPMENT.

Transistor experience is essential. Vacancies exist at all levels and training will be given where necessary.

Apply: Personnel Manager,
CAMBRIDGE WORKS LTD.,
Haig Road,
Cambridge.

MISCELLANEOUS
 METALWORK, all types cabinets, classis, rack for etc. to your own specification, capacty availabl for small milling and capstan work up to lin bar Loughborough. METALWORKS, Ltd., Chapman St

ARTICLES FOR SALE

TR60, TR10, C/R. $\mathrm{C} 21 / 10$; evenings. -8 , Sunridge Ave.
Welling, Kent. Wering, Kent.
$\mathbf{S}^{\text {ERVICE }}$ Theets. shadio. T/V, etc.; 550 £10. clean.400 speakers, \sin. 8 ohm. ex stock.-Box WW2000, VACUUM pumps, gauges, etc, recorders, general sci entific and laboratory equipment, catalogue.-V. N Barrett \& Co., Ltd.. 01-654 6470.

A Vo valve Characteristic Meter Mk. IV, as new; e; $\& 65$, Reasonable offers consicierec.-Box w.W 231., Wireless World.

THE LIVERPOOL CLINIC MYRTLE STREET, LIVERPOOL 7.

Applications are invited for the post of Medical Medicine Person in the Department of Nuclea Medicine. Person appointed will be required to would be expected to assist in the design and building of new equipment and modification of existing apparatus. Duties are principally in the Liverpool Clinic, but at times extend to other hospitals in the region.
The possession of a Higher National Certificate or equivalent is desirable. Grade II to V according to qualifications and experience. Salary range according to grade. Grade V $£ 711$ to $£ 1,004$; Grade IV $£ 850$ to $£ 1,050$; Grade III £ 980 to E1,300; Grade II £1,250 to $£ 1,591$. Application forms and Job Description from the Hospital Secretary to be
returned by 22 nd April, 1968 .

NEWCASTLE GENERAL HOSPITAL (1060 beds)

TWO MEDICAL PHYSICS TECHNICIANS GRADE III (specialising in electronics) required for the Regional Neurological Centre to work in electronics laboratory on design and development of apparatus concerned with neurology and neurosurgery. There is considerable scope for initiative and the successful candidates will be expected to hold H.N.C. qualification, although consideration will be given to those with O.N.C. and experience in a similar field.
Whitley Council conditions of service. Salary scale $£ 980-£ 1,300$.
Applications, with names and addresses of two referees, to Hospital Secretary, Newcastle General Hospital, Newcastle upon Tyne NE4 6BE, within two weeks.

GOvermment of IKENYA REQUIRES ASSISTANT TELECOMMUNICATIONS ENGINEERS

for the Police Department. on contract for one tour of 24 months in the first instance. Commencing basic salary according to pxperience in scale Kenva shillings 21.000 rising to K. Shgs. 27.780 a year (L.Stg. 122.5-Sty, 1620) liable (1) Kenya Jncome Tax. In addition an allowance, normally
 year will bee paid by the Britisli Govermment direct io an officre's bank accombt in the United Kingdom. Granity 25% of total salary drawn or 45% if no overseas terminal Icsur takens. Free passages. Accommodations provided at moderate rental. Generous education allowances. Ontfit allowance. Contributury pension stheme available in certain circumstances.
Candidates, up to jo ycars of age, must have served an approved apprenticeship and possess the City and Guilds Telecommunications Techni-
cian's Certificate or equivalent. They must have had at least five vears experience in Telecommunications conginerring including considerable practical experionce with fixed, mobile and portable leleommonications equipment operating in the H.F. (inchudine S.s.B. and l.S.B.) and V.H.F. (AM1 and IPM) bands and associated arrial and mast installation plus a knowledge of ransistorized and modenn "quipment. A know ledge of V.F. Multiplex cepupment is essential and experience in Radin leleprimer egrapment would be an advantage.

Apply to CROWN AGENTS, M. Dept., 4. Millbank, London, S.W.1., for application form and further particulars, stating name, age, brief details of qualifications and experience, and quoting reference $\mathrm{M}_{3} \mathrm{~B} / 6 \mathrm{rog} / \mathrm{WF}$

Design Draughtsman

Pye Telecommunications offer outstanding opportunities for senior design draughtsmen in the expanding field of radio communications.
Pye's programme of research and development in solid state electronics provides full scope and full reward for inventiveness and enterprise.

The appointment will appeal to those with creative vitality who will appreciate the satisfaction of seeing a complete equipment through design and production.

Candidates should be fully qualified design draughtsmen with proven design ability in light engineering and capable of assuming greater responsibilities. Top grade salaries will be paid to successful applicants.

A move to Pye will be very worth while. So why not come along to see us? Write to:

THE PERSONNEL MANAGER, PYE TELECOMMUNICATIORS LTD., MEWMARKET ROAD, CAMBRIDGE.

TELEQUIPMENT oscilloscope type S32A. new conQueens Head Court, Newark, Notts. Write E.C.S., Ltd. A Better deal for cash customers. We do not provide A Better deal for cash customers. We do not provide of 15% for cash. Equipment despatched brand new in sealed cartons on receipt ot remittance with order. Agents for all leading makes. Demonstrations, servict. guidance-Write or phone. Callers welcome. Open Ltd.. 82, East Barnet Rd.. New Barnet. Herts. Tel.

QUANTITIES of Barretter valves, CL33, CY31 and Q CIC, wanted, new and boxed, have for exchange
new $6 A Q 5$ EL84, 6BR7 und ECC8 valves new 6AQ5 EL84, 6BR7 and ECC8 valves. or will buy for cash.-Harringay Photographic. 435. Gzeen
Lanes. Loncon. N.4. $01-340$
[1910
BOXES of BA nuts and bolts, BOXES of B.A. nuts and bolts, all brand new and service men. experimenters. etc.; bolts include $2 B A$, 4BA and 6BA us to 2in long, various heads. mainly brass, approx. $3-400$ items per box; our special price
$7 / 6$, plus $2 /-$ post and packing.-Walton's Wireless

TECHNICIANS MIIISTRY OF TECHNOLOGY

Requires Technicians

Are you interested in electrical, electronic, or mechanical engineering? If so, there are excellent opportunities for you in the Ministry of Technology. The work involves the testing of radar, telecommunications apparatus, electrical power and navigation equipment, as well as the calibration of mechanical and electrical measuring devices.

These posts are mainly in the Woolwich, Harefield and Bromley areas, but vacancies also exist in other parts of the home counties and the U.K.

If you have an Ordinary National Certificate or a final City and Guilds Technicians Certificate you may well be the type of person we need.

The starting salary is $£ 1,004$ (age 24) rising by annual increments to $£ 1,149$ (age 28) and thence on to $£ 1,283$ with additional allowances for the London area and good prospects for promotion. There are also a few posts in the salary range $£ 1,283$ to $£ 1,490$ for well qualified and experienced candidates.

If you are interested, please send a post card to Mr. A. G. Stewart, Ministry of Technology, Aquila, Golf Road, Bromley, requesting an application form.

JUNIOR ELECTRONIC ENGINEER required to join a small team developing test instruments for telecommunications. Previous experience of circuit design desirable, together with some mechanical skill. Staff appoint
ment. $37 \frac{1}{2}$ hour week. Age 21-25.
Please apply to the
Personnel Manager in writing or by telephone, Cambridge 51351, Ext 327.

MEDICAL RESEARCH COUNCIL APPLIED PSYCHOLOGY RESEARCH UNIT, CAMBRIDGE
 TECHNICIAN

to assist in the design, construction and maintenance of electronic equipment used in psychological research.
Candidates with O.N.C., H.N.C. or equivalent plus at least 5 years practical experience in electronics will be considered

5 day week; 3-4 weeks holiday.
Salary according to age and qualifications in the
range $£ 829-£ 1,303$.
Applications giving details of qualifications and
experience to:
15, Chauctor, Applied Psychology Research Unit , Chaucer Road, Cambridge.

THE NATIONAL INSTITUTE OF AGRICULTURAL ENGINEERING

TW III required to assist a small

 team investigating problems associated with the measurement of light and control of temperature and carbon dioxide concentration in greenhouses. Practical experience in electronics necessary and some knowledge of modern recording equipment desirable.Qualifications:
O.N.C. or equivalent.

Salary Scale:
£895 p.a. at age 21 rising to $£ 1,149$
p.a. at age 28 or over with a max-
imum of $£ 1,283$ p.a. Ref: 68/ECD/22.
FIVE day week - Superannuation-canteen Application forms from:
The Secretary, N.I.A.E., Wrest Park, Silsoe, Bedford.

UNIVERSITY OF BIRMINGHAM Department of Physiology

Senior Technician for expanding elec-

 tronic workshop. This interesting work is concerned with development and maintenance of equipment used in physiological research and for teaching medical and dental students. Experience of similar equipment and/or H.N.C.Applications quoting reference PH/ST/108 to Personnel Adviser, P.O. Box 363, University of Birmingham, 15.

SCOTTISH TELEVISION LIMITED has several vacancies for

ENGINEERS

Applications are invited from appropriately qualified engineers with experience in television broadcasting, sound and vision. We would also like to hear from engineers qualified to H.N.C. level in electronics with experience in allied fields, e.g. manufacturing, servicing and installation. Colour experience would be an advantage.
Applicants will be based in either Glasgow or Edinburgh.
Salaries range from $£ 1,295$ to $£ 1,876$ per annum with up to $£ 2,166$ per annum with exceptional experience.
We offer first-class conditions of employment including pension scheme and incremental scheme.
Apply in writing giving details of age, experience and qualifications to Personnel and Labour Relations Manager, Scottish Television Limited, Theatre Royal, Hope Street, Glasgow.
$10^{\text {IN }}$ speakers with line transformers, ${ }^{\text {£1 }}$ (carr. $5 /-$, mercury rectifiers, \&6, carr. \&2; s.a.e. lists.-M. Bond. 100. Huntly Grove, Peterborough

CDDYSTONE/940 radio communications receiver and practically new, complete with speaker, earphones and aerial, cost £144;
Willow
End. London. N. 20.
445
0154. $D_{\text {transistors. }}^{\text {ECAR }}$ units; using 3 I.C.s and stlicon

COLLEGE OF AIR TRAINING HAMBLE, SOUTHAMPTON
 \star

Simulator Engineer required for maintenance, overhaul and minor development work on electronic flight simulators using analogue computation, servo-mechanics, instruments, electrical and mechanical services. Qualifications and experience required are as follows:
(a) Recognised apprenticeship in electrical or electronic engineering and technical qualification to ONC (Elect) or equivalent, and
(b) previous experience of electronic flight simulators and aircraft systems.
Salary scale $£ 1,217-£ 1,427$. Contributory Pension and Life Assurance Schemes. Four weeks holiday per year. Write to the Bursar for application forms.

SOUND ENGINEER required by the LONDON OFFICE

of an international Conference Organising Consultancy. The successful applicant will be required to operate and maintain and also sell simultaneous translation equipment. Whilst adequate training will be provided, applicants must have a comprehensive knowledge of radio induction equipment and be conversant with transistor circuitry.
This appointment offers an excellent opportunity for a technical man of the right calibre who is prepared to travel. Salary according to age and experience. Commission also paid.
Please write Box No. 5042.

FE HAWKER SIDDELEV

HAWKER SIDDELEY AVIATION LIMITED

 at DUNSFOLD AERODROMErequire a

TECHNICIAN

for the testing and maintenance of Navigational and Weapons Systems associated with the Harrier VTOL Aircraft for the R.A.F. Experience of Aircraft Electro/Mechanical work desirable.

Good salary and conditions of service.
Applications to: Personnel Officer, Hawker Siddeley Aviation Limited, Dunsfold Aerodrome, Nr. Godalming, Surrey. Tel: Cranleigh 2121.

RLECTRONIC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic electronics with experience in electronics, Radar, Radio and TV or similar field. Position is permanent and pensionable. Comprehensive training, on full pay, will be given to successful applicants. Please send full details of experience to
the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

AIRBORNE ELECTRONICS

SERVICE TECHNICIANS

RCA Great Britain Limited, is an International Electronics Company with diverse interests in the field of electronic engineering. Our Service Division operating at A \& $A E E$, Boscombe Down, Wiltshire, is engaged on servicing and maintaining airborne electronic equipment particularly AIRBORNE RADARS, ELECTRONIC NAVIGATIONAL AIDS, and HF, VHF AND UHF COMMUNICATIONS.

A number of interesting vacancies have arisen which offer excellent opportunities for developing the initiative and furthering the career of young men between 22 and 35 . They must have relevant experience preferably on the specific equipment mentioned above.

These positions carry monthly paid staff status with excellent fringe benefits, including three weeks paid holiday each year. A competitive salary will be paid and there are excellent promotion prospects.

Please write or 'phone for an application form to:-

Mr. A. Freemantle
Great Britain Limited
Lincoln Way, Windmill Road
Sunbury on Thames, Middlesex
Telephone Sunbury on Thames 8551I, Ext. 105
A SUBSIDIARY OF RADIO CORPORATION OF AMERICA

MICROWAVE SYSTEMS TEST ENGINEERS

Pye Telecommunications Ltd. require at their factory at Haverhill, Suffolk, an Engineer to take charge of an expanding systems engineering team. There are also vacancies for Senior Engineers to become members of this team for work on production test of Broad Band Solid State Link equipment.
Experience of video and/or multi-channel telephony is desirable, preferably with knowledge of semi-conductor work. Preference will be given to applicants holding a good academic qualification.
Attractive salaries will be offered and some assistance with housing in this expanding town may be possible.
All applications will be treated in the strictest confidence.
Apply in writing giving details to:
The Works Manager
PYE TELECOMMUNICATIONS LTD.
Colne Valley Road, Haverhill, Suffolk.

NOTTINGHAM COLLEGE OF EDUCATION TELEVISION

A closed-circuit television and video-tape recording unit, to be used in collaboration with the Nottingham Regional College of Technology, has been given Ministry approval. A Director with technical experience is required to provide for other members of the academic staff a good televisual presentation of the programmes they require. The person appointed will be on the academic staff of the Education Department. He will advise on the installation of the unit, and be responsible, with the assistance of a Technician, for its operation and maintenance. Salary will be Pelham Scale for Lecturer ($£ 1,480$ to $£ 2,080$ p.a.) or Senior Lecturer ($£ 2,080$ to $£ 2,460$ p.a.). Teaching experience is desirable, but not essential. Further particulars and forms of application, to be returned not later than 6th May 1968, may be obtained from the Principal, Nottingham College of Education, Clifton, Nottingham. (Reference to an employer will be made only with the applicant's permission.)

ULTRA ELECTRONICS LTD.,

Urgently Require

TEST ENGINEERS

must be experienced in the testing and fault finding of complex electronic equipment.

PROTOTYPE WIREMEN

Applicants must be able to work from circuit diagrams and verbal instructions. Both vacancies offer a high rate of pay, good conditions, canteen social and sports club.

Write or phone:-
Personnel Officer, Ref. WWI,
Ultra Electronics Ltd.,
Western Avenue,
Acton,
London W. 3
Telephone: 01-992 3434.

RADIO TECHNICIANS

A number of suitably qualifed candidates are required for enployment (in Cheltenhain and other parts of the J . K . including London). There are also opportunities for service abroad. Applicanta must be 19 or over and be familiar with the use of Teat Gear, and have had practical Radio/Electronic norkshop experience. Preference will be given to candidates who can offer
" 0 : level and GCE passes in English language. Maths and/or Physics, or hold the City and Guilds Telecommunicationa Tech hical Intermedite Certincerte or equivalent technical qualitica ions.
Pay according to age, e.g. at $19-\kappa 828$, at $2 \overline{5}-£ 1$, , 7 \% thathent papay on entry).
c1,941. There are a fation to graded in kitary range fl. 1 no
Annual teare allowance of 3 weeks 3 dayb rising to 4 wreke 3
days. Normal Ciril service sick leave vegulatimit npuly
Application forms available from:
Reoruitment OMcer (RT),
Goverameat Communications Hendgungieri
Oskiey. Priori
Cheltenham, Glos.

STUDY radio, television and electronics with the Sity world's largest home study orsanisation, I.E.R.E., City \& Guilds. R.T.E.B., etc. Also practical courses with equipment. No books to buy. Write tor free pros pectus to ICS (Dept. 442). Intertext House. London.
SWhis.
FREE to ambitious engineers! 132 -page Guide to City \& Guilds, A.I.O.B.. A.R.I.C.S. G.E.C.E., etc., on City setisfaction or Refund " terms; thousands of passes Enver 600 Home Study Courses in all branches of Engineering, Building: Radio. Electronics, etc.-Write: , Aldermaston Court. Aldermas
T certs., etc. on satisfaction or refund of fee terms: housand of passes; for full details of exams and home raining courses (including practical equipment) in all bage handbook-iree; please state subiect...British institute of Engineering Technology (Dept. 150 K). Aldermaston Court. Aldermaston. Berks.

CNGINEERS.-A Technical Certificate or qualificaElion will bring you security and much better pay Elem. and adv. private postal courses for C.Enk. G.M.I.E.R.E...IAM.S.E. (Mech. \& Elec.) City \& Diploma courses in all branches of EngineeringMech.i Elec.. Auto, Electronics, Radio, Computers, Draughts, Buildingidetc.-For full details write for ing Technology (Dept. 151K). Aldermaston Court
Aldermaston, Berks.

RECEIVERS AND AMPLIFIERSSURPLUS AND SECONDHAND

HRO Rx5s. etc.. AR88, CR100. BRT400, G209. S640. Ashville., etc. Hall. Ashock.-R. T. \& I. Electronics. Ltd. 4986.

TEST EQUIPMENT - SURPLUS
 ANDSECONDHAND

$\boldsymbol{F}^{\mathrm{R}} \mathrm{MEQENCY}$ meter. URM 32 M , 125 kHz to 1.040 lation; this is a modern instrument in frst-class condition; £75, carriage extra.-Branson. 111. Park Rd.

TWO Marconi signal generators, type $995-\mathrm{A} / 2 \mathrm{M}$ now surplus to requirements; complete with mander now surplus to requirements; complete with manual Ltd., Service Division each 152 . Coles Green Rd., London, NAGARD oscilloscope type DS. 103. \&30; Cossor - oscilloscope type 1035 , 20 ; Cossior oscilloscop type 1049 Mk.
single shot
\& 5 extra, motor driven $\& 10$ extra; Mulr

 wireless World

TECHNICAL TRAINING

CITY \& GUILDS (Electrical, etc.), on " Satisfaction Por or Retalls of of Fee " termas. Thousands of passes. trical engineering, electronics. radio. T.V., automation te.. send for 132 -page handbook-ifee.-B.I.E.T [13
B ECOME "Technically Qualifed" in your spare time in radio, TV servicing and maintenance. R.T.E.B. City \& Guids. etc., highly informative 120 -page

H.N.C. APPLIED PHYSICS

required to work with a new Cameca
Electron Probe Micro-analyser as an Operator'Engineer. Specialised training in operation will be given but experience in electronics essential.

Apply: Aeon Laboratories, Egham, Surrey.

TEST ENGINEER

A vacancy has arisen for an engineer who wishes to be engaged in testing a wide range of valve and semi-conductor industrial control equipment, including digital systems. A working knowledge of electrical/electronic circuitry is essential.

This is an interesting permanent staff situation and the salary paid will be commensurate with ability and experience.

The company is situated in rural surroundings and yet is close to several large towns. Housing is available at very moderate prices.

Applications for the above position, stating age, qualifications and previous relevant experience, should be addressed to:-

Employment Officer, Thorn Automation Ltd., Rugeley, Staffs.

The successful applicant will be required to join a team responsible to a Senior Physicist for the operation of a Cyclotron and the maintenance of its associated high voltage radio-frequency, high vacuum and target handling equipment. Also, to assist in the development of the Cyclotron and in the design and construction of the necessary electronic apparatus.
Applicants should have served a recognised electrical engineering apprenticeship or have had equivalent training. They should have either several years experience with the electronic aspects of high energy particle accelerators or an electronics background and experience with high radio-frequency voltages. Familiarity with high vacuum or radio-active handling techniques would be an advantage.
An appropriate O.N.C., City and Guilds Technicians certificate or equivalent qualification is normally required but applications will be considered from those who have had training and experience which is acceptable as of equal value.
The salary is in the range of $£ 1,375$ a year rising by four annual increments to a maximum of $£ 1,595$ a year.
Shift working may be required.
Assistance can be given with house purchase.
Contributory Superannuation Scheme.
Please apply to:
The Personnel Officer
(Quoting Ref.: T.56/45)

THE RADIOCHEMCACA CEITRE
Amersham
Bucks

BOURNEMOUTH COLLEGE OF TECHNOLOGY

FULL-TIME COURSES in preparation for the UNUERSTTY OF LONDON EXTERNAL HONOURS DEGEEE IN ELECTHICAL ENGINEERING
and FULL-TIME and PART-TIME COURSES in Power and Light Current Groups for the
I.E.E. PART III EXAMINATION

Next Session's courses commence in September, 1968. Details from the Principal, College of Technology, Lansdowne, Bournemouth. Approved lodgings arranged,

Early applications desirable

20 Penywern Rd., Earls Court, London, S.W. 5 Tel; 01-373 8721
This Private School provides full \& part day training in the following professional subjects

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE RADIO TELEGRAPHY

REDIFFUSION

TELEVISION FAULTFINDERS

We have vacancies for experienced television faultfinders in our Production Test Departments. R.T.E.B. Final Certificate or equivalent qualifications or experience are required, a knowledge of transistor circuitry will be an advantage. These positions will be staff appointments with all the expected benefits.
Applications to:

> Works Manager,
> Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades). Phone: 01-397-541I

TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:

- RADIO/TV ENG. \& SERVICING

AUDIO FREQUENCY

- CLOSED CIRCUIT TV
- ELECTRONICS-many new courses
- ELECTRONIC MAINTENANCE
- INSTRUMENTATION AND SERVOMECHANISMS
- COMPUTERS
- PRACTICAL RADIO (with kits)

PROGRAMMED COURSE ON ELECTRONIC FUNDAMENTALS

Guaranteed Coaching for:

- Inst. Electronic \& Radio Engs.
 C. \& G. Telecom. Techns' Certs. - C. \& G. Electronic Servicing R.T.E.B. Radio/T.V. Servicing Cert.
 - Radio Amateur's Examination
 - P.M.G. Certs. in Radiotelegraphy
 General Certificate of Education

 Examinations. Aiso many non-exam ination courses
Radio, TV and Electronls. Study at home with in Radio, TV and Electronics. Study at home with subject to-International Correspondence Schools (Dept 443). Interiext House. Parkgate Rd.. London, SW1I

BOOKS
" TeLEVISION Engineering Principles and Practice, B.SC. (Hons.). A.M.I.E.E. and D. D. Birkinshar. M.B.E., M.A.. M.I.E.E. The third volume of a com-
prehensive work on the fundamentals of television prehensive work on the fundamentals of television tion of BBC engineering staff. This volume gives the application in television and sinusoidal, rectangular. sawtooth and parabolic waves and show's the mathematical relationship between them. The main body of the circuits commony used to generate such signals. the treatment belng largely descriptive in nature and
therefore less mathematical than that of the previous volume. The work is intended to provide a compre hensive survey of modern television principles and practice, $30 /-$ net from all booksellers. By post $31 /$. Lrom Indife S.E.1.

Computer Engineers

Due to continued expansion NCR require additional ELECTRONIC and ELECTRO-MECHANICAL ENGINEERS

 for Computer Maintenance. Posts are available for men wishing to become Site Engineers.Training Courses are arranged for suitably qualified men. H.N.C. Electronics, City \& Guilds Final or equivalent standard required. Men from Forces with radar experience welcome.
Knowledge of electronic or electro-mechanical equipment necessary. Good Pension and Bonus Plan in operation. Please write for Application Form to The Personnel Officer,
NCR, 1000 North Circular Road, London, NW2, quoting Publication and month of issue.
Plan your future with

相

RESISTANCE WIRES

EUREKA-CONSTANTAN Most Gauges Available

NICKEL-CHROME MANGANIN
NICKEL-SILVER
COPPER WIRE
ENAMELLED. TINNED, LITZ, COTTON AND SILK covered
SMALL ORDERS PROMPTLY DESPATCHED B.A. SCREWS, NUTS, WASHERS, SOLDERING tags, EYELETS and RIVETS
EBONITE and BAKELITE PANELS,
TUFNOL ROD, PAXOLIN TYPE COIL FÓRMERS AND TUBES, ALL DIAMETERS
send stamp for list. trade supplied

POST RADIO SUPPLIES

33 Bourne Gardens, London, E. 4 Tolephone 01-254-4688

CURSONS TRANSISTORS ALL GUARANTEED
1/- each. BAY3I, BAY50, DK10. OA70, OAB1. 2/- each. XAIOI, XAIO2, OC71, OC72, OC81. OC8ID, OC44, OC45, GET 16, FST3/1, AC'Y22. 3 3/ each. OC139, OC140, $2 \mathrm{~N} 706,2 \mathrm{~N} 708,2 \mathrm{~N} 2894^{\circ}$ BSY 95 A, AF212, BFY 18 , BFY 19 , BFY26.
$7 / 6$ each. RAS508AF, CRS3/40, BLYIO. BLYII, $7 / 6$ each. RAS508AF, CRS3/40, BLY10. BLY1,
BUYIO, BUY1I. ADY22, ADY23, ADY24, OC26.

ZENER DIODES
3.9 v. to 26 v., $\frac{1}{4}$ w. 3/- each; $1.5 \mathrm{w} .4 /-7 \mathrm{w} .5 / \mathrm{e} \mathrm{ea}$ CURSONS,
78 BROAD STREET,
CANTERBURY, KENT
S.A.E. LATEST NEW LIST

LAWNDN IBRANI NEW TELEVISIGN

TUUBES

Complete fitting instructions are supplied with every tube.
Terms: C.W.O. Carriage and insurance 10 /.

LAWSON TUBES

18 GHURCHDOWN ROAD MALVERN, WORCS.

Tel. MAL 2100

The continually increasing demand for tubes of the zery highest performance and reliability is now being met by the new Lawson "Century 99 " range of C.R.T.s.
"Century 99 " are absolutely brand new tubes throughout manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance with needle sharp definition screens of the very latest type giving maximum Contrast and Light output; together with high reliability and zery long life.
"Century 99" are a complete range of tubes in all sizes for all British sets manufactured 1947-1967.

2 YEARS FULL REPLACEMENT GUARANTEE

$12^{\prime \prime}-\subset 4: 10: 0$
14"-45:10:0 17"- $55: 19: 0$ 19"- $\mathbf{6} 6: 19: 0$ 21"-67: 15:0

FAIRCHILD INTEGRATED CIRCUITS

* Lowest prices

Ex Stock delivery MOTOROLA I.C.s ALSO AVAILABLE CROSSWIRE ELECTRONICS LTD. STAPLE HOUSE,

51-52 CHANCERY LANE, LONDON, W.C. 2

${ }_{\mu}$ L 900 BUFFER - - - PRICE $11 /-$
${ }_{\mu}$ L 914 DUAL GATE - - PRICE $11 /-$
L 923 JK FLIP-FLOP - - PRICE 14/-
${ }^{4}$ PLASTIC SPREADERS - - $1 / 6$
CIRCUIT APPLICATIONS MANUAL $7 / 6$
Terms: Cash with order.
Approved Accounts Opened.
Postage and Handling 2/-.

Electronic Test Engineers and Technicians

are required due to continuous expansion and an imminent move into a new and larger factory
The work requires the rapid diagnosis of faults on transistorised d.c. amplifiers, power units, recorders, analysers or digital voltmeters. Experience with digital circuits is particularly required and qualifications at least to O.N.C. or City \& Guilds are desir able although successful applicants will have the opportunity to continue their studies and career development.

Write or telephone

The Production Manager
Fenlow Electronics Ltd.
Springfield Lane - Weybridge • Surrey
WEYBRIDGE 43.978

PHOTO ELECTRIC CONTROL SYSTEM

Comprises a light source unit with optional Infra Rell filter and lens system to force the light, Also a photo-electric
Relay control unit. Both housed in metal cases for bench or wall mounting, sensitivity control, mains on-off switch. Works from $230 / 240$. A.C. Mains. Can be used as a simple on-off switch by breaking the beam of light (invisible if nira Red fiter is used) and as such it will operate as a
burglar alarm, or will open doors, etc. Also in conjunction with a counter or other equipment it will perform man functions in the factory or warehouse. Price $£ 9.19 .6$

F.M. WIRELESS
 $94-104 \mathrm{Mc} / \mathrm{s}$. Transistorised. Operates from $9 \mathbf{v}$. battery. Complete with additional These cannot be operated In U.K.
 TRAHSISTORISED FM TUNER
 6 TRANBIBTOR HIGE QUALITY TUNER. SIZE ${ }_{3}$ I.F. stages. Double tuned discriminator. Auple output to amplifiers. oped most Operates on volitiers. Operates on 98 volt battery. Coverage $88-108 \mathrm{Mc} / \mathrm{s}$. Ready built ready for use. Fantastic value for money. $\quad £ 6.17 .6$
 LOUDSPEAKERS. 2"9/6 40 ohm, 2 t $^{2} 80$ ohm. 9 2° TWIN CONE $1035 /$ TWEETER 16 oh
 TWEETER 10 wat, 18 KM - $\mathrm{CPS} 29 / 6$ CROSSOYER NETWORE 16 ohm |7 Under 21 P. \& P. Ad, 17/Over 21 Poat Frec. C.O.D.

DURHAM SUPPLIES

175E Durham Road, Bradford 8, Yorkshire

WORLD RADIO \& T.V. HANDBOOK By JOHANSEN

1968 ED. 42/- P. \& P. I/
The Practical Aerial Handbook, by King, radio and T.V. 35/-. P. \& P. 1/3

Silicon Controlled Rectifiers, by Lyte!, 21/P. \& P.।

Circuits for Audio and Tape Recording, by Judd. 7/6. P. \& P. 1/
Computers for the Amateur Constructor, by Warring, 20/-. P. \& P. 1/-

Pal System, by Patchett, 40%. P. \& P 1/3.
ransistor Substitution Handbook, New 7th Ed. Aeri. P. \& P, $1 /=$
Aerial Ha,
P. $\&$ P. $1 /$-.
(1).

Tape Recording for the Hobbyist, by Zuckerman, 26/.. P. \& P. 1/-.

Where possible 24 -hour service guaranteed

UNIVERSAL BOOK CO.

12 LITTLE NEWPORT ST., LONDON, W.c. 2 (Leicester Square Tube Station)

GENUINE ARTICLES ONLY!

NOT " seconds " NOT " re-marks ", but BRAND IISCOUNT prices (in brackets) for 5 OR MORE SAME TYPE.

AD161	7/9 (6/4)		
62	7/9 (6/4)	2N706	3/4 (2/7)
AF239	10/- (8/6)	2N2926	3/- (2/6)
BC107	3/11 (3/1)	2N3707	5/- (4/3)
BC109	3/6 (3/6)	2N4058	5/6 (4/7)

CWO. Mail order only . Orders over 10% U.K. post paid.

AMATRONIX LTD, (Dept WW5) 396 Selsdon Road, Croydon, Surrey, CR2 ODE

WE BUY

any type of radio, teleyision, and electronic equipment, components, meters, plugs and sockets, valves, and transistors, cables, electrical appliances, copper wire, screws nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12
RING 4452713
4450749
9587624
9589842

NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logic modules. CONTIL and BRIGHTLIFE products are all ex-stock. For details see February and April 1968 service card. New prices on new leaflet. All customer on mailing list will receive these automatically. WEST HYDE DEVELOPMENTS LIMITED 30 HIGH STREET, NORTHWOOD, MIDDX. Telephone: Northwood 24941

MINIATURE KEY SWITCHES. (P.O. Lever Type 1000),
 3 digit. $12 / 24 / 48 v$. (state which), $32 / 6$ ea. P.P. $2 / 6$
HIGH SPEED MAGNETIC COUNTERS ($4 \times 1 \times$ lin.) 4 digit HIGH SPEED MAGNETIC COUNTERS $(4 \times 1 \times$ lin.) 4 digit.
$6 / 12 \mathrm{v}, 24 / 48 \mathrm{v}$. (state which), $6 / 6$ ea., P.P. $/ /-$. $6 / 12 \mathrm{v} .24 / 48 \mathrm{v}$. (state which), 6/6 ea., P.P. I/-
SOLARTRON OSCILLOSCOPES. CD7IIS. 650 carr. 70/CD643 \&50, carr. $70 /-$; QD910 \&75, carr. \&5. Ail
units in first class condition. Complete with units in
R.F. AMMETERS 3 in . Rnd. $0 / 6 \mathrm{amp}$. $10 /$. ea. P.P. $2 / 6$. COPPER LAMINATE PRINTED CIRCUIT BOARD ($8 \frac{1}{2} \times 5 \frac{1}{2} \times$ Tin.), $2 / 6$ sheet, 5 for $10 /$.
Also $1 l_{\frac{1}{2}} \times 6 \frac{1}{2}$ in. $4 /$. ea., 3 for $10 /$.

BULK COMPONENT OFFERS 100 Capacitors (latest types) 50 pF to $.5 \mu \mathrm{~F}$. 250 Resistors $\frac{1}{8}$ and it watt. 250 Resistors $\frac{1}{2}$ and I watt. 150 Hi -Stab Resistors, $\frac{1}{2} \frac{1}{2}$ and I watt. 25 Vitreous W/W Resistors, 5\%. 12 Precision Resistors 1% (several standards included). 12 Precision Capacitors 1 and 2% (several standards included). 12 Electrolytics (miniature and standard sizes). ANY ITEM 10/-, ANY 5 ITEMS 62

VENNER LIGHTWEIGHT ACCUMULATORS (I oz. I $\frac{7}{4} \times$ $13 \times \frac{1}{2}$ in.) 2 v. $1.5 \mathrm{a} . \mathrm{h}$., $12 / 6 \mathrm{ea}$. (with electrolyte and charging inst.).
CARPENTER POLARISED RELAY 18,000 curns at 4000Ω 15/- (with base). ALL Types of G.E.C./SIEMENS/
MAINS RELAY (240 v . A.C.) 12 H.D. make contacts, 20/- ea., P.P. $2 / 6$.
feed relays (2 Herkons) S.T.C. 2426-582-15, 2 make. 10-15 vole coil, $15 /-\mathrm{ea}$.
" 3000" TYPE RELAYS (Ex. New Equip.) 10 for 25/ (our choice), p.p. 5/-.
COMPUTER LOGIC BOARDS containing 14 BCZII, 2 OC122, 2 trimpots 20/- ea.; board containing BCZII, tantelum caps. etc. 10%. ea.
TELEPHONE HANDSET (Type 706) $17 / 6$ ea., P.P. 2/6.
ZENER DIODES 3 to 50 volt. 5%. 1.5 watt, $3 / 6 ; 10$ watt, 5/6 ea.
TELEVISION TUBES (Brand New) 19in. M47/IOW 56 ea. 23 in . A59/IOW 88 ea. Carr. \& ins. 20/.. These tubes
THYRISIOR LIGHT DIMMER/SPEED CONTROL modules and kits. 200 watt kit 27/6, module 35/: 500 watt kit 37/6, module 45/-; 1000 watt kit 52/6, modul
SILICON CONTROLLED RECTIFIERS (Thyristors) BTY87 (100r) 100 p.i.v. 12 amp ., $15 / \mathrm{ea.;}$ TBY91 (150 r) 150 p.i.v. 16 amp., 20/•; CRS25/10 100 p.i.v. 25 amp. 30/-; CRS25/40 400 p.i.v. 25 amp.: $80 /-;$ CRSI/20 200 p.i.v. 19 mp ., 5/b; CRS $/ 40400$ p.i.
SILICON DIODES RS220af $2 /-$ ea., fil doz. : RS240 3/- ea. 30/- doz.; RS280 4/- ea., 40/- doz.; IS103/BY100
 60/- doz; IS413 5/- ea.; 50/- dor.; RS6/0,
RS640 20/- ea., RS812 40/. ea.; RS845 60/- ea.
CAR RADIO SPEAKER $7 \times 4 \mathrm{in}$. $3 / 5 \mathrm{ohm}$. $15 /$ ea. P.P. 2/6. OSCILLOSCOPES Cossor 1035, £17/10/\%; 1049, £20;
Solartron D 300 , $£ 20$, P.P. any unit $£ 2 / \mathrm{iO} / .$.
E.M.I. MINIATURE RELAYS (24 v . I c/o) $\frac{1}{2} \times \frac{1}{2} \times \frac{3}{4} i n$. Wt. $\frac{1}{2}$ oz. $7 / 6$ ea
RECORD LEVEL METERS (by Smiths) $1 \frac{1}{2} \times \frac{1}{2} \mathrm{in}$. $15 /-\mathrm{ea}$ P.P. 2/6.

SILICON BNIDGE UNITS. GEX541 80 p.i.v. 10 a., $37 / 6$ ElIBD-RC 100 p.iv. 10a., 37/6; GA3I-A (Germ) 200 p.i.v., 2a., 20/.
SORENSON VOLTAGE REGULATORS. Type LT-1000-2S. $\not \subset 25 \mathrm{ea}$.
P.C. CONNECTORS (13 way in-line), $4 / 6$ pair

LARGE CAPACITY ELECTROLYTICS. $\quad 2,000 \mu \mathrm{~F} .150 \mathrm{v}$.; $4,000 \mu \mathrm{~F} .90 \mathrm{v}, 7 / 6$ ea. $6,300 \mu \mathrm{~F}, 63 \mathrm{v} . ; 10,000 \mu \mathrm{~F} 30 \mathrm{v}$. $16,000 \mu \mathrm{~F} 15 \mathrm{v}$.; $25,000 \mu \mathrm{~F} 15 \mathrm{v}$. $10 / \mathrm{e} \mathrm{ea}$. All $4 \frac{1}{2} \times 2 \mathrm{in}$ screw terminals. P.P. I/- ea.
SPEAKER BARGAINS. E.M.I. $13 \times 8 \mathrm{in}$. with double Tweeters 15 ohm, $65 /$; P.P. 5/P.P. As above less
tweeters 3 or 15 ohm , 45/- ea., P.P. 5%. FANE I2in. 20 watt (Dual Cone), 95/-, P.P. 5/
TRANSFORMERS L.T. 50 v . at 5 amp . $19-0-19 \mathrm{v}$. $\frac{1}{2} \mathrm{amp}$ 25/-, P.P. $5 /$
TRANSFORMERS H.T. $625-0-625 \mathrm{v}$, at 110 m.a., 6.3 v . at 2a., 6.3v. at 3a. c.t. Parmeko Neptune series, 35/-
ELECTRIC SLOTMETERS ($1 /-$) 25 amp . L.R. 240v. A.C., 85/- ea., P.P. 5/
QUARTERLY ELECTRIC CHECK METERS, 40 amp. 240 v A.C., 20/- ea., P.P. 5/-

STEP-DOWN TRANSFORMERS. PRI, 200/250v. Sec. I. P.P. $5 /--$

PATTRICK \& KINNIE

BI PARK LANE, HORNCHURCH, ESSEX
Tel.: ROMFORD 44473

COMDON CENTRAR iadio stactis

FRACTIONAL H.P. MOTORS. A.C. $200 / 250 \mathrm{v}$ with gears 6 6/. P. \& P. $2 / 6$. PHONES in Bakelite case with junction box handset. Thoroughly verhauled Guar anted $\varepsilon 6 / 10$ - per unit.
20-WAY PRESS-BUTTON INTER-COM TELE. PHONES in Bakelite case with junction box. ThoPHONES in Bakelite case with junction box. Tho-
roughly overhauled. Guaranteed. $£ 7 / 15 /-$ per Unit. roughy overhauled. Guaranteed. $7 / 15 /$ per
MODERN HAND SETS with coiled lead, grey, white and black, 22/6. P.P. 3/-.
TELEPHONE COILED HAND SET LEADS, 3 core 5/6. P.P.
MODERN DESK
MODERN DESK PHONES, 2 tone grey or black. with internal bell and handset with $0-1$ dial, $£ 4 / 10 /=$.
P.P. 7/6. $9.0 \mathrm{Mc} / \mathrm{s}$. Working range $\frac{1}{3}$ to 2 miles. Size $10 \frac{1}{2} \times 4 \times$ $6 \frac{1}{2} \mathrm{in}$. Weight $6 \frac{1}{2} \mathrm{lb}$. Includes power supply 8 lb . -and spare valves and vibrator also tank aerial with base.
£6 per pair or $£ 3$ single. P.P. $25 /$. EL per pair or £3 single. P.P. ${ }^{\text {ELTER }}$ (1/- in slot) for A.C. mains. Fixed tariff to your requirements. Suitable for hatels, etc. $200 / 250$ v. $10 \mathrm{~A} .80 /, 15 \mathrm{~A} .90 / \mathrm{F}, 20 \mathrm{~A}$.
100/. P.P. $7 / 6$. Other amperages available. Reconditioned as new. 2 years guarantee. QUARTERLY ELECTRIC CHECK METERS.
Reconditioned as new. $200 / 250$ v. 10 A. 42/6; 15 A. $52 / 6 ; 20$ A. $57 / 6$. Other amperages available. 2 years 8-BANK UNISELECTOR SWITCHES. 25 contacts. alternate wiping $£ 2 / 15 /-; 8$ bank half wipe
$\$ 2 / 15 /-5$ bank half wipe, 25 contacts $47 / 6$, P.P. $3 / 6$. DESK PHONES. Black Bakelite cases. complete with DESK PHONES. Black Bakelite cases. complete with
HIGH-SPEED ELECTRO-MAGNETIC COUN. HIGH-SPEED ELECTRO-MAGNETIC COUN
TERS. Ex-Govt. 4 digit. $25 / 50 v$. D.C. Size $4 \times 1 \times$ lin. Single coil, 2,300 1 . Single coil $500 \Omega 8 / 6$. P.P. $3 / 6$.
EX. GOVT. BALANCED ARMATURE THROAT EX. GOVT. BALANCED ARMATURE THRO
MIKES complete with plug, new, 7/6. P.P. $3 / 6$.

DESK PHONES from 35/-. Various types in stock. Final End Selectors. Relays, various callers,
also ig Receivers in stock. All for callers only.

23 LISLE ST. (GER 2969) LONDON W.C. 2
Closed Thursday 1 p.m. Open all day Saturday

Thanks to a bulk purchase we can offer BRAND NEW P.V.C. POLYESTER \& MYLAR RECORDING TAPES

Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.
Should zoods not meet with full approval, purchase price and postage will be refunded

L.P. $\left\{\begin{array}{llllll}512 i n . & 900 f t . & 8 / 6 & 7 \mathrm{in} . & 1,200 \mathrm{ft} & 9 /- \\ 3 \mathrm{in} . & 225 \mathrm{ft} & 2 / 6 & 5 \mathrm{in} . & 500 \mathrm{ft} & 8 / 6\end{array}\right.$

Postage on all orders 1/6
We can also offer, BRAND NEW PRE-RECORDER LANGUAGES COURSES in GERMAN, FRENCH, SPANISH AND ITALIAN.

Each course consists of 26 step-by-step lessons recorded at 3 iti.p.s. suitable for ewo- and fourtrack machines and supplied complete with handbook. Normal retail price 59/6.

Our price $19 / 6$ per course

STARMAN TAPES

28, LINKSGROFT AVENUE, ASHFORD, MIDDX.

SLYDLOK FUSES $15 \mathrm{amp}, 230 \mathrm{v}$. D.C. 4 v 04A.C., 1/6 ea., 15/- per doz
HEADPHONES. Carbon H/Mics. 5/- ea. P. \& P 2/6. DLR5 Bal. Armature, $9 / 6$. P. \& P. 2/6. M M/Coil
 No. 10 Ass
P. \& P. $4 / 6$.
TANNOY LOUDSPEAKERS. Re-entrant type, ideal for public address, enclosed in waterproof wooden case, complete with steel baffle designed to produce
directional reproduction at 5 watts. $7.5 \Omega \quad 27 / 6$ each. directiona
SMALL GEARED MOTORS. $12-24$ v. D.C., reversible, with gears attached, $15 /$ - ea.: with blower attachment, $12 / 6$ ea.; with fan assembly, $12 / 6$ each.
TRANSMITTER. BC 625, part of T/R. SCR522 For spares only. Chassis only. Complete with valves
except 832 s and Relay. 21/- ea. Carr. U.K. 4/SIEMENS HIGH SPEED RELAYS. H96B type, 50 +50 ohms. \quad 6/ ea. Type H69D, $500+500$ ohms,
$6 / \mathrm{ea.;}$ Type H96E, $1,700+1,700$ ohms, $7 / 6 \mathrm{ea}$. Carr. $1 /$:
" TELE L" TYPE FIELD TELEPHONES. These telephones are fitted in strong steel case complete with Hand Gen. for calling each station. Supplied
condition and tested. $70 /=$ per pr. Carr. $7 / 6$.
POST OFFICE TYPE RELAYS. 3,000 sers. 2 c/o 2 m . slugged coil 140 ohms; $2 \mathrm{c} / \mathrm{o}$, slugged coil 500 ohms. All at $6 /-$ each. Carr. $1 /-$.
3,000 Type, by Ericsson Telephones, $2,1,0005$ $1 \mathrm{br} .2 \mathrm{mc} . \mathrm{c} / \mathrm{o}$ plus $3 \mathrm{c} / \mathrm{os} 12 / 6 \mathrm{ea} .2,000 \mathrm{~s} 24 \mathrm{c} / \mathrm{overs}$

MORSE KEYS. No. 8 assembly complete with leads terminals and cover, $6 / 6$ each. Carr. 2/-
VIBRATORS. 12 v. 4 pin; 12 v. 7 pin. Syn. Al 6/- each. Carr. 1/4.
ELECTRO MAGNETIC COUNTERS. Register up to 9999 , coil res. $300 \Omega 5 /$ each. Carr. 1/-. Ex equipment.
MODULATION TRANSFORMERS. 150 watts suitable for pair 813 s . driving 313 s . Size 6 in. $\times 5$ in
$\times 3 \frac{1}{2}$ in. Brand new, boxed. Price $27 / 6$. Carr. $4 / 6$. MEGGER INSULATION TESTER 500 v . with Contest range from 0.1 ohm to infinity. Bakelite case with
hand gen. $£ 9$ ea. Carr. $5 / 6.2$ ranges, ex-Hoover tock.
CUT OUT. 12 v . or 24 v . operation. Heavy duty silver contacts (5c 849), 7/6 ea. Carr. I/6
LIGHTWEIGHT HEADSET (part of " 88 " W. Set Equipt.) complete with Boom mic., carbon made to highest Ministry Spec. Moving coil earpieces. Our
price $35 /-$ set. Carr. $3 /$. Also Super Lightweight hand price $35 /$ set. Carr. 3/-
set, $17 / 6$ ea.
200 AMP. 24 v. D.C. GENERATORS. Type P3 ex-Air Ministry, $89 / 10 /-$ ea. Carr. 10/6
P.C.R. 12 V. VIBRATOR POWER PACKS. Brand new, 22/6 ea. P. \& P. 5/-.
CONDENSERS. Paper, Sprague 1 mfd 500 v., 5/ doz. . 1 mid . 1,500 v., 7/- doz. (incl. P. \& P.)
HEAVY DUTY TERMINALS. Ex-equipt. Black only, will take spade terminals and wander plug. $1 / 6 \mathrm{pr}$ 15/- doz. pairs. P. \& P. 1/6 ea. doz.
FATIGUE METERS. 24 v. D.C. Consisting of $_{6 \times 300} \times$ 496 D Relay: $500 \times 500 \Omega$. $6 \times 300 \Omega$ Electro Mag counters, etc. $£ 3 / 10 / \mathrm{e}$ ea. Carr. $4 / 6$.
RELAYS. 3,000 Series 2 C/O $2 \mathrm{M} .140 \Omega$ slugged $500 \mathrm{cos} 2 \mathrm{C} / \mathrm{C} / \mathrm{Os}$ slugged coil, 6/e. P. \& P. I/- ea. item Also a few Ericsson Telephone 3,000 types in stock,
$10 /=$ ea. Brand new. P. \& P. $1 / \mathrm{c}$ AMERICAN AUTOPULSE 24V PUMPS for mounting between carb. and main fuel tank as auxilisry
New- $30 /-$ ea. P. \& P. $5 /-7$ g.p.h. Size mount. New -30
pin. $\times 2 \frac{1}{2}$ in. $\times 2 \frac{1}{2}$ in.
W. SETS, No. 19 Mk. III. New. \&5/10/-, incl. carr POWER SUPPLY UNITS, 12 v . for " 19 " Sets $35 /$, incl. carriage.
Complete Units. 19 Set, Variometer, 12 v. B.S. Control Complete Units. 19 Set, Variometer,
Box. H/Phones and Leads. 10 GNS. incl. carr. W/S REMOTE CONTROL UNIT "E," Mk. 2 As supplied with W.S. 19 VARIOMETERS. 17/6. P. \& P. 4/6.
S.T.C. MINIATURE SEALED RELAYS, TYPE $4184 \mathrm{GD}, 700 \Omega 24 \mathrm{v}$. (will work efficiently on 12 v . D.C. (ex equipment)
more post paid.
SMALL D.C. MOTORS. $2 \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in}$. Rated 24 v ., will work on 12 v . $\frac{1}{2} \mathrm{in}$. length drive shaft. Ideal for model makers, etc. $10 / 6$ ea.
POCKET TRANSISTOR SETS-6 Transistor Med Wave. Complete with earpiece and plastic carryin
case. Boxed, brand new. \&2 ea. P \& S.A.E. all enquiries.

Tel. BIRKENHEAD 6067
Terms Cash with Order.

INSTRUMENTS LTD BURGESS HILL, SUSSEX, ENGLAND TELEPHONES: BURGESS HILL 2642-3 CABLES: RENDAR, BURGESS HILL

Quartz Grystal Units

For

ACCURACY

RELIABILITY
PRICE ECONOMY
you can
DEPEND
on
THE QUARTZ CRYSTAL CO. LTD.
Q.C.C. Works, Wellingron Crescent,

New Maiden, Surrey 01-942 0334 \& 2988)

35 watt Ultrasonic Amplifiers contain-2-EL 34, 1-ECC, 87, 2-BYI00.
Mains Trans. 200/250v-230v. 85 amp . O.P. Trans. etc. Price $£ 3-10-0$ each including carriage in U.K.
UNISISTORS large quantities available $£ 12$ per 1,000 types Q3/2. Q3/5 and Q8/5. Full details and samples on request.
TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.CR., also "C" \& "E" cores. Case and Frame assemblies.

J. Black

44, GREEN LANE, HENDON, N.W.4. Tel:- $\begin{aligned} & \text { 01-203-1855 } \\ & 01-203-3033\end{aligned}$

EXCLUSIVE OFFER

LATEST TYPE, HIGHEST QUALITY 7 FOOT HIGH x 24 INCH DEEP TOTALLY ENCLOSED

19 INCH RACK MOUNTING
DOUBLE SIDED CABINETS
having the following unique features

$*$
Double sided
the cabinets will

take rack panels
both sides both siden, that is
back and front back and front
and they are
drilled and dill the way down
every in tor every in. for this
purpoze. purpose

* Fitted "Inatantit" (World Patents)
fully adjutabie fully adjuatable
rack panel mount
both rack panel mount
both vertically
and horizoll and horizontally
-thete allow th -these allow the race panela to be
recessed if desired Thor instance, if the pazela are
fitted with pro fitted with pro-
jecting compo-
nentit and it is nenth and it is
desired to enclose desired to enclo
them by doors.
\star All edgea and cornera rounded.
All interior fattings, tropicalited and ruat proofed and pasaivated.
- Built-in Cable Ducta-removable.
\star Built-in Blower Ducts-removable
Ventilated and insect proofed topa.
* Detachable side parels.
* Full length instantly detachable door! itted eapaguolette
bolts availa ble if ordered with cabinets.
\# Made in California, U.S.A., cost the American Govern
Finished in grey primer and in new condition.

OUR PRICE 826100

 (Full length door! $£ 5$ each extra).You do not require doora if you are going to mount panels front and back and do not wish to enclone them.
40-page list of over 1,000 different itema in stock
2vailable-keep one by you.
$\left.\begin{array}{l}\star \mathbf{7} \text { Track Teletypewriterı } \\ \star \boldsymbol{7} \text { Track Tape Readera }\end{array}\right\} \ldots \ldots$.

7 Track Tap Pada
$£ 450$

* 8 Track Weatrez Tape Punchen, lens motori

Philco CLR Microwave Multiplex Radio-
Rectifera, s-phase input 28 v. 200 A. out
Blelms Teletype Monitors
© Stelma Logie Unitu, octal bare
Colline $748 \mathrm{H}-1$ Teat Sets

- Digital Indicatori $0-987$
\star Circuit Breakers, 85 ampi
\star Nixie Lampa
Uniselectora 10 bank 25 way er new
- Precition Mains Filter Units

Avo Geiger Countera
£35 0

- Illuminated 4 section 8 witches
- Teletype Model 88 Power Supply Dnitz - Teletype Model 28 Funetion Boxes \star Pen Type Perional Donemeters 0/50R \star R.C.A. $420 \mathrm{mc} / \mathrm{s} 5$ ol. Yetera * Metro-Vickera Vacuum Pumpi 230 v. A.C... * Beekman Heliopota 30K and 50K
$£ 2500$
\star R.C.A. 25 watt Projector Speakern, range 1
t T. 200 Panada ptory $450 / 470 \mathrm{ke} / \mathrm{L}$
© Marconl E.R. 22 ssB Receivers $2 / 32 \mathrm{mc} / \mathrm{s}$
\star G.E.C. BRT-400 Receivera, Table Model
©AN/UP1M-17 Spectrum Analgsers 10/18,000 me/s
AAN/DRM 33, 34, 35 and 36 signal Generatori
- Kade 500 - Ultratonic Cleanera B. J.R
\star Monitor Type S8 and Power Unita $\begin{aligned} & \text { £ } 710\end{aligned}$
Carriage extra at cost on all above
We bave a large quantity of "hits and pieces" we cannot list-please aend ut your requirement,
P. HARRIS

ORGANFORD - DORSET

DINSDALE MK II AMPLIFIERS

Printed circuits and parts for mono and stereo versions. Special new power am
eliminates earth loop problems.
BAILEY 20 WATT AMPLIFIER. All part vaiłable for this unit including Radiometal-cored Driver Transformer and recommended bi-filar wound Mains Transformer
MULLARD IOW. A.B. TRANSISTOR AMPLIFIER SPECIAL CLEARANCE.
Printed Circuit Boards to Mullard specification, two post free
Layout Diagrams 9d. each. All other parts available. Please send S.A.E. for all Lists.

HART ELECTRONICS
321 Great Western Street, MANCHESTER 14

А HAMMERITE EANMER

AIR DRYING - JUST BRUSH ON

 INDUSTRIALIETS ! ! ! SAVE TIUE AND \&efa's (2 pilts will dir a Mini) FINNIGAN SPECIALITY PAINTS (W) Mickley Square Stocksfield, Northumberland. Tel: Stocksfield 2280
 002250 colts,
20 tump. ontacts

ON/OFF TWICE every 24 hours at an nanually pre-set times, or alternatively with SOLAR DDAL ON at dubk OFF a dawt. By-pasa nverride. 36 hour aprin,
reserve, overvones slopping in case oo reser.e. overwines stopping in case n
t perfect guarnuteed.
state dial requires MAKERS PRICE OVER $£ 12$ OUR PRICE 69/6 p.p. 4 Waterproof metal caye approx. .ind
HORSTMANN 15 DAY CLOCKWORE TIME SWITCH Jewelled movelitent. Once ONOFF every whinf at any perifect. 5 amp model. Fully guaranteed. $\quad 35 /=\quad$ P. \& P.4/G VENNER $200 / 250$ v. FLASHER UNITS containing hreins geare motor. ON/OFF every second. 200 W

Box 365, KINGSWOOD SUPPLIES (w.w. 13) 4, SALE PLACE, LONDON, W.2. Tel:01-7238189.

REDUNDANT OR SURPLUS RADIO - ELECTRONIC STOCKS WANTED

 OSMABET LTD46 KENILWORTH ROAD, EDGWARE, MIDDX TEL: STONEGROVE 9314

THE ONLY COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

end stamps value 9d, for 16 page booklet and supplementiving the fullest and latest information.
CECIL E. WATTS LIMITED Darby House
Sunbury-on-Thames, Middx

SURPLUS BABTMINS

COLLINS (U.S.A.) RECEIVER. 7 saive superhet (Int. Octal valves)
Exceptionaliy stable for SSB . Frequency coverage $1.5-12$
Mc/s. Power required. $250 \mathrm{r}-$ Mc/s. Power required. $250 \mathrm{r}-$ Excellent condtion. 212.

FAMOUS No. 19 SET TRANS/RECEIVER.

 Covers 2.8 Mc/s. in 2 bands. 11 valve superhet transceiver $85 /-$ All 19 set ancillsary parta available.
No. 31 TRANSCEIVER VHF, $40 / 48 \mathrm{Mc} / \mathrm{s}$. Tunable. $90 / 60 / 4 \frac{1}{2}$ Volts battery opersion,
No. 88. TWO-WAY RADIO. $40 / 42 \mathrm{Mc} / \mathrm{s}$. Crystal controlled. 4 chanuel- $50 /$ - each
B44. VHF RADIO TELEPHONE.
$00-95 \mathrm{Mc} / \mathrm{s}$. Crygtal controlled. 24 Y. D.C. operation. £7/10/--
No. 62. TRANSMITTER RECEIVER, $1.6-10 \mathrm{Mc} / \mathrm{s}$. Tunal, le
 station. Brand new. 12 or 24 v. D.C. operation. $£ 19 / 10 /-$. No. 52 RECEIVERS. Few left. Used (serviceable). $£ 7 / 10 /-$
TUBULAR STEEL TELESCOPIC AERIAL MASTS
 section, gol-
MAKE YOUR OWN AERIAL MAST!
ft. 8 in ., gin din (7 sections make SYLON GUY ROPES, with semi-automatic tensioner. 33 ft ,
 output 250 r . D.C. at $125 \mathrm{~mA} ., 25 / \mathrm{-}$. 12 r . 490 . D.C. at 85 m. . . $25 /$ 4 ranges. $1.2-10$ Mc/a. $30 /$ - R.T.U.). $160 / 80 / 40$ metres. 25/MOVING COIL EEADPHONES, Soft rubber earpads. 19/6. D.L.R. BALANCED ARMATURE HEADPHONES. $12 / 6$. 22/6.
MOVING COIL HEADPHONES AND MICROPHONES. $21 / 6$. TRANSMITERR. $1.75-16$ Me/a. 3 waveband tureable. 813PA. Conplete with all walven, and circuit. £7/10/-
POWER $\$ U P P L Y$. 12 . D.C. input, 285 and 1300 v. D.C
300 300 mat output.
ALL ITEMS CARRIAGE PAID MAINLAND ONLY
Lists giving fuller details of these and many other surplus barga
print clearly)
A.J.THOMPSON (Dept. WW)

Eiling Ladse" Codicote Hite He Hours of Business: Monday to Friday 8-5 Saturday 8-12

AMERICAN

TEST \& COMMUNICATIONS EQUIPMENT
suitable for navigation or Scope conversion, price from £5. S.A.E. for details. AN/ARC-33 Transceivers $225 / 399.9 \mathrm{Mc} / \mathrm{s}$. AN/VRC-19 F.M. Transceivers. 152/174 Mc / s £10.
AN/URC-4 \& AN/URC-11 "Handy-Talk-AN/ARN-6 \& AN/ARN-44 Compass Re-
AN/TRC-8 U.H.F. Radio Relay Sets.
AN/FPN-13 X band Radar Beacons
CU-168/FRR $2 / 32 \mathrm{Mc} / \mathrm{s}$ Antenna Couplers. AN/PSM-2A "Megger" Insulation Testers $500 \mathrm{~V} 0-1,000 \mathrm{Meg}$
AN/URM-30 Test Set for AN/URC-4s
AN/PSM-6 Multimeters $1 \mathrm{~K}-20 \mathrm{k} \Omega / \mathrm{PV}$
AN/URM-61 Signal Generator $1.8 / 4 \mathrm{Gc} / \mathrm{s}$.
TS-47 Test Oscillator $40 / 500 \mathrm{Mc} / \mathrm{s}$.
T-216/GR Xtl Synthesizer Signal Generator $225 / 399.9 \mathrm{Mc} / \mathrm{s}$.
AN/UPM-11A X Band Range Calibrators AN-USM-24A Measuring Oscilloscopes. TS-413C/U Signal Generators $75 \mathrm{~K} \mathrm{C} / 40$ Mc / s
TS-497B/UUR Signal Generator $2 / 400 \mathrm{Mc} / \mathrm{s}$. TS-147A/UP Radar Test Sets.
TS-917A/CG (Stelma TDA-2) Telegraph Distortion Analysers
ME-22/PCM Decibel Meters-45/+25 DBM
Tektronix 541, 543 \& 545 spare Tubes Type
5BHP2A. Price $£ 14$.
AN/APN-9 Loran Receiver Indicators, AN/UPM-19B Test Set for AN/APW-11.
I-177B Valve Tester
I-193C Relay Test Sets
LA-239 Measuring Oscilloscope. BC-614() Speech Amplifier

NEW GENERAL CATALOGUE
$\star \quad$ AN/103 1/- $\quad \star$
SUTTON ELECTRONICS
Salthoúse, Nr. Holt, Norfolk. CLEY 289.

SWANCO PRODUCTSLTD.
ganap AMATEUR RADIO SPECIALISTS g3PqQ

NEW EQUIPMENT

Illustrated Catalogue 7/6 post paid.
SWANCO PRODUCTS LTD.
Dept. W 247 Humber Avenue COVENTRY

Telephone
Coventry 22714 Hours: Mon.-Sat. 9a.m.-6p.m.

ALL GOODS GUARANTEED

CONVERTER/BATTERY CHARGER

nput 12 v. D.C., output $240 \mathrm{v} .50 \mathrm{c} / \mathrm{s} 170$ watt max Input $240 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$, output 12 v .5 amp . D.C. Fully fused with indicator lamps. Size $9 \frac{1}{2} \times 10 \times 4 \frac{1}{2}$ in. Weighc 19 lbs . An extremely compact unit that will give many years
reliable service, supplied with plug and leads. Only E4/10/-. P. \& P. 15/- extra.
As above-fully serviceable-perfect interior but soiled

DISTRIBUTED WIDE BAND AMPLIFIERS available. Various types, e.g. E.M.I. type 2 C com $100 \mathrm{mc} / \mathrm{s}$ an of $126 \mathrm{E} 10 / \mathrm{P}$ \& P nge 50 es RCA (British) Wide band amplifier extra. $20 \mathrm{c} / \mathrm{s}$ so $500 \mathrm{kc} / \mathrm{s}$-complete with internal stabilize power supply. E4/10/.. P. \& P. E1.
Head amplifier 1276 A for use wish P. \& P. 3/6

Wide Band amplifier by DYNATRON type 1008 $20 \mathrm{c} / \mathrm{s}$ to $500 \mathrm{kc} / \mathrm{s}$ gain 1600 complete with internal stabilized power supply. E9. P. \& P. \&1 extra. DEKATRON SCALER/TIMERS various models rom E6-\&12
BINARY/DECIMAL SCALER-99 scaled on Reons followed by ${ }^{4}$ digit resettable counter. $£ 9$ without EHT power supplies.
SCINTILLATION EQUIPMENT available. SCINTILLATION EQUIP.
Units or complete assemblies.
H.T. Stabilized power supplies from $\mathbf{6 4}$.
E.H.T. Stabilized power supplies from $\mathfrak{E 3}$. WRITE FOR DETAILS.

NUMERATORS type GRIOG, $2 \frac{1}{4}$ in. high figures requires 180 volts H.T.-base connections supplied and circuit values $22 / 6$ each. or 3 for $60 /=$. Bases $5 / 6$ each. PHOTOMULTIPLIERS type 931 A complete with base and resistor network. 25/* each
4 DIGIT RESETTABLE high speed counters- 10 counts per sec., $1,000 \mathrm{ohm}$ coill $36 / 48$ volt D.C. $22 / 6 \mathrm{ea}$.

ACY 19 Mul .
TRANSISTORS—Not remarks
13CZ11 Mul.
6 ETSR5 314l.
GETSR5 3141.
ON1305 Rea ?N1305 Rca
 $8 /-\mathrm{ea}$
$4 /-\mathrm{ea}$
$4 / 6 \mathrm{ea}$
$4 / 6 \mathrm{ea}$
$4 /-{ }^{2}$ VALVES

21321	$3 / 6$ ea.	(1)284;	$3 / 6$ еа.
\#AKo	3/- ea.	C'V284	5/6 еа.
tibris	B/- en.	Cr345	10/- ca.
(iCH6	3/6 ва.	('V42.	$7 / 6$ ea.
HiSN7	2 Bca	Cr.48.	4/6 er.
128NT/B34	2/- ca.		2/6 ea.
10142/94	3/- ea.		$7 / 6$ ea.
E180F	8/6 ea.	-1900	8/- ea.
EPP60	4/6 ea.	- V^{1014}	2/6 ea.
R17	5/6ea.	(9) 4) 24	3/- eit.
114	6/6 еп.	c) 0 064	12/6 ea.

BROOKS CRYSTALS $500 \mathrm{kc} / \mathrm{s} 2.5,10 \mathrm{mc} / \mathrm{s}, 10 / \mathrm{ea}$. RELAYS
American miniature gold contacts, 4 pole co 48 V ., brand new boxed $6 / 6$ ea.
Carpenters Type 51A1/50. 200 T 0.75 ohm 200T. 0.75 ohm brand new, boxed, 8/- ea
3000 Series $5 \mathrm{k} / \mathrm{ohms}, 2$ pole make HD contacts, 3/6 ea 3000 Series 1,000 ohms, all multi bank, state min. require

Siemens sealed HS 48V spco type H96E, 3/- ea.
1,250 ohms ture 4 pole co $12 / 24 V 200$ ohms, sealed $5 / 6$ ea. RATORS 12 v. 4 pin non-symonous
ea. BELING LEE 10 pin enclosed pluglopen socket, $4 / 6$
pair. FRACTIONAL H.P. MOTORS $240 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. Brand new. ldeal models, fans,
H.T. TRANSFORMERS e.g. $625-0-625 \quad 120 \mathrm{~mA} .3-6.3 \mathrm{v}$. $3 \mathrm{amp}, 2-6.3$ v. 4 amp . Potted Parmeko/Gardiners, as new 2.

Potted E.H.T. also available. Write stating requirements. TRANSFORMERS. All 200/250 inputs. 18 v - 6 a mps. continuous rating tapped $9-0-9$ at $22 / 6$ each. 18 v .12 amp at $\{3$ each.

SELENIUM RECTIFIERS
Double bridge 12 v. 6 amps. continuous rating. Size $3 \frac{3}{2} \times 3 \frac{1}{4} \times 2 \frac{1}{4} \mathrm{in} .9$ plate, $8 / 6$ each.
Quad bridge 12 v. 12 amps. continous rating 21/- each DIODES. New CV448/CV425 I/- each.
METROSILS. Ideal pulse suppression, $2 /$ each
E.H.T. CONDENSORS. 7.5 kV working, with clip 0.1 mid, 516 en.io

Cash with order
Post paid over 10/-
CALLERS WELCOME.

CHILTMEAD LTD.,

[^11][^12]SEMICONDUCTOR DEVICES

Fully guaranteed devices at competitive prices

Pstor	8/6	2N37104	4/6	Bryll	5/-	\KT-244	$5 / 6$
$\bigcirc \mathrm{N}$ ¢ 96		2N3710	5 -	Bryiz	5 5/-	NKT245	$5 / 6$
2N697	$5 /$ -	- 2102	$7 / 6$	BFYls	$5 /$	NKT6ı	$4 / 6$
$\cdots \mathrm{N} 64 \times$	4/6	28103	$7 / 6$	BFY19,	5.	NKT262	4/8
2NTOH	4/6	28104	$7 / 6$	Bryon	3/6	NKT264	$4 / 6$
- N 70 tiol	4/6	28131	$8 / 6$	Bryb1	$5 / 6$	NKT271	$4 / 8$
-N70x)	28501	$5 / 6$	BFY5:	5/6	-кт27-2	$4 / 6$
	5 /-	23302:	$5 / 6$	BFY5	5/8	NKT274	$4 / 8$
- 2 N 727	$5 /-$	28603	58	BEX19	5/8	NKT275	4/6
2N743	4/6	28731	4/6	bsx20	5/6	NKT291	5/8
2 N 74	4/8	28732	4/6	BSY 10	$5 / 6$	-KT403	15/-
2N763	4/6	28733	4/8	BSYII	$5 / 8$	NKT404	13/8
2N914	$8 / 6$	AClas	4/6	H8Y 26	4/8	NKT405	15/-
-2, 916	$8 / 6$	AC12t	4	B3Y27	4/6	NKT603	8/8
2N924	$8 / 6$	AC12-	$4 /$	Bsyek	4/6	NKT613	8/6
- N 930	818	Ac128	4/-	H8Y29	4/6	NKT674	6 /-
2N1131	$9 / 6$	ACY17	4.	188Y3	4/8	Nкт67\%	
-N113\%	$9 / 8$	ACYis	4	Bay34.	4/6	NKTil3	5/6
2 N 1302	$4 / 6$	ACY19	4)-	138995,	4/6	NKT734	$5 / 8$
2N1303	4/6	ALY20	$5 / 8$	BY100	4/6	NKT736	$6 / 8$
2N1304	$5 / 6$	ACY21	$5 / 8$	BYZII	9/8		5/6
2N1300	$5 / 6$	ACY2		BYZ11)	NKT781	6 /-
- N 130 i	$8 / 8$	ADY̌\%	4	BYZ12	8/6	оя	8
-N 1307	B/6	AD14	8	BYZ13	$8 / 6$	Oas	
2N1308	81	AD14!	8	(fetioz	4	OA47	1/6
-2 1304	8	AF114	4	GET103	4/-	oabi	1/6
-N1507	5/6	AF115	4	GET113	4/-	OAbs	1/8
2N161\%	$8 / 8$	AF11\%	4)	GETI18	$4 /$	0.1182	
2N1711	$8 / 6$	AF117	4	CEET119	4/-	OA200	$2 /$
2N1893	$81-$	$\mathrm{AFZ1}^{2}$	5/6	¢ + ET120	8/6	OA202	
2N14:94	$8 /-$. $\mathrm{ABZ21}$	$4)$	(EET873	81	Ocx 2	$8 /$
2N2193A	5/8	BC107	4/8.	GET881	4/6	0 C 23	$8{ }^{\text {d }}$
- N 21944	5/6	BClos	4/9	GET887	4/6	OC24	
2N2244		Helor	4/9	(1) ${ }^{\text {d889 }}$	4/8	OCP^{2}	8/6
2 N 221	b)	1scy 10	$5 / 8$	GET840	4/6	0 C 2 j	8/8
- $\mathbf{N} 22 \times 2$	51	BEY1:2	$5 / 8$	G етя¢!	4/8	$0^{0} 2{ }^{2}$	6/8
2 2245	$8 / 8$	Reys	$7 / 6$	(EETR9\%	1/6	O(34)	
2N2:384	8 8-	Ве'Y31	7/6	(15-8998	4/6	OC35	6/6
2N2369)	BCY ${ }^{\text {d }}$	$7 / 8$	NKT135	$6 /-$	Ocast	6/6
2N2369A	81	BCY33	5/6	NKT126	$81-$	OC44	
2N2417	816	BCY34	$5 / 8$	NKT135	$5 / 6$	Ocas	8/6
2N1412	$8 / 6$	Beys	5/8	NKT210	8/-	OC-70	傀
2 N 2483	5/8	BCY 39	5/8	NKT 211	$6 /-$	OC7 1	2/6
$2{ }^{2} 2484$	$5 / 6$	веу4	78	NKT2lı	5/8	OC72	2/6
2 N 26 4 4 i	$8 / 8$	BCY54	7/8	NKT213	81	OC74	4/6
2N2904	$8 /-$	beyz0	6/8	NKT214	4/6	OCTs	2/6
$\because \mathrm{N} 2904 \mathrm{~A}$	8	BCYI	10/8	NKT215	4/6	OCTK	3/-
2 N 29115	8	BCY:2	6/6	NKT218	10/6	OC781)	
	8	BF115	4/6	NRT219	8/-	$0 \mathrm{C81}$	$8 /$
2N2906	8	BFX12	8/8	NKT2¢3	$81-$	OC81D	$8 /$
2N 294065	8 -	BEX13	6/6	NKT224	5/-	OC82	$8 /-$
2 N 2 yli	$8 /$	BFX29	151-	NKT225	$51-$	OC82	81
2 N 2907 A	$8 /$	HFX84	8)-	NKT229	$81-$	OC83	,
2 N 2421 i	3/-	BFX85	10/-	NKT238	8 -	OC84	
2N3011	5/6	BFX86	8 -	NKT239	$81-$	OC200	5/8
2N3053	8 /-	BFX87	10/-	NKT240	$81-$	OC201	5/8
2N305s	21/6	BFX8	8 8-	NKT241	$8 / 6$	OC202	8/6
2N370日	4/6	brylo		NKT242	B/-	OC203	
VEROBOARD: OC204 5/8 $2 \frac{1}{2} i n . \times 3 \frac{1}{4}$ in., $3 / 6 ; 2 \frac{1}{2} \mathrm{in} . \times 3 \frac{3}{4}$ in., 4/3; Curter 9/Post \& Packing $1 / 8$ per order. Quantity discounts available. Send S.A.E. for List.							
A. MARSHALL SON (LONDON) LTD., 28 CRICKLEWOOD BROADWAY, N.W. 2							
Tel. : 01-4520161						Dept. WWIs	

GODLEYS
 SHUDEHILL, MANCHESTER 4

Telephone: BLAckfriars 9432
Sole Manchester Distributors for world famous BRYAN AMPLIFIERS
Agents for Ampex, Akai, Ferrograph, Tandberg, Brenell, B \& O, Vortexion, Truvox, Sony, Leak, Quad, Armstrong, Clarke \& Smith, Lowther, Fisher, Goodmans, Wharfedale, Garrard, Goldring, Dual, Decca, Record Housing, Fitrobe, G.K.D., etc.
Any combination of leading amplifiers and speakers demonstrated without the slightest obligation.

RECEIVER, TYPE 1933A
A compact 20 valve crystal controlled receiver of modern sisting of main double-sided chassis and front panel with 5 plug-in sub-chassis. I.E., R.F. amplifer type 478 , I.F. amplifier type 479, Osc. amplifier type 477, A.M. and F.M. nections are brought out to Plessey sockett on front panel and are connected by flexible lead (not supplied) to the control box type 381, which provides a pre-selector and
(1unable frequency range of $66-77 \mathrm{Mc} / \mathrm{k}$. Both units art in new condition and offer possibilities for conversion to $\underset{\sim}{4-m e t r e ~ b a n d ~ c o m p l e t e ~ w i t h ~ c i r c u i t ~ d i a g r a m ~}$ Price 24/10s., postage $10 /$

New Catalogue No. 17. Government and manufacturers' surplus. Also new components, 3/- post free.

Grampian

for good

SOUND

COMPUTER PANELS

8 assorted printed circuit panels with transistors, diodes, resistors, capacitors, etc.
Guaranteed minimum 30 transistors.
8 boards 10/-, 100 boards 65/-
Post Free
10,000 Mfd 35v Electrolytics 6/- each p \& p 1/6 ea.
Keytronics, 52 Earls Court Road, London, W. 8.
MAIL ORDER ONLY

DAMEGED METER?
 Have it repaired by Glaser

Reduce overheads by having your damaged Electrical Measuring Instruments repaired by L. Glaser \& Co. Ltd. We specialise in the repair of all types and makes of IHSTRUMENT ammeters, Muntirange Test Meters, Hectrical Thermometers,
Recording Instruments, Leak REPAIRS Recording Instruments, Leak Detectors, Temp. Controllers, al
types Bridges \& Insulation types Bridge
Testers, etc.
As contractors to various Government Departments we are the leading Electrical Instrument Repairery in the industry. For prompt estimate and speedy delivery to Dept. W.W.:-
L. GLASER \& CO. LTD.

1-3 Berry Street, London, E.C. 1
Tel.: Clerkenwell 5481-2

WANTED

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, erc. Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc Good prices paid J. BLACK

44 Green Lane, Hendon, N.W. 4
Tel. 01-203 1855 and 3033

51 Burnley Road, Rawtenstall Rossendale, Lancs Tel.: Rossendale 3152					
VALVES BOXED, TESTED * GUARANTEED					
EBF80	3/-	PCC84	3/-	PY82	3/-
EBF89	3/6	PCF80	3/-	U191	4/6
ECC82	3/-	PCF82	3/6	U301	4/6
ECL80	3/-	PCLL 82	4/-	6F23	5/-
EF80	1/6	PCL83	4/-	10 Pl 4	3/-
EF85	3/-	PCL84	5/-	20P5	3/-
EF183	3/6	PL36	5/-	30F5	2/6
EF184	3/6	PL81	4/-	30 L 15	5/-
EY86	4/-	PL83	4/-	30 P 12	4/6
EL41	5/-	PY33	5/-	30 Cl 5	$5 / \mathrm{F}$
EZ40	4/6	PY81	3/6	30 PL 13	5/6
EBC41	4/6	PY800	3/6	30 PLI 1	5/6
POST, ONE VALVE 9d. TWO TO SIX 6d. OVER SIX POST PAID.					

PRINTED CIRCUITS

LiARGE AND SMALL QUANTITIES.
FULL DESIGN AND PROTOTYPE
FACILITIES AT REASONABLE PRICES
ASSEMBLY SERVICE ALSO AVAILABLE
K. J. BENTLEY \& PARTNERS,

IB, GREENACRES ROAD.
OLDHAM. LANCS.
Tel. 061-6240939

WE PURCHASE

PLUGS AND SOCKETS, MOTORS, TRANSISTORS, VALVES AND KLYSTRONS, RESISTORS, CAPACITORS, POTENTIOTRANSFORMERS METERS CABLES ETC

PROMPT PAYMENT \& COLLECTION TURN YOUR CAPITAL INTO CASH ELECTRONIC BROKERS LIMITED
8, BROADFIELDS AVENUE, EDGWARE, MIDDLESEX. TEL. 01-958 9842

SELCOL TRANSISTOR AMPLIFIER ONE WATT POWER OUTPUT Portable Cabinet size $12 \times 4 \times 9$ ins. fitted 7×4 Speaker, Volume Control Uses PP9 battery. Will OUR increase the volume and PR performance of Transistor
Radios, Record Players Radios, Record Players Tape Recorders etc. Idea

Post 5/6 WORTH DOUBLE SMITHS PRECISION SIX MINUTE DELAY ACTION SWITCH Clockwork actuated $10 / 6 \begin{array}{ll}\text { EACH } & \text { (3 or more } \\ \text { Post } 216 & \text { post free). }\end{array}$ Separate switching up to 6 mins. 15 amps .250 volts ${ }^{\text {s }}$ Ideal photographic timer, sequence switching operation etc., etc. Brand new units at a fraction of their value.

"SONOCOLOR" CINE RECORDING TAPE Superior quality 5 in. reel, 900 ft . L.P. with strobe markings, all tape recorders and OUR able all tape recorders and OUR $4 /$ EACH
cine projectors. List 28/- PRICE

the instant bulk tape eraser and recording head DEMAGNETISER

TRANSISTOR BOOSTER-
DOUBLE YOUR VOLUME! Black plastic cabinet speaker with 20 ft . lead for transistor radio, intercom, mains $\begin{array}{ll}\text { radio, tape recorder. } \\ \text { Size: } 7 \text { tin, } \times 5 \frac{1}{4} \text { in. } \times 3 i n . & 30 /= \\ 2 / 6\end{array}$
radio component specialists 337 WHITEHORSE RD., CROYDON. Tel.: 01-684.1665

SERVO AND ELECTRONIC SALES LTD.

> RECONDITIOMING SERVICE FOR INDUSTRIAL INSTRUMENTS Moving Conl Multi-range Meters. Ele trical and Electronic Test 87 London Road. Croydon. Surrey \quad Tel.: 01 -688 1512 WE ARE SPECLALISTS SOPPLIERS IN ELECTRONICS AUTOMATION
> fisn at: 43 High St. Orpington. Kent Tet.: 3108633976 Mill Roed, Lydd, Kent Tel.: Lydd 252

TO INSERT AN
 ADVERTISEMENT

IN THE

CLASSIFIED SECTION

TELEPHONE WIRELESS WORLD WATERLOO 3333

EXT. 210

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and WantsTo "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate: 6/- PER LINE. Average seven words per line.
- Name and address to be included in charge if used in advertisement.

NAME

ADDRESS

- Box No. Allow two words plus I/.
- Charges etc., payable to "Wireless World" and crossed " F Co."
- Press Day IO May for June 1968 issue.

Please write in block letters with ball pen or pencil.
NUMBER OF INSERTIONS.

‘Hike-Mike’ really started something... the finest range of radio microphone systems in the world
 From the very successful general purpose unit Hike-Mike has developed a whole range of special purpose microphone transmitters each one precision made for precision performance Suitable for both hand-held and Lavalier operation. Write now for descriptive literature of these and the full range of Audac Audio Equipment. Demonstrations with pleasure AUDAC radio microphone and sound remforcement systems AUDAC MARKETING COMPANY LIMITED / CAREY ROAD / WAREHAM / OORSET / TELEPHONE WAREHAM 2245.

INDEX TD ADVERTISERS

Appointments Vacant Advertisements appear on pages 111-118

[^13]

FOR THE FACTORY

Contains 5 cores of non-corrosive high speed Ersin flux. Removes surface oxides and prevents their formation during soldering. Complies with B.S. 219, 441, DTD 599A, B.S.3252, U.S. Spec. QQ-S-571d.

Savbit alloy contains a small percentage of copper and thus prolongs the life of copper soldering iron bits 10 times. Liquidus melting temperature is $215 \mathrm{C}^{\circ}-419^{\circ} \mathrm{F}$. Ministry approved under ref. DTD/900/4535
(8) Solder Tape, Rings, Preforms and Washers, Cored or Solid, are available in a wide range of specifications.

Liquid fluxes and printed circuit soldering materials comply with Government specifications. Ask for special details.

STANDARD GAUGESIN WHICH MOST ALLOYS ARE MADE AND LENGTHS PER LB. IN FEET

| | | | FT. PER LB. | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S.W.G. | INS. | M.M. | $60 / 40$ | SAVBIT |
| 10 | .128 | 3.251 | 25.6 | 24 |
| 12 | .104 | 2.642 | 38.8 | 36 |
| 14 | .080 | 2.032 | 65.7 | 60.8 |
| 16 | .064 | 1.626 | 102 | 96.2 |
| 18 | .048 | 1.219 | 182 | 170 |
| 19 | .040 | 1.016 | 262 | 244 |
| 20 | .036 | .914 | 324 | 307 |
| 22 | .028 | .711 | 536 | 508 |
| 24 | .022 | .558 | 865 | 856 |
| 26 | .018 | .46 | 1292 | 1279 |
| 28 | .014 | .375 | 1911 | 1892 |
| 30 | .012 | .314 | 2730 | 2695 |
| 32 | .010 | .274 | 3585 | 3552 |
| 34 | .009 | .233 | 4950 | 4895 |
| | | | | |

STANDARD ALLOYS INCLUDE			
		LIQuidus	
TIN/LEAD	$\begin{aligned} & \text { B.S. } \\ & \text { GRADE } \end{aligned}$	MEL ${ }^{\circ} \mathrm{C}$.	$\begin{aligned} & \text { TEMP } \\ & { }^{\circ} \mathrm{F} \text {. } \end{aligned}$
60/40	K	188	370
Savbit No 1	-	215	419
50/50	F	212	414
45/55	R	215	419
40/60	G	234	453
30/70	J	255	491
20/80	v	275	527

HIGH. AND LOW MELTING POINT ALLOYS

ALLOY	DESCRIPTION	MELTING TEMP. ${ }^{\circ} \mathrm{C}$	
T.L.C.	Tin/Lead/Cadmium with very low melting point	145	293
L.M.P.	Contains 2% for soldering silver coated surfaces	179	354
P.T.	Made from Pure Tin for use when a lead free solder is essential	232	450
H.M.P	High melting point solder to B.S. Grade 5S	$296-$	501

8)

Arax 4-core acid cored solder

Used in 38 industries it has replaced tinman's and blowpipe solders, fluid and paste fluxes and killed spirits for rapid and precision soldering in metal fabrication processes
Arax Flux - exclusive to Multicore-has the fastest speed
of flux in any cored solders. Flux residue is easily removable with water or, where flame heating is employed, is entirely volatilised. Residue will not contaminate plating baths. No pre-cleaning is necessary and the speed ensures that the solder will flow between the laps by capillary action, thus using the minimum amount of solder. Not recommended for wire to tag joints in radio or electrical equipment.

BFb accessories oan be supplied in bulk packings at very competitive prices

wire stripper and cutter

 model 8Strips insulation without nicking wires, cuts wires and cables cleanly. Model 3 is semi- permanently adjusted, Model 8 incorporates a unique 8 . gauge selector.

Precision made, chrome plated complete with razor cutter. Provides quick and accurate tape editing. Standard model for $\frac{1}{4}$ "tape. model 21 NEW $\frac{1}{2}$ " type is available for computer and video tape.

tape head

 maintenance kit size E

For further information please apply on your Compaitis note paper mentioning the product teferences ${ }^{2}$ Dapt. WW, Milticore Solders Limited Hemel Hempstead. Heis. Telephone Hemel Hemestead 3636

[^0]: -Formerly Erie Resistor Limited

[^1]: * See "The Technician Engineering Scene" W.W. April 1968, p. 73.

[^2]: * Marconi Instruments Lid.

[^3]: * "French Rival 10 Shadow-Mask Colour Tube" Wireless World, May 1967, p. 236.

[^4]: Authorised Stockists:- LUGTON \& CO. LTD., 209/210 Tottenham Court Road, London W. 1. Tel: Museum 3261
 SASCO, P.O. Box No. 20. Gatwick Road. Crawley. Sussex. Tel: Crawley 28700 (also Chipping Sodbury 2641 . Cumbernauld 25601 and Hitching 2242) and agents for principal overseas countries

[^5]: *The question of precisely where the mixing interface is located, its nature and how it operates holds a fascination of its own but need not be considered here,

[^6]: \dagger Small traces of a large number of other elements are also used presumably to give variety to the mix but the basic constituents of life are the four elements named.

[^7]: Newmarket Transistors Limited

[^8]: *"Manpower: Studies No. 5. Electronics", Ministry of Labour, H.M.S.O.

[^9]: High Fidelity Audio Centres
 42 TOTTENHAM CI. RO. LONDON, W. 1 Tel.: $01-5802573$ Open all dar Thu Csday, eariv closing 1 pm Saturday

 118 EDGWARE ROAD, LONDON. W. 2 Tel.: 01-723 9789 Open all day Salurday, earlv closing 1 pm Thusisdav

[^10]: MAIL ORDERS TO: 102-106 Henconner Lane, Bramley Leeds, 13. No C.O.D. under El age $4 / 6$ extra under $E 2,5 / 9$ ex tra under $£ 5$. Trade supplied
 S.A.E. with enquiries please HI-FI Catalogul 4/9 with coloured supplements Open all day Saturdayz axcept High

[^11]: 22 Sun Street, Reading. Berks.

[^12]: Tel. No.: Reading 65916 (9 a.m. to 10 p.m.)

[^13]:
 at a price in excess of the recommended maximum price shown on the cover: and that it shatl not be lent, re-sold, hired out or otherwise dieposed given, be lent, resold, hired out or otherwise disposed of by way of Trade or affixet to or as part of any publication or adrertising. literary or pictorial matter what soerer.

